

Lecture Notes in Computer Science 3542
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Holger H. Hoos David G. Mitchell (Eds.)

Theory andApplications
of Satisfiability Testing

7th International Conference, SAT 2004
Vancouver, BC, Canada, May 10-13, 2004
Revised Selected Papers

13

Volume Editors

Holger H. Hoos
University of British Columbia, Computer Science Department
2366 Main Mall, Vancouver, BC, V6T 1Z4, Canada
E-mail: hoos@cs.ubc.ca

David G. Mitchell
Simon Fraser University, School of Computing Science
Burnaby, BC, V5A 1S6, Canada
E-mail: mitchell@cs.sfu.ca

Library of Congress Control Number: 2005928808

CR Subject Classification (1998): F.4.1, I.2.3, I.2.8, I.2, F.2.2, G.1.6

ISSN 0302-9743
ISBN-10 3-540-27829-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-27829-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11527695 06/3142 5 4 3 2 1 0

Preface

The 7th International Conference on Theory and Applications of Satisfiabil-
ity Testing (SAT 2004) was held 10–13 May 2004 in Vancouver, BC, Canada.
The conference featured 9 technical paper sessions, 2 poster sessions, as well
as the 2004 SAT Solver Competition and the 2004 QBF Solver Evaluation. It
also included invited talks by Stephen A. Cook (University of Toronto) and
Kenneth McMillan (Cadence Berkeley Labs). The 89 participants represented
no less than 17 countries and four continents. SAT 2004 continued the series of
meetings which started with the Workshops on Satisfiability held in Siena, Italy
(1996), Paderborn, Germany (1998) and Renesse, The Netherlands (2000); the
Workshop on Theory and Applications of Satisfiability Testing held in Boston,
USA (2001); the Symposium on Theory and Applications of Satisfiability Testing
held in Cincinnati, USA (2002); and the 6th International Conference on Theory
and Applications of Satisfiability Testing held in Santa Margherita Ligure, Italy
(2003).

The International Conference on Theory and Applications of Satisfiability
Testing is the primary annual meeting for researchers studying the proposi-
tional satisfiability problem (SAT), a prominent problem in both theoretical
and applied computer science. SAT lies at the heart of the most important open
problem in complexity theory (P vs NP) and underlies many applications in,
among other examples, artificial intelligence, operations research and electronic
design engineering. The primary objective of the conferences is to bring together
researchers from various areas and communities, including theoretical and exper-
imental computer science as well as many relevant application areas, to promote
collaboration and the communication of new theoretical and practical results in
SAT-related research and its industrial applications.

The 28 technical papers contained in this volume were selected as follows. Of
the 72 technical papers submitted to the SAT 2004 conference, 30 were accepted
for full presentation at the conference, and a further 18 were selected for posters
and short presentations. These selections were made by the Program Committee
based on a strict peer-review process, in which each submission received between
two and four reviews by Program Committee members or auxiliary reviewers.
Authors of accepted papers were invited to submit extended versions of those
papers to this volume. From these submissions, 24 were selected for inclusion in
this volume, based on another round of rigorous peer reviews. Two additional
papers report on the 2004 SAT Solver Competition and the 2004 QBF Solver
Evaluation. These were prepared, by invitation, by the organisers of the respec-
tive events. Furthermore, authors of the three SAT solvers which placed first
in one or more categories of the 2004 SAT Solver Competition were invited to
submit papers. Among these latter, one team of authors declined (because their
work is presented in part in a previous publication, and in part in another paper

VI Preface

included in this volume). These invited papers were peer-reviewed according to
the same standards as the other papers in this volume.

We are very grateful to the many people who contributed to the organisation
of SAT 2004, most of whom are listed on the following pages. We thank in
particular Dave Tompkins for help in preparing this volume. We also thank the
authors, presenters and all other attendees for making SAT 2004 a successful
and memorable event.

Vancouver, Canada, 8 April 2005 Holger H. Hoos and David G. Mitchell

Organisation

Conference and Programme Co-chairs

Holger H. Hoos (University of British Columbia)
David G. Mitchell (Simon Fraser University)

Organising Committee

John Franco (University of Cincinnati)
Enrico Giunchiglia (Università di Genova)
Holger H. Hoos (University of British Columbia)
Henry Kautz (University of Washington)
Hans Kleine Büning (Universität Paderborn)
David G. Mitchell (Simon Fraser University)
Bart Selman (Cornell University)
Ewald Speckenmeyer (Universität zu Köln)
Hans van Maaren (Delft University of Technology)

Programme Committee

Dimitris Achlioptas (Microsoft Research)
Fahiem Bacchus (University of Toronto)
Paul Beame (University of Washington)
Armin Biere (ETH Zürich)
Olivier Dubois (Université Paris 6)
John Franco (University of Cincinnati)
Ian Gent (University of St Andrews)
Enrico Giunchiglia (Università di Genova)
Carla Gomes (Cornell University)
Ziyad Hanna (Intel Corporation)
Edward A. Hirsch (Steklov Institute of Mathematics at St. Petersburg)
Holger H. Hoos (University of British Columbia)
Henry Kautz (University of Washington)
Lefteris Kirousis (University of Patras)
Hans Kleine Büning (Universität Paderborn)
Daniel Le Berre (Université d’Artois)
Chu-Min Li (Université de Picardie Jules Verne)
Sharad Malik (Princeton University)
David G. Mitchell (Simon Fraser University)
Rémi Monasson (Ecole Normale Supérieure)
Bart Selman (Cornell University)

VIII Organisation

Laurent Simon (Université Paris-Sud)
Ewald Speckenmeyer (Universität zu Köln)
Allen Van Gelder (University of California at Santa Cruz)
Hans van Maaren (Delft University of Technology)
Miroslav Velev (Carnegie Mellon University)
Toby Walsh (University College Cork)

SAT Competition Organisers

Daniel Le Berre (Université d’Artois)
Laurent Simon (Université Paris-Sud)

QBF Evaluation Organisers

Daniel Le Berre (Université d’Artois)
Massimo Narizzano (Università di Genova)
Laurent Simon (Université Paris-Sud)
Armando Tacchella (Università di Genova)

Local Organisation

Olga German (PIMS, Simon Fraser University)
Valerie McRae (LCI, University of British Columbia)
Dave Tompkins (β-Lab, University of British Columbia)

Additional Referees

Andrei Bulatov
Gilles Dequen
Laure Devendeville
Yulik Feldman
Alan Frisch
Zhaohui Fu
Yong Gao
Marijn Heule
Dmitry Itsykson
Abhijit Jas
Peter Jeavons
Bernard Jurkowiak

Alexis Kaporis
Jacob Katz
Zurab Khasidashvili
Zeynep Kiziltan
Arist Kojevnikov
Boris Konev
Alexander Kulikov
Yogesh Mahajan
Marco Maratea
Alex Nadel
Massimo Narizzano
Peter Nightingale

Stefan Porschen
Steve Prestwich
Bert Randerath
Andrew Rowley
Kevin Smyth
Armando Tacchella
Daijue Tang
Dimitrios Thilikos
Michael Trick
Yinlei Yu

Organisation IX

Sponsoring Institutions

Pacific Institute for the Mathematical Sciences (PIMS)
Intel
Intelligent Information Systems Institute (IISI) at Cornell University
CoLogNet
Simon Fraser University (SFU)
University of British Columbia (UBC)

Table of Contents

Mapping Problems with Finite-Domain Variables to Problems with
Boolean Variables

Carlos Ansótegui, Felip Manyà . 1

A SAT-Based Decision Procedure for the Boolean Combination of
Difference Constraints

Alessandro Armando, Claudio Castellini, Enrico Giunchiglia,
Marco Maratea . 16

An Algebraic Approach to the Complexity of Generalized Conjunctive
Queries

Michael Bauland, Philippe Chapdelaine, Nadia Creignou,
Miki Hermann, Heribert Vollmer . 30

Incremental Compilation-to-SAT Procedures
Marco Benedetti, Sara Bernardini . 46

Resolve and Expand
Armin Biere . 59

Looking Algebraically at Tractable Quantified Boolean Formulas
Hubie Chen, Vı́ctor Dalmau . 71

Derandomization of Schuler’s Algorithm for SAT
Evgeny Dantsin, Alexander Wolpert . 80

Polynomial Time SAT Decision, Hypergraph Transversals and the
Hermitian Rank

Nicola Galesi, Oliver Kullmann . 89

QBF Reasoning on Real-World Instances
Enrico Giunchiglia, Massimo Narizzano, Armando Tacchella 105

Automatic Extraction of Functional Dependencies
Éric Grégoire, Richard Ostrowski, Bertrand Mazure,
Lakhdar Säıs . 122

XII Table of Contents

Algorithms for Satisfiability Using Independent Sets of Variables
Ravi Gummadi, N.S. Narayanaswamy, R. Venkatakrishnan 133

Aligning CNF- and Equivalence-Reasoning
Marijn Heule, Hans van Maaren . 145

Using DPLL for Efficient OBDD Construction
Jinbo Huang, Adnan Darwiche . 157

Approximation Algorithm for Random MAX-kSAT
Yannet Interian . 173

Clause Form Conversions for Boolean Circuits
Paul Jackson, Daniel Sheridan . 183

From Spin Glasses to Hard Satisfiable Formulas
Haixia Jia, Cris Moore, Bart Selman . 199

CirCUs: A Hybrid Satisfiability Solver
HoonSang Jin, Fabio Somenzi . 211

Equivalence Models for Quantified Boolean Formulas
Hans Kleine Büning, Xishun Zhao . 224

Search vs. Symbolic Techniques in Satisfiability Solving
Guoqiang Pan, Moshe Y. Vardi . 235

Worst Case Bounds for Some NP-Complete Modified Horn-SAT
Problems

Stefan Porschen, Ewald Speckenmeyer . 251

Satisfiability Threshold of the Skewed Random k-SAT
Danila A. Sinopalnikov . 263

NiVER: Non-increasing Variable Elimination Resolution for
Preprocessing SAT Instances

Sathiamoorthy Subbarayan, Dhiraj K. Pradhan . 276

Table of Contents XIII

Analysis of Search Based Algorithms for Satisfiability of Propositional
and Quantified Boolean Formulas Arising from Circuit State Space
Diameter Problems

Daijue Tang, Yinlei Yu, Darsh Ranjan, Sharad Malik 292

UBCSAT: An Implementation and Experimentation Environment for
SLS Algorithms for SAT and MAX-SAT

Dave A.D. Tompkins, Holger H. Hoos . 306

2004 SAT Solver Competition and QBF Solver
Evaluation (Invited Papers)

Fifty-Five Solvers in Vancouver: The SAT 2004 Competition
Daniel Le Berre, Laurent Simon . 321

March eq: Implementing Additional Reasoning into an Efficient
Look-Ahead SAT Solver

Marijn Heule, Mark Dufour, Joris van Zwieten,
Hans van Maaren . 345

Zchaff2004: An Efficient SAT Solver
Yogesh S. Mahajan, Zhaohui Fu, Sharad Malik . 360

The Second QBF Solvers Comparative Evaluation
Daniel Le Berre, Massimo Narizzano, Laurent Simon,
Armando Tacchella . 376

Author Index . 393

Mapping Problems with Finite-Domain

Variables to Problems with Boolean Variables�

Carlos Ansótegui and Felip Manyà

Computer Science Department,
Universitat de Lleida,

Jaume II, 69, E-25001 Lleida, Spain
{carlos, felip}@eup.udl.es

Abstract. We define a collection of mappings that transform many-
valued clausal forms into satisfiability equivalent Boolean clausal forms,
analyze their complexity and evaluate them empirically on a set of bench-
marks with state-of-the-art SAT solvers. Our results provide empirical
evidence that encoding combinatorial problems with the mappings de-
fined here can lead to substantial performance improvements in complete
SAT solvers.

1 Introduction

In the last few years, the AI community has investigated the generic problem
solving approach which consists of modeling hard combinatorial problems as in-
stances of the propositional satisfiability problem (SAT) and then solving the re-
sulting encodings with algorithms for SAT. The success in solving SAT-encoded
problems depends on both the SAT solver and the SAT encoding used. While
there has been a tremendous advance in the design and implementation of SAT
solvers, our understanding of SAT encodings is very limited and is yet a challenge
for the AI community working on propositional reasoning.

In this paper we define a collection of mappings that transform many-valued
clausal forms into satisfiability equivalent Boolean clausal forms and analyze
their complexity. Given a combinatorial problem encoded as a many-valued
clausal form, the mappings defined allow us to generate six different Boolean
SAT encodings. We evaluated empirically the Boolean SAT encodings generated
for a number of combinatorial problems (graph coloring, random binary CSPs,
pigeon hole, and all interval series) using Chaff [21] and Siege v4.1 Our results
provide empirical evidence that encoding combinatorial problems with the map-
pings defined here can lead to substantial performance improvements in complete

� Research partially supported by projects TIC2001-1577-C03-03 and TIC2003-00950
funded by the Ministerio de Ciencia y Tecnoloǵıa. We thank Carla Gomes for allow-
ing us to use computational resources of the Intelligent Information Systems Institute
(Cornell University).

1 Siege v4 is publicly available at http://www.cs.sfu.ca/˜ loryan/personal

H.H. Hoos and D.G. Mitchell (Eds.): SAT 2004, LNCS 3542, pp. 1–15, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 C. Ansótegui and F. Manyà

SAT solvers. The behaviour of different SAT encodings of graph coloring and all
interval series instances on local search solvers was analyzed in [1, 23].

These results are part of a research program about many-valued satisfiability
that our research group has developed during the last decade (see e.g. [2, 5, 9, 11,
18, 20]). Our research program is aimed at bridging the gap between Boolean SAT
encodings and constraint satisfaction formalisms. The challenge is to combine the
inherent efficiencies of Boolean SAT solvers operating on uniform encodings with
the much more compact and natural representations, and more sophisticated
propagation techniques of CSP formalisms.

We have used before mappings between many-valued clausal forms and
Boolean clausal forms to identify new polynomially solvable many-valued SAT
problems [7, 19], to known which additional deductive machinery is required
to design many-valued SAT solvers from Boolean SAT solvers [7, 10], and to
solve many-valued SAT encodings with Boolean SAT solvers [3, 4]. We invite
the reader to consult two survey papers [8, 17] that contain a summary of our
previous work.

The paper is structured as follows. In Section 2, we formally define the syntax
and semantics of the many-valued clausal forms used in the paper. In Section 3,
we define six mappings that transform many-valued clausal forms into satisfi-
ability equivalent Boolean clausal forms. In Section 4, we report the empirical
investigation conducted to assess the performance of those mappings.

2 Many-Valued Formulas

We first formally define the syntax and semantics of signed CNF formulas, and
then present monosigned and regular CNF formulas, which are the subclasses of
signed CNF formulas that are considered in this paper.

Definition 1. A truth value set N is a non-empty finite set {i1, i2, . . . , in}
where n ∈ N. The cardinality of N is denoted by |N |. A total order ≤ is as-
sociated with N , which may be the empty order.

Definition 2. A sign is a set S ⊆ N of truth values. A signed literal is an
expression of the form S : p where S is a sign and p is a propositional variable.
The complement of a signed literal S :p, denoted by S :p, is (N \ S) :p. A signed
clause is a disjunction of signed literals. A signed CNF formula is a conjunction
of signed clauses. The size of a signed clause C, denoted by |C|, is the total
number of literals occurring in C, and the size of a signed CNF formula Γ ,
denoted by |Γ |, is the sum of the sizes of the clauses of Γ .

Definition 3. An interpretation is a mapping that assigns to every pro-
positional variable an element of the truth value set. An interpretation I satisfies
a signed literal S :p iff I(p) ∈ S, satisfies a signed clause C iff it satisfies at least
one of the signed literals in C, and satisfies a signed CNF formula Γ iff it sat-
isfies all clauses in Γ . A signed CNF formula is satisfiable iff it is satisfied by
at least one interpretation; otherwise it is unsatisfiable.

Mapping Problems with Finite-Domain Variables 3

Definition 4. A sign S is monosigned if it either is a singleton (i.e. it contains
exactly one truth value) or the complement of a singleton. A monosigned sign S
is positive if it is identical to {i} : p, and is negative if it is identical to {i} : p
for some i ∈ N . A signed literal S : p is a monosigned literal if its sign S is
monosigned. A signed clause (a signed CNF formula) is a monosigned clause (a
monosigned CNF formula) if all its literals are monosigned.

Definition 5. Given a monosigned CNF formula Γ , the domain of a variable p
occurring in Γ is NΓ (p) = {i ∈ N | {i} : p or {i} : p occur in Γ} if NΓ (p) = N ,
and NΓ (p) ∪ {j}, where j is any element of N \NΓ (p), otherwise. The Boolean
signature of Γ is Σ = {{i} : p | {i} : p or {i} : p occur in Γ}.

Definition 6. For all i ∈ N , let ↑ i denote the sign {j ∈ N | j ≥ i}, where ≤
is the total order associated with N , and let ↑ i denote the complement of ↑ i.
A sign S is regular if it either is identical to ↑ i (positive) or to ↑ i (negative)
for some i ∈ N . A signed literal S : p is a regular literal if its sign S is regular.
A signed clause (a signed CNF formula) is a regular clause (a regular CNF
formula) if all its literals are regular.

Definition 7. Given a regular CNF formula Γ , the domain of a variable p
occurring in Γ is NΓ (p) = {i ∈ N | ↑ i : p or ↑ i : p occur in Γ}. The Boolean
signature of Γ is Σ = {↑ i : p | ↑ i : p or ↑ i : p occur in Γ}.

Example 1. Suppose that N = {1, 2, 3, 4}. Then, we have that the signed clause
{1, 2, 3}:p1∨{4}:p2 can be represented as a monosigned clause by {4}:p1∨{4}:p2,
and as a regular clause by ↑ 4 : p1 ∨ ↑ 4 : p2.

The notation used in this paper is the one used in the many-valued logic
community, which is the notation we used in our previous work on many-valued
satisfiability. Since some readers can find hard to read that notation, we next
show how to encode a graph coloring problem as a signed CNF formula.

Example 2. Given an undirected graph G = (V,E), where V is the set of vertices
ans E is the set of edges, the 3-colorability problem of G is encoded as a signed
CNF formula as follows: for each edge [u, v] ∈ E, we define three signed binary
clauses

({2, 3} :u ∨ {2, 3} :v) ∧ ({1, 3} :u ∨ {1, 3} :v}) ∧ ({1, 2} :u ∨ {1, 2} :v)

and take as truth value set N = {1, 2, 3}.2 The intended meaning of the previous
signed clauses is that there are no two adjacent vertices with the same color.

Signed CNF formulas and their subclasses have been studied since the early
90’s by the research community working on automated theorem proving in many-
valued logics [6, 13, 15, 16, 22]. A few years later, Frisch and Peugniez [14] used
the term non-Boolean formulas to refer to signed CNF formulas.

2 These clauses are represented as monosigned clauses by ({1} : u∨{1} : v)∧ ({2} : u∨
{2} : v) ∧ ({3} : u ∨ {3} : v).

4 C. Ansótegui and F. Manyà

3 Mappings

We define a number of mappings that transform a monosigned CNF formula
into a satisfiability equivalent Boolean CNF formula. In the most straightfor-
ward mappings, the derived formula consists of the input monosigned CNF
formula under Boolean semantics (i.e., monosigned literals are interpreted as
Boolean literals, and the notion of satisfiability is Boolean) plus a set of clauses
that link many-valued interpretations with Boolean interpretations. The addi-
tional clauses ensure that exactly one of the literals of the Boolean signature
of the monosigned CNF formula which correspond to a certain many-valued
variable evaluates to true under Boolean semantics. We consider several cases:
using only the Boolean signature of the monosigned CNF formula; extending the
Boolean signature with regular literals under Boolean semantics; and extending
the Boolean signature with a logarithmic number of Boolean variables for each
many-valued variable (i.e., using a logarithmic encoding of the many-valued vari-
ables). In the most involved mappings, monosigned literals are replaced by their
regular or logarithmic encoding in the input monosigned CNF formula, and its
Boolean signature is replaced by a regular or logarithmic signature.

We analyze the complexity of the Boolean CNF formula derived by each
mapping as a function of the size of the input monosigned CNF formula and the
cardinality of the truth value set.

3.1 Standard Mapping (S)

The most straightforward mapping consists of dealing with the Boolean signa-
ture of the input monosigned CNF formula. In the standard (S) mapping, each
positive monosigned literal of the input monosigned CNF formula is taken as
a Boolean variable, and each negative monosigned literal is replaced with the
negation of its complement and is taken as a negative Boolean literal; i.e., we
take the input monosigned CNF formula under Boolean semantics. Moreover,
we add for each many-valued variable p, a clause that states that p takes at least
one value of its domain (ALO clause) and a set of clauses that state that p takes
at most one value of its domain (AMO clauses). Assume that the domain of p
in the input monosigned CNF formula Γ is NΓ (p) = {i1, . . . , im(p)}. Then, the
ALO clause is {i1} :p ∨ · · · ∨ {im(p)} :p, and the set of AMO clauses contains a
clause ¬({ij} :p) ∨ ¬({ik} :p) for all j and k such that 1 ≤ i < j ≤ m(p).

Example 3. Let NΓ (p1) = {1, 2, 3}, let NΓ (p2) = {1, 2, 3, 4}, and let Γ be the
following monosigned CNF formula:

{1} : p1 ∧ ({3} : p1 ∨ {1} : p2) ∧ ({2} : p2 ∨ {3} : p2)

Mapping S generates the following formula:

¬({1} : p1) ∧ ({3} : p1 ∨ ¬({1} : p2)) ∧ (¬({2} : p2) ∨ ¬({3} : p2))
{1} : p1 ∨ {2} : p1 ∨ {3} : p1

¬({1} : p1) ∨ ¬({2} : p1)

Mapping Problems with Finite-Domain Variables 5

¬({1} : p1) ∨ ¬({3} : p1)
¬({2} : p1) ∨ ¬({3} : p1)
{1} : p2 ∨ {2} : p2 ∨ {3} : p2 ∨ {4} : p2

¬({1} : p2) ∨ ¬({2} : p2)
¬({1} : p2) ∨ ¬({3} : p2)
¬({1} : p2) ∨ ¬({4} : p2)
¬({2} : p2) ∨ ¬({3} : p2)
¬({2} : p2) ∨ ¬({4} : p2)
¬({3} : p2) ∨ ¬({4} : p2)

The size of the SAT instance generated by mapping S from a monosigned
CNF formula Γ is in O(|Γ | |N |2): The size of the instance generated by S is
the sum of the size of Γ , denoted by |Γ |, plus the sum of the size of the ALO
clauses and the size of the AMO clauses. For every many-valued variable p, there
is an ALO clauses of size |NΓ (p)|, where |NΓ (p)| is the size of the domain of
p. If the number of distinct many-valued variables occurring in Γ is var, the
size of all the ALO clauses is in O(var |N |). For every many-valued variable p,
there are |NΓ (p)|(|NΓ (p)|−1)

2 AMO clauses of size two, and the size of all the AMO
clauses is in O(var |N |2). Therefore, the size of the instance generated by S is in
O(|Γ | + var |N |2). Since |Γ | ≥ var, the size of the instance generated by S is in
O(|Γ | |N |2).

3.2 Full Logarithmic Mapping (FL)

In the full logarithmic (FL) mapping, a logarithmic encoding is used to represent
a many-valued variable as a Boolean variable. To encode a many-valued variable
p, using a base 2 encoding, only 	log2 |NΓ (p)|
 Boolean variables are required.
For example, if p has domain {1, 2, 3, 4}, then the monosigned literal {1} : p is
mapped to ¬p2 ∧ ¬p1, the monosigned literal {2} :p is mapped to ¬p2 ∧ p1, the
monosigned literal {3} : p is mapped to p2 ∧ ¬p1, and the monosigned literal
{4} : p is mapped to p2 ∧ p1. If the size of the domain of p is not a power of 2,
then two combinations are mapped to some monosigned literals. For example,
if the domain of p is {1, 2, 3}, then {1} : p is mapped to ¬p2 (which subsumes
¬p2 ∧ p1 and ¬p2 ∧ ¬p1), {2} :p is mapped to p2 ∧ ¬p1, and {3} :p is mapped to
p2 ∧ p1.3

Given a monosigned CNF formula Γ , the signature of mapping FL is Σ =
{pj | 1 ≤ j ≤ 	log2 |NΓ (p)|
, p occurs in Σ}, each positive monosigned literal
occurring in the input monosigned CNF formula is replaced with its logarithmic
encoding, and each negative monosigned literal of the form {i} : p is replaced
with the negation of the logarithmic encoding of {i} :p.

Example 4. Let NΓ (p1) = {1, 2, 3}, let NΓ (p2) = {1, 2, 3, 4}, and let Γ be the
following monosigned CNF formula:

3 This approach of dealing with domains which are not a power of 2 is used in [14].
Another possibility is to map {1} : p to ¬p2 ∧ ¬p1, {2} : p to ¬p2 ∧ p1, {3} : p to
p2 ∧ ¬p1, and to add the clause ¬p2 ∨ ¬p1 to exclude the combination p2 ∧ p1.

6 C. Ansótegui and F. Manyà

{1} : p1 ∧ ({3} : p1 ∨ {1} : p2) ∧ ({2} : p2 ∨ {3} : p2)

Mapping FL generates the following formula:

p2
1 ∧ ((p2

1 ∧ p1
1) ∨ p2

2 ∨ p1
2) ∧ (p2

2 ∨ ¬p1
2 ∨ ¬p2

2 ∨ p1
2)

The size of the SAT instance generated by mapping FL is, in the worst
case, exponentially larger than the size of the input monosigned CNF formula.
The problem is that we must apply distributivity to get a clausal form when
we encode positive monosigned literals. To overcome that drawback, Frisch and
Peugniez [14] defined the logarithmic mapping.

3.3 Logarithmic Mapping (L)

Frisch and Peugniez [14] defined the logarithmic (L) mapping, which combines
mapping S and mapping FL. Given a monosigned formula Γ , the signature of
mapping L is the union of the Boolean signature and the signature of map-
ping FL. The Boolean CNF formula derived by mapping L is formed by Γ plus
an additional set of clauses that link monosigned literals with the logarithmic
encoding; this way they avoid incorporating the ALO and AMO clauses. For
example, if the many-valued variable p has domain {1, 2, 3, 4}, then they add
the following clauses to link the monosigned literals containing variable p with
their logarithmic encoding:4

{1} :p ↔ ¬p2 ∧ ¬p1, {2} :p ↔ ¬p2 ∧ p1, {3} :p ↔ p2 ∧ ¬p1, {4} :p ↔ p2 ∧ ¬p1

Example 5. Let NΓ (p1) = {1, 2, 3}, let NΓ (p2) = {1, 2, 3, 4}, and let Γ be the
following monosigned CNF formula:

{1} : p1 ∧ ({3} : p1 ∨ {1} : p2) ∧ ({2} : p2 ∨ {3} : p2)

Mapping L generates the following formula:

¬({1} : p1) ∧ ({3} : p1 ∨ ¬({1} : p2)) ∧ (¬({2} : p2) ∨ ¬({3} : p2)

{1} :p1 ↔ ¬p2
1 {1} :p2 ↔ ¬p2

2 ∧ ¬p1
2

{2} :p1 ↔ p2
1 ∧ ¬p1

1 {2} :p2 ↔ ¬p2
2 ∧ p1

2

{3} :p1 ↔ p2
1 ∧ p1

1 {3} :p2 ↔ p2
2 ∧ ¬p1

2

{4} :p2 ↔ p2
2 ∧ p1

2

Note that, with the ALO and AMO clauses, the number of clauses needed
in mapping S to state that a many-valued variable takes exactly one value from
its domain is in O(|N |2), but with the previous transformation the number of
clauses needed is in O(|N | log2 |N |). The size of the SAT instance generated by
mapping L from a monosigned CNF formula Γ is in O(|Γ | log2 |N |).

4 In the rest of the paper, we write A ↔ B, where A and B are propositional formulas,
instead of its clausal form for the sake of readability. For instance, when we write
{1} :p ↔ ¬p2∧¬p1, we mean (¬({1} :p)∨¬p2)∧ (¬({1} :p)∨¬p1)∧ ({1} :p∨p2∨p1).

Mapping Problems with Finite-Domain Variables 7

3.4 Full Regular Mapping (FR)

Béjar, Hähnle and Manyà [10] defined the full regular (FR) mapping, which
transforms a regular CNF formula Γ into a satisfiability equivalent Boolean CNF
formula whose size is in O(|Γ |). In this section we reformulate mapping FR in the
case that the input formula is a monosigned CNF formula instead of a regular
CNF formula.

Given a regular CNF formula Γ , the signature of mapping FR is Σ =
{↑ i : p | ↑ i : p or ↑ i : p occur in Γ}; i.e., the Boolean signature of Γ . In map-
ping FR, each positive regular literal is taken as a positive Boolean literal, and
each negative regular literal is taken as a negative Boolean literal. Moreover, we
add, for each many-valued variable p, a set of clauses that link regular interpre-
tations with Boolean interpretations [10]. Assume that the domain of p in the in-
put regular CNF formula Γ is NΓ (p) = {i1, . . . , im(p)} and i1 ≤ i2 ≤ · · · ≤ im(p)

under the order ≤ associated with N . Then, the set of clauses added is:

{¬(↑ i(j+1) : p) ∨ ↑ ij : p | 1 ≤ j < m(p)}.

The variant of mapping FR for monosigned CNF formulas takes the same
signature as mapping FR for regular CNF formulas. Given a monosigned CNF
formula Γ and a many-valued variable p occurring in Γ whose domain is NΓ (p) =
{i1, . . . , im(p)} and i1 ≤ i2 ≤ · · · ≤ im(p) under the order ≤ associated with N ,
each positive monosigned literal occurring in the input monosigned CNF formula
of the form {i1} : p is replaced with ¬(↑ i2 : p), of the form {im(p)} : p is replaced
with ↑ im(p) : p, and of the form {ij} : p, where 1 < j < m(p), is replaced with
↑ ij : p ∧ ¬(↑ ij+1 : p); and each negative monosigned literal occurring in the
input monosigned CNF formula of the form {i1} : p is replaced with ↑ i2 : p, of
the form {im(p)} :p is replaced with ¬(↑ im(p) : p), and of the form {ij} :p, where
1 < j < m(p), is replaced with ¬(↑ ij : p) ∨ ↑ ij+1 : p. In addition, it is added
the set of clauses that link regular interpretations with Boolean interpretations
as in the regular case.

Example 6. Let NΓ (p1) = {1, 2, 3}, let NΓ (p2) = {1, 2, 3, 4}, and let Γ be the
following CNF formula:

{1} : p1 ∧ ({3} : p1 ∨ {1} : p2) ∧ ({2} : p2 ∨ {3} : p2)

Mapping FR generates the following formula:

↑ 2 : p1 ∧ (↑ 3 : p1 ∨ ↑ 2 : p2) ∧ (¬(↑ 2 : p2) ∨ ↑ 3 : p2 ∨ ¬(↑ 3 : p2) ∨ ↑ 4 : p2)

¬(↑ 3 : p1) ∨ ↑ 2 : p1 ¬(↑ 4 : p2) ∨ ↑ 3 : p2

¬(↑ 2 : p1) ∨ ↑ 1 : p1 ¬(↑ 3 : p2) ∨ ↑ 2 : p2

¬(↑ 2 : p2) ∨ ↑ 1 : p2

The problem with mapping FR for monosigned CNF formulas is that the
size of the derived formula can be exponential in the size of the input formula.

8 C. Ansótegui and F. Manyà

This is so because we must apply distributivity when mapping clauses contain-
ing positive monosigned literals. For instance, if instead of the CNF formula of
Example 6, we have the CNF formula ({2} : p1 ∨ {2} : p2) ∧ ({2} : p1 ∨ {3} : p2),
we get the formula ((↑ 2 : p1 ∧¬(↑ 2 : p1))∨ (↑ 2 : p2 ∧¬(↑ 2 : p2)))∧ ((↑ 2 : p1 ∧
¬(↑ 2 : p1)) ∨ (↑ 3 : p2 ∧ ¬(↑ 3 : p2))), whose clausal form is exponential in the
size of the input formula.

3.5 Regular Mapping (R)

The regular (R) mapping, which combines mapping S and mapping FR, is a
new mapping whose complexity is better than the complexity of the previous
mappings.

Given a monosigned CNF formula Γ , the signature of mapping R is Σ =
{{i} : p, ↑ i : p | {i} : p or {i} : p occur in Γ}; i.e., the Boolean signature of Γ ex-
tended with regular signs. The Boolean CNF formula derived by mapping R is
formed by (i) the clauses of Γ under Boolean semantics; (ii) the set of clauses
of mapping FR that link the Boolean variables representing regular literals; and
(iii) a set of clauses, for each variable p occurring in Γ , that link monosigned
literals with regular literals. Assume that NΓ (p) = {i1, i2, . . . , im(p)}. Then, we
add the following clauses

{{i1} :p ↔ ¬(↑ i2 : p)} ∪ {{ij} :p ↔ ↑ ij : p ∧ ¬(↑ ij+1 : p) | 1 < j < m(p)}∪

{{im(p)} :p ↔ ↑ im(p) : p}

The idea of mapping R is that we maintain the input monosigned CNF for-
mula under Boolean semantics but we use both regular and monosigned literals
to link many-valued interpretations with Boolean interpretations. This way we
avoid applying distributivity.

Example 7. Let NΓ (p1) = {1, 2, 3}, let NΓ (p2) = {1, 2, 3, 4}, and let Γ be the
following monosigned CNF formula:

{1} : p1 ∧ ({3} : p1 ∨ {1} : p2) ∧ ({2} : p2 ∨ {3} : p2)

Mapping R generates the following formula:

¬({1} : p1) ∧ ({3} : p1 ∨ ¬({1} : p2)) ∧ (¬({2} : p2) ∨ ¬({3} : p2)

{1} : p1 ↔ ¬(↑ 2 : p1) {1} : p2 ↔ ¬(↑ 2 : p2)
{2} : p1 ↔ ↑ 2 : p1 ∧ ¬(↑ 3 : p1) {2} : p2 ↔ ↑ 2 : p2 ∧ ¬(↑ 3 : p2)
{3} : p1 ↔ ↑ 3 : p1 {3} : p2 ↔ ↑ 3 : p2 ∧ ¬(↑ 4 : p2)

{4} : p2 ↔ ↑ 4 : p2

¬(↑ 3 : p1) ∨ ↑ 2 : p1 ¬(↑ 4 : p2) ∨ ↑ 3 : p2

¬(↑ 2 : p1) ∨ ↑ 1 : p1 ¬(↑ 3 : p2) ∨ ↑ 2 : p2

¬(↑ 2 : p2) ∨ ↑ 1 : p2

Mapping Problems with Finite-Domain Variables 9

The size of the SAT instance generated by mapping R from a monosigned
CNF formula Γ is in O(|Γ |).5

3.6 Half Regular Mapping (HR)

We now define another mapping, called half regular (HR) mapping, which is
between FR and R. We defined R in order to avoid applying distributivity.
To this end, R maintains the input monosigned CNF formula under Boolean
semantics. Since the blowup is only due to the encoding of positive monosigned
literals, HR maps negative monosigned literals as in mapping FR and positive
monosigned literals as in mapping R. This way, the size of the SAT instance
generated by mapping HR from a monosigned CNF formula Γ is also in O(|Γ |).

Example 8. Let NΓ (p1) = {1, 2, 3}, let NΓ (p2) = {1, 2, 3, 4}, and let Γ be the
following monosigned CNF formula:

{1} : p1 ∧ ({3} : p1 ∨ {1} : p2) ∧ ({2} : p2 ∨ {3} : p2)

Mapping HR generates the following formula:

↑ 2 : p1 ∧ ({3} : p1 ∨ ↑ 2 : p2) ∧ (¬(↑ 2 : p2) ∨ ↑ 3 : p2 ∨ ¬(↑ 3 : p2) ∨ ↑ 4 : p2)

{1} : p1 ↔ ¬(↑ 2 : p1) {1} : p2 ↔ ¬(↑ 2 : p2)
{2} : p1 ↔ ↑ 2 : p1 ∧ ¬(↑ 3 : p1) {2} : p2 ↔ ↑ 2 : p2 ∧ ¬(↑ 3 : p2)
{3} : p1 ↔ ↑ 3 : p1 {3} : p2 ↔ ↑ 3 : p2 ∧ ¬(↑ 4 : p2)

{4} : p2 ↔ ↑ 4 : p2

¬(↑ 3 : p1) ∨ ↑ 2 : p1 ¬(↑ 4 : p2) ∨ ↑ 3 : p2

¬(↑ 2 : p1) ∨ ↑ 1 : p1 ¬(↑ 3 : p2) ∨ ↑ 2 : p2

¬(↑ 2 : p2) ∨ ↑ 1 : p2

4 Experimental Investigation

We next report the experimental investigation we conducted to evaluate the per-
formance of the mappings on a number of benchmarks: graph coloring, random
binary CSPs, pigeon hole, and all interval series. All the experiments were per-
formed with PC’s Pentium III with 1.1 Ghz under Linux, and the SAT solvers
used were Chaff and Siege v4.

In the first experiment, we considered flat graph coloring problems, gener-
ated with the generator of Culberson [12]. The parameters of the generator are:
number of vertices (n), number of colors (k), and edge density (p). We created

5 Observe that all the added clauses have at most three literals, and the number of
added clauses is in O(lit), where lit is the number of occurrences of distinct literals
occurring in Γ . Since |Γ | ≥ lit, the size of the instance generated by HR is in O(|Γ |).

10 C. Ansótegui and F. Manyà

Table 1. Experimental results for graph coloring with Chaff. Time in seconds

parameters S FR HR R FL L

n p k m md % m md % m md % m md % m md % m md %

400 0.02 3 494 335 80 606 186 68 523 194 60 670 504 66 556 183 92 441 176 72

200 0.13 5 518 208 66 726 555 76 603 472 72 445 157 60 1052 1207 56 1214 1214 2

80 0.5 13 137 9 84 61 4 88 69 6.45 88 111 4.2 84 4.4 2.4 98 65 17.17 96

70 0.5 8 228 82 78 116 12 98 177 20 98 330 36 92 255 75 98 424 94 46

60 0.5 8 284 101 58 173 30 84 313 54 90 238 368 76 200 60 92 902 631 48

50 0.5 8 418 125 52 436 132 88 413 212 92 490 133 62 501 231 90 548 117 66

a sample formed by 6 sets of 50 instances; the number of variables (n) ranges
from 50 to 400, the number of colors (k) ranges from 3 to 8 and the edge density
(p) ranges from 0.01 to 0.5. The parameter settings were designed to sample
across the phase transition following the recommendations given by Culberson.6

Table 1 shows the experimental results obtained: for each set we give the per-
centage of instances solved (%) using a cutoff of 5000 seconds, and the mean (m)
and median (md) time of the solved instances. The best performing mapping is
FL, and then FR, HR and R; and the worst performing are L and S.

In the second experiment, we considered SAT-encoded random binary CSPs
using the direct encoding [25]. We used a publicly available generator of uniform
random binary CSPs7 —designed and implemented by Frost, Bessière, Dechter
and Regin— that implements the so-called model B: in the class 〈n, d, p1, p2〉 with
n variables of domain size d, we choose a random subset of exactly p1n(n− 1)/2
constraints (rounded to the nearest integer), each with exactly p2d

2 conflicts
(rounded to the nearest integer); p1 may be thought of as the density of the
problem and p2 as the tightness of constraints. We incorporated into the gener-
ator the automatic generation of all the classes of SAT encodings, and created
a representative sample of instances of the hard region of the phase transition
described in [24] that could be solved within a reasonable time. The sample is
formed by 9 sets of 100 instances; the number of variables ranges from 15 to 70,
the domain size was selected in such a way that the instances could be solved
within a reasonable time, the density was set at values greater than 0.3 in order
to avoid sparse constraint problems, and the tightness was derived from the re-
maining parameters using the equation p2 = 1 − m

−2
p1(n−1) in order to generate

instances of the hard region of the phase transition [24]. The experimental re-
sults obtained are shown in Table 2. We used a cutoff of 2500 seconds. The first
column contains the parameters given to the generator of random binary CSPs.
The best performing mappings are FR and HR, and then mapping R, and the
worst performing are S, FL, and L.

In the third experiment, whose results are shown in Table 3, we studied the
scaling behavior of the mappings on pigeon hole instances, where the number of

6 http://web.cs.ualberta.ca/˜ joe/Coloring/Generators/settings.html
7 http://www.lirmm.fr/˜bessiere/generator.html

Mapping Problems with Finite-Domain Variables 11

Table 2. Experimental results for Random Binary CSPs with Chaff. Time in seconds

parameters S FR HR R FL L

〈n, d, p1, p2〉 m md % m md % m md % m md % m md % m md %

〈15, 25, 80

105
, 283

625
〉 23 31 100 18 21 100 20 23 100 22 26 100 117 109 100 23 28 100

〈15, 30, 80

105
, 424

900
〉 94 102 100 52 60 100 54 69 100 79 94 100 448 428 100 87 103 100

〈25, 15, 198

300
, 65

225
〉 254 236 100 77 73 100 86 80 100 229 207 100 514 502 100 1022 884 100

〈25, 20, 198

300
, 126

400
〉 329 208 56 504 470 96 477 523 96 437 397 60 415 452 34 85 82 52

〈35, 10, 305

595
, 23

100
〉 116 96 100 38 35 100 43 39 100 96 82 100 145 132 100 147 121 100

〈35, 15, 305

595
, 60

225
〉 106 88 12 564 623 44 511 479 42 229 192 16 653 653 4 155 146 14

〈40, 8, 400

780
, 12

64
〉 46 39 100 16 15 100 18 17 100 44 39 100 46 44 100 66 59 100

〈45, 10, 415

990
, 22

100
〉 587 649 78 428 386 100 451 372 100 594 619 84 646 717 88 560 520 70

〈70, 5, 880

2415
, 3

25
〉 10 8.5 100 6 5 100 7.5 6.5 100 4 8 100 9 8.5 100 21 19 100

Table 3. Experimental results for the pigeon hole problem with Chaff. Time in seconds

holes S FR HR R FL L

9 2.3 0.6 0.6 80.25 4 2

10 21 3 8 540 12 204

11 466 86 34 1230 172 3000

12 3040 150 220 2140 940 1114

13 > 5000 3600 872 > 5000 3890 > 5000

14 > 5000 > 5000 > 5000 > 5000 > 5000 > 5000

Table 4. Experimental results for the all interval series problem with Chaff. Time in
seconds

|v| S R HR L

9 0.01 0 0.02 0.38

11 2.5 0.07 2.47 280

13 1066 47.51 185.58 1878

15 > 5000 527.85 > 5000 > 5000

17 > 5000 > 5000 > 5000 > 5000

holes ranges from 9 to 14. We used a cutoff of 5000 seconds. The best performing
mapping is HR, and then FR and FL, and the worst performing are S, R and L.

In the fourth experiment, whose results are shown in Table 4, we studied the
scaling behavior of the mappings on all interval series instances, where the size
of the vector ranges from 9 to 17. We used a cutoff of 5000 seconds. The best
performing mapping is R, and then HR, and the worst performing are L and S.

12 C. Ansótegui and F. Manyà

Table 5. Experimental results for graph coloring with Siege v4. Time in seconds

parameters S FR HR R FL L

n p k m md % m md % m md % m md % m md % m md %

400 0.02 3 468 136 96 284 46 100 520 91 98 476 94 100 411 135 96 286 58 96

200 0.13 5 32 7 100 22 10 100 25 9 100 25 5 100 2358 2220 4 2783 2600 18

50 0.5 8 13 2 100 37 23 100 46 8 100 23 3 100 63 16 100 9 2 100

Table 6. Experimental results for Random Binary CSPs with siege v4. Time in seconds

parameters S FR HR

〈n, d, p1, p2〉 m md % m md % m md %

〈25, 20, 198

300
, 126

400
〉 1596 1427 90 1124 909 100 1320 919 96

〈35, 15, 305

595
, 60

225
〉 2907 3395 40 2367 2303 74 2457 2366 48

〈45, 10, 415

990
, 22

100
〉 841 630 100 402 336 100 430 355 100

parameters R FL L

〈n, d, p1, p2〉 m md % m md % m md %

〈25, 20, 198

300
, 126

400
〉 1004 717 100 1445 1390 20 1265 846 90

〈35, 15, 305

595
, 60

225
〉 2122 1880 56 > 5000 > 5000 0 3156 3539 32

〈45, 10, 415

990
, 22

100
〉 410 340 100 1638 1416 96 1081 845 100

Table 7. Experimental results for the pigeon hole problem with Siege v4. Time in
seconds

holes S FR HR R FL L

9 63 2.14 2.46 2.59 15 6.56

10 289 10 8.75 9 18 56

11 > 5000 30 51 170 49 238

12 > 5000 162 246 196 74 > 5000

13 > 5000 > 5000 533 > 5000 345 > 5000

14 > 5000 > 5000 > 5000 > 5000 1460 > 5000

Table 8. Experimental results for the all interval series problem with Siege v4. Time
in seconds

|v| S R HR L

9 0.06 0.04 0.01 0.03

11 0.87 1.36 0.41 2.05

13 3.96 0.75 2.98 0.01

15 59 22 127 12

17 > 5000 375 > 5000 > 5000

Mapping Problems with Finite-Domain Variables 13

We can conclude that mapping S, which is commonly found in SAT reposito-
ries, is not the best option, and it is worth exploring alternative encodings. On
the one hand, mappings FL and FR are the best for the first two problems but
mapping HR has a very good behaviour on average. On the other hand, mapping
HR has a linear complexity and does not need to apply distributivity; that fact
leads to a poor performance of mappings FL and FR on some problems because
of the size of the derived formula.

We believe that the good performance is due to the fact that Boolean variables
of regular and logarithmic encodings capture subsets of elements of the domain
which are not captured when dealing with the Boolean monosigned signature.
This leads to learn shorter clauses; for example, on the hardest binary CSP and
coloring instances, the learned clauses by Chaff with mapping HR are between
two and three times shorter than the learned clauses by Chaff with mapping S.

Finally, in order to see if a similar behaviour is observed with other SAT
solvers, we repeated the above experiments with Siege v4. The experimental
results obtained are shown in Tables 5–8. In all the experiments we used a cutoff
of 5000 seconds. For random binary CSPs and graph coloring instances we only
report the results of the hardest instances for Chaff. From the tables, we can
conclude that mapping S is not generally the best option and it is worth to try
the others mappings we have defined when solving SAT-encoded combinatorial
problems with Siege v4. For the graph coloring instances we have tested we
observe that FL is not as good as it was for Chaff, and we do not see many
differences among the other encodings. For the random binary CSPs instances,
we observe a behaviour similar to Chaff: mappings FR, HR and R allow us to
solve more instances with our cutoff. For the pigeon hole instances, the best
mapping is FL, but mapping HR, which is the best mapping for Chaff, also
scales nicely. For the all interval series instances mapping R is, like in Chaff, the
best option.

References

1. T. Alsinet, R. Béjar, A. Cabiscol, C. Fernández, and F. Manyà. Minimal and
redundant SAT encodings for the all-interval-series problem. In Proceedings of the
Catalan Conference on Artificial Intelligence, CCIA 2002, Castellón, Spain, pages
139–144. Springer LNCS 2504, 2002.

2. C. Ansótegui, R. Béjar, A. Cabiscol, C. M. Li, and F. Manyà. Resolution methods
for many-valued CNF formulas. In Fifth International Symposium on the Theory
and Applications of Satisfiability Testing, SAT-2002, Cincinnati, USA, pages 156–
163, 2002.

3. C. Ansótegui, J. Larrubia, C. M. Li, and F. Manyà. Mv-Satz: A SAT solver
for many-valued clausal forms. In 4th International Conference Journées de
L’Informatique Messine, JIM-2003, Metz, France, 2003.

4. C. Ansótegui, J. Larrubia, and F. Manyà. Boosting Chaff’s performance by in-
corporating CSP heuristics. In 9th International Conference on Principles and
Practice of Constraint Programming, CP-2003, Kinsale, Ireland, pages 96–107.
Springer LNCS 2833, 2003.

14 C. Ansótegui and F. Manyà

5. C. Ansótegui, F. Manyà, R. Béjar, and C. Gomes. Solving many-valued SAT
encodings with local search. In Proceedings of the Workshop on Probabilistics
Approaches in Search, 18th National Conference on Artificial Intelligence, AAAI-
2002, Edmonton, Canada, 2002, 2002.

6. M. Baaz and C. G. Fermüller. Resolution-based theorem proving for many-valued
logics. Journal of Symbolic Computation, 19:353–391, 1995.

7. B. Beckert, R. Hähnle, and F. Manyà. Transformations between signed and clas-
sical clause logic. In Proceedings, International Symposium on Multiple-Valued
Logics, ISMVL’99, Freiburg, Germany, pages 248–255. IEEE Press, Los Alamitos,
1999.

8. B. Beckert, R. Hähnle, and F. Manyà. The SAT problem of signed CNF formu-
las. In D. Basin, M. D’Agostino, D. Gabbay, S. Matthews, and L. Viganò, editors,
Labelled Deduction, volume 17 of Applied Logic Series, pages 61–82. Kluwer, Dor-
drecht, 2000.

9. R. Béjar, A. Cabiscol, C. Fernández, F. Manyà, and C. P. Gomes. Capturing struc-
ture with satisfiability. In 7th International Conference on Principles and Practice
of Constraint Programming, CP-2001,Paphos, Cyprus, pages 137–152. Springer
LNCS 2239, 2001.

10. R. Béjar, R. Hähnle, and F. Manyà. A modular reduction of regular logic to
classical logic. In Proceedings, 31st International Symposium on Multiple-Valued
Logics (ISMVL), Warsaw, Poland, pages 221–226. IEEE CS Press, Los Alamitos,
2001.

11. R. Béjar and F. Manyà. A comparison of systematic and local search algorithms
for regular CNF formulas. In Proceedings of the 5th European Conference on Sym-
bolic and Quantitative Approaches to Reasoning with Uncertainty, ECSQARU’99,
London, England, pages 22–31. Springer LNAI 1638, 1999.

12. J. Culberson. Graph coloring page: The flat graph generator. See
http://web.cs.ualberta.ca/˜ joe/Coloring/Generators/flat.html, 1995.

13. G. Escalada-Imaz and F. Manyà. The satisfiability problem for multiple-valued
Horn formulæ. In Proceedings, International Symposium on Multiple-Valued Logics,
ISMVL’94, Boston/MA, USA, pages 250–256. IEEE Press, Los Alamitos, 1994.

14. A. M. Frisch and T. J. Peugniez. Solving non-boolean satisfiability problems with
stochastic local search. In Proceedings of the International Joint Conference on
Artificial Intelligence, IJCAI-2001, pages 282–288, 2001.

15. R. Hähnle. Towards an efficient tableau proof procedure for multiple-valued logics.
In Selected Papers from Computer Science Logic (CSL’90), Heidelberg, Germany,
LNCS 533, pages 248–260. Springer, 1991.

16. R. Hähnle. Automated Deduction in Multiple-Valued Logics, volume 10 of Interna-
tional Series of Monographs in Computer Science. Oxford University Press, 1994.

17. R. Hähnle. Advanced many-valued logic. In D. Gabbay and F. Guenthner, editors,
Handbook of Philosophical Logic, volume 2. Kluwer, second edition, 2001.

18. F. Manyà. Proof Procedures for Multiple-Valued Propositional Logics. PhD thesis,
Universitat Autònoma de Barcelona, 1996.

19. F. Manyà. The 2-SAT problem in signed CNF formulas. Multiple-Valued Logic.
An International Journal, 5(4):307–325, 2000.

20. F. Manyà, R. Béjar, and G. Escalada-Imaz. The satisfiability problem in regu-
lar CNF-formulas. Soft Computing: A Fusion of Foundations, Methodologies and
Applications, 2(3):116–123, 1998.

21. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering
an efficient sat solver. In 39th Design Automation Conference, 2001.

Mapping Problems with Finite-Domain Variables 15

22. N. V. Murray and E. Rosenthal. Resolution and path-dissolution in multiple-
valued logics. In Proceedings of the International Symposium on Methodologies for
Intelligent Systems, ISMIS’91, Charlotte, NC, pages 570–579. Springer LNAI 542,
1991.

23. S. D. Prestwich. Local search on SAT-encoded colouring problems. In Proceedings
of the 6th International Conference on the Theory and Applications of Satisfiability
Testing, pages 105–109. Springer LNCS 2919, 2003.

24. B. Smith and M. Dyer. Locating the phase transition in binary constraint satis-
faction problems. Artificial Intelligence, 81:155–181, 1996.

25. T. Walsh. SAT v CSP. In Proceedings of the 6th International Conference on Prin-
ciples of Constraint Programming, CP-2000, Singapore, pages 441–456. Springer
LNCS 1894, 2000.

A SAT-Based Decision Procedure for the Boolean
Combination of Difference Constraints

Alessandro Armando1, Claudio Castellini1,
Enrico Giunchiglia2, and Marco Maratea2

1 AILab, DIST - University of Genova viale Francesco Causa,
13 — 16145 Genova (Italy)

http://www.ai.dist.unige.it
{armando, drwho}@dist.unige.it

2 STARLab, DIST - University of Genova viale Francesco Causa,
13 — 16145 Genova (Italy)

http://www.star.dist.unige.it
{enrico, marco}@dist.unige.it

Abstract. The problem of deciding satisfiability of Boolean combinations of dif-
ference constraints is at the core of many important techniques such as planning,
scheduling and bounded model checking of real-time systems. Efficient decision
procedures for this class of formulas are, therefore, strongly needed. In this pa-
per we present TSAT++, a system implementing a SAT-based decision procedure
for this problem, and the techniques implemented in it; in particular, TSAT++
takes full advantage of recent SAT techniques. Comparative experimental results
indicate that TSAT++ outperforms its competitors both on randomly generated,
hand-made and real world problems.

1 Introduction

In temporal reasoning, one of the best known and studied formalisms is the so-called
Simple Temporal Problem (STP) [DMP91], consisting of a conjunction of difference
constraints, i.e., constraints of the form x − y ≤ c where x and y are variables ranging
over a fixed numeric domain (typically the integers or the reals) and c is a numeric
constant.

STPs are tractable, but their expressiveness is rather limited; therefore, recently,
several extensions to them have been introduced, allowing propositional atoms, dis-
junctions and negations of binary constraints. Such extensions are more expressive than
the STP but retain most of its conciseness and clarity; still, they are in general able to
express complex problems such as planning, scheduling and verification of real-time
hardware.

It is then clear that efficient decision procedures for these extensions are strongly
needed; in fact, in the last five years, at least six systems have been proposed that are
able to deal with disjunctions of difference constraints, four of which in the AI literature
and two in the formal verification literature, meaning that the topic is hot and interdis-
ciplinary. Not surprisingly, five out of these six systems are SAT-based or CSP-based;
this means that the satisfiability of a problem φ is determined by

H.H. Hoos and D.G. Mitchell (Eds.): SAT 2004, LNCS 3542, pp. 16–29, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

A SAT-Based Decision Procedure for the Boolean Combination 17

1. (enumeration) generating a set of propositional atoms and difference constraints
“propositionally satisfying” φ, using SAT or CSP techniques, and

2. (satisfiability checking) testing the satisfiability of each generated set using stan-
dard techniques (such as, e.g., the Bellman-Ford procedure).

As we will see, the enumeration, and thus the specific SAT/CSP technique being
used in the enumeration phase, is crucial to the efficiency of the procedure. Despite this,
none of the aforementioned five systems take advantage of the recent developments in
the SAT field.

In this paper we first survey the techniques and optimizations that have been real-
ized in the aforementioned solvers, trying to highlight their pros and cons, meanwhile
introducing our system TSAT++. TSAT++ is able to deal with arbitrary conjunctions,
disjunctions, and negations of difference constraints and propositional atoms. We then
briefly describe how we have integrated in TSAT++ most of the above mentioned tech-
niques, plus some new ones. Lastly we show the outcome of an extensive comparative
analysis among the solvers, including TSAT++.

TSAT++ integrates the latest techniques proposed in the SAT field (and, in partic-
ular, those proposed in [MMZ+01]) and uses new ideas designed to take maximum
advantage from the techniques used in the enumeration phase. Thanks to these methods
and their fruitful integration, we show that TSAT++ has a clear edge over its competi-
tors; in fact, the analysis shows that TSAT++ is

– at least 2 orders of magnitude faster in the hard region on real-valued randomly
generated problems;

– at least 6 times faster in the hard region on integer-valued randomly generated prob-
lems;

– on average at least a factor of 4 faster on instances coming from real world prob-
lems; and

– up to 3 orders of magnitude faster on hand-made problems

than its fastest competitor in each category. These results are even more interesting if
one considers that, unlike most of the competitors, TSAT++ is not tuned nor customized
on any particular class of problems.

The paper is structured as follows: after some preliminaries (Section 2), we intro-
duce TSAT++ and describe the techniques implemented in it (Section 3); then we show
our experimental results (Section 4) and finally draw some conclusions.

2 Preliminaries

2.1 Temporal Reasoning Problems

Let D be either the set of the integer or real numbers. Let also V and P be two disjoint
sets of symbols, called variables and propositional atoms respectively. Then a differ-
ence constraint is an expression of the form x − y ≤ c where x, y ∈ V and c is a
numeric constant.

18 A. Armando et al.

An atom is either a difference constraint or a propositional atom; a literal is either
an atom or its negation (if a is an atom, then a abbreviates ¬a and ¬a stands for a); and
lastly, a Temporal Reasoning Problem (TRP) is a Boolean combination of literals.

A TRP-assignment (on D), or assignment when it is not ambiguous, is a function
mapping each variable to an element of D, and each propositional atom to the truth
values {⊥,�}. An assignment σ is extended to map a TRP to {⊥,�} by defining

– σ(x − y ≤ c) = � if and only if σ(x) − σ(y) ≤ c, and
– σ(φ) = � (with φ being a TRP) according to the truth tables of propositional logic.

Let φ be a TRP. We say that an assignment σ satisfies φ if and only if σ(φ) = �;
such an assignment will be called a TRP-model, or model when it is not ambiguous, of
φ. A TRP is satisfiable (in D) if and only if there exists an assignment (on D) which
satisfies it. A finite set of literals is satisfiable (in D) if and only if their conjunction, as
a TRP, is.

Here we deal with the problem of determining whether a TRP is satisfiable or not,
having fixed the domain of interpretation D. Clearly the problem is NP-complete, no
matter which of the above mentioned sets D is.

In the following, we will use the term valuation to mean a mapping from atoms
to {⊥,�}, extended to arbitrary TRPs according to the truth tables of propositional
logic; a valuation satisfies a TRP if and only if it makes the TRP true. On the other
side, we will represent a valuation as the set of literals in it assigned to true; then an
(un)satisfiable valuation is such that the set of difference constraints represented by the
associated literals is (un)satisfiable.

Also, we restrict our attention to TRPs in CNF. This is not a limitation since any
TRP can be efficiently reduced to an equi-satisfiable formula in CNF. With this as-
sumption, we represent a TRP as a set of clauses, each clause being a set of literals. As
is customary, clauses with one literal only will be called unit clauses.

TRPs actually represent an interesting extension to the STP, introducing disjunction
and negation of difference constraints and propositional atoms; this added value makes
them as expressive as Separation Logic [SSB02], which employs the predicates <, ≥,
>, =, and �=. Another well-known related framework, the Disjunctive Temporal Prob-
lem (DTP), is limited to two disjuncts per clause and admits no propositional atoms,
but it is as expressive as a TRP (introducing new variables). In general, valuations of
TRPs, restricted to difference constraints, can be seen as Simple Temporal Problems —
they are equivalent to conjunctive sets of difference constraints.

2.2 SAT and CSP-Based Procedures

Beside TSAT++, the systems we will be considering here are: the system presented
in [SK98] (that we will call SK), Tsat [ACG00], CSPi [OC00], Epilitis[TP03], SEP
[SSB02] and MathSAT [ABC+02]. As far as we know, these systems represent a fair
snapshot of the current state-of-the-art; and, with the exception of SEP (see [SSB02]
for more details), all approaches and systems built so far for TRPs and similar prob-
lems are quite alike from an algorithmic point of view. In fact, given a TRP φ, they all
work by

A SAT-Based Decision Procedure for the Boolean Combination 19

1. (enumeration) generating all the valuations µ which satisfy φ,
2. (satisfiability checking) for each µ, testing whether it is satisfiable.

Enumeration can be done as search in a Constraint Satisfaction Problem (CSP) as-
sociated to the basic temporal reasoning problem (systems which do this are SK, CSPi,
Epilitis) or by solving the corresponding SAT problem (Tsat, MathSAT, TSAT++). In
the first approach, search is performed in a meta-search space in which a new variable
is associated with each clause, its domain being the set of disjuncts in the clause. In the
SAT-based approach, the given TRP is abstracted to a propositional formula obtained
by substituting each distinct binary constraint with a newly introduced propositional
atom.

As one can see, SAT- and CSP-based approaches are tightly connected, and it is
therefore not surprising that in their basic versions and starting from Tsat, all the sys-
tems perform the following steps:

1. assign to true the literals in unit clauses;1

2. if there are no more literals to assign according to the previous step, they branch
on a literal l (i.e., assign true to l), and, upon failure of the subsequent search, add
the negation of l to the current state and continue the search, till either a satisfying
assignment is found, or backtrack occurs.

The similarity to the search performed by SAT solvers is apparent; despite this, none
of the above systems incorporates the last advancements done in the SAT field.

As far as expressiveness is concerned, TSAT++ is able to deal with any TRP; SK,
Tsat, CSPi and Epilitis are restricted to DTPs; SEP is as expressive as TSAT++, and
neither is comparable to MathSAT, since MathSAT allows for arbitrary linear con-
straints as atoms and does not allow the integers to be considered as domain of inter-
pretation.

3 TSAT++

In this section we describe the main ideas behind TSAT++. Most of the terminology
we will be using from now on is customary in the AI and Formal Methods literature.
Rather than as a monolithic system, TSAT++ is conceived as an open platform for the
implementation of such ideas and techniques. For a more detailed description of the
system, refer to [ACG+04].

In particular, we will describe (i) the computation done before the search starts (pre-
processing), (ii) the way the search space is pruned after each branching node (look-
ahead), (iii) the way recovery from failures happens (look-back); (iv) the heuristics
used for picking the literal on which to branch (branching rule), and (v) the procedure
used for checking the satisfiability of a set of literals (satisfiability checking).

TSAT++ employs an API-like modified version of SIMO [GMT03] for the enumer-
ation phase.

1 In CSPi and Epilitis, priority of unit clauses is embedded in the heuristics used for selecting
the literal to branch on. Furthermore, these systems employ forward checking, which removes
the binary constraints whose negation is entailed by the current valuation.

20 A. Armando et al.

3.1 Pre-processing

One drawback of the generate-and-test approach is that (exponentially) many trivially
unsatisfiable valuations can be generated and then discarded, essentially because the
machinery in charge of the enumeration phase knows nothing about difference con-
straints. This may happen both in SAT and CSP-based approaches. For example, in the
enumeration phase there is no constraint relating the truth values of, e.g., x−y ≤ 3 and
x − y ≤ 5. Thus, many trivially unsatisfiable valuations (e.g., with x − y ≤ 3 assigned
to true and x − y ≤ 5 to false) can be generated.

In order to reduce this effect, in TSAT++ for each pair c1, c2 of difference con-
straints in the same variables and occurring in the input formula, the satisfiability of
all possible pairs of literals built out of them, i.e., {c1, c2}, {¬c1, c2}, {c1,¬c2}, and
{¬c1,¬c2}, is checked.

Assuming, e.g., {c1, c2} is unsatisfiable, the clause {¬c1,¬c2} is added to the input
formula before the search starts. In our example, we would add the clause {¬x − y ≤
3, x − y ≤ 5}.

This can dramatically speed up the search, especially on randomly generated prob-
lems. In fact, e.g., as soon as x−y ≤ 3 is assigned to true, x−y ≤ 5 gets also assigned
to true by unit propagation. This technique is an extension of a technique called IS(2),
introduced in [ACG00].

3.2 Look-Ahead

Consider a TRP φ and let S be the set of literals assigned to true so far. The idea behind
look-ahead techniques is to try to detect new literals l that are entailed by φ and S, i.e.,
such that l is satisfied by each assignment satisfying φ and S. If l is one of such literal,
we can (i) add l to S and (ii) simplify φ on the basis that l is true. This has the beneficial
effect of postponing the branching phase and in doing so it may lead to huge savings.

The basic look-ahead technique common to all solvers is unit-propagation. A simple
profiling of the code of TSAT++ on real world problems reveals that most of the CPU
time is spent in the enumeration phase (often more than 80%, sometime close to 100%),
within which most of the time is spent by unit-propagation (> 90% in most cases).
Therefore, the choice of a good data-structure for unit-propagation is capital.

Two-literal watching is an efficient data-structure for unit-propagation (see, e.g.,
[MMZ+01]). With it, each clause maintains two fields meant to store two “watched”
open (i.e. not assigned) literals. Assigning an atom and detecting new units, causes the
visit of a sub-linear (in the number of occurrences of the atom) number of clauses. Fur-
ther, following the same paper, when backtracking occurs, nothing needs to be undone,
and thus backtracking takes constant time. On the other hand, by using standard coun-
ters structures as in, e.g., Tsat and MathSAT, assigning an atom and detecting new
units has a cost which is at least linear in the number of occurrences of the atom. Fur-
thermore, when backtracking occurs and an atom is unassigned, each operation needs
be undone and this, again, has a cost which is linear in the number of occurrences of the
atom. This alternative approach has a higher computational cost than two-literal watch-
ing, especially when managing large clauses, such as those emerging from learning.
Still, even in SAT, it is not always true that two-literal watching is better than coun-
ters structures. Indeed, the former are a de-facto standard for SAT solvers designed for

A SAT-Based Decision Procedure for the Boolean Combination 21

real world applications, while the latter are at the basis of the most efficient solvers on
randomly generated problems [BS03].

Having in mind real world applications, we implemented two-literal watching in
TSAT++: for these applications, look-back mechanisms based on learning are funda-
mental, and these imply handling large clauses (with hundreds of literals). It turns out,
however, that TSAT++ outperforms the other solvers even on random problems.

Unit-propagation prunes valuations on the basis of propositional reasoning. How-
ever, it may be the case that the set of literals µ assigned at a certain point of the search
tree, is already unsatisfiable. In this case, there is no point in continuing the search
expanding µ. Because of this, before each branching we may check whether µ is sat-
isfiable or not. If not, we can immediately force backtracking. This technique is called
early-pruning and it is implemented by all the solvers we considered.

3.3 Look-Back

If recovery from a failure is performed by simple chronological backtracking, it is not
infrequent to keep exploring a possibly large subtree whose leaves are all dead-ends,
especially if the failure is due to some choices performed way up in the search tree.
The solution to this problem is to jump back over the choices that do not belong to
the reason for the failure. Intuitively, if S is a set of literals such that S ∪ φ (where
φ is the input CNF formula) is unsatisfiable, then a reason R for S is a subset of S
such that φ ∪ R is unsatisfiable. Reasons are initialized as soon as an unsatisfiability
is detected, and updated while backtracking. The corresponding technique is known as
(Conflict-Directed) Back-jumping (CBJ) [Pro93].

With learning (see [BM96, SS99]), each reason R computed while back-jumping is
turned into the clause {l | l ∈ R} that may be added to the input formula. Learned
clauses will prune the subsequent search space, thus avoiding the repetition of the same
mistakes. On the other hand, exponentially many reasons can be learned, and each
learned clause causes an overhead when assigning literals. In practice it is necessary
to introduce criteria (i) for limiting the clauses that have to be learned and (ii) for
removing some of them.

TSAT++ features 1-UIP learning [MMZ+01]. This technique ensures that at each
decision level of each branch at most one clause is added to the input formula. Still,
an exponential blow-up may happen. To prevent this in TSAT++, each added clauses is
analyzed with a given periodicity and (possibly) deleted. Standard alternatives to 1-UIP
learning are [BM96]

1. relevance-bounded learning of order n (used in MathSAT with n = 3, 4) and
2. size-bounded learning of order n (used in Epilitis with n = 10).

Compared to the 1-UIP learning implemented in TSAT++, both MathSAT and
Epilitis may store more than one clause per level.

3.4 Branching Rule

TSAT++ uses a conflict-based heuristic, whose basic idea is to select the literal mostly
occurring in the most recently learned clauses. The rationale behind it is that learned

22 A. Armando et al.

clauses represent conflicts among the literals that have emerged during the search. By
satisfying these clauses we avoid doing the same “mistake” over and over again. How-
ever, not all the learned clauses are equally important: Indeed, some of them, e.g., those
discovered at the beginning of the search, may become obsolete for guiding the search in
the current branch. Thus, the score associated with each literal is periodically divided by
2, giving more relevance to the atoms that will occur in the newly discovered conflicts.

Of course, such conflict-based heuristics make sense only for solvers with learning.
Epilitis uses a similar heuristics. The main difference is that, in Epilitis, all conflicts
are equally important, i.e., it does not focus on the atoms in the most recently learned
clauses. MathSAT employs a wide variety of heuristics, some of which specifically de-
signed for solving a specific class of problems. However, even though MathSAT uses
learning and thus could employ a conflict-based heuristic, all its heuristics are MOMS-
based (Maximum Occurrences in clauses of Minimal Size): They give higher scores
to literals in shorter clauses. These heuristics have been mutuated from the SAT liter-
ature, and are used also by Tsat. In the CSP-based systems, MOMS-based heuristics
correspond to the Minimum Remaining Value (MRV) heuristics, used in SK and CSPi.

It is not easy to compare these heuristics for TRPs. One could make some consider-
ations on the basis of what is known in the SAT literature. For instance, in SAT, MOMS-
based heuristics are known to be better than conflict-based heuristics on randomly gen-
erated problems. However, it is not clear whether such considerations still hold in this
setting. For instance, the results in [TP03] point out that its conflict-based heuristics is
better than its MOMS-based heuristics even on randomly generated problems. What is
true is that MOMS-based heuristics are not compatible with a two literal watching data
structure, since they require to know which clauses are active and their length.2

3.5 Satisfiability Checking

Consider a set S of literals. For all the procedures here considered, an effective method
for checking the satisfiability of S is needed. Moreover, when S is unsatisfiable, it is
important to be able to extract a reason of its unsatisfiability, i.e., an unsatisfiable subset
S′ of S. Of course, a naı̈ve selection of such a set S′ is the set S itself; however, applying
this selection is seldom a good idea since S′ is to be used by the look-back mechanisms,
e.g., to backjump over irrelevant nodes. It is thus of fundamental importance to keep S′

as “small” as possible in order to try and maximize the benefits of the look-back.
We now describe how we compute such a small set S′. For the time being, let us

assume that S is just a set of difference constraints, i.e., that we are facing a STP. We
will see later how to generalize the discussion to arbitrary literals. The standard method
to check the satisfiability of a STP S is the Bellman-Ford procedure (BF — see, e.g.,
[CLR98]). The basic idea is to associate with S a constraint graph, whose nodes are
the variables in S, and which has an edge from y to x with weight c, for each constraint
x − y ≤ c in S. Then, an extra node s (the “source”) connected to all the other nodes
with weight 0 is added, and BF is used to compute the “single source shortest-paths”

2 One could argue that two literal watching structures are compatible with unit-based heuristics
[LA97]. However, as a preliminary step, unit-based heuristics use a MOMS-based criteria in
order to select the variables to score with a unit-based heuristics.

A SAT-Based Decision Procedure for the Boolean Combination 23

problem. If S is satisfiable, there are no negative cycles in the graph, and BF returns
true; otherwise, a minimal (under a suitable set ordering, the simplest of which being
cardinality), unsatisfiable subset S′ of S can be easily detected by inspection of the
constraint graph.

Notice that the constraint graph of S may have several different negative cycles,
each one corresponding to a minimal unsatisfiable subset of S. The standard approach
amounts to stopping the search as soon as one such negative cycle is detected. TSAT++
instead continues the search in order to determine a negative cycle involving the small-
est number of nodes (corresponding to an unsatisfiable set with minimal cardinality).
This modification does not alter the overall complexity of BF, which remains O(n×m),
where n and m are the numbers of variables and constraints in S respectively. On the
other hand, the advantage of returning an unsatisfiable set with fewer constraints is that
it possibly leads to pruning a larger portion of the search space.

Furthermore, when S is a valuation satisfying the input TRP φ, some of the literals
in S may be not necessary to satisfy φ. In other words, there may be a literal l in S such
that, for each clause C ∈ φ with l ∈ C, there is another literal l′ in S ∩ C. If this is the
case, also (S \{l})∪{l} satisfies φ, and we can safely check the satisfiability of S \{l}
instead of S. TSAT++ may recursively eliminate such literals l from S. If S′ ⊆ S is
the resulting set, it will then check the satisfiability of S′. We call the above procedure
reduction, and it may be useful because

– if S is satisfiable, so is S′, and we are done;
– if S is unsatisfiable, it may nevertheless be the case that S′ is satisfiable, and we

interrupt the search and exit with a satisfying assignment;
– if S and S′ are both unsatisfiable, checking the satisfiability of S instead of S′ can

cause exponentially many more satisfiability checks. In fact, any valuation extend-
ing S′ also satisfies φ, and each could be generated and then rejected by TSAT++.

The last two cases are of particular relevance in TSAT++. In fact, because of the
two-literal watching data structure, the generated valuations satisfying φ are always
total. Thus, it is very often the case that huge portions of the difference constraints in S
are irrelevant for satisfying φ and, by removing them, we end-up in a set S′ with many
less difference constraints. Notice that the reduction procedure is not to be applied when
early pruning is enabled. With early pruning, the hope is that S is unsatisfiable in order
to stop the search. If S′ turns out to be satisfiable, we cannot conclude about S, and we
have to go on expanding S.

So far, we have been using the assumption that S is a set of difference constraints.
The problem is how to deal with the negation of difference constraints. Assume we have
¬x − y ≤ c in S. Then, such a literal is equivalent to y − x < −c, and we can replace
every such constraint in S with a constraint y − x ≤ d, where d is

– the maximum integer strictly smaller than −c, if variables range over the integers;
and

– −c − 1
10p(n2+1) , otherwise. In the expression, n is the number of variables in S,

and p is the maximum number of digits appearing to the right of the decimal point
(assuming that there are no useless “0”), in any of the constants of the input TRP.
If all the constants are integers, p = 0.

24 A. Armando et al.

The resulting set does not contain any negation of difference constraint, and it is
satisfiable if and only if the initial set is (this follows from Theorem 3 in [GC97]).

4 Experimental Analysis

4.1 Experimental Setting

In order to thoroughly compare TSAT++ with the state-of-the-art we have considered
a wide variety of publicly available random, real world and hand-made TRPs (the clas-
sification has been done following what is standard practice in the SAT competition
[BS03]). As far as the solvers are concerned, we have initially considered all the pub-
licly available systems, that is, the above mentioned SK, CSPi, Epilitis, MathSAT,
SEP and Tsat plus, of course, TSAT++. After a first run, we have discarded SK, be-
cause it is clearly not competitive with respect to the others.

Each solver has been run on all the benchmarks it can deal with, not only on the
benchmarks the solver was analyzed on by the authors. In particular, Epilitis can only
handle DTPs with binary clauses and integer valued variables; CSPi and Tsat can only
handle DTPs with real valued variables; MathSAT can handle arbitrary TRPs with real
valued variables; SEP and TSAT++ can handle arbitrary TRPs.

Each solver has been run using the settings or the version of the solver suggested by
the authors for the specific problem instances; when not publicly available, we directly
asked the authors for the best setting. TSAT++ has many possibilities, also beyond
those described in this paper. Of the features described in this paper, only preprocessing,
early pruning and reduction of satisfying assignments can be enabled and disabled at
the command line.

All experiments were run on a Pentium IV 2.4GHz processor with 1GB of RAM.
CPU time is given in seconds; timeout was set to 1000 seconds.

4.2 Comparative Evaluation on Random DTPs

We start our analysis considering randomly generated DTPs as introduced in [SK98]
and since then used as a benchmark in [ACG00, OC00, ABC+02, TP03]. DTPs are ran-
domly generated by fixing the number k of disjuncts per clause, the number n of arith-
metic variables, a positive integer L such that all the constants are taken in [−L,L].3

Then, (i) the number of clauses m is increased in order to range from satisfiable to
unsatisfiable instances, (ii) for each tuple of values of the parameters, 100 instances are
generated and then given to the solvers, and (iii) the median of the CPU time is plotted
against the m/n ratio. The results for k = 2, L = 100 and n = 35 are given in Figure 1:
Plots (a) and (b) shows the performance when the variables are real and integer valued
respectively.

When m/n ≥ 6, TSAT++ clearly outperforms all other systems: In the peak region,
the solver that is closer to TSAT++ in this domain, namely Epilitis, is a factor of 6
slower on 35 variables (cf. plot (b)). This is a very positive result, taking into account

3 A random DTP generator is available at the URI of the SMT-LIB initiative,
http://goedel.cs.uiowa.edu/smtlib.

A SAT-Based Decision Procedure for the Boolean Combination 25

2 4 6 8 10 12 14
10

−2

10
−1

10
0

10
1

10
2

10
3

ratio

cp
u

tim
e

DTP: 35 variables on real domain

TSAT++
MathSAT
CSPi
Tsat
SEP

2 4 6 8 10 12 14
10

−2

10
−1

10
0

10
1

10
2

10
3

ratio

cp
u

tim
e

DTP: 35 variables on integer domain

TSAT++
Epilits
SEP

(a) (b)

Fig. 1. Comparative analysis on (a) randomly generated DTPs with 35 real valued variables
(b) randomly generated DTPs with 35 integer valued variables. Systems are stopped after 1000
seconds. Back: satisfiability percentage

2 4 6 8 10 12 14
10

−2

10
−1

10
0

10
1

10
2

10
3

ratio

cp
u

tim
e

TSAT++ on hard DTP

TSAT++ on 35 vars
TSAT++ on 40 vars
TSAT++ on 45 vars
TSAT++ on 50 vars

Fig. 2. Scalability of TSAT++. Curves represent TSAT++’s performance on DTPs with 35, 40,
45 and 50 real valued variables

that Epilitis only works on DTP with k = 2, and it has been thoroughly tested and
optimized on this type of problems (see [TP03]).

All other systems are about 2 orders of magnitude slower than TSAT++ in the peak
region. TSAT++ has been run with early pruning and pre-processing enabled, and these
are fundamental for its performance on this test set: Without early pruning (resp. pre-
processing) TSAT++ on the peak is slower by 2 (resp. 1) orders of magnitude. The
fact that these two techniques are important comes at no surprise, and confirm previous
results in [ACG00]. The new look-ahead, heuristics and look-back mechanisms used by
TSAT++ explain the 2 orders gap with respect to Tsat.

Lastly, in order to evaluate the scalability of TSAT++, we tested it against DTPs
with a larger number of variables, namely 40, 45, and 50; as far as we know, the larger

26 A. Armando et al.

problems tackled so far in literature have 35 variables (see [TP03]). The results (in-
cluding also the results for 35 variables) are plotted in Figure 2. The plots show that
TSAT++ does not timeout even with 50 variables and that it pays around a factor 4
on the hardest point when adding five variables. All other systems we considered were
not able to deal with problems with 50 variables; also, the performance gap between
TSAT++ and the other systems increased with the number of variables.

4.3 Comparative Evaluation on Real World Problems

In this Subsection we consider

1. the 40 post-office benchmarks introduced in [ABC+02], coming in 4 series (con-
sisting of 7, 9, 11, and 13 instances respectively) of increasing difficulty, and

2. the 16 hardware verification problems from [SSB02], 9 (resp. 7) of which are with
real (resp. integer) valued variables.

The post-office benchmarks represent bounded model checking for timed automata;
the hardware verification suite include scheduling, cache coherence protocol, load-store
unit and out-of-order execution problems.

Consider Figure 3. By looking at the results of MathSAT, SEP and TSAT++ on
the post-office problems, our first observation is that SEP is not competitive on these
problems: On 13 of the hardest instances, SEP had a segmentation fault in 11 cases,
and on the other 2 hardest instances SEP is outperformed by orders of magnitude by
TSAT++ and MathSAT. Our second observation is that TSAT++ (with pre-processing
and assignment reduction) performs better than MathSAT up to a factor of 6, on each
single instance: This is particularly remarkable given that the authors have customized
a version of MathSAT explicitly for this kind of problems. Without pre-processing
TSAT++’s performance is worse of about a factor of 3 and of about 10% worse without
reduction.

Considering the hardware verification problems, all of them are easy to solve (less
than 3s) for all the three solvers, except for SEP that timeouts on one instance. Of

0 5 10 15 20 25 30 35 40 45 50
10

−2

10
−1

10
0

10
1

10
2

10
3

benchmarks

or
de

re
d

cp
u

tim
e

Real−life benchmarks

TSAT++
MathSAT
SEP

Fig. 3. Comparative analysis on real world problems. Systems are stopped after 1000 seconds

A SAT-Based Decision Procedure for the Boolean Combination 27

the 9 (resp. 16) runs of MathSAT (resp. SEP and TSAT++), only 3 take more than
0.1s. These observations are confirmed by Figure 3, which gives the overall picture
of the results for MathSAT, SEP and TSAT++ on the 49 instances with real valued
variables: The x-axis is the number of instances solved by each solver within the CPU
time specified on the y-axis.

4.4 Comparative Evaluation on Hand-Made Problems

Finally, we consider the “hand-made” diamonds problems shown in [SSB02]. Given a
parameter D, these problems are characterized by an exponentially large (2D) number
of satisfying valuations, some of which correspond to TRP-models; hard instances with
a unique TRP-model can be generated. A second parameter, S, is used to make TRP-
models larger, further increasing the difficulty. Variables range over the reals.

Table 1. Diamonds problems

D S unique TSAT++ TSAT++p SEP SEP (no c.m.) MathSAT

50 4 N 0 0.02 0.03 0.12 0.05
50 4 Y 0.01 0.14 0.84 0.07 TIME
100 5 N 0.01 0.11 0.13 1.18 0.61
100 5 Y 0.04 7.57 10.20 0.17 TIME
250 5 N 0.08 0.76 0.95 52.20 5.4
250 5 Y 0.21 194.99 288.30 0.77 TIME
500 5 N 0.29 4.46 5.92 742.99 21.22
500 5 Y 1.05 TIME TIME 4.85 TIME

Table 1 shows comparative results on the diamonds problems. The third column
denotes whether the problem has a unique TRP-model; the remaining columns show
CPU times for TSAT++ with reduction of assignment enabled, TSAT++ plain version
(denoted as TSAT++p), SEP with and without conjunction matrix and MathSAT.4

TSAT++ with reduction of assignment enabled clearly performs best, often by or-
ders of magnitude; instances with a unique solution are more difficult than non-unique
ones, as expected, except for SEP without conjunction matrix.

For this test set, the good interplay between look-back and satisfiability checking
engines is fundamental. In particular, the reduction of assignment step is crucial, and
this is clear from the comparison between TSAT++ and TSAT++p columns in Table 1:
Without reduction, TSAT++ performs significantly worse, up to the point that problems
that are solved in 1 second, are not solved without reduction within the time limit.

Related Work. Two further systems which tackle the same problem are LPSAT and
CPLEX. LPSAT ([WW99]) has been excluded from the comparative analysis since

4 The configurations employed were suggested by the authors of SEP and MathSAT.

28 A. Armando et al.

it is algorithmically quite similar to MathSAT and it employs the SAT solver RelSat
([BS97]), similar to SIM, which is used in MathSAT. Therefore we do not expect LP-
SAT to be competitive.

CPLEX ([Cpl93]) is a commercial linear programming system not freely available;
it is the object of our future research to compare with it.

5 Conclusions

In this paper we have presented TSAT++, an effective system for temporal reasoning
that improves the state-of-the-art both on randomly generated, real world and hand-
made problems. TSAT++ enforces a number of reasoning techniques and optimiza-
tions, both borrowed from the AI and Formal Methods literature and new, and takes
full advantage of recent SAT improvements. Thanks to this, TSAT++ outperforms all
its competitors, in each different problem class. This is particularly remarkable, given
that most competitors are optimized or even customized for solving specific classes of
problems.

Acknowledgments. This research is partially supported by MIUR (Italian Ministry of
Education, University and Research) under the project RoboCare – A Multi-Agent Sys-
tem with Intelligent Fixed and Mobile Robotic Components. Also, we wish to thank
Gilles Audemard, Angelo Oddi, Ofer Strichman and Ioannis Tsamardinos for provid-
ing assistance with their solvers.

References

[ABC+02] Gilles Audemard, Piergiorgio Bertoli, Alessandro Cimatti, Artur Kornilowicz, and
Roberto Sebastiani. A SAT based approach for solving formulas over boolean
and linear mathematical propositions. In Andrei Voronkov, editor, Automated De-
duction – CADE-18, volume 2392 of Lecture Notes in Computer Science, pages
195–210. Springer-Verlag, July 27-30 2002.

[ACG00] Alessandro Armando, Claudio Castellini, and Enrico Giunchiglia. SAT-based pro-
cedures for temporal reasoning. In Susanne Biundo and Maria Fox, editors, Pro-
ceedings of the 5th European Conference on Planning (Durham, UK), volume
1809 of Lecture Notes in Computer Science, pages 97–108. Springer, 2000.

[ACG+04] Alessandro Armando, Claudio Castellini, Enrico Giunchiglia, Massimo Idini, and
Marco Maratea. TSAT++: an open platform for satisfiability modulo theories.
Elsevier Science Publishers, 2004. Proceedings of PDPAR 2004 - Pragmatics of
Decision Procedures in Automated Reasoning, Cork, Ireland. To appear.

[BM96] R. J. Bayardo, Jr. and D. P. Miranker. A complexity analysis of space-bounded
learning algorithms for the constraint satisfaction problem. In Proc. AAAI, pages
298–304, 1996.

[BS97] Roberto J. Bayardo, Jr. and Robert C. Schrag. Using CSP look-back techniques to
solve real-world SAT instances. In Proceedings of the 14th National Conference
on Artificial Intelligence and 9th Innovative Applications of Artificial Intelligence
Conference (AAAI-97/IAAI-97), pages 203–208, Menlo Park, July 27–31 1997.
AAAI Press.

A SAT-Based Decision Procedure for the Boolean Combination 29

[BS03] Le Berre and Simon. The essentials of the SAT 2003 competition. In International
Conference on Theory and Applications of Satisfiability Testing (SAT), LNCS, vol-
ume 6, 2003.

[CLR98] Thomas H. Cormen, Charles E. Leiserson, and Ronald R. Rivest. Introduction to
Algorithms. MIT Press, 1998.

[Cpl93] CPLEX user’s guide. Manual, CPLEX Optimization, Inc., Incline Village, NV,
USA, 1993.

[DMP91] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artificial Intelli-
gence, 49(1-3):61–95, January 1991.

[GC97] Alfonso Gerevini and Matteo Cristani. On finding a solution in temporal constraint
satisfaction problems. In Proceedings of the 15th International Joint Conference
on Artificial Intelligence (IJCAI-97), pages 1460–1465, San Francisco, August 23–
29 1997. Morgan Kaufmann Publishers.

[GMT03] E. Giunchiglia, M. Maratea, and A. Tacchella. Look-ahead vs. look-back tech-
niques in a modern SAT solver. In Proceedings of the 6th International Confer-
ence on Theory and Applications of Satisfiability Testing (SAT)., Portofino, Italy,
May 5–8 2003.

[LA97] Chu Min Li and Anbulagan. Heuristics based on unit propagation for satisfiability
problems. In Proceedings of the 15th International Joint Conference on Artifi-
cial Intelligence (IJCAI-97), pages 366–371, San Francisco, August 23–29 1997.
Morgan Kaufmann Publishers.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an Efficient SAT Solver. In Proceedings of the 38th
Design Automation Conference (DAC’01), June 2001.

[OC00] A. Oddi and A. Cesta. Incremental forward checking for the disjunctive temporal
problem. In Proceedings of the 14th European Conference on Artificial Intelli-
gence (ECAI-2000), pages 108–112, Berlin, 2000.

[Pro93] Patrick Prosser. Hybrid algorithms for the constraint satisfaction problem. Com-
putational Intelligence, 9(3):268–299, 1993.

[SK98] Kostas Stergiou and Manolis Koubarakis. Backtracking algorithms for disjunc-
tions of temporal constraints. In Proc. AAAI, 1998.

[SS99] Joao P. Marques Silva and Karem A. Sakallah. GRASP: A search algorithm for
propositional satisfiability. IEEETC: IEEE Transactions on Computers, 48, 1999.

[SSB02] Ofer Strichman, Sanjit A. Seshia, and Randal E. Bryant. Deciding separation for-
mulas with SAT. Lecture Notes in Computer Science, 2404:209–222, 2002.

[TP03] Ioannis Tsamardinos and Martha Pollack. Efficient solution techniques for dis-
junctive temporal reasoning problems. Artificial Intelligence, 2003. To appear.

[WW99] Steven Wolfman and Daniel Weld. The LPSAT-engine & its application to re-
source planning. In Proc. IJCAI-99, 1999.

An Algebraic Approach to the Complexity
of Generalized Conjunctive Queries�

Michael Bauland1, Philippe Chapdelaine2,
Nadia Creignou3, Miki Hermann4, and Heribert Vollmer1

1 Theoretische Informatik, Universität Hannover, Germany
{bauland, vollmer}@thi.uni-hannover.de

2 GREYC (UMR 6072), Université de Caen, France
pchapdel@info.unicaen.fr

3 LIF (UMR 6166), Univ. de la Méditerranée, France
creignou@lif.univ-mrs.fr

4 LIX (UMR 7161), École Polytechnique, France
hermann@lix.polytechnique.fr

Abstract. Conjunctive-query containment is considered as a fundamen-
tal problem in database query evaluation and optimization. Kolaitis and
Vardi pointed out that constraint satisfaction and conjunctive query con-
tainment are essentially the same problem. We study the Boolean con-
junctive queries under a more detailed scope, where we investigate their
counting problem by means of the algebraic approach through Galois
theory, taking advantage of Post’s lattice. We prove a trichotomy the-
orem for the generalized conjunctive query counting problem, showing
this way that, contrary to the corresponding decision problems, con-
straint satisfaction and conjunctive-query containment differ for other
computational goals. We also study the audit problem for conjunctive
queries asking whether there exists a frozen variable in a given query.
This problem is important in databases supporting statistical queries.
We derive a dichotomy theorem for this audit problem that sheds more
light on audit applicability within database systems.

1 Introduction

Constraint satisfaction is recognized as a fundamental problem in artificial in-
telligence, in automated deduction, in computer-aided verification, in opera-
tions research, etc. At the same time conjunctive-query containment is con-
sidered as a fundamental problem in database query evaluation and optimiza-
tion [1]. Recent research points out that query containment is a central prob-
lem in several database and knowledge base applications, including data ware-
housing [26], data integration [15], query optimization, and (materialized) view
maintenance [28]. Kolaitis and Vardi pointed out in [13] that constraint sat-
isfaction and conjunctive-query containment are essentially the same problem.

� Supported by ÉGIDE 05835SH, DAAD D/0205776 and DFG VO 630/5-1.

H.H. Hoos and D.G. Mitchell (Eds.): SAT 2004, LNCS 3542, pp. 30–45, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Complexity of Generalized Conjunctive Queries 31

Constraints are usually specified by means of relations. The standard constraint
satisfaction problem can therefore be parameterized by restricting the set of
allowed relations. In particular, given a finite set S of Boolean relations, we con-
sider conjunctive propositional formulas consisting of clauses built over relations
from S, also called S-formulas. Deciding the satisfiability of such an S-formula
is known as the generalized satisfiability problem, denoted by sat(S), and was
first investigated by Schaefer [20]. It turns out that the complexity of sat(S)
can be characterized by closure properties of S. This correspondence is obtained
through a generalization of Galois theory. In order to get complexity results via
this algebraic approach, conjunctive queries coq(S) over a set of relations S
turn out to be useful. Roughly speaking, a conjunctive query from coq(S) is
an S-formula with distinguished variables, where all non-distinguished variables
are existentially quantified. These queries play an important role in database
theory, since they represent a broad class of queries and their expressive power
is equivalent to select-join-project queries in relational algebra. Thus they are
also of interest in their own right and we study the complexity of some related
computational problems. The algebraic approach is particularly well adapted to
this study, yielding short and elegant proofs.

We focus here on the counting and the audit problems for conjunctive queries.
In the former the problem is to count the number of entries in the database that
match the query, i.e., the number of satisfying assignments. In the latter the
problem is to audit a database to ensure protection of sensitive data, where the
goal is to decide whether the conjunctive query evaluates to false or whether
there is some distinguished variable that is frozen, i.e., that takes the same value
in all satisfying assignments. This frozen variable would then be considered as not
protected. This is a generalization of the audit problem for Boolean attributes
defined in [11] (see also [14]), which is particularly interesting in databases sup-
porting statistical queries. For both considered problems we obtain a complete
complexity classification that indicates a difference with respect to satisfiabil-
ity problems of Boolean constraints. Peter Jonsson and Andrei Krokhin ([10]
manuscript, submitted for publication) independently examined a variant of our
audit problem. Our results can be shown to follow from theirs.

Measures such as conditional probability (confidence) and correlation have
been used to infer rules of the form “buying diapers causes you to buy beer”.
However, such rules indicate only a statistical relationship between items, but
they do not specify the nature and causality of the relationship. In applications,
knowing such causal relationship is extremely useful for enhancing understanding
and effecting change. While distinguishing causality from correlation is a truly
difficult problem, recent work in statistics and Bayesian learning provide some
promissing directions of attack. In this context, the ideas of Bayesian learning,
where techniques are being developed to infer causal relationships from observa-
tional data, to mining large databases [21] trigger the necessity to study counting
problems in connection with existing database applications. Yet another recent
application of Bayesian learning based on counting is the task of spam elim-
ination. Therefore we think that our results will have an impact on concrete

32 M. Bauland et al.

database implementations and applications, since the considered formulas in our
computational problems correspond better to the model of queries formulated
within existing database systems than the so far mainly studied S-formulas.

2 Preliminaries

Throughout the paper we use the standard correspondence between predicates
and relations. We use the same symbol for a predicate and its corresponding
relation, since the meaning will always be clear from the context, and we say
that the predicate represents the relation.

An n-ary logical relation R is a Boolean relation of arity n. Each element
of a logical relation R is an n-ary Boolean vector m = (m1, . . . , mn) ∈ {0, 1}n.
Let V be a set of variables. A constraint is an application of R to an n-tuple of
variables from V , i.e., R(x1, . . . , xn). An assignment I : V → {0, 1} satisfies the
constraint R(x1, . . . , xn) if (I(x1), . . . , I(xn)) ∈ R holds.

Example 1. Equivalence is the binary relation defined by Eq = {(0, 0), (1, 1)}.
Given the ternary relations

Rnae = {0, 1}3
� {(0, 0, 0), (1, 1, 1)} and

R1/3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)},
the constraint Rnae(x, y, z) is satisfied if not all variables are assigned the same
value and the constraint R1/3(x, y, z) is satisfied if exactly one of the variables
x, y, and z is assigned to 1.

Throughout the text we refer to different types of Boolean constraint relations
following Schaefer’s terminology [20]. We say that a Boolean relation R is

– 1-valid if (1, . . . , 1) ∈ R and it is 0-valid if (0, . . . , 0) ∈ R,
– Horn (dual Horn) if R can be represented by a conjunctive normal form

(CNF) formula having at most one unnegated (negated) variable in each
clause,

– bijunctive if it can be represented by a CNF formula having at most two
variables in each clause,

– affine if it can be represented by a conjunction of linear functions, i.e., a
CNF formula with ⊕-clauses (XOR-CNF),

– complementive if for each (α1, . . . , αn) ∈ R, also (¬α1, . . . ,¬αn) ∈ R.

A set S of Boolean relations is called 0-valid (1-valid, Horn, dual Horn, affine,
bijunctive, complementive) if every relation in S is 0-valid (1-valid, Horn, dual
Horn, affine, bijunctive, complementive).

Let S be a non-empty finite set of Boolean relations. An S-formula is a
finite conjunction of S-clauses, ϕ = c1 ∧ · · · ∧ ck, where each S-clause ci is a
constraint application of some logical relation R ∈ S. An assignment I satisfies
the formula ϕ if it satisfies all clauses ci. We denote by sol(ϕ) the set of satisfying
assignments of a formula ϕ.

Complexity of Generalized Conjunctive Queries 33

Schaefer in his seminal paper [20] developed a complexity classification of
the satisfiability problem of S-formulas, denoted by sat(S). Conjunctive queries
turn out to be useful in order to obtain this result. Given a set S of Boolean
relations, we denote by coq(S) the set of all formulas of the form

F (x1, . . . , xk) = ∃y1∃y2 · · · ∃yl ϕ(x1, . . . , xk, y1, . . . , yl),

where ϕ is an S-formula. These existentially quantified formulas are called con-
junctive queries over S [13], with x = {x1, . . . , xk} being the distinguished vari-
ables. We denote by sat-coq(S) the satisfiability problem of conjunctive queries
over S.

3 Closure Properties of Constraints

There exist easy criteria to determine if a given relation is Horn, dual Horn,
bijunctive, or affine. We recall these properties here briefly for completeness.
An interested reader can find a more detailed description with proofs in the
paper [20] or in the monograph [6]. The operations of conjunction, disjunc-
tion, majority, and addition applied coordinate-wise on n-ary Boolean vectors
m,m′,m′′ ∈ {0, 1}n are defined as follows:

m ∧ m′ = (m[1] ∧ m′[1], . . . , m[n] ∧ m′[n])
m ∨ m′ = (m[1] ∨ m′[1], . . . , m[n] ∨ m′[n])

maj(m,m′,m′′) = (m ∨ m′) ∧ (m′ ∨ m′′) ∧ (m′′ ∨ m)
m ⊕ m′ = (m[1] ⊕ m′[1], . . . , m[n] ⊕ m′[n])

where m[i] is the i-th coordinate of the vector m and ⊕ is the exclusive-or oper-
ator. Given a logical relation R, the following closure properties fully determine
the structure of R.

– R is Horn if and only if m,m′ ∈ R implies m ∧ m′ ∈ R.
– R is dual Horn if and only if m,m′ ∈ R implies m ∨ m′ ∈ R.
– R is bijunctive if and only if m,m′,m′′ ∈ R implies maj(m,m′,m′′) ∈ R.
– R is affine if and only if m,m′,m′′ ∈ R implies m ⊕ m′ ⊕ m′′ ∈ R.

The notion of closure property of a Boolean relation has been defined more
generally, see for instance [9, 16]. Let f : {0, 1}k → {0, 1} be a Boolean function

Pol(R) ⊇ E2 ⇔ R is Horn Pol(R) ⊇ V2 ⇔ R is dual Horn
Pol(R) ⊇ D2 ⇔ R is bijunctive Pol(R) ⊇ L2 ⇔ R is affine
Pol(R) ⊇ N2 ⇔ R is complementive Pol(R) ⊇ N ⇔ R is compl., 0- and 1-valid
Pol(R) ⊇ I0 ⇔ R is 0-valid Pol(R) ⊇ I1 ⇔ R is 1-valid
Pol(R) ⊇ I ⇔ R is 0- and 1-valid Pol(R) ⊇ I2 ⇔ R is Boolean

Fig. 1. Polymorphism correspondences

34 M. Bauland et al.

R1 R0

BF

R2

M

M1 M0

M2

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

D

D1

D2

L

L1 L0

L2

L3

V

V1 V0

V2

E

E0E1

E2

I

I1 I0

I2

N2

N

Fig. 2. Graph of all closed classes of Boolean functions

of arity k. We say that R is closed under f , or that f is a polymorphism of R, if
for any choice of k vectors m1, . . . , mk ∈ R, not necessarily distinct, we have that

(
f
(
m1[1], . . . , mk[1]

)
, f

(
m1[2], . . . , mk[2]

)
, . . . , f

(
m1[n], . . . , mk[n]

)) ∈ R,

i.e., that the new vector constructed coordinate-wise from m1, . . . , mk by means
of f belongs to R.

Complexity of Generalized Conjunctive Queries 35

We denote by Pol(R) the set of all polymorphisms of R and by Pol(S) the
set of Boolean functions that are polymorphisms of every relation in S. It turns
out that Pol(S) is a closed set of Boolean functions for every set of relations S.
All closed classes of Boolean functions were identified by Post [19]. Post also
detected the inclusion structure of these classes, which is now referred to as
Post’s lattice, presented in Fig. 2 with the notation from [2]. We did not use the
previously accepted notation for the clones, as in [16, 18], since we think that the
new one used in [2, 3] is better suited mnemotechnically and also scientifically
than the old one. The correspondence of the most studied classes with respect
to the polymorphisms of a relation R is presented in Fig. 1. The class I2 is the
closed class of Boolean functions generated by the identity function, thus for
every Boolean relation R we have Pol(R) ⊇ I2.

An interesting Galois correspondence has been exhibited between the sets of
Boolean functions Pol(S) and the sets of Boolean relations S. A basic introduc-
tion to this correspondence can be found in [16, 17] and a comprehensive study
in [18]. This theory helps us to get elegant and short proofs for results con-
cerning the complexity of conjunctive queries. Indeed, it shows that the smaller
the set of polymorphisms is, the more expressive the corresponding conjunc-
tive queries are, which is the cornerstone for applying the algebraic method to
complexity (see [3] for a survey). The following proposition can be found, e.g.,
in [16, 18].

Proposition 2. Let S1 and S2 be two finite sets of Boolean relations. If the
relation Pol(S2) ⊆ Pol(S1) holds, then coq(S1 ∪ {Eq}) ⊆ coq(S2 ∪ {Eq}).

4 Complexity Results

The only difference between conjunctive queries and S-formulas is that the for-
mer contain some existentially quantified variables, thus distinguishing the re-
maining ones. While this certainly does not lead to a different complexity of the
satisfiability problem, this is not any more the case for other computational goals,
such as counting the number of satisfying assignments. The algebraic correspon-
dence described above is useful to determine the complexity of the satisfiability
problem, since it proves that the complexity of sat-coq(S) strongly depends
on the set Pol(S), as shown in Proposition 2. It provides a polynomial-time
reduction from the problem sat-coq(S1) to sat-coq(S2 ∪ {Eq}) by locally re-
placing each S1-clause by its equivalent constraint in coq(S2∪{Eq}). Moreover,
the equivalence relation is actually superfluous. Indeed, from a set of equivalent
variables we choose one variable, say z. Then we can delete the corresponding
equivalence constraints and substitute the equivalent variables by z in the rest
of the formula. Note that we must choose z to be a distinguished variable if
an existentially quantified variable occurs in the equivalence set. This proves
that sat-coq(S1) is polynomial-time reducible to sat-coq(S2). We will show
in the sequel that the algebraic approach is helpful to study the complexity of
the counting and the audit problems for conjunctive queries.

36 M. Bauland et al.

4.1 Introduction to Counting Problems and Their Reducibilities

A counting problem is typically presented using a suitable witness function which
for every input x, returns a set of witnesses for x. Formally, a witness function is
a function w : Σ∗ −→ P<ω(Γ ∗), where Σ and Γ are two alphabets, and P<ω(Γ ∗)
is the collection of all finite subsets of Γ ∗. Every such witness function gives rise
to the following counting problem: given a string x ∈ Σ∗, find the cardinality
|w(x)| of the witness set w(x).

Let Σ, Γ be two alphabets and let R ⊆ Σ∗×Γ ∗ be a binary relation between
strings such that, for each x ∈ Σ∗, the set R(x) = {y ∈ Γ ∗ | R(x, y)} is finite.
We write #R to denote the following counting problem: given a string x ∈ Σ∗,
find the cardinality |R(x)| of the witness set R(x) associated with x. It is easy
to see that every counting problem is of the form #R for some R.

Valiant [24, 25] was the first to investigate the computational complexity of
counting problems. To this effect, he introduced the class #P of counting func-
tions that count the number of accepting paths of nondeterministic polynomial-
time Turing machines. The prototypical problem in #P is #sat, which is the
counting version of Boolean satisfiability. Valiant [24] showed that #sat is #P-
complete via parsimonious reductions, that is, every counting problem in #P can
be reduced to #sat via a polynomial-time reduction that preserves the cardinal-
ities of the witness sets. Creignou and Hermann [5] proved that the complexity
of the counting problem #sat(S) of S-formulas is dichotomic: #sat(S) is in
FP if S is a set of affine relations, otherwise the problem is #P-complete under
Turing reductions.

Hemaspaandra and Vollmer [8] have introduced higher complexity counting
classes using a predicate-based framework that focuses on the complexity of
membership in the witness sets. Specifically, if C is a complexity class of decision
problems, then #·C is the class of all counting problems whose witness function w
satisfies the following conditions:

1. There is a polynomial p(n) such that for every x and every y ∈ w(x), we
have that |y| ≤ p(|x|), where |x| is the length of x and |y| is the length of y.

2. The witness recognition problem “given x and y, is y ∈ w(x)?” is in C.

In particular, #·NP is the class of counting problems associated with decision
problems, for which the witness size is polynomially bounded and the witness
recognition problem is in NP. Following Toda [22], the inclusions #·ΣkP ⊆
#·ΠkP and #·ΠkP ⊆ #·Σk+1P among counting classes hold for each k. In
particular, we have the inclusion #P ⊆ #·NP.

Following Valiant [24], we say that a reduction is parsimonious if it is a
polynomial-time many-one reduction preserving the number of solutions. How-
ever, this reduction does not allow to prove completeness of many known #P-
complete problems. Valiant [25] used counting reductions in his #P-completeness
proofs, but the aforementioned counting classes are not closed under this reduc-
tion, following Toda and Watanabe [23]. Their result implies that every problem
hard for #P under Turing reduction is also hard for #·NP under the same re-
duction. However, since the closure of #P under Turing reductions is the whole

Complexity of Generalized Conjunctive Queries 37

counting counterpart of the polynomial hierarchy, this does not say anything
about the actual complexity of the problem in terms of counting classes. There-
fore we have to aim at a result involving a reducibility that preserves (or almost
preserves) the relevant classes. More useful for counting problems are subtractive
reductions [7]. They allow us to obtain many completeness results and at the
same time they leave the #·ΠkP classes closed. Nevertheless, these reductions do
not seem to be well-suited for our purposes. Indeed, we need to express the oper-
ation of halving the witness set, which is quite delicate if we require the closure of
the counting classes under these reductions. For this purpose, we define the com-
plementive reductions which satisfy the aforementioned requirements, provided
that every witness set of the target counting problem is complementive.

A finite alphabet Γ is called even if |Γ | = 2k for some k ∈ N. A permutation π
on an even alphabet Γ is called bipartite if there exists a partition of Γ into two
disjoint sets Γ0 and Γ1 such that the following conditions hold:

– Γ = Γ0 ∪ Γ1, Γ0 ∩ Γ1 = ∅, and |Γ0| = |Γ1|
– for all x ∈ Γi we have π(x) ∈ Γ1−i for each i = 0, 1.

We homomorphically enlarge every permutation π on Γ to the strings in Γ ∗ by
means of the identity π(x1 · · ·xk) = π(x1) · · ·π(xk) for each string x1 · · ·xk ∈ Γ ∗.

A set of strings E ⊆ Γ ∗ over an even alphabet Γ is called complementive
if there exists a bipartite permutation πE on Γ such that x ∈ E holds if and
only if πE(x) ∈ E. If we know that a set of strings E is complementive, we
always assume that we are effectively given the permutation πE . Given Σ, Γ
two alphabets with Γ being even, a binary relation B between strings from Σ
and Γ is said to be complementive if the sets B(y) for each string y ∈ Σ∗ are
complementive with respect to the same bipartite permutation πB .

Definition 3. Let Σ, Γ be two alphabets, Γ being even, and let #A and #B be
two counting problems determined by the binary relations A and B between the
strings from Σ and Γ , where B is complementive.

– We say that the counting problem #A reduces to the counting problem #B
via a strong complementive reduction, if there exists two polynomial-
time computable functions f and g such that for every string x ∈ Σ∗:
• B(g(x)) ⊆ B(f(x))
• 2 · |A(x)| = |B(f(x))| − |B(g(x))|

– A complementive reduction #A ≤cr #B from a counting problem #A
to #B is a transitive closure of strong complementive and parsimonious
reductions.

It is clear that complementive reductions present a special case of counting re-
ductions, the most frequently used reductions among counting problems.

Theorem 4. #P and all higher complexity classes #·ΠkP, k ≥ 1, are closed
under complementive reductions.

38 M. Bauland et al.

Proof. Let k be a fixed nonnegative integer. We prove that the class #·ΠkP is
closed under strong complementive reductions. The result will follow by induc-
tion on the number of strong complementive and parsimonious reductions used
to compose the final complementive reduction. Recall that Toda [22] showed
that #·ΠkP = #·PΣkP.

Let #A and #B be two counting problems such that #B ∈ #·ΠkP, B is
complementive, and #A reduces to #B via a strong complementive reduction.
We will show that #A belongs to #·ΠkP by constructing a predicate A′ in PΣkP

such that for each string x we have 2 · |A′(x)| = |B(f(x))|−|B(g(x))| = 2 · |A(x)|,
where f and g are the required polynomial-time computable functions.

Let ∗ be a delimiter symbol not in the alphabets Σ and Γ . Let Γ0 and Γ1 be
the partition sets defined by the bipartite permutation πB on Γ . The predicate A′

consists of all pairs (x, y′) of strings x and y′, such that y′ is of the form

f(x) ∗ g(x) ∗ y with (f(x), y) ∈ B, (g(x), y) �∈ B, and last(y) ∈ Γ0,

where last(y) denotes the last symbol of the string y. Thus, a pair (x, y′) belongs
to A′ if and only if (x, y′) is accepted by the following algorithm:

1. extract f(x), g(x), and y from y′;
2. check that last(y) belongs to Γ0;
3. check that (f(x), y) belongs to B;
4. check that (g(x), y) does not belong to B.

Steps 1 and 2 take polynomial time. The test in Step 3 is in ΠkP, therefore also
in PΣkP. The test in Step 4 is in ΣkP, hence it can be done in PΣkP. Therefore
the predicate A′ is in PΣkP. It is clear from the construction that the identity
2 · |A′(x)| = |B(f(x))| − |B(g(x))| holds, since B is complementive, and this
implies |A′(x)| = |A(x)|. It follows that the counting problem #A is in the
counting class #·PΣkP = #·ΠkP. If we take k = 0 in the proof, we get also the
closure for the class #P. ��

In view of the preceding Theorem 4, it is quite natural to ask whether the
classes #·ΣkP are also closed under complementive reductions. The following
proposition provides the evidence that no class #·ΣkP is closed under comple-
mentive reductions.

Proposition 5. For every k ∈ N, the counting class #·ΣkP is not closed under
complementive reductions, unless #·ΣkP = #·ΠkP.

Proof. Following Wrathal [27], we must perform a case analysis, whether k is
even or odd, To obtain completeness for levels of the polynomial hierarchy we
have to use CNF or DNF, according to whether we are in an odd or even level.
In the even case, take a Π2iP-formula ϕ(x1, . . . , xn) and construct the formulas

τ(x0, x1, . . . , xn) = x0 ∨ x1 ∨ · · · ∨ xn ∨ ¬x0 ∨ ¬x1 ∨ · · · ∨ ¬xn

ψ(x0, x1, . . . , xn) =
(
x0 ∧ ¬ϕ(x1, . . . , xn)

) ∨ (¬x0 ∧ ¬ϕ(¬x1, . . . ,¬xn)
)

Complexity of Generalized Conjunctive Queries 39

where ¬ϕ is formed from ϕ by de Morgan’s laws. For the odd case, take a
Π2i+1P-formula ϕ, maintain the same formula τ , and construct the formula

ψ(x0, x1, . . . , xn) =
(
x0 ∨ ¬ϕ(x1, . . . , xn)

) ∧ (¬x0 ∨ ¬ϕ(¬x1, . . . ,¬xn)
)

Both τ and ψ are complementive formulas, hence sol(τ) and sol(ψ) are comple-
mentive sets of strings with Γ0 = {0} and Γ1 = {1}.

The non-quantified part of the Π2iP formula ϕ is in CNF, therefore the for-
mulas ¬ϕ(x1, . . . , xn) and ¬ϕ(¬x1, . . . ,¬xn) are in DNF. Using the distributive
law, both formulas x0∧¬ϕ(x1, . . . , xn) and ¬x0∧¬ϕ(¬x1, . . . ,¬xn) can be trans-
formed into DNF in polynomial time and linear space. Hence, the formula ψ is
equivalent to a DNF-formula, which can be obtained in polynomial time and lin-
ear space. Similarly for the odd case, the non-quantified part of the Π2i+1P for-
mula ϕ is in DNF, therefore the formulas ¬ϕ(x1, . . . , xn) and ¬ϕ(¬x1, . . . ,¬xn)
are in CNF. Using the distributive law, we can show that the final formula ψ
can be transformed in polynomial time and linear space into an equivalent CNF
formula.

In both cases, it is clear that sol(ψ) ⊆ sol(τ), |sol(τ)| = 2 · 2n, and |sol(ψ)| =
2 · |sol(¬ϕ)| = 2 · (2n − |sol(ϕ)|). Thus we conclude that 2 · |sol(ϕ)| = |sol(τ)| −
|sol(ψ)|. Hence, we have a complementive reduction from a #·ΠkP-complete
problem to a counting problem in #·ΣkP. ��

4.2 The Counting Problem of Conjunctive Queries

The counting problem associated with the satisfiability of generalized conjunctive
queries is defined as follows.

Problem: #sat-coq(S)
Input: A conjunctive query F (x) = ∃y ϕ(x,y) from coq(S).
Output: Number of different satisfying assignments to the distinguished vari-
ables x.

We used the notation #sat-coq to point out the importance of conjunctive
queries, contrary to the cryptic notation #Σ1sat used on a more theoretical
level in [7]. Our ultimate goal is to determine the complexity of #sat-coq(S)
for all possible sets S. Observe first that #sat-coq(S) is in #·NP for every set
of Boolean relations S. A central result for our development is the following easy
consequence of Proposition 2.

Proposition 6. Let S1 and S2 be two finite sets of Boolean relations. If the
inclusion Pol(S2) ⊆ Pol(S1) holds, then there exists a parsimonious reduction
from #sat-coq(S1) to #sat-coq(S2).

This result, together with Post’s lattice, allows us to prove the following tri-
chotomy complexity classification. We need two propositions whose predecessors
can already be found in a slightly different form in [4] and which provide two
basic #·NP-complete problems.

40 M. Bauland et al.

Proposition 7. #sat(R1/3) is #P-complete and #sat-coq(R1/3) is #·NP-
complete, both via parsimonious reductions.

Proof. From Valiant’s original results [24] follows that #sat is the generic #P-
complete problem via parsimonious reductions. From the same reference and also
from [7] it follows that #sat-coq is the generic #·NP-complete counting prob-
lem under parsimonious reductions (see also [12]). It is clear that #sat(R1/3) is
in #P and #sat-coq(R1/3) is in #·NP.

The standard reduction from sat to 3sat is also a parsimonious reduc-
tion from #sat to #3sat, and it gives rise to a parsimonious reduction from
#sat-coq to#3sat-coq. Each clause c = l1 ∨ l2 ∨ l3 of a 3sat formula defines
one of the following four relations.

OR0(x1, x2, x3) = sol(x1 ∨ x2 ∨ x3) = {0, 1}3
� {(0, 0, 0)}

OR1(x1, x2, x3) = sol(¬x1 ∨ x2 ∨ x3) = {0, 1}3
� {(1, 0, 0)}

OR2(x1, x2, x3) = sol(¬x1 ∨ ¬x2 ∨ x3) = {0, 1}3
� {(1, 1, 0)}

OR3(x1, x2, x3) = sol(¬x1 ∨ ¬x2 ∨ ¬x3) = {0, 1}3
� {(1, 1, 1)}

We will show that every relation ORi can be represented as a conjunction of
relations R1/3. Note first that the relation Z(v1, v2) = R1/3(v1, v1, v2) forces the
variables v1 to be assigned the value 0. Therefore the relation N(x, y, v1, v2) =
R1/3(x, y, v1) ∧ Z(v1, v2) forces y to be the negation of x. For each c = ORi we
construct now the corresponding formula r(ORi) by means of R1/3. We obtain
the following constructions.

r(OR0)(x1, x2, x3) = R1/3(x1, z1, z2) ∧ R1/3(y2, z1, z3) ∧ R1/3(y3, z2, z4) ∧
R1/3(z2, z3, z5) ∧ N(x2, y2, v1, v2) ∧ N(x3, y3, v1, v2)

r(OR1)(x1, x2, x3) = r(OR0)(u1, x2, x3) ∧ N(x1, u1, v1, v2)
r(OR2)(x1, x2, x3) = r(OR1)(x1, u2, x3) ∧ N(x2, u2, v1, v2)
r(OR3)(x1, x2, x3) = r(OR2)(x1, x2, u3) ∧ N(x3, u3, v1, v2)

where u1, . . . , u3, v1, v2, y2, y3, z1, . . . , z5 are new variables. In the case of
conjunctive queries, these new variables will be existentially quantified. The
resulting formula is the conjunction of these partial formulas r(c) for all clauses c.
This proves the required parsimonious reductions from #sat to #sat(R1/3) and
from #sat-coq to #sat-coq(R1/3) ��

Remark 8. There exists an alternative and shorter proof of Proposition 7 making
use of algebraic arguments. We mention this proof here, since one of our goals
is to promote the algebraic approach. The drawback of the proof is that it
does not provide an explicit parsimonious reduction and that it is valid only for
#sat-coq.

Proof. Since Pol(R1/3) = I2 and I2 ⊆ S for every clone S, we conclude by
Proposition 6 that #sat-coq(S) reduces to #sat-coq(R1/3) via parsimonious
reductions. ��

Complexity of Generalized Conjunctive Queries 41

Proposition 9. #sat(Rnae) is #P-complete and #sat-coq(Rnae) is #·NP-
complete, both via complementive reductions.

Proof. It is clear that #sat(Rnae) is in #P and #sat-coq(Rnae) is in #·NP,
respectively. To prove completeness, we will reduce #sat(R1/3) to #sat(Rnae).
Observe that the algebraic approach is of no use here. Indeed, since Rnae is com-
plementive, whereas R1/3 is not, we have Pol(R1/3) ⊂ Pol(Rnae), which does not
provide the desired reduction. Therefore we have to construct an explicit reduc-
tion. For each clause c = R1/3(x1, x2, x3) of a {R1/3}-formula ϕ, we construct
the formula

q(c) = Rnae(x1, x2, z) ∧ Rnae(x2, x3, z) ∧ Rnae(x3, x1, z) ∧ Rnae(x1, x2, x3)

where z is a new variable. The resulting formula q(ϕ) is the conjunction of
these partial formulas q(c) for all clauses c. Observe that if an assignment I
satisfies ϕ, then the dual assignment Ī does not. Observe also that the set of sat-
isfying assignments for the formula q(c) is complementive, therefore the resulting
formula q(ϕ) will have twice as many satisfying assignments as the original for-
mula ϕ. This proves the required complementive reduction from #sat(R1/3) to
#sat(Rnae).

In case of conjunctive queries, z will be an existentially quantified variable. In
order to be allowed to apply the same argument as above, we have to make sure
that if an assignment I on the distinguished variables x satisfies the conjunctive
query F (x) = ∃yϕ(x,y), then the dual assignment Ī does not. Since it is not
necessarily the case, we have to introduce two new variables u and v, and to
consider first a new conjunctive query F ′(x, u, v) = ∃yϕ(x,y) ∧ R1/3(u, u, v).
The number of satisfying assignments for F ′ is equal to the number of satisfying
assignments for F . Moreover, F ′ has the desired property mentioned above.
Therefore the previous construction, namely q(F ′), provides a complementive
reduction from #sat-coq(R1/3) to #sat-coq(Rnae). Using Proposition 7, this
proves the result. ��

Theorem 10. Let S be a non-empty finite set of Boolean relations.

– If S is affine, then #sat-coq(S) is in FP.
– Else if S is bijunctive, or Horn, or dual Horn, then #sat-coq(S) is #P-

complete under counting reductions.
– Otherwise #sat-coq(S) is #·NP-complete under complementive reductions.

Proof. If S is affine, then the Gaussian elimination algorithm used in [5] for
#sat(S) can also be used to construct a corresponding polynomial-time algo-
rithm for #sat-coq(S).

If S is Horn, dual Horn, or bijunctive, then sat(S) is in P following [20] and
therefore #sat-coq(S) is in #P. Moreover, we know from [5] that in this case
#sat(S) is #P-hard. Hence, the trivial (parsimonious) reduction from #sat(S)
to #sat-coq(S) finally shows that #sat-coq(S) is #P-complete.

42 M. Bauland et al.

It remains to treat the case where Pol(S) = N. In fact, observe that all
the other nonconsidered classes N2, I, I0, I1 or I2 are subsets of N. Therefore
according to Proposition 6 and Post’s lattice, it suffices to exhibit a set S of
Boolean relations, such that N ⊆ Pol(S) but #sat-coq(S) is #·NP-complete.

According to Proposition 9 we know that #sat-coq(Rnae) is #·NP-complete
via complementive reductions. Construct now the relations

R′′(u, v, x, y, z) = (¬u ∧ ¬v ∧ ¬x ∧ ¬y ∧ ¬z) ∨ (u ∧ v ∧ x ∧ y ∧ z) and
R′(u, v, x, y, z) = R′′(u, v, x, y, z) ∨

(u ∧ ¬v ∧ Rnae(x, y, z)) ∨ (¬u ∧ v ∧ Rnae(x, y, z)).

Consider now the formula F (x) = ∃y
∧m

i=1 Rnae(xi
1, x

i
2, x

i
3) being an instance of

#sat-coq(Rnae), where xi
1, xi

2, xi
3 are variables from the vector x. Build the

formulas

F ′(x, u, v) = ∃y

m∧
i=1

R′(u, v, xi
1, x

i
2, x

i
3) and

F ′′(x, u, v) = ∃y
m∧

i=1

R′′(u, v, xi
1, x

i
2, x

i
3)

from the relations R′ and R′′. The satisfying assignments of the query F ′ in-
clude those of F ′′. If q is the number of satisfying assignments of F then those
of F ′ is 2q + 2 and those of F ′′ is 2. Hence, we have the equality 2 |sol(F)| =
|sol(F ′)|−|sol(F ′′)|, implying a complementive reduction from the counting prob-
lem #sat-coq(Rnae) to #sat-coq({R′, R′′}), proving that #sat-coq({R′, R′′})
is #·NP-complete. Moreover, both R′ and R′′ are 0-valid, 1-valid, and comple-
mentive, since Rnae is complementive. Hence Pol({R′, R′′}) contains N. ��

4.3 The Audit Problem

Another problem of interest, defined by Kleinberg et al. [11] and studied from
a complexity standpoint by Jonsson and Krokhin [10, 14], is the audit problem.
This problem is related to databases that support statistical queries. It can be
generalized to conjunctive queries in the following way.

Problem: audit-coq(S)
Input: A conjunctive query F (x) = ∃y ϕ(x,y) from coq(S).
Question: Is F unsatisfiable or is there some variable among x that is frozen,
i.e., that takes the same value in all satisfying assignments?

Note that our audit-coq(S) problem is different from the 1-audit problem
studied in [10], since we do not include the variable candidate to be frozen as
part of the input. Nevertheless, our result can be shown to follow from those
in [10]. We want to insist here on the clarity and simplicity of our proof.

It is easy to see that this problem belongs to the class coNP. We prove that the
algebraic approach applies to study the complexity of this problem. The following
result follows again immediately from Proposition 2 (see also Proposition 6).

Complexity of Generalized Conjunctive Queries 43

Proposition 11. Let S1 and S2 be two finite sets of Boolean relations. If the in-
clusion Pol(S2) ⊆ Pol(S1) holds, then audit-coq(S1) is polynomial-time many-
one reducible to audit-coq(S2).

Once more, this result together with Post’s lattice allows us to get a complete
complexity classification.

Theorem 12. Let S be a non-empty finite set of Boolean relations.

– If S is both 0- and 1-valid, or affine, or Horn, or dual Horn or bijunctive,
then audit-coq(S) is in P.

– Otherwise audit-coq(S) is coNP-complete.

Proof. If S is both 0- and 1-valid, i.e., I ⊆ Pol(S), then the problem is trivial.
If S is affine, Horn, dual Horn, or bijunctive, then observe that given an S-

formula and a variable x, we can check in polynomial time whether both F ∧ x
and F ∧ ¬x are satisfiable. Therefore, in this case audit-coq(S) is in P.

If S is complementive, but neither 0-valid, nor included in the four previous
cases, i.e., Pol(S) = N2, then no variable can be frozen. Therefore in this case the
problem audit-coq(S) is equivalent to the coNP-complete problem unsat(S),
asking whether an S-formula is unsatisfiable.

The remaining cases are those for which Pol(S) = I0, I1 or I2. According
to Proposition 6 and Post’s lattice, in order to conclude the proof it suffices to
exhibit a Boolean relation R0 (resp. R1) such that I0 ⊆ Pol(R0) (resp. I1 ⊆
Pol(R1)) and audit-coq(R0) (resp. audit-coq(R1)) is coNP-complete. Recall
first that sat(R1/3) is NP-complete, so unsat(R1/3) is coNP-complete. Consider
an instance of unsat(R1/3) defined by the formula F (x) =

∧m

i=1 R1/3(xi
1, x

i
2, x

i
3).

Construct the 0-valid relation

R0(v, x, y, z) = (¬v ∧ x ∧ y ∧ z) ∨ (¬v ∧ ¬x ∧ ¬y ∧ ¬z) ∨ (v ∧ R1/3(x, y, z))

and build the formula F ′(x, v) =
∧m

i=1 R0(v, xi
1, x

i
2, x

i
3). Clearly, the inclusion

I0 ⊆ Pol({R0}) holds since the relation R0 is 0-valid.
Observe that F ′ is always satisfiable, that no variable among the x is frozen,

and that F is unsatisfiable if and only if the variable v is frozen to 0 in F ′. So, we
have a reduction from unsat(R1/3) to audit-coq(R0), therefore the problem
audit-coq(R0) is coNP-complete. The proof is similar for Pol(S) = I1, with a
1-valid relation R1 similar to R0, just flip the polarity of the variable v. ��

5 Conclusion

While the complexity of conjunctive-query evaluation and constraint satisfac-
tion is the same, we determined that this is not any more the case for other
computational goals. We have shown that the counting problem for conjunctive
queries has a different structure than that for conjunctive formulas. The lat-
ter displays a dichotomy behavior between the affine formulas in FP and the

44 M. Bauland et al.

#P-complete other cases, as it was shown in [5], whereas the former presents
a trichotomy structure between the affine cases in FP, the Horn, dual Horn,
and bijunctive #P-complete cases, and finally the general #·NP-complete case.
This shows that, under the more fine grained analysis presented by counting, the
conjunctive queries present three different levels of (in)tractability. As a byprod-
uct, we developed a new kind of reductions among counting problems, called
the complementive reductions, that allow to use halving functions within the
counting classes under certain circumstances , i.e., when every instance of the
target set is complementive. Since there are many counting problems presenting
this structure, we think that the complementive reductions will have a broader
impact.

We have also shown that the corresponding audit problem for conjunctive
queries displays a dichotomic behavior, where the cases of Horn, dual Horn,
bijunctive, or both 0 and 1-valid constraints are in P, whereas the other cases
are coNP-complete.

Acknowledgment. We thank Elmar Böhler, Matthias Galota, and Steffen Re-
ith for helpful discussions.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundation of databases. Addison-Wesley,
1995.

2. E. Böhler, N. Creignou, S. Reith, and H. Vollmer. Playing with Boolean blocks,
part I: Post’s lattice with applications to complexity theory. SIGACT News, Com-
plexity Theory Column 42, 34(4):38–52, 2003.

3. E. Böhler, N. Creignou, S. Reith, and H. Vollmer. Playing with Boolean blocks,
part II: Constraint satisfaction problems. SIGACT News, Complexity Theory Col-
umn 43, 35(1):22–35, 2004.

4. N. Creignou and M. Hermann. On #P-completeness of some
counting problems. Research report 2144, Institut de Recherche
en Informatique et en Automatique, December 1993. URL =
http://www.lix.polytechnique.fr/∼hermann/publications/satcount.ps.gz.

5. N. Creignou and M. Hermann. Complexity of generalized satisfiability counting
problems. Information and Computation, 125(1):1–12, 1996.

6. N. Creignou, S. Khanna, and M. Sudan. Complexity Classifications of Boolean Con-
straint Satisfaction Problems, volume 7 of SIAM Monographs on Discrete Mathe-
matics and Applications. SIAM, Philadelphia (PA), 2001.

7. A. Durand, M. Hermann, and P. G. Kolaitis. Subtractive reductions and complete
problems for counting complexity classes. In M. Nielsen and B. Rovan, editors,
Proceedings 25th International Symposium on Mathematical Foundations of Com-
puter Science (MFCS 2000), Bratislava (Slovakia), volume 1893 of Lecture Notes
in Computer Science, pages 323–332. Springer-Verlag, August 2000. To appear in
Theoretical Computer Science.

8. L. A. Hemaspaandra and H. Vollmer. The satanic notations: Counting classes
beyond #P and other definitional adventures. SIGACT News, Complexity Theory
Column 8, 26(1):2–13, March 1995.

Complexity of Generalized Conjunctive Queries 45

9. P. Jeavons, D. Cohen, and M. Gyssens. Closure properties of constraints. Journal
of the Association for Computing Machinery, 44(4):527–548, 1997.

10. P. Jonsson and A. Krokhin. Computational complexity of auditing finite attributes
in statistical databases. In Proceedings Structural Theory of Automata, Semigroups
and Universal Algebra, Montreal (Canada), July 2003.

11. J. Kleinberg, C. Papadimitriou, and P. Raghavan. Auditing Boolean attributes.
Journal of Computer and System Science, 66(1):244–253, 2003.

12. J. Köbler, U. Schöning, and J. Torán. On counting and approximation. Acta
Informatica, 26(4):363–379, 1989.

13. P. G. Kolaitis and M. Y. Vardi. Conjunctive-query containment and constraint
satisfaction. Journal of Computer and System Science, 61(2):302–332, 2000.

14. A. Krokhin and P. Jonsson. Recognizing frozen variables in constraint satisfaction
problems. Technical Report TR03-062, Electronic Colloquium on Computational
Complexity, 2003.

15. M. Lenzerini. Data integration: a theoretical perspective. In Proceeding 21st Sym-
posium on Principles of Database Systems (PODS 2002), Madison (Wisconsin,
USA), pages 233–246. SIGACT-SIGMOD-SIGART, ACM Press, June 2002.

16. N. Pippenger. Theories of Computability. Cambridge University Press, Cambridge,
1997.

17. R. Pöschel. Galois connection for operations and relations. Technical Report
MATH-AL-8-2001, Technische Universität Dresden, 2001.

18. R. Pöschel and L. A. Kalužnin. Funktionen- und Relationenalgebren. Deutscher
Verlag der Wissenschaften, Berlin, 1979.

19. E. L. Post. The two-valued iterative systems of mathematical logic. Annals of
Mathematical Studies, 5:1–122, 1941.

20. T. J. Schaefer. The complexity of satisfiability problems. In Proceedings 10th
Symposium on Theory of Computing (STOC’78), San Diego (California, USA),
pages 216–226, 1978.

21. C. Silberstein, S. Brin, R. Motwani, and J. D. Ullman. Scalable techniques for
mining causal structures. Data Mining and Knowledge Discovery, 4(2-3):163–192,
2000.

22. S. Toda. Computational complexity of counting complexity classes. PhD thesis,
Tokyo Institute of Technology, Department of Computer Science, Tokyo, Japan,
1991.

23. S. Toda and O. Watanabe. Polynomial-time 1-Turing reductions from #PH to
#P. Theoretical Computer Science, 100(1):205–221, 1992.

24. L. G. Valiant. The complexity of computing the permanent. Theoretical Computer
Science, 8(2):189–201, 1979.

25. L. G. Valiant. The complexity of enumeration and reliability problems. SIAM
Journal on Computing, 8(3):410–421, 1979.

26. J. Widom. Research problems in data warehousing. In Proceedings 4th Interna-
tional Conference on Information and Knowledge Management (CIKM’95), Balti-
more (Maryland, USA), pages 25–30. Association for Computing Machinery, 1995.

27. C. Wrathall. Complete sets and the polynomial-time hierarchy. Theoretical Com-
puter Science, 3(1):23–33, 1976.

28. Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View maintenance in a
warehousing environment. In M. J. Carey and D. A. Schneider, editors, Proceedings
SIGMOD International Conference on Management of Data, San Jose (California,
USA), pages 316–327. ACM Press, May 1995.

Incremental Compilation-to-SAT Procedures

Marco Benedetti§ and Sara Bernardini

Istituto per la Ricerca Scientifica e Tecnologica (IRST),
Via Sommarive 18, 38055 Povo, Trento, Italy
{benedetti, bernardini}@itc.it

Abstract. We focus on incremental compilation-to-SAT procedures (iCTS), a
promising way to push standard SAT-based approaches beyond their limits. We
propose the first comprehensive framework that encompasses all the aspects of an
incremental decision procedure, from the encoding to the incremental solver. We
apply our guidelines to a real-world CTS approach (Bounded Model Checking)
and show how to modify both the generation mechanism of a real BMC tool
(NuSMV) and the solving engine of a public-domain SAT solver (SIM). Related
approaches and experimental results are discussed as well.

1 Introduction

Many decision and search problems may be successfully tackled by generating and
solving a chain of increasingly complex SAT instances. A compilation-to-SAT (CTS)
algorithm specifies the mapping between the original problem and the sequence of sat-
isfiability instances.

Well known examples of CTS approaches exist: computer-aided design of integrated
circuits [18, 16], planning [15], model checking for dynamic systems [6], operations
research, scheduling [8], and cryptography [19], just to name a few. These techniques
share an underlying working schema. They first establish an ordering among classes
of potential solutions. Small and short solutions come first. More and more complex
candidates follow. Each class is then mapped onto a SAT instance solved by a general
purpose solver [20, 13].

One remarkable strength of this family of techniques is modularity: state-of-the-art
SAT solvers can be picked off-the-shelf and applied to the solution step. Thus, every
advance from the SAT community is possibly transferred to the above procedures with
a minimum effort. Also, advancements proceed the other way around: a great part of the
renewed interest in propositional decision procedures (and of the boost of performances
of SAT solvers during the last ten years) is due to the relevance and generality of the
above family of techniques.

As usual, modularity shows an unpleasant side: solvers have to be treated as almost
completely black boxes. This choice limits the amount of information exchanged be-
tween the generating and the solving side during one single round of the procedure,
besides preventing information exchange among subsequent rounds. The solver thus

§ This work is funded by PAT (Provincia Autonoma di Trento, Italy) under grant n. 3248/2003.

H.H. Hoos and D.G. Mitchell (Eds.): SAT 2004, LNCS 3542, pp. 46–58, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Incremental Compilation-to-SAT Procedures 47

misses the key point that it is presented with a chain of strictly related instances. A fur-
ther underestimated duty one pays for easily plug standard solvers in, is the flattening
of highly structured instances down to a conjunctive normal form (the standard input
format for general SAT solvers).

Some approaches have recently emerged to exploit the crucial observation that nei-
ther a given instance in a chain is unrelated to the previous ones, nor the solver is ap-
proaching a completely different search problem every time it is invocated [16, 24, 23,
5]. These approaches aim both to increase the efficiency of the overall decision proce-
dure and to allow kinds of reasoning that don’t fit well within the usual CTS framework.

In this paper, we present the first comprehensive framework that encompasses all
the aspects of an incremental decision procedure based on propositional satisfiabil-
ity. After a few notation and preliminaries (Section 2 and 3), we characterize a large
family of CTS approaches that are eligible for incrementalisation, and stress the of-
ten overlooked issue of turning a standard encoding machinery into an incremental one
(Section 4). Also, issues arising on the solving side are addressed, and two detailed ex-
amples are developed during the presentation. In Section 5 we apply our guidelines to
the incrementalisation of a specific CTS approach (Bounded Model Checking, or BMC
for short [6]) and show how to modify both the generation mechanism employed by a
real BMC tool (NuSMV [7]) and a public-domain SAT solver (SIM [13]).

We carefully review the related literature in Section 6, and then present our conclu-
sions and future work in Section 7. A more thorough presentation of our technique and
the proofs of all the results are given in [2].

2 Notation

Given a conjunctive normal form (CNF) formula f and a set of literals ∆ on the vari-
ables var(f) of f , we denote by f ∗ ∆ the propositional formula obtained from f
after the assignment ∆ is made, i.e. the clause set obtained after unit subsumption
ad unit resolution have been performed against each literal in ∆ considered as a unit
clause. Given two propositional formulas f1 and f2 and a set of propositional vari-
ables V ⊆ var(f1) ∩ var(f2), we write f1 ≡V f2 when the set of models of f1

projected onto V is equal to the set of models of f2 projected onto V . We graphically
represent formulas by means of direct acyclic graphs that avoid sub-formula replica-
tions (known as RBC and extensions thereof, see [1]). Yet, propositional solvers often
require a conjunctive normal form to work. We denote by cnf(f) the set of clauses
obtained from f according to the guidelines described in [10, 21]. For this set, it holds
that cnf(f) ≡var(f) f . The cnf function is omitted whenever the context suffices to
understand that a CNF formula is required.

3 CTS Approaches

Most CTS frameworks tacitly exploit the deduction theorem over a language L (more
expressive than propositional logic), by stating that T |= P ⇔ �|= T ∧ ¬P , where T is
a consistent theory that models a relevant phenomenon or system or protocol, while P

48 M. Benedetti and S. Bernardini

expresses an (un)desired property over that phenomenon/system/protocol. The problem
is to decide the consistency of W = T ∧ ¬P .

A mechanism purposely designed to get rid of the excess of expressive power of L
w.r.t. pure propositional logic (Prop) stays at the very heart of every CTS framework.
This mechanism allows resorting to Prop by considering chains of bounded versions of
the original problem obtained through a function �.�. : L × N →Prop - called encoding
function - that maps a formula W ∈ L and a bound k onto a propositional formula �W �k

on variables Vk = var(�W �k).
From the point of view of a state-space search, things work as follows: (1) The space

of possible solutions to the problem is partitioned according to a bound k identifying
finite classes Ck of possible models for W (the larger the bound k the more complex the
solutions in Ck); (2) an encoding �W �k - satisfiable iff a solution for W happens to lay
in Ck - is computed together with a decoding function mapping propositional models of
satisfiable encodings onto solutions to W in Ck; (3) �W �k is solved; should it come out
to be satisfiable, the decoding function would play its role in reconstructing a solution
to W . Step 2 is selected for another round with a higher bound when no solution exists
in Ck. The loop is exited when either some resource limit is exhausted or it is possible
to prove that none of the remaining Ci, i > k contains solutions. So, the problem of
finding out whether or not W has models is answered by deciding a sequence of SAT
problems on {�W �i, i = 0, 1, 2, ...}.

The peculiar structure of W - due to application of the deduction theorem within
L - is maintained after the propositional translation, provided the encoding function is
commutative w.r.t. negation and distributive w.r.t. conjunction. So, we manage a struc-
tured sequence �W �k = �T ∧ ¬P �k = �T �k ∧ ¬�P �k, where �P �k is usually by far
smaller than �T �k and nonetheless responsible for potential inconsistencies in �W �k.

As an example of a CTS approach, let us consider SAT-based classical planning
[15]. It works by encoding into �W �k two components: (1) an instance �T �k of the
theory describing the planning domain in terms of the interconnected preconditions and
effects of at most k layers of actions (together with other constraints such as mutual
exclusion conditions between pairs of actions in the same layer), and (2) the condition
or goal �P �k to be reached after the last layer of actions has been executed.

Concepts out of reach for raw propositional logic here are the universal quantifiers
in front of the action schemata, and the existence of fluent predicates along the infinite
timeline of the modeled world. Both of them are dealt with by propositionally instanti-
ating state variables and action schemata as many times as needed.

In the basic encoding, each operator is instantiated with all the possible combina-
tions of arguments to obtain several parameterless (boolean) actions. As the number of
objects in classical planning domains doesn’t change over time, this groundization can
be done once for all and doesn’t require incrementality. Conversely, the unrolling of
plans over the time line (in terms of the number of action layers) is potentially infinite.
Indeed, the bound for this CTS approach represents the maximal number of action lay-
ers in the solution plan we are currently looking for, and Ci is the set of feasible plans
with exactly i layers of actions.

As classical planning domains have a finite state space in spite of the infinite num-
ber of feasible plans, it is also possible to check the set of reached states for saturation,

Incremental Compilation-to-SAT Procedures 49

thus ensuring that no solution exists for unfeasible goals. In case a satisfiable instance
is encountered, the resulting plan immediately grows out of the given model as filtered
by the decoding function, that remembers (1) which layer of action and status are asso-
ciated with each propositional state variables, and (2) which layer and parameters are
associated with propositional action instantiations.

4 Incremental Compilation-to-SAT (iCTS)

Every iCTS approach is made up of an incremental
solver, an incremental generation mechanism and an ar-
chitecture that explains how these components interact.
As opposite to classical SAT solvers, an incremental
solver is a persistent object partly aware of its surround-
ings that addresses the problem of deciding a chain of
related satisfiability instances as a whole, thus re-using
information gathered from past search.
Let us consider a SAT solver as a search engine in the
space of truth assignments over V = var(f) attempt-
ing to make f evaluate to true. Then, an iSAT solver is a
search engine that explores a search space S defined only
once per chain, not once per instance.

S1

H0

S2

H2

H1

S0

Each instance fi in a chain {fi, i = 0, 1, ...} specifies which portion Si of the whole
search space has to be searched for a solution. When a subspace is proved empty, a
larger subspace (monotonically containing the previous ones) is considered. As depicted
in the picture aside, subspaces are connected to one another by means of some special
sets of propositional hypothesesHi that mark the boundary between Si and Si+1, in so
as Si is just the subspace of Si+1 rooted at the branch Hi.

Definition 1 (iSAT problem). An iSAT instance is a sequence of couples {〈fi,Hi〉, i =
0, 1, ...} where fi is a CNF formula, Hi ∈ var(fi) is a set of propositional hypotheses,
and ∀i.fi ⊆ fi+1 . The iSAT problem consists of deciding whether ∃i.SAT (fi ∗ Hi).

An iSAT instance is passed to an incremental solver step by step by repeatedly in-
voking the primitive “enlargeSearchSpace(∆fi,Hi)” to notify the dimension
|var(fi) \ var(fi−1)| and the “shape” fi of the new subspace to be explored, together
with the positionHi where it is attached as a subspace of Si+1 (with ∆fi = fi \ fi−1) .

When the time for implementation comes, it is by far convenient to modify an exist-
ing DPLL solver (thus retaining state-of-the-art technology) at the expense of perform-
ing some modifications.

Each instance fi is considered under the hypotheses Hi, placed at the very bottom
of the search stack. Standard solvers are allowed to withdraw every stacked hypothesis
as soon as it comes out to be responsible for inconsistencies. An incremental solver
behaves in the same way in all the cases but when the hypothesis to be removed is within
Hi. By removing such hypothesis it would indeed escape from Si. Rather, it stops
working and waits for the next enlargement of the search space. Search is then restarted

50 M. Benedetti and S. Bernardini

across the newly added subspace by removing the selected source of inconsistency. The
hypotheses Hi loose their inviolability, which is inherited by Hi+1.

We modified the SIM solver [13] to obtain i-SIM [2] by (1) slightly revising the
standard LIFO policy employed by the stack of hypotheses to allow the insertion of
Hi, (2) substituting “the stack only contains (a subset of) Hi, wait!” for “the stack
is empty, quit!” as a stop condition and (3) making eligible for dynamic enlargement
all the internal data structures whose size depends on the number of variables and/or
clauses in the formula (taking care to keep consistency between all mutual references).

We now briefly show which kind of connections among adjacent instances can be
leveraged during the solving process. For a more thorough description of our technique
we refer the reader to [2].

Let us consider a structured CTS problem on W = 〈T , P 〉 that generates a sequence
of SAT instances �W �i = �T �i ∧¬�P �i with a monotone encoding for the background
theory (∀i.�T �i ⊆ �T �i+1).

Definition 2 (Incremental Encoding). An incremental encoding for {�W �i, i = 0, 1,
...} is a sequence of couples

{〈
�T , P �+i ,Hi

〉
, i = 0, 1, ...

}
, with �T , P �+0 = I0 ∧ P0,

�T , P �+i = �T , P �+i−1 ∧∆�T , P �i
i−1, ∆�T , P �i+1

i =̇ ∆�T �i+1
i ∧∆�P �i+1

i and

{
�T �+0 =̇ I0

�T �+i =̇ �T �+i−1 ∧∆�T �i
i−1 i > 0

{
�P �+0 =̇ P0

�P �+i =̇ �P �+i−1 ∧∆�P �i
i−1 i > 0

where �T �+i (∆�T �i
i−1) is the incremental (differential) encoding for a monotone back-

ground theory T and is such that ∀i.�T �+i ≡ �T �i, while �P �+i (∆�P �i
i−1) is the in-

cremental (differential) encoding for the property P ∈ L and is such that ∀i. �P �+i ∗
Hi ≡Vi

�P �i for a sequence {Hi, i = 0, 1, ...} of sets of literals called closing set of
hypotheses over �P �+i . The incremental property encoding is built after an open encod-
ing over L, which is a function mapping a formula Q ∈ L and a couple of indexes k, k′

(k ≤ k′) onto a propositional formula �Q�j
k in such a way that �P �+0 = P0 =�P �00,

Hk = {¬φQ
k |φ

Q
k ∈ �P �+k }, and ∆�P �k′

k =
∧

φQ
k ∈�P �+k

φQ
k →�Q�k+1

k′ .

The key property of an incremental encoding is that it defines an iSAT instance satis-
fiability equivalent to the corresponding sequence of standard encodings, provided a
valid open encoding over L is defined. Open encodings mimic the usual encodings but
introduce a number of additional literals φQ

k (associated to a bound k and to a formula
Q ∈ L) used by the subsequent open encodings as coupling points to have the over-
all formula grow up: after �Q�k

k inserts a closing literals φQ′
k , ∆�P �k+1

k expands its
meaning �Q′�k+1

k+1 and this in turn creates coupling points for the next round.
At the clause level, a valid open encoding for adjacent bounds may be obtained by

posing �P �k
k :=

(
∆+

k \∆−
k+1

)
∪
{
φP

k ∨ Γ |Γ ∈ ∆−
k+1

}
, given the sequences of sets of

clauses such that cnf(�P �i+1) = cnf(�P �i) \∆−
i ∪∆+

i .
Alternatively, we may incrementally CNF-ize any encoding exhibiting the two prop-

erties �P �0k′ ∗ Hk′ ≡ �P �k′ and �P �k
k′ · σk′ =�P �k

k′+1 for the substitution σk′ =
{�f�k′+1

k′+1/φf
k |φ

f
k ∈ pure(�P �k

k′)}. These conditions are met by open encodings built
over the family of disjunctive property chains. For these chains it is ∀i ≥ 0.�P �i �

Incremental Compilation-to-SAT Procedures 51

bound 0 bound 3bound 1 bound 2
P

ro
p
er

ty
 E

n
co

d
in

g
T

h
eo

ry
 E

n
co

d
in

g

17

30

29

28 40

41

42

18

16

0 1 2 7 8 9 19 20 21 31 32 33

24 36

14

26

38

5 12

3422103

15 27 39

6

4 11 23 35

13 25 37

∧

∧ ∧ ∧

∧∧∧

∧ ∧ ∧

∧
∧

∧

∨ ∨ ∨

→ →

↔

↔

↔

↔

↔

↔

b0(1) b0(2) b1(2) b0(3)b1(1) b2(1) b2(2) b1(3) b2(3)

φ0 φ1 φ2 φ3

∆�P �1
0

∆�P �2
1

∨

b0(0) b1(0)

�T �+
1 �T �+

2 �T �+
3

∆�P �3
2

→

∆�T �1
0

∆�T �2
1

∆�T �3
2

�P �
1

�P �
2

�P �
3

b2(0)

∧

�P �+
0

≡�P �
0

�P �+
1

�P �+
2

�P �+
3

�T �+
0

≡ �T �0

Fig. 1. An example of incremental encoding for a BMC problem

�P �i+1, where g � f (f is disjunctively expanded from g) iff a formula h with
pure literals on {v1, ..., vn} and two substitutions σg = {g1/v1, ..., gn/vn} and σf =
{(g1∨f1)/v1, ..., (gn∨fn)/vn} exist such that g = h·σg and f = h·σf . Thereafter, in-
cremental CNF-ization amounts to ensure consistency across the clause versions of all
the formulas undergoing CNF-ization by maintaining the same meaning for variables
shared among differential encodings.

The intuition behind the incremental encoding is that to connect subsequent meshes
of the chain we just need to focus on the property encoding, whose open encoding in-
deed exhibits the forethought of spreading place-holders across the formula as coupling
points between adjacent instances. When the solver stops searching and a resolution tree
rooted at the empty clause is found, either it is independent from stacked hypotheses
(in this case, not only the current SAT instance but the whole iSAT instance is incon-
sistent), or some closing hypothesis lays among its leaves. In the latter case, the empty
clause fails to survive the backtrack step over the closing hypothesis, so the search can
restart over the enlarged problem defined by gathering new constraints.

A simple example that captures many relevant aspects of the iCTS framework is the
following. We incrementally test a shift register with n bits and the entry bit always

52 M. Benedetti and S. Bernardini

equal to 0 against the (false) property "the register never becomes empty if the two most
significant bits are initially set".

Formally, if bj(t) is the value of the j-th bit after t shifts, the system is described by
T = Init ∧ ∀t > 0.¬b0(t) ∧ ∀j > 0.bj(t) ↔ bj−1(t − 1), where Init = bn−1(0) ∧
bn−2(0), and the property is P = ¬∃t.∀j.¬bj(t). By the deduction theorem, we assert
that the property holds iff no model exists for T ∧ ¬P , i.e.: for W = T ∧ P where
P = ¬P .

Even though the above theory is too expressive to be directly translated into propo-
sitional logic (t ranges over an infinite domain) conjunctions/disjunctions over a finite
set of propositional variables V i

k = {bj(t), j = 0, ..., n− 1, t = 0, ..., k} can be substi-
tuted for the quantifiers given any finite time horizon k. The incremental version of the
resulting propositional theory (up to step 3) is depicted in the bottom half of Figure 1.

An incremental encoding for the property �P �k ≡
∨k

t=0

∧n−1
j=0 ¬bj(t) is obtained

by choosing �P �t
t = ∧n−1

j=0¬bj(t) ∨ φi (upper half in the figure), and it is easy to check
that �P �+t ∗ ¬φt ≡Vt

�P �t. As the instance is built incrementally, argument-arrows
never end in a region lighter than the one they originate from, and the only link between
adjacent instances is provided by the open variables {φi}. The small numeric labels
near each node represent an incremental labelling for the CNF-ization procedure that
generates adjacent and consistent ranges of propositional variables across subsequent
encodings.

The iSAT solver is initially provided with the problem cnf(�T , P �+0) to be solved
under the hypothesis ¬φ0. An inconsistency is detected soon (the property does not hold
in the initial state). By traversing the dependency graph, the solver discovers that the
hypothesis ¬φ0 is responsible for such contradiction. It tells the generation machinery,
which in turn generates the differential part of the encoding from step 0 to step 1 and
produces the clauses arising from the incremental CNF-ization of the subgraph rooted
at �T , P �+1 . The solver is notified of the new size of the problem, and is then given both
the clause-set cnf(∆�T , P �10) and the new working hypothesis ¬φ1. Then, it dismisses
¬φ0 (it also notices that ¬φ0 was at the very bottom of the stack, so the unit clause φ0

is learned, and this amounts to learn that �T , P �0 has no model).
This incremental generate-and-solve loop goes on encountering other contradic-

tions until step 3, when �T , P �+3 is considered under the hypothesis ¬φ3. A model for
�T , P �+3 ∗¬φ3 is found and used to reconstruct a 3-step witness falsifying the property.
The solver maintains its internal state through the whole process and also retains all the
consequences of the already performed search. In this simple example, the necessary
truth value of many variables and some unit clauses are inherited from previous runs.

5 Bounded Model Checking as a Testbed

BMC [6] is a SAT-based automatic technique to verify a reactive system modelled as
a finite state automaton M against a property f expressed in linear temporal logic
(LTL). The semantic entailment M |=k E¬f to be checked is dealt with by solving
�M,f�k := �M�k ∧ �¬f�k, where �M�k is a k-step long boolean encoding of the
transition relation associated with M , while �¬f�k unrolls the semantics of ¬f over a
path of length k by representing all the possible behaviours violating f on such path.

Incremental Compilation-to-SAT Procedures 53

We refer the reader to [6, 2] for a detailed description of this technique and to [3]
for the PLTL (an extension of LTL) standard encoding we start from.

To incrementalise this technique we first generate a differential encoding for the
monotone background theory: I0 =̇ I(s0) and ∆�M�k =̇ T (sk−1, sk) (see [6, 2, 5]).
According to [3], two adjacent property encodings only differ as each future time oper-
ator unrolls its semantics to the newly added time step.

From a CNF point of view, the clauses
to be added/removed are obtained by
recursively considering such operators,
and are obtained by traversing the syn-
tactic tree of the PLTL formula and
conjuncting the set of clauses to be
added/removed due to each node la-
beled by a future time operator.
The picture aside shows that shifting
from �Ff�1 to �Ff�2 the CNF trans-
lation of the node v1 changes from
cnfa = cnf(v1 ↔ (v2 ∨ v3)) =
{{¬v1, v2, v3}, {¬v2, v1}, {¬v3, v1}}
to cnfb = cnf(v1 ↔ (v2 ∨ v3 ∨ v4))

v2 v3 v4

v1

v1�Ff�1
�Ff�2

�f�2
2

∨

Op Op Op

S2

∨

S0 S1

= {{¬v1, v2, v3, v4}, {¬v2, v1}, {¬v3, v1}, {¬v4, v1} }} and that the clauses cnfc =
cnf(�f�22) appear, so ∆+

2 = {{¬v1, v2, v3, v4}, {¬v4 , v1}} ∪ cnfc ∪ Γ+
2 and ∆−

2 =
{{¬v1, v2, v3}} ∪ Γ−

2 , where Γ+
2 and Γ−

2 are computed by recursively looking for
nested future time operators within the subtrees rooted at v2 and v3. These expressions
can be easily generalized to shift from k to k + 1.

Rather than working at the clause level, we may construct a higher-level incremental
procedure that exploits the semantics of time operators. This procedure acts before the
CNF converter is presented with the formula, thus yielding a more intuitive encoding.
It follows the guidelines given in the previous section and consists of defining a valid
open encoding (see [3] for details) for PLTL formulas.

Definition 3 (Open PLTL Encoding). The open translation of a PLTL formula from
bound i to bound k (i ≤ k) is a propositional formula inductively defined as follows.

�q�i
k =̇ qi �¬q�i

k =̇ ¬qi �f ∧ g�i
k =̇ �f�i

k∧�g�i
k �f ∨ g�i

k =̇ �f�i
k∨�g�i

k

�Xf�i
k =̇

{
φf

k i = k

�f�i+1
k i < k

�Ff�i
k =̇

∨
j∈ [i,k] �f�j

k ∨ φFf
k �Gf�i

k =̇ ⊥

�fUg�i
k =̇

∨
j∈ [i,k]

(
�g�j

k ∧
∧

h∈ [i,j) �f�h
k

)
∨
(
φfUg

k ∧
∧

h∈ [i,k] �f�h
k

)

�fRg�i
k =̇

∧
j∈ [i,k]

(
�g�j

k ∨
∨

h∈ [i,j) �f�h
k

)
∧
(
¬φfRg

k ∨
∨

h∈ [i,j] �f�h
k

)

�Yf�i
k =̇

{
⊥ i = 0
�f�i−1

k i > 0
�Zf�i

k =̇
{
� i = 0
�f�i−1

k i > 0
�Of�i

k =̇
∨

j∈ [0,i] �f�j
k �fSg�i

k =̇
∨

j∈ [0,i]

(
�g�j

k ∧
∧

h∈ (j,i] �f�h
k

)

�Hf�i
k =̇

∧
j∈ [0,i] �f�j

k �fTg�i
k =̇

∧
j∈ [0,i]

(
�g�j

k ∨
∨

h∈ (j,i] �f�h
k

)

54 M. Benedetti and S. Bernardini

�F(a ∧ cUb)�0

c(0)a(0) b(0)

∧

a(0) b(0) c(0) a(1) b(1) c(1)

∧

∧

∨

∨

∧

�F(a ∧ cUb)�1

�cUb�0
1

�cUb�1
1

a(0) b(0) c(0) a(1) b(1) c(1) a(2) b(2) c(2)

∧ ∧

∨

∨

∧ ∧

∨

∧

�F(a ∧ cUb)�2

�cUb�0
2 �cUb�1

2

∧
�cUb�2

2

bound 0 bound 1 bound 2

∨

�f�
+

1

∨ �g�
2

a(0) b(0) c(0) a(1) b(1) c(1) a(2) b(2) c(2)

Φ
g
0

∧

∨

Φ
f
0

∧

∨

∧

∨

∧ ∧
Φ

f
1

∧
∧

→

→ →

→

�f�
+

2

Φ
f
2

�f�
+

0

Φ
g
1

Φ
g
2

�g�
0

�g�
1

�f�
1

�f�
2

∧

∨

Fig. 2. Standard and incremental encoding for f = F(a ∧ g) = F(a ∧ cUb) with g = cUb

Figure 2 compares this incremental encoding with the standard one for a sample
PLTL formula. The former, instead of growing form right to left in a definitely non-
incremental manner as the latter does, is such that �f�+0 ⊆ �f�+1 and �f�+1 ⊆ �f�+2 .
The semantics of the original encoding is nonetheless preserved according to �f�k ≡Vk

�f�+k ∗ Hk.
Let us show with an example that the semantics of the original encoding is preserved

by checking that �f�1 ≡V1
�f�+1 ∗ H1, with V1 = {a(0), b(0), c(0), a(1), b(1), c(1)}

and H1 = {¬φg
1,¬φf

1}. The set of models of �f�1 on V1 is obtained up by merging
three pieces: (1) all the assignments where {a(0), b(0)} holds (when a and b are true in
the initial state, the subformula g is immediately satisfied, and f = F(a∧ g) is satisfied
as well), (2) all the assignments containing {a(0), c(0), b(1)} (a is true in the initial
state, while g is true because c holds until b becomes true), and (3) all the assignments
where {a(1), b(0)} holds (the argument of F is true at time 1 rather than at time 0).

The set of models of �f�+1 ∗ H1 on V1 can be obtained by abstracting over the truth
values of the two variables in �f�+1 ∗ H1 not in V1, namely φg

0 and φf
0 . By playing with

φg
0 and φf

0 (i.e.: by existentially quantifying over their truth values), we obtain that (1)
{a(0), b(0)} satisfies the formula once {¬φg

0,¬φf
0} is assigned, (2) {a(0), c(0), b(1)}

makes the formula evaluate to true under {φg
0,¬φf

0}, and (3) {a(1), b(0)} is a model
when {φf

0} is given. Hence, �f�+1 ∗ H1 has the same models as �f�1 (over V1).
Let us also notice that if �W �+0 is proven inconsistent under H0, the clause {φ0

f} is
learned (in general, a set Γ of theory-related clauses without closing variables is also
learned) from �T �+0 : �T �+0 � φ0

f ∧ Γ , so that when �W �+1 ∗ H1 is approached, the
system is actually facing �T �1 ∧ Γ ∧ ¬�P �0 ∧ �P �1.

Incremental Compilation-to-SAT Procedures 55

0

10

20

30

40

50

60

70

80

50 100 150 200 250

be
nc

hm
ar

k
m

ea
su

re
 [s

ec
s.

]

k

Benchmarking of counter.smv (solving)

i-BMC

BMC

0

5

10

15

20

25

30

5 10 15 20 25 30 35 40
k

Benchmarking of periodic.smv (solving)
BMC

i-BMC

BMC

i-BMC

Fig. 3. Solving time compared on 2 BMC chains (290 SAT instances)

Our technique has been implemented within NuSMV [7], a state-of-the-art sym-
bolic model checker used both to verify industrial designs of hardware and software
systems and to test new formal verification techniques. NuSMV that integrates BDD-
based and SAT-based model checking techniques. We modified the encoder/decoder
modules according to Definition 3 and the CNF converter. Then, we experimented with
several problems from the standard distribution of NuMSV using iSIM, experiencing a
remarkable improvement in carrying out both the encoding and the solving task.

Figure 3 and 4 present some experimen-
tal results related to the cumulative solv-
ing time for chains of instances. The
“counter" instance (false property with
a deep counterexample at step 256 over
a rather simple model) is particularly
interesting as it isolates the contribute
of the incremental machinery from the
complexity of the underlying theory.
The "periodic" and "dme" instances test
true specifications against more com-
plex models (an asynchronous pipeline
and a sequential logic network).

0

2

4

6

8

10

12

14

2 4 6 8 10 12 14 16 18 20
k

Benchmarking of dme.smv (solving)
BMC

i-BMC

BMC

i-BMC

Fig. 4. Comparison on a “dme" model

6 Related Works

Several slightly different notions of incrementality have been proposed for the SAT
problem during the last ten years. The first one was introduced by Hooker [14] in 1993.
He addressed the problem of deciding whether g ∪ {Γ} is still satisfiable, given a satis-

56 M. Benedetti and S. Bernardini

fiable clause set g and an additional clause Γ . This basic mechanism is then exploited
to decide a formula f , by adding one clause at a time and solving |f | incremental sub-
problems. The proposed algorithm is an adaptation of the basic DPLL procedure [9] that
retains the position in the search tree (the path form the root to the last node examined)
when a model for f is encountered. Then, if the assignment also satisfies f ∪{Γ}, noth-
ing has to be done. Otherwise, the algorithm adds Γ to the clause set (and the possibly
nonempty set var(Γ) \ var(f) to the variable set), backtracks until Γ stops generat-
ing inconsistencies, and finally restarts to visit the search tree. This method was later
extended to deal with the addition of multiple clauses at one time [4].

The Hooker’s approach was conceived to solve problems arising from logic cir-
cuit verification, and, more generally, from problems related to the Electronic De-
sign Automation (EDA). Significant improvements over the original proposal have
been recently reported for applications on the same domain [16, 17]. These contri-
butions describe a method to simultaneously solve a series of closely related SAT
instances which is similar to the Hooker’s one but also allows for the removal of
sets of clauses. Formally, the proposed technique tackles the following problem [17].
Given a tree G = (V,E) where each node v ∈ V denotes a set of clauses C(v) and
each path from the root to a particular node vi is associated with the SAT instance
ϕ(vi) =

⋃
0≤j≤i C(vj), decide the satisfiability of all the instances on the leaves. A

former version of this formalization exists [16] where only trees of depth one are con-
sidered, in so as each formula fi := fC ∪∆fi on a leaf just adds some specific set of
clauses ∆fi to a shared root subformula fC . A DPLL-like algorithm is first applied to
check the satisfiability of the root. If it is unsatisfiable then all the SAT problems at the
leaves are unsatisfiable. Otherwise the algorithm recursively traverses the problem tree
and checks the satisfiability of each node. The model of each satisfiable node is used
as a starting point for all the child problems. Whenever the algorithm bumps into an
unsatisfiable node it concludes that all the instances in the sub-tree rooted at that node
are inconsistent and backtracks.

The same authors later proposed SATIRE [24], once more in the framework of EDA
verification and optimization problems. SATIRE is a DPLL-like SAT solver that uses
an incremental reasoning engine to decide n related SAT instances ϕ1, . . . , ϕn where
ϕi+1 = (ϕi \ ρi) ∪ αi+1 (ρi is the clauses to be removed and αi+1 the clauses to be
added in order to transform ϕi in ϕi+1). As a major contribution this work enlightens
the importance of learned clauses in the incremental solving process. SATIRE indeed
tries to take advantage of the conflict clauses learned during the solution of the instances
ϕ1, . . . , ϕi while tackling ϕi+1. The main issue in reusing learned clauses is that the
removal of clauses may clash with the validity of recorded conflict clauses. Whenever
a clause belonging to the clause set generating a given conflict clause is removed the
conflict clause does’t hold any more and has to be removed. The problem is overcome
in SATIRE by means of a detailed determination of the relationships between learned
clauses and existing constraints performed during the conflict analysis. This mechanism
requires an extra computation that can be very time consuming.

SATIRE’s authors first enlightened that the reuse of learned clauses could be very
effective in the context of the BMC procedure. They indeed experimented with some
SAT formulas coming from BMC encodings and showed significant improvements as

Incremental Compilation-to-SAT Procedures 57

to solving time. The big potential of sharing learned clauses between similar BMC in-
stances was independently investigated by Shtrichman [23], who already has worked
on tuning generic SAT solvers for BMC instances by means of pre-computation of the
variable ordering and some form of internal constraints replication to reduce the dimen-
sion of the search space [22]. He observed that the sets of learned clauses obtained for
consecutive bounds are quite similar, though the additional problem of deciding which
conflict clauses maintain validity still arises. The author proposes a DPLL algorithm
augmented with a procedure to isolate the reusable conflict clauses. This procedure is
based on a careful exploration of the implication graph used to perform the conflict
analysis similar to the one introduced in [24] and it suffers from the same disadvan-
tages coming from the additional book-keeping required. Experimental results show
that constraints sharing generally has a positive effect on performances, but sometime
its overhead overcomes the benefits.

Recently, one SAT solver (SATZOO [11]) has been implemented to incorporate the
concept of incremental resolution for highly related SAT instances. It is based on a
traditional DPLL-style procedure augmented with an interface which, given two subse-
quent related SAT instances, allows the second to be specified incrementally from the
first by means of adding and removing constraints. The interface lets only unit clauses
be removed from the clause database. This way, all the clauses learned during one run
may be reused by the search procedure during the subsequent runs because the unit
clauses can be considered as assumptions and learned clauses are independent of the
assumptions under which they are deduced.

The potential of an incremental resolution of many related instances is so evident
that also the state of the art SAT solver Chaff [20] has been integrated in his latest
release with a module that shows an incremental solving capability. A more detailed
description of the used technique can be found in [12].

7 Conclusions and Future Work

We proposed an integrated approach to incremental satisfiability that allows to incre-
mentalise existing CTS procedures. We presented an incremental machinery that mainly
retains the simplicity and strength of the original non-incremental one. In particular, we
showed how to connect subsequent instances in a chain by relying on a tighter integra-
tion with the solver. We unveiled the importance of the deduction theorem and of the
incremental property encoding to completely solve the learned-clause problem. We dis-
cussed the modifications needed to obtain an incremental solver and pointed out some
details of the incremental generation step. We also presented an example of a complete
iCTS implementation on top of real-world tools and gave a summary of the research on
incremental decision procedures reported so far in the literature.

Our future work goes towards 1) the application of our framework to other do-
mains, 2) a further enlargement of the iSAT solver interface, 3) the integration of in-
ductive learning methods within our approach, and 4) some form of validity checking
obtained by inductively reasoning on the structure of refutations rather than by explicit
induction.

58 M. Benedetti and S. Bernardini

References

1. P. A. Abdulla, P. Bjesse, and N. Eén. Symbolic Reachability Analysis Based on SAT-Solvers.
In Proc. of TACAS 2000, volume 1785, pages 411–425, 2000.

2. M. Benedetti and S. Bernardini. Incremental Compilation-to-SAT Procedures. Technical
Report T03-12-13, sra.itc.it/people/benedetti/TR031213.pdf, Istituto per
la Ricerca Scientifica e Tecnologica, 2003.

3. M. Benedetti and A. Cimatti. Bounded Model Checking for Past LTL. In Proc. of TACAS
2003, number 2619 in LNCS, pages 18–33, 2003.

4. H. Bennaceur, I. Gouachi, and G. Plateau. An Incremental Branch-and-Bound Method for
Satisfiability Problem. INFORMS Journal on Computing, 10:301–308, 1998.

5. S. Bernardini. Structure and Satisfiability in Propositional Formulae. AI*IA Notizie, 4, 2003.
6. A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu. Symbolic Model Checking without

BDDs. In Proc. of Design Automation Conference, volume 1579, pages 193–207, 1999.
7. A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebas-

tiani, and A. Tacchella. NuSMV 2: An OpenSource Tool for Symbolic Model Checking. In
Proc. of CAV 2002, volume 2404 of LNCS, 2002.

8. J. M. Crawford and A. D.Baker. Experimental results on the application of satisfiability
algorithms to scheduling problems. In Proc. of 12th AAAI ’94, pages 1092–1097, 1994.

9. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving. Journal
of the ACM, 5:394–397, 1962.

10. T. Boy de la Tour. Minimizing the Number of Clauses by Renaming. In Proc. of the 10th
Conference on Automated Deduction, pages 558–572, 1990.

11. N. Eén and N. Sörensson. Temporal Induction by Incremental SAT Solving. In Proc. of the
First International Workshop on Bounded Model Checking, 2003.

12. Z. Fu. zChaff. http://ee.princeton.edu/∼chaff/zchaff.php, 2003.
13. E. Giunchiglia, M. Maratea, A. Tacchella, and D. Zambonin. Evaluating Search Heuristics

and Optimization Techniques in Propositional Satisfiability. In Proc. of IJCAR 2001, 2001.
14. J.N. Hooker. Solving the Incremental Satisfiability Problem. Journal of Logic Programming,

15:177–186, 1993.
15. H. Kautz and B. Selman. Planning as satisfiability. In Proc. of ECAI 1992, pages 359–363.
16. J. Kim, J. Whittemore, J. P. M. Silva, and K. A. Sakallah. On Applying Incremental Satisfi-

ability to Delay Fault Problem. In Proc. of DATE 2000, pages 380–384, 2000.
17. J. Kim, J. Whittemore, J. P. M. Silva, and K. A. Sakallah. On Solving Stack-Based Incre-

mental Satisfiability Problems. In Proc. of the ICCD 2000, pages 379–382, 2000.
18. T. Larrabee. Test pattern generation using boolean satisfiability. In IEEE Transaction on

Computer-aided Design, pages 4–15, 1992.
19. F. Massacci and L. Marraro. Logical Cryptanalysis as a SAT Problem. Journal of Automated

Reasoning, 24, 2000.
20. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an Effi-

cient SAT Solver. In Proc. of the 38th DAC, pages 530–535, 2001.
21. D. A. Plaisted and S. Greenbaum. A Structure-preserving Clause Form Translation. Journal

of Symbolic Computation, 2:293–304, 1986.
22. O. Shtrichman. Tuning SAT checkers for Bounded Model Checking. In Proc. of the 12th In-

ternational Conference on Computer Aided Verification, Lecture Notes in Computer Science.
Springer Verlag, 2000.

23. O. Shtrichman. Pruning Techniques for the SAT-based Bounded Model Checking Problem.
In Proc. of CHARME’01, pages 58–70, 2001.

24. J. Whittemore, J. Kim, and K. A. Sakallah. SATIRE: A New Incremental Satisfiability En-
gine. In Proc. of the 38th Conference on Design Automation, pages 542–545, 2001.

Resolve and Expand

Armin Biere

Johannes Kepler University, Institute for Formal Models and Verification,
Altenbergerstrasse 69, A-4040 Linz, Austria

biere@jku.at

Abstract. We present a novel expansion based decision procedure for quantified
boolean formulas (QBF) in conjunctive normal form (CNF). The basic idea is
to resolve existentially quantified variables and eliminate universal variables by
expansion. This process is continued until the formula becomes propositional and
can be solved by any SAT solver. On structured problems our implementation
quantor is competitive with state-of-the-art QBF solvers based on DPLL. It is
orders of magnitude faster on certain hard to solve instances.

1 Introduction

Recent years witnessed huge improvements in techniques for checking satisfiability of
propositional logic (SAT). The advancements are driven by better algorithms on one
side and by new applications on the other side. The logic of quantified boolean for-
mulas (QBF) is obtained from propositional logic by adding quantifiers over boolean
variables. QBF allows to represent a much larger class of problems succinctly.

The added expressibility unfortunately renders the decision problem PSPACE com-
plete [20]. Nevertheless, various attempts have been made to lift SAT technology to
QBF, in order to repeat the success of SAT. The goal is to make QBF solvers a versatile
tool for solving important practical problems such as symbolic model checking [13] or
other PSPACE complete problems.

For QBF the nesting order of variables has to be respected. Accordingly two ap-
proaches to solve QBF exist. Either variables are eliminated in the direction from the
outermost quantifier to the innermost quantifier or vice versa. We call the first approach
top-down, and the second one bottom-up.

Current state-of-the-art QBF solvers [4, 17, 12, 9, 22] are all top-down and imple-
ment a variant of the search-based Davis & Putnam procedure DPLL [7]. Additionally,
QBF requires decision variables to be chosen in accordance with the quantifier prefix.
Learning has to be adapted to cache satisfiable existential sub goals. DPLL also forms
the basis of most state-of-the-art SAT solvers, and therefore it was most natural to use
it for QBF as well.

Even for SAT, there are alternatives to DPLL, based on variable elimination, such
as the resolution based Davis & Putnam procedure DP [8]. It has never been used much
in practice, with the exception of [5], since usually too many clauses are generated.

Eliminating variables by resolution as in DP can be lifted from SAT to QBF as well.
The result is a bottom-up approach for QBF called Q-resolution [10]. The only differ-

H.H. Hoos and D.G. Mitchell (Eds.): SAT 2004, LNCS 3542, pp. 59–70, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

60 A. Biere

ence between Q-resolution and ordinary resolution is, that in certain cases universally
quantified variables can be dropped from the resolvent.

In theory, Q-resolution is complete but impractical for the same reasons as resolu-
tion based DP [8]. It has not been combined with compact data structures either. In our
approach, we apply Q-resolution to eliminate innermost existentially quantified vari-
ables. To make this practical, we carefully monitor resource usage, always pick the
cheapest variable to eliminate, and invoke Q-resolution only if the size of the resulting
formula does not increase much. We use expansion of universally quantified variables
otherwise.

Expansion of quantifiers has been applied to QBF in [1] and used for model check-
ing in [21, 2]. All three approaches work on formulae or circuit structure instead of
(quantified) CNF. We argue that CNF helps to speed up certain computationally in-
tensive tasks, such as the dynamic computation of the elimination schedule. First it is
not clear how Q-resolution can be combined with this kind of structural expansion. In
addition our goal is to eventually combine bottom-up and top-down approaches. CNF
currently is the most efficient data structure for representing formulas in top-down ap-
proaches for SAT.

Another general bottom-up approach [16, 14, 15, 6] is also based on quantifier elim-
ination. A SAT solver is used to eliminate multiple innermost variables in parallel. In
practice these approaches have only been applied to SAT or model checking. In princi-
ple it would be possible to apply them directly to QBF. In our approach single variables
are eliminated one after the other. We can also alternate between either eliminating
existential variables of the innermost scope and eliminating universal variables of the
enclosing universal scope.

2 Preliminaries

Given a set of variables V , a literal l over V is either a variable v or its negation ¬v. A
clause is a disjunction of literals, also represented by the set of its literals. A conjunctive
normal form (CNF) is a conjunction of clauses. Assume that the set of variables is
partitioned into m non empty scopes S1, . . .Sm,⊆V , with V = S1∪ . . .∪Sm and Si∩S j =
/0 for i �= j. Each variable v ∈V belongs to exactly one scope σ(v). Scopes are ordered
linearly S1 < S2 . . . < Sm, with S1 the outermost and Sm the innermost scope. For each
clause C the maximal scope σ(v) over all variables v in C is unique and defined as the
scope σ(C) of C. The scope order induces a pre-order on the variables which we extend
to an arbitrary linear variable order.

Each scope is labelled as universal or existential by the labelling Ω(Si) ∈ {∃,∀}.
Variables are labelled with the label of their scope as Ω(v) ≡ Ω(σ(v)). We further re-
quire that the ordered partition of V into scopes is maximal with respect to the labelling,
or more precisely Ω(Si) �= Ω(Si+1) for 1≤ i < m.

Now a quantified boolean formula (QBF) in CNF is defined as a CNF formula f
together with an ordered partition of the variables into scopes. This definition matches
the QDIMACS formats [11] very closely, with the additional restriction of maximality.

A variable v is defined to occur in positive (negative) phase, or just positively (nega-
tively), in a clause C, if C contains the literal v (¬v). A clause in which a variable occurs

Resolve and Expand 61

in both phases is trivial and can be removed from the CNF. Two clauses C, D, where v
occurs positively in C and negatively in D, can be resolved to a resolvent clause. The
resolvent consists of all literals from C except v and all literals from D except ¬v.

For a non-trivial clause C we define the process of forall reduction as follows. The
set of forall reducible variables in C is defined as the set of universal variables in C for
which there is no larger existential variable in C, with respect to the variable order. The
clause D obtained from C by forall reduction contains all variables of C except forall
reducible variables. For instance the two clauses in the following QBF

∃x . ∀y . (x∨ y)∧ (¬x∨¬y)

are not forall reduced. Forall reduction results in removing the literal y in the first
clauses and the literal ¬y in the second, which results in two contradicting units. Also
note, that forall reduction can result in an empty clause if the original clause contains
universal variables only. Plain resolution followed by forall reduction is the same as
Q-resolution [10].

Forall reduction is an equivalence preserving transformation. Thus without loss of
generality we can assume that the CNF is in forall reduced form: by forall reduction
no clause can be reduced further. This assumption establishes the important invariant,
that Ω(σ(C)) = ∃ for all clauses C. In other words, all clauses have an existential scope.
There are no clauses with a universal scope. Particularly, the innermost scope is always
existential (Ω(Sm) = ∃). In our implementation, for each existential scope, we maintain
a list of its clauses, and for each clause a reference to its scope.

3 Elimination

We eliminate variables until the formula is propositional and contains only existential
quantifiers. Then it can be handed to a SAT solver. After establishing the invariant
discussed above, a non-propositional QBF formula has the following structure

Ω(S1) S1 . Ω(S2) S2∀Sm−1 . ∃ Sm . f ∧ g m≥ 2 (1)

where the formula f is exactly the conjunction of clauses with scope Sm. We either
eliminate a variable in the innermost existential scope S∃ ≡ Sm by Q-resolution or a
variable in the innermost universal scope S∀ ≡ Sm−1 by expansion.

3.1 Resolve

An existential variable v of S∃ is eliminated as in [8, 10] by performing all resolutions on
v, adding the forall reduced resolvents to the CNF, and removing all clauses containing
v in either phase. As example consider the clauses in Fig. 1.

We assume that these 7 clauses are all clauses of a CNF in which the innermost
existential variable v occurs. To eliminate v, we simply perform all 3× 2 resolutions
between a clause on the left side, in which v occurs positively, with all clauses on the
right side, in which v occurs negatively. In this case 3 resolvents are trivial. The other
three resolvents

(s∨ r), (x∨ y∨ r), and (s∨¬x∨¬y∨ r)

62 A. Biere

×

∨ vr¬

∨ vs

∨∨x vy

∨¬v r

∨ ∨ ∨¬v ¬x ¬y r

Fig. 1. Number of resolution pairs is quadratic

are added to the CNF and the original 5 clauses containing v in either phase are removed.
As always, before adding one of the clauses, forall reduction is applied.

3.2 Expand

Expansion of a universal variable v in S∀ requires to generate a copy S′∃ of S∃, with
a one-to-one mapping of variables u ∈ S∃ mapped to u′ ∈ S′∃. With f ′ we denote the
conjunction of clauses obtained from f by replacing all occurrences of u ∈ S∃ by u′.
The result of expanding v ∈ S∀ in Eqn. (1) is as follows

Ω(S1) S1 . Ω(S2) S2∀(S∀ −{v}) . ∃(S∃ ∪S′∃) . f{v/0} ∧ f ′{v/1} ∧ g

By f{v/0} we denote the result of substituting v by the constant 0 in f . This is equiv-
alent to removing all clauses in which v occurs in negative phase and removing the
occurrences of v in those clauses in which v occurs positively, followed by forall reduc-
tion. The substitution by 1 is defined accordingly.

4 Optimizations

Before invoking one of the two costly elimination procedures described in Sec. 3, we
first apply unit propagation, a simple form of equivalence reasoning, and the standard
QBF version of the pure literal rule. These simplifications are repeated until saturation.

4.1 Equivalence Reasoning

To detect equivalences we search for pairs of dual binary clauses. A clause is called
dual to another clause if it consists of the negation of the literals of its dual. If such a
pair is found, we take one of the clauses and substitute the larger literal by the negation
of the smaller one throughout the whole CNF.

The search for dual clauses can be implemented efficiently by hashing binary clauses.
In more detail, whenever a binary clause is added, we also save a reference to it in a
hash table and check, whether the hash table already contains a reference to its dual.
If this is the case an equivalence is found. After an equivalence is found, it is used to
eliminate one of the variables of the equivalence. Consider the following QBF formula:

∃x . ∀y . ∃z . (x∨ z)∧ (x∨ y∨¬z)∧ (¬x∨¬z)∧ (¬x∨¬z)

The two underlined dual binary clauses involving x and z form an equivalence. After the
last clause is added, the equivalence x = ¬z is detected and z is replaced by ¬x, which
results in the following QBF formula:

Resolve and Expand 63

∃x . ∀y . (x∨¬x)∧ (x∨ y∨ x)∧ (¬x∨ x)∧ (¬x∨ x)

After removal of 3 trivial clauses and forall reduction of the underlined clause, the only
clause left is the unit clause x. In general, before searching for dual clauses, forall re-
duction has to be applied first. This way all substitutions triggered by equivalences will
always replace existential variables by smaller literals. Replacing universal variables
would be incorrect as the standard example ∃x . ∀y . (x∨¬y)∧ (¬x∨ y) shows.

4.2 Subsumption

Expansion often needs to copy almost all clauses of the CNF. Moreover, the elimination
procedures of Sec. 3 produce a lot of redundant subsumed clauses. Therefore, subsumed
clauses should be removed. If a new clause is added, all old clauses are checked for
being subsumed by this new clause. This check is called backward subsumption [19]
and can be implemented efficiently on-the-fly, by using a signature-based algorithm.
However, the dual check of forward subsumption [19] is very expensive and is only
invoked periodically, for instance at each expansion step.

The subsumption algorithm is based on signatures, where a signature is a subset
of a finite signature domain D. In our implementation D = {0, . . . ,31} and a signature
is represented by an unsigned 32-bit word. Each literal l is hashed to h(l) ∈ D. The
signature σ(C) of a clause C is the union of the hash values of its literals. Finally, the
signature σ(l) of a literal l is defined as the union of the signatures of the clauses in
which it occurs, and is updated whenever a clause is added to the CNF.

Let C be a new clause, which is supposed to be added to the CNF. Further assume
that the current CNF already contains a clause D which is subsumed by C, or more
formally C ⊆D. Then the signature of C is a subset of the signature of D, which in turn
is a subset of the signatures of all the literals in D. Since all the literals of C are also
literals of D, we obtain the necessary condition, σ(C) ⊆ σ(l) for all literals l ∈C. The
signature σ(l) is still calculated with respect to the current CNF, to which C has not
been added yet.

If this necessary condition fails, then no clause in the current CNF can be backward
subsumed by the new clause. In this case our caching scheme using signatures is suc-
cessful and we call it a cache hit. Otherwise, in the case of a cache miss, we need to
traverse all clauses D of an arbitrary literal in the new clause, and explicitly check for
C ⊆ D. To minimize the number of visited clauses, we take the literal with the smallest
number of occurrences. During the traversal, inclusion of signatures is a necessary con-
dition again. This can easily be checked, since the signature of a clause is constant, and
can be saved.

In practice, the overhead of maintaining signatures and checking for backward sub-
sumption in the way just described turns out to be low. For forward subsumption no
such efficient solution exists, and thus, forward subsumption, in our implementation, is
only invoked before expensive operations, like expansion. Then we remove all clauses,
flush signatures and add back the clauses in reverse chronological order.

Finally, if a clause C is added to the CNF, the signatures of all its literals l ∈ C
have to be updated. However, if a clause is removed, hash collision does not allow to
subtract its signature from all the signatures of its literals. Therefore we just keep the

64 A. Biere

old signatures as an over approximation instead. After a certain number of clauses are
removed a recalculation of accurate clause signatures is triggered.

4.3 Tree-Like Prefix

We also realized that there are situations in which a linear quantifier prefix is not optimal
and the basic expansion step as described above copies too many clauses. Consider the
QBF

∃x . ∀y,u . ∃z,v . f1(x,y,z)∧ f2(x,u,v)

It is a linearization of the following formula with a tree-like prefix:

∃x

∀y
∧ ∀u

∃z ∃v
f1(x,y,z) f2(x,u,v)

The result of expanding y as described above would contain redundant copies of clauses
from f2 and vice versa redundant copies of f1 when expanding u. In general, this prob-
lem can be coped with in the copying phase of expansion. The idea is to copy only those
clauses that contain a variable connected to the expanded variable. In this context we
call a variable locally connected to another variable if both occur in the same clause.
The relation connected is defined as the transitive closure of locally connected, ignor-
ing variables smaller than the expanded variable and all other universal variables in the
same scope.

This technique is cheap to implement and avoids to pay the price for one single
expansion. But we have not found an efficient way to use the information about tree
like scopes to generate better elimination schedules on-the-fly.

5 Scheduling

The remaining problem, and one of our key contributions, is an efficient algorithm
for on-the-fly generation of elimination schedules. Our scheduler has to answer the
question, which of the variables in S∃ ∪ S∀ to eliminate next. As a cost function for
choosing the next variable we try to minimize the size of the CNF after elimination.
The size is measured in number of literals, which is equal to the sum of sizes of all
clauses. We separately calculate for each variable a pessimistic but tight upper bound
on the number of literals added, if the variable is eliminated. The variable with the
smallest bound, which can be negative, is chosen.

For each literal l we maintain two counters reflecting the number of occurrences o(l)
and the sum s(l) of the sizes of the clauses in which l occurs. These counters need to be
updated only when a clause is added or removed. The update is linear in the clause size.
This also shows that the obvious alternative cost function, which minimizes the number
of added clauses instead of literals, is less precise, without improving complexity. For
each existential scope S we maintain a counter reflecting the sum s(S) of the sizes of its
clauses.

Resolve and Expand 65

5.1 Expansion Cost

For the expansion of v ∈ S∀ in Eqn. (1) according to Sec. 3.2 a tight upper bound on
the number of added literals is calculated as follows. First f would be copied, which
adds s(S∃) literals. In f clauses are removed in which v occurs negatively, in the copy
f ′ clauses are removed in which v occurs positively. This means subtracting both s(v)
and s(¬v) from s(S∃). We also have to take care of the single literals removed, and the
cost for eliminating v by expansion becomes

s(S∃) −
(
s(v)+ s(¬v)+o(v)+o(¬v)

)

For all v∈ S∀ the term s(S∃) is the same. Thus we only need to order these variables with
respect to −

(
s(v)+ s(¬v)+o(v)+o(¬v)

)
, which does not depend on other literals.

This is essential for efficiency. In our implementation we use a separate heap based
priority queue for each scope.

5.2 Resolving Cost

For the elimination of an existential variable v∈ S∃ in Eqn. (1) according to Sec. 3.1 the
calculation of a tight upper bound is similar but more involved. Consider Fig. 1. The
literals on the left side, except v are copied o(¬v) times, which results in o(¬v) · (s(v)−
o(v)) added literals. The number of copies of literals from the right side is calculated in
the same way. Finally we have to remove all original literals, which all together results
in the following cost, which again only depends on one variable:

o(¬v) ·
(
s(v) − o(v)

)
+ o(v) ·

(
s(¬v) − o(¬v)

)
−

(
s(v) + s(¬v)

)

As the example of Fig. 1 shows, this expression is only an upper bound on the cost of
eliminating an existential variable by resolution. The bound is tight as the following
example shows. Take the set of variables on each side of Fig. 1. If the intersection of
these two sets only contain v, and all variables are existential, then the number of added
literals exactly matches the bound.

Note that for bad choices of v calculating the multiplication may easily exceed the
capacity of 32 bit integer arithmetic. Since variables with large costs can not be elimi-
nated anyhow, we used saturating arithmetic with an explicit representation of infinity
instead of arbitrary precision arithmetic.

5.3 Further Scheduling Heuristics

There are two exceptions to the scheduling heuristics just presented. First, as long as the
minimal cost to eliminate an existential variable in S∃ is smaller than a given bound E,
we eliminate the cheapest existential variable by resolution. This technique is also ap-
plied to pure propositional formulas. In this way quantor can be used as a preprocessor
for SAT.

In our experiments, it turned out that in many cases, forcing the formula not to
increase in size by setting E = 0, already reduces the final formula considerably. How-
ever, allowing small increases in size works even better. For scheduling purposes we
use E = 50. This bound should probably be smaller if quantor is only used for prepro-
cessing propositional formulas.

66 A. Biere

Another additional scheduling heuristics monitors the literals per clause ratio of the
clauses with scope S∃. If it reaches a certain threshold, 4.0 in our implementation, an
expansion is forced. After each forced expansion the threshold is increased by 10%.
The reasoning behind forced expansion is as follows. A small literals per clause ratio
increases the likelihood that the optimizations of Sec. 4 are applicable. In this sense,
the scheduler should slightly bias decisions towards expansion instead of resolving, in
particular, if the literals per clause ratio is high.

6 Experiments

We focus on structured instances, also called non-random, because we believe them to
be more important for practical applications. As SAT solver we used funex, our own
state-of-the-art SAT solver. It has not particularly been tuned towards our application.
We have also seen rare cases where funex performs considerably worse than other SAT
solvers, on SAT formulas generated by quantor.

In the first experiment we targeted the non random benchmarks of the SAT’03 eval-
uation of QBF [11] and compared quantor against semprop [12], the most efficient
solver on these benchmarks in the evaluation [11]. We added decide [17] and qube
with learning [9] as reference. In order to measure the effect of optimizations and using
Q-resolution we also configured quantor in expand only mode. In this mode the sched-
uler always chooses expansion and all the optimizations are switched off. Exceptions
are the pure literal rule, simplification by unit resolution, and forall reduction. This con-
figuration, marked expand in Tab. 1, almost matches the original algorithm of the first
version of quantor, which took part in SAT’03 evaluation of QBF [11].

As platform for this experiment we used an Intel Pentium IV 2.6 GHz with 1.5 GB
main memory running Debian Linux. The results in Tab. 1 are clustered in families of
benchmarks. For each family we count the number of instances solved in the given time
limit of 32 seconds and memory limit of 1 GB. The numbers of families solved are
printed in bold for best solvers. For a single best solver the numbers are underlined.

The comparison of the last two columns shows that expansion alone is very weak,
and our new optimizations are essential to obtain an efficient state-of-the-art expansion
based QBF solver. The number of cases in which quantor is among the best solvers for
a family is the same as for semprop. There are four more families, for which quantor
is the single best solver, three more than for semprop. Also note, that the families qbf*
and R3CNF*, on which quantor performs poorly compared to the other solvers, can
actually be considered to be randomized.

A detailed analysis revealed that quantor was able to solve 10 instances classified
as hard in [11]. These hard formulas could not be solved by any solver in 900 seconds
during the SAT’03 evaluation of QBF [11]. In a second experiment we restricted the
benchmark set to these hard instances, a far smaller set.

The new time limit was set to 800 seconds to accommodate for the slightly faster
processor (2.6 GHz instead of 2.4 GHz in [11]). As predicted by the evaluation results in
[11] all solvers except quantor timed out on these instances. The results for quantor are
presented in Tab. 2. Only solved instances are listed and are not clustered into families,
e.g. C49*1.* 0 0* is the single instance with file name matching this pattern.

Resolve and Expand 67

Table 1. Number solved instances for benchmarks families of the QBF evaluation 2003

benchmark family #inst decide qube semprop expand quantor

1 adder* 16 2 2 2 1 3
2 Adder2* 14 2 2 2 2 3
3 BLOCKS* 3 3 3 3 3 3
4 C[0-9]* 27 2 3 2 3 4
5 CHAIN* 11 10 7 11 4 11
6 comp* 5 4 4 5 5 5
7 flip* 7 6 7 7 7 7
8 impl* 16 12 16 16 16 16
9 k* 171 77 91 97 60 108

10 logn* 2 2 2 2 2 2
11 mutex* 2 1 2 2 2 2
12 qbf* 695 518 565 694 130 210
13 R3CNF* 27 27 27 27 25 21
14 robots* 48 0 36 36 15 24
15 term1* 4 2 3 3 1 3
16 toilet* 260 187 260 260 259 259
17 TOILET* 8 8 6 8 8 8
18 tree* 12 10 12 12 8 12
19 vonN* 2 2 2 2 2 2
20 z4ml* 13 13 13 13 13 13

#(among best in family) 6 12 16 9 16
#(single best in family) 0 0 1 0 4

In all but two of the cases where the full version of quantor succeeded the ex-
pand only version quickly reached the memory limit of 1 GB. We note the time until
the memory limit was reached in parentheses. It is also remarkable that the memory re-
quirements for quantor have a large variance. The columns ∀ and ∃ contain the number
of universal quantifications by expansion and existential quantifications by resolution
respectively.

We added columns containing the numbers of unit simplifications, applications of
the pure literal rule, subsumed clauses, applied substitutions, and number of removed
literals due to forall reduction (∀red). With the exception of subsumption, all optimiza-
tions are rather cheap with respect to run-time overhead, and as the data suggests, should
be implemented. In particular the high number of pure literals in solving some instances
is striking. Substitution does not seem to be important. More important, though also
more costly, is subsumption.

For the two hard C[0-9]* instances covered in Tab. 2 more than 99% of the time was
spent in the SAT solver. For the other solved hard instances no call to a SAT solver was
needed. In an earlier experiment we used a slightly slower computer, an Alpha ES40
Server running at 666 MHz. The time limit was set to one hour, and the memory limit to
8 GB. In this setting, we were able to solve two more of the hard C[0-9]* benchmarks
(with names matching C43*out*) in roughly 2500 seconds each. Again most time was

68 A. Biere

Table 2. Solved hard instances of SAT’03 evaluation of QBF

expand quantor

hard instance time space ∀ time space ∀ ∃ units pure subsu. subst. ∀red.

1 Adder2-6-s (12.2) m.o. – 29.6 19.7 90 13732 126 13282 174081 0 37268
2 adder-4-sat (12.1) m.o. – 0.2 2.8 42 1618 0 884 6487 0 960
3 adder-6-sat (13.0) m.o. – 36.6 22.7 90 13926 0 7290 197091 0 54174
4 C49*1.* 0 0* 98.3 40.8 1 27.9 13.3 1 579 0 0 48 84 0
5 C5*1.* 0 0* 357.0 45.6 2 56.2 16.0 2 2288 10 0 4552 2494 0
6 k path n-15 (16.5) m.o. – 0.1 0.8 32 977 66 82 2369 2 547
7 k path n-16 (16.6) m.o. – 0.1 0.8 34 1042 69 85 2567 2 597
8 k path n-17 (16.2) m.o. – 0.1 0.9 36 1087 72 100 3020 2 639
9 k path n-18 (16.8) m.o. – 0.1 0.9 36 1146 76 106 3242 2 725

10 k path n-20 (21.4) m.o. – 0.1 0.9 38 1240 84 149 3967 2 855
11 k path n-21 (21.0) m.o. – 0.1 1.0 40 1318 84 130 4470 2 909
12 k t4p n-7 (16.8) m.o. – 15.5 105.8 43 88145 138 58674 760844 8 215
13 k t4p p-8 (21.4) m.o. – 5.8 178.6 29 12798 206 5012 85911 4 138
14 k t4p p-9 (21.2) m.o. – 0.3 4.5 32 4179 137 1389 23344 10 142
15 k t4p p-10 (17.3) m.o. – 27.9 152.9 35 130136 193 63876 938973 4 137
16 k t4p p-11 (17.3) m.o. – 86.0 471.5 38 196785 204 79547 1499430 4 140
17 k t4p p-15 (21.3) m.o. – 84.6 354.7 50 240892 169 181676 1336774 9 226
18 k t4p p-20 (20.9) m.o. – 3.6 16.1 65 27388 182 21306 197273 11 325

time in seconds, space in MB, m.o. = memory out (> 1 GB)

spent in the SAT solver. Except for those reported in Tab. 2, no further hard instance of
[11] could be solved within these limits.

We also like to report on experiments involving benchmarks from QBFLIB, which
turned out to be very simple for quantor. These include two families of benchmarks
consisting of the 10 impl* instances and the 14 tree* instances. These 24 instances can
be solved altogether in less than 0.1 seconds.

One of the most appealing aspects of QBF is, that an efficient QBF solver may also
be used for unbounded model checking via the translation of [18, 20], also described
in [17]. This translation needs only one copy of the transition relation but requires 2 · l
alternations of quantifiers, where l = �log2r� and r is the initialized diameter (radius)
of the model. In a boolean encoding l can be bounded by the number of state bits n.
To check the hypothesis that QBF can be used for model checking in this way, we
generated models of simple n-bit hardware counters, with reset and enable signal.

We check the invalid simple safety property, that the all-one state is not reachable
from the initial state where all state bits are zero. This is the worst-case scenario for
bounded model checking [3] since 2n−1 steps are necessary to reach the state violating
the safety property. Symbolic model checking [13] without iterative squaring needs 2n

fix point iterations. However, the size of the result of the translation of this problem to
QBF is quadratic in n, the width of the counters.

With a time out of 60 seconds decide could only handle 3-bit-counters, qube and
semprop up to 4 bits, while quantor solved 7 bits, matching the result by plain BMC
with the same SAT solver. Since this example is very easy for BDD-based model check-
ing, it is clear that QBF based model checking still needs a long way to go.

Resolve and Expand 69

7 Conclusion

The basic idea of our QBF decision procedure is to resolve existential and expand uni-
versal variables. The key contribution is the resource-driven, pessimistic scheduler for
dynamically choosing the elimination order. In combination with an efficient imple-
mentation of subsumption we obtain an efficient QBF solver for quantified CNF.

As future work we want to explore additional procedures for simplifying CNF and
combine bottom-up elimination with top-down search. It may be also interesting to look
into other representations, such as BDDs or ZBDDs.

Finally, we would like to thank Uwe Egly and Helmuth Veith for insisting on the
argument that there is a benefit in not only focusing on a linear prefix normal form. Ac-
knowledgements also go to Rainer Hähnle, whose comments triggered the optimization
of our subsumption algorithm.

References

1. A. Ayari and D. Basin. QUBOS: deciding quantified boolean logic using propositional sat-
isfiability solvers. In Proc. 4th Intl. Conf. on Formal Methods in Computer-Aided Design
(FMCAD’02), volume 2517 of LNCS. Springer, 2002.

2. P. Aziz Abdulla, P. Bjesse, and N. Eén. Symbolic reachability analysis based on SAT-solvers.
In Proc. 6th Intl. Conf. on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’00), volume 1785 of LNCS. Springer, 2000.

3. A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic Model Checking without BDDs.
In Proc. 5th Intl. Conf. on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’99), volume 1579 of LNCS. Springer, 1999.

4. M. Cadoli, A. Giovanardi, and M. Schaerf. An algorithm to evaluate quantified boolean
formulae. In Proc. 16th National Conference on Artificial Intelligence (AAAI-98), 1998.

5. P. Chatalic and L. Simon. ZRes: The old Davis-Putnam procedure meets ZBDDs. In 17th
Intl. Conf. on Automated Deduction (CADE’17), volume 1831 of LNAI, 2000.

6. P. Chauhan, E. M. Clarke, and D. Kröning. Using SAT based image computation for reach-
ability analysis. Technical Report CMU-CS-03-151, Carnegie Mellon University, 2003.

7. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving. Com-
munications of the ACM, 5, 1962.

8. M. Davis and H. Putnam. A computing procedure for quantification theory. Journal of the
ACM, 7, 1960.

9. E. Giunchiglia, M. Narizzano, and A. Tacchella. Learning for quantified boolean logic sat-
isfiability. In Proc. 18th National Conference on Artificial Intelligence (AAAI’02), 2002.

10. H. Kleine Büning, M. Karpinski, and A. Flögel. Resolution for quantified boolean formulas.
Information and Computation, 117, 1995.

11. D. Le Berre, L. Simon, and A. Tacchella. Challenges in the QBF arena: the SAT’03 evalu-
ation of QBF solvers. In Proc. 6th Intl. Conf. on Theory and Applications of Satisfiability
Testing (SAT’03), volume 2919 of LNCS. Springer, 2003.

12. R. Letz. Lemma and model caching in decision procedures for quantified boolean formulas.
In Proc. Intl. Conf. on Automated Reasoning with Analytic Tableaux and Related Methods
(TABLEAUX’02), volume 2381 of LNCS. Springer, 2002.

13. K. L. McMillan. Symbolic Model Checking: An approach to the State Explosion Problem.
Kluwer Academic Publishers, 1993.

70 A. Biere

14. K. L. McMillan. Applying SAT methods in unbounded symbolic model checking. In
Proc. 14th Intl. Conf. on Computer-Aided Verification (CAV’02), volume 2404 of LNCS.
Springer, July 2002.

15. M. Mneimneh and K. Sakallah. Computing vertex eccentricity in exponentially large graphs:
QBF formulation and solution. In Proc. 6th Intl. Conf. on Theory and Applications of Satis-
fiability Testing (SAT’03), volume 2919 of LNCS. Springer, 2003.

16. D. Plaisted, A. Biere, and Y. Zhu. A satisfiability procedure for quantified boolean formulae.
Discrete Applied Mathematics, 130(2), 2003.

17. J. Rintanen. Partial implicit unfolding in the Davis-Putnam procedure for quantified boolean
formulae. In International Conference on Logic for Programming, Artificial Intelligence and
Reasoning (LPAR’01), 2001.

18. W. J. Savitch. Relation between nondeterministic and deterministic tape complexity. Journal
of Computer and System Sciences, 4, 1970.

19. R. Sekar, I. V. Ramakrishnan, and A. Voronkov. Term indexing. In Handbook of Automated
Reasoning, volume II. North-Holland, 2001.

20. L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time. In 5th Annual
ACM Symposium on the Theory of Computing, 1973.

21. P. F. Williams, A. Biere, E. M. Clarke, and A. Gupta. Combining decision diagrams and SAT
procedures for efficient symbolic model checking. In Proc. 12th Intl. Conf. on Computer
Aided Conf. Verification (CAV’00), volume 1855 of LNCS. Springer, 2000.

22. L. Zhang and S. Malik. Conflict driven learning in a quantified boolean satisfiability solver.
In Proc. Intl. Conf. on Computer-Aided Design (ICCAD’02), 2002.

Looking Algebraically at Tractable Quantified

Boolean Formulas

Hubie Chen and Vı́ctor Dalmau

Departament de Tecnologia, Universitat Pompeu Fabra,
Barcelona, Spain

{hubie.chen, victor.dalmau}@upf.edu

Abstract. We make use of the algebraic theory that has been used to
study the complexity of constraint satisfaction problems, to investigate
tractable quantified boolean formulas. We present a pair of results: the
first is a new and simple algebraic proof of the tractability of quanti-
fied 2-satisfiability; the second is a purely algebraic characterization of
models for quantified Horn formulas that were given by Kleine Büning,
Subramani, and Zhao, and described proof-theoretically.

1 Introduction

An instance of the generalized satisfiability problem is a set of constraints, where
a constraint is a relation over the two-element domain {0, 1} paired with a vari-
able tuple having the same arity as the relation; the question is to decide whether
or not there is a 0 − 1 assignment to all of the variables satisfying all of the
constraints. A constraint is satisfied under an assignment if the variable tuple
mapped under the assignment falls into the corresponding relation. Schaefer
was the first to consider the generalized satisfiability problem [22]. He proved a
now famous complexity classification theorem, showing that for any constraint
language–a set of relations that can be used to express constraints–the gener-
alized satisfiability problem over that constraint language is either in P or is
NP-complete. This result has spawned a number of extensions and generaliza-
tions (see for example [12]). Analogous classification theorems have been proven
for variants of the satisfiability problem such as quantified satisfiability [12]; also,
there has been much recent work on establishing a complexity classification the-
orem for the general constraint satisfaction problem (CSP), in which relations
over domains of size greater than two are permitted.

In the nineties, an algebraic viewpoint on constraints was established that
made it possible to approach the task of performing CSP complexity classifica-
tion using tools from universal algebra [18, 16]; this viewpoint has produced a
rich line of results, including [17, 13, 7, 4, 5, 6, 8, 3]. One fruit of this viewpoint has
been a perspective on the tractable cases of satisfiability established by Schae-
fer’s theorem, which include 2-satisfiability and Horn satisfiability. For instance,
an exact algebraic characterization of CSPs where it is possible to “go from local

H.H. Hoos and D.G. Mitchell (Eds.): SAT 2004, LNCS 3542, pp. 71–79, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

72 H. Chen and V. Dalmau

to global consistency” has been given [17]; the 2-satisfiability problem yields the
simplest non-trivial example from this class of CSPs.

In this paper, we demonstrate that the algebraic viewpoint that has been
used to study the complexity of generalized satisfiability and the CSP can be
used to derive new and interesting results concerning the quantified satisfiability
problem–despite the fact that the complexity classification program for which
the algebraic viewpoint was originally developed, has been completed in the two-
element case (for both standard satisfiability [22] and quantified satisfiability
[12]). It is our hope that this paper will stimulate further work on satisfiability
that utilizes this algebraic viewpoint.

We present two results, one on quantified 2-satisfiability and the other on
quantified Horn satisfiability; these two particular cases of the quantified satisfi-
ability problem are known to be tractable [1, 19, 20]. Our results are as follows.

First, we give a new algebraic proof that quantified 2-satisfiability is tractable
in polynomial time. In particular, we analyze an algorithm of Gent and Rowley
[15]. From an implementation standpoint, this algorithm is extremely simple
(and in the spirit of an algorithm for 2-satisfiability given by Del Val [14]):
other than simple manipulations such as setting and removing variables, the
only conceptual primitive used is unit resolution. We establish the correctness
of this algorithm via a relatively simple and succinct proof which, unlike the
proof of correctness given in [15], does not rely on the theory developed in [1].
In fact, we establish a more widely applicable result: we give a generalization of
the algorithm given in [15] and demonstrate that it yields a general, algebraic
sufficient condition for the tractability of the quantified constraint satisfaction
problem. Our presentation of this new tractability result is self-contained, though
the result was inspired by ideas in [11].

Second, we give a purely algebraic characterization of models for quantified
boolean Horn formulas that were identified by Kleine Büning, Subramani, and
Zhao [21]. They demonstrated that any true quantified Horn formula has a model
of a particularly simple form–where every existentially quantified variable is set
to either a constant or a conjunction of universally quantified variables. For any
true quantified Horn formula Φ, they identified a model of this form described
using the clauses derivable from Φ in Q-unit-resolution, a proof system known to
be sound and complete for quantified Horn formulas [20]. We give an equivalent
description of the models that they identified by making use of the semilattice
structure possessed by the models of a quantified Horn formula, along with some
natural homomorphisms among quantified Horn formulas that we introduce.

2 Tractability of Quantified 2-Satisfiability

The following is the basic terminology of quantified constraint satisfaction that
we will use in this section. A constraint is an expression R(v1, . . . , vk) where
each vi is a variable, and R ⊆ Bk is an arity k relation over a finite domain B.
The constraint R(v1, . . . , vk) is true under an interpretation f : V → B defined
on the variables vi if (f(v1), . . . , f(vk)) ∈ R. A quantified formula (over domain

Looking Algebraically at Tractable Quantified Boolean Formulas 73

B) is an expression of the form Q1v1 . . . Qnvnφ where each Qi is a quantifier
from the set {∀,∃} and where φ is a conjunction of constraints over the variables
{v1, . . . , vn}. A constraint language is defined to be a set of relations over the
same domain. The quantified constraint satisfaction problem over a constraint
language Γ , denoted by QCSP(Γ), is the problem of deciding, given as input a
quantified formula Φ having relations from Γ , whether or not Φ is true.

We now review some of the key elements of the algebraic viewpoint that has
been fruitful in the study of constraint satisfaction [18, 16]. The central notion
of this viewpoint is the concept of polymorphism. Let f : Bm → B be an m-ary
operation on B, let R be a relation over B, and let k denote the arity of R. We
say that f is a polymorphism of R, or that R is invariant under f , if for all (not
necessarily distinct) tuples (b1

1, . . . , b
1
k), . . . , (bm

1 , . . . , bm
k) in R, the tuple

(f(b1
1, . . . , b

m
1), . . . , f(b1

k, . . . , bm
k))

belongs also to R. For example, let T be the binary boolean relation

{(0, 0), (0, 1), (1, 1)}

having the property that the constraint T (u, v) is equivalent to the clause (¬u∨
v), and let maj : {0, 1}3 → {0, 1} be the ternary majority function on {0, 1}. It is
not difficult to verify that maj is a polymorphism of T . In fact, it is known that
a boolean relation R is invariant under maj if and only if any constraint over R
is equivalent to a 2-satisfiability formula.

In general, there is an intimate relationship between polymorphisms and con-
junctive formulas: it has been shown that the complexity of QCSP(Γ) is deter-
mined by the set of all polymorphisms common to all relations in Γ , denoted
by Pol(Γ). More precisely, if Γ1 and Γ2 are finite constraint languages such that
Pol(Γ1) and Pol(Γ2) contain the same functions, then QCSP(Γ1) and QCSP(Γ2)
are reducible to each other via polynomial-time many-one reductions [2]. Further-
more, the literature contains many results that link the complexity of CSP(Γ)
and QCSP(Γ) with the presence (or absence) of functions of certain types in
Pol(Γ).1 As an example, it is known that the presence in Pol(Γ) of the ternary
dual discriminator function t : B3 → B defined by

t(x, y, z) =

{
x if x = y
z otherwise

implies that QCSP(Γ) is solvable in polynomial time [2]. In turn, this implies
the tractability of quantified 2-satisfiability, since the dual discriminator function
over a two-element domain {0, 1} is equivalent to the maj function; however, the
proof given in [2] is fairly involved.

In this section, we will use an algebraic approach slightly different from the
polymorphism-based approach. Our approach is based on a new notion called

1 By CSP(Γ), we denote the standard CSP over Γ–that is, the restriction of QCSP(Γ)
to formulas having only existential quantifiers.

74 H. Chen and V. Dalmau

the extended set polymorphism, which we have studied also in the context of CSP
complexity [11]. Let R be a relation, say k-ary, over a domain B. An extended
set function f is any function with domain P(B) × B and range B. (Here, we
use P(B) to denote the set containing all non-empty subsets of B, that is, the
power set of B excluding the empty set.) We say that an extended set function
f is an extended set polymorphism of R (or, R is invariant under f) if for every
m ≥ 1 and all tuples (b1

1, . . . , b
1
k), . . . , (bm

1 , . . . , bm
k), (c1, . . . , ck) in R, the tuple

(f({b1
1, . . . , b

m
1 }, c1), . . . , f({b1

k, . . . , bm
k }, ck))

belongs also to R. As an example, consider again the boolean relation T as
defined above, and let g : P({0, 1})× {0, 1} → {0, 1} be defined as

g(S, b) =

{
s if |S| = 1 and S = {s}
b otherwise

It is immediate to verify that g is an extended set polymorphism of T . Indeed,
with a little bit of effort it can be proven that a relation R is invariant under g
if and only if any constraint over R is equivalent to a 2-satisfiability formula.

As with regular polymorphisms, we will say that a constraint language Γ is
invariant under an extended set function f if every relation in Γ is invariant
under f . We have the following general tractability result.

Theorem 1. Let Γ be a constraint language over domain B invariant under an
extended set function f : P(B) × B → B such that f(B, b) = b = f({b}, c) for
all b, c ∈ B. Then, QCSP(Γ) is solvable in polynomial time.

We can derive the tractability of quantified 2-satisfiability from Theorem 1
and the fact that the set of satisfying assignments of a 2-clause is invariant
under the extended set function g described above. In fact, we can derive from
Theorem 1 the tractability of any constraint language Γ invariant under the dual
discriminator function t : B3 → B described above.

The algorithm used to establish Theorem 1 makes use of the notion of arc
consistency. We say that a conjunction of constraints φ is arc consistent if when
R(w1, . . . , wk), R′(w′

1, . . . , w
′
k′

) are two constraints in φ such that wi = w′
j , then

the projection of R onto the ith coordinate is equal to the projection of R′ onto
the jth coordinate. This common projection is called the domain of the variable
wi = w′

j . We say that arc consistency can be established on a conjunction of
constraints φ if tuples can be removed from the relations of φ in such a way
that the resulting conjunction of constraints is logically equivalent to φ (that is,
has the same satisfying assignments as φ), is arc consistent, and has no variable
with empty domain. It is well-known that testing to see if arc consistency can
be established is performable in polynomial time.

The algorithm (for Theorem 1), which generalizes the algorithm for quan-
tified 2-satisfiability given in [15], is as follows. In each step of the algorithm,
the outermost quantified variable is eliminated. Let Φ = Q1v1 . . . Qnvnφ be a
quantified formula. First suppose that Q1 is an existential quantifier. In this

Looking Algebraically at Tractable Quantified Boolean Formulas 75

case, the algorithm attempts to find a value b in the domain B such that arc
consistency can be established on φ[v1 = b] where every universal variable has a
full domain, that is, domain equal to B. If there is no such value, the formula Φ
is false. Otherwise, the algorithm sets v1 to such a value, and continues. Next,
suppose that Q1 is a universal quantifier. In this case, the algorithm attempts to
ensure that for every value b in the domain B, arc consistency can be established
on φ[v1 = b] where every universal variable (other than v1) has a full domain. If
there is any such value where this is not the case, the formula is false. Otherwise,
the algorithm sets v1 to any value, and continues.

To prove the correctness of this algorithm (for QCSP(Γ) satisfying the hy-
pothesis of Theorem 1), we use the following characterization of true quantified
formulas: a quantified formula Φ = Q1v1 . . . Qnvnφ is true if there is a set S of
satisfying assignments for φ satisfying the two following properties:

(a) For every partial assignment α to the universal variables, there exists an
extension β of α in S.

(b) Suppose that α, β ∈ S are two assignments such that for every universal
variable y preceding an existential variable x, we have that α(y) = β(y).
Then, it holds that α(x) = β(x).

Proof. (Theorem 1) We establish the correctness of the algorithm by proving
that whenever a variable is eliminated, truth of the formula is preserved. To
demonstrate this, it suffices to prove the following fact: for any b, b′ ∈ B, if
arc consistency can be established on φ[v1 = b] where every universal variable
(coming after v1) has full domain, and Φ[v1 = b′] is true, then Φ[v1 = b] is
true. Let S ′ be a set of satisfying assignments for φ[v1 = b′] with the above
two properties. Let V denote the set of variables {v1, . . . , vn}. By definition of
arc consistency, there exists a mapping a : V → P(B) such that a(v1) = {b},
a(y) = B for all universal variables y, and for any constraint R(w1, . . . , wk) in
φ, there are tuples (b1

1, . . . , b
1
k), . . . , (bm

1 , . . . , bm
k) ∈ R where a(wi) = {b1

i , . . . , b
m
i }

for all i = 1, . . . , k. Let S be the set of assignments h : V \ {v1} → B of the
form h(v) = f(a(v), h′(v)) where h′ ∈ S ′. It is straightforward to verify that S
evidences the truth of Φ[v1 = b]. ��

3 Quantified Horn Formulas and KSZ Models

In this section, we give a purely algebraic characterization of the models for true
quantified Horn formulas provided in [21], which we call KSZ models.

Before proceeding, we introduce some basic terminology and notation for this
section. We will often, for sake of notation, restrict attention to quantified for-
mulas of the form ∀y1∃x1 . . .∀yn∃xnφ, that is, formulas where there is a strict
alternation between universal and existential quantifiers. In our quantified for-
mulas, φ will always denote a boolean formula in conjunctive normal form, that
is, a conjunction of clauses. Recall that a conjunction of clauses φ is a Horn
formula if all of its clauses contain at most one positive literal. We define an

76 H. Chen and V. Dalmau

existential unit clause to be a clause C such that there is exactly one existential
literal l ∈ C, the literal l is a postive literal, and all literals in C \{l} come before
l in the quantification order of the formula in which C appears.

A strategy for a quantified formula Φ = ∀y1∃x1 . . .∀yn∃xnφ is a sequence of
mappings {σi : {0, 1}i → {0, 1}}i∈[n], where [n] denotes the set containing the
first n positive integers, {1, . . . , n}. A strategy {σi : {0, 1}i → {0, 1}}i∈[n] is a
model of Φ if for all a1, . . . , an ∈ {0, 1}, it holds that the assignment mapping yi

to ai and xi to σi(a1, . . . , ai) (for all i ∈ [n]) satisfies φ. We consider a quantified
formula Φ to be true if it has a model, and use MΦ to denote the set of all
models of Φ.

Before defining the KSZ model for a quantified Horn formula, we need to
introduce the following proof system for quantified Horn formulas.

Definition 1. [20] The Q-unit-resolution proof system is defined as follows:
Let Φ = Q1v1 . . . Qmvmφ be a quantified boolean formula.

– For any clause C ∈ φ, Φ � C.
– If Φ � C, Φ � C ′, C is an existential unit clause with existential variable x,

and C ′ is a clause containing ¬x, then Φ � (C ∪ C ′) \ {x,¬x}.
– If Φ � C and l ∈ C is a literal over a universal variable coming after all

other literals in C in the quantification order, then Φ � C \ {l}.

It has been shown that this proof system is sound and complete for the class
of all quantified Horn formulas [20]: for any quantified Horn formula Φ, the
empty clause is derivable from Φ (that is, Φ � ∅) if and only if Φ is false. Having
defined this proof system, we can now define the KSZ model for a quantified
Horn formula Φ, which is described in terms of the clauses derivable from Φ.

Definition 2. [21] The KSZ model of a true quantified Horn formula Φ =
∀y1∃x1 . . .∀yn∃xnφ is defined as follows. Let U denote the set of all existential
variables x such that there exists an existential unit clause C where x ∈ C
and Φ � C. For an existential variable x, let W (x) denote the set containing
all sets of negative universal literals C such that C ∪ {x} is an existential unit
clause derivable from Φ (using Q-unit-resolution); and, let V (x) denote the set
∩C∈W (x)C.

The KSZ model of Φ is the model {σi}i∈[n] such that

σi(y1, . . . , yi) =

0 if xi /∈ U
∧l∈V (xi)¬l if xi ∈ U, V (xi) �= ∅
1 if xi ∈ U, V (xi) = ∅

In what follows, we give a purely algebraic characterization of the KSZ model
of a true quantified Horn formula. We first observe that if for any two models
Σ = {σi : {0, 1}i → {0, 1}}i∈[n], Σ′ = {σ′

i : {0, 1}i → {0, 1}}i∈[n] of a quantified
Horn formula Φ, the strategy Σ ∧ Σ′ defined as {σi ∧ σ′

i}i∈[n] can be verified
to also be a model for Φ. This follows from the fact that the operation ∧ is a
polymorphism of any Horn clause: when φ is a Horn clause (or more generally,

Looking Algebraically at Tractable Quantified Boolean Formulas 77

a conjunction of Horn clauses) over a variable set V , and f : V → {0, 1} and
f ′ : V → {0, 1} are interpretations both satisfying φ, the interpretation f∧f ′ also
satisfies φ. Because the operation ∧ (applied to strategies as above) is associative,
commutative, and idempotent, we have the following observation.

Proposition 1. For all quantified Horn formulas Φ, (MΦ,∧) is a semilattice.

For any quantified Horn formula Φ = ∀y1∃x1 . . .∀yn∃xnφ, let Φ[yk] be the
formula obtained from Φ by removing all universal variables yi from the quan-
tifier prefix, except for yk, and instantiating all instances of variables yi (with
i �= k) in φ with the value 1. We define a mapping dyk

from the set of strate-
gies for Φ to the set of strategies for Φ[yk] as follows. When Σ = {σi}i∈[n] is a
strategy for Φ, define dyk

(Σ) to be the strategy Σ′ = {σ′
i}i∈[n] for Φ[yk] such

that for i < k, it holds that σ′
i = σi(1, . . . , 1), and for i ≥ k, it holds that

σ′
i(yk) = σi(1, . . . , 1, yk, 1, . . . , 1), where in the right hand side expression, the

kth coordinate contains yk, and all other coordinates contain 1. It is clear that
if Σ is a model of Φ, then dyk

(Σ) is a model of Φ[yk]. We define d to be the
mapping taking a strategy Σ of Φ to the n-tuple (dy1

(Σ), . . . ,dyn
(Σ)), and call

d the deconstruction mapping, as it deconstructs a model for Φ into models for
the various Φ[yk].

Interestingly, given models for the various φyk
, we can construct a model for

φ. Let r be the mapping taking an n-tuple of strategies (Σ1, . . . , Σn), where Σk =
{σk

i }i∈[n] is a strategy for φyk
, to the strategy Σ = {σi : {0, 1}i → {0, 1}}i∈[n]

for φ, where for i ∈ [n], the mapping σi is defined by

σi(y1, . . . , yi) = (σ1
i (y1) ∧ . . . ∧ σi

i(yi)) ∧ (σi+1
i ∧ . . . ∧ σn

i).

We call r the reconstruction mapping. We have the following result concerning
the deconstruction and reconstruction mappings.

Theorem 2. For all quantified Horn formulas Φ = ∀y1∃x1 . . .∀yn∃xnφ,

– the deconstruction mapping d is a homomorphism from the semilattice
(MΦ,∧) to the semilattice (MΦ[y1],∧)× · · · × (MΦ[yn],∧); and,

– the reconstruction mapping r is a homomorphism from the semilattice
(MΦ[y1],∧)× · · · × (MΦ[yn],∧) to the semilattice (MΦ,∧).

From Theorem 2, we can deduce the following corollary: if for a quanti-
fied Horn formula Φ = ∀y1∃x1 . . . ∀yn∃xnφ it holds that all of the formulas
Φ[y1], . . . , Φ[yn] are true, then Φ itself is true. This fact was observed, for instance,
in [20]; however, the proof of Theorem 2 gives a purely algebraic justification of
it.

It is well-known that every semilattice (S,⊕) has a maximal element m such
that m ⊕ s = s ⊕m = m for all s ∈ S. For every quantified Horn formula Φ,
we let ΥΦ denote the maximal element of (MΦ,∧). Notice that for the pointwise
ordering ≤ on functions where 1 ≤ 0, when Σ = {σi}i∈[n] is a model of Φ
and {υi}i∈[n] denotes ΥΦ, it holds that σi ≤ υi, for all i ∈ [n]. The model ΥΦ

is rather canonical, but is not (in general) equal to the KSZ model. However,

78 H. Chen and V. Dalmau

there is an intimate relationship between these two models that we can give,
in terms of the two homomorphisms defined: deconstructing the model ΥΦ and
then reconstructing the resulting models yields the KSZ model.

Theorem 3. For all true quantified Horn formulas Φ, it holds that the KSZ
model of Φ is equal to r(d(ΥΦ)).

Theorem 3 gives a purely algebraic characterization of the KSZ model which,
as we have seen, was originally defined proof-theoretically.

References

1. Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A Linear-Time Algo-
rithm for Testing the Truth of Certain Quantified Boolean Formulas. Inf. Process.
Lett. 8(3): 121-123 (1979).

2. F. Börner, A. Bulatov, A. Krokhin, and P. Jeavons. Quantified Constraints: Algo-
rithms and Complexity. Computer Science Logic 2003.

3. A. Bulatov. Combinatorial problems raised from 2-semilattices. Manuscript.

4. Andrei A. Bulatov. A Dichotomy Theorem for Constraints on a Three-Element
Set. FOCS 2002.

5. A. Bulatov. Malt’sev constraints are tractable. Technical report PRG-RR-02-05,
Oxford University, 2002.

6. Andrei A. Bulatov. Tractable conservative Constraint Satisfaction Problems. LICS
2003.

7. Andrei A. Bulatov, Andrei A. Krokhin, and Peter Jeavons. Constraint Satisfaction
Problems and Finite Algebras. ICALP 2000.

8. A. Bulatov and P. Jeavons. An Algebraic Approach to Multi-sorted Constraints
Proceedings of 9th International Conference on Principles and Practice of Con-
straint Programming, 2003.

9. A. Bulatov, and P. Jeavons. Algebraic structures in combinatorial problems. Tech-
nical report MATH-AL-4-2001, Technische Universitat Dresden, 2001.

10. A. Bulatov, and P. Jeavons. Tractable constraints closed under a binary operation.
Technical report PRG-TR-12-00, Oxford University, 2000.

11. Hubie Chen and Vı́ctor Dalmau. (Smart) Look-Ahead Arc Consistency and the
Pursuit of CSP Tractability. CP 2004.

12. Nadia Creignou, Sanjeev Khanna, and Madhu Sudan. Complexity Classifications of
Boolean Constraint Satisfaction Problems. SIAM Monographs on Discrete Math-
ematics and Applications 7, 2001.

13. Vı́ctor Dalmau and Justin Pearson. Set Functions and Width 1. Constraint Pro-
gramming ’99.

14. Alvaro del Val. On 2SAT and Renamable Horn. In AAAI’00, Proceedings of the
Seventeenth (U.S.) National Conference on Artificial Intelligence, 279-284. Austin,
Texas, 2000.

15. Ian Gent and Andrew Rowley. Solving 2-CNF Quantified Boolean Formulae using
Variable Assignment and Propagation. APES Research Group Report APES-46-
2002. 2002.

16. Peter Jeavons. On the Algebraic Structure of Combinatorial Problems. Theor.
Comput. Sci. 200(1-2): 185-204, 1998.

Looking Algebraically at Tractable Quantified Boolean Formulas 79

17. P.G.Jeavons, D.A.Cohen and M.Cooper. Constraints, Consistency and Closure.
Artificial Intelligence, 1998, 101(1-2), pages 251-265.

18. Peter Jeavons, David A. Cohen, and Marc Gyssens. Closure properties of con-
straints. J. ACM 44(4): 527-548 (1997).

19. Marek Karpinski, Hans Kleine Büning, and Peter H. Schmitt. On the Computa-
tional Complexity of Quantified Horn Clauses. CSL 1987: 129-137.

20. Hans Kleine Büning, Marek Karpinski, and Andreas Flögel. Resolution for Quan-
tified Boolean Formulas. Information and Computation 117(1): 12-18 (1995).

21. Hans Kleine Büning, K. Subramani, Xishun Zhao. On Boolean Models for Quan-
tified Boolean Horn Formulas. SAT 2003.

22. T. Schaefer. The complexity of satisfiability problems. Proceedings of the 10th
Annual Symposium on Theory of Computing, ACM, 1978.

Derandomization of Schuler’s Algorithm for SAT

Evgeny Dantsin and Alexander Wolpert

Roosevelt University, 430 S. Michigan Av., Chicago, IL 60605, USA
{edantsin, awolpert}@roosevelt.edu

Abstract. Recently Schuler [17] presented a randomized algorithm that
solves SAT in expected time at most 2n(1−1/ log2(2m)) up to a polynomial
factor, where n and m are, respectively, the number of variables and the
number of clauses in the input formula. This bound is the best known
upper bound for testing satisfiability of formulas in CNF with no restric-
tion on clause length (for the case when m is not too large comparing to
n). We derandomize this algorithm using deterministic k-SAT algorithms
based on search in Hamming balls, and we prove that our deterministic
algorithm has the same upper bound on the running time as Schuler’s
randomized algorithm.

1 Introduction

Known Upper Bounds

A natural way to evaluate a satisfiability-testing algorithm is to find an upper
bound on its worst-case running time. Such bounds can be also used to compare
algorithms with each other. Since the mid 80s there has been a “competition”
for the “record” upper bounds for different versions of SAT. Typically, bounds
for SAT have the form αn up to a polynomial factor, where n is the number of
variables in the input formula. The exponent’s base α may be a constant (α < 2)
or may depend on parameters of input formulas (such as the number of variables
or the number of clauses). A challenging problem is to lower α as much as we
can.

The currently best known upper bounds are discussed below (we give only
the exponential terms of the bounds, omitting polynomial factors). Figure 1
summarizes these bounds.

Randomized Algorithms for k-SAT. All “record” randomized algorithms for k-
SAT use one (or both) of the following two approaches:

– Random-assignment generation combined with unit clause elimination and
bounded resolution (Paturi, Pudlák, Saks, Zane [12, 11]);

– Multistart random walk (Schöning [15, 16]).

The best known bounds for 3-SAT and 4-SAT are obtained using an algorithm
based on a combination of both methods, namely: 1.324n for 3-SAT and 1.474n

for 4-SAT [9]. Other recent algorithms for 3-SAT, e.g. [1, 8, 14], follow up the

H.H. Hoos and D.G. Mitchell (Eds.): SAT 2004, LNCS 3542, pp. 80–88, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Derandomization of Schuler’s Algorithm for SAT 81

Randomized algorithms Deterministic algorithms

3-SAT 1.324n [9] 1.481n [2]

4-SAT 1.474n [9] 1.6n [2]

k-SAT (k > 4)
2n(1− µk

k−1
)+o(n)

where limk→∞ µk = π2/6 [11]

(
2 − 2

k+1

)n
[2]

SAT 2
n
(

1− 1

log(2m)

)
[17] 2

n
(

1− 1

log(2m)

)
[this paper]

Fig. 1. “Record” worst-case upper bounds for k-SAT and SAT

multistart random walk approach. The bounds obtained using [11] are close:
1.362n and 1.476n for 3-SAT and 4-SAT respectively.

The best known bounds for k > 4 are due to the Paturi-Pudlák-Saks-Zane
algorithm in [11]:

2n(1− µk
k−1)+o(n)

where µk → π2/6 as k →∞. In particular, for k = 5 and k = 6, this gives 1.569n

and 1.637n respectively. The multistart random walk algorithm [15] gives close
bounds: (

2− 2
k

)n

.

Deterministic Algorithms for k-SAT. Until recently, “record” upper bounds for
k-SAT were obtained usind DPLL-like algorithms [6, 5], for example the 1.505n

bound for 3-SAT [10]. Newer deterministic algorithms borrow ideas from ran-
domized approaches to testing satisfiability. The algorithms in [3, 2] that have
the best known upper bounds for k-SAT are based on the derandomization of
multistart random walk. They cover the Boolean cube {0, 1}n by Hamming balls
and apply a local search method to find a satisfying assignment inside these balls.
The “record” bound is (

2− 2
k + 1

)n

.

For k = 3, the bound can be improved to 1.481n.

Randomized Algorithms for SAT (No Restriction on Clause Length). The best
known bound was proved by R. Schuler in [17]. His algorithm uses a combina-
tion of the Paturi-Pudlák-Saks-Zane algorithm [11] and “clause shortening” (see
Sect. 2 for details). The bound is

2n
(
1− 1

log(2m)

)

82 E. Dantsin and A. Wolpert

where m is the number of clauses in the input formula and log x denotes log2 x.
Also, there is another bound: 2n−c

√
n, where c is a constant. This bound is due to

two different algorithms. One algorithm [13] uses the Paturi-Pudlák-Saks-Zane
algorithm in combination with the DPLL approach. The second algorithm [4]
is based on multistart search in Hamming balls: Generate a random assignment
and use local search to find a solution within a certain Hamming distance around
this assignment. Schuler’s bound [17] is more interesting than the 2n−c

√
n bound

because it is better for the case when m is not too large comparing to n, namely
when m = o(2

√
n). Note that for longer formulas, both bounds are worse than

the trivial bound 2n.

Deterministic Algorithms for SAT (No Restriction on Clause Length). Up until
now, the only non-trivial upper bound for deterministic SAT algorithms has
been given in [4]:

2
n

(
1− 2√

n log n

)
.

The corresponding algorithm is a derandomized version of multistart search in
Hamming balls. The derandomization is based on covering codes. In the case
of deterministic algorithms for SAT, there are also other types of bounds that
are “more” dependent on the number of clauses or other input parameters, e.g.,
1.239m [7].

In this paper we give a deterministic algorithm that has the same bound

2n
(
1− 1

log(2m)

)

as in the case of randomized algorithms for SAT.

Our Result

We prove that SAT can be solved by a deterministic algorithm with the same
upper bound on the running time as Schuler’s randomized algorithm, i.e., with
the bound 2n(1−1/ log

2
(2m)) up to a polynomial factor.

Like Schuler’s algorithm, our deterministic algorithm can be described in
terms of two algorithms M (stands for Main) and S (stands for Subroutine).
The algorithm S is used to test satisfiability of formulas with “short” clauses (of
length at most log(2m)). The algorithmM is the main algorithm that transforms
an input formula F into F ′ by “shortening” the clauses in F . Then M invokes
S to check whether F ′ is satisfiable. If so, we are done. Otherwise, the algorithm
M simplifies F and recursively invokes itself on the results of simplification.

Theorem 1 in Sect. 3 gives an upper bound on the running time of the algo-
rithm M under an assumption on the running time of the subroutine S. More
exactly, the assumption is that S runs in time at most 2n(1−1/k) up to a poly-
nomial factor, where k is the maximum length of clauses in F . Then M runs
in time at most 2n(1−1/ log(2m)) up to a polynomial factor. Does there exist any
deterministic subroutine S that meets this assumption? The answer is positive
(Theorem 2): the algorithms [2] have the required upper bound on the running

Derandomization of Schuler’s Algorithm for SAT 83

time. Thus, taking any of them as the subroutine S, we obtain a deterministic
algorithm that solves SAT with the bound

2n
(
1− 1

log(2m)

)
.

Notation

By a formula we mean Boolean formulas in conjunctive normal form (CNF)
defined as follows. A literal is a Boolean variable x or its negation ¬x. A clause
is a finite set C of literals such that C contains no opposite literals. The length of
C (denoted by |C|) is the number of literals in C. A formula is a set of clauses.
An assignment to variables x1, . . . , xn is a mapping from {x1, . . . , xn} to the
truth values {true, false}. This mapping is extended to literals: each literal
¬xi is mapped to the truth value opposite to the value assigned to xi. We say
that a clause C is satisfied by an assignment A if A assigns true to at least one
literal in C. The formula F is satisfied by A if every clause in F is satisfied by
A. In this case, A is called a satisfying assignment for F .

By SAT we mean the following computational problem: Given a formula F in
CNF, decide whether F is satisfiable or not. The k-SAT problem is the restricted
version of SAT that allows only clauses of length at most k.

Here is a summary of the notation used in the paper.

– F denotes a formula;
– n denotes the number of variables in F ;
– m denotes the number of clauses in F ;
– k denotes the maximum length of clauses in F ;
– |C| denotes the length of clause C;
– log x denotes log2 x.

2 Algorithms Based on Clause Shortening

Schuler’s Algorithm

We first sketch Schuler’s algorithm [17]. More exactly, we describe a polynomial-
time randomized procedureR that finds a satisfying assignment (if any) with prob-
ability at least 2−n(1−1/ log(2m)). This probability can be increased to a constant by
repetitions in the usual way. The procedureR tests satisfiability in two steps:

1. Convert the input formula to a formula in k-CNF where k = log(2m);
2. Use a k-SAT algorithm to test satsfiability of the resulting formula.

Let F be an input formula consisting of clauses C1, . . . , Cm. Assuming that
F is satisfied by an (unknown) assignment A, we show how R finds A. The
procedure R starts with shortening the clauses in F as follows:

1. For each clause Ci such that |Ci| > log(2m), choose any log(2m) literals in
Ci and delete the other literals.

2. Leave the shorter clauses as is.

84 E. Dantsin and A. Wolpert

Let F ′ = {D1, . . . , Dm} be the result of the shortening. Obviously, any satisfying
assignment for F ′ also satisfies F . The formula F ′ is in k-CNF where k =
log(2m). Therefore, a satisfying assignment for F ′ (if any) can be found using a
k-SAT algorithm. The procedure R uses the Paturi-Pudlák-Zane method from
[12] to find a satisfying assignment for F ′ in polynomial time with probability
at least 2−n(1−1/k). There are two possible cases:

Case 1. A satisfies F ′. Then the Paturi-Pudlák-Zane method finds A in poly-
nomial time with probability at least 2−n(1−1/ log(2m)).

Case 2. A does not satisfy F ′. Then there is a clause Di such that all of its
literals are false under A (but Ci is true under A). Therefore, if we “guess”
this clause correctly, we may simplify F by assigning false to all literals
occurring in Di. We choose a clause in F ′ uniformly at random. The proba-
bility that we have “guessed” the clause correctly (i.e., we have chosen Di)
is at least 1/m. Then we simplify F ′ as follows:
1. For each literal l in the chosen clause, remove all clauses that contain ¬l;
2. Delete l from the remaining clauses.

Finally, we recursively apply R to the result of the simplification.

The analysis of R in [17] shows that R finds A with the required probability.
Note that the same bound holds if the Paturi-Pudlák-Zane method (used as a
subroutine in R) is replaced by another procedure that finds a satisfying assign-
ment in polynomial time with the same or higher probability, for example by
Schöning’s random-walk method [15].

Algorithms M (for Main) and S (for Subroutine)

Schuler’s algorithm invokes the Paturi-Pudlák-Saks-Zane procedure [11] for test-
ing satisfiability of formulas with “short” clauses. Our derandomized version will
also use a subroutine to check formulas with “short” clauses. However, we first
describe our algorithm without specifying the invoked subroutine. That is, as-
suming that S is an arbitrary procedure that tests satisfiability of formulas in
k-CNF in time 2n(1− 1

k) up to a polynomial factor, we define our main algorithm
M as an algorithm that invokes S as a subroutine.

Algorithm S
Input: Formula F (with no restriction on clause length).
Output: Satisfying assignment or “no”.
Any algorithm that tests satisfiability of a formula F in time 2n(1− 1

k) up to a
polynomial factor, where n is the number of variables in F and k is the maximum
length of clauses in F .

Algorithm M
Input: Formula F with clauses C1, . . . , Cm over n variables.
Output: Satisfying assignment or “no”.

1. Change each clause Ci to a clause Di as follows: If |Ci| > log(2m) then
choose any log(2m) literals in Ci and delete the other literals; otherwise
leave Ci as is, i.e., Di = Ci. Let F ′ denote the resulting formula.

Derandomization of Schuler’s Algorithm for SAT 85

2. Test satisfiability of F ′ using the algorithm S.
3. If F ′ is satisfiable, return the satisfying assignment found in the previous

step. Otherwise, F could be still satisfiable: there may exist an assignment
A that satisfies all clauses C1, . . . , Cm but falsifies some Di. Therefore, A
can be found by successively falsifying the reduced clauses in F ′. Namely,
for each clause Di different from Ci, do the following:
(a) Convert F to Fi by assigning false to all literals in Di. Namely, for

each literal l in Di, remove all clauses containing ¬l and delete l from
the remaining clauses.

(b) Recursively invoke M on Fi.
4. Return “no”.

3 Bound for SAT

We prove an upper bound for M assuming that S exists. Then we choose S
such that this subroutine runs in the required time. As a result, we obtain the
claimed upper bound for the main algorithm M.

Theorem 1. The running time of the algorithm M is at most

2n
(
1− 1

log(2m)

)

up to a polynomial factor.

Proof. Let tS(F) and tM(F) be, respectively, the running times of the algorithms
S and M on a formula F . It is not difficult to see that tM(F) can be estimated
(up to a polynomial factor) as follows:

tM(F) ≤ tS(F ′) + m · tM(Fi) (1)

where F ′ and Fi are as described in the algorithm M. Let TM(n,m) denote
the maximum of the running time of M on formulas with m clauses over n
variables. For the subroutine S, we define TS(n,m) as the maximum running
time on a different set of formulas, namely let TS(n,m) be the maximum of the
running time of S on the set of formulas F such that each F has m clauses over
n variables and the maximum length of clauses is not greater than log(2m). Let
L denote log(2m). Then for any n and m, the inequality (1) implies the following
recurrence relation:

TM(n,m) ≤ TS(n,m) + m · TM(n− L,m)

Iterating this recurrence and using the bound on tS(F) with k ≤ L, we get
(again up to a polynomial factor)

TM(n,m) ≤
n/L∑
i=0

mi · TS(n− iL,m)

≤
n/L∑
i=0

mi · 2(n−iL)(1−1/L) = 2n(1−1/L)

n/L∑
i=0

(
m · 21−L

)i

86 E. Dantsin and A. Wolpert

Since L = log(2m), we have m 21−L = 1. Therefore,

tM(F) ≤ TM(n,m) ≤ 2n(1−1/L)

up to a polynomial factor. ��

Theorem 2 (based on [2]). There exists a deterministic algorithm that tests
satisfiability of an input formula F in time at most

2n(1− 1

k)

up to a polynomial factor, where n is the number of variables in F , and k is the
maximum length of clauses in F .

Proof. Paper [2] defines two algorithms that can be applied to any formula.
Their running times are estimated in terms of the maximum length of clauses
in the input formula (thus, they can be viewed as algorithms for k-SAT). Both
algorithms cover the Boolean cube {0, 1}n by Hamming balls and search for a
satisfying assignment inside these balls. The first algorithm runs in time at most
2n(1−log(1+1/k)) up to a polynomial factor (Theorem 1 in [2]). Since

log
(

1 +
1
k

)
=

log e

k
+ o

(
1
k

)
,

this algorithm meets the claim. The second algorithm has a parameter δ; its
running time is at most

2n(1−log(1+ 1

k)+δ)

up to a polynomial factor (Theorem 2 in [2]). Taking δ ≤ log(e/2)
k , we have

2n(1−log(1+ 1

k)+δ) ≤ 2n
(
1− log e

k +
log(e/2)

k

)
≤ 2n(1− 1

k).

Hence, the second algorithm also meets the claim.
The algorithms differ in the construction of the covering of {0, 1}n by Ham-

ming balls. The first algorithm uses a greedy method to construct the covering
that is minimal up to a polynomial factor. The construction requires an expo-
nential space (approximately 2n/6). The second algorithm constructs a “nearly
minimal” covering, i.e., a covering that is minimal up to a factor of 2δn, where
δ can be chosen arbitrary small.

To estimate the space used by the second algorithm, we have to consider
details of how it constructs the covering of {0, 1}n. Each ball center is the con-
catenation of n/b blocks of length b (Lemma 7 in [2]). The algorithm constructs
a covering code C of length b for blocks. Then, keeping this code in memory, the
algorithm generates code words of length n (centers of balls) one by one. An
upper bound on the space can be estimated as the cardinality of the covering
code C for blocks. Using Lemma 4 in [2], we can estimate the cadrinality |C| as
follows:

|C| ≤ b
√

b 2b(1−H(1

k+1)) (2)

Derandomization of Schuler’s Algorithm for SAT 87

where H(x) = −x log x − (1 − x) log(1 − x) is the binary entropy function. To
obtain the desired upper bound on the running time, we should choose b so that

|C|n/b ≤ 2n(1−H(1

k+1)+δ). (3)

Using the bound (2) on |C| and the inequality (3), we get the following constraint
on b: (

b
√

b 2b(1−H(1

k+1))
)n/b

≤ 2n(1−H(1

k+1)+δ) (4)

which is equivalent to (b
√

b)1/b ≤ 2δ. Now we substitute

δ =
log(e/2)

k

and take b = 4k log k. Then (4) holds for all sufficiently large k. Therefore, we can
use blocks of length 4k log k. In fact, the algorithm will be applied to formulas
with k = log(2m), which gives the upper bound (2m)4 log log(2m) on the space.

��

Theorem 3. Suppose that the algorithm M uses the algorithm from Theorem 2
as the subroutine S. Then M tests satisfiability of an input formula F with m
clauses over n variables in time at most

2n
(
1− 1

log(2m)

)

up to a polynomial factor.

Proof. Immediately follows from Theorems 1 and 2. ��

Acknowledgments

We thank Edward A. Hirsch for useful discussions. We also thank anonymous
referees for their comments that helped to improve the paper.

References

1. S. Baumer and R. Schuler. Improving a probabilistic 3-SAT algorithm by dynamic
search and independent clause pairs. Electronic Colloquium on Computational
Complexity, Report No. 10, February 2003.

2. E. Dantsin, A. Goerdt, E. A. Hirsch, R. Kannan, J. Kleinberg, C. Papadimitriou,
P. Raghavan, and U. Schöning. A deterministic (2 − 2/(k + 1))n algorithm for k-
SAT based on local search. Theoretical Computer Science, 289(1):69–83, October
2002.

3. E. Dantsin, A. Goerdt, E. A. Hirsch, and U. Schöning. Deterministic algorithms
for k-SAT based on covering codes and local search. In Proceedings of the 27th In-
ternational Colloquium on Automata, Languages and Programming, ICALP 2000,
volume 1853 of Lecture Notes in Computer Science, pages 236–247. Springer, July
2000.

88 E. Dantsin and A. Wolpert

4. E. Dantsin, E. A. Hirsch, and A. Wolpert. Algorithms for SAT based on search
in Hamming balls. In Proceedings of the 21st Annual Symposium on Theoreti-
cal Aspects of Computer Science, STACS 2004, volume 2996 of Lecture Notes in
Computer Science, pages 141–151. Springer, March 2004.

5. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Communications of the ACM, 5:394–397, 1962.

6. M. Davis and H. Putnam. A computing procedure for quantification theory. Jour-
nal of the ACM, 7:201–215, 1960.

7. E. A. Hirsch. New worst-case upper bounds for SAT. Journal of Automated
Reasoning, 24(4):397–420, 2000.

8. T. Hofmeister, U. Schöning, R. Schuler, and O. Watanabe. A probabilistic 3-SAT
algorithm further improved. In Proceedings of the 19th Annual Symposium on
Theoretical Aspects of Computer Scienceg, STACS 2002, volume 2285 of Lecture
Notes in Computer Science, pages 192–202. Springer, March 2002.

9. K. Iwama and S. Tamaki. Improved upper bounds for 3-SAT. Electronic Collo-
quium on Computational Complexity, Report No. 53, July 2003.

10. O. Kullmann. New methods for 3-SAT decision and worst-case analysis. Theoretical
Computer Science, 223(1-2):1–72, 1999.

11. R. Paturi, P. Pudlák, M. E. Saks, and F. Zane. An improved exponential-time
algorithm for k-SAT. In Proceedings of the 39th Annual IEEE Symposium on
Foundations of Computer Science, FOCS’98, pages 628–637, 1998.

12. R. Paturi, P. Pudlák, and F. Zane. Satisfiability coding lemma. In Proceedings of
the 38th Annual IEEE Symposium on Foundations of Computer Science, FOCS’97,
pages 566–574, 1997.

13. P. Pudlák. Satisfiability — algorithms and logic. In Proceedings of the 23rd Interna-
tional Symposium on Mathematical Foundations of Computer Science, MFCS’98,
volume 1450 of Lecture Notes in Computer Science, pages 129–141. Springer, 1998.

14. D. Rolf. 3-SAT in RTIME(O(1.32793n)) — improving randomized local search
by initializing strings of 3-clauses. Electronic Colloquium on Computational Com-
plexity, Report No. 54, July 2003.

15. U. Schöning. A probabilistic algorithm for k-SAT and constraint satisfaction prob-
lems. In Proceedings of the 40th Annual IEEE Symposium on Foundations of Com-
puter Science, FOCS’99, pages 410–414, 1999.

16. U. Schöning. A probabilistic algorithm for k-SAT based on limited local search
and restart. Algorithmica, 32(4):615–623, 2002.

17. R. Schuler. An algorithm for the satisfiability problem of formulas in conjunctive
normal form. To appear in Journal of Algorithms, 2003.

Polynomial Time SAT Decision, Hypergraph

Transversals and the Hermitian Rank

Nicola Galesi1,� and Oliver Kullmann2,��

1 Departament de Llenguatges i Sistemes Informàtics,
Universitat Politécnica de Catalunya, Barcelona - Spain

galesi@lsi.upc.es

http://www.lsi.upc.es/∼galesi
2 Computer Science Department, University of Wales Swansea,

Swansea, SA2 8PP, UK
O.Kullmann@Swansea.ac.uk

http://cs-svr1.swan.ac.uk/∼csoliver/

Abstract. Combining graph theory and linear algebra, we study SAT
problems of low “linear algebra complexity”, considering formulas with
bounded hermitian rank. We show polynomial time SAT decision of the
class of formulas with hermitian rank at most one, applying methods
from hypergraph transversal theory. Applications to heuristics for SAT
algorithms and to the structure of minimally unsatisfiable clause-sets are
discussed.

1 Introduction

Connections between graphs, clause-sets and matrices based on conflicting liter-
als have been investigated in [13], introducing the notions “hermitian rank” and
“hermitian defect” to the field of SAT-related problems. Here we continue these
investigations, and we present new SAT decision algorithms for some classes of
conjunctive normal forms, combining graph theory and linear algebra.

The conflict multigraph cmg(F) of a clause-set F ([14, 13]) has the clauses of
F as vertices, and as many (parallel) edges joining two vertices as the clauses
have conflicts, i.e., clashing literals. The hermitian rank h(F), as adopted in
[14, 13] from [9], is the hermitian rank of the adjacency matrix of cmg(F), where
the hermitian rank h(A) of a symmetric real matrix A is the maximum of the
number of positive and negative eigenvalues of A, and can also be naturally
computed from the sign changes in the characteristic polynomial of A ([15]).
The hermitian defect m−h(A), where m is the dimension of A, equals the Witt
index of the quadratic form associated with A ([15]).

In this paper we explore the use of the conflict multigraph cmg(F) of a clause-
set F for SAT algorithms. On the one hand, we exploit structural properties of

� Supported by grant CICYT TIC2001-1577-C03-02.
�� Supported by grant EPSRC GR/S58393/01.

H.H. Hoos and D.G. Mitchell (Eds.): SAT 2004, LNCS 3542, pp. 89–104, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

90 N. Galesi and O. Kullmann

cmg(F), namely bipartiteness and variations, and on the other hand we use the
hermitian rank h(F) as a complexity measure for SAT decision.

1.1 Using the Hermitian Rank as Complexity Measure

We investigate, whether h(F) can be used as a measure of problem complexity
for SAT decision, yielding a SAT decision algorithm whose running time de-
pends mainly and monotonically on h(F). The hermitian rank is at most the
number of variables, i.e., h(F) ≤ n(F), as shown in [14, 13], reformulating the
original Graham-Pollak theorem [8]. It would be interesting to prove an upper
bound 2h(F) on time complexity of SAT decision (ignoring polynomial factors).
Given that h(F) can be computed in polynomial time using the symmetric form
of Gaussian elimination ([2]), the upper bound 2h(F) would follow using the
framework proposed in [11, 17, 18]: Use h(F) as the heuristic of a DLL-like SAT
algorithm, i.e., chose a branching variable where in both branches h(F) strictly
decreases (as much as possible). In Section 5 we further discuss this approach.

In this article we concentrate on the case of SAT decision for clause-sets F
with h(F) = 1, which, besides the trivial case h(F) = 0 (that is, F only has pure
literals), constitutes the base case of the above approach. Let CLSh(1) denote
the set of clause-sets F with h(F) ≤ 1. Since the hermitian rank is computable
in polynomial time, membership in CLSh(1) is decidable in polynomial time. In
[14, 13] it was shown that application of partial assignments does not increase
the hermitian rank (using Cauchy’s interlacing inequalities), i.e., h(ϕ ∗ F) ≤
h(F) holds for any clause-set F and partial assignment ϕ. In the special case of
h(F) = 1 we thus either have h(ϕ∗F) = 0 (i.e., ϕ∗F has no clashing literals) or
h(ϕ∗F) = 1, and it follows, that to decide satisfiability for F ∈ CLSh(1) we can
not use splitting on a variable as considered above (since except of trivial cases
in both branches the hermitian rank does not decrease). So a different approach
is needed, exploiting the special structure of F ∈ CLSh(1).

The hermitian rank h(A) of a symmetric real matrix is the minimal rank of a
matrix B with A = B +Bt ([14, 13]). This property is basic to infer in Lemma 2
a characterisation of symmetric matrices with zero diagonal and hermitian rank
one. As an application, in Theorem 3 we see that after elimination of blocked
clauses ([12, 11]) every F ∈ CLSh(1) has a complete bipartite graph (without
parallel edges) as conflict multigraph. This special structure is exploited for SAT
decision of F as explained in Subsection 1.2.

Following the program of characterising the (hereditary) classes of graphs
with at most k positive respectively negative eigenvalues via forbidden induced
subgraphs, in [19, 20] it is shown that a connected graph G (i.e., its adjacency
matrix A) has at most one negative eigenvalue (i.e., h(A) ≤ 1) if and only if it
is a complete bipartite graph (see Theorem 1.34 in [4]). Our characterisation in
Theorem 3 differs by its use of linear algebra, and by considering the general
case of multigraphs, where no characterisation via a finite number of forbidden
induced subgraphs is possible and thus elimination of blocked clauses is essential.

Polynomial Time SAT Decision, Hypergraph Transversals 91

1.2 Using the Transversal Hypergraph Problem for SAT Decision

In Theorem 3 we showed that clause-sets with hermitian rank 1 after elimina-
tion of blocked clauses have a conflict multigraph which is a complete bipartite
graph. We will use this characterisation for fast SAT decision.

In Section 4 we define bipartite clause-sets as clause-sets with a bipartite
conflict multigraph, and we characterise them using basic results from algebraic
graph theory. The main case of bipartite clause-sets is given by positive-negative
clause-sets (PN-clause-sets) where every clause either is positive or negative. The
SAT problem for the class of PN-clause-sets is easily seen to be NP-complete.
Therefore we need to refine the class of bipartite clause-sets to obtain a class
with feasible SAT decision capturing clause-sets of hermitian rank one.

A bi-hitting clause-set has a conflict multigraph which is complete bipartite
(that is, every pair of vertices from different parts is connected by at least one
edge). Bi-hitting PN-clause-sets constitute again the core of the class of bi-hitting
clause-sets. From a bi-hitting PN-clause-set F we extract two hypergraphs HP

resp. HN by considering the set of positive clauses resp. the set of negative
clauses. If F does not contain subsumed clauses, then F is unsatisfiable if and
only if (HP,HN) is a transversal hypergraph pair, that is, HN is the set of minimal
transversals of HP (and vice versa). Whether the transversal hypergraph problem
is solvable in polynomial time is an important open problem ([6]). Recently it was
shown to be solvable in quasi-polynomial time ([7]), and thus the SAT problem
for bi-hitting clause-sets is solvable in quasi-polynomial time.

The final step exploits, that Theorem 3 not only yields complete bipartite
multigraphs, but complete bipartite graphs (no parallel edges). Clause-sets where
the conflict multigraph is a complete bipartite graph are called 1-uniform bi-
hitting clause-sets, and in Lemma 11 we show that the SAT problem for this
class is essentially the same as the exact transversal hypergraph problem. This
problem was investigated in [5] and shown to be solvable in polynomial time;
hence the SAT problem for clause-sets with hermitian rank one is decidable in
polynomial time (Theorem 13).

The paper is organised as follows: We start with the preliminaries in Section
2. In Section 3 we characterise the class of clause-sets with hermitian rank one.
In Section 4 the relations between (uniform) bi-hitting clause-sets and the (ex-
act) hypergraph transversal problem is examined. Finally open problems and
directions for future research are discussed in Section 5.

2 Preliminaries

We assume a universe VA of variables, from which literals (negated and un-
negated variables) are constructed, using x for the negation of a literal x. A
clause-set is a finite sets of clauses, where a clause is a finite and complement-
free set of literals, denoting the set of all clause-sets by CLS. For F ∈ CLS the
number of variables is n(F) and the number of clauses is c(F). A partial assign-
ment is a map ϕ : V → {0, 1} for some V ⊆ VA, and the application of ϕ to F
is denoted by ϕ ∗ F ∈ CLS. Given some class C ⊆ CLS of clause-sets and some

92 N. Galesi and O. Kullmann

“measure” f : C → R, by Cf (b) := {F ∈ C : f(F) ≤ b} we denote the set of
clause-sets in C with measure at most b ∈ R.

A hypergraph is a pair (V, H), where V is the set of vertices and H is a set
of subsets of V (the “hyperedges”). A transversal T of a hypergraph (V, H) is
a subset T ⊆ V with T ∩ H �= ∅ for all H ∈ H, while a minimal transversal
is a transversal such that no strict subset is also a transversal. The set of all
minimal transversals of (V, H) is Tr(V, H), and fulfils Tr(Tr(H)) = H if H is
simple, that is, does not contain subsumed hyperedges. An independent set of
(V, H) is a subset I ⊆ V such that there is no hyperedge H ∈ H with H ⊆ I.
For more information on hypergraphs see for example [1]. A permutation matrix
is a square matrix over {0, 1} such that every row and every column contains
exactly one entry equal to 1. Transposition of matrices A is denoted by At.

The conflict multigraph of F ∈ CLS is denoted by cmg(F); the vertices of
cmg(F) are the clauses of F , and clauses C,D ∈ F are joined by exactly |C ∩D|
parallel edges, using D = {x : x ∈ D}. The symmetric conflict matrix CM(F) is
the adjacency matrix of cmg(F).

The hermitian rank h(F) for a clause-set F is defined as h(F) := h(CM(F)),
where the hermitian rank h(A) of a symmetric real matrix can be computed in
the following ways (see [14, 13, 15] for proofs and references; let m denote the
dimension of A):

1. h(A) = max(i−(A), i+(A)), where i±(A) can be computed as follows:
(a) i±(A) is the number of positive resp. negative eigenvalues of A;
(b) i±(A) is the maximum dimension of a positive resp. negative definite

subspace of the quadratic (or bilinear) space associated with A;
(c) i±(A) is the number of positive resp. negative diagonal entries in any

matrix A′ congruent to A (that is, there exists an invertible matrix T
with A′ = T tAT).

(d) i+(A) is the number of sign changes for the coefficients of the char-
acteristic polynomial χA(x) of A, while i−(A) is the number of sign
changes in the coefficients of χA(−x); alternatively one can use i−(A) =
m − i+(A) − k, where k is the minimal exponent of χA(x).

2. The hermitian defect δh(A) := m − h(A) equals the Witt index of the
quadratic (or bilinear form) associated with A (the maximum dimension
of a null subspace of the associated quadratic (bilinear) space).

3. h(A) is equal to the following four quantities:
(a) the minimal number k ∈ N0 such that there are real matrices X,Y with

A = XtX − Y tY , where X,Y both have k rows;
(b) the minimal number k ∈ N0 such that there are real matrices X,Y with

A = Y tX + XtY , where X,Y both have k rows;
(c) the minimal rank(B) for real matrices B with A = B + Bt;
(d) the minimal k ∈ N0 such that there are real symmetric matrices

B1, . . . , Bk of rank 2 with A = B1 + · · · + Bk.

In [14, 13] multi-clause-sets have been considered instead of clause-sets, since
for example for applications of matching theory it is important to avoid con-
traction of multiple clauses, and furthermore for example the symmetric conflict

Polynomial Time SAT Decision, Hypergraph Transversals 93

number bcp(A) of a matrix A is defined as the minimal n(F) for multi-clause-
sets with CM(F) = A, since possible repetition of clauses is needed here to
apply algebraic methods. However, in our context there is no need for using
multi-clause-sets (and no advantage), and thus in this paper only clause-sets are
considered. One last comment on a potential difference between clause-sets and
multi-clause-sets: Consider a clause-set F ∈ CLS and a partial assignment ϕ,
and let us denote by F ′ ∈ MCLS the multi-clause-set corresponding to F . Now
ϕ ∗ F ∈ CLS is obtained from ϕ ∗ F ′ ∈ MCLS by contracting multiple clauses
(in the computation of ϕ ∗ F ′ no contraction takes place, and thus c(ϕ ∗ F ′)
equals c(F ′) = c(F) minus the number of clauses in F satisfied by ϕ, while
c(ϕ ∗ F) ≤ c(ϕ ∗ F ′)), which could make a difference for certain measures. How-
ever it can easily be seen that contraction of multiple clauses does not affect i±,
and thus can be applied freely in our context.

3 Characterisation of Clause-Sets with Hermitian Rank

One

Since h(F) can be computed in polynomial time, polynomial time decision of
the class CLSh(1) follows. The following basic lemma on “combinatorial linear
algebra” is used for our characterisation of matrices with hermitian rank 1.

Lemma 1. Consider a real square matrix A with zeros on the diagonal and
with rank(A) = 1. Then there is a permutation matrix P and a matrix B with
rank(B) = 1 having no zero entry such that P t · A · P =

(
0 B
0 0

)
.

Proof. The elementary matrix operation we use is row resp. column exchange
followed by the corresponding column resp. row exchange, i.e., we exchange rows
i and j, immediately followed by exchange of columns i and j, or vice versa — in
both ways we get the same result. We speak of a combined row/column exchange
resp. a combined column/row exchange. Eventually, when we transformed A into(

0 B
0 0

)
, multiplying all matrices together representing the column exchanges we

obtain P , and multiplying all matrices together representing the row exchanges
we obtain P t. Note that matrices obtained by applying combined row/column
exchanges from A have zero diagonal.

Let the order of A be m ≥ 1. Our aim is to move all non-zero entries of A
to the upper right corner. There exists a non-zero row in A, and by a combined
row/column exchange we get A′ having a non-zero first row. Now we apply
combined column/row exchanges for columns i, j with A′

1,i �= 0, A′
1,j = 0 and

i < j until the first row is ordered in such a way that first come all zero entries
and then all non-zero entries (note that due to A1,1 = 0 we always have i, j ≥ 2
in this process, and thus the first row as a whole stays untouched). We obtain a
matrix A′′ having a column index 2 ≤ k∗ ≤ m with the property that A′′

1,i = 0
for all 1 ≤ i ≤ k∗ and A′′

1,i �= 0 for all k∗ ≤ i ≤ m. For the purpose of this proof,
we call a matrix A∗ with this property a k∗-matrix. Any k∗-matrix A of rank
one has the following properties:

94 N. Galesi and O. Kullmann

Every row of A is a multiple of the first row, and thus we have
Ai,j = 0 for all indices i, j with j < k∗.

If some row i contains a non-zero entry Ai,j �= 0 (thus j ≥ k∗),
then actually for all k∗ ≤ j′ ≤ m we have Ai,j′ �= 0,

which can be seen as follows:
There is λ ∈ R with λ · A1,∗ = Ai,∗. If there would be some k∗ ≤ j′ ≤ m with

Ai,j′ = 0, then due to λ · A1,j′ = Ai,j′ and A1,j′ �= 0 we would have λ = 0
contradicting λ · A1,j = Ai,j �= 0.

Now consider a zero row A′′
i,∗ and some non-zero row A′′

i′,∗ with i < i′. Since
A′′

i′,i′ = 0 and A′′ has the k∗-property, i′ < k∗ must hold. Performing the com-
bined row/column exchange on A′′ for rows i and i′ maintains the k∗-property.
Repeating this process until every zero row is below any non-zero row we obtain
a matrix of the form

(
0 B
0 0

)
with all entries of B non-zero.
�

As already mentioned, the hermitian rank h(A) of a symmetric real matrix
is the minimal rank of some matrix B with A = B + Bt.

Lemma 2. Consider a symmetric real matrix A with zero diagonal. Then h(A) ≤
1 iff there is a real matrix B with rank(B) ≤ 1 and a permutation matrix P with
A = P t ·

(
0 B

Bt 0

)
· P .

Proof. First assume h(A) ≤ 1. If h(A) = 0, then A = 0, and thus we can choose
B := 0 and P := I. So assume h(A) = 1. Thus there exists a matrix B0 with
rank(B0) = 1 and B0 + Bt

0 = A. It has B0 a zero diagonal, and thus by Lemma
1 there exists B with rank(B) = 1 and only non-zero entries, and a permutation
matrix P such that P t ·B0 ·P =

(
0 B
0 0

)
. Since also P t ·B0 ·P has a zero diagonal, B

is located in P t ·B0 ·P above the diagonal, and thus Bt in (P t ·B0 ·P)t =
(

0 0
Bt 0

)
is located below the diagonal:(

0 B
0 0

)
+

(
0 B
0 0

)t

=

 0 0 B

0 0 0
Bt 0 0

 .

Using P−1 = P t we have

P ·

 0 0 B

0 0 0
Bt 0 0

 · P t = P ·

((
0 B
0 0

)
+

(
0 B
0 0

)t)
· P t =

P ·

(
0 B
0 0

)
· P t + P ·

(
0 B
0 0

)t

· P t = B0 + Bt
0 = A.

On the other hand, if A = P t ·
(

0 B
Bt 0

)
· P for some B with rank(B) ≤ 1

and some permutation matrix P , then with B0 := P t ·
(

0 B
0 0

)
· P obviously

rank(B0) = rank(B) ≤ 1 and B0 + Bt
0 = A, thus h(A) ≤ rank(B0) ≤ 1.
�

We remind at the notion of a blocked clause w.r.t. a clause-set F ([11, 12]),
which is a clause C containing a literal x ∈ C such that for all clauses D ∈ F
with x ∈ D there exists a literal y ∈ C \ {x} with y ∈ D. Blocked clauses

Polynomial Time SAT Decision, Hypergraph Transversals 95

can be eliminated satisfiability-equivalently, and the result of eliminating all
blocked clauses does not depend on the order of eliminations. If a clause-set F
not containing the empty clause does not contain a blocked clause, then obviously
every row and every column of CM(F) contains at least one entry equal to 1.
In the proof of the following first main result we use the fact, that a multigraph
G is a complete bipartite graph iff there exists a permutation matrix P and
a matrix B with all entries equal to 1 such that the adjacency matrix of G is
P t ·

(
0 B

Bt 0

)
· P .

Theorem 3. Consider F ∈ CLSh(1) with ⊥ /∈ F , and obtain F ′ ∈ CLSh(1)
from F by iterated elimination of (all) blocked clauses. Then the conflict multi-
graph cmg(F ′) is a complete bipartite graph (without parallel edges).

Proof. We have F ′ ∈ CLSh(1), since elimination of clauses can not increase the
hermitian rank ([14, 13]). If F ′ = , then the assertion is trivial. So we assume
that F ′ contains at least one clause. Since F ′ does not contain a blocked clause,
every row and every column of CM(F ′) contains at least one entry equal to 1.
Applying Lemma 2 to CM(F ′) we obtain CM(F ′) = P t ·

(
0 B

Bt 0

)
· P for some

permutation matrix P and a matrix B with rank(B) = 1. There are no zero
rows or columns in B, and since the rank of B is one, every row (resp. column)
of B is a non-zero multiple of every other row (resp. column). We want to show
that every entry of B is 1. So assume that there are indices i, j with Bi,j �= 1.
We have Bi,j �= 0, since otherwise every entry in row i would be zero, using that
every column j′ of B is a multiple of column j. Thus Bi,j ≥ 2. We know that
there is a column index j′ with Bi,j′ = 1 and a row index i′ with Bi′,j = 1. Thus
column j multiplied with 1/Bi,j yields column j′, and thus Bi′,j/Bi,j = Bi′,j′ ,
but 0 < Bi′,j/Bi,j = 1/Bi,j < 1 contradicting the integrality of Bi′,j′ .
�

4 SAT Decision, Conflict Multigraphs and the

Transversal Hypergraph Problem

In this section we investigate how to exploit for efficient SAT decision the fact,
that the conflict multigraph of a clause-set is a complete bipartite graph. We pro-
ceed in three stages: First we consider clause-sets with bipartite conflict multi-
graphs in general, then the case of complete bipartite conflict multigraphs is
investigated, and finally we turn to the case where the conflict multigraph is a
complete bipartite graph.

4.1 Bipartite Clause-Sets and PN-Pairs

F ∈ CLS is called bipartite if the conflict multigraph of F is bipartite. This is
easily seen to be equivalent to the existence of a permutation matrix P and a
matrix B such that CM(F) = P t ·

(
0 B

Bt 0

)
· P holds. Immediately from a well-

known characterisation of bipartite (multi-)graphs in algebraic graph theory (see
for example Theorem 3.11 in [4] together with the footnote) we get

96 N. Galesi and O. Kullmann

Lemma 4. A clause-set F ∈ CLS is bipartite if and only if the following two
conditions hold:

1. i−(F) = i+(F) = h(F);
2. for 1 ≤ i ≤ h(F) we have θi(F) = θc(F)−i+1(F).

Since the sum of the eigenvalues of a symmetric real matrix is equal to the
trace of the matrix (the sum of the diagonal elements), and (symmetric) conflict
matrices have a zero diagonal, it is easy to see that a clause-set F fulfils h(F) = 1
iff i+(F) = i−(F) = 1 holds and the absolute values of the positive and the
negative eigenvalue coincide. Thus Lemma 4 yields an alternative proof that
clause-sets in CLSh(1) are bipartite as proven directly in Theorem 3. Actually
Theorem 3 proved much more, and we will now see that the property of a clause-
set being bipartite alone does not help much for satisfiability decision.

A clause is called positive resp. negative if it only contains positive resp. neg-
ative literals. A clause-set F ∈ CLS is called positive-negative (“PN-clause-set”
for short) if for every C ∈ F we have, that C is positive or negative. Obvi-
ously, every positive-negative clause-set is bipartite. The Pigeonhole formulas
are examples of positive-negative clause-sets. By introducing new variables, ev-
ery clause-set can be transformed in linear time into a satisfiability-equivalent
positive-negative clause-set, and thus satisfiability decision for bipartite clause-
sets is NP-complete.

Intuitively, the class of PN-clause-sets is the core of the class of bipartite
clause-sets. We make this more precise to clarify the relationship to the hy-
pergraph transversal problem. A PN-pair is a pair (H1, H2), where each Hi ⊆
P(VA) is a set of hyperedges considered as a hypergraph with vertex set the
set of variables appearing in it. For a PN-pair (H1, H2) we define the clause-set
F (H1, H2) := H1 ∪ {H : H ∈ H2}, that is, the positive clauses of the PN-
clause-set F (H1, H2) are given by the elements of H1, while the negative clauses
are given by the elements of H2 with elementwise complemented literals. For
example F ({{a, b}, {a, c}}, {{b, c}}) = {{a, b}, {a, c}, {b, c}}. As noticed in [6]:

Lemma 5. Consider a PN-pair (H1, H2). Then F (H1, H2) is unsatisfiable if
and only if for all H1 ∈ Tr(H1) there exists H2 ∈ H2 with H2 ⊆ H1, or equiv-
alently, F (H1, H2) is satisfiable iff there exists H1 ∈ Tr(H1) such that H1 is an
independent set of H2.

Proof. If F := F (H1, H2) is satisfiable, then there is a partial assignment ϕ with
ϕ ∗ F = . Let V1 := {v ∈ var(ϕ) : ϕ(v) = 1}. It is V1 a transversal of H1,
and there is no H2 ∈ H2 with H2 ⊆ V1, i.e., V1 is an independent set of H2. If
on the other hand there is a transversal T of H1 which is an independent set of
H2, then the assignment ϕ := 〈v → 1 : v ∈ T 〉 ∪ 〈v → 0 : v ∈ var(F) \ T 〉 is a
satisfying assignment for F .
�

Now a pair ((H1, H2), ζ), where (H1, H2) is a PN-pair and ζ : VA → {−1,+1}
is a sign-flip, represents a clause-set F if F ′ = ζ ∗F (H1, H2), where “∗” denotes
the application of the sign flip, and F ′ is obtained from F by removal of pure
literals (setting them to false, not to true(!)). If a clause-set can be represented
in this way, then it is bipartite. In the reverse direction we have

Polynomial Time SAT Decision, Hypergraph Transversals 97

Lemma 6. For bipartite clause-sets a representation can be computed in quadratic
time.

Since we want to apply the algorithm of Lemma 6 to some subclasses of the
class of bipartite clause-sets, the following notion will be useful. Given a class C
of bipartite clause-sets and a class H of PN-pairs, we say that H represents C if
for all F ∈ CLS the following statements are equivalent:

1. F ∈ C;
2. for all representations ((H1, H2), ζ) of F we have (H1, H2) ∈ H;
3. there exists a representation ((H1, H2), ζ) of F with (H1, H2) ∈ H.

4.2 Bi-hitting Clause-Sets and Bi-hitting PN-Pairs

A clause-set F ∈ CLS is called a bi-hitting clause-set if the conflict multi-
graph of F is complete bipartite, or in other words, if there exists a permutation
matrix P and a matrix B with no zero-entry such that CM(F) = P t ·

(
0 B

Bt 0

)
·P .

As before, where we used PN-pairs as the “essential” representations of bipartite
clause-sets, we now consider “bi-hitting PN-pairs” as the essential representa-
tions of bi-hitting clause-sets. A bi-hitting PN-pair is a PN-pair (H1, H2) such
that every H ∈ H2 is a transversal of H1. If (H1, H2) is a bi-hitting PN-pair,
then so is (H2, H1).

Lemma 7. The class of bi-hitting PN-pairs represents the class of bi-hitting
clause-sets.

A transversal PN-pair is a PN-pair (H1, H2) with H2 = Tr(H1) and H1 =
Tr(H2). Every transversal PN-pair is a bi-hitting PN-pair, and if (H1, H2) is a
transversal PN-pair, then so is (H2, H1). We want to recognise transversal PN-
pair as the representations of unsatisfiable bi-hitting clause-sets, and to do so, we
need to remove subsumed clauses. A simple PN-pair is a PN-pair (H1, H2) such
that H1 and H2 are simple hypergraphs, that is, they do not contain subsumed
hyperedges. Every transversal PN-pair is simple. If (H1, H2) is a simple PN-pair,
then (H1, H2) is a transversal PN-pair iff H2 = Tr(H1).

Lemma 8. Consider a simple bi-hitting PN-pair (H1, H2). Then F (H1, H2) is
unsatisfiable if and only if (H1, H2) is a transversal PN-pair.

Proof. First assume F (H1, H2) is unsatisfiable. We have to show that Tr(H1) =
H2. By the definition of bi-hitting every T ∈ H2 is a transversal of H1. If there
would exist a transversal T ′ of H1 with T ′ ⊂ T , then by Lemma 5 there would
exist some T ′′ ∈ H2 with T ′′ ⊆ T ′ ⊂ T contradicting the simplicity of H2. Thus
H2 ⊆ Tr(H1), and by Lemma 5 in fact equality holds. So we have shown that
(H1, H2) is a transversal PN-pair. If on the other hand (H1, H2) is a transversal
PN-pair, then immediately by Lemma 5 unsatisfiability of F (H1, H2) follows.
�

The decision problem whether a PN-pair is a transversal PN-pair is known
in the literature under the name of the hypergraph transversal problem. In [7] it

98 N. Galesi and O. Kullmann

has been shown that the hypergraph transversal problem is decidable in quasi-
polynomial time (more precisely in time O(so(log s)), where s is the sum of the
sizes of the two hypergraphs). Thus by lemmata 6, 7 and 8 we get

Theorem 9. The satisfiability problem for the class of bi-hitting clause-sets is
solvable in quasi-polynomial time (more precisely in time O(�(F)o(log �(F))) for
F ∈ CLS, where �(F) :=

∑
C∈F |C| is the number of literal occurrences in F).

It is an important open problem whether the hypergraph transversal problem
is decidable in polynomial time, which is equivalent to the problem, whether
the satisfiability problem for the class of bi-hitting clause-sets is decidable in
polynomial time.

4.3 Uniform Bi-hitting Clause-Sets and Exact Bi-hitting PN-Pairs

We have seen in Theorem 9 that satisfiability for clause-sets with complete bi-
partite conflict multigraph and thus also for clause-sets in CLSh(1) (see Theorem
3) is decidable in quasi-polynomial time. Now we will look at the case where the
conflict multigraph of a clause-set F ∈ CLS is a complete bipartite graph, which
is equivalent to the existence of a permutation matrix P and a matrix J with all
entries equal to 1 such that CM(F) = P t ·

(
0 J
Jt 0

)
· P . We will show polynomial

time satisfiability decision for this class.
F ∈ CLS is called a k-uniform bi-hitting clause-set for k ≥ 0 if CM(F) =

P t ·
(

0 k·J
k·Jt 0

)
·P , while uniform bi-hitting means k-uniform bi-hitting for some

k. A k-uniform bi-hitting clause-set F for k ≥ 2 is unsatisfiable iff ⊥ ∈ F , and
thus in the remainder we consider only the case k = 1. A transversal T of a
hypergraph H is called exact ([5]) if for all H ∈ H we have |T ∩ H| = 1. And H

is called exact if every minimal transversal of H is exact. An exact bi-hitting
PN-pair is a PN-pair (H1, H2) such that every H ∈ H2 is an exact transversal
of H1. Every exact bi-hitting PN-pair is a bi-hitting PN-pair, and if (H1, H2) is
an exact bi-hitting PN-pair, then so is (H2, H1).

Lemma 10. Exact bi-hitting PN-pairs represent 1-uniform bi-hitting clause-
sets.

An exact transversal PN-pair is a transversal PN-pair (H1, H2) where
H1, H2 are exact hypergraphs. If (H1, H2) is an exact transversal PN-pair, then
so is (H2, H1). If (H1, H2) is a simple PN-pair, then (H1, H2) is an exact transver-
sal PN-pair iff H2 = Tr(H1) and H1 is exact. Since a transversal PN-pair (H1, H2)
is an exact transversal PN-pair iff (H1, H2) is an exact bi-hitting PN-pair, im-
mediately from Lemma 8 we get

Lemma 11. Consider a simple exact bi-hitting PN-pair (H1, H2). Then the
clause-set F (H1, H2) is unsatisfiable if and only if (H1, H2) is an exact transver-
sal PN-pair.

The exact transversal hypergraph problem is the problem to decide, whether
a given PN-pair is an exact transversal PN-pair. In [5] it is shown that the exact
transversal hypergraph problem can be decided in polynomial time, whence

Polynomial Time SAT Decision, Hypergraph Transversals 99

Theorem 12. The SAT problem for uniform bi-hitting clause-sets is decidable
in polynomial time.

By Theorem 3, modulo blocked clauses clause-sets with hermitian rank 1 are
1-uniform bi-hitting clause-sets, and thus

Theorem 13. SAT decision for CLSh(1) can be done in polynomial time.

For the sake of completeness we present the polynomial time algorithm from
[5] (Theorem 3.3) to decide, whether a simple hypergraph H is an “exact transver-
sal hypergraph”, that is, whether (H,Tr(H)) is an exact transversal PN-pair.
This together with Theorem 4.3 of [5], that for exact transversal hypergraphs
the set of minimal transversals can be enumerated with polynomial delay (i.e.,
the time between two consecutive outputs is polynomially bounded in the size
of the input), implies Theorem 12.

Let H(v) := {H ∈ H : v ∈ H} be the star of vertex v, and let V (H) :=
⋃

H =⋃
H∈H

H denote the vertex set of H. First we observe that a transversal T of a
hypergraph H �= ∅ is minimal iff there exists H ∈ H with |T ∩ H| = 1. Now it
follows easily that H is exact transversal if and only if for all vertices v ∈ V (H),
for all hyperedges H ∈ H(v) and for all transversals T ∈ Tr(H) in case of v ∈ T
and T ∩ H = {v} we have T ∩ V (H(v)) = {v}. This condition is equivalent to

∀ v ∈ V (H) ∀H ∈ H(v) :
V (H(v)) ∩ V ({T ∈ Tr(H) : T ∩ H = {v}}) = {v}. (1)

For any hypergraph H and any hyperedge H of H by definition we have

{T ∈ Tr(H) : T ∩H = {v}} =
{

T ∪{v} : T ∈ Tr({H ′ \H : H ′ ∈ H ∧ v /∈ H ′})
}
,

and thus (1) is equivalent to

∀ v ∈ V (H) ∀H ∈ H(v) :
V (H(v)) ∩ V (Tr({H ′ \ H : H ′ ∈ H ∧ v /∈ H ′})) = ∅. (2)

Using min(H) for the set of inclusion-minimal elements of a hypergraph H, the
trick is now to exploit the observation V (Tr(H)) = V (min(H)) for any hyper-
graph H, which follows from Tr(Tr(H)) = min(H), and which yields, that (2) is
equivalent to

∀ v ∈ V (H) ∀H ∈ H(v) :
V (H(v)) ∩ V (min({H ′ \ H : H ′ ∈ H ∧ v /∈ H ′})) = ∅,

where this final criterion obviously is decidable in polynomial time. The idea of
this nice proof can be motivated as follows: By definition H is exact transversal
iff for all v ∈ V (H) we have

V (H(v)) ∩ V ({T ∈ Tr(H) : v ∈ T}) = {v}.

The problem is to compute V ({T ∈ Tr(H) : v ∈ T}), where we would like to
recognise {T ∈ Tr(H) : v ∈ T} as the transversal hypergraph of some H

′, which

100 N. Galesi and O. Kullmann

would yield V ({T ∈ Tr(H) : v ∈ T}) = V (min(H′)), avoiding the computation
of the transversal hypergraph. Selecting exactly the minimal transversals T of
H containing v seems not possible, but if we fix a hyperedge H ∈ H with v ∈ H,
then the minimal transversals of H containing v but not any other vertex from
H are exactly the T ∪ {v}, where T is a minimal transversals of the hyperedges
of H not containing v with all other vertices from H removed, and we arrive at
the above proof.

5 Open Problems

5.1 Polynomial Time SAT Decision for Bounded Hermitian Rank

As mentioned in the introduction, it would be interesting to prove an upper
bound 2h(F) on time complexity of satisfiability decision (ignoring polynomial
factors). We would achieve this aim, if we can find a polynomial time reduction
r : CLS → CLS and some class E ⊆ CLS which is decidable and satisfiability
decidable in polynomial time, such that for all clause-sets F ∈ CLS and F ′ :=
r(F) we have h(F ′) ≤ h(F), and we have F ′ ∈ E or there exists a variable
v ∈ var(F ′) such that for both truth values ε ∈ {0, 1} we have h(〈v → ε〉 ∗F ′) <
h(F ′). For r = idCLS and E = CLSh(1) this property does not hold.

Since application of partial assignments does not increase the hermitian rank,
when allowing a logarithmic factor in the exponent it actually suffices to find
a variable v ∈ var(F) such that for just one truth value ε ∈ {0, 1} we have
h(〈v → ε〉 ∗ F) < h(F) (following [10, 16]). Using computer experiments, we did
not find a counterexample of small dimension, and so we conjecture

Conjecture 14. For all F ∈ CLS with h(F) ≥ 2 there exists v ∈ var(F) and
ε ∈ {0, 1} with h(〈v → ε〉 ∗ F) < h(F).

If Conjecture 14 is true, then by Lemma 3.7 in [10] or Theorem 4.3 in [16]
we get satisfiability decision for CLS in time n(F)2h(F) (ignoring polynomial
factors). And furthermore the hardness hCLSh(1)(F) of clause-sets F as studied
in [10, 16], using the polynomial time satisfiability decision for CLSh(1) as oracle,
would be bounded by hCLSh(1)(F) ≤ h(F)− 1. Since thus Conjecture 14 implies
polynomial time satisfiability decision for formulas with bounded hermitian rank,
from Conjecture 14 it follows:

Conjecture 15. For fixed k ≥ 0 satisfiability decision of the class CLSh(k) can
be done in polynomial time.

5.2 Characterising (Minimally) Unsatisfiable Uniform Bi-hitting
Clause-Sets

We now have a look at the bearings of the investigations of this paper on mini-
mally unsatisfiable clause-sets (all proofs can be found in [15]). Every unsatisfi-
able clause-set F ∈ USAT contains some minimally unsatisfiable sub-clause-set
F ′ ∈ MUSAT . Let us say that F has a unique core, if there is exactly one

Polynomial Time SAT Decision, Hypergraph Transversals 101

F ′ ⊆ F with F ′ ∈ MUSAT , in which case we call F ′ the core of F . Related to
the formula classes considered in this article are three classes of clause-sets with
unique core:

1. Every unsatisfiable bi-hitting clause-set F has a unique core given by the
set of subsumption-minimal clauses of F , obtained from F by elimination of
subsumed clauses.

2. For unsatisfiable uniform bi-hitting clause-sets the unique core can also be
obtained by elimination of pure literals (i.e., the unique core is the lean
kernel w.r.t. pure autarkies).

3. Every unsatisfiable clause-set F with h(F) ≤ 1 and ⊥ /∈ F has a unique
core, obtained from F by elimination of blocked clauses.

The class of cores of unsatisfiable bi-hitting clause-sets, i.e., the set of minimally
unsatisfiable bi-hitting clause-sets, is the set of clause-sets which can be repre-
sented by transversal PN-pairs. Let T PN be the set of transversal PN-pairs. The
class of all minimally unsatisfiable bi-hitting clause-sets is represented by T PN ,
and thus characterising minimally unsatisfiable bi-hitting clause-sets amounts to
characterise T PN , which seems to be an elusive task, so we have to consider
simpler cases. But before we do this, let us make some remarks on “splittings”
of minimally unsatisfiable clause-sets.

For any set P of PN-pairs let CLS(P) denote the set of clause-sets F (H1, H2)
for some (H1, H2) ∈ P. Thus CLS(T PN) is contained in the set of mini-
mally unsatisfiable bi-hitting clause-sets, and for every minimally unsatisfiable
bi-hitting clause-set F there exists a sign-flip ζ with ζ ∗ F ∈ CLS(T PN). Fol-
lowing [3], a splitting of F ∈ MUSAT on a variable v ∈ var(F) is a pair
(F0, F1) ∈ MUSAT 2 with Fε ⊆ 〈v → ε〉∗F for ε ∈ {0, 1}. A class C ⊆ MUSAT
is called closed under splitting if for every F ∈ C and every splitting (F0, F1) of
F we have F0, F1 ∈ C. It is CLS(T PN) closed under splitting, and every ele-
ment of CLS(T PN) has a unique splitting (the same holds for the larger class
of minimally unsatisfiable bi-hitting clause-sets).

The class of cores of unsatisfiable uniform bi-hitting clause-sets is identical
to the class of cores of unsatisfiable clause-sets with hermitian rank at most
one, and can be described as the class of clause-sets representable by some
((H1, H2), ζ), where (H1, H2) is an exact transversal PN-pair. Let ET PN be
the set of exact transversal PN-pairs. The class of all minimally unsatisfiable
uniform bi-hitting clause-sets is represented by T PN . The class CLS(ET PN)
is again closed under splitting (as is the larger class of minimally unsatisfiable
uniform bi-hitting clause-sets). Characterising the class of minimally unsatisfi-
able uniform bi-hitting clause-sets amounts to characterising ET PN . We can
construct elements of ET PN as follows:

1. For variables v1, . . . , vn, n ∈ N0 we have

({{v1, . . . , vn}}, {{vi} : i ∈ {1, . . . , n}}) ∈ ET PN .

(Actually the cases n ≥ 2 can be simulated by rule 3.)
2. If (H1, H2) ∈ ET PN , then also (H2, H1) ∈ ET PN .

102 N. Galesi and O. Kullmann

3. If (H1, H2), (H′
1, H

′
2) ∈ ET PN with ∅ /∈ H1 ∪ H

′
1 and V (H1) ∩ V (H′

1) = ∅,
then

(H1 ∪ H
′
1, {T ∪ T ′ : T ∈ H2 ∧ T ′ ∈ H

′
2}) ∈ ET PN .

Let ET PN 0 be the set of exact transversal PN-pairs created by the above three
rules. For example, from the first rule we obtain the pairs ({∅}, ∅), ({{v}}, {{v}})
and ({{v, w}}, {{v}, {w}}) in ET PN 0 (for n = 0, 1, 2). The second rule creates
(∅, {∅}) and ({{v}, {w}}, {{v, w}}) in ET PN 0, and with the third rule then we
can obtain for example the two pairs ({{a, b}, {c, d}},{{a,c}, {a, d}, {b, c}, {b, d}})
and ({{a, b}, {c}, {d}}, {{a, c, d}, {b, c, d}}) in ET PN 0. It is easy to see, that
clause-sets represented by PN-pairs from ET PN 0 have unbounded clause-lengths
and unbounded deficiency (the difference between the number of clauses and the
number of variables), and they are not renamable to Horn formulas except of
trivial cases (since minimally unsatisfiable Horn formulas have deficiency 1).
Given a PN-pair (H1, H2) we can efficiently decide membership in ET PN 0 as
follows:

1. If (H1, H2) is not a simple PN-pair, then (H1, H2) /∈ ET PN 0.
2. Otherwise check whether (H1, H2) can be created by rule 1 (in which case

we are done).
3. In the remaining case now (H1, H2) ∈ ET PN 0 can only be the case if there

is i ∈ {1, 2} such that Hi is disconnected. Splitting Hi into its connected
components and reverting the construction from rule 3, we can reduce the
problem to smaller problems and proceed recursively.

We did not find an example for F ∈ ET PN \ ET PN 0, and thus

Conjecture 16. ET PN 0 = ET PN .

If Conjecture 16 is true, then we can draw the following conclusions:

1. The above procedure for deciding membership in ET PN 0 yields a more
efficient satisfiability decision procedure for uniform bi-hitting clause-sets
(and for CLSh(1)) than the one outlined at the end of Subsection 4.3.

2. The elements of CLS(ET PN 0) have a read-once resolution refutation (the
simplest possible resolution refutations: a tree-resolution refutation where ev-
ery node is labelled with a unique clause), and thus in fact every unsatisfiable
uniform bi-hitting clause-set (as well as every element of CLSh(1)∩USAT)
would have a read-once resolution refutation.

As a partial result towards Conjecture 16 we can completely characterise
exact transversal PN-pairs (H1, H2), where the rank of H1 or H2 is at most 2 (i.e.,
there is i ∈ {1, 2} such that for all H ∈ Hi we have |H| ≤ 2). Consider a simple
hypergraph H. Call H exact transversal if (H,Tr(H)) is an exact transversal PN-
pair. If H = ∅, then H is exact transversal. If ∅ ∈ H, then H = {∅} and H is
exact transversal. If {x} ∈ H, then H is exact transversal iff H \ {x} is exact
transversal. So w.l.o.g. we assume that H is not empty and the size of a smallest
hyperedge is at least 2.

Polynomial Time SAT Decision, Hypergraph Transversals 103

Assume furthermore that the rank of H is 2. Now H constitutes a graph. And
if H as a graph is connected, then H is exact transversal if and only if H as a
graph is complete bipartite. Complete bipartite graphs with at least two vertices
are exactly the transversal hypergraphs of hypergraphs {A,B} for non-empty
disjoint A,B. It follows that for an exact transversal PN-pairs (H1, H2) ∈ ET PN
with rank of H1 or H2 at most 2 we have (H1, H2) ∈ ET PN 0.

Acknowledgements

Part of this work was done while we were visiting the ICTP in Trieste partici-
pating in the Thematic Institute of the Complex Systems Network of Excellence
(EXYSTENCE): “Algorithms and challenges in hard combinatorial problems
and in optimization under ‘uncertainty’”. We want to thank Riccardo Zecchina
for inviting us and for providing a highly stimulating environment.

References

1. Claude Berge. Hypergraphs: Combinatorics of Finite Sets, volume 45 of North-
Holland Mathematical Library. North Holland, Amsterdam, 1989. ISBN 0 444
87489 5; QA166.23.B4813 1989.

2. James R. Bunch and Linda Kaufman. Some stable methods for calculating inertia
and solving symmetric linear systems. Mathematics of Computation, 31(137):163–
179, January 1977.

3. Hans Kleine Büning and Xishun Zhao. On the structure of some classes of minimal
unsatisfiable formulas. Discrete Applied Mathematics, 130:185–207, 2003.

4. Dragoš M. Cvetković, Michael Doob, Ivan Gutman, and Aleksandar Torgašev.
Recent Results in the Theory of Graph Spectra, volume 36 of Annals of Discrete
Mathematics. North-Holland, Amsterdam, 1988. ISBN 0-444-70361-6; QA166.R43
1988.

5. Thomas Eiter. Exact transversal hypergraphs and application to boolean µ-
functions. Journal of Symbolic Computation, 17:215–225, 1994.

6. Thomas Eiter and Georg Gottlob. Identifying the minimal transversals of a hyper-
graph and related problems. SIAM Journal on Computing, 24(6):1278–1304, 1995.

7. Michael L. Fredman and Leonid Khachiyan. On the complexity of dualization of
monotone disjunctive normal forms. Journal of Algorithms, 21(3):618–628, 1996.

8. Ronald L. Graham and H.O. Pollak. On the addressing problem for loop switching.
Bell System Technical Journal, 50(8):2495–2519, 1971.

9. David A. Gregory, Valerie L. Watts, and Bryan L. Shader. Biclique decompositions
and hermitian rank. Linear Algebra and its Applications, 292:267–280, 1999.

10. Oliver Kullmann. Investigating a general hierarchy of polynomially decidable
classes of CNF’s based on short tree-like resolution proofs. Technical Report TR99-
041, Electronic Colloquium on Computational Complexity (ECCC), October 1999.

11. Oliver Kullmann. New methods for 3-SAT decision and worst-case analysis. The-
oretical Computer Science, 223(1-2):1–72, July 1999.

12. Oliver Kullmann. On a generalization of extended resolution. Discrete Applied
Mathematics, 96-97(1-3):149–176, 1999.

13. Oliver Kullmann. On the conflict matrix of clause-sets. Technical Report CSR
7-2003, University of Wales Swansea, Computer Science Report Series, 2003.

104 N. Galesi and O. Kullmann

14. Oliver Kullmann. The combinatorics of conflicts between clauses. In Enrico
Giunchiglia and Armando Tacchella, editors, Theory and Applications of Satis-
fiability Testing 2003, volume 2919 of Lecture Notes in Computer Science, pages
426–440, Berlin, 2004. Springer. ISBN 3-540-20851-8.

15. Oliver Kullmann. The conflict matrix of (multi-)clause-sets — a link between com-
binatorics and (generalised) satisfiability problems. In preparation; continuation
of [13], 2004.

16. Oliver Kullmann. Upper and lower bounds on the complexity of generalised res-
olution and generalised constraint satisfaction problems. Annals of Mathematics
and Artificial Intelligence, 40(3-4):303–352, March 2004.

17. Oliver Kullmann and Horst Luckhardt. Deciding propositional tautologies: Algo-
rithms and their complexity. Preprint, 82 pages, January 1997.

18. Oliver Kullmann and Horst Luckhardt. Algorithms for SAT/TAUT decision based
on various measures. Preprint, 71 pages, December 1998.

19. M.M. Petrović. The spectrum of an infinite labelled graph. Master’s thesis, Uni-
versity Beograd, Faculty of Science, 1981.

20. Aleksandar Torgašev. Graphs with the reduced spectrum in the unit interval. Publ.
Inst. Math. (Beograd), 36(50):15–26, 1984.

QBF Reasoning on Real-World Instances

Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella�

DIST, Università di Genova, Viale Causa, 13 – 16145 Genova, Italy
{enrico, mox, tac}@dist.unige.it

Abstract. During the recent years, the development of tools for deciding Quan-
tified Boolean Formulas (QBFs) satisfiability has been accompanied by a steady
supply of real-world instances, i.e., QBFs originated by translations from applica-
tion domains such as formal verification and planning. QBFs from these domains
showed to be challenging for current state-of-the-art QBF solvers, and, in order
to tackle them, several techniques and even specialized solvers have been pro-
posed. Among these techniques, there are (i) efficient detection and propagation
of unit and monotone literals, (ii) branching heuristics that leverages the infor-
mation extracted during the learning phase, and (iii) look-back techniques based
on learning.

In this paper we discuss their implementation in our state-of-the-art solver
QUBE, pointing out the non trivial issues that arised in the process. We show that
all the techniques positively contribute to QUBE performances on average. In
particular, we show that monotone literal fixing is the most important technique in
order to improve capacity, followed by learning and the heuristics. The situation
is reversed if we consider productivity. These and other observations are detailed
in the body of the paper. For our analysis, we consider the formal verification and
planning benchmarks from the 2003 QBF evaluation.

1 Introduction

During the recent years, the development of tools for deciding Quantified Boolean
Formulas (QBFs) has been accompanied by a steady supply of real-word instances,
i.e., QBFs originated by translations from application domains such as formal verifi-
cation [1, 2] and planning [3, 4]. QBFs from these domains showed to be challenging
for current state-of-the-art QBF solvers, and, in order to tackle them, several techniques
and even specialized QBF solvers [5] have been proposed. Among the techniques that
have been proposed for improving performances, there are (i) efficient detection and
propagation of unit and monotone literals [6, 7], (ii) branching heuristics that leverage
the information extracted during the learning phase [8], and (iii) look-back techniques
based on conflict and solution learning [9, 10, 11].

In this paper we discuss the implementation of the above mentioned techniques
in our state-of-the-art QBF solver QUBE [8], pointing out the non trivial issues that
arised in the process. We show that all the techniques positively contribute to QUBE

� The authors wish to thank MIUR, ASI and the Intel Corporation for their financial support,
and the reviewers who helped to improve the original manuscript.

H.H. Hoos and D.G. Mitchell (Eds.): SAT 2004, LNCS 3542, pp. 105–121, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

106 E. Giunchiglia, M. Narizzano, and A. Tacchella

performances. In particular, we show that monotone literal fixing is the most important
technique in order to improve capacity (i.e., the ability to solve problems [12]), followed
by learning and the heuristics. The situation is reversed if we consider productivity (i.e.,
the ability to quickly solve problems [12]). All these considerations obviously hold on
average. Indeed, for each technique, there are instances in which it does not produce any
benefit or, even worse, in which it causes a degradation in the performances. These and
other observations are detailed in the body of the paper. For our analysis, we consider
the formal verification and planning benchmarks from the 2003 QBF evaluation [13].1

Our analysis is, to the best of our knowledge, the first which analyzes the contributions
of (i) monotone literal fixing, (ii) the branching heuristic, and (iii) conflict and solution
learning, for solving real-world problems. Though, strictly speaking, our results holds
only for QUBE, we expect that the same will carry over to the majority of the other
systems, which, like QUBE are based on [14]. We expect this to be true especially
for solvers implementing learning as look-back mechanism, i.e., for solvers targeted to
solve real-world benchmarks.

The paper is structured as follows. We first give some formal preliminaries, and
the background knowledge representing the starting point of our analysis. We devote
three sections to the improvements on lookahead techniques, the branching strategy
and learning, respectively. In each section, we first briefly describe its implementation
in QUBE, and then we present and discuss experimental results showing the positive
contribution of the technique. We end the paper with some remarks.

2 Preliminaries

In this section, we first give some formal preliminaries. Then, we present the basic
algorithm of QUBE, and finally the setting that we have used for our experimental
analysis.

2.1 Formal Preliminaries

Consider a set P of propositional letters. An atom is an element of P . A literal is an
atom or the negation thereof. Given a literal l, |l| denotes the atom of l, and l denotes the
complement of l, i.e., if l = a then l = ¬a, and if l = ¬a then l = a, while |l| = a in
both cases. A propositional formula is a combination of atoms using the k-ary (k ≥ 0)
connectives ∧, ∨ and the unary connective ¬. In the following, we use � and ⊥ as
abbreviations for the empty conjunction and the empty disjunction respectively. A QBF
is an expression of the form

ϕ = Q1x1Q2x2 . . . QnxnΦ (n ≥ 0) (1)

where every Qi (1 ≤ i ≤ n) is a quantifier, either existential ∃, or universal ∀; x1 . . . xn

are distinct atoms in P, and Φ is a propositional formula. Q1x1Q2x2 . . . Qnxn is the

1 At the time of this writing, the 2004 QBF comparative evaluation has just finished. Unfortu-
nately, a now corrected bug in QUBE look-ahead caused QUBE to incorrectly decide a few
randomly generated benchmarks, and thus it did not enter in the second stage of the evaluation.

QBF Reasoning on Real-World Instances 107

bool SOLVE(Q, Σ, ∆, Π , S)
1 〈Q, Σ, ∆, Π, S〉 ← LOOKAHEAD(Q, Σ, ∆, Π , S)
2 if (∆ = ∅ or ∅∀ ∈ Π) then return TRUE

3 if (∅∃ ∈ Σ ∪ ∆) then return FALSE

4 l ← CHOOSE-LITERAL(Q, Σ, ∆, Π)
5 〈Q, Σ, ∆, Π〉 ← ASSIGN(l, Q, Σ, ∆, Π)
6 V ← SOLVE(Q, Σ, ∆, Π , S ∪ {l})
7 if ((l is existential and V is TRUE) then
8 return TRUE

9 else if ((l is universal and V is FALSE) then
10 return FALSE

11 else
12 〈Q, Σ, ∆, Π〉 ← ASSIGN(l, Q, Σ, ∆, Π)
13 return SOLVE(Q, Σ, ∆, Π , S ∪ {l})

set ASSIGN(l, Q, Σ, ∆, Π)
26 Q ← REMOVE(Q, |l|)
27 for each c ∈ Σ s.t. l ∈ c do
28 Σ ← Σ \ {c}
29 for each c ∈ ∆ s.t. l ∈ c do
30 ∆ ← ∆ \ {c}
31 for each t ∈ Π s.t. l ∈ t do
32 Π ← Π \ {t}
33 for each c ∈ Σ s.t. l ∈ c do
34 Σ ← (Σ \ {c}) ∪ {c \ {l}}
35 for each c ∈ ∆ s.t. l ∈ c do
36 ∆ ← (∆ \ {c}) ∪ {c \ {l}}
37 for each t ∈ Π s.t. l ∈ t do
38 Π ← (Π \ {t}) ∪ {t \ {l}}
39 return 〈Q, Σ, ∆, Π〉

set LOOKAHEAD(Q, Σ, ∆, Π , S)
14 do
15 〈Q′, Σ′, ∆′, Π ′, S′〉 ← 〈Q, Σ, ∆, Π, S〉
16 for each l s.t. {l}∃ ∈ Σ ∪ ∆ or {l}∀ ∈ Π do
17 S ← S ∪ {l}
18 〈Q, Σ, ∆, Π〉 ← ASSIGN(l, Q, Σ, ∆, Π)
19 for each l s.t. {k ∈ Σ ∪ ∆ ∪ Π | l ∈ k} = ∅ do
20 if (l is existential) then
21 〈Q, Σ, ∆, Π〉 ← ASSIGN(l, Q, Σ, ∆, Π)
22 else
23 〈Q, Σ, ∆, Π〉 ← ASSIGN(l, Q, Σ, ∆, Π)
24 while 〈Q, Σ, ∆, Π, S〉 	= 〈Q′, Σ′, ∆′, Π ′, S′〉
25 return 〈Q, Σ, ∆, Π, S〉

Fig. 1. Basic search algorithm of QUBE

prefix and Φ is the matrix of (1). A literal l is existential, if ∃|l| is in the prefix, and
universal otherwise. We say that (1) is in Conjunctive Normal Form (CNF) when Φ
is a conjunction of clauses, where each clause is a disjunction of literals in x1 . . . xn;
we say that (1) is in Disjunctive Normal Form (DNF) when Φ is a disjunction of terms
(or cubes), where each term is a conjunction of literals in x1 . . . xn. We use the term
constraints when we refer to clauses and terms indistinctly. The semantics of a QBF
ϕ can be defined recursively as follows. If the prefix is empty, then ϕ’s satisfiability is
defined according to the truth tables of propositional logic. If ϕ is ∃xψ (resp. ∀xψ), ϕ
is satisfiable if and only if {ϕ}x or (resp. and) {ϕ}¬x are satisfiable. If ϕ = Qxψ is a
QBF and l is a literal with |l| = x, {ϕ}l is the QBF obtained from ψ by substituting l
with � and l with ⊥.

2.2 QUBE Basic Algorithm

In Figure 1 we present the pseudo-code of SOLVE, the basic search algorithm of QUBE.
SOLVE generalizes the standard backtracking algorithm for QBFs as introduced in [14],

108 E. Giunchiglia, M. Narizzano, and A. Tacchella

by taking into account that clauses and terms can be dynamically learned during the
search. Given a QBF (1) in CNF, SOLVE takes five parameters:

1. Q is the prefix, i.e., the list Q1x1, . . . , Qnxn.
2. Σ is a set of clauses. Initially Σ is empty, but clauses are added to Σ as the search

proceeds as result of the learning process, see [9].
3. ∆ is the set of clauses corresponding to the matrix of the input formula.
4. Π is a set of terms. As for Σ, initially Π is empty, but terms are added to Π as the

search proceeds as result of the learning process, see [9].
5. S is a consistent set of literals called assignment. Initially S = ∅.

In the following, as customary in search algorithms, we deal with constraints as if
they were sets of literals, and assume that forall constraint c, it is not the case that x and
¬x belong to c, for some atom x. Further, given 〈Q,Σ, ∆, Π〉 corresponding to a QBF
(1), we assume that the clauses and terms added to Σ and Π respectively, do not alter
the correctness of the procedure. This amounts to say that, for any sequence of literals
l1; . . . ; lm with m ≤ n and |li| = xi, the following three formulas are equi-satisfiable:

{. . . {{Q1x1Q2x2 . . . Qnxn(∧c∈∆ ∨l∈c l)}l1}l2 . . .}lm ,
{. . . {{Q1x1Q2x2 . . . Qnxn((∧c∈∆ ∨l∈c l) ∧ (∧c∈Σ ∨l∈c l))}l1}l2 . . .}lm ,
{. . . {{Q1x1Q2x2 . . . Qnxn((∧c∈∆ ∨l∈c l) ∨ (∨t∈Π ∧l∈t l))}l1}l2 . . .}lm .

Consider a QBF ϕ corresponding to 〈Q,Σ, ∆, Π〉.
At a high level of abstraction, SOLVE can be seen as a procedure generating the

semantic tree corresponding to ϕ. The basic operation is thus that of assigning a literal l
and simplifying ϕ accordingly, i.e., compute {ϕ}l and simplify it. In Figure 1, this task
is performed by the function ASSIGN(l, Q, Σ, ∆, Π), which

– Removes |l| and its bounding quantifier from the prefix (line 26),
– Removes all the clauses (resp. terms) to which l (resp. l) pertains (lines 27-32).

These clauses are said to be eliminated by l.
– Removes l (resp. l) from all the clauses (resp. terms) to which l (resp. l) pertains

(lines 33-38). These clauses are said to be simplified by l.

In the following we say that a literal l is:

– open if |l| is in Q, and assigned otherwise;
– unit if there exist a clause c ∈ Σ ∪∆ (resp. a term t ∈ Π) such that l is the only

existential in c (resp. universal in t) and there are no literals in c (resp. in t) with an
higher level. The level of an atom is 1 + the number of expressions QjxjQj+1xj+1

in Q with j ≥ i and Qj �= Qj+1. The level of a literal l is the level of |l|.
– monotone if for all constraints k ∈ (Σ ∪∆ ∪Π), l �∈ k.

Now consider the routine LOOKAHEAD in Figure 1: {l}∃ (resp. {l}∀) denotes a con-
straint which is unit in l. The function LOOKAHEAD has the task of simplifying its
input QBF by finding and assigning all unit (lines 16-18) and monotone literals (lines
19-23). Since assigning unit or monotone literals may cause the generation of new unit
or monotone literals (this is different from the SAT case in which assigning monotone
literals cannot generate new unit literals) LOOKAHEAD loops till no further simplifica-
tion is possible (lines 14-15, 24).

QBF Reasoning on Real-World Instances 109

The function SOLVE works in four steps:

1. Simplify the input instance with LOOKAHEAD (line 1).
2. Check if the termination condition is met (lines 2-3): if the test in line 2 is true, then

S is a solution, while if the test in line 3 is true, then a S is a conflict ; ∅∃ (resp. ∅∀)
stands for the empty clause (resp. empty term), i.e., a constraint without existential
(resp. universal) literals.

3. Choose heuristically a literal l (line 4) such that |l| is at the highest level in the
prefix. The literal returned by CHOOSE-LITERAL is called branching literal.

4. Assign the chosen literal (line 5), and recursively evaluate the resulting QBF (line
6):
(a) if l is existential and the recursive evaluation yields TRUE then TRUE is returned

(lines 7-8), otherwise
(b) if l is universal and the recursive evaluation yields FALSE then FALSE is re-

turned (lines 9-10), otherwise
(c) l is assigned (line 12), and the result of the recursive evaluation of the resulting

QBF is returned (line 13).
It is easy to see that the execution of the code in lines 5-13 causes the generation of
an AND-OR tree, whose OR nodes correspond to existential literals, while AND
nodes correspond to universal literals.

SOLVE returns TRUE if the input QBF is satisfiable and FALSE otherwise.
For the sake of clarity we have presented SOLVE with recursive chronological back-

tracking. To avoid the expensive copying of data structures that would be needed to
save Σ, ∆ and Π at each node, QUBE (and most of the available systems as well) fea-
tures a non-recursive implementation of the lookback procedure. The implementation
is based on an explicit search stack and on data structures that can assign a literal during
lookahead and then retract the assignment during lookback, i.e., restore Σ, ∆ and Π
to the configuration before the assignment was made. Further, as we already said in the
introduction, QUBE differs from the above high-level description in that it features the
techniques that are the subject of the next three sections.

2.3 Experimental Setting

In order to evaluate the contribution of the different components to QUBE perfor-
mances, we considered the 450 formal verification and planning instances that con-
stituted part of the 2003 QBF evaluation2: 25% of these instances are from formal
verification problems [1, 2], and the remaining are from planning domains [3, 4]. As
we said in the introduction, these instances showed to be challenging for the 2003 QBF
solvers comparative evaluation. Further, a subset of this testset was also included in the
2004 evaluation, and, according to some preliminary results, some of instances showed
to be still hard to solve.

All the experiments were run on a farm of identical PCs, each one equipped with a
PIV 3.2GHz processor, 1GB of RAM, running Linux Debian 3.0. Finally, each
system had a timeout value of 900s per instance.

2 With respect to the non-random instances used in the 2003 QBF comparative evaluation, our
test set does not include the QBF encodings of the modal K formulas submitted by Guoqiang
Pan [15].

110 E. Giunchiglia, M. Narizzano, and A. Tacchella

3 Lookahead

Goal of the LOOKAHEAD function is to simplify the formula by propagating unit and
monotone literals till no further simplification is possible. Any efficient implementation
of a QBF solver has to rely on an efficient implementation of LOOKAHEAD. Indeed,
most of the literals are assigned inside the function LOOKAHEAD: on our test set, if we
consider the ratio R between

– the number of calls to ASSIGN made within LOOKAHEAD (lines 18, 21, 23).
– the number of calls to ASSIGN made within SOLVE (lines 5, 12), and

We have that R, on the problems that QUBE takes more than 1s to solve, is 514 on
average, i.e., assigning one branching literal, causes hundreds of literals to be assigned
inside LOOKAHEAD. Further, by running a profiler on QUBE, we have seen that on
all the instances that we have tried, lookahead always amounted to more than 70% of
the total runtime: this result echoes analogous remarks made in the SAT literature (see,
e.g., [16]). Finally, the need for a fast lookahead procedure is accentuated by the use
of learning [9], where the solver adds (possibly very long) constraints to the initial set
given in input.

3.1 Algorithm

The implementation of LOOKAHEAD in QUBE is based on an extension of the lazy
data structures as presented in [6], to detect and assign unit and monotone literals.

In particular, for detecting existential unit literals, we use the three literal watching
(3LW) schema as described in [6]. For detecting universal unit literals, 3LW can be
easily adapted to the case. Similar to the SAT case, all the literal watching schemes in [6]
do not require to perform elimination of constraints, but only some of the simplifications
(those being “watched”) are performed when assigning a literal. However, compared
to the other watching literal schemes in [6], 3LW performs less operations if in each
constraint the existential and universal literals are listed separately, as it is the case in
QUBE.

For monotone literal fixing (MLF), we implemented clause watching (CW) as de-
scribed in [6]. However, the implementation of CW in QUBE posed some problems
due to the interaction between monotone literals and learning (see [7]). The first obser-
vation is that the detection of monotone literals requires, when assigning a literal l, to
perform also all the associated eliminations: These operations at least in part obscure
the advantages of 3LW. Then, in order to reduce the burden of eliminating constraints,
it is important to reduce the set of constraints to be considered. Problems arise because,
given a QBF ϕ = 〈Q, Σ, ∆, Π〉, it may be the case that for a literal l, the condition

{k ∈ ∆ | l ∈ k} = ∅ (2)

is satisfied, while
{k ∈ Σ ∪∆ ∪Π | l ∈ k} = ∅ (3)

is not. Thus, a literal l may be assigned as monotone because it does not occur in the
matrix of the input formula, but assigning l to true may cause (i) the simplification

QBF Reasoning on Real-World Instances 111

of some learned constraint, (ii) the generation of an empty clause or an empty term,
and (iii) the presence of l in the reason associated to the empty clause/term. This last
fact would require the computation of a reason for monotone literals, to be used while
backtracking. While from a theoretical point of view it is possible to compute such a
reason, it is still an open issue how to do it efficiently, and [7] describes some problems
that point out that it cannot be done in all cases.

Summing up, problems arise when

– l is monotone, existential and l belongs to a working reason originating from a
conflict, or

– l is monotone, universal and l belongs to a working reason originating from a solu-
tion.

As discussed in [9], if condition (3) is satisfied then assigning l as monotone is not
problematic meaning that it is always possible to compute the working reason wr in
order to avoid l ∈ wr. Still, checking condition (3) is not practical because, when
assigning a literal l, would require to eliminate all the corresponding constraints in
Σ ∪∆∪Π (or at least, from Σ ∪∆ if l is existential, and from Σ ∪Π if l is universal).

The solution that we have adopted for MLF in QUBE is to assign a literal as mono-
tone when condition (2) is satisfied, and then to temporarily delete from Σ ∪Π all the
clauses where l occurs. This solves all the above mentioned problems, and it has the
following advantages:

1. It allows to assign as monotone more literals than those that would be assigned
according to condition (3), and

2. From a computational point of view, it is far less expensive since, when assigning
a literal l it only requires to eliminate constraints in ∆.

Fig. 2. Effectiveness of monotone literal fixing: CPU time (left) and number of assignment (right)

112 E. Giunchiglia, M. Narizzano, and A. Tacchella

Table 1. Comparison among various versions of QUBE. In each table, the comparison considers
a system taken as reference and written in the top left box in the table: QUBE in Table 1.a, and
QUBE(RND)[3] in Table 1.b. In each table, if A is the system taken as reference in it, and B 	= A
is a solver in the first column, then the other columns report the number of problems that: “=”,
A and B solve in the same time; “<”, A and B solve but A takes less time than B; “>”, A and
B solve but A takes more time than B; “
”, A solves while B does not; “�”, A does not solve
while B does; “��”, A and B do not solve; “×10<”, both A and B solve but on which A is at
least one order of magnitude faster; “×0.1<”, both A and B solve but on which A is at least
one order of magnitude slower; “TO”, B does not solve. The number of timeouts for QUBE and
QUBE(RND)[3] is 76 and 89 respectively

Table 1.a QUBE = < > � �� ×10< ×0.1> TO

QUBE(MLF−) 141 73 95 65 1 75 31 3 140
QUBE(RND)[1] 137 112 106 19 9 67 41 10 86
QUBE(RND)[2] 134 139 80 21 9 67 44 6 88
QUBE(RND)[3] 126 166 60 22 9 67 53 5 89
QUBE(RND)[4] 124 189 37 24 9 67 62 4 91
QUBE(RND)[5] 108 213 24 29 8 68 79 4 97
QUBE(CBJ,SBJ) 146 181 31 16 1 75 39 0 91

Table 1.b QUBE(RND)[3] = < > � �� ×10< ×0.1> TO

QUBE(RND)[1] 136 0 225 0 3 86 0 43 86
QUBE(RND)[2] 169 0 192 0 1 88 0 19 88
QUBE(RND)[4] 156 203 0 2 0 89 27 0 91
QUBE(RND)[5] 109 244 0 8 0 89 61 0 97

QUBE(RND,CBJ,SBJ)[1] 131 145 72 13 7 82 27 20 95
QUBE(RND,CBJ,SBJ)[2] 137 164 43 17 2 87 43 7 104
QUBE(RND,CBJ,SBJ)[3] 123 192 25 21 2 87 68 2 108
QUBE(RND,CBJ,SBJ)[4] 110 205 17 29 2 87 83 1 116
QUBE(RND,CBJ,SBJ)[5] 84 222 10 45 2 87 99 1 132

QUBE(RND,CBJ,SLN)[1] 130 96 128 7 5 84 20 26 91
QUBE(RND,CBJ,SLN)[2] 133 134 82 12 5 84 27 14 96
QUBE(RND,CBJ,SLN)[3] 129 169 48 15 3 86 40 5 101
QUBE(RND,CBJ,SLN)[4] 115 209 20 17 1 88 54 1 105
QUBE(RND,CBJ,SLN)[5] 86 245 6 24 1 88 87 0 112

QUBE(RND,CLN,SBJ)[1] 135 78 142 6 4 85 7 36 91
QUBE(RND,CLN,SBJ)[2] 151 110 90 10 4 85 15 15 95
QUBE(RND,CLN,SBJ)[3] 169 134 39 19 1 88 29 5 107
QUBE(RND,CLN,SBJ)[4] 141 183 11 26 0 89 51 0 115
QUBE(RND,CLN,SBJ)[5] 103 218 2 38 0 89 69 0 127

3.2 Effectiveness

It is well known that unit literal propagation is fundamental for efficiency, while, at
least in the SAT setting, MLF is often considered to be inefficient, and indeed, it is not
implemented by most of the state-of-the-art SAT solvers like ZCHAFF.

The performances of QUBE when run with and without MLF (we will call the
resulting system QUBE(MLF−)) is shown in Figure 2. In the left plot, the x-axis is
the CPU-time of QUBE and the y-axis is the CPU-time of QUBE(MLF−). A plotted
point 〈x, y〉 represents a benchmark on which QUBE and QUBE(MLF−) take x and

QBF Reasoning on Real-World Instances 113

y seconds respectively.3 For convenience, we also plot the points 〈x, x〉, each repre-
senting the benchmarks solved by QUBE in x seconds. As it can be seen from the
figure, QUBE(MLF−) is faster than QUBE on many benchmarks (96), represented by
the points below the diagonal. However, these points are mostly located at the beginning
of the plot, and represent instances that are solved in less than a second. Indeed, assign-
ing a literal when MLF is enabled is more expensive and, on easy instances, MLF does
not pay off. Still, MLF can greatly cut the search tree. This is evident from the right plot
in the figure, showing the number of assignments made by QUBE(MLF−) wrt QUBE
when considering the instances solved by both solvers: There are only 10 clearly visi-
ble points below the diagonal, meaning that the 96 problems on which QUBE(MLF−)
is faster than QUBE are due to the burden of MLF. Of these 96 problems,

– there is only one problem (represented by the point on the vertical axis at the ex-
treme right) which is solved by QUBE(MLF−) and on which QUBE timeouts, and

– among the instances that are solved by both solvers, QUBE(MLF−) is faster than
QUBE of at least one order of magnitude on only 3 instances, two of which solved
by QUBE in less than 0.1s.

On the other hand, (i) QUBE is able to solve 65 instances not solved by QUBE(MLF−),
and (ii) QUBE is at least one order of magnitude faster than QUBE(MLF−) on 31 other
problems. These and other numbers are reported in Table 1.a.

4 Heuristic

In SAT, it is well known that the branching heuristic is important for efficiency. In the
QBF setting, the situation is different. Indeed, we are only allowed to choose a literal l
if |l| is at the highest level in the prefix. Thus, on a QBF of the form

∃x1∀x2∃x3...∀xn−1∃xnΦ (4)

the heuristic is likely to be (almost) useless: unless atoms are removed from the prefix
because unit or monotone, the atom to pick at each node is fixed. On the other hand, on
a QBF of the form

∃x1∃x2 . . .∃xmΦ (5)

corresponding to a SAT instance, it is likely that the heuristic will play an important
role. Indeed, we expect the role of the heuristic to have more and more importance as the
number of alternations (i.e., expressions of the form QjxjQj+1xj+1 with Qj �= Qj+1)
in Q is small compared to the number of variables. In (4) the number of alternations is
the number of variables -1, while in (5) is 0. In practice, the number of alternations is in
between the two extreme cases represented by the above two equations. In many cases,
it is 1 or 2, and thus we expect the heuristic to be important.

3 In principle, one point 〈x, y〉 could correspond to many benchmarks solved by QUBE and
QUBE(MLF−) in x and y seconds respectively. However, in this and the other scatter diagrams
that we consider, each point (except for the point 〈900, 900〉, representing the instances on
which both solvers time-out) corresponds to a single instance in most cases.

114 E. Giunchiglia, M. Narizzano, and A. Tacchella

In this section, we show that this is the case for QUBE heuristic, meaning that it
performs consistently better, on average, than a simple random heuristic.

4.1 Algorithm

Even in SAT, where the number of alternations is 0, the design of an heuristic has to be
a trade-off between accuracy and speed. VSIDS (Variable State Independent Decaying
Sum) [16] is now at the basis of most recent SAT solvers for real world problems. The
basic ideas of VSIDS are to (i) initially rank literals on the basis of the occurrences in
the matrix, (ii) increment the weight of the literals in the learned constraints, and (iii)
periodically divide by a constant the weight of each literal.

In our QBF setting, the above needs to be generalized taking into account the prefix
and also the presence of both learned constraints and terms. In QUBE this is done by
periodically sorting literals according to (i) the prefix level of the corresponding atom,
(ii) their score, and (iii) their numeric ID. The score of each literal l is computed as
follows:

– initially, it is set to the number of clauses in which l belongs,
– at the i + 1 step, the score is computed by summing the score at the previous step

divided by two, and the number of constraints c such that
• l ∈ c, if l is existential, and
• l ∈ c, if l is universal.

When the input QBF corresponds to a SAT formula, the above heuristic boils down to
VSIDS.

4.2 Effectiveness

To evaluate the role of the heuristic in QUBE, we compared it with QUBE(RND), i.e.,
QUBE with a heuristic which randomly select a literal at the highest prefix level. Be-
cause of the randomness, we run QUBE(RND) 5 times on each instance. Given an
instance ϕ, if we order the time spent to solve ϕ from the best (1) to the worst (5),
then we can define QUBE(RND)[i] to be the system whose performance on ϕ is the
i-th best among the 5 results. The results of QUBE, QUBE(RND)[1-5] are plotted in
Figure 3 left. In the figure, the results of each solver are (i) sorted independently and
in ascending order, (ii) filtered out by removing the first 148 and the last 76 values,
and (iii) plotted against an ordinal in the range [1-226] on the x-axis. The filtering has
been done in order to increase the readability of the figure. Indeed, each solver (i) is
able to solve at least 148 problems in a time ≥ 0.02s, and (ii) timeouts on at least 76
values. Thus, if a point 〈x, y〉 belongs to the plot of a system S, this means that x+148
instances are solved in less than y seconds by S.

Several observations are in order. The first one is that the heuristic plays a role. This
is evident if we consider the five plots of QUBE(RND)[1-5], which show that there can
be significant differences among different runs of QUBE with a random heuristics. The
second observation is that QUBE is better than QUBE(RND)[1], i.e., the solver among
QUBE(RND)[1-5] having the best result on each single instance:

QBF Reasoning on Real-World Instances 115

Fig. 3. Effectiveness of the heuristics: overall (left) and best (right)

– QUBE (resp. QUBE(RND)[1]) is able to solve 19 (resp. 9) instances that are not
solved by QUBE(RND)[1] (resp. QUBE),

– among the instances solved by both solvers, QUBE (resp. QUBE(RND)[1]) is at
least one order of magnitude faster than QUBE(RND)[1] (resp. QUBE) on 41 (resp.
10) instances.

The above data can be seen on the right plot, representing the performances of QUBE
versus QUBE(RND)[1]. From the right plot, it also emerges that QUBE(RND)[1] is
faster on many instances (115). Of course, this number goes down to 69 and 32 if
we consider QUBE(RND)[3] or QUBE(RND)[5]. Still, the presence of 32 problems
(roughly 8% of the problems that are solved by at least one solver) in which
QUBE(RND)[5] is faster than QUBE points out that there are QBFs in which the heuris-
tic does not seem to play any role. On these problems, QUBE pays the overhead of
periodically computing the score of each literal, and sort them according to the above
outlined criteria.

For more data, see Table 1.

5 Learning

Learning is a look-back strategy whose effectiveness for solving real-world problems
is a consolidated result in the SAT literature (see, e.g., [17, 18, 16]). In the QBF set-
ting, mixed results have been so far obtained, see, e.g., [9, 11, 10, 13, 19]. In particular,
in [19] it is argued that while learning “conflicts” (computed while backtracking from
an empty clause) leads to the expected positive results, learning “solutions” (computed
while backtracking from an empty term or the empty matrix) does not always produce
positive results, especially on real-world benchmarks.

Here we show that both conflict and solution learning are essential for QUBE per-
formances.

116 E. Giunchiglia, M. Narizzano, and A. Tacchella

5.1 Algorithm

Learning amounts to store clauses (resp. terms) computed while backtracking by per-
forming clause (resp. term) resolution4 between a “working reason” that is initially
computed when an empty clause (resp. an empty term or the empty matrix) is found,
and the “reason” corresponding to unit literals that are stored while descending the
search tree, see [21].

As in SAT, two of the key issues are the criteria used for deciding when a con-
straint has to be learned (i.e., stored in Σ/Π), and then unlearned (i.e., removed from
Σ/Π). Learning in QUBE works as follows. Assume that we are backtracking on a
literal l having decision level n, i.e., such that there are n AND-OR nodes before l. The
constraint corresponding to the current working reason wr is learned if and only if:

– l is existential (resp. universal) if we are backtracking from a conflict (resp. solu-
tion),

– all the assigned literals in wr but l, have a decision level strictly smaller than n, and
– there are no open universal (resp. existential) literals in wr that are before l in the

prefix.

These conditions ensure that l is unit in the constraint corresponding to the reason. Once
the constraint is learned, QUBE backjumps to the node corresponding to the literal l′ �=
l in wr with maximum decision level. Notice that on a SAT instance, QUBE learning
mechanism behaves similarly to the “1-UIP-learning” scheme used in ZCHAFF.

For unlearning, QUBE uses a relevance bounded learning (of order r) schema as
introduced in SAT by [18]: The set of learned constraints is periodically scanned and
the constraints having more than r open literals are deleted.

In QBF, another key issue is the initialization of the working reason wr, especially
when a solution is found (when a conflict is found, we can do as in SAT). In the case
of a solution, in QUBE, our approach is to first set wr to a set of literals having the
following properties:

– it is a subset of the assignment S that led to the current solution,
– it is a prime implicant of the matrix of the input QBF,
– is such that there does not exist another set of literals satisfying the first two prop-

erties and
• with a smaller (under set inclusion) set of universal literals, or
• causing a deeper backtrack.

Then, some extra computation is done in order to try to further reduce the universal
literals in wr. See [21] for more details.

5.2 Effectiveness

Figure 4 left shows the performances of QUBE versus QUBE(CBJ,SBJ), i.e., QUBE
without learning but both conflict and solution backjumping enabled [22]. The first
consideration is that learning pays off:

4 Clause resolution is called Q-resolution in [20].

QBF Reasoning on Real-World Instances 117

Fig. 4. Effectiveness of learning: with a VSIDS (left) and a random heuristic (right)

Fig. 5. Effectiveness of conflict (left) and solution (right) learning

– QUBE (resp. QUBE(CBJ,SBJ)) is able to solve 16 (resp. 1) instances that are not
solved by QUBE(CBJ,SBJ) (resp. QUBE),

– among the instances solved by both solvers, QUBE (resp. QUBE(CBJ,SBJ)) is at
least one order of magnitude faster than QUBE(CBJ,SBJ) (resp. QUBE) on 39 (esp.
0) instances.

Still, the above data are not entirely satisfactory for two reasons.
First, in QUBE learning and the heuristic are tightly coupled: Whenever QUBE

learns a constraint, it also increments the score of the literals in it. In QUBE(CBJ,SBJ)
no constraint is ever learned. As a consequence, in QUBE(CBJ,SBJ), (i) literals are
initially sorted on the basis of their occurrences in the input QBF, and (ii) the score of

118 E. Giunchiglia, M. Narizzano, and A. Tacchella

each literal is periodically halved till it becomes 0. When all the literals have score 0,
then literals at the same prefix level are chosen according to their lexicographic order.

Second, independently from the heuristic being used, a plot showing the perfor-
mances of QUBE with and without learning, does not say which of the two learning
schemes (conflict, solution) is effective [19].

To address the first problem, we consider QUBE with a random heuristic, with and
without learning: We call the resulting systems QUBE(RND) and QUBE(RND,CBJ,SBJ)
respectively. As in the previous section, we run each system 5 times on each bench-
mark, and we introduce the systems QUBE(RND)[i] and QUBE(RND,CBJ,SBJ)[i] (1 ≤
i ≤ 5)). The results for QUBE(RND)[3] and QUBE(RND,CBJ,SBJ)[3] are plotted
in Figure 4 right. From the plot, it is easy to see that QUBE(RND)[3] is faster than
QUBE(RND,CBJ,SBJ)[3] in most cases. To witness this fact

– QUBE(RND) (resp. QUBE(RND,CBJ,SBJ)) is able to solve 21 (resp. 2) instances
that are not solved by QUBE(CBJ,SBJ) (resp. QUBE),

– among the instances solved by both solvers, QUBE (resp. QUBE(CBJ,SBJ)) is at
least one order of magnitude faster than QUBE(CBJ,SBJ) (resp. QUBE) on 68 (esp.
2) instances.

Comparing with the results on the left plot, it seems that with a random heuristic learn-
ing becomes more important. This fact witnesses also in our setting the well-known
tension between look-ahead and look-back techniques: Using a “smart” look-ahead
makes the look-back less important, and viceversa. Still, because of the randomness
in the systems, 5 runs are too few in order to draw precise quantitative conclusions.
Still, at from a qualitative point of view, it is clear that learning can produce significant
speed-ups.

To address the second problem, we considered the systems QUBE(RND,CBJ,SLN)
and QUBE(RND,CLN,SBJ), i.e., the systems obtained from QUBE(RND) by disabling
conflict learning and solution learning respectively. As usual we run each system 5 times
on each instance, and we define QUBE(RND,CBJ,SLN)[i] and QUBE(RND,CLN,SBJ)[i]
(1 ≤ i ≤ 5) as before. Figure 5 shows the performances of QUBE(RND)[3] versus
QUBE(RND,CBJ,SLN)[3] (left plot) and QUBE(RND,CLN,SBJ)[3] (right plot). From
the plots, we see that both conflict and solution learning pay off. In each plot, there
are only a few points well below the diagonal. Further, by comparing the two plots, it
seems that solution learning is more effective than conflict learning, but again we have
to take this as qualitative indication. Some detailed quantitative information is reported
in Table 1.b. From the table, we can see that the overall performances of QUBE(RND)[i]
are better than the performances of QUBE(RND,CBJ,SLN)[i], QUBE(RND,CLN,SBJ)[i]
and QUBE(RND,CBJ,SBJ)[i]. The above positive results for solution learning are con-
firmed if we compare the number of solutions found by QUBE(RND,CBJ,SLN)[i] and
QUBE(RND,CBJ,SBJ)[i] as in [19]: For example, considering the instances solved by
both solvers in more than 1s and for which at least one solution is found by both,
the average (resp. maximum) of the ratio between the number of solutions found by
QUBE(RND,CBJ,SBJ)[3] and QUBE(RND,CBJ,SLN)[3] is 5.4 (resp. 42.4). The nega-
tive results reported in [19] for solution-based look-back mechanisms are not compa-
rable with ours, given the different mechanisms implemented by the respective solvers

QBF Reasoning on Real-World Instances 119

(e.g., for computing the initial solution and for monotone literal fixing), and the differ-
ent experimental setting (e.g., the testset).

6 Concluding Remarks

Given the results in Table 1.a, we can say that all the techniques contribute to the effec-
tiveness of QUBE. In terms of improving the capacity (i.e., the ability to solve prob-
lems [12]), the most effective one seems to be MLF, followed by learning and the heuris-
tic: QUBE solves 64, 15 and 13 instances more than QUBE(MLF−), QUBE(CBJ,SBJ)
and QUBE(RND) respectively. In terms of improving the productivity (i.e., the abil-
ity to quickly solve problems [12]) the picture seems to be the opposite. The most
effective technique is the heuristic, then learning and finally MLF: the difference be-
tween

– the number of problems in which QUBE is at least 1 order of magnitude faster, and
– the number of problems in which QUBE is at least 1 order of magnitude slower

than QUBE(RND), QUBE(CBJ,SBJ) and QUBE(MLF−) is 48, 39 and 28 respectively.
In the above statements, we used the phrase “seems to be” to stress once more that
the numbers in the table have to be taken as indications of average behaviors be-
cause of the randomness of some of the solvers that we considered. Still, the fact
that MLF increases capacity more than productivity, and that for the heuristic the sit-
uation is the opposite matches our intuition: Indeed, the bottleneck of QUBE and
of all the solvers based on [14] is that the search tree is explored taking into ac-
count the prefix. Any look-ahead mechanism that, like MLF, overrides the “prefix-
rule” may greatly improve the capacity of the solver, because it may allow to as-
sign literals (i) that are fundamental for quickly deciding the formula (un)satisfiability,
and (ii) that would have been assigned much later without it. Still, such look-ahead
mechanisms have always an associated overhead, which may worsen the productiv-
ity. Other examples of look-ahead mechanisms having the above characteristics are the
partial instantiation techniques described in [23]: Indeed, the results reported in [23]
support our conclusions. The heuristic on the other hand, may still produce expo-
nential speed-ups, but it does not address the main bottleneck of search algorithms
based on [14]. Thus, the heuristic may improve performances and thus productivity,
but we expect that in some domains many instances (that would be solvable with a
proper look-ahead mechanism) will remain unsolvable no matter the heuristic being
used.

References

1. C. Scholl and B. Becker. Checking equivalence for partial implementations. In 38th Design
Automation Conference (DAC’01), 2001.

2. Abdelwaheb Ayari and David Basin. Bounded model construction for monadic second-order
logics. In 12th International Conference on Computer-Aided Verification (CAV’00), number
1855 in LNCS, pages 99–113. Springer-Verlag, 2000.

120 E. Giunchiglia, M. Narizzano, and A. Tacchella

3. Jussi Rintanen. Constructing conditional plans by a theorem prover. Journal of Artificial
Intelligence Research, 10:323–352, 1999.

4. Claudio Castellini, Enrico Giunchiglia, and Armando Tacchella. Improvements to SAT-
based conformant planning. In Proc. ECP, 2001.

5. Maher N. Mneimneh and Karem A. Sakallah. Computing vertex eccentricity in exponen-
tially large graphs: QBF formulation and solution. In Theory and Applications of Satisfia-
bility Testing, 6th International Conference, (SAT), volume 2919 of LNCS, pages 411–425.
Springer, 2004.

6. I. Gent, E. Giunchiglia, M. Narizzano, A. Rowley, and A. Tacchella. Watched data structures
for QBF solvers. In Enrico Giunchiglia and Armando Tacchella, editors, Theory and Appli-
cations of Satisfiability Testing, 6th International Conference, (SAT), volume 2919 of LNCS,
pages 25–36. Springer, 2004.

7. E. Giunchiglia, M. Narizzano, and A. Tacchella. Monotone literals and learning in QBF
reasoning. In Tenth International Conference on Principles and Practice of Constraint Pro-
gramming, CP 2004, 2004.

8. E. Giunchiglia, M. Narizzano, and A. Tacchella. QUBE: an efficient QBF solver. In 5th
International Conference on Formal Methods in Computer-Aided Design, FMCAD 2004,
2004.

9. Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella. Learning for Quantified
Boolean Logic Satisfiability. In Proc. 18th National Conference on Artificial Intelligence
(AAAI) (AAAI’2002), pages 649–654, 2002.

10. L. Zhang and S. Malik. Conflict driven learning in a quantified boolean satisfiability solver.
In Proceedings of International Conference on Computer Aided Design (ICCAD’02), 2002.

11. R. Letz. Lemma and model caching in decision procedures for quantified Boolean formulas.
In Proceedings of Tableaux 2002, LNAI 2381, pages 160–175. Springer, 2002.

12. Fady Copty, Limor Fix, Enrico Giunchiglia, Gila Kamhi, Armando Tacchella, and Moshe
Vardi. Benefits of bounded model checking at an industrial setting. In Proc. 13th Interna-
tional Computer Aided Verification Conference (CAV), 2001.

13. D. Le Berre, L. Simon, and A. Tacchella. Challenges in the QBF arena: the SAT’03 eval-
uation of QBF solvers. In Sixth International Conference on Theory and Applications of
Satisfiability Testing (SAT 2003), volume 2919 of LNCS. Springer Verlag, 2003.

14. M. Cadoli, A. Giovanardi, and M. Schaerf. An algorithm to evaluate quantified boolean
formulae. In Proc. AAAI, 1998.

15. Guoqiang Pan and Moshe Y. Vardi. Optimizing a BDD-based modal solver. In Proceedings
of the 19th International Conference on Automated Deduction, 2003.

16. Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: Engineering an Efficient SAT Solver. In Proceedings of the 38th Design Automation
Conference (DAC’01), June 2001.

17. J. P. Marques-Silva and K. A. Sakallah. GRASP - A New Search Algorithm for Satisfiability.
In Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pages
220–227, November 1996.

18. Roberto J. Bayardo, Jr. and Robert C. Schrag. Using CSP look-back techniques to solve
real-world SAT instances. In Proceedings of the 14th National Conference on Artificial
Intelligence and 9th Innovative Applications of Artificial Intelligence Conference (AAAI-
97/IAAI-97), pages 203–208, Menlo Park, July 27–31 1997. AAAI Press.

19. Ian P. Gent and Andrew G.D. Rowley. Solution learning and solution directed backjumping
revisited. Technical Report APES-80-2004, APES Research Group, February 2004. Avail-
able from http://www.dcs.st-and.ac.uk/˜apes/apesreports.html.

20. H. Kleine-Büning, M. Karpinski, and A. Flögel. Resolution for quantified Boolean formulas.
Information and computation, 117(1):12–18, 1995.

QBF Reasoning on Real-World Instances 121

21. E. Giunchiglia, M. Narizzano, and A. Tacchella. Clause-term resolution and learning in
quantified Boolean logic satisfiability, 2004. Submitted.

22. Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella. Backjumping for Quanti-
fied Boolean Logic Satisfiability. Artificial Intelligence, 145:99–120, 2003.

23. Jussi Rintanen. Partial implicit unfolding in the Davis-Putnam procedure for Quantified
Boolean Formulae. In Proc. LPAR, volume 2250 of LNCS, pages 362–376, 2001.

Automatic Extraction of Functional
Dependencies

Éric Grégoire, Richard Ostrowski, Bertrand Mazure, and Lakhdar Säıs

CRIL CNRS & IRCICA – Université d’Artois,
rue Jean Souvraz SP-18, F-62307 Lens Cedex France

{gregoire, ostrowski, mazure, sais}@cril.univ-artois.fr

Abstract. In this paper, a new polynomial time technique for extract-
ing functional dependencies in Boolean formulas is proposed. It makes
an original use of the well-known Boolean constraint propagation tech-
nique (BCP) in a new preprocessing approach that extracts more hidden
Boolean functions and dependent variables than previously published
approaches on many classes of instances.

Keywords: SAT, Boolean function, propositional reasoning and search.

1 Introduction

Recent impressive progress in the practical resolution of hard and large SAT
instances allows real-world problems that are encoded in propositional clausal
normal form (CNF) to be addressed (see e.g. [13, 8, 20]). While there remains
a strong competition about building more efficient provers dedicated to hard
random k-SAT instances [7], there is also a real surge of interest in implement-
ing powerful systems that solve difficult large real-world SAT problems. Many
benchmarks have been proposed and regular competitions (e.g. [5, 2, 16, 17]) are
organized around these specific SAT instances, which are expected to encode
structural knowledge, at least to some extent.

Clearly, encoding knowledge under the form of a conjunction of propositional
clauses can flatten some structural knowledge that would be more apparent in
more expressive propositional logic representation formalisms, and that could
prove useful in the resolution step [15, 10].

In this paper, a new pre-processing step is proposed in the resolution of SAT
instances, that extracts and exploits some structural knowledge that is hidden
in the CNF. The technique makes an original use of the well-known Boolean
constraint propagation (BCP) process. Whereas BCP is traditionally used to
produce implied and/or equivalent literals, in this paper it is shown how it can
be extended so that it delivers an hybrid formula made of clauses together with
a set of equations of the form y = f(x1, . . . , xn) where f is a standard connective
operator among {∨, ∧} and where y and xi are Boolean variables of the initial
SAT instance. These Boolean functions allow us to detect a subset of dependent
variables, that can be exploited by SAT solvers.

H.H. Hoos and D.G. Mitchell (Eds.): SAT 2004, LNCS 3542, pp. 122–132, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Automatic Extraction of Functional Dependencies 123

This paper extends in a significant way the preliminary results that were
published in [14] in that it describes a technique that allows more dependent
variables and hidden functional dependencies to be detected in several classes
of instances. We shall see that the set of functional dependencies can underlie
cycles. Unfortunately, highlighting actual dependent variables taking part in
these cycles can be time-consuming since it coincides to the problem of finding
a minimal cycle cutset of variables in a graph, which is a well-known NP-hard
problem. Accordingly, efficient heuristics are explored to cut these cycles and
deliver the so-called dependent variables.

The paper is organized as follows. After some preliminary definitions, Boolean
gates and their properties are presented. It is then shown how more functional
dependencies than [14] can be deduced from the CNF, using Boolean constraint
propagation. Then, a technique allowing us to deliver a set of dependent vari-
ables is presented, allowing the search space to be reduced in an exponen-
tial way. Experimental results showing the interest of the proposed approach
are provided. Finally, promising paths for future research are discussed in the
conclusion.

2 Technical Preliminaries

Let B be a Boolean (i.e. propositional) language of formulas built in the stan-
dard way, using usual connectives (∨, ∧, ¬, ⇒, ⇔) and a set of propositional
variables.

A CNF formula Σ is a set (interpreted as a conjunction) of clauses, where a
clause is a set (interpreted as a disjunction) of literals. A literal is a positive or
negated propositional variable. We note V(Σ) (resp. L(Σ)) the set of variables
(resp. literals) occurring in Σ. A unit clause is a clause formed with one unique
literal. A unit literal is the unique literal of a unit clause.

In addition to these usual set-based notations, we define the negation of a
set of literals (¬{l1, . . . , ln}) as the set of the corresponding opposite literals
({¬l1, . . . ,¬ln}).

An interpretation of a Boolean formula is an assignment of truth values
{true, false} to its variables. A model of a formula is an interpretation that
satisfies the formula. Accordingly, SAT consists in finding a model of a CNF
formula when such a model does exist or in proving that such a model does not
exist.

Let c1 be a clause containing a literal a and c2 a clause containing the op-
posite literal ¬a, one resolvent of c1 and c2 is the disjunction of all literals of c1

and c2 less a and ¬a. A resolvent is called tautological when it contains opposite
literals.

Let us recall here that any Boolean formula can be translated thanks to a
linear time algorithm into CNF, equivalent with respect to SAT (but that can
use additional propositional variables). Most satisfiability checking algorithms
operate on clauses, where the structural knowledge of the initial formulas is
thus flattened. In the following, CNF formulas will be represented as Boolean
gates.

124 É. Grégoire et al.

3 Boolean Gates

A (Boolean) gate is an expression of the form y = f(x1, . . . , xn), where f is a
standard connective among {∨, ∧, ⇔} and where y and xi are propositional
literals, that is defined as follows :

– y = ∧(x1, . . . , xn) represents the set of clauses {y ∨ ¬x1 ∨ . . . ∨ ¬xn,¬y ∨
x1, . . . ,¬y ∨ xn}, translating the requirement that the truth value of y is
determined by the conjunction of the truth values of xi s.t. i ∈ [1..n];

– y = ∨(x1, . . . , xn) represents the set of clauses {¬y ∨ x1 ∨ . . . ∨ xn, y ∨
¬x1, . . . , y ∨ ¬xn};

– y =⇔ (x1, . . . , xn) represents the following equivalence chain (also called
biconditional formula) y ⇔ x1 ⇔ . . . ⇔ xn, which is equivalent to 2n clauses.

In the following, we consider gates of the form y = f(x1, . . . , xn) where y is
a variable or the Boolean constant true, only.

Indeed, any clause can be represented as a gate of the form true =
∨(x1, . . . , xn). Moreover, a gate ¬y = ∧(x1, . . . , xn) (resp. ¬y = ∨(x1, . . . , xn))
is equivalent to y = ∨(¬x1, . . . ,¬xn) (resp. y = ∧(¬x1, . . . ,¬xn)). According
to the well-known property of equivalence chain asserting that every equiva-
lence chain with an odd (resp. even) number of negative literals is equivalent
to the chain formed with the same literals, but all in positive (resp. except
one) form, every gate of the form y =⇔ (x1, . . . , xn) can always be rewritten
into a gate where y is a positive literal. For example, ¬y =⇔ (¬x1, x2, x3) is
equivalent to y =⇔ (x1, x2, x3) and ¬y =⇔ (¬x1, x2,¬x3) is equivalent to e.g.
y =⇔ (x1, x2,¬x3).

A propositional variable y (resp. x1, . . . , xn) is an output variable (resp. are
input variables) of a gate of the form y = f(x′

1, . . . , x
′
n), where x′

i
∈ {xi,¬xi}.

A propositional variable z is an output (dependent) variable of a set of gates
iff z is an output variable of at least one gate in the set. An input (independent)
variable of a set of gates is an input variable of a gate which is not an output
variable of the set of gates.

A gate is satisfied under a given Boolean interpretation iff the left and right
hand sides of the gate are simultaneously true or false under this interpretation.
An interpretation satisfies a set of gates iff each gate is satisfied under this
interpretation. Such an interpretation is called a model of this set of gates.

4 From CNF to Gates

Practically, we want to find a representation of a CNF Σ using gates that high-
lights a maximal number of dependent variables, in order to decrease the actual
computational complexity of checking the satisfiability of Σ. Actually, we shall
describe a technique that extracts gates that can be deduced from Σ, and that
thus cover a subset of clauses of Σ. Remaining clauses of Σ will be represented
as or-gates of the form true = ∨(x1, . . . , xn), in order to get a uniform represen-
tation.

Automatic Extraction of Functional Dependencies 125

More formally, assume that a set G of gates whose corresponding clauses
Cl(G) are logical consequences of a CNF Σ, the set Σuncovered(G) of uncovered
clauses of Σ w.r.t. G is the set of clauses of Σ\Cl(G).

Accordingly, Σ ≡ Σuncovered(G) ∪ Cl(G).
Not trivially, we shall see that the additional clauses Cl(G)\Σ can play an

important role in further steps of deduction or satisfiability checking.
Knowing output variables can play an important role in solving the consis-

tency status of a CNF formula. Indeed, the truth-value of an y output variable
of a gate depends on the truth value of the corresponding xi input variables.
The truth value of such output variables can be obtained by propagation, and
they can be omitted by selection heuristics of DPLL-like algorithms [4]. In the
general case, knowing n′ output variables of a gate-oriented representation of a
CNF formula using n variables allows the size of the set of interpretations to be
investigated to decrease from 2n to 2n−n

′

. Obviously, the reduction in the search
space increases with the number of detected dependent variables.

Unfortunately, to obtain such a reduction in the search space, one might need
to address the following difficulties:

– Extracting gates from a CNF formula can be a time-consuming process in the
general case, unless some depth-limited search resources or heuristic criteria
are provided. Indeed, showing that y = f(x1, . . . , xi) (where y, x1, . . . , xi

belong to Σ) follows from a given CNF Σ, is coNP-complete.
– when the set of detected gates contains recursive definitions (like y = f(x, t)

and x = g(y, z)), assigning truth values to the set of independent variables
is not sufficient to determine the truth values of all the dependent ones.
Handling such recursive definitions coincides to the well-known NP-hard
problem of finding a minimal cycle cutset in a graph.

In this paper, these two computationally-heavy problems are addressed. The
first one by restricting deduction to Boolean constraint propagation, only. The
second one by using graph-oriented heuristics.

Let us first recall some necessary definitions about Boolean constraint prop-
agation.

5 Boolean Constraint Propagation (BCP)

Boolean constraint propagation or unit resolution, is one of the most used and
useful lookahead algorithm for SAT.

Let Σ be a CNF formula, BCP (Σ) is the CNF formula obtained by propagat-
ing all unit literals of Σ. Propagating a unit literal l of Σ consists in suppressing
all clauses c of Σ such that l ∈ c and replacing all clauses c′ of Σ such that
¬l ∈ c′ by c′\{¬l}. The CNF obtained in such a way is equivalent to Σ with
respect to satisfiability.

The set of propagated unit literals of Σ using BCP is noted UP (Σ). Obviously,
we have that Σ � UP (Σ). BCP is a restricted form of resolution, and can be
performed in linear time. It is also complete for Horn formulas. In addition to

126 É. Grégoire et al.

its use in DPLL procedures, BCP is used in many SAT solvers as a processing
step to deduce further interesting information such as implied [6] and equivalent
literals [3][11]. Local processing based-BCP is also used to deliver promising
branching variables (heuristic UP [12]).

In the sequel, it is shown that BCP can be further extended, allowing more
general functional dependencies to be extracted.

6 BCP and Functional Dependencies

Actually, BCP can be used to detect hidden functional dependencies. The main
result of the paper is the practical exploitation of the following original property:
gates can be computed using BCP only, while checking whether a gate is a logical
consequence of a CNF is coNP-complete in the general case.

Property 1. Let Σ be a CNF formula, l ∈ L(Σ), and c ∈ Σ s.t. l ∈ c. If c\{l} ⊂
¬UP (Σ ∧ l) then Σ � l = ∧(¬{c\{l}}).

Proof. Let c = {l,¬l1,¬l2, . . . ,¬lm} ∈ Σ s.t. c\{l} = {¬l1,¬l2, . . . ,¬lm} ⊂
¬UP (Σ ∧ l). The Boolean function l = ∧(¬{c\{l}}) can be written as l =
∧(l1, l2, . . . , lm). To prove that Σ � l = ∧(l1, l2, . . . , lm), we need to show that
every model of Σ, is also a model of l = ∧(l1, l2, . . . , lm). Let I be a model of Σ,
then

1. l is either true in I : I is also a model of Σ ∧ l. As {¬l1,¬l2, . . . ,¬lm} ⊂
¬UP (Σ ∧ l), we have {l1, l2, . . . , lm} ⊂ UP (Σ ∧ l), then {l1, l2, . . . , lm} are
true in I. Consequently, I is also a model of l = ∧(l1, l2, . . . , lm}});

2. or l is false in I : as c = {l,¬l1,¬l2, . . . ,¬lm} ∈ Σ then I satisfies c =
{¬l1,¬l2, . . . ,¬lm} ∈ Σ. So, at least one the literals li, i ∈ {1, . . . , m} is true
in I. Consequently, I is also a model of l = ∧(l1, l2, . . . , lm}})

Clearly, depending on the sign of the literal l, and-gates or or-gates can be
detected. For example, the and-gate ¬l = ∧(l1, l2, . . . , ln) is equivalent to the or-
gate l = ∨(¬l1,¬l2, . . . ,¬ln). Let us also note that this property covers binary
equivalence since a = ∧(b) is equivalent to a ⇔ b.

Actually, this property allows gates to be detected, which were not in the scope
of the technique described in [14]. Let us illustrate this by means of an example.

Example 1. Let Σ1 ⊇ {y ∨ ¬x1 ∨ ¬x2 ∨ ¬x3,¬y ∨ x1,¬y ∨ x2,¬y ∨ x3}.

According to [14], Σ1 can be represented by a graph where each vertex repre-
sents a clause and where each edge corresponds to the existence of tautological
resolvent between the two corresponding clauses. Each connected component
might be a gate. As we can see the first four clauses belong to a same connected
component. This is a necessary condition for such a subset of clauses to represent
a gate. Such a restricted subset of clauses (namely, those appearing in the same
connected component) is then checked syntactically to determine if it represents
an and/or gate. Such a property can be checked in polynomial time. In the above
example, we thus have y = ∧(x1, x2, x3).

Now, let us consider, the following example,

Automatic Extraction of Functional Dependencies 127

Example 2. Σ2 ⊇ {y∨¬x1∨¬x2∨¬x3,¬y∨x1,¬x1∨x4,¬x4∨x2,¬x2∨x5,¬x4∨
¬x5 ∨ x3}.

Clearly, the graphical representation of this later example is different and
the above technique does not help us in discovering the y = ∧(x1, x2, x3) gate.
Indeed, the above necessary but not sufficient condition is not satisfied.

Now, according to Property 1, both the and-gates behind Example 1 and
Example 2 can be detected. Indeed, in example 1, UP (Σ1 ∧ y) = {x1, x2, x3}
and ∃c ∈ Σ1, c = (y ∨ ¬x1 ∨ ¬x2 ∨ ¬x3) such that c\{y} ⊂ ¬UP (Σ1 ∧ y).
Moreover, in example 2, UP (Σ2 ∧ y) = {x1, x4, x2, x5, x3} and ∃c′ ∈ Σ2, c′ =
(y ∨ ¬x1 ∨ ¬x2 ∨ ¬x3) such that c′\{y} ⊂ ¬UP (Σ2 ∧ y).

Accordingly, a preprocessing technique to discover gates consists in checking
the Property 1 for any literal occurring in Σ. A further step consists in finding
dependent variables of the original formulas, as they can be recognised in the
discovered gates. A gate clearly exhibits one dependent literal with respect to the
inputs which are considered independent, as far as a single gate is considered.
Now, when several gates share literals, such a characterisation of dependent
variables does not apply anymore. Indeed, forms of cycle can occur as shown in
the following example.

Example 3. Σ3 ⊇ {x = ∧(y, z), y = ∨(x,¬t)}.

Clearly, Σ3 contain a cycle. Indeed, x depends on the variables y and z,
whereas y depends on the variables x and t. When a single gate is considered,
assigning truth values to input variables determines the truth value of the output,
dependent, variable. As in Example 3, assigning truth values to input variables
that are not output variables for other gates is not enough to determine the truth
value of all involved variables. In the example, assigning truth values to z and t is
not sufficient to determine the truth value of x and y. However, in the example,
when we assign a truth value to an additional variable (x, which is called a cycle
cutset variable) in the cycle, the truth value of y is determined. Accordingly,
we need to cut such a form of cycle in order to determinate a sufficient subset
of variables that determines the values of all variables. Such a set is called a
strong backdoor in [19]. In Example 3, the strong backdoor corresponds to the
set of {x} ∪ {z, t}. In this context, a strong backdoor is the union of the set
of independent variables and of the variables of the cycle cutset. Finding the
minimal set of variables that cuts all the cycles in the set of gates is an NP-hard
problem. This issue is investigated in the next section.

7 Searching for Dependent Variables

In the following, a graph representation of the interaction of gates is considered.
More formally,

A set of gates can be represented by a bipartite graph G = (O ∪ I, E) as
follows:

– for each gate we associate two vertices, the first one o ∈ O represents the
output of the gate, and the second one i ∈ I represents the set of its input

128 É. Grégoire et al.

variables. So the number of vertex is less than 2× #gates, where #gates is
the number of gates;

– For each gate, an edge (o, i) between the two vertices o and i representing
the left and the right hand sides of a gate is created. Additional edges are
created between o ∈ O and i ∈ I if one of the literals of the output variable
associated to the vertex o belongs to the set of input literals associated to
the vertex i.

Finding a smallest subset V ′ of O s.t. the subgraph G′ = (V ′∪I, E′) is acyclic
is a well-known NP-hard problem.

Actually, any subset V ′ that makes the graph acyclic is the representation
of the set of variables, which together with all the independent ones, allows
all variables to be determined. When V ′ is of size c, and the set of dependent
variables is of size d, then the search space is reduced from 2n to 2n−(d−c), where
n is the number of variable occurring in the original CNF formula.

We thus need to find a trade-off between the size of V ′, which influences the
computational cost to find it, and the expected time gain in the subsequent SAT
checking step.

In the following, two heuristics are investigated in order to find a cycle-cut
set V ′. The first-one is called Maxdegree. It consists in building V ′ incrementally
by selecting vertices with the highest degree first, until the remaining subgraph
becomes acyclic.

The second one is called MaxdegreeCycle. It consists in building V ′ incremen-
tally by selecting first a vertex with the highest degree among the vertices that
belong to a cycle. This heuristic guarantees that each time a vertex is selected,
then at least one cycle is cut.

In the next section, extensive experimental results are presented and discussed,
involving the preprocessing technique described above. It computes gates and
cuts cycles when necessary in order to deliver a set of dependent variables. Two
strategies are explored: in the first one, each time a gate is discovered, the covered
clauses of Σ are suppressed; in the second one, covered clauses are eliminated
at the end of the generation of gates, only. While the first one depends on the
considered order of propagated literals, the second one is order-independent. These
two strategies will be compared in terms of number of discovered gates, of the size
of the cycle cutsets, of dependent variables and of the final uncovered clauses.

8 Experimental Results

Our preprocessing software is written in C under Linux Redhat 7.1 (available at :
http://www.cril.univ-artois.fr/∼ostrowski/Binaries/llsatpreproc).
All experimentations have been conducted on Pentium IV, 2.4 Ghz. Descrip-
tion of the benchmarks can be found on SATLib (http://www.satlib.org).

We have applied both [14] and our proposed technique on all benchmarks
from the last SAT competition [17, 18], covering e.g. model-checking, VLSI and
planning instances. Complete results are available at :
http://www.cril.univ-artois.fr/∼ostrowski/result-llsatpreproc.ps.

Automatic Extraction of Functional Dependencies 129

Table 1. #G: Number of gates detected (average[standard deviation])

Table 2. Size of backdoor with no remove option

In the following, we illustrate some typical ones. On each class of instances,
average and standard deviation results are provided with respect to the corre-
sponding available instances.

In Table 1, for each considered class, the results of applying both [14]’s tech-
nique and the two new ones described above (in the first one, covered clauses
are not suppressed as soon as they are discovered whereas they are suppressed
in the second one) in terms of the mean number of discovered gates (#G). The
results clearly show that our approach allows one to discover more gates. Not
surprisingly, removing clauses causes the number of detected gates to decrease.

130 É. Grégoire et al.

Table 3. Size of backdoor with remove option

In Table 2, we took the no-remove option. We explored the above two heuris-
tics for cutting cycles (Maxdregre and MaxdegreeCycle). For each class of in-
stances, we provide the average number of detected dependent variables (#D),
the size of the cycle cutsets (#CS) and the size of the discovered backdoor
(#B), and the cumulated CPU time in seconds for discovering gates and com-
puting these results. On some classes, the backdoor can be 10% of the number
of variables, only.

In Table 3, the remove option was considered. The number of gates is often
lower than with the no-remove option. On the other hand, the size of the cycle
cutset is generally lower with the remove option.

Accordingly, no option is preferable to the other one in the general case.
Indeed, finding a smaller backdoor depends both on the considered class of in-
stances and the considered option.

However, in most cases, the remove option and the MaxdegreeCycle heuristic
lead to smaller backdoors.

We are currently experimenting how such a promising preprocessing step can
be grafted to the most efficient SAT solvers, allowing them to focus directly on
the critical variables of the instances (i.e. the backdoor). Let us stress that our
preprocessing step has been implemented in a non-optimized way. However, it
takes less than 1 second in most cases. So time is omitted in different tables.

9 Future Works

Let us here simply motivate another interesting path for future research, related
to the actual expressiveness of discovered clauses. Actually, our gate-oriented
representation of a Boolean formula exhibits additional information that can
prove powerful with respect to further steps of deduction or satisfiability check-

Automatic Extraction of Functional Dependencies 131

ing. To illustrate this, let us consider Example 2 again. From the CNF Σ, the
gate y = ∧(x1, x2, x3) is extracted. The clausal representation of the gate is
given by {y ∨ ¬x1 ∨ ¬x2 ∨ ¬x3,¬y ∨ x1,¬y ∨ x2,¬y ∨ x3}.

Clearly, the additional clauses {¬y∨x2,¬y∨x3} are resolvents from Σ, which
can only be obtained using two and six basic steps of resolution, respectively.
Accordingly, the gate representation of Σ involves non-trivial binary resolvents,
which can ease further deduction or satisfiability checking steps. Taking this
feature into account either in clausal-based or gate-based deduction of satisfia-
bility solvers should be a promising path for future research. Also, some of the
discovered gates represent equivalencies (x ⇔ y), substituting equivalent literals
might lead to further reductions with respect to the number of variables.

Another interesting path for future research concerns the analysis of the
obtained graph and the use of e.g. decomposition techniques. To further reduce
the size of the backdoor, we also plan to study how tractable parts of the formula
(e.g. horn or horn-renommable) can be exploited.

10 Conclusions

Clearly, our experimental results are encouraging. Dependent variables can be
detected in a preprocessing step at a very low cost. Cycles occur, and they can
be cut. We are currently grafting such a preprocessing technique to efficient SAT
solvers. Our preliminary experimentations show that this proves often beneficial.
Moreover, we believe that the study of cycles and of dependent variables can be
essential in the understanding of the difficulty of hard SAT instances.

Acknowledgements

This work has been supported in part by the CNRS, the FEDER, the IUT de
Lens and the Conseil Régional du Nord/Pas-de-Calais. We thank the reviewers
for valuable comments on a previous version of this paper.

References

1. F. Bacchus and J. Winter. Effective preprocessing with hyper-resolution and equal-
ity reduction. In Sixth International Symposium on Theory and Applications of
Satisfiability Testing (SAT’03), 2003.

2. First international competition and symposium on satisfiability testing, March
1996. Beijing (China).

3. L. Brisoux, L. Sais, and E. Grégoire. Recherche locale : vers une exploitation
des propriétés structurelles. In Actes des Sixièmes Journées Nationales sur la
Résolution Pratique des Problèmes NP-Complets(JNPC’00), pages 243–244, Mar-
seille, 2000.

4. Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem proving. Journal of the Association for Computing Machinery, 5:394–397,
1962.

132 É. Grégoire et al.

5. Second Challenge on Satisfiability Testing organized by the Center for
Discrete Mathematics and Computer Science of Rutgers University, 1993.
http://dimacs.rutgers.edu/Challenges/.

6. Olivier Dubois, Pascal André, Yacine Boufkhad, and Jacques Carlier. Sat versus
unsat. In D.S. Johnson and M.A. Trick, editors, Second DIMACS Challenge, DI-
MACS Series in Discrete Mathematics and Theoretical Computer Science, Ameri-
can Mathematical Society, pages 415–436, 1996.

7. Olivier Dubois and Gilles Dequen. A backbone-search heuristic for efficient solving
of hard 3–sat formulae. In Proceedings of the Seventeenth International Joint
Conference on Artificial Intelligence (IJCAI’01), volume 1, pages 248–253, Seattle,
Washington (USA), August 4–10 2001.

8. E. Giunchiglia, M. Maratea, A. Tacchella, and D. Zambonin. Evaluating search
heuristics and optimization techniques in propositional satisfiability. In Proceedings
of International Joint Conference on Automated Reasoning (IJCAR’01), Siena,
June 2001.

9. Matti Järvisalo, Tommi Junttila, and Ilkka Niemelä. Unrestricted vs restricted
cut in a tableau method for Boolean circuits. In AI&M 2004, 8th International
Symposium on Artificial Intelligence and Mathematics, Fort Lauderdale, Florida,
USA, January 4–6 2004.

10. Henry A. Kautz, David McAllester, and Bart Selman. Exploiting variable depen-
dency in local search. In Abstract appears in ”Abstracts of the Poster Sessions of
IJCAI-97”, Nagoya (Japan), 1997.

11. Daniel Le Berre. Exploiting the real power of unit propagation lookahead. In
Proceedings of the Workshop on Theory and Applications of Satisfiability Testing
(SAT2001), Boston University, Massachusetts, USA, June 14th-15th 2001.

12. Chu Min Li and Anbulagan. Heuristics based on unit propagation for satisfiabil-
ity problems. In Proceedings of the Fifteenth International Joint Conference on
Artificial Intelligence (IJCAI’97), pages 366–371, Nagoya (Japan), August 1997.

13. Shtrichman Oler. Tuning sat checkers for bounded model checking. In Proceedings
of Computer Aided Verification (CAV’00), 2000.

14. Grégoire E. Mazure B. Ostrowski R. and Sais L. Recovering and exploiting struc-
tural knowledge from cnf formulas. In Eighth International Conference on Prin-
ciples and Practice of Constraint Programming (CP’2002), pages 185–199, Ithaca
(N.Y.), 2002. LNCS 2470, Springer Verlag.

15. Antoine Rauzy, Lakhdar Säıs, and Laure Brisoux. Calcul propositionnel : vers
une extension du formalisme. In Actes des Cinquièmes Journées Nationales sur la
Résolution Pratique de Problèmes NP-complets (JNPC’99), pages 189–198, Lyon,
1999.

16. Sat 2001: Workshop on theory and applications of satisfiability testing, 2001.
http://www.cs.washington.edu/homes/kautz/sat2001/.

17. Sat 2002 : Fifth international symposium on theory and applications of satisfiability
testing, May 2002. http://gauss.ececs.uc.edu/Conferences/SAT2002/.

18. Sat 2003 : Sixth international symposium on theory and applications of satisfiabil-
ity testing, May 2003. http://www.mrg.dist.unige.it/events/sat03/.

19. Ryan Williams, Carla P. Gomez, and Bart Selman. Backdoors to typical case
complexity. In Proceedings of the Eighteenth International Joint Conference on
Artificial Intelligence (IJCAI’03), pages 1173–1178, 2003.

20. L. Zhang, C. Madigan, M. Moskewicz, and S. Malik. Efficient conflict driven
learning in a boolean satisfiability solver. In Proceedigns of ICCAD’2001, pages
279–285, San Jose, CA (USA), November 2001.

Algorithms for Satisfiability Using
Independent Sets of Variables

Ravi Gummadi1, N.S. Narayanaswamy1,�, and R. Venkatakrishnan2

1 Department of Computer Science and Engineering,
Indian Institute of Technology Madras, Chennai-600036, India
gravi@peacock.iitm.ernet.in, swamy@shiva.iitm.ernet.in

2 Department of Information Technology,
Crescent Engineering College, Vandalur, Chennai-600048, India

coolvenk@sancharnet.in

Abstract. An independent set of variables is one in which no two vari-
ables occur in the same clause in a given instance of k-SAT. Instances
of k-SAT with an independent set of size i can be solved in time, within
a polynomial factor of 2n−i. In this paper, we present an algorithm for
k-SAT based on a modification of the Satisfiability Coding Lemma. Our

algorithm runs within a polynomial factor of 2(n−i)(1− 1

2k−2
), where i is

the size of an independent set. We also present a variant of Schöning’s
randomized local-search algorithm for k-SAT that runs in time which is
with in a polynomial factor of (2k−3

k−1
)n−i.

1 Introduction

The Propositional Satisfiability Problem (SAT) is one of significant theoreti-
cal and practical interest. Historically, SAT was the first problem to be proven
NP-complete. No polynomial-time algorithm for a k-SAT problem (k ≥ 3) is
known, and no proof of its non-existence has been proposed, leaving open the
question of whether P = NP?. The Satisfiability problem has important prac-
tical applications. For instance, in circuit design problems, a circuit that always
produces an output of 0, can be eliminated from a larger circuit. This would
reduce the number of gates needed to implement the circuit, thereby reducing
cost. This problem naturally motivates the question of whether a given for-
mula is satisfiable. Further, all the problems in the class NP can be reduced in
polynomial-time to the Satisfiability problem. There are many practically im-
portant problems in this class. Therefore, a fast algorithm for SAT can also help
to solve these problems efficiently. However, the existence of polynomial-time
algorithms for NP-complete problems is believed to be unlikely. Consequently,
current research on SAT is focused on obtaining non-trivial exponential upper-
bounds for SAT algorithms. For example, an algorithm running in O(2n/r) for

� Partly Supported by DFG Grant No. Jo 291/2-1. Part of Work done when the author
was at the Institut Für Informatik, Oettingenstrasse 67, 80538, Munich, Germany.

H.H. Hoos and D.G. Mitchell (Eds.): SAT 2004, LNCS 3542, pp. 133–144, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

134 R. Gummadi, N.S. Narayanaswamy, and R. Venkatakrishnan

instance, with large r could prove useful in solving many practical problems.
Current research on SAT is focused on obtaining non-trivial exponential upper-
bounds for SAT algorithms.

Algorithms for SAT. SAT algorithms are classified into Splitting algorithms
and Local Search algorithms [DHIV01]. Splitting algorithms reduce the input
formula into polynomially many formulae. The two families of Splitting algo-
rithms are DPLL-like algorithms and PPSZ-like algorithms. DPLL-like algo-
rithms [DP60, DLL62] replace the input formula F by two formulas F [x] and
F [¬x]. This is done recursively. Using this technique, Monien and Speckenmeyer
[MS85] gave the first non-trivial upper bounds for k-SAT. PPSZ-like algorithms
[PPZ97, PPSZ98] use a different approach: variables are assigned values in a ran-
dom order in the hope that the value of many variables can be obtained from the
values of variables chosen prior to it. Local Search algorithms work by starting
with an initial assignment and modifying it to come closer to a satisfying assign-
ment. If, after a certain number of steps no satisfying assignment is found, the
algorithm starts again with a new initial assignment. After repeating a certain
number of times, if the algorithm does not find a satisfying assignment, it halts
reporting ”Unsatisfiable”. Greedy algorithms [KP92] may be used to modify the
current assignment in Local Search algorithms. These algorithms change the cur-
rent assignment such that some function of the assignment increases as much as
possible. Random walk algorithms [Pap91], on the other hand, modify the cur-
rent assignment by flipping the value of a variable at random from an unsatisfied
clause. 2-SAT can be solved in expected polynomial-time by a random walk al-
gorithm [Pap91]. [Sch99] shows that k-SAT can be solved in time (2− 2/k)n up
to a polynomial factor. From the literature [Sch99, PPZ97, PPSZ98], it is clear
that the current asymptotic performance of the local search algorithms is better
than PPSZ-like algorithms.

Our Work and Results. Our main motivation is to explore further directions
towards improving the performance of PPSZ-like algorithms. While the algo-
rithm in [PPZ97] computes the values of variables in a random order, in the
process shrinking the search space based on the formula, we observe that vari-
able sets which have a special property with respect to the formula naturally
shrink the search space. For example, if I is a set of variables in which no two
of them occur in a clause, then the values to the variables of I can be com-
puted very easily given an assignment to the variables outside I. Consequently,
we could spend our effort on trying to find an assignment to variables outside
I that can be extended to variables of I to obtain a satisfying assignment for
the formula. This is precisely the approach of this paper. We first consider the
brute force algorithm, and then modify the Satisfiability Coding Lemma, and
Schöning’s randomized algorithm to obtain an assignment to variables outside
I. While we have not obtained an improved algorithm in general, we observe
that our algorithms guarantee to be faster in the case when I is large enough in
a given formula. On the other hand, it is also quite easy to construct formulae in

Algorithms for Satisfiability Using Independent Sets of Variables 135

which I is very small in which case the performance is the same as the algorithm
in [PPZ97]. So the motivation for our work is our conjecture that random satisfi-
able formulae have large independent sets. This is reiterated by the benchmarks
for satsolvers which have independent sets of size n

4 .
Independent set like structures in the formula have been used to obtain better

algorithms for 3-sat. In particular, the paper by [SSWH02] uses a set of disjoint
clauses to identify the initial starting point of Schöning’s randomized algorithm
[Sch99]. Indeed the disjoint clauses form an independent set in the set of clauses.
On the other hand, we use independent sets of variables in our attempt to im-
prove the performance of algorithms for k-sat based on the Satisfiability Coding
Lemma [PPZ97, PPSZ98].

Roadmap. Section 2 presents the preliminaries, the brute force algorithm in Sec-
tion 2.1. The modified Satisfiability Coding Lemma is presented in Section 3, and
the algorithm based on it is presented and analyzed in Section 4. The random walk
algorithm is presented in Section 5. A discussion in Section 6, and a construction
of formulae with small independent sets in Section 6.1 concludes the paper.

2 Preliminaries

We have used the usual notions associated with the k-SAT problem. The reader
is referred to [DHIV01] for this. Let V denote the set of variables in an instance
F of k-SAT. An Independent Set I ⊆ V , is a set of variables such that each
clause contains at most one element of the set. In this paper, we consider in-
dependent sets that are maximal with respect to inclusion. I denotes a fixed
maximal independent set of cardinality i in F . Given an assignment a′ to the
variables of V − I, we can check whether it can be extended to a satisfying as-
signment in polynomial time: when we substitute a′ into the formula, then we
get a conjunction of literals. Every variable in this conjunction is an element
of I. Further, testing if a conjunction of literals is satisfiable is a trivial issue.
A truth assignment to the variables of V − I is said to be extensible if there is
a truth assignment to the elements of I such that the resulting assignment to
{x1, . . . , xn} is a satisfying assignment. An assignment that cannot be extended
to a satisfying assignment is called a non-extensible assignment. An extensible
assignment is said to be isolated along a direction j, xj �∈ I, if flipping the value
of xj results in a non-extensible assignment.

Isolated Extensible Assignments. For a truth assignment a, ai is said to
be critical for a clause C if the corresponding literal is the only true literal
in C under the assignment a. Without loss of generality, let us consider the
variables of V − I to have indices from [n − i] = {1, . . . n − i}. Further, for an
assignment a′ to the variables outside I, F (a′) is a conjunction of literals from I.
Let b = b1 . . . bn−i be an extensible assignment that is isolated along directions
indexed by the elements of J ⊆ [n − i]. Let b′ be the assignment obtained by
flipping br, r ∈ J . b′ is non-extensible for one of the following two reasons:

136 R. Gummadi, N.S. Narayanaswamy, and R. Venkatakrishnan

1. The formula is falsified by b′ as there is a clause with all its variables from
V − I, and br is critical for this clause. An assignment is said to be easy
isolated along xr if this property is satisfied.

2. There exists an xl ∈ I, two clauses C1, C2 such that xl ∈ C1, xr,¬xl ∈
C2, and only xl occurs in F (b), but both xl and ¬xl occurs in F (b′). An
assignment that is not easy isolated along xr is said to be hard isolated along
xr if this condition is satisfied. We refer to the two clauses C1 and C2 as
falsifying clauses for b along direction r. We refer to them as falsifying clauses,
leaving out b and r, when there is no ambiguity. Clearly, if an extensible
assignment is hard isolated along xr, there exist two falsifying clauses.

2.1 The Brute Force Approach

The idea is to find the largest independent set I, and search through all possible
assignments to V − I. If an assignment is extensible, we report that F is satis-
fiable, otherwise report unsatisfiable when all assignments to V − I have been
tried. This algorithm runs in O(2n−ipoly(|F |)). While finding a large enough
independent set is a problem by itself, we propose to find the maximum inde-
pendent set by using the algorithm due to Beigel [Bei99] that runs quite effi-
ciently. The other approach is to permute the variables at random and consider
the independent set obtained by considering variables all of whose neighbours
occur to their left in the random permutation. Two variables are said to be
neighbours, if they occur together in a clause. This approach yields an inde-
pendent set whose expected size is n

∆+1 , where each variable has at most ∆
neighbours.

3 A Variant of Satisfiability Coding Lemma

In the Section 2.1 we have observed a simple brute force algorithm that finds
extensible solutions given an independent set I. We now improve this brute force
algorithm by modifying the satisfiability coding lemma suitably. The approach
that we take is similar to the approach in [PPZ97]. We first consider the issue
of encoding isolated extensible solutions and bound the expected length of an
encoding. We then show that this encoding process is reversible and it does
prune our search space yielding a randomized algorithm that performs better
than the brute force approach in Section 2.1. However, this does not better the
performance of [PPZ97] unless I is a sufficiently large set.

Encoding. We consider the set of j-isolated extensible solutions for a fixed inde-
pendent set of variables I. Let x1, . . . , xn−i be the variables of V − I in a k-SAT
formula. Let σ be a permutation on the set {1, . . . , n − i}. Let A = a1 . . . an−i

be a binary string visualized as an assignment of ar to xr, 1 ≤ r ≤ n− i. Let Aσ

denote the string aσ(n−i)aσ(n−i−1) . . . aσ(1). In other words, Aσ is a permutation
of A, according to σ. From A and σ, we construct an encoding E(A, σ) as follows:

Algorithms for Satisfiability Using Independent Sets of Variables 137

E(A, σ) is the empty string.

for(r = n− i; r ≥ 1; r −−)
begin

if A is isolated along σ(r)
AND all other variables in a critical clause for xσ(r)

occur to the left of xσ(r) in Aσ

OR the variables �∈ I in two falsifying clauses occur to

the left of xσ(r) in Aσ

then do not add aσ(r) to E(A, σ).
else

add aσ(r) to E(A, σ).
end

The operation of adding a bit to E(A, σ) is equivalent to concatenating to
the right end. The bits of this string are assumed to be indexed from left to right
starting with 1 for the leftmost bit, and using consecutive indices. The output of
the loop is E(A, σ). Another point of view on E(A, σ) is that it is obtained from
Aσ by deleting some bits which can be computed from previous information in
Aσ. Obviously, its length cannot exceed n− i.

Reconstruction. Given a k-SAT formula F , an independent set I, a bit string
E, and a permutation σ, we find a bit string A such that E(A, σ) = E, if such
an A exists. To obtain A we find Aσ = aσ(n−i)aσ(n−i−1) . . . aσ(1). The bit string
E is considered from the leftmost bit. Each bit of E is assigned to at most one
corresponding bit of Aσ. At each step the value of a bit of Aσ is inferred. It is
inferred either by substituting the previously computed bits into the formula, or
the current bit of E is assigned to Aσ.

Consider the case when Aσ has been computed up to the r+1-th bit, n−i−1 ≥
r ≥ 1. We substitute this partial assignment into F and consider the resulting
formula. There are three cases:

xσ(r) can be inferred from the previous values: This can happen in two ways.
The first, when xσ(r) occurs as a single literal. This means that there is a cor-
responding critical clause in which all other literals have been set to 0. xσ(r) is
set appropriately to make the literal true. The second case is when a variable
x ∈ I occurs as (x)(¬x ∨ y), where y is a literal of xσ(r). In this case, the value
assigned to xσ(r) is inferred from the value that makes y true.

xσ(r) takes its value from E: This happens when xσ(r) does not satisfy either
of the two conditions mentioned above. In this case, xσ(r) is to be assigned the
current bit of E. If all the bits of E have been used up then halt reporting failure.
At each step of the reconstruction, we keep track of whether a variable and its
complement occur as single clauses. If this happens, we halt reporting failure.
If Aσ is computed successfully, then it means that we have found an extensible
assignment.

138 R. Gummadi, N.S. Narayanaswamy, and R. Venkatakrishnan

3.1 Quality of the Encoding

Here we discuss the expected length of E(A, σ) when σ is chosen from a class
of distributions on Sn, the set of permutations of {1, . . . , n}. These distributions
are characterized by γ and satisfy the following property

| Prπ∈F (min{π(X)} = π(x))− 1
|X| |≤

γ

|X| (1)

Here, X ⊆ {1, . . . , n} and π(X) is the image of the set X under a permutation
π. Clearly, the required probability is 1

|X| when π is chosen uniformly from the
set of all permutations. The goal of identifying a smaller family of permutations
that guarantee this property is well motivated and is studied by Charikar et.
al in [MBFM00]. For each γ, Dγ is a probability distribution on Sn and Dγ(σ)
denotes probability of choosing σ in the distribution Dγ .

σ Chosen from Dγ. We now compute the average length of E(A, σ) averaged
over all σ ∈ Dγ . Clearly, the only directions that get eliminated are those along
which A is either easy isolated or hard isolated. Let us assume that A is an
extensible solution, easy isolated along je directions, and hard isolated along jh

directions. For a direction r along which A is easy isolated, we lower bound the
probability that ar is eliminated in the encoding of A with a randomly chosen
permutation.

Since A is easy isolated along r, there is a corresponding critical clause all
of whose variables are from V − I. ar will be eliminated if all the k − 1 literals
in the critical clause occur to the left in a randomly chosen permutation. This
event happens with probability at least 1−γ

k . It follows from the linearity of ex-
pectation that, for an A which is easy isolated along je directions, the expected
number of variables eliminated is at least je(1−γ)

k . Similarly a direction r, along
which A is hard isolated, will be eliminated if all the variables belonging to V −I
from corresponding falsifying clauses occur to the left of xr in a randomly cho-
sen permutation. The number of such variables from two falsifying clauses is at
most 2k − 3. Consequently, this event happens with probability at least 1−γ

2k−2 .
By linearity of expectation, the expected number of hard isolated directions that
get eliminated is at least jh(1−γ)

2k−2 . Therefore, the expected value of E(A, σ) is at
most n− i− (1− γ)(je

k + jh

2k−2).

Existence of a Good Permutation. We now use the above argument to show
that there is a permutation σ ∈ Dγ for which the average length E(A, σ), over
all extensible solutions A isolated along j = je + jh directions, is upper bounded
by n− i− (1− γ)(je

k + jh

2k−2). For this we consider the following average,

∑
σ

Dγ(σ)
∑
A∈J

1
|J |E(A, σ) =

∑
A∈J

1
|J |
∑

σ

Dγ(σ)E(A, σ) (2)

This is upper bounded by n − i − (1 − γ)(je

k + jh

2k−2) since we know from
the above calculation that

∑
σ Dγ(σ)E(A, σ) ≤ n − i − (1 − γ)(je

k + jh

2k−2).

Algorithms for Satisfiability Using Independent Sets of Variables 139

It now follows by the pigeon hole principle that for some σ,
∑

A∈J
1
|J|E(A, σ) ≤

n− i− (1− γ)(je

k + jh

2k−2). We state these bounds in the following theorem.

Theorem 1. Let A be an extensible solution which is easy isolated along je

directions, and hard isolated along jh directions. The expected value of E(A, σ)
is at most n− i− (1− γ)(je

k + jh

2k−2). Consequently, for J , the set of extensible
solutions, easy isolated along j directions,there is a permutation σ ∈ Dγ such
that

∑
A∈J

1
|J|E(A, σ) ≤ n − i − (1 − γ)(je

k + jh

2k−2). Here i is the size of an
independent set I.

4 Algorithm to Find Satisfying Assignments

For a k-CNF |F | with an independent set I, we use the result in Theorem 1 to
design a randomized algorithm. Further, we set γ = 0, that is we use a family
of permutations that guarantees exact min-wise independence. From now on,
γ = 0. The effectiveness of this algorithm over the one presented in [PPZ97]
depends on how large an independent set there is in the formula, and how much
time is needed to find a reasonably large independent set. The algorithm that we
present here, is quite similar to the randomized algorithm presented in [PPZ97].
In the description below, the word forced is a property of a variable whose value
is determined by the values the previous variables. For example, a variable xr is
forced if it occurs as a single literal in F (a1, . . . , ar−1). Here a1, . . . , ar−1 are the
assignments to the variables x1, . . . , xr−1, respectively. xr could also be forced if
two falsifying clauses occur in F (a1, . . . , ar−1).

Find an independent set I

Repeat n22(n−i)(1− 1

2k−2
) times

While there is an unassigned variable in V − I
select an unassigned variable y from V − I at random

If y is forced, then set y as per the forcing

Else set y to true or false at random

end while

If the assignment can be extended

then output the satisfying assignment

End Repeat

We state the following lemma, a special case of the isoperimetric inequality,
which is used to prove our main theorem. We present a complete proof
here.

Lemma 1. Let S ⊆ {0, 1}n, be a non-empty set. For x ∈ S, define In(x) be
the number of distance-1 neighbours of x that are not in S. Define value(x) =
2(In(x)−n). Then, Σx∈Svalue(x) ≥ 1.

Proof. The proof is by induction on n. The base case is when n = 1. If I1(x) = 0,
then we observe that Σx∈Svalue(x) = 1. If I1(x) = 1, Σx∈Svalue(x) = 1.

140 R. Gummadi, N.S. Narayanaswamy, and R. Venkatakrishnan

For n > 1, and i ∈ {0, 1}, let Si be a subset of {0, 1}n−1 such that for each
x ∈ Si, xi ∈ S. Now we consider two cases:

Case I: If one of the two sets is empty, then we have a direction along which each
element of S is isolated. Let us consider S′ to be a subset of {0, 1}n−1 obtained
by projecting along the rightmost bit. By induction, Σx∈S′value(x) ≥ 1. That
is, Σx∈S′2In−1(x)−(n−1) ≥ 1. Clearly, the number of directions along which an
x ∈ S is isolated in {0, 1}n is one more than the number of directions along
which it’s projection(along the rightmost bit) is isolated in {0, 1}n−1. Conse-
quently, Σx∈S′2In−1(x)+1−(n−1) is exactly Σx∈S2In(x)−n. Hence the induction
hypothesis is proved in this case.

Case II: If both Si are non-empty. Then, by induction, Σx∈Si
value(x) ≥ 1.

Observe that, here value(x) is defined with respect to Si, for each i. Due of the
induction hypothesis,

2 ≤ Σx∈S0
2In−1(x)−(n−1) + Σx∈S1

2In−1(x)−(n−1)

≤ 2Σx∈S0
2In(x0)−n + 2Σx∈S1

2In(x1)−n (3)
= 2Σx∈S2In(x)−n

The equation 3 follows from the previous equation due to the fact that In−1(x) ≤
In(xi), i ∈ {0, 1}. The induction hypothesis holds in this case too, and hence the
lemma is proved. ��

The following theorem is proved using the Lemma 1 along the lines of a similar
theorem in [PPZ97].

Theorem 2. Let I be an independent set of variables in F , a satisfiable instance
of k-SAT. The randomized algorithm in Section 4 finds a satisfying assignment
with very high probability in time O(n2|F |2(n−i)(1− 1

2k−2
)).

Proof. Let S denote the set of extensible assignments. Let us assume that x is
a j-isolated extensible solution of F . Among these let je(x) and jh(x) be easy
and hard isolated directions, respectively. The probability that x is output by
the algorithm is the sum over all d ≥ 0, probability that for a randomly chosen
permutation, d directions are forced, and the remaining directions are chosen
correctly. This is at least the probability that for a randomly chosen permuta-
tion, at least je

k + jh

2k−2 directions are forced, and the remaining directions are
guessed correctly. Recall that je

k + jh

2k−2 is a lower bound expected number of
directions that are eliminated by the process of encoding x. The probability of
finding x is dependent on two events, one is to find a permutation that elim-
inates je

k + jh

2k−2 directions, and the second is to make the correct choices on
the remaining values. We now lower bound this probability by estimating the
probability of finding a right permutation, and then conditioned on this event,
estimate the probability of making the correct choices.

Algorithms for Satisfiability Using Independent Sets of Variables 141

Probability of Finding a Right Permutation. Recall that a right permutation is
one using which the process of encoding x eliminates at least je

k + jh

2k−2 directions.
We can now partition the permutation into the following sets: for r < je

k + jh

2k−2 ,
Pr consists of those permutation that eliminate r variables, and Pav consists of
those permutations that eliminate at least je

k + jh

2k−2 variables. The number of
sets in this partition is at most n−i. Therefore, by the pigeon hole principle, one
of these sets must have at least 1

n−i of the permutations. Following the argument
in [PPZ97], Pav has at least 1

n−i of the permutations. Therefore, the probability
of picking the right permutation is at least 1

n−i > 1
n .

Probability of Making the Right Choices on the Unforced Bits. Conditioned on
the fact that a right permutation is chosen, we now estimate the probability that
the right choices are made on the unforced bits so that we get x. The number of
unforced bits is at most n− i− je

k −
jh

2k−2 . The probability of making the correct

choices is at least 2−(n−i− je
k − jh

2k−2
).

Therefore, the probability of picking x is at least 1
n2−(n−i− je

k − jh
2k−2

). The prob-
ability that the algorithm outputs some solution of F is given by the follow-
ing:

Σx∈S Pr(x is output) ≥ Σx∈S
1
n

2−(n−i− je(x)

k − jh(x)

2k−2
)

≥ 1
n

2−(n−i)(1− 1

2k−2
)Σx∈S2−(n−i)+I(x)

≥ 1
n

2−(n−i)(1− 1

2k−2
) (4)

The last inequality follows from Lemma 1. The repetition of the while loop
n22(n−i)(1− 1

2k−2
) increases the probability of finding a satisfying assignment to

a constant. Hence the theorem is proved. ��

Comparison with the Randomized Algorithm in [PPZ97]. The random-
ized algorithm presented in [PPZ97] has a running time of O(n2|F |2n−n/k), and
ours has a running time of O(n2|F |2(n−i)(1− 1

2k−2
)). Our algorithm does better

than the algorithm in [PPZ97] when (n− i)(1− 1
2k−2) < n(1− 1

k). This happens

when i > n(k−2)
k(2k−3) . For k = 3, our algorithm does better when i > n

9 .

5 Extensible Solutions via Local Search

In this section, we analyze a modification of Schöning’s local search algorithm
to find an extensible solution. As usual, let I denote an independent set of
cardinality i. The algorithm is as follows:

142 R. Gummadi, N.S. Narayanaswamy, and R. Venkatakrishnan

Let I be a maximal independent set of variables.

For numtries times

Select a random partial assignment a ∈ {0, 1}n−i

Repeat 3n times

Consider F (a) by substituting partial assignment a.
if (C(a) = 0 for some C ∈ F)

Randomly, flip the value of one of the literals from C
else if (C1(a) = x and C2(a) = ¬x for C1, C2 ∈ F, x ∈ I)

Randomly, flip one of the variables from C1 ∪ C2 − x
else

Extend a to a satisfying assignment s of F; return s;
EndRepeat

EndFor

Return ‘unsatisfiable’

Let a∗ be an extensible assignment. We lower bound the probability that the
above algorithm finds a∗, or some other extensible assignment. Let a ∈ {0, 1}n−i

be the initial random assignment, at a Hamming distance of j from a∗. To an-
alyze the algorithm, we consider a walk on a Markov Chain, whose states are
labelled {0, 1, 2, ..., n− i}. Each state represents the Hamming distance between
the current assignment and a∗. Initially, the walk starts at state j. We now
observe that at each step of the algorithm, the probability of moving one step
closer to the state 0 is at least 1

2k−2 . This is easy to see, as we know that if
a is not extensible, then either there is a clause C, var(C) ⊆ V − I, such that
C(a) = 0, or there is an x ∈ I, and two clauses C1, C2 such that C1(a) = x
and C2(a) = ¬x. In the former case, the algorithm moves to an assignment
with a lesser Hamming distance from a∗ with probability at least 1

k , and in
the latter, with probability at least 1

2k−2 . The reasoning is that the values as-
signed to the variables in C by a and a∗ have to differ at at least one variable.
Similarly, the values assigned to variables in C1 ∪ C2 − x by a and a∗ must
differ at at least one variable. Consequently, the size of C and C1 ∪ C2 − x
give the claimed probabilities. The probability of finding a∗ from the chosen a
(Hamming distance between a and a∗ is j) in one iteration of the outer loop
is at least the probability that the process moves from state j to state 0. This
probability, denoted by qj , is at least (1

2k−3)j . See [Sch99] for the derivation of
this probability. Further, the success probability for one iteration of the outer
loop is

p ≥ (1
2)n−i

∑n−i
j=0

(
n−i

j

)
(1
2k−3)j = (1

2 (1 + 1
2k−3))n−i

1/4 3/4
n−ij j+10 j−1

Fig. 1. Random Walk: Analysis of Local Search with Independent Set for 3-SAT

Algorithms for Satisfiability Using Independent Sets of Variables 143

For k = 3, if the size of the independent set is high (i ≥ 0.3n), then the
algorithm works better than Schöning’s randomized algorithm.

6 Discussion

In this paper, we have introduced the notion of an independent set of variables
and use maximum independent sets in algorithms to solve k-SAT. The prob-
lem of finding a maximum independent set is a terribly hard problem. Even to
find a good approximate solution in polynomial time is equally hard. However,
when we permit exponential running time, finding a maximum independent set
in an undirected graph has a provably better running time than the best known
algorithms for k-SAT. The algorithm to find a maximum independent set due
to [Bei99] runs in time 2.290n which is approximately 1.2226n. On the other
hand, one of the best algorithms for 3-SAT is randomized and runs in time
1.3302n [SSWH02]. Based on this observation, our approach spends some of the
exponential time finding a maximum independent set, and then uses it to find
a satisfying assignment. This approach is faster than [PPZ97, Sch99, SSWH02]
only if the maximum independent set is sufficiently large. While there are for-
mulae with very small independent sets, as we show below, an important direc-
tion of research is to explore the size of independent sets in random satisfiable
formulae.

6.1 Formulae with Small Independent Sets

Here we construct formulae which have a small maximum independent set, and
the number of clauses is also small, contradicting the intuition that small number
of clauses mean large independent sets. Consider the following construction for
a formula with n variables, and a parameter 1 ≤ b ≤ n:

Step 1: Partition the variables into sets of b variables. There are n/b such sets.
Step 2: For each set of b variables, construct

(
b
3

)
clauses made up of variables

of same parity.

This formula is trivially satisfiable. The formula has
(

b
3

)
n
b clauses, and the size

of any independent set is n
b . The following table shows the sample values for

different values of b.

b no. of clauses ind. set size
9 9.3n n

9

8 7n n
8

Acknowledgments. The second author would like to thank Jan Johannsen for
discussions on SAT algorithms.

144 R. Gummadi, N.S. Narayanaswamy, and R. Venkatakrishnan

References

[Bei99] R. Beigel, Finding Maximum Independent Sets in Sparse and General
Graphs, Proceedings of the 10th Annual ACM-SIAM Symposium on Dis-
crete Algorithms, 1999.

[DHIV01] E. Dantsin, E.A. Hirsch, S. Ivanov, M. Vsemirnov. Algorithms for SAT
and Upper Bounds on their Complexity. Electronic Colloquium on Com-
putational Complexity, Report No.12, 2001.

[DLL62] M.Davis, G. Logemann, D. Loveland, A machine program for theorem-
proving, Communications of the ACM 5(7) (1962), 394-397.

[DP60] M.Davis, H. Putnam, A computing procedure for quantification theory,
Journal of the ACM 7(3) (1960), 201-215.

[KP92] E. Koutsoupias, C.H. Papadimitriou, On the Greedy algorithm for Satis-
fiability,Information Processing Letters 43(1) (1992), 53-55.

[MBFM00] A. Z. Broder, M. Charikar, A. Frieze, and M. Mitzenmacher. Min-wise
independent permutations, In Proceedings of the Thirtieth Annual ACM
Symposium on the Theory of Computing, 1998, pages 327–336, 1998.

[MS85] B. Monien, E. Speckenmeyer, Solving Satisfiability in less than 2n steps,
Discrete Applied Mathematics 10 (1985), 287-295.

[Pap91] C.H. Papadimitriou, On selecting a satisfying truth assignment, Proceed-
ings of FOCS’91, 1991, 163-169.

[PPSZ98] R. Paturi, P. Pudlák, M.E. Saks, F. Zane, An improved exponential-time
algorithm for k-SAT, Proceedings of FOCS’98, 1998, 628-637.

[PPZ97] R. Paturi, P. Pudlák, F. Zane, Satisfiability Coding Lemma, Proceedings
of FOCS’97, 1997, 566-574.

[Sch99] U. Schöning, A probabilistic algorithm for k-SAT and constraint satisfac-
tion problems, Proceedings of FOCS’99, 1999, 410-414.

[SSWH02] T. Hofmeister, U. Schöning, R. Schuler, O. Watanabe, A Probabilistic 3-
SAT Algorithm Further Improved, Proceedings of STACS’02, 2002, LNCS
2285:193-202.

Aligning CNF- and Equivalence-Reasoning

Marijn Heule� and Hans van Maaren

Department of Information Systems and Algorithms,
Faculty of Electrical Engineering, Mathematics and Computer Sciences,

Delft University of Technology
marijn@heule.nl, h.vanmaaren@its.tudelft.nl

Abstract. Structural logical formulas sometimes yield a substantial frac-
tion of so called equivalence clauses after translation to CNF. Probably
the best known example of this is the parity-family. Large instances of
such CNF formulas cannot be solved in reasonable time if no detection
of, and extra reasoning with, these clauses is incorporated. That is, in
solving these formulas, there is a more or less separate algorithmic device
dealing with the equivalence clauses, called equivalence reasoning, and
another dealing with the remaining clauses. In this paper we propose a
way to align these two reasoning devices by introducing parameters for
which we establish optimal values over a variety of existing benchmarks.
We obtain a truly convincing speed-up in solving such formulas with
respect to the best solving methods existing so far.

1 Introduction

The notorious parity-32 benchmarks [3] remained unsolved by general purpose
Sat solvers for a considerable time. In [12] a method was proposed which, for the
first time, could solve these instances in a few minutes. The key to this method
was to detect the clauses that represented so called equivalences l1 ↔ l2 ↔ · · · ↔
ln (where the li are literals, or their negations, appearing in the formula at hand)
and to pre-process the set of these equivalences in such a way that dependent and
independent variables became visible. The remaining clauses then were tackled
with a rather straightforward DPLL procedure but in such a way that kept track
of the role of these dependent and independent variables. It was developed as a
two-phase method, where the equivalence part was established and transformed
in a pre-processing phase.

The next important step was made by Li [6]. He incorporated a form of
equivalence reasoning in every node of an emerging search tree. His approach
did not incorporate a pre-processing phase (at least not regarding the equivalence
clauses) and thus he established the first one-phase Sat solver eqsatz which could
tackle these instances in reasonable time.

� Supported by the Dutch Organization for Scientific Research (NWO) under grant
617.023.306.

H.H. Hoos and D.G. Mitchell (Eds.): SAT 2004, LNCS 3542, pp. 145–156, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

146 M. Heule and H. van Maaren

A disadvantage of his method is the fact that he uses a full look-ahead approach:
all variables enter the look-ahead phase, contrary to partial look-ahead, which runs
only on a pre-selected number of variables. Full look-ahead is costly for larger size
formulas. In addition, his look-ahead evaluation function to measure the reduction
of the formula during the look-ahead phase is - in our opinion - not optimal. Also,
his equivalence reasoning is restricted to equivalences of length at most three.

Some years later Ostrowski et al. [10] extended the above pre-processing
ideas from [12] to logical gates other than equivalences, resulting in the lsat

solver. However, their DPLL approach to deal with the remaining CNF-part
uses a Jeroslow-Wang branching rule and they do not perform a look-ahead
phase, which is - again in our opinion - not an optimal alignment.

In this paper we propose an alignment of equivalence reasoning and DPLL
reasoning which does not assume a full look-ahead approach. This will enforce us
to introduce adequate pre-selection heuristics for selecting those variables which
are allowed to enter an Iterative Unit Propagation phase. Further, we will eval-
uate the progress in enrolling the formula at hand in a more detailed manner as
was done in eqsatz. We are forced to introduce parameters to guide this search.
These parameters are needed to aggregate the reduction of the equivalence part
of the formula and that of the remaining CNF part. Further, our method is able
to deal with equivalences of arbitrary size. This in turn leads us to an investi-
gation of the relative importance of equivalences of different size. Surprisingly,
this relative importance turns out to be rather differently measured as would be
expected when taking similar relative importance of ordinary clause-lengths as
a guiding principle.

We optimise the various parameters to ensure a convincing speed-up in solv-
ing formulas with a substantial equivalence part, both with respect to the various
alternative solvers available and with respect to a variety of benchmarks known
of this type.

2 Equivalence Reasoning in Pre-processor

After initialisation, the first goal of the pre-processor is to simplify the formula as
much as possible. This is achieved by iterative propagation of all unary clauses
and binary equivalences. After this procedure, the equivalence clauses are de-
tected using a simple syntactical search procedure, extracted from the formula
and placed in a separate data-structure. We refer to this data-structure as the
Conjunction of Equivalences (CoE). The aim of this equivalence reasoning en-
hanced pre-processor is to solve the extracted CoE sub-formula.

A solution is obtained by performing the first phase of the algorithm by
Warners and Van Maaren [12]: We initialise set I = {x1, · · · , xm}, the set of
independent variables, with m referring to the initial number of variables. We
loop through the equivalency clauses once, selecting variable xi in each one to
eliminate from all other equivalence clauses. Subsequently we remove xi from
I, and call it a dependent variable. Thus we end up with a set of equivalence
clauses for which all satisfiable assignments can be constructed by assigning all

Aligning CNF- and Equivalence-Reasoning 147

possible combinations of truth values to the independent variables. The values
of the dependent variables are uniquely determined by an assignment of the
independent variables. Note that during the elimination process a contradiction
might be derived, which implies unsatisfiability of the original problem.

Numerous of such independent sets could be obtained by this algorithm. The
performance of a solver might vary significantly under different choices of the
independent set, as we have observed using the march solver (developed by Joris
van Zwieten, Mark Dufour, Marijn Heule and Hans van Maaren; it participated
in the Sat 2002 [7], Sat 2003 [8], and Sat 2004 [9] competitions). Therefore,
two enhancements are added to the original algorithm to find an independent
set that would result in relatively fast performance: the first addition involves
an explicit prescription for the selection of the variables to eliminate: for every
equivalence clause the variable is selected that occurs (in a weighted fashion)
least frequently in the CNF. Occurrences in binary clauses are counted twice as
important as occurrences in n-ary clauses.

The motivation for selecting the least occurring variable is twofold: first, if the
selected variable xi does not occur in the CNF at all, the equivalence clause in
which xi occurs, becomes a tautological clause after elimination, because xi could
always be taken as such to satisfy it. Neglecting tautological clauses during the
solving phase could result in a considerable speed-up. Second, faster reduction of
the formula is expected when the independent variables occur frequently in the
CNF-part: independent variables will be forced earlier to a certain truth value
by constraints from both the CoE- and the CNF-part.

The second addition is a procedure that reduces the sum of the lengths of all
non-tautological equivalences in the CoE. This procedure consists of two steps:
the first searches for pairs of equivalence clauses that could be combined to
created a binary equivalence. Note that binary equivalence clauses can always
be made tautological, since one of its literals could be removed from the CNF by
replacing it by the other. The second step loops through all equivalence clauses
and checks whether a different choice for the dependent variable in that clause
would result in a smaller sum of lenghts of non-tautological equivalences. Both
methods are iteratively repeated until both yield no further reduction.

Several benchmark families in the Sat 2003, Sat 2002 and Dimacs bench-
mark suites1 can be solved by merely applying the pre-processing presented
above. One of these families is xor-chain which contains the smallest unsolved
unsatisfiable instances from the Sat 2002 competition. Table 1 shows the re-
quired time to solve these families for various solvers. Notice that march uses the
proposed pre-processing. In the table, the numbers behind the family names refer
to the number of instances in a family. The last five columns show the total time
required to solve a family. In these columns, numbers between braces express the
number of benchmarks that could not be solved within a 120 seconds time limit.
Judging from the data in the table, lsat is the only solver which can compete with
the march pre-processor since it solves all but one families in comparable time.

1 All three suites are available at www.satlib.org

148 M. Heule and H. van Maaren

Table 1. Performances of the solvers march, eqsatz, satzoo, lsat and zchaff in seconds
on several families that could be solved by merely pre-processing

3 Combined Look-Ahead Evaluation

Look-ahead appears to be a powerful technique to solve a wide range of prob-
lems. The pseudo-code of an elementary look-ahead procedure is presented in
Algorithm 1. The look-ahead procedure in march closely approximates this ele-
mentary procedure. Notice that it does not perform any equivalence reasoning
during this phase.

Algorithm 1. Look-ahead()

Let F ′ and F ′′ be two copies of F
for each variable xi in P do

F ′ := IterativeUnitPropagation(F ∪ {xi})
F ′′ := IterativeUnitPropagation(F ∪ {¬xi})
if empty clause ∈ F ′ and empty clause ∈ F ′′ then

return “unsatisfiable”
else if empty clause ∈ F ′ then

F := F ′′

else if empty clause ∈ F ′′ then

F := F ′

else

H(xi) = 1024 × Diff(F , F ′) × Diff(F , F ′′) + Diff(F , F ′) + Diff(F , F ′′)
end if

end for

return xi with greatest H(xi) to branch on

An effective look-ahead evaluation function (Diff in short) is critical to the
effectiveness of the branching variable the look-ahead returns. Experiments on
random 3-Sat instances showed that using a Diff that counts newly created

Aligning CNF- and Equivalence-Reasoning 149

binary clauses results in fast performances on these benchmarks and many other
families. Addition of new clauses of length > 2 to the Diff requires weights
that express the relative importance of clauses of various length. Weights that
result in optimal performance on random k-Sat formulas could be described by
linear regression: e.g. Kullmann [5] uses weights in his OKsolver that could be
approximated by 0.22n−2. In this equation n refers to the length of a clause,
with n ≥ 2.

Little is known about effective evaluation functions to measure the impor-
tance of a new equivalence clause. In eqsatz by Li [6] only new binary equiv-
alences are counted. These are weighed twice as important as a new binary
clause. The importance of the new equivalence clauses of various length could
be obtained by measuring the reduction of its translation into CNF. Applying
the approximation of the weights by Kullmann [5] results in a weight function
of 2n−1 × 0.22n−2 ≈ 10.33 × 0.44n for a new equivalence of length n. However,
this reference should be labelled as vague, since the weights are optimised with
respect to random formulas.

Although we have indications that other models might be more appropriate
when equivalence clauses are involved, we take this regression model as a first
start. Performances were measured for various parameter settings of equation
(1). In this equation, n refers to the reduced length of an equivalence clause.
Parameter qbase denotes the factor that describes the decreasing importance of
equivalence clauses of various length and parameter qconst expresses the relation
between the reduction of the CNF-clauses and the equivalence clauses. Since
march uses a 3-Sat translator, only new binary clauses are created. The evalua-
tion of the look-ahead is calibrated by defining the importance of a new binary
clause to value 1. The result of eqn then defines the relative importance of a new
equivalence clause of length n in relation to a new binary clause.

eqn = qconst × qbase
n (1)

Wide scale experiments were troubled by the lack of useful benchmarks: many
benchmark families that contain a significant part of equivalence clauses are
easily solved with mere pre-processing procedures: either the solving procedure
for the CoE results in a contradiction, or the propagation of the unary clauses
and the binary equivalences found during pre-processing are sufficient to solve
the formula. Many benchmarks families with a significant CoE-part that require
a sophisticated solving procedure after pre-processing are neither useful for these
experiments, because most or all of their equivalence clauses have length 3. For
comparison: The Sat 2003 [8] competition suite consisted of 11 families which
are solved in pre-processing while only five needed further search. Of those five
only two had a large number of long equivalences after the pre-processing.

These two families are the parity32 and the hwb. The first family consists of
the Sat-encoding of minimal disagreement parity problems contributed by Craw-
ford et al. [3]. The second consists of equivalence checking problems that arise
by combining two circuits computed by the hidden weighted bit function. These
latter are contributed by Stanion [8]. Both families have been used to determine

150 M. Heule and H. van Maaren

Fig. 1. Performances achieved by march on various settings of qbase and qconst. The
values on the z-axis are the cumulated performances on the whole parity-32 and
hwb-n20 families in seconds. Contour lines are drawn at 110% and 120% of optimal
performance

Table 2. Weights to measure the reduction of equivalence clauses of various lengths

Reduced length (n): 2 3 4 5 6 7 8 9 10

CNF-reference: 2.00 0.88 0.39 0.17 0.07 0.03 0.01 0.01 0.00
Found optimum: 3.97 3.38 2.87 2.44 2.07 1.76 1.50 1.27 1.08

the parameter setting for equation (1) that results in optimal performance. The
results of these experiments are shown in Fig. 1. During our experiments, the
values qconst = 5.5 and qbase = 0.85 appeared optimal. Two conclusions can be
derived regarding the results: (1) parameter qbase has a much larger influence on
the performance than qconst. (2) Using optimal settings, the reduction of equiv-
alences is considered far more important than the reduction of the equivalent
CNF-translations would suggest: table 2 shows the weights used for both settings.

4 Pre-selection Heuristics

Although look-ahead is a powerful technique, it pays off to restrict the number
of variables which enter this procedure. In Algorithm 1 this partial behaviour is
achieved by performing only look-ahead on variables in set P. At the beginning
of each node, this set is filled by pre-selection heuristics that are based on an
approximation function of the combined evaluation of the look-ahead (Ace).
The ranking of variable x is calculated by multiplying Ace(x) and Ace(¬x).

Aligning CNF- and Equivalence-Reasoning 151

E(x), used to obtain Ace(x), refers to the set of all equivalence clauses in which
x occurs and occ3(x) refers to the number of occurrences of x in ternary clauses.

Ace(x) = occ3(¬x) +
∑

QiεE(x)

eq|Qi|−1 +
∑

¬x∨yεF

occ3(¬y) +

∑
QiεE(y)

eq|Qi|−1

(2)

In the versions of march without equivalence reasoning fast, performance is
achieved on average by performing look-ahead only on the “best” 10 0/0 of the
variables. This constant percentage is not always optimal. It is not even optimal
for the benchmarks used in this paper, but since it provided optimal performance
on a wide scale of experiments, we restricted ourselves to this 10 0/0. To illustrate
the diversity of partial look-ahead optima, march requires 1120 secondes to solve
a benchmark provided by Philips using the 10 0/0 setting (see table 4), while
it requires only 761 seconds at the optimal setting of 8 0/00. [4] provides more
insight in the behaviour of march using different percentages of variables entering
the look-ahead phase.

5 Additional Equivalence Reasoning

Various additional forms of equivalence reasoning are tested. These include:

– Removal of equivalence clauses that have became tautological during the
solving phase. This results in a speed-up due to faster propagation.

– Propagation of binary equivalences in the CoE: replacing one of its literals
by the other. This increases the chance that a variable occurs twice in an
equivalence clause, so both could be removed.

– Prevention of equivalent variables to enter the look-ahead procedure, since
equivalent variables will yield an equivalent Diff.

Only the last adjustment realised a noticeable speed-up of about 10 0/0. The gain
that other procedures accomplished were comparable to their cost, resulting in
a status quo in terms of time.

6 Results

Six solvers are used to compare the results of march: eqsatz2, lsat3, satzoo4,
zchaff5, limmat6, and OKsolver7. The choice for eqsatz and lsat is obvious since

2 version 2.0, available at http://www.laria.u-picardie.fr/∼cli/EnglishPage.html
3 version 1.1, provided by authors
4 version 1.02, available at http://www.math.chalmers.se/∼een/Satzoo/
5 version 2003.07.01, available at http://www.ee.princeton.edu/∼chaff/zchaff.php
6 version 1.3, available at http://www2.inf.ethz.ch/personal/biere/projects/limmat/
7 version 1.2, available at http://cs-svr1.swan.ac.uk/ csoliver/OKsolver.html

152 M. Heule and H. van Maaren

they are the only other Sat solvers performing equivalence reasoning. Since
equivalence clauses merely occur in handmade and industrial problems, we added
some solvers that are considered state-of-the-art in these categories: satzoo and
zchaff, respectively. For extended reference we added two winners of the Sat 2002
competition: limmat and OKsolver. The last is also a look-ahead Sat solver.

All solvers were tested on an AMD 2000+ with 128Mb memory running on
Mandrake 9.1. Besides the parity32 and the hwb benchmarks, we experimented
on the longmult family that arises from bounded model checking [2], five un-
solved benchmarks (pyhala-braun-x (pb-x in short) and lisa21-99-a) from
the Sat 2002 competition contributed by Pyhala and Aloul, respectively [7],
and three factoring problems (2000009987x) contributed by Purdom [11]. Ex-
cept from both bounded model checking families and the benchmark provided by
Philips, all benchmarks were used in the Sat 2003 competition. To enable a com-
parison with the Sat 2003 results8, we used the shuffled benchmarks generated
for this competition during our experiments. However, these shuffled benchmarks
caused a slowdown in performance of eqsatz: e.g. eqsatz solves most original
parity32 benchmarks within the 2000 seconds time limit.

Two versions of our solver are used to evaluate performance: the first, march◦

uses the equation eqn = 5.5 × 0.85n to measure the reduction of the CoE
during the look-ahead, and applies it to the calculation of Ace. The second
variant, march∗ does not use the CoE-part during the look-ahead but operates
using the original CNF instead. Both march variants use a 10% partial look-
ahead.

In table 3, six properties of experimented benchmarks are presented:

#Cls refers to the initial number of clauses

#Var refers to the initial number of variables

#Ind refers to the number of variables in the independent set

#Eq refers to the number of detected equivalence clauses.

#Nt refers to the number of non-tautological equivalences after pre-processing.

|Nt| refers to the average length of the non-tautological equivalences after the
pre-processing.

Table 4 shows the performances of the various solvers during our experi-
ments. Of all properties listed above, the average length (|Nt|) appears to be the
most useful indicator for when to use march◦ instead of march∗: both families
that profit clearly from the equivalence reasoning have a high average length.
The slowdown on the longmult family could be explained by the small num-
ber of equivalence clauses compared to the number of independent variables:
the relatively costly equivalence reasoning is performed during the look-ahead
while the differences in the branch decision between march◦ and march∗ are
small.

8 results of the Sat 2003 competition are available at
www.lri.fr/∼simon/contest03/results/

Aligning CNF- and Equivalence-Reasoning 153

Table 3. Properties of several benchmarks containing equivalence clauses

instance #Cls #Var #Ind #Eq #Nt |Nt|

par32-1 10227 3176 157 1158 218 7.79
par32-2 10253 3176 157 1146 218 7.83
par32-3 10297 3176 157 1168 218 7.84
par32-4 10313 3176 157 1176 218 8.12
par32-5 10325 3176 157 1182 218 7.91
par32-1-c 5254 1315 157 1158 218 7.49
par32-2-c 5206 1303 157 1146 218 8.02
par32-3-c 5294 1325 157 1168 218 7.69
par32-4-c 5326 1333 157 1176 218 7.73
par32-5-c 5350 1339 157 1182 218 8.13

hwb-n20-1 630 134 96 36 35 4.91
hwb-n20-2 630 134 96 36 35 4.88
hwb-n20-3 630 134 96 36 35 4.80
hwb-n22-1 688 144 104 38 37 4.84
hwb-n22-2 688 144 104 38 37 4.56
hwb-n22-3 688 144 104 38 37 4.62
hwb-n24-1 774 162 116 44 43 5.83
hwb-n24-2 774 162 116 44 43 4.86
hwb-n24-3 774 162 116 44 43 4.86
hwb-n26-1 832 172 124 46 45 5.04
hwb-n26-2 832 172 124 46 45 5.24
hwb-n26-3 832 172 124 46 45 5.56

longmult-6 8853 2848 1037 174 90 3.93
longmult-7 10335 3319 1276 203 105 3.93
longmult-8 11877 3810 1534 232 120 3.93
longmult-9 13479 4321 1762 261 135 3.93
longmult-10 15141 4852 2014 290 150 3.93
longmult-11 16863 5403 2310 319 165 3.93
longmult-12 18645 5974 2620 348 180 3.93
longmult-13 20487 6565 2598 377 195 3.93
longmult-14 22389 7176 2761 406 210 3.93
longmult-15 24351 7807 2784 435 225 3.93

pb-s-40-4-03 31795 9638 2860 3002 3001 3.00
pb-s-40-4-04 31795 9638 2860 2936 2935 3.00
pb-u-35-4-03 24320 7383 2132 2220 2219 3.00
pb-u-35-4-04 24320 7383 2131 2277 2276 3.00

lisa21-99-a 7967 1453 1310 460 459 3.87

2000009987fw 12719 3214 1615 1358 1319 3.54
2000009987nc 10516 2710 1303 1286 1262 3.46
2000009987nw 11191 2827 1342 1322 1299 3.38

philips 4456 3642 1005 342 224 3.50

154 M. Heule and H. van Maaren

Table 4. Performances of the solvers march, eqsatz, satzoo, lsat, zchaff, limmat, and
OKsolver in seconds on various benchmarks with equivalence clauses

Aligning CNF- and Equivalence-Reasoning 155

7 Conclusions

In this paper, we presented a new alignment between equivalence reasoning and
look-ahead in a DPLL Sat solver. The resulted solver outperforms existing tech-
niques on benchmarks that contain a significant part of equivalence clauses. Two
main features appeared sufficient for effective equivalence reasoning:

– an effective solving procedure for the CoE during the pre-processing.
– an effective evaluation function to measure the reduction of equivalence

clauses during the look-ahead procedure.

Additional features of integration may further increase the performance, but
substantial gains have not been noticed yet. However, two procedures are worth
mentioning: first, integration of the effective evaluation function (Ace) into the
pre-selection heuristics of the look-ahead, resulted in a speed-up up to 30%. Sec-
ond, a small performance gain on practically all benchmarks, with and without
equivalence clauses, was achieved by preventing equivalent variables to enter the
look-ahead phase.

We conclude that aligning Equivalence- and CNF- reasoning as carried out
pays off convincingly. Although some instances are not solved without incorpo-
rating the CoE reductions during the look-ahead phase (march◦), others suffer
from this additional overhead and are easier solved by updating and investigating
the CoE part at the chosen path only (march∗).

References

1. D. Le Berre and L. Simon, The essentials of the SAT’03 Competition. Springer
Verlag, Lecture Notes in Comput. Sci. 2919 (2004), 452–467.

2. A. Biere, A. Cimatti, E.M. Clarke, Y. Zhu, Symbolic model checking without BDDs.
in Proc. Int. Conf. Tools and Algorithms for the Construction and Analysis of
Systems, Springer Verlag, Lecture Notes in Comput. Sci. 1579 (1999), 193–207.

3. J.M. Crawford, M.J. Kearns, R.E. Schapire, The Minimal Disagreement parity

problem as a hard satisfiability problem. Draft version (1995).

4. M.J.H. Heule, J.E. van Zwieten, M. Dufour and H. van Maaren, March eq, Im-

plementing Efficiency and Additional Reasoning in a Look-ahead SAT Solver. Ap-
pearing in the same volume.

5. O. Kullmann, Investigating the behaviour of a SAT solver on random formulas.
Submitted to Annals of Mathematics and Artificial Intelligence (2002).

6. C.M. Li, Equivalent literal propagation in the DLL procedure. The Renesse issue
on satisfiability (2000). Discrete Appl. Math. 130 (2003), no. 2, 251–276.

7. L. Simon, D. Le Berre, and E. Hirsch, The SAT 2002 competition. Accepted for
publication in Annals of Mathematics and Artificial Intelligence (AMAI) 43 (2005),
343–378.

8. L. Simon, Sat’03 competition homepage.
http://www.lri.fr/∼simon/contest03/results/

9. L. Simon, Sat’04 competition homepage.
http://www.lri.fr/∼simon/contest/results/

156 M. Heule and H. van Maaren

10. R. Ostrowski, E. Gregoire, B. Mazure, L. Sais, Recovering and exploiting structural

knowledge from CNF formulas, in Proc. of the Eighth International Conference on
Principles and Practice of Constraint Programming, Springer Verlag, Lecture Notes
in Comput. Sci. 2470 (2002), 185–199.

11. P. Purdom and A. Sabry, CNF Generator for Factoring Problems.
http://www.cs.indiana.edu/cgi-pub/sabry/cnf.htm

12. J.P. Warners, H. van Maaren, A two phase algorithm for solving a class of hard

satisfiability problems. Oper. Res. Lett. 23 (1998), no. 3-5, 81–88.

Using DPLL for Efficient OBDD Construction

Jinbo Huang and Adnan Darwiche

Computer Science Department,
University of California, Los Angeles
{jinbo, darwiche}@cs.ucla.edu

Abstract. The DPLL procedure has found great success in SAT, where
search terminates on the first solution discovered. We show that this
procedure is equally promising in a problem where exhaustive search is
used, given that it is augmented with appropriate caching. Specifically,
we propose two DPLL-based algorithms that construct OBDDs for CNF
formulas. These algorithms have a worst-case complexity that is linear
in the number of variables and size of the CNF, and exponential only in
the cutwidth or pathwidth of the variable ordering. We show how modern
SAT techniques can be harnessed by implementing the algorithms on
top of an existing SAT solver. We discuss the advantage of this new
construction method over the traditional approach, where OBDDs for
subsets of the CNF formula are built and conjoined. Our experiments
indicate that on many CNF benchmarks, the new method runs orders of
magnitude faster than a comparable implementation of the traditional
method.

1 Introduction

The DPLL procedure [1] has found great success in the Propositional Satisfia-
bility problem (SAT), attested by a series of SAT solvers that have excelled in
the annual SAT competitions [2]. These solvers are, by nature, geared toward
finding the first solution quickly, and not particularly concerned with any search
space beyond that (solvers for Quantified Boolean Formulas are an exception).
There has been evidence, however, that DPLL can also be useful in problems re-
quiring exhaustive search, such as model counting [3, 4]. In this paper we explore
another such problem, and show that DPLL, coupled with appropriate caching,
can be the basis for an efficient program that compiles propositional theories into
Ordered Binary Decision Diagrams (OBDDs) [5]. Once theories are expressed
as OBDDs, many important queries can be answered in constant or polynomial
time, including satisfiability, equivalence, model counting, model enumeration,
and clausal entailment [5, 6].

Compiling propositional theories into OBDD has remained a nontrivial task.
Traditionally, one enlists software packages which build OBDDs in a bottom-
up fashion. For theories in Conjunctive Normal Form (CNF), this means that
OBDDs are constructed for individual clauses, and conjoined to produce the
OBDD for the whole theory. Although the complexity of OBDD conjunction is

H.H. Hoos and D.G. Mitchell (Eds.): SAT 2004, LNCS 3542, pp. 157–172, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

158 J. Huang and A. Darwiche

only quadratic in the sizes of the conjuncts [5], this operation has to be repeat-
edly carried out until the final OBDD is produced. Moreover, experience has
shown that the conjuncts involved in the operation—intermediate OBDDs—are
often much larger than the OBDD to be finally built, leading to an accumula-
tion of intermediate OBDD nodes that unduly exacerbates the time and space
complexities of the construction.

Consider for example uf100-08.cnf, one of the standard benchmarks from
the Satisfiability Library [7]. This CNF has 100 variables and its (reduced)
OBDD has 176 nodes under the MINCE variable ordering [8]. Yet, to build
this OBDD using the popular CUDD package and same variable ordering, a to-
tal of 30, 640, 582 intermediate nodes are generated, taking 25 minutes on our
2.4GHz processor.

In this paper we propose two DPLL-based algorithms that, unlike the tradi-
tional method, build OBDDs for CNFs in a top-down fashion. By using a novel
caching scheme, these algorithms have a complexity that is linear in the num-
ber of variables and size of the CNF, and exponential only in the cutwidth and
pathwidth, respectively, of the variable ordering with respect to a hypergraph
abstraction of the CNF. As a bonus of this theoretical analysis, we provide an
upper bound on the OBDD size for arbitrary CNFs. We relate these complexity
results to those of some previous work that use the notions of cutwidth and
pathwidth. Our upper bound on OBDD size also offers a formal explanation
for the effectiveness of a recent class of variable ordering heuristics, which has
hiterto been explained only intuitively.

We show next how these algorithms can be implemented on top of a SAT
engine, thus harnessing the power of modern techniques, including carefully im-
plemented Unit Propagation and Nonchronological Backtracking, that underly
the success of many SAT solvers. Using multiple sets of experiments, we demon-
strate the efficiency of this program and discuss a few related issues.

The rest of the paper is organized as follows. In Section 2 we describe our
proposed algorithms for compilation of CNFs into OBDD, followed by a theo-
retical analysis of their complexities in Section 3. Section 4 is a description of
our implementation of these algorithms on top of an existing SAT engine. Sec-
tion 5 contains experimental results that demonstrate the efficiency of this new
program and support the discussion of a few related issues. Section 6 concludes
the paper.

2 Algorithms

We present in this section two DPLL-based algorithms for compiling CNF for-
mulas into OBDD. Fig. 1 depicts a CNF ∆ and its OBDD under variable order
x, y, z. Recall that an OBDD is a Directed Acyclic Graph (DAG) where there are
at most two sinks, labeled with 0 and 1 respectively, and every internal node is
labeled with a variable and has exactly two children low and high; it is further
required that variables appear in the same order on all paths from the root to a
sink. The semantics of this graph is as follows. Given an instantiation I of the

Using DPLL for Efficient OBDD Construction 159

0 1

x

y

z z ∆|x=1 = { ¬z }

∆|x=0 = { y + z

¬y + ¬z }

∆ = { x + y + z

¬x + ¬z

¬y + ¬z }

low:

high:

Fig. 1. A CNF and its OBDD

variables, one picks a path from the root to a sink while always choosing the low
(high) child of a node if the variable associated with that node is set to 0 (1)
by I. If the path ends with the 0-sink (1-sink), the theory evaluates to 0 (1) for
this variable instantiation.

In this work we consider reduced OBDDs, where there is no node whose two
children are identical, and no isomorphic sub-graphs exist. It is known that there
is a unique reduced OBDD for any propositional formula under a given variable
order [5]. As in SAT, the variable order plays an important role in complexity.
In the rest of the paper we assume that a variable order v1, . . . , vn has been
identified in a preprocessing step to be used for the OBDD. As we point out
later, efficient tools exist that generate good variable orders.

Algorithm 1 describes a naive DPLL-style procedure that converts a CNF ∆
into an OBDD by recursively converting its two restrictions, ∆|vi=0 and ∆|vi=1,
and combining the results using get node (Line 5). This is also illustrated in
Fig. 1, where ∆|x=0 and ∆|x=1 are obtained by setting x to 0 and 1, respectively,
in CNF ∆. Note that a common technique known as unique nodes is used so
that the final result will be a DAG—a reduced OBDD, not a tree. Specifically,
get node will not construct a new node in these two cases: 1) if its last two
arguments are identical, either one of them is returned immediately; 2) if there
already exists a node that is labeled with the first argument and has the last
two arguments as children (in the right order), that node is returned.

Note that this algorithm can have an exponential complexity even when the
final OBDD has a tractable size. The reason is that when different settings of
a subset of the variables lead to sub-theories that are logically equivalent, they

Algorithm 1. obdd(CNF ∆, int i): should be initially called with i = 1

1: if there is an inconsistent clause in ∆ then
2: return 0-sink
3: if there is no uninstantiated variable in ∆ then
4: return 1-sink
5: return get node(i, obdd(∆|vi=0, i + 1), obdd(∆|vi=1, i + 1))

160 ang and A. Darwiche

v1 v2 v3 v4 v5 v6

cutset3

c1: v1 + v2 + ¬v3

c3: v1 + v3 + v4 + v5

c2: v2 + v3

c4: v4 + ¬v5 + v6

c5: v5 + v6

Fig. 2. Cutset-based caching

will be represented by the same OBDD node, while Algorithm 1 will convert
each of these sub-theories into OBDDs only to realize that they are all the same.

Consider, for example, variable order π = v1, v2, v3, v4, v5, v6 for CNF ∆ =
{c1, c2, c3, c4, c5} shown in Fig. 2. When Algorithm 1 is run on this CNF, it will
spawn two recursive calls on i = 2 (Line 5), because there are two instantiations
for variable v1. Note that the number of recursive calls on i = 3 will be three,
not four, because one of the four instantiations for variables v1, v2 results in an
empty clause, terminating the recursion (Lines 1 and 2). By the same token, five
recursive calls on i = 4 will be generated.

We will now show that three of these five recursive calls on i = 4 are in fact
redundant and could have been avoided by caching. Specifically, let S be the
set of nontrivial CNFs ∆′ that can be obtained by instantiating the first three
variables v1, v2, v3 in ∆, we will show that |S| ≤ 2.

Note that with respect to instantiation of variables v1, v2, v3, one can think
of the CNF as partitioned into three sets of clauses: clauses over v1, v2, v3 only,
clauses over v4, v5, v6 only, and the rest. Denote these three sets by left3 =
{c1, c2}, right3 = {c4, c5}, and cutset3 = {c3}, respectively. After the instan-
tiation of variables v1, v2, v3, clauses left3 will evaluate to a Boolean constant
because their variables have all been set. If this constant is 0, we know that ∆′ is
a trivial CNF equal to 0 and hence not in S. Otherwise ∆′ will consist of clauses
right3, which have not been altered because none of their variables have been
set, and clauses in cutset3 which must have been altered by setting variables
v1, v2, v3. This cutset, however, contains only one clause v1 + v3 + v4 + v5. After
any instantiation of variables v1, v2, v3, this clause can only be in one of two
states: either satisfied, or simplified to v4 + v5. Hence, although there are eight

get node(int i, BDD low, BDD high)

1: if low == high then
2: return low
3: if (lookup = unique[(i, low, high)]) 	= nil then
4: return lookup
5: result = new BDD(i, low, high)
6: unique[(i, low, high)] = result
7: return result

J. Huang and A. Darwiche

Using DPLL for Efficient OBDD Construction 161

Algorithm 2 . obdd(CNF ∆, int i): value(C) returns a bit vector representing the
states (satisfied or not) of clauses C in some fixed order

1: if there is an inconsistent clause in ∆ then
2: return 0-sink
3: if there is no uninstantiated variable in ∆ then
4: return 1-sink
5: if (lookup = cachei−1[value(cutseti−1)]) 	= nil then
6: return lookup
7: result = get node(i, obdd(∆|vi=0, i + 1), obdd(∆|vi=1, i + 1))
8: cachei−1[value(cutseti−1)] = result
9: return result

Algorithm 3 . obdd(CNF ∆, int i): value(S) returns a bit vector representing the
values of variables S in some fixed order
1: if there is an inconsistent clause in ∆ then
2: return 0-sink
3: if there is no uninstantiated variable in ∆ then
4: return 1-sink
5: if (lookup = cachei−1[value(separatori−1)]) 	= nil then
6: return lookup
7: result = get node(i, obdd(∆|vi

, i + 1), obdd(∆|vi , i + 1))
8: cachei−1[value(separatori−1)] = result
9: return result

different instantiations of v1, v2, v3 and five that result in nontrivial CNFs, we
have |S| ≤ 2 = 2|cutset3|.

In general, the ith cutset of a variable order for a CNF is all clauses mentioning
a variable at position ≤ i and one at position > i:

Definition 1. The ith cutset of variable order π = v1, . . . , vn for CNF ∆ =
{c1, . . . , cm}, denoted cutseti∆(π) or cutseti for short, is defined as {c ∈ ∆ :
∃j ≤ i < k such that clause c mentions variables vj and vk}.

As we have seen, after instantiating the first i variables, each clause in cutseti

can only be in one of two states. The states of clauses cutseti can therefore be
represented by some bit vector value(cutseti), whose evaluation provides us with
a sound equivalence test: two sub-theories, which result from two instantiations
of the first i variables, must be equivalent if cutseti evaluates to the same value
for both variable instantiations.

This equivalence test is used by Algorithm 2 to index a cache that stores
OBDDs for all sub-theories. Specifically, when two or more sub-theories are
found to have the same cutset value, only one of them will be compiled, its
OBDD cached (Line 8), and others will simply generate a cache hit and have their
OBDD immediately returned (Line 6). By virtue of this caching the complexity
of the algorithm is only exponential in the size of the largest cutset. We discuss
this complexity result in more detail in Section 3.

162 J. Huang and A. Darwiche

We now turn to Algorithm 3, which replicates Algorithm 2 except it uses a
slightly different caching scheme. For position i in the variable order, let the ith

separator be the subset of the first i variables that appear in clauses of the ith

cutset:

Definition 2. The ith separator of variable order π = v1, . . . , vn for CNF ∆ =
{c1, . . . , cm}, denoted separatori

∆(π) or separatori for short, is defined as {j ≤
i : ∃c ∈ cutseti∆(π) such that clause c mentions variable vj}.

Given an instantiation of v1, . . . , vi, it is clear that the values of variables
separatori alone determine the states of clauses cutseti, and hence the sub-
theory ∆′. One can represent the values of these variables, again, by some bit
vector and use it to index the cache. Similarly, the complexity of this algorithm
is only exponential in the size of the largest separator.

It can be seen that the value of cutseti does not determine that of separatori,
although the reverse, as we have just pointed out, is true. Separator caching
can thus be regarded as an approximation of cutset caching, in that it may
redundantly process some sub-theories that would have generated a cache hit
with cutset caching. As we discuss later, though, separators may sometimes be
preferable in practice as their evaluation can be less costly.

3 Complexity Results

The nature of the caching method used by our algorithms allows us to provide
formal guarantees on their complexities. Our results are given in three theorems
whose proofs can be found in the technical report version of this paper [9].
In stating these theorems we will refer to the size of the largest cutset as the
cutwidth, and the size of the largest separator as the pathwidth, of the variable
ordering with respect to the underlying CNF:1

Definition 3. The cutwidth of variable order π for CNF ∆, denoted cw∆(π),
is max

i
|cutseti∆(π)|.

Definition 4. The pathwidth of variable order π for CNF ∆, denoted pw∆(π),
is max

i
|separatori

∆(π)|.

We now present the following two bounds on the time and space complexities
of Algorithms 2 and 3 respectively. These results assume that get node runs

1 These definitions of cutwidth and pathwidth correspond precisely to those found in
graph theory, given that one considers a hypergraph abstraction of the CNF formula,
where each variable becomes a vertex and each clause a hyperedge enclosing its
variables, and defines the cutwidth (pathwidth) of the hypergraph as the maximum
cutwidth (pathwidth) among all vertex orderings. Specifically, when restricted to
graphs, this notion of cutwidth is equivalent to that identified and studied in [10, 11];
this notion of pathwidth is equivalent, as proven in [12], to that originally introduced
by Robertson and Seymour [13] based on the notion of path decompositions.

Using DPLL for Efficient OBDD Construction 163

in constant time, but hold even when unique nodes is not used and get node
constructs a new node each time it is called.

Theorem 1. For CNF ∆ and variable order π, Algorithm 2 takes O(sn2w) time
and space, where s is the size of ∆, n is the number of variables, and w = cw∆(π).

Theorem 2. For CNF ∆ and variable order π, Algorithm 3 takes O(sn2w)
time and space, where s is the size of ∆, n is the number of variables, and
w = pw∆(π).

As we pointed out earlier, for any given position i in the variable ordering
π, the value of separatori determines that of cutseti. In other words, the num-
ber of possible values for cutseti can never be larger than that for separatori.
Therefore, the result of Theorem 1 can in fact be strengthened by defining w to
be max

i
min(|cutseti|, |separatori|). Note that this quantity is guaranteed to be

a lower bound on both cutwidth and pathwidth. We will now use it in the fol-
lowing theorem that bounds the OBDD size for arbitrary CNF formulas, where
we write OBDDπ

∆ to denote the OBDD for CNF ∆ under variable ordering π.

Theorem 3. For CNF ∆ and variable order π, size(OBDDπ
∆) ≤ n2w + 2,

where n is the number of variables and w = max
i

min(|cutseti|, |separatori|).

We will now relate these complexity bounds to two previous results that
involve similar parameters. The first of these concerns monotone 2-CNFs, which
are CNFs where all clauses have length two and contain only positive literals.
It has been proved in [14] that the size of any OBDD for a monotone 2-CNF
is bounded by n(2w + 1), where n is the number of variables and w is the
pathwidth of the reverse of its variable ordering.2 This bound may look similar
to that of Theorem 3, but is in fact a different result, because a variable ordering
and its reverse may have quite different pathwidths. Also, the proof [14] of this
result hinges on properties specific to monotone 2-CNFs and does not seem to
generalize to arbitrary CNFs.

The second related result involves a SAT algorithm presented in [15], based on
a static variable ordering π for a CNF. The time complexity of this algorithm is
claimed to be O(m2w) where m is the number of clauses and w is the cutwidth of
π. This bound is comparable to our complexity bound for Algorithm 2. However,
OBDD construction is much more difficult than, and in fact subsumes, SAT
solving for any given CNF. We are hence offering an algorithm that constructs
an OBDD for a CNF with roughly the same time complexity as the algorithm
of [15] that only solves SAT for the same CNF.

Finally, we point out that Theorem 3 offers a formal explanation for the ef-
fectiveness of a class of variable ordering techniques based on Min-Cut Linear
Arrangement that have been recently proposed [8, 16, 15]. The MINCE variable

2 The word reverse is not used in [14] for this result, but their definition of the path-
width of π corresponds to the pathwidth, in our definition, of the reverse of π.

164 J. Huang and A. Darwiche

ordering [8], for example, has been shown to result in relatively small OBDDs for
various benchmarks. According to its authors, MINCE minimizes the “average”
cutset size of the ordering. The observed effectiveness of this technique, however,
was only explained intuitively by its tendency toward grouping “connected vari-
ables together.” According to Theorem 3, variable orderings that minimize cutset
sizes are directly optimizing the upper bounds on OBDD size—a fundamental
explanation for their effectiveness in practice.

4 Implementation

It is possible to implement Algorithms 2 and 3 in their original recursive form.
One should then consider adding their own implementation of some efficient
mechanism for unit propagation, nonchronological backtracking, and other im-
portant components of DPLL search. Since the zChaff SAT solver from Prince-
ton University [17] is known to boast a highly optimized DPLL engine in these
respects [2], we have decided to implement our algorithms on top of it in-
stead. Like most modern SAT solvers, however, zChaff is based on an itera-
tive version of DPLL, and thus not immediately adaptable for Algorithms 2
and 3. The following is pseudocode for the DPLL engine of zChaff, reproduced
from [17].

while(1)

if(decide_next_branch()) // branching

while(deduce() == conflict) // deducing

blevel = analyze_conflicts(); // learning

if(blevel == 0) return UNSATISFIABLE;

else back_track(blevel); // backtracking

else return SATISFIABLE; // all variables have been set

Implementation of (an iterative equivalent of) Algorithms 2 and 3 on top
of such a SAT solver can generally be achieved in four steps, all of which are
done in our case by modifying only the decide next branch function. First, make
sure the program uses the variable order intended for the OBDD. Second, in-
struct the program to find all solutions instead of one. This can be done by
adding a fake conflict clause, also known as a blocking clause, whenever a so-
lution is found so that the solver will backtrack and continue to search. Third,
maintain a trace of the search in the form of an OBDD (generally incomplete
and nonreduced until search terminates; see Fig. 3). That is, keep an OBDD on
the side and augment it during search so that it has a root-to-sink path corre-
sponding to each solution found (see Fig. 3); all other paths should end with
the zero sink. When search finishes the standard reduction algorithm [5] can be
applied to obtain a reduced OBDD, which works by iteratively merging nodes
that share the same label and children, and deleting nodes whose two children
are identical.

Now that the program constructs OBDDs instead of just finding a solution,
the fourth and key step is to put caching in place, which consists of cache in-
sertion and cache lookup. According to Algorithms 2 and 3, every node cached

Using DPLL for Efficient OBDD Construction 165

represents the result of compiling some sub-theory of the original CNF into
OBDD. Back to our implementation, this implies that we should only cache
nodes whose construction is complete, as there are also nodes that are partially
constructed. Consider, for example, the left half of the figure below, which de-
picts the decision stack of the program when the first solution v1v2v3v4v5v6 has
just been found for the CNF from Fig. 2:

decision level 1: v1v2 (backtrack) decision level 1: v1v2

2: v3 =========> 2: v3v4

3: v4v5v6

At this point six OBDD nodes (excluding the sinks) are constructed, as shown
in the first picture of Fig. 3, to form a path representing the solution. Among
these, however, only the last two nodes (labeled with v5 and v6) are complete:
their other child, although not yet drawn, must be the zero sink, because instan-
tiations v5 = 1 and v6 = 1 have been implied. The other four nodes all have a
child that has not been determined or has not been completely constructed. The
nodes labeled with v5 and v6 should therefore be the only nodes to insert into
the cache.

In general, whenever a solution is found by the SAT solver and the OBDD is
augmented so that it contains a path corresponding to the solution, we may store
in the cache all nodes on this path that come after the node labeled with the
current decision variable, indexed by their corresponding separator (or cutset)
value.

We now continue the example to illustrate the operation of cache lookup.
After a blocking clause v1 + v3 + v4 is added, the program will backtrack to
decision level 2 and insert v4 = 1 as an implication, as shown in the right
half of the figure above. Before making the next decision by instantiating v5,
the program now has an opportunity to check the cache, both at position 3
(corresponding to partial assignment v1v2v3) and position 4 (corresponding to
partial assignment v1v2v3v4). Note that cache lookup at preceding positions have
been performed at earlier decision levels, and thus need not be repeated. As it
turns out, no cache hits occur at this point.

In general, whenever the SAT solver is about to instantiate variable vk, it
may check the cache at every position i, where j ≤ i < k and vj is the pre-
vious decision variable. The key used in the lookup will then be the value of
separatori (or cutseti). In case of a cache miss the program proceeds as usual
by instantiating vk; otherwise the OBDD is augmented so that a partial path
corresponding to the current instantiation of variables v1, . . . , vk−1 exists and is
connected directly to the OBDD node returned from the cache (see Cache Hits
in Fig. 3); again a blocking clause is added so that the solver will backtrack and
continue to search.

To conclude our example with the CNF from Fig. 2, Fig. 3 shows snapshots
of the OBDD maintained by the compiler at successive solution findings. Specif-

166 J. Huang and A. Darwiche

1

v1

v5

v3

v4

v2

v6

1

v1

v5

v3

v4

v2

v5

v6 v6

1

v1

v5

v3

v4

v2

v5

v6v6

1

v1

v5

v3

v4

v2

v5

v4

v5

v6 v6v6

1

v1

v5

v6

v3

v4

v2

v5

v4

v5

v6 v6v6

Cache Hit

1

v1

v5

v6

v3

v4

v2

v5

v4

v5

v6 v6v6

v2

v3 v3

Cache Hits

1

v1

v5

v6

v3

v4

v2

v5

v4

v5

v6 v6v6

v2

v3 v3

1

v1

v5

v6

v3

v4

v2

v5

v4

v5

v6 v6v6

0

Fig. 3. Partially constructed OBDDs at various stages of DPLL, before reduction

ically, the first five shots are taken when the program has just found the first,
second, third, fourth, and fifth solution, respectively. The next two pictures de-
pict the rest of the solutions found, all through cache hits. The final picture
completes the OBDD by supplying the pointers to the zero sink, which have
been implicit.

The last component of the compiler is a method to properly compute the
values of separators and cutsets. The former is straightforward: the value of
separatori is simply the current instantiation of variables separatori. The latter
demands more care. Recall that the correctness of cutset caching hinges on the
fact that other variables remain free when variables v1, . . . , vi are instantiated.
This does not hold, however, in a real-world SAT solver where unit propagation
constantly takes place: an instantiation of variables v1, . . . , vi may well have
caused variables at position > i to be set, which in turn alters the states of
clauses cutseti, obscuring their true values. To overcome this complication, the
states of clauses cutseti should be determined purely on the instantiation of
variables v1, . . . , vi, pretending that other variables were all free. This process
usually incurs overhead, because one can no longer rely on a quick check of some
flag that may have been set by the SAT solver to indicate whether a clause has
been satisfied. In our implementation, we simply walk through the literals of
each clause in the cutset to determine its state.

Finally, we note that except for dynamic variable ordering, which we have
turned off, all features of the original SAT solver remain in effect. In particular,
we retain the benefits of unit propagation using watched literals, conflict-directed
backtracking, and no-good learning.

Using DPLL for Efficient OBDD Construction 167

5 Experimental Results

The purpose of our experiments is threefold. First, we demonstrate the effi-
ciency of our program by running it against an implementation of the traditional
bottom-up OBDD construction method. Second, we study the effect of caching
used by our program by turning it off and observing the change in performance.
Third, we investigate the intermediate explosion encountered in bottom-up con-
struction using random CNFs with varying clauses-to-variables ratios. All our
compilations use variable orders generated by MINCE [18], which implements
the heuristic proposed in [8] for minimizing OBDD sizes. Our experiments were
run on a 2.4GHz processor with 3.7GB of RAM.

Our first set of experiments are on ten groups of benchmarks taken from the
Satisfiability Library [7] plus CNFs based on the first 18 of the ISCAS89 circuits
[19]. Our DPLL-based compiler can be set to use either cutset (Algorithm 2) or

Table 1. Performance of DPLL vs CUDD

Benchmark #CNFs OBDD Size DPLL Time (sec) CUDD Time (sec) CUDD Nodes

aim50 16 52 0.00 0.19 11178
aim100 16 102 0.00 21.86 2413645

ais 2 1770 0.45 15.51 613200
blocksworld 5 559 0.04 234.28 1759884

flat75 10 8610 0.29 1.37 99645
flat100 10 18515 1.61 15.41 639159
parity8 10 212 0.00 0.21 22280
parity16 8 674 4.20 800.29 38148066

uf75 10 1733 0.11 15.36 605228
uf100 10 1411 1.33 526.88 14154496
iscas89 18 85462 13.22 4.66 342313

Table 2. Effect of Caching on Performance of DPLL

CNF OBDD Size #Cache Hits / Entries Time (sec) Time without
Caching (sec)

flat75-1 3966 387 / 17155 0.16 1.1
flat75-2 2231 1281 / 28180 0.28 320.83
flat75-3 14057 723 / 24208 0.29 1.5
flat100-1 10385 642 / 27232 0.78 166.13
flat100-2 14806 1902 / 71336 1.57 38.83
flat100-3 2583 464 / 17006 0.15 out of memory

iscas89-s208.1 1056 190 / 2863 0.01 0.87
iscas89-s344 10073 1154 / 20225 0.07 out of memory
iscas89-s386 14078 1399 / 180620 0.65 1.09
iscas89-s510 17366 991 / 21893 0.14 64.94
iscas89-s953 438246 56394 / 2935247 38.81 out of memory

168 J. Huang and A. Darwiche

separator (Algorithm 3) caching. For these experiments the latter has been used,
as it runs slightly faster thanks to the less expensive computation of separator
values. For the bottom-up method, we rely on the CUDD package from the Uni-
versity of Colorado [20] to build OBDDs for individual clauses and conjoin them
for the final result. Since the order in which these OBDDs are built and con-
joined affects the complexity of construction, we have adopted a clause ordering
heuristic that was proposed in [21] exactly for use with this method of OBDD
construction. This heuristic calls for clauses with higher-indexed variables to be
processed first, allowing the OBDD nodes themselves to be constructed in a
bottom-up fashion.

The results of these experiments are summarized in Table 1, where the two
programs are referred to as DPLL and CUDD, respectively. The second column
indicates the number of instances in each group of CNFs. All other figures rep-
resent group averages. The time to generate the MINCE variable order is not
included as this is a preprocessing step shared by both programs. We observe
that DPLL runs faster than CUDD by generally many orders of magnitude, ex-
cept for the last group which we discuss more toward the end of the section. The
last column gives for each group the (average) number of intermediate OBDD
nodes generated by CUDD, which, compared with the OBDD size, affords an
intuitive explanation for the inefficiency of the bottom-up construction method
on these instances. Some instances are not included in this table because CUDD
did not successfully compile them. On two of the parity16 instances, for example,
DPLL finished in 6.67 and 9.53 seconds, generating 351 and 1017 OBDD nodes,
respectively, but CUDD ran out of memory.

To ascertain the effect of caching on the performance of DPLL, we reran
it on the same instances with caching turned off. This version of DPLL would
then correspond to the original zChaff with the only change being an enforced
static variable ordering and the adding of blocking clauses for enumeration of
all solutions. We note that on some instances, no cache hits had occurred before
and, consequently, disabling caching did not cause any noticeable change in
performance. However, on other instances, especially the flat75, flat100, and
iscas89 families, performance dropped significantly after caching was turned off.
See the results in Table 2. Note that CUDD does better than DPLL on the
iscas89 family overall, but not on all the 18 instances. In particular, all of those
included in Table 2 are instances where DPLL outperforms CUDD.

We investigate next the performance of DPLL and CUDD on randomly gen-
erated 3-CNFs with varying clauses-to-variables ratios. We use mkcnf written by
Allen van Gelder with the forced satisfiable option to generate the CNFs. Our
suite of random 3-CNFs consists of those with n variables and m clauses, where
n = 40, 45, and 50, and m ranges from 10 to 5n at intervals of 5. For each n-m
combination we generate 20 instances. The OBDD sizes as well as running times
we report next represent averages over these 20 instances of each ratio. Our first
observation is illustrated in Fig. 4, which plots the OBDD size as a function
of the clauses-to-variables ratio. It can be seen that for all three groups, the

Using DPLL for Efficient OBDD Construction 169

0

100000

200000

300000

400000

500000

600000

0 1 2 3 4 5

50 variables

45 variables

40 variables

Fig. 4. OBDD size as a function of clauses-to-variables ratio

OBDD size peaks around the ratio of 2, and generally decreases toward either
direction.

It is interesting to note, as shown in Fig. 5 (left) for the group of CNFs with
50 variables, that the running time of CUDD also peaks around the ratio of 2,
and generally decreases toward either direction.

We now turn to an important issue with the bottom-up construction method
used by CUDD—the explosion of intermediate BDD nodes. Fig. 5 (right) shows,
for 50 variables, the ratio of the total number of nodes generated by CUDD
over the final OBDD size, again as a function of the clauses-to-variables ratio.
We observe that over the middle part of the spectrum, between the ratios of
0.6 and 3.6 for example, CUDD produces a low explosion rate. As a result, one
may expect CUDD to be generally efficient on CNFs with these ratios, because
relatively few dead nodes will be generated.

In fact, our next set of data indicates that it is precisely over this central
portion of the gamut that CUDD outperforms DPLL.3 To view the transition
points to a higher precision, we magnify the two end portions of the spectrum and
leave out the middle part, as shown in Fig. 6. It can be seen that for ratios < 0.6
and those > 3.6, DPLL is more efficient than CUDD. This corresponds roughly
to what one may have predicted from Fig. 5 (right) based on the rationale that
CUDD will tend to be efficient when few dead nodes are generated, which we

3 For these experiments we have used a different implementation of DPLL that does
not build on zChaff. Instead, it is written recursively and hence follows more closely
the pseudocode of Algorithm 2. For reasons we are yet to identify, this recursive
implementation runs faster than the one based on zChaff on this set of random
3-CNFs.

Using DPLL for Efficient OBDD Construction

170 J. Huang and A. Darwiche

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
 0

 50

 100

 150

 200

 250

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Fig. 5. CUDD time (left) and explosion rate (right) as a function of clauses-to-variables
ratio, 50 variables

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

CUDD
DPLL

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5

CUDD
DPLL

Fig. 6. Running time of CUDD vs DPLL on the two extremes of the spectrum

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Fig. 7. CUDD time (left) and explosion rate (right) without clause ordering

have alluded to in the previous paragraph. The iscas89 family may be another
example to this effect. According to Table 1, the total number of nodes generated
by CUDD on this group of CNFs is only about four times the final OBDD size,
and CUDD outruns DPLL by about a factor of three.

Using DPLL for Efficient OBDD Construction 171

For these two extremes of the spectrum, we observed the effect of caching
on DPLL by turning it off and noting the change in performance. We noticed
that for the low ratios the running time increased dramatically (e.g., from 0.06
to 1252 seconds for ratio 0.6), and for the high ratios it slighly decreased (e.g.,
from 0.50 to 0.34 for ratio 3.6). We abscribe this phenomenon to the fact that at
the low ratios there are an extremely large number of models for the CNF and
hence many opportunities for cache hits, whereas at the high ratios models are
sparse and one does not expect many cache hits, if at all, and the overhead of
caching can slow the program down.

Finally, we offer a few more words on the two OBDD construction methods
that we have been comparing. DPLL represents a top-down approach, where
global properties of the CNF formula are exploited throughout the construc-
tion. The traditional bottom-up method using CUDD, on the other hand, works
locally on subsets of the CNF at any given time. However, the particular im-
plementation we have reported on does not correspond to the pure bottom-up
approach, because the clause ordering heuristic we have used effectively gives it
also a global view of the CNF structure, and hence some benefits of the top-down
approach. In fact, in an additional set of experiments on the random 3-CNFs
we turned off clause ordering and noted that the performance of the bottom-up
method was now much worse. Fig. 7 (left) plots the running time of CUDD
without clause ordering on the 50-variable 3-CNFs, which, instead of having a
bell shape, now increases with the number of clauses. Note that the maximum
value of the curve has increased from less than 4 seconds (Fig. 5) to over 150
seconds. The explosion rates have also increased significantly; see Fig. 7 (right)
compared with Fig. 5 (right).

6 Conclusion

We have proposed two DPLL-based algorithms that compile CNF formulas into
OBDDs. Theoretical guarantees have been provided on the complexities of these
algorithms, and in the process an upper bound has been proved on the OBDD
size for arbitrary CNF formulas. We have related these results to some previous
complexity bounds that use similar structural parameters. We have described
an implementation of these algorithms on top of an existing SAT engine, and
demonstrated its efficiency in practice over the traditional bottom-up OBDD
construction method on many standard benchmarks. Using randomly generated
3-CNFs, we study the relationships between the OBDD size, CUDD explosion
rate, the performance of CUDD versus DPLL, and the effect of caching for
varying clauses-to-variables ratios.

Acknowledgment

We wish to thank the anonymous reviewers for the SAT 2004 conference for
commenting on an earlier version of this paper. This work has been partially
supported by NSF grant IIS-9988543 and MURI grant N00014-00-1-0617.

172 J. Huang and A. Darwiche

References

1. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving.
Journal of the ACM (5)7 (1962) 394–397

2. SAT Competitions: http://www.satlive.org/SATCompetition/.
3. Birnbaum, E., Lozinskii, E.: The good old Davis-Putnam procedure helps counting

models. Journal of Artificial Intelligence Research 10 (1999) 457–477
4. Bayardo, R., Pehoushek, J.: Counting models using connected components. In:

AAAI. (2000) 157–162
5. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE

Transactions on Computers C-35 (1986) 677–691
6. Darwiche, A., Marquis, P.: A knowledge compilation map. Journal of Artificial

Intelligence Research 17 (2002) 229–264
7. Hoos, H.H., Sttzle, T.: SATLIB: An Online Resource for Research on SAT. In:

I.P.Gent, H.v.Maaren, T.Walsh, editors, SAT 2000, IOS Press (2000) 283–292
SATLIB is available online at www.satlib.org.

8. Aloul, F., Markov, I., Sakallah, K.: Faster SAT and smaller BDDs via common
function structure. In: International Conference on Computer Aided Design (IC-
CAD), University of Michigan. (2001)

9. Huang, J., Darwiche, A.: Using DPLL for Efficient OBDD Construction. Technical
Report D-140, Computer Science Department, UCLA, Los Angeles, CA 90095
(2004)

10. Gavril, F.: Some NP-complete problems on graphs. In: 11th conference on infor-
mation sciences and systems. (1977) 91–95

11. Thilikos, D., Serna, M., Bodlaender, H.: A Polynomial Algorithm for the cutwidth
of bounded degree graphs with small treewidth. Lecture Notes in Computer Science
(2001)

12. Kinnersley, N.G.: The vertex separation number of a graph equals its path-width.
Information Processing Letters 42 (1992) 345–350

13. Robertson, N., Seymour, P.D.: Graph minors I: Excluding a forest. Journal of
Combinatorial Theory, Series B 35 (1983) 39–61

14. Langberg, M., Pnueli, A., Rodeh, Y.: The ROBDD size of simple CNF formulas.
In: 12th Advanced Research Working Conference on Correct Hardware Design and
Verification Methods. (2003)

15. Wang, D., Clarke, E.M., Zhu, Y., Kukula, J.: Using cutwidth to improve symbolic
simulation and Boolean satisfiability. In: IEEE International High Level Design
Validation and Test Workshop. (2001)

16. Aloul, F., Markov, I., Sakallah, K.: FORCE: A Fast and Easy-To-Implement
Variable-Ordering Heuristic. In: Great Lakes Symposium on VLSI (GLSVLSI),
Washington D.C. (2003) 116–119

17. Zhang, L., Madigan, C., Moskewicz, M., Malik, S.: Efficient conflict driven learning
in a Boolean satisfiability solver. In: Proceedings of ICCAD 2001, San Jose, CA.
(2001)

18. MINCE for download: http://www.eecs.umich.edu/˜faloul/Tools/mince/.
19. ISCAS89 Benchmark Circuits, http://www.cbl.ncsu.edu/CBL Docs/iscas89.html.
20. Somenzi, F.: CUDD: CU Decision Diagram Package. (Release 2.4.0)
21. Aloul, F., Markov, I., Sakallah, K.: Faster SAT and smaller BDDs via common func-

tion structure. Technical Report CSE-TR-445-01, University of Michigan (2001)

Approximation Algorithm for
Random MAX-kSAT

Yannet Interian

Center for Applied Mathematics,
Cornell University, Ithaca, NY 14853, USA

interian@cam.cornell.edu

Abstract. We provide a rigorous analysis of a greedy approximation
algorithm for the maximum random k-SAT (MAX-R-kSAT) problem.
The algorithm assigns variables one at a time in a predefined order.
A variable is assigned TRUE if it occurs more often positively than
negatively; otherwise, it is assigned FALSE. After each variable assign-
ment, problem instance is simplified and a new variable is selected.
We show that this algorithm gives a 10/9.5-approximation, improving
over the 9/8-approximation given by de la Vega and Karpinski [7]. The
new approximation ratio is achieved by using a different algorithm than
the one proposed in [7], along with a new upper bound on the max-
imum number of clauses that can be satisfied in a random k-SAT
formula [2].

1 Introduction

In the MAX k-SAT problem we are given a Boolean formula in conjunctive
normal form, with k literals in each clause, and we ask for a truth assign-
ment that maximizes the number of satisfied clauses. The random version of
this optimization problem considers inputs drawn from a predefined probabil-
ity distribution. An α-approximation algorithm for the Maximum random k-
SAT problem (MAX-R-kSAT) finds with high probability (w.h.p.)1 an assign-
ment satisfying at least α times the maximum number of possible satisfiable
clauses.

The most popular model for generating random SAT problems is the uni-
form k-SAT model, formed by uniformly and independently selecting m clauses
from the set of all 2k

(
n
k

)
k-clauses on a given set of n variables. Interesting

problems for this model arise when the ratio α of clauses to variables remains
constant as the number of variables increases. The most famous conjecture is
that such formulas exhibit a “phase transition” as a function of α [11]. There
exists a constant ck such that, uniform k-SAT problem instances with values
of α below the threshold αk, typically have one or more satisfying assignment,

1 The events En hold with high probability (w.h.p.) if Pr(En) → 1 when n → ∞.

H.H. Hoos and D.G. Mitchell (Eds.): SAT 2004, LNCS 3542, pp. 173–182, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

174 Y. Interian

whereas problems with α larger than αk have too many constraints and become
unsatisfiable.

We propose the analysis of a simple greedy algorithm for approximating
MAX-R-kSAT. Previous work on this problem was done by de la Vega and
Karpinski [7], where a 9/8-approximation algorithm for MAX-R-3SAT is ana-
lyzed. We improve upon this ratio by analyzing a different algorithm, and using
recent results Achlioptas et al [2] giving upper bounds on the maximum number
of clauses that can be satisfied on a random k-SAT formula.

Our analysis relies on the method of differential equations studied by Wormald
[13]. This method has been used extensively in the approximation (lower bounds)
of the satisfiability threshold (see [1, 8, 3]). To use this method for MAX-R-
kSAT, we have to be able to compute not the probability of finding an as-
signment using a certain algorithm, as done for the random 3-SAT problem
[1, 8, 3], but the expected number of clauses that such an assignment
satisfies.

2 Outline of the Results

For a k-CNF formula F , let max(F) be the maximum number of clauses that
can be satisfied, and mA(F) be the number of clauses satisfied by the assignment
A. Let r = r(F) be the ratio between the number of clauses and the number of
variables for the k-CNF formula F . Denote by n, the number of variables in F ,
and by m the number of clauses.

We propose an algorithm which, given a k-CNF formula F , outputs an as-
signment A, leading to mA(F) as our approximation to max(F). We prove
that

lim
n→∞

Pr
{max(F)

mA(F)
≤ α
}

= 1 (1)

To obtain (1) we prove that for a fixed k, there exists a function g(r) such
that mA(F) = g(r)m + o(m) w.h.p., i.e., Pr

{
mA(F) = g(r)m + o(m)

}
goes

to 1 as m goes to infinity. Then we show that Pr
{
max(F) ≥ α(g(r)m +

o(m))
}

goes to zero as m goes to infinity, where α is the approximation
constant.

In part of the analysis we use an upper bound for the value of max(F), as
given in the results of Achlioptas et al. [2]. We prove the following result for
random MAX-R-3SAT.

Theorem 1. There is a polynomial time algorithm for approximating MAX-R-
3SAT with approximation ratio α = 10/9.1.

Remarks: In section 5 we discuss how to extend the proof of theorem 1 to
obtain a 10/9.5 ratio. The proof can be further generalized to obtain results for
any fixed k.

Approximation Algorithm for Random MAX-kSAT 175

3 The Algorithm

The main loop of our greedy algorithm is as follows:

Algorithm
begin
if r(F) > rk

output a random assignment A
Otherwise

output the assignment A given by

the Majority algorithm
end

where rk, is a constant that depends on k. For k = 3, we use r3 = 183, as will
be explained in the the proof of theorem 1 in section 5.

If r(F) > rk, the output is a random assignment. We can change this part
of the algorithm to output any fixed assignment, turning the algorithm into a
deterministic algorithm. We will show below that any fixed assignment satisfies
7
8m + o(m) clauses w.h.p., and moreover we prove that 7

8m + o(m) is a good
approximation of max(F) when r sufficiently large.

If r(F) ≤ rk, the algorithm proceeds as follows: while there are unassigned
variables, select an unassigned variable x. If x appears positive (i.e., appears as
x as opposed to x̄) in at least half of the clauses that contain x, x is assigned to
TRUE; otherwise, it is assigned to FALSE. The formula is simplified after each
assignment.

Majority algorithm
begin
While unset variables exist do

Pick an unset variable x
If x appears positively in at least half of the remaining

clauses (in which x appears)

Set x =TRUE

Otherwise

Set x =FALSE

Del&Shrink

end do

output the current assignment

end

Chao and Franco [5] proposed a unit clause with the majority rule algorithm
for the study of the satisfiability threshold for random 3-SAT formulas. The
majority rule used by Chao and Franco [5] attempts to minimize the number
of 3-clauses that become 2-clauses, and the unit clause rule attempts to satisfy
every unit clause that is produced while running the algorithm. Such a strategy
aims at finding satisfying assignments.

It’s an interesting question for future research whether adding unit-clause
propagation (i.e., selecting variables occurring in unit clauses first) is helpful in
the MAX-SAT problem when the problem instances are over-constrained. For

176 Y. Interian

finding a satisfying assignment (assuming such an assignment exists), unit prop-
agation, and its generalization “the shortest clause first” heuristic, have been
shown to be very effective both empirically and in formal analysis. However,
in standard satisfiability testing one has in some sense “no choice” — once a
unit clause is obtained, the variable in the clause has to be set such that the
unit clause is satisfied. In over-constrained MAX-SAT instances, the situation
is quite different. Once a unit clause is obtained, the question is whether one
should proceed to satisfy that clause or instead work on satisfying other clauses
and leave the unit clause unsatisfied. In order to satisfy the maximum number
of clauses, it may be beneficial to not treat unit clauses any different from other
clauses. Our intuition is that after a certain number of variable settings, a suffi-
cient number of unit clauses appears, such that from then on, a procedure with
unit propagation will only set variables in unit clauses (note that setting a few
unit clauses will generally produce new unit clauses). It would be interesting to
analyze the production of unit clauses as a branching process and check whether
at some point the expected number of offspring (new unit clauses) is greater
than one.

Our algorithm is also similar to the one proposed in de la Vega and Karpin-
ski [7]. Their assignment strategy is static. The algorithm assigns every variable
to its majority value, i.e., x is assigned to TRUE if x appears positively more
often than negatively in the original formula; otherwise, it is assigned to FALSE.
Our algorithm is similar but proceeds dynamically. It assigns one variable at a
time and simplifies the formula before considering a new variable to be assigned.
Therefore, clauses are not taken into consideration by the algorithm if they are
already satisfied.

4 Analysis

In this section we prove that if A is the assignment given by the algorithm,
then we know with an o(m) error, the number of clauses that A satisfies. More
precisely, mA(F) = g(r)m + o(m) for some function g(r) that depends only on
the parameter r.

4.1 For r > rk

This part of the analysis shows that for large values of the parameter r, a random
assignment, or any fixed assignment, will yield a good approximation.

Any fixed assignment A will satisfy (1− 1
2k)m + o(m) clauses w.h.p., which

can be seen from the following argument. Let A be a fixed assignment and F
a random k-SAT formula. The number of clauses satisfied by A is the sum of
m {0, 1}-independent random variables. That is, if Xi = 1 if the ith clause
is satisfied by A, and 0 otherwise for 1 ≤ i ≤ m, then mA(F) =

∑m
i=1 Xi

where Xi are independent identically distributed, and Pr(Xi = 1) = 1− 1
2k . So

E(mA) = (1 − 1
2k)m. Moreover, Var(mA) = mVar(X1) = m 1

2k (1 − 1
2k), using

Chebyshev’s inequality we obtain

Approximation Algorithm for Random MAX-kSAT 177

Pr
{
|mA −E(mA)| ≥ m2/3) → 0 as m →∞

therefore, mA = (1− 1
2k)m + o(m) w.h.p.

The next result says that max(F) is very close to (1− 1
2k)m for large values

of the parameter r and so very close to mA(F), for any fixed A.

Lemma 1. [7] For every ε there exists rε,k such that for r ≥ rε,k and F a
random k-SAT formula

Pr
{
max(F) ≥ (1− 1

2k
)m(1 + ε)

}

goes to zero as n goes to infinity.

Proof. Let q = 1− 1
2k . Note that, the random variable max(F) = maxA∈{0,1}n

mA(F) and that for any fixed A, mA(F) has distribution binomial with param-
eter m and q (Bin(m, q)).

Pr{max(F) ≥ q m(1 + ε)} = Pr{|A : mA(F) ≥ q m(1 + ε)| > 0}
≤ E{|A : mA(F) ≥ q m(1 + ε)|}
= 2n Pr{ Bin(m, q) ≥ q m(1 + ε)}

≤ 2nexp(−qmε2

2
)

Last inequality follows by Chernoff bound, and goes to zero for r ≥ rε,k =
2k+1log2
(2k−1)ε2

.

For instance, in order to obtain a 10/9.1-approximation for MAX-R-3SAT,
we take ε = 1/0.91 − 1 and obtain that a random assignment (or any fixed
assignment A) gives the desired approximation ratio for r3 ≥ 183. To achieve
the 10/9.5-approximation, we set r3 ≥ 643.5.

4.2 For r < rk

We now analyze the majority rule algorithm. With this analysis we aim to com-
pute how many clauses are satisfied by the assignment chosen by the algorithm,
or equivalently, how many empty clauses are generated during the assignment
process. To do that, we trace certain parameters during the execution of the
algorithm. One of those parameters is the number of empty clauses generated
up to time t. (An empty clause is generated when all literals in the clause are
assigned FALSE, so the clause is not satisfied by the current assignment.) An
important aspect of the algorithm is that the order in which the variables are
assigned has to be chosen in advance, i.e., without looking at the particular
formula. Each variable is assigned using the majority rule, i.e., if the variable
occurs more positively than negatively in the remaining clauses, set the variable
to TRUE, else to FALSE. Using this approach, we are assured that the remaining
formula is still a uniformly random formula, in the following sense.

178 Y. Interian

Our algorithm sets variables one at a time. If we start for example with a
3-SAT formula, after assigning a variable we end up with a mix of 2-clauses
and 3-clauses. After the next assignment, we may have some unit clauses, and
even some empty clauses. Starting with a k-SAT formula, at any time t, the
remaining formula has n− t variables and a mix of {1, . . . , k}-clauses and empty
clauses. We define a random model that includes clauses of different length, and
that includes random k-SAT as the special case in which all clauses have length
k. The model is very simple. If n is the number of variables, and there are Ci,
i-clauses for 1 ≤ i ≤ k, we generate for each i, a i-SAT random formula with n
variables and Ci clauses, and we consider the formula F to be the conjunction
of all the clauses. Denote ΦC a random formula generated in this way with
C = (C1, . . . , Ck).

Fix k, denote by Ci(t) the number of clauses with i literals remaining at time
t, 1 ≤ i ≤ k, and C0(t) the number of empty clauses at time t. The next lemma
establishes that at the end of each step t of the algorithm the remaining formula
is random on the space of formulas ΦC(t) with C(t) = (C1(t), . . . , Ck(t)).

Lemma 2. [5, 6] For every time 1 ≤ t ≤ n, conditional on the values Ci(t),
1 ≤ i ≤ k, the number of clauses of length i, the remaining formula is a random
formula with parameters Ci(t), 1 ≤ i ≤ k and n′ = n− t variables.

Lemma 2 can be used to compute parameters of the formula conditioned on
the values of Ci(t) 0 ≤ i ≤ k. For example we can compute expected value of
Ci(t + 1)− Ci(t) given the values of Ci at time t.

The analysis we propose here relies on the method of differential equations
described in [13]. The sketch of the analysis is as follows: suppose C(t) =
(C0(t), . . . , Ck(t)) are stochastic parameters related to a formula, in our case
are the number of i-clauses at time t. We want to estimate the trajectory of
C(t) through the duration of our algorithm. In a restricted version, the theorem
states that if

(a) Pr(|Ci(t + 1)− Ci(t)| > n1/5) = o(n−3)
(b) E(Ci(t + 1)− Ci(t)| C(t)) = fi(t/n,C(t)/n) + o(1)
(c) the functions fi are continuous and satisfies a Lipschitz condition on some

set D

then
Ci(t) = nci(t/n) + o(n),

where ci(x) is the solution of the system of differential equations

dc

dt
= f(x, c) c(0) = (

C0(0)
n

, . . . ,
Ck(0)

n
) = (0, . . . , α),

and c = (c0, c1, . . . , ck).
In our case, the equation for the conditional expectation of Ci(t + 1)−Ci(t)

is as follows:

E[Ci(t + 1)− Ci(t)| C0(t), . . . , Ck(t)] = − iCi

n− t
δi�=0 + µλ

(i + 1)Ci+1

ρ
δi�=k (2)

Approximation Algorithm for Random MAX-kSAT 179

where i = 0, 1 . . . k and δi�=j is 0 if i = j and 1 otherwise. Note we have an
equation for each value of i.

To better understand these difference equations, let’s consider a specific case.
For example, with k = 3 and i = 3, we obtain

E[C3(t + 1)− C3(t)| C0(t), . . . , C3(t)] = − 3C3

n− t

The terms on the right, measure the expected reduction of ternary clauses at
time t. Note that, at time t there are n − t variables, so the probability that a

3-clause has a fixed variable x is (n−1

2)
(n
3)

. Therefore, 3C3

n−t is the expected number

of 3-clauses with a variable x.
The definition of ρ and µλ are as follows. Let C(t) = (C1(t), . . . , Ck(t)),

F ∈ ΦC(t) and X be the random variable defined as the number of clauses in F
where the random literal l appears. The distribution of X can be approximated
by a Poisson random variable with parameter λ = ρ

2(n−t) , where ρ = C1(t) +
2C2(t) + · · · + kCk(t). The algorithm takes a variable x and satisfies the literal
that appears the most among {x, x̄}. Denote by Z the number of clauses in which
the falsified literal appears (that is, the literal that appears the least number of
times from among {x, x̄}). Z has the distribution of min(X,X ′), where X ′ is
independent to X and have both distribution Poisson with parameter λ. Let
µλ = E(Z), be the expected value of Z.

Wormald’s theorem says that we can approximate the values of Ci(t) by the
solutions ci(x) of the following system of differential equations.

dci

dx
= − ic2

1− x
δi�=0 + µλ

(i + 1)ci+1

ρ
δi�=k (3)

For i = 0, 1, . . . , k and with initial conditions ci(0) = Ci(0)
n . Here ρ = c1 +

2c2 + · · ·+ kck, the scaled number of literals in the formula and λ = ρ
2(1−x) . µλ

has the same definition as before.
At any time t < (1 − ε)n, ci(t/n) gives a good approximation of the scaled

values of Ci(t). More precisely,

Ci(nx) = ci(x)n + o(n) (4)

with high probability when n goes to infinity.
Wormald’s theorem can be applied for 0 ≤ x ≤ 1 − ε, for any ε > 0. That

is because x = 1 is a singularity point for our function f . In our analysis, we
take ε = 10−5. To get around the problem of not having equation (4) for all the
values of t, we analyze the algorithm for 0 ≤ t ≤ n(1− ε) and then count all the
remaining clauses plus the empty clauses as not satisfied by the assignment. Let
tε = n(1− ε), we use the following bound C0(n) ≤ C0(tε) + C1(tε) + · · ·+ Ck(tε)
for the number of empty clauses generated by the algorithm. A precise statement
of the theorem is given on the Appendix.

180 Y. Interian

5 Proof of the Theorem. Results for MAX-R-3SAT

We solve the differential equations (3) numerically using the ode45 function of
matlab. The values of µλ are approximated numerically. The results are in agree-
ment with simulations of the algorithm on randomly generated 3-SAT formulas.

In figure 1 we give the results of approximating 1 − C0(n)
m , the fraction of

clauses that are satisfied by the algorithm, with a lower bound
1 − c0(xε)+c1(xε)+c2(xε)+c3(xε)

r , where xε = 1 − ε = tε/n and ci(x), 1 ≤ i ≤ 3
are the solutions of the differential equations.

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 100 200 300 400 500 600 700

(s
at

is
fie

d
cl

au
se

s)
/m

r=m/n

Diff. Eqn

Fig. 1. Fraction of satisfied clauses (g(r)) as the function of r. Results from the solution
of the differential equations

We will use the following result in the proof of theorem 1.

Theorem 2. [2] Let F be a k-CNF random formula, if

r(F) > τ(p) = 2kln 2/(p + (1− p)ln(1− p)),

then Pr(max(F) > (1− 2k(1− p))m) goes to zero as n goes to infinity.

The result in theorem 2 provides an upper bound on the maximum number
of clauses that can be satisfied in a typical random k-CNF formula.

Proof. of Theorem 1.
To prove the 10/9.1-approximation for MAX-R-3SAT, we choose r3 = 183 as
the parameter for the algorithm. The result for r = m/n > r3 holds just by the
lemma in the subsection 4.1.

For r = m/n ≤ r3 we split our proof into two parts, for r ≤ 12 and 12 ≤ r ≤
183. For r = 12, the function g(r) ≥ 0.9357, as g(r) is a decreasing function of r

Approximation Algorithm for Random MAX-kSAT 181

then g(r) ≥ 0.9357 for r ≤ 12. Then max(F)
mA(F) ≤

m
g(r)m < 10

9.1 w.h.p. Here we take
m as an approximation to the optimal value of max(F).

For 12 < r ≤ 183 using theorem 2 for p = 0.8, k = 3 we get that for r > 11.6
the probability that 0.975m clauses can be satisfied goes to zero as n goes to
infinity. Therefore, we can use that max(F) ≤ 0.975m w.h.p. and the fact that
for r ≤ 183 g(r) ≥ 0.8922 to obtain max(F)

mA(F) ≤
0.975m
g(r)m < 10

9.1 w.h.p.

The 10/9.5-approximation result can be obtained by carefully dividing the
interval r ∈ (0, 643.5) in several pieces. For each piece, using theorem 2, we get
an upper-bound for max(F), and our function g(r) for the approximation of
mA(F). The analysis for r ≥ 643.5 comes from the results in subsection 4.2.

References

1. D. Achlioptas. Lower Bounds for Random 3-SAT via Differential Equations. The-
oretical Computer Science, 265 (1-2), p.159-185 (2001).

2. D. Achlioptas, A. Naor, and Y. Peres. On the Fraction of Satisfiable Clauses in
Typical Formulas. Extended Abstract in FOCS’03, p. 362-370.

3. D. Achlioptas and G. B. Sorkin. Optimal Myopic Algorithms for Random 3-SAT.
In Proceedings of FOCS 00, p. 590-600.

4. A. Z. Broder, A. M. Frieze, and E. Upfal. On the satisfiability and maximum satis-
fiability of random 3-CNF formulas. In Proc. 4th Annual ACM-SIAM Symposium
on Discrete Algorithms, p. 322–330, (1993).

5. M-T. Chao and J. Franco. Probability analysis of two heuristics for the 3-
satisfiability problem. SIAM J. Comput., 15(4) p.1106-1118, (1986).

6. M. T. Chao, and J. Franco. Probabilistic analysis of a generalization of the unit
clause selection heuristic for the k-satisfiability problem. Information Sciences 51
p. 289-314, (1990).

7. W. Fernandez de la Vega, and M. Karpinski. 9/8-Approximation Algorithm
for Random MAX-3SAT. Electronic Colloquium on Computational Complexity
(ECCC)(070) (2002).

8. A. C. Kaporis, L. M. Kirousis, and E. G. Lalas. The probabilistic analysis of a
greedy satisfiability algorithm. In 10th Annual European Symposium on Algo-
rithms (Rome, Italy, 2002).

9. A. C. Kaporis, L. M. Kirousis, and E. Lalas. Selecting complementary pairs of
literals. Electronic Notes in Discrete Mathematics, Vol. 16 (2003).

10. A.C. Kaporis, L.M. Kirousis, and Y.C. Stamatiou. How to prove con-
ditional randomness using the Principle of Deferred Decisions. Techni-
cal Report, Computer Technology Institute, Greece, 2002. Available at:
www.ceid.upatras.gr/faculty/kirousis/kks-pdd02.ps.

11. D. Mitchell, B. Selman, and H. Levesque. Hard and easy distributions of sat prob-
lems. In Proc. 10-th National Conf. on Artificial Intelligence (AAAI-92), p. 459–
465.

12. B. Selman, D. Mitchell, and H. Levesque. Generating Hard Satisfiability Problems.
Artificial Intelligence, Vol. 81, p. 17–29, (1996).

13. N. C. Wormald. Differential equations for random processes and random graphs.
Ann. Appl. Probab. 5 (4) p. 1217–1235. 36, (1995).

182 Y. Interian

A Differential Equations

We consider here a sequence of random process Yt = Yt(n), n = 1, 2, For sim-
plicity the dependence on n is dropped from the notation. Let Ft be the the σ-
algebra generated by the process up to time t, i.e Ft = σ(Y0, Y1, . . . , Yt). Our pro-
cess Yt = (Y (1)

t , . . . , Y
(j)
t) is a vector of dimension j. Let ‖Y ‖ =

max(|Y (1)|, . . . , |Y (j)|). Suppose that Y0 = z0n the value of the process at time 0.
We say that X = o(f(n)) always if max{x : Pr(X = x) �= 0} = o(f(n)).

The term uniformly means that the convergence implicit in the o() is uniform
on t.

Theorem 3. [13] Let f : j+1 → j. Suppose there exists a constant C such
that the process Yt is bounded by Cn, i.e ‖Yt‖ < Cn. Suppose also that for some
function m = m(n):

(i) uniformly over all t < m

Pr(‖Yt+1 − Yt‖ > n1/5| Ft) = o(n−3)

always;
(ii) for all l and uniformly over all t < m,

E(Yt+1 − Yt|Ft) = f(t/n, Yt/n) + o(1)

always;
(iii) The function f is continuous and satisfies a Lipschitz condition on D, where

D is some bounded open set containing (0, z(1)
0 , . . . , z

(j)
0).

then:

(a) The system of differential equations

dz

ds
= f(s, z)

has a unique solution in D for z : → j with initial conditions z(0) = z0

and which extends to points arbitrarily closed to the boundary of D.
(b)

Yt = nz(t/n) + o(n) w.h.p

uniformly for 0 ≤ t ≤ min{σn,m}, where σ is the supremum of those s to
which the solution can be extended.

Clause Form Conversions for Boolean Circuits

Paul Jackson and Daniel Sheridan

School of Informatics,
University of Edinburgh, Edinburgh, UK

pbj@inf.ed.ac.uk

d.j.sheridan@sms.ed.ac.uk

Abstract. The Boolean circuits is well established as a data structure
for building propositional encodings of problems in preparation for sat-
isfiability solving. The standard method for converting Boolean circuits
to clause form (naming every vertex) has a number of shortcomings.

In this paper we give a projection of several well-known clause form
conversions to a simplified form of Boolean circuit. We introduce a new
conversion which we show is equivalent to that of Boy de la Tour in
certain circumstances and is hence optimal in the number of clauses that
it produces. We extend the algorithm to cover reduced Boolean circuits,
a data structure used by the model checker NuSMV.

We present experimental results for this and other conversion pro-
cedures on BMC problems demonstrating its superiority, and conclude
that the CNF conversion has a significant role in reducing the overall
solving time.

1 Introduction

SAT solvers based on the DPLL procedure typically require their input to be in
conjunctive normal form (CNF). Earlier papers dealing with encoding to SAT,
particularly much of the planning literature, encode directly from the input rep-
resentation to clause form. More recent encoding work makes little mention of
CNF conversion. Biere et al., proposing BMC [3], give an encoding to proposi-
tional logic — we assume from their space complexity claim that a DAG repre-
sentation is in use — but they make no mention of the final conversion to CNF.

The microprocessor verification work of Velev includes a thorough analysis
of improving the clause form generated [10], but the work is not immediately
applicable to general propositional logic. Nevertheless, Velev is able to claim a
speed up by a factor of 32 by altering the clause form conversion.

There is other evidence to motivate the study of clause form conversions for
SAT. While focussing on CNF representations of cardinality constraints, Bailleux
and Boufkhad [2] give a reformulation of the parity problems which have been
standard SAT benchmarks for a number of years. They argue that the problems
are made harder than they should be by a poor clause form representation, and
demonstrate a dramatic speedup on the par32 problem with modern solvers on
the reformulated problem.

H.H. Hoos and D.G. Mitchell (Eds.): SAT 2004, LNCS 3542, pp. 183–198, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

184 P. Jackson and D. Sheridan

In the first-order logic domain, the CNF conversion problem was handled
comprehensively by Boy de la Tour [4]. The algorithm given is impractical with-
out the improvements by Nonnengart et al. [8], and the resulting algorithm is
fiddly to implement making it hard to be confident of a correct implementation.

In this paper we introduce a simple and easy to understand CNF conversion
algorithm for propositional logic constructed as a hybrid between the structure-
preserving conversion [9] and the standard distributivity law application. We
prove that it produces the minimum number of clauses for certain classes of
formula. As its time complexity is linear in the size of the input formula, it
represents a significant improvement over the (quadratic time) Boy de la Tour
algorithm. Of course, it is well known that problem size does not necessarily
correspond to solving time in SAT, so we present some experimental results
demonstrating the effect that our algorithm has on some BMC [3] problems.

1.1 Notation Conventions

In an attempt to improve the clarity of the presentation, we use a number of
conventions in our notation. Much of the work is concerned with both graphs
and propositional logic, so we distinguish between graph variables ranging over
vertices and edges given in italic capitals (X, Y) and propositional variables
given in italic lower case (x, y); vertices are typically denoted V and edges E
and this notation is significant in determining the type of a function. We will
use the shorthand of referring to a subgraph by a single edge; the subgraph thus
identified includes all of the descendents of the edge given, and such an edge is
called the root of the subgraph and denoted T . Sets of vertices or edges are given
in bold type (X, Y).

Where a function creates new propositional variables, these are given the
name xi where i is some identifier (typically a graph vertex). These variables are
assumed to be unused in any other context.

2 Boolean Circuits

In contrast to the formulaic representation of propositional logic normally used,
Boolean circuits are much closer to an electronics view of logic. Labelled input
wires take the place of variables and together with (possibly unlabelled) internal
wires they are connected by logic gates which compute various logic functions.
This makes it very natural for the results of sub-circuits to be shared amongst
other parts of the circuit, as would be expected in the physical world.

Boolean circuits may be efficiently represented as directed acyclic graphs
(DAGs). Vertices having outgoing edges correspond to gates, with the edges
pointing to the inputs to the gate. Vertices without outgoing edges (which we
will call leaf vertices) are the inputs and outputs for the circuit, corresponding
to variables in a propositional formula.

Abdulla, Bjesse, and Eén proposed reduced Boolean circuits (RBCs) [1] as a
DAG representation of a propositional formula with additional restrictions on

Clause Form Conversions for Boolean Circuits 185

↔

∧A

a b

∧B

∧−

a+ ↔−

b0 c0

(a) a ∧ b ↔ (a → b) (b) a ∨ (b ↔ ¬c)
reduced to ¬(a ∧ b ↔ (a ∧ ¬b)) reduced to ¬(¬a ∧ (b ↔ c))

Fig. 1. Example RBCs showing vertex labelling

the type and relationships of the gates which place RBCs somewhere between
being a normal form and a canonical form for propositional formulæ. One of the
key strengths of Boolean circuits is the ability to use one circuit to represent
a formula both positively and negatively. To preserve this property, Abdulla et
al. eschew NNF in favour of restricting gates to conjunctions and equivalences
(bi-implications), marking negation on the edges of the graph.

Definition 1. An RBC is a DAG consisting of edges E and vertices V =
VI ∪ VL where internal vertices VI represent operators, and leaf vertices VL

represent variables. The following properties are required to hold and form the
encoding of Boolean circuits as DAGs:

– Each V ∈ VI consists of an operator op(v) ∈ {∧,↔} and a left and right
edge (left(V), right(V) ∈ E).

– Each V ∈ VL contains a variable var(V).
– Each E ∈ E has a sign sign(E) ∈ {+,−} and a target vertex target(E) ∈ V.

The sign attribute encodes negation, where sign(E) = + indicates an unnegated
edge and sign(E) = − indicates a negated edge. The following additional proper-
ties serve to reduce the number of representations possible for equivalent formulæ:

– All common subformulæ are shared:
∀V, V ′ ∈ VI, left(V) = left(V ′) ∧ right(V) = right(V ′) → V = V ′.

– The constant � only occurs in single-vertex RBCs.
– For all vertices, left(V) �= right(V).
– If op(V) =↔ then left(V) and right(V) are unsigned.
– There is a total order ≺ such that for all V ∈ V, left(V) ≺ right(V).

For example, Figure 1a shows the RBC representing the formula a ∧ b ↔
¬(a → b), with some internal vertices annotated by a subscript capital. The
annotations allow us to refer to the subformula a∧b by the vertex A, for example,
and also allows us to depict RBC fragments by identifying a vertex without giving
any further details.

To simplify the definitions in this paper we extend the set of properties on
RBC vertices and edges with the inverse function of target :

source(E) =

{
V if E = left(V) ∨ E = right(V)

undefined otherwise

186 P. Jackson and D. Sheridan

RBC Operations. Two RBCs rooted at edges L and R, are composed given
an operation o ∈ {∧,↔} and a sign s ∈ {+,−} to give the RBC rbc(L, R, o, s):

– If o may be trivially evaluated using identity and other properties, return
the result of doing so.

– Otherwise, check L ≺ R and swap if not.
– If o =↔ then s becomes s ⊕ sign(L) ⊕ sign(R), and sign(L) and sign(R)

become + (⊕ is the exclusive-or operation).
– The new vertex V = 〈o, L, R〉 is inserted into the DAG.
– The result is the edge 〈sign, V 〉.

3 CNF Conversions on Linear Trees

We begin by examining CNF conversions for a restriction of RBCs, which will
become a building block for the CNF conversions of full RBCs. Linear trees
represent linear formulæ (those without equivalence operators) without taking
into account the possibility for sharing.

Definition 2. A linear tree is an RBC with the following changes to its struc-
ture:

– The only internal vertices are conjunction vertices
– No vertices are shared: the graph is a tree

Given a linear tree, we define the following additional properties over vertices

inedge(V) = E where target(E) = V

sib(V) =

{
target(left(V ′)) if inedge(V) = right(V ′)

target(right(V ′)) if inedge(V) = left(V ′)

We give the various well-known CNF conversions informally and as depth-
first procedures on linear trees. Each conversion produces a set of clauses; we
write |C| for the number of clauses in C, and use the union (∪) operator to
combine sets of clauses, and the cross-multiply operator (×), to form the set of
clauses corresponding to the disjunction of two sets, obtained by

A × B = {x ∪ y |x ∈ A, y ∈ B}

The standard CNF conversion is that obtained by exploiting the distribu-
tive properties of ∧ and ∨ on a formula already in NNF to push disjunctions
in towards the literals. This produces an equivalent (rather than equisatisfi-
able) formula at the expense of a potentially exponential number of clauses.
Nevertheless, the conversion is optimal for some input formulæ. We define the
conversion for linear trees as a recursive descent. CNF(T) given in Figure 2
denotes the standard CNF conversion of the subtree beginning at a root
edge T .

Clause Form Conversions for Boolean Circuits 187

CNF(E) =

{
CNF(target(V)) if sign(E) = +

CNF−(target(V)) if sign(E) = −

CNF−(E) =

{
CNF−(target(V)) if sign(E) = +

CNF(target(V)) if sign(E) = −

CNF(V) =

{
var(V) if V ∈ VL

CNF(left(V)) ∪ CNF(right(V)) if op(V) = ∧

CNF−(V) =

{
¬ var(V) if V ∈ VL

CNF−(left(V)) × CNF−(right(V)) if op(V) = ∧

Fig. 2. The standard clause form conversion for linear trees

3.1 Clause Form Conversions with Renaming

Renaming subformulæ is a strategy for reducing the number of clauses produced
by a formula. The observation is made that a subformula may be replaced by
a single variable if clauses are given to constrain that variable such that the
satisfiability of the overall formula is unaffected. Such a conversion is said to
be equisatisfiable: the introduced variables break equivalency. For example, the
formula (a∧ b∧ c)∨ (d∧ e∧ f) produces nine clauses in the standard conversion;
introducing a new variable for the left-hand disjunct to produce the formula

xa∧b∧c ∨ (d ∧ e ∧ f) ∧ xa∧b∧c ↔ (a ∧ b ∧ c)

with xa∧b∧c constrained by the equivalence on the right hand side results in only
seven clauses. Nevertheless, it is satisfiable by precisely those assignments that
satisfy the original formula.

Def(E) =

{
Def(target(V)) if sign(E) = +

Def−(target(V)) if sign(E) = −

Def(V) =

var(V) if v ∈ VL

{{¬xV , xtarget(left(V))}, {¬xV , xtarget(right(V))}}
∪{{xV ,¬xtarget(left(V)),¬xtarget(right(V))}}
∪Def(left(V)) ∪ Def(right(V)) if op(V) = ∧

Def−(V) =

¬ var(V) if v ∈ VL

{{xV , xtarget(left(V))}, {xV , xtarget(right(V))}}
∪{¬xV ,¬xtarget(left(V)),¬xtarget(right(V))}}
∪Def(left(V)) ∪ Def(right(V)) if op(V) = ∧

Fig. 3. The definitional clause form conversion

188 P. Jackson and D. Sheridan

ren(T,R) = rbc(def(T, T,R), sub(T,R),∧, +)

def(T, E,R) = def(T, target(E),R)

def(T, V,R) =

V if V ∈ VL

rbc(

� if V /∈ R

rbc(xV , sub−(V,R \ {V }),∧,−) if pol(T, V) = 1

rbc(¬xV , sub+(V,R \ {V }),∧,−) if pol(T, V) = −1

 ,

rbc(def(T, left(V),R), def(T, right(V),R),∧, +),

∧, +) if V ∈ VI

sub(E,R) = subsign(E)(target(E),R)

subs(V,R) =

V if V ∈ VL

xV if V ∈ R

rbc(sub(left(V),R), sub(right(V),R), op(V), s) otherwise

Fig. 4. The vertex-based renaming construction ren(T,R). R identifies the subgraphs
to be renamed; sub(T,R) returns a copy of the graph with root edge T , replacing
renamed subgraphs by new variables; def(T, T ′,R) returns the graph which is the
conjunction of the definition of all of the introduced variables below T ′ (T is used to
establish the polarity of the subgraph)

The most straightforward algorithm of this type gives a new name to every
internal vertex of the tree and is known as the definitional clause form conversion,
given in Figure 3. In fact, as observed by Plaisted and Greenbaum [9], if a
subformula occurs with positive or negative polarity — if it appears under an
even or odd number of negations — then only an implication is required to
constrain the new variable, with the direction of the implication corresponding
to the polarity of the subformula. We define the polarity function pol(T, V) for
a vertex V in a linear trees T as

pol(T, T) = 1

pol(T, E) =

{
pol(T, source(E)) if sign(E) = +

−pol(T, source(E)) if sign(E) = −

pol(T, V) = pol(inedge(V))

In the example above, the subformula a∧b∧c appears positively, so the renaming
can be shortened to

xa∧b∧c ∨ (d ∧ e ∧ f) ∧ xa∧b∧c → (a ∧ b ∧ c)

producing only six clauses.
For linear trees, we consider only renamings of vertices (other analyses place

an equivalent restriction on renaming subfomulæ with negation as the main

Clause Form Conversions for Boolean Circuits 189

connective). The order in which renamings are made does not affect the final
result due to the commutivity of ∧, so we are able to give renaming-based clause
form conversions in terms of the sets of vertices that they rename. The general
transformation in Figure 4 constructs the renamed formula in two parts: a copy of
the original graph with renamed subgraphs replaced by the appropriate variables;
and a graph giving the definitions of all of the introduced variables. The case
split by polarity in def(T, T ′,R) constructs the RBCs for xV → V or V →
xV as appropriate; the remainder of def(T, T ′,R) simply constructs a tree of
conjunctions while traversing the RBC recursively. The correctness of ren(T,R)
and hence of the conversions based on it follows directly from the correctness
of renaming in general. We can now write the structure-preserving clause form
conversion due to Plaisted and Greenbaum [9] as simply

SP(T) = CNF(ren(T,VI))

It is easy to construct cases where the definitional and structure-preserving
conversions perform significantly worse than the standard conversion, despite
the difference in asymptotic complexity — the worst case is a formula already in
CNF, the SP conversion doubling the size of the clause form while the standard
conversion leaves the formula unchanged. By carefully selecting the vertices to
rename we can obtain a blend of the two algorithms.

3.2 The Conversion Due to Boy de la Tour

Boy de la Tour [4] presents a comprehensive solution to the problem of choosing
the subformulæ to rename. The approach taken is to compute the impact of
renaming any given subformula and to perform the renaming only if it will not
increase the number of clauses produced by the formula as a whole. We give
a very terse presentation below as our main interest is in making use of its
optimality for formulæ without equivalences.

Boy de la Tour defines the functions p+(T) = |CNF(T)| and p−(T) =
|CNF(¬T)| using a simple lookup table (Table 1) which enables these values
to be computed without constructing the clauses themselves. The benefit (the
reduction in the total number of clauses) of renaming a vertex V in a tree T is
given by

B(T, V) = p+(T) − p+(ren(T, {V }))

Table 1. The clause counting functions p+(V) and p−(V)

p+(E) p−(E)

sign(E) = + p+(target(E)) p−(target(E))
sign(E) = − p−(target(E)) p+(target(E))

p+(V) p−(V)

v ∈ VL 1 1
op(V) = ∧ p+(left(V)) + p+(right(V)) p−(left(V))p−(right(V))

190 P. Jackson and D. Sheridan

Table 2. Computation of the coefficients aT
V and bT

V

aT
E bT

E

E = T 1 0
sign(E) = + aT

source(E) bT
source(E)

sign(E) = − bT
source(E) aT

source(E)

aT
V bT

V

op(V) = ∧ aT
inedge(V) bT

inedge(V)p
−(sib V)

BDLT(T, E) = BDLT(T, target(V))

BDLT(T, V) =

∅ if v ∈ VL, or

BDLT(T, left(V)) ∪ BDLT(T, right(V)) if B(T, V) < 0, or

{V } ∪ BDLT(ren(T, {V }), left(v))

∪BDLT(ren(T, {V }), right(V)) if B(T, V) ≥ 0

Fig. 5. Renaming sets construction for the Boy de la Tour conversion

In order to make a decision about renaming at a particular vertex without
needing to analyse the whole tree, p+(T) is rewritten in terms of p+(V) and
p−(V):

p+(T) = aT
V p+(V) + bT

V p−(V) + cT
V

Where the coefficients a, b may be considered as the number of occurrences of
the clauses representing V and ¬V respectively, such that the first sum counts the
total number of clauses including subformulæ of V ; the coefficient c represents
the number of clauses due to the rest of the tree. a and b are computed from
the context of V as in Table 2. Note that the values are related to the polarity
of the vertices: aT

V = 0 if pol(T, V) = −1 and bT
V = 0 if pol(T, V) = 1. When

computing the benefit, the coefficient c is cancelled, so we do not need to give
its construction. The benefit function can now be given in terms of polarity as

aT
V p+(V) − (aT

V + p+(V)) if pol(T, V) = 1

bT
V p−(V) − (bT

V + p−(V)) if pol(T, V) = −1

The algorithm given by Boy de la Tour is a top-down computation of the
benefit of a renaming given those that have gone before. The construction of the
renaming set in Table 5 allows us to write the algorithm as

BDLT(T) = CNF(ren(T, BDLT+(T, T) ∪ BDLT−(T, T)))

A dynamic programming implementation of B(T, V) as given by Boy de la
Tour [4] requires O(1) computations at each vertex but the arithmetic is on
|V|-bit words which leads to a per-vertex complexity of O(|V|). The resulting

algorithm is O(|V|2) in contrast to Def and SP which are both linear.

Clause Form Conversions for Boolean Circuits 191

The presentation by Nonnengart et al. [8] removes the need for arbitrary-
length arithmetic by reducing B(T, V) ≥ 0 to an elaborate series of syntactic
conditions on the formula.

4 The Compact Conversion

We present a new clause form conversion, the compact conversion, which com-
putes the sets of renamed vertices locally and bottom-up. For each vertex we
consider the number of clauses it will generate based on whether a child ver-
tex is renamed. Consider a disjunction φ ∨ ψ, with all subformulæ of φ and
ψ already renamed as appropriate. The disjunction is converted by either re-
naming an argument, eg φ to xφ, which produces a definition xφ → φ and
replaces the disjunction by the renamed form xφ∨ψ; or alternatively computing
CNF(φ) × CNF(ψ) — the standard conversion of the disjunction. The decision
is made based on which generates the most clauses, determined by the sum or
the product, respectively, of the number of clauses in φ and ψ.

More precisely, we define the function Comp(T, V) in Figure 6 to give the set
of renamings on the tree beginning at V . The auxiliary function dis(V) chooses
the best child of V , if any, to rename by using the sum-vs-product decision.
The renaming condition is computed on the tree after all vertices below that
considered have been renamed. We define a new pair of clause-counting functions
p+

r (V,R) and p−r (V,R) giving the number of clauses produced by the graph
beginning at vertex V after the application of renaming R (Table 3). That is,
ps

r(V,R) = |subs(V,R)| (the clauses in defs(V,R) are disregarded as they play
no further part in determining the size of the result).

Since we are targeting a SAT solver with this conversion, with its (assumed)
exponential complexity in the number of variables, we choose to rename only if
it reduces the number of clauses produced; the analysis of the Boy de la Tour
conversion is simplified by allowing renamings which result in the same number
of clauses.

Comp(T, E) = Comp(T, target(V))

Comp(T, V) =

∅ if V ∈ VL, or

Comp(T, left(V)) ∪ Comp(T, right(V)) if pol(T, V) = 1, or

dis(V) ∪ Comp(T, left(V)) ∪ Comp(T, right(V)) if pol(T, V) = −1

dis(V) =

∅ if nlnr ≤ nl + nr, or

{left(V)} if nl > nr

{right(V)} if nl ≤ nr

 where

nl = p−

r (left(V),

Comp(T, left(V)))

nr = p−

r (right(V),

Comp(T, right(V)))

Fig. 6. Renaming sets construction for the compact conversion

192 P. Jackson and D. Sheridan

Table 3. The renaming-compensated clause counting functions p+
r (T,R) and p−

r (T,R)

p+
r (E,R) p−

r (E,R)

sign(E) = + p+
r (target(E),R) p−

r (target(E),R)
sign(E) = − p−

r (target(E),R) p+
r (target(E),R)

p+
r (V,R) p−

r (V,R)

V ∈ VL 1 1
V ∈ R 1 1

op(V) = ∧ p+
r (left(V),R) + p+

r (right(V),R) p−

r (left(V),R) · p−

r (right(V),R)

4.1 Optimality of the Compact Conversion for Linear Trees

The main result of this paper is to show the optimality of the compact conversion
which we do by a comparison with the Boy de la Tour conversion. We establish
which vertices appear in the renaming sets of one conversion and not the other,
and then analyse the impact that the differences make.

When comparing the decision taken to include a vertex in the renaming sets
by the two algorithms we take into account the different contexts: in the Boy de
la Tour algorithm, the superformulæ have already been renamed; in the compact
conversion the subformulæ have been renamed. Writing R for a set of renamings,
we have R�V for the subset of renamings involving the superformulæ of V and
R�V for the subset involving the subformulæ of V . The compact conversion
depends only on p+

r and p−r but these are computed after subformula renaming.
That is, the decision to rename the vertex V1 in V1 ∧ V2 is based on the values
p+

r (V1,R�V1
), p−r (V2,R�V2

) and their complements. In contrast, for the Boy de

la Tour algorithm the decision is based on the values a
ren(T,R�V1

)

V1
, b

ren(T,R�V1
)

V1
,

p+(V1), p−(V1)
We begin by establishing some basic lemmas about the Boy de la Tour co-

efficients and the clause counting functions; in each case we refer to a vertex V
and renamings R and R′ on a tree T .

Lemma 1. a
ren(T,R)
V = 1 if pol(T, V) = 1, and b

ren(T,R)
V = 1 if pol(T, V) = −1

Proof. After renaming, a vertex V becomes part of the definition of the replace-
ment variable xV . According to Figure 4, the definition is attached by a tree
of positive conjunctions to the root with the sign of the inedge of V reflecting
its original polarity. By the definition of aT

V and bT
V on conjunctions, the lemma

holds.

Lemma 2. If R′ ⊆ R, ps
r(V,R) ≤ ps

r(V,R′) ≤ ps(V)

Proof. This follows from the definitions of ps
r and pr. Both increase monotoni-

cally with tree depth. As renaming effectively prunes part of the tree, it can only
reduce the values of the functions.

Clause Form Conversions for Boolean Circuits 193

4.2 Positive Polarity

Lemma 3. Neither conversion renames the children of positive polarity con-
junctions. That is, for pc = {V ∈ VI |pol(T, source(inedge(V))) = 1}, pc ∩
BDLT(T, V) = ∅ and pc ∩ Comp(T, V) = ∅

Proof. The argument for the compact conversion follows trivially from its defini-
tion. For the Boy de la Tour conversion, consider the vertex X in Figure 7a. The
benefit of renaming, B(T, X), is evaluated in the context ren(T,R�X). From

Figure 2, a
ren(T,R�X)
X = a

ren(T,R�X)
B , hence the benefit is

a
ren(T,R�X)
B p+(X) − (a

ren(T,R�X)
B + p+(X))

The condition B(T, X) ≥ 0 reduces to a
ren(T,R�X)
B ≥ 2 and p+(X) ≥ 2. From

Lemma 1, in order to obtain the former vertex B must not be renamed. From
B /∈ R, we deduce R�B = R�X and hence write the condition B(T, B) < 0 as

a
ren(T,R�X)
B p+(B) − (a

ren(T,R�X)
B + p+(B)) < 0

which together with the earlier conditions constrains p+(B) = 1. Since B is a
conjunction it produces p+(X) + p+(Y) clauses and the condition on p+(X) is
thus in conflict with the condition that B is not renamed.

The argument for Y follows similarly, as do the cases of BX or BY being
signed.

∧+
B

X Y

∧−

B

X Y

∧+
A

∧

X Y

∧

∧+
A

∧

X Y

∧

(a) Positive (b) Negative (c) Positive equivalence (d) Negative equivalence

Fig. 7. RBC subgraphs for the optimality proofs and equivalence discussion

4.3 Negative Polarity

We break the negative polarity argument into several pieces, firstly simplifying
the Boy de la Tour benefit function. Consider vertex X in Figure 7b. From Fig-

ure 2, b
ren(T,R�X)
X = b

ren(T,R�X)
B p−(Y), hence the benefit of renaming B(T, X),

in the context ren(T,R�X) is

b
ren(T,R�X)
B p−(Y)p+(X) − (b

ren(T,R�X)
B p−(Y) + p+(X))

We consider two cases for B(T, X) ≥ 0. If b
ren(T,R�X)
B = 1 then the renaming

decision is localised: it is based only on p+(X) and p−(Y):

B′(T, X) = p−(Y)p+(X) − (p−(Y) + p+(X))

194 P. Jackson and D. Sheridan

If b
ren(T,R�X)
B ≥ 2, we must consider the same situation as for the positive case:

the condition that B /∈ R−. The inequality B(T, B) < 0 reduces to

b
ren(T,R�X)
B p−(B) < b

ren(T,R�X))
B + p−(B)

This holds only when p−(B) = 1. Given p−(B) = p+(X)p−(Y) we also have
p+(X) = p−(Y) = 1 and hence the vertex X is not renamed. This configuration
is covered by the reduced condition B′(T, X) which is thus sufficient condition
for making the renaming decision. That is, the renaming decision is made inde-

pendently of the value of b
ren(T,R�X)
B .

Lemma 4. For linear trees, the renaming given by the Boy de la Tour algorithm
with benefit function B′(T, V) is the same as with the original function B(T, V).

Proof. The argument for the children of negative polarity vertices is given above
(the arguments for Y and different edge signs follow similarly). For children of
positive polarity vertices, it is easy to see that Lemma 3 still holds. The remaining
case is the root vertex, which is not renamed under either condition.

Using this reduced condition, the Boy de la Tour conversion has no restriction
on the order of evaluation: we can compare it more directly with the compact
conversion. We define the conversion BDLT′(T, V) to be a bottom-up conver-
sion using the benefit function B′(T, V). From Lemmas 3 and 4 we know that
BDLT(T, T) = BDLT′(T, T) for all linear trees T . All remaining lemmas are on
this bottom-up conversion.

Lemma 5. For all linear trees T , Comp(T, T) ⊆ BDLT′(T, T)

Proof. We argue in the negative as it is more convenient. Consider vertex X
in Figure 7a, with X /∈ BDLT′(T, T). From the definition of the Boy de la
Tour conversion, B′(T, X) < 0 which reduces to the two possibilities p(X) =
1 or p(Y) = 1. By Lemma 2, this means that either p+

r (X,R�B) = 1 or
p+

r (Y,R�B) = 1 and hence the renaming condition for the compact conversion,
p+

r (X,R�B)p+
r (Y,R�B) > p+

r (X,R�B) + p+
r (Y,R�B), is violated.

The argument follows similarly for Y .

Lemma 6. For all linear trees T , with a renaming R = Comp(T, T), for all
V /∈ R, ps

r(V,R) = 1 → ps(V) = 1

Proof. We show this by induction on the structure of the tree. The base case
V ∈ VL (V is a leaf) is trivial from the definition of p. For the step case, if
V is a disjunction, then ps

r(left(V),R) = ps
r(right(V),R) = 1. This means, if

X = target(left(V)) and Y = target(right(V)),

– X /∈ R, Y /∈ R: proof follows from the inductive hypothesis
– X /∈ R, Y ∈ R: the condition necessary to rename Y is violated because, by

Lemma 2, ps
r(X,R�V) = ps(X) = 1.

Clause Form Conversions for Boolean Circuits 195

– X ∈ R, Y /∈ R: as above, by symmetry
– X ∈ R, Y ∈ R: prohibited by the definition of the compact conversion

V cannot be a conjunction as ps
r(V,R) ≥ 2 is in contradiction with the induction

hypothesis.

We can now fix the precise difference between the two conversions. Consider
vertex X in Figure 7a, with X /∈ Comp(T, T). By the definition of the compact
conversion, p+

r (X,R�B)p+
r (Y,R�B) ≤ p+

r (X,R�B)+p+
r (Y,R�B) which reduces

to the three possibilities p+
r (X,R�B) = 1 or p+

r (Y,R�B) = 1 or p+
r (X,R�B) =

p+
r (Y,R�B) = 2. In the first case, X may be a leaf vertex, in which case

X /∈ BDLT′(T, T), or a disjunction, in which case by Lemma 6, p+(X) = 1
and hence1 X /∈ BDLT′(T, T). A conjunction is ruled out by the restriction on
the number of clauses. The cases for Y and for signed edges follow similarly. For
the final case, by Lemma 2, the Boy de la Tour conversion always renames either
X or Y : this defines the set of vertices renamed by Boy de la Tour but not by
compact.

Lemma 7. For all linear trees T , Comp(T, T) ∪ Z = BDLT′(T, T) where Z
is the set of vertices such that for all V ∈ Z, p+

r (V,Comp(T, V)) = 2 and
p+

r (sib(V),Comp(T, V)) = 2

Proof. From above and by Lemma 5, no other vertex is in BDLT′(T, T) that is
not in Comp(T, T).

Theorem 1. The size of the clause form generated by the compact and Boy de
la Tour conversions is the same: p+

r (T,Comp(T, T)) = p+
r (T,Comp(T, T))

Proof. Since renamings may be applied in any order, we show that after applying
those in Comp(T, T), the benefit of applying any of those in Z is zero. By Boy
de la Tour’s fundamental theorem of monotonicity [4], the members of Z may
be considered in any order for this proof.

Consider a vertex X ∈ Z as depicted in Figure 7b. The benefit B′(T, X)
of renaming X after Comp(T, T) is p+

r (X,Comp(T, T))p−r (Y,Comp(T, T)) −
(p+

r (X,Comp(T, T)) + p−r (Y,Comp(T, T)). However, by the definition of Z in
Lemma 7, and by Lemma 2, p+

r (X,Comp(T, T)) = 2 and p+
r (Y,Comp(T, T)) =

2, and hence B′(T, V) = 0.

5 Extension to RBCs

We have shown that the compact conversion produces an optimal number of
clauses for linear trees, so we now extend the algorithm to general RBCs. The
extension is heuristic: like Boy de la Tour, we do not claim optimality for the
resulting clause form conversion.

1 The case split for BDLT′ is given in the proof of Lemma 5

196 P. Jackson and D. Sheridan

Removal of Equivalences. An RBC with equivalence vertices can be trans-
formed into a linear RBC with only a linear increase in size by replacing equiva-
lences with the subgraphs given in Figures 7c and d. The different treatments for
positive and negative polarity equivalences reduce the number of clauses gener-
ated [9]. Note that a negative equivalence is replaced by a positive subgraph so
the incoming edge has its sign changed. The conversion remains optimal provided
equivalences are not nested.

Polarity Zero Vertices. The children of equivalence nodes are referenced both
positively and negatively (as can be seen from the replacement subgraphs), some-
times referred to as zero polarity. Similarly, the sharing used in RBCs encourages
a single vertex to be referenced with both polarities. We can convert an RBC
with zero polarity vertices to one without by splitting every zero polarity vertex
into a pair, one of each polarity, and suitably treating the incoming edges. Such
treatment results in at most a doubling of the size of the RBC.

The substitution and subsequent splitting of equivalences differs significantly
from the direct treatment of Boy de la Tour. In particular, Boy de la Tour’s
algorithm renames a descendant vertex of an equivalence both positively and
negatively, simultaneously. This sometimes results in a tradeoff: the renaming
of one polarity must have sufficient benefit to outweigh any negative benefit
of renaming the other polarity. By splitting the polarities and treating them
independently we improve the flexibility of the conversion and reduce the number
of clauses in some circumstances, as compared to Boy de la Tour.

Shared Subgraphs. Having removed equivalences and zero polarity vertices
we are close to a linear tree structure. In fact, we can see the resulting structure
as a collection of trees joined at the shared vertices. We can incorporate treat-
ment of shared vertices into the bottom-up compact conversion algorithm by
renaming any shared vertex which generates more than one clause and repeat-
ing the subgraph otherwise. The resulting algorithm is locally optimal as each
constituent tree is optimally converted and the shared subgraphs are renamed
only when renaming does not increase the resulting size. We believe that a truly
optimal handling of shared vertices is impossible without a significant increase
in conversion complexity. This solution is a good compromise for RBCs with a
small proportion of shared vertices.

6 Implementation and Evaluation

We have implemented the RBC extension of the compact conversion as part
of the NuSMV model checker [5]. The implementation performs the substitu-
tions and duplications described above implicitly rather than constructing the
resulting graph explicitly. Each vertex is considered simultaneously as both a
positive and a negative polarity vertex; a depth-first traversal marks each ver-
tex with the number of incoming edges in each polarity. A second depth-first
traversal produces the clause form. Bottom-up, each vertex is annotated with

Clause Form Conversions for Boolean Circuits 197

Table 4. Benchmark results for three clause form conversions

Problem Conv. Clauses Vars Total zChaff [6] Jerusat [7]
literals Decisions Time (s) Time (s)

Def 89150 31328 229882 40332 24.2 155.3
DME (Access) SP 53285 22866 129840 39283 25.8 104.9

Comp 22979 4986 70278 48232 10.6 32.1

Def 234515 79577 569387 28798 52.5 149.8
DME (Priority) SP 109637 51965 273339 21894 8.1 47.1

Comp 52312 7587 456576 34936 5.2 3.53

Def 737157 247079 1741365 25991 181.3 1084
DME (OT) SP 280979 140302 700484 32023 50.4 150.9

Comp 141604 12779 3322302 34808 10.4 38.9

Def 234397 78483 548461 52450 68.3 369.2
Elevator SP 109677 39373 274751 147791 74.4 338.3

Comp 83901 23157 343673 168902 190 15.1

the clauses produced after renaming (ie, CNF(sub(V,Comp(T, V)))), the defini-
tional clauses being saved in a global variable (ie, CNF(def(V,Comp(T, V)))).
Whenever a shared vertex is encountered, it is renamed according to the strategy
described above. No explicit computation of ps

r(V) is required: they correspond
to the sizes of the sets of clauses — a constant time operation.

In Table 4 we compare the behaviour of the built-in CNF conversion in
NuSMV (the definitional conversion) against the structure-preserving conversion
and the compact conversion using two leading satisfiability solvers. We report re-
sults for the standard DME benchmark2 and a deadlock problem3 (Elevator), as
they were found to be representative of other hardware and deadlock problems.
The compact conversion consistently generates fewer clauses and the solving
times are also better in most cases, sometimes dramatically so; the conversion
time was similar in all cases, and negligible compared to the solving time. More
surprising is the increase in the number of decisions made by zChaff in every
case: for the DME example, decisions are made more quickly, while for the Ele-
vator, the rise in the number of decisions is more dramatic and the time taken
by zChaff is increased. Interestingly, the time taken by Jerusat in this case is
dramatically better than the best case for zChaff; it is outperformed by zChaff
in most cases.

The results also illustrate the effect of the compact conversion preferring
to repeat small sets of clauses rather than renaming them: the total number
of literals is, in the worst case, double that for the definitional conversion;
this is contrasted with the order of magnitude reductions in the number of
variables.

2 See the NuSMV distribution
3 Thanks to Toni Jussila for providing the files for this example

198 P. Jackson and D. Sheridan

7 Conclusions and Future Work

Despite optimising a problem attribute that is not directly connected to the
solving time — the number of clauses — the compact conversion algorithm
produces a set of clauses that are in most cases more quickly solved. With the
compact conversion, in contrast to the Boy de la Tour conversion or the use
of preprocessing procedures to obtain similar results, this is achieved without
changing the complexity class (or the observed time taken) of the conversion as
compared to the more well-known clause form conversions.

The empirical study above is limited in its scope; the next step for this work
must be a more thorough experimental analysis including not only much large
BMC problems, but also a wider variety of leading SAT solvers.

References

1. Parosh Aziz Abdulla, Per Bjesse, and Niklas Eén. Symbolic reachability analy-
sis based on SAT-solvers. In S. Graf and M. Schwartzbach, editors, Tools and
Algorithms for the Construction and Analysis of Systems, 6th International Con-
ference, TACAS’00, volume 1785 of Lecture Notes in Computer Science, pages
411–425. Springer-Verlag, March 2000.

2. Olivier Bailleux and Yacine Boufkhad. Efficient CNF encoding of Boolean cardi-
nality constraints. In Principles and Practice of Constraint Programming — 9th
International Conference, CP 2003, Lecture Notes in Computer Science, 2003.

3. Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic
model checking without BDDs. In W.R. Cleaveland, editor, Tools and Algo-
rithms for the Construction and Analysis of Systems. 5th International Conference,
TACAS’99, volume 1579 of Lecture Notes in Computer Science, pages 193–207.
Springer-Verlag, July 1999.

4. Thierry Boy de la Tour. An optimality result for clause form translation. Journal
of Symbolic Computation, 14:283–301, 1992.

5. A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: a new Symbolic
Model Verifier. In N. Halbwachs and D. Peled, editors, Proceedings of the Eleventh
Conference on Computer-Aided Verification (CAV’99), number 1633 in Lecture
Notes in Computer Science, pages 495–499, Trento, Italy, July 1999. Springer-
Verlag.

6. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering
an efficient SAT solver. In 39th Design Automation Conference, pages 530–535,
Las Vegas, June 2001.

7. Alexander Nadel. Backtrack search algorithms for propositional logic satisfiability:
Review and innovations. Master’s thesis, Tel-Aviv University, November 2002.

8. Andreas Nonnengart, Georg Rock, and Christoph Weidenbach. On generating
small clause normal forms. In Claude Kirchner and Hélène Kirchner, editors, Fif-
teenth International Conference on Automated Deduction, volume 1421 of Lecture
Notes in Artificial Intelligence, pages 397–411. Springer-Verlag, 1998.

9. David A. Plaisted and Steven Greenbaum. A structure-preserving clause form
translation. Journal of Symbolic Computation, 2(3):293–304, September 1986.

10. M. N. Velev. Efficient translation of Boolean formulas to CNF in formal verification
of microprocessors. In Asia and South Pacific Design Automation Convference
(ASP-DAC ’04), January 2004.

From Spin Glasses to Hard Satisfiable Formulas

Haixia Jia1, Cris Moore1,2, and Bart Selman3

1 Computer Science Department, University of New Mexico,
Albuquerque NM 87131

{hjia, moore}@cs.unm.edu
2 Department of Physics and Astronomy, University of New Mexico,

Albuquerque NM 87131
3 Computer Science Department, Cornell University, Ithaca NY

selman@cs.cornell.edu

Abstract. We introduce a highly structured family of hard satisfiable
3-SAT formulas corresponding to an ordered spin-glass model from sta-
tistical physics. This model has provably “glassy” behavior; that is, it
has many local optima with large energy barriers between them, so that
local search algorithms get stuck and have difficulty finding the true
“ground state,” i.e., the unique satisfying assignment. We test the hard-
ness of our formulas with two Davis-Putnam solvers, Satz and zChaff,
the recently introduced Survey Propagation (SP), and two local search al-
gorithms, WalkSAT and Record-to-Record Travel (RRT). We compare our
formulas to random 3-XOR-SAT formulas and to two other generators
of hard satisfiable instances, the minimum disagreement parity formulas
of Crawford et al., and Hirsch’s hgen2. For the complete solvers the run-
ning time of our formulas grows exponentially in

√
n, and exceeds that

of random 3-XOR-SAT formulas for small problem sizes. SP is unable to
solve our formulas with as few as 25 variables. For WalkSAT, our formu-
las appear to be harder than any other known generator of satisfiable
instances. Finally, our formulas can be solved efficiently by RRT but only
if the parameter d is tuned to the height of the barriers between local
minima, and we use this parameter to measure the barrier heights in
random 3-XOR-SAT formulas as well.

1 Introduction

3-SAT, the problem of deciding whether a given CNF formula with three lit-
erals per clause is satisfiable, is one of the canonical NP-complete problems.
Although it is believed that it requires exponential time in the worst case, many
heuristic algorithms have been proposed and some of them seem to be quite ef-
ficient on average. To test these algorithms, we need families of hard benchmark
instances; in particular, to test incomplete solvers we need hard but satisfiable
instances. Several families of such instances have been proposed, including quasi-
group completion [21, 15, 1] and random problems with one or more “hidden”
satisfying assignments [3, 24, 2].

H.H. Hoos and D.G. Mitchell (Eds.): SAT 2004, LNCS 3542, pp. 199–210, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

200 H. Jia, C. Moore, and B. Selman

In this paper we introduce a new family of hard satisfiable 3-SAT formulas,
based on a model from statistical physics which is known to have “glassy” be-
havior. Physically, this means that its energy function has exponentially many
local minima, i.e., states in which any local change increases the energy, and
which moreover are separated by energy barriers of increasing height. In terms
of SAT, the energy is the number of dissatisfied clauses and the global minimum,
or “ground state,” is the unique satisfying assignment. In other words, there are
exponentially many truth assignments which satisfy all but a few clauses, which
are separated from each other and from the satisfying assignment by assignments
which dissatisfy many clauses. Therefore, we expect local search algorithms like
WalkSAT to get stuck in the local minima, and to have a difficult time finding
the satisfying assignment.

We start with a spin-glass model introduced by Newman and Moore [18]
and also studied by Garrahan and Newman [11]. It is like the Ising model,
except that each interaction corresponds to the product of three spins rather
than two; thus it corresponds to a family of 3-XOR-SAT formulas. Random 3-
XOR-SAT formulas, which correspond to a similar three-spin interaction on a
random hypergraph and which are also known to be glassy, have been studied
by Franz, Mézard, Ricci-Tersenghi, Weigt, and Zecchina [10, 22, 16], Barthel et
al. [4], and Cocco, Dubois, Mandler, and Monasson [6]. In contrast, the Newman-
Moore model is defined on a simple periodic lattice, so it has no disorder in its
topology.

We test our formulas against five leading SAT solvers: two complete solvers,
zChaff and Satz, and three incomplete ones, WalkSAT, RRT and the recently
introduced SP. We compare them with random 3-XOR-SAT formulas, and also
with two other hard satisfiable generators, the minimum disagreement parity for-
mulas of Crawford et al. [7] and Hirsch’s hgen2 [12]. For Davis-Putnam solvers,
our formulas are easier than random 3-XOR-SAT formulas of the same density
in the limit of large size, although they are harder below a certain crossover at
about 900 variables. For SP, both our formulas and random 3-XOR-SAT for-
mulas appear to be impossible to solve beyond very small sizes. For WalkSAT,
our formulas appear to be harder than any other known generator of satisfiable
instances. We believe this is because our formulas’ lattice structure gives them
a very high “configurational entropy,” i.e., a very large number of local min-
ima, in which local search algorithms like WalkSAT get stuck for long periods of
time.

The RRT algorithm solves our formulas efficiently only if its parameter d is
set to the barrier height between local minima, which for our formulas we know
exactly to be log2 L + 1. Although the barrier height in random 3-XOR-SAT
formulas seems to grow more quickly with n than in our glassy formulas, when√

n = L ≤ 13 our formulas are harder for RRT than random 3-XOR-SAT formulas
of the same density, even when we use the value of d optimized for each type of
formula. We propose using RRT to measure barrier heights in other families of
instances as well.

From Spin Glasses to Hard Satisfiable Formulas 201

2 The Model and Our Formulas

The Newman-Moore model [18] consists of spins σi,j = ±1 on a triangular lattice.
Each spin interacts only with its nearest neighbors, and only in groups of three
lying at the vertices of a downward-pointing triangle. If we encode points in
the triangular lattice as (i, j), where the neighbors of each point are (i ± 1, j),
(i, j ± 1), and (i± 1, j ∓ 1), the model’s Hamiltonian (energy function) is

H =
1
2

∑
i,j

σi,jσi,j+1σi+1,j

Let us re-define our variables so that they take Boolean values, si,j ∈ {0, 1}.
Then, up to a constant, the energy can be re-written

H =
∑
i,j

(si,j + si,j+1 + si+1,j) mod 2

In particular, we will focus on the case where the lattice is an L × L rhombus
with cyclic boundary conditions; then

H =
L−1∑
i,j=0

(si,j + si,j+1 mod L + si+1 mod L,j) mod 2 .

Clearly we can think of this as a set of L2 3-XOR-SAT clauses of the form

si,j ⊕ si,j+1 mod L ⊕ si+1 mod L,j = 0

in which case H is simply the number of dissatisfied clauses. Each one of these
can then be written as a conjuction of four 3-SAT clauses,

(si,j ∨ si,j+1 mod L ∨ si+1 mod L,j) ∧ (si,j ∨ si,j+1 mod L ∨ si+1 mod L,j)
∧ (si,j ∨ si,j+1 mod L ∨ si+1 mod L,j) ∧ (si,j ∨ si,j+1 mod L ∨ si+1 mod L,j)

producing a 3-SAT formula with L2 variables and 4L2 clauses for a total of 12L2

literals.
There is always at least one satisfying assignment, i.e., where si,j = 0 for all

i, j. However, using algebraic arguments [18] one can show that this satisfying
assignment is unique whenever L has no factors of the form 2m − 1, and in
particular when L is a power of 2.

To “hide” this assignment, we flip the variables randomly; that is, we choose
a random assignment A = (ai,j) ∈ {0, 1}L2

and define a new formula in terms
of the variables xi,j = si,j ⊕ ai,j . While some other schemes for hiding a random
satisfying assignment in a 3-SAT formula create an “attraction” that allows
simple algorithms to find it quickly, Barthel et al. [4] pointed out that for XOR-
SAT formulas these attractions cancel and make the hidden assignment quite
difficult to find. (Another approach pursued by Achlioptas, Jia, and Moore is to
simultaneously hide two complementary assignments [2].) Of course, XOR-SAT

202 H. Jia, C. Moore, and B. Selman

is solvable in polynomial time by Gaussian elimination, but Davis-Putnam and
local search algorithms can still take exponential time on random XOR-SAT
formulas [4, 22].

In general, XOR-SAT formulas have local minima because flipping any vari-
able will dissatisfy all the currently satisfied clauses it appears in. However, the
lattice structure of the Newman-Moore model allows us to say much more. In
particular, let us call an unsatisfied XOR-clause a “defect.” Then if L is a power
of 2, there is exactly one state of the lattice for any choice of defect locations [18].
To see this, consider the state shown in Figure 1. Here there is a single defect
(the three cells outlined in black) in which just one XOR-SAT clause (in fact,
just one 3-SAT clause) is dissatisfied. However, since satisfying the XOR-SAT
clause at i, j implies that

si,j+1 = si,j ⊕ si+1,j ,

the truth values below the defect are given by a mod-2 Pascal’s triangle. If L is
a power of 2 the L’th row of this Pascal’s triangle consists of all 0’s, so wrapping
around the torus matches its first row except for the defect.

This gives a truth assignment which satisfies all but one clause. Moreover,
this assignment has a large Hamming distance from the satisfying assignment;
namely, the number of 1’s in the Pascal’s triangle, which is H(L) = Llog

2
3

since it obeys the recurrence H(2L) = 3H(L). It also has a large energy barrier
separating it from the satisfying assignment: to fix the defect with local moves
it is necessary to first introduce log2 L additional defects [18].

Now, by taking linear combinations (mod 2) of single-defect assignments
we can construct truth assignments with arbitrary sets of defects, and whenever
these defects form an independent set on the triangular lattice, the corresponding
state is a local energy minimum. Thus the number of local minima equals the
number of independent sets of the triangular lattice, which grows exponentially
as κL2

where κ ≈ 1.395 is the hard hexagon constant [11, 5].
To recap, when L = 2k, there is a unique satisfying assignment. The system is

glassy in that there are many truth assignments which are far from the satisfying
assignment, but which satisfy all but a small number of clauses. Escaping these
local minima requires us to first increase the number of unsatisfied clauses by
roughly log2 L. Newman and Moore [18] studied the behavior of this model under
simulated annealing, and found that the system is unable to find its ground state
unless the cooling rate is exponentially slow; similarly, we expect the running
time of local search algorithms like WalkSAT to be exponentially large.

Below, we compare our formulas to random satisfiable 3-XOR-SAT formulas,
which were proposed in [22] (and also in [4] as the special case p0 = 1/4).
These are formed with a random hidden assignment in the following way: given
variables x1, . . . , xn, select a random truth assignment A ∈ {0, 1}n. Then, m
times, select a triple xi, xj , xk uniformly without replacement, and add the 3-
XOR clause consistent with A, i.e. xi⊕xj ⊕xk = ai⊕ aj ⊕ ak. To compare with
our formulas, we set n = m = L2 so the resulting 3-XOR-SAT formula has a
density of one clause per variable.

From Spin Glasses to Hard Satisfiable Formulas 203

i,j i+1,j

i,j+1

Fig. 1. A local minimum with a single defect. Grey and white cells correspond to
si,j = 1 and 0 respectively; the XOR-SAT clause corresponding to the three cells
outlined in black is dissatisfied, and all the others are satisfied. The Hamming distance
from the satisfying assignment is the number of grey cells, Llog

2
3 = 27 since L = 8

3 Experimental Results

3.1 Davis-Putnam Solvers: zChaff and Satz

We obtained zChaff from the Princeton web site [25] and Satz from the SATLIB
web site [14]. Figure 2 shows a log-log plot of the median number of decisions or
branches that zChaff and Satz took as a function of the lattice size L. For both
algorithms the slope for our glassy formulas is roughly 1, indicating that the
running time for zChaff and Satz to solve our formulas grows as 2L = 2

√
n. The

reason for this is that, due to a process similar to bootstrap percolation [13],
when a sufficient number of variables are set by the algorithm (for instance,
the variables in a single row) the remainder of the variables in the lattice are
determined by unit propagation. For random 3-XOR-SAT formulas, the running
time is exponential in n = L2, but with a smaller constant, so that for L � 30
(i.e., n � 900) our formulas are harder than random 3-XOR-SAT formulas of
the same size.

3.2 SP

SP is an incomplete solver recently introduced by Mézard and Zecchina [17] based
on a generalization of belief propagation called survey propagation. For random
3-SAT formulas it is extremely successful; it can find a satisfiable assignment
efficiently for random 3-SAT formulas up to size n = 107 near the satisfiability
threshold m/n ≈ 4.25 where random 3-SAT appears to be hardest.

We found that SP cannot solve our formulas for L ≥ 5, i.e., with n = 25
variables. The cavity biases continue to change, and never converge to a fixed
point, so no variables are ever set by the decimation process. There are several
possible reasons for this. One is the large number of local minima; another is that

204 H. Jia, C. Moore, and B. Selman

5 10 15 20 25

5

10

15

20

25
zChaff performance on glassy and random XOR formulas

T
he

 lo
g2

 o
f m

ed
ia

n
nu

m
be

r
of

 d
ec

is
io

ns
 o

ve
r

25
 tr

ia
ls

L

Glassy
linear
Random XOR
quadratic

5 10 15 20 25
0

5

10

15

20

Satz performance on glassy and random XOR formulas

L

T
he

 lo
g2

 o
f m

ed
ia

n
nu

m
be

r
of

 b
ra

nc
he

s
ov

er
 2

5
tr

ia
ls

Glassy
linear
Random XOR
quadratic

Fig. 2. The number of branches made by zChaff and Satz on our formulas and on
random 3-XOR-SAT formulas of the same size and density, as a function of the lattice
size L. The running time for random 3-XOR-SAT is exponential in L2 = n, while
for our formulas it is exponential in L =

√
n. Nevertheless, for small values of n our

formulas are harder. Each point is the median of 25 trials; for our formulas, only values
of L for which the satisfying assignment is unique are shown

From Spin Glasses to Hard Satisfiable Formulas 205

0 50 100 150 200 250 300

10

15

20

25

30

WalkSat performance on glassy and random XOR formulas

T
he

 lo
g2

 o
f m

ed
ia

n
nu

m
be

r
of

 fl
ip

s
ov

er
 2

5
tr

ia
ls

N

Glassy
linear
Rand XOR
linear

Fig. 3. The median number of flips made by WalkSAT on our formulas and random
3-XOR-SAT formulas of the same size. For our formulas, only values of L for which
the satisfying assignment is unique are shown. Each point is the median of 25 trials

the symmetry in XOR clauses may produce conflicting messages; another is that
our formulas have small loops which violate SP’s assumption that the formula
is locally treelike and that neighbors are statistically independent. (Random 3-
XOR-SAT formulas are also quite hard for SP, although we found that SP solved
about 25% of them with n = m = 25.)

3.3 Local Algorithms: WalkSAT

WalkSAT [20] is an algorithm which combines a random walk search strategy with
a greedy bias towards assignments with more satisfied clauses. WalkSAT has been
shown to be highly effective on a range of problems, such as hard random k-SAT
problems, graph coloring, and the circuit synthesis problem. We performed trials
of up to 109 flips for each formula, without random restarts, where each step
does a random or greedy flip with equal probability. Figure 3 shows a semi-log
plot of the median number of flips as a function of n = L2. We only choose four
different values of L, namely 5, 8, 10 and 11, because WalkSAT was unable to
solve the majority of formulas with larger values of L (for which the satisfying
assignment is unique) within 109 flips.

For both our formulas and random 3-XOR-SAT formulas, the median running
time of WalkSAT grows exponentially in n. However, the slope of the exponential
is considerably larger for our formulas, making them much harder than the
random ones. We believe this is due to a larger number of local minima.

206 H. Jia, C. Moore, and B. Selman

3.4 Local Algorithms: RRT

Record-to-Record Travel (RRT) [9, 19] is a variant of WalkSAT which works as
follows:

1. Start from a random truth assignment;
2. Randomly choose a variable from an unsatisfied clause;
3. Flip it if this leads to a configuration that has at most d more unsatisfied

clauses than the best configuration found so far (the “record”). Otherwise,
do nothing;

4. Repeat steps 2 and 3 until it finds the satisfying truth assignment.

4 6 8 10 12 14 16
3

4

5

6

7

8

9

10

11

12
The "right" value of d for glassy and random XOR formulas

T
he

 "
rig

ht
"

va
lu

e
of

 d

L

Glassy
Random XOR

4 6 8 10 12 14 16
4

6

8

10

12

14

16

18

20

22

24
RRT perfomance on glassy and random XOR formulas

T
he

 lo
g2

 o
f m

ed
ia

n
nu

m
be

r
of

 fl
ip

s
ov

er
 2

5
tr

ia
ls

L

Glassy
Random XOR

Fig. 4. The optimal value of d and the running time for our formulas and random
3-XOR-SAT formulas of the same size. Shown is the number of flips per variable

From Spin Glasses to Hard Satisfiable Formulas 207

Since d stays fixed throughout the algorithm, if we wish to solve a formula of
a given size and type, we need to find the optimal value of d. If d is too small,
RRT fails because it cannot escape the local minima; and if d is too big, it escapes
the local minima but takes a long time to find the solution since it is not greedy
enough to move toward it. Our goal is to find a vale of d for which RRT escapes
the local minima and finds the solution quickly.

We tested RRT on our formulas with L = 4, 5, 8, 10, 11, 13 and 16 and we
performed trials of up to 107 flips for each formula. Newman and Moore [18]
showed that the largest barrier height is log2 L + 1, and in fact a typical path
from an initial state to the solution must cross multiple barriers of this height.
In fact, it turns out that RRT solved our formulas efficiently only for this value
of d (see Figure 4). With L = 16 and d = 5, RRT solved our formulas in all of 50
trials with a median number of flips 1.10× 106; but when we set d = 4 or 6, RRT
failed to solve any of the formulas with L = 16 within 107 flips. Thus RRT solves
our glassy formulas only if we set d equal to the barrier height.

We also tested RRT on random 3-XOR-SAT formulas with n = m = L2

ranging from 16 to 256 so the resulting 3-XOR-SAT formula has same density as
our glassy formulas. Since we don’t know the barrier height between local minima
in these formulas, we tried RRT with different values of d to find the optimal d for
each n. As a rough measurement of the barrier heights, we measured the value v
for which RRT solved more than half the formulas with d = v but failed to solve
half of them with d = v − 1. We set the maximum running time to 107 flips.

Figure 4 shows the optimal value of d and the running time for each value of
n. We see that the barrier height in random 3-XOR-SAT formulas seems to grow
more quickly with n than in our glassy formulas. However, when

√
n = L ≤ 13,

our formulas are harder for RRT than random 3-XOR-SAT formulas of the same
density, even when we use the value of d optimized for each type of formula.

We find it interesting that RRT can be used to measure the barrier heights
between local minima, and we propose to do this for other families of formulas
as well.

3.5 Comparison with Other Hard SAT Formulas

To further demonstrate the hardness of our glassy formulas, we compare them
to other two generators of hard instances: the parity formulas introduced by
Crawford et al. [7] and the hgen2 formulas introduced by E.A. Hirsch [12]. The
parity formulas of [7] are translated from minimal disagreement parity problems
and are considered very hard. While hgen2 does not generate parity formulas,
we include it because it produced the winner of the SAT 2003 competition for
the hardest satisfiable formula [23].

We compared our glassy formulas with 10 formulas of Crawford et al., obtained
from [7], and with 25 hgen2 formulas using the generator obtained from [12]. We
ran zChaff, Satz, WalkSAT and SP; we did not test RRT on these formulas.

For WalkSAT, we ran 25 trials of up to 109 flips each, and labeled the formula
“not solved” if none of these trials succeeded. Comparing our glassy formulas
with those of Crawford et al., taking similar numbers of variables and clauses

208 H. Jia, C. Moore, and B. Selman

Table 1. Comparison of our glassy lattice formulas with the parity formulas of Craw-
ford et al., Hirsch’s hgen2, and random 3-XOR-SAT formulas

Formulas Literals Variables Decisions (zChaff) Branches (Satz) Flips (WalkSAT)

par8-1-c.cnf 732 64 17 3 1494
par8-2-c.cnf 780 68 9 1 2371
par8-3-c.cnf 864 75 18 4 5638
par8-4-c.cnf 768 67 7 1 2811
par8-5-c.cnf 864 75 12 3 4828
par16-1-c.cnf 3670 317 2073 1591 2.5 × 108

par16-2-c.cnf 4054 349 11117 499 1.3 × 108

par16-3-c.cnf 3874 334 7505 1489 1.0 × 108

par16-4-c.cnf 3754 324 2181 4415 1.4 × 108

par16-5-c.cnf 3958 341 2758 1296 4.1 × 108

Glassy 8 × 8 768 64 167 50 219455
Glassy 16 × 16 3072 256 39293 32219 not solved

Random XOR 768 64 23 3 9167
Random XOR 3072 256 1427 198 3.9 × 108

hgen2 3096 295 not solved 1478340 751723

(e.g. comparing our L = 16 formulas, which have 256 variables and 3072 clauses,
with theirs with roughly 300 variables and 4000 clauses) we see from Table 1
that our formulas are significantly harder than theirs for zChaff, Satz, and
WalkSAT. (SP didn’t solve any of these formulas, so it doesn’t provide a basis for
comparison.) Compared to hgen2 formulas with 195 variables and 3096 clauses,
our formulas are not as hard for the complete solvers, but appear to be harder
for WalkSAT, again perhaps due to their large number of local minima.

4 Conclusion

We have introduced a new generator of hard satisfiable SAT formulas derived
from a two-dimensional spin-glass model. We tested our formulas against five
leading SAT solvers, and compared them with random 3-XOR-SAT formulas,
the minimal disagreement parity formulas of Crawford et al., and Hirsch’s hgen2
generator. For complete solvers, the running time of our formulas grows exponen-
tially only in L =

√
n, but they are harder than random 3-XOR-SAT formulas

when n is small. For SP our formulas appear to be impossible for n ≥ 25 variables.
For WalkSAT our formulas appear to be harder than any other known generator
of satisfiable instances. Finally, the RRT algorithm solves our formulas only if
d is set to the barrier height between local minima, which we know exactly to
be log2 L + 1. We propose that RRT can be used to measure the barrier heights
between local minima in other families of instances, and we have done this for
random 3-XOR-SAT formulas.

Since XOR-SAT is solvable in polynomial time, it would be interesting to
have a provably glassy set of formulas which would be NP-complete to solve.

From Spin Glasses to Hard Satisfiable Formulas 209

One approach would be a construction along the lines of [7], where “noise” is
introduced to the underlying parity problem so that it is no longer polynomial-
time solvable.

Finally, we feel that the highly structured nature of our formulas, which makes
it possible to prove the existence of exponentially many local optima with large
barriers between them, suggests an interesting direction for future work. For
instance, are there families of formulas based on spin-glass models in three or
more dimensions which would be even harder to solve?

Acknowledgments. We are grateful to Pekka Orponen for helpful discussions
on the RRT algorithm and we are also grateful to the anonymous referees for
proposing several directions for further work. C.M. and H.J. are supported by
NSF grant PHY-0200909 and H.J. is supported by an NSF Graduate Research
Fellowship. C.M. is also grateful to Tracy Conrad for helpful discussions.

References

1. D. Achlioptas, C. Gomes, H. Kautz, and B. Selman, Generating satisfiable problem
instances. Proc. AAAI ’00 256-261.

2. D. Achlioptas, H. Jia, and C. Moore, Hiding satisfying assignments: two are better
than one. Submitted.

3. Y. Asahiro, K. Iwama, and E. Miyano, Random generation of test instances with
controlled attributes. In [8], op. cit.

4. W. Barthel, A.K. Hartmann, M. Leone, F. Ricci-Tersenghi, M. Weigt, and R.
Zecchina, Hiding solutions in random satisfiability problems: a statistical mechanics
approach. Phys. Rev. Lett. 88 (2002) 188701.

5. R.J. Baxter, ”Hard hexagons: exact solution.” J. Physics A 13 (1980) 1023-1030.
6. S. Cocco, O. Dubois, J. Mandler, and R. Monasson, Rigorous decimation-based

construction of ground pure states for spin glass models on random lattices. Phys.
Rev. Lett. 90(4) (2003) 047205.

7. J.M. Crawford and M.J. Kearns, The Minimal Disagreement Parity Problem
as a Hard Satisfiability Problem, ftp://dimacs.rutgers.edu/pub/challenge/

satisfiability/benchmarks/cnf/ and J.M. Crawford, M.J. Kearns, and R.E.
Schapire, The minimal disagreement parity problem as a hard satisfiability prob-
lem. Technical report, CIRL, 1994.

8. Second DIMACS Implementation Challenge, 1993. Published as DIMACS Series
in Disc. Math. and Theor. Comp. Sci. vol. 26, D. Johnson and M. Trick, Eds.
AMS, 1996.

9. G. Dueck, New optimization heuristics: the great deluge algorithm and the record-
to-record travel. J. Comp. Phys. 104 (1993) 86–92.

10. S. Franz, M. Mézard, F. Ricci-Tersenghi, M. Weigt, and R. Zecchina, A ferromagnet
with a glass transition. Europhys. Lett. 55 (2001) 465.

11. J.P. Garrahan and M.E.J. Newman, Glassiness and constrained dynamics of short-
range non-disordered spin model. Phys. Rev. E 62 (2000) 7670–7678.

12. E.A. Hirsch, hgen2 formula generator source site. http://logic.pdmi.ras.ru/

hirsch/

13. A. E. Holroyd, Sharp metastability threshold for two-dimensional bootstrap per-
colation. Prob. Theory and Related Fields 125 (2003) 195–224.

210 H. Jia, C. Moore, and B. Selman

14. H.H. Hoos, SATLIB, A collection of SAT tools and data. www.informatik.tu-

darmstadt.de/AI/SATLIB

15. H. Kautz, Y. Ruan, D. Achlioptas, C. Gomes, B. Selman, and M. Stickel, Balance
and Filtering in Structured Satisfiable Problems. Proc. IJCAI ’01 351–358.

16. M. Mézard, F. Ricci-Tersenghi, and R. Zecchina, Alternative solutions to diluted
p-spin models and XORSAT problems. J. Stat. Phys. 111 (2003) 505.

17. M. Mézard and R. Zecchina, Random K-satisfiability: from an analytic solution
to a new efficient algorithm. Phys. Rev. E 66 (2002). See also A. Braunstein, M.
Mézard, M., and R. Zecchina, Survey propagation: an algorithm for satisfiability.
Preprint, 2002, http://www.ictp.trieste.it/~zecchina/SP/.

18. M.E.J. Newman and C. Moore, Glassy Dynamics in an Exactly Solvable Spin
Model. Phys. Rev. E 60 (1999) 5068–5072.

19. S. Seitz and P. Orponen, An efficient local search method for random 3-
satisfiability. LICS’03, workshop on Typical Case Complexity and Phase Tran-
sitions. Electronic Notes in Discrete Mathematics 16 (2003).

20. B. Selman, H.A. Kautz, and B. Cohen, Noise strategies for improving local search.
Proc. AAAI (1994).

21. P. Shaw, K. Stergiou, and T. Walsh, Arc consistency and quasigroup completion.
ECAI ’98, workshop on binary constraints.

22. F. Ricci-Tersenghi, M. Weigt, and R. Zecchina, Simplest random K-satisfiability
problem. Phys. Rev. E 63 (2001) 026702.

23. SAT2003 Competition result site,
http://www.satlive.org/SATCompetition/2003/results.html

24. A. Van Gelder, Problem generator mkcnf.c contributed to the DIMACS 1993 Chal-
lenge archive.

25. L. Zhang, zChaff source site, http://ee.princeton.edu/~chaff/zChaff.php

CirCUs: A Hybrid Satisfiability Solver�

HoonSang Jin and Fabio Somenzi

University of Colorado at Boulder
{Jinh, Fabio}@Colorado.EDU

Abstract. CirCUs is a satisfiability solver that works on a combination of an
And-Inverter-Graph (AIG), Conjunctive Normal Form (CNF) clauses, and Binary
Decision Diagrams (BDDs). We show how BDDs are used by CirCUs to help in
the solution of SAT instances given in CNF. Specifically, the clauses are sorted by
solving a hypergraph linear arrangement problem. Then they are clustered by an
algorithm that strives to avoid explosion in the resulting BDD sizes. If clustering
results in a single diagram, the SAT instance is solved directly. Otherwise, search
for a satisfying assignment is conducted on the original clauses, enhanced with
information extracted from the BDDs. We also describe a new decision variable
selection heuristic that is based on recognizing that the variables involved in a
conflict clause are often best treated as a related group. We present experimen-
tal results that demonstrate CirCUs’s efficiency especially for medium-size SAT
instances that are hard to solve by traditional solvers based on DPLL.

1 Introduction

Different representations of Boolean functions have peculiar strengths in regard to sat-
isfiability (SAT) problems. Conjunctive Normal Form (CNF) is often used because it
can be manipulated efficiently and because constraints of various provenance are easily
translated into it. Boolean circuits, especially semi-canonical ones like the And-Inverter
Graph (AIG) [24], allow a variety of simplification techniques that may significantly
speed up subsequent analyses. For other representations, like the Disjunctive Normal
Form (DNF) and Binary Decision Diagrams (BDDs) [6], the hurdle lies in converting
the problem specification into the required form; if this can be accomplished, satisfiabil-
ity is then trivial. In particular, with BDDs, determining whether a function is satisfiable
requires constant time, while a satisfying assignment, if it exists, can be found in O(n)
time, where n is the number of variables. Since converting a Boolean circuit into a BDD
may incur an exponential blow-up, naive application of BDDs to SAT lacks robustness.
On the other hand, there exist numerous cases in which a proper mix of canonical (e.g.,
BDDs) and non-canonical representations (e.g., CNF or AIG) is very beneficial [25, 8].
This is true, in particular, of SAT solvers based on search, and applied to instances for
which compact search trees do not exist or are hard to find.

CirCUs is a SAT solver that accepts as input a combination of an AIG, CNF clauses,
and BDDs. Rather than converting all into one form as a preprocessing step, CirCUs

� This work was supported in part by SRC contract 2003-TJ-920.

H.H. Hoos and D.G. Mitchell (Eds.): SAT 2004, LNCS 3542, pp. 211–223, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

212 H. Jin and F. Somenzi

operates on all three representations, transforming, when appropriate, parts of the in-
put from one of them to another. For instance, in Bounded Model Checking (BMC)
[4] applications, CirCUs reads the input as an AIG with additional constraints given
as clauses, and transforms part of the AIG into BDDs, so that it may apply powerful
implication and conflict analysis algorithms [23, 21]. The conflict clauses, on the other
hand, are recorded in CNF form as suggested in [13]. Because of this ability to operate
on multiple representations, we call CirCUs a hybrid SAT solver.

In this paper we discuss how CirCUs handles SAT instances given in CNF. After a
review of related work in Sect. 2, in Sect. 4, we show how the clauses may be “con-
ditioned” with the help of BDDs so as to allow the solution of some hard, though not
very large, problems. The conditioning consists of building BDDs from the clauses in
such a way that resource limits are not exceeded. This implies that more than one BDD
may be built. If that is the case, CNF clauses are extracted from the BDDs to replace
the original ones.

Section 5 presents a new decision variable selection heuristic, which is based on
the observation that variables appearing in one conflict clause should be treated as
a related group. In Sect. 6 we present empirical evidence that for mid-size hard in-
stances, CNF conditioning is very effective, and that our decision variable heuristic
consistently improves over the VSIDS rule of [32]. Finally, we draw conclusions in
Sect.7.

2 Related Work

Considerable work has been done in which constraints are represented by a collection
of BDDs. In symbolic model checking, the transition relation is often represented in
such an implicitly conjoined form [39, 7, 19, 30, 17, 22]. The partitioned representation
was also applied to the problem of minimum-cost satisfiability in [20]. In our work we
leverage several techniques from this body of literature, especially from [22].

More recently, there has been considerable interest in BDD-based techniques for the
SAT problem. Gupta el al. [15] proposed BDD-based learning while solving Bounded
Model Checking (BMC [4]) instances with a circuit SAT solver. The BDDs are used to
supplement conflict-learned clauses. They are created from portions of the circuit that
defines the BMC instance. Their approach is similar to our approach in the sense that
they use BDD to extract helpful CNF from it. On the other hand, we do no assume the
existence of a circuit, and our algorithms are different.

Damiano and Kukula [9] replace clauses with BDDs in a classical DPLL solver,
while in [12], the authors propose the method that uses BDDs to precompute complete
lookahead information to drive the search. This is done by converting each BDD into
a finite state machine that reads assignments to the BDD inputs and outputs implied
values. During a preprocessing phase, Franco et al. use strengthening to infer additional
literals and equivalences, since their BDD is highly localized because of BDD blow-
up. The search is then conducted on the modified BDDs. By contrast, the technique
we discuss in this paper either solves the SAT instance without search, or eventually
operates on CNF that has been possibly enhanced using the extracted BDDs.

CirCUs: A Hybrid Satisfiability Solver 213

3 Preliminaries

We consider three ways of representing a Boolean function. The first is a Boolean cir-
cuit, that is, a directed acyclic graph whose nodes correspond to input variables and
Boolean gates. Specifically, we use a form of Boolean circuit called And-Inverter Graph
(AIG) in which each node’s function is one of x∧ y, x∧¬y, ¬x∧ y, and ¬x∧¬y. An
AIG contains no isomorphic subgraphs; for this reason, it is called semicanonical.

The second representation is Conjunctive Normal Form (CNF). A CNF formula is
a set of clauses; each clause is a set of literals; each literal is either a variable or its
complement. The function of a clause is the disjunction of its literals, and the function
of a CNF formula is the conjunction of its clauses.

The last representation of Boolean functions is Binary Decision Diagrams (BDDs).
A BDD is a Boolean circuit such that each node is labeled by either a Boolean constant
(terminal node) or a variable (internal node). Each internal node has two children, T and
E. The function of an internal node labeled by v is defined recursively by (v ∧ f(T))∨
(¬v ∧ f(E)), where f(T) and f(E) are the functions of T and E. A reduced BDD is
one in which there are no isomorphic subgraphs, and no node has identical children.
(Such nodes are redundant.) A BDD is ordered if the variables encountered along all
paths from root to leaves respect a fixed order. Reduced, ordered BDDs are canonical:
for a given variable order, two functions are the same if and only if they have the same
BDD [6]. We shall refer to reduced, ordered BDDs simply as BDDs. Another form of
diagrams that are useful in manipulating Boolean functions are Zero-suppressed BDDs
(ZDDs). The difference between BDDs and ZDDs is that in the former, nodes with
identical children are removed, while in the latter nodes whose T child is the constant
0 are removed. ZDDs are usually more concise than BDDs when representing sets of
clauses (each clause corresponding to a path in the diagram). BDDs, on the other hand,
are usually better when representing the functions themselves.

CirCUs is a SAT solver based on the DPLL procedure [11, 10] and conflict clause
recording [36, 42, 32, 14]. It is built on top of VIS [5, 41], and uses the CUDD package
[37] for BDD and ZDD manipulations. Figure 1 describes the core of the decision
procedure, whose input is an AIG, a set of CNF clauses, and a set of BDDs.

The pseudo-code of DPLL procedure is presented in Fig. 1. Procedure CHOOSENEX-
TASSIGNMENT checks the implication queue. If the queue is empty, the procedure

1 DPLL() {
2 while (CHOOSENEXTASSIGNMENT() == FOUND)
3 while (DEDUCE() == CONFLICT) {
4 blevel = ANALYZECONFLICT();
5 if (blevel ≤ 0) return UNSATISFIABLE;
6 else BACKTRACK(blevel);
7 }
8 return SATISFIABLE;
9 }

Fig. 1. DPLL algorithm

214 H. Jin and F. Somenzi

makes a decision: it chooses one unassigned variable and a value for it, and adds the
assignment to the implication queue. If none can be found, it returns false. This causes
DPLL to return an affirmative answer, because the assignment to the variables is com-
plete and no conflict is detected. If a new assignment has been chosen, its implica-
tions are added by DEDUCE to the queue. If the implications yield a conflict, this is
analyzed to produce two important results. The first is a clause implied by the given
circuit and objectives. This conflict clause is added to the clauses of the circuit. Ter-
mination relies on conflict clauses, because they prevent the same variable assignment
from being tried more than once. The second result of conflict analysis is the back-
tracking level: Each assignment to a variable has a level that starts from 0 and increases
with each new decision. When a conflict is detected, the algorithm determines the low-
est level at which a decision was made that eventually caused the conflict. The search
for a satisfying assignment resumes from this level by deleting all assignments made
at higher levels. This non-chronological backtracking allows the decision procedure
to ignore inconsequential decisions that have provably no part in the conflict being
analyzed.

The pseudo-code of Fig. 1 is essentially the same used to describe CNF SAT solvers
like GRASP and Zchaff. However, in CirCUs all operations are carried out on the three
Boolean function representations at once. CNF clauses and BDDs are connected to the
AIG so that propagation of implications and conflict analysis proceed seamlessly on
all of them. The algorithm uses a common assignment stack and implication queue.
The decision variable selection is also common. In particular, the DVH heuristic of
Sect. 5 is used by CirCUs regardless of the mix of function representations. The specific
implication and conflict analysis algorithms for AIG, clauses, and BDDs are described
in [24, 32, 23].

When the input is in the form of an AIG, replacing parts of it by BDDs allows Cir-
CUs to reduce the number of decisions and conflicts without slowing down implication
too much. In this paper, we consider the case in which the input is a set of clauses. The
strategy of [23], which replaces fanout-free subcircuits of the AIG with BDDs, is not
applicable. Instead, we try to improve the given CNF as described in Sect. 4.

4 CNF Conditioning

For hard CNF SAT instances with moderate numbers of variables and clauses, it is
often advantageous to condition the given set of clauses. In the following, we describe
the approach implemented in CirCUs.

A hypergraph G = (V,H) consists of a set of vertices V and a multiset of hyper-
edges H . Each hyperedge is a subset of V . A linear arrangement of G is a bijection
α : V → {1, . . . , |V |}.

A set of Boolean functions can be regarded as a hypergraph by associating variables
to vertices and functions to hyperedges. A hyperedge connects all the variables appear-
ing in the function to which it is associated. Linear arrangement has been used in [1, 2]
to derive variables orders for both BDD construction and SAT. Our use is closer in spirit
to the one of [22], in which the objective is to derive a good order for the conjunction
of the functions.

CirCUs: A Hybrid Satisfiability Solver 215

We compute a linear arrangement by force-directed (or quadratic) placement [33],
as done in [2]. Given a linear arrangement αi, the algorithm computes the center of
mass of hyperedge h ∈ H thus:

COM (h) =
∑

v∈h αi(v)
|h| . (1)

The center of mass of a vertex is computed as the average of the centers of mass of
all hyperedges incident on the vertex. Finally, αi+1 is obtained by sorting vertices ac-
cording to their centers of mass. The process is iterated starting from an initial given
arrangement α0 until the cost function stops decreasing, or until the alloted computa-
tional resources are exhausted. The cost function is the sum of the hyperedge spans,
where the span of hyperedge h under arrangement α is

span(h) = max
v∈h

{α(v)} −min
v∈h

{α(v)} . (2)

Once the final vertex arrangement is determined, the order of the hyperedges is given
by their centers of mass.

Once the clauses of the given CNF are sorted, if the numbers of variables and clauses
do not exceed specified thresholds, the clustering algorithm of [22] is invoked to try to
conjoin all clauses into one BDD. The algorithm works on a list of Boolean functions
initialized to the sorted list of clauses. It selects a set of adjacent functions to be con-
joined, and tries to construct a BDD for them. If the BDD can be built without exceeding
a threshold on the number of nodes, it replaces the functions that were conjoined in the
list. The candidates are chosen so as to favor the confinement of as many variables as
possible to one cluster only. A detailed description of the algorithm can be found in
[22]. The thresholds on the numbers of variables and clauses are chosen so that it is
likely that all clauses will be conjoined into one BDD. When this happens, the SAT
instance is solved directly.

For this purpose, the clustering algorithm iterates until no new clusters are created
in one pass. At each pass, it creates a list of candidates. Each candidate is a pair of clus-
ters. The list is ordered in decreasing order of the number of isolated variable to favor
candidates that allow many variables to be quantified. (This is beneficial when trying to
build one BDD from all clauses.) As a tie-breaker, the upper bound on the number of
variables in the resulting cluster is used. This policy favors the creation of small clusters
that may be merged in subsequent passes. If a given instance is unsatisfiable, it will re-
sult in the constant zero BDD; otherwise it will result in the constant one BDD because
all variables are quantified while clustering.

To get a satisfying assignment without saving all the BDDs produced during clus-
tering, we save the last two BDDs, so that a partial assignments can be extracted from
them. We then use this partial assignment as a constraint for the CNF SAT solver. This
results in a quick solution of the CNF instance because the clustering process is such
that the last two BDDs tend to contain the global variables of the function.

If, on the other hand, the initial CNF is too large, or the conjunction of all clauses
cannot be carried out without exceeding the resource limits, several BDDs are built,
each to be used in conditioning a subset of the CNF formula. The clauses are divided
into short (one or two literals) and long (more than two literals). The long clauses are

216 H. Jin and F. Somenzi

conjoined in the order determined by the linear arrangement until the BDD for the
resulting cluster exceeds a given size, at which point a new cluster is started. Let f be
the function for such a cluster. The next step consists of conjoining all the short clauses
that share at least one variable with f into a function g. Since g is implied by the original
set of clauses, any function fg such that fg ∧ g = f can replace f . Therefore, we are
interested in a simple CNF representing a function from the interval [f, f ∨ ¬g]. This
is computed by the Morreale-Minato algorithm for prime and irredundant covering of
a Boolean function [31, 27]. The algorithm is called on the interval [¬f ∧ g,¬f], and
DeMorgan’s Laws are applied to the resulting DNF.

The result of the Minato-Morreale algorithm is computed as a Zero-Suppressed
BDD (ZDD) [28]. The clauses are then obtained by enumeration of the paths of the
ZDD. Since the computed CNF is not guaranteed to have the minimum number of
clauses, it is possible that more clauses be extracted than were used to produce f . If this
happens, the process is abandoned, and the original clauses are used instead. Even in
such a case, the construction of the BDD may be helpful: If a variable occurring in the
clauses conjoined to obtain f does not occur either in f or in the other clauses, then it
can be universally quantified from the original clauses.

The final step of conditioning consists of extracting all short clauses from the func-
tion in the interval [f, f ∨ ¬g] chosen by the Morreale-Minato algorithm. This is ac-
complished by a single traversal of each BDD, during which the short clauses of a
BDD with top node ν are obtained from the short clauses of the children of ν [38].
The procedure extends the one for unit clauses of [20]. Both procedures, as well as the
Morreale-Minato algorithm, are implemented in CUDD [37].

5 Decision Variable Selection

The choice of the decision variables has a large impact on the run time of the DPLL
procedure. Hence, considerable attention has been devoted to the problem. (See, for
instance, [35, 26, 18].) Many rules have been proposed that are based on the frequency
of literals in unresolved clauses; for instance, the Dynamic Largest Individual Sum
(DLIS) heuristic of GRASP [36]. Chaff’s VSIDS rule [32] disregards whether a clause
is resolved in the interest of speed. It also introduces the notion that recently generated
conflict clauses should be given more weight in the choice of the next variable. The
VSIDS rule increases the score of a literal whenever a clause containing that literal is
added to the database. Scores are periodically halved to give more weight to recently
added conflict clauses. The literal with the highest score is chosen whenever a decision
must be made.

Though non-chronological backtracking helps the DPLL procedure to recover from
poorly chosen decision variables, it is only effective once a conflict has been detected.
Suppose a conflict clause γ involves variables at decision levels d0 . . . , dk. Ideally, one
would have di+1 = di + 1 for 0 < i < k. Otherwise, the work done in propagating
the effects of the irrelevant intervening decisions is wasted. Increasing the scores of the
variables in γ as done in VSIDS helps because the variables at the higher decision levels
will be chosen earlier in the sequel of the search. However, the variables in the conflict
clause at the lower decision levels will also be chosen earlier. More importantly, it may

CirCUs: A Hybrid Satisfiability Solver 217

take several conflicts for a group of related variables to have similar scores if their initial
scores are sufficiently different. In BerkMin [14] this problem is addressed by choosing
the decision literal from the unassigned variables in the most recent conflict clause that
is unsatisfied. The limitation of this approach is that a conflict clause’s ability to cause
its literals to be treated like a related group is lost as soon as it is no longer the most
recent unsatisfied clause.

By contrast, the approach followed in CirCUs is the following. Suppose a new con-
flict clause γ = {l0, . . . , lk} is generated. Suppose that di is the decision level of li,
and, w.l.o.g., that di < di+1 for 0 < i < k. The scores of all literals in the clause
are incremented by one with the exception of the literal lk at the current decision level,
whose score is set equal to one less than the score of lk−1. Boosting the score of the
most recent decision variable causes the relation between lk−1 and lk to be recorded in
the scores, producing a longer lasting effect than in the BerkMin case. We call the new
heuristic Deepest Variable Hiking (DVH).

Figure 2 shows two series of decisions to illustrate the advantages of the DVH
heuristic. Each circle represents a decision made by a score-based heuristic and the
dark circles represent decisions whose implications are involved in the conflict-learned
clause. We assume that the conflict occurs in both cases at decision level di+4.

If all the decisions are relevant to the current conflict, then the conflict-learned clause
will contain literals implied by all previous decisions as shown in Fig. 2 (a). In this case
we backtrack to the decision level di+3. If, however, irrelevant intervening decisions
were made, such as those at levels di+2 and di+3 in Fig. 2 (b), then backtracking will
be to a lower decision level like di+2 in the example. Since the decisions made at level
di+2 and di+3 are not related to the conflict-learned clause, the cost of BCP for those de-
cisions is wasted. Even though the current scores of the decision variables at levels di+2

and di+3 are higher than the one at level di+4, the variable of di+4 is a better choice.
Thanks to the DVH decision heuristic, we can avoid the waste of effort even when
exploring subspaces in which the clause derived from the current conflict is satisfied.

(b)(a)

di

di+1

di+2

di+3

di

di+1

di+2

di+3

di+4di+4

Fig. 2. Two examples of decision

218 H. Jin and F. Somenzi

 0

 10

 20

 30

 40

 50

 60

 70

 0 200 400 600 800 1000 1200 1400 1600

Sc
or

e
of

 v
ar

ia
bl

e

Variable index

profile of variable scores

initial score
after 10e4 decisions

Fig. 3. Scores of variables while solving C880.cnf using VSIDS

Since we increase the score of the variable of level di+4 to one less than the score
of the variable at level di+2, the score-based decision heuristic treats them as a related
group. If they are not relevant variables for the rest of the search, then the periodic decay
will reduce their scores thereby decreasing their importance automatically.

Suppose the data inputs of a multiplexer are driven by two subcircuits having dis-
joint supports and that the sel signal selects which circuitry is connected to the output
of multiplexer. Once sel is decided then the variables in the unselected circuitry can
be ignored since they no longer affect the value of the circuit. Silva et al. address this
problem in [35] and a related approach is presented in [3]. Gupta et al. [16] use circuit
SAT to identify the unobservable gates and disable the corresponding clauses in the
CNF database. In [40], the author proposes an efficient translation of CNF from circuits
that considers unobservable gates. Even though the DVH heuristic does not explicitly
address unobservable gates in a circuit, it does help when such gates are present thanks
to its ability to increase the dynamics of decision heuristics. For instance, once the sel
signal is assigned and we find a conflict from the circuitry feeding one of the inputs to
the multiplexer, the DVH heuristic helps the decision procedure focus on the part where
the conflict was found.

The VSIDS rule as implemented in Zchaff halves the literal scores once every so
many decisions. If the ratio of decisions to conflicts is large, most scores decay to 0. In
Fig. 3 We show the profile of variable scores produced by VSIDS for C880.cnf, which
is one of SAT 2003 industrial benchmark. In the figure, one can find two lines. They
are the profiles of initial scores and the scores after 10000 decisions are made. The
variables are sorted according to their initial scores. One can see from the figure that
not only most variables have scores of zero, but also the few non-null scores take only
a very limited number of values.

CirCUs: A Hybrid Satisfiability Solver 219

When this is the case, variables are chosen on the basis on insufficient information.
The DVH heuristic of CirCUs tries to overcome this problem by reducing the halving
frequency if the ratio of decisions to conflicts is too high.

6 Experimental Results

We performed two sets of experiments to assess the impact of the techniques described
in Sections 4 and 5. The first set studies the effects of CNF conditioning on the speed
of the SAT solver for 89 examples from the hand-made category of the SAT2003
benchmark set. These examples are not very large—up to 2,000 variables and 60,000
clauses—but some of them are hard for many solvers. The experiments were run on a
2.4 GHz Pentium IV with 500 MB of RAM running Linux. Runs longer than 2,000 s
were terminated.

Table 1 shows the examples that were used for the CNF conditioning experiments.
The columns comparing CPU time show that CirCUs achieves huge improvements over
Zchaff. We also show the numbers of completed instances with in parenthesis.

Figure 4 shows a log-log scatterplot that compares CirCUs runtimes with and with-
out CNF conditioning. One can easily identify two groups of instances. Those for which
reshaping is effective, including those for which a monolithic BDD can be built, and
those near or above the main diagonal, for which conditioning does not appreciably
change the CNF. In the latter group, the overhead of constructing the BDDs is not re-
covered.

It should be pointed out that sorting the clauses by linear arrangement and applying
the clustering algorithm of [22] are fundamental for efficiency. Many of the examples
that terminate in a few seconds with the algorithm of Sect. 4 cannot be completed
otherwise.

The second set of experiments compares the DVH variable selection heuristic of
Sect. 5 to the popular VSIDS heuristic used in Chaff. We compared three sets of 50
runs: Zchaff [32], CirCUs with VSIDS, and CirCUs with DVH. CNF conditioning was
not used in these experiments that were performed on a 1.7 GHz Pentium IV with 2 GB

Table 1. Examples from hand-made category of the SAT2003 benchmark set

Number CPU time
Benchmark name of instances Zchaff CirCUs

bevan/marg* 14 4330.36(12) 1.33(14)
bevan/urqh1c* 13 14638.84(8) 6.77(13)
bevan/urqh* 12 20028.83(2) 4.81(12)

markstrom/mm* 8 1047.22(8) 1262.46(8)
purdom/ 4 3160.07(3) 1720.21(4)

simon/sat02/x1* 19 38000.00(0) 6.97(19)
simon/sat02/x2* 9 18000.00(0) 3.38(9)

simon/sat02/Urquhart* 10 20000.00(0) 4.59(10)

220 H. Jin and F. Somenzi

10-2

10-1

100

101

102

103

10-2 10-1 100 101 102 103

C
ir

C
U

s
w

ith
 c

on
di

tio
ni

ng
 :

tim
e

(s
)

CirCUs without conditioning: time (s)

Fig. 4. Effects of CNF conditioning

101

102

103

104

101 102 103 104

C
ir

C
U

s
: t

im
e

(s
)

Zchaff : time (s)

Fig. 5. DVH versus VSIDS

CirCUs: A Hybrid Satisfiability Solver 221

of RAM running Linux. The timeout was set at 10,000 s. The SAT instances are derived
from BMC experiments on models from the VIS Verilog benchmark collection [41].

The results are summarized in Fig. 5. The log-log scatterplot shows the points com-
paring CirCUs with DVH to Zchaff. The two straight lines are regression curves of the
form y = κ · xη, where κ and η are obtained by least-square fitting. The upper line is
for the comparison of CirCUs with VSIDS to Zchaff; it is provided for calibration. It
shows that the two solvers are quite comparable in performance when using the same
decision heuristic. The lower line is for CirCUs with DVH vs. Zchaff. The separation
of the two lines indicates that DVH provides a speedup of almost 2 over VSIDS.

CirCUs was in second stage of industrial category of SAT’04 solver competition.
One can find more experimental results in SAT’04 competition wep page [34].

7 Conclusions

We have presented CirCUs, a hybrid SAT solver that operates on an And-Inverter
Graph, a set of CNF clauses, and a set of BDDs. We have described the approach used
to speed up the solver when the input is in CNF form. By converting the clauses into
one or more BDDs, we are often able to either solve the problem directly, or extract an
improved CNF formula. We have shown the effectiveness of this strategy on small-but-
hard examples from the SAT2003 benchmark set.

We have also presented an improved decision variable selection heuristic, and shown
its effectiveness by comparing it to the popular VSIDS heuristic of Zchaff.

Our results demonstrate the usefulness of allowing the SAT solver to operate on
multiple representations of the input problem. We intend to explore more applications of
this principle, and we are busy improving the efficiency of the current implementation.
For instance, we plan to compare the current force-directed placement approach to the
MLP algorithm [29].

References

[1] F. A. Aloul, I. L. Markov, and K. A. Sakallah. Mince: A static global variable-ordering for
SAT and BDD. Presented at IWLS01, June 2001.

[2] F. A. Aloul, I. L. Markov, and K. A. Sakallah. FORCE: A fast and easy-to-implement
variable-ordering heuristic. In Proceedings of the Great Lakes Symposium on VLSI, pages
116–119, Washington, DC, Apr. 2003.

[3] C. W. Barrett, D. L. Dill, and A. Stump. Checking satisfiability of first-order formulas
by incremental translation to SAT. In E. Brinksma and K. G. Larsen, editors, Fourteenth
Conference on Computer Aided Verification (CAV’02), pages 236–249. Springer-Verlag,
Berlin, July 2002. LNCS 2404.

[4] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without BDDs.
In Fifth International Conference on Tools and Algorithms for Construction and Analysis
of Systems (TACAS’99), pages 193–207, Amsterdam, The Netherlands, Mar. 1999. LNCS
1579.

[5] R. K. Brayton et al. VIS: A system for verification and synthesis. In T. Henzinger and
R. Alur, editors, Eighth Conference on Computer Aided Verification (CAV’96), pages 428–
432. Springer-Verlag, Rutgers University, 1996. LNCS 1102.

222 H. Jin and F. Somenzi

[6] R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Transac-
tions on Computers, C-35(8):677–691, Aug. 1986.

[7] J. R. Burch, E. M. Clarke, and D. E. Long. Representing circuits more efficiently in sym-
bolic model checking. In Proceedings of the Design Automation Conference, pages 403–
407, San Francisco, CA, June 1991.

[8] J. R. Burch and V. Singhal. Tight integration of combinational verification methods. In
Proceedings of the International Conference on Computer-Aided Design, pages 570–576,
San Jose, CA, Nov. 1998.

[9] R. Damiano and J. Kukula. Checking satisfiability of a conjunction of BDDs. In Proceed-
ings of the Design Automation Conference, pages 818–823, June 2003.

[10] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving. Com-
munications of the ACM, 5:394–397, 1962.

[11] M. Davis and H. Putnam. A computing procedure for quantification theory. Journal of the
Association for Computing Machinery, 7(3):201–215, July 1960.

[12] J. Franco, M. Kouril, J. Schlipf, J. Ward, S. Weaver, M. Dransfield, and W. M. Vanfleet.
SBSAT: A state-based, BDD-based satisfiability solver. In International Conference on
Theory and Applications of Satisfiability Testing (SAT 2003), Portofino, Italy, May 2003.

[13] M. K. Ganai, P. Ashar, A. Gupta, L. Zhang, and S. Malik. Combining strengths of circuit-
based and CNF-based algorithms for a high-performance SAT solver. In Proceedings of
the Design Automation Conference, pages 747–750, New Orleans, LA, June 2002.

[14] E. Goldberg and Y. Novikov. BerkMin: A fast and robust SAT-solver. In Proceedings of
the Conference on Design, Automation and Test in Europe, pages 142–149, Paris, France,
Mar. 2002.

[15] A. Gupta, M. Ganai, C. Wang, Z. Yang, and P. Ashar. Learning from BDDs in SAT-based
bounded model checking. In Proceedings of the Design Automation Conference, pages
824–829, June 2003.

[16] A. Gupta, A. Gupta, Z. Yang, and P. Ashar. Dynamic detection and removal of inactive
clauses in SAT with application in image computation. In Proceedings of the Design Au-
tomation Conference, pages 536–541, Las Vegas, NV, June 2001.

[17] A. Gupta, Z. Yang, P. Ashar, and A. Gupta. SAT-based image computation with application
in reachability analysis. In W. A. Hunt, Jr. and S. D. Johnson, editors, Formal Methods in
Computer Aided Design, pages 354–271. Springer-Verlag, Nov. 2000. LNCS 1954.

[18] M. Herbstritt and B. Becker. Conflict-based selection of branching rules. In Sixth Inter-
national Conference on Theory and Application in Satisfiability Testing (SAT2003), pages
441–451, Portofino, Italy, May 2003. Springer. LNCS 2919.

[19] A. J. Hu and D. Dill. Efficient verification with BDDs using implicitly conjoined invariants.
In C. Courcoubetis, editor, Fifth Conference on Computer Aided Verification (CAV ’93),
pages 3–14. Springer-Verlag, Berlin, 1993. LNCS 697.

[20] S.-W. Jeong and F. Somenzi. A new algorithm for 0-1 programming based on binary
decision diagrams. In T. Sasao, editor, Logic Synthesis and Optimization, chapter 7, pages
145–165. Kluwer Academic Publishers, Boston, MA, 1993.

[21] H. Jin, M. Awedh, and F. Somenzi. CirCUs: A satisfiability solver geared towards bounded
model checking. In R. Alur and D. Peled, editors, Sixteenth Conference on Computer Aided
Verification (CAV’04). Springer-Verlag, Berlin, July 2004. To appear.

[22] H. Jin, A. Kuehlmann, and F. Somenzi. Fine-grain conjunction scheduling for symbolic
reachability analysis. In International Conference on Tools and Algorithms for Construc-
tion and Analysis of Systems (TACAS’02), pages 312–326, Grenoble, France, Apr. 2002.
LNCS 2280.

[23] H. Jin and F. Somenzi. CirCUs: Speeding up circuit SAT with BDD-based implications.
Submitted for publication, Apr. 2004.

CirCUs: A Hybrid Satisfiability Solver 223

[24] A. Kuehlmann, M. K. Ganai, and V. Paruthi. Circuit-based Boolean reasoning. In Proceed-
ings of the Design Automation Conference, pages 232–237, Las Vegas, NV, June 2001.

[25] A. Kuehlmann and F. Krohm. Equivalence checking using cuts and heaps. In Proceedings
of the Design Automation Conference, pages 263–268, Anaheim, CA, June 1997.

[26] P. Liberatore. On the complexity of choosing the branching literal in DPLL. Artificial
Intelligence, 116(1–2):315–326, 2000.

[27] S.-I. Minato. Fast generation of irredundant sums-of-products forms from binary decision
diagrams. In SASIMI ’92, pages 64–73, Kyoto, Japan, Apr. 1992.

[28] S.-I. Minato. Zero-suppressed BDDs for set manipulation in combinatorial problems. In
Proceedings of the Design Automation Conference, pages 272–277, Dallas, TX, June 1993.

[29] I.-H. Moon, G. D. Hachtel, and F. Somenzi. Border-block triangular form and conjunction
schedule in image computation. In W. A. Hunt, Jr. and S. D. Johnson, editors, Formal
Methods in Computer Aided Design, pages 73–90. Springer-Verlag, Nov. 2000. LNCS
1954.

[30] I.-H. Moon, J. H. Kukula, K. Ravi, and F. Somenzi. To split or to conjoin: The question in
image computation. In Proceedings of the Design Automation Conference, pages 23–28,
Los Angeles, CA, June 2000.

[31] E. Morreale. Recursive operators for prime implicant and irredundant normal form deter-
mination. IEEE Transactions on Computers, C-19(6):504–509, June 1970.

[32] M. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an
efficient SAT solver. In Proceedings of the Design Automation Conference, pages 530–535,
Las Vegas, NV, June 2001.

[33] N. R. Quinn. The placement problem as viewed from the physics of classical mechanics.
In Proceedings of the Design Automation Conference, pages 173–178, Boston, MA, June
1975.

[34] URL: http://www.lri.fr/∼simon/contest/results.
[35] J. P. M. Silva. The impact of branching heuristics in propositional satisfiability algorithms.

In Proceedings of the 9th Portuguese Conference on Artificial Intelligence (EPIA), Sept.
1999.

[36] J. P. M. Silva and K. A. Sakallah. Grasp—a new search algorithm for satisfiability. In
Proceedings of the International Conference on Computer-Aided Design, pages 220–227,
San Jose, CA, Nov. 1996.

[37] F. Somenzi. CUDD: CU Decision Diagram Package. University of Colorado at Boulder,
ftp://vlsi.colorado.edu/pub/.

[38] F. Somenzi and K. Ravi. Extracting simple invariants from BDDs. Unpublished manuscript,
May 2002.

[39] H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-Vincentelli. Implicit enu-
meration of finite state machines using BDD’s. In Proceedings of the IEEE International
Conference on Computer Aided Design, pages 130–133, Nov. 1990.

[40] M. N. Velev. Exploiting signal unobservability for efficient translation to CNF in formal
verification of microprocessor. In In the Proceedings of the IEEE/ACM Design, Automation
and Test in Europe Conference (DATE), pages 10266–10271, Feb. 2004.

[41] URL: http://vlsi.colorado.edu/∼vis.
[42] H. Zhang. SATO: An efficient propositional prover. In Proceedings of the International

Conference on Automated Deduction, pages 272–275, July 1997. LNAI 1249.

Equivalence Models for Quantified
Boolean Formulas

Hans Kleine Büning1 and Xishun Zhao2,�

1 Department of Computer Science,
Universität Paderborn, 33095 Paderborn (Germany)

kbcsl@upb.de
2 Institute of Logic and Cognition,

Sun Yat-sen University, 510275 Guangzhou, (P.R. China)
hsdp08@zsu.edu.cn

Abstract. In this paper, the notion of equivalence models for quantified
Boolean formulas with free variables is introduced. The computational
complexity of the equivalence model checking problem is investigated in
the general case and in some restricted cases. We also establish a con-
nection between the structure of some quantified Boolean formulas and
the structure of models.

Keywords: Quantified Boolean formula, equivalence model, model check-
ing, complexity, equivalence, satisfiability.

1 Introduction

For several applications the satisfiability and the equivalence problems for quan-
tified Boolean formulas (QBF) (with free variables) play a central role. We not
only want to decide whether the satisfiability or equivalence holds, but we want
to know for which assignments, that means, for which Boolean functions, the
desired properties are fulfilled. That leads to the question of whether certain
satisfiability or equivalence models exist. The paper will introduce the notion of
equivalence models and presents some results for some subclasses of QBF and
some restricted sets of Boolean functions, where Boolean functions are consid-
ered as propositional formulas.

The notion of (satisfiability) models for formulas in QBF (i.e., the class of
quantified Boolean formulas in prenex normal form without free variables) has
been introduced in [8, 9]. Generally speaking, an assignment for a formula in
QBF is a mapping which maps each existential variable to a propositional for-
mula over universal variables whose quantifiers precede the quantifier of the
existential variable. An assignment M is a model for a quantified formula Φ
(with existential variables y = y1, · · · , ym) if the resulting formula Φ[y/M] after

� The author was supported partially by the SSFC project 02BZX046 and the NSFC
project “Algorithmic Foundation of Computability and Complexity”.

H.H. Hoos and D.G. Mitchell (Eds.): SAT 2004, LNCS 3542, pp. 224–234, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Equivalence Models for Quantified Boolean Formulas 225

replacing each existential variable by its corresponding formula (and removing
existential quantifiers from the prefix) is true.

The notion of models for closed QBF can be easily extended to formulas in
QBF ∗, the class of quantified Boolean formulas with (or without) free vari-
ables, by just allowing free variables occurring in the propositional formulas of
assignments.

In this paper, we often write Φ = Qφ(x,y) and Φ(z) = Qφ(x,y,z) for for-
mulas in QBF and QBF ∗, respectively, with universal variables x = x1, · · · , xn,
existential variables y = y1, · · · , ym, and free variables z = z1, · · · , zr.

Please note that if M is a model for a formula Φ ∈ QBF then Φ and Φ[y/M]
are equivalent. However, this is generally invalid for formulas in QBF ∗ and
their models. For example, the formula Φ(z1, z2) = ∃y((z1 ∨ y) ∧ (¬y ∨ z2)) is
equivalent to the formula (z1 ∨ z2). For fy(z1, z2) = 1, M = (fy) is a model,
since Φ[y/fy] = (z1 ∨ 1) ∧ (0 ∨ z2) ≈ z2 is satisfiable. But the resulting formula
is not equivalent to the input formula Φ(z1, z2).

This motivates us to introduce and investigate equivalence models for for-
mulas in QBF ∗, which deserve attention because quantified Boolean formulas
can be used to represent Boolean functions with essentially small size. There
are Boolean functions which can be represented by a formula in QBF ∗ with
quadratic size while every propositional formula representing the same function
has super-polynomial size [7]. An assignment M is an equivalence model for a
formula Φ ∈ QBF ∗ if Φ and Φ[y/M] are equivalent. We are interested in the
equivalence model checking problem of determining whether an assignment is
an equivalence model of a formula Φ ∈ QBF ∗, and the equivalence model prob-
lem of deciding whether a formula in QBF ∗ has an equivalence model. Since
the equivalence model checking problem involves testing the equivalence of two
quantified formulas, the problem is PSPACE–complete. Without any restriction
we will see that any QBF ∗ formula has an equivalence model. In this paper,
we restrict the two problems to some subclasses of QBF ∗ and some models
consisting of propositional formulas with special structures.

We are also interested in discovering some connections between the structure
of formulas in QBF ∗ and that of models. We will show that Q2-CNF ∗ formulas
always have an equivalence model consisting of formulas in 1-CNF∪1-DNF∪{0, 1}.

In the remainder of this section we will recall and introduce some notations
and terminologies.

The classes of propositional formulas such as CNF, DNF, k-CNF, HORN and
so on, are defined as usual.

QBF is the class of closed quantified Boolean formula (i.e., without free
variables). The formula Φ is in prenex normal form, if Φ = Q1v1 · · ·Qnvnφ,
where Qi ∈ {∀,∃} and φ is a propositional formula over variables v1, · · · , vn.
Q1v1 · · ·Qnvn is called the prefix and φ the matrix or kernel of Φ. Usually,
we simply write Φ = Qφ. A literal x or ¬x is called a universal resp. existential
literal, if the variable x is bounded by a universal quantifier resp. by an existential
quantifier. A closed formula Φ ∈ QBF in prenex normal form is called satisfiable
or true, if there exists an assignment of truth values to the existential variables

226 H. Kleine Büning and X. Zhao

depending on the truth values for the preceding universal variables, for which
the propositional kernel of the formula is true. QCNF denotes the class of QBF
formulas in prenex normal form with matrix in CNF, likewise for Qk-CNF ,
QHORN .

The classes QCNF∗, Q2-CNF ∗, QHORN ∗ are defined in the same way as
QCNF, Q2-CNF , QHORN , respectively, except allowing free variables. A for-
mula in QCNF∗ is satisfiable if and only if there is a truth assignment for the
free variables, such that the closed QBF formula resulting from the partial eval-
uation is true. The class ∃∗CNF∗ is the subset of QCNF∗ in which any formula
has a purely existential prefix and a CNF kernel.

In our investigations we will make use of substitutions of existential vari-
ables by propositional formulas. For a quantified Boolean formula Φ with or
without free variables Φ[y1/f1, · · · , ym/fm] denotes the formula obtained by si-
multaneously substituting the occurrences of each variables yi by the formula fi

and removing quantifiers of yi. For Φ[y1/f1, · · · , ym/fm], y = y1, · · · , ym, and
M = (f1, · · · , fm) we write Φ[y/M].

2 Models

In this section we present two definitions of models for quantified Boolean for-
mulas and prove some basic results. The first definition is based on satisfiability
and has been investigated in [8, 9] for closed formulas.

Definition 1. (Satisfiability Model) [8] Let Φ(z) = Qφ(x,y,z) be a formula
in QCNF∗, where x = x1, · · · , xn are the universal variables, y = y1, · · · , ym

the existential variables, and z = z1, · · · , zr the free variables. For propositional
formulas fyi

over z and universal variables whose quantifiers precede ∃yi, we
say M = (fy1

, · · · , fym
) is a (satisfiability) model for Φ(z) if and only if

∀x1 · · · ∀xn φ(x,y,z)[y/M] is satisfiable.
If the propositional formulas fyi

belong to a class K of propositional formulas,
then M is called a K–model for Φ(z).

For example, the formula Φ(z) = ∀x∃y((x ∨ y) ∧ (¬x ∨ ¬y) ∧ z) is satisfiable
and for fy(x, z) = ¬x, M = (fy) is a model for Φ(z), because

∀x((x ∨ y) ∧ (¬x ∨ ¬y) ∧ z)[y/fy] = ∀x((x ∨ ¬x) ∧ (¬x ∨ x) ∧ z)

is satisfiable (set z = 1).
The formula Φ(z1, z2) = ∃y((z1 ∨ y)∧ (¬y ∨ z2)) is logically equivalent to the

formula (z1∨z2). For fy(z1, z2) = 1, M = (fy) is a model, since Φ(z1, z2)[y/fy] =
(z1∨1)∧ (0∨z2) ≈ z2 is satisfiable. But the formula Φ(z1, z2)[y/fy] is not equiv-
alent to the input formula Φ(z1, z2). For gy(z1, z2) = z2, however, we get the
equivalence Φ(z1, z2)[y/gy] = (z1 ∨ z2)∧ (¬z2 ∨ z2) ≈ (z1 ∨ z2) ≈ Φ(z1, z2). That
means, the substitution of the existential variable y by the associated proposi-
tional formula gy preserves the image of the formula. This simple observation
motivates a second definition of models for quantified Boolean formulas.

Equivalence Models for Quantified Boolean Formulas 227

Definition 2. (Equivalence Model) Let Φ(z) = Qφ(x,y,z) be a formula in
QCNF∗, where x = x1, · · · , xn are the universal variables, y = y1, · · · , ym the
existential variables, and z = z1, · · · , zr the free variables. For propositional
formulas fyi

over z and universal variables whose quantifiers precede ∃yi, we
say M = (fy1

, · · · , fym
) is an equivalence model for Φ(z) if and only if

Φ(z) ≈ ∀x1 · · · ∀xnφ(x,y,z)[y/M].
If the propositional formulas fyi

belong to a class K of propositional formulas,
then M is called a K–equivalence model for Φ(z).

The formula Φ(z) = ∀x1∀x2∃y((x1 ∨ y) ∧ (x2 ∨ ¬y ∨ z)) is equivalent to z.
For fy(x1, x2, z) = ¬x1, M = (fy) is an equivalence model, since Φ(z)[y/fy] =
∀x1∀x2((x1 ∨ ¬x1) ∧ (x2 ∨ x1 ∨ z)) ≈ ∀x1∀x2(x2 ∨ x1 ∨ z) ≈ z.

Obviously, any unsatisfiable formula has an equivalence model. In that case
any propositional formula over the corresponding variables is an equivalence
model.

Lemma 1. Any formula in QCNF∗ has an equivalence model.

Proof. Suppose, we have a formula Φ(z) = Qφ(z,x,y) ∈ QCNF∗ equivalent to
the Boolean function F (z) with free variables z = z1, · · · , zm, universal variables
x = x1, · · · , xt, and existential variables y = y1, · · · , yn. For fixed tuples of truth
values a ∈ {0, 1}m the formula Φ(a) is a closed formula.

If the formula Φ(a) is true, then there is a satisfiability model
Ma = (fa

y1
, · · · , fa

yn
). That means Φ(a)[y/Ma] is true.

If the formula Φ(a) is false, then for Ma = (0, · · · , 0) the formula Φ(a)[y/Ma]
is false.

Now, we combine these 2m cases to an equivalence model as follows:
Let xi = x1, · · · , xri

be the preceding universal variables for yi. We define a
Boolean function fyi

(z,xi) = fa
yi

(xi), if z = a. Since for any Boolean function
there is an equivalent propositional formula, for M = (fy1

, · · · , fyn
) we have

Φ(z)[y/M] ≈ F (z) ≈ Φ(z). Hence, M is an equivalence model for Φ(z).

The next proposition states some simple observations for which we omit the
proof.

Proposition 1. Let Φ(z) = Qφ(x,y,z) be an arbitrary formula in QCNF∗,
M = (fy1

, · · · , fym
) any sequence of propositional formulas.

1. Φ(z)[y/M] |= Φ(z). Moreover, M is an equivalence model for Φ(z) if and
only if Φ(z) |= Φ(z)[y/M]

2. If Φ is closed (i.e., z is empty) and true, then M is a (satisfiability) model
for Φ if and only if M is an equivalence model for Φ.

Let K be a class of propositional formulas and X ⊆ QCNF∗. We are mainly
interested in the following problems:

K–Equivalence Model Checking Problem for X:
Instance: A formula Φ ∈ X and M = (f1, · · · , fn) a sequence of propositional

formulas fi ∈ K.
Query: Is M a K–equivalence model for Φ?

228 H. Kleine Büning and X. Zhao

K–Equivalence Model Problem for X:
Instance: A formula Φ ∈ X.
Query: Does there exist a K–equivalence model M for Φ?

A procedure for deciding whether M is an equivalence model for Φ(z) is as
follows:

1. Substitute the existential variables by the associated propositional formulas
and remove from the prefix the existential quantifiers.

2. Test whether the resulting formula is equivalent to the input formula.

Because the equivalence problem between quantified formulas is PSPACE-
complete even if one of them is very simple, we obtain the following lemma.

Lemma 2. The equivalence model checking problem for QCNF∗ is PSPACE–
complete.

Proof. Obviously, the equivalence model checking problem is in PSPACE, since
the satisfiability and the equivalence problem for quantified Boolean formulas are
in PSPACE. We prove the PSPACE–hardness from a reduction of the PSPACE–
complete evaluation problem for QCNF [7]. We associate to a closed formula Φ =
Qφ ∈ QCNF for a new variable y the formula Φ′ = ∃yQ(φ ∧ y). Then, Φ is true
if and only if Φ′ is true. Suppose, Φ has the existential variables y = y1, · · · , yn.
For M = (fy, fy1

, · · · fyn
), where all Boolean functions are the constant 0, that

means fy = 0, fyi
= 0, Φ′[y/M] is false. Hence, M is an equivalence model for Φ′

if and only if Φ is false.

That means, equivalence model checking is much harder than satisfiability
model checking which has been shown in [8] to be coNP–complete for QCNF.

The next theorem states that the upper bound for the complexity of the
equivalence checking problem for classes X depends on the complexity of the
satisfiability problem for X. We say a class X ⊆ QCNF∗ is closed under constant–
substitutions if and only if for every formula Φ(z) ∈ X and for all combinations
of constants a in {0, 1}r the formula Φ(z)[z/a] = Φ(a) is in X.

We recall the notion of the polynomial-time hierarchy. ΣP
2 is a class of prob-

lems defined as (k ≥ 0): ΣP
0 = ΠP

0 = P the class of polynomial-time solvable
problems, ΣP

k+1 = NPΣP
k ,ΠP

k+1 = co−ΣP
k+1. Thus, NP = ΣP

1 and coNP = ΠP
1 .

Relationships between prefix classes of QBF ∗ and classes of the polynomial-time
hierarchy have been shown for example in [15].

Theorem 1. For every class X ⊆ QCNF∗ which is closed under constant-
substitutions we have

1. If X ∩ QSAT is polynomial-time solvable (i.e., in ΣP
0 = ΠP

0), then the
equivalence model checking problem for X is in coNP = ΠP

1 .
2. For k ≥ 1, if X ∩ QSAT is in ΣP

k , then the equivalence model checking
problem for X is in ΠP

k .
3. For k ≥ 1, if X ∩ QSAT is in ΠP

k , then the equivalence model checking
problem for X is in ΠP

k+1.

Equivalence Models for Quantified Boolean Formulas 229

Here, QSAT is the class of all satisfiable formulas in QCNF∗.

Proof. For any Φ(z) = Qφ(x,y,z) and any sequence M = (fy1
, · · · , fym

) of
propositional formulas. we have the following equivalence relations.

M is not an equivalence model for Φ(z)
⇔ Φ(z) �≈ Φ(z)[y/M] ⇔ Φ(z) �|= Φ(z)[y/M]
⇔ ∃z : (Φ(z) is true and Φ(z)[y/M] is false)
⇔ ∃z : (Φ(z) is true and ∀x1 · · · ∀xnφ(x,z,y)[y/M] is false)
⇔ ∃z : (Φ(z) is true and ∃x1 · · · ∃xn¬φ(x,y,z)[y/M] is true)
⇔ ∃z∃x′ : (Φ(z) is true and ¬φ(x′,y,z)[y/M ′] is true).

The propositional formula ¬φ(x′,y,z)[y/M ′] contains the variables x′ and z,
where x′ := x′

1, · · · , x′
n and M ′ is the result of renaming xi by x′

i in M for every
i. Whether for fixed values for x′ and z the formula evaluates to true, can be
decided in linear time. Please note that for fixed values for z the formula Φ(z)
is in X.

If the satisfiability of formulas in X is solvable in polynomial time, then the
non-equivalence model checking problem is in NP = ΣP

1 . Hence, the complemen-
tary problem — the equivalence model checking problem — is in coNP = ΠP

1 .
If the satisfiability problem for formulas in X is in ΣP

k then the problem
whether ∃xΦ(x) is satisfiable remains in ΣP

k . Hence, the equivalence model
checking problem is in ΠP

k .
If the satisfiability problem for formulas in X is in ΠP

k then the problem
whether ∃xΦ(x) is satisfiable is in ΣP

k+1. Hence, the equivalence model checking
problem is in ΠP

k+1.

Please note, that Theorem 1 establishes only an upper bound for the complex-
ities. Classes with a tractable satisfiability problem are Q2-CNF ∗ and QHORN∗

[1, 4], whereas the satisfiability problem for ∃∗CNF∗ is obviuosly NP–complete.
With respect to the completeness of the various problems we can prove

Lemma 3. The equivalence model checking problems for ∃∗CNF∗, Q2-CNF ∗

and QHORN∗are coNP–complete.

Proof. The coNP–hardness of the equivalence checking problem for ∃∗CNF∗ fol-
lows from a reduction from the coNP–complete unsatisfiability problem for CNF.
We associate to every propositional CNF formula φ(x) the formula Φ(x) =
∃y(y ∧ φ(x)) and M = (fy(x)) with fy(x) = 0. The formula Φ(x) is equiva-
lent to φ(x). Substituting the existential variable y by the model function fy

we obtain Φ(x)[y/fy(x)] = 0 ∧ φ(x) ≈ 0. Hence, M is an equivalence model for
Φ(x) if and only if φ(x) is unsatisfiable.

That the problem is in coNP = ΠP
1 follows from Theorem 1, because ∃∗CNF

is closed under constant–substitutions and the satisfiability problem is in NP .
The other classes Q2-CNF ∗ and QHORN∗ are closed under constant-

substitution and their satisfiability problems are solvable in polynomial time [7].
Hence, by Theorem 1 the problems are in coNP. The coNP–hardness follows from

230 H. Kleine Büning and X. Zhao

a reduction from the coNP–complete tautology problem for DNF. We associate to
a formula ψ ∈ DNF over the variables x1, · · · , xn the quantified Boolean formula
Φ = ∀x1 · · · ∀xn∃y : ¬y and M = (fy(x1, · · · , xn)), where fy(x1, · · · , xn) = ¬ψ.
Then, M is an equivalence model for Φ if and only if ¬fy(x1, · · · , xn) = ψ ∈ DNF
is a tautology.

3 Special Classes of Models

In this section we investigate the problems for various classes of model formulas
and input formulas. Some of the results are depicted in figure 1. Two classes
K0, the set of constants 0 and 1, and K2, the set of monomials, are defined
as K0 := {f | f is 0 or 1} and K2 := {f | ∃I ⊆ {1, · · · , n} : f(x1, ..., xn) =∧

i∈I xi, n ∈ N} ∪K0

Fig. 1

Boolean functions QCNF∗–class equivalence model checking

K0 = {0, 1} QCNF PSPACE-complete

1-CNF ∪ 1-DNF ∪ {0, 1} Q2-CNF ∗ polytime

1-DNF QHORN∗ coNP-complete

K2 QHORN∗ polytime

For a formula Φ = ∃∗φ ∈ ∃∗CNF∗, if the kernel φ is satisfiable then Φ has a K0-
model. However, this is not true for equivalence models. The formula Φ(z1, z2) =
∃y((z1 ∨ y) ∧ (¬y ∨ z2))(≈ (z1 ∨ z2)) has no K0-equivalence model, since

Φ(z1, z2)[y/0] = (z1 ∨ 0) ∧ (1 ∨ z2) ≈ (z1) �≈ (z1 ∨ z2)
Φ(z1, z2)[y/1] = (z1 ∨ 1) ∧ (0 ∨ z2) ≈ (z2) �≈ (z1 ∨ z2)

Since the equivalence problem for QCNF formulas is PSPACE-complete even
if one of the formulas is very simple, we have the following lemma.

Lemma 4.

1. The K0–equivalence model checking problem for QCNF is PSPACE–complete.
2. The K0–equivalence model problem for QCNF is PSPACE–complete.

Proof. Ad 1: (see proof of Lemma 2)
Ad 2: Obviously, the problem is in PSPACE. For the PSPACE–hardness, we

associate to QCNF formulas Φ = Qφ(x,y) the QCNF formula Φ′ := ∀x0∃y0

Q(φ(x,y) ∧ (x0 ∨ y0) ∧ (¬x0 ∨ ¬y0)) with new variables x0 and y0. Φ is true if
and only if Φ′ is true, since Ψ := ∀x0∃y0((x0 ∨ y0) ∧ (¬x0 ∨ ¬y0)) is true for
example with fy0

(x0) = ¬x0. But Ψ has no K0–equivalence model. That can be
seen by a case distinction y0 = 0 and y0 = 1. Therefore, if Φ is true, then Φ′ has

Equivalence Models for Quantified Boolean Formulas 231

no K0–equivalence model. Suppose Φ is false, then Φ′ is false. Thus, Φ′ has a K0–
equivalence model. Altogether, Φ is false if and only if Φ′ has a K0–equivalence
model. Since the evaluation problem for QCNF is PSPACE–complete, we have
shown our desired result.

Satisfiable Q2-CNF formulas have always a satisfiability model consisting
of formulas of the form fy(x) = (¬)xi for some i, fy(x) = 0, or fy(x) = 1.
For Q2-CNF ∗ these model formulas are not sufficient as the following example
shows Φ(z1, z2) = ∃y((z1∨y)∧(z2∨y)∧(¬y∨z3)∧(¬y∨z4)). The proof is straight
forward by a case distinction. We will see that the class of models defined as
B= 1-CNF∪ 1-DNF∪ {0, 1} characterizes in a certain sense equivalence models
for Q2-CNF ∗.

Theorem 2.

1. Any formula in Q2-CNF ∗ has a B–equivalence model.
2. The B–equivalence model checking for Q2-CNF ∗ is solvable in polynomial

time.

Proof. Ad 1: Suppose, we have a formula Φ(z) = Qφ(x,y,z) ∈ Q2-CNF ∗. If
Φ(z) is unsatisfiable, then there is a {0, 1}–equivalence model, and therefore a
B–equivalence model. Now, we assume the satisfiability of the input formula. In
a first step we apply the Q–resolution as long as possible with Φ(z) [7]. The re-
sulting formula, called Ψ(z), is again in Q2-CNF ∗ and for any truth assignment
for z, Φ(z) is true if and only if Ψ(z) is true. Next we will define fyj

for each yj

by means of the derived unit clauses.

Case 1. yj or ¬yj occurs in Ψ(z) as a unit clause. Then define fyj
= 1 or fyj

= 0
accordingly.

Case 2. yj occurs in a ∃-unit clause (i.e., a clause with one existential literal
and the other literal is universal), but ¬yi does not occur in any ∃-unit clause.
Let w1 ∨ yj , · · · , wk ∨ yj be all the ∃-unit clause containing yj . Then define
fyj

= ¬w1 ∨ · · · ∨ ¬wk.

Case 3. ¬yj occurs in a ∃-unit clause, but yi does not occur in any ∃-unit clause.
Let w1 ∨ ¬yj , · · · , wk ∨ ¬yj be all the ∃-unit clause containing ¬yj . Then define
fyj

= w1 ∧ · · · ∧ wk.

Case 4. Both yj and ¬yj occur in some ∃-unit clauses. Since Ψ is satisfiable,
there are exactly two clauses containing yj or ¬yj , and they must be of the form
w ∨ yj and ¬w ∨ ¬yj . Then define fyj

= ¬w.

Case 5. yj or ¬yj is derivable from free-unit clauses (by a free-unit clause we
mean a clause with at most one existential literal and the other literals are lit-
erals over free variables). Then define fyj

= 1 or fyj
= 0 accordingly.

232 H. Kleine Büning and X. Zhao

Case 6. yj or ¬yj is a pure literal. Then define fyj
= 1 or fyj

= 0 accordingly.

Case 7. Note cases 1–6. Let yj ∨v1, · · · , yj ∨vk and ¬yj ∨u1, · · · ,¬yj ∨ur be all
free-unit clauses containing yj or ¬yj . Then define fyj

either to be ¬v1∨· · ·∨¬vk

or to be u1 ∧ · · · ∧ ur.

Case 8. There are no free–unit clauses containing yj or ¬yj . That is, yj has
nothing to do with free variables and existential variables. Thus, in this case fyj

is either 0 or 1.

It is not hard to see that in any case Ψ(z)[yj/fyj
] is true if and only if

Ψ(z) is true for any truth assignment for z. Consequently, (fy1
, · · · , fym

) is an
equivalence model for Φ(z).

Ad 2: Let Φ(z) = Qφ(x,y,z) be in Q2-CNF ∗. For a sequence of propositional
formulas M = (fy1

, · · · , fym
), where fyi

∈B, we want to decide whether M is an
equivalence model for Φ(z).

At first we can calculate by applying a polynomial-time algorithm to Φ(z) a
logically equivalent propositional formula F (z) ∈ 2-CNF. The length of F (z) is
bound by O(|φ|2) (see Theorem 7.4.6 and Theorem 7.6.1 in [7]). In the next step
we substitute in the initial formula the existential variables yi by the model–
functions fyi

. That means, we have Φ(z)[y/M] = ∀x1 · · · ∀xnφ(x,y,z)[y/M].
Please note that Φ(z)[y/M] may not be in QCNF∗. However, it can be trans-
formed in polynomial time into an equivalent formula with CNF kernel by apply-
ing the distributivity law. The result is denoted as Ψ(z) (which still contains only
universal quantifiers). Further, we can calculate in polynomial time an equiva-
lent propositional formula G(z) of length less or equal than the length of Ψ(z).
If Ψ(z) contains a ∀-clause then G(z) is false. Otherwise, G(z) is obtained by
deleting all universal literals and removing the quantifiers. It is not difficult to
see that G(z) and Ψ(z) are equivalent. Finally it remains to decide whether
F (z) |= G(z). Since F (z) is a propositional 2-CNF formula that can be done in
polynomial time.

Altogether, we have an polynomial-time procedure for the B–equivalence
model checking problem for 2-CNF∗.

For QHORN∗ the regular equivalence problem — the problem whether two
quantified Horn formulas are equivalent — is coNP–complete. Further, any
QHORN∗ formula is equivalent to a HORN formula, but sometimes of length es-
sentially different [7]. The next lemma shows that for very simple model formulas
the coNP–completeness persist.

Lemma 5. The 1-DNF–equivalence model checking problem for QHORN∗ is
coNP–complete.

Proof. By Theorem 1 the problem is in coNP. We show the coNP–hardness by a
reduction from the coNP–complete tautology problem for 3-DNF formulas. We
associate to the DNF formula ψ =

∨
1≤i≤m(Li,1∧Li,2∧Li,3) with literals Li,j over

the variables z1 · · · , zr the quantified Horn formula Φ(z) = ∃y∃y1 · · · ∃ym((¬y1∨

Equivalence Models for Quantified Boolean Formulas 233

· · · ∨ ¬ym) ∧ (¬z1 ∨ · · · ∨ ¬zr ∨ ¬y)) and M = (fy, fy1
, · · · , fym

), where fy(z) =
(¬z1 ∨ · · · ∨¬zr), fyi

(z) = (¬Li,1 ∨¬Li,2 ∨¬Li,3) ∈ 1-DNF. Φ(z) is always true,
that means equivalent to the constant 1.

We have Φ(z)[y/M] = (¬fy1
(z) ∨ · · · ∨ ¬fym

(z)) ∧ (¬z1 ∨ · · · ∨ ¬zr ∨ (z1 ∧
· · · ∧ zn)) ≈ (¬fy1

(z) ∨ · · · ∨ ¬fym
(z)) and this formula is equivalent to Φ(z) if

and only if the propositional DNF formula ψ = (¬fy1
(z) ∨ · · · ∨ ¬fym

(z)) is a
tautology.

Hence, our 1-DNF–equivalence model checking problem is coNP–complete.

With respect to the satisfiability models, we know that every satisfiable
QHORN has a K2–model [8]. That does not hold for the equivalence model
and QHORN∗. The formula

Φn(z1,1, · · · , zn,n) := ∃y1 · · · ∃yn((¬y1 ∨ · · · ∨ ¬yn) ∧
∧

1≤i,j≤n

(yi ∨ ¬zi,j))

is equivalent to
∨

1≤i≤n(¬zi,1∧· · ·∧¬zi,n). M = (fy1
, · · · , fyn

) is an equivalence
model for Φn if fyi

(z1,1,, · · · , zn,n) = (zi,1∨· · ·∨zi,n). But Φn(z1,1, · · · , zn,n) has
no K2–equiv–model.

Lemma 6. The K2–equivalence model checking for QHORN∗ is solvable in poly-
nomial time.

Proof. Suppose Φ(z) = Qφ(x,y,z) ∈ QHORN∗ and M = (fy1
, · · · , fym

), where
fyi

∈ K2. That means, if xi = x1, · · · , xri
are the preceding universal variables

for yi, then we have fyi
(z,xi) =

∧
j∈Ji

vj , vj ∈ {x1, · · · , xn, z1, · · · , zr} for some
Ji, fyi

= 0, or fyi
= 1.

If the formula Φ(z) ∈ QHORN∗ is unsatisfiable, which can be decided in
polynomial time, then M is an equivalence model for the formula. We continue
assuming that the formula Φ(z) is satisfiable.

The substitution Φ(z)[y/M] can lead to a non-Horn kernel. Since every
clause in the kernel of the input formula Φ(z) contains at most one positive
literal, by the distributivity law we can transform in polynomial time the for-
mula Φ(z)[y/M] into a universally quantified QHORN∗ formula, say Ψ(z) =
∀x
∧

ψj(x,z). We can simplify the formula to obtain an equivalent proposi-
tional Horn formula

∧
ψ′

j(z) by removing the universal literals and all quanti-
fiers. To test whether M is an equivalence model, it suffices to decide whether
Φ(z) |= ψ′

j(z), that means Φ(z)∧¬ψ′
j(z) is unsatisfiable. But that is the problem

of deciding whether a QHORN∗ formula is satisfiable and this problem is solvable
in polynomial time.

4 Conclusion and Outlook

The results presented in the paper are a first step in understanding the structure
of equivalence models and the complexity of the problems. There are various open
problems. Take QHORN∗ as an example, try to establish a class of propositional
formulas K ⊆ CNF with the following properties:

234 H. Kleine Büning and X. Zhao

1. Any formula in QHORN∗ has a K–equivalence model.
2. A K–equivalence model for Φ(z) ∈ QHORN∗ can be constructed in polyno-

mial time.
3. The K–equivalence model checking problem for QHORN∗ is solvable in poly-

nomial time.

References

1. B. Aspvall, B., M. F. Plass, M. F., and Tarjan, R. E.: A Linear-Time Algorithm for
Testing the Truth of Certain Quantified Boolean Formulas, Information Processing
Letters, 8 (1979), 121-123

2. Cadoli, M., Schaerf, M., Giovanardi, A., and Giovanardi, M.: An Algorithm to
Evaluate Quantified Boolean Formulas and its Evaluation, In: highlights of Satis-
fiability Research in the Year 2000, IOS Press, 2000.

3. Cook, S., Soltys, M.: Boolean Programs and Quantified Propositional Proof Sys-
tems, Bulletin of the Section of Logic, 28 (1999), 119-129.

4. Flögel, A., Karpinski, M., and Kleine Büning, H.: Resolution for Quantified
Boolean Formulas, Information and Computation 117 (1995), 12-18

5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP -Completeness. W.H. Freeman Company, San Francisco, 1979.

6. Giunchiglia, E., Narizzano, M., and Tacchella, A.: QuBE: A System for Deciding
Quantified Boolean Formulas, In: Proceedings of IJCAR, Siena, 2001.

7. Kleine Büning, H., Lettmann, T.: Propositional Logic: Deduction and Algorithms,
Cambridge University Press, 1999.

8. Kleine Büning, H., Subramani, K., and Zhao, X.: On Boolean Models for Quantified
Boolean Horn Formulas, SAT 2003, Italy. Lecture Notes in Computer Science 2919,
93–104, 2004.

9. Kleine Büning, H., Zhao, X.: On Models for Quantified Boolean Formulas, to ap-
pear in LNCS, 2004.

10. Letz, R.: Advances in Decision Procedure for Quantified Boolean Formulas, In:
Proceedings of IJCAR, Siena, 2001.

11. Meyer, A. R., Stockmeyer, L. J.: Word Problems Requiring Exponential Time, In:
Preliminary Report, Proc. 5th Ann. Symp. on Theory of Computing, (1973), pp
1–9

12. Papadimitriou, C. H.: Computational Complexity, Addison-Wesley, New York,
1994.

13. Rintanen, J.T.: Improvements to the Evaluation of Quantified Boolean Formulae,
In: Proceedings of IJCAI, 1999.

14. Schaefer, T.J.: The Complexity of Satisfiability Problem, In: Proceedings of the
10th Annual ACM Symposium on Theory of Computing (ed. A. Aho), 216-226,
New York City, ACM Press, 1978.

15. Stockmeyer, L. J.: The Polynomial-Time Hierarchy, In: Theoretical Computer Sci-
ence, 3(1977), 1-22.

Search vs. Symbolic Techniques in Satisfiability Solving

Guoqiang Pan� and Moshe Y. Vardi�

Department of Computer Science, Rice University, Houston, TX
{gqpan, vardi}@cs.rice.edu

Abstract. Recent work has shown how to use OBDDs for satisfiability solv-
ing. The idea of this approach, which we call symbolic quantifier elimination,
is to view an instance of propositional satisfiability as an existentially quantified
propositional formula. Satisfiability solving then amounts to quantifier elimina-
tion; once all quantifiers have been eliminated we are left with either 1 or 0. Our
goal in this work is to study the effectiveness of symbolic quantifier elimination as
an approach to satisfiability solving. To that end, we conduct a direct comparison
with the DPLL-based ZChaff, as well as evaluate a variety of optimization tech-
niques for the symbolic approach. In comparing the symbolic approach to ZChaff,
we evaluate scalability across a variety of classes of formulas. We find that no ap-
proach dominates across all classes. While ZChaff dominates for many classes of
formulas, the symbolic approach is superior for other classes of formulas.

Once we have demonstrated the viability of the symbolic approach, we
focus on optimization techniques for this approach. We study techniques from
constraint satisfaction for finding a good plan for performing the symbolic
operations of conjunction and of existential quantification. We also study various
variable-ordering heuristics, finding that while no heuristic seems to dominate
across all classes of formulas, the maximum-cardinality search heuristic seems
to offer the best overall performance.

1 Introduction

Propositional-satisfiability solving has been an active area of research through out the
last 40 years, starting from the resolution-based algorithm in [21] and the search-based
algorithm in [20]. The latter approach, referred to as the DPLL approach, has since
been the method of choice for satisfiability solving. In the last ten years, much progress
have been made in developing highly optimized DPLL solvers, leading to efficient
solvers such as ZChaff [49] and BerkMin [30], all of which use advanced heuristics
in choosing variable splitting order, in performing efficient Boolean constraint prop-
agation, and in conflict-driven learning to prune unnecessary search branches. These
solvers are so effective that they are used as generic problem solvers, where problems
such as bounded model checking [6], planning [34], scheduling [17], and many others
are typically solved by reducing them to satisfiability problems.

Another successful approach to propositional reasoning is that of decision diagrams,
which are used to represent propositional functions. An instance of the approach is that

� Supported in part by NSF grants CCR-9988322, CCR-0124077, CCR-0311326, IIS-9908435,
IIS-9978135, EIA-0086264, ANI-0216467, and by BSF grant 9800096.

H.H. Hoos and D.G. Mitchell (Eds.): SAT 2004, LNCS 3542, pp. 235–250, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

236 G. Pan and M.Y. Vardi

of ordered Boolean decision diagrams (OBDDs) [9], which are used successfully in
model checking [11] and planning [14]. The zero-suppressed variant (ZDDs) is used
in prime implicants enumeration [39]. A decision-diagram representation also enables
easy satisfiability checking, which amounts to deciding whether it is different than the
empty OBDD [9]. Since decision diagrams usually represent the set of all satisfying
truth assignments, they incur a significant overhead over search techniques that focus
on finding a single satisfying assignment [16]. Thus, published comparisons between
search and OBDD techniques [47, 35] used search to enumerate all satisfying assign-
ments. The conclusion of that comparison is that no approach dominates; for certain
classes of formulas search is superior, and for other classes of formulas OBDDs are
superior.

Recent work has shown how to use OBDDs for satisfiability solving rather for enu-
meration [42]. The idea of this approach, which we call symbolic quantifier elimination,
is to view an instance of propositional satisfiability as an existentially quantified propo-
sitional formula. Satisfiability solving then amounts to quantifier elimination; once all
quantifiers have been eliminated we are left with either 1 or 0. This enables us to apply
ideas about existential quantifier elimination from model checking [41] and constraint
satisfaction [23]. The focus in [42] is on expected behavior on random instances of 3-
SAT rather than on efficiency. In particular, only a minimal effort is made to optimize
the approach and no comparison to search methods is reported. Nevertheless, the results
in [42] show that OBDD-based algoithms behave quite differently than search-based al-
gorithms, which makes them worthy of further investigation. (Other recent approaches
reported using decision diagrams in satisfiability solving [12, 26, 40]. We discuss these
works in our concluding remarks).

Our goal in this paper is to study the effectiveness of symbolic quantifier elimination
as an approach to satisfiability solving. To that end, we conduct a direct comparison
with the DPLL-based ZChaff, as well as evaluate a variety of optimization techniques
for the symbolic approach. In comparing the symbolic approach to ZChaff we use a
variety of classes of formulas. Unlike, however, the standard practice of comparing
solver performance on benchmark suites [37], we focus here on scalability. That is,
we focus on scalable classes of formulas and evaluate how performance scales with
formula size. As in [47] we find that no approach dominates across all classes. While
ZChaff dominates for many classes of formulas, the symbolic approach is superior for
other classes of formulas.

Once we have demonstrated the viability of the symbolic approach, we focus on
optimization techniques. The key idea underlying [42] is that evaluating an existen-
tially quantified propositional formula in conjunctive-normal form requires performing
several instances of conjunction and of existential quantification. The goal is to find
a good plan for these operations. We study two approaches to this problem. The first
is Bouquet’s method (BM) of [42] and the second is the bucket-elimination (BE) ap-
proach of [23]. BE aims at reducing the size of the support set of the generated OBDDs
through quantifier elimination and it has the theoretical advantage of being, in principle,
able to attain optimal support set size, which is the treewidth of the input formula [25].
Nevertheless, we find that for certain classes of formulas BM is superior to BE.

Search vs. Symbolic Techniques in Satisfiability Solving 237

The key to good performance in both BM and BE is in choosing a good variable
order for quantification and OBDD order. Finding an optimal order is by itself a diffi-
cult problem (computing the treewidth of a given graph is NP-hard [2]), so one has to
resort to various heuristics, cf. [36]. No heuristic seems to dominate across all classes
of formulas, but the maximal-cardinality-search heuristic seems to offer the best overall
performance.

We start the paper with a description of symbolic quantifier elimination as well as
the BM approach in Section 2. We then describe the experimental setup in Section 3.
In Section 4 we compare ZChaff with BM and show that no approach dominates across
all classes of formulas. In Section 5 we compare BM with BE and study the impact of
various variable-ordering heuristics. We conclude with a discussion in Section 6.

2 Background

An binary decision diagram (BDD) is a rooted directed acyclic graph that has only two
terminal nodes labeled 0 and 1. Every non-terminal node is labeled with a Boolean vari-
able and has two outgoing edges labeled 0 and 1. An ordered binary decision diagram
(OBDD) is a BDD with the constraint that the input variables are ordered and every path
in the OBDD visits the variables in ascending order. We assume that all OBDDs are re-
duced, which means that where every node represents a distinct logic function. OBDDs
constitute an efficient way to represent and manipulate Boolean functions [9], in par-
ticular, for a given variable order, OBDDs offer a canonical representation. Checking
whether an OBDD is satisfiable is also easy; it requires checking that it differs from the
predefined constant 0 (the empty OBDD). We used the CUDD package for managing
OBDDs [45]. The support set of an OBDD is the set of variables labeling its internal
nodes.

In [47, 16], OBDDs are used to construct a compact representation of the set of all
satisfying truth assignments of CNF formulas. The input formula ϕ is a conjunction
c1 ∧ . . . ∧ cm of clauses. The algorithm constructs an OBDD Ai for each clause ci.
(Since a clause excludes only one assignments to its variables, Ai is of linear size.) An
OBDD for the set of satisfying truth assignment is then constructed incrementally; B1

is A1, while Bi+1 is the result of APPLY(Bi, Ai,∧), where APPLY(A,B, ◦) is the result
of applying a Boolean operator ◦ to two OBDDs A and B. Finally, the resulting OBDD
Bm represents all satisfying assignments of the input formula.

We can apply existential quantification to an OBDD B:

(∃x)B = APPLY(B|x←1, B|x←0,∨),

where B|x←c restricts B to truth assignments that assign the value c to the variable
x. Note that quantifying x existentially eliminates it from the support set of B. The
satisfiability problem is to determine whether a given formula c1 ∧ . . . ∧ cm is sat-
isfiable. In other words, the problem is to determine whether the existential formula
(∃x1) . . . (∃xn)(c1 ∧ . . . ∧ cm) is true. Since checking whether the final OBDD Bm is
equal to 0 can be done by CUDD in constant time, it makes little sense, however, to
apply existential quantification to Bm. Suppose, however, that a variable xj does not
occur in the clauses ci+1, . . . , cm. Then the existential formula can be rewritten as

238 G. Pan and M.Y. Vardi

(∃x1) . . . (∃xj−1)(∃xj+1) . . . (∃xn)((∃xj)(c1 ∧ . . . ∧ ci) ∧ (ci+1 ∧ . . . ∧ cm)).

This means that after constructing the OBDD Bi, we can existentially quantify xj be-
fore conjuncting Bi with Ai+1, . . . , Am.

This motivates the following change in the earlier OBDD-based satisfying-solving
algorithm [42]: after constructing the OBDD Bi, quantify existentially variables that do
not occur in the clauses ci+1, . . . , cm. In this case we say that the quantifier ∃x has been
eliminated. The computational advantage of quantifier elimination stems from the fact
that reducing the size of the support set of an OBDD typically (though not necessarily)
results in a reduction of its size; that is, the size of (∃x)B is typically smaller than that
of B. In a nutshell, this method, which we describe as symbolic quantifier elimination,
eliminates all quantifiers until we are left with the constant OBDD 1 or 0. Symbolic
quantifier elimination was first applied to SAT solving in [31] (under the name of hiding
functions) and tried on random 3-SAT instances. The work in [42] studied this method
further, and considered various optimizations. The main interest there, however, is in
the behavior of the method on random 3-SAT instances, rather in its comparison to
DPLL-based methods.1

So far we processed the clauses of the input formula in a linear fashion. Since the
main point of quantifier elimination is to eliminate variables as early as possible, re-
ordering the clauses may enable us to do more aggressive quantification. That is, in-
stead of processing the clauses in the order c1, . . . , cm, we can apply a permutation π
and process the clauses in the order cπ(1), . . . , cπ(m). The permutation π should be cho-
sen so as to minimize the number of variables in the support sets of the intermediates
OBDDs. This observation was first made in the context of symbolic model checking,
cf. [10, 29, 33, 7]. Unfortunately, finding an optimal permutation π is by itself a difficult
optimization problem, motivating heuristic approaches.

A particular heuristic that was proposed in the context of symbolic model checking
in [41] is that of clustering. In this approach, the clauses are not processed one at a
time, but several clauses are first partitioned into several clusters. For each cluster C
we first apply conjunction to all the OBDDs of the clauses in C to obtain an OBDD
BC . The clusters are then combined, together with quantifier elimination, as described
earlier. Heuristics are required both for clustering the clauses and ordering the clus-
ters. Bouquet proposed the following heuristic in [8] (the focus there is on enumerating
prime implicants). Consider some order of the variables. Let the rank (from 1 to n)
of a variable x be rank(x), let the rank rank(�) of a literal � be the rank of is un-
derlying variable, and let the rank rank(c) of a clause c be the maximum rank of its
literals. The clusters are the equivalence classes of the relation ∼ defined by: c ∼ c′ iff
rank(c) = rank(c′). The rank of a cluster is the rank of its clauses. The clusters are
then ordered according to increasing rank. Satisfiability solving using symbolic quanti-
fier elimination combined with Bouquet’s clustering is referred to in [42] as Bouquet’s
Method, which we abbreviate here is as BM.

1 Note that symbolic quantifier elimination provides pure satisfiability solving; the algorithm re-
turns 0 or 1. To find a satisfying truth assignment when the formula is satisfiable, the technique
of self-reducibility can be used, cf. [3].

Search vs. Symbolic Techniques in Satisfiability Solving 239

We still have to chose a variable order. An order that is often used in constraint
satisfaction [22] is the “maximum cardinality search” (MCS) order of [46], which is
based on the graph-theoretic structure of the formula. The graph associated with a CNF
formula ϕ =

∧
i ci is Gϕ = (V,E), where V is the set of variables in ϕ and an edge

{xi, xj} is in E if there exists a clause ck such that xi and xj occur in ck. We refer to
Gϕ as the Gaifman graph of ϕ. MCS ranks the vertices from 1 to n in the following
way: as the next vertex to number, select the vertex adjacent to the largest number of
previously numbered vertices (ties can be broken in various ways). Our first experiment
is a performance comparison of MCS-based BM to ZChaff.

3 Experimental Setup

We compare symbolic quantifier elimination to ZChaff across a variety of classes of
formulas. Unlike the standard practice of comparing solver performance on benchmark
suites [37], our focus here is not on simple time comparison, but rather on scalability.
That is, we focus on scalable classes of formulas and evaluate how performance scales
with formula size. We are interested in seeing which method scales better, i.e., polyno-
mial vs. exponential scalability, or different degrees of exponential scalability. Our test
suite includes both random and nonrandom formulas (for random formulas we took 60
samples per case and reported median time). Experiments were performed using x86
emulation on the Rice Terascale Cluster2, which is a large Linux cluster of Itanium II
processors with 4GB of memory each.

Our test suite includes the following classes of formulas:

– Random 3-CNF: We chose uniformly k 3-clauses over n variables. The density of
an instance is defined as k/n. We generate instances at densities 1.5, 6, 10, and 15,
with up to 200 variables, to allow comparison for both under-constrained and over-
constrained cases. (It is known that the satisfiability threshold of such formulas is
around 4.25 [44]).

– Random affine 3-CNF: Affine 3-CNF formulas are generated in the same way as
random 3-CNF formulas, except that the constraints are not 3-clauses, but parity
equations in the form of l1 ⊕ l2 ⊕ l3 = 1. Each constraint is then converted into
four clauses, yielding CNF formulas. The satisfiability threshold of such formula
is found empirically to be around density (number of equations divided by number
of variables) 0.95. We generate instances of density 0.5 and 1.5, with up to 400
variables.

– Random biconditionals: Biconditional formulas, also known as Urquhart formu-
las, form a class of affine formulas that have provably exponential resolution proofs.
A biconditional formula has the form l1 ↔ (l2 ↔ (. . . (lk−1 ↔ lk) . . .)), where
each li is a positive literal. Such a formula is valid if either all variables occur an
even number of times or all variables occur an odd number of times [48]. We gen-
erate valid formulas with up to 100 variables, where each variable occurs 3 times
on average.

2 http://www.citi.rice.edu/rtc/

240 G. Pan and M.Y. Vardi

– Random chains: The classes described so far all have an essentially uniform ran-
dom Gaifman graph, with no underlying structure. To extend our comparison to
structured formulas, we generate random chains [24]. In a random chain, we form
a long chain of random 3-CNF formulas, called subtheories. (The chain structure is
reminiscent to the structure typically seen in satisfiability instances obtained from
bounded model checking [6] and planning [34].) We use a similar generation pa-
rameters as in [24], where there are 5 variables per sub-theory and 5-23 clauses
per sub-theory, but that we generate instances with a much bigger number of sub-
theories, scaling up to > 20000 variables and > 4000 sub-theories.

– Nonrandom formulas: As in [47], we considered a variety of formulas with very
specific scalable structure:
• The n-Rooks problem (satisfiable).
• The n-Queens problem (satisfiable for n > 3).
• The pigeon-hole problem with n + 1 pigeons and n holes (unsatisfiable).
• The mutilated-checkerboard problem, where an n×n board with two diagonal

corner tiles removed is to be tiled with 1× 2 tiles (unsatisfiable).

4 Symbolic vs. Search Approaches

Our goal in this section is to address the viability of symbolic quantifier elimination.
To that end we compare the performance of BM against ZChaff, a leading DPLL-based
solver across the classes of formulas described above, with a focus on scalability. For
now, we use the MCS variable order.

In Figure 1, we can see that BM is not very competitive for random 3-CNF formulas.
At density 1.5, ZChaff scales polynomially, while BM scales exponentially. At density
6.0 and at higher densities, both methods scale exponentially, but ZChaff scales expo-
nentially better. (Note that above density 6.0 both methods scale better as the density
increases. This is consistent with the experimental results in [16] and [42].) A similar
pattern emerges for random affine formulas, see Figure 2. Again, ZChaff scales ex-
ponentially better than BM. (Note that both methods scale exponentially at the higher
density, while it is known that affine satisfiability can be determined in polytime using
Gaussian elimination [43].)

0 50 100 150 200
0

2

4

6

8

10

12

14

16

18

20

Variables

lo
g 2 r

un
ni

ng
 ti

m
e(

m
s)

BM,density=1.5
BM,density=6.0
BM,density=10
BM,density=15
ZChaff,density=1.5
ZChaff,density=6.0
ZChaff,density=10
ZChaff,density=15

Fig. 1. Random 3-CNF

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

14

16

18

Variables

lo
g 2 r

un
ni

ng
 ti

m
e(

m
s)

BM,density=0.5
BM,density=1.5
ZChaff,density=0.5
ZChaff,density=1.5

Fig. 2. Random 3-Affine

Search vs. Symbolic Techniques in Satisfiability Solving 241

10 20 30 40 50 60 70 80 90 100
2

4

6

8

10

12

14

16

18

20

Variables

lo
g 2 r

un
ni

ng
 ti

m
e(

m
s)

BM
ZChaff

Fig. 3. Random Biconditionals

10
2

10
3

10
4

7

8

9

10

11

12

13

14

15

16

Variables

lo
g 2 r

un
ni

ng
 ti

m
e(

m
s)

BM
ZChaff

Fig. 4. Random Chains

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

N

BM
ZChaff

Fig. 5. n-Rooks

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

14

16

18

N2

lo
g 2 R

un
ni

ng
 T

im
e

BM
ZChaff

Fig. 6. n-Queens

The picture changes for biconditional formulas, as shown in Figure 3. Again, both
methods are exponential, but BM scales exponentially better than ZChaff. (This result
is consistent with the finding in [12], which compares search-based methods to ZDD-
based multi-resolution.)

For random chains, see Figure 4, which uses a log-log scale. Both methods scale
polynomially on random chains. (Because density for the most difficult problems
change as the size of the chains scales, we selected here the hardest density for each
problem size.) Here BM scales polynomially better than than ZChaff. Note that for
smaller instances ZChaff outperforms BM, which justifies our focus on scalability
rather than on straightforward benchmarking.

Finally, we compare BM with ZChaff on the non-random formulas of [47]. The
n-Rooks problem is a simpler version of n-Queens problem, where the diagonal con-
straints are not used. For n-Rooks, the results are as in Figure 5. This problem have
the property of being globally consistent, i.e., any consistent partial solution can be
extended to a solution [22]. Thus, the problem is trivial for search-based solvers, as
no backtracking is need. In contrast BM scales exponentially on this problem. For n-
Queens, see Figure 6, both methods scale exponentially (in fact, they scale exponen-
tially in n2), but ZChaff scales exponentially better than BM. Again, a different picture

242 G. Pan and M.Y. Vardi

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

N

BM
ZChaff

Fig. 7. Pigeon Hole

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

N

BM
ZChaff

Fig. 8. Mutilated Checkerboard

emerges when we consider the pigeon-hole problem and the mutilated-checkerboard
problem, see Figure 7 and Figure 8. On both problems both BM and ZChaff scale ex-
ponentially, but BM scales exponentially better than ZChaff.

As in [47], who compared OBDDs and DPLL for solution enumeration, we find that
no approach dominates across all classes. While ZChaff dominates for many classes of
formulas, the symbolic approach is superior for other classes of formulas. This suggests
that the symbolic quantifier elimination is a viable approach and deserves further study.
In the next section of this work we focus on various optimization strategies for the
symbolic approach.

5 Optimizations

So far we have described one approach to symbolic quantifier elimination. There are,
however, many choices one needs to make to guide an implementation. The order of
variables is both used to guide clustering and quantifier elimination, as well as to or-
der the variables in the underlying OBDDs. Both clustering and cluster processing can
be performed in several ways. In this section, we investigate the impact of choices in
clustering, variable order, and quantifier elimination in the implementation of symbolic
algorithms. Our focus here is on measuring the impact of variable order on BDD-based
SAT solving; thus, the running time for variable ordering, which is polynomial for all
algorithms, is not counted in our figures.

5.1 Cluster Ordering

As argued earlier, the purpose of quantifier elimination is to reduce support-set size
of intermediate OBDDs. What is the best reduction one can hope for? This question
has been studied in the context of constraint satisfaction. It turns out that the optimal
schedule of conjunctions and quantifier eliminations reduces the support-set size to
one plus the treewidth of the Gaifman graph of the input formula [18]. The treewidth
of a graph is a measure of how close this graph is to being a tree [25]. Computing
the treewidth of a graph is known to be NP-hard, which is why heuristic approaches
are employed [36]. It turns out that by processing clusters in a different order we can

Search vs. Symbolic Techniques in Satisfiability Solving 243

0 50 100 150 200
2

4

6

8

10

12

14

16

18

20

Variables

lo
g 2 r

un
ni

ng
 ti

m
e(

m
s)

BM,density=1.5
BM,density=6.0
BM,density=10
BM,density=15
BE,density=1.5
BE,density=6.0
BE,density=10
BE,density=15

Fig. 9. Clustering Algorithms - Random 3-CNF

4 6 8 10 12 14 16 18 20
2

4

6

8

10

12

14

16

18

20

N

BM
BE

Fig. 10. Clustering Algorithms - Pigeon Hole

2 4 6 8 10 12 14 16 18 20
2

4

6

8

10

12

14

16

18

20

N

BM
BE

Fig. 11. Clustering Algorithms - Mutilated Checkerboard

attain the optimal support-set size. Recall that BM processes the clusters in order of
increasing ranks. Bucket elimination (BE), on the other hand, processes clusters in
order of decreasing ranks [23]. Maximal support-size set of BE with respect to optimal
variable order is defined as the induced width of the input instance, and the induced
width is known to be equal to the treewidth [23, 27]. Thus, BE with respect to optimal
variable order is guaranteed to have polynomial running time for input instances of
logarithmic treewidth, since this guarantees a polynomial upper bound on OBDD
size. We now compare BM and BE with respect to MCS variable order (MCS is the
preferred variable order also for BE).

The results for the comparison on random 3-CNF formulas is plotted in Figure 9. We
see that the difference between BM and BE is density dependent, where BE excels in the
low-density case, which have low treewidth, and BM excels in the high-density cases,
which has high treewidth. Across our other classes of random formulas, BM is typically
better, except for a slight edge that BE sometimes has for low-density instances. A
similar picture can be seen on most constructed formulas, where BM dominates, except
for mutilated-checkerboard formulas, where BE has a slight edge. (Note that treewidth
for mutilated checkerboard problems grows only at O(n) compared to O(n2) for other
constructed problems.) We plot the performance comparison for pigeon-hole formulas
in Figure 10 and mutilated checkerboard problems in Figure 11.

244 G. Pan and M.Y. Vardi

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Variables

D
en

si
ty

BE
BM

Fig. 12. Clustering Algorithms, Density=1.5

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Variables

D
en

si
ty

BE
BM

Fig. 13. Clustering Algorithms, Density=6.0

To understand the difference in performance between BM and BE, we study their
effect on intermediate OBDD size. OBDD size for a random 3-CNF instance depends
crucially on both the number of variables and the density of the instance. Thus, we
compare the effect of BM and BE in terms of these measures for the intermediate OB-
DDs. We apply BM and BE to random 3-CNF formulas with 50 variables and densities
1.5 and 6.0. We then plot the density vs. the number of variables for the intermediate
OBDDs generated by the two cluster-processing schemes. The results are plotted in in
Figure 12 and Figure 13. Each plotted point corresponds to an intermediate OBDD,
which reflects the clusters processed so far.

As can be noted from the figures, BM increases the density of intermediate results
much faster than BE. This difference is quite dramatic for high-density formulas. The
relation between density of random 3-CNF instance and OBDD size has been studied in
[16], where it is shown that OBDD size peaks at around density 2.0, and is lowest when
the density is close to 0 or the satisfiability threshold. This enables us to offer an possible
explanation to the superiority of BE for low-density instances and the superiority of
BM for high-density instances. For formulas of density 1.5, the density of intermediate
results is smaller than 2.0 and BM’s increased density results in larger OBDDs. For
formulas of density 6.0, BM crosses the threshold density 2.0 using a smaller number
of variables, and then BM’s increased density results in smaller OBDDs.

The general superiority of BM over BE suggests that minimizing support-set size
ought not to be the dominant concern. OBDD size is correlated with, but not dependent
on, support-set size. More work is required in order to understand the good perfor-
mance of BM. Our explanation argues that, as in [1], BM first deals with the most
constrained subproblems, therefore reducing OBDD-size of intermediate results. While
the performance of BE can be understood in terms of treewidth, we still lack, however,
a fundamental theory to explain the performance of BM.

5.2 Variable Ordering

As mentioned earlier, when selecting variables, MCS has to break ties, which happens
quite often. One can break ties by minimizing degree to unselected variables [42] or

Search vs. Symbolic Techniques in Satisfiability Solving 245

0 50 100 150 200
2

4

6

8

10

12

14

16

18

20

Order

lo
g 2 R

un
ni

ng
 T

im
e(

m
s)

density=1.5, max tie−breaker
density=1.5, min tie−breaker
density=1.5, arbitary tie−breaker
density=6, max tie−breaker
density=6, min tie−breaker
density=6, arbitary tie−breaker

Fig. 14. Variable Ordering Tie-breakers

0 50 100 150 200
2

4

6

8

10

12

14

16

18

20

Variables

lo
g 2 r

un
ni

ng
 ti

m
e(

m
s)

Best width seed,density = 1.5
Best width seed,density=6.0
Lowest degree seed,density = 1.5
Lowest degree seed,density=6.0

Fig. 15. Initial Variable Choice

by maximizing it [4]. (Another choice to to break ties uniformly at random, but this
choice is expensive to implement, since it is difficult to choose an element uniformly
at random from a heap.) We compare these two heuristic with an arbitrary tie-breaking
heuristic, in which we simply select the top variable in the heap. The results are shown
in Figure 14 for random 3-CNF formulas. For high density formulas, tie breaking made
no significant difference, but least-degree tie breaking is markedly better for the low
density formulas. This seems to be applicable across a variety of class of formulas and
even for different orders and algorithms.

MCS typically has many choices for the lowest-rank variable. In Koster et. al. [36],
it is recommended to start from every vertex in the graph and choose the variable order
that leads to the lowest treewidth. This is easily done for instances of small size, i.e.
random 3-CNF or affine problems; but for structured problems, which could be much
larger, the overhead is too expensive. Since min-degree tie-breaking worked quite well,
we used the same idea for initial variable choice. In Figure 15, we see that our assump-
tion is well-founded, that is, the benefit of choosing the best initial variable compared
to choosing a min-degree variable is negligible.

Algorithms for BDD variable ordering in the model checking area are often based
on circuit structures, for example some form of traversal [38, 28] or graph evaluation
[13]. Since we only have the graph structure based on the CNF clauses, we do not have
the depth or direction information that circuit structure can provide. As the circuits
in question become more complex, the effectiveness of simple traversals would also
reduce. So, we use the graph-theoretic approaches used in constraint satisfaction instead
of those from model checking.

MCS is just one possible vertex-ordering heuristics. Other heuristics have been stud-
ied in the context of treewidth approximation. In [36] two other vertex-ordering heuris-
tics that based on local search are studied: LEXP and LEXM.3 Both LEXP and LEXM
are based on lexicographic breadth-first search, where candidate variables are lexico-
graphically ordered with a set of labels, and the labels are either the set of already cho-

3 The other heuristic mentioned in [36] is MSVS, which constructes a tree-decomposition in-
stead of a variable order.

246 G. Pan and M.Y. Vardi

0 50 100 150 200
2

4

6

8

10

12

14

16

18

20

Order

lo
g 2 R

un
ni

ng
 T

im
e(

m
s)

density=1.5, MCS
density=1.5, MIW
density=1.5, MF
density=1.5, LEXP
density=1.5, LEXM

Fig. 16. Vertex Order Heuristics
Random 3-CNF, Density=1.5

0 50 100 150 200
2

4

6

8

10

12

14

16

18

20

Order

lo
g 2 R

un
ni

ng
 T

im
e(

m
s)

density=6, MCS
density=6, MIW
density=6, MF
density=6, LEXP
density=6, LEXM

Fig. 17. Vertex Order Heuristics
Random 3-CNF, Density=6

2 4 6 8 10 12 14 16 18 20
2

4

6

8

10

12

14

16

18

20
MCS
MIW
MF
LEXP
LEXM

Fig. 18. Vertex Order Heuristics - Pigeon Hole

2 4 6 8 10 12 14 16 18 20
2

4

6

8

10

12

14

16

18

20

MCS
MIW
MF
LEXP
LEXM

Fig. 19. Vertex Order Heuristics - Mutilated
Checkerboard

sen neighbors (LEXP), or the set of already chosen vertices reachable through lower-
ordered vertices (LEXM). Both algorithms try to generate vertex orders where a trian-
gulation would add a small amount of edges, thus reducing treewidth. In [22], Dechter
also studied heuristics like Min-Induced-Width (MIW) or Min-Fill (MF), which are
greedy heuristics based on choosing the vertex that have the least number of induced
neighbors (MIW) or the vertex that would add the least number of induced edges (MF).

In Figure 16 and 17, we compare variable orders constructed from MCS, LEXP,
LEXM, MIW, and MF for random 3-CNF formulas. For high-density cases, MCS is
clearly superior. For low-density formulas, LEXP has a small edge, although the dif-
ference is quite minimal. Across the other problem classes (for example, pigeon-hole
formulas as in Figure 18 and mutilated checkerboard as in Figure 19), MCS uniformly
appears to be the best order, generally being the top performer. Interestingly, while other
heuristics like MF often yield better treewidth, MCS still yields better runtime perfor-
mance. This indicates that minimizing treewidth need not be the dominant concern.

Search vs. Symbolic Techniques in Satisfiability Solving 247

5.3 Quantifier Elimination

So far we argued that quantifier elimination is the key to the performance of the sym-
bolic approach. In general, reducing support-set size does result in smaller OBDDs. It
is known, however, that quantifier elimination may incur non-negligible overhead and
may not always reduce OBDD size [9]. To understand the role of quantifier elimination
in the symbolic approach, we reimplemented BM and BE without quantifier elimina-
tion. Thus, we do construct an OBDD that represent all satisfying truth assignments,
but we do that according to the clustering and cluster processing order of BM and BE.

In Figure 20, we plotted the running time of both BM and BE, with and with-
out quantifier elimination on random 3-CNF formulas. We see that for BM there is
a trade-off between the cost and benefit of quantifier elimination. For low-density in-
stances, where there are many solutions, the improvement from quantifier elimination
is clear, but for high-density instances, quantifier elimination results in no improvement
(while not reducing OBDD size). For BE, where the overhead of quantifier elimination
is lower, quantifier elimination improves performance, although the improvement is less
significant for high densities. On the other hand, quantifier elimination is important for
the constructed formulas, for example, for the pigeon-hole formulas in Figure 21 and
the mutilated checkerboard formulas in Figure 22.

0 50 100 150 200
2

4

6

8

10

12

14

16

18

20

Variables

lo
g 2 r

un
ni

ng
 ti

m
e(

m
s)

BM−EQ,density=1.5
BM−EQ,density=6.0
BM−no EQ,density=1.5
BM−no EQ,density=6.0
BE−EQ,density=1.5
BE−EQ,density=6.0
BE−no EQ,density=1.5
BE−no EQ,density=6.0

Fig. 20. Quantifier Elimination-Random 3-CNF

2 4 6 8 10 12 14 16 18 20
2

4

6

8

10

12

14

16

18

20

N

lo
g 2 R

un
ni

ng
 T

im
e

BM−EQ
BM−no EQ

Fig. 21. Quantifier Elimination-Pigeon Hole

2 4 6 8 10 12 14 16 18 20
2

4

6

8

10

12

14

16

18

20

N

BM−EQ
BM−no EQ

Fig. 22. Quantifier Elimination - Mutilated Checkerboard

248 G. Pan and M.Y. Vardi

6 Discussion

Satisfiability solvers have made tremendous progress over the last few years, partly
driven by frequent competitions, cf. [37]. At the same time, our understanding of why
extant solvers perform so well is lagging. Our goal in this paper is not to present a
new competitive solver, but rather to call for a broader research agenda. We showed
that a symbolic approach can outperform a search-based approach, but much research
is needed before we can have robust implementations of the symbolic approach. Re-
cent works have suggested other symbolic approaches to satisfiability solving, e.g.,
ZDD-based multi-resolution in [12], compressed BFS search in [40], and BDD rep-
resentation for non-CNF constraint in the framework of DPLL search in [19, 26]. These
works bolster our call for a broader research agenda in satisfiability solving. Such an
agenda should build connections with two other successful areas of automated reason-
ing, namely model checking [15] and constraint satisfaction [22]. Furthermore, such an
agenda should explore hybrid approaches, combining search and symbolic techniques,
cf. [32, 40, 19, 26]. One hybrid approach that have shown promise is that of the QBF
solver Quantor [5], where quantifier elimination is applied until the formula become
propositional, then a search-based solver takes over.

References

1. E. Amir and S. McIlraith. Solving satisfiability using decomposition and the most con-
strained subproblem. In SAT 2001, June 2001.

2. S. Arnborg, D. Corneil, and A. Proskurowski. Complexity of finding embeddings in a k-tree.
SIAM J. Alg. Disc. Math, 8:277–284, 1987.

3. J. Balcazar. Self-reducibility. J. Comput. Syst. Sci., 41(3):367–388, 1990.
4. D. Beatty and R. Bryant. Formally verifying a microprocessor using a simulation methodol-

ogy. In Proc. 31st Design Automation Conference, pages 596–602. IEEE Computer Society,
1994.

5. A. Biere. Resolve and expand. In SAT 2004, 2004.
6. A. Biere, C. A, E. Clarke, M. Fujita, and Y. Zhu. Symbolic model checking using SAT

procedures instead of BDD. In Proc. 36th Conf. on Design Automation, pages 317–320,
1999.

7. M. Block, C. Gröpl, H. Preuß, H. L. Proömel, and A. Srivastav. Efficient ordering of state
variables and transition relation partitions in symbolic model checking. Technical report,
Institute of Informatics, Humboldt University of Berlin, 1997.

8. F. Bouquet. Gestion de la dynamicite et enumeration d’implicants premiers, une approche
fondee sur les Diagrammes de Decision Binaire. PhD thesis, 1999.

9. R. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Trans. on
Comp., Vol. C-35(8):677–691, August 1986.

10. J. Burch, E. Clarke, and D. Long. Symbolic model checking with partitioned transition
relations. In Int. Conf. on Very Large Scale Integration, 1991.

11. J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang. Symbolic model checking: 1020

states and beyond. Infomation and Computation, 98(2):142–170, 1992.
12. P. Chatalic and L. Simon. Multi-Resolution on compressed sets of clauses. In Twelfth Inter-

national Conference on Tools with Artificial Intelligence (ICTAI’00), pages 2–10, 2000.
13. P. Chung, I. Hajj, and J. Patel. Efficient variable ordering heuristics for shared robdd. In

Proc. Int. Symp. on Circuits and Systems, 1993.

Search vs. Symbolic Techniques in Satisfiability Solving 249

14. A. Cimatti and M. Roveri. Conformant planning via symbolic model checking. J. of AI
Research, 13:305–338, 2000.

15. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
16. C. Coarfa, D. D. Demopoulos, A. San Miguel Aguirre, D. Subramanian, and M. Vardi. Ran-

dom 3-SAT: The plot thickens. Constraints, pages 243–261, 2003.
17. J. Crawford and A. Baker. Experimental results on the application of satisfiability algorithms

to scheduling problems. In AAAI, volume 2, pages 1092–1097, 1994.
18. V. Dalmau, P. Kolaitis, and M. Vardi. Constraint satisfaction, bounded treewidth, and finite-

variable logics. In CP’02, pages 310–326, 2002.
19. R. F. Damiano and J. H. Kukula. Checking satisfiability of a conjunction of BDDs. In DAC

2003, 2003.
20. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving. Journal

of the ACM, 5:394–397, 1962.
21. S. Davis and M. Putnam. A computing procedure for quantification theory. Journal of ACM,

7:201–215, 1960.
22. R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.
23. R. Dechter and J. Pearl. Network-based heuristics for constraint-satisfaction problems. Ar-

tificial Intelligence, 34:1–38, 1987.
24. R. Dechter and I. Rish. Directional resolution: The Davis-Putnam procedure, revisited. In

KR’94: Principles of Knowledge Representation and Reasoning, pages 134–145. 1994.
25. R. Downey and M. Fellows. Parametrized Complexity. Springer-Verlag, 1999.
26. J. Franco, M. Kouril, J. Schlipf, J. Ward, S. Weaver, M. Dransfield, and W. Vanfleet. SBSAT:

a state-based, BDD-based satisfiability solver. In SAT 2003, 2003.
27. E. Freuder. Complexity of k-tree structured constraint satisfaction problems. In Proc. AAAI-

90, pages 4–9, 1990.
28. M. Fujita, H. Fujisawa, and N. Kawato. Evaluation and improvements of Boolean compari-

son method based on binary decision disgrams. In ICCAD, 1988.
29. D. Geist and H. Beer. Efficient model checking by automated ordering of transition relation

partitions. In CAV 1994, pages 299–310, 1994.
30. E. Goldberg and Y. Novikov. BerkMin: A fast and robust SAT solver, 2002.
31. J. F. Groote. Hiding propositional constants in BDDs. FMSD, 8:91–96, 1996.
32. A. Gupta, Z. Yang, P. Ashar, L. Zhang, and S. Malik. Partition-based decision heuristics for

image computation using SAT and BDDs. In ICCAD, 2001.
33. R. Hojati, S. C. Krishnan, and R. K. Brayton. Early quantification and partitioned transition

relations. pages 12–19, 1996.
34. H. Kautz and B. Selman. Planning as satisfiability. In Proc. Eur. Conf. on AI, pages 359–379,

1992.
35. S. Khurshid, D. Marinov, I. Shlyyakhter, and D. Jackson. A case for efficient solution enu-

meration. In SAT 2003, 2003.
36. A. Koster, H. Bodlaender, and S. van Hoesel. Treewidth: Computational experiments. Tech-

nical report, 2001.
37. D. Le Berre and L. Simon. The essentials of the SAT’03 competition. In SAT 2003, 2003.
38. S. Malik, A. Wang, R. Brayton, and A. Sangiovanni Vincentelli. Logic verification using

binary decision diagrams in a logic synthesis environment. In ICCAD, 1988.
39. S. Minato. Binary Decision Diagrams and Applications to VLSI CAD. Kluwer, 1996.
40. D. B. Motter and I. L. Markov. A compressed breadth-first search for satisfiability. In LNCS

2409, pages 29–42, 2002.
41. R. Ranjan, A. Aziz, R. Brayton, B. Plessier, and C. Pixley. Efficient BDD algorithms for

FSM synthesis and verification. In Proc. of IEEE/ACM Int. Workshop on Logic Synthesis,
1995.

250 G. Pan and M.Y. Vardi

42. A. San Miguel Aguirre and M. Y. Vardi. Random 3-SAT and BDDs: The plot thickens
further. In Principles and Practice of Constraint Programming, pages 121–136, 2001.

43. T. Schaefer. The complexity of satisfiability problems. In STOC’78, pages 216–226, 1978.
44. B. Selman, D. G. Mitchell, and H. J. Levesque. Generating hard satisfiability problems.

81(1-2):17–29, 1996.
45. F. Somenzi. CUDD: CU decision diagram package, 1998.
46. R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to tests chordality of graphs,

tests acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput.,
13(3):566–579, 1984.

47. T. E. Uribe and M. E. Stickel. Ordered binary decision diagrams and the Davis-Putnam
procedure. In 1st Int. Conf. on Constraints in Computational Logics, pages 34–49, 1994.

48. A. Urquhart. The complexity of propositional proofs. the Bulletin of Symbolic Logic, 1:425–
467, 1995.

49. L. Zhang and S. Malik. The quest for efficient Boolean satisfiability solvers. In CAV 2002,
pages 17–36, 2002.

Worst Case Bounds for Some NP-Complete
Modified Horn-SAT Problems

Stefan Porschen and Ewald Speckenmeyer

Institut für Informatik, Universität zu Köln, D-50969 Köln, Germany
{porschen, esp}@informatik.uni-koeln.de

Abstract. We consider the satisfiability problem for CNF formulas that
contain a (hidden) Horn and a 2-CNF (also called quadratic) part, called
mixed (hidden) Horn formulas. We show that SAT remains NP-complete
for such instances and also that any SAT instance can be encoded in
terms of a mixed Horn formula in polynomial time. Further, we provide
an exact deterministic algorithm showing that SAT for mixed (hidden)
Horn formulas containing n variables is solvable in time O(20.5284n). A
strong argument showing that it is hard to improve a time bound of
O(2n/2) for mixed Horn formulas is provided. We also obtain a fixed-
parameter tractability classification for SAT restricted to mixed Horn
formulas C of at most k variables in its positive 2-CNF part providing
the bound O(‖C‖20.5284k). Motivating examples for mixed Horn formu-
las are level graph formulas [14] and graph colorability formulas.

Keywords: (hidden) Horn formula, quadratic formula, satisfiability, NP-
completeness, minimal vertex cover, fixed-parameter tractability.

1 Introduction and Motivation

In recent time the interest in designing exact algorithms providing better upper
time bounds than the trivial ones for NP-complete problems and their NP-hard
optimization versions has increased. Of particular interest in this context is the
investigation of exact algorithms for testing the satisfiability (SAT) of proposi-
tional formulas in conjunctive normal form (CNF). This interest stems from the
fact that SAT is well known to be a fundamental NP-complete problem appear-
ing naturally or via reduction as the abstract core of many application-relevant
problems. Not only the whole class CNF is of interest in this context. In several
applications subclasses of CNF are of importance for which SAT unfortunately
remains NP-complete. Nevertheless, it is often possible by exploiting the specific
structure of such formulas to design fast exact algorithms for them. Such sub-
classes can be obtained by composing or mixing formulas of two different parts
each of which separately is SAT-testable in polynomial time (see also [10]).

In this paper we introduce and study so-called mixed Horn formulas which
roughly speaking are formulas composed of a quadratic part and a Horn part.
More precisely, for a positive monotone 2-CNF formula P (containing only 2-
clauses) and a Horn formula H, we call the formula M = H ∧ P a mixed Horn

H.H. Hoos and D.G. Mitchell (Eds.): SAT 2004, LNCS 3542, pp. 251–262, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

252 S. Porschen and E. Speckenmeyer

formula (MHF). It is well known that 2-SAT and Horn-SAT are solvable in lin-
ear time [1, 12], but SAT for MHF’s (shortly MHF-SAT) remains NP-complete.
The main purpose of this paper is to prove a non-trivial worst case upper time
bound for solving MHF-SAT, namely O(20.5284n) where n is the number of vari-
ables in the input instance. Moreover, we obtain a fixed-parameter tractability
classification (cf. e.g. [3]) of SAT restricted to MHF’s M = P ∧ H where P
has a fixed number k of different variables, provided by the polynomial bound
O(‖M‖20.5284k), where ‖M‖ is the length of M .

We also analyse the connection of MHF-SAT to unrestricted SAT. Specifically
we show that each CNF formula C with n different variables can be transformed
in polynomial time into a MHF M = P ∧H, such that P has k ≤ 2n different
variables. Then C is satisfiable if and only if M is satisfiable, and the question,
whether M ∈ SAT, can be answered in time O(‖C‖2k/2). Hence, if there is an
α < 1

2 such that every MHF M = P ∧ H can be solved in time O(‖C‖2αk),
then there is β ≤ 2α < 1 such that SAT for an arbitrary CNF-formula C can be
decided in time O(‖C‖2βn). The MHF-formulation of a CNF-formula C yields
a partition of all variables in C into the essential variables (variables occuring
in P) and the remaining ones.

The introduction and investigation of MHF’s is by no means artificial. Well
known problems for level graphs, like level-planarity test or the NP-hard cros-
sing-minimization problem, can be formulated conveniently in terms of MHF’s
(for more details see [14]). This was our motivation for considering MHF’s. Also
graph colorability naturally leads to MHF’s. To see this, consider a simple graph
G = (V,E) and a set of r colors [r] := {1, . . . , r}. The decision whether G
is r-colorable, i.e., whether at most r colors can be assigned to all vertices in
V such that no two adjacent vertices are colored equally, can be encoded into
MHF-SAT as follows: For every vertex x ∈ V introduce r variables xi, i ∈ [r],
and one clause x1 ∨ x2 ∨ · · · ∨ xr. For every edge x − y ∈ E, we have to ensure
that x and y are colored differently. So we introduce for each color i ∈ [r] the
clause ¬(xi ∧ yi) ≡ (xi ∨ yi) yielding r 2-clauses for every edge. In summary, we
obtain a CNF formula C(G) consisting of |V |+ r|E| clauses and containing r|V |
different variables. Finally complementing all variables in C(G) turns all its r-
clauses into negative monotone clauses and its 2-clauses into positive monotone
clauses, hence yields a MHF C̃(G). It is easy to verify that G is r-colorable if and
only if the MHF C̃(G) is satisfiable via the interpretation that setting variable
xi to FALSE means that the corresponding vertex x is colored by i. Notice
that introducing only one r-clause for every vertex ensuring at least (instead of
exactly) one color for every vertex suffices for deciding r-colorability. Another
source supplying the interest in Horn clauses contained in CNF formulas stems
from recent observations of hidden threshold phenomena [17] according to a fixed
fraction of Horn clauses in CNF formulas.

The paper is organized as follows. Section 2 introduces definitions and no-
tations used throughout the paper. In Section 3, three versions of MHF’s are
introduced. Each of these classes is NP-complete w.r.t. SAT as follows from the
above described transformation of the well known NP-complete graph coloring

Worst Case Bounds for Some NP-Complete Modified Horn-SAT Problems 253

problem [4]. We provide another polynomial time transformation of CNF-SAT to
MHF-SAT on which some investigations in this paper rely. In Section 4, a vertex
cover based algorithm for determining SAT of a MHF M is presented having
running time O(20.5284n), with n the number of variables in M . The approach
also yields a classification of MHF’s allowing for a fixed-parameter tractability
result. Section 5 provides a strong argument telling that it is hard to improve an
O(2n/2) time bound for solving MHF-SAT. Section 6 finally, describes a further
vertex cover based technique for speeding up the MHF-SAT algorithm. Some
experimental results illustrating the usefulness of this approach are presented.

2 Basic Definitions and Notation

Let CNF denote the set of formulas (free of duplicate clauses) in conjunctive
normal form over a set V = {x1, . . . , xn} of propositional variables (n ∈ N).
Each formula C ∈ CNF is considered as a clause set C = {c1, . . . , c|C|}. Each
clause c ∈ C is a disjunction of different literals, and is also represented as a
set c = {l1, . . . , l|c|}. The length of a formula C is denoted by ‖C‖ whereas
|C| denotes the number of its clauses. Each variable x induces a positive literal
(variable x) or a negative literal (negated variable: x). Clauses containing positive
(negative) literals only are called positive (negative) monotone. We denote by
V (C) the set of variables occuring in formula C. The satisfiability problem (SAT)
asks in its decision version, whether a given CNF instance C is satisfiable, i.e.,
whether C has a model, which is a truth assignment τ : V (C) → {0, 1} setting
at least one literal in each clause of C to 1 (TRUE). For convenience we allow
the empty set to be a formula: ∅ ∈ CNF which is always satisfiable. In its search
version SAT means to find a model τ if the input formula is satisfiable.

For X ⊆ V (C), we denote by CX the formula obtained from C by flipping
all variables in X; in case X = V (C) we write Cγ := CV (C). Given a formula
C ∈ CNF and a partial truth assignment τ : V (C) → {0, 1}, we denote by
C[τ] the formula obtained from C by removing all clauses satisfied by τ and
removing all literals from the remaining clauses which are set to 0 (FALSE)
by τ . Obviously, if τ is a model of C then C[τ] = ∅. For two partial truth
assignments τ, τ1 of a formula C, satisfying τ1 ⊆ τ , i.e., D(τ1) ⊆ D(τ) (for their
domains) and τ−1

1 (1) ⊆ τ−1(1), obviously holds: If τ satisfies C, then C[τ1] is
satisfiable.

For k ∈ N, let k-CNF (resp. CNF(= k)) denote the subset of formulas C such
that each clause has length at most (resp. exactly) k. Moreover Mε, ε ∈ {+,−},
denotes the set of ε-monotone (CNF-)formulas, i.e., for ε = + (−) all clauses are
positive (negative) monotone. Let H denote the set of all Horn formulas; each
clause of which has at most one positive literal. For a hidden Horn formula H,
by definition there exists a subset X ⊆ V (H) such that HX is a Horn formula.
The set of all hidden Horn formulas is denoted by Ĥ.

For a monotone formula C ∈ Mε (ε ∈ {+,−}), we can construct its formula
graph GC with vertex set V (C) in linear time. Two vertices are joined by an
edge if there is a clause in C containing the corresponding variables. Clearly,

254 S. Porschen and E. Speckenmeyer

for each c ∈ C the subgraph GC |c of GC is isomorphic to the complete graph
K|c|. In the particular case of C ∈ Mε(= 2), i.e., C is a monotone formula
containing 2-clauses only, GC contains exactly one edge for every clause in C.
Note that a monotone formula C ∈ CNF(= 2) with each variable occuring only
once corresponds to a graph consisting of isolated edges only, and whose number
of edges is half the number of vertices.

3 Mixed Horn Formulas

Let C1, C2 ⊂ CNF be two classes of formulas over the same variable set V . A
formula C ∈ CNF such that there are formulas Ci ∈ Ci, i = 1, 2, with C =
C1 ∧ C2, is called mixed (over C1, C2). The collection of formulas mixed over
C1, C2 is denoted as C1 ∧ C2. In this paper we are interested in specific mixed
formulas containing Horn subformulas:

Definition 1. We define the class of mixed Horn formulas by MHF := H ∧
2-CNF and the class of mixed hidden Horn formulas by MHHF := Ĥ ∧ 2-CNF.
The set of mixed Horn formulas based on the negative monotone formulas, called
negative mixed Horn formulas is denoted by MHF− := M− ∧ 2-CNF.

Because all 2-clauses which are not positive monotone are Horn, every formula
M ∈ MHF has the unique representation M = H ∧P , where P is the collection
of all positive monotone 2-clauses in M and H is the remaining Horn subformula.
Given M ∈ MHF we thus write P (M), H(M) for these subformulas, respectively.

The question arises whether the mixed formulas introduced in the Definition
above can be recognized fast. It is obvious that membership of MHF and MHF−
for an instance C ∈ CNF can be recognized in time O(‖C‖). The next lemma
gives a positive answer also for recognizing mixed hidden Horn formulas.

Lemma 1. For C ∈ CNF with n = |V (C)|, it can be decided in time O(‖C‖)
whether C ∈ MHHF.

Proof. Let C ∈ CNF such that C �∈ MHF, otherwise we are done. Let T ∈
CNF(= 2) be the collection of all 2-clauses in C. Observe that T is Horn except
for its positive monotone part. This means that it suffices to check whether
C ′ := C \ T is a hidden Horn formula, since flipping variables in T has no
effect regarding the mixed hidden Horn status of the input instance C. It is well
known that a hidden Horn formula C ′ can be recognized in time O(‖C ′‖) [11],
from which the assertion follows. ��

We therefore have for every instance M̂ ∈ MHHF a unique decomposition M̂ =
Ĥ ∧ T where T ∈ CNF(= 2) contains all 2-clauses in M̂ and Ĥ ∈ Ĥ. We shall
also write T (M̂) and Ĥ(M̂) for given M ∈ MHHF.

It is not hard to see that the reduction from graph colorability to MHF-SAT
presented in the introduction is de facto a reduction to MHF−-SAT. Using the
(proper) inclusions MHF− ⊂ MHF ⊂ MHHF we readily obtain:

Proposition 1. SAT remains NP-complete for instances from MHF−, MHF,
and MHHF. ��

Worst Case Bounds for Some NP-Complete Modified Horn-SAT Problems 255

Next we describe a transformation of CNF-SAT to MHF-SAT, which is reconsid-
ered in Section 5. This transformation also provides a different look at CNF-SAT
solving from the point of view of MHF’s.

Transformation (∗):
Input: C ∈ CNF
Output: MC ∈ MHF−, s.t. MC ∈ SAT iff C ∈ SAT
begin
Let V+(C) ⊆ V (C) be the set of all variables that occur positive in at least one
k-clause of C with k ≥ 3.
For every variable x ∈ V+(C) introduce a new variable yx �∈ V (C). Then:
1.) Replace all positive occurences of x ∈ V+(C) in the k-clauses k ≥ 3 by yx,
for every x ∈ V+(C). Let the formula obtained be C ′.
2.) Add the constraints yx ↔ x to C ′, for all x ∈ V+(C). This yields the new
CNF formula

MC := C ′ ∪
⋃

x∈V+(C)

{yx, x} ∪ {yx, x}

end

In the last step we have used the simple equivalences yx ↔ x ≡ yx → x∧yx →
x and a → b ≡ a∨ b. Because all positive literals occuring in k-clauses of C with
k ≥ 3 are removed, MC ∈ MHF− holds.

Transformation (∗) obviously is polynomial time and a reduction in the sense
that C ∈ SAT if and only if MC ∈ SAT. It can be adapted also to obtain a MHF,
which is not necessarily a member of the class MHF−. For this, it is often not
necessary to create for every x ∈ V+(C) a new variable as indicated above. A
subset of V+(C), as small as possible, suffices to yield a (not necessarily negative
monotone) Horn part and thus may produce a smaller positive monotone part
P of 2-clauses. It turns out that the size of P is the crucial quantity regarding
the running time of Algorithm MHFSAT described in the next section.

4 A SAT-Algorithm for Mixed Horn Formulas

We aim at providing a non-trivial exact deterministic algorithm solving the SAT
search problem for the classes MHF−, MHF, and MHHF. As it turns out it is
convenient to address first the class MHF. For such an instance M ∈ MHF, we
assume that P := P (M) ∈ M+(= 2) is not the empty formula. Since otherwise
a model for M = H(M) ∈ H can be found by Horn-SAT, if existing. Recall that
Horn-SAT even provides a minimal model. Since P is monotone and each of its
clauses is a 2-clause, the formula graph GP of P has exactly one edge for each
clause in P , i.e. GP = (V (P), P). By monotonicity P obviously is satisfiable.
Observe that for satisfying P it suffices to find a set of variables X hitting all
clauses of P and to set every variable in X to 1. The remaining variables in P are
free, i.e., independent of P and if possible should be assigned appropriately to

256 S. Porschen and E. Speckenmeyer

satisfy the remaining Horn formula, too. In terms of the formula graph GP , such
a set X corresponds to a vertex cover of GP . In other words running through
all vertex covers of GP means running through all models of P . For every such
model of P , we can test by Horn-SAT whether it can be extended to a model of
the remaining Horn formula H(M) and thus to a model of the whole instance
M . Due to the next lemma it is not necessary to test every vertex cover of GP :

Lemma 2. An instance M = P ∧ H ∈ MHF is satisfiable if and only if there
exists a minimal vertex cover of GP which can be extended to a model of M .

Proof. Suppose that M = H ∧ P ∈ MHF is satisfiable and let σ be a model
of M . Then H ∈ SAT and σP := σ|V (P) is a model of P . Restricting the
domain of σP to those variables x ∈ V (P) with σP (x) = 1 also yields a model
τ of P with D(τ) = τ−1(1), because P is positive monotone. Clearly, the set
X := {x ∈ V (P) : σP (x) = 1} represents a vertex cover of GP . If X is a minimal
vertex cover of GP we are done. Otherwise, this vertex cover contains a minimal
vertex cover of GP corresponding to a truth assignment τ ′ that is also a model
of P . By construction D(τ ′) = τ ′−1(1) ⊂ σ−1(1) holds. Hence τ ′ is contained in
σ yielding M [τ ′] ∈ SAT which means that τ ′ can be extended to a model of M
proving the only-if part of the Lemma. The converse direction is obvious. ��

Hence, an algorithm that enumerates all minimal vertex covers of GP and that
for each cover separately checks in linear time whether the remaining Horn for-
mula is satisfiable, definitely performs the task of solving SAT for M . It is well
known that the complement of a vertex set of a minimal vertex cover of GP

is a maximal independent set in GP . Thus, it suffices to compute all maximal
independent sets in GP . Fortunately an algorithm of computing all maximal
independent sets in graphs, with polynomial delay only, has been developed by
Johnson et al. see [7]. Exploiting this algorithm we use a procedure MinVC(G)
to generate all minimal vertex covers of a graph G with polynomial delay. Sim-
ilarly, we will use a procedure HornSat(H) that returns a minimal model τ of
H if and only if H is a satisfiable Horn formula, else returns nil, for an appro-
priate Horn-SAT algorithm see e.g. [12, 9]. Now we are ready to state algorithm
MHFSAT determining a model τ of M ∈ MHF, if M is satisfiable, otherwise
unsatisfiability (nil) of M is reported. For convenience we identify a vertex cover
X of GP and the corresponding partial model in M = H∧P ∈ MHF. X becomes
nil if all minimal vertex covers of GP have been enumerated:

Algorithm MHFSAT(M, τ)
Input: M ∈ MHF
Output: model τ for M , if M ∈ SAT, nil otherwise
begin
compute P := P (M)
if P = ∅ then return τ ← HornSat(M)
compute graph GP

τ ← nil; X ← nil
repeat

Worst Case Bounds for Some NP-Complete Modified Horn-SAT Problems 257

compute by MinVC(GP) the next minimal vertex cover X of GP

if X �= nil then τ ← HornSat(M [X])
until τ �= nil or X = nil
return X ∪ τ
end

Theorem 1. Algorithm MHFSAT solves SAT of an input formula M ∈ MHF
in time O(20.5284n), where n = |V (M)|.

Proof. The correctness of the algorithm follows from the argumentation above.
Moreover, it is not hard to see that X = nil if and only if τ = nil in the last line
of the algorithm. Hence, it is ensured that the returned value either is a model
for the input instance M or is nil.

Addressing the running time, we can compute P := P (M), and the formula
graph GP = (V (P), P) of P in linear time O(‖M‖). If P = ∅ we are done in
linear time by Horn-SAT. If P �= ∅, we have to execute the repeat-until loop.
During each iteration we never consume more than the polynomial delay for
computing the next minimal vertex cover followed by a linear time Horn-SAT
computation, thus needing only polynomial time. The number of iterations is
bounded by the number of all minimal vertex covers of GP . Given a graph G,
it is a long standing result by Moon and Moser [13] that the number of its
maximal independent sets is bounded by 3

1

3
|V (G)| � 20.5284|V (G)|. In fact, this

is a tight bound in the sense that there exist graphs achieving this number.
Such graphs consist of n/3 copies of the K3. For every triangle independently
contributes three different minimal vertex covers, resp. maximal independent
sets. Hence, we conclude that SAT for an arbitrary instance M ∈ MHF is solvable
in time O(p(n)3

n
3) where p denotes an appropriate polynomial, thus providing

the claimed time bound of O(20.5284n). ��

Due to Lemma 1 we can solve the SAT search problem for mixed hidden Horn
formulas C ∈ MHHF within the same time asymptotically:

Corollary 1. For input instances C ∈ MHHF, the search version of SAT can
be solved in time O(20.5284n) where n = |V (C)|.
We shall derive another consequence from the preceding discussion. Notice that
the variables of P (M) are crucial for the running time of Algorithm MHFSAT
only, because they form the vertex set of the graph GP (M) that has to be inves-
tigated:

Corollary 2. For M = H ∧ P ∈ MHF the search version of SAT is solvable in
time O(‖M‖20.5284|V (P)|).

Let MHFk denote the special class of MHF’s C = H ∧ P with |V (P)| ≤ k,
i.e., the positive monotone 2-clauses have at most k different variables for fixed
k ∈ N. W.r.t. the classes of MHFk, k ≥ 0, we have a fixed-parameter tractability
classification of the SAT problem for MHF:

Corollary 3. For an input instance M ∈ MHFk, k ≥ 0, SAT can be decided in
polynomial time O(‖M‖20.5284k).

258 S. Porschen and E. Speckenmeyer

Similarly, denote by MHHFk the subset of mixed hidden Horn formulas M̂ whose
maximal subformula T (M̂) ∈ CNF(= 2) has at most k different variables. By
Lemma 1 and Corollary 3, we also obtain w.r.t. the classes of MHHFk, k ≥ 0, a
fixed-parameter tractability classification of the SAT problem for MHHF:

Corollary 4. For an input instance M̂ ∈ MHHFk, k ≥ 0, SAT can be decided
in polynomial time O(‖M̂‖20.5284k), where n := |V (M̂)|.

For some subclasses of MHF we have slightly better bounds than stated in
Corollary 2:

Proposition 2. Let M = H ∧ P ∈ MHF with k = |V (P)| and formula graph
G := GP associated to P .

(1) There is a polynomial p such that SAT is solvable for M in time O(p(k)2k/2)
in either of the following cases:
(i) G is triangle-free,
(ii) G is connected and contains at most one cycle.

(2) If G contains at most r ≥ 1 cycles and has at least 3r vertices, then SAT is
solvable for M in time O(p(k)3r2

k−3r
2), for an appropriate polynomial p.

Proof. It suffices to verify that Algorithm MHFSAT has the claimed running
times for the special instances fulfilling the stated properties. Case (1)(i), for G
triangle-free, has been solved by Hujter et al. [6], who have shown that a triangle-
free graph of at least four vertices contains at most 2s maximal independent sets
if |V (G)| = 2s and at most 5 · 2s−2 maximal independent sets if |V (G)| =
2s + 1. The extremal graphs achieving these bounds consist of s copies of the
K2, respectively, s− 2 copies of K2 and one copy of C5. Case (ii) was solved by
Griggs, and Jou et al. [5, 8]. They have shown that a connected graph with at
most one cycle admits at most 3 ·2s−2 maximal independent sets for |V (G)| = 2s
and at most 2s + 1 maximal independent sets if |V (G)| = 2s + 1.

Assertion (2) follows by the above argumentation from the results obtained
by Sagan et al. [16]. They have shown that the number of maximal independent
sets in graphs containing at most r ≥ 1 (not necessarily nonintersecting) cycles
and at least 3r vertices is upper bounded by 3r2

k−3r
2 . They also have shown

that this bound is tight and is achieved by graphs that consist of copies of an
appropriate number of K3 and K2. Notice that assertion (2) implies (1),(ii), for
r = 1. ��

5 Hardness of Improving Theorem 1

Next we address the question which improvements of the time bound for solving
MHF-SAT presented in Theorem 1 can be expected.

Theorem 2. Every instance C ∈ CNF can be transformed in linear time into a
corresponding instance MC ∈ MHF such that MC can be tested for SAT in time
O(p(n)2n/2), where n := |V (MC)| ≤ 2|V (C)| and p is an appropriate polynomial.

Worst Case Bounds for Some NP-Complete Modified Horn-SAT Problems 259

Proof. To an arbitrary formula C ∈ CNF we apply Transformation (∗) with the
slight modification that also all positive monotone 2-clauses in C (if some exist)
are considered. It is easy to verify that the resulting transformation changes C
into an instance MC ∈ MHF− such that GP (MC) consists of isolated edges only.
Hence, we obtain the assertion by Proposition 2, (1)(i). ��

It seems to be very hard to improve on the bound stated in the last theorem
significantly, since otherwise SAT for an arbitrary C ∈ CNF (n := |V (C)|)
could be solved significantly faster than in 2n steps. For suppose there is an
algorithm solving SAT for MHF’s M = H ∧ P with n = |V (P)| in O(2αn) steps
for some α < 1/2. Then we can transform an arbitrary CNF formula C into a
sat-equivalent MHF MC = HC ∧PC with at most 2n variables contained in PC .
So, by Corollary 2, SAT for MC can be solved in O(22αn) steps, where 2α < 1.
Although, there has been made some progress recently in finding non-trivial
bounds for SAT for arbitrary CNF formulas [2], it would require a significant
breakthrough in our understanding of SAT to obtain upper time bounds of the
form O(2(1−ε)n) for some constant ε > 0.

6 An Approach for Reducing the Number of Essential
Variables

The number of new introduced variables necessary to transform C ∈ CNF into
MC = HC ∧ PC ∈ MHF is crucial regarding the running time of Algorithm
MHFSAT. This is due to the fact that these variables contribute vertices to the
formula graph of PC . The requirement to keep this set small leads us to the
following notion:

Definition 2. For C ∈ CNF, a minimal set X ⊆ V (C), for which the transfor-
mation in the proof of Theorem 2 yields a MHF formulation MC := HC ∧ PC ∈
MHF of C via the corresponding set X ′ of new variables (|X| = |X ′|), is called
an essential set of variables (of C).

Observe that there may exist many essential sets of variables of a formula C not
necessary of the same cardinality. To obtain a smallest essential set of variables
one can proceed as follows: For each clause c ∈ C that is not Horn, let c′ denote
the positive monotone part of c. For example c = {x, y, z} delivers c′ = {x, z}.
Collecting these parts c′ of all clauses c in C, yields a positive monotone formula
C ′ ∈ M+. It remains to transform C ′ into a Horn formula with least effort.
Resting on the formula graph GC′ determined from C ∈ CNF we obtain:

Lemma 3. Let C ∈ CNF and let C ′ be defined as above. Every essential set of
variables X ⊂ V (C) is a minimal vertex cover of the formula graph GC′ of C ′

and vice versa.

A smallest essential set of variables of a formula C ∈ CNF by Lemma 3 is
a minimum vertex cover of the formula graph GC′ . A minimum vertex cover
of a graph with n vertices can be computed in time O(2n/4) by the Robson

260 S. Porschen and E. Speckenmeyer

algorithm [15] determining a maximum independent set. This algorithm can
be used to speed-up Algorithm MHFSAT for solving some MHF instances M
by treating them as CNF formulas. It is the part P := P (M) of a formula
M ∈ MHF that can be made into a Horn formula by the transformation shown
above using a minimum vertex cover of GP as essential set, if it has appropriate
size. Thus instead of Algorithm MHFSAT we shall proceed in the following
way for solving MHF-SAT: Let k := |V (P)| and compute a minimum vertex
cover X of GP by the Robson algorithm in time O(2k/4) (let j := |X|). In
case of j ≥ 0.5284 · k, we proceed by the usual Algorithm MHFSAT, for the
original instance M . Otherwise, i.e. (∗) : j < 0.5284 · k, we use X as an essential
set of variables for a reformulation of M resulting in a new MHF M ′, whose
positive monotone part P ′ contains |V (P ′)| =: k′ = 2j variables. Moreover, the
formula graph GP ′ by construction consists of isolated edges only (cf. the proof of
Theorem 2). Now we complete the computation by running Algorithm MHFSAT
on the modified instance M ′. Because of the structure of GP ′ and according to
Proposition 2, (1)(i), we obtain in this branch of the modified algorithm a better
running time of O(‖M ′‖2k′/2) = O(‖M ′‖2j), where the exponential factor has
decreased due to (∗).

To illustrate the usefulness of essential sets, consider again the graph coloring
problem. Let C(G) be the 3-CNF formula corresponding to the 3-colorability
problem of a given graph G = (V,E) as mentioned in the introduction. C(G)
consists of |V | positive monotone 3-clauses and 3|E| negative monotone 2-clauses
and is therefore no MHF formula. Clearly, complementing all variables yields a
MHF H ∧ P . Unfortunately, the crucial subformula P becomes large by this
operation. In order to speed up the SAT test of H ∧ P , an essential set of
variables in C(G) turning it into a MHF of a smallest P -part is required. As an
example, take the triangle graph K3 with vertex set {a, b, c} leading to the CNF
formula C(G) = C(V) ∪ C(E) with corresponding clause sets:

C(V) := {{a1, a2, a3}, {b1, b2, b3}, {c1, c2, c3}},
C(E) := {{a1, b1}, {a2, b2}, {a3, b3}}

∪ {{a1, c1}, {a2, c2}, {a3, c3}}
∪ {{b1, c1}, {b2, c2}, {b3, c3}}

Turning this into a MHF by complementing all variables yields a P -subformula
of 9 clauses and 18 variables. Taking instead only an essential set of 6 variables,
namely two variables of each 3-clause in C(V), e.g. {ai, bi, ci : i = 1, 2}, yields a
MHF M(G) = H ∧ P with

P := {{a1, a
′
1}, {a2, a

′
2}, {b1, b

′
1}, {b2, b

′
2}, {c1, c

′
1}, {c2, c

′
2}},

H := C(E) ∪ P γ ∪ {{a′
1, a′

2, a3}, {b′1, b′2, b3}, {c′1, c′2, c3}}
Recall that Cγ means to complement all variables in formula C. The new formula
P contains only 6 clauses and only 12 variables instead of 18, moreover the
formula graph consists of isolated edges only. Although the example is simple,
it describes the usefulness of essential sets, which becomes explicit when dealing
with larger instances.

Worst Case Bounds for Some NP-Complete Modified Horn-SAT Problems 261

700

750

800

850

900

950

1000

0

50

100

150

200

250

300

350

400

450

500

550

600

650

Figure 1

1 2 3 4 5 6
c

Fig. 1. Number of essential variables in MHF’s with 1000 variables and c· 1000 clauses
(c = 1, . . . , 6)

To supply these observations we had run several experiments for CNF(= 3)
formulas with 1000 variables and c · 1000 clauses, for c = 1, . . . , 6. Each in-
stance C ∈ CNF(= 3) has been generated randomly and was transformed into
MC = H ∧ P . The new introduced variables form an essential set of variables
of C. Figure 1 displays the average number of essential variables, computed
by a vertex-cover heuristic, obtained from samples of 100 formulas, for each
c = 1, . . . , 6.

Acknowledgement. We are grateful to Hans van Maaren for pointing out the
encoding of 3-colorability into MHF-SAT.

References

1. B. Aspvall, M. R. Plass, and R. E. Tarjan, A linear-time algorithm for testing
the truth of certain quantified Boolean formulas, Inform. Process. Lett. 8 (1979)
121-123.

2. E. Dantsin and A. Wolpert, Algorithms for SAT based on search in Hamming balls,
ECCC Report No. 17, 2004.

3. R. G. Downey and M. R. Fellows, Parameterized Complexity, Springer-Verlag, New
York, 1999.

4. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman and Company, San Francisco, 1979.

262 S. Porschen and E. Speckenmeyer

5. J. R. Griggs, C. M. Grinstead, and D. R. Guichard, The number of maximal
independent sets in a connected graph, Discrete Math. 68 (1988) 211-220.

6. M. Hujter and Z. Tuza, The number of maximal independent sets in triangle-free
graphs, SIAM J. Discrete Math. 6 (1993) 284-288.

7. D. S. Johnson, M. Yannakakis, and C. H. Papadimitriou, On Generating All Max-
imal Independent Sets, Inform. Process. Lett. 27 (1988) 119-123.

8. M. Jou and G. J. Chang, Maximal independent sets in graphs with at most one
cycle, Discrete Applied Math. 79 (1997) 67-73.

9. H. Kleine Büning and T. Lettman, Propositional logic, deduction and algorithms,
Cambridge University Press, Cambridge, 1999.

10. D. E. Knuth, Nested satisfiability, Acta Informatica 28 (1990) 1-6.
11. H. R. Lewis, Renaming a Set of Clauses as a Horn Set, J. ACM 25 (1978) 134-135.
12. M. Minoux, LTUR: A Simplified Linear-Time Unit Resolution Algorithm for Horn

Formulae and Computer Implementation, Inform. Process. Lett. 29 (1988) 1-12.
13. J. W. Moon and L. Moser, On cliques in graphs, Israel J. Math. 3 (1965) 23-28.
14. B. Randerath, E. Speckenmeyer, E. Boros, P. Hammer, A. Kogan, K. Makino, B.

Simeone, and O. Cepek, A Satisfiability Formulation of Problems on Level Graphs,
ENDM, Vol. 9, 2001.

15. J. M. Robson, Finding a maximum independent set in time O(2n/4),
Technical Report, Univ. Bordeaux, http://dept-info.labri.u-bordeaux.fr/ rob-
son/mis/techrep.html, 2001.

16. B. E. Sagan and V. R. Vatter, Maximal and Maximum Independent Sets In Graphs
With At Most r Cycles, Preprint, arXiv:math CO/0207100 v2, 2003.

17. H. van Maaren and L. van Norden, Hidden threshold phenomena for fixed-density
SAT-formulae, in: “E. Giunchiglia, A. Tacchella (Eds.), Proceedings of the 6th
International Conference on Theory and Applications of Satisfiability Testing
(SAT’03), Santa Margherita Ligure, Italy”, Lecture Notes in Computer Science,
Vol. 2919, pp. 135-149, Springer-Verlag, Berlin, 2004.

Satisfiability Threshold of the Skewed
Random k-SAT

Danila A. Sinopalnikov

Department of Mathematics and Mechanics,
St. Petersburg State University, Russia

dasinopalnikov@yahoo.com

Abstract. We consider the k-satisfiability problem. It is known that
the random k-SAT model, in which the instance is a set of m k-clauses
selected uniformly from the set of all k-clauses over n variables, has a
phase transition at a certain clause density, below which most instances
are satisfiable and above which most instances are unsatisfiable. The
essential feature of the random k-SAT is that positive and negative lit-
erals occur with equal probability in a random formula. How does the
phase transition behavior change as the relative probability of positive
and negative literals changes?

In this paper we focus on a distribution in which positive and negative
literals occur with different probability. We present empirical evidence for
the satisfiability phase transition for this distribution. We also prove an
upper bound on the satisfiability threshold and a linear lower bound on
the number of literals in satisfying partial assignments of skewed random
k-SAT formulas.

1 Introduction

The problem to decide whether a given propositional formula has a satisfy-
ing truth assignment (SAT) is one of the first for which NP -completeness was
proven. Nowadays it attracts much attention, since many hard combinatorial
problems in areas including planning [12, 13] and finite mathematics [18, 19] can
be naturally encoded and studied as SAT instances.

While the SAT hardness is determined by the difficulty of solving an instance
of the problem in the worst case, the scientific interest is also focused on randomly
chosen SAT instances in attempt to determine the typical-case complexity. The
choice of the probabilistic distribution is critical for the significance of such a
study. In particular, it was proven that in some probabilistic spaces a random
formula is easy-to-decide with high probability [6, 9, 15]. To date, most of the
research in the field is concentrated on the random k-SAT model RD(n, k,m),
which appears to be more robust in this respect.

Let X be a set of n boolean variables; a proper k-clause is a disjunction of
k distinct and non-contradictory literals corresponding to variables in X. Under
the random k-SAT distribution RD(n, k,m), a random formula Fk(n,m) is built

H.H. Hoos and D.G. Mitchell (Eds.): SAT 2004, LNCS 3542, pp. 263–275, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

264 D.A. Sinopalnikov

by selecting uniformly, independently and with replacement m clauses from the
set of all proper k-clauses over n variables.

Numerous empirical results suggested that RD(n, k,m) exhibits a phase tran-
sition behavior as the clause density δ = m/n changes [2, 14, 16, 17]. When the
number of variables tends to infinity and the clause density remains constant,
the random formula Fk(n, δn) is almost surely satisfiable for low clause densities
while for higher clause densities it is almost surely unsatisfiable. The satisfiabil-
ity threshold conjecture asserts that for every k ≥ 2 there exists δk such that

δk = sup{δ| lim
n→∞

P (Fk(n, δn) is satisfiable) = 1} =

= inf{δ| lim
n→∞

P (Fk(n, δn) is satisfiable) = 0} .
(1)

This conjecture was settled for k = 2 with δ2 = 1 by Chvátal and Reed [3],
Goerdt [8] and Fernandez de la Vega [4]. A threshold sequence rk(n) is proven
to exist by the following theorem, due to Friedgut,

Theorem 1. [7] For every k ≥ 2, there exists a sequence rk(n) such that for
all ε > 0

lim
n→∞

P (Fk(n, (rk(n)− ε)n) is satisfiable) = 1 , (2)

lim
n→∞

P (Fk(n, (rk(n) + ε)n) is satisfiable) = 0 . (3)

More recently the asymptotic form of the conjecture was established by Achliop-
tas and Peres [1].

The essential feature of the random k-SAT is that positive and negative
literals occur in a formula with equal probability. In this paper we consider
satisfiability of random formulas from the skewed random k-SAT distribution,
in which positive and negative literals occur with different probability. To the
best of our knowledge, there has not been much work on this generalization
of random k-SAT. The paper answers the question whether the satisfiability
phase transition manifests in the skewed distributions and presents a proof of
an upper bound on the threshold location for skewed random k-SAT. We expect
that this study will provide further insight into the nature of the phase transition
phenomenon in the boolean satisfiability problem.

We also investigate the minimal number of literals in a satisfying partial
assignment of a random formula. This study is motivated by the fact that if
a random k-CNF formula is satisfiable then it has an exponential number of
satisfying assignments with high probability [11]. On the other hand, it is known
that k-CNF formulas with many satisfying assignments have short satisfying
partial assignments [10]. This might imply that a random formula with clause
density far below the satisfiability threshold is likely to have short satisfying
partial assignments. In this paper we elaborate on this intuition and prove a
linear lower bound on the number of literals in a satisfying partial assignment
of a random formula for skewed and plain random k-SAT distributions.

Satisfiability Threshold of the Skewed Random k-SAT 265

The paper is organized as follows. Section 2 contains basic definitions. In Sec-
tion 3 we present the results of empirical study of the phase transition behavior
of the skewed distribution. We formulate and prove the main results in Sections
4 and 5. Section 6 concludes the paper.

2 Basic Definitions

Let X be a set of n boolean variables. A literal is a variable (positive literal)
or its negation (negative literal). A variable and its negation are contradictory
literals. A k-clause is an ordered collection of k literals. A clause density of a
formula F is the ratio of number of clauses in F to the number of variables.
A complementary formula for F is a formula obtained from F by replacing all
literals with their negations.

A partial assignment σ is an arbitrary set of non-contradictory literals. The
size of a partial assignment is the number of literals in it. A complete assign-
ment on n variables is a partial assignment of size n. A complementary partial
assignment for σ is an assignment obtained from σ by replacing of all literals
with their negations. A partial assignment σ is satisfying for a formula F if in
each clause of F there is at least one literal from σ.

We use the following notation:

Φ(n, k) denotes the set of all k-CNF formulas over n variables,
A(n,m) denotes the set of all partial assignments of size m over n variables.

For a formula F ∈ Φ(n, k) and a partial assignment σ:

F ∈ SAT means F is satisfiable,
F̄ , σ̄ denote the complementary formula and assignment respectively,
σ ∈ S(F) means σ satisfies F ,
pl(σ) denotes the number of positive literals in σ,
minsat(F) denotes the minimum size of a satisfying partial assignment of F .

For λ ∈ [0, 1] denote H(λ) = λλ(1− λ)1−λ.
Let n, k,m ∈ N , p ∈ (0, 1). The skewed random k-SAT distribution

SD(n, k,m, p) is the distribution, where a random formula is obtained by build-
ing m k-clauses as follows: for each clause we select independently, uniformly
and with replacement k variables from the set of n boolean variables; then for
each selected variable we take a positive literal with probability p and a negative
literal otherwise and add it to the clause.

3 The Phase Transition Behavior of the Skewed Random
k-SAT

In this section we present empirical evidence that random k-SAT instances un-
dergo a satisfiability phase transition even if positive and negative literals occur

266 D.A. Sinopalnikov

3 4 5 6 7 8 9 10 11 12 13 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m/n

p=0.5
p=0.4

p=0.3

p=0.2

Fig. 1. The probability that a skewed random 3-SAT formula is unsatisfiable, as a
function of the clause density

with different probabilities. We took skewed random 3-SAT distributions at four
levels of skewness: p = 0.5(the plain 3-SAT); 0.4; 0.3; 0.2.

Figure 1 shows the sample probability that a random clause is unsatisfiable
at the particular clause density and skewness. There are four curves, one for each
level of skewness. Along the horizontal axis is the clause density. Each sample
contains 500 random 3-SAT instances on 200 variables.

We observe that all four distributions exhibit the satisfiability phase transi-
tion. The transition manifests at a greater density and becomes less distinct as
the skewness of the distribution increases and the number of variables remains
constant.

4 An Upper Bound for the Satisfiability Threshold for
SD

For the skewed random k-SAT distribution with clause density σ and skewness
p ≤ 1/2 we consider the following equation

(1− pk)−δ = 1 + exp
(
− kδpk

1− pk
· 1− 2p

p

)
. (4)

We first show that this equation has a single root and this root is positive. Then
we prove that the root constitutes an upper bound on the satisfiability threshold
location for the skewed distribution.

Satisfiability Threshold of the Skewed Random k-SAT 267

Lemma 1. Let p ∈ (0, 1/2], k ∈ N .
Then there exists a single δ0 that satisfies (4), δ0 > 0 and

∀δ δ > δ0 ⇔ (1− pk)−δ > 1 + exp
(
− kδpk

1− pk
· 1− 2p

p

)
(5)

Proof. Take arbitrary p ∈ (0, 1/2], k ∈ N . Consider two functions

f(δ) = (1− pk)−δ,

g(δ) = 1 + exp
(
− kδpk

1− pk
· 1− 2p

p

)
.

f(δ) is a continuous, strictly increasing function of δ. limδ→+∞ f(δ) = +∞,
f(0) = 1. g(δ) is a continuous, decreasing function of δ, g(0) = 2. This implies
the statement of the lemma.

Definition 1. Let p ∈ (0, 1/2], k ∈ N .
∆s(p, k) is the only root of the equation (4).

Theorem 2. Let δ > 0, π ∈ (0, 1), p = min (π, 1− π), k ∈ N .
Let Fk(n, δ, π) be a random formula from SD(n, k, δn, π).

Then
δ > ∆s(p, k) ⇒ lim

n→∞
P (Fk(n, δ, π) ∈ SAT) = 0. (6)

Proof. By the definition of the distribution SD,

∀F ∈ Φ(n, k) P (Fk(n, δ, π) = F) = P (Fk(n, δ, 1− π) = F̄). (7)

Note that an assignment σ satisfies a formula F if and only if σ̄ satisfies F̄ , so

∀F ∈ Φ(n, k) F ∈ SAT ⇔ F̄ ∈ SAT. (8)

(7) and (8) imply that

lim
n→∞

P (Fk(n, δ, π) ∈ SAT) = 0 ⇔ lim
n→∞

P (Fk(n, δ, 1− π) ∈ SAT) = 0 (9)

So it is sufficient to prove the theorem for π ∈ (0, 1/2], p = π.
Let X denote the number of satisfying assignments of Fk(n, δ, π).

P (Fk(n, δ, π) ∈ SAT) = P (X ≥ 1) ≤ E[X] (10)

E[X] =
∑

σ∈A(n,n)

P (σ ∈ S(Fk(n, δ, π))) = (11)

Due to the symmetry of the distribution, the probability that σ satisfies a random
formula depends only on pl(σ).

=
n∑

z=0

(
n

z

)
P (σ ∈ S(Fk(n, δ, π))

∣∣pl(σ) = z). (12)

268 D.A. Sinopalnikov

Let C and l denote random formulas from SD(n, k, 1, π) and SD(n, 1, 1, π) re-
spectively (C and l can be viewed as a random clause and a random literal from
Fk(n, δ, π)). Then

P (σ ∈ S(Fk(n, δ, π))
∣∣pl(σ) = z) = P (σ ∈ S(C)

∣∣pl(σ) = z)δn = (13)

= (1− P (σ /∈ S(C)
∣∣pl(σ) = z))δn = (1− P (σ /∈ S(l)

∣∣pl(σ) = z)k)δn. (14)

The probability that a random literal l is unsatisfied by σ can be derived as
follows

P (σ /∈ S(l)
∣∣pl(σ) = z) = P (σ /∈ S(l)

∣∣pl(σ) = z & l - positive) · P (l - positive)+

+P (σ /∈ S(l)
∣∣pl(σ) = z & l - negative) · P (l - negative) =

=
(
1− z

n

)
· p +

z

n
· (1− p) = p +

z

n
(1− 2p). (15)

Then

E[X] =
n∑

z=0

(
n

z

)(
1−
(
p +

z

n
(1− 2p)

)k
)δn

= (16)

=
n∑

z=0

(
n

z

)(
1− pk

(
1 +

z

n
· 1− 2p

p

)k
)δn

≤ (17)

Now use the standard bound (1 + x)α ≥ 1 + αx, α > 1, x > 0 and obtain

E[X] ≤
n∑

z=0

(
n

z

)(
1− pk

(
1 + k · z

n
· 1− 2p

p

))δn

= (18)

= (1− pk)δn
n∑

z=0

(
n

z

)(
1− pk

1− pk
· k · z

n
· 1− 2p

p

)δn

≤ (19)

Note that for p ∈ (0, 1/2], k ∈ N
kpk

1− pk
· 1− 2p

p
< 1,

so we can apply (1− α)β ≤ e−αβ , α ∈ [0, 1], β > 0 and get

E[X] ≤ (1− pk)δn
n∑

z=0

(
n

z

)
exp
(
−δn

pk

1− pk
· k · z

n
· 1− 2p

p

)
= (20)

= (1− pk)δn
n∑

z=0

(
n

z

)
exp
(
− kδpk

1− pk
· 1− 2p

p
· z
)

= (21)

= (1− pk)δn

(
1 + exp

(
− kδpk

1− pk
· 1− 2p

p

))n

. (22)

Satisfiability Threshold of the Skewed Random k-SAT 269

Table 1. Approximate values of ∆s

p 0.1 0.2 0.3 0.4 0.5

k=3 95.662 22.385 10.204 6.346 5.191

k=4 783.420 94.318 29.749 14.665 10.740

k=5 6680.783 409.448 88.114 33.843 21.832

k=6 58520.315 1816.785 264.895 78.449 44.014

Finally, for every δ > ∆s(p, k) the Lemma 1 implies that

(1− pk)−δ > 1 + exp
(
− kδpk

1− pk
· 1− 2p

p

)
. (23)

So we obtain an upper bound on the base in (22)

(1− pk)δ

(
1 + exp

(
− kδpk

1− pk
· 1− 2p

p

))
< 1. (24)

This implies that for any clause density above ∆s(p, k) the expected number
of satisfying assignments of a random formula tends to zero as the number of
variables tends to infinity. From (10) we get that the formula is satisfiable with
probability approaching 0.

lim
n→∞

P (Fk(n, δ, π) ∈ SAT) = 0. (25)

This statement proves the theorem. ��

∆s(1/2, k) = − ln 2
ln (1− 1/2k)

gives the known upper bound for the satisfia-

bility threshold (see [5]).
Table 1 provides approximate values of ∆s(p, k) obtained numerically for

p = 0.2; 0.3; 0.4; 0.5 and k = 3; 4; 5; 6 from (4).

5 A Lower Bound on the Size of Satisfying Partial
Assignments of a Skewed Random k-SAT Formula

If a formula over n variables is satisfiable, one might be interested in finding
a satisfying partial assignment of the minimum size, that corresponds to the
largest cluster of satisfying assignments. In this section we prove a linear lower
bound on the size of a satisfying partial assignment of a random formula from a
skewed random k-SAT distribution.

Consider the following equation for k ∈ N , λ ∈ (0, 1], q ∈ (1− λ, 1− λ/2].

H(λ)
(1− qk)δ

=
(

1 + exp
(
− kδqk

1− qk
· 2(1− q)− λ

q

))λ

(26)

270 D.A. Sinopalnikov

We first prove that for all k, λ and suitable q this equation has a single root
and this root is positive. Then we show that the root allows to define a linear
lower bound on the size of the satisfying partial assignment of a skewed random
k-SAT formula.

Lemma 2. Let k ∈ N , λ ∈ (0, 1], q ∈ (1− λ, 1− λ/2].
Then there exists a single δ0 that satisfies (26), δ0 > 0 and for all δ

δ > δ0 ⇔
H(λ)

(1− qk)δ
>

(
1 + exp

(
− kδqk

1− qk
· 2(1− q)− λ

q

))λ

(27)

Proof. Take arbitrary k ∈ N , λ ∈ (0, 1], q ∈ (1− λ, 1− λ/2].
Consider two functions

f(δ) =
H(λ)

(1− qk)δ
, (28)

g(δ) =
(

1 + exp
(
− kδqk

1− qk
· 2(1− q)− λ

q

))λ

. (29)

f(δ) is a continuous, strictly increasing function of δ, limδ→+∞ f(δ) = +∞,
f(0) = H(λ) ≤ 1. g(δ) is a continuous, decreasing function of δ, g(0) = 2λ > 1.
This implies the statement of the lemma.

Definition 2. Let k ∈ N , λ ∈ (0, 1], q ∈ (1− λ, 1− λ/2].
Then ∆sp(q, k, λ) is the root of the equation (26)

Theorem 3. Let δ > 0, λ ∈ (0, 1], π ∈ (0, 1), p = min (π, 1− π), k ∈ N .
Let Fk(n, δ, π) be a random formula from SD(n, k, δn, π).

Then

δ > ∆sp(1−λ(1−p), k, λ) ⇒ lim
n→∞

P (minsat(Fk(n, δ, π)) ≤ λn) = o(1) as n →∞.

(30)

Proof. Take arbitrary k ∈ N , λ ∈ (0, 1], m = λn. A partial assignment σ ∈
A(n,m) satisfies a formula F if and only if the complementary assignment σ̄
satisfies the complementary formula F̄ . So, similarly to the Theorem 2 it is suf-
ficient to prove for π ∈ (0, 1/2], p = π.
The total number of partial assignment of size m is |A(n,m)| = 2m

(
n
m

)
,

Let Xm denote the number of partial assignments of size m that satisfy Fk(n, δ, π).

E[Xm] =
∑

σ∈A(n,m)

P (σ ∈ S(Fk(n, δ, π))). (31)

Again due to the symmetry of the distribution, the probability that σ satisfies
a random formula depends only on pl(σ), so

E[Xm] =
m∑

z=0

∑
σ∈A(n,m)
pl(σ)=z

P (σ ∈ S(Fk(n, δ, π))
∣∣pl(σ) = z). (32)

Satisfiability Threshold of the Skewed Random k-SAT 271

Now let’s compute the probability that a partial assignment with a fixed number
of positive literals satisfies a random formula. Let C and l denote random for-
mulas from SD(n, k, 1, π) and SD(n, 1, 1, π) respectively (C and l can be viewed
as a random clause and a random literal from Fk(n, δ, π)). Then, since clauses
in Fk(n, δ, π) are independent,

P (σ ∈ S(Fk(n, δ, π))
∣∣pl(σ) = z) = (1− P (σ /∈ S(C)

∣∣pl(σ) = z))δn. (33)

Let var(C) and var(σ) denote the set of variables in C and σ respectively,
overlap(C, σ) = |var(C)∩ var(σ)| - the number of variables shared by C and σ.
|var(C)| ≤ k, since a clause can contain repeated or contradictory literals the
distribution SD, so overlap(C, σ) ≤ k.

P (σ /∈ S(C)
∣∣pl(σ) = z) =

=
k∑

j=0

P (σ /∈ S(C)
∣∣overlap(C, σ) = j & pl(σ) = z)P (overlap(C, σ) = j). (34)

Literals in a random clause are independent, so

P (overlap(C, σ) = j) =
(

k

j

)(m

n

)j
(

n−m

n

)k−j

, (35)

P (σ /∈ S(C)
∣∣overlap(C, σ)=j & pl(σ)=z)=P (σ /∈ S(l)

∣∣pl(σ)=z & var(l) ∈ var(σ))j .
(36)

Now we can apply (15),

P (σ /∈ S(l)
∣∣pl(σ) = z & var(l) ∈ var(σ)) = p +

z

m
(1− 2p). (37)

Plugging this into (34), we get

P (σ /∈ S(C)
∣∣pl(σ) = z) =

k∑
j=0

(
p +

z

m
(1− 2p)

)j
(

k

j

)(m

n

)j
(

n−m

n

)k−j

=

=
(

n−m

n
+

m

n
·
(
p +

z

m
(1− 2p)

))k

. (38)

The number of partial assignments of size m containing z positive literals is(
n
m

)(
m
z

)
, so we can return to (32),

E[Xm] =
m∑

z=0

∑
σ∈A(n,m)
pl(σ)=z

(
1−
(
1− m

n
·
(
1− p− z

m
(1− 2p)

))k
)δn

= (39)

=
(

n

m

) m∑
z=0

(
m

z

)(
1−
(
1− m

n
· (1− p) +

m

n
· z

m
(1− 2p)

)k
)δn

= (40)

272 D.A. Sinopalnikov

=
(

n

m

) m∑
z=0

(
m

z

)

1−

(
1− m

n
(1− p)

)k

1 +

z

n
(1− 2p)

1− m

n
· (1− p)

k

δn

. (41)

Now we can apply (1 + x)α ≥ 1 + αx, α > 1, x > 0 and get

E[Xm] ≤
(

n

m

) m∑
z=0

(
m

z

)
1−

(
1− m

n
(1− p)

)k

1 + k ·

z

n
(1− 2p)

1− m

n
· (1− p)

δn

.

(42)
Recall that m = λn, so

E[Xm] ≤
(
1− (1− λ(1− p))k

)δn
(

n

λn

)
×

×
λn∑
z=0

(
λn

z

)(
1− (1− λ(1− p))k

1− (1− λ(1− p))k
· k · z

n
· λ(1− 2p)
1− λ(1− p)

)δn

. (43)

Since for p ∈ (0, 1/2], k ∈ N

(1− λ(1− p))k

1− (1− λ(1− p))k
· k · λ(1− 2p)

1− λ(1− p)
< 1, (44)

we can apply (1− α)β ≤ e−αβ , α ∈ [0, 1], β > 0 and get

E[Xm] ≤
(
1− (1− λ(1− p))k

)δn
(

n

λn

)
×

×
λn∑
z=0

(
λn

z

)
exp

(
− kδ (1− λ(1− p))k

1− (1− λ(1− p))k
· λ(1− 2p)
1− λ · (1− p)

· z
)
≤ (45)

Using the standard bound (
n

λn

)
≤ H(λ)−n, (46)

we obtain
E[Xm] ≤ H(λ)−n

(
1− (1− λ(1− p))k

)δn

×

×
(

1 + exp

(
− kδ (1− λ(1− p))k

1− (1− λ(1− p))k
· λ(1− 2p)
1− λ · (1− p)

))λn

(47)

We take p ∈ (0, 1/2], so 1 − λ(1 − p) ∈ (1 − λ, 1 − λ/2] and we can apply the
Lemma 2

Satisfiability Threshold of the Skewed Random k-SAT 273

Table 2. Approximate values of ∆sp(1 − λ(1 − p), 3, λ)

λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p=0.2 0.256 0.670 1.266 2.108 3.314 5.088 7.789 12.000 18.263 22.385
p=0.3 0.238 0.605 1.110 1.783 2.675 3.855 5.413 7.419 9.705 10.204
p=0.4 0.220 0.545 0.976 1.526 2.216 3.068 4.095 5.269 6.406 6.346
p=0.5 0.203 0.489 0.860 1.325 1.897 2.592 3.414 4.335 5.215 5.191

δ > ∆sp(1− λ(1− p), k, λ) ⇒

⇒ H(λ)(
1 − (1 − λ(1 − p))k

)δ
>

(
1 + exp

(
− kδ (1 − λ(1 − p))k

1 − (1 − λ(1 − p))k
· λ(1 − 2p)

1 − λ · (1 − p)

))λ

⇒

⇒ P (minsat(Fk(n, δ, π)) ≤ λn) = P (Xm ≤ 1) ≤ E[Xm] = o(1). (48)

This proves the theorem. ��

For λ = 1 we get an upper bound on the satisfiability threshold for a skewed
random k-SAT formula (see Theorem 2).

For p = 1/2 we get a lower bound on the size of satisfying partial assignments
for a plain random k-SAT formula.

∀λ ∈ (0, 1] δ >
lnH(λ)− λ ln 2

ln

(
1−
(

1− λ

2

)k
) ⇒

⇒ P (minsat(Fk(n, δ)) ≤ λn) = o(1) as n →∞. (49)

Table 2 provides approximate values of ∆sp(1 − λ(1 − p), k, λ) obtained nu-
merically from (26) for k = 3.

6 Conclusion

In this paper we considered a skewed random k-SAT distribution and investi-
gated the phase transition behavior in this model. Empirical evidence for the
satisfiability phase transition was presented. Further experiments suggest that
even for a highly skewed random k-SAT distribution the phase transition be-
comes sharp as the number of variables increases.

We proved an upper bound on the satisfiability threshold and a lower bound
on the number of literals in satisfying partial assignments for a skewed random
k-SAT formula. For the considered skewed distribution there is still a large gap
between the observed threshold location and the proved upper bound, so better
bounds are still to be obtained. Lower bounds on the threshold and upper bounds
on the minimum number of literals in a satisfying partial assignment of a skewed
random k-SAT formula are needed to complete the picture.

274 D.A. Sinopalnikov

Another interesting direction is to evaluate the computational hardness of
skewed random k-SAT formulas with respect to the skewness of the distribution
for a fixed clause density. The possible candidates for the maximum hardness
are the non-skewed distribution and the skewed distribution that undergoes the
satisfiability phase transition at this clause density.

Acknowledgments

The author would like to thank Edward Hirsch for bringing this problem to his
attention and for valuable comments.

References

1. D. Achlioptas and Y. Peres. The threshold for random k-SAT is 2kln2 − O(k).
Submitted for publication.

2. P. Cheeseman, B. Kanefsky, W. Taylor. Where the really hard problems are. 12th
International Joint Conference on Artificial Intelligence (IJCAI-91), volume 1,
pages 331-337. Morgan Kaufman, 1991.

3. V. Chvátal and B. Reed. Mick gets some (the odds are on his side). 33th Annual
Symposium on Foundation of Computer Science (Pittsburg, PA, 1992), pages 620-
627. IEEE Comput. Soc. Press, Los Alamitos, CA, 1992.

4. W. Fernandez de la Vega. On random 2-SAT. Manuscript, 1992.
5. J. Franco, M. Paull. Probabilistic analysis of the Davis-Putnam procedure for solv-

ing satisfiability. Discrete Applied Mathematics, 5, pages 77-87, 1983.
6. J. Franco, R. Swaminathan. Average case results for satisfiability algorithms under

the random clause width model. Annals of Mathematics and Artificial Intelligence
20(1-4), pages 357-391, 1997.

7. E. Friedgut. Necessary and sufficient conditions for sharp thresholds of graph prop-
erties, and the k-SAT problems. J. Amer. Math. Soc., 12, pages 1017-1054, 1999.

8. A. Goerdt. A threshold for unsatisfiability. J. Comput. System Sci., 53(3), pages
469-486, 1996.

9. A. Goldberg. Average case complexity of the satisfiability problem. Proceedings of
4th Workshop on Automated Deduction, 1979.

10. E. A. Hirsch. A Fast Deterministic Algorithm for Formulas That Have Many Sat-
isfying Assignments. Logic Journal of the IGPL, Vol.6, No.1, Oxford University
Press, pages 59-71, 1998.

11. A. Kamath, R. Motwani, K. Palem, P. Spirakis. Tail bounds for occupancy and the
satisfiability threshold conjecture. Random structures and algorithms 7(1), pages
59-80, 1995.

12. H. Kautz and B. Selman. Planning as satisfiability. In Proceedings of ECAI’92,
volume 2, pages 1194-1201. pages 359-363. John Wiley & Sons, 1996.

13. H. Kautz and B. Selman. Pushing the envelope: planning, propositional logic and
stochastic search. In Proceedings of AAAI’96, volume 2, pages 1194-1201. MIT
Press, 1996.

14. S. Kirkpatrick, B. Selman. Critical behavior in the satisfiability of random boolean
expressions. Science 264, pages 1297-1301, 1994.

15. Elias Koutsoupias and Christos H. Papadimitriou. On the greedy algorithm for
satisfiability. IPL, 43(1):53–55, 1992.

Satisfiability Threshold of the Skewed Random k-SAT 275

16. T. Larrabee, Y. Tsuji. Evidence for satisfiability threshold for random 3CNF for-
mulas. Proceedings of the AAAI Symposium on Artificial Intelligence and NP-hard
problems, 112. 1993.

17. D. Mitchell, B. Selman, H. Levesque. Hard and easy distributions of SAT problems.
Proceedings of 10th National Conference on Artificial Intelligence, pages 459-465.
AAAI Press, Menlo Park, CA, 1992.

18. J. Slaney, M. Fujita, M. Stickel. Automated reasoning and exhaustive search:
quasigroup existence problems. Computers and Mathematics with Applications,
29, pages 115-132.

19. H. Zhang, M. Bonacina, J. Hsiang. PSATO: a distributed propositional prover and
its application to quasigroup problems. Journal of Symbolic Computation, 21(4),
pages 543-560.

NiVER: Non-increasing Variable Elimination
Resolution for Preprocessing SAT Instances�

Sathiamoorthy Subbarayan1 and Dhiraj K. Pradhan2

1 Department of Innovation,
IT-University of Copenhagen, Copenhagen, Denmark

sathi@itu.dk
2 Department of Computer Science,
University of Bristol, Bristol, UK

pradhan@cs.bris.ac.uk

Abstract. The original algorithm for the SAT problem, Variable Elimi-
nation Resolution (VER/DP) has exponential space complexity. To tackle
that, the backtracking-based DPLL procedure [2] is used in SAT solvers.
We present a combination of two techniques: we use NiVER, a special
case of VER, to eliminate some variables in a preprocessing step, and
then solve the simplified problem using a DPLL SAT solver. NiVER is
a strictly formula size not increasing resolution based preprocessor. In
the experiments, NiVER resulted in up to 74% decrease in N (Number
of variables), 58% decrease in K (Number of clauses) and 46% decrease
in L (Literal count). In many real-life instances, we observed that most
of the resolvents for several variables are tautologies. Such variables are
removed by NiVER. Hence, despite its simplicity, NiVER does result
in easier instances. In case NiVER removable variables are not present,
due to very low overhead, the cost of NiVER is insignificant. Empiri-
cal results using the state-of-the-art SAT solvers show the usefulness of
NiVER. Some instances cannot be solved without NiVER preprocessing.
NiVER consistently performs well and hence, can be incorporated into
all general purpose SAT solvers.

1 Introduction

The Variable Elimination Resolution (VER) [1] has serious problems due to
exponential space complexity. So, modern SAT solvers are based on DPLL [2].
Preprocessors (simplifiers) can be used to simplify SAT instances. The simplified
formula can then be solved by using a SAT Solver. Preprocessing is worthwhile
only if the overall time taken for simplification as well as for solving the simplified
formula is less than the time required to solve the unsimplified formula. This
paper introduces NiVER (Non-increasing VER), a new preprocessor based on
VER. NiVER is a limited version of VER, which resolves away a variable only if

� Research reported supported in part by EPSRC(UK). Most of this work was done
when the first author was working at University of Bristol.

H.H. Hoos and D.G. Mitchell (Eds.): SAT 2004, LNCS 3542, pp. 276–291, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

NiVER: Non-increasing Variable Elimination Resolution 277

there will be no resulting increase in space. For several instances, NiVER results
in reducing the overall runtime. In many cases, NiVER takes less than one second
CPU time. Because, NiVER consistently performs well, like clause learning and
decision heuristics, NiVER can also be integrated into the DPLL framework for
general purpose SAT solvers.

The important contribution of this paper is the observation that most of the
real-life SAT instances have several NiVER removable variables, which can be
resolved away without increase in space. The structure of the real-life instances
are such that for several variables, most of the resolvents are tautologies. Hence,
there will be no increase in space due to VER on them. Empirical results show
that NiVER not only decreases the time taken to solve an instance, but also
decreases the amount of memory needed to solve it. Some of the instances cannot
be solved without NiVER preprocessing, because of more memory requirement.
Importantly, empirical results also show that the benefit of NiVER preprocessing
increases with the increase in the size of the problem. As the size of the problem
instances increases, it is useful to have a NiVER preprocessor in general SAT
solvers. Another advantage is its simplicity: NiVER can be implemented with
the conventional data structures used for clause representation in modern SAT
solvers. In fact, in our implementation we have used the data structures from
the zChaff SAT solver [6]. Hence, there will not be a significant overhead in
implementation of NiVER with SAT solvers.

The next section presents a brief overview of previous SAT preprocessing
techniques. Section 3 presents the NiVER preprocessor and gives some examples.
Empirical results are presented in section 4. We conclude in section 5.

2 SAT Preprocessors

Simplifiers are used to change the formula into a simpler one, which is easier
to solve. Pure literal elimination and unit propagation are the two best known
simplification methods used in most of the DPLL based SAT solvers. Although
several preprocessors have been published [3],[4], the current state-of-the-art
SAT solvers [6],[5], just use these two simplifications. The 2-simplify preprocessor
by Brafman [4], applies unit clause resolution, equivalent variable substitution,
and a limited form of hyper-resolution. It also generates new implications using
binary clause resolution. The recent preprocessor, HyPre [3] applies all the rules
in 2-simplify and also does hyper-binary resolution. For some problems HyPre
preprocessor itself solves the problem. But for other instances, it takes a lot of
time to preprocess, while the original problem is easily solvable by SAT solvers.

VER has already been used as a simplifier, but to a lesser extent. In [7],
variables with two occurences are resolved away. For a class of random bench-
marks, [7] has empirically shown that the procedure, in average case, results in
polynomial time solutions. In 2clsVER [8], VER was used. They resolved away
a variable rather than splitting on it, if the VER results in less than a 200 in-
crease in L (Number of literals). It was done inside a DPLL method, not as a
preprocessor. But that method was not successful when compared to the state-

278 S. Subbarayan and D.K. Pradhan

of-the-art DPLL algorithms. A variant of the NiVER method, which does not
allow an increase in K, was used in [14] to obtain the current best worst-case
upper bounds. The method in [14] was used not just as a preprocessor, but, at
each node of a DPLL search. However, no implementation was found.

Algorithm 1. NiVER CNF Preprocessor
1: NiVER(F)
2: repeat
3: entry = FALSE
4: for all V ∈ Var(F) do
5: PC = {C | C ∈ F , lV ∈ C }
6: NC = {C | C ∈ F , lV ∈ C }
7: R = { }
8: for all P ∈ PC do
9: for all N ∈ NC do

10: R = R ∪ Resolve(P ,N)
11: end for
12: end for
13: Old Num Lits = Number of Literals in (PC∪NC)
14: New Num Lits = Number of Literals in R
15: if (Old Num Lits ≥ New Num Lits) then
16: F=F -(PC∪NC), F=F+R, entry = TRUE
17: end if
18: end for
19: until ¬entry
20: return F

3 NiVER: Non-increasing VER

Like other simplifiers, NiVER takes a CNF as input and outputs another CNF,
with a lesser or equal number of variables. The VER, the original algorithm for
SAT solving, has exponential space complexity, while that of DPLL is linear.
Both have exponential time complexity. In NiVER, as we do not allow space
increasing resolutions, we have linear space complexity. The strategy we use is
to simplify the SAT instance as much as possible using NiVER, a linear-space
version of VER. Then, the resulting problem is solved using a DPLL-based
SAT solver. NiVER does not consider the number of occurrences of variables
in the formula. In some instances, NiVER removes variables having more than
25 occurrences. For each variable, NiVER checks whether it can be removed
by VER, without increasing L. If so, it eliminates the variable by VER. The
NiVER procedure is shown in Algorithm 1. When VER removes a variable,
all resolvents of the variable have to be added. We discard trivial resolvents
(tautologies). The rest of the resolvents are added to the formula. Then, all the
clauses containing the variable are deleted from the formula. In many real-life
instances (Figure 1 and Figure 2) we observed that for many variables, most of
the resolvents are tautologies. So, there will be no increase in space when those

NiVER: Non-increasing Variable Elimination Resolution 279

variables are resolved away. Apart from checking for tautologies, NiVER does
not do any complex steps like subsumption checking. No other simplification is
done. Variables are checked in the sequence of their numbering in the original
formula. There is not much difference due to different variable orderings. Some
variable removals cause other variables to become removable. NiVER iterates
until no more variable can be removed. In the present implementation, NiVER
does not even check whether any unit clause is present. Rarely, when a variable
is removed, we observed an increase in K, although, NiVER does not allow L
to increase. Unlike HyPre or 2-simplify, NiVER does not do unit propagation,
neither explicitly nor implicitly.

Clauses with literal l24 Clauses with literal l24

(l23 + l24) (l22 + l24) (l24 + l31) (l22 + l23 + l24 + l2 + l15)
(l2 + l15 + l24) (l2 + l15 + l24) (l22 + l23 + l24 + l2 + l15)

Old Num Lits = 22 Number of Clauses deleted = 7

Added Resolvents
(l31 + l22 + l23 + l2 + l15) (l31 + l22 + l23 + l2 + l15)

Eight other resolvents are tautologies

New Num Lits = 10 Number of Clauses added = 2

Fig. 1. NiVER Example 1: Elimination of Variable numbered 24 of barrel8 instance
from Bounded Model Checking

Figure 1 shows an example of variable elimination by NiVER, when applied
to the barrel8 instance from Bounded Model Checking [15]. In this example,
variable 24 has 10 resolvents. Among them, eight are tautologies, which can be
discarded. Only the two remaining non-trivial resolvents are added. The seven
old clauses containing a literal of variable 24 are deleted. The variable elimina-
tion decreases N (number of variables) by one, K (number of clauses) by 12,
and L (literal count) by five.

Figure 2 shows another example of variable elimination by NiVER, when
applied to the 6pipe instance from a microprocessor verification benchmark
suite[16]. In this example, variable 44 has nine resolvents. Among them, five
are tautologies, which can be discarded. Only the four remaining non-trivial re-
solvents are added. The six old clauses containing a literal of variable 44 are
deleted. The variable elimination decreases N by one, K by two, and L by
two.

Table 1 shows the effect of NiVER on a few instances from [9]. For the
fifo8 400 instance, NiVER resulted in a 74% decrease in N , a 58% decrease in
K and a 46% decrease in L. The benefit of these reductions is shown in the
results section. In many of the real-life instances, NiVER decreases N , K and
L. This might be a reason for the usefulness of NiVER on those instances.

NiVER preserves the satisfiability of the original problem. If the simplified
problem is unsatisfiable, then the original is also unsatisfiable. If the simplified
problem is satisfiable, the assignment for the variables in the simplified formula

280 S. Subbarayan and D.K. Pradhan

Clauses with literal l44 Clauses with literal l44

(l44 + l6315 + l15605) (l44 + l6315 + l15605)
(l44 + l6192 + l6315) (l44 + l6192 + l6315)
(l44 + l3951 + l11794) (l44 + l3951 + l11794)

Old Num Lits = 18 Number of Clauses deleted = 6

Added Resolvents Discarded Resolvents(Tautologies)
(l6315 + l15605 + l3951 + l11794) (l6315 + l15605 + l6315 + l15605)
(l6192 + l6315 + l3951 + l11794) (l6315 + l15605 + l6192 + l6315)
(l3951 + l11794 + l6315 + l15605) (l6192 + l6315 + l6315 + l15605)
(l3951 + l11794 + l6192 + l6315) (l6192 + l6315 + l6192 + l6315)

(l3951 + l11794 + l3951 + l11794)

New Num Lits = 16 Number of Clauses added = 4

Fig. 2. NiVER Example 2: Elimination of Variable numbered 44 of 6pipe instance
from Microprocessor Verification

Table 1. Effect of NiVER preprocessing. N-org, N-pre: N (Number of variables) in
original and simplified formulas. %N↓ : The percentage of variables removed by NiVER.
Corresponding information about clauses are listed in consecutive columns. %K↓ :
The percentage decreases in K due to NiVER. %L↓ : The percentage decreases in L
(Number of Literals) due to NiVER. The last column reports the CPU time taken
by NiVER preprocessor in seconds. Some good entries are in bold. A machine with
AthlonXP1900+ processor and 1GB memory was used in the experiments

Benchmark N-org N-pre %N↓ K-org K-pre %K↓ L-org L-pre %L↓ Time

6pipe 15800 15067 5 394739 393239 0.4 1157225 1154868 0.2 0.5

f2clk 40 27568 10408 62 80439 44302 45 234655 157761 32.8 1.3

ip50 66131 34393 48 214786 148477 31 512828 398319 22.3 5.2

fifo8 400 259762 68790 74 707913 300842 58 1601865 858776 46.4 14.3

comb2 31933 20238 37 112462 89100 21 274030 230537 15.9 1

cache 10 227210 129786 43 879754 605614 31 2191576 1679937 23.3 20.1

longmult15 7807 3629 54 24351 16057 34 58557 45899 21.6 0.2

barrel9 8903 4124 54 36606 20973 43 102370 66244 35.2 0.4

ibm-rule20 k45 90542 46231 49 373125 281252 25 939748 832479 11.4 4.5

ibm-rule03 k80 88641 55997 37 375087 307728 18 971866 887363 8.7 3.6

w08 14 120367 69151 43 425316 323935 24 1038230 859105 17.3 5.45

abp1-1-k31 14809 8183 45 48483 34118 30 123522 97635 21.0 0.44

guidance-1-k56 98746 45111 54 307346 193087 37 757661 553250 27.0 2.74

is a subset of at least one of the satisfying assignments of the original problem.
For variables removed by NiVER, the satisfying assignment can be obtained by
a well-known polynomial procedure, in which the way NiVER proceeds is simply
reversed. The variables are added back in the reverse order in which they were
eliminated. While adding each variable, assignment is made to that variable such
that the formula is satisfied.

NiVER: Non-increasing Variable Elimination Resolution 281

For example, let F be the original formula. Let Cx refer to a set of clauses
containing literals of variable x. Let Cxr represent the set of clauses obtained
by resolving clauses in Cx on variable x. NiVER first eliminates variable a from
F , by removing Ca from F and adding Car to F , resulting in the new formula
Fa. Then NiVER eliminates variable b by deleting Cb from Fa and adding Cbr

to Fa, resulting in Fab. Similarly, eliminating c results in Fabc. Now NiVER
terminates and let a SAT solver finds a satisfying assignment, Aabc, for Fabc.
Aabc will contain satisfying values for all variables in Fabc. Now, add variables
in the reverse order they were deleted. First, add Cc to Fabc, resulting in Fab.
Assign to c either the value one or the value zero, such that Fab is satisfied. At
least one among those assignments will satisfy Fab. Similarly, add Cb and find a
value for b and then for a. During preprocessing, just the set of clauses, Ca, Cb

and Cc, should be stored, so that a satisfying assignment can be obtained if the
DPLL SAT solver finds a satisfying assignment for the simplified theory.

4 Experimental Results

This section contains two subsections. The subsection 4.1 presents the effect
of the NiVER Preprocessor on two state-of-the-art SAT solvers: Berkmin and
Siege. As the two SAT solvers have different decision strategies, the effect of
NiVER on them can be studied. The other subsection presents the effect of
NiVER on time and memory requirement for solving large instances from four
families. The time listed for NiVER preprocessing in the tables are just the time
taken for preprocessing the instance. At present, as NiVER is a separate tool,
and, if the instance is very large, it might take few additional seconds to read
the file and write back into the disk. But, as the data structures used in NiVER
implementation are those used in modern SAT solvers to represent clauses, the
time taken for reading and writing back can be avoided when integrated with
the SAT solver.

4.1 Effect of NiVER on SAT-Solvers: BerkMin and Siege

The SAT benchmarks used in this subsection are from [9], [10] and [11]. Bench-
marks used in [3] were mostly used. The NiVER software is available at [13].
Experiments were done with, Berkmin [5], a complete deterministic SAT solver
and Siege(v 4) [12] , a complete randomized SAT Solver. Two SAT solvers have
different decision strategies and hence the effect of NiVER on them can be stud-
ied. In Table 2 runtimes in CPU seconds for experiments using Berkmin are
shown. In Table 3 corresponding runtimes using Siege are tabulated. All ex-
periments using Siege were done with 100 as the random seed parameter. For
every benchmark, four types of experiments were done with each solver. The
first type is just using the solvers to solve the instance. The second one is using
the NiVER preprocessor and solving the simplified theory by the SAT solvers.
The third type of experiments involves two preprocessors. First the benchmark
is simplified by NiVER and then by HyPre. The output of HyPre is then solved
using the SAT solvers. A fourth type of experiment uses just HyPre simplifier

282 S. Subbarayan and D.K. Pradhan

Table 2. Results with Berkmin (Ber) SAT solver. CPU Time (seconds) for four types
of experiments, along with class type (Cls) for each benchmark. An underlined entry
in the second column indicates that NiVER+Berkmin results in better runtime than
just using the solver. NSpdUp column lists the speedup due to NiVER+Berkmin over
Berkmin. A machine with AthlonXP1900+ processor and 1GB memory was used in
the experiments

Berkmin with
BenchMark Berkmin NiVER Cls (UN)SAT NSpdUP

NiVER +HyPre HyPre

6pipe 210 222 392 395 I UNSAT 0.95

6pipe 6 ooo 276 253 738 771 I UNSAT 1.09

7pipe 729 734 1165 1295 I UNSAT 0.99

9vliw bp mc 90 100 1010 1031 I UNSAT 0.90

comb2 305 240 271 302 II UNSAT 1.27

comb3 817 407 337 368 II UNSAT 2

fifo8 300 16822 13706 244 440 II UNSAT 1.23

fifo8 400 42345 1290 667 760 II UNSAT 32.82

ip38 256 99 52 105 II UNSAT 2.59

ip50 341 313 87 224 II UNSAT 1.09

barrel9 106 39 34 114 II UNSAT 2.71

barrel8 368 34 10 38 II UNSAT 10.82

ibm-rule20 k30 475 554 116 305 II UNSAT 0.86

ibm-rule20 k35 1064 1527 310 478 II UNSAT 0.70

ibm-rule20 k45 5806 8423 757 1611 II SAT 0.69

ibm-rule03 k70 21470 9438 399 637 II SAT 2.28

ibm-rule03 k75 30674 29986 898 936 II SAT 1.02

ibm-rule03 k80 31206 58893 1833 1343 II SAT 0.53

abp1-1-k31 1546 3282 1066 766 IV UNSAT 0.47

abp4-1-k31 1640 949 1056 610 IV UNSAT 1.72

avg-checker-5-34 1361 1099 595 919 II UNSAT 1.24

guidance-1-k56 90755 17736 14970 22210 III UNSAT 5.17

w08 14 3657 4379 1381 1931 III SAT 0.84

ooo.tag14.ucl 18 8 399 1703 III UNSAT 2.25

cache.inv14.ucl 36 7 396 2502 III UNSAT 5.14

cache 05 3430 1390 2845 3529 III SAT 2.47

cache 10 22504 55290 12449 15212 III SAT 0.41

f2clk 30 100 61 29 53 IV UNSAT 1.64

f2clk 40 2014 1848 1506 737 IV UNSAT 1.09

longmult15 183 160 128 54 IV UNSAT 1.14

longmult12 283 233 180 39 IV UNSAT 1.21

cnt10 4170 2799 193 134 IV SAT 1.49

and the SAT-solvers. When preprocessor(s) are used, the reported runtimes are
the overall time taken to find satisfiability.

Based on the experimental results in these two tables of this subsection, we
classify the SAT instances into four classes. Class-I: Instances for which pre-

NiVER: Non-increasing Variable Elimination Resolution 283

Table 3. Results with Siege (Sie) SAT solver. A machine with AthlonXP1900+ pro-
cessor and 1GB memory was used in the experiments

Siege with
BenchMark Siege NiVER Cls (UN)SAT NSpdUP

NiVER +HyPre HyPre

6 pipe 79 70 360 361 I UNSAT 1.13

6pipe 6 ooo 187 156 743 800 I UNSAT 1.20

7pipe 185 177 1095 1183 I UNSAT 1.05

9vliw bp mc 52 46 975 1014 I UNSAT 1.14

comb2 407 266 257 287 II UNSAT 1.53

comb3 550 419 396 366 II UNSAT 1.31

fifo8 300 519 310 229 281 II UNSAT 1.68

fifo8 400 882 657 404 920 II UNSAT 1.34

ip38 146 117 85 115 II UNSAT 1.25

ip50 405 258 131 234 II UNSAT 1.57

barrel9 59 12 16 54 II UNSAT 4.92

barrel8 173 25 6 16 II UNSAT 6.92

ibm-rule20 k30 216 131 112 315 II UNSAT 1.65

ibm-rule20 k35 294 352 267 482 II UNSAT 0.84

ibm-rule20 k45 1537 1422 1308 827 II SAT 1.08

ibm-rule03 k70 369 360 223 516 II SAT 1.03

ibm-rule03 k75 757 492 502 533 II SAT 1.54

ibm-rule03 k80 946 781 653 883 II SAT 1.21

abp1-1-k31 559 471 281 429 II UNSAT 1.19

abp4-1-k31 455 489 303 346 II UNSAT 0.93

avg-checker-5-34 619 621 548 690 II UNSAT 1

guidance-1-k56 9972 8678 6887 20478 II UNSAT 1.15

w08 14 1251 901 1365 1931 III SAT 1.39

ooo.tag14.ucl 15 6 396 1703 III UNSAT 2.5

cache.inv14.ucl 39 13 396 2503 III UNSAT 3

cache 05 238 124 2805 3540 III SAT 1.92

cache 10 1373 669 10130 13053 III SAT 2.05

f2clk 30 70 48 53 41 IV UNSAT 1.46

f2clk 40 891 988 802 519 IV UNSAT 0.90

longmult15 325 198 169 54 IV UNSAT 1.64

longmult12 471 256 292 72 IV UNSAT 1.84

cnt10 236 139 193 134 IV SAT 1.70

processing results in no significant improvement. Class-II: Instances for which
NiVER+HyPre preprocessing results in best runtimes. Class-III: Instances for
which NiVER preprocessing results in best runtimes. Class-IV: Instances for
which HyPre preprocessing results in best runtimes. The sixth column in the
tables lists the class to which each problem belongs. When using SAT solvers to
solve problems from a particular domain, samples from the domain can be used
to classify them into one of the four classes. After classification, the correspond-
ing type of framework can be used to get better run times. In case of Class-I

284 S. Subbarayan and D.K. Pradhan

problems, NiVER results are almost same as the pure SAT solver results. But
HyPre takes a lot of time for preprocessing some of the Class-I problems like pipe
instances. There are several Class-I problems not listed in tables here, for which
neither NiVER nor HyPre results in any simplification, and hence no significant
overhead. In case of Class-II problems, NiVER removes many variables and re-
sults in a simplified theory FN . HyPre further simplifies FN and results in FN+H

which is easier for SAT solvers. When HyPre is alone used for Class-II problems,
they simplify well, but the simplification process takes more time than for simpli-
fying corresponding FN . NiVER removes many variables and results in FN . But
the cost of reducing the same variables by comparatively complex procedures
in HyPre is very high. Hence, for Class-II, with few exceptions, HyPre+Solver
column values are more than the values in NiVER+HyPre+Solver column. For
Class-III problems, HyPre takes a lot of time to preprocess instances, which in-
creases the total time taken to solve by many magnitudes than the normal solving
time. In case of cache.inv14.ucl [11], NiVER+Siege takes 13 seconds to solve,
while HyPre+Siege takes 2503 seconds. The performance of HyPre is similar to
that on other benchmarks generated by an infinite state systems verification tool
[11]. Those benchmarks are trivial for DPLL SAT Solvers. The Class-IV prob-
lems are very special cases in which HyPre outperform others. When NiVER
is applied to these problems, it destroys the structure of binary clauses in the
formula. HyPre which relies on hyper binary resolution does not perform well on
the formula simplified by NiVER. In case of longmult15 and cnt10, the HyPre
preprocessor itself solves the problem. When just the first two types of experi-
ments are considered, NiVER performs better in almost all of the instances.

4.2 Effect of NiVER on Time and Memory Usage by Siege SAT
Solver

In this subsection the effect of the NiVER preprocessor on four families of large
SAT instances are presented. As the results in the previous subsection show,
Siege SAT solver is better than Berkmin. As we are primarily interested in
studying the effect of NiVER on memory and time requirements of SAT solvers,
all the results in this section are done using the Siege SAT solver, alone. Again,
the random seed parameter for the Siege SAT solver was fixed at 100.

In the tables in this subsection: NiVER Time (sec) refers to the CPU-time in
seconds taken by NiVER to preprocess the benchmark. Time (sec)-Siege refers
to the CPU-time in seconds taken by Siege to solve the original benchmark.
Time (sec)-NiVER+Siege refers to the sum of the time taken for NiVER pre-
processing and the time taken for solving the NiVER-preprocessed instance by
Siege. Time (sec)-HyPre+Siege refers to the sum of the time taken for HyPre
preprocessing and the time taken for solving the HyPre-preprocessed instance
by Siege. The other three columns list the amount of memory, in MegaBytes
(MB), used by Siege SAT solver to solve the original and the corresponding
preprocessed instances. MA-S means memory-abort by Siege SAT solver. MA-H
means memory-abort by HyPre preprocessor. SF mentions segmentation fault
by HyPre preprocessor.

NiVER: Non-increasing Variable Elimination Resolution 285

The x-x-barrel family of instances are generated using the tools, BMC and
genbarrel, available at [15]. The BMC tool, bounded model checker, takes as
input: a model and a parameter, k, the bound for which the model should be
verified. It then creates a SAT formula, whose unsatisfiability implies the verifi-
cation of a property for the specified bound. The genbarrel tool takes an integer
parameter and generates a model of the corresponding size. The x-x-barrel in-
stances are generated using the command: genbarrel x | bmc -dimacs -k x >
x-x-barrel.cnf

The results for the x-x-barrel family are listed in Table 4. Three types of
experiments are done. One just using the plain Siege SAT solver. Second one
using the NiVER preprocessor. Third one using the HyPre preprocessor. Corre-
ponding time and memory usage are listed. Figure 3 shows the graph obtained
when the time usage for x-x-barrel instances are plotted. Figure 4 shows the
graph obtained when the memory usage for x-x-barrel instances are plotted.
The HyPre preprocessor was not able to handle instances larger than the 10-10-
barrel, and aborted with a segmentation fault error message. Although the Siege
SAT solver was able to solve all the original x-x-barrel instances, it used more
time and space, than those for the corresponding NiVER simplified instances.
As the Figure 3 shows, with the increase in the size of the instance, the benefit
of NiVER preprocessing increases. For example, the speed-up due to NiVER in
case of 8-8-barrel instance is 6.1 (Table3), while it is 13.6 in case of 14-14-barrel
instance. Similar trend is also observed in the graph (Figure 4) for memory usage
comparison. More than half of the variables in x-x-barrel instances are resolved
away by NiVER preprocessor. In several other bounded model checking gener-
ated SAT instances, we observed similar amount of decrease in the number of
variables due to NiVER preprocessing. For example, the longmult15 instance
and w08 14 instance in Table 1 are both generated by bounded model checking.
In both cases, approximately half of the variables are removed by NiVER. In all
the x-x-barrel instances, the time taken for NiVER preprocessing is very small,
and insignificant, when compared with the original solution time.

The other three families of large SAT instances: xpipe k, xpipe q0 k, and,
xpipe xooo q0 T0, are all obtained from the Microprocessor Verification bench-

Table 4. Results for x-x-barrel family. Experiments were done on an Intel Xeon 2.8
GHz machine with 2 GB of memory. SF : Segmentation fault by HyPre preprocessor

NiVER Time (sec) Memory (MB)
Benchmark N %N↓ Time NiVER HyPre NiVER HyPre

(sec) Siege +Siege +Siege Siege +Siege +Siege

8-8-barrel 5106 56 0.2 86 14 9 59 26 13

9-9-barrel 8903 53 0.4 29 7 25 20 8 41

10-10-barrel 11982 54 1 45 10 65 31 12 63

11-11-barrel 15699 54 1 77 12 SF 52 14 SF

12-12-barrel 20114 55 2 580 73 SF 147 50 SF

13-13-barrel 25287 55 3 429 42 SF 120 34 SF

14-14-barrel 31278 55 5 1307 96 SF 208 70 SF

286 S. Subbarayan and D.K. Pradhan

0

200

400

600

800

1000

1200

1400

8 9 10 11 12 13 14

x-x-barrel Instance

T
im

e
(s

ec
)

Siege
NIVER+Siege
HyPre+Siege

Fig. 3. Time comparison for the x-x-barrel family

0

50

100

150

200

250

8 9 10 11 12 13 14

x-x-barrel Instance

M
em

o
ry

 (
M

B
)

Siege
NiVER+Siege
HyPre+Siege

Fig. 4. Memory usage comparison for the x-x-barrel family

mark suite at [16]. The results obtained from experiments on xpipe k, xpipe q0 k,
and, xpipe xooo q0 T0 families are listed in Tables 5, 6, and 7, respectively. Fig-
ures for corresponding time and memory comparison follow them.

In the case of the xpipe k family, without using the NiVER preprocessor, all
the instances cannot be solved. Memory values listed in the tables just show
the amount of memory used by the Siege SAT solver. Even when preprocessors
are used, the memory values listed are just those used by Siege for solving the
corresponding preprocessed instance. The amount of memory used by prepro-
cessors is not listed. The aborts (MA-H) in the HyPre column of Table 5 are
due to HyPre. In a machine with 2GB of memory, the HyPre preprocessor was
not able to handle instances larger than 10pipe k. Even for the instances smaller
than 10pipe k, HyPre took a lot of time. In case of 9pipe k, HyPre took 47 times
the time taken by Siege. Siege SAT solver was not able to handle the 14pipe k

NiVER: Non-increasing Variable Elimination Resolution 287

Table 5. Results for the xpipe k family. Experiments were done on an Intel Xeon
2.8 GHz machine with 2 GB of memory. MA-S : Memory Abort by Siege SAT solver.
MA-H : Memory Abort by HyPre preprocessor

NiVER Time (sec) Memory (MB)
Benchmark N %N↓ Time NiVER HyPre NiVER HyPre

(sec) Siege +Siege +Siege Siege +Siege +Siege

7pipe k 23909 4 1 64 69 361 93 94 61

8pipe k 35065 5 1 144 127 947 152 115 87

9pipe k 49112 3 1 109 106 4709 121 123 121

10pipe k 67300 5 2 565 544 5695 308 212 196

11pipe k 89315 5 2 1183 915 MA-H 443 296 MA-H

12pipe k 115915 5 3 3325 2170 MA-H 670 418 MA-H

13pipe k 147626 5 4 5276 3639 MA-H 842 579 MA-H

14pipe k 184980 5 5 MA-S 8559 MA-H MA-S 730 MA-H

Table 6. Results for the xpipe q0 k family. Experiments were done on an Intel Xeon
2.8 GHz machine with 2 GB of memory. MA-H : Memory Abort by HyPre preprocessor

NiVER Time (sec) Memory (MB)
Benchmark N %N↓ Time NiVER HyPre NiVER HyPre

(sec) Siege +Siege +Siege Siege +Siege +Siege

8pipe q0 k 39434 27 1 90 68 304 81 62 56

9pipe q0 k 55996 28 2 71 61 1337 77 66 76

10pipe q0 k 77639 29 2 295 280 1116 170 120 117

11pipe q0 k 104244 31 3 520 478 1913 233 164 154

12pipe q0 k 136800 32 4 1060 873 3368 351 227 225

13pipe q0 k 176066 33 5 1656 1472 5747 481 295 315

14pipe q0 k 222845 34 7 2797 3751 MA-H 616 412 MA-H

15pipe q0 k 277976 35 10 5653 4165 MA-H 826 494 MA-H

Table 7. Results for the xpipe x ooo q0 T0 family. Experiments were done on an Intel
Xeon 2.8 GHz machine with 2 GB of memory. In this table an entry x in the Benchmark
column refers to an xpipe x ooo q0 T0 instance

NiVER Time (sec) Memory (MB)
Benchmark N %N↓ Time NiVER HyPre NiVER HyPre

(sec) Siege +Siege +Siege Siege +Siege +Siege

7 27846 24 1 97 87 229 60 60 45

8 41491 25 1 252 226 605 100 85 77

9 59024 25 1 415 359 1524 135 119 113

10 81932 27 2 2123 2391 3190 215 172 171

11 110150 28 2 9917 8007 8313 317 240 234

12 144721 29 3 56748 30392 27071 448 330 342

288 S. Subbarayan and D.K. Pradhan

instance. It aborted due to insufficient memory. But after NiVER preprocessing
the 14pipe k instance was solved by Siege using the same machine. While solving
NiVER preprocessed instance, Siege consumed only one third (730MB) of the
available 2GB. As the results in Table 5 and the corresponding time comparison
graph (Figure 5) shows, the speed-up due to NiVER keeps increasing with the in-
crease in size of the instance. It is also interesting to note that in case of 14pipe k
instance, only 5% of the variables are removed by NiVER. But still it resulted in
solving the instance by using just 730MB of memory. As shown in Figure 6, the
memory usage ratio, between the original instance and the corresponding NiVER
preprocessed instance, also increases with the increase in the instance size.

In the case of the xpipe q0 k family, again HyPre was not able to handle all
the instances. As in the other cases, the benefit of NiVER preprocessing increases
with the increase in the size of the instances. This is shown by the graphs in

0

2000

4000

6000

8000

10000

12000

14000

8 9 10 11 12 13 14 15

xpipe_k Instance

T
im

e
(s

ec
)

Siege
NiVER+Siege
HyPre+Siege

Fig. 5. Time comparison for the xpipe k family

0

500

1000

1500

2000

2500

8 9 10 11 12 13 14 15

xpipe_k Instance

M
em

o
ry

 (
M

B
)

Siege
NiVER+Siege
HyPre+Siege

Fig. 6. Memory usage comparison for the xpipe k family

NiVER: Non-increasing Variable Elimination Resolution 289

0

1000

2000

3000

4000

5000

6000

7000

8 9 10 11 12 13 14 15

xpipe_q0_k

T
im

e
(s

ec
)

Siege
NiVER+Siege
HyPre+Siege

Fig. 7. Time comparison for the xpipe q0 kfamily

0

500

1000

1500

2000

2500

8 9 10 11 12 13 14 15

xpipe_q0_k Instance

M
em

o
ry

 (
M

B
)

Siege
NiVER+Siege
HyPre+Siege

Fig. 8. Memory usage comparison for the xpipe q0 k family

0

10000

20000

30000

40000

50000

60000

7 8 9 10 11 12

xpipe_x_ooo_q0_T0 Instance

T
im

e
(s

ec
)

Siege
NiVER+Siege
HyPre+Siege

Fig. 9. Time comparison for the xpipe x ooo q0 T0 family

290 S. Subbarayan and D.K. Pradhan

0
50

100
150
200
250
300
350
400
450
500

7 8 9 10 11 12

xpipe_x_ooo_q0_T0 Instance

M
em

o
ry

 (
M

B
)

Siege
NiVER+Siege
HyPre+Siege

Fig. 10. Memory usage comparison for the xpipe x ooo q0 T0 family

Figures 7 and 8. For the 15pipe q0 k instance, NiVER resulted in decreasing the
memory usage by 40%. Even in time usage, there is a significant improvement.
In the case of the xpipe x ooo q0 T0 family (Table 7), both NiVER and HyPre
preprocessors give similar improvement over the original instance. But still the
advantages of NiVER over HyPre are its simplicity, and usefulness in a wide
range of real-life instances.

5 Conclusion

We have shown that a special case of VER, NiVER, is an efficient simplifier. Al-
though several simplifiers have been proposed, the state-of-the-art SAT-solvers
do not use simplification steps other than unit propogation and pure literal elim-
ination. We believe that efficient simplifiers will improve SAT-solvers. NiVER
does the VER space efficiently by not allowing space increasing resolutions. Oth-
erwise, the advantage of VER would be annulled by the associated space explo-
sion. Empirical results have shown that NiVER results in improvement in most
of the cases. NiVER+Berkmin outperforms Berkmin in 22 out of 32 cases (Ta-
ble 2) and yields up to 33x speedup. In the other cases, mostly the difference
is negligible. NiVER+Siege outperforms Siege in 29 out of 32 cases (Table 3)
and gives up to 7x speedup. In the three other cases, the difference is negligible.
Although, NiVER results in easier problems when some variables are removed
by it, the poor performance of SAT solvers on few NiVER simplified instances
is due to the decision heuristics. Experiments on four families of large SAT in-
stances show that, the usefulness of NiVER increases with the increase in size of
the problem size. NiVER also decreases the memory usage by SAT solvers. Due
to that, more instances can be solved with the same machine configuration. The
NiVER simplifier performs well, as most of the best runtimes in the experiments
are obtained using it. Due to its usefulness and simplicity, like decision heuristics
and clause learning, NiVER can also be incorporated into all general purpose
DPLL SAT solvers.

NiVER: Non-increasing Variable Elimination Resolution 291

Acknowledgements

Special thanks to Tom Morrisette, Lintao Zhang, Allen Van Gelder, Rune M
Jensen and the anonymous reviewers for their comments on earlier versions of
this paper.

References

1. M. Davis, H. Putnam. : A Computing procedure for quantification theory. J. of
the ACM,7 (1960)

2. M. Davis, et.al.,: A machine program for theorem proving. Comm. of ACM, 5(7)
(1962)

3. F. Bachhus, J. Winter. : Effective preprocessing with Hyper-Resolution and Equal-
ity Reduction, SAT 2003 341-355

4. R. I. Brafman : A simplifier for propositional formulas with many binary clauses,
IJCAI 2001, 515-522.

5. E.Goldberg, Y.Novikov.: BerkMin: a Fast and Robust SAT-Solver, Proc. of DATE
2002, 142-149

6. M. Moskewicz, et.al.,: Chaff: Engineering an efficient SAT solver, Proc. of DAC
2001

7. J. Franco. : Elimination of infrequent variables improves average case performance
of satisfiability algorithms. SIAM Journal on Computing 20 (1991) 1119-1127.

8. A. Van Gelder. : Combining preorder and postorder resolution in a satisfiability
solver, In Kautz, H., and Selman, B., eds., Electronic Notes of SAT 2001, Elsevier.

9. H. Hoos, T. Stützle.: SATLIB: An Online Resource for Research on SAT. In:
I.P.Gent, H.v.Maaren, T.Walsh, editors, SAT 2000, 283-292, www.satlib.org

10. IBM Formal Verification Benchmarks Library : http://www.haifa.il.ibm.com/
projects/verification/RB Homepage/bmcbenchmarks.html

11. UCLID : http://www-2.cs.cmu.edu/~uclid/
12. L. Ryan : Siege SAT Solver : http://www.cs.sfu.ca/~loryan/personal/
13. NiVER SAT Preprocessor : http://www.itu.dk/people/sathi/niver.html
14. E. D. Hirsch. : New Worst-Case Upper Bounds for SAT, J. of Automated Reasoning

24 (2000) 397-420
15. A. Biere: BMC, http://www-2.cs.cmu.edu/~modelcheck/bmc.html
16. M. N. Velev: Microprocessor Benchmarks,

http://www.ece.cmu.edu/~mvelev/sat benchmarks.html

Analysis of Search Based Algorithms for Satisfiability of
Propositional and Quantified Boolean Formulas Arising

from Circuit State Space Diameter Problems

Daijue Tang, Yinlei Yu, Darsh Ranjan, and Sharad Malik

Princeton University, NJ 08544, USA
{dtang, yyu, dranjan, malik}@Princeton.EDU

Abstract. The sequential circuit state space diameter problem is an important
problem in sequential verification. Bounded model checking is complete if the
state space diameter of the system is known. By unrolling the transition relation,
the sequential circuit state space diameter problem can be formulated as either a
series of Boolean satisfiability (SAT) problems or an evaluation for satisfiability
of a Quantified Boolean Formula (QBF). Thus far neither the SAT based tech-
nique that uses sophisticated SAT solvers, nor QBF evaluations for the various
QBF formulations for this have fared well in practice. The poor performance of
the QBF evaluations is blamed on the relative immaturity of QBF solvers, with
hope that ongoing research in QBF solvers could lead to practical success here.

Most existing QBF algorithms, such as those based on the DPLL SAT al-
gorithm, are search based. We show that using search based QBF algorithms to
calculate the state space diameter of sequential circuits with existing problem
formulations is no better than using SAT to solve this problem. This result holds
independent of the representation of the QBF formula. This result is important
as it highlights the need to explore non-search based or hybrid of search and
non-search based QBF algorithms for the sequential circuit state space diameter
problem.

1 Introduction

In sequential verification, symbolic model checking is a powerful technique and has
been used widely. Traditional symbolic model checking uses BDDs to represent logic
functions and characteristic functions of sets. With the development of many efficient
SAT solvers, bounded model checking (BMC) [1] has emerged as an alternative ap-
proach to perform model checking. Although BMC uses fast SAT solvers and may be
able to quickly find counter examples, it is incomplete in the sense that it cannot deter-
mine when to stop the incremental unrolling of the transition relation. The maximum
number of unrollings needed to complete BMC is the diameter of the corresponding
sequential circuit state space. Therefore, determining the diameter is crucial for the
completeness of BMC and thus has practical significance.

The sequential diameter can be computed as a byproduct of the sequential reach-
ability analysis [2]. In this case, image computation is repeated from the set of initial
states until the least fixed point is reached. The number of image computation steps

H.H. Hoos and D.G. Mitchell (Eds.): SAT 2004, LNCS 3542, pp. 292–305, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Analysis of Search Based Algorithms 293

needed to reach a fixed point is the diameter of the sequential system. The state sets are
enumerated implicitly and stored in the form of either BDDs or other representations
of Boolean formulas. Images are calculated using either BDD operations or SAT eval-
uations or a combination of these two methods. Circuit diameter computation in [3] is
purely SAT based. It does not calculate reachable states. The diameter is computed by
solving a series of SAT problems derived from the unrolled next state functions. More
detailed analysis of this method will be given in Section 3. In [4], search based SAT
procedure is used in model checking algorithms. However, that work mainly concerns
the method for preimage computation. It is not clear how to use preimage computation
in the calculation of the circuit state space diameter.

The sequential circuit state space diameter problem can also be tackled by formu-
lating it as a quantified Boolean formula (QBF) and using QBF solvers to solve them.
A QBF is a Boolean formula with its variables quantified by either universal (∀) or ex-
istential (∃) quantifiers. The problem of deciding whether a quantified Boolean formula
evaluates to true or false is also referred to as the QBF problem. Theoretically, QBF
belong to the class of P-SPACE complete problems, widely considered harder than
NP-complete problems like SAT. Many problems in AI planning [5] and sequential cir-
cuit verification [6] [1] can be formulated as QBF instances. In recent years, there has
been an increasing interest within the verification community in exploring QBF based
sequential verification as an alternative to Binary Decision Diagram (BDD) based tech-
niques. Therefore, finding efficient QBF evaluation algorithms is gaining interest in
sequential verification. Like SAT evaluation, QBF evaluation can be search based and
does not suffer from the potential space explosion problem of BDDs. This makes it at-
tractive to use QBF over BDD based algorithms since the problem of QBF evaluation
is known to have polynomial space complexity. An obvious linear space algorithm to
decide QBF assigns Boolean values to the variables and recursively evaluates the truth
of the formula. The recursion depth is at most the number of variables. Since we need to
store only one value of the variable at each level, the total space required is O(n) where
n is the number of variables. However, using state-of-the-art QBF solvers to solve the
diameter problem lags behind other approaches. The immaturity of QBF evaluation
techniques is often considered as the major reason for this. In this paper, we show that
for the existing QBF formulations of the circuit diameter problem, search based QBF al-
gorithms (this includes all DPLL based solvers) have no hope to outperform algorithms
based on SAT. This result is important as it underscores the need to explore non-search
based or possibly hybrids of search and non-search based techniques if we hope to do
better using QBF.

2 The Sequential Circuit State Space Diameter Problem

Many problems in hardware verification concern verifying certain properties of logic
circuits. To formulate such problems, one Boolean variable is introduced for each cir-
cuit node. A circuit node is either a primary input or a gate output. For a combinational
circuit, the circuit consistency condition is expressed as the conjunction of the consis-
tency conditions for each gate. This in turn is the set of consistent values at the inputs
and output of this gate based on its function.

294 D. Tang et al.

The behavior of a sequential circuit over a number of time frames can be modeled
using the conventional time frame expansion approach, which creates a combinational
circuit by unrolling the next state function of the sequential circuit. The sequential cir-
cuit state space diameter problem can be formulated as either a propositional formula
or a QBF by unrolling the next state function. The shortest path from one state si of
a sequential circuit to another state sj is defined as the minimum number of steps to
go from si to sj in the corresponding state transition graph. Clearly, every state on a
shortest path appears at most once, which means that a shortest path has no loop. A path
with no loop is also called a simple path. The state space diameter of a sequential circuit
is the longest shortest path from one of the starting states of this sequential circuit to
any other reachable state.

3 SAT Formulation and Its Analysis

The Boolean satisfiability problem is the problem of deciding whether there exists an
assignment to the Boolean variables that makes a given propositional formula true.
In [3], the authors presented a purely SAT based method to compute the diameter of the
state space of a sequential circuit.

They formulate the diameter problem by unrolling the next state function. Figure 1
shows the combinational circuit constructed at each step of the circuit state space di-
ameter calculation. We have two expansions of the combinational logic, one for n + 1
time frames and the other for n time frames. Ii and I ′i(i = 1, 2, · · ·) are sets of primary
inputs, Oi and O′

i(i = 1, 2, · · ·) are sets of primary outputs and Si and S′
i(i = 0, 1, · · ·)

are sets of state variables. Let C1 denote the set of variables of the n+1 time frame ex-
pansion part and C2 denote the set of variables of the n time frame expansion part.
Let F (C1) and F (C2) be the Boolean functions representing the logic consistency
conditions of C1 and C2 respectively. If Init(S) is the characteristic function of the
initial states, T (Ii, Si, Si+1) is the characteristic function of the state transition re-
lation, then F (C1) = Init(S0) ∧

∧n
i=0 T (Ii, Si, Si+1) and F (C2) = Init(S′

0) ∧∧n−1
i=0 T (I ′i, S

′
i, S

′
i+1). Typically, n is incremented from zero until the diameter is

reached. Let the state space diameter of the sequential circuit be d. If n < d, there
must exist a simple path in the state space starting from S0 with length n + 1. This
condition can be checked by evaluating the following propositional formula:

F (C1) ∧ (
∧
i�=j

Si �= Sj) (1)

If (1) is not satisfiable, then it must be true that n ≥ d, which means the diameter
is found. If (1) is satisfiable, DPLL based SAT solvers usually give satisfiable assign-
ments to the Boolean variables. Since (1) is the conjunction of two terms: F (C1) and∧

i�=j Si �= Sj , the satisfying assignment of (1) must satisfy every term. To satisfy ev-
ery inequality of the second term, not every bit in the vectors Si and Sj needs to be
assigned. For two vectors Si and Sj to be different, one bit difference of these two
vectors is sufficient. Therefore, the satisfying assignment of (1) can be either a partial
assignment, i.e. a cube, or a complete assignment, i.e. a minterm. The assigned values

Analysis of Search Based Algorithms 295

to the variables in Sn+1 give us one or more states at the end of the simple paths with
length n + 1. We use st to denote these states. However, (1) being satisfiable does not
necessarily mean that n < d. We must check if these st are reachable in less than n + 1
time frames. This is checked by testing the satisfiability of the following propositional
formula:

F (C2) ∧ (
∨

i=0···n
st = S′

i) (2)

If (2) is unsatisfiable, we must have n < d. Then n is incremented and the above pro-
cedure is repeated starting by evaluating the satisfiability of (1). If (2) is satisfiable, we
need to see if there is another simple path with a different end state. This is done by
conjuncting (1) with the negations of the previously reached st and testing the satisfia-
bility of it. When (1) becomes unsatisfiable, it means that all end states of simple paths
whose length is n + 1 are reachable within n time frames. Thereby n ≥ d. Otherwise,
we continue to find a cube of new st and evaluate (2) again.

To simplify the above procedure, a new transition from the initial state to itself is
added. Then the set of states reachable at a certain time frame must contain the set of
states reachable at previous time frames. Therefore, (2) can be simplified as:

F (C2) ∧ (st = S′
n) (3)

Using SAT to solve the sequential circuit diameter problem, which is summarized
above, has its drawbacks. For a fixed n, the algorithm basically enumerates cubes of
end states of simple paths whose length is n + 1 by solving a series of SAT problems.
However, the number of times to call the SAT procedure could be large, as the set of
states Ssimple

n+1 that end in simple paths of length n + 1 from S0 is enumerated in terms
of its cubes.

Research efforts in using QBF for the diameter problem hope to overcome this cube
enumeration of Ssimple

n+1 . However current implementation of QBF solvers have not been
able to provide practically efficient solutions to the various QBF formulations for the
diameter problem which is generally attributed to the relative immaturity of the QBF
solvers. The next few sections provide greater insight into this through an analysis of
the solution for the various QBF formulations.

4 QBF Formulations

A QBF is of the form Q1x1 · · ·Qnxn ϕ, where Qi(i = 1 · · ·n) is either an existential
quantifier ∃ or a universal quantifier ∀. ϕ is a propositional logic formula with x1 · · ·xn

as its variables. Adjacent variables quantified by the same quantifier in the prefix can
be grouped together to form a quantification set. The order of the variables in the same
quantification set can be exchanged without changing the QBF evaluation result (true or
false). Variables in the outermost quantification set are said to have quantification level
1, and so on.

The propositional part ϕ in a QBF is usually expressed in the Conjunctive Normal
Form (CNF). If ϕ of a QBF is in CNF, the innermost quantifier of this QBF is existential
because the innermost universal quantifier can always be dropped by removing all the

296 D. Tang et al.

Combinational
Logic

I1

O1

1s0s Combinational
Logic

In

On

ns1−ns Combinational
Logic

In+1

On+1

1+ns

Combinational
Logic

I1’

O1’

'1s'0s Combinational
Logic

In’

On’

'ns'1−ns

Combinational
Logic

I1

O1

1s0s Combinational
Logic

I1

O1

1s0s Combinational
Logic

In

On

ns1−ns Combinational
Logic

In+1

On+1

1+ns

Combinational
Logic

I1’

O1’

'1s'0s Combinational
Logic

In’

On’

'ns'1−ns

Fig. 1. Time frame expansions for state space diameter calculation

occurrences of the variables quantified by this universal quantifier in the CNF. The
innermost quantifier can be a universal quantifier if ϕ is not in CNF. Converting ϕ to
CNF typically introduces new variables which are quantified with existential quantifiers
put inside the originally innermost quantifier. The number of quantification levels of a
QBF may change if the representation of ϕ of this QBF changes. When ϕ is in CNF,
the QBF having k levels of quantification is called kQBF. Most practical QBF instances
are 2QBF or 3QBF. In the rest of the paper, when we talk about kQBF, k is the number
of quantification levels when ϕ is in CNF.

In Figure 1, if for all possible input sequences I1I2 · · · In+1, the state Sn+1 can
be reached at one or more of the states of S′

i(i = 0 · · ·n) for some input sequence
I ′1I

′
2 · · · I ′n, then n + 1 is greater than the state space diameter of the sequential cir-

cuit. A straightforward translation of the above sentence gives us the following 2QBF
formulation of the circuit state space diameter problem:

∀I1I2 · · · In+1∃((C1 \
⋃

i=1···n+1

Ii)∪C2) F (C1)∧F (C2)∧ (
∨

i=0···n
(Sn+1 = S′

i)) (4)

Let the state space diameter of the circuit be d. If n < d, (4) evaluates to false; if n ≥ d,
(4) evaluates to true.

A very similar formulation is:

∀C1∃C2 ¬F (C1) ∨ (F (C2) ∧ (
∨

i=0···n
(Sn+1 = S′

i))) (5)

Here all of the variables of C1 are universally quantified. (5) evaluates to true iff for
all possible assignments to variables in C1, either the assignments are not consistent
(F (C1) is false) or all possible states of Sn+1 can be reached in less than n + 1 state
transitions. Therefore, (5) evaluates to true iff n ≥ d.

If the sequence of states S0S1 · · ·Sn+1 has one or more loops in the state transition
graph, then a sequence of states starting from S0 and ending in Sn+1 with less than
n + 1 state transitions must exist because we can always take the path without looping.
Therefore, (5) is equivalent to:

∀C1∃C2 ¬(F (C1) ∧ (
∧
i�=j

Si �= Sj)) ∨ (F (C2) ∧ (
∨

i=0···n
Sn+1 = S′

i)) (6)

Analysis of Search Based Algorithms 297

The constraint (
∧

i�=j Si �= Sj) in the propositional part of (6) is actually the condition
to determine the recurrence diameter [1], adding this constraint does not change the
QBF evaluation since the recurrence diameter is an upper bound of the state space
diameter.

If an additional transition from the initial state to itself is added to the sequential
transition of the circuit, as described in Section 3, (6) can be simplified to:

∀C1∃C2 ¬(F (C1) ∧ (
∧
i�=j

Si �= Sj)) ∨ (F (C2) ∧ (Sn+1 = S′
n)) (7)

The outermost quantifiers of formula (4)-(7) are all universal quantifiers. We can
take the dual of (4)-(7) to get QBFs with existential quantifiers as the outermost quan-
tifiers. For example, the dual of (7) is:

∃C1∀C2 F (C1) ∧ (
∧
i�=j

Si �= Sj) ∧ ¬(F (C2) ∧ (Sn+1 = S′
n)) (8)

When n < d, (8) is true; when n ≥ d, (8) is false.
The propositional part of (4)-(8) can be transformed to CNF by introducing new

variables that are all added to the innermost existential quantification level. This makes
(8) become a 3QBF while (4)-(7) are 2QBFs. However, the propositional parts of these
formulas do not need to be CNF for search algorithms to solve them. In all cases, n is
incrementally tested from 1 until n = d. d is the minimum number for n that makes
(4)-(7) true and (8) false. The drawback of formulations (5)-(8) is that they have a large
set of universal variables and when represented in CNF too many new variables need to
be introduced. This greatly increase the search space that needs to be explored.

5 QBF Algorithms

5.1 Overview

Just as in SAT, the propositional part ϕ of a QBF is often in CNF. Many existing QBF
solvers require ϕ to be CNF. Currently, most QBF algorithms are complete and can be
roughly divided into two categories: resolution based and search based.

QBF algorithms based on resolution use Q-resolution to eliminate variables until
there is no more variable to eliminate or an empty clause is generated [7]. Only an
existential variable can be resolved out in a Q-resolution. A universal variable in a Q-
resolution generated clause can be eliminated when there are no existential variable hav-
ing higher quantification level than this universal variable. Like most resolution based
decision methods, resolution based QBF algorithms have the potential memory blow
up problem. Therefore they are seldom used in practice.

The majority of recent QBF solvers are search based. A search based algorithm
tries to evaluate QBF by branching on variables to determine the value of ϕ at certain
branches in the search tree. Note that we may not need to go all the way to the leaves of
the search tree to determine the value of ϕ. A partial assignment to the variables may be
enough for ϕ to be 0 or 1. Also we do not limit the search based algorithms to any par-
ticular search method like depth-first search or breadth-first search. Nor do we have any

298 D. Tang et al.

limitation on the ordering of the nodes in the search tree. The well-known Davis Loge-
mann Loveland (DPLL) algorithm [8], which is a depth-first search procedure, is just
one example of the search algorithms. Partly due to its success in SAT solvers, the DPLL
algorithm has been adapted to many QBF evaluation procedures [9][10][11] [12][13]
[14][15][16]. Although DPLL based QBF solvers do not blow up in space, they con-
sume significant CPU time and are unable to handle practical sized problems as of now.

Plaisted et al. proposed an algorithm for evaluating QBF that belongs to neither of
the above categories [17]. This algorithm iteratively eliminates a subset of variables in
the innermost quantification level. This is done by partitioning the propositional for-
mula using a set of cut variables and substituting one partition with a CNF of only the
cut variables. The conflicting assignments of the cut variables are enumerated and the
negations of the conflicting assignments are conjuncted to form the new CNF part. Un-
like Q-resolution which can only eliminate one variable at a time, this algorithm can
eliminate multiple variables simultaneously. However, enumerating conflicts may take
exponential time in the number of cut variables. Therefore, using this method is very
expensive for formulas without a small cut. In our experience, in practice, for many
QBF instances, during the execution of this method, the variables are so much inter-
leaved that it is impossible to find a small cut. From another point of view, the process
of searching for conflicts is similar to the search in search based algorithms. Particu-
larly, for a 2QBF instance, if the cut set is chosen to be the universal variables, then this
algorithm is essentially a DPLL search algorithm. Moreover, since enumerating con-
flicts of cut variables achieves the effect of resolving multiple variables at one time, this
algorithm still has the potential memory blow up problem.

5.2 The DPLL Algorithm

The DPLL algorithm is the most widely used search based algorithm for QBF as well
as SAT evaluation. It only requires polynomial space during execution. The original
DPLL algorithm is a recursive procedure for SAT and is not very efficient. Modern SAT
solvers enhance the original DPLL algorithm with techniques like non-chronological
backtracking and conflict-driven learning[18][19], which greatly accelerate the SAT
solvers. Some of the most efficient SAT solvers today [20] [18][21] are based on the
DPLL framework. Because SAT is a restricted form of QBF in the sense that it only has
existential quantifiers, most existing QBF solvers incorporate variations of the DPLL
procedure and many of the techniques that work well on SAT can also be used in
QBF evaluation with some modifications. [9] is probably the first paper that extends
the DPLL algorithm for SAT to QBF evaluation. It gives the basic rules for formula
simplification like rules for monotone literals and unit propagation for existential vari-
ables. Conflict driven learning and non-chronological backtracking are adapted to later
DPLL based QBF solvers [22] [16][15]. Also, the idea of satisfiability directed learn-
ing, which is a dual form of conflict driven learning and is specifically for QBF, is
introduced and incorporated in these solvers. Deduction techniques such as inverting
quantifiers [10] and partial implicit unfolding [11] were proposed and implemented by
Rintanen. These deduction rules deduce forced assignments to existential variables by
assigning truth values to universal variables having higher quantification levels.

Analysis of Search Based Algorithms 299

Note that DPLL based QBF evaluation requires the branching order obey the quan-
tification order, which corresponds to the semantics of the formula. Other decision or-
derings may require exponential memory to store the already searched space. They also
make search hard to control and result in many fruitless searches. One exception is
in 2QBF evaluation where no useless enumeration of the existential variables occurs
since no existential variables precede universal variables in the prefix. Decision strate-
gies with and without restriction to quantification order for 2QBF are described and
compared in [23].

6 Analysis of Search Based QBF Algorithms

6.1 Handling Conflicts and Satisfying Assignments

Search based algorithms evaluate QBF by assigning Boolean values to variables. The
propositional part ϕ of a QBF has three possible evaluations under a partial assign-
ment: false, true and undetermined. If the value of ϕ is false, the partial assignment is
called a conflict; if the value of ϕ is true, the partial assignment is called a satisfying
partial assignment. In these two cases, the search procedure will backtrack and may do
some learning. The search procedure will continue assigning unassigned variables if the
value of ϕ is undetermined. Search based QBF algorithms often learn from the result
of ϕ being true or false to prevent getting into the same conflicting or satisfying space
again and again. Learning can be considered as choosing a subset of the current partial
assignment such that this subset can still result in ϕ being true or false. These subsets
of partial assignments are usually cached for future search space pruning.

Unlike in SAT, a satisfying assignment in QBF does not mean the end of the search.
The search algorithms need to see if for all combinations of universal variables ϕ is
satisfiable. The pruning of the satisfying space is usually done by constructing a partial
assignment that is sufficient for ϕ to be true. For example, when ϕ is in CNF, this partial
assignment can be constructed by choosing from every clause at least one of the value
1 literals. We call this partial assignment a cover set of the satisfying assignment [14].
The idea of using cover set for satisfying space pruning is incorporated in many QBF
solvers. It is also called good learning in [22] and model caching in [16]. For a QBF
instance of n variables, a cover set with m literals implies 2n−m satisfying assignments.
In fact, when a cover set is stored in the database for future pruning, existential variables
belonging to the highest quantification level can be eliminated from the cover set due to
the semantics of QBF. Thus the cover sets for a 2QBF instance consist only of universal
variables. The conjunction of a set of literals is called a cube. A cover set is a cube.

When a QBF is derived from a circuit netlist and the value of this QBF denotes
whether or not certain property of this circuit holds, a conflict in the QBF is either an

a = 0

b = 1

c = 0

d = 1

Fig. 2. Example for critical and non-critical signals

300 D. Tang et al.

inconsistent assignment to gate inputs and outputs or a consistent assignment to the
circuit nodes that does not satisfy the property. A satisfying assignment to the propo-
sitional part ϕ of the QBF is a consistent assignment to the circuit nodes that satisfy
the property. For some circuit node variables, their values do not affect the satisfiability
of the property. This is because some logic gate output does not depend on the values
of all the gate inputs. In this case, some gate input is unobservable at the gate output.
Any signal which fans out only to the transitive fanin cone of this input also becomes
unobservable at this output. Suppose a circuit property is represented as a variable p,
then p is the primary output of the property testing circuit C. Consistent assignments
to other circuit nodes can either satisfy p or violate p, but some circuit nodes might
become unobservable at p. For example, in Figure 2, d represents the circuit property.
If b = 1, then d = 1 which makes signals a and c unobservable at d. Such unobservable
signals are called non-critical signals. The set of critical signals Sc is both sufficient
and necessary as the reason for the satisfiability of the property. Removing any signal
from Sc results in p being undetermined. So caching the satisfiability result of p should
include all the variables in Sc. Note that if ϕ is in CNF and is satisfied, Sc may not
satisfy every clause of the CNF. Critical signals for a consistent assignment to circuit
signals that unsatisfies the property are both sufficient and necessary for the result of
p being violated. The selection of Sc does not require the knowledge of ϕ, the infor-
mation of circuit structure is enough. Sc is generally much smaller than cover sets for
CNF clauses. The above idea is very similar to the dynamic removal of inactive clauses
in SAT proposed in [24].

6.2 QBF Evaluation with Satisfiability Driven Learning

We now demonstrate that using the search based QBF algorithms to solve the diame-
ter problem with existing QBF formulations is no better than using SAT to solve this
problem.

We first analyze the 2QBF formulation of the diameter problem which is shown in
(4). We use PROP1 to denote the propositional part of (4). PROP1 consists of the
conjunction of three terms: F (C1), F (C2) and (

∨
i=0···n(Sn+1 = S′

i)). Any partial or
complete satisfying assignment to PROP1 must make every term in this conjunction
true. Therefore, the third term:

((Sn+1 = S0) ∨ (Sn+1 = S′
1) ∨ · · · ∨ (Sn+1 = S′

n)) (9)

must be true if PROP1 is satisfied. Note that the equality Sn+1 = S′
i(i = 0 · · ·n) im-

plies that the corresponding state bits in the two vectors Sn+1 and S′
i are equal. Since

(9) is a disjunction of n + 1 equalities and every equality in (9) has Sn+1 on one side,
(9) cannot be evaluated if the value of any state bit in Sn+1 is unknown. This implies
that every state variable in Sn+1 is critical. In another words, any partial or complete
assignment that is satisfying for PROP1 must be a complete assignment for the state
variables of Sn+1. Now consider the two possibilities. Case 1: (4) is false. In this case,
QBF search algorithms need to find out at least one complete assignment to the univer-
sal variables for which PROP1 is unsatisfiable. Case 2: (4) is true. In this case, QBF
search algorithms need to prove that every universal variable assignment will make

Analysis of Search Based Algorithms 301

cube c1

cube c2
minterm s

cube
cube

cube minterm

SPACE_I SPACE_Sn+1

Fig. 3. Space mapping for formula (4)

PROP1 satisfiable. Consider the Boolean space of the universal variables of (4), de-
noted as SPACE I , and the reachable state space at the (n+1)th time frame, denoted
as SPACE Sn+1. SPACE I and SPACE Sn+1 are shown respectively as the left
circle and right circle in Figure 3. When using search based QBF algorithms to evaluate
(4), we want to derive satisfying cubes, i.e. partial assignments, to cover as much of
SPACE I as possible every time a satisfying assignment of PROP1 is found. The
reason is that in this way, we can rule out more minterms, i.e. complete assignments, in
SPACE I when (4) is false and there is less space in SPACE I for future searches
when (4) is true. Note that any satisfying cube must contain all the critical signals. Thus
any satisfying cube contains all the variables in Sn+1 since all of them are critical. Also
note that each satisfying cube that covers some part of SPACE I corresponds to ex-
actly one minterm, i.e. a complete assignment, in SPACE Sn+1. This is illustrated in
Figure 3.

Moreover, we can further show that minterms in SPACE Sn+1 are covered by
non-overlapping sets of cubes in SPACE I . This can be proved by contradiction. Sup-
pose two distinct minterms m1 and m2 in SPACE Sn+1 correspond to sets of cubes
sc1 and sc2 in SPACE I respectively. If sc1 and sc2 overlap, then we randomly pick
a minterm mc that is contained in the intersection of sc1 and sc2. However, variables in
mc are primary inputs, they determine a unique minterm in SPACE Sn+1. Therefore,
m1 and m2 should be the same. This is contradictory to the assumption that m1 and m2

are distinct.
If (4) is true, the entire SPACE I needs to be covered by satisfying cubes. In this

case, search procedures also need to cover the entire SPACE Sn+1 because every state
at the (n+1)th time frame results from a primary input sequence with the length of (n+
1) time frames. Therefore the number of satisfying assignments of PROP1 that needs
to be searched is at least the number of minterms in SPACE Sn+1. This means when
applying search based algorithms to the evaluation of (4), although we might get some
pruning of SPACE I through cubes, we cannot prune any part of SPACE Sn+1.
In addition, when a search based QBF algorithm finds a new satisfying assignment of
PROP1, it does not necessarily mean that a new minterm in SPACE Sn+1 is found.
In another words, it is possible that a single minterm in SPACE Sn+1 is enumerated
again and again when we use search based QBF algorithms. For example, in Figure 3,
two cubes c1 and c2 map to the same state s. However, a search procedure might need

302 D. Tang et al.

cube
cube

minterm

cube
cube

cube minterm

SPACE_C1 SPACE_Sn+1

F(C1)

¬F(C1)

Fig. 4. Space mapping for formula (5)

to find two satisfying assignments of PROP1 to derive c1 and c2 respectively. Note that
the SAT based method described in Section 3 essentially uses a search based SAT solver
to enumerate either cubes or minterms of the set of states at the (n+1)th time frames of
simple paths. If the elements of this set are SPACE Ssimple

n+1 , then SPACE Ssimple
n+1

is contained in SPACE Sn+1 because not every state in SPACE Sn+1 needs to end
a simple path. Moreover, SPACE Ssimple

n+1 may contain cubes and not just minterms.
Therefore, using search based QBF solvers to solve (4) is no more efficient than the
SAT method in Section 3.

The analysis of (5) is similar to the analysis of (4) although more complicated. We
denote the propositional part of (5) as PROP2. It is easy to see that PROP2 equals to:

¬F (C1) ∨ (F (C1) ∧ F (C2) ∧ (
∨

i=0···n
Sn+1 = S′

i)) (10)

Note that (10) consists of two disjuncts, the second disjunct is precisely PROP1. Also,
since the conjunction of ¬F (C1) and PROP1 is zero, there is no overlapping between
satisfying assignments of ¬F (C1) and satisfying assignments of PROP1. Thus the
Boolean space of the universal variables in (5), denoted as SPACE C1, can be divided
into two parts: those that make F (C1) true and those that make F (C1) false. In Figure
4, the left circle is SPACE C1, the inner circle of SPACE C1 is the part that makes
F (C1) true and the outer loop of SPACE C1 is the part that makes F (C1) false. The
set of assignments to C1 for which PROP1 is satisfiable is contained in the inner circle
of SPACE C1. If (5) is false, then search procedures need to find at least one assign-
ment to C1 variables that makes ¬F (C1) false and PROP1 unsatisfiable. This equals to
finding a circuit consistent assignment to C1 that makes F (C2)∧(

∨
i=0···n Sn+1 = S′

i)
unsatisfiable. If (5) is true, all possible assignments to C1 make PROP2 satisfiable.
Thus search procedures need to cover the entire SPACE C1. Since the variables in
SPACE I are all primary inputs and SPACE C1 consists of all of the circuit signals
including primary inputs, there is a one to one correspondence between minterms in
SPACE I and minterms in the inner circle of SPACE C1. Using similar reasoning
as in the previous analysis of (4), we can show that using search based QBF algorithms
to cover the inner circle of SPACE C1 is no more efficient than enumerating states in

Analysis of Search Based Algorithms 303

SPACE Sn+1. Moreover, to prove (5) true, search algorithms also need to cover the
part of SPACE C1 that satisfies ¬F (C1), which makes applying search algorithms to
solve (5) strictly less efficient than enumerating states in SPACE Sn+1.

If we change every occurrence of F (C1) to F (C1) ∧ (
∧

i�=j Si �= Sj) and let
SPACE Sn+1 be the set of states at the (n + 1)th time frames of simple paths in
the above analysis, the same conclusion can be drawn for (6).

In (7), due to the addition of a transition from the initial state to itself, the disjunction
of equalities in (6) becomes a single equality Sn+1 = S′

n. If separate sets of variables
are used for Sn+1 and S′

n, previous analysis can still be applied. Otherwise, we have
the opportunity to replace the equality check Sn+1 = S′

n in (7) by using the same
set of variables for Sn+1 and S′

n. However, Sn+1 and S′
n are still primary outputs in

the circuits of Figure 1 and all primary outputs are fully observable, thus they must be
critical. Once it is determined that Sn+1 variables are critical, we can draw the same
conclusion using the same reasoning as in the previous analysis.

The analysis of the dual formulations of (4)-(7) are basically the same as the analysis
of (4)-(7). The only exceptions are that in the dual formulations, the evaluation of true
becomes false and false becomes true. The outermost quantification sets in the dual
formulations of (4)-(7) are existentially quantified. In these cases, instead of covering
the satisfying assignments, the search procedures search for conflicts.

It is worth emphasizing that although all the existing QBF solvers that we are aware
of take CNF as their inputs, the above analysis holds independent of the representation
of the formula because our analysis only depends on the logic of the circuit. This is to
say that if there was a QBF solver that worked directly off the circuit, the result would
still hold since it depends only on the critical nature of the state variables in the formula.

7 Future Directions

From the analysis of last section, we can see that formulating the circuit diameter prob-
lem as a QBF and using search based algorithms to evaluate the QBF currently is no
better than using SAT to solve this problem, which has not been efficient despite the
availability of efficient SAT solvers. However, there may be some room for optimism
here. One possibility of making the QBF approach more efficient is changing the for-
mulation of the diameter problem. The formulations described in Section 4 are mainly
based on unrolling the transition relations. Other formulations may require less univer-
sal variables thus greatly reduce the satisfying search space.

Another possible direction is devising more effective QBF algorithms. A partial
search or a non-search based algorithm is definitely worth exploring. Current non-
search based QBF algorithms include resolution based algorithms and Plaisted’s al-
gorithm proposed in [17]. Pure resolution based approach will likely blow up in space,
but we could do some simplification of the resolved formula to alleviate the space ex-
plosion. It is also possible to combine the search based algorithms with resolution to get
around the drawbacks of both approaches. Plaisted’s algorithm in [17] is in some sense
a hybrid of search and resolution. But this algorithm works well for circuits that are
long and thin. However, our experience shows that the circuit constructed for calculat-
ing the sequential state space diameter in Figure 1 is not long and thin. Thus, Plaisted’s

304 D. Tang et al.

algorithm is likely to be inefficient for the QBFs arising from the circuit state space
diameter problem. Expanding the class of problems that Plaisted’s algorithm work well
on is another possibility of future research.

Overall for an algorithm to be successful, every part of the reachable state space
needs to be enumerated implicitly rather than explicitly by a QBF algorithm. In addi-
tion, a clever way of implicitly storing the already explored state space is critical as well.

8 Conclusions

In this paper we describe the QBF formulations of the circuit diameter problem. We
prove that using search based QBF algorithms to determine the circuit state space di-
ameter is no more efficient than previous SAT based methods. This result will direct
the future QBF approaches for the circuit state space diameter problem away from pure
search based algorithms. A non-search based algorithm or a hybrid of search based and
non-search based methods are possible candidates for using QBF evaluation to solve
the circuit state space diameter problem.

References

1. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without BDDs.
In: Proceedings of Tools and Algorithms for the Analysis and Construction of Systems
(TACAS’99). (1999)

2. Gupta, A., Yang, Z., Ashar, P., Gupta, A.: SAT-based image computation with application in
reachability analysis. In: Proceedings of Third International Conference Formal Methods in
Computer-Aided Design (FMCAD 2000). (2000)

3. Mneimneh, M., Sakallah, K.: Computing vertex eccentricity in exponentially large graphs:
QBF formulation and solution. In: Sixth Intermational Conference on Theory and Applica-
tion of Satisfiability Testing. (2003)

4. McMillan, K.L.: Applying SAT methods in unbounded symbolic model checking. In: Pro-
ceedings of 14th Conference on Computer-Aided Verification (CAV 2002), Springer Verlag
(2002)

5. Rintanen, J.: Constructing conditional plans by a theorem prover. Journal of Artificial Intel-
ligence Research 10 (1999) 323–352

6. Sheeran, M., Singh, S., Stålmark, G.: Checking safety properties using induction and a
SAT-solver. In: Proceedings of the Third International Conference on Formal Methods in
Computer-Aided Design (FMCAD 2000). (2000)

7. Büning, H.K., Karpinski, M., Flögel, A.: Resolution for quantified Boolean formulas. Infor-
mation and Computation 117 (1995) 12–18

8. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Commu-
nications of the ACM 5 (1962) 394–397

9. Cadoli, M., Schaerf, M., Giovanardi, A., Giovanardi, M.: An algorithm to evaluate quantified
Boolean formulae and its experimental evaluation. Journal of Automated Reasoning 28
(2002) 101–142

10. Rintanen, J.: Improvements to the evaluation of quantified Boolean formulae. In: Proceed-
ings of International Joint Conference on Artificial Intelligence (IJCAI). (1999)

11. Rintanen, J.: Partial implicit unfolding in the Davis-Putnam procedure for quantified Boolean
formulae. In: International Conf. on Logic for Programming, Artificial Intelligence and
Reasoning (LPAR). (2001)

Analysis of Search Based Algorithms 305

12. Giunchiglia, E., Narizzano, M., Tacchella, A.: Qube: a system for deciding quantified
Boolean formulas satisfiability. In: Proceedings of International Joint Conference on Au-
tomated Reasoning (IJCAR). (2001)

13. Giunchiglia, E., Narizzano, M., Tacchella, A.: Backjumping for quantified Boolean logic
satisfiability. In: Proceedings of International Joint Conference on Artificial Intelligence
(IJCAI). (2001)

14. Zhang, L., Malik, S.: Towards a symmetric treatment of satisfaction and conflicts in quanti-
fied Boolean formula evaluation. In: Proceedings of 8th International Conference on Princi-
ples and Practice of Constraint Programming (CP2002). (2002)

15. Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean satisfiability solver.
In: Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD). (2002)

16. Letz, R.: Lemma, model caching in decision procedures for quantified Boolean formulas.
In: International Conference on Automated Reasoning with Analytic Tableaux and Related
Methods (Tableaux2002). (2002)

17. Plaisted, D.A., Biere, A., Zhu, Y.: A satisfiability procedure for quantified Boolean formulae.
Discrete Appl. Math. 130 (2003) 291–328

18. Marques-Silva, J.P., Sakallah, K.A.: GRASP - a search algorithm for propositional satisfia-
bility. IEEE Transactions in Computers 48 (1999) 506–521

19. Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient conflict driven learning in
a Boolean satisfiability solver. In: Proceedings of the IEEE/ACM International Conference
on Computer-Aided Design (ICCAD). (2001)

20. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an
efficient SAT solver. In: Proceedings of the Design Automation Conference (DAC). (2001)

21. Goldberg, E., Novikov, Y.: BerkMin: A fast and robust SAT-solver. In: Proceedings of the
IEEE/ACM Design, Automation, and Test in Europe (DATE). (2002)

22. Giunchiglia, E., Narizzano, M., Tacchella, A.: Learning for quantified Boolean logic sat-
isfiability. In: Proceedings of the 18th National (US) Conference on Artificial Intelligence
(AAAI). (2002)

23. Ranjan, D.P., Tang, D., Malik, S.: A comparative study of 2QBF algorithms. In: The Seventh
International Conference on Theory and Applications of Satisfiability Testing. (2004)

24. Gupta, A., Gupta, A., Yang, Z., Ashar, P.: Dynamic detection and removal of inactive clauses
in SAT with application in image computation. In: Design Automation Conference. (2001)
536–541

UBCSAT: An Implementation and Experimentation
Environment for SLS Algorithms for SAT

and MAX-SAT

Dave A.D. Tompkins and Holger H. Hoos

Department of Computer Science,
University of British Columbia, Vancouver BC V6T 1Z4, Canada

{davet, hoos}@cs.ubc.ca

Abstract. In this paper we introduce UBCSAT, a new implementation and ex-
perimentation environment for Stochastic Local Search (SLS) algorithms for SAT
and MAX-SAT. Based on a novel triggered procedure architecture, UBCSAT pro-
vides implementations of numerous well-known and widely used SLS algorithms
for SAT and MAX-SAT, including GSAT, WalkSAT, and SAPS; these imple-
mentations generally match or exceed the efficiency of the respective original
reference implementations. Through numerous reporting and statistical features,
including the measurement of run-time distributions, UBCSAT facilitates the ad-
vanced empirical analysis of these algorithms. New algorithm variants, SLS al-
gorithms, and reporting features can be added to UBCSAT in a straightforward
and efficient way. UBCSAT is implemented in C and runs on numerous platforms
and operating systems; it is publicly and freely available at www.satlib.org/
ubcsat.

1 Introduction

The propositional satisfiability problem (SAT) is an important subject of study in many
areas of computer science and is the prototypical NP-complete problem. MAX-SAT
is the optimisation variant of SAT; while in unweighted MAX-SAT, the goal is to find
a variable assignment that satisfies a maximal number of clauses of a given CNF for-
mula, in weighted MAX-SAT, a weight is assigned to each clause, and the goal is to find
an assignment that maximises the total weight of the satisfied clauses. MAX-SAT is a
conceptually simple NP-hard combinatorial optimisation problem of substantial theo-
retical and practical interest; many application-relevant problems, including scheduling
problems or most probable explanation (MPE) finding in Bayes nets, can be encoded
and solved as MAX-SAT.

Some of the best known methods for solving certain types of SAT instances are
Stochastic Local Search (SLS) algorithms; these are typically incomplete, i.e., they can-
not determine with certainty that a formula is unsatisfiable, but they often find models of
satisfiable formulae surprisingly effectively [8]. For MAX-SAT, SLS algorithms are by
far the most effective methods for finding optimal or close-to-optimal solutions [5, 8].
Although SLS algorithms for SAT and MAX-SAT differ in their details, the basic ap-
proach is mostly the same. In the following, we mainly focus on SLS algorithms for
SAT, while MAX-SAT algorithms will be discussed in more detail in Section 6.

H.H. Hoos and D.G. Mitchell (Eds.): SAT 2004, LNCS 3542, pp. 306–320, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

UBCSAT: An Implementation and Experimentation Environment 307

procedure SLS-for-SAT(F)
input: propositional formula F
output: satisfying assignment of F or ‘no solution found’

a := InitialiseSearch(F);
while not Terminate(F , a) do

if Restart(F , a) then
a := ReInitialiseSearch(F);

else
X := SelectVarsToFlip(F , a);
a := FlipVars(F , a,X);

end
end
if Solved(F , a) then

return a
else

return ‘no solution found’
end

end SLS-for-SAT

Fig. 1. Pseudo-code for a typical Stochastic Local Search algorithm for SAT; a is a variable
assignment, X is a set of variables in the given formula F

In Figure 1 we provide pseudo-code for a typical SLS algorithm for SAT. Each run
of the algorithm starts by determining an initial, complete assignment of truth values to
all variables in the given formula F (search initialisation). Then, in each search step,
a set of variables is selected, whose truth values are then changed from true to false or
vice versa. Each change of a single variable’s truth value is called a variable flip; almost
all SLS algorithms perform exactly one variable flip in each search step, but there are
cases in which a given SLS algorithm may flip no variables in a given search step
(a so-called null-flip), or several variables at once (also known as a multi-flip). Variable
flips are typically performed with the purpose of minimising an evaluation function that
measures solution quality in terms of the number of unsatisfied clauses under a given
variable assignment. The search process is terminated when a termination condition is
satisfied; this is typically the case when either a solution, i.e., a satisfying assignment
of F , has been found or when a given bound on the run-time, which is also referred
to as cutoff time and which may be measured in search steps or CPU time, has been
reached or exceeded. To overcome or avoid search stagnation, many SLS algorithms for
SAT make use of a restart mechanism that re-initialises the search process whenever a
restart condition is satisfied. For example, all GSAT and WalkSAT algorithms restart the
search periodically [14, 13]. While restart mechanisms are crucial for the performance
of some SLS algorithms for SAT, such as basic GSAT [14], they have been found to be
ineffective in other cases [8].

Even though SLS algorithms for SAT and MAX-SAT have achieved great levels
of success, we believe that there is still significant potential for further improvements.
To further explore this potential, we developed UBCSAT: an implementation and ex-
perimentation framework for SLS algorithms for SAT and MAX-SAT. Our primary

308 D.A.D. Tompkins and H.H. Hoos

objective was to create a software environment that facilitates research on and develop-
ment of SLS algorithms. Specifically, the development of UBCSAT was based on the
following six design principles and goals:

1. include highly efficient, conceptually simple and accurate implementations of a
wide range of prominent SLS algorithms for SAT and MAX-SAT;

2. facilitate the development and integration of new algorithms (and algorithm vari-
ants);

3. provide support for advanced empirical analysis of the performance and behaviour
of SLS algorithms without compromising implementation efficiency;

4. provide explicit support for algorithms designed to solve the weighted and un-
weighted MAX-SAT problems;

5. provide an open-source software package that is publicly available to the academic
community;

6. implement the project in a platform-independent way, avoiding non-standard pro-
gramming language extensions.

Before discussing the design and features of UBCSAT in more detail, we briefly
discuss two related software projects: OpenSAT and COMET.

The OpenSAT project [1] (www.opensat.org) was developed as a Java-based
open source project for complete SAT solvers. A primary goal of OpenSAT was to
make the advanced techniques and data structures used by state-of-the-art complete SAT
solvers openly available in order to accelerate the development of new SAT solvers.
Generally, the architecture and implementation of complete SAT solvers, which are
based on the David-Putnam-Loveland procedure, differs considerably from that of SLS-
based SAT algorithms, and traditionally there has been very little overlap between the
algorithmic and implementation details used in these two types of SAT solvers. There-
fore, using OpenSAT as the basis for achieving the previously stated goals, while prob-
ably not completely infeasible, appears to be problematic. In addition to the difficulty of
supporting the development and implementation of SLS algorithms in a straightforward
way, the current lack of support for MAX-SAT solvers, and the fact that OpenSAT cur-
rently does not provide dedicated support for the advanced empirical analysis of SAT
algorithms, it is somewhat questionable whether its Java-based implementation makes
it possible to achieve performance that is competitive with the native reference imple-
mentations of high-performance SLS algorithms such as WalkSAT [13] or SAPS [9].

COMET [17] is an object-oriented language that supports a constraint-based archi-
tecture for local search. The COMET language is very sophisticated and can model SLS
algorithms for solving complex constraint satisfaction problems, but it neither offers
explicit support for SAT/MAX-SAT nor does it provide tools for advanced empirical
evaluation. While in principle, both of these issues could be addressed by realising the
respective functionality within COMET, implementing UBCSAT in COMET seemed
to pose the risk that in order to take full advantage of UBCSAT, users would have to un-
derstand both the idiosyncrasies of COMET as well as the architecture and interface of
UBCSAT; we believe that as a consequence, UBCSAT would have been less accessible
to its main target group, namely researchers interested in SAT and MAX-SAT. While
there is evidence that COMET algorithm implementations are quite efficient, we do not

UBCSAT: An Implementation and Experimentation Environment 309

have any insight as to how these would compare with the native reference implementa-
tions of the state-of-the-art SLS algorithms covered by UBCSAT.

To achieve our goals of a platform-independent and highly efficient implementation,
UBCSAT has been developed in strict ANSI C and tested on some of the most popular
operating systems (Linux, WindowsXP, SunOS). In order to provide a state-of-the-art
and platform-independent source of pseudo-random numbers, we have incorporated
the “Mersenne Twister” pseudo-random number generator [10]. UBCSAT is publicly
available for academic (non-commercial) use without restriction to encourage free and
open use throughout the SAT research community1.

In the remainder of this paper, we will describe the UBCSAT project in greater
depth. In Section 2 we give an overview of the UBCSAT architecture and illustrate the
fundamental concept of triggered procedures, which lies at the core of UBCSAT’s effi-
cient yet highly flexible design and implementation. In Section 3, we outline the current
collection of SLS algorithms for SAT that are currently implemented within UBCSAT
and compare their performance against that of the respective native reference imple-
mentations. In Section 4 we demonstrate how new algorithms are implemented within
UBCSAT. In Section 5 we discuss the importance of empirical analysis in SLS research,
and how UBCSAT can help facilitate empirical analysis. In Section 6, we describe how
UBCSAT supports SLS algorithms for weighted and unweighted MAX-SAT. Finally,
in Section 7 we summarise the key features and contributions of the UBCSAT project
and outline some directions for future work.

2 The UBCSAT Architecture

One of the challenges of developing the UBCSAT project was to build a flexible,
feature-rich environment without compromising algorithmic efficiency. To achieve our
goals, UBCSAT has been designed according to what we have named a triggered pro-
cedure architecture. The main ideas underlying this architecture are closely related to
certain concepts from object- and event-oriented programming.

The UBCSAT software is structured around a set of event points that occur through-
out the execution of a SLS algorithm for SAT. For each event point p, a list of procedures
is maintained that are executed whenever event point p is reached; this list is called the
triggered procedure list of p and its elements are called the triggered procedures of p.
A trigger is simply a mapping of a software procedure to an event point. When a trigger
is activated, then its associated procedure is added to the triggered procedure list of the
corresponding event point.

Initially, the triggered procedure lists for all of the event points are empty; it is only
when triggers are activated that procedures become executed when an event point is
reached. For example, you may have a procedure for displaying the current status of

1 The UBCSAT source code and x86 executables for Windows and Linux are available for
download at http://www.satlib.org/ubcsat. Throughout this paper we have en-
deavoured to keep our descriptions and examples consistent with the UBCSAT software pack-
age version 1.0, but as development on UBCSAT continues some aspects may deviate from
these descriptions.

310 D.A.D. Tompkins and H.H. Hoos

an algorithm as it searches. You can create a trigger that maps your procedure to an
appropriate event point, perhaps at the end of each search step. Whenever you would
like to have the status displayed you can activate your trigger, which will ensure that at
the end of each search step your procedure is executed. However, if you do not wish to
have the status displayed then you do not have to do anything; your trigger will not be
activated, no procedure will be added to a triggered procedure list, and your algorithm
will not be slowed down by your status display procedure.

In addition to its associated procedure, event point and activation status, a trigger t
can have a dependency list and a deactivation list, which are lists of other triggers that
are activated or deactivated (respectively) when t is activated. The dependency list is
used, for example, to ensure that when the procedure of a trigger relies on the existence
of special data structures, the triggers for the procedures that create and update those
data structures are also activated. The deactivation list is intended for advanced UBC-
SAT users, and can be used to override default routines and to avoid conflicts between
incompatible routines. In practice, deactivation lists are used in UBCSAT to improve
implementation efficiency by combining the functionality of multiple procedures into
one. For example, consider triggers ta and tb that have procedures a() and b(), but when
both triggers are activated it would be significantly more efficient if the functionality of
procedures a() and b() were combined into one procedure. In this case, a new procedure
ab() could be created and assigned to a trigger tab which would include ta and tb in its
deactivation list and be available to algorithms that require the functionality of both ta
and tb. UBCSAT detects and produces a warning if deactivated triggers are somehow
reactivated, which might indicate a flaw in the design of an SLS algorithm that is being
developed within the UBCSAT framework.

There is also a special type of trigger called a container trigger that has no asso-
ciated procedure, but instead a list of secondary triggers that are activated whenever
the container trigger is activated. Container triggers are used as convenient shortcuts
for activating groups of triggers that are used simultaneously. Conceptually, container
triggers are very similar to dependency lists; by activating one trigger several others are
also activated. While dependency lists are an important part of ensuring the triggered
procedure architecture works properly, container triggers simply provide shortcuts for
added convenience. As we will show in a later example, many data structures in UBC-
SAT require three triggers to operate properly: one to create the data structure, one to
initialise it and one to update it. A container trigger can be created to activate all three
of those triggers simultaneously. If a trigger corresponds to a complicated procedure
that requires four different data structures to be in place, the dependency list can com-
prise of just four container triggers, instead of all twelve required triggers. An additional
container trigger could be created to encompass those four other container triggers, but
unless that container trigger would be used by other triggers, there is no added benefit
in doing so.

UBCSAT has over one hundred triggers, most of which have associated procedures
that fall into one of the following four categories: heuristic selection (e.g., of variables),
data structure maintenance, report and statistic data collection, and file I/O. Triggers are
activated based on the SLS algorithm to be run, the reports/statistics requested and other
system command line parameters. In the UBCSAT implementation, the triggered pro-

UBCSAT: An Implementation and Experimentation Environment 311

procedure UBCSAT
SetupUBCSAT();
ParseParameters();
ActivateAlgorithmTriggers();
ActivateReportTriggers();

∗ RunProcedures(PostParameters);
∗ RunProcedures(ReadInInstance);
∗ RunProcedures(CreateData);
∗ RunProcedures(CreateStateInfo);
∗ RunProcedures(PreStart);

StartClock();
while iRun < iNumRuns do

∗ RunProcedures(PreRun);
while ((iStep < iCutoff) and (not bSolutionFound)) and (not bTerminateRun)) do

∗ RunProcedures(PreStep);
∗ RunProcedures(CheckRestart);

if bRestart or (iStep = 1) then
∗ RunProcedures(InitData);
∗ RunProcedures(InitStateInfo);

else
∗ RunProcedures(ChooseCandidate);
∗ RunProcedures(PreFlip);
∗ RunProcedures(FlipCandidate);
∗ RunProcedures(PostFlip);

end
∗ RunProcedures(PostStep);
∗ RunProcedures(CheckTerminate);

end
∗ RunProcedures(PostRun);

end
EndClock();

∗ RunProcedures(Final);
end UBCSAT

Fig. 2. High-level pseudo-code of UBCSAT; event points are indicated by asterisks

cedure lists are simply arrays of function pointers, so when each event point is reached,
it is very efficient to call its triggered procedures.

Figure 2 shows a high-level pseudo-code representation of UBCSAT and indicates
many of the most important event points. The following example further illustrates the
use of event points and the concept of triggered procedures.

Let us consider WalkSAT/TABU, a well-known high-performance SLS algorithm
for SAT that is based on the WalkSAT architecture [12]. As in most WalkSAT-based
algorithms, WalkSAT/TABU starts each search step by uniformly selecting a clause
from the set of currently unsatisfied clauses. Each variable in the clause is assigned
a score, corresponding to the change in the number of unsatisfied clauses that would
occur if that variable were flipped. The variable with the best score that is not tabu is
selected as the flip variable (breaking ties randomly). A variable is tabu if it has been
flipped within the last TabuTenure search steps, where TabuTenure is a parameter of the
WalkSAT/TABU algorithm. If all of the variables in the selected clause are tabu, then
no flip occurs at that step.

In the UBCSAT implementation of WalkSAT/TABU, the main heuristic procedure
is PickWalksatTabu(), and a trigger of the same name exists which maps the procedure
to the ChooseCandidate event point. Most algorithms in UBCSAT also activate the De-
faultProcedures trigger, a container trigger that includes triggers for handling common
tasks, such as keeping track of the current truth assignment and reading the formula into

312 D.A.D. Tompkins and H.H. Hoos

Fig. 3. The WalkSAT/TABU algorithm triggers and the triggered procedures that appear in the
event point triggered procedure lists. The dashed arrows illustrate how the VarLastChange proce-
dures were added to the triggered procedure lists by the activation of the PickWalksatTabu trigger.
Note that some procedures and event points are not listed, including a few additional procedures
triggered by DefaultProcedures

memory. Efficient implementations of WalkSAT-based algorithms require a list of the
currently unsatisfied clauses, which is maintained by a set of procedures whose triggers
are all included in the FalseClauseList container trigger.

Different from, say, WalkSAT/SKC, WalkSAT/TABU needs to know when each
variable has been flipped last, in order to determine its tabu status. This requires a
simple data structure (an array of values) that is maintained using three triggered pro-
cedures: CreateVarLastChange() allocates the memory required for the data structure,
InitVarLastChange() initialises it at the beginning of each run and after restarts, and
UpdateVarLastChange() updates it after each flip. Each of these procedures has a trig-
ger that associates it with the event points CreateStateInfo, InitStateInfo, and PostFlip,
respectively. For convenience, these three triggers are grouped into a container trig-
ger named VarLastChange. When the PickWalksatTabu trigger is registered in UBC-
SAT, it lists VarLastChange in its dependency list, so when the Walksat/TABU al-
gorithm is selected, the PickWalksatTabu trigger is activated, which will activate the
VarLastChange trigger, and hence the three previously described triggers. (See also
Figure 3.)

The primary advantage of the triggered procedure architecture lies in the fact that
of the many procedures that are needed to realise the many SLS algorithms and re-
port formats supported by UBCSAT, only those required in any given run are activated
and used, while the remaining inactive or non-triggered procedures do not affect UBC-
SAT’s performance. A secondary advantage is that different algorithms and reports
can share the same data structures and procedures, saving much programming effort.
Potential drawbacks stem from the implementation overhead of having to register all

UBCSAT: An Implementation and Experimentation Environment 313

triggers, and from the fact that in this framework, algorithms are typically split into
many rather small procedures, which can lead to decreased performance compared to
more monolithic implementations. However, we have found that these disadvantages
are far outweighed by the advantages of UBCSAT’s triggered procedure architecture.
In particular, as we will demonstrate in the following section, the performance of UBC-
SAT is very competitive with native reference implementations of the respective SAT
algorithms.

3 A Collection of Efficient Algorithm Implementations

UBCSAT can be seen as a collection of many different SLS algorithms. Compared to
the respective reference native implementations of these algorithms, by integrating them
into the UBCSAT framework several advantages can be realised: Generally, by using a
single executable with a uniform interface, working with different algorithms becomes
easier and more convenient. From an implementation point of view, different algorithms
share common data structures and procedures, which reduces implementation effort
and the likelihood of programming errors. And from an empirical algorithmics point
of view, comparing two algorithms is facilitated by the fact that UBCSAT allows fairer
comparisons between algorithms that share components and use the same statistical
calculations, input and output formats.

The UBCSAT software package currently implements the following SLS algorithms
for SAT:

– GSAT [14]
– GWSAT [13]
– GSAT/TABU [11]
– HSAT [3]
– HWSAT [4]
– WalkSAT/SKC [13]

– WalkSAT/TABU [12]
– Novelty and R-Novelty [12]
– Novelty+ and R-Novelty+ [6]
– Adaptive Novelty+ [7]
– SAPS and RSAPS [9]
– SAPS/NR [16]

UBCSAT is designed to support weighted MAX-SAT versions (see also Section 6)
as well as variants that may differ in their behaviour or implementation from the basic
version of a given algorithm. Consequently, each algorithm within UBCSAT is identi-
fied as a triple (“algorithm”, bWeighted, “variant”), selectable on the command line
as ubcsat -alg algorithm [-w] [-v variant].

For each of the previously listed algorithms, we ensured that the UBCSAT imple-
mentation behaves identically to the respective original reference implementation, tak-
ing into consideration the stochastic nature of the algorithms. This is illustrated in Fig-
ure 4, in which run-time distributions for the UBCSAT implementations of GWSAT
and WalkSAT/SKC are compared with those for the original GSAT (version 41) and
WalkSAT (version 43) implementations.

At the same time, the UBCSAT versions of all algorithms were optimised for effi-
ciency, with the goal of matching or exceeding the time performance of the respective
reference implementations. For many SLS algorithms, the key to an efficient imple-
mentation lies in the way crucial data structures are organised and incrementally main-

314 D.A.D. Tompkins and H.H. Hoos

 100

 1000

 10000

 100000

 100 1000 10000 100000

U
B

C
S

A
T

 1
.0

 -
 G

W
S

A
T

 r
un

-le
ng

th
 [s

te
ps

]

GSAT v41 - GWSAT run-length [steps]

 1000

 10000

 100000

 1e+06

 1000 10000 100000 1e+06U
B

C
S

A
T

 1
.0

 -
 W

al
kS

A
T

/S
K

C
 r

un
-le

ng
th

 [s
te

ps
]

WalkSAT v36 - WalkSAT/SKC run-length [steps]

Fig. 4. Quantile-quantile plots of the run-time distributions for UBCSAT vs. GSAT v41 on in-
stance uf200-easy (left side) and WalkSAT v43 on bw large.a (right side) based on 5 000
runs per algorithm (run-time is measured in search steps)

Table 1. Total run times (in seconds) for 100 000 000 search steps on a dual-processor 1GHz Pen-
tium III (Coppermine) machine with 256KB cache and 1GB RAM running SuSE Linux 9.1. The
speedup factor (s.f.) shows the software speedups of the UBCSAT implementation over the origi-
nal implementations (GSAT v41 and WalkSAT v43). Note by choosing unsatisfiable instances for
this speed comparison, we ensured that in all cases exactly the same number of search steps have
been performed. The uuf-* instances are uniform random 3-SAT, the jnh instance is random
P -SAT, and the rg instance is a structured encoding of a graph colouring instance

Algorithm uuf100-01 uuf400-01
UBCSAT Original s.f. UBCSAT Original s.f.

WalkSAT/SKC 97.7 144.7 1.48 98.5 150.3 1.53
Novelty 117.1 151.6 1.29 114.5 153.4 1.34
GSAT 106.7 305.0 2.86 114.1 316.5 2.77
GWSAT 172.1 590.1 3.43 266.8 768.2 2.88

Algorithm jnh202 rg-200-2000-4-11
UBCSAT Original s.f. UBCSAT Original s.f.

WalkSAT/SKC 134.0 217.2 1.62 142.1 310.7 2.19
Novelty 168.4 230.8 1.37 159.5 323.0 2.02
GSAT 202.3 1541.6 7.62 233.0 397.8 1.71
GWSAT 254.3 1894.7 7.45 541.5 1354.5 2.50

tained. For example, many algorithms (such as GSAT and its variants) assign a score to
each variable that is defined as the net change in the total number of satisfied clauses
caused by flipping that variable. Rather than recomputing all variable scores in each
step, they can be stored and incrementally updated, such that after each flip only the
scores affected by that flip are recalculated [8]. However, we have found that in some
situations too much time can be spent by using this scheme; in particular, using it in
the implementation of WalkSAT algorithms actually decreases their performance. To

UBCSAT: An Implementation and Experimentation Environment 315

further complicate matters, the optimal incremental update strategy often depends on
the characteristics of the given problem instance.

In our UBCSAT implementation, we strove to use data structures and incremental
updating schemes that are efficient, yet reasonably straightforward to understand and
implement. The UBCSAT architecture supports functionally identical algorithm vari-
ants that are implemented using different data structures and/or incremental updating
schemes in a straightforward way, which makes it easy to implement new developments
in this area (such as Fukunaga’s recent scheme [2]).

The performance of the UBCSAT implementations of all supported algorithms has
been tested against that of the respective reference implementations in order to ensure
that the former are at least as efficient (in terms of run-time) as the latter. More impor-
tantly, for GSAT- and WalkSAT-algorithms, the UBCSAT implementations have been
shown to be significantly faster (see Table 1 for representative results).

4 A Framework for Developing New Algorithms

As discussed in the previous section, the UBCSAT environment includes a wide variety
of algorithms and data structures. To facilitate the development and integration of new
SLS algorithms, UBCSAT has been designed in such a way that new algorithms can
easily re-use the existing procedures and data structures from other algorithms; the basis
for this is provided by the triggered procedure architecture discussed in Section 2.

To illustrate how new algorithms are added to UBCSAT, in Figure 5 we present the
pseudo-code required to add a new WalkSAT/TABU algorithm variant to UBCSAT. We
have named the new variant WalkSAT/TABU-NoNull, and it differs from the regular
WalkSAT/TABU algorithm in only one detail: if all of the variables in the selected
clause are tabu, then a variable will be selected from the clause at random and flipped.
(This variant is interesting from a practical point of view, since WalkSAT/TABU is one
of the best-performing WalkSAT algorithms, but often suffers from search stagnation
as a consequence of null-flips.)

Within UBCSAT, the new algorithm will be identified as a (“walksat-tabu”, false,
“nonull”); it differs from the already supported WalkSAT/TABU only in its variable
selection procedure, whose trigger we name PickWalksatTabuNoNull. An algorithm
can explicitly specify the data structure procedures required, or it can inherit them
from another algorithm. In this case, we will simply inherit everything from regular
WalkSAT/TABU (“walksat-tabu”, false, “”). When an algorithm requires algorithm-
specific command-line parameters (such as the tabuTenure parameter in WalkSAT/
TABU) they must be defined or optionally inherited from an existing algorithm. In ad-
dition to creating and registering the new trigger in the system, its associated procedure,
here also called PickWalksatTabuNoNull, has to be implemented, which in this example
simply calls the regular WalkSAT/TABU variable selection procedure and then handles
the special case when a null-flip occurs. While this example illustrates a particularly
simple variant of an existing algorithm, the process of adding implementations of new
SLS algorithms to UBCSAT is typically similarly straightforward.

316 D.A.D. Tompkins and H.H. Hoos

procedure AddWalksatTabuNoNull()
CreateAlgorithm(“walksat-tabu”, false, “nonull”, % algorithm, bWeighted, variant

“WalkSAT/TABU without null-flips”, % description
“McAllester, Selman, Kautz [AAAI 97] (modified)”, % authors
“PickWalksatTabuNoNull”, % heuristic trigger(s)
...); % details omitted

InheritDataTriggers(“walksat-tabu”, false, “”);
InheritParameters(“walksat-tabu”, false, “”);
CreateTrigger(“PickWalksatTabuNoNull”, % trigger name

ChooseCandidate, % event point
PickWalksatTabuNoNull, % pointer to procedure
...);

end AddWalksatTabuNoNull

procedure PickWalksatTabuNoNull()
PickWalksatTabu();
if iF lipCandidate = NULL then

iF lipCandidate := PickRandomVarFromClause(iWalkSATClause);
end

end PickWalksatTabuNoNull

Fig. 5. Pseudo-code of the procedures required for extending UBCSAT with a new variant of
WalkSAT/TABU

5 An Empirical Analysis Tool

Empirical analysis plays an important role in the development and successful applica-
tion of SAT algorithms. To characterise or measure the behaviour of an SLS algorithm,
typically data needs to be collected from multiple independent runs of the algorithm.
Each run corresponds to a complete execution of the algorithm outlined in Figure 1;
note that the pseudo-code of Figure 2 performs multiple runs. (Note that when restart
mechanisms are used, a single run can be punctuated by one or more restarts, but this
does not partition it into multiple runs.) As an example, consider the run-time data
shown in Figure 4, which is based on 5 000 independent runs of each algorithm in-
volved in the respective experiment. To facilitate the advanced empirical analysis of the
SLS algorithms it implements, UBCSAT not only provides support for measuring and
reporting basic descriptive statistics over multiple runs, but also strongly supports the
analysis of run-time distributions (RTDs) [8]. In particular, UBCSAT can measure and
report RTDs in a format that can easily be plotted (see left side of Figure 7) or further
analysed with specialised statistical software.

Reports currently implemented in UBCSAT include the satisfying assignments found
in each run, detailed information about the search state at each search step, flip statistics
for individual variables and many others. In UBCSAT, statistics are special objects that
are used to collect and summarise data for the default reports. Statistics can be shown
for each individual run (column objects), or be summarised over all runs (stat objects).
Additional reports and statistics can be added to UBCSAT in a straightforward manner
that is conceptually closely related to the way in which new algorithms are added. Re-
ports can be in any format and are implemented based on a list of triggered procedures
that collect and print the required information.

In Figure 6, we show the creation of a column object that will calculate the aver-
age age of variables flipped during a run. The age of a flipped variable is calculated as

UBCSAT: An Implementation and Experimentation Environment 317

integer iCurV arAge; % global variable for statistic

procedure AddAgeStat()
AddColumn(“agemean”, % column name

“Mean Age of Variables when flipped”,
&iCurVarAge, % pointer to data variable
“UpdateCurVarAge”, % trigger to activate
TypeMean, % type of statistic to collect on data
...);

CreateTrigger(“UpdateCurVarAge”, PreFlip, UpdateCurVarAge,
“VarLastChange”, % trigger dependency
...);

end AddAgeStat

procedure UpdateCurVarAge()
iCurV arAge := iStep − aV arLastF lip[iF lipCandidate];

end UpdateCurVarAge

Fig. 6. Pseudo-code for adding a new statistic that measures the mean age of variables when
flipped

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1000 10000 100000 1e+06 1e+07

P
(s

ol
ve

)
[%

]

run length [steps]

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 10 100 1000

so
lu

tio
n

qu
al

ity
 [#

 u
ns

at
 c

la
us

es
]

run length [steps]

median
Q.25/Q.75
Q.10/Q.90

Fig. 7. An example of a run-length distribution (RLD) (left side), and a time-dependent solution
quality statistics (SQT) plot (right side). The data underlying these curves can be easily generated
by the UBCSAT software package and plotted using gnuplot scripts which are available on the
UBCSAT website

the number of steps that have occurred since the last time the variable was flipped (the
calculation is shown in UpdateCurVarAge(). For this statistic, the trigger UpdateCur-
VarAge is required to ensure that the correct age value is calculated at the event point
PreFlip. The trigger UpdateCurVarAge depends on the trigger VarLastChange (see Fig-
ure 3), so if the algorithm already collects this data (as does, e.g., WalkSAT/TABU) then
the statistic will simply share the same data structure, but if the algorithm does not nor-
mally require this data, then the trigger will ensure that it is collected. Because this
column statistic has been identified as a TypeMean (average over all search steps of a
run), an additional trigger will be automatically activated to collect the data at the end of
each search step. Like many statistics added to UBCSAT, this age statistic is now avail-
able to all algorithms (that use a single-flip strategy). UBCSAT facilitates comparisons
between algorithms on statistics such as these, which can help further our understanding
of how SLS algorithms behave.

318 D.A.D. Tompkins and H.H. Hoos

6 Support for MAX-SAT

One area where SLS algorithms have been very successful, and have defined the state-
of-the-art for more than a decade, is in solving the MAX-SAT problem, and in partic-
ular, the weighted MAX-SAT problem; for this reason, supporting MAX-SAT was one
of our primary goals. Although there are interesting differences between the state-of-
the-art SLS algorithms for SAT and MAX-SAT, at the conceptual and implementation
level, there are many similarities. Unweighted MAX-SAT can be seen as a special case
of weighted MAX-SAT where all clauses have uniform weight; therefore, in the follow-
ing, we will focus on the weighted MAX-SAT problem. It should be noted, however,
that in terms of implementation, SLS algorithms for unweighted MAX-SAT are much
more closely related to SLS algorithms for SAT. In UBCSAT, unweighted MAX-SAT
algorithms are therefore typically equivalent to the corresponding SAT algorithm, while
weighted MAX-SAT algorithms are implemented separately, facilitating conceptually
simpler and highly efficient implementations for both cases.

The main differences between SAT and MAX-SAT is that the optimal solution qual-
ity (i.e., maximal total weight of satisfied clauses) for a given problem instance is of-
ten unknown. Hence, the best assignment encountered during the search, the so-called
incumbent assignment, is memorised and returned at the end of the search. This mem-
orisation of the incumbent assignment is accomplished in UBCSAT via a report. Typi-
cally, SLS algorithms for MAX-SAT are not guaranteed to find optimal solutions, i.e.,
maximal weight assignments, but many state-of-the-art SLS algorithms for MAX-SAT
have the property that if they search long enough, the probability of finding an opti-
mal solution approaches one (the so-called PAC property, see also [6, 8]), and in many
practical cases assignments that are provably optimal or believed to be optimal can be
found within reasonable run-times. UBCSAT supports termination criteria that end a
run whenever a user-specified solution quality (e.g., the known optimal solution quality
for the given problem instance) is reached or exceeded; alternatively, particularly when
dealing with instances whose optimal solution quality is unknown, UBCSAT can be
configured with advanced criteria to determine when to terminate a run.

Currently, UBCSAT includes implementations of two dedicated algorithms for MAX-
SAT, SAMD [5] and IRoTS [15], as well as weighted MAX-SAT variants for many of
the SLS algorithms listed in Section 3. The mechanism for implementing new MAX-
SAT algorithms within UBCSAT is exactly the same as described for the case of SAT
in Section 4. While for unweighted MAX-SAT instances, the same DIMACS CNF file
format as for SAT is used, for weighted MAX-SAT instances, UBCSAT currently sup-
ports a straightforward extension of the this format known as the weighted CNF file
format (.wcnf). To support the empirical analysis of the behaviour and performance
of SLS algorithms for MAX-SAT, in addition to the previously mentioned statistics
and reports (see Section 5), UBCSAT supports advanced analysis methods for stochas-
tic optimisation algorithms. In particular, the following types of empirical performance
characteristics can be easily measured (see also [8]):

– qualified run-time distributions (QRTDs), i.e., empirical probability distributions
of the run-time required for reaching or exceeding a specific target solution quality
measured over multiple runs of the algorithm;

UBCSAT: An Implementation and Experimentation Environment 319

– solution quality distributions (SQDs), i.e., empirical probability distributions of the
best solution quality reached within a given amount of run-time, measured in terms
of search steps or CPU time over multiple runs of the algorithm;

– time-dependent solution quality statistics (SQTs), i.e., the development of descrip-
tive statistics (such as quantiles) of the SQDs as run-time increases.

QRTDs, SQDs, and SQTs are determined from so-called solution quality traces, which
contain information on every point in time the incumbent solution was updated during
a given run of the algorithm. The solution quality traces are collected by UBSAT with
minimal overhead during the run of any MAX-SAT algorithm. Figure 7 (right side)
shows a sample SQT measured by UBCSAT.

7 Conclusions and Future Work

In this paper we have introduced UBCSAT, a new software environment that we created
with the specific goal of facilitating and supporting research on SLS algorithms for SAT
and MAX-SAT. UBCSAT is built on the basis of a novel triggered procedures architec-
ture and includes highly efficient, conceptually simple, and accurate implementations
of a wide range of prominent SLS algorithms for SAT and MAX-SAT. UBCSAT fa-
cilitates the development and integration of new algorithms (and algorithm variants). It
provides support for advanced empirical analysis of the performance and behaviour of
SLS algorithms without compromising implementation efficiency. UBCSAT has been
implemented in a platform-independent way and is publicly available to the academic
community as an open-source software package.

While this paper has summarised the work on the UBCSAT project to date, UBC-
SAT is an ongoing effort, and we are very enthusiastic about expanding and building
upon the project in the future. We plan to expand UBCSAT by incorporating exist-
ing and new SLS algorithms for SAT and MAX-SAT. While we have so far focussed
on an ANSI C compliant implementation, there is some interest in adding C++ inter-
faces, as well as extending our implementation beyond the 32-bit boundary for coun-
ters. We will continue to add more sophisticated reports and empirical analysis tools,
and we are also interested in providing more external support features, such as gnu-
plot scripts and better integration with the R statistical software package. It has been
suggested that the UBCSAT project could benefit from support for parallel implemen-
tations, a more formalised object-based system with advanced integrity checking, and
even a graphical user interface for constructing new algorithms and adding triggers. We
are very interested in adding features that will make the software more accessible and
useful to the research community, and welcome feedback and suggestions for further
improvements.

But above all else, we hope that our UBCSAT framework will help advance state-
of-the-art research in SLS algorithms, to help better understand how and why SLS al-
gorithms behave the way they do, and to unlock some of the unexplored potential of
SLS algorithms for SAT and MAX-SAT.

320 D.A.D. Tompkins and H.H. Hoos

References

1. G. Audemard, D. Le Berre, O. Roussel, I. Lynce, and J. Marques-Silva. OpenSAT: an open
source SAT software project. In Sixth Int’l Conf. on Theory and Applications of Satisfiability
Testing (SAT2003), pages 502–509, 2003.

2. A. Fukunaga. Efficient implementations of SAT local search. In Seventh Int’l Conf. on
Theory and Applications of Satisfiability Testing (SAT2004), pages 287–292, 2004.

3. I. P. Gent and T. Walsh. Towards an understanding of hillclimbing procedures for SAT. In
Proc. of the Eleventh Nat’l Conf. on Artificial Intelligence (AAAI-93), pages 28–33, 1993.

4. I. P. Gent and T. Walsh. Unsatisfied variables in local search. In Hybrid Problems, Hybrid
Solutions, pages 73–85, 1995.

5. P. Hansen and B. Jaumard. Algorithms for the maximum satisfiability problem. Computing,
44:279–303, 1990.

6. H. H. Hoos. On the run-time behaviour of stochastic local search algorithms for SAT. In
Proc. of the Sixteenth Nat’l Conf. on Artificial Intelligence (AAAI-99), pages 661–666, 1999.

7. H. H. Hoos. An adaptive noise mechanism for WalkSAT. In Proc. of the 18th Nat’l Conf. in
Artificial Intelligence (AAAI-02), pages 655–660, 2002.

8. H. H. Hoos and T. Stützle. Stochastic Local Search: Foundations and Applications. Morgan
Kaufmann Publishers, San Francisco, CA, USA, 2005.

9. F. Hutter, D. A. D. Tompkins, and H. H. Hoos. Scaling and probabilistic smoothing: Efficient
dynamic local search for SAT. In LNCS 2470: Proc. of the Eighth Int’l Conf. on Principles
and Practice of Constraint Programming (CP-02), pages 233–248, 2002.

10. M. Matsumoto and T. Nishimura. Mersenne twister: a 623-dimensionally equidistributed
uniform pseudo-random number generator. ACM Trans. on Modeling & Computer Simula-
tion, 8(1):3–30, 1998.

11. B. Mazure, L. Saı̈s, and É. Grégoire. Tabu search for SAT. In Proc. of the Fourteenth Nat’l
Conf. on Artificial Intelligence (AAAI-97), pages 281–285, 1997.

12. D. McAllester, B. Selman, and H. Kautz. Evidence for invariants in local search. In Proc. of
the Fourteenth Nat’l Conf. on Artificial Intelligence (AAAI-97), pages 321–326, 1997.

13. B. Selman, H. A. Kautz, and B. Cohen. Noise strategies for improving local search. In Proc.
of the 12th Nat’l Conf. on Artificial Intelligence (AAAI-94), pages 337–343, 1994.

14. B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard satisfiability
problems. In Proc. of the Tenth Nat’l Conf. on Artificial Intelligence (AAAI-92), pages 459–
465, 1992.

15. K. Smyth, H. H. Hoos, and T. Stützle. Iterated robust tabu search for MAX-SAT. In Proc.
of the 16th Conf. of the Canadian Society for Computational Studies of Intelligence, pages
129–144, 2003.

16. D. A. D. Tompkins and H. H. Hoos. Warped landscapes and random acts of SAT solving. In
Proc. of the Eighth Int’l Symposium on Artificial Intelligence and Mathematics (ISAIM-04),
2004.

17. P. Van Hentenryck and L. Michel. Control abstractions for local search. In LNCS 2833:
Proc. of the Ninth Int’l Conf. on Principles and Practice of Constraint Programming (CP-
03), pages 65–80, 2003.

Fifty-Five Solvers in Vancouver:
The SAT 2004 Competition

Daniel Le Berre1 and Laurent Simon2

1 CRIL-CNRS FRE 2499, Université d’Artois,
Rue Jean Souvraz SP 18 – F 62307 Lens Cedex, France

leberre@cril.univ-artois.fr
2 LRI, Université Paris-Sud,

Bâtiment 490, U.M.R. CNRS 8623 – 91405 Orsay Cedex, France
simon@lri.fr

Abstract. For the third consecutive year, a SAT competition was orga-
nized as a joint event with the SAT conference. With 55 solvers from 25
author groups, the competition was a clear success. One of the noticeable
facts from the 2004 competition is the superiority of incomplete solvers
on satisfiable random k-SAT benchmarks. It can also be pointed out
that the complete solvers awarded this year, namely Zchaff, jerusat1.3,
satzoo-1.02, kncfsand march-eq, participated in the SAT 2003 com-
petition (or at least former versions of those solvers). This paper is not
reporting exhaustive competition results, already available in details on-
line, but rather focuses on some remarkable results derived from the
competition dataset.

The SAT 2004 competition is ending a 3-year take-off period that
attracted new SAT researchers and provided many new benchmarks and
solvers to the community. The good participation rate of this year (de-
spite the addition of the anti-blackbox rule) establishes the competition
as an awaited yearly event. Some new directions for a new way of thinking
about the competition are discussed at the end of the paper.

1 Introduction

Building efficient SAT solvers is one of the many sides of SAT research. Whether
these solvers are built as a proof of concept for a theoretical result, or are the
result of a careful software engineering process for industrial purposes, they are
useful for the whole community because they provide a snapshot of current
algorithmic performances. Efficient SAT solvers help us estimate which SAT
instances are solvable on current computers, and which methods works on which
kind of problems.

As we’ve done in the previous competitions, we partitioned the set of bench-
marks in three categories. The recent use of SAT solvers as embedded engines in

H.H. Hoos and D.G. Mitchell (Eds.): SAT 2004, LNCS 3542, pp. 321–344, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

322 D. Le Berre and L. Simon

successful model checkers or planning systems1 created a huge interest in build-
ing efficient SAT solvers especially dedicated to solving SAT benchmarks with
thousands (sometimes millions) of variables. These very large benchmarks are
coming from an automated translation of problems from bounded model check-
ing [2], formal verification [23], planning [11], etc. They may be found in the
industrial category of the competition: they provide an “optimistic” bound of
the kind of problems solvable by current state of the art SAT solvers. However,
if many solvers have been reported to solve most of these large industrial bench-
marks today, it is still possible to build a three-hundred-variable benchmark that
they won’t be able to solve. Most of these benchmarks arise from the theoretical
result of NP-completeness of the satisfiability problem. They may be found in
the crafted category of the contest. Such category often provides a “pessimistic”
bound on the size of brute force solvable problems and may also emphasize
new inference rules for strengthening SAT solvers. At last, the uniform random
k-CNF – formulas containing exactly k different literals per clause – is still a
widely used class of benchmarks, both useful at the theoretical and the practi-
cal level. These benchmarks represent a very particular but still hard challenge
(especially the unsatisfiable random benchmarks) for the SAT community. We
classified them in the random category.

As previously, the competition was based on a two-stage ranking. The dead-
line for submitting both solvers and benchmarks was February, 23rd. Solvers ran
first on randomly generated random k-SAT, then on industrial benchmarks. The
first stage finished early April by running the solvers on the remaining crafted
instances. The authors of the SAT solvers were able to follow almost in real time
the progress of their solver, ensuring the correctness of the collected information.
The timeout for the first stage was only 10 minutes, because of the large number
of solvers competing this year. After this first stage, the solvers were ranked for
each category according to the number of solved series, then according to the
total number of solved benchmarks2. The aim of this ranking is to focus on SAT
solvers able to solve a wide range of SAT benchmarks. From an anonymized ver-
sion of those rankings the judges, João Marques-Silva, Hans Kleine-Büning and
Fahiem Bacchus, decided for each category which solvers were eligible to enter
the second stage. Note that the solvers for which a detailed description was not
available were not eligible to enter the second stage.

These “second stage solvers” were then launched on the benchmarks that
remained unsolved with a longer timeout (40 minutes). Technically, the compe-
tition ran this year on two clusters of Linux boxes. One, from the “Laboratoire
de Recherche en Informatique” (LRI, Orsay, France), was composed of Athlon
1800+ with 1 GB memory. It was used last year for the SAT 2003 competition.

1 SATPLAN04, powered by the SAT solver Siege, got the first place in the 2004
planning competition in the optimal track http://ls5-www.cs.uni-dortmund.de/
∼edelkamp/ipc-4/results.html.

2 A series of benchmarks is a collection of similar benchmarks (e.g. for the random
category, benchmarks with the same number of variables and the same number of
clauses). A series is solved if at least one of its benchmarks is solved.

Fifty-Five Solvers in Vancouver: The SAT 2004 Competition 323

The second one, from “the beta lab” (UBC, Vancouver, Canada), was composed
of Intel Xeon 2.4 GHz with 1 GB memory.

2 The Competitors

2.1 Solvers

Due to lack of space, we’ll not describe here each solver. We invite the reader to
take a look at the 2-page descriptions of the solvers available on the competition
results web page3. 25 submitters (see the online solver descriptions for the co-
authors) provided 55 solvers:

– Complete (SAT and UNSAT) solvers:
brchaff (R. Bruni), circush0, circush1 (H. Jin) [9], cls (W. Ruml) [6],
compsat (A. Biere), cquest (I. Lynce), eqube1, eqube2 (M. Narizzano),
forklift , frankensat-high frankensat-low (M. Dufourt) , funex (A.
Biere), isat1, isat2, isat3 (N.S. Narayanaswamy), jerusat1.3 (A. Nadel),
lsatv1.1 (R. Ostrowski) [15], march-001, march-007, march-eq-010,
march-eq-100 (M. Heule), minilearning.jar (D. Le Berre), modoc (A.
Van Gelder) [21], nanosat (A. Biere), oepira, oepirb, oepirc (J. Alfreds-
son), ofsat (O. Fourdrinoy), quantor (A. Biere) [1], sato4.2, sato4.3 (H.
Zhang) [27], satzoo-1.02 (N. Een), tts-2-0 (I. Spence), werewolf (J. Roy),
wllsatv1 (R. Ostrowski), zchaff, zchaff-rand (Z. Fu) [14],

– Incomplete (SAT) solvers:
adaptnovelty, novely35, novely50 (H. Hoos)[8], gasat(F. Lardeux) [10],
qingting (X.-Y. Li) [13], rsaps, saps, sapsnr (D. Tompkins), saprover,
unitwalk (A. Kojevnikov) [7], walksatauto, walksatrnp [8] and
walksatsck [17] (H. Kautz).

– Portfolio (contain both complete and incomplete solvers):
satzilla, satzilla-nr, satzilla-r (E. Nudelman)

The solvers forklift (E. Goldberg and Y. Novikov) and kncfs (Gilles De-
quen and Olivier Dubois [5]) were not submitted by their authors but entered
the contest as last year winners.

2.2 The Benchmarks

Uniform Random k-SAT. 300 benchmarks were generated in 30 series: 15
series with 3-SAT benchmarks, 15 series with k-SAT formulas (k > 3). For
the 3-SAT series, 3 series of most probably SAT (ratio number of clauses over
number of variables equals 4) and UNSAT (ratio 4.5) benchmarks for 500, 700
and 900 variables were generated. The remaining 9 series were generated at
the threshold (ratio 4.25) for 400 to 800 by 50 variables. For the 15 k-SAT
benchmarks, k = 4, 5, 6, 7, 8, the instances were generated at the threshold for

3
http://www.lri.fr/∼simon/contest/results/

324 D. Le Berre and L. Simon

3 different number of variables (different for each k). Let us emphasize that
the number of variables used were adapted from last year solvers performances:
we needed instances not too easy but not too hard to discriminate the solvers,
considering only last year solvers performances.

Industrial. During last year competition, some competitors spotted that their
solvers were behaving much better on the original industrial benchmarks than
on the shuffled version we were using in the competition. The order of the clauses
and the numbering of the variables were supposed to have a meaning in those
benchmarks and some solvers might be able to take that information into ac-
count. As a consequence, the performance of their solver during the competition
did not match their observation in an industrial setting. We took this remark into
account and generated 3 series from one in this category: one with the original
benchmarks, and two with different shuffling of the original benchmarks.

The industrial category benchmark set was composed of 157 original bench-
marks in 18 series. Two of them were dedicated to benchmarks that remained un-
solved since the first competition. Another 7 formed the benchmarks not solved
last year. The 10 new series were proposed by:

Hoonsang Jin 8 benchmarks from BMC using the Vis system [16].
Marijn Heule 1 benchmark from Philips
Allen Van Gelder 12 benchmarks encoding into SAT coloring problems [20].
Miroslav Velev Formal Verification problems in two series, pipe-sat-1.1 [22]

(10 benchmarks) and vliw-unsat-2.0 (8 benchmarks).
Emmanuel Zarpas 5 series from IBM BMC benchmarks [25]: 01-rule, 11-rule-

2, 13-rule, 22-rule and 30-rule.

Crafted. Called ”Hand Made” in the previous competition, this category con-
tains 29 series for a total of 228 benchmarks. Four series contained instances un-
solved since the first competition (hgen, ezfact, urquhart, others), 9 series
contained benchmarks that remained unsolved last year (bqwh, chesscolor,

factoring, anton SAT/UNSAT, hirsch, moore, markstrom UNSAT,

station hwb). The new benchmarks were submitted by:

Andrew Slater two series of randomly generated clustered benchmarks.
Hoonsang Jin one Ramsey benchmark.
Ke Xu 2 series from forced satisfiable CSP instances of Model RB [24].
Marijn Heule 2 series of equivalency chains.
Calin Anton 4 series of Random l-clustered k-SAT.
Harold Connamacher 5 series of benchmarks encoding the generic uniquely

extendible constraint satisfaction problem [3].

Note that this year the crafted category contains the “look like random series”
hgen+, hirsch, moore that belonged to the random category in the previous
competition.

Fifty-Five Solvers in Vancouver: The SAT 2004 Competition 325

3 First Stage Results

3.1 First Stage on Random

The first obvious comment about the results of the first stage in the random
category is that the incomplete solvers outperformed the complete ones this
year. A nice way to see it is to take a look at Figure 1. Incomplete solvers
appear on the right (from saps to saprover): they solve quickly a large number
of benchmarks. Complete solvers are on the left. The complete local search solver
cls lies in between. The satzilla’s solvers that use a local search solver as a
preprocessing step are located with the local search solvers.

Note that the best incomplete solver in number of series solved was able to
solve all the series containing SAT benchmarks (3 series of 3-CNF were generated
to be UNSAT). While all the incomplete solvers were able to solve at least 100
benchmarks, the best complete solver cls was only able to solve 65 of them.
Note that last year winner kncfs was only able to solve 60 benchmarks. So it
looks like we have a good new complete SAT solver for the random category
this year? Not really. cls is a complete local search solver: compared to its local
search siblings, it performs poorly on satisfiable benchmarks. Compared to its
complete siblings, it perform poorly on UNSAT problems (it did not solve one!).

Another obvious fact is that none of the conflict-driven clause-learning algo-
rithms extending zchaff (including the original) succeeded to enter the second
stage. None of them was able to solve an UNSAT instance. The best of them, with
respect to the number of benchmarks solved, satzoo-1.02, was only able to solve
13 instances in the series k3-r4.25-v400 (9), k3-r4-v500 (3), k4-r9.88-v155
(1). satzoo-1.02 solved the first series in 2500 s while the incomplete solvers
solved it in less than a second and specialized complete solver such as kncfs and
march needed respectively 38s and 18s.

The three very strong solvers saps, walksatrnp and adaptnovelty are sim-
ilar to each other. Basically, walksatrnp and adaptnovelty are very similar
in the sense that they are two implementations of the Rnovelty+[8] version of
Walksat. The difference lies in the value of the noise (p): walksatrnp uses a
fixed value of p = 0.5 while adaptnovelty adapts the value of p during the
search. saps is using a different approach (scaling and probabilistic smooth-
ing) but is implemented in the same framework as adaptnovelty: UBCSAT[4].
The series solved by walksatrnp but not solved by adaptnovelty and saps

is k7-r88.7-v110, the collection of 10 7-CNF with 110 variables at ratio 88.7.
gasat also failed to solve that series. Note that gasat solved many series but sig-
nificantly fewer benchmarks than the three best solvers. This may be explained
by either a greater algorithmic complexity or a less efficient implementation of
the solver. This tends to be confirmed in the second stage (Table 2) since gasat

solved 17 new benchmarks while most of the other incomplete solvers solved
only a few (2 to 7), by the shape of gasat in Figure 1 and its crr value of 1.82
(Detailed explanation of this value is given later, when table 5 is introduced).

326 D. Le Berre and L. Simon

0
5

0
1

0
0

1
5

0
0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

←
 fu

ne
x ←

 qu
an

tor ←
 co

mps
at ←

 Je
ru

sa
t1.

3
←

 O
ep

irC ←
 C

Que
st ←

 F
or

kli
ft ←

 O
ep

irB ←
 zc

ha
ff
ran

d
←

 O
ep

irA ←
 eq

ub
e1 ←

 eq
ub

e2 ←
 ls

atv
1.1 ←

 na
no

sa
t

←
 m

ini
lea

rn
ing

.ja
r

←
 sa

to4
.2 ←

 w
lls

atv
1 ←

 br
ch

aff ←
 sa

to4
.3 ←

 zc
ha

ff ←
 IS

AT1 ←
 S

atz
oo

1.02 ←
 IS

AT2 ←
 IS

AT3 ←
 m

ar
ch

−eq
−10

0

←
 m

ar
ch

−00
1

←
 m

ar
ch

−eq
−01

0

←
 m

ar
ch

−00
7

←
 kc

nfs
←

 cl
s

←
 sa

pr
ov

er
←

 sa
tzi

lla
r

←
 sa

tzi
lla ←

 U
nit

W
alk

←
 sa

tzi
lla
nr ←

 G
aS

AT ←
 Q

ing
Ting ←

 w
alk

sa
tsk

c

←
 no

ve
lty

35
←

 w
alk

sa
tau

to

←
 w

alk
sa

tm
p

←
 ad

ap
tno

ve
lty

←
 no

ve
lty

50
←

 rs
ap

s ←
 sa

ps
nr ←

 sa
ps

#
S

o
lv

e
d

CPU−Time needed (s)

R
a

n
d

o
m

:
A

L
L

 o
n

 S
A

T

fu
n

e
x

(2
)

q
u

a
n

to
r

(2
)

co
m

p
sa

t (
3
)

Je
ru

sa
t1

.3
 (

3
)

O
e

p
ir
C

 (
3
)

C
Q

u
e

st
 (

5
)

F
o

rk
lif

t (
5
)

O
e

p
ir
B

 (
5
)

zc
h

a
ff

ra
n

d
 (

5
)

O
e

p
ir
A

 (
6
)

e
q

u
b

e
1

 (
8
)

e
q

u
b

e
2

 (
8
)

ls
a

tv
1

.1
 (

8
)

n
a

n
o

sa
t (

8
)

m
in

ile
a

rn
in

g
.ja

r
(9

)
sa

to
4

.2
 (

1
0
)

w
lls

a
tv

1
 (

1
0
)

b
rc

h
a

ff
 (

1
1
)

sa
to

4
.3

 (
1
1
)

zc
h

a
ff

 (
1
1
)

IS
A

T
1

(1
2
)

S
a

tz
o

o
1
.0

2
 (

1
3
)

IS
A

T
2

(1
5
)

IS
A

T
3

(1
9
)

m
a

rc
h

−
e

q
−

1
0

0
 (

2
6
)

m
a

rc
h

−
0

0
1

 (
3
4
)

m
a

rc
h

−
e

q
−

0
1

0
 (

3
4
)

m
a

rc
h

−
0

0
7

 (
3
6
)

kc
n

fs
 (

4
6
)

cl
s

(6
5
)

sa
p

ro
ve

r
(1

0
3
)

sa
tz

ill
a

r (
1
0
3
)

sa
tz

ill
a

 (
1
0
4
)

U
n

itW
a

lk
 (

1
0
6
)

sa
tz

ill
a

n
r

(1
0
8
)

G
a

S
A

T
(1

1
1
)

Q
in

g
T

in
g

 (
1
1
1
)

w
a

lk
sa

ts
kc

 (
1
2
2
)

n
o

ve
lty

3
5

(1
3
7
)

w
a

lk
sa

ta
u

to
 (

1
3
8
)

w
a

lk
sa

tm
p

 (
1
4
2
)

a
d

a
p

tn
o

ve
lty

 (
1
4
3
)

n
o

ve
lty

5
0

(1
4
3
)

rs
a

p
s

(1
4
3
)

sa
p

sn
r

(1
4
3
)

sa
p

s
(1

4
4
)

Fig. 1. # of instances solved vs. CPU time for all solvers on SAT instances

Fifty-Five Solvers in Vancouver: The SAT 2004 Competition 327

Table 1. Results of the first stage for the solvers that entered the second stage by
category plus the results of forklift and oepir

ALL SAT UNSAT
INDUSTRIAL

Solver #series#benchs
Forklift 30 81
zchaff rand 27 67
brchaff 25 58
CirCUsH1 25 53
OepirC 24 95
compsat 23 57
CQuest 22 45
minilearning.jar 22 44
Jerusat1.3 21 56
quantor 21 37
Satzoo 1.02 19 40

Solver #series#benchs
CQuest 10 25
CirCUsH1 10 23
OepirC 9 40
Jerusat1.3 9 39
compsat 9 36
Forklift 9 30
brchaff 9 29
zchaff rand 9 27
minilearning.jar 8 25
Satzoo 1.02 7 22
quantor 6 16

Solver #series#benchs
Forklift 24 51
zchaff rand 18 40
brchaff 17 29
OepirC 16 55
Satzoo 1.02 16 18
CirCUsH1 15 30
quantor 15 21
Jerusat1.3 15 17
compsat 14 21
minilearning.jar 14 19
CQuest 12 20

CRAFTED
Solver #series#benchs
march-eq-100 13 63
satzilla nr 13 48
Satzoo 1.02 12 53
brchaff 12 42
sapsnr 11 39
march-007 10 59
zchaff 10 41
Jerusat1.3 9 45
OepirA 9 41
nanosat 9 39

Solver #series#benchs
sapsnr 11 39
satzilla nr 11 38
march-eq-100 10 36
Satzoo 1.02 9 38
Jerusat1.3 9 37
march-007 9 36
brchaff 9 34
zchaff 8 32
nanosat 8 31
OepirA 7 31

Solver #series#benchs
Satzoo 1.02 7 15
march-eq-100 6 27
brchaff 6 8
satzilla nr 5 10
OepirA 5 10
zchaff 5 9
march-007 4 23
nanosat 4 8
Jerusat1.3 3 8
sapsnr 0 0

RANDOM
Solver #series#benchs
walksatrnp 27 142
saps 26 144
adaptnovelty 26 143
GaSAT 26 111
satzilla nr 20 108
QingTing 19 111
cls 19 65
UnitWalk 17 106
kcnfs 11 60
march-007 9 45

Solver #series#benchs
walksatrnp 27 142
saps 26 144
adaptnovelty 26 143
GaSAT 26 111
satzilla nr 20 108
QingTing 19 111
cls 19 65
UnitWalk 17 106
kcnfs 10 46
march-007 8 36

Solver #series#benchs
kcnfs 4 14
march-007 3 9

On the UNSAT instances, only a limited number of series and benchmarks
were solved. As a result, the ranking of the overall category (SAT+UNSAT) is
quite close to that of the SAT category.

At the satisfiability threshold, the generated instances have the same prob-
ability to be SAT or UNSAT, thus one could expect half of the instances to
be SAT and the other ones UNSAT. During the first stage, exactly 150 bench-
marks were proved SAT by the incomplete solvers, which is exactly half of the
benchmarks. In order to check this result, after the competition, we launched
kncfs and adaptnovelty with a 15-hour timeout, on the still-unsolved random
benchmarks, and they were unable to find new SAT ones (kncfs found 18 new
UNSAT benchmarks). Even if such a result may look nice, let us notice that the
number of SAT/UNSAT benchmarks was not uniformly dispatched across the
series.

328 D. Le Berre and L. Simon

Table 2. Second stage results. On the random category, we also report the number of
newly solved benchmarks

ALL SAT UNSAT
INDUSTRIAL

Solver #benchs
zchaff-rand 20
Satzoo-1.02 10
brchaff 8
Jerusat1.3 6
quantor 6
CQuest 5
CirCUsH1 3
minilearning 3
compsat 3

Solver #benchs
Jerusat1.3 3
CirCUsH1 2
zchaff-rand 2
brchaff 1
compsat 1
Satzoo-1.02 1
quantor 0
CQuest 0
minilearning 0

Solver #benchs
zchaff-rand 18
Satzoo-1.02 9
brchaff 7
quantor 6
CQuest 5
minilearning 3
Jerusat1.3 3
compsat 2
CirCUsH1 1

CRAFTED
Solver #benchs
march-eq-100 10
Satzoo 1.02 10
satzilla nr 3
Jerusat1.3 2
brchaff 1
nanosat 1
sapsnr 0
march-007 0
zchaff 0

Solver #benchs
Satzoo-1.02 2
brchaff 1
nanosat 1
sapsnr 0
satzilla nr 0
march-eq-100 0
Jerusat1.3 0
march-007 0
zchaff 0

Solver #benchs
march-eq-100 10
Satzoo 1.02 8
satzilla nr 3
Jerusat1.3 2
brchaff 0
nanosat 0
sapsnr 0
march-007 0
zchaff 0

RANDOM
Solver #benchs #new
adaptnovelty 150 7
sapsnr 148 4
walksatrnp 145 3
GaSAT 128 17
QingTing 113 2
UnitWalk 112 6
satzilla nr 110 2
kcnfs 90 30
cls 78 13
march-007 63 18

Solver #benchs #new
adaptnovelty 150 7
sapsnr 148 4
walksatrnp 145 3
GaSAT 128 17
QingTing 113 2
UnitWalk 112 6
satzilla nr 110 2
cls 78 13
kcnfs 64 18
march-007 45 9

Solver #benchs #new
kcnfs 26 12
march-007 18 9

3.2 First Stage on Industrial

The industrial category is a very competitive category, mainly because of its
economic aspect. Some industry-related solvers competed in the previous com-
petitions but authors of last year winner, forklift, declined the invitation to
submit a detailed description of their solver in the conference post proceedings,
due to intellectual property reasons. If this can be easily understood from their
point of view, from the organizers point of view, and with the agreement of
the judges, it was decided not to use the SAT competition to publicize a solver
without providing anything back to the SAT community.

We introduced for that reason the “Anti-Blackbox rule” that prevents SAT
solvers for which the details are not known (no source code available, no publicly
available technical report about it) to participate in the competition. This is a
clear path on which we want the competition to stay. For those reasons, the
popular SAT solver siege4 did not enter the contest this year, but forklift

4 http://www.cs.sfu.ca/˜loryan/personal/

Fifty-Five Solvers in Vancouver: The SAT 2004 Competition 329

entered the contest as last year winner. The oepir solvers entered the compe-
tition, an overall description of the solvers being provided, but a more detailed
description was borderline with a non-disclosure agreement. For that reason, the
solvers became ineligible for an award. The following results do include both
forklift and oepirs ones, because we think that awarding a solver and re-
porting its results are different things. It is important for the community to see
where those solvers stand compared to the other ones.

Without any surprise, Conflict-Driven Clause-Learning (CDCL) solvers out-
perform the other ones in that category. All the solvers entering the second stage
either include or extend a CDCL solver. The more robust solver is the last year
winner forklift, which solved 30 series for a total of 81 benchmarks. The best
solver with respect to the total number of benchmarks solved is a variant of
Oepir, oepirc, which solved 24 series for a total of 95 benchmarks. The series
solved by forkliftand not by oepirc are Schuppan l2s and Miroslav Velev
VLIW-UNSAT-2, for a total of 8 benchmarks. Note that oepirc was able to solve
them neither under their original form nor after shuffling. Both series contain
huge benchmarks (15 000 to 1M variables for l2s, 25 000 to 500 000 variables
for VLIW).

oepirc outperformed forklift on IBM benchmarks, especially on the orig-
inal series. zchaff-rand is also a strong solver with 27 series and 67 bench-
marks solved. It was not able to solve the l2s benchmarks. brchaff, circush1,
compsat and jerusat1.3 were able to solve more than 50 benchmarks. On
the one hand, oepirc, jerusat1.3 and compsat solved significantly more SAT
benchmarks than the other solvers, but on the other hand, oepirc and forklift

outperformed the other solvers in the UNSAT category, followed by zchaff-rand.
Interestingly, jerusat1.3 was the worst performer in the UNSAT category
(among the second stage solvers).

Twice as many UNSAT than SAT series were solved, same ratio for the
number of benchmarks solved, which emphasizes strong UNSAT solvers in the
overall ranking.

3.3 First Stage on Crafted

The results in this “everything not uniform random or industrial” category are
quite close. The incomplete solver sapsnr was the most robust solver with 11 se-
ries solved in the satisfiable category, but all the second stage solvers were quite
close: there is only a difference of 8 benchmarks solved between the first and the
last solver entering the second stage. In the UNSAT category, the most robust
solver with 7 series solved is satzoo-1.02, while the strongest solvers with re-
spect to the number of benchmarks solved are march-007 and march-eq-010.
On the overall ranking, march-eq-010 and satzilla-nr are the most robust
solvers while march-007 and march-eq-100 remain the best solvers with respect
to the number of benchmarks solved. It is worth noting that in the crafted cat-
egory, the three top solvers in the overall ranking are using completely different
technologies.

330 D. Le Berre and L. Simon

4 The Second Phase: The Winners

Table 2 summarizes the result of the second stage in the three categories. The
solvers oepirc and forklift do not appear since they were not awardable.
During the second stage, the solvers were ranked according to the number of
benchmarks solved among the benchmarks remained unsolved during the first
stage.

Winners in the industrial category are consistent with the results of the first
stage (once forklift and oepirc have been discarded): zchaff-rand is awarded
in the industrial UNSAT category while jerusat1.3 is awarded in the industrial
SAT category. Since the number of UNSAT benchmarks solved is greater than
the number of SAT benchmarks solved, the overall ranking emphasizes strong
UNSAT solvers. As a results, zchaff-rand is also the winner in the industrial
overall category.

For the random category, no solver was able to find a new satisfiable bench-
mark among those remaining unsolved during the first stage. As a consequence,
it was decided with the agreement of the judges, to run the second stage solvers
on all the benchmarks they did not solve during the first stage. It can be viewed
as re-running all the solvers with an increased timeout on the initial benchmark
set. As a consequence, because adaptnovelty was able to solve the 150 bench-
marks proved satisfiable during the first stage, it was declared winner in the ran-
dom SAT category. Last year’s winner kncfs is winning again this year in the
UNSAT category. Because of the unbalanced number of proved SAT/UNSAT
benchmarks, adaptnovelty was also declared winner of the overall random
category.

In the crafted category, march-eq was awarded in the UNSAT and overall
categories while satzoo-1.02 defended successfully his award in the satisfiable
category.

Another interesting data that can be derived from the SAT competition is
the smallest instance (with respect to their number of literals) in both SAT and
UNSAT categories remained unsolved after the second stage. As stated earlier,
those benchmarks should belong to the crafted category, since this is the aim of
that category.

The smallest UNSAT benchmark still unsolved after the second stage remains
last year’s award winner for the smallest unsolved UNSAT benchmark
hgen8-n260-01-S1597732451 (260 variables, 391 clauses, 888 literals) produced
by the hgen8 generator5 submitted last year by Edward A. Hirsch.

Last year’s smallest unsolved satisfiable benchmark hgen2-v400-s161064952

(400 variables, 1400 clauses, 4200 literals) was solved this year by rsaps in
461 seconds during the first stage and sapsnr in 902s during the second
stage.

5 Available at http://logic.pdmi.ras.ru/∼hirsch/benchmarks/hgen8.html

Fifty-Five Solvers in Vancouver: The SAT 2004 Competition 331

The new smallest unsolved satisfiable benchmark was also generated by the
hgen2 generator6 submitted by Edward A. Hirsch for the first competition in
2002 with 450 variables instead of 400:
hgen2-v450-s41511877.shuffled-as.sat03-1682.cnf

(1575 variables, 450 clauses, 4725 literals).
One can note that the smallest unsolved satisfiable benchmark is significantly

larger than the smallest unsolved UNSAT benchmark.

5 State of the Art Contributors

It may be interesting to put all the solvers in a single entity that can decide for
each SAT benchmark the best solver to solve it (a sort of perfect satzilla).
Such entity is called the State-Of-The-Art (SOTA) solver in [19]. Not all the
solvers are useful to build the SOTA solver, so we name the solvers that are
needed SOTAC (State of the Art Contributor).

Any solver that uniquely solves any benchmark is obviously a SOTAC. Table 3
lists the different solvers that are the only one to solve a given benchmark in
the three categories. We computed those numbers from the first stage results,
with and without the black boxes oepir and forklift. The measure can only
be made on the first stage results because we need exhaustive results to give all
solvers a chance. Thus, some solvers not strong enough to enter the second stage
can be distinguished here.

Table 3. SOTAC ranking: the number indicates the number of benchmarks that sovlers
uniquely solve. Numbers in parenthesis detail the number of SAT/UNSAT benchmarks
respectively

Without black-boxes Including black-boxes

Solver Total Random Ind. Crafted

circush0 6 – – 6 (0/6)
kcnfs 6 5 (0/5) – 1 (1/0)
jerusat1.3 5 – 4 (2/2) 1 (1/0)
brchaff 4 – 3 (0/3) 1 (1/0)
zchaff 4 – 4 (4/0) –
quantor 3 – 3 (0/3) –
satzoo-1.02 3 – 1 (0/1) 2 (0/2)
adaptnovelty 2 – – 2 (2/0)
circush1 2 – 2 (2/0)
compsat 2 – 2 (1/1) –
rsaps 2 1 (1/0) – 1 (1/0)
zchaff-rand 2 – 2 (0/2) –
cquest 1 – 1 (0/1) –
march-eq-100 1 – – 1 (1/0)
novelty35 1 – 1 (1/0) –
novelty50 1 1 (1/0) – –
sapsnr 1 1 (1/0) – –
satzilla 1 – 1 (1/0) –

Solver Total Rand. Ind. Craft.

forklift 8 – 8 (1/7) –
circush0 6 – – 6 (0/6)
kcnfs 6 5 (0/5) – 1 (1/0)
jerusat1.3 4 – 3 (1/2) 1 (1/0)
brchaff 3 – 2 (0/2) 1 (1/0)
oepira 3 – 3 (1/2) –
oepirb 3 – 2 (0/2) 1 (0/1)
oepirc 3 – 3 (0/3) –
quantor 3 – 3 (0/3) –
satzoo-1.02 3 – 1 (0/1) 2 (0/2)
adaptnovelty 2 – – 2 (2/0)
circush1 2 – 2 (2/0) –
rsaps 2 1 (1/0) – 1 (1/0)
compsat 1 – 1 (0/1) –
march-eq-100 1 – – 1 (1/0)
novelty35 1 – – 1 (1/0)
novelty50 1 1 (1/0) – –
sapsnr 1 1 (1/0) – –
satzilla 1 – 1 (1/0) –
zchaff 1 – 1 (1/0) –

6 Available at http://logic.pdmi.ras.ru/∼hirsch/benchmarks/hgen2.html

332 D. Le Berre and L. Simon

Fig. 2. Subsumptions relations on random instances

Note that adding oepirc and forklift does not change much the result:
zchaff looses 3 benchmarks, cquest disappears, jerusat1.3, compsat and
brchaff loose one benchmark. Note also that having variants of solvers mini-
mizes the number of uniquely solved instances: with three variants, oepir solvers
have small numbers of uniquely solved benchmarks compared to the other strong
solvers.

In the random category, kncfs, rsaps, novely50 and sapsnr are three SO-
TAC in the first stage. Note that rsaps, novely50 and sapsnr would not be
SOTAC if we take into account the second stage since adaptnovelty was able
to solve all the SAT benchmarks. It is thus sufficient with a 2400 second time-
out to keep adaptnovelty in our SOTA solver to solve all the satisfiable bench-
marks solved during the competition in the random category. As a consequence,
adaptnovelty would be a SOTAC without being the only one to solve one
benchmark. Moreover, the smallest SOTA is simply composed by kncfs and
adaptnovelty. Both solvers solves all the solved benchmarks in the random
category.

It is more difficult to find the smallest SOTA in the other categories, because
one would have to choose the smallest subset of solvers that solves all the bench-
marks. If all the SOTAC are indeed in this subset, the choice has to be made for
the remaining solvers.

Following the idea of SOTAC, one important issue may be to identify solvers
that are subsumed by another solver. Such solvers would be useless in a SOTA

Fifty-Five Solvers in Vancouver: The SAT 2004 Competition 333

Fig. 3. Subsumptions relations on industrial instances

Fig. 4. Subsumptions relations on crafted instances

solver because all the problems solved by such solver would be also solved by
the subsuming solver. However, in some cases, a subsumed solver may be more
efficient on its subset of benchmarks. We represent, in figures 2, 3 and 4, the

334 D. Le Berre and L. Simon

subsumption relations for each category. Dotted lines represent a subsumption
relation but with a loss of CPU-time, and plain lines are strong subsumptions,
with CPU-time savings. Each edge is labeled with the number of common solved
benchmarks. For instance, figure 2 told us that novely50 subsumes walksatauto
and qingting by solving respectively all the 122 and 111 benchmarks that the
solvers also solve. In order to obtain clean figures, we only considered solvers
that may solve more than 15 benchmarks in each category and we deleted re-
dundant edges. Thus, a lot of very-simple subsumption relations are missing
but are not really interesting ones, especially all the relations with inefficient
solvers.

One may observe that while there are many subsumption relations between
solvers in the random and crafted category, it is not true in the industrial cat-
egory. Especially, there is no subsumption relation between the second stage
solvers in that category, which is not the case in the random category (qingting,
gasat and satzilla-nr are subsumed by adaptnovelty for instance) and the
crafted category (nanosat is subsumed by march solvers and satzoo-1.02).

6 Other Rankings

In order to demonstrate that the competition final results do not change much
when the evaluation rules change, we propose here other ways to analyze the
results, other methods to rank solvers and to compare the rankings. For instance,
in the contest, we tried to forget about the CPU-time, by counting only the
number of series and benchmarks solved. Of course the CPU-time had a direct
impact on the competition due to the timeout, but it is also important to try to
characterize efficient solvers, in terms of CPU-time.

6.1 Ranking à la SatEx

This ranking used in the SatEx web site[18] allows us to give a picture of solver
performances in a very simple but meaningful way. It is not obvious to rank
solvers on a basis of a penalty time when the status (SAT or UNSAT) of some
benchmarks are not known. We chose to only count, on SAT and UNSAT sub-
categories, the subset of benchmarks that have been at least solved by a solver
(including black-boxes here). Thus, the ranking is preserved even if all or none
of the unknown benchmarks are SAT or UNSAT (all solvers will then have to
pay the same penalty in the corresponding category).

The winners of the random categories are ranked first using the ranking, same
thing for the overall ranking and UNSAT ranking in the industrial category. For
the industrial SAT category compsat is ranked first but solves fewer benchmarks
than jerusat1.3 and oepirc. The same thing happens in the overall and UN-
SAT crafted categories, where march-001 is ranked before march-eq-100. Con-
cerning the satisfiable crafted category, the incomplete solver sapsnr is ranked
first closely followed by satzoo-1.02. It is the only case for which the SatEx
ranking does not guess the second stage winner. The consistency of the SatEx

Fifty-Five Solvers in Vancouver: The SAT 2004 Competition 335

Table 4. Cumulative CPU-Time Ranking (SatEx style), given with relative values.
Only second-stage solvers appear here

Random benchmarks
All Benchs. SAT UNSAT
(over 300) (over 150) (over 14)

Solver Time (s) Nb.

adaptnovelty 97757 143
saps +747 +1
sapsnr +1091 0
walksatmp +1354 -1
novelty35 +4780 -6
satzilla-nr +18832 -35
qingting +19141 -32
unitwalk +20494 -37
gasat +21722 -32
cls +51259 -78
kcnfs +56281 -83
march-007 +60694 -98

Solver Time (s) Nb.

adaptnovelty 7757 143
saps +747 +1
sapsnr +1091 0
walksatmp +1354 -1
novelty35 +4780 -6
satzilla-nr +18832 -35
qingting +19141 -32
unitwalk +20494 -37
gasat +21722 -32
cls +51259 -78
kcnfs +60615 -97
march-007 +63233 -107

Solver Time (s) Nb.

kcnfs 4066 14
satzilla r +1689 -6
satzilla +1704 -6
march-007 +1795 -5
march-001 +2064 -7
march-eq-010 +2937 -10
march-eq-100 +4027 -11

Industrial benchmarks
All Benchs. SAT UNSAT
(over 477) (over 77) (over 97)

Solver Time (s) Nb.

oepirc 249839 95
forklift +1751 -14
zchaff-rand +7842 -28
compsat +10315 -38
brchaff +12654 -37
jerusat1.3 +13161 -39
circush1 +16176 -42
cquest +18532 -50
minilearning.jar +20066 -51
quantor +21715 -58

Solver Time (s) Nb.

compsat 28269 30
jerusat1.3 +1506 +3
oepirc +1715 +4
forklift +4771 -6
zchaff-rand +4775 -9
brchaff +5011 -7
circush1 +8011 -13
cquest +8687 -11
minilearning.jar +8717 -11
satzoo 1.02 +11296 -13
quantor +11695 -20

Solver Time (s) Nb.

forklift 36333 52
oepirc +1695 +3
zchaff-rand +6477 -12
brchaff +11053 -23
circush1 +11575 -22
cquest +13255 -32
quantor +13430 -31
compsat +13726 -31
satzoo-1.02 +14484 -34
minilearning.jar +14759 -33
jerusat1.3 +15064 -35

Crafted benchmarks
All Benchs. SAT UNSAT
(over 228) (over 69) (over 41)

Solver Time (s) Nb.

march-007 104789 59
march-eq-100 +2611 +4
satzoo-1.02 +5188 -6
jerusat1.3 +8841 -14
brchaff +10941 -17
sapsnr +11235 -20
zchaff +11832 -18
satzilla nr +13280 -11
nanosat +14362 -20
oepira +14583 -18

Solver Time (s) Nb.

sapsnr 20624 39
satzoo-1.02 +472 -1
jerusat1.3 +1472 -2
march-007 +2206 -3
brchaff +2651 -5
zchaff +3843 -7
satzilla-nr +4659 -1
march-eq-100 +4735 -3
nanosat +5444 -8
oepira +6903 -8

Solver Time (s) Nb.

march-007 11159 23
march-eq-100 +82 +4
satzoo-1.02 +6922 -8
jerusat1.3 +9575 -15
oepira +9886 -13
zchaff +10194 -14
brchaff +10495 -15
satzilla-nr +10827 -13
nanosat +11124 -15

ranking with the contest results also suggests that the time out was large enough
to serve as a penalty.

6.2 Relative Efficiency of Solvers

One of the hard things to handle for ranking solvers is that only partial informa-
tion is available, because of the timeout. One solution that we adopted last year

336 D. Le Berre and L. Simon

Table 5. Relative Efficiency (re) and CPU-Time Reduction Ration (crr) values for all
solvers that participated the second stage. Values are computed over all the solvers of
the category, for all benchmarks (SAT and UNSAT)

Random Industrial Crafted
12 Solvers 11 Solvers 10 Solvers

Solver re crr

adaptnovelty 0.95 0.37
walksatrnp 0.95 0.49

sapsnr 0.95 0.56
saps 0.95 0.67

novelty35 0.93 0.86
qingting 0.81 2.81

satzilla-nr 0.80 0.93
unitwalk 0.79 2.49

gasat 0.78 1.82
cls 0.50 10.81

kcnfs 0.43 280.54
march-007 0.33 284.76

Solver re crr

oepirc 0.86 0.74
forklift 0.77 0.68

zchaff-rand 0.73 0.76
brchaff 0.66 0.89
compsat 0.64 0.70

satzoo-1.02 0.64 1.94
jerusat1.3 0.63 1.55
circush1 0.62 1.05
cquest 0.61 1.17
quantor 0.58 1.43

minilearning.jar 0.56 1.48

Solver re crr

satzoo-1.02 0.89 1.06
march-eq-100 0.86 1.30

march-007 0.84 1.00
satzilla-nr 0.80 1.55
nanosat 0.79 1.95

jerusat1.3 0.77 1.16
oepira 0.74 3.13
brchaff 0.73 1.28
zchaff 0.72 1.80
sapsnr 0.45 0.27

[12] was to compare only pairs of solvers (X,Y) on the subset of benchmarks they
both solve. Let us write s(X) as the set of benchmarks solved by X. Then, we
can compare X and Y on their respective performances on the set s(X)∩ s(Y).
When doing this, we have a strong way of comparing the relative efficiency (RE)
of X and Y : re(X,Y) = s(X) ∩ s(Y)/s(Y) gives the percentage of instances of
Y that X solves too. Let us write now CPU(X, b) the CPU time needed for X
to solve all the benchmarks in b, without any timeout. Because there was a time-
out in the competition, only CPU(X, s′), with s′ ⊆ s(X) are defined here for
the solver X. We can compare the relative efficiency of X with respect to Y by
computing crr(X,Y) = CPU(X, s(X) ∩ s(Y))/CPU(Y, s(X) ∩ s(Y)). This last
measure is called here the CPU-time reduction ratio (CRR), and means that, on
their common subset of solved benchmarks, X needs crr(X,Y) percent of the
time needed by Y . To summarize all the possible values, we average these two
measures over all the possible values for Y , while keeping X fixed, and we thus
defined re(X) and crr(X).

However, to have a relevant measure, one have to restrict the set of considered
solvers: an inefficient solver, lucky on one instance, may have a very low re
value. We thus only consider here the set of solvers that participated in the
second stage, in each category. Since the first and second stage were done on
the same computers for the Crafted and Industrial categories (on LRI’s cluster,
while the second stage for the random category ran on beta lab’s cluster), we
use extended results (1st stage + 2nd stage + post-competition runs) for those
two categories (the timeout may be considered as 2400 s for all launches). The
direct consequence of that choice is to increase the number of commonly solved
benchmarks. For the random benchmarks, we restrict ourselves to the first stage
results only because the second stage was done on a different cluster of computer
for that category. Results are given in Table 5.

For the Random category, one can see that adaptnovelty solves 95% of the
benchmarks that the other solvers solve too (corresponding to the 150 SAT bench-

Fifty-Five Solvers in Vancouver: The SAT 2004 Competition 337

0
20

40
60

80
10

1
12

1
14

1
16

1
18

1

IS
A

T1
IS

A
T2

IS
A

T3
tts

−2
−0

m
od

oc
of

sa
t

W
er

ew
ol

f
ls

at
v1

.1
w

lls
at

v1
sa

to
4.

2
sa

to
4.

3
kc

nf
s

cl
s

br
ch

af
f

C
Q

ue
st

co
m

ps
at

fu
ne

x
qu

an
to

r
m

in
ile

ar
ni

ng
.ja

r
na

no
sa

t
eq

ub
e1

eq
ub

e2
Je

ru
sa

t1
.3

S
at

zo
o_

1.
02

Fo
rk

lif
t

zc
ha

ff
zc

ha
ff_

ra
nd

C
irC

U
sH

1
C

irC
U

s
C

irC
U

sH
0

O
ep

irA
O

ep
irB

O
ep

irC
m

ar
ch

−0
01

m
ar

ch
−0

07
m

ar
ch

−e
q−

01
0

m
ar

ch
−e

q−
10

0
G

aS
A

T
ad

ap
tn

ov
el

ty
no

ve
lty

50
no

ve
lty

35
w

al
ks

at
m

p
rs

ap
s

sa
ps

sa
ps

nr
w

al
ks

at
au

to
w

al
ks

at
sk

c
Q

in
gT

in
g

sa
pr

ov
er

U
ni

tW
al

k
sa

tz
ill

a
sa

tz
ill

a_
r

sa
tz

ill
a_

nr

Solvers

D
is

ta
nc

e
(#

B
en

ch
s

ov
er

 9
99

)

S
A

T
20

04
 C

lu
st

er
in

g
of

 a
ll

so
lv

er
s

on
 a

ll
be

nc
hm

ar
ks

 1
3

 1
5

 2
0

 1
1

 6 0 2
2

 3
0

 3
6

 6
6

 4
5

 8
2

 8
9

 1
11

 8
5

 9
1

 7
0

 7
1

 9
2

 9
5

 7
6

 6
1

 1
04

 1
06

 1
24

 1
17

 1
05

 8
9

 8
9

 8
7

 1
34

 1
34

 1
33

 1
14

 1
24

 1
13

 1
08

 1
11

 1
79

 1
77

 1
68

 1
70

 1
85

 1
86

 1
88

 1
68

 1
56

 1
33

 1
18

 1
13

 1
71

 1
70

 1
68

 1
7,

 1
1

 6
, 0 2

3,
 1

1

 1
83

, 1
73

 1
92

, 1
82

 1
5,

 0

 1
95

, 1
77

 1
23

, 1
08

 9
7,

 8
1

 1
85

, 1
64

 7
7,

 6
0

 1
20

, 1
01

 1
87

, 1
56

 2
8,

 0

 1
81

, 1
60

 1
30

, 1
08

 1
39

, 1
08

 8
3,

 5
8

 5
0,

 0

 1
05

, 7
1

 1
97

, 1
60

 5
4,

 0

 2
05

, 1
46

 1
88

, 1
47

 1
05

, 7
1

 6
6,

 0

 7
4,

 3
7

 1
30

, 9
2

 1
16

, 5
3

 2
05

, 1
34

 1
48

, 8
7

 1
29

, 5
2

 1
40

, 5
1

 1
43

, 3
9

 1
58

, 1
10

 1
53

, 8
5

 1
72

, 9
4

 1
58

, 3
9

 1
33

, 7
7

 1
07

, 0

 1
80

, 3
7

 1
97

, 1
03

 2
10

, 3
7

 2
05

, 9
5 2
32

, 2
6

 2
59

, 2
6

 1
51

, 0

 2
55

, 7
6 1

82
, 0

 3
31

, 0

 3
48

, 0

 4
44

, 0

Fig. 5. Clusters of all solvers on all benchmarks. Solvers that closely solve sets of
benchmarks are close together in the cluster. The height of nodes in the tree indicates
the average distance of the two clusters at each considered branch of the tree. The
number on the left indicates the number of instances solved for each solver, and the
couple of numbers at each cluster link indicates respectively the number of common
benchmarks solved by at least one member of the cluster and the number of benchmarks
solved by all the members of the cluster

338 D. Le Berre and L. Simon

marks), but in only 37% of their time: adaptnovelty is definitively the fastest
solver in this category. The crr then grows to 49% for walksatrnp. There is also a
clear partition between complete/incomplete solvers. kncfs can solve on average
43% of the benchmarks of the other solvers, but in 280 times their CPU time.

For the Industrial category, oepirc exhibits the best relative efficiency, show-
ing a very strong solver. It is interesting to see that forklift and zchaff-rand

are very close from a relative efficiency point of view and that compsat exhibits
the second best crr values for this table, which certainly results from its very
good running time in the satisfiable category, even if its relative efficiency drops
to 64%.

On the Crafted benchmarks, satzoo-1.02 has the best re value, very close
to march-eq-100. It is interesting to notice the differences between march-001

and march-eq-100 for the crr. This is likely due to the additional equivalency
reasoning used in the latter. The good runtime of sapsnr previously observed on
satisfiable crafted benchmarks is denoted here by the best crr of the category.

6.3 Clustering of Solvers According to Their Performances

We grouped the solver according to their ability to solve each benchmark. Each
solver is represented by a vector of boolean indicating whether or not a given
benchmark was solved by that particular solver. Then we use a hamming dis-
tance between those vectors to group the solvers: solvers with similar behavior
(solving the same benchmarks) have a small hamming distance. The clusters are
represented with a tree figure 5.

7 Discussion

7.1 The Effect of Shuffling

Shuffling the industrial benchmarks was initially introduced in the competition
rules to prevent any cheating. However, two main problems occurred. First, we
noticed that two runs of the same solver on the same –but shuffled differently–
benchmark can lead to very different results (see the lisa syndrome in [12]).
Second, competitors claimed that their solver were behaving much better on
the original benchmarks than on the shuffled versions used for the competition.
It is not a matter of cheating, but seems to be related to clauses and vari-
ables proximity observed in real-world problems encoded into SAT. To observe
this phenomenon, three benchmarks were associated to each original industrial
benchmark: the original one and two shuffled ones. We study here how solvers
behaved on those three benchmarks.

Table 6 details the results of the solvers on the original industrial benchmarks
(left column) and the same ones shuffled twice. Roughly all the solvers performed
better on the original version of the benchmarks, apart brchaff, jerusat1.3 and
quantor. While the most robust solver with respect to shuffling is zchaff-rand,
forklift, circush1 and oepirc are the solvers that were the most sensitive to
the shuffling.

Fifty-Five Solvers in Vancouver: The SAT 2004 Competition 339

Table 6. Study of the lisa syndrome

original first shuffling second shuffling
Solver #series#benchs

Forklift 10 31
zchaff rand 9 23
CirCUsH1 9 22
OepirC 8 38
compsat 8 21
Jerusat1.3 8 17
brchaff 8 17
Satzoo 1.02 8 16
minilearning.jar 8 16
quantor 8 12
CQuest 7 16

Solver #series#benchs

Forklift 10 24
zchaff rand 9 21
OepirC 8 28
brchaff 8 19
CirCUsH1 8 17
CQuest 8 15
compsat 7 19
quantor 7 14
minilearning.jar 7 14
Jerusat1.3 6 19
Satzoo 1.02 5 12

Solver #series#benchs

Forklift 10 26
zchaff rand 9 23
brchaff 9 22
OepirC 8 29
compsat 8 17
CirCUsH1 8 14
Jerusat1.3 7 20
minilearning.jar 7 14
CQuest 7 14
Satzoo 1.02 6 12
quantor 6 11

Table 7. The lisa syndrome, focusing on IBM benchmarks

original first shuffling second shuffling
Solver #series#benchs

OepirC 4 22
zchaff rand 4 13
Forklift 4 13
compsat 4 13
CQuest 4 12
brchaff 4 12
CirCUsH1 4 11
Satzoo 1.02 4 9
minilearning.jar 4 9
Jerusat1.3 4 9
quantor 4 8

Solver #series#benchs

OepirC 4 16
brchaff 4 13
compsat 4 12
zchaff rand 4 11
Forklift 4 11
CQuest 4 11
quantor 4 10
minilearning.jar 4 8
CirCUsH1 4 8
Jerusat1.3 3 10
Satzoo 1.02 2 5

Solver #series#benchs

OepirC 4 15
zchaff rand 4 13
Forklift 4 13
brchaff 4 13
CQuest 4 10
compsat 4 10
quantor 4 9
minilearning.jar 4 8
CirCUsH1 4 8
Jerusat1.3 3 10
Satzoo 1.02 3 6

Table 7 focuses on the five series from IBM. oepirc is again quite sensitive to
shuffling while the other solvers look relatively robust (the number of benchmarks
solved is too small to draw any conclusions).

The effect of shuffling the benchmarks in the industrial category is making the
benchmarks harder for most of the solvers. Furthermore, the better the solvers
are, the more sensitive to shuffling they are.

7.2 Progress or Not?

While the number of solvers has constantly increased since the first competition
to reach 55 solvers this year, most of the solvers awarded this year are not new.
The very same versions of satzoo-1.02 and kncfs were awarded last year in
the same categories. jerusat1.3 was designed a bit after the first competition
and participated in the the second one. zchaff was one of the first solvers to
be awarded in 2002. march solvers also participated from the very beginning of
the competition. The multi-strategies solvers oepir that demonstrated a great
potential also participated in the 2003 competition.

These solvers have been improved since last year, for sure. However, none of
the strong solvers is a result from a brand new approach.

The good news of this edition lies around local search solvers: the UBCSAT
library demonstrated that it was an efficient platform for building various lo-

340 D. Le Berre and L. Simon

cal search solvers. Such a common platform may help developing new efficient
local search algorithms for the next competitions. The original walksat with
Rnovelty+ strategy also demonstrated its strength, which may tend to prove
that Rnovelty+ strategy itself may be viewed as the winner for the random
category.

7.3 Is the Competition Relevant or Not?

Emmanuel Zarpas, from IBM, one of the industrial users embedding SAT solvers
as engines in his tools and contributing many benchmarks to the community,
published some results he obtained on his own computers on his benchmarks7,
and concluded that it was not possible to tell that Berkmin561 was better than
Zchaff on those benchmarks (while berkmin561 performed better than Zchaff
during the SAT 2003 competition). A recent update of the experiment showed the
Zchaff II (this year winner) was not really better than Zchaff, and performed even
worst when taking into account the total CPU time. The underlying question is
whether or not the result of the SAT competition means anything in an industrial
setting?

In a technical report[26], Emmanuel Zarpas proposed some guidelines for
a good BMC evaluation, among them, “use relevant benchmarks, use relevant
timeout”.

Use Relevant Benchmarks. While the aim of IBM is to find the best solver
to solve IBM BMC benchmarks, the aim of the competition is to award a robust
solver, that is a solver able to solve a wide range of benchmarks across several
different kinds of problems split into categories. This different point of view is
alone a reason for the discrepancies observed between the results of the competi-
tion and those on the IBM benchmarks. Note that some of the IBM benchmarks
were part of the SAT 2003 competition benchmarks and the results on those
benchmarks were confirmed.

Use Relevant Timeout. In his experiment, Emmanuel Zarpas used a 10000 s
timeout while we used 600 s for the first stage and 2400 s for the second stage.
For practical reasons, we simply cannot afford spending a 10000 s timeout for
the competition with 55 solvers. Figure 6 illustrates the results of the complete
solvers on all the benchmarks of the industrial category. This representation al-
lows to check the choice of the CPU timeout and to have clues about solver
behavior on all the benchmarks in a given category. The 600 s timeout (dotted
line) is the first stage timeout. Only the second stage solvers have an extended
timeout of 2400 s. Note that this figure was obtained by launching all the sec-
ond stage solvers on the benchmarks they did not solve during the first stage,
which is not the current 2nd stage setting. In our opinion, the first stage results
are confirmed for most solvers with that extended timeout. satzoo-1.02 is the

7 http://www.haifa.il.ibm.com/projects/verification/RB Homepage/
bmcbenchmarks illustrations.html

Fifty-Five Solvers in Vancouver: The SAT 2004 Competition 341

0
2
0

4
0

6
0

8
0

1
0
0

1
2

0
1

4
0

1
6

0
1

8
0

0

5
0

0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

←
 cl

s

←
 w

lls
atv

1 ←
 m

ar
ch

−eq
−01

0

←
 sa

tzi
lla
nr ←

 sa
to4

.3
←

 sa
tzi

lla
←

 sa
tzi

lla
r ←

 m
ar

ch
−eq

−10
0

←
 m

ar
ch

−00
1 ←

 m
ar

ch
−00

7 ←
 eq

ub
e2

←
 fu

ne
x

←
 sa

to4
.2

←
 eq

ub
e1

←
 na

no
sa

t ←
 C

irC
Us

←
 C

irC
UsH

0 ←
 zc

ha
ff

←
 m

ini
lea

rn
ing

.ja
r

←
 qu

an
tor

←
 C

Que
st

←
 co

mps
at ←

 br
ch

aff
←

 C
irC

UsH
1 ←

 O
ep

irA
←

 Je
ru

sa
t1.

3 ←
 O

ep
irB

←
 S

atz
oo

1.02 ←
 zc

ha
ff
ran

d ←
 F

or
kli

ft
←

 O
ep

irC

#
S

o
lv

e
d

CPU−Time needed (s)

cl
s

(8
)

w
lls

a
tv

1
 (

1
1
)

m
a
rc

h
−

e
q
−

0
1
0

 (
1

2
)

sa
tz

ill
a

n
r

(1
2
)

sa
to

4
.3

 (
1

3
)

sa
tz

ill
a

 (
1

3
)

sa
tz

ill
a

r (
1

3
)

m
a
rc

h
−

e
q
−

1
0
0

 (
1

6
)

m
a
rc

h
−

0
0
1

 (
1

9
)

m
a
rc

h
−

0
0
7

 (
2

0
)

e
q
u
b
e
2

 (
2

5
)

fu
n
e
x

(3
4
)

sa
to

4
.2

 (
3

4
)

e
q
u
b
e
1

 (
3

6
)

n
a
n
o
sa

t
(4

8
)

C
ir
C

U
s

(5
2
)

C
ir
C

U
sH

0
 (

5
4
)

zc
h
a
ff

 (
6

5
)

m
in

ile
a
rn

in
g
.ja

r
(6

6
)

q
u
a
n
to

r
(6

9
)

C
Q

u
e
st

 (
7

1
)

co
m

p
sa

t
(7

4
)

b
rc

h
a
ff

 (
8

4
)

C
ir
C

U
sH

1
 (

8
6
)

O
e
p
ir
A

 (
8

7
)

Je
ru

sa
t1

.3
 (

8
8
)

O
e
p
ir
B

 (
9

2
)

S
a
tz

o
o

1
.0

2
 (

9
6
)

zc
h
a
ff

ra
n
d

 (
1

2
5
)

F
o
rk

lif
t

(1
4

8
)

O
e
p
ir
C

 (
1

6
5
)

Fig. 6. # of instances solved vs. CPU time for complete solvers on all industrial benchs.
Two timeouts were used here, 600s and 2400s, which explain that some curve are
stopped before the 600s horizontal limit

342 D. Le Berre and L. Simon

exception: while being ranked 10th after the 600 s timeout, it would be ranked
4th after 2400 s. So the use of a “small timeout” is reasonable to isolate the best
solvers in a given category.

8 The Next Competitions

Several remarks concerning the competition arose this year, and we think it is
time to rethink the competition as a whole. For that reason, we already formed
the board of judges for the next competition. It will be composed of Oliver Kull-
mann, Armin Biere and Allen Van Gelder. We already decided that a special track
about certified UNSAT answers will take place during the next competition.

We designed some rules for the first competition in 2002 and tried to follow
them during the second and third edition of the competition. The major changes
since the beginning were the limitation of the number of variants entering the
second stage and the board of judges that appeared in the second edition, and
the “anti black box rule” and the solver description booklet that was added this
year. Apart from that, the competitions were pretty similar.

One first step was to disallow solvers not fully described -either by a detailed
report or by its source code- from the competition this year (so-called back
boxes). However, it is always difficult to ask both a solver and a detailed report
for the same deadline. It was already difficult to obtain a two-page description
for each solver this year after the solvers were submitted. In order to fulfill both
the aim to open the competition to as many solvers as possible and to award a
good fully described solver, we propose to separate the competition in two steps:

– the first one requires only a 2-page description of the solver to enter the first
stage, that is to see a solver running shortly on the competition benchmarks.

– a more detailed report will be required (or the source code of the solver) to
participate in the second stage and being awardable.

One of the biggest issues for the next competition is to gather adequate
benchmarks for the competition. Some of the benchmarks that remained un-
solved during the first competition are still unsolved. It is time to get rid of
those benchmarks and to find new fresh benchmarks for the competition (or to
use good old ones). Furthermore, the balancing between SAT and UNSAT bench-
marks of similar difficulty remains the main problem (c.f. UNSAT benchmarks
in the industrial category or SAT benchmarks in the random one). Finally, the
idea of a booklet dedicated to the benchmarks is appealing.

Acknowledgments

The authors would like to thank the anonymous reviewers for their help to
improve that paper, the three judges, Fahiem Bacchus, Hans Kleine-Büning and
João Marques-Silva for their help during the competition, and the “Laboratoire
de Recherche en Informatique” (LRI, Orsay, France) and the beta lab (UBC,

Fifty-Five Solvers in Vancouver: The SAT 2004 Competition 343

Vancouver, Canada) for providing us with clusters of machines. At last, they
thank all the authors of solvers and benchmarks for their participation. The first
author was supported in part by the IUT de Lens, The Région Nord/Pas-de-
Calais and the Université d’Artois.

References

1. Armin Biere. Resolve and expand. In this issue, 2004.
2. Armin Biere, Alessandro Cimatti, Edmund M. Clarke, M. Fujita, and Y. Zhu.

Symbolic model checking using SAT procedures instead of bdds. In Proceedings of
Design Automation Conference (DAC’99), 1999.

3. Harold Connamacher. A random constraint satisfaction problem that seems hard
for dpll. In this issue, 2004.

4. Dave A. D.Tompkins and Holger H. Hoos. Ubcsat: An implementation and experi-
mentation environment for sls algorithms for sat and max-sat. pages 37–46, 2004.

5. Olivier Dubois and Gilles Dequen. A backbone-search heuristic for efficient solving
of hard 3-sat formulae. In Proceedings of the Seventeenth International Joint Con-
ference on Artificial Intelligence (IJCAI’01), Seattle, Washington, USA, August
4th-10th 2001.

6. Hai Fang and Wheeler Ruml. Complete local search for propositional satisfiability.
In Proceedings of AAAI’04, 2004.

7. E. A. Hirsch and A. Kojevnikov. UnitWalk: A new SAT solver that uses local
search guided by unit clause elimination. PDMI preprint 9/2001, Steklov Institute
of Mathematics at St.Petersburg, 2001. A journal version is submitted to this issue.

8. Holger Hoos. On the runtime behavior of stochastic local search algorithms for
SAT. In Proceedings of AAAI’99, pages 661–666, 1999.

9. HoonSang Jin and Fabio Somenzi. CirCUs: A Hybrid Satisfiability Solver. In this
issue, 2004.

10. Frédéric Lardeux Jin-Kao Hao and Frédéric Saubion. Evolutionary computing
for the satisfiability problem. In Applications of Evolutionary Computing, number
2611 in LNCS, pages 259–268, University of Essex, England, UK, 14-16 April 2003.

11. Henry A. Kautz and Bart Selman. Pushing the envelope: Planning, propositional
logic, and stochastic search. In Proceedings of the Twelfth National Conference on
Artificial Intelligence (AAAI’96), pages 1194–1201, 1996.

12. Daniel Le Berre and Laurent Simon. The essentials of the SAT 2003 competition.
In Proceedings of the Sixth International Conference on Theory and Applications
of Satisfiability Testing (SAT2003), number 2919 in Lecture Notes in Computer
Science, pages 452–467, 2003.

13. X. Y. Li, M.F. Stallmann, and F. Brglez. QingTing: A Fast SAT Solver Us-
ing Local Search and Efficient Unit Propagation. In Sixth International Confer-
ence on Theory and Applications of Satisfiability Testing, S. Margherita Ligure -
Portofino (Italy), May 2003. See also http://www.cbl.ncsu.edu/publications/,
and http://www.cbl.ncsu.edu/OpenExperiments/SAT/ .

14. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: En-
gineering an efficient SAT solver. In Proceedings of the 38th Design Automation
Conference (DAC’01), pages 530–535, June 2001.

15. R. Ostrowski, E. Grégoire, B. Mazure, and L. Sais. Recovering and exploiting
structural knowledge from cnf formulas. In Proc. of the Eighth International Con-
ference on Principles and Practice of Constraint Programming (CP’2002), LNCS,
pages 185–199, Ithaca (N.Y.), September 2002. Springer.

344 D. Le Berre and L. Simon

16. R. K. Brayton, G. D. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi, A. Aziz, S. -
T. Cheng, S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer, R. K. Ranjan,
S. Sarwary, T. R. Shiple, G. Swamy, and T. Villa. VIS: a system for verification
and synthesis. In Rajeev Alur and Thomas A. Henzinger, editors, Proceedings of
the Eighth International Conference on Computer Aided Verification CAV, volume
1102, pages 428–432, New Brunswick, NJ, USA, / 1996. Springer Verlag.

17. B. Selman, H. A. Kautz, and B. Cohen. Noise strategies for improving local search.
In Proceedings of the 12th National Conference on Artificial Intelligence, AAAI’94,
pages 337–343, 1994.

18. Laurent Simon and Philippe Chatalic. SATEx: a web-based framework for
SAT experimentation. In Henry Kautz and Bart Selman, editors, Electronic
Notes in Discrete Mathematics, volume 9. Elsevier Science Publishers, June 2001.
http://www.lri.fr/ simon/satex/satex.php3.

19. Geoff Sutcliff and Christian Suttner. Evaluating general purpose automated theo-
rem proving systems. Artificial Intelligence, 131:39–54, 2001.

20. Allen Van Gelder. Another Look at Graph Coloring via Propositional Satisfiability.
In Proceedings of Computational Symposium on Graph Coloring and Generaliza-
tions (COLOR02), IThaca, NY, September 2002.

21. Allen Van Gelder and Yumi K. Tsuji. Satisfiability Testing with More Reasoning
and Less Guessing. In D. S. Johnson and M. A. Trick, editors, Second DIMACS
implementation challenge : cliques, coloring and satisfiability, volume 26 of DI-
MACS Series in Discrete Mathematics and Theoretical Computer Science, pages
559–586. American Mathematical Society, 1996.

22. M.N. Velev. Automatic abstraction of equations in a logic of equality. In M.C.
Mayer and F. Pirri, editors, Proceedings of Automated Reasoning with Analytic
Tableaux and Related Methods (TABLEAUX ’03), number 2796 in LNAI, pages
196–213. Springer-Verlag, September 2003.

23. M.N. Velev and R.E. Bryant. Effective use of boolean satisfiability procedures in
the formal verification of superscalar and vliw microprocessors. In Proceedings of
the 38th Design Automation Conference (DAC ’01), pages 226–231, June 2001.

24. K. Xu and W. Li. Many hard examples in exact phase transitions with ap-
plication to generating hard satisfiable instances. Technical report, CoRR Re-
port cs.CC/0302001, 2003. http://www.nlsde.buaa.edu.cn/ kexu/benchmarks/
benchmarks.htm.

25. Emmanuel Zarpas. Bmc benchmark illustrations. http://www.haifa.il.ibm.com/
projects/verification/RB Homepage/bmcbenchmarks.html.

26. Emmanuel Zarpas. Benchmarking sat solvers for bounded model checking. Tech-
nical report, IBM Haifa Research Laboratory, 2004.

27. Hantao Zhang. SATO: an efficient propositional prover. In Proceedings of the
International Conference on Automated Deduction (CADE’97), volume 1249 of
LNAI, pages 272–275, 1997.

Marijn Heule�, Mark Dufour,
Joris van Zwieten and Hans van Maaren

Department of Information Systems and Algorithms,
Faculty of Electrical Engineering,

Mathematics and Computer Sciences,
Delft University of Technology

marijn@heule.nl, m.dufour@student.tudelft.nl,

zwieten@ch.tudelft.nl, h.vanmaaren@its.tudelft.nl

Abstract. This paper discusses several techniques to make the look-
ahead architecture for satisfiability (Sat) solvers more competitive. Our
contribution consists of reduction of the computational costs to perform
look-ahead and a cheap integration of both equivalence reasoning and lo-
cal learning. Most proposed techniques are illustrated with experimental
results of their implementation in our solver march eq.

1 Introduction

Look-ahead Sat solvers usually consist of a simple DPLL algorithm [5] and a
more sophisticated look-ahead procedure to determine an effective branch vari-
able. The look-ahead procedure measures the effectiveness of variables by per-
forming look-ahead on a set of variables and evaluating the reduction of the for-
mula. We refer to the look-ahead on literal x as the Iterative Unit Propagation
(IUP) on the union of a formula with the unit clause x (in short IUP(F ∪{x})).
The effectiveness of a variable xi is obtained using a look-ahead evaluation func-
tion (in short Diff), which evaluates the differences between F and the reduced
formula after IUP(F ∪ {xi}) and IUP(F ∪ {¬xi}). A widely used Diff counts
the newly created binary clauses.

Besides the selection of a branch variable, the look-ahead procedure may
detect failed literals: if the look-ahead on ¬x results in a conflict, x is forced
to true. Detection of failed literals can result in a substantial reduction of the
DPLL-tree.

During the last decade, several enhancements have been proposed to make
look-ahead Sat solvers more powerful. In satz by Li [9] pre-selection heuristics
propz are used, which restrict the number of variables that enter the look-ahead

� Supported by the Dutch Organization for Scientific Research (NWO) under grant
617.023.306.

H.H. Hoos and D.G. Mitchell (Eds.): SAT 2004, LNCS 3542, pp. 345–359, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

March eq:
Implementing Additional Reasoning

into an Efficient Look-Ahead SAT Solver

346 M. Heule et al.

procedure. Especially on random instances the application of these heuristics
results in a clear performance gain. However, the use of these heuristics is not
clear from a general viewpoint. Experiments with our pre-selection heuristics
show that different benchmark families require different numbers of variables
entering the look-ahead phase to perform optimally.

Since much reasoning is already performed at each node of the DPLL-tree,
it is relatively cheap to extend the look-ahead with (some) additional reason-
ing. For instance: integration of equivalence reasoning in satz - implemented in
eqsatz [10] - made it possible to solve various crafted and real-world problems
which were beyond the reach of existing techniques. However, the performance
may drop significantly on some problems, due to the integrated equivalence rea-
soning. Our variant of equivalence reasoning extends the set of problems which
benefit from its integration and aims to remove the disadvantages.

Another form of additional reasoning is implemented in the OKsolver 1 [8]:
local learning. When performing look-ahead on x, any unit clause yi that is
found means that the binary clause ¬x ∨ yi is implied by the formula, and can
be ”learned”, i.e. added to the current formula. As with equivalence reasoning,
addition of these local learned resolvents could both increase and decrease the
performance (depending on the formula). We propose a partial addition of these
resolvents which results in a speed-up practically everywhere.

Generally, look-ahead Sat solvers are effective on relatively small, hard for-
mulas. Le Berre proposes [2] a wide range of enhancements of the look-ahead
procedure. Most of them are implemented in march eq. Due to the high com-
putational costs of the an enhanced look-ahead procedure, elaborate problems
are often solved more efficiently by other techniques. Reducing these costs is
essential for making look-ahead techniques more competitive on a wider range
of benchmarks problems. In this paper, we suggest (1) several techniques to re-
duce these costs and (2) a cheap integration of additional reasoning. Due to the
latter, benchmarks that do not profit from additional reasoning will not take
significantly more time to solve.

Most topics discussed in this paper are illustrated with experimental results
showing the performance gains by our proposed techniques. The benchmarks
range from uniform random 3-Sat near the threshold [1], to bounded model
checking (longmult [4], zarpas [3]), factoring problems (pyhala braun [12])
and crafted problems (stanion/hwb [3], quasigroup [14]). Only unsatisfiable
instances were selected to provide a more stable overview. Comparison of the
performance of march eq with performances of state-of-the-art solvers is pre-
sented in [7], which appears in the same volume.

All techniques have been implemented into a reference variant of march eq,
which is essentially a slightly optimised version of march eq 100, the solver that
won two categories of the Sat 2004 competition [11]. This variant uses exactly
the same techniques as the winning variant: full (100%) look-ahead, addition
of all constraint resolvents, tree-based look-ahead, equivalence reasoning, and
removal of inactive clauses. All these techniques are discussed below.

1 Version 1.2 at http://cs-svr1.swan.ac.uk/∼csoliver/OKsolver.html

March eq 347

2 Translation to 3-Sat

The translation of the input formula to 3-Sat stems from an early version of
march eq, in which it was essential to allow fast computation of the pre-selection
heuristics. Translation is not required for the current pre-selection heuristics, yet
it is still used, because it enables significant optimisation of the internal data
structures.

The formula is pre-processed to reduce the amount of redundancy introduced
by a straightforward 3-Sat translation. Each pair of literals that occurs more
than once together in a clause in the formula is substituted by a single dummy
variable, starting with the most frequently occurring pair. Three clauses are
added for each dummy variable to make it logically equivalent to the disjunction
of the pair of literals it substitutes. In the following example ¬x2∨x4 is the most
occurring literal pair and is therefore replaced with the dummy variable d1.

x1 ∨ ¬x2 ∨ ¬x3 ∨ x4 ∨ ¬x5

x1 ∨ ¬x2 ∨ ¬x3 ∨ x4 ∨ x6

¬x1 ∨ ¬x2 ∨ ¬x3 ∨ x4 ∨ ¬x6

¬x1 ∨ ¬x2 ∨ x4 ∨ x5 ∨ x6

⇔
x1 ∨ d1 ∨ ¬x3 ∨ ¬x5

x1 ∨ d1 ∨ ¬x3 ∨ x6

¬x1 ∨ d1 ∨ ¬x3 ∨ ¬x6

¬x1 ∨ d1 ∨ x5 ∨ x6

∧
d1 ∨ x2

d1 ∨ ¬x4

¬d1 ∨ ¬x2 ∨ x4

It appears that to achieve good performance, binary clauses obtained from
the original ternary clauses should be given more weight than binary clauses ob-
tained from ternary clauses which were generated by translation. This is accom-
plished by an appropriate look-ahead evaluation function, such as the variant of
Diff proposed by Dubois et al. [6], which weighs all newly created binary clauses.

3 Time Stamps

March eq uses a time stamp data structure, TimeAssignments (TA), which re-
duces backtracking during the look-ahead phase to a single integer addition:
increasing the CurrentTimeStamp (CTS).

All the variables that are assigned during look-ahead on a literal x are
stamped: if a variable is assigned the value true, it is stamped with the CTS;
if it is assigned the value false, it is stamped with CTS + 1. Therefore, simply
adding 2 to the CTS unassigns all assigned variables.

The actual truth value that is assigned to a variable is not stored in the data
structure, but can be derived from the time stamp of the variable:

TA[x] =

stamp < CTS unfixed

stamp ≥ CTS and stamp ≡ 0 (mod 2) true

stamp ≥ CTS and stamp ≡ 1 (mod 2) false

Variables that have already been assigned before the start of the look-ahead
phase, i.e. during the solving phase, have been stamped with the Maximum-
TimeStamp (MTS) or with MTS + 1. These variables can be unassigned by

348 M. Heule et al.

stamping them with the value zero, which happens while backtracking during
the solving phase (i.e. not during the look-ahead phase). The MTS equals the
maximal even value of an (32-bit) integer. One has to ensure that the CTS is
always smaller than the MTS. This will usually be the case and it can easily be
checked at the start of each look-ahead.

4 Constraint Resolvents

As mentioned in the introduction, a binary resolvent could be added for every
unary clause that is created during the propagation of a look-ahead literal -
provided that the binary clause does not already exist. A special type of resolvent
is created from a unary clause that was a ternary clause prior to the look-ahead.
In this case we speak of constraint resolvents.

Constraint resolvents have the property that they cannot be found by a look-
ahead on the complement of the unary clause. Adding these constraint resolvents
results in a more vigorous detection of failed literals. An example:

First, consider only the original clauses of an example formula (figure 1 (a)).
A look-ahead on ¬r, IUP(F ∪ {¬r}), results in the unary clause x. Therefore,
one could add the resolvent r ∨ x to the formula. Since the unary clause x was
originally a ternary clause (before the look-ahead on ¬r), this is a constraint
resolvent. The unique property of constraints resolvents is that when they are
added to the formula, look-ahead on the complement of the unary clause results
in the complement of the look-ahead-literal. Without this addition this would
not be the case. Applying this to the example: after addition of r ∨ x to the
formula, IUP(F∪{¬x}) will result in unary clause r, while without this addition
it will not.

IUP(F ∪ {¬r}) also results in unary clause ¬t. Therefore, resolvent r ∨ ¬t

could be added to the formula. Since unary clause ¬t was originally a binary
clause, r ∨ ¬t is not a constraint resolvent. IUP(F ∪ {t}) would result in unary
clause r.

r ∨ ¬s

s ∨ ¬t

s ∨ t ∨ x

}
r ∨ x

u ∨ ¬v

u ∨ ¬w

v ∨ w ∨ x

}
u ∨ x

¬r ∨ ¬u ∨ x

x

(a) (b) (c)

Fig. 1. Detection of a failed literal by adding constraint resolvents. (a) The original
clauses, (b) constraint resolvents and (c) a forced literal

March eq 349

Table 1. Performance of march eq on several benchmarks with three different settings
of addition of resolvents during the look-ahead phase

no resolvents
all binary
resolvents

all constraint
resolvents

Benchmarks time(s) treesize time(s) treesize time(s) treesize

random unsat 250 (100) 1.61 4059.1 1.51 3389.2 1.45 3391.7

random unsat 350 (100) 55.41 89709.4 51.28 72721.1 48.78 73357.2

stanion/hwb-n20-01 31.52 282882 24.76 180408 23.65 183553

stanion/hwb-n20-02 41.32 345703 33.94 219915 30.91 222251

stanion/hwb-n20-03 30.54 280561 23.48 161687 21.7 163984

longmult8 139.13 15905 341.46 8054 90.8 8149

longmult10 504.92 330094 915.84 11877 226.31 11597

longmult12 836.78 41522 847.95 5273 176.85 5426

pyhala-unsat-35-4-03 781.19 29591 1379.33 19100 662.93 19517

pyhala-unsat-35-4-04 733.44 28312 1366.19 18901 659.04 19364

quasigroup3-9 11.67 2139 11.09 1543 7.97 1495

quasigroup6-12 117.49 3177 66.13 1362 58.05 1311

quasigroup7-12 14.47 346 11.06 248 10.03 256

zarpas/rule14 1 15dat > 2000 - 46.59 0 20.7 0

zarpas/rule14 1 30dat > 2000 - > 2000 - 186.27 0

Constraint resolvent u∨x is detected during IUP(F ∪{¬u}). After the addi-
tion of both constraint resolvents (figure 1 (b)), the look-ahead IUP(F ∪ {¬x})
results in a conflict, making ¬x a failed literal and thus forces x. Obviously,
IUP(F ∪ {¬x}) will not result in a conflict if the constraint resolvents r ∨ x and
u ∨ x were not added both.

Table 1 shows the usefulness of the concept of constraint resolvents: in all our
experiments, the addition of mere constraint resolvents outperformed a variant
with full local learning (adding all binary resolvents). This could be explained by
the above example: adding other resolvents than constraint resolvents will not
increase the number of detected failed literals. These resolvents merely increase
the computational costs. This explanation is supported by the data in the table:
the tree-size of both variants is comparable.

When we look at zarpas/rule 14 1 30dat, it appears that only adding con-
straint resolvents is essential to solve this benchmark within 2000 seconds. The
node-count of zero means that the instance is found unsatisfiable during the first
execution of the look-ahead procedure.

5 Implication Arrays

Due to the 3-Sat translation the data structure of march eq only needs to ac-
commodate binary and ternary clauses. We will use the following formula as an
example:

Fexample = (a∨ c)∧ (¬b∨¬d)∧ (b∨ d)∧ (a∨¬b∨ d)∧ (¬a∨ b∨¬d)∧ (¬a∨ b∨ c)

350 M. Heule et al.

a

¬a

b

¬b

c

¬c

d

¬d

c

¬d

d

a

¬b

b

(i)

a

¬a

b

¬b

c

¬c

d

¬d

b ¬d b c

¬b d

a d

¬a ¬d ¬a c

¬a b

¬a b

a ¬b

(ii)

Fig. 2. The binary (i) and ternary (ii) implication arrays that represent the example
formula Fexample

clause

0 a c

1 ¬b ¬d

2 b d

3 a ¬b d

4 ¬a b ¬d

5 ¬a b c

(i)

a

¬a

b

¬b

c

¬c

d

¬d

0 3
4 5

2 4 5

1 3
0 5

2 3
1 4

(ii)

Fig. 3. A common clause database / variable index data structure. All clauses are
stored in a clause database (i), and for each literal the variable index lists the clauses
in which it occurs (ii)

Binary and ternary clauses are stored separately in two implication arrays. A
binary clause a ∨ c is stored as two implications: c is stored in the binary im-
plication array of ¬a and a is stored in the binary implication array of ¬c. A
ternary clause (a∨¬b∨ d) is stored as three implications: ¬b∨ d is stored in the
ternary implication array of ¬a and the similar is done for b and ¬d. Figure 2
shows the implication arrays that represent the example formula Fexample.

Storing binary clauses in implication arrays requires only half the memory
that would be needed to store them in an ordinary clause database / variable
index data structure. (See figure 3.) Since march eq adds many binary resolvents
during the solving phase, the binary clauses on average outnumber the ternary
clauses. Therefore, storing these binary clauses in implication arrays significantly
reduces the total amount of memory used by march eq. Furthermore, the impli-
cation arrays improve data locality. This often leads to a speed-up due to better
usage of the cache.

March eq uses a variant of iterative unit propagation (IFIUP) that propagates
binary implications before ternary implications. The first step of this procedure is
to assign as many variables as possible using only the binary implication arrays.
Then, if no conflict is found, the ternary implication array of each variable that
was assigned in the first step is evaluated. We will illustrate this second step
with an example.

March eq 351

Suppose look-ahead is performed on ¬c. The ternary implication array of ¬c

contains (¬a ∨ b). Now there are five possibilities:

1. If the clause is already satisfied, i.e. a has already been assigned the value
false or b has already been assigned the value true, then nothing needs to be
done.

2. If a has already been assigned the value true, then b is implied and so b is
assigned the value true. The first step of the procedure is called to assign
as many variables implied by b as possible. Also, the constraint resolvent
(c ∨ b) is added as two binary implications.

3. If b has already been assigned the value false, then ¬a is implied and so a

is assigned the value false. The first step of the procedure is called to assign
as many variables implied by ¬a as possible. Also, the constraint resolvent
(c ∨ ¬a) is added as two binary implications.

4. If a and b are unassigned, then we have found a new binary clause.
5. If a has already been assigned the value true and b has already been assigned

the value false, then ¬c is a failed literal. Thus c is implied.

The variant of Diff used in march eq weighs new binary clauses that are
produced during the look-ahead phase. A ternary clause that is reduced to a
binary clause that gets satisfied in the same iteration of IFIUP, should not be
included in this computation. However, in the current implementation these
clauses are in fact included, which causes noise in the Diff heuristics. The
first step of the IFIUP procedure, combined with the addition of constraint
resolvents, ensures that the highest possible amount of variables are assigned
before the second step of the IFIUP procedure. This reduces the noise signifi-
cantly.

An advantage of IFIUP over general IUP is that it will detect conflicts faster.
Due to the addition of constraint resolvents, most conflicts will be detected in
the first call of the first step of IFIUP. In such a case, the second step of IFIUP
is never executed. Since the second step of IFIUP is considerably slower than
the first, an overall speed-up is expected.

Storage of ternary clauses in implication arrays requires an equal amount of
memory as the common alternative. However, ternary implication arrays allow
optimisation of the second step of the IFIUP procedure. On the other hand,
ternary clauses are no longer stored as such: it is not possible to efficiently verify
if they have already been satisfied and early detection of a solution is neglected.
One knows only that a solution exists if all variables have been assigned and no
conflict has occurred.

6 Equivalence Reasoning

During the pre-processing phase, march eq extracts the so-called equivalence
clauses (l1 ↔ l2 ↔ · · · ↔ li) from the formula and places them into a separate
data-structure called the Conjunction of Equivalences (CoE). After extraction,
a solution for the CoE is computed as described in [7, 13].

352 M. Heule et al.

In [7] - appearing in the same volume - we propose a new look-ahead evalua-
tion function for benchmarks containing equivalence clauses: let eqn be a weight
for a reduced equivalence clause of new length n, C(x) the set of all reduced
equivalence clauses (Qi) during a look-ahead on x, and B(x) the set of all newly
created binary clauses during the look-ahead on x. Using both sets, the look-
ahead evaluation can be calculated as in equation (2). Variable xi with the
highest Diffeq(xi) × Diffeq(¬xi) is selected for branching.

eqn = 5.5 × 0.85n (1)

Diffeq = |B| +
∑
QiεC

eq|Qi| (2)

Besides the look-ahead evaluation and the pre-selection heuristics (discussed
in section 7), the intensity of communication between the CoE- and CNF-part
of the formula is kept rather low (see figure 4). Naturally, all unary clauses in all
phases of the solver are exchanged between both parts. However, during the solv-
ing phase, all binary equivalences are removed from the CoE and transformed to
the four equivalent binary implications which in turn are added to the implica-
tion arrays. The reason for this is twofold: (1) the binary implication structure is
faster during the look-ahead phase than the CoE-structure, and (2) for all unary
clauses yi that are created in the CoE during IUP(F ∪{x}), constraint resolvent
¬x∨yi can be added to the formula without having to check the original length.

We examined other forms of communication, but only small gains were no-
ticed on only some problems. Mostly, performance decreased due to higher com-

CoE CNFpre-selection
heuristics

look-ahead
evaluation

unary clauses

binary equivalences

communication during the pre-processing phase
communication during the solving phase
communication during the look-ahead phase

Fig. 4. Various forms of communication in march eq

March eq 353

Table 2. Performance of march eq on several benchmarks with and without equivalence
reasoning

without
equivalence
reasoning

with
equivalence
reasoning

Benchmarks time(s) treesize time(s) treesize speed-up

random unsat 250 (100) 1.45 3391.7 1.45 3391.7 -

random unsat 350 (100) 48.78 73357.2 48.78 73357.2 -

stanion/hwb-n20-01 42.88 182575 23.65 183553 44.85 %

stanion/hwb-n20-02 55.34 222487 30.91 222251 44.15 %

stanion/hwb-n20-03 42.08 164131 21.70 163984 48.43 %

longmult8 76.69 8091 90.80 8149 -18.40 %

longmult10 171.66 11597 226.31 11597 -31.84 %

longmult12 126.36 6038 176.85 5426 -39.96 %

pyhala-unsat-35-4-03 737.15 19513 662.93 19517 10.07 %

pyhala-unsat-35-4-04 691.04 19378 659.04 19364 4.63 %

quasigroup3-9 7.97 1495 7.97 1495 -

quasigroup6-12 58.05 1311 58.05 1311 -

quasigroup7-12 10.03 256 10.03 256 -

zarpas/rule14 1 15dat 21.68 0 20.70 0 4.52 %

zarpas/rule14 1 30dat 219.61 0 186.27 0 15.18 %

munication costs. For instance: communication of binary equivalences from the
CNF- to the CoE-part makes it possible to substitute those binary equivalences
in order to reduce the total length of the equivalence clauses. This rarely resulted
in an overall speed-up.

We tried to integrate the equivalence reasoning in such a manner that it
would only be applied when the performance would benefit from it. Therefore,
march eq does not perform any equivalence reasoning if no equivalence clauses
are detected during the pre-processing phase (if no CoE exists), making march eq

equivalent to its older brother march.
Table 2 shows that the integration of equivalence reasoning in march rarely

results in a loss of performance: on some benchmarks like the random unsat

and the quasigroup family no performance difference is noticed, since no equiv-
alence clauses were detected. Most families containing equivalence clauses are
solved faster due to the integration. However, there are some exceptions, like the
longmult family in the table.

If we compare the integration of equivalence reasoning in march (which re-
sulted in march eq) with the integration in satz (which resulted in eqsatz), we
note that eqsatz is much slower than satz on benchmarks that contain no equiv-
alence clauses. While satz2 solves 100 random unsat 350 benchmarks near the
treshold on average in 22.14 seconds using 105798 nodes, eqsatz3 requires on

2 Version 2.15.2 at http://www.laria.u-picardie.fr/∼cli/EnglishPage.html
3 Version 2.0 at http://www.laria.u-picardie.fr/∼cli/EnglishPage.html

354 M. Heule et al.

average 795.85 seconds and 43308 nodes to solve the same set. Note that no
slowdown occurs for march eq.

7 Pre-selection Heuristics

Overall performance can be gained or lost by performing look-ahead on a subset
of the free variables in a node: gains are achieved by the reduction of computa-
tional costs, while losses are the result of either the inability of the pre-selection
heuristics (heuristics that determine the set of variables to enter the look-ahead
phase) to select effective branching variables or the lack of detected failed lit-
erals. When look-ahead is performed on only a subset of the variables, only a
subset of the failed literals is most likely detected. Depending on the formula,
this could increase the size of the DPLL-tree.

During our experiments, we used pre-selection heuristics which are an ap-
proximation of our combined look-ahead evaluation function (Ace) [7]. These
pre-selection heuristics are costly, but because they provide a clear discrimination
between the variables, a small subset of variables could be selected. Experiments
with a fixed number of variables entering the look-ahead procedure is shown in

20

25

30

35

40

45

50

0% 20% 40% 60% 80% 100%
210

220

230

240

250

260

270

0% 20% 40% 60% 80% 100%

(a) (b)

350

400

450

500

550

600

650

700

0% 20% 40% 60% 80% 100%
50

100

150

200

250

300

0% 20% 40% 60% 80% 100%

(c) (d)

Fig. 5. Runtime(s) vs. percentage look-ahead variables on single instances:
(a) random unsat 350; (b) longmult10; (c) pyhala-braun-unsat-35-4-04; and
(d) quasigroup6-12

March eq 355

figure 5. The fixed number is based on a percentage of the original number of
variables and the ”best” variables (with the highest pre-selection ranking) are
selected.

The plots in this figure do not offer any indication of which percentage is
required to achieve optimal general performance: while for some instances 100%
look-ahead appears optimal, others are solved faster using a much smaller per-
centage.

Two variants of march eq have been submitted to the Sat 2004 competi-
tion [11]: one which selects in every node the ”best” 10 % variables (march eq 010)
and one with full (100%) look-ahead (march eq 100). Although during our ex-
periments the first variant solved the most benchmarks, at the competition both
variants solved the same number of benchmarks, albeit different ones. Figure 5
illustrates the influence of the number of variables entering the look-ahead pro-
cedure on the overall performance.

8 Tree-Based Look-Ahead

The structure of our look-ahead procedure is based on the observation that
different literals, often entail certain shared implications, and that we can form
’sharing’ trees from these relations, which in turn may be used to reduce the
number of times these implications have to be propagated during look-ahead.

Suppose that two look-ahead literals share a certain implication. In this sim-
ple case, we could propagate the shared implication first, followed by a propa-
gation of one of the look-ahead literals, backtrack the latter, then propagate the
other look-ahead literal and only in the end backtrack to the initial state. This
way, the shared implication has been propagated only once.

Figure 6 shows this example graphically. The implications among a, b and c

form a small tree. Some thought reveals that this process, when applied recur-
sively, could work for arbitrary trees. Based on this idea, our solver extracts -
prior to look-ahead - trees from the implications among the literals selected for
look-ahead, in such a way that each literal occurs in exactly one tree. The look-

F

a

b c

2

3 4

5

1 6

implication

action

1 propagate a

2 propagate b

3 backtrack b

4 propagate c

5 backtrack c

6 backtrack a

Fig. 6. Graphical form of an implication tree with corresponding actions.

356 M. Heule et al.

Table 3. Performance of march eq on several benchmarks with and without the use of
tree-based look-ahead

normal
look-ahead

tree-based
look-ahead

Benchmarks time(s) treesize time(s) treesize speed-up

random unsat 250 (100) 1.24 3428.5 1.45 3391.7 -16.94 %

random unsat 350 (100) 40.57 74501.7 48.78 73357.2 -20.24 %

stanion/hwb-n20-01 29.55 184363 23.65 183553 19.97 %

stanion/hwb-n20-02 40.93 227237 30.91 222251 24.48 %

stanion/hwb-n20-03 25.88 155702 21.70 163984 16.15 %

longmult8 332.64 7918 90.80 8149 72.70 %

longmult10 1014.09 10861 226.31 11597 77.68 %

longmult12 727.01 4654 176.85 5426 75.67 %

pyhala-unsat-35-4-03 1084.08 19093 662.93 19517 38.85 %

pyhala-unsat-35-4-04 1098.50 19493 659.04 19364 40.01 %

quasigroup3-9 8.85 1508 7.97 1495 9.94 %

quasigroup6-12 78.75 1339 58.05 1311 26.29 %

quasigroup7-12 13.03 268 10.03 256 23.02 %

zarpas/rule14 1 15dat 25.62 0 20.70 0 19.20 %

zarpas/rule14 1 30dat 192.30 0 186.27 0 3.14 %

ahead procedure is improved by recursively visiting these trees. Of course, the
more dense the implication graph, the more possibilities are available for form-
ing trees, so local learning will in many cases be an important catalyst for the
effectiveness of this method.

Unfortunately, there are many ways of extracting trees from a graph, so that
each vertex occurs in exactly one tree. Large trees are obviously desirable, as they
imply more sharing, as does having literals with the most impact on the formula
near the root of a tree. To this end, we have developed a simple heuristic. More
involved methods would probably produce better results, although optimality in
this area could easily mean solving NP-complete problems again. We consider
this an interesting direction for future research.

Our heuristic requires a list of predictions to be available, of the relative
amount of propagations that each look-ahead literal implies, to be able to con-
struct trees that share as much of these as possible. In the case of march eq, the
pre-selection heuristic provides us with such a list.

The heuristic now travels this list once, in order of decreasing prediction,
while constructing trees out of the corresponding literals. It does this by deter-
mining for each literal, if available, one other look-ahead literal that will become
its parent in some tree. When a literal is assigned a parent, this relationship
remains fixed. On the outset, as much trees are created as there are look-ahead
literals, each consisting of just the corresponding literal.

More specifically, for each literal that it encounters, the heuristic checks
whether this literal is implied by any other look-ahead literals that are the root
of some tree. If so, these are labelled child nodes of the node corresponding to the
implied literal. If not already encountered, these child nodes are now recursively

March eq 357

a ¬a b c d e ¬f g

(i)

a

b c

¬a d e ¬f g

(ii)

a

b c

d

¬a e ¬f g

(iii)

a

b c

d

¬a e

¬f

g

(iv)

g

a

b c

d

¬a e

¬f

(v)

Fig. 7. Five steps of building implication trees

checked in the same manner. At the same time, we remove the corresponding
elements from the list, so that each literal will be checked exactly once, and will
receive a position within exactly one tree.

As an example, we show the process for a small set of look-ahead literals. A
gray box denotes the current position:

Because of the order in which the list is travelled, literals which have re-
ceived higher predictions are labelled as parent nodes as early as possible. This
is important, because it is often possible to extract many different trees from an
implication graph, and because every literal should occur in exactly one tree.

Availability of implication trees opens up several possibilities of going beyond
resolution. One such possibility is to detect implied literals. Whenever a node has
descendants that are complementary, clearly the corresponding literal is implied.
By approximation, we detect this for the most important literals, as these should
have ended up near the roots of larger trees by the above heuristic. For solvers
unable to deduce such implications by themselves, we suggest a simple, linear-
time algorithm that scans the trees.

Some intriguing ideas for further research have occurred to us during the
development our tree-based look-ahead procedure, but which, we have not been
able to pursue due to time constraints. One possible extension would be to
add variables that both positively and negatively imply some look-ahead literal
as full-fledged look-ahead variables. This way we may discover important, but
previously undetected variables to perform look-ahead on and possibly branch
upon. Because of the inherent sharing, the overhead will be smaller than without
a tree-based look-ahead.

358 M. Heule et al.

Also, once trees have been created, we could include non-look-ahead liter-
als in the sharing, as well as in the checking of implied literals. As for the
first, suppose that literals a and b imply some literal c. In this case we could
share not just the propagation of c, but also that of any other shared impli-
cations of a and b. Sharing among tree roots could be exploited in the same
manner, with the difference that in the case of many shared implications, we
would have to determine which trees could best share implications with each
other. In general, it might be a good idea to focus in detail on possibilities of
sharing.

9 Removal of Inactive Clauses

The presence of inactive clauses increases the computational costs of the pro-
cedures performed during the look-ahead phase. Two important causes can be
appointed: first, the larger the number of clauses considered during the look-
ahead, the poorer the performance of the cache. Second, if both active and in-
active clauses occur in the active data-structure during the look-ahead, a check
is necessary to determine the status of every clause. Removal of inactive clauses
from the active data-structure prevents these unfavourable effects.

When a variable x is assigned to a certain truth value during the solving
phase, all the ternary clauses in which it occurs become inactive in the ternary
implication arrays: the clauses in which x occurs positively become satisfied,
while those clauses in wich it occurs negatively are reduced to binary clauses.
These binary clauses are moved to the binary implication arrays.

Table 4. Performance of march eq on several benchmarks with and without the removal
of inactive clauses on the chosen path

without removal with removal
Benchmarks time(s) treesize time(s) treesize speed-up

random unsat 250 (100) 1.70 3393.7 1.45 3391.7 14.71 %

random unsat 350 (100) 63.38 73371.9 48.78 73357.2 23.04 %

stanion/hwb-n20-01 24.92 182575 23.65 183553 5.10 %

stanion/hwb-n20-02 33.78 222487 30.91 222251 8.50 %

stanion/hwb-n20-03 23.68 164131 21.70 163984 8.36 %

longmult8 114.71 8091 90.80 8149 20.84 %

longmult10 287.37 11597 226.31 11597 21.25 %

longmult12 254.51 6038 176.85 5426 30.51 %

pyhala-unsat-35-4-03 783.52 19513 662.93 19517 15.39 %

pyhala-unsat-35-4-04 772.59 19378 659.04 19364 14.70 %

quasigroup3-9 11.73 1497 7.97 1495 32.05 %

quasigroup6-12 136.70 1335 58.05 1311 57.53 %

quasigroup7-12 22.53 256 10.03 256 55.48 %

zarpas/rule14 1 15dat 29.80 0 20.70 0 30.54 %

zarpas/rule14 1 30dat 254.81 0 186.27 0 26.90 %

March eq 359

Table 4 shows that the removal of inactive clauses during the solving phase is
useful on all kinds of benchmarks. Although the speed-up is only small on uniform
random benchmarks, larger gains are achieved on more structured instances.

10 Conclusion

Several techniques have been discussed to increase the solving capabilities of
a look-ahead Sat solver. Some are essential for solving various specific bench-
marks: a range of families can only be solved using equivalence reasoning, and
as we have seen, march eq is able to solve a large zarpas benchmark by adding
only constraint resolvents.

Other proposed techniques generally result in a performance boost. However,
the usefulness of our pre-selection heuristics is as yet undoubtedly subject to
improvement and will be subject of future research.

References

1. D. Mitchel, B. Selmon and H. Levesque, Hard and easy distributions of SAT prob-
lems. Proceedings of AIII-1992 (1992), 459–465.

2. D. Le Berre, Exploiting the Real Power of Unit Propagation Lookahead. In LICS
Workshop on Theory and Applications of Satisfiability Testing (2001).

3. D. Le Berre and L. Simon, The essentials of the SAT’03 Competition. Springer-
Verlag, Lecture Notes in Comput. Sci. 2919 (2004), 452–467.

4. A. Biere, A. Cimatti, E.M. Clarke, Y. Zhu, Symbolic model checking without BDDs.
in Proc. Int. Conf. Tools and Algorithms for the Construction and Analysis of
Systems, Springer-Verlag, Lecture Notes in Comput. Sci. 1579 (1999), 193–207.

5. M. Davis, G. Logemann, and D. Loveland, A machine program for theorem proving.
Communications of the ACM 5 (1962), 394–397.

6. O. Dubois and G. Dequen, A backbone-search heuristic for efficient solving of
hard3-sat formulae. International Joint Conference on Artificial Intelligence 2001
1 (2001), 248–253.

7. M.J.H. Heule and H. van Maaren, Aligning CNF- and Equivalence-Reasoning. Ap-
pearing in the same volume.

8. O. Kullmann, Investigating the behaviour of a SAT solver on random formulas.
Submitted to Annals of Mathematics and Artificial Intelligence (2002).

9. C.M. Li and Anbulagan, Look-Ahead versus Look-Back for Satisfiability Problems.
Springer-Verlag, Lecture Notes in Comput. Sci. 1330 (1997), 342–356.

10. C.M. Li, Equivalent literal propagation in the DLL procedure. The Renesse issue
on satisfiability (2000). Discrete Appl. Math. 130 (2003), no. 2, 251–276.

11. L. Simon, Sat’04 competition homepage. http://www.lri.fr/∼simon/contest/results/
12. L. Simon, D. Le Berre, and E. Hirsch, The SAT 2002 competition. Accepted for

publication in Annals of Mathematics and Artificial Intelligence (AMAI) 43 (2005),
343–378.

13. J.P. Warners, H. van Maaren, A two phase algorithm for solving a class of hard
satisfiability problems. Oper. Res. Lett. 23 (1998), no. 3-5, 81–88.

14. H. Zhang and M.E. Stickel, Implementing the Davis-Putnam Method. SAT2000
(2000), 309–326.

Zchaff2004: An Efficient SAT Solver

Yogesh S. Mahajan, Zhaohui Fu, and Sharad Malik

Princeton University, Princeton, NJ 08544, USA
{yogism, zfu, malik}@Princeton.EDU

Abstract. The Boolean Satisfiability Problem (SAT) is a well known
NP-Complete problem. While its complexity remains a source of many
interesting questions for theoretical computer scientists, the problem has
found many practical applications in recent years. The emergence of
efficient SAT solvers which can handle large structured SAT instances
has enabled the use of SAT solvers in diverse domains such as electronic
design automation and artificial intelligence. These applications continue
to motivate the development of faster and more robust SAT solvers. In
this paper, we describe the popular SAT solver zchaff with a focus on
recent developments.

1 Introduction

Given a propositional logic formula, determining whether there exists a variable
assignment that makes the formula evaluate to true is called the Boolean Satisfi-
ability Problem (SAT). SAT was the first problem proven to be NP-Complete[1]
and has seen much theoretical interest on this account. Most people believe
that it is unlikely that a polynomial time algorithm exists for SAT. However,
many large instances of SAT generated from real life problems can be success-
fully solved by heuristic SAT solvers. For example, SAT solvers find applica-
tion in AI planning[2], circuit testing[3], software verification[4], microprocessor
verification[5], model checking[6], etc. This has motivated research in efficient
heuristic SAT solvers.

Consequently, there are many practical algorithms based on various principles
such as Resolution[7], Systematic Search[8], Stochastic Local Search[9], Binary
Decision Diagrams[10], St̊almarck’s[11] algorithm, and others. Gu et al.[12] pro-
vide a review of many of the algorithms.

Given a SAT instance, SAT algorithms which are complete either find a
satisfying variable assignment, or prove that no such solution exists. Stochastic
methods, on the other hand, are geared toward finding a satisfiable solution
quickly but do not prove unsatisfiability. Stochastic methods are likely to be
adopted in AI planning[2] and FPGA routing[13], where instances are likely to
be satisfiable and proving unsatisfiability is not required. However, for many
other domains, particularly some verification problems[4, 6], the primary task
is to prove unsatisfiability of the instances. Hence, complete SAT solvers are
required in these cases. The zchaff SAT solver is a complete solver.

H.H. Hoos and D.G. Mitchell (Eds.): SAT 2004, LNCS 3542, pp. 360–375, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Zchaff2004: An Efficient SAT Solver 361

The well known Davis-Logemann-Loveland (DLL)[8] algorithm forms the
framework for many successful complete SAT solvers. DLL is sometimes referred
to as DPLL for historical reasons. Researchers have been working on DPLL-
based SAT solvers since the 1960s. The last ten years have seen tremendous
growth and success in DPLL-based SAT solver research. In the mid 1990’s, tech-
niques like conflict driven clause learning and non-chronological backtracking
were integrated into the DPLL framework[14, 15]. These techniques have greatly
improved the efficiency of the DPLL algorithm for structured (as opposed to
random) SAT instances. Improvements to the memory efficiency of the Boolean
constraint propagation procedure[16, 17] [17] have helped modern SAT solvers
cope with large problem sizes. A lot of research has gone into developing new
decision strategies. Chaff[17] introduced an innovative conflict clause driven deci-
sion strategy and BerkMin[18] introduced yet another decision strategy making
use of recent conflict clauses. Today, the latest generation of SAT solvers like
zchaff, BerkMin, siege[19], and others[20, 21] are able to handle structured in-
stances with tens of thousands of variables and hundreds of thousands of clauses.

The performance of SAT solvers varies significantly according to the do-
main from which the problem instance is drawn. The SAT 2004 competition[21]
broadly categorizes the instances into instances derived from industrial problems,
handmade instances, and randomly generated instances. Solvers that perform
well in one category rarely perform well in another category as the techniques
that are successful differ from category to category.

Zchaff is a solver that targets the industrial category and hopes to be reason-
ably successful in the handmade category. It implements the well known Chaff
algorithm[17] which includes the innovative VSIDS decision strategy and the very
efficient two literal watching scheme for Boolean constraint propagation. Zchaff
is a popular solver whose source code is available to the public. It is possible to
compile zchaff into a linkable library for easy integration with other applications.
Successful integration examples include the BlackBox AI planner[22], NuSMV
model checker[23], GrAnDe theorem prover[24], and others. Zchaff compares well
with other SAT solvers based on solving runtime performance – versions of zchaff
have emerged as the Best Complete Solver in the ‘industrial’ and ‘handmade’
instances categories in the SAT 2002 Competition[25] and as the Best Complete
Solver in the ‘industrial’ category in the 2004 SAT Competition[21].

This paper provides an overview of the zchaff solver with a focus on recent
developments. Section 2 gives an overview of the DPLL framework on which
zchaff is based. Section 3 gives an overview of the main features of the 2003
version of the zchaff solver. Section 4 presents the new features in the SAT 2004
versions of zchaff. Section 5 lists some additional features recently integrated
with zchaff after SAT 2004. Section 6 gives some experimental results. Section 7
concludes the paper.

2 The DPLL Algorithm with Learning

In 1960, Davis and Putnam[7] proposed an algorithm for solving SAT which was
based on resolution. Their method used resolution for the existential abstrac-

362 Y.S. Mahajan, Z. Fu, and S. Malik

tion of variables from the original instance and produced a series of equivalent
SAT decision problems with fewer variables. However, their proposed algorithm
had impractically large memory requirements. Davis, Logemann and Loveland[8]
proposed an algorithm that used search instead of resolution. This algorithm is
often referred to as the DPLL algorithm. It can be argued that these two algo-
rithms are closely related because the DPLL search tree can be used to derive a
corresponding resolution proof, but we note that the types of proofs of unsatis-
fiability that the two methods discover can be different.

In most implementations, the propositional formula is usually presented in a
Product of Sums form, which is usually called Conjunctive Normal Form (CNF).
There exist polynomial algorithms[26] to transform any propositional formula into
a CNF formula that has the same satisfiability as the original one. Henceforth,
we will assume that the problem is presented in CNF. A formula in CNF is a
conjunction of one or more clauses, where each clause is a constraint formed as
the disjunction of one or more literals. A literal, in turn, is a Boolean variable or
its negation. A propositional formula in CNF has some nice properties that can
help prune the search space and speed up the search process. To satisfy a CNF
formula, each clause must be satisfied individually. If a variable assignment causes
any clause in the formula to have all its literals evaluate to 0 (false), then that
current variable assignment or any extension of it will never satisfy the formula.
A clause that has all its literals assigned to value 0 is called a conflicting clause
and directly indicates to the solver that some of the currently assigned variables
must be unassigned first before continuing the search for a satisfying assignment.

DPLL is a depth-first backtracking framework. At each step, the algorithm
picks a variable v and assigns a value to v. The formula is simplified by removing
the satisfied clauses and eliminating the false literals. An inference rule may then
be applied to assign values to some more variables which are implied by the
current assignments. If an empty clause results after simplification, the procedure
backtracks and tries the other value for v. Modern DPLL algorithms have an
additional feature – they can learn and remember new clause constraints via
a procedure called conflict analysis. The worst case time complexity remains
exponential in terms of the total number of variables. However, in the case of
some classes of real-life applications, a good implementation shows a manageable
time complexity when combined with appropriate heuristics.

An outline of ‘DPLL with learning’ as it is used in zchaff is given in Fig. 1.
Initially, none of the variables of the CNF are assigned a value. The unassigned
variable are called free variables. The function decideNextBranch() uses some
heuristics to choose a free variable v to branch upon and assigns it a value. The
assignment operation is said to be a decision made on variable v. The heuristics
used here constitute the Decision Strategy of the solver. Each assigned v also has
a decision level associated with it which equals the solver decision level at the
time the decision was made. The decision level starts at 1 for the first decision
and is incremented by 1 for subsequent decisions until a backtrack occurs. Af-
ter each decision, the function deduce() determines some variable assignments
which are implied by the current set of decisions. This inference is referred to as

Zchaff2004: An Efficient SAT Solver 363

while(there exists a free variable)

decideNextBranch(); // pick & assign free variable

status = deduce(); // propagate assigned values

if(status == CONFLICT)

blevel = analyzeConflict(); // & learn conflict clause

if(blevel > 0)

backTrack(blevel); // resolve the conflict

else if(blevel == 0)

return UNSATISFIABLE; // conflict cannot be resolved

runPeriodicFunctions();

}

return SATISFIABLE

Fig. 1. Algorithm DPLL with Learning

Boolean Constraint Propagation (BCP). Variables that are assigned during BCP
will assume the same decision level as the current decision variable. If deduce()
detects a conflicting clause during BCP, then the current partial variable assign-
ment cannot be extended to a satisfying assignment, and the solver will have to
backtrack. The solver calls the conflict analysis procedure analyzeConflict()

which finds a reason for the discovered conflict and returns the decision level
to backtrack to. The reason for the conflict is obtained as a set of variable as-
signments which imply the current conflict and gets recorded by the solver as a
clause.1 The solver decision level is updated appropriately after the backtrack.
The reader is referred to [27, 28] for details of conflict analysis. The solver enters
decision level 0 only when making an assignment that is implied by the CNF
formula and a backtrack to level 0 indicates that some variable is implied by the
CNF formula to be both true and false i.e. the instance is unsatisfiable. (The
function runPeriodicFunctions() in the main loop is used to schedule some
periodic jobs like clause deletion, restarts, etc.)

The outline in Fig. 1 can be extended to include some simplification proce-
dures - like applying the Pure Literal Rule or identifying equivalence classes[29].
Since these can be expensive to implement dynamically during the search, they
may be used in a separate preprocessing phase.

3 Overview of the Zchaff Solver Till 2003

In this section, we will present a quick overview of the main features of the zchaff
solver. The overall structure of zchaff is as in Fig. 1.

3.1 Decision Strategy - VSIDS
During the search, making a good choice for which free variable is to be assigned
and to what value is very important because even for the same basic algorithm

1 It is well known that the DPLL algorithm without clause recording can discover
tree-like resolution proofs. With the ability to record clauses resulting from conflict
analysis, the solver can discover more general proofs of unsatisfiability.

364 Y.S. Mahajan, Z. Fu, and S. Malik

framework, different choices may produce search trees with drastically different
sizes. Early branching heuristics like Maximum Occurrences in Minimum Sized
clauses (MOMS)[30] used some statistics of the clause database to estimate the
effect of branching on a particular variable. In [31], the author proposed literal
count heuristics which count the number of unsatisfied clauses in which a given
variable appears (in either phase). These counts are state-dependent because
different variable assignments will give different counts and need to be updated
every time a variable is assigned or unassigned.

The Chaff[17] solver proposed the use of a heuristic called Variable State
Independent Decaying Sum (VSIDS). VSIDS keeps a score for each literal of a
variable. Initially, the literal scores equal the number of occurrences of the literal
in the input CNF. The literal counts are updated every time the conflict analysis
procedure learns a conflict clause by incrementing the scores of each literal in
the learned clause by 1. Periodically, after a fixed large number of decisions, all
literal scores are divided by 2. The VSIDS literal scores are effectively weighted
occurrence counts with higher weights given to occurrences in recently learned
clauses. The score of a variable is considered to be the larger of the two associated
literal scores. An ordering of the variables is induced by these scores and when
a decision is to be made, VSIDS chooses the free variable highest in the variable
order and assigns the variable to true if the score of the positive literal exceeds
the score of the negative literal and false otherwise. VSIDS provides a quasi-
static variable ordering which focuses the search on the recently derived conflict
clause. The statistics required for VSIDS are relatively inexpensive to maintain
and this makes it a low overhead decision strategy.

3.2 Boolean Constraint Propagation - Two Literal Watching

During the search for a satisfying assignment, the application of an inference
rule can detect some variables whose values are implied by the current set of
assignments and simplify the problem remaining to be solved. The Unit Clause
Rule is a commonly used inference rule. A Unit Clause is a clause which has
exactly one unassigned literal and all other literals assigned to false. The unit
clause rule says that the unassigned literal in a unit clause must be assigned to
true. This implied assignment is called an implication and the unit clause causing
the implication is referred to as the antecedent for that variable assignment.

BCP needs to operate on very large clause databases and the pattern of ac-
cesses to the clause database often lacks locality. This leads to a large number
of cache misses. BCP often contributes as much as 50-90% to the total run-
time of modern solvers[32] and it is imperative to optimize the cache/memory
usage of the BCP procedure. Early implementations for BCP like [33] main-
tained counts for the number of assigned literals in each clause in order to
identify unit/conflicting clauses. This was costly to implement. The authors of
SATO[16] proposed a mechanism for BCP using head/tail lists[34] which signif-
icantly improved the efficiency of BCP. In both the counting-based schemes and
the head/tail lists methods, unassigning a variable is a costly operation and its
complexity may be comparable to that of assigning a variable.

Zchaff2004: An Efficient SAT Solver 365

Zchaff uses the Two Literal Watching scheme[17] for BCP. Initially, two of
the non-false literals in each clause are marked as watched literals. Each literal
maintains a list of the clauses in which it is watched. Whenever a clause becomes
a unit/conflicting clause, at least one of the watched literals in that clause must
be assigned to false. Hence, when a literal gets assigned to false, it is sufficient to
check for unit/conflicting clauses only among those clauses in which that literal
is watched . The details of the mechanism for identifying unit/conflicting clauses
can be found in [17]. A key benefit of the two literal watching scheme is that
at the time of backtracking, there is no need to modify the watched literals in
the clause database. Unassigning a variable can be done very simply by doing
nothing more than just setting the variable value to “unknown”.

3.3 Conflict Driven Clause Learning and Non-chronological
Backtracking - Learning the FirstUIP Conflict Clause

Conflict driven clause learning along with non-chronological backtracking were
first incorporated into a SAT solver in GRASP[27] and relsat[15]. These tech-
niques are essential for efficient solving of structured problems.

Conflict Driven Clause Learning: When the BCP procedure detects a con-
flicting clause that results from the current variable assignments, the solver needs
to backtrack. The function analyzeConflict() finds a subset of the current vari-
able assignments which is also sufficient to make the analyzed clause a conflicting
clause. The solver records this information as a clause which evaluates to true
exactly when this subset of variable assignments occurs. This prevents the same
conflict from occurring again. New clauses are learned using an operation called
resolution.2 The clauses derived using resolution are implied by the resolvents
and thus such clauses are logically redundant and adding these clauses does not
affect any of the satisfying assignments. However, these added clauses directly
help the BCP procedure to prune some of the search space.

The question of which clauses should be selected for resolution can have many
answers. In conflict driven clause learning, the solver’s search process discovers
sequences of clauses which are suitable to be resolved. As mentioned earlier, each
assigned non-decision variable, i.e. implied variable, has an antecedent clause as-
sociated with it. The antecedent clause for setting the variable v to 1 will contain
the positive literal v and all other literals will be assigned false. The conflicting
clause Cf comprises of only false literals. Thus, Cf can be resolved with the
antecedent of any of its variables to derive a clause Cl which will also have all
false literals. The process can be continued to derive other clauses treating Cl

as the conflicting clause. A lot of flexibility remains, e.g. in choosing which vari-
able’s antecedent is to be used for resolution, which of the learned clauses are
to be actually added to the clause database, and when to stop learning. Zchaff

2 Conflict driven conflict clause learning can be looked at in two equivalent ways as
resulting from successive resolutions and as a cut in the implication graph. We refer
the reader to the description in [28].

366 Y.S. Mahajan, Z. Fu, and S. Malik

answers these questions with the FirstUIP[28] clause learning scheme. A single
variable assignment at the conflict decision level, which along with all the vari-
able assignments at previous decision levels is sufficient to cause the conflict is
a Unique Implication Point (UIP) at the conflict decision level. This provides
a single reason at the conflict decision level for the current conflict. The most
recent UIP variable assignment at the conflict decision level is called the Firs-
tUIP and can always be found since the decision at the conflict decision level
is itself an UIP. In the FirstUIP scheme, all the antecedent clauses that appear
in the sequence of resolved clauses are antecedents of variables at the conflict
decision level and the FirstUIP clause is found when the only literal remaining
at the conflict decision level corresponds to the FirstUIP assignment. Details of
the procedure may be found in [27] and [28]. Such a conflict clause is called an
asserting clause and it will become a unit clause after backtracking.

Non-chronological Backtracking: In order to resolve a conflict, the solver
must backtrack to a prior state which does not directly entail the identified
conflict i.e. none of the clauses in the database must be conflicting clauses after
the backtrack. To do this, the solver finds the second highest decision level
involved in the derived conflict clause (decision level 0 if a single literal clause)
and unassigns all the variables assigned at decision levels greater than this level.
The solver decision level is reset to be the backtrack level. The newly added
conflict clause becomes a unit clause because it was a FirstUIP conflict clause
and causes an implication via the BCP procedure. The original conflicting clause
that was identified (and analyzed) before the backtrack will certainly be non-
conflicting after the backtrack as this clause became a conflicting clause only at
the very last decision level prior to backtracking.

4 The SAT 2004 Versions of Zchaff

Two new versions of the zchaff solver participated in the SAT 2004 Compe-
tition. These two versions are zchaff.2004.5.13 (submitted as zchaff) and
zchaff rand. Both zchaff.2004.5.13 and zchaff rand can be downloaded
from http://www.princeton.edu/∼chaff/SAT2004 versions.html. The two
versions are closely related and we will use the term zchaff2004 to refer to both
of them. During its development, many features from zchaff rand were in-
tegrated into zchaff.2004.5.13. Some features like the “shrinking” decision
heuristic are implemented differently in zchaff.2004.5.13 and zchaff rand.
While there are many differences between them, the solvers are comparable in
performance. In the SAT 2004 competition, zchaff.2004.5.13 was more suc-
cessful on satisfiable instances while zchaff rand appeared to be more success-
ful on unsatisfiable instances. We have found that the performance of zchaff2004
compared to the 2003 version is slightly worse for bounded model checking, but
better for microprocessor verification problems.

Many of the new features have a common theme of increased search locality
and the derivation of short conflict clauses. Other researchers, e.g. the author of

Zchaff2004: An Efficient SAT Solver 367

Siege[19], have noted the interaction between the search heuristic and the length
of the learned clauses. Like BerkMin, zchaff2004 also uses frequent restarts and
an aggressive clause deletion policy. Zchaff2004 also features some heuristics
whose parameters are dynamically adjusted during the search. Techniques like
the VSIDS decision strategy, Two Literal Watching based BCP, FirstUIP based
conflict clause learning and non-chronological backtracking which have proved
to be useful in earlier versions of zchaff are retained in zchaff2004.

4.1 Increased Search Locality

When VSIDS was first proposed, it turned out to be very successful in increasing
the locality of the search by focusing on the recent conflicts. This was observed
to lead to faster solving times. Though VSIDS scores are biased toward recent
regions of the search by the decaying of the scores, the decisions made are still
global in nature, due to the slow decay of variable scores[18]. However, recent
experiments show that branching within greater locality helps dramatically to
prune the search space. SAT solvers BerkMin and siege have both exhibited great
speedups from such decision heuristics. Zchaff2004 has three decision heuristics.
The first one to be tried is a “shrinking” heuristic. If this is not currently active
and does not make a decision, then a modified BerkMin like decision heuristic
is tried. The more global VSIDS decision strategy is used last.

Variable Ordering Scheme for VSIDS: This is the default decision heuristic
for zchaff2004. One way of trying to make VSIDS more local is to increase the
frequency of score decay. The variable ordering scheme also differs from the
previous version by incrementing the scores of the literals which get resolved
out during conflict analysis. Zchaff2004 increments the scores of involved literals
by 10000 instead of by 1. As a result, the decaying scores remain non-zero for
longer. Due to the details of the implementation of variable ordering in zchaff,
incrementing scores by 10000 also has the side effect that the variable order is
no longer the same as given by the variable scores, and the active variables move
closer to the top of the variable order. In zchaff rand, the VSIDS scores are
reset to new initial values determined by the literal occurrence statistics in the
current clause database after every clause deletion phase.

BerkMin Type Decision Heuristic: The use of the most recent unsatisfied
conflict clauses as is done by BerkMin also turns out to be a good cost-effective
approach to estimate the locality. The main ideas of this approach are described
by the authors of BerkMin in [18]. In zchaff2004, we maintain a chronological list
of derived conflict clauses. An unassigned variable with the highest VSIDS score
in a recent unsatisfied conflict clause is chosen to be branched upon. As in VSIDS,
the variable is assigned to true if the score of the positive literal exceeds the score
of the negative literal and false otherwise. In zchaff.2004.5.13, the most recent
unsatisfied clause is identified exactly. In zchaff rand, after searching through a
certain threshold number (set to 10000 or randomly) of as yet unexamined con-
flict clauses, the solver defaults to the VSIDS decision heuristic in case it fails to
find an unsatisfied clause. Also, zchaff rand skips conflict clauses which have
all unassigned literals during the search for a recent unsatisfied conflict clause.

368 Y.S. Mahajan, Z. Fu, and S. Malik

Conflict Clause Based Assignment Stack Shrinking: This is related to
one of the techniques used by the Jerusat solver[35]. We use our modification of
the general idea as presented in [35]. When the newly learned FirstUIP clause
exceeds a certain length L, we use it to drive the decision strategy as follows. We
sort the decision levels of the literals of the FirstUIP clause and then examine
the sorted sequence of decision levels to find the lowest decision level that is
less than the next higher decision level by at least 2. (If no such decision level is
found, then shrinking is not performed.) We then backtrack to this decision level,
and the decision strategy starts re-assigning to false the unassigned literals of
the conflict clause till a conflict is encountered again. We found that reassigning
the variables in the reverse order, i.e. in descending order of decision levels (used
in zchaff rand), performed slightly better than reassigning the variables in the
same order as they were assigned in previously (used in zchaff.2004.5.13).
Since some of the variables that were unassigned during the backtrack may not
get reassigned, the size of the assignment stack is likely to reduce after this
operation. As the variables on the assignment stack are precisely those that
can appear in derived conflict clauses, new conflict clauses are expected to be
shorter and more likely to share common literals. In our experiments, no fixed
value for L performed well for the range of benchmarks we tested. Instead, we set
L dynamically using some measured statistics. Zchaff2004 has two such metrics.
The first metric, used in zchaff.2004.5.13, is the averaged difference between
lengths of the clause being used for shrinking and the immediate new clause we
get after the shrinking. If this average is less than some threshold, L is increased
to reduce the amount of shrinking and if L exceeds some threshold, L is decreased
to encourage more shrinking. zchaff rand measures the mean and the standard
deviation of the lengths of the recent learned conflict clauses and tries to adjust
L to keep it at a value greater than the mean. This dynamic decision heuristic
of conflict clause based assignment stack shrinking is observed to often reduce
the average length of learned conflict clauses and leads to faster solving times,
especially for the microprocessor verification benchmarks.

4.2 Learning Shorter Clauses

Short clauses potentially prune large spaces from the search. They lead to faster
BCP and quicker conflict detection. Conflict driven learning derives new (con-
flict) clauses by successively resolving the clauses involved in the current conflict.
The newly derived clause is small in size when the number of resolvents is small,
when the resolvents are short clauses themselves, or when the resolvents share
many literals in common. Zchaff2004 has the following strategies to try to derive
short conflict clauses.

Short Antecedent Clauses Are Preferred: When the clauses do not share
many common literals, the sum of the lengths of all the involved clauses will
determine the length of the learned conflict clause. We can directly influence
the choice of clauses for the resolution by preferring shorter antecedent clauses.
One way to do this is to update a variable’s antecedent clause with a shorter

Zchaff2004: An Efficient SAT Solver 369

one whenever possible. As implemented in zchaff2004, BCP queues the implied
variable values along with their antecedents but does not perform the assignment
immediately. The assignment occurs only when the implied value is dequeued
and propagated. Thus, it sometimes happens that the same variable is enqueued
multiple times with the same value but different antecedent clauses. When BCP
encounters a new antecedent clause for an already assigned variable, the previous
antecedent can be replaced with the new one if the new antecedent is shorter.
zchaff rand maintains a separate database for binary clauses [36] and processes
the binary clauses before the non-binary clauses during BCP.

Multiple Conflict Analysis: This is a more costly technique than replacing
antecedents. It is observed that BCP often discovers more than one conflicting
clauses (most of which are derived from some common resolvents). For each con-
flicting clause, zchaff2004 finds the length of the FirstUIP clause to be learned,
and only records the one with the shortest length. Variables that are assigned
at decision level zero are excluded from all the learned conflict clauses.

Interaction with Decision Strategy: When the clauses being resolved during
conflict analysis share many common literals, the resulting conflict clause is likely
to be short. There is a strong interaction between the learned clauses and a
“locality centric” decision strategy. For example, the shrinking strategy reduces
the size of the set of literals that can appear in new conflict clauses. This in
turn increases the likelihood that the new clauses that are learned during the
search are shorter and share more literals. Decision strategies like VSIDS and
BerkMin which focus on recent conflict clauses can then discover which of these
new clauses are suitable for resolution, and the resulting clause is again likely to
be short. The observation that the decision strategy influences the length of the
derived conflict clauses has been made by the author of siege [19] who considers
conflict driven clause learning to be primarily a resolution strategy.

Learning Intermediate Resolvents: While performing conflict analysis, the
solver remembers the result of the first 5 resolutions. If this intermediate resolu-
tion result is shorter than the recorded FirstUIP clause, then the intermediate
resolvent is also recorded after the FirstUIP clause is recorded. This is imple-
mented in zchaff rand.

4.3 Aggressive Clause Deletion

Learned conflict clauses slow down the BCP procedure and use up memory.
Clauses which are not useful must be deleted periodically in the interest of keep-
ing the clause database small. Clauses satisfied at decision level 0 can be deleted
as they no longer prune any search space. As in BerkMin, some learned conflict
clauses can be deleted periodically without affecting the correctness of the solver.
Zchaff2004 periodically deletes learned clauses using usage statistics and clause
lengths to estimate the usefulness of a clause. Each clause has an activity counter
which is incremented every time the clause is involved in the derivation of a new
learned clause. This counter is used by Zchaff2004 to calculate an approximation

370 Y.S. Mahajan, Z. Fu, and S. Malik

to the clause’s activity to age ratio. Any clause with this ratio less than a cer-
tain threshold is considered for deletion. The final decision to delete the clause
is then made based on the irrelevance of the clause which is estimated by the
number of unassigned literals in the clause. The clause is deleted only if its irrel-
evance exceeds a certain irrelevance threshold. The irrelevance threshold may be
a constant or may be set dynamically based on the measurements of observed
clause length statistics. zchaff rand uses max{L,45} for the irrelevance param-
eter where L is the length parameter used by the dynamic shrinking decision
strategy. In zchaff rand, the clause activities are also decremented periodically
by a very small amount.

4.4 Frequent Restarts

Luck plays an important role in determining the solving time of a SAT solver even
for the case of unsatisfiable instances. The order in which the BCP procedure
queues implications and the order in which variables get watched are determined
more or less arbitrarily via the order in the CNF input file. Consequently, the
same CNF formula can take widely different run times after shuffling the clauses
and variables. When a VSIDS decision is made with all unassigned variables
having score 0, zchaff arbitrarily picks the first variable in the list. The wide
distribution of run times for slightly different algorithms running on the same
instance has been noted in [37] and the authors point out that a rapid restart
policy of a randomized solver can help reduce the variance of run times and
thereby contribute to increasing the robustness of the solver. Zchaff2004 also
uses a rapid fixed interval restart policy. The frequent restarts are observed to
make the solver more robust. With restarts disabled, zchaff rand with a timeout
of 300 seconds and random seed 0 takes 688 seconds on the beijing benchmark
suite (16 instances) and leaves two instances unsolved. With restarts enabled,
all the 16 instances get solved within 65 seconds.

5 Recent Developments

In this section, we briefly mention some of the new features have been added
to zchaff2004 after it was submitted to the SAT 2004 competition. One of the
motivations was to make BCP more efficient.

5.1 Early Conflict Detection

Early conflict detection is a technique used by solvers like Limmat[38]. During
BCP, the variable assignment is completed at the same time that the implied
value is queued. This has the advantage that conflicting values in the implications
queue can be identified early - as soon as they occur. Another advantage of this
is that the implied values still in the queue are already known to the Boolean
constraint propagation procedure and this could help BCP by not watching
literals which are set false according to the implication queue. This technique
has mixed effects on the solver run times. It may be noted that replacing the

Zchaff2004: An Efficient SAT Solver 371

antecedent clauses becomes more complicated when early conflict detection is
enabled, since extra checks have to be performed to ensure that no cycle is
introduced into the current implication graph. In particular, we check that all
the false literals were assigned before the single true literal got assigned.

5.2 Reorganized Variable Data Structure

During the addition of the new features, the variable object had grown in size to
about a hundred bytes. All the variable objects are stored in a STL::vector<>

as a result of which the actual variable values were widely separated in memory.
Since BCP mainly needs just the values, all the variable values were put into a
vector<char> by themselves. Other fields like the watched literal lists, variable
scores, implication related data, etc. were put into vector<>’s of their own. This
reorganized variable data structure brings small but consistent speedups.

5.3 Miscellaneous Features

The features listed here are considered to be experimental in status. The first one
is a modification to the BerkMin heuristic which uses short satisfied clauses on
the conflict clause stack which have less than 4 true literals and length less than
10 to make decisions. An unassigned literal from such a clause is selected and
set to false. The motivation is to recreate the assignments at the time the short
clause was derived. With this strategy, the performance on satisfiable bench-
marks improved for the tested benchmarks and no serious disadvantages were
noticed for unsatisfiable instances. The second modification is to increment the
literal scores by the number of conflicting clauses analyzed for the current con-
flict. When multiple clauses are analyzed, they share many common resolvents
and have similar literals. Hence, incrementing the score by the number of discov-
ered conflicting clauses gives more importance to literals which are frequently
involved in deriving conflict clauses. Secondly, incrementing by more than 1 will
also move such literals to the top of the variable ordering.

6 Impact of New Features

In this section, we try to evaluate the impact of the various modifications made to
the zchaff solver. To do this, we have created a series of versions of zchaff starting
with a version similar to the 2003 version and then adding features eventually
ending with a recent development version of zchaff2004. While we do not explore
all the possible combinations of the the features, we hope these comparisons will
yield some insight into the usefulness of the features. All experiments were run
on identical machines having Pentium 4 2.80 GHz processors with 1 MB L2
cache and 1 GB RAM using a random seed equal to 0.

6.1 Experimental Results

First, we present some details about the various versions that appear in the com-
parisons in Tables 1 and 2. The version ‘base’ is similar to the 2003 version of

372 Y.S. Mahajan, Z. Fu, and S. Malik

Table 1. Comparisons of various configurations of zchaff

Benchmark base s sMR sMRB SMRBK SMrBKEV

01 rule(20) 11477(11) 8817(7) 6970(6) 8810(9) 9641(9) 9467(7)
07 rule(20) 11755(12) 7656(8) 14481(11) 200(0) 103(0) 99(0)
barrel(8) 99(0) 89(0) 84(0) 227(0) 235(0) 256(0)
beijing(16) 2042(2) 2813(2) 1934(2) 79(0) 56(0) 57(0)
ferry(10) 17(0) 10(0) 8(0) 4(0) 3(0) 7(0)
fifo(4) 1978(1) 1269(1) 1229(1) 1586(1) 2367(2) 2378(2)
fpga routing(32) 1091(1) 993(1) 967(1) 254(0) 1228(1) 1315(1)
fvp-sat.3.0(20) 9216(7) 7109(4) 8500(6) 9988(9) 10149(7) 8770(1)
fvp-unsat.2.0(24) 3253(2) 3017(2) 3859(3) 1179(0) 456(0) 402(0)
hanoi(5) 1678(1) 1037(1) 1088(1) 75(0) 215(0) 143(0)
hard eq check(16) 12958(14) 12855(14) 12833(13) 11307(10) 9813(9) 9798(9)
ip(4) 2087(2) 1818(0) 601(0) 236(0) 279(0) 730(0)

total(179) 57653(53) 47485(40) 52554(44) 33945(29) 35066(28) 33422(20)

zchaff. The version ‘s’ is obtained by modifying ‘base’ to also score the literals
which get resolved out during conflict analysis. This scoring is similar to what is
done in the BerkMin solver. Literals which are involved in the recorded conflict
clause and which get resolved out during conflict analysis have their score incre-
mented by 1. The version ‘sMR’ adds multiple conflict analysis (Sect. 4.2) to ‘s’

and replaces antecedent clauses (Sect. 4.2). The version ‘sMRB’ adds BerkMin
like heuristics like the decision strategy (Sect. 4.1), aggressive clause deletion
(Sect. 4.3) and frequent restarts (Sect. 4.4). In this version, scores are decayed
every 20 backtracks. The solver maintains activities for the clauses (Sect. 4.3)
and clauses which survive deletion for many iterations have their activities in-
creased by a small amount. This version also includes an experimental decision
strategy modification (Sect. 5.3). The version ‘SMRBK’ adds the dynamic shrink-
ing decision strategy as in zchaff rand (Sect. 4.1) and clause deletion using the
shrinking length parameter L to estimate irrelevance (Sect. 4.3). SMRBK also in-
crements the scores by the number of conflicting clauses analyzed (Sect. 5.3) and
resets the VSIDS scores after each restart based on the current literal occurrence
counts. The version ‘SMrBKEV’ adds early conflict detection (Sect. 5.1) to SMRBK

and has a cleaned up variable data structure (Sect. 5.2). Due to the overhead of
the extra checks required before replacing antecedents when using early conflict
detection, only the antecedents of binary clauses are replaced when early conflict
detection is used. The version SBKEV is derived from SMrBKEV by disabling multi-
ple conflict analysis and antecedent-replacement. The version SMrBEV is derived
by disabling dynamic shrinking from SMrBKEV.

Table 1 reports the total solving time in seconds for the various versions
on benchmarks spanning microprocessor verification, bounded model checking,
fpga routing, etc. The random seed was 0 for all runs and the timeout was 900
seconds per instance. The numbers in parentheses give the number of instances
in the benchmark suite and also the number that remained unsolved. We see that

Zchaff2004: An Efficient SAT Solver 373

Table 2. More comparisons on the same benchmarks

Benchmark SMrBKEV SBKEV SMrBEV zchaff.2004.5.13 zchaff rand

01 rule(20) 9467(7) 8776(8) 9448(8) 8759(9) 9915(9)
07 rule(20) 99(0) 99(0) 174(0) 111(0) 121(0)
barrel(8) 256(0) 303(0) 349(0) 162(0) 68(0)
beijing(16) 57(0) 63(0) 61(0) 52(0) 65(0)
ferry(10) 7(0) 3(0) 3(0) 7(0) 2(0)
fifo(4) 2378(2) 2184(2) 2069(2) 1669(1) 1765(1)
fpga routing(32) 1315(1) 1356(1) 765(0) 1102(1) 516(0)
fvp-sat.3.0(20) 8770(1) 9361(5) 9737(10) 6432(4) 7171(1)
fvp-unsat.2.0(24) 402(0) 365(0) 1753(0) 853(0) 702(0)
hanoi(5) 143(0) 516(0) 174(0) 1180(1) 764(0)
hard eq check(16) 9798(9) 10302(10) 12218(12) 12095(12) 9877(9)
ip(4) 730(0) 606(0) 588(0) 1146(0) 214(0)

total(179) 33422(20) 33935(26) 37340(32) 33568(28) 31180(20)

Table 3. Effect of dynamic shrinking on microprocessor verification benchmarks

Benchmark SMrBEV SMrBKEV

fvp-unsat.1.0(4) 65(0) 29(0)
fvp-unsat.2.0(24) 1753(0) 402(0)
engine-unsat.1.0(10) 8182(4) 8087(4)
pipe-unsat.1.1(14) 17854(12) 10168(4)
fvp-sat.3.0(20) 17550(7) 9010(0)

total(68) 45404(23) 27696(8)

multiple conflict analysis and replacing the antecedents do not have a significant
effect on the solver run times by themselves. The BerkMin like decision heuristics
produce a definite improvement. Adding dynamic shrinking has a mixed effect for
these benchmarks. Adding early conflict detection and reorganizing the variable
data structure gives a small improvement.

Table 2 shows the effect of disabling multiple conflict analysis and the effect
of disabling shrinking from the final version. Performance is degraded in both
cases. Table 2 also compares zchaff.2004.5.13 with zchaff rand.

As remarked earlier, the dynamic shrinking strategy has the most signifi-
cant effect for the microprocessor verification benchmarks. We present the re-
sults without and with dynamic shrinking for some microprocessor verification
benchmarks in Table 3. The timeout for these experiments was 1800 seconds.

7 Summary

We have presented some details of the 2004 versions of zchaff including the ver-
sions that participated in the SAT 2004 Competition. The new features include

374 Y.S. Mahajan, Z. Fu, and S. Malik

decision strategies that increase the “locality” of the search and focus more on
recent conflicts, strategies that directly focus on deriving short conflict clauses,
an aggressive clause deletion heuristic that keeps only the clauses most likely to
be useful, a rapid restart policy that adds robustness and some techniques that
are intended to improve the efficiency of the Boolean constraint propagation
procedure. We have also presented some data that might help in evaluating the
usefulness of the various features.

References

1. Cook, S.A.: The complexity of theorem-proving procedures. In: Third Annual
ACM Symposium on Theory of Computing. (1971)

2. Kautz, H., Selman, B.: Planning as Satisfiability. In: European Conference on
Artificial Intelligence. (1992)

3. Stephan, P., Brayton, R., Sangiovanni-Vencentelli, A.: Combinational test gener-
ation using satisfiability. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems 15 (1996) 1167–1176

4. Jackson, D., Vaziri, M.: Finding bugs with a constraint solver. In: International
Symposium on Software Testing and Analysis, Portland, OR. (2000)

5. Velev, M.N., Bryant, R.E.: Effective use of boolean satisfiability procedures in the
formal verification of superscalar and VLIW. In: 38th DAC, New York, NY, USA,
ACM Press (2001) 226–231

6. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic Model Checking without
BDDs. In: Proc. of TACAS. (1999)

7. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal
of ACM 7 (1960) 201–215

8. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving.
Communications of the ACM 5 (1962) 394–397

9. Selman, B., Kautz, H., Cohen, B.: Local search strategies for satisfiability test-
ing. In: Proceedings of the Second DIMACS Challange on Cliques, Coloring, and
Satisfiability. (1993)

10. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers C-35 (1962) 394–397

11. Gunnar St̊almarck: System for Determining Propositional Logic Theorems by
Applying Values and Rules to Triplets that are Generated from Boolean Formula
(1994) United States Patent. Patent Number 5,276,897.

12. Gu, J., Purdom, P.W., Franco, J., Wah, B.W.: Algorithms for the Satisfiability
(SAT) Problem: A Survey. DIMACS Series in Discrete Mathematics and Theoret-
ical Computer Science (1997)

13. Nam, G.J., Sakallah, K.A., Rutenbar, R.A.: Satisfiability-Based Layout Revis-
ited: Detailed Routing of Complex FPGAs Via Search-Based Boolean SAT. In:
ACM/SIGDA International Symposium on FPGAs. (1999)

14. Marques-Silva, J.P., Sakallah, K.A.: Conflict Analysis in Search Algorithms for
Propositional Satisfiability. In: IEEE International Conference on Tools with Ar-
tificial Intelligence. (1996)

15. Bayardo, R., Schrag, R.: Using CSP look-back techniques to solve real-world SAT
instances. In: National Conference on Artificial Intelligence (AAAI). (1997)

16. Zhang, H.: SATO: An efficient propositional prover. In: International Conference
on Automated Deduction. (1997)

Zchaff2004: An Efficient SAT Solver 375

17. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engi-
neering an Efficient SAT Solver. In: 38th DAC. (2001)

18. Goldberg, E., Novikov, Y.: BerkMin: A Fast and Robust SAT Solver. In: DATE.
(2002)

19. Siege Satisfiability Solver, http://www.cs.sfu.ca/∼loryan/personal/ (2004).
20. SAT Competition 2003, http://www.satlive.org/SATCompetition/2003/ (2004).
21. SAT Competition 2004, http://www.satlive.org/SATCompetition/2004/ (2004).
22. http://www.cs.washington.edu/homes/kautz/satplan/blackbox/ (2004).
23. NuSMW Home Page, http://nusmv.irst.itc.it/ (2004).
24. GrAnDe, http://www.cs.miami.edu/∼tptp/ATPSystems/GrAnDe/ (2004).
25. SAT Competition 2002, http://www.satlive.org/SATCompetition/2002/ (2004).
26. Plaisted, D.A., Greenbaum, S.: A stucture-preserving clause form translation.

Journal of Symbolic Computation 2 (1986) 293–304
27. Marques-Silva, J.P., Sakallah, K.A.: GRASP - A New Search Algorithm for Satis-

fiability. In: IEEE International Conf. on Tools with Artificial Intelligence. (1996)
28. Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient conflict driven

learning in boolean satisfiability solver. In: ICCAD. (2001) 279–285
29. Li, C.M.: Integrating Equivalency reasoning into Davis-Putnam procedure. In:

AAAI. (2000)
30. Freeman, J.W.: Improvements to propositional satisfiability search algorithms.

PhD thesis, University of Pennsylvania (1995)
31. Marques-Silva, J.P.: The impact of branching heuristics in propositional satisfia-

bility algorithms. In: 9th Portuguese Conf. on Artificial Intelligence. (1999)
32. Zhang, L.: Searching for Truth: Techniques for Satisfiability of Boolean Formulas.

PhD thesis, Princeton University (2003)
33. Crawford, J., Auton, L.: Experimental results on the cross-over point in satisfia-

bility problems. In: National Conf. on Artificial Intelligence (AAAI). (1993)
34. Zhang, H., Stickel, M.: An efficient algorithm for unit-propagation. In: Fourth In-

ternational Symposium on Artificial Intelligence and Mathematics, Florida. (1996)
35. Nadel, A.: The Jerusat SAT Solver. Master’s thesis, Hebrew University of

Jerusalem (2002)
36. Pilarski, S., Hu, G.: Speeding up SAT for EDA. In: DATE. (2002)
37. Kautz, H., Horvitz, E., Ruan, Y., Gomes, C., Selman, B.: Dynamic restart policies.

In: The 18th National Conf. on Artificial Intelligence. (2002)
38. http://www2.inf.ethz.ch/personal/biere/projects/limmat/ (2004).

The Second QBF Solvers Comparative
Evaluation�

Daniel Le Berre1, Massimo Narizzano3,
Laurent Simon2, and Armando Tacchella3

1 CRIL, Université d’Artois,
Rue Jean Souvraz SP 18 – F 62307 Lens Cedex, France

leberre@cril.univ-artois.fr
2 LRI, Université Paris-Sud

Bâtiment 490, U.M.R. CNRS 8623 – 91405 Orsay Cedex, France
simon@lri.fr

3 DIST, Università di Genova,
Viale Causa, 13 – 16145 Genova, Italy

{mox, tac}@.dist.unige.it

Abstract. This paper reports about the 2004 comparative evaluation of
solvers for quantified Boolean formulas (QBFs), the second in a series of
non-competitive events established with the aim of assessing the advance-
ments in the field of QBF reasoning and related research. We evaluated
sixteen solvers on a test set of about one thousand benchmarks selected
from instances submitted to the evaluation and from those available at
www.qbflib.org. In the paper we present the evaluation infrastructure,
from the criteria used to select the benchmarks to the hardware set up,
and we show different views about the results obtained, highlighting the
strength of different solvers and the relative hardness of the benchmarks
included in the test set.

1 Introduction

The 2004 comparative evaluation of solvers for quantified Boolean formulas
(QBFs) is the second in a series of non-competitive events established with the
aim of assessing the advancements in the field of QBF reasoning and related
research. The non-competitive nature of the evaluation is meant to encourage
the developers of QBF reasoning tools and the users of QBF technology to sub-
mit their work. Indeed, our evaluation does not award one particular solver, but
instead it draws a picture of the current state of the art in QBF solvers and
benchmarks. Running the evaluation enables us to collect data regarding the

� The work of the first author was partially supported by Université d’Artois, the
IUT-Lens and FEDER. The work of the second and the last author was partially
supported by ASI, MIUR and a grant from the Intel Corporation. The authors would
like to thank all the participants to the QBF evaluation for submitting their work.

H.H. Hoos and D.G. Mitchell (Eds.): SAT 2004, LNCS 3542, pp. 376–392, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The Second QBF Solvers Comparative Evaluation 377

strength of different solvers and methods, the relative hardness of the bench-
marks, and to shed some light on the open issues for the researchers in the QBF
community.

With respect to last year’s evaluation [1] we have witnessed to an almost 50%
increase in the number of submitted solvers (from eleven to sixteen). While most
of the participants are still complete solvers extending the well-known Davis,
Putnam, Logemann, Loveland procedure (DPLL) [2, 3] for propositional satisfia-
bility (SAT), the evaluation also hosted one incomplete solver (WalkQSAT [4]),
a solver based on Q-resolution and expansion of quantifiers (quantor [5]), and
a solver using ZBDDs (Zero-suppressed Binary Decision Diagrams) to obtain
a symbolic implementation of the original DP algorithm extended to QBFs
(QMRes [6]). The number of the participants and the variety of the technologies
confirm the vitality of the research on QBF reasoning tools. Regarding appli-
cations of QBF reasoning, three families of benchmarks obtained by encoding
formal verification problems have been submitted, for a total of 88 instances. To
these we must add 22 families and 814 instances that have been independently
submitted to www.qbflib.org and that have been evaluated this year for the
first time. Finally, the submission of a generator for model A and model B ran-
dom instances [7] allowed us to run the participating solvers on a wide selection
of instances generated according to these probabilistic models.

The evaluation consisted of two steps: (i) running the solvers on a selection
of benchmarks, and (ii) analyzing the results. The first step is subject to the
stringent requirements of getting meaningful results and completing the evalu-
ation in a reasonable time. In order to mate these two requirements, we have
extracted the non-random part of the evaluation test set by sampling the pool of
available benchmarks – more than 5000 benchmarks and 68 families – to extract
a much smaller, yet representative, test set of about five hundred instances. To
these, we added representatives from model A and model B families of random
benchmarks to obtain the final test set. Using the selected test set, we have com-
pleted the first step by running the solvers on a farm of PCs, each solver being
restricted to the same amount of time and memory. The second step consisted
of two stages. In the first stage we considered all the solvers and the benchmarks
of the test set to give a rough, but complete, picture of the state of the art in
QBF. By analyzing the results for problems and discrepancies among the solvers
results, we were able to isolate solvers and instances that turned out to be prob-
lematic, and we removed them from the subsequent analysis. The second stage
is an in-depth account of the results, where we tried to extract a narrow, but
crisp, picture of the current state of the art.

The paper is structured as follows. In Section 2 we briefly describe all the
solvers and benchmarks that participated in the evaluation. In Section 3 we
present the the choice of the test set and a description of the computing infras-
tructure. In Section 4 we present the results of the evaluation first stage, while in
Section 5 we restrict our attention to the solvers and the benchmarks that passed
the first stage: here we present the result of the evaluation arranged solver-wise
(Sub. 5.1), and benchmark-wise (Sub. 5.2). We conclude the paper in Section 6
with a balance about the evaluation.

378 D. Le Berre et al.

2 Solvers and Benchmarks

Sixteen solvers from eleven different authors participated to the evaluation this
year. The requirements for the solvers were to be able to read the input instance
in a common format (the Q-DIMACS format [8]), and to provide the answer
(sat/unsat) in a given output format. Noticeably, all the solvers complied on
the input requirements, which was not the case on the previous evaluation [1],
while a few solvers required wrapper scripts to adapt the output format (ssolve,
qsat, and semprop) or to load additional applications required to run the solver
(openQBF, requiring the JVM). A short description of the solvers submitted
to the evaluation follows:

CLearn by Andrew G.D. Rowley, is a search-based solver written in C++, featuring
lazy data structures and conflict learning; the heuristic is a simple and efficient
lexicographic ordering based on prefix level (outermost to innermost) and variable
identifier (smallest first).

GRL by Andrew G.D. Rowley, is a sibling of CLearn, but with a different learning
method described in [9].

openQBF by Gilles Audemard, Daniel Le Berre and Olivier Roussel, is a search-based
solver written in Java, featuring basic unit propagation and pure literal lookahead,
plus a conflict backjumping lookback engine; the heuristic is derived from Böhm
and Speckenmeyer’s heuristic for SAT.

orsat by Olivier Roussel, is search-based solver written in C++, featuring an algo-
rithm based on relaxations to SAT, plus special purpose techniques to deal with
universal quantifiers; the solver is currently in its early stage of development, so
most of the features found in other, more mature, solvers are missing.

qbfl by Florian Letombe, is a search-based solver written in C, packed with a number
of features: trivial-truth, trivial-falsity, Horn and reverse-Horn formulas detection;
qbfl is implemented on top of Limmat (version 1.3), and comes in two flavors:
qbfl-jw uses an extension of the Jeroslow-Wang heuristic for SAT, while qbfl-bs
uses an extension of Böhm and Speckenmeyer’s heuristic for SAT.

qsat by Jussi Rintanen, is a search-based solver written in C, featuring a lookahead
heuristic with failed literal rule, sampling, partial unfolding and quantifier inver-
sion.

QMRes by Guoqiang Pan and Moshe Y. Vardi, written in C and based on a symbolic
implementation of the original DP algorithm, achieved using ZBDDs. The algo-
rithm features multi-resolution, a simple form of unit propagation, and heuristics
to choose the variables to eliminate.

quantor by Armin Biere, is a solver written in C based on Q-resolution (to eliminate
existential variables) and Shannon expansion (to eliminate universal variables),
plus a number of features, such as equivalence reasoning, subsumption checking,
pure literal detection, unit propagation, and also a scheduler for the elimination
step.

QuBE by Enrico Giunchiglia, Massimo Narizzano and Armando Tacchella, is a search-
based solver written in C++ featuring lazy data structures for unit and pure lit-
eral propagation; QuBE comes in two flavors: QuBE-bj, featuring conflict- and
solution-directed backjumping, and QuBE-lrn, featuring conflict and solution
learning; the heuristic is an extension to QBF of zCHAFF heuristic for SAT.

ssolve by Rainer Feldmann and Stefan Schamberger, is a search-based algorithm
written in C, featuring trivial truth and a modified version of Rintanen’s method of

The Second QBF Solvers Comparative Evaluation 379

inverting quantifiers. The data structures used are extensions of the data structures
of Max Böhm’s SAT-solver.

semprop by Reinhold Letz, is a search-based solver written in Bigloo (a dialect of
Scheme), featuring dependency directed backtracking and lemma/model caching
for false/true subproblems.

WalkQSAT by Ian Gent, Holger Hoos, Andrew G. D. Rowley, and Kevin Smyth, is
the first incomplete QBF solver based on stochastic search methods. It is a sibling
of CSBJwith WalkSAT as a SAT oracle and guidance heuristic.

yQuaffle by Yinlei Yu and Sharad Malik, is a search-based solver written in C++,
featuring multiple conflict driven learning, solution based backtracking, and inver-
sion of quantifiers.

Most of the solvers mentioned above are described in a booklet [10] prepared for
the evaluation with the contributions of the solvers authors, with the exception
of qsat, ssolve, and semprop, which are described, respectively, in [11], [12],
and [13].

The evaluation received 88 benchmarks divided in 4 different families and a
random generator, all from four different authors:

Biere (1 family, 65 instances) QBF encodings of the following problem: given an 〈n〉-
bit-counter with optional reset (r) and enable (e) signals, check whether it is pos-
sible to reach the state where all 〈n〉 bits are set to 1 starting from the initial state
where all bits are set to 0.

Katz (2 families, 20 instances) QBF encodings of symbolic reachability problems in
hardware circuits.

Lahiri/Seshia (1 family, 3 instances) QBF encodings of convergence testing instances
generated in term-level model checking.

Tacchella A generator for model A and model B random QBF instances, implemented
according to the guidelines described in [7].

In order to obtain the evaluation test set, we have also considered 5558 bench-
marks in 64 families from www.qbflib.org:

Ayari (5 families, 72 benchmarks) A family of problems related to the formal equiv-
alence checking of partial implementations of circuits (see [14]).

Castellini (3 families, 169 benchmarks) Various QBF-based encodings of the bomb-
in-the-toilet planning problem (see [15]).

Gent/Rowley (8 families, 612 benchmarks) Various encodings of the famous “Con-
nect4” game into QBF [16].

Letz (1 family, 14 benchmarks) Formulas proposed in [13] generated according to the
pattern ∀x1x3 . . . xn−1∃x2x4 . . . xn(c1 ∧ cn) where c1 = x1 ∧ x2, c2 = ¬x1 ∧ ¬x2,
c3 = x3 ∧x4, c4 = ¬x3 ∧¬x4 , and so on. The instances consists of simple variable-
independent subproblems but they should be hard for standard (i.e., without non-
chronological backtracking) QBF solvers.

Mneimneh/Sakallah (12 families, 202 benchmarks) QBF encodings of vertex eccen-
tricity calculation in hardware circuits [17].

Narizzano (4 families, 4000 benchmarks) QBF-based encoding of the robot naviga-
tion problems presented in [15].

Pan (18 families, 378 benchmarks) Encodings of modal K formulas satisfiability into
QBF (see [18]). The original benchmarks have been proposed during the TANCS’98
comparison of theorem provers for modal logics [19].

380 D. Le Berre et al.

Rintanen (5 families, 47 benchmarks) Planning, hand-made and random problems,
some of which have been presented in [20].

Scholl/Becker (8 families, 64 benchmarks) encode equivalence checking for partial
implementations problems (see [21]).

3 Evaluation: Test Set and Infrastructure

As we outlined in Section 1, deciding the test set for the evaluation is compli-
cated by two competing requirements: (i) obtaining meaningful data and (ii)
completing the evaluation in reasonable time. To fulfill requirement (i) in the
case of non-random benchmarks, we decided to extract a suitable subset from
the pool of all the available benchmarks. In particular, we designed the selection
process in such a way that the resulting test set is representative of the initial
pool, yet it is not biased toward specific instances. This cannot be achieved by
simply extracting a fixed proportion of benchmarks from all the available fami-
lies, because some of them dominate others in terms of absolute numbers, e.g.,
the four Robots families account for more than 70% of the instances available
on QBFLIB. In order to remove the bias, we have extracted a fixed number of
instances from each available family. In this way, the extracted test set accounts
for the same number of families as the initial pool (variety is preserved), but
each family contains at most N representatives (bias is removed) We used the
following algorithm:

– if the family in the original pool consists of M < N benchmarks, then extract
all M of them, while

– if the family consists of M > N benchmarks, then extract only N instances
by sampling the original ones uniformly at random.

Considering all the non-random benchmarks described in Section 2, we have ex-
tracted an evaluation test set of 522 instances divided into 68 families. As for
random instances, the issue is further complicated by the fact that we have sev-
eral parameters to choose when generating the benchmarks, namely, the number
of variables, the number of clauses, the number of alternations in the prefix, the
number of literals per clause, the number of existential literals per clause, and
the generation model (either model A or model B). We based our selection of
random benchmarks on the experimental work presented in [22], and we gener-
ated formulas with v = {50, 100, 150} variables, a = {2, 3, 4, 5} alternations in
the prefix, and a fixed number of 5 literals per clause. For each fixed value of a
and v, we generated formulas ranging over clauses-to-variables ratio of 2 to 18
with step 2. We used the above parameters both to generate model A and model
B instances, and a threshold 2 for the number of existential literals in the clause,
which means at least 2 existential literals per clause in model A instances, and
exactly 2 existential literals per clause in model B instances. Notice that while
for model A instances we were able to choose parameters based on the previous
experience of [7, 22], for model B instances, the only experimental account avail-
able is that of [7], which covers only part of the space explored in the evaluation.

The Second QBF Solvers Comparative Evaluation 381

Overall, the evaluation test set was completed by 432 random formulas divided
into 24 families of 18 samples each, bringing the total number of benchmarks to
954.

As for the computing infrastructure, the evaluation ran on a farm of 10
identical rack-mount PCs, equipped with 3.2Ghz PIV processors, 1GB of RAM
and running Debian/GNU Linux (distribution sarge). Considering that we had
954 benchmarks to run, we split the evaluation job evenly across (9) machines,
using perl scripts to run subsets of 106 benchmarks on all the 16 solvers on each
machine. This methodology has a two points in its favor. First, testing scripts
are extremely lean and simple: one server script, plus as many client scripts as
there are machines running, accounting for less than 100 lines of perl code. This
makes the whole evaluation infrastructure lightweight and easy to debug. Second,
by running clusters of benchmarks on the same machine, we are guaranteed that
small differences that could exist even in identical hardware, are compensated
by the fact that a given benchmark is evaluated by all the participants on the
very same machine. Indeed, while noise in the order of one second does not
matter much when comparing benchmarks to decide their hardness, it can make
a big difference when the total runtime on the benchmark is in in the order of
one second or less and we are comparing solvers. Finally, all the solvers where
limited to 900 seconds of CPU time and 900MB of memory: in the following,
when we say that an instance has been solved, we mean that this happened
without exceeding the resource bounds above.

4 Evaluation: First Stage Results

In Table 1 and Table 2, we present the raw results of the evaluation concern-
ing, respectively, non-random (522 benchmarks) and random (432 benchmarks)

Table 1. Results of the evaluation first stage (non-random benchmarks)

Solver Total Sat Unsat Unique
Time # Time # Time # Time

semprop 288 10303.40 133 2985.806 155 7317.55 5 814.56
quantor 284 3997.10 126 2137.25 158 1859.85 10 2624.36
yQuaffle 256 6733.02 110 3152.37 146 3580.65 – –
CLearn 255 11565.30 116 3894.06 139 7671.27 – –
ssolve 245 8736.64 114 3350.96 131 5385.68 – –
GRL 240 11895.90 107 4577.22 133 7318.70 – –
QuBE-bj 239 9426.09 110 4538.27 129 4887.82 – –
QuBE-lrn 237 8270.98 113 3365.83 124 4905.15 1 433.15
QMRes 224 6337.39 122 3315.42 102 3021.97 28 901.54
qsat 218 8375.62 93 3307.13 125 5068.49 7 197.63
qbfl-jw 205 5573.55 83 2849.65 122 2723.90 – –
CSBJ 205 6528.84 98 3407.16 107 3121.68 – –
qbfl-bs 191 3076.62 75 1466.10 116 1610.52 – –
openQBF 185 6598.94 78 3219.56 107 3379.38 – –
WalkQSAT 163 7262.51 83 4113.37 80 3149.14 – –
orsat 73 1243.83 37 1134.74 36 109.09 – –

382 D. Le Berre et al.

Table 2. Results of the evaluation first stage (random benchmarks)

Solver Total Sat Unsat Unique
Time # Time # Time # Time

QuBE-lrn 426 3452.67 86 93.12 340 3359.55 – –
QuBE-bj 418 4343.98 76 87.12 342 4256.86 – –
ssolve 403 1028.30 86 346.87 317 681.43 1 0.45
semprop 384 3069.28 80 1614.06 304 1455.22 – –
CLearn 338 5267.99 76 1939.28 262 3328.71 – –
GRL 335 5975.14 73 1213.30 262 4761.84 – –
qsat 321 3491.18 60 450.01 261 3041.17 1 208.12
CSBJ 320 5956.06 74 2038.39 246 3917.67 – –
WalkQSAT 316 5838.05 75 2262.17 241 3575.88 – –
openQBF 277 5525.99 64 334.51 213 5191.48 – –
qbfl-jw 263 6380.26 94 58.35 169 6321.91 – –
qbfl-bs 218 3265.93 92 1.06 126 3264.87 – –
yQuaffle 197 3166.62 34 184.69 163 2981.93 – –
QMRes 142 4091.29 53 1594.07 89 2497.22 – –
quantor 120 263.75 52 0.78 68 262.97 – –
orsat 60 1.24 – – 60 1.24 – –

instances. Each table consists of nine columns that for each solver report its
name (column “Solver”), the total number of instances solved and the cumula-
tive time to solve them (columns “#” and “Time”, group “Total”), the number
of instances found satisfiable and the time to solve them (columns “#” and
“Time”, group “Sat”), the number of instances found unsatisfiable and the time
to solve them (columns “#” and “Time”, group “Unsat”), and, finally, the num-
ber of instances uniquely solved and the time to solve them (columns “#” and
“Time”, group “Unique”); a “–” (dash) in the last two columns means that the
solver did not conquer any instance uniquely. Both tables are sorted in descend-
ing order, according to the number of instances solved, and, in case of a tie, in
ascending order according to the cumulative time taken to solve them.

Looking at the results on non-random instances in Table 1, we can see that all
the solvers, with the only exception of orsat, were able to conquer at least 25%
of the instances in this category. On the other hand, only two solvers, namely
semprop and quantor, were able to conquer more than 50% of the instances.
Overall, this indicates that given the current state of the art in QBF reasoning,
the performance demand of the application domains is still exceeding the ca-
pabilities of most solvers. The performance of the solvers is also pretty similar:
excluding orsat, there are only 125 instances (less than 25% of the total) sepa-
rating the strongest solver (semprop), from the weakest solver (WalkQSAT),
and the number of instances solved by the strongest five participants are in the
range [288-245] spanning only 43 instances (less than 10% of the total). Some
difference arises when considering the number of instances uniquely solved by a
given solver: QMRes, quantor, semprop, qsat and QuBE-lrn are the only
solvers able to conquer, respectively, 28, 10, 7, 5 and 1 instance. Noticeably, the
strongest solvers in this respect, QMRes and quantor, are not extensions of
the DPLL algorithm as all the other participants, indicating that the technolo-
gies on which they are based provide an interesting alternative to the classic
search-based paradigm.

The Second QBF Solvers Comparative Evaluation 383

Looking at the results on random instances in Table 2, we can see that all the
solvers, again with the only exception of orsat, were able to conquer at least
25% of the instances in this category, and six solvers were able to conquer more
than 75% of the instances. Overall, this indicates that the choice of parameters
for the generation of random instances resulted in a performance demand well
within the capabilities of most solvers. The performance of the solvers is however
rather different: even excluding orsat, there are 306 instances (about 70% of
the total) separating the strongest QuBE-lrn, from the weakest quantor, and
the number of instances solved by the strongest five participants are spread over
88 instances (about 20% of the total). There is no relevant change in the picture
above when considering the number of instances uniquely solved by a given
solver, since only ssolve and qsat are able to uniquely conquer one instance
each. Noticeably, some of the strongest solvers on random instances, namely
semprop, ssolve and CLearn, are also among the strongest solvers on non-
random benchmarks, indicating that these search-based engines feature relatively
robust algorithms.

As we have anticipated in Section 1, a few discrepancies in the results of the
solvers were detected during the analysis of the first stage results. A total of 32
discrepancies were detected, of which 9 regarding non-random instances, and the
remaining regarding random instances. For each of the discrepancies we reran the
solvers reporting a result different from the majority of the other solvers and/or
the expected result of the benchmark. We also inspected the instances, looking
for weird syntax and other pitfalls that may lead a correct solver to report an
incorrect result. At the end of this analysis we excluded from the second stage
the following solvers:

– QuBE-bj and QuBE-lrn, responsible for all the discrepancies detected on
random instances; although the satisfiability status of the random bench-
marks is not known in advance, the two solvers do not agree with each other
in 10/23 cases, and in 7/23 cases they do not agree with the majority of
solvers.

– qsat, reporting as unsatisfiable the benchmark k ph n-21 of the k ph n fam-
ily in the Pan series: these benchmarks ought to be satisfiable by construction
(in modal K), and the correctness of the translations is not taunted by any
other evidence in our data.

– CLearn and GRL, reporting as unsatisfiable the benchmark s27 d2 s of
the s 27 family in the Mneimneh/Sakallah series; the benchmark is both
declared satisfiable by its authors and by all the other solvers.

We have also excluded the following benchmarks:

– the Connect2 family (Gent/Rowley), since on some of its instances qbfl-bs,
qbfl-jw, QMResand WalkQSAT, reported apparently incorrect results,
if compared to the majority of the other solvers: examining the instances,
it turns out that they contain existentially quantified sets declared as sepa-
rate but adjacent lists in the Q-DIMACS prefix. Although the Q-DIMACS
standard does not disallow this syntax, we believe that this might be the

384 D. Le Berre et al.

cause of the problems, for some solvers are not prepared to handle this kind
of input correctly.

– the Logn family (Rintanen), since two of its instances are pure SAT with un-
bound variables containing an empty input clause: their correct satisfiability
status is thus “false”, but some of the solvers (namely QMRes, sempropand
yQuaffle) report them as satisfiable.

The data obtained by disregarding the above solvers and benchmarks is free of
any discrepancy. Clearly, for instances that were conquered by just one solver,
and for which we do not know the satisfiability status in advance, the possibility
that the solver is wrong still exists, but we consider this as unavoidable given
the current state of the art.4

5 Evaluation: Second Stage Results

5.1 Solver-Centric View

In Table 3 we report second stage results about non-random benchmarks (510
benchmarks, 11 solvers), divided into three categories:

Formal Verification 29 families and 220 benchmarks, including Ayari, Biere,
Katz, Mneimneh/Sakallah, and Scholl/Becker instances.

Planning 16 families and 122 benchmarks, including Castellini, Gent/Rowley,
Narizzano, and part of Rintanen instances.

Miscellaneous 21 families and 168 benchmarks, including Letz, Pan and the
remaining Rintanen instances.

Table 3 is arranged analogously to Tables 1 and 2, except an additional column
that indicates the category. The solvers are classified independently for each
category, and in descending order according to the number of instances solved:
in case of ties, the solvers are prioritized according the time taken to solve the
benchmarks, shortest time first.

Looking at Table 3, the first observation is that the solvers performed slightly
better on the planning category: the strongest one in the category (yQuaffle)
solves 82% of the instances, the weakest one (orsat) solves about 30% of the in-
stances, and 7 out of the 11 solvers admitted to the second stage are able to solve
more than 50% of the category. On the other hand, the strongest solver in the
miscellaneous category (QMRes) solves 78% of the instances, but most of the
solvers (8 out of 11) do not go beyond the 50% threshold; in the formal verifica-
tion arena, the strongest solver in the category (quantor) does not get beyond
a mere 33% of the total instances. Also significant is the fact that in the plan-
ning category the strongest solver is DPLL-based (yQuaffle), while both in
the formal verification category and in the miscellaneous category the strongest
solvers (respectively quantor and QMRes) express alternative paradigms.

4 Notice that the same problem exists in the SAT competition when a solver is the
only one to report about an instance and the answer is “unsatisfiable”.

The Second QBF Solvers Comparative Evaluation 385

Table 3. Results of the evaluation second stage (non-random benchmarks)

Category Solver Total Sat Unsat Unique
Time # Time # Time # Time

quantor 74 2854.87 34 1424.66 40 1430.21 10 2624.36
semprop 71 2064.38 29 294.58 42 1769.8 2 545.51
yQuaffle 68 1239.56 28 319.56 40 920 – –
qbfl-jw 65 967.25 26 311.44 39 655.81 – –

Formal CSBJ 59 1247.82 27 371.96 32 875.86 – –
Verification ssolve 59 1814.76 26 231.47 33 1583.29 – –

qbfl-bs 56 262.61 25 244.81 31 17.8 – –
QMRes 51 1838.81 28 1166.75 23 672.06 10 171.24
openQBF 49 1459.92 20 170.26 29 1289.66 – –
WalkQSAT 40 1599.04 21 771.14 19 827.9 – –
orsat 27 774.68 20 718.77 7 55.91 – –

yQuaffle 100 3261.00 37 1763.32 63 1497.68 4 1843.74
ssolve 93 2786.63 35 353.63 58 2433.00 – –
qbfl-jw 92 2243.19 30 706.42 62 1536.77 – –
semprop 88 3935.57 27 348.03 61 3587.54 2 563.87
quantor 85 479.50 28 311.18 57 168.32 1 37.35

Planning qbfl-bs 84 569.73 21 0.79 63 568.94 – –
CSBJ 84 1052.90 30 872.49 54 180.41 – –
openQBF 80 3404.27 27 1867.38 53 1536.89 – –
WalkQSAT 55 143.52 16 0.69 39 142.83 – –
QMRes 37 2513.36 18 490.71 19 2022.65 – –
orsat 38 65.04 11 13.47 27 51.57 – –

QMRes 132 1980.92 74 1657.88 58 323.04 20 749.35
quantor 117 635.82 63 401.31 54 234.51 – –
semprop 117 4293.44 70 2339.32 47 1954.12 6 281.64
ssolve 81 4115.79 48 2762.40 33 1353.39 – –
yQuaffle 76 2212.21 38 1051.83 38 1160.38 1 179.42

Miscellaneous WalkQSAT 62 5517.68 44 3340.22 18 2177.46 – –
CSBJ 54 4222.49 36 2158.17 18 2064.32 – –
openQBF 46 1710.80 26 1160.66 20 550.14 – –
qbfl-bs 41 2243.40 29 1220.50 12 1022.90 – –
qbfl-jw 38 2362.21 27 1831.79 11 530.42 – –
orsat 7 403.59 6 402.50 1 1.09 – –

Focusing on formal verification category, we can see that all the solvers are
pretty much in the same capability ballpark. Considering the three strongest
solvers, namely quantor, semprop and yQuaffle, we can see that both
quantor and semprop are able to uniquely conquer 10 and 2 instances, re-
spectively, while yQuaffle is subsumed by the portfolio constituted by all the
other solvers. At the same time, quantor, with 38.58s average solution time,
and semprop, with 29.07s average solution time, seem to be slightly less opti-
mized than yQuaffle, which fares a respectable 18.22s average solution time.
Among the other solvers, it is worth noting that qbfl-jw and qbfl-bs perform
quite nicely in terms of average solution time (14.88s and 4.68s, respectively),
and QMRes stands out for its ability to conquer 10 instances that defied all the
other participants.

As for the planning category, we can see that given the relative easiness of
the benchmarks selected for the evaluation, the differences between the solvers
are substantially smoothed. This is also witnessed by the fact that only 4, 2
and 1 instances where uniquely conquered by, respectively, yQuaffle (which
is also the strongest in this category), semprop and quantor. One possible
explanation of these results is that most of the benchmarks in this category,

386 D. Le Berre et al.

Table 4. Results of the evaluation second stage (random benchmarks)

Category Solver Total Sat Unsat Unique
Time # Time # Time # Time

ssolve 187 1025.92 64 346.64 123 679.28 16 498.75
semprop 168 3055.93 58 1602.71 110 1453.22 – –
CSBJ 104 5629.68 52 1722.02 52 3907.66 – –
WalkQSAT 100 5461.75 53 1896.45 47 3565.3 – –
qbfl-jw 94 1926.84 72 0.64 22 1926.2 – –
qbfl-bs 91 378.23 72 0.74 19 377.49 – –

Model A openQBF 69 3092.8 42 183.21 27 2909.59 – –
yQuaffle 53 1375.92 27 139.79 26 1236.13 – –
QMRes 31 1591.19 31 1591.19 0 0 – –
quantor 30 0.61 30 0.61 0 0 – –
orsat 0 0 0 0 0 0 – –

ssolve 216 2.38 22 0.23 194 2.15 – –
semprop 216 13.35 22 11.35 194 2 – –
CSBJ 216 326.38 22 316.37 194 10.01 – –
WalkQSAT 216 376.3 22 365.72 194 10.58 – –

Model B openQBF 208 2433.19 22 151.3 186 2281.89 – –
qbfl-jw 169 4453.42 22 57.71 147 4395.71 – –
yQuaffle 144 1790.7 7 44.9 137 1745.8 – –
qbfl-bs 127 2887.7 20 0.32 107 2887.38 – –
QMRes 111 2500.1 22 2.88 89 2497.22 – –
quantor 90 263.14 22 0.17 68 262.97 – –
orsat 60 1.24 0 0 60 1.24 – –

with the only exception of Gent and Rowley’s connect[3-9] families, have been
around for quite some time, so developers had access to them for tuning their
solvers before the evaluation.

Finally, considering the miscellaneous category, the first thing to be observed
is that most of these benchmarks come from the Pan families. Since such bench-
marks are derived from translations of structured modal K instances [19], and the
translation algorithm applied is the same for all the benchmarks, it is reasonable
to assume that the original structure, although obfuscated by the translation,
carries over to the QBF instances. In conclusion, the best solvers in this category
are probably those that can discover and take advantage of such a hidden struc-
ture. Looking at the results it seems that QMRes, both the strongest solver
and the only one able to conquer 20 instances (more than 10% of the total),
is clearly the one taking the most advantage of the benchmark structure. Also
quantor and semprop perform quite nicely by conquering 117 instances: sem-
prop, although slightly slower than quantor on average, is also able to uniquely
conquer 6 instances. Noticeably, the fourth strongest solver (ssolve) trails the
path of the strongest three at a substantial distance (36 instances, about 20%
of the total instances).

In Table 4 we report second stage results about random benchmarks (432
benchmarks, 11 solvers), divided into two categories:

Model A 12 families and 216 benchmarks, generated according to the guide-
lines presented in Section 3 to cover the space a={2, 3, 4, 5}, v={50, 100, 150},
where a is the number of alternations in the prefix and v is the number of
variables: each of the 12 families corresponds to a given setting of a, v and

The Second QBF Solvers Comparative Evaluation 387

contains formulas with a ratio r clauses/variables in the range 2 to 18 (step
2), and 2 instances per each value of a, v, and r.

Model B 12 families and 216 benchmarks, generated according to the same
parameters as model A families.

Table 4 is arranged analogously to Table 3.
Looking at Table 4, the first observation is that the solvers performed very

well on model B instances: the strongest one in the category (ssolve) solves
100% of the instances, the weakest one (orsat) solves about 27%, and 9 out of
the 11 solvers admitted to the second stage are able to solve more than 50% of
the instances in this category. Model A instances turned out to be slightly more
difficult to solve since the strongest solver (again ssolve) conquered about 86%
of the instances, and with the only exception of ssolve and semprop, all the
other solvers do not go beyond the 50% threshold. Noticeably, most solvers that
do very well on non-random instances have troubles with the random ones: this
is the case of QMRes, quantor and yQuaffle, and the phenomenon is par-
ticularly evident on model A instances. This seems to validate analogous results
in SAT, where solvers that are extremely good on non-random instances, fail to
be effective on random ones. On the other hand ssolve and semprop partially
contradict this result, in that they are the most effective on random instances,
and still reasonably effective on non-random instances as we have seen before.
While QMRes and quantor abandon the top positions on the random bench-
marks, WalkQSAT performs much better on this kind of instances, possibly
indicating that its incomplete algorithm is much more suited to random, rather
than structured instances. On the other hand, quantor and QMRes results,
are a clear indication that their non-DPLL based algorithms have been tuned
heavily on structured instances, and are possibly less adequate for randomly
generated ones.

5.2 Benchmark-Centric View

In Table 5 we show the classification of the non-random benchmarks included
in the evaluation test set according to the solvers admitted to the second stage.
Table 5 consists of nine columns where for each family of instances we report the
name of the family (column Family), the number of instances included in the
family, the number of instances solved, the number of such instances found SAT
and the number found UNSAT (group “Overall”, columns “N”, “#”, “S”, “U”,
respectively), the time taken to solve the instances (column “Time”), the number
of easy, medium and medium-hard instances (group “Hardness”, columns “EA”,
“ME”, “MH”). The number of instances solved and the cumulative time taken
for each family is computed considering the “SOTA solver”, i.e., all the second
stage solvers running in parallel. A benchmark is thus solved if at least one of the
solvers conquers it, and the time taken is the best among the times of the solvers
that conquered the instance. The benchmarks are classified according to their
hardness with the following criteria: easy benchmarks are those solved by all the
solvers, medium benchmarks are those solved by at least two solvers, medium-
hard benchmarks are those solved by one reasoner only, and hard benchmarks

388 D. Le Berre et al.

Table 5. Classification of non-random benchmarks (second stage data)

Family Overall Time Hardness
N # S U EA ME MH

Adder 8 6 2 4 132.54 0 2 4
C432 8 8 3 5 1787.99 0 5 3
C499 8 5 3 2 19.97 0 4 1
C5315 8 4 2 2 437.76 0 3 1
C6288 8 1 1 0 3.93 0 0 1
C880 8 2 2 0 1.66 0 2 0
comp 8 8 4 4 0.62 0 8 0
counter 8 4 4 0 0.05 2 2 0
DFlipFlop 8 8 0 8 3.16 1 7 0
jmc quant1 8 3 2 1 18.68 0 1 2
jmc quant2 8 3 2 1 11.45 0 0 3
MutexP 7 7 7 0 7.30 2 5 0
s1196 6 0 0 0 – 0 0 0
s1269 8 0 0 0 – 0 0 0
s27 4 4 1 3 4.43 1 3 0
s298 8 1 1 0 452.96 0 0 1
s3271 8 8 0 8 1.90 0 8 0
s3330 8 1 1 0 154.87 0 0 1
s386 8 0 0 0 – 0 0 0
s499 8 3 3 0 70.41 0 1 2
s510 8 0 0 0 – 0 0 0
s641 8 1 1 0 350.81 0 0 1
s713 8 1 1 0 287.14 0 0 1
s820 8 0 0 0 – 0 0 0
SzymanskiP 8 8 0 8 211.20 0 8 0
term1 8 8 4 4 164.71 0 7 1
uclid 3 0 0 0 – 0 0 0
VonNeumann 8 8 0 8 16.40 0 8 0
z4ml 8 8 4 4 0.03 5 3 0

Blocks 8 8 2 6 215.02 0 7 1
Connect3 8 8 0 8 6.92 0 8 0
Connect4 8 8 0 8 3.31 3 5 0
Connect5 8 8 0 8 6.72 1 7 0

Family Overall Time Hardness
N # S U EA ME MH

Connect6 8 8 0 8 2.99 1 7 0
Connect7 8 8 0 8 5.22 0 8 0
Connect8 8 8 0 8 6.29 0 8 0
Connect9 3 3 0 3 2.81 0 3 0
RobotsD2 8 8 6 2 256.12 0 8 0
RobotsD3 8 7 6 1 2411.13 0 4 3
RobotsD4 8 7 5 2 580.83 0 5 2
RobotsD5 8 8 4 4 871.52 0 7 1
Toilet 8 8 5 3 7.75 2 6 0
ToiletA 8 8 1 7 6.99 3 5 0
ToiletC 8 8 3 5 0.95 4 4 0
ToiletG 7 7 7 0 0.07 6 1 0

Chain 8 8 8 0 9.25 0 8 0
Impl 8 8 8 0 0.06 4 4 0
k branch n 8 4 4 0 269.07 0 1 3
k branch p 8 3 0 3 5.86 0 1 2
k d4 n 8 8 8 0 32.64 0 1 7
k d4 p 8 8 0 8 12.44 0 7 1
k dum n 8 8 8 0 5.34 0 8 0
k dum p 8 8 0 8 6.88 0 8 0
k grz n 8 8 8 0 1069.34 0 7 1
k grz p 8 8 0 8 9.19 0 7 1
k lin n 8 8 8 0 21.54 1 6 1
k lin p 8 8 0 8 4.80 0 8 0
k path n 8 8 8 0 3.55 0 8 0
k path p 8 8 0 8 11.84 0 8 0
k ph n 8 7 7 0 184.35 1 5 1
k ph p 8 3 0 3 1.46 0 3 0
k poly n 8 8 8 0 5.59 0 8 0
k poly p 8 8 0 8 0.15 0 8 0
k t4p n 8 8 8 0 94.10 0 2 6
k t4p p 8 8 0 8 22.92 0 4 4
Tree 8 8 2 6 4.82 1 7 0

are those that remained unsolved. Finally, Table 5 is divided into three sections
grouping respectively, families of formal verification, planning and miscellaneous
benchmarks.

According to the data summarized in Table 5, the non-random part of the
evaluation second stage consisted of 510 instances, of which 383 have been solved,
172 declared satisfiable and 211 declared unsatisfiable, resulting in 38 easy, 289
medium, 56 medium-hard, and 127 hard instances (respectively, the 7%, 56%,
10%, and 24% of the test set). These results indicate that the selected non-
random benchmarks are not trivial for current state-of-the-art QBF solvers,
since there is a little number of easy instances, and a substantial percentage of
medium-to-hard instances. At the same time, the test set is not overwhelming,
since most of the non-easy instances could be considered of medium difficulty,
i.e., they are solved by at least two solvers.

The cumulative results about Table 5 are not balanced across each single
category: formal verification families contributed 110 hard and 22 medium-
hard benchmarks, planning families contributed only 2 hard and 7 medium-hard
benchmarks, and the miscellaneous families (essentially the Pan families) con-
tributed 15 hard and 27 medium-hard benchmarks. The families submitted for

The Second QBF Solvers Comparative Evaluation 389

Table 6. Classification of random benchmarks (second stage data)

Family Overall Time Hardness
N # S U EA ME MH

2qbf-5cnf-50var 18 18 3 15 17.63 0 15 3
2qbf-5cnf-100var 18 17 2 15 453.77 0 13 4
2qbf-5cnf-150var 18 14 2 12 46.41 0 11 3
3qbf-5cnf-50var 18 18 9 9 17.83 0 18 0
3qbf-5cnf-100var 18 17 8 9 6.7 0 15 2
3qbf-5cnf-150var 18 16 8 8 23.16 0 16 0
4qbf-5cnf-50var 18 18 6 12 10.18 0 17 1
4qbf-5cnf-100var 18 16 4 12 2.49 0 15 1
4qbf-5cnf-150var 18 17 5 12 6.38 0 15 2
5qbf-5cnf-50var 18 17 10 7 9.07 0 17 0
5qbf-5cnf-100var 18 15 9 6 21.7 0 15 0
5qbf-5cnf-150var 18 16 10 6 48.98 0 16 0

Family Overall Time Hardness
N # S U EA ME MH

2qbf-5cnf-50var 18 18 1 17 0.45 0 18 0
2qbf-5cnf-100var 18 18 1 17 7.49 0 18 0
2qbf-5cnf-150var 18 18 0 18 0.58 0 18 0
3qbf-5cnf-50var 18 18 2 16 0.01 11 7 0
3qbf-5cnf-100var 18 18 2 16 0.1 2 16 0
3qbf-5cnf-150var 18 18 2 16 0.15 0 18 0
4qbf-5cnf-50var 18 18 2 16 0.15 0 18 0
4qbf-5cnf-100var 18 18 2 16 0.19 0 18 0
4qbf-5cnf-150var 18 18 2 16 0.28 0 18 0
5qbf-5cnf-50var 18 18 4 14 0.1 1 17 0
5qbf-5cnf-100var 18 18 2 16 0.22 0 18 0
5qbf-5cnf-150var 18 18 2 16 0.53 0 18 0

the evaluation resulted pretty hard for the solvers: only 4 out of 8 instances in the
counter (Biere) benchmarks and 3 out of 8 in the jmc (Katz) benchmarks were
solved, while none of the uclid (Lahiri/Seshia) benchmarks was solved. Quite
interesting are also the results for the Mneimneh/Sakallah’s and Gent/Rowley’s
families, which have never been extensively tested before: the benchmarks in
the former resulted quite hard in accordance to what reported in [17] (only 20%
of the instances solved), while the latter resulted well within the capabilities
of the current state-of-the-art solvers, but not trivial (100% of the instances
solved, only 5 easy instances). Among the “older” benchmarks, the Adder fam-
ily (Ayari), and the C499, C5315, C6288, and C880 families (Scholl/Becker) are
still quite challenging as they resulted in the last year’s evaluation [1].

In Table 6 we show the classification of the random benchmarks included in
the evaluation test set according to the solvers admitted to the second stage. Ta-
ble 6 is arranged similarly to Table 5: Table 6 (left) is about model A instances,
Table 6 (right) is about model B instances. According to the data summarized
in Table 6, the random part of the evaluation second stage consisted of 432 in-
stances, of which 415 have been solved, 98 declared satisfiable and 317 declared
unsatisfiable, resulting in 14 easy, 385 medium, 16 medium-hard, and 17 hard
instances. These results indicate that the selected non-random benchmarks are
not trivial for current state-of-the-art QBF solvers, although less challenging
than the non-random ones. All other things being equal, model A instances pro-
vide a much more challenging test set than model B instances. Using model A
instances, an increase in the number of variables determines an increase in the
number of hard instances in the case of 2- and 3-qbfs, but this is not confirmed
in the case of 4- and 5-qbfs. The number of alternations does not seem to be
correlated with the hardness: considering 150 variables benchmarks, there are 4
hard 2-qbfs, 2 hard 3-qbfs, 1 hard 4-qbf, and 2 hard 5-qbfs. Although the num-
ber of samples is too small for each single point to draw definitive conclusions,
the variety of solvers used for the evaluation supports the conclusions drawn
in [22], and restated also in [1], that model A instances seem to show a counter-
intuitive relationship between hardness and the number of alternations in their
prefix.

390 D. Le Berre et al.

6 Conclusions

The final balance of the second QBF comparative evaluation can be summarized
as follows:

– 16 solvers participated, 15 complete and 1 incomplete: 13 search-based algo-
rithms, 1 (quantor) based on Q-resolution and expansion, and 1 (QMRes)
based on a symbolic implementation.

– 88 formal verification benchmarks, plus a random generator were submitted.
– State-of-the-art solvers, both for random and non-random benchmarks, have

been identified; also, a total of 144 challenging benchmarks that cannot be
solved by any of the participants have been identified to set the reference
point for future developments in the field.

– Some of the challenges outlined last year in [1] have been tackled by the
participants this year: Challenge 1, about the 2003 hard benchmarks, was
attempted by most solvers with noticeable progress made; Challenge 8, about
alternative paradigms to search-based QBF solvers, was undertaken quite
successfully by quantor and QMRes; finally, all the other challenges have
been at least surfaced by most of the participants, a good indicator of the
stimulus that the QBF evaluation is providing to the researchers.

The evaluation also evidenced some critical points:

– The QBF evaluation is still a niche event if compared to the SAT competi-
tion: 55 SAT solvers from 27 authors and 999 benchmarks were submitted
this year to the SAT competition.

– QBF encoding of real-world applications (e.g., Ayari’s hardware verification
problems, Sakallah’s vertex eccentricity problems, etc.) contributed a lot to
the pool of 144 challenging benchmarks. This shows that QBF developers
must improve the performance of their solvers before these can be practical
for industrial-sized benchmarks.

– The question of how to check the answer of the QBF solvers in an effective
way is still unanswered. Specifically, the questions of what is a good certifi-
cate of satisfiability/unsatisfiability for QBF, and, if this proves too huge
to be practical, what is a good approximation of such certificate, remain
open.

The last point is not only an issue for the QBF evaluation, but also for the
implementation of QBF solvers: indeed, while only two versions of one solver
were found incorrect in the SAT competition, we had problems with 4 solvers
in the QBF evaluation. Overall, the evaluation showed the vitality of QBF as
a research area. Despite some technological limitations and some maturity is-
sues, it is our opinion that the development of effective QBF solvers and the
use of QBF-based automation techniques can be regarded as promising research
directions.

The Second QBF Solvers Comparative Evaluation 391

References

1. D. Le Berre, L. Simon, and A. Tacchella. Challenges in the QBF arena: the SAT’03
evaluation of QBF solvers. In Sixth International Conference on Theory and Ap-
plications of Satisfiability Testing (SAT 2003), volume 2919 of Lecture Notes in
Computer Science. Springer Verlag, 2003.

2. M. Davis and H. Putnam. A computing procedure for quantification theory. Jour-
nal of the ACM, 7(3):201–215, 1960.

3. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.
Communications of the ACM, 5(7):394–397, 1962.

4. A. G. D. Rowley I. P. Gent, H. H. Hoos and K. Smyth. Using stochastic local
search to solve quantified boolean formulae. In 9th Conference on Principles and
Practice of Constraint Programming (CP 2003), volume 2833 of Lecture Notes in
Computer Science. Springer Verlag, 2003.

5. A. Biere. Resolve and Expand. In Seventh Intl. Conference on Theory and Appli-
cations of Satisfiability Testing, 2004. Extended Abstract.

6. Guoqiang Pan and Moshe Y. Vardi. Symbolic decision procedures for qbf. In 10th
Conference on Principles and Practice of Constraint Programming (CP 2004),
2004.

7. Ian Gent and Toby Walsh. Beyond NP: the QSAT phase transition. In Proc. of
AAAI, pages 648–653, 1999.

8. E. Giunchiglia, M. Narizzano, and A. Tacchella. Quantified Boolean Formulas
satisfiability library (QBFLIB), 2001. www.qbflib.org.

9. Andrew G D Rowley Ian P Gent. Solution learning and solution directed backjump-
ing revisited. Technical Report APES-80-2004, APES Research Group, February
2004.

10. D. Le Berre, M. Narizzano, L. Simon, and A. Tacchella, editors. Second QBF
solvers evaluation. Pacific Institute of Mathematics, 2004. Available on-line at
www.qbflib.org.

11. Jussi Rintanen. Partial implicit unfolding in the Davis-Putnam procedure for
quantified Boolean formulae. In Logic for Programming, Artificial Intelligence and
Reasoning. 8th International Conference, number 2250 in LNAI, pages 362–376.
Springer, 2001.

12. R. Feldmann, B. Monien, and S. Schamberger. A distributed algorithm to evaluate
quantified boolean formula. In Proceedings of the Seventeenth National Conference
in Artificial Intelligence (AAAI’00), pages 285–290, 2000.

13. R. Letz. Lemma and model caching in decision procedures for quantified boolean
formulas. In Proceedings of Tableaux 2002, LNAI 2381, pages 160–175. Springer,
2002.

14. Abdelwaheb Ayari and David Basin. Bounded model construction for monadic
second-order logics. In 12th International Conference on Computer-Aided Verifi-
cation (CAV’00), number 1855 in LNCS, pages 99–113. Springer-Verlag, 2000.

15. C. Castellini, E. Giunchiglia, and A. Tacchella. Sat-based planning in complex
domains: Concurrency, constraints and nondeterminism. Artificial Intelligence,
147(1):85–117, 2003.

16. Andrew G D Rowley Ian P Gent. Encoding connect 4 using quantified boolean
formulae. Technical Report APES-68-2003, APES Research Group, July 2003.

17. M. Mneimneh and K. Sakallah. Computing Vertex Eccentricity in Exponentially
Large Graphs: QBF Formulation and Solution. In Sixth International Conference
on Theory and Applications of Satisfiability Testing (SAT 2003), volume 2919 of
Lecture Notes in Computer Science. Springer Verlag, 2003.

392 D. Le Berre et al.

18. Guoqiang Pan and Moshe Y. Vardi. Optimizing a BDD-based modal solver. In
Proceedings of the 19th International Conference on Automated Deduction, 2003.

19. P. Balsiger, A. Heuerding, and S. Schwendimann. A benchmark method for the
propositional modal logics k, kt, s4. Journal of Automated Reasoning, 24(3):297–
317, 2000.

20. Jussi Rintanen. Improvements to the evaluation of quantified boolean formulae.
In Proceedings of the Sixteenth International Joint Conferences on Artificial Intel-
ligence (IJCAI’99), pages 1192–1197, Stockholm, Sweden, July 31-August 6 1999.
Morgan Kaufmann.

21. C. Scholl and B. Becker. Checking equivalence for partial implementations. In
38th Design Automation Conference (DAC’01), 2001.

22. E. Giunchiglia, M. Narizzano, and A. Tacchella. An Analysis of Backjumping and
Trivial Truth in Quantified Boolean Formulas Satisfiability. In Seventh Congress
of the Italian Association for Artificial Intelligence (AI*IA 2001), volume 2175 of
Lecture Notes in Artificial Intelligence. Springer Verlag, 2001.

Author Index

Ansótegui, Carlos 1
Armando, Alessandro 16

Bauland, Michael 30
Benedetti, Marco 46
Bernardini, Sara 46
Biere, Armin 59

Castellini, Claudio 16
Chapdelaine, Philippe 30
Chen, Hubie 71
Creignou, Nadia 30

Dalmau, Vı́ctor 71
Dantsin, Evgeny 80
Darwiche, Adnan 157
Dufour, Mark 345

Fu, Zhaohui 360

Galesi, Nicola 89
Giunchiglia, Enrico 16, 105
Grégoire, Éric 122
Gummadi, Ravi 133

Hermann, Miki 30
Heule, Marijn 145, 345
Hoos, Holger H. 306
Huang, Jinbo 157

Interian, Yannet 173

Jackson, Paul 183
Jia, Haixia 199
Jin, HoonSang 211

Kleine Büning, Hans 224
Kullmann, Oliver 89

Le Berre, Daniel 321, 376

Mahajan, Yogesh S. 360
Malik, Sharad 292, 360

Manyà, Felip 1
Maratea, Marco 16
Mazure, Bertrand 122
Moore, Cris 199

Narayanaswamy, N.S. 133
Narizzano, Massimo 105, 376

Ostrowski, Richard 122

Pan, Guoqiang 235
Porschen, Stefan 251
Pradhan, Dhiraj K. 276

Ranjan, Darsh 292

Säıs, Lakhdar 122
Selman, Bart 199
Sheridan, Daniel 183
Simon, Laurent 321, 376
Sinopalnikov, Danila A. 263
Somenzi, Fabio 211
Speckenmeyer, Ewald 251
Subbarayan, Sathiamoorthy 276

Tacchella, Armando 105, 376
Tang, Daijue 292
Tompkins, Dave A.D. 306

van Maaren, Hans 145, 345
van Zwieten, Joris 345
Vardi, Moshe Y. 235
Venkatakrishnan, R. 133
Vollmer, Heribert 30

Wolpert, Alexander 80

Yu, Yinlei 292

Zhao, Xishun 224

	Frontmatter
	Mapping Problems with Finite-Domain Variables to Problems with Boolean Variables
	A SAT-Based Decision Procedure for the Boolean Combination of Difference Constraints
	An Algebraic Approach to the Complexity of Generalized Conjunctive Queries
	Incremental Compilation-to-SAT Procedures
	Resolve and Expand
	Looking Algebraically at Tractable Quantified Boolean Formulas
	Derandomization of Schuler's Algorithm for SAT
	Polynomial Time SAT Decision, Hypergraph Transversals and the Hermitian Rank
	QBF Reasoning on Real-World Instances
	Automatic Extraction of Functional Dependencies
	Algorithms for Satisfiability Using Independent Sets of Variables
	Aligning CNF- and Equivalence-Reasoning
	Using DPLL for Efficient OBDD Construction
	Approximation Algorithm for Random MAX-{\itshape k}SAT
	Clause Form Conversions for Boolean Circuits
	From Spin Glasses to Hard Satisfiable Formulas
	CirCUs: A Hybrid Satisfiability Solver
	Equivalence Models for Quantified Boolean Formulas
	Search vs. Symbolic Techniques in Satisfiability Solving
	Worst Case Bounds for Some NP-Complete Modified Horn-SAT Problems
	Satisfiability Threshold of the Skewed Random {\itshape k}-SAT
	NiVER: Non-increasing Variable Elimination Resolution for Preprocessing SAT Instances
	Analysis of Search Based Algorithms for Satisfiability of Propositional and Quantified Boolean Formulas Arising from Circuit State Space Diameter Problems
	UBCSAT: An Implementation and Experimentation Environment for SLS Algorithms for SAT and MAX-SAT
	SAT Solver Competition and QBF Solver Evaluation (Invited Papers)
	Fifty-Five Solvers in Vancouver: The SAT 2004 Competition
	March_eq: Implementing Additional Reasoning into an Efficient Look-Ahead SAT Solver
	Zchaff2004: An Efficient SAT Solver
	The Second QBF Solvers Comparative Evaluation

	Backmatter

