
Mapping Problems with Finite-Domain

Variables to Problems with Boolean Variables⋆

Carlos Ansótegui and Felip Manyà

Computer Science Department,
Universitat de Lleida,

Jaume II, 69, E-25001 Lleida, Spain
{carlos, felip}@eup.udl.es

Abstract. We define a collection of mappings that transform many-
valued clausal forms into satisfiability equivalent Boolean clausal forms,
analyze their complexity and evaluate them empirically on a set of bench-
marks with state-of-the-art SAT solvers. Our results provide empirical
evidence that encoding combinatorial problems with the mappings de-
fined here can lead to substantial performance improvements in complete
SAT solvers.

1 Introduction

In the last few years, the AI community has investigated the generic problem
solving approach which consists of modeling hard combinatorial problems as in-
stances of the propositional satisfiability problem (SAT) and then solving the re-
sulting encodings with algorithms for SAT. The success in solving SAT-encoded
problems depends on both the SAT solver and the SAT encoding used. While
there has been a tremendous advance in the design and implementation of SAT
solvers, our understanding of SAT encodings is very limited and is yet a challenge
for the AI community working on propositional reasoning.

In this paper we define a collection of mappings that transform many-valued
clausal forms into satisfiability equivalent Boolean clausal forms and analyze
their complexity. Given a combinatorial problem encoded as a many-valued
clausal form, the mappings defined allow us to generate six different Boolean
SAT encodings. We evaluated empirically the Boolean SAT encodings generated
for a number of combinatorial problems (graph coloring, random binary CSPs,
pigeon hole, and all interval series) using Chaff [21] and Siege v4.1 Our results
provide empirical evidence that encoding combinatorial problems with the map-
pings defined here can lead to substantial performance improvements in complete

⋆ Research partially supported by projects TIC2001-1577-C03-03 and TIC2003-00950
funded by the Ministerio de Ciencia y Tecnoloǵıa. We thank Carla Gomes for allow-
ing us to use computational resources of the Intelligent Information Systems Institute
(Cornell University).

1 Siege v4 is publicly available at http://www.cs.sfu.ca/˜ loryan/personal

H.H. Hoos and D.G. Mitchell (Eds.): SAT 2004, LNCS 3542, pp. 1–15, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 C. Ansótegui and F. Manyà

SAT solvers. The behaviour of different SAT encodings of graph coloring and all
interval series instances on local search solvers was analyzed in [1, 23].

These results are part of a research program about many-valued satisfiability
that our research group has developed during the last decade (see e.g. [2, 5, 9, 11,
18, 20]). Our research program is aimed at bridging the gap between Boolean SAT
encodings and constraint satisfaction formalisms. The challenge is to combine the
inherent efficiencies of Boolean SAT solvers operating on uniform encodings with
the much more compact and natural representations, and more sophisticated
propagation techniques of CSP formalisms.

We have used before mappings between many-valued clausal forms and
Boolean clausal forms to identify new polynomially solvable many-valued SAT
problems [7, 19], to known which additional deductive machinery is required
to design many-valued SAT solvers from Boolean SAT solvers [7, 10], and to
solve many-valued SAT encodings with Boolean SAT solvers [3, 4]. We invite
the reader to consult two survey papers [8, 17] that contain a summary of our
previous work.

The paper is structured as follows. In Section 2, we formally define the syntax
and semantics of the many-valued clausal forms used in the paper. In Section 3,
we define six mappings that transform many-valued clausal forms into satisfi-
ability equivalent Boolean clausal forms. In Section 4, we report the empirical
investigation conducted to assess the performance of those mappings.

2 Many-Valued Formulas

We first formally define the syntax and semantics of signed CNF formulas, and
then present monosigned and regular CNF formulas, which are the subclasses of
signed CNF formulas that are considered in this paper.

Definition 1. A truth value set N is a non-empty finite set {i1, i2, . . . , in}
where n ∈ N. The cardinality of N is denoted by |N |. A total order ≤ is as-
sociated with N , which may be the empty order.

Definition 2. A sign is a set S ⊆ N of truth values. A signed literal is an
expression of the form S : p where S is a sign and p is a propositional variable.
The complement of a signed literal S :p, denoted by S :p, is (N \ S) :p. A signed
clause is a disjunction of signed literals. A signed CNF formula is a conjunction
of signed clauses. The size of a signed clause C, denoted by |C|, is the total
number of literals occurring in C, and the size of a signed CNF formula Γ ,
denoted by |Γ |, is the sum of the sizes of the clauses of Γ .

Definition 3. An interpretation is a mapping that assigns to every pro-
positional variable an element of the truth value set. An interpretation I satisfies
a signed literal S :p iff I(p) ∈ S, satisfies a signed clause C iff it satisfies at least
one of the signed literals in C, and satisfies a signed CNF formula Γ iff it sat-
isfies all clauses in Γ . A signed CNF formula is satisfiable iff it is satisfied by
at least one interpretation; otherwise it is unsatisfiable.

Mapping Problems with Finite-Domain Variables 3

Definition 4. A sign S is monosigned if it either is a singleton (i.e. it contains
exactly one truth value) or the complement of a singleton. A monosigned sign S
is positive if it is identical to {i} : p, and is negative if it is identical to {i} : p
for some i ∈ N . A signed literal S : p is a monosigned literal if its sign S is
monosigned. A signed clause (a signed CNF formula) is a monosigned clause (a
monosigned CNF formula) if all its literals are monosigned.

Definition 5. Given a monosigned CNF formula Γ , the domain of a variable p
occurring in Γ is NΓ (p) = {i ∈ N | {i} : p or {i} : p occur in Γ} if NΓ (p) = N ,
and NΓ (p) ∪ {j}, where j is any element of N \NΓ (p), otherwise. The Boolean
signature of Γ is Σ = {{i} : p | {i} : p or {i} : p occur in Γ}.

Definition 6. For all i ∈ N , let ↑ i denote the sign {j ∈ N | j ≥ i}, where ≤
is the total order associated with N , and let ↑ i denote the complement of ↑ i.
A sign S is regular if it either is identical to ↑ i (positive) or to ↑ i (negative)
for some i ∈ N . A signed literal S : p is a regular literal if its sign S is regular.
A signed clause (a signed CNF formula) is a regular clause (a regular CNF
formula) if all its literals are regular.

Definition 7. Given a regular CNF formula Γ , the domain of a variable p
occurring in Γ is NΓ (p) = {i ∈ N | ↑ i : p or ↑ i : p occur in Γ}. The Boolean
signature of Γ is Σ = {↑ i : p | ↑ i : p or ↑ i : p occur in Γ}.

Example 1. Suppose that N = {1, 2, 3, 4}. Then, we have that the signed clause
{1, 2, 3}:p1∨{4}:p2 can be represented as a monosigned clause by {4}:p1∨{4}:p2,
and as a regular clause by ↑ 4 : p1 ∨ ↑ 4 : p2.

The notation used in this paper is the one used in the many-valued logic
community, which is the notation we used in our previous work on many-valued
satisfiability. Since some readers can find hard to read that notation, we next
show how to encode a graph coloring problem as a signed CNF formula.

Example 2. Given an undirected graph G = (V,E), where V is the set of vertices
ans E is the set of edges, the 3-colorability problem of G is encoded as a signed
CNF formula as follows: for each edge [u, v] ∈ E, we define three signed binary
clauses

({2, 3} :u ∨ {2, 3} :v) ∧ ({1, 3} :u ∨ {1, 3} :v}) ∧ ({1, 2} :u ∨ {1, 2} :v)

and take as truth value set N = {1, 2, 3}.2 The intended meaning of the previous
signed clauses is that there are no two adjacent vertices with the same color.

Signed CNF formulas and their subclasses have been studied since the early
90’s by the research community working on automated theorem proving in many-
valued logics [6, 13, 15, 16, 22]. A few years later, Frisch and Peugniez [14] used
the term non-Boolean formulas to refer to signed CNF formulas.

2 These clauses are represented as monosigned clauses by ({1} : u∨{1} : v)∧ ({2} : u∨
{2} : v) ∧ ({3} : u ∨ {3} : v).

4 C. Ansótegui and F. Manyà

3 Mappings

We define a number of mappings that transform a monosigned CNF formula
into a satisfiability equivalent Boolean CNF formula. In the most straightfor-
ward mappings, the derived formula consists of the input monosigned CNF
formula under Boolean semantics (i.e., monosigned literals are interpreted as
Boolean literals, and the notion of satisfiability is Boolean) plus a set of clauses
that link many-valued interpretations with Boolean interpretations. The addi-
tional clauses ensure that exactly one of the literals of the Boolean signature
of the monosigned CNF formula which correspond to a certain many-valued
variable evaluates to true under Boolean semantics. We consider several cases:
using only the Boolean signature of the monosigned CNF formula; extending the
Boolean signature with regular literals under Boolean semantics; and extending
the Boolean signature with a logarithmic number of Boolean variables for each
many-valued variable (i.e., using a logarithmic encoding of the many-valued vari-
ables). In the most involved mappings, monosigned literals are replaced by their
regular or logarithmic encoding in the input monosigned CNF formula, and its
Boolean signature is replaced by a regular or logarithmic signature.

We analyze the complexity of the Boolean CNF formula derived by each
mapping as a function of the size of the input monosigned CNF formula and the
cardinality of the truth value set.

3.1 Standard Mapping (S)

The most straightforward mapping consists of dealing with the Boolean signa-
ture of the input monosigned CNF formula. In the standard (S) mapping, each
positive monosigned literal of the input monosigned CNF formula is taken as
a Boolean variable, and each negative monosigned literal is replaced with the
negation of its complement and is taken as a negative Boolean literal; i.e., we
take the input monosigned CNF formula under Boolean semantics. Moreover,
we add for each many-valued variable p, a clause that states that p takes at least
one value of its domain (ALO clause) and a set of clauses that state that p takes
at most one value of its domain (AMO clauses). Assume that the domain of p
in the input monosigned CNF formula Γ is NΓ (p) = {i1, . . . , im(p)}. Then, the
ALO clause is {i1} :p ∨ · · · ∨ {im(p)} :p, and the set of AMO clauses contains a
clause ¬({ij} :p) ∨ ¬({ik} :p) for all j and k such that 1 ≤ i < j ≤ m(p).

Example 3. Let NΓ (p1) = {1, 2, 3}, let NΓ (p2) = {1, 2, 3, 4}, and let Γ be the
following monosigned CNF formula:

{1} : p1 ∧ ({3} : p1 ∨ {1} : p2) ∧ ({2} : p2 ∨ {3} : p2)

Mapping S generates the following formula:

¬({1} : p1) ∧ ({3} : p1 ∨ ¬({1} : p2)) ∧ (¬({2} : p2) ∨ ¬({3} : p2))
{1} : p1 ∨ {2} : p1 ∨ {3} : p1

¬({1} : p1) ∨ ¬({2} : p1)

Mapping Problems with Finite-Domain Variables 5

¬({1} : p1) ∨ ¬({3} : p1)
¬({2} : p1) ∨ ¬({3} : p1)
{1} : p2 ∨ {2} : p2 ∨ {3} : p2 ∨ {4} : p2

¬({1} : p2) ∨ ¬({2} : p2)
¬({1} : p2) ∨ ¬({3} : p2)
¬({1} : p2) ∨ ¬({4} : p2)
¬({2} : p2) ∨ ¬({3} : p2)
¬({2} : p2) ∨ ¬({4} : p2)
¬({3} : p2) ∨ ¬({4} : p2)

The size of the SAT instance generated by mapping S from a monosigned
CNF formula Γ is in O(|Γ | |N |2): The size of the instance generated by S is
the sum of the size of Γ , denoted by |Γ |, plus the sum of the size of the ALO
clauses and the size of the AMO clauses. For every many-valued variable p, there
is an ALO clauses of size |NΓ (p)|, where |NΓ (p)| is the size of the domain of
p. If the number of distinct many-valued variables occurring in Γ is var, the
size of all the ALO clauses is in O(var |N |). For every many-valued variable p,

there are |NΓ (p)|(|NΓ (p)|−1)
2 AMO clauses of size two, and the size of all the AMO

clauses is in O(var |N |2). Therefore, the size of the instance generated by S is in
O(|Γ | + var |N |2). Since |Γ | ≥ var, the size of the instance generated by S is in
O(|Γ | |N |2).

3.2 Full Logarithmic Mapping (FL)

In the full logarithmic (FL) mapping, a logarithmic encoding is used to represent
a many-valued variable as a Boolean variable. To encode a many-valued variable
p, using a base 2 encoding, only ⌈log2 |NΓ (p)|⌉ Boolean variables are required.
For example, if p has domain {1, 2, 3, 4}, then the monosigned literal {1} : p is
mapped to ¬p2 ∧ ¬p1, the monosigned literal {2} :p is mapped to ¬p2 ∧ p1, the
monosigned literal {3} : p is mapped to p2 ∧ ¬p1, and the monosigned literal
{4} : p is mapped to p2 ∧ p1. If the size of the domain of p is not a power of 2,
then two combinations are mapped to some monosigned literals. For example,
if the domain of p is {1, 2, 3}, then {1} : p is mapped to ¬p2 (which subsumes
¬p2 ∧ p1 and ¬p2 ∧ ¬p1), {2} :p is mapped to p2 ∧ ¬p1, and {3} :p is mapped to
p2 ∧ p1.3

Given a monosigned CNF formula Γ , the signature of mapping FL is Σ =
{pj | 1 ≤ j ≤ ⌈log2 |NΓ (p)|⌉, p occurs in Σ}, each positive monosigned literal
occurring in the input monosigned CNF formula is replaced with its logarithmic
encoding, and each negative monosigned literal of the form {i} : p is replaced
with the negation of the logarithmic encoding of {i} :p.

Example 4. Let NΓ (p1) = {1, 2, 3}, let NΓ (p2) = {1, 2, 3, 4}, and let Γ be the
following monosigned CNF formula:

3 This approach of dealing with domains which are not a power of 2 is used in [14].
Another possibility is to map {1} : p to ¬p2 ∧ ¬p1, {2} : p to ¬p2 ∧ p1, {3} : p to
p2 ∧ ¬p1, and to add the clause ¬p2 ∨ ¬p1 to exclude the combination p2 ∧ p1.

6 C. Ansótegui and F. Manyà

{1} : p1 ∧ ({3} : p1 ∨ {1} : p2) ∧ ({2} : p2 ∨ {3} : p2)

Mapping FL generates the following formula:

p2
1 ∧ ((p2

1 ∧ p1
1) ∨ p2

2 ∨ p1
2) ∧ (p2

2 ∨ ¬p1
2 ∨ ¬p2

2 ∨ p1
2)

The size of the SAT instance generated by mapping FL is, in the worst
case, exponentially larger than the size of the input monosigned CNF formula.
The problem is that we must apply distributivity to get a clausal form when
we encode positive monosigned literals. To overcome that drawback, Frisch and
Peugniez [14] defined the logarithmic mapping.

3.3 Logarithmic Mapping (L)

Frisch and Peugniez [14] defined the logarithmic (L) mapping, which combines
mapping S and mapping FL. Given a monosigned formula Γ , the signature of
mapping L is the union of the Boolean signature and the signature of map-
ping FL. The Boolean CNF formula derived by mapping L is formed by Γ plus
an additional set of clauses that link monosigned literals with the logarithmic
encoding; this way they avoid incorporating the ALO and AMO clauses. For
example, if the many-valued variable p has domain {1, 2, 3, 4}, then they add
the following clauses to link the monosigned literals containing variable p with
their logarithmic encoding:4

{1} :p ↔ ¬p2 ∧ ¬p1, {2} :p ↔ ¬p2 ∧ p1, {3} :p ↔ p2 ∧ ¬p1, {4} :p ↔ p2 ∧ ¬p1

Example 5. Let NΓ (p1) = {1, 2, 3}, let NΓ (p2) = {1, 2, 3, 4}, and let Γ be the
following monosigned CNF formula:

{1} : p1 ∧ ({3} : p1 ∨ {1} : p2) ∧ ({2} : p2 ∨ {3} : p2)

Mapping L generates the following formula:

¬({1} : p1) ∧ ({3} : p1 ∨ ¬({1} : p2)) ∧ (¬({2} : p2) ∨ ¬({3} : p2)

{1} :p1 ↔ ¬p2
1 {1} :p2 ↔ ¬p2

2 ∧ ¬p1
2

{2} :p1 ↔ p2
1 ∧ ¬p1

1 {2} :p2 ↔ ¬p2
2 ∧ p1

2

{3} :p1 ↔ p2
1 ∧ p1

1 {3} :p2 ↔ p2
2 ∧ ¬p1

2

{4} :p2 ↔ p2
2 ∧ p1

2

Note that, with the ALO and AMO clauses, the number of clauses needed
in mapping S to state that a many-valued variable takes exactly one value from
its domain is in O(|N |2), but with the previous transformation the number of
clauses needed is in O(|N | log2 |N |). The size of the SAT instance generated by
mapping L from a monosigned CNF formula Γ is in O(|Γ | log2 |N |).

4 In the rest of the paper, we write A ↔ B, where A and B are propositional formulas,
instead of its clausal form for the sake of readability. For instance, when we write
{1} :p ↔ ¬p2∧¬p1, we mean (¬({1} :p)∨¬p2)∧ (¬({1} :p)∨¬p1)∧ ({1} :p∨p2∨p1).

Mapping Problems with Finite-Domain Variables 7

3.4 Full Regular Mapping (FR)

Béjar, Hähnle and Manyà [10] defined the full regular (FR) mapping, which
transforms a regular CNF formula Γ into a satisfiability equivalent Boolean CNF
formula whose size is in O(|Γ |). In this section we reformulate mapping FR in the
case that the input formula is a monosigned CNF formula instead of a regular
CNF formula.

Given a regular CNF formula Γ , the signature of mapping FR is Σ =
{↑ i : p | ↑ i : p or ↑ i : p occur in Γ}; i.e., the Boolean signature of Γ . In map-
ping FR, each positive regular literal is taken as a positive Boolean literal, and
each negative regular literal is taken as a negative Boolean literal. Moreover, we
add, for each many-valued variable p, a set of clauses that link regular interpre-
tations with Boolean interpretations [10]. Assume that the domain of p in the in-
put regular CNF formula Γ is NΓ (p) = {i1, . . . , im(p)} and i1 ≤ i2 ≤ · · · ≤ im(p)

under the order ≤ associated with N . Then, the set of clauses added is:

{¬(↑ i(j+1) : p) ∨ ↑ ij : p | 1 ≤ j < m(p)}.

The variant of mapping FR for monosigned CNF formulas takes the same
signature as mapping FR for regular CNF formulas. Given a monosigned CNF
formula Γ and a many-valued variable p occurring in Γ whose domain is NΓ (p) =
{i1, . . . , im(p)} and i1 ≤ i2 ≤ · · · ≤ im(p) under the order ≤ associated with N ,
each positive monosigned literal occurring in the input monosigned CNF formula
of the form {i1} : p is replaced with ¬(↑ i2 : p), of the form {im(p)} : p is replaced
with ↑ im(p) : p, and of the form {ij} : p, where 1 < j < m(p), is replaced with
↑ ij : p ∧ ¬(↑ ij+1 : p); and each negative monosigned literal occurring in the
input monosigned CNF formula of the form {i1} : p is replaced with ↑ i2 : p, of
the form {im(p)} :p is replaced with ¬(↑ im(p) : p), and of the form {ij} :p, where
1 < j < m(p), is replaced with ¬(↑ ij : p) ∨ ↑ ij+1 : p. In addition, it is added
the set of clauses that link regular interpretations with Boolean interpretations
as in the regular case.

Example 6. Let NΓ (p1) = {1, 2, 3}, let NΓ (p2) = {1, 2, 3, 4}, and let Γ be the
following CNF formula:

{1} : p1 ∧ ({3} : p1 ∨ {1} : p2) ∧ ({2} : p2 ∨ {3} : p2)

Mapping FR generates the following formula:

↑ 2 : p1 ∧ (↑ 3 : p1 ∨ ↑ 2 : p2) ∧ (¬(↑ 2 : p2) ∨ ↑ 3 : p2 ∨ ¬(↑ 3 : p2) ∨ ↑ 4 : p2)

¬(↑ 3 : p1) ∨ ↑ 2 : p1 ¬(↑ 4 : p2) ∨ ↑ 3 : p2

¬(↑ 2 : p1) ∨ ↑ 1 : p1 ¬(↑ 3 : p2) ∨ ↑ 2 : p2

¬(↑ 2 : p2) ∨ ↑ 1 : p2

The problem with mapping FR for monosigned CNF formulas is that the
size of the derived formula can be exponential in the size of the input formula.

8 C. Ansótegui and F. Manyà

This is so because we must apply distributivity when mapping clauses contain-
ing positive monosigned literals. For instance, if instead of the CNF formula of
Example 6, we have the CNF formula ({2} : p1 ∨ {2} : p2) ∧ ({2} : p1 ∨ {3} : p2),
we get the formula ((↑ 2 : p1 ∧¬(↑ 2 : p1))∨ (↑ 2 : p2 ∧¬(↑ 2 : p2)))∧ ((↑ 2 : p1 ∧
¬(↑ 2 : p1)) ∨ (↑ 3 : p2 ∧ ¬(↑ 3 : p2))), whose clausal form is exponential in the
size of the input formula.

3.5 Regular Mapping (R)

The regular (R) mapping, which combines mapping S and mapping FR, is a
new mapping whose complexity is better than the complexity of the previous
mappings.

Given a monosigned CNF formula Γ , the signature of mapping R is Σ =
{{i} : p, ↑ i : p | {i} : p or {i} : p occur in Γ}; i.e., the Boolean signature of Γ ex-
tended with regular signs. The Boolean CNF formula derived by mapping R is
formed by (i) the clauses of Γ under Boolean semantics; (ii) the set of clauses
of mapping FR that link the Boolean variables representing regular literals; and
(iii) a set of clauses, for each variable p occurring in Γ , that link monosigned
literals with regular literals. Assume that NΓ (p) = {i1, i2, . . . , im(p)}. Then, we
add the following clauses

{{i1} :p ↔ ¬(↑ i2 : p)} ∪ {{ij} :p ↔ ↑ ij : p ∧ ¬(↑ ij+1 : p) | 1 < j < m(p)}∪

{{im(p)} :p ↔ ↑ im(p) : p}

The idea of mapping R is that we maintain the input monosigned CNF for-
mula under Boolean semantics but we use both regular and monosigned literals
to link many-valued interpretations with Boolean interpretations. This way we
avoid applying distributivity.

Example 7. Let NΓ (p1) = {1, 2, 3}, let NΓ (p2) = {1, 2, 3, 4}, and let Γ be the
following monosigned CNF formula:

{1} : p1 ∧ ({3} : p1 ∨ {1} : p2) ∧ ({2} : p2 ∨ {3} : p2)

Mapping R generates the following formula:

¬({1} : p1) ∧ ({3} : p1 ∨ ¬({1} : p2)) ∧ (¬({2} : p2) ∨ ¬({3} : p2)

{1} : p1 ↔ ¬(↑ 2 : p1) {1} : p2 ↔ ¬(↑ 2 : p2)
{2} : p1 ↔ ↑ 2 : p1 ∧ ¬(↑ 3 : p1) {2} : p2 ↔ ↑ 2 : p2 ∧ ¬(↑ 3 : p2)
{3} : p1 ↔ ↑ 3 : p1 {3} : p2 ↔ ↑ 3 : p2 ∧ ¬(↑ 4 : p2)

{4} : p2 ↔ ↑ 4 : p2

¬(↑ 3 : p1) ∨ ↑ 2 : p1 ¬(↑ 4 : p2) ∨ ↑ 3 : p2

¬(↑ 2 : p1) ∨ ↑ 1 : p1 ¬(↑ 3 : p2) ∨ ↑ 2 : p2

¬(↑ 2 : p2) ∨ ↑ 1 : p2

Mapping Problems with Finite-Domain Variables 9

The size of the SAT instance generated by mapping R from a monosigned
CNF formula Γ is in O(|Γ |).5

3.6 Half Regular Mapping (HR)

We now define another mapping, called half regular (HR) mapping, which is
between FR and R. We defined R in order to avoid applying distributivity.
To this end, R maintains the input monosigned CNF formula under Boolean
semantics. Since the blowup is only due to the encoding of positive monosigned
literals, HR maps negative monosigned literals as in mapping FR and positive
monosigned literals as in mapping R. This way, the size of the SAT instance
generated by mapping HR from a monosigned CNF formula Γ is also in O(|Γ |).

Example 8. Let NΓ (p1) = {1, 2, 3}, let NΓ (p2) = {1, 2, 3, 4}, and let Γ be the
following monosigned CNF formula:

{1} : p1 ∧ ({3} : p1 ∨ {1} : p2) ∧ ({2} : p2 ∨ {3} : p2)

Mapping HR generates the following formula:

↑ 2 : p1 ∧ ({3} : p1 ∨ ↑ 2 : p2) ∧ (¬(↑ 2 : p2) ∨ ↑ 3 : p2 ∨ ¬(↑ 3 : p2) ∨ ↑ 4 : p2)

{1} : p1 ↔ ¬(↑ 2 : p1) {1} : p2 ↔ ¬(↑ 2 : p2)
{2} : p1 ↔ ↑ 2 : p1 ∧ ¬(↑ 3 : p1) {2} : p2 ↔ ↑ 2 : p2 ∧ ¬(↑ 3 : p2)
{3} : p1 ↔ ↑ 3 : p1 {3} : p2 ↔ ↑ 3 : p2 ∧ ¬(↑ 4 : p2)

{4} : p2 ↔ ↑ 4 : p2

¬(↑ 3 : p1) ∨ ↑ 2 : p1 ¬(↑ 4 : p2) ∨ ↑ 3 : p2

¬(↑ 2 : p1) ∨ ↑ 1 : p1 ¬(↑ 3 : p2) ∨ ↑ 2 : p2

¬(↑ 2 : p2) ∨ ↑ 1 : p2

4 Experimental Investigation

We next report the experimental investigation we conducted to evaluate the per-
formance of the mappings on a number of benchmarks: graph coloring, random
binary CSPs, pigeon hole, and all interval series. All the experiments were per-
formed with PC’s Pentium III with 1.1 Ghz under Linux, and the SAT solvers
used were Chaff and Siege v4.

In the first experiment, we considered flat graph coloring problems, gener-
ated with the generator of Culberson [12]. The parameters of the generator are:
number of vertices (n), number of colors (k), and edge density (p). We created

5 Observe that all the added clauses have at most three literals, and the number of
added clauses is in O(lit), where lit is the number of occurrences of distinct literals
occurring in Γ . Since |Γ | ≥ lit, the size of the instance generated by HR is in O(|Γ |).

10 C. Ansótegui and F. Manyà

Table 1. Experimental results for graph coloring with Chaff. Time in seconds

parameters S FR HR R FL L

n p k m md % m md % m md % m md % m md % m md %

400 0.02 3 494 335 80 606 186 68 523 194 60 670 504 66 556 183 92 441 176 72

200 0.13 5 518 208 66 726 555 76 603 472 72 445 157 60 1052 1207 56 1214 1214 2

80 0.5 13 137 9 84 61 4 88 69 6.45 88 111 4.2 84 4.4 2.4 98 65 17.17 96

70 0.5 8 228 82 78 116 12 98 177 20 98 330 36 92 255 75 98 424 94 46

60 0.5 8 284 101 58 173 30 84 313 54 90 238 368 76 200 60 92 902 631 48

50 0.5 8 418 125 52 436 132 88 413 212 92 490 133 62 501 231 90 548 117 66

a sample formed by 6 sets of 50 instances; the number of variables (n) ranges
from 50 to 400, the number of colors (k) ranges from 3 to 8 and the edge density
(p) ranges from 0.01 to 0.5. The parameter settings were designed to sample
across the phase transition following the recommendations given by Culberson.6

Table 1 shows the experimental results obtained: for each set we give the per-
centage of instances solved (%) using a cutoff of 5000 seconds, and the mean (m)
and median (md) time of the solved instances. The best performing mapping is
FL, and then FR, HR and R; and the worst performing are L and S.

In the second experiment, we considered SAT-encoded random binary CSPs
using the direct encoding [25]. We used a publicly available generator of uniform
random binary CSPs7 —designed and implemented by Frost, Bessière, Dechter
and Regin— that implements the so-called model B: in the class 〈n, d, p1, p2〉 with
n variables of domain size d, we choose a random subset of exactly p1n(n− 1)/2
constraints (rounded to the nearest integer), each with exactly p2d

2 conflicts
(rounded to the nearest integer); p1 may be thought of as the density of the
problem and p2 as the tightness of constraints. We incorporated into the gener-
ator the automatic generation of all the classes of SAT encodings, and created
a representative sample of instances of the hard region of the phase transition
described in [24] that could be solved within a reasonable time. The sample is
formed by 9 sets of 100 instances; the number of variables ranges from 15 to 70,
the domain size was selected in such a way that the instances could be solved
within a reasonable time, the density was set at values greater than 0.3 in order
to avoid sparse constraint problems, and the tightness was derived from the re-

maining parameters using the equation p2 = 1 − m
−2

p1(n−1) in order to generate
instances of the hard region of the phase transition [24]. The experimental re-
sults obtained are shown in Table 2. We used a cutoff of 2500 seconds. The first
column contains the parameters given to the generator of random binary CSPs.
The best performing mappings are FR and HR, and then mapping R, and the
worst performing are S, FL, and L.

In the third experiment, whose results are shown in Table 3, we studied the
scaling behavior of the mappings on pigeon hole instances, where the number of

6 http://web.cs.ualberta.ca/˜ joe/Coloring/Generators/settings.html
7 http://www.lirmm.fr/˜bessiere/generator.html

Mapping Problems with Finite-Domain Variables 11

Table 2. Experimental results for Random Binary CSPs with Chaff. Time in seconds

parameters S FR HR R FL L

〈n, d, p1, p2〉 m md % m md % m md % m md % m md % m md %

〈15, 25, 80

105
, 283

625
〉 23 31 100 18 21 100 20 23 100 22 26 100 117 109 100 23 28 100

〈15, 30, 80

105
, 424

900
〉 94 102 100 52 60 100 54 69 100 79 94 100 448 428 100 87 103 100

〈25, 15, 198

300
, 65

225
〉 254 236 100 77 73 100 86 80 100 229 207 100 514 502 100 1022 884 100

〈25, 20, 198

300
, 126

400
〉 329 208 56 504 470 96 477 523 96 437 397 60 415 452 34 85 82 52

〈35, 10, 305

595
, 23

100
〉 116 96 100 38 35 100 43 39 100 96 82 100 145 132 100 147 121 100

〈35, 15, 305

595
, 60

225
〉 106 88 12 564 623 44 511 479 42 229 192 16 653 653 4 155 146 14

〈40, 8, 400

780
, 12

64
〉 46 39 100 16 15 100 18 17 100 44 39 100 46 44 100 66 59 100

〈45, 10, 415

990
, 22

100
〉 587 649 78 428 386 100 451 372 100 594 619 84 646 717 88 560 520 70

〈70, 5, 880

2415
, 3

25
〉 10 8.5 100 6 5 100 7.5 6.5 100 4 8 100 9 8.5 100 21 19 100

Table 3. Experimental results for the pigeon hole problem with Chaff. Time in seconds

holes S FR HR R FL L

9 2.3 0.6 0.6 80.25 4 2

10 21 3 8 540 12 204

11 466 86 34 1230 172 3000

12 3040 150 220 2140 940 1114

13 > 5000 3600 872 > 5000 3890 > 5000

14 > 5000 > 5000 > 5000 > 5000 > 5000 > 5000

Table 4. Experimental results for the all interval series problem with Chaff. Time in
seconds

|v| S R HR L

9 0.01 0 0.02 0.38

11 2.5 0.07 2.47 280

13 1066 47.51 185.58 1878

15 > 5000 527.85 > 5000 > 5000

17 > 5000 > 5000 > 5000 > 5000

holes ranges from 9 to 14. We used a cutoff of 5000 seconds. The best performing
mapping is HR, and then FR and FL, and the worst performing are S, R and L.

In the fourth experiment, whose results are shown in Table 4, we studied the
scaling behavior of the mappings on all interval series instances, where the size
of the vector ranges from 9 to 17. We used a cutoff of 5000 seconds. The best
performing mapping is R, and then HR, and the worst performing are L and S.

12 C. Ansótegui and F. Manyà

Table 5. Experimental results for graph coloring with Siege v4. Time in seconds

parameters S FR HR R FL L

n p k m md % m md % m md % m md % m md % m md %

400 0.02 3 468 136 96 284 46 100 520 91 98 476 94 100 411 135 96 286 58 96

200 0.13 5 32 7 100 22 10 100 25 9 100 25 5 100 2358 2220 4 2783 2600 18

50 0.5 8 13 2 100 37 23 100 46 8 100 23 3 100 63 16 100 9 2 100

Table 6. Experimental results for Random Binary CSPs with siege v4. Time in seconds

parameters S FR HR

〈n, d, p1, p2〉 m md % m md % m md %

〈25, 20, 198

300
, 126

400
〉 1596 1427 90 1124 909 100 1320 919 96

〈35, 15, 305

595
, 60

225
〉 2907 3395 40 2367 2303 74 2457 2366 48

〈45, 10, 415

990
, 22

100
〉 841 630 100 402 336 100 430 355 100

parameters R FL L

〈n, d, p1, p2〉 m md % m md % m md %

〈25, 20, 198

300
, 126

400
〉 1004 717 100 1445 1390 20 1265 846 90

〈35, 15, 305

595
, 60

225
〉 2122 1880 56 > 5000 > 5000 0 3156 3539 32

〈45, 10, 415

990
, 22

100
〉 410 340 100 1638 1416 96 1081 845 100

Table 7. Experimental results for the pigeon hole problem with Siege v4. Time in
seconds

holes S FR HR R FL L

9 63 2.14 2.46 2.59 15 6.56

10 289 10 8.75 9 18 56

11 > 5000 30 51 170 49 238

12 > 5000 162 246 196 74 > 5000

13 > 5000 > 5000 533 > 5000 345 > 5000

14 > 5000 > 5000 > 5000 > 5000 1460 > 5000

Table 8. Experimental results for the all interval series problem with Siege v4. Time
in seconds

|v| S R HR L

9 0.06 0.04 0.01 0.03

11 0.87 1.36 0.41 2.05

13 3.96 0.75 2.98 0.01

15 59 22 127 12

17 > 5000 375 > 5000 > 5000

Mapping Problems with Finite-Domain Variables 13

We can conclude that mapping S, which is commonly found in SAT reposito-
ries, is not the best option, and it is worth exploring alternative encodings. On
the one hand, mappings FL and FR are the best for the first two problems but
mapping HR has a very good behaviour on average. On the other hand, mapping
HR has a linear complexity and does not need to apply distributivity; that fact
leads to a poor performance of mappings FL and FR on some problems because
of the size of the derived formula.

We believe that the good performance is due to the fact that Boolean variables
of regular and logarithmic encodings capture subsets of elements of the domain
which are not captured when dealing with the Boolean monosigned signature.
This leads to learn shorter clauses; for example, on the hardest binary CSP and
coloring instances, the learned clauses by Chaff with mapping HR are between
two and three times shorter than the learned clauses by Chaff with mapping S.

Finally, in order to see if a similar behaviour is observed with other SAT
solvers, we repeated the above experiments with Siege v4. The experimental
results obtained are shown in Tables 5–8. In all the experiments we used a cutoff
of 5000 seconds. For random binary CSPs and graph coloring instances we only
report the results of the hardest instances for Chaff. From the tables, we can
conclude that mapping S is not generally the best option and it is worth to try
the others mappings we have defined when solving SAT-encoded combinatorial
problems with Siege v4. For the graph coloring instances we have tested we
observe that FL is not as good as it was for Chaff, and we do not see many
differences among the other encodings. For the random binary CSPs instances,
we observe a behaviour similar to Chaff: mappings FR, HR and R allow us to
solve more instances with our cutoff. For the pigeon hole instances, the best
mapping is FL, but mapping HR, which is the best mapping for Chaff, also
scales nicely. For the all interval series instances mapping R is, like in Chaff, the
best option.

References

1. T. Alsinet, R. Béjar, A. Cabiscol, C. Fernández, and F. Manyà. Minimal and
redundant SAT encodings for the all-interval-series problem. In Proceedings of the
Catalan Conference on Artificial Intelligence, CCIA 2002, Castellón, Spain, pages
139–144. Springer LNCS 2504, 2002.

2. C. Ansótegui, R. Béjar, A. Cabiscol, C. M. Li, and F. Manyà. Resolution methods
for many-valued CNF formulas. In Fifth International Symposium on the Theory
and Applications of Satisfiability Testing, SAT-2002, Cincinnati, USA, pages 156–
163, 2002.

3. C. Ansótegui, J. Larrubia, C. M. Li, and F. Manyà. Mv-Satz: A SAT solver
for many-valued clausal forms. In 4th International Conference Journées de
L’Informatique Messine, JIM-2003, Metz, France, 2003.

4. C. Ansótegui, J. Larrubia, and F. Manyà. Boosting Chaff’s performance by in-
corporating CSP heuristics. In 9th International Conference on Principles and
Practice of Constraint Programming, CP-2003, Kinsale, Ireland, pages 96–107.
Springer LNCS 2833, 2003.

14 C. Ansótegui and F. Manyà

5. C. Ansótegui, F. Manyà, R. Béjar, and C. Gomes. Solving many-valued SAT
encodings with local search. In Proceedings of the Workshop on Probabilistics
Approaches in Search, 18th National Conference on Artificial Intelligence, AAAI-
2002, Edmonton, Canada, 2002, 2002.

6. M. Baaz and C. G. Fermüller. Resolution-based theorem proving for many-valued
logics. Journal of Symbolic Computation, 19:353–391, 1995.

7. B. Beckert, R. Hähnle, and F. Manyà. Transformations between signed and clas-
sical clause logic. In Proceedings, International Symposium on Multiple-Valued
Logics, ISMVL’99, Freiburg, Germany, pages 248–255. IEEE Press, Los Alamitos,
1999.

8. B. Beckert, R. Hähnle, and F. Manyà. The SAT problem of signed CNF formu-
las. In D. Basin, M. D’Agostino, D. Gabbay, S. Matthews, and L. Viganò, editors,
Labelled Deduction, volume 17 of Applied Logic Series, pages 61–82. Kluwer, Dor-
drecht, 2000.

9. R. Béjar, A. Cabiscol, C. Fernández, F. Manyà, and C. P. Gomes. Capturing struc-
ture with satisfiability. In 7th International Conference on Principles and Practice
of Constraint Programming, CP-2001,Paphos, Cyprus, pages 137–152. Springer
LNCS 2239, 2001.

10. R. Béjar, R. Hähnle, and F. Manyà. A modular reduction of regular logic to
classical logic. In Proceedings, 31st International Symposium on Multiple-Valued
Logics (ISMVL), Warsaw, Poland, pages 221–226. IEEE CS Press, Los Alamitos,
2001.

11. R. Béjar and F. Manyà. A comparison of systematic and local search algorithms
for regular CNF formulas. In Proceedings of the 5th European Conference on Sym-
bolic and Quantitative Approaches to Reasoning with Uncertainty, ECSQARU’99,
London, England, pages 22–31. Springer LNAI 1638, 1999.

12. J. Culberson. Graph coloring page: The flat graph generator. See
http://web.cs.ualberta.ca/˜ joe/Coloring/Generators/flat.html, 1995.

13. G. Escalada-Imaz and F. Manyà. The satisfiability problem for multiple-valued
Horn formulæ. In Proceedings, International Symposium on Multiple-Valued Logics,
ISMVL’94, Boston/MA, USA, pages 250–256. IEEE Press, Los Alamitos, 1994.

14. A. M. Frisch and T. J. Peugniez. Solving non-boolean satisfiability problems with
stochastic local search. In Proceedings of the International Joint Conference on
Artificial Intelligence, IJCAI-2001, pages 282–288, 2001.

15. R. Hähnle. Towards an efficient tableau proof procedure for multiple-valued logics.
In Selected Papers from Computer Science Logic (CSL’90), Heidelberg, Germany,
LNCS 533, pages 248–260. Springer, 1991.

16. R. Hähnle. Automated Deduction in Multiple-Valued Logics, volume 10 of Interna-
tional Series of Monographs in Computer Science. Oxford University Press, 1994.

17. R. Hähnle. Advanced many-valued logic. In D. Gabbay and F. Guenthner, editors,
Handbook of Philosophical Logic, volume 2. Kluwer, second edition, 2001.

18. F. Manyà. Proof Procedures for Multiple-Valued Propositional Logics. PhD thesis,
Universitat Autònoma de Barcelona, 1996.

19. F. Manyà. The 2-SAT problem in signed CNF formulas. Multiple-Valued Logic.
An International Journal, 5(4):307–325, 2000.

20. F. Manyà, R. Béjar, and G. Escalada-Imaz. The satisfiability problem in regu-
lar CNF-formulas. Soft Computing: A Fusion of Foundations, Methodologies and
Applications, 2(3):116–123, 1998.

21. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering
an efficient sat solver. In 39th Design Automation Conference, 2001.

Mapping Problems with Finite-Domain Variables 15

22. N. V. Murray and E. Rosenthal. Resolution and path-dissolution in multiple-
valued logics. In Proceedings of the International Symposium on Methodologies for
Intelligent Systems, ISMIS’91, Charlotte, NC, pages 570–579. Springer LNAI 542,
1991.

23. S. D. Prestwich. Local search on SAT-encoded colouring problems. In Proceedings
of the 6th International Conference on the Theory and Applications of Satisfiability
Testing, pages 105–109. Springer LNCS 2919, 2003.

24. B. Smith and M. Dyer. Locating the phase transition in binary constraint satis-
faction problems. Artificial Intelligence, 81:155–181, 1996.

25. T. Walsh. SAT v CSP. In Proceedings of the 6th International Conference on Prin-
ciples of Constraint Programming, CP-2000, Singapore, pages 441–456. Springer
LNCS 1894, 2000.

	Introduction
	Many-Valued Formulas
	Mappings
	Standard Mapping (S)
	Full Logarithmic Mapping (FL)
	Logarithmic Mapping (L)
	Full Regular Mapping (FR)
	Regular Mapping (R)
	Half Regular Mapping (HR)

	Experimental Investigation

