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Abstract. Structural damage detection is very important for identifying and di-
agnosing the nature of the damage in an early stage so as to reduce catastrophic 
failures and prolong the service life of structures. In this paper, a novel ap-
proach is presented that integrates independent component analysis (ICA) and 
support vector machine (SVM). The procedure involves extracting independ-
ent components from measured sensor data through ICA and then using these 
signals as input data for a SVM classifier. The experiment presented employs 
the benchmark data from the University of British Columbia to examine the  
effectiveness of the method. Results showed that the accuracy of damage detec-
tion using the proposed method is significantly better than the approach by inte-
grating ICA and ANN.  Furthermore, the prediction output can be used to  
identify different types and levels of structure damages. 

1   Introduction 

Structural stiffness decreases due to aging, damages, and other harmful effects. These 
adverse changes lead to abnormal dynamic characteristics in natural frequencies and 
mode shapes. By instrumenting structures with a vibration sensor system, structural 
health monitoring (SHM) aims to provide reliable and economical approaches to 
monitor the performance of structural systems in an early stage so as to facilitate the 
decisions on structure maintenance, repair and rehabilitation [1, 11].  

In the exciting field, researches have been studied on detect whether or not damage 
exists in a structure with varied approaches. A comprehensive literature review was 
made by Doebling and some successful methodologies were shown in his report  
[4, 5], such as employing changes in the natural frequencies and mode shapes, using 
measurements of flexibility, constructing statistical model, applying model-updating 
techniques and artificial neural network. From the view of datasets, these approaches 
used either time domain data or frequency domain data, measured from sensors in a 
structure. From the view of constructed models, they applied either physics-based 
models or data mining models (non physics-based models).  

Pothisiri presents a physical damage detection model and its algorithm based on a 
global response of a structure [12]. This algorithm can locate one or more damaged 
members in a structure. However, it is not sufficient since it requires that the vicinity 
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of the damage is known prior to the experiment and that the portion of the structure is 
easily accessible. As structures become larger and more complex, this method be-
comes unfeasible. Domain experts expect more efficient methods. 

As the development of data mining techniques, it is possible to classify input sig-
nals or discovery patterns from large size of dataset without any prior background 
knowledge. In SHM, data mining techniques are used to identify the potential damage 
in a structure by using the variation of the dynamic response continually measured by 
sensors. Specifically, the first category problem is solved in two steps: 1) feature 
reduction from measured dynamic sensor data; 2) structure classification based on 
selected features. For the first step, ICA, mostly used in feature reduction from time 
series data, is a statistical and computational technique for revealing hidden factors 
that underlie sets of random variables, measurements, or signals. Recently, Zang [2] 
applied ICA to model damaged structures. Their results showed that ICA is a more 
robust method for feature selection and leads to more accurate classification. How-
ever, they didn’t make deep and detailed analysis on the classification output. For the 
second step, both artificial neural network (ANN) and support vector machine (SVM) 
are active classifiers in this area. Especially, SVM, as a powerful kernel-based learn-
ing machine [9], has shown practical relevance for classification in various fields, 
such as object recognition [3], time-series prediction [10].   

In this paper, we integrate ICA and SVM together to detect damages. By analyzing 
the independent components, we extract some features which include the information 
about the damage level and type. Next, the obtained components are input into SVM 
to classify structural damage. Our experiments, based on the benchmark data from the 
University of British Columbia, showed the prediction output can be used to identify 
different types and levels of structure damages. 

2   Methodology 

2.1   Feature Selection  

ICA techniques provide statistical signal processing tools for optimal linear transfor-
mations in multivariate data and these methods are well-suited for feature extraction, 
noise reduction, density estimation and regression.  

From a mathematical view, the ICA problem can be described as follows, each of h 
mixture signals x1(k), x2(k), …, xh(k) is a linear  combination of q independent compo-
nents s1(k), s2(k), …, sq(k), that is, X = AS where A is a mixing matrix. Now given X, 
we hope to compute A and S. Obviously, this is a difficult question since both A and 
S are unknown. Based on the following two statistical assumptions, ICA successfully 
gains the results: 1) the components are mutual independent; 2) each component ob-
serves nongaussian distribution.  

The first one is a strong assumption about signals, even stronger than uncorrelated 
in PCA. It brings two advantages: we can compute the components in any order with-
out considering the involvement of other components; uncorrelated is just partly inde-
pendent, so PCA can be used as a pre-processing to whiten data and reduce the  
dimensionality, which greatly simplified the further processing work. 
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The second assumption is critical to separate signals. We see that gaussian signal 
looks like a nearly symmetric shape from all angles. If components observe gaussian 
distributions, by center limit theory, their linear combination of components should be 
more like gaussian, which becomes more difficult to separate. Hence, nongaussian is 
a necessary condition to extract components by detecting non-symmetric mixtures.   

Specifically, with the second assumption, there are the following solution to solve 
the signal separation problems:  

By X = AS, we have S = A-1X = WX  (where W = A-1 ). Hence, the task is to select 
an appropriate W which applied on X to maximize the nongaussianity of components. 
This can be done in an iteration procedure.  

Different ICA algorithms measure nongaussianity by different methods. Some use 
Kurtosis function: Kurt(y) = E[y4] -3(E[y2])2, which approaches 0 for a Gaussian 
random variable; some use negentropy: negentropy(y) = H(ygauss) - H(y)   (H is en-
tropy);  some use approximations of negentropy for speeding up the computation:  
J(y) = E[y3]2 / 12 + Kurt(y)2 / 48.  

FastICA algorithm is applied in our application. The non-quadratic function g(y) = 
tanh (a1*y) is used to compute nongaussianity. The detailed algorithm steps are listed 
in [8]. 

2.2   Support Vector Machine Classifiers 

It is known that SVM, proposed by Vapnik in 1995, has been achieving great success 
on classifying high-dimensional data. In the practice from many engineering fields, its 
accuracy is even better than neural networks. 

Assuming data { }N...1i),y,x(D ii ==  with label yi∈{-1, +1}, SVM transformed the 

attribute x into a higher-dimension attribute set 'x , and then separate data by a hyper-
plane in this hyper space. SVM assume the best linear classifier of the type 

)b'xw...'xw'xw(b'xw)'x(f nn2211
T ++++=+= is the hyperplane in the middle of the gap 

(that is, maximize the margin between two classes of samples) shown in Fig.1. 

 

 

Fig. 1. The hyperplane for classification Fig. 2. Frame of integrating ICA and SVM 

    To seek the optimal w and b in f(x) = (wTx + b) with maximal margin, SVM let the 
points closest to the separating hyperplane, |wTxi + b| = 1, called the support vectors, 
and for other points, |wTxi + b| > 1. Given f(x), the classification is obtained as +1 if 
f(x)>0, otherwise -1.  

input 

ICA

Transferred ICs

status

Data measured  
by sensors

Undamaged Icasig_un 
Damaged Icasig_de 

SVM learning 

SVM model svm 

svm classify 

SVM classifier



 Structural Damage Detection by Integrating Independent Component Analysis 673 

 

2.3   Frame Integrated ICA and SVM 

The frame of integrating ICA and SVM is shown in Fig.2. The original time domain 
data measured by the sensors are first used as the input to ICA, and result in the inde-
pendent component matrix. The matrix serves as the input attributes for SVM model.  

3   Experiments  

In this section, we will use both undamaged and damaged data as training data to 
construct a SVM model, and then apply it to test unseen data, exploring that if they 
are correctly recognized. In addition, the parameters of SVM were previously re-
ported as an important influence over the classification accuracy. Consequently, we 
designed an experiment to see how they affect the performance in our case. Further-
more, we applied a trained SVM model on different types and levels of damaged data 
sets and analyzed if SVM model can distinguish them. 

3.1   Data Sets 

The data set, from the University of British Columbia, is a popular benchmark to 
testify the classification accuracies. They were developed by The IASC-ASCE SHM 
Task Group. The structure (Black and Ventura, 1998) is a 4-story, 2-bay by 2-bay 
steel-frame scale-model structure in the Earthquake Engineering Research Laboratory 
at the University of British Columbia. It has a 2.5 m × 2.5m plan and is 3.6m tall [7]. 
The detail Phrase II data can be reached by [6]. In our experiments, we mainly use 7 
data sets in the ambient data from this benchmark, in which C01 data is undamaged 
data, C02-C07 data are different damaged data. For undamaged data, the structural 
status is ‘1’ (undamaged), and for damaged data, the structural status is ‘-1’ (dam-
aged). The configuration key is attached in the last page, and the description is as 
following in [8]. 

Firstly, we input damaged and undamaged sensor data directly into SVM, though 
this is reasonable design, we could not obtain any suitable outputs since the comput-
ing could not converge at all. Hence, in the following experiments, we report our 
results by integrating ICA and SVM together for damage detection. C01 and one 
group data from C02 to C07, worked as input to ICA, whose size is 60000x15 (60000 
examples with 15 features), then 10 independent components Icasig_un were com-
puted and shown in Fig.3. (X axis presents the number of data and the unit is 104, Y 
axis presents the frequency).  
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Fig. 3. Independent components of C01 
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3.2   Experimental Steps 

(1)Experiment 1 
For choosing the kernel function in SVM, the following experiments were done.  
Experiment: Input data: undamaged data (C01), damaged data (C02) 

               Output data: structural status (undamaged 1 or damaged -1) 
Step 1: Let undamage data ← C01; Let damaged data ← C02 ; 
Step 2: By using tanh as the non-gaussian function in FastICA algorithm, we compute the 

independent components from undamage data, the resulted ICs are denoted as Icasig_un; 
Step 3: Select a number t as the type of different SVM kernel functions, initialize t←0.  
Step 4: Randomly select N examples from Icasig_un, and 50% of them work as train set Tra-

ind_de, and the other 50% work as test set Testd_de. 
Step 5: With the same settings on FastICA in all iterations at experiment 1, we compute the 

independent components from damaged data C02, the results are denoted as Icasig_de. 
Step 6:  Randomly select N examples from Icasig_de, 50% of them work as  train set Tra-

ind_de, and the other 50% work as test set Testd_de. 
Step 7:   Traind ← combine Traind_un with Traind_de, build SVM model svm. 
Step 8: Testd ← Testd_de. Use svm and Testd to predict the value for test data, if such value is 

beyond a scope s, the example will be classified as outlies, otherwise as undamage data.  
Step 9: t ← t+1, repeat Step7 until t=4. 

The results are shown in Table 1, in which, ‘trainCpusec’ means the cost CPU  
second in training data; ‘w’ is Norm of weight vector; ‘VCdim’ is estimated VC 
dimension of classifier; ‘testCpusec’ means the cost CPU second in classifying data. 
After consideration, t is assigned 0 in our experiments for training SVM model. 

In addition, for trade-off between training error and margin, the corresponding pa-
rameter was changed from 0.5 to 2.5, but they did not affect the SVM model. We 
choose 1 as the trade-off value. The results showed that the liner kernel function and 
learning trade-off parameter 1 are optimal and will be used in the following  
experiments. 

Table 1. Experiment for choosing Kernel function 

    t        0 1 2 3 
meaning linear function polynomial Radial basis Sigmoid function 
trainCpusec 0.08 0.02 0.05 0.02 
|w| 0.435 0.078 2.777 1.000 
VCdim 2.235 3.575 16.421 1.238 
testCpusec 0 0 0.01 0 
accuracy 0.999 0.618 0.992 1.000 

(2) Experiment 2 
In the experiment, ICA and SVM are combined to build a classification model by 
using undamaged data and damaged data. Then only damaged data is tested to see if 
they are classified correctly. The output data are structural status (undamaged 1 or 
damaged -1) 

The classification accuracy is measured as Eq.1. Table 2 shows the experimental 
results, in which, each experiment use 40000 undamaged data C01 and 20000 dam-
aged data from C02-C07 as train data, corresponding 20000 damaged data from C02-
C07 as test data.  
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Table 2. Prediction value by ICA and SVM with some C02-C07 as test data 

 C02 C03 C04 C05 C06 C07 

accuracy 0.986 0.979 0.983 0.992 0.962 0.996 

 

 
  

 

              

(A) C02   (B) C03    (C) C04 

 
 

 
 

  
(D) C05   (E) C06   (F) C07 

Fig. 4. Prediction by different data set 

For looking for the difference damaged types, the prediction results are analyzed in 
details. 

We observed that different types of damaged data result in the prediction value in 
different range. The prediction of C07 is nearest to -2 in negative direction and 0 
positive direction, and has the biggest wave area. Among the damaged data from C02 
to C05, and their wave areas are much smaller than C07. Therefore, C07 data might 
have biggest damaged level. It is proved by domain experts that all braced removed 
on all faces in C07 and should have the biggest damage level. In addition, from 
Fig.4A to Fig.4D, the wave area is reduced, especially in Fig.4C and Fig.4D, most of 
prediction values are bigger than -1, maybe C04 and C05 have similar damage level. 
According to the configuration key, Config04 removed braces on 1st and 4th floors in 
one bay on SE corner, and Config05 removed braces on 1st floor in one bay on SE 
corner. Therefore, the prediction value can show some information about damage 
level and damage type, and it help us to identify the different structural damage. 

(3) Experiment 3 
In the experiment, we aim to analyze the accuracy on classifying two classes of sam-
ples: undamaged and damaged data. Hence, the training and testing data are both 
sampled from two class data. 
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Table 3. Definitions of tp, fp,tn and fn 

 True value=1 False value=-1 
Prediction=1 tp fp 
Prediction=-1 tn fn 

Table 4. Accuracy using C01-C07 train and test 

Since there are two classes of samples here, we measure the classification accuracy 
by Eq.2, in which, tp, fp,tn, fn are defined in Table 3. Table 4 shows the experimental 
results.                              

                                       
fntnfptp

fntp
accuracy

+++
+=                                          (Eq.2) 

The above results are similar as the results in experiment 2. This showed that, there 
are obvious difference between the undamaged data and damaged data. Consequently, 
in experiment 1, the damaged data is classified as outliers; in experiment 2, such data 
is classified with correct class label. Hence, our results proved that by integrating ICA 
and SVM, we can extract the distinctive features for undamaged data and damaged 
data, and further effectively classify unseen data. 

(4) Compare ICA-SVM and ICA-ANN 
With the same experimental settings in experimental 3, we compared the performance 
achieved by integrating ICA and SVM with that achieved by integrating ICA and 
ANN [8]. Results in table 5 showed that ICA-SVM obtains better classification accu-
racy than ICA-ANN. 

Table 5. Accuracy in ICA-ANN and ICA-SVM 

data set C01-C02 C01-C03 C01-C04 C01-C05 C01-C06 C01-C07 

ICA+ANN 0.983  0.966  0.979  0.984  0.973  0.953  

ICA+SVM 0.998 0.996 0.998 0.996 0.992 0.995 

4   Conclusion 

In this paper, we proposed an approach of integrating ICA and SVM for structure 
damage detection. In the first step, independent components are extracted from  

traind C02 C03 C04 C05 C06 C07 
1000 0.990 0.987 0.989 0.990 0.986 0.990 
2000 0.993 0.990 0.990 0.992 0.989 0.992 
4000 0.995 0.991 0.994 0.993 0.991 0.992 
8000 0.996 0.994 0.995 0.992 0.992 0.993 

10000 0.998 0.995 0.997 0.995 0.991 0.993 
20000 0.998 0.995 0.997 0.996 0.990 0.994 
40000 0.998 0.996 0.998 0.996 0.992 0.995 
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structure sensor data, which included signals about damage level and type. Next, the 
obtained components were input into SVM for structural damage classification. We 
evaluated our approach on the benchmark data from the University of British Colum-
bia. The results from 3 experiments, all used both damaged data and undamaged data 
for training, showed that the accuracy of damage detection by the proposed method 
achieved significantly better accuracy than that obtained by use of ICA and ANN. 
Furthermore, the detailed analysis showed that we could identify different types and 
levels of damage from the prediction output, which are very useful conclusions for 
application in SHM.   
     In next step, we will continue to analyze the independent components for detecting 
the damage location and consequently support the repair decisions.  
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