
Towards Types for Web Rule Languages

W�lodzimierz Drabent1,2

1 Institute of Computer Science, Polish Academy of Sciences,
ul. Ordona 21, Pl – 01-237 Warszawa, Poland

2 Department of Computer and Information Science, Linköping University,
S – 581 83 Linköping, Sweden
drabent@ipipan.waw.pl

Abstract. Various schema languages have been introduced to describe
(classes of) Web documents (DTD, XML Schema, Relax NG). We present
mathematical treatment of their main features. We are interested in the
sets of documents a schema defines; such sets will be called types. Using a
mathematical formalism makes it possible to discuss chosen aspects of a
schema language in a precise and simple way. Otherwise they are hidden
among numerous details of a large and sophisticated schema language.

Our goal is typing of rule languages, more precisely approximately de-
scribing their semantics by means of types. Thus we are interested in
formalisms for types that facilitate constructing (efficient) algorithms
performing those operations on types that are needed in type checking
and type inference for rules.

1 Introduction

Various schema languages have been introduced to describe (classes of) Web
documents (DTD [10], XML Schema [11], Relax NG [6]). We present mathe-
matical treatment of their main features. We are mainly interested in the sets
of documents a schema defines; such sets are sometimes called types. Using a
mathematical formalism makes it possible to discuss chosen aspects of a schema
language in a precise and simple way. Otherwise they are hidden among numer-
ous details of a large and sophisticated schema language.

Our main goal is typing of rule languages; by this we mean describing ap-
proximately their semantics by means of types. Such descriptions can be used for
finding (certain kinds of) errors in the rules. Knowing that a rule is to be applied
to data from a given type, we can compute the type of rule results. If the type is
incompatible with the expectations of the programmer then there is an error in
the rule. Assume that the expectations are formalized by providing a type de-
scription of the expected results. Then it can be automatically checked whether
the actual results are in the given type. In other words, one can automatically
check correctness of a rule with respect to an approximate specification (given
by means of types). These ideas apply to sets of rules too. Sometimes the com-
puted types are approximate and the checks are partial (answering “correct” or

, LNCS 3564, pp. 305–317, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
N. Eisinger and J. Ma�luszyński (Eds.): Reasoning Web 2005

306 W. Drabent

“maybe incorrect”); still it is useful to have a possibility of automatic checking
certain properties of rule programs and of obtaining hints about possible errors.

So we are interested in formalisms for specifying types that facilitate con-
structing (efficient) algorithms performing those operations on types that are
needed in type checking and type inference for rules. Often there is a trade-off
between the expressive power of a formalism and the efficiency of the related
algorithms.

A related subject is typechecking of XML queries and transformations: check-
ing whether the results of queries (or transformations) applied to XML data from
a given type are within an (another) given type. Substantial theoretical work in
this area has been done (see [2, 17] and references therein). That work considers
formalizations of (substantial subsets of) XQuery and XSLT. Various cases of
such typechecking problem have been studied, some of them shown to be unde-
cidable, many others of non-polynomial complexity. Similar difficulties can be
expected with dealing with types for Web rule languages. This suggests that one
should also look for approximate, but efficient, solutions.

In the next section we introduce an abstraction of XML data as data terms.
Section 3 presents a standard formalism of tree automata. Tree automata define
sets of trees, or equivalently of terms, where each symbol has a fixed arity. This
is too restrictive for modelling Web data, where the number of children of a
tree node is not fixed. In other words, we want to deal with unranked terms.
In Section 4 we present a generalization of tree automata to sets of unranked
terms. The general formalism is rather powerful. It can define sets which cannot
be described by means of DTD and XML Schema. Also some related algorithmic
problems, for instance inclusion check, are of high complexity. In section 5 we
discuss some useful restrictions of the formalism.

2 Semistructured Data

The data on the Web are presented in the form of XML documents. By database
researchers a term semistructured data is often used [1]. This term is related to
the fact that the data format does not follow any database schema; instead the
data are to a certain extent self-explanatory.

XML documents can be seen as trees. From our point of view it is convenient
to abstract from syntactic details of XML. We define a formal language of data
terms to model tree-structured data. Our notion of data terms has been influ-
enced by Xcerpt, a query language for Web data (see e.g. [21]). Data terms are
trees. The children of a node of a data term may be ordered or unordered. We
will call such trees mixed trees to indicate their distinction from both ordered
and unordered trees. Node labels of the trees correspond to XML tags and at-
tribute names. An attribute list of an XML tag can be modelled as an unordered
set of children, as exemplified later on.

We begin with an alphabet L of labels and an alphabet B of basic con-
stants. We assume that L and B are disjoint and countably infinite. Basic con-
stants represent some basic values, such as numbers or strings, while labels are

Towards Types for Web Rule Languages 307

tree constructors, and will represent XML tags and attribute names. In con-
trast to function symbols of mathematical logic, the labels do not have fixed
arities. The generalization of the notion of a term, allowing arbitrary number of
arguments of a function symbol, is called unranked term. Data terms further gen-
eralize unranked terms, as in addition to argument sequences they also permit
unordered sets of arguments.

From basic constants and labels we construct data terms for representing
mixed trees. The linear ordering of children will be indicated by the brackets [,],
while unordered children are placed between the braces {, }.

Definition 1. A data term is an expression defined inductively as follows:

– Any basic constant is a data term,
– if l is a label and t1, . . . , tn are n ≥ 0 data terms, then l[t1 · · · tn] and

l{t1 · · · tn} are data terms.

A data term which is not a basic constant is called labelled. Data terms not
containing {, } will be called ordered.

For a labelled data term t = l[t1 · · · tn] or t = l{t1 · · · tn}, its root, denoted
root(t), is l. If t is a basic constant then root(t) = t.

Example 2. Consider the following XML element

<CD price="15.90" year="1994">
Praetorius Mass
<subtitle></subtitle>
<artist>Gabrielli Consort and Players</artist>

</CD>

It can be represented as a data term

CD[attributes{ price[15.90] year [1994] }
Praetorius Mass
subtitle[]
artist[Gabrielli Consort and Players]
]

where 15.90, 1994, Praetorius Mass, Gabrielli Consort and Players are basic con-
stants and attributes, price, year, subtitle, artist are labels.

The data terms l[] or l{} are different. One may consider it more natural not
to distinguish between the empty sequence and the empty set of arguments. We
have chosen to distinguish them to simplify the definition above, and some other
definitions and algorithms.

Notice that the component terms are not separated by commas. This no-
tation is intended to stress the fact that the label l in a data term l[t1 · · · tn]
(or l{t1 · · · tn}) is not an n-argument function symbol. It has rather a single
argument which is a sequence (string) of data terms t1, . . . , tn (where n ≥ 0).

308 W. Drabent

3 Tree Automata

Finite automata (FA) are a simple, important, and well known formalism for
defining sets of strings. We present tree automata [13, 7], a generalization of FA
for sets of terms.

A run of a finite automaton M on an input string x can be seen as an
assignment of states to the suffixes of x. The first suffix is x, the last one is the
empty string ε. The suffix can be understood as the part of x not yet read by
M . To the longest suffix x the run assigns the initial state of M . If a state q is
assigned to a suffix ay (where a is a single symbol) then the transition function of
M determines (from q and a) the state assigned to suffix y. If the state assigned
to suffix ε is a final state then the run is accepting.

If M is deterministic then for each input string there exist exactly one run.
This is not the case for nondeterministic finite automata. Moreover, a run of such
automaton may be a partial function, not assigning any state to some suffix y
of the input string (and to all the suffixes of y). The language defined by a FA
M is the set of those strings for which there exists an accepting run.

A tree automaton (TA) deals with terms instead of strings. A basic idea is
that a run assigns states to subterms of the input term (instead of suffixes of the
input string of a FA). We informally describe tree automata and an equivalent
formalism of regular term grammars.

We begin with a finite set of function symbols Σ, each symbol f ∈ Σ has its
arity arity(f) ≥ 0. A bottom-up tree automaton (buTA) over Σ is a tuple
M = (Q,Σ,F,∆), where Q is a finite set of states, F ⊆ Q is a set of final states
and ∆ is a set of transition rules, of the form

f(q1, . . . , qn) → q,

where f ∈ Σ, q, q1, . . . , qn ∈ Q, and n = arity(f). In particular, if f is a constant
then the rule is of the form f → q. A run of M on an input term t is constructed
by assigning states to subterms of t. (Formally, we have to deal with subterm
occurrences, as a term t′ may occur many times in t, e.g. when t = f(t′, t′). For
a full definition see e.g. [7].) A state q is assigned to a subterm f(t1, . . . , tn) only
if some states q1, . . . , qn are assigned respectively to the terms t1, . . . , tn and ∆
contains the rule f(q1, . . . , qn) → q. If there exists such a run assigning a final
state q ∈ F to t then t is accepted by M . The set of the terms accepted by
M is called the tree language recognized (or defined, or accepted) by M , and
denoted L(M).

So a computation starts with assigning states to the constants in t, by ap-
plying rules of the form a → q. Then iteratively: having assigned states to to
the subterms t1, . . . , tn of a subterm f(t1, . . . , tn), a rule from ∆ is applied, if
possible, to assign a state to f(t1, . . . , tn).

A bottom-up tree automaton is deterministic if there are no two rules
with the same left hand side. It turns out that any set defined by a bottom-up
tree automaton is defined by a deterministic one. (A deterministic buTA M ′

equivalent to a given buTA M can be obtained by a construction similar to the

Towards Types for Web Rule Languages 309

standard one used for FA [7]; each state of M ′ is a set of states of M . This
construction may result in exponential growth of the number of states.)

The sets of terms defined by bottom-up tree automata are sometimes called
regular tree languages (or recognizable tree languages).

We can consider a different kind of tree automata. Instead of starting at
the leaves of the tree, the computation may start at the root. By a top-down
tree automaton (tdTA) we mean a tuple M = (Q,Σ, I,∆), where Q,Σ are
as above, I ⊆ Q is a set of initial states and ∆ is a set of transition rules of the
form

q → f(q1, . . . , qn),

(where f ∈ Σ, q, q1, . . . , qn ∈ Q and n = arity(f)). Given an input term t, a
run assigns an initial state q0 ∈ I to t, and if a state q is assigned to a subterm
f(t1, . . . , tn) and a rule q → f(q1, . . . , qn) is in ∆ then states q1, . . . , qn can be
respectively assigned to the subterms t1, . . . , tn. A run for t is called accepting if
it assigns a state to each subterm of t. A term t is accepted by M if there exists
an accepting run for t.

A top-down tree automaton is deterministic if it has one initial state and
has no two rules with the same left hand side and the same function symbol.

The top-down and bottom-up tree automata are equivalent, they define the
same class of languages. (For a proof it is sufficient to reverse the rules, and
exchange the sets of final and initial states.) Notice that this transformation
applied to a deterministic bottom-up automaton does not necessarily produce a
deterministic top-down one. Indeed, deterministic top-down tree automata define
a proper subset of regular tree languages. For instance, the set {f(a, b), f(b, a)}
is not defined by any deterministic tdTA.

It is sometimes convenient to view top-down tree automata as grammars
(called regular term grammars or regular tree grammars,1 see e.g. [8, 7]). Let
M = (Q,Σ, I,∆) be such an automaton. In the corresponding grammar, the
states of M become non-terminal (unary) symbols of the grammar, and the
initial states become start symbols. We consider terms built out of Σ ∪ Q and
a derivation relation ⇒ on such terms: t1 ⇒ t2 iff t2 is obtained from t1 by
replacing an occurrence of a nonterminal q by a term f(q1, . . . , qn) such that the
rule q → f(q1, . . . , qn) is in ∆. The language generated by the grammar is

{ t | q ⇒∗ t, q ∈ I, t does not contain symbols from Q }.

This set is equal to the language accepted by the automaton M . (We skip a
proof, based on showing that an accepting run of M assigns a state q to an
input term t iff q ⇒∗ t, for any term t over Σ).

The class of regular tree languages is closed under union, complement and
intersection [7]. We briefly outline the proofs. To construct a buTA for the union
of regular tree languages L1, L2, take two buTA Mi = (Qi, Σ, Fi,∆i) (i = 1, 2)
respectively for L1 and L2, with disjoint sets of states. Automaton (Q1 ∪ Q2,

1 However [18] applies this name to a formalism defining sets of unranked trees.

310 W. Drabent

Σ, F1 ∪ F2, ∆1 ∪ ∆2) accepts L1 ∪ L2. A TA for L1 ∩ L2 can be obtained by
a constructing a product automaton from M1 and M2 (and the construction is
polynomial). Exchanging the final and non final states in a deterministic buTA
for a tree language L results in a buTA for the complement of L.

It can be decided in time O(|t| · |M |) whether a term t is accepted by a TA
M (where |t|, |M | are respectively the sizes of t, M). If M is a deterministic
buTA (or deterministic tdTA) then the membership can be tested in linear
time. Checking whether L(M) = ∅ is linear, while checking emptiness of the
complement of L(M) is EXPTIME-complete. Also checking whether L(M1) ⊆
L(M2) is EXPTIME-complete. For details and proofs see [7]. For deterministic
tdTA polynomial algorithms for checking L(M1) ⊆ L(M2) exist, see e.g. [12, 9].

4 Tree Automata Generalized

Tree automata are not directly applicable to semistructured data. They deal
with terms in which each symbol has a fixed arity, while in semistructured data
the number of arguments of a symbol is not fixed.

A straightforward solution is to apply a standard way of representing trees
as binary trees [16]. In such a binary tree the first child of a node n represents
the list of children of n in the original tree, while the second child represents the
(tail of the list of) siblings of n.

↓
n
|↓

→ sister of n
�· · ·

→ · · ·

daughter of n → daughter of n → · · ·
↓ ↓
· · · · · ·

Such representation is used for instance by [15]. A disadvantage is that the
representation obscures the structure of the original tree; the (next) sibling of n
is treated in the same way as its (first) child, while the children of n are treated
differently. It seems more elegant and clear to provide a formalism to directly
describe semistructured data. It turns out that such approach has some actual
technical advantages.

There exist various equivalent generalizations of tree automata to unranked
terms [18, 3, 15]. They follow a common main idea. In tree automata (or regular
tree grammars) the children of a node are described by a single sequence (of
states or nonterminals). The generalizations replace a single sequence by a regu-
lar language. In this way the formalism is able to specify a set of tree sequences,
which are allowed as the children of a given tree node.

Some of the formalisms are formulated as defining sets of trees (e.g. [18]),
some other as defining sets of sequences of trees (in other words of ordered
forests, or of hedges, e.g. [3, 15]). This difference is inessential, as we may express
a sequence t1, . . . , tn of trees as a tree f(t1, . . . , tn), where f is a selected new
symbol. The grammatical formalism described below defines sets of trees.

Towards Types for Web Rule Languages 311

As our abstraction of semistructured data we choose data terms (cf. Sec-
tion 2). The purpose of this paper is to discuss defining sets of data terms, so
we do not consider a way of specifying sets of basic constants. Instead we as-
sume that we have an alphabet C of type constants, and for each C ∈ C a
corresponding set [[C]] of basic constants is given. The formalism also employs
an alphabet V of type variables. The symbols from V ∪ C will play the role of
grammar nonterminals, they will be called type names.

A regular language (of strings) over V ∪C will be called a regular type lan-
guage. As a way of specifying regular type languages we choose regular expres-
sions; they may be replaced by other formalisms, like (deterministic or nondeter-
ministic) finite automata. By a regular type expression we mean a regular ex-
pression over the alphabet V∪C. Thus ε, φ and any type constant or type variable
T are regular type expressions, and if τ, τ1, τ2, are type expressions then (τ1τ2),
(τ1|τ2) and (τ∗) are regular type expressions. As usually, every regular type ex-
pression τ denotes a regular language L(τ) over the alphabet V ∪ C: L(ε) = {ε},
L(φ) = ∅, L(T) = {T}, L((τ1τ2)) = L(τ1)L(τ2), L((τ1|τ2)) = L(τ1) ∪ L(τ2),
and L((τ∗)) = L(τ)∗. We adopt the usual notational conventions [14], where the
parentheses are suppressed by assuming the following priorities of operators: ∗,
concatenation, |.

As syntactic sugar for regular expressions we will also use the following no-
tation:

– τ(n : m), or τ (n:m), where n ≤ m, as a shorthand for τn|τn+1| · · · |τm,
notice that τ∗ can be seen as τ(0 : ∞)

– τ+ as a shorthand for ττ∗,
– τ? as a shorthand τ(0 : 1),

where τ is a regular expression and n is a natural number and m is a natural
number or ∞.

Definition 3. A type definition D is a finite set of rules of the form

T → l[τ] or T → l{τ}

where T is a type variable, l is a label, τ a regular expression over V ∪ C (i.e. a
regular type expression), and no two rules with the same T and l occur in D.

The regular expression τ is called the content model of the rule. A rule be-
ginning with a type name T is said to be a rule for T . The form of the content
models in rules of the form T → l{τ} is restricted, as explained below.

The two kinds of rules are used to distinguish ordered and unordered argu-
ments of a label. A rule T → l[τ] describes a family of data terms where the
children of the root l are ordered and their sequence is described by the regular
expression τ . In the second case the children of l are unordered and we abstract
from the order of symbols in the strings from L(τ). Thus the full power of regular
expressions is not needed here. We will usually require that the regular expres-
sions in the rules of the form T → l{τ} are multiplicity lists, i.e. they are of

312 W. Drabent

the form s
(n1:m1)
1 · · · s(nk:mk)

k where k ≥ 0 and s1, . . . , sk are distinct type names.
A different kind of restrictions is considered in [20, 2].

A type definition defines a set of data terms by means of rewriting of data
patterns.

Definition 4. A data pattern is inductively defined as follows

– a type variable, a type constant, and a basic constant are data patterns,
– if d1, . . . , dn for n ≥ 0 are data patterns and l is a label then l[d1 · · · dn] and

l{d1 · · · dn} are data patterns.

Thus data terms are data patterns, and data patterns may be seen as data terms
with some subterms replaced by type names. Now we are ready to define the
rewriting relation of a type definition.

Definition 5 (of →D). Let D be a type definition and d, d′ be data patterns.
d →D d′ iff one of the following holds:

1. For some type variable T
– there exists a rule T → l[r] in D and a string s ∈ L(r), or
– there exists a rule T → l{r} in D, a string s0 ∈ L(r), and a permutation

s of s0

such that d′ is obtained from d by replacing an occurrence of T in d, respec-
tively, by l[s] or by l{s}.

2. d′ is obtained from d by replacing an occurrence of a type constant S by a
basic constant in [[S]].

As usually, a sequence d1 →D · · · →D dn is called a derivation of D. Deriva-
tion may end with a data term. This gives the semantics for type definitions:

Definition 6. Let D be a type definition. The type [[T]]D associated with a
type name T by D is defined as the set of all data terms t that can be obtained
from T :

[[T]]D = { t | T →∗
D t and t is a data term }.

Additionally we define the set of data terms specified by a given data pattern d,
and by a given regular expression τ :

[[d]]D = { t | d →∗
D t and t is a data term },

[[τ]]D = { t1 · · · tk | t1 ∈ [[T1]]D, . . . , tk ∈ [[Tk]]D for some T1 · · ·Tk ∈ L(τ) }.
A set S of data terms is called a type or a regular set if S = [[T]]D for some
type definition D and type name T .

Notice that type definitions generalize regular term grammars. Assuming a
fixed arity arity(l) for each label l, a type definition containing only rules of the
form T → l[T1 · · ·Tarity(l)] is a regular term grammar.

Example 7. Assume that #name ∈ C and consider the following type defini-
tion D:

Towards Types for Web Rule Languages 313

Person → person[Name (M |F) Person(0 :2)]
Name → name[#name]
M → m[]
F → f []

Let john, mary, bob ∈ [[#name]]. Extending the derivation

Person → person[Name M Person] →∗ person[name[#name]m[]Person]

one can check that the following data term is in [[Person]]

person[name[john]m[] person[name[mary] f [] person[name[bob]m[]]]].

5 Useful Restrictions of Type Definitions

The formalism of type definitions introduced in the previous section is rather
general. This has some disadvantages. For instance, inclusion checking for sets
defined by type definitions is EXPTIME-hard. It is interesting to find out classes
of type definitions for which some problems can be solved more efficiently. This
section presents a few such classes; it is mainly based on the classification pro-
posed by Murata, Lee, and Mani [18]. (A newer version of that paper is [19].)
That classification is made from the point of view of membership checking, but
it is also useful when other problems are considered. The work [18, 19] dealt
only with ordered trees (in our formalism this means ordered data terms). We
provide a straightforward generalization of the classification of [18, 19] to mixed
trees (i.e. arbitrary data terms).

In what follows we also explain briefly the relation between the discussed
classes of definitions, and DTD and XML Schema. It should also be mentioned
that the schema language Relax NG [6] is able to define any regular set of
ordered data terms (formally, any set of XML documents corresponding to such
data term set).

There is already a restriction imposed in the Definition 3, namely that there
are no two rules for the same type variable T and with the same label l. This
restriction is not severe, as any two rules T → lατ1β, T → lατ2β with the
same T, l and the same parentheses αβ are equivalent to one rule T → lατ1|τ2β.
However the restriction implies that in a type [[T]]D defined by a type definition
there cannot occur data terms of the form l{τ} and of the form l[τ] (with the
same l). We expect that that this restriction is not important from a practical
point of view.

A natural question arises whether we need multiple rules for one type name.

Definition 8. A type definition D will be called single-label if D contains
at most one rule for each type name T .

We show that the sets defined by type definitions are finite unions of sets
defined by single-label type definitions.

314 W. Drabent

Proposition 9. Let D be a type definition. There exists a single-label defini-
tion D′ such that for each type variable T occurring in D we have [[T]]D =
[[T1| · · · |Tn]]D′ for some type names T1, . . . , Tn.

Proof. Let T → liαiτiβi (i = 1, . . . , n) be the rules from D for a type variable
T (where αiβi are parentheses [] or {}). By Definition 3 the labels l1, . . . , ln are
distinct. Introduce new type variables T1, . . . , Tn. Replace the i-th rule above by
Ti → liαiτiβi. Replace each occurrence of T in the content model of a rule by
(T1| · · · |Tn). For the resulting type definition DT we have [[T]]D = [[T1| · · · |Tn]]DT

and [[U]]D = [[U]]DT
for all the other type names occurring in D. D′ is obtained

by repeating this transformation for all the type variables for which rules in D
exist.

Consider a type definition D. Following [18] we define a notion of compet-
ing type names. Distinct type variables T1, T2 are competing (w.r.t. D) if D
contains rules with T1 and T2 as the left hand sides and with the same label l.
Distinct type constants C1, C2 are competing if [[C1]] ∩ [[C2]] = ∅.
Definition 10. A type definition is called local if it does not contain compet-
ing type names.

Example 11. Consider a type definition

D = {Book → book[Author∗], Author → man[#], Author → woman[#] },
where Book,Author ∈ V, # ∈ C, and book,man,woman ∈ L. No two type
names of D are competing, thus D is local. D is not single-label; removing one
of the rules for Author results in a single-label definition.

The intention for introducing local definitions is simplifying the membership
check. If D is local then for any data term t there is at most one type name Tt

(occurring in D) such that t ∈ [[Tt]]D. Thus to check whether l[t1 · · · tn] ∈ [[T]]D
it is sufficient to check, for a single sequence Tt1 , . . . , Ttn

, whether ti ∈ [[Tti
]]D for

i = 1, . . . , n, whether a rule T → l[τ] exists in D, and whether Tt1 · · ·Ttn
∈ L(τ).

Checking if l{t1 · · · tn} ∈ [[T]]D is similar.
Sections 3.2 and 5.1 of [18] point out correspondence between DTD’s [10] and

local type definitions. Indeed, any DTD represented as a data definition is local.
This is due to not distinguishing between type variables and labels; each rule of
the data definition is of the form l → l[τ]. On the other hand local definitions
are more general than DTD, as they allow different labels for the same type
variable, like in Ex. 11. (Papers [18, 19] do not discuss this issue and all the
example definitions they use are single-label). So it is more accurate to state
that DTD’s correspond to data definitions which are local, single-label and do
not contain rules with {}.
Example 12. Consider the type definition D from Example 11 and assume that
[[#]] is the set of character strings. Removing the last rule from D results in
a type definition D′ corresponding to the DTD: <!ELEMENT book (man*)>
<!ELEMENT man (#PCDATA)> .

Towards Types for Web Rule Languages 315

Definition D does not correspond to any DTD, as [[Author]] contains data
terms with two roots, man and woman. Transforming D into a single-label
definition as in the proof of Proposition 9 results in a definition which is not
local.

The conditions on local type definitions can be weakened without requiring
any substantial modifications of the outlined membership checking algorithm.
Namely it is sufficient that, for a given t, in any content model of D there is at
most one T such that t ∈ [[T]]D.

Definition 13. A type definition D is called single-type if no content model
in a rule of D contains competing type names [18]. A type definition D is proper
if it is single-type and single-label [22, 5].

Example 14. Consider the type definition D from Example 11 and rules

D′ = {Library → lib{Reader∗}, Reader → man[#], Reader → woman[#] }.

Definition D ∪ D′ is single-type but not proper and not local. Removing from
D ∪ D′ the two rules with label man results in a proper definition.

Paper [18, 19] explains that the sets defined by XML Schema [11], with ex-
clusion of a few constructs, can be defined by single-type type definitions. One
of the excluded constructs is the mechanism of xsi :type. Actually, “single-type”
can be replaced here by “proper”, as all the elements of a set defined by an XML
Schema have the same main tag.

An important property is that inclusion of sets defined by proper type defini-
tions can be checked in polynomial time. More precisely, [5] presents an algorithm
which checks whether [[T1]]D1 ⊆ [[T2]]D2 , where D2 is proper and D1 is arbitrary.
(Definition D1 is required to be single-label, but this restriction can be aban-
doned.) The algorithm works in time polynomial w.r.t. the sizes of D1,D2 and
the sizes of deterministic finite automata equivalent to the content models of
D1,D2. Unfortunately, the latter are exponential w.r.t. the sizes of regular ex-
pressions. It is known that construction of deterministic FA is of linear time for
1-unambiguous regular expressions [4]. Thus inclusion can be checked in polyno-
mial time for type definitions D1,D2 with 1-unambiguous content models, where
D2 is proper.

The restrictions above can be further weakened for rules with parentheses [],
by considering the positions on which type names occur in the strings from L(τ).
We do not discuss this issue here.

The classes discussed in this section can be parameterized by the way the
regular languages in the content models are specified. As the discussion above
on inclusion checking for proper definitions suggests, an important class of type
definitions is that with content models given by deterministic FA (or by regular
expressions which can be transformed to such automata in linear or polyno-
mial time). This class is also distinguished in the work on complexity of XML
transformations (cf. [17] and the references therein). That work also introduces

316 W. Drabent

a class of bottom-up deterministic (unranked) tree automata, which in our ap-
proach correspond to type definitions such that whenever a definition contains
rules T1 → lα1τ1β1 and T2 → lα2τ2β2 for distinct T1, T2 then L(τ1)∩L(τ2) = ∅.

The class of regular sets of data terms is closed under intersection, union
and complementation. The classes of the sets defined by local, single-type and
proper type definitions are closed under intersection but not under union (hence
not under complementation) [18, 19, 5].

Conclusions

The intention of this text is to introduce the reader to formalisms for defining sets
of trees; the intended application is typechecking of rule languages for Web appli-
cations. First we presented tree automata as a generalization of finite automata
for strings. Tree automata define sets of terms where each function symbol has a
fixed arity. This is too restrictive from the point of view of modelling Web data.
For this task unranked terms are needed, where arity of symbols is not fixed. We
deal with a slightly more general concept of data terms, where the arguments
of a symbol can be ordered or unordered. A generalization (called type defini-
tions) of tree automata for data terms is shown in Section 4. Some algorithmic
problems, like inclusion check, are of non polynomial complexity already for tree
automata. We outlined some restrictions of the formalism; for such restrictions
more efficient algorithms exist. We briefly discussed the correspondence of these
restrictions to DTD and XML Schema.

Acknowledgement. This research has been partially funded by the Euro-
pean Commission and by the Swiss Federal Office for Education and Science
within the 6th Framework Programme project REWERSE number 506779
(cf. http://rewerse.net).

References

1. S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations to
Semistructured Data and XML. Morgan Kaufmann, 1999.

2. N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu. XML with data values:
Typechecking revisited. J. Comput. Syst. Sci., 66(4):688–727, 2003.

3. A. Brüggemann-Klein, M. Murata, and D. Wood. Regular tree and regular hedge
languages over unranked alphabets. Technical Report HKUST-TCSC-2001-0, The
Hongkong University of Science and Technology, April 2001.

4. A. Brüggemann-Klein and D. Wood. One-unambiguous regular languages. Infor-
mation and Computation, 142(2):182–206, May 1998.

5. François Bry, W�lodzimierz Drabent, and Jan Ma�luszyński. On subtyping of tree-
structured data: A polynomial approach. In Hans Jürgen Ohlbach and Sebastian
Schaffert, editors, Principles and Practice of Semantic Web Reasoning, Second In-
ternational Workshop (PPSWR 2004), volume 3208 of Lecture Notes in Computer
Science, pages 1–18. Springer-Verlag, 2004.

Towards Types for Web Rule Languages 317

6. J. Clark and M. Murata (editors). RELAX NG specification, December 2001.
http://www.oasis-open.org/committees/relax-ng/spec-20011203.html.

7. H. Common, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Ti-
son, and M. Tommasi. Tree automata techniques and applications. http://

www.grappa.univ-lille3.fr/tata/, 2002.
8. P. Dart and J. Zobel. A regular type language for logic programs. In F. Pfenning,

editor, Types in Logic Programming, pages 157–187. The MIT Press, 1992.
9. W. Drabent, J. Maluszynski, and P. Pietrzak. Using parametric set constraints

for locating errors in CLP programs. Theory and Practice of Logic Programming,
2(4–5):549–610, 2002.

10. Extensible markup language (XML) 1.0 (second edition), W3C recommendation
6 October 2000. http://www.w3.org/TR/REC-xml.

11. D. C. Fallside (ed.). XML Schema part 0: Primer. W3C Recommendation, http://
www.w3.org/TR/xmlschema-0/, 2001.

12. J. Gallagher and D. A. de Waal. Fast and precise regular approximations of logic
programs. In P. Van Hentenryck, editor, Proc. of the Eleventh International Con-
ference on Logic Programming, pages 599–613. The MIT Press, 1994.

13. F. Gécseg and M. Steinby. Tree languages. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Languages, volume 3, Beyond Words. Springer-Verlag,
1997.

14. J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, 2nd edition, 2001.

15. H. Hosoya, J. Vouillon, and B. C. Pierce. Regular expression types for XML. In
ICFP 2000, pages 11–22, 2000.

16. Donald E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer
Programming. Addison-Wesley, Reading, Massachusetts, second edition, 1973.

17. W. Martens and F. Neven. Frontiers of tractability for typechecking simple XML
transformations. In PODS 2004, pages 23–34, 2004.

18. M. Murata, D. Lee, and M. Mani. Taxonomy of XML schema languages using
formal language theory. In Extreme Markup Langages, Montreal, Canada, 2001.
http://www.cs.ucla.edu/~dongwon/paper/.

19. M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Taxonomy of XML schema
languages using formal language theory. Submitted, 2003.

20. F. Neven and T. Schwentick. XML schemas without order. Unpublished, 1999.
21. Sebastian Schaffert and François Bry. Querying the Web Reconsidered: A Prac-

tical Introduction to Xcerpt. In Proceedings of Extreme Markup Languages 2004,
Montreal, Quebec, Canada (2nd–6th August 2004), 2004.

22. A. Wilk and W. Drabent. On types for XML query language Xcerpt. In Interna-
tional Workshop, PPSWR 2003, Mumbai, India, December 8, 2003, Proceedings,
number 2901 in LNCS, pages 128–145. Springer-Verlag, 2003.

	Introduction
	Semistructured Data
	Tree Automata
	Tree Automata Generalized
	Useful Restrictions of Type Definitions
	References

