
Aligning CNF- and Equivalence-Reasoning

Marijn Heule⋆ and Hans van Maaren

Department of Information Systems and Algorithms,
Faculty of Electrical Engineering, Mathematics and Computer Sciences,

Delft University of Technology
marijn@heule.nl, h.vanmaaren@its.tudelft.nl

Abstract. Structural logical formulas sometimes yield a substantial frac-
tion of so called equivalence clauses after translation to CNF. Probably
the best known example of this is the parity-family. Large instances of
such CNF formulas cannot be solved in reasonable time if no detection
of, and extra reasoning with, these clauses is incorporated. That is, in
solving these formulas, there is a more or less separate algorithmic device
dealing with the equivalence clauses, called equivalence reasoning, and
another dealing with the remaining clauses. In this paper we propose a
way to align these two reasoning devices by introducing parameters for
which we establish optimal values over a variety of existing benchmarks.
We obtain a truly convincing speed-up in solving such formulas with
respect to the best solving methods existing so far.

1 Introduction

The notorious parity-32 benchmarks [3] remained unsolved by general purpose
Sat solvers for a considerable time. In [12] a method was proposed which, for the
first time, could solve these instances in a few minutes. The key to this method
was to detect the clauses that represented so called equivalences l1 ↔ l2 ↔ · · · ↔
ln (where the li are literals, or their negations, appearing in the formula at hand)
and to pre-process the set of these equivalences in such a way that dependent and
independent variables became visible. The remaining clauses then were tackled
with a rather straightforward DPLL procedure but in such a way that kept track
of the role of these dependent and independent variables. It was developed as a
two-phase method, where the equivalence part was established and transformed
in a pre-processing phase.

The next important step was made by Li [6]. He incorporated a form of
equivalence reasoning in every node of an emerging search tree. His approach
did not incorporate a pre-processing phase (at least not regarding the equivalence
clauses) and thus he established the first one-phase Sat solver eqsatz which could
tackle these instances in reasonable time.

⋆ Supported by the Dutch Organization for Scientific Research (NWO) under grant
617.023.306.

H.H. Hoos and D.G. Mitchell (Eds.): SAT 2004, LNCS 3542, pp. 145–156, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

146 M. Heule and H. van Maaren

A disadvantage of his method is the fact that he uses a full look-ahead approach:
all variables enter the look-ahead phase, contrary to partial look-ahead, which runs
only on a pre-selected number of variables. Full look-ahead is costly for larger size
formulas. In addition, his look-ahead evaluation function to measure the reduction
of the formula during the look-ahead phase is - in our opinion - not optimal. Also,
his equivalence reasoning is restricted to equivalences of length at most three.

Some years later Ostrowski et al. [10] extended the above pre-processing
ideas from [12] to logical gates other than equivalences, resulting in the lsat

solver. However, their DPLL approach to deal with the remaining CNF-part
uses a Jeroslow-Wang branching rule and they do not perform a look-ahead
phase, which is - again in our opinion - not an optimal alignment.

In this paper we propose an alignment of equivalence reasoning and DPLL
reasoning which does not assume a full look-ahead approach. This will enforce us
to introduce adequate pre-selection heuristics for selecting those variables which
are allowed to enter an Iterative Unit Propagation phase. Further, we will eval-
uate the progress in enrolling the formula at hand in a more detailed manner as
was done in eqsatz. We are forced to introduce parameters to guide this search.
These parameters are needed to aggregate the reduction of the equivalence part
of the formula and that of the remaining CNF part. Further, our method is able
to deal with equivalences of arbitrary size. This in turn leads us to an investi-
gation of the relative importance of equivalences of different size. Surprisingly,
this relative importance turns out to be rather differently measured as would be
expected when taking similar relative importance of ordinary clause-lengths as
a guiding principle.

We optimise the various parameters to ensure a convincing speed-up in solv-
ing formulas with a substantial equivalence part, both with respect to the various
alternative solvers available and with respect to a variety of benchmarks known
of this type.

2 Equivalence Reasoning in Pre-processor

After initialisation, the first goal of the pre-processor is to simplify the formula as
much as possible. This is achieved by iterative propagation of all unary clauses
and binary equivalences. After this procedure, the equivalence clauses are de-
tected using a simple syntactical search procedure, extracted from the formula
and placed in a separate data-structure. We refer to this data-structure as the
Conjunction of Equivalences (CoE). The aim of this equivalence reasoning en-
hanced pre-processor is to solve the extracted CoE sub-formula.

A solution is obtained by performing the first phase of the algorithm by
Warners and Van Maaren [12]: We initialise set I = {x1, · · · , xm}, the set of
independent variables, with m referring to the initial number of variables. We
loop through the equivalency clauses once, selecting variable xi in each one to
eliminate from all other equivalence clauses. Subsequently we remove xi from
I, and call it a dependent variable. Thus we end up with a set of equivalence
clauses for which all satisfiable assignments can be constructed by assigning all

Aligning CNF- and Equivalence-Reasoning 147

possible combinations of truth values to the independent variables. The values
of the dependent variables are uniquely determined by an assignment of the
independent variables. Note that during the elimination process a contradiction
might be derived, which implies unsatisfiability of the original problem.

Numerous of such independent sets could be obtained by this algorithm. The
performance of a solver might vary significantly under different choices of the
independent set, as we have observed using the march solver (developed by Joris
van Zwieten, Mark Dufour, Marijn Heule and Hans van Maaren; it participated
in the Sat 2002 [7], Sat 2003 [8], and Sat 2004 [9] competitions). Therefore,
two enhancements are added to the original algorithm to find an independent
set that would result in relatively fast performance: the first addition involves
an explicit prescription for the selection of the variables to eliminate: for every
equivalence clause the variable is selected that occurs (in a weighted fashion)
least frequently in the CNF. Occurrences in binary clauses are counted twice as
important as occurrences in n-ary clauses.

The motivation for selecting the least occurring variable is twofold: first, if the
selected variable xi does not occur in the CNF at all, the equivalence clause in
which xi occurs, becomes a tautological clause after elimination, because xi could
always be taken as such to satisfy it. Neglecting tautological clauses during the
solving phase could result in a considerable speed-up. Second, faster reduction of
the formula is expected when the independent variables occur frequently in the
CNF-part: independent variables will be forced earlier to a certain truth value
by constraints from both the CoE- and the CNF-part.

The second addition is a procedure that reduces the sum of the lengths of all
non-tautological equivalences in the CoE. This procedure consists of two steps:
the first searches for pairs of equivalence clauses that could be combined to
created a binary equivalence. Note that binary equivalence clauses can always
be made tautological, since one of its literals could be removed from the CNF by
replacing it by the other. The second step loops through all equivalence clauses
and checks whether a different choice for the dependent variable in that clause
would result in a smaller sum of lenghts of non-tautological equivalences. Both
methods are iteratively repeated until both yield no further reduction.

Several benchmark families in the Sat 2003, Sat 2002 and Dimacs bench-
mark suites1 can be solved by merely applying the pre-processing presented
above. One of these families is xor-chain which contains the smallest unsolved
unsatisfiable instances from the Sat 2002 competition. Table 1 shows the re-
quired time to solve these families for various solvers. Notice that march uses the
proposed pre-processing. In the table, the numbers behind the family names refer
to the number of instances in a family. The last five columns show the total time
required to solve a family. In these columns, numbers between braces express the
number of benchmarks that could not be solved within a 120 seconds time limit.
Judging from the data in the table, lsat is the only solver which can compete with
the march pre-processor since it solves all but one families in comparable time.

1 All three suites are available at www.satlib.org

148 M. Heule and H. van Maaren

Table 1. Performances of the solvers march, eqsatz, satzoo, lsat and zchaff in seconds
on several families that could be solved by merely pre-processing

3 Combined Look-Ahead Evaluation

Look-ahead appears to be a powerful technique to solve a wide range of prob-
lems. The pseudo-code of an elementary look-ahead procedure is presented in
Algorithm 1. The look-ahead procedure in march closely approximates this ele-
mentary procedure. Notice that it does not perform any equivalence reasoning
during this phase.

Algorithm 1. Look-ahead()

Let F ′ and F ′′ be two copies of F
for each variable xi in P do

F ′ := IterativeUnitPropagation(F ∪ {xi})
F ′′ := IterativeUnitPropagation(F ∪ {¬xi})
if empty clause ∈ F ′ and empty clause ∈ F ′′ then

return “unsatisfiable”
else if empty clause ∈ F ′ then

F := F ′′

else if empty clause ∈ F ′′ then

F := F ′

else

H(xi) = 1024 × Diff(F , F ′) × Diff(F , F ′′) + Diff(F , F ′) + Diff(F , F ′′)
end if

end for

return xi with greatest H(xi) to branch on

An effective look-ahead evaluation function (Diff in short) is critical to the
effectiveness of the branching variable the look-ahead returns. Experiments on
random 3-Sat instances showed that using a Diff that counts newly created

Aligning CNF- and Equivalence-Reasoning 149

binary clauses results in fast performances on these benchmarks and many other
families. Addition of new clauses of length > 2 to the Diff requires weights
that express the relative importance of clauses of various length. Weights that
result in optimal performance on random k-Sat formulas could be described by
linear regression: e.g. Kullmann [5] uses weights in his OKsolver that could be
approximated by 0.22n−2. In this equation n refers to the length of a clause,
with n ≥ 2.

Little is known about effective evaluation functions to measure the impor-
tance of a new equivalence clause. In eqsatz by Li [6] only new binary equiv-
alences are counted. These are weighed twice as important as a new binary
clause. The importance of the new equivalence clauses of various length could
be obtained by measuring the reduction of its translation into CNF. Applying
the approximation of the weights by Kullmann [5] results in a weight function
of 2n−1 × 0.22n−2 ≈ 10.33 × 0.44n for a new equivalence of length n. However,
this reference should be labelled as vague, since the weights are optimised with
respect to random formulas.

Although we have indications that other models might be more appropriate
when equivalence clauses are involved, we take this regression model as a first
start. Performances were measured for various parameter settings of equation
(1). In this equation, n refers to the reduced length of an equivalence clause.
Parameter qbase denotes the factor that describes the decreasing importance of
equivalence clauses of various length and parameter qconst expresses the relation
between the reduction of the CNF-clauses and the equivalence clauses. Since
march uses a 3-Sat translator, only new binary clauses are created. The evalua-
tion of the look-ahead is calibrated by defining the importance of a new binary
clause to value 1. The result of eqn then defines the relative importance of a new
equivalence clause of length n in relation to a new binary clause.

eqn = qconst × qbase
n (1)

Wide scale experiments were troubled by the lack of useful benchmarks: many
benchmark families that contain a significant part of equivalence clauses are
easily solved with mere pre-processing procedures: either the solving procedure
for the CoE results in a contradiction, or the propagation of the unary clauses
and the binary equivalences found during pre-processing are sufficient to solve
the formula. Many benchmarks families with a significant CoE-part that require
a sophisticated solving procedure after pre-processing are neither useful for these
experiments, because most or all of their equivalence clauses have length 3. For
comparison: The Sat 2003 [8] competition suite consisted of 11 families which
are solved in pre-processing while only five needed further search. Of those five
only two had a large number of long equivalences after the pre-processing.

These two families are the parity32 and the hwb. The first family consists of
the Sat-encoding of minimal disagreement parity problems contributed by Craw-
ford et al. [3]. The second consists of equivalence checking problems that arise
by combining two circuits computed by the hidden weighted bit function. These
latter are contributed by Stanion [8]. Both families have been used to determine

150 M. Heule and H. van Maaren

Fig. 1. Performances achieved by march on various settings of qbase and qconst. The
values on the z-axis are the cumulated performances on the whole parity-32 and
hwb-n20 families in seconds. Contour lines are drawn at 110% and 120% of optimal
performance

Table 2. Weights to measure the reduction of equivalence clauses of various lengths

Reduced length (n): 2 3 4 5 6 7 8 9 10

CNF-reference: 2.00 0.88 0.39 0.17 0.07 0.03 0.01 0.01 0.00
Found optimum: 3.97 3.38 2.87 2.44 2.07 1.76 1.50 1.27 1.08

the parameter setting for equation (1) that results in optimal performance. The
results of these experiments are shown in Fig. 1. During our experiments, the
values qconst = 5.5 and qbase = 0.85 appeared optimal. Two conclusions can be
derived regarding the results: (1) parameter qbase has a much larger influence on
the performance than qconst. (2) Using optimal settings, the reduction of equiv-
alences is considered far more important than the reduction of the equivalent
CNF-translations would suggest: table 2 shows the weights used for both settings.

4 Pre-selection Heuristics

Although look-ahead is a powerful technique, it pays off to restrict the number
of variables which enter this procedure. In Algorithm 1 this partial behaviour is
achieved by performing only look-ahead on variables in set P. At the beginning
of each node, this set is filled by pre-selection heuristics that are based on an
approximation function of the combined evaluation of the look-ahead (Ace).
The ranking of variable x is calculated by multiplying Ace(x) and Ace(¬x).

Aligning CNF- and Equivalence-Reasoning 151

E(x), used to obtain Ace(x), refers to the set of all equivalence clauses in which
x occurs and occ3(x) refers to the number of occurrences of x in ternary clauses.

Ace(x) = occ3(¬x) +
∑

QiǫE(x)

eq|Qi|−1 +
∑

¬x∨yǫF

occ3(¬y) +
∑

QiǫE(y)

eq|Qi|−1

(2)

In the versions of march without equivalence reasoning fast, performance is
achieved on average by performing look-ahead only on the “best” 10 0/0 of the
variables. This constant percentage is not always optimal. It is not even optimal
for the benchmarks used in this paper, but since it provided optimal performance
on a wide scale of experiments, we restricted ourselves to this 10 0/0. To illustrate
the diversity of partial look-ahead optima, march requires 1120 secondes to solve
a benchmark provided by Philips using the 10 0/0 setting (see table 4), while
it requires only 761 seconds at the optimal setting of 8 0/00. [4] provides more
insight in the behaviour of march using different percentages of variables entering
the look-ahead phase.

5 Additional Equivalence Reasoning

Various additional forms of equivalence reasoning are tested. These include:

– Removal of equivalence clauses that have became tautological during the
solving phase. This results in a speed-up due to faster propagation.

– Propagation of binary equivalences in the CoE: replacing one of its literals
by the other. This increases the chance that a variable occurs twice in an
equivalence clause, so both could be removed.

– Prevention of equivalent variables to enter the look-ahead procedure, since
equivalent variables will yield an equivalent Diff.

Only the last adjustment realised a noticeable speed-up of about 10 0/0. The gain
that other procedures accomplished were comparable to their cost, resulting in
a status quo in terms of time.

6 Results

Six solvers are used to compare the results of march: eqsatz2, lsat3, satzoo4,
zchaff5, limmat6, and OKsolver7. The choice for eqsatz and lsat is obvious since

2 version 2.0, available at http://www.laria.u-picardie.fr/∼cli/EnglishPage.html
3 version 1.1, provided by authors
4 version 1.02, available at http://www.math.chalmers.se/∼een/Satzoo/
5 version 2003.07.01, available at http://www.ee.princeton.edu/∼chaff/zchaff.php
6 version 1.3, available at http://www2.inf.ethz.ch/personal/biere/projects/limmat/
7 version 1.2, available at http://cs-svr1.swan.ac.uk/ csoliver/OKsolver.html

152 M. Heule and H. van Maaren

they are the only other Sat solvers performing equivalence reasoning. Since
equivalence clauses merely occur in handmade and industrial problems, we added
some solvers that are considered state-of-the-art in these categories: satzoo and
zchaff, respectively. For extended reference we added two winners of the Sat 2002
competition: limmat and OKsolver. The last is also a look-ahead Sat solver.

All solvers were tested on an AMD 2000+ with 128Mb memory running on
Mandrake 9.1. Besides the parity32 and the hwb benchmarks, we experimented
on the longmult family that arises from bounded model checking [2], five un-
solved benchmarks (pyhala-braun-x (pb-x in short) and lisa21-99-a) from
the Sat 2002 competition contributed by Pyhala and Aloul, respectively [7],
and three factoring problems (2000009987x) contributed by Purdom [11]. Ex-
cept from both bounded model checking families and the benchmark provided by
Philips, all benchmarks were used in the Sat 2003 competition. To enable a com-
parison with the Sat 2003 results8, we used the shuffled benchmarks generated
for this competition during our experiments. However, these shuffled benchmarks
caused a slowdown in performance of eqsatz: e.g. eqsatz solves most original
parity32 benchmarks within the 2000 seconds time limit.

Two versions of our solver are used to evaluate performance: the first, march◦

uses the equation eqn = 5.5 × 0.85n to measure the reduction of the CoE
during the look-ahead, and applies it to the calculation of Ace. The second
variant, march∗ does not use the CoE-part during the look-ahead but operates
using the original CNF instead. Both march variants use a 10% partial look-
ahead.

In table 3, six properties of experimented benchmarks are presented:

#Cls refers to the initial number of clauses

#Var refers to the initial number of variables

#Ind refers to the number of variables in the independent set

#Eq refers to the number of detected equivalence clauses.

#Nt refers to the number of non-tautological equivalences after pre-processing.

|Nt| refers to the average length of the non-tautological equivalences after the
pre-processing.

Table 4 shows the performances of the various solvers during our experi-
ments. Of all properties listed above, the average length (|Nt|) appears to be the
most useful indicator for when to use march◦ instead of march∗: both families
that profit clearly from the equivalence reasoning have a high average length.
The slowdown on the longmult family could be explained by the small num-
ber of equivalence clauses compared to the number of independent variables:
the relatively costly equivalence reasoning is performed during the look-ahead
while the differences in the branch decision between march◦ and march∗ are
small.

8 results of the Sat 2003 competition are available at
www.lri.fr/∼simon/contest03/results/

Aligning CNF- and Equivalence-Reasoning 153

Table 3. Properties of several benchmarks containing equivalence clauses

instance #Cls #Var #Ind #Eq #Nt |Nt|

par32-1 10227 3176 157 1158 218 7.79
par32-2 10253 3176 157 1146 218 7.83
par32-3 10297 3176 157 1168 218 7.84
par32-4 10313 3176 157 1176 218 8.12
par32-5 10325 3176 157 1182 218 7.91
par32-1-c 5254 1315 157 1158 218 7.49
par32-2-c 5206 1303 157 1146 218 8.02
par32-3-c 5294 1325 157 1168 218 7.69
par32-4-c 5326 1333 157 1176 218 7.73
par32-5-c 5350 1339 157 1182 218 8.13

hwb-n20-1 630 134 96 36 35 4.91
hwb-n20-2 630 134 96 36 35 4.88
hwb-n20-3 630 134 96 36 35 4.80
hwb-n22-1 688 144 104 38 37 4.84
hwb-n22-2 688 144 104 38 37 4.56
hwb-n22-3 688 144 104 38 37 4.62
hwb-n24-1 774 162 116 44 43 5.83
hwb-n24-2 774 162 116 44 43 4.86
hwb-n24-3 774 162 116 44 43 4.86
hwb-n26-1 832 172 124 46 45 5.04
hwb-n26-2 832 172 124 46 45 5.24
hwb-n26-3 832 172 124 46 45 5.56

longmult-6 8853 2848 1037 174 90 3.93
longmult-7 10335 3319 1276 203 105 3.93
longmult-8 11877 3810 1534 232 120 3.93
longmult-9 13479 4321 1762 261 135 3.93
longmult-10 15141 4852 2014 290 150 3.93
longmult-11 16863 5403 2310 319 165 3.93
longmult-12 18645 5974 2620 348 180 3.93
longmult-13 20487 6565 2598 377 195 3.93
longmult-14 22389 7176 2761 406 210 3.93
longmult-15 24351 7807 2784 435 225 3.93

pb-s-40-4-03 31795 9638 2860 3002 3001 3.00
pb-s-40-4-04 31795 9638 2860 2936 2935 3.00
pb-u-35-4-03 24320 7383 2132 2220 2219 3.00
pb-u-35-4-04 24320 7383 2131 2277 2276 3.00

lisa21-99-a 7967 1453 1310 460 459 3.87

2000009987fw 12719 3214 1615 1358 1319 3.54
2000009987nc 10516 2710 1303 1286 1262 3.46
2000009987nw 11191 2827 1342 1322 1299 3.38

philips 4456 3642 1005 342 224 3.50

154 M. Heule and H. van Maaren

Table 4. Performances of the solvers march, eqsatz, satzoo, lsat, zchaff, limmat, and
OKsolver in seconds on various benchmarks with equivalence clauses

Aligning CNF- and Equivalence-Reasoning 155

7 Conclusions

In this paper, we presented a new alignment between equivalence reasoning and
look-ahead in a DPLL Sat solver. The resulted solver outperforms existing tech-
niques on benchmarks that contain a significant part of equivalence clauses. Two
main features appeared sufficient for effective equivalence reasoning:

– an effective solving procedure for the CoE during the pre-processing.
– an effective evaluation function to measure the reduction of equivalence

clauses during the look-ahead procedure.

Additional features of integration may further increase the performance, but
substantial gains have not been noticed yet. However, two procedures are worth
mentioning: first, integration of the effective evaluation function (Ace) into the
pre-selection heuristics of the look-ahead, resulted in a speed-up up to 30%. Sec-
ond, a small performance gain on practically all benchmarks, with and without
equivalence clauses, was achieved by preventing equivalent variables to enter the
look-ahead phase.

We conclude that aligning Equivalence- and CNF- reasoning as carried out
pays off convincingly. Although some instances are not solved without incorpo-
rating the CoE reductions during the look-ahead phase (march◦), others suffer
from this additional overhead and are easier solved by updating and investigating
the CoE part at the chosen path only (march∗).

References

1. D. Le Berre and L. Simon, The essentials of the SAT’03 Competition. Springer
Verlag, Lecture Notes in Comput. Sci. 2919 (2004), 452–467.

2. A. Biere, A. Cimatti, E.M. Clarke, Y. Zhu, Symbolic model checking without BDDs.
in Proc. Int. Conf. Tools and Algorithms for the Construction and Analysis of
Systems, Springer Verlag, Lecture Notes in Comput. Sci. 1579 (1999), 193–207.

3. J.M. Crawford, M.J. Kearns, R.E. Schapire, The Minimal Disagreement parity

problem as a hard satisfiability problem. Draft version (1995).

4. M.J.H. Heule, J.E. van Zwieten, M. Dufour and H. van Maaren, March eq, Im-

plementing Efficiency and Additional Reasoning in a Look-ahead SAT Solver. Ap-
pearing in the same volume.

5. O. Kullmann, Investigating the behaviour of a SAT solver on random formulas.
Submitted to Annals of Mathematics and Artificial Intelligence (2002).

6. C.M. Li, Equivalent literal propagation in the DLL procedure. The Renesse issue
on satisfiability (2000). Discrete Appl. Math. 130 (2003), no. 2, 251–276.

7. L. Simon, D. Le Berre, and E. Hirsch, The SAT 2002 competition. Accepted for
publication in Annals of Mathematics and Artificial Intelligence (AMAI) 43 (2005),
343–378.

8. L. Simon, Sat’03 competition homepage.
http://www.lri.fr/∼simon/contest03/results/

9. L. Simon, Sat’04 competition homepage.
http://www.lri.fr/∼simon/contest/results/

156 M. Heule and H. van Maaren

10. R. Ostrowski, E. Gregoire, B. Mazure, L. Sais, Recovering and exploiting structural

knowledge from CNF formulas, in Proc. of the Eighth International Conference on
Principles and Practice of Constraint Programming, Springer Verlag, Lecture Notes
in Comput. Sci. 2470 (2002), 185–199.

11. P. Purdom and A. Sabry, CNF Generator for Factoring Problems.
http://www.cs.indiana.edu/cgi-pub/sabry/cnf.htm

12. J.P. Warners, H. van Maaren, A two phase algorithm for solving a class of hard

satisfiability problems. Oper. Res. Lett. 23 (1998), no. 3-5, 81–88.

	Introduction
	Equivalence Reasoning in Pre-processor
	Combined Look-Ahead Evaluation
	Pre-selection Heuristics
	Additional Equivalence Reasoning
	Results
	Conclusions

