

Lecture Notes in Computer Science 3564
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Norbert Eisinger Jan Małuszyński (Eds.)

Reasoning Web

First International Summer School 2005
Msida, Malta, July 25-29, 2005
Tutorial Lectures

13

Volume Editors

Norbert Eisinger
Ludwig-Maximilians-Universität München, Institut für Informatik
Oettingenstr. 67, 80538 München, Germany
E-mail: norbert.eisinger@ifi.lmu.de

Jan Małuszyński
Linköping University, Department of Computer and Information Science
58183 Linköping, Sweden
E-mail: janma@ida.liu.se

Library of Congress Control Number: 2005928809

CR Subject Classification (1998): H.4, H.3, C.2, H.5, J.1, K.4, K.6, I.2.11

ISSN 0302-9743
ISBN-10 3-540-27828-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-27828-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11526988 06/3142 5 4 3 2 1 0

Preface

This volume contains the tutorial papers of the Summer School “Reasoning
Web,” July 25–29, 2005 (http://reasoningweb.org). The School was hosted by the
University of Malta and was organized by the Network of Excellence
REWERSE “Reasoning on the Web with Rules and Semantics” (http://rewerse.
net), funded by the EU Commission and by the Swiss Federal Office for Educa-
tion and Science within the 6th Framework Programme under the project refer-
ence number 506779. The objective of the school was to provide an introduction
into methods and issues of the Semantic Web, a major endeavor in current Web
research, where the World Wide Web Consortium W3C plays an important role.

The main idea of the Semantic Web is to enrich Web data with meta-data
carrying a “meaning” of the data and allowing Web-based systems to reason
about data (and meta-data). The meta-data used in Semantic Web applications
is usually linked to a conceptualization of the application domain shared by
different applications. Such a conceptualization is called an ontology and spec-
ifies classes of objects and relations between them. Ontologies are defined by
ontology languages, based on logic and supporting formal reasoning. Just as the
current Web is inherently heterogeneous in data formats and data semantics,
the Semantic Web will be inherently heterogeneous in its reasoning forms. In-
deed, any single form of reasoning turns out to be insufficient in the Semantic
Web. For instance, ontology reasoning in general relies on monotonic negation,
while databases, Web databases, and Web-based information systems call for
non-monotonic reasoning. Constraint reasoning is needed in dealing with time
(for time intervals are to be dealt with). Reasoning with topologies, e.g., in
mobile computing applications, requires planning methods. On the other hand
(forward and/or backward) chaining is the reasoning of choice in coping with
database-like views (for views, i.e., virtual data, can be derived from actual data
by operations such as join and projections).

The programme of the school and the selection of the lecturers was discussed
and approved by the REWERSE Steering Committee. This volume contains
10 papers written or co-authored by the lecturers. The papers present some
well-established fundamentals of the Semantic Web and selected research issues
addressed by REWERSE.

The first two papers concern the ontology level of the Semantic Web. The
paper by Grigoris Antoniou, Enrico Franconi, and Frank van Harmelen gives an
introduction to Semantic Web ontology languages and discusses their relation
to description logics. An alternative foundation for Semantic Web reasoning is
F-logic, as discussed in the paper by Michael Kifer.

The next two papers take the perspective of the Web as an information sys-
tem. The first of them, co-authored by James Bailey, François Bry, Tim Furche,
and Sebastian Schaffert, surveys most Web and Semantic Web query languages

VI Preface

so far proposed for the major representation formalisms of the standard and
Semantic Web: XML, RDF and topic maps. The survey stresses the necessity
of an integrated access to the data on the Web that is represented in various
formalisms and discusses the role of reasoning in querying Web data. The size
of this paper is larger than the other ones in this volume. This was necessary in
order to provide a comprehensive and focused survey of numerous Web query
languages. The second paper, by José Júlio Alferes and Wolfgang May, addresses
the issue of evolution of Web data and reactivity to events. The paper first dis-
cusses logical foundations of evolution and reactive languages in general and
then focuses on issues specific to evolution and reactivity in the Web and in the
Semantic Web.

User-friendliness of the Web is addressed by the next two papers. The first
of them, by Matteo Baldoni, Cristina Baroglio, and Nicola Henze discusses the
issue of personalization for the Semantic Web. Personalization techniques aim at
giving the user optimal support in accessing, retrieving and storing information,
where solutions are built so as to fit the preferences, the characteristics, and the
taste of the individual. The objective of the paper is to provide a coherent in-
troduction into issues and methods for realizing personalization in the Semantic
Web. It shows that reasoning is essential for personalization. The paper by Nor-
bert Fuchs, Stefan Höfler, Kaarel Kaljurand, Fabio Rinaldi, and Gerold Schnei-
der gives a systematic introduction into Attempto Controlled English (ACE) a
knowledge representation language readable by human and machine. ACE can
be seen as a first-order logic language with the syntax of a non-ambiguous subset
of English. It has already been used as an interface language to formal systems,
and due to its ability to express business and policy rules it is of prime interest
for Semantic Web applications.

The remaining papers in this volume show potentially important links be-
tween the Semantic Web and some well-established techniques. The paper by
Gerd Wagner addresses several issues of rule modeling on the basis of the Uni-
fied Modeling Language (UML) proposed by the Object Management Group
(OMG). It discusses similarities and differences between UML class models and
vocabularies of the W3C ontology language OWL. It also shows how UML can
be used for specifying rules and for providing concise descriptions of the abstract
syntax of Semantic Web languages, such as RDF, OWL, and emerging Semantic
Web rule languages. The paper by Robert Baumgartner, Thomas Eiter, Georg
Gottlob, Marcus Herzog, and Christoph Koch surveys the state of the art and
techniques in Web information extraction and explains their importance for cre-
ation of input data for Semantic Web applications. The paper by Uwe Aßmann
shows that employing ontologies can help to enlarge the software reuse factor
and concludes that ontologies will play an important role in the construction of
software applications, both singular and product lines. This concerns standard
applications as well as Web applications, including Web services. Finally, the
paper by W�lodzimierz Drabent argues that type checking is needed for Web rule
and query languages. For that purpose the paper presents a formalism for de-
scribing sets of semistructured data. Such sets, to be used as types, are related

Preface VII

to XML schemata described in schema languages such as DTD or XML Schema.
Research on their application to typechecking of REWERSE rule languages is
in progress.

July 2005 Norbert Eisinger and Jan Ma�luszyński
Co-ordinators of REWERSE Education and Training

Table of Contents

Introduction to Semantic Web Ontology Languages
Grigoris Antoniou, Enrico Franconi, Frank van Harmelen 1

Rules and Ontologies in F-Logic
Michael Kifer . 22

Web and Semantic Web Query Languages: A Survey
James Bailey, François Bry, Tim Furche, Sebastian Schaffert 35

Evolution and Reactivity for the Web
José Júlio Alferes, Wolfgang May . 134

Personalization for the Semantic Web
Matteo Baldoni, Cristina Baroglio, Nicola Henze 173

Attempto Controlled English: A Knowledge Representation Language
Readable by Humans and Machines

Norbert E. Fuchs, Stefan Höfler, Kaarel Kaljurand, Fabio Rinaldi,
Gerold Schneider . 213

Rule Modeling and Markup
Gerd Wagner . 251

Information Extraction for the Semantic Web
Robert Baumgartner, Thomas Eiter, Georg Gottlob, Marcus Herzog,
Christoph Koch . 275

Reuse in Semantic Applications
Uwe Aßmann . 290

Towards Types for Web Rule Languages
W�lodzimierz Drabent . 305

Author Index . 319

Introduction to Semantic Web
Ontology Languages

Grigoris Antoniou1, Enrico Franconi2, and Frank van Harmelen3

1 ICS-FORTH, Greece
antoniou@icsforth.gr

2 Faculty of Computer Science, Free University of Bozen–Bolzano, Italy
franconi@inf.unibz.it

3 Department of Computer Science, Vrije Universiteti Amsterdam, Netherlands
frankh@cs.vu.nl

Abstract. The aim of this chapter is to give a general introduction
to some of the ontology languages that play a prominent role on the
Semantic Web, and to discuss the formal foundations of these languages.
Web ontology languages will be the main carriers of the information that
we will want to share and integrate.

1 Organisation of This Chapter

In section 2 we discuss general issues and requirements for Web ontology lan-
guages, including the semantics issues. We then describe briefly the most impor-
tant ontology languages in the design of the Semantic Web, namely RDF Schema
in section 3 and OWL in section 4. Section 5 contains a brief comparison with
other ontology languages. A brief introduction to description logics and their
relation to the OWL family of web ontology languages is included. The chapter
is concluded by a discussion on the importance of having correct and complete
inference engines for web ontology languages.

2 On Web Ontology Languages

Even though ontologies have a long history in Artificial Intelligence (AI), the
meaning of this concept still generates a lot of controversy in discussions, both
within and outside of AI. We follow the classical AI definition: an ontology is
a formal specification of a conceptualisation, that is, an abstract and simplified
view of the world that we wish to represent, described in a language that is
equipped with a formal semantics. In knowledge representation, an ontology is a
description of the concepts and relationships in an application domain. Depend-
ing on the users of this ontology, such a description must be understandable by
humans and/or by software agents. In many other field – such as in informa-
tion systems and databases, and in software engineering – an ontology would
be called a conceptual schema. An ontology is formal, since its understanding

, LNCS 3564, pp. 1–21, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
N. Eisinger and J. Ma�luszyński (Eds.): Reasoning Web 2005

2 G. Antoniou, E. Franconi, and F. van Harmelen

should be non ambiguous, both from the syntactic and the semantic point of
views.

Researchers in AI were the first to develop ontologies with the purpose of fa-
cilitating automated knowledge sharing. Since the beginning of the 90’s, ontolo-
gies have become a popular research topic, and several AI research communities,
including knowledge engineering, knowledge acquisition, natural language pro-
cessing, and knowledge representation, have investigated them. More recently,
the notion of an ontology is becoming widespread in fields such as intelligent
information integration, cooperative information systems, information retrieval,
digital libraries, e-commerce, and knowledge management. Ontologies are widely
regarded as one of the foundational technologies for the Semantic Web: when
annotating web documents with machine-interpretable information concerning
their content, the meaning of the terms used in such an annotation should be
fixed in a (shared) ontology. Research in the Semantic Web has led to the stan-
dardisation of specific web ontology languages.

An ontology language is a mean to specify at an abstract level – that is, at
a conceptual level – what is necessarily true in the domain of interest. More
precisely, we can say that an ontology language should be able to express con-
straints, which declare what should necessarily hold in any possible concrete
instantiation of the domain. In the following, we will introduce various ways
to impose constraints over domains, by means of statements expressed is some
suitable ontology language.

2.1 What Are Ontology Languages

How do we describe a particular domain? Let us consider the domain of courses
and lecturers at Griffith University. First we have to specify the “things” we
want to talk about. Here we will make a first, fundamental distinction. On one
hand we want to talk about particular lecturers, such as David Billington, and
particular courses, such as Discrete Mathematics. But we also want to talk about
courses, first year courses, lecturers, professors etc. What is the difference? In
the first case we talk about individual objects (resources), in the second we talk
about classes (also called concepts) which define types of objects.

A class can be thought of as a set of elements, called the extension of the
class. Individual objects that belong to a class are referred to as instances of
that class.

An important use of classes is to impose restrictions on what can be stated. In
programming languages, typing is used to prevent nonsense from being written
(such as A + 1, where A is an array; we lay down that the arguments of + must
be numbers). The same is needed in RDF. After all, we would like to disallow
statements such as:

– Discrete Mathematics is taught by Concrete Mathematics.
– Room MZH5760 is taught by David Billington.

The first statement is non-sensical because we want courses to be taught by
lecturers only. This imposes a restriction on the values of the property “is taught
by”. In mathematical terms, we restrict the range of the property.

Introduction to Semantic Web Ontology Languages 3

The second statement is non-sensical because only courses can be taught.
This imposes a restriction on the objects to which the property can be applied.
In mathematical terms, we restrict the domain of the property.

Class Hierarchies. Once we have classes we would also like to establish rela-
tionships between them. For example, suppose that we have classes for

– staff members
– academic staff members
– professors
– associate professors
– assistant professors
– administrative staff members
– technical support staff members.

These classes are not unrelated to each other. For example, every professor is
an academic staff member. We say that professor is a subclass of academic staff
member, or equivalently, that academic staff member is a superclass of professor.
The subclass relationship is also called subsumption.

The subclass relationship defines a hierarchy of classes. In general, A is a
subclass of B if every instance of A is also an instance of B.

A hierarchical organisation of classes has a very important practical signifi-
cance, which we outline now. Consider the range restriction

Courses must be taught by academic staff members only.

Suppose Michael Maher was defined as a professor. Then, according to the
restriction above, he is not allowed to teach courses. The reason is that there
is no statement which specifies that Michael Maher is also an academic staff
member. Obviously it would be highly counterintuitive to overcome this difficulty
by adding that statement to our description. Instead we would like Michael
Maher to inherit the ability to teach from the class of academic staff members.

Property Hierarchies. We saw that hierarchical relationships between classes
can be defined. The same can be done for properties. For example, “is taught by”
is a subproperty of “involves”. If a course c is taught by an academic staff member
a, then c also involves a. The converse is not necessarily true. For example, a
may be the convenor of the course, or a tutor who marks student homework,
but does not teach c.

In general, P is a subproperty of Q if two objects are related by Q whenever
they are related by P .

Summary. As a consequence of the discussion above, (Web) ontology languages
consist of:

4 G. Antoniou, E. Franconi, and F. van Harmelen

– the important concepts (classes) of a domain
– important relationships between these concepts. These can be hierarchical

(subclass relationships), other predefined relationships contained in the on-
tology language, or user defined (properties).

– further constraints on what can be expressed (e.g. domain and range restric-
tions, cardinality constraints etc.).

2.2 Formal Semantics

Ontology languages allow users to write explicit, formal conceptualisations of
domains models. The main requirements are:

1. a well-defined syntax
2. a well-defined semantics
3. efficient reasoning support
4. sufficient expressive power
5. convenience of expression.

The importance of a well-defined syntax is clear, and known from the area
of programming languages; it is a necessary condition for machine-processing of
information. Web ontology languages have a syntax based on XML, though they
may also have other kinds of syntaxes.

Of course it is questionable whether the XML-based syntax is very user-
friendly, there are alternatives better suitable for humans. However this drawback
is not very significant, because ultimately users will be developing their ontologies
using authoring tools, or more generally ontology development tools, instead of
writing them directly in the Web ontology language.

Formal semantics describes precisely the meaning of knowledge. “Precisely”
here means that the semantics does not refer to subjective intuitions, nor is
it open to different interpretations by different persons (or machines). The im-
portance of formal semantics is well-established in the domain of mathematical
logic. In the context of ontology languages, the semantics enforces the meaning
of the expressed knowledge as a set of constraints over the domain. Any pos-
sible instantiation of the domain should necessarily conform to the constraints
expressed by the ontology.

Given a statement in an ontology, the role of the semantics is to devise pre-
cisely which are the models of the statement, i.e., all the possible instantiations
of the domain that are compatible with the statement. We say that a statement
is true in an instantiation of the domain if this instantiation is compatible with
the statement; the instantiation of the domain in which a statement is true is of
course a model of the statement, and viceversa. So, an ontology will itself devise
a set of models, which is the intersection among all the models of each statement
in the ontology. The models of an ontology represent the only possible realisable
situations.

For example, if an ontology states that professor is a subclass of academic
staff member (i.e., in any possible situation, each professor is also an academic
staff member), and if it is known that Michael Maher is a professor (i.e., Michael

Introduction to Semantic Web Ontology Languages 5

Maher is an instance of the professor class), then in any possible situation it
is necessarily true that Michael Maher is an academic staff member, since the
situation in which he would not be an academic staff member is incompatible
with the constraints expressed in the ontology.

If we understand that an ontology language talks basically about classes,
properties and objects of a domain, then a model (i.e., a specific instantiation
of the domain) is nothing else than the precise characterisation for each objects
of the classes it is instance of, and of the properties it participates to. So, in
the above example, in any model of the ontology Michael Maher should be an
instance of the academic staff member class.

2.3 Reasoning

The fact that the formal semantics associates to an ontology a set of models,
allows us to define the notion of deduction. Given an ontology, we say that an
additional statement can be deduced from the ontology if it is true in all the
models of the ontology. This definition of deduction comes from logic and it is
very general but also very strict: if a statement is not true in all the models of an
ontology, then it is not a valid deduction from it. The process of deriving valid
deductions from an ontology is called reasoning.

If we consider the typical statements of web ontology languages, the following
deductions (“inferences”) can be introduced:

– Class membership. We want to deduce whether an object is instance of a
class. For example, if in the ontology it is stated that Michael Maher is an
instance of a class Professor, and that Professor is a subclass of the Academic

Staff Member class, then we can infer that Michael Maher is an instance of
Academic Staff Member, because this latter statement is true in all the models
of the ontology, as we have explained above.

– Classification: We want to deduce all the subclass relationships between the
existing classes in the ontology. For example, if in the ontology it is stated
that the class Teaching Assistant is a subclass of the Professor class, and
that Professor is a subclass of the Academic Staff Member class, then we can
infer that Teaching Assistant is a subclass of Academic Staff Member. This
deduction holds since in any model of the ontology the extension of Teaching
Assistant is a subset of the extension of Professor, and the extension of
Professor is a subset of the extension of Academic Staff Member. Therefore,
in any model the extension of Teaching Assistant is a subset of the extension
of Academic Staff Member, and in any model the statement that Teaching

Assistant is a subclass of Academic Staff Member is true.
– Equivalence of classes. We want to deduce whether two classes are equiva-

lent, i.e., they have the same extension. For example, if class Professor is
equivalent to class Lecturer, and class Lecturer is equivalent to class Teacher,
then Professor is equivalent to Teacher, too.

– Consistency of a class. We want to check that some class does not have
necessarily an empty extension. For example, given an ontology in which
the class Working-Student is defined to be a subclass of two disjoint classes

6 G. Antoniou, E. Franconi, and F. van Harmelen

Student and Professor, it can be inferred that the class Working-Student is
inconsistent, since in every model of the ontology its extension is empty. In
fact, any instance of Working-Student would violate the constraints imposed
by the ontology (namely, that there is no common instance between the two
classes). In this case, it would be possible to remove the inconsistency for
the Working-Student class by removing from the ontology the disjointness
statement between Student and Professor.

– Consistency of the ontology. We want to check that the ontology admits at
least a model, i.e., there is at least a possibility to have an instantiation
of the domain compatible with the ontology. For example, suppose we have
declared in the ontology
1. that John is an instance of both the class Student and the class Professor,

and
2. that Student and Professor are two disjoint classes.

Then we have an inconsistency because the two constraints can not be satis-
fied simultaneously. Statement 2 says that the extensions of the two classes
can not have any element in common, since they are disjoint, but statement 1
says that John is an instance of both classes. This clearly indicates that there
is an error in the ontology, since it does not represent any possible situation.

In designing an ontology language one should be aware of the tradeoff between
expressive power and efficiency of reasoning. Generally speaking, the richer the
language is, the more inefficient the reasoning support becomes, often cross-
ing the border of non-computability. Thus we need a compromise, a language
that can be supported by reasonably efficient reasoners, while being sufficiently
expressive to express large classes of ontologies and knowledge.

Various methodologies are being developed on how to build a “good” on-
tology. These approaches may differ in many aspects, e.g., in the underlying
representation formalism, and whether they are equipped with an explicit no-
tion of quality, but most of them rely on reasoning mechanisms to support the
design of the ontology. Semantics is a prerequisite for reasoning support: deriva-
tions such as the above can be made mechanically, instead of being made by
hand. Logic-based reasoning is employed by the tools to verify the specification,
infer implicit statements and facts, and manifest any inconsistencies. Reasoning
support is important because it allows one to

– check the consistency of the ontology and the knowledge;
– check for unintended relationships between classes;
– derive explicitly all the statements that are true in the ontology, to better

understand its properties;
– reduce the redundancy of an ontology, discover equivalent descriptions, reuse

concept descriptions, and refine the definitions;
– automatically classify instances in classes.

In addition to the so called standard reasoning support listed above, non-
standard inference for ontologies are of great practical impact in ontology-based

Introduction to Semantic Web Ontology Languages 7

applications. In particular, tools for building and maintaining large knowledge
bases also requires system services that cannot be provided by the standard rea-
soning techniques. These non-standard reasoning problems encompass matching
and unification of concepts (useful, e.g., for browsing ontologies and detecting
redundancies), least-common-subsumer and most-specific-concept computation
(useful to support the definition of new concepts), and approximation of con-
cepts (useful for approximate reasoning and for a comprehensible presentation
of ontologies to non-expert users).

Automated reasoning support allows one to check many more cases than
what can be done manually. Checks like the above are valuable for

– designing large ontologies, where multiple authors are involved;
– integrating and sharing ontologies from various sources.

Formal semantics and reasoning support is usually provided by mapping an
ontology language to a known logical formalism, and by using automated rea-
soners that already exist for those formalisms.

3 The Key Semantic Web Ontology Languages

We now turn to a discussion of specific ontology languages that are based on the
abstract view from the previous version: RDF Schema and OWL. Quite a few
other sources already exist that give general introductions to these languages.
Some parts of the RDF and OWL specifications are intended as such introduc-
tions (in particular [13], [9] and [10]), and also didactic material such as [12] and
[11].

Our presentation is structured along the so-called layering of OWL: OWL
Lite, OWL DL and OWL Full. This layering is motivated by different require-
ments that different users have for a Web ontology language:

– RDF(S) is intended for those users primarily needing a classification hierar-
chy with typing of properties and meta-modelling facilities;

– OWL Lite adds the possibility to express definitions and axioms, together
with a limited use of properties to define classes;

– OWL DL supports those users who want the maximum expressiveness while
retaining good computational properties;

– OWL Full is meant for users who want maximum expressiveness with no
computational guarantees.

Before discussing the language primitives of OWL Lite, we first discuss language
elements from RDF and RDF Schema (RDF(S) for short). With the only purpose
to simplify the presentation in this tutorial by obtaining a strict layering between
RDF(S) and OWL Lite, we will restrict our discussion of RDF(S) to the case
where the vocabulary is strictly partitioned, the meta-modelling and reification
facilities are forbidden, as described in [12], also called “type separation” in [9]:

8 G. Antoniou, E. Franconi, and F. van Harmelen

“Any resource is allowed to be only a class, a data type, a data type
property, an object property, an individual, a data value, or part of the
built-in vocabulary, and not more than one of these. This means that,
for example, a class cannot at the same time be an individual, [...]”

Under this restriction, we have the following strict language inclusion relation-
ship:

RDF(S) ⊂ OWL Lite ⊂ OWL DL,

where ⊂ stands for both syntactic and semantic language inclusion, in other
words: every syntactically correct RDF(S) statement is also a correct OWL Lite
statement, and every model of a RDF(S) ontology is also a model for the same
ontology expressed in OWL Lite (and similarly for the other case). A similar
but less strong restriction was proposed with RDFS(FA) [7], which does allow
a class to be an instance of another class, as long as this is done in a stratified
fashion. When dropping the restriction of a partitioned or stratified vocabulary
for RDF(S), the first inclusion relationship no longer holds. In that case, RDF(S)
is only a sublanguage of OWL Full. However, note that even in the general case
when the inclusion does not hold RDF(S) and OWL Lite/DL can still easily
inter-operate. Also note that the inclusion between OWL DL and OWL Full
does not hold, intuitively due to the lack of reification in OWL DL and OWL
Lite.

Before we discuss the different language primitives that we encounter along
this set of inclusions, we first list some of our notational conventions.

We use the normative abstract syntax for OWL as defined in [15]. While this
syntax in only meant for OWL itself, we use the same syntax for introducing
RDF(S) in order to clarify the relation between the languages1. We will use
symbols ci for classes, ei for objects, pi for properties between objects, and oi

for ontologies. Whenever useful, we will prefix classes and instances with pseudo-
namespaces to indicate the ontology in which these symbols occur, e.g. o1 e1 and
o2 e1 are two different instances, the first occurring in ontology o1, the second in
ontology o2.

Note that the XML-based syntax is far better known, but arguably not as
readable. In fact, the XML-syntax is clearly geared towards machine processing,
while the abstract syntax is tailored to human reading, thus our choice in this
section. The reader should keep in mind that the characteristics of the ontology
languages are independent of the syntax used.

3.1 RDF Schema

The most elementary building block of RDF(S) is a class, which defines a group
of individuals that belong together because they share some properties. The
following states that an instance e belongs to a class c:

Individual(e type(c)) (“e is of type c”).

1 Note that the semantics of the same constructs in RDF(S) and OWL can differ.

Introduction to Semantic Web Ontology Languages 9

The second elementary statement of RDF(S) is the subsumption relation be-
tween classes: subClassOf:

subClassOf(ci cj)

In RDF, instances are related to other instances through properties:

Individual(ei value(p ej))

Properties are characterised by their domain and range:

ObjectProperty(p domain(ci)range(cj))

Finally, just as with classes, properties are organised in a subsumption hierarchy:

SubPropertyOf(o1 : pi o2 : pj)

RDF and RDFS allow the representation of some ontological knowledge. The
main modelling primitives of RDF/RDFS concern the organisation of vocabu-
laries in typed hierarchies: subclass and subproperty relationships, domain and
range restrictions, and instances of classes. However a number of other features
are missing. Here we list a few:

– Local scope of properties: rdfs:domain and fs:range define a unique do-
main/range of a property for all classes. Thus in RDF Schema we cannot
declare domain/range restrictions that apply to some classes only. For ex-
ample, for the property “father of”, the father of elephants are elephants,
while the fathers of mice are mice.

– Disjointness of classes: Sometimes we wish to say that classes are disjoint.
For example, male and female are disjoint. But in RDF Schema we can only
state subclass relationships, e.g. female is a subclass of person.

– Boolean combinations of classes: Sometimes we wish to build new classes
by combining other classes using union, intersection and complement. For
example, we may wish to define the class person to be the disjoint union of
the classes male and female. RDF Schema does not allow such definitions.

– Cardinality restrictions: Sometimes we wish to place restrictions on how
many distinct values a property may take. For example, we would like to say
that a car has at most four wheels. Again such restrictions are impossible
to express in RDF Schema. Note that min cardinality restrictions can be
expressed for individuals in RDF(S) by making use of the b-nodes.

– Special characteristics of properties: Sometimes it is useful to say that a
property is transitive (like “greater than”), unique (like “has mother”), or
the inverse of another property (like “eats” and “is eaten by”).

Summary of Basic Features of RDF Schema.

– Classes and their instances
– Binary properties between objects
– Organisation of classes and properties in hierarchies
– Types for properties: domain and range restrictions

10 G. Antoniou, E. Franconi, and F. van Harmelen

4 Web Ontology Language OWL

4.1 OWL Lite

One of the significant limitations of RDF Schema is the inability to make equality
claims between individuals. Such equality claims are possible in OWL Lite:

SameIndividual(ei ej)

Besides equality between instances, OWL Lite also introduces constructions to
state equality between classes and between properties. Although such equalities
could already be expressed in an indirect way in RDF(S) (e.g., through a pair
of mutual Subclassof or SubPropertyOf statements), this can be done directly
in OWL Lite:

EquivalentClasses(c1 cj)
EquivalentProperties(p1 pj)

Just as importantly, as making positive claims about equality or subsumption
relationships, is stating negative information about inequalities. A significant
limitation of RDF(S)2 is the inability to state such inequalities. Since OWL
does not make the unique name assumption, two instances ei and ej are not
automatically regarded as different. Such an inequality must be explicitly stated,
as:

DifferentIndividuals(ei ej)

Because inequality between individuals is an often occurring and important
statement (in many ontologies, all differently named individuals are assumed
to be different, i.e. they embrace the unique name assumption), OWL Lite pro-
vides an abbreviated form:

DifferentIndividuals(e1 ... e4)

abbreviates the six DifferentIndividuals statements that would have been re-
quired for this.

Whereas the above constructions are aimed at instances and classes, OWL
Lite also has constructs specifically aimed at properties. An often occurring
phenomenon is that a property can be modelled in two directions. Examples
are ownerOf vs. ownedBy, contains vs. isContainedIn, childOf vs. parentOf and
countless others. The relationship between such pairs of properties is established
by stating

ObjectProperty(pi inverseOf(pj))

Other vocabulary in OWL Lite (TransitiveProperty and SymmetricProperty are
modifying a single property, rather then establishing a relation between two
properties:

2 But motivated by a deliberate design decision concerning the computational and
conceptual complexity of the language.

Introduction to Semantic Web Ontology Languages 11

ObjectProperty(o1 : pi Transitive)
ObjectProperty(o1 : pi Symmetric)

The main limitation of RDF(S) to represent knowledge in terms of concepts and
their properties, is its inability to use properties in the local context of a class.
As we have already noted, a property has a unique definition for its domain
and for its range, and moreover the participation constraints of the instances of
the domain and range classes to the property are not specifiable in RDF(S). So,
in RDF(S) it is impossible to state whether a property is optional or required
for the instances of the class (in other words: should it have at least one value
or not), and whether it is single- or multi-valued (in other words: is it allowed
to have more than one value or not). Technically, these restrictions constitute
0/1-cardinality constraints on the property. The case where a property is al-
lowed to have at most one value for a given instance (i.e. a max-cardinality of 1)
has a special name: FunctionalProperty. The case where the value of a property
uniquely identifies the instance of which it is a value (i.e. the inverse property
has a max-cardinality of 1) is called InverseFunctionalProperty. These two con-
structions allow for some interesting derivations under the OWL semantics: If
an ontology models that any object can only have a single “age”:

(ObjectProperty age Functional)

then different age-values for two instances ei and ej allow us to infer that

DifferentIndividuals(ei ej)

(if two objects ei and ej have a different age, they must be different objects).
Similarly, if an ontology states that social security numbers uniquely identify
individuals, i.e.

ObjectProperty(hasSSN InverseFunctional)

then the two facts

Individual(ei value(hasSSN 12345))
Individual(ej value(hasSSN 12345))

sanction the derivation of the fact

SameIndividuals(ei ej)

Although RDF(S) already allows to state domain and range restrictions, these
are very limited. OWL Lite allows more refined version of these, local to the
definition of a class:

Class(ci restriction(pi allValuesFrom(cj)))

says that all pi-values (if any) for each member of ci must be members of cj .
This differs from the RDF(S) range restriction

ObjectProperty(p range(cj))

12 G. Antoniou, E. Franconi, and F. van Harmelen

which says that all pi-values must be members of cj , irrespective of whether they
are members of ci or not. This allows us to use the same property-name pi with
different range restrictions cj depending on the class ci to which pi is applied.
For example, take for pi the property Parent. Then Parents of cats are cats,
while Parents of dogs are dogs. An RDF(S) range restriction would not be able
to capture this.

Similarly, although in RDF(S) we can define the range of a property, we
cannot enforce that properties actually do have a value: we can state the authors
write books:

ObjectProperty(write domain(author) range(book))

but we cannot enforce in RDF(S) that every author must have written at least
one book. This is possible in OWL Lite:

Class(author restriction(write someValuesFrom(book)))

Technically speaking, these are just special cases of the general cardinality con-
straints allowed in OWL DL. The someValuesFrom corresponds to a min-cardinality
constraint with value 1, and the functional property constraint mentioned above
can be rewritten in this context with a max-cardinality constraint with value 1.
These can also be stated directly:

Class(author restriction(write minCardinality(1)))
Class(object restriction(age maxCardinality(1)))

When a property has a minCardinality and maxCardinality constraints with
the same value, these can be summarised by a single exact Cardinality con-
straint.

4.2 OWL DL

With the step from OWL Lite to OWL DL, we obtain a number of additional
language constructs, which simplify the writing of an ontology, even if most of
them could be written anyway in OWL Lite as macros. It is often useful to say
that two classes are disjoint (which is much stronger than saying they are merely
not equal):

DisjointClasses(ci cj)

OWL DL allows arbitrary Boolean algebraic expressions on either side of an
equality of subsumption relation. For example

SubClassOf(ci unionOf(cj ck))

In other words: ci is not subsumed by either cj or ck, but is subsumed by their
union. Similarly

EquivalentClasses(ci intersectionOf(cjck))

Introduction to Semantic Web Ontology Languages 13

in other words: although ci is subsumed by cj and ck (a statement already
expressible in RDF(S)), stating that ci is equivalent to their intersection is much
stronger. An obvious example to think of here is “old men”: “old men” are
not just both old and men, but they are exactly the intersection of these two
properties.

Of course, the unionOf and intersectionOf may be taken over more than two
classes, and may occur in arbitrary Boolean combinations.

Besides disjunction (unionOf) and conjunction (intersectionOf), OWL DL
completes the Boolean algebra by providing a construct for negation: complementOf:

complementOf(ci cj)

In fact, arbitrary class expressions can be used on either side of subsumption or
equivalence axioms.

Note that all the additional OWL DL constructs introduced so far, are also in-
directly expressible already in OWL Lite. For example, the disjointness between
two classes ci and cjcan be expressed by means of the following two statements
in OWL Lite, for some fresh new property p:

SubClassOf(ci restriction(p minCardinality(1)))
SubClassOf(cj restriction(p maxCardinality(0)))

There are cases where it is not possible to define a class in terms of such alge-
braic expressions. This can be either impossible in principle. In such cases it is
sometimes useful to simply enumerate sets of individuals to define a class. This
is done in OWL DL with the oneOf construct:

EquivalentClasses(cj oneOf(e1 ... en))

Similar to defining a class by enumeration, we can define a property to have a
specific value by stating the value:

Class(ci restriction(pj hasValue ek)

The extension from OWL Lite to OWL DL also lifts the restriction on cardinality
constraints to have only 0/1 values.

4.3 OWL Full

OWL Lite and DL are based on a strict segmentation of the vocabulary: no term
can be both an instance and a class, or a class and a property, etc. Full RDF(S)
is much more liberal: a class c1 can have both a type and a subClassOf relation
to a class c2, and a class can even be an instance of itself. In fact, the class Class

is a member of itself. OWL Full inherits from RDF(S) this liberal approach. This
feature is crucial for using OWL as a meta-modelling language.

Schreiber [14] argues that this is exactly what is needed in many cases of
practical ontology integration. When integrating two ontologies, opposite com-
mitments have often been made in the two ontologies on whether something is

14 G. Antoniou, E. Franconi, and F. van Harmelen

modelled as a class or an instance. This is less unlikely than it may sound: is
“747” an instance of the class of all airplane-types made by Boeing or is “747”
a subclass of the class of all airplanes made by Boeing, and are particular jet
planes instances of this subclass? Both points of view are defensible. In OWL
Full, it is possible to have equality statements between a class and an instance.

In fact, just as in RDF Schema, OWL Full allows us even to apply the con-
structions of the language to themselves. It is perfectly legal to (say) apply a
max-cardinality constraint of 2 on the subClassOf relationship. For this reason,
OWL Full does not include OWL DL, in which the constructions of the language
are not semantic objects. Of course, building any complete and terminating rea-
soning tools that support this very liberal self-application of the language is out
of the question. In fact, the theory shows that it is impossible to build a correct
and complete inference engine for OWL Full.

5 Other Web-Based Ontology Languages

Besides the two standards RDF Schema and OWL discussed above, a number
of other approaches for encoding ontologies on the World Wide Web have been
proposed in the past. A comparison of these older languages is reported in [16].
We will now briefly review the results of this comparison and discuss implications
for our work.

Besides RDF Schema and OWL3, which have been introduced above, the
comparison reported in [16] includes the following languages that have been
selected on the basis of their aim of supporting knowledge representation on the
Web and their compatibility to the Web standards XML or RDF.

– XOL (XML-based ontology language). XOL [4] has been proposed as a
language for exchanging formal knowledge models in the domain of bio-
informatics. The development of XOL has been guided by the representa-
tional needs of the domain and by existing frame-based knowledge represen-
tation languages.

– SHOE (simple HTML ontology extension). SHOE[6] was created as an ex-
tension of HTML for the purpose of defining machine-readable semantic
knowledge. The aim of SHOE is to enable intelligent Web agents to retrieve
and gather knowledge more precisely than it is possible in the presence of
plain HTML documents.

– OML: (ontology markup language). OML [5] is an ontology language that
has initially been developed as an XML serialisation of SHOE. Meanwhile,
the language consists of different layers with increasing expressiveness. The
semantics especially of the higher levels is largely based on the notion of
conceptual graphs. In the comparison, however, only a less expressive subset
of OML (simple OML) is considered.

3 Actually, [16] discuss DAML+OIL instead of OWL. DAML+OIL [8] is the direct
precursor of OWL, and all of the conclusions from [16] about DAML+OIL are also
valid for OWL.

Introduction to Semantic Web Ontology Languages 15

Table 1. Comparison of web ontology languages with respect to concepts and tax-

onomies (taken from [16])

XOL SHOE OML RDF/S OIL DAML+OIL

Partitions – – + – + +

Attributes

Instance attr. + + + + + +
Class attr. + – + – + +
Local scope + + + + + +
Global scope + – + + + +

Facets

Default values + – – – – –
Type constr. + + + + + +
Cardinalities + – – – + +

Taxonomies

Subclass of + + + + + +
Exhaustive comp. – – + – + +
Disjoint comp. – – + – + +
Not subclass of – – – – + +

– OIL (ontology inference layer). OIL [3] is an attempt to develop an ontology
language for the Web that has a well defined semantics and sophisticated
reasoning support for ontology development and use. The language is con-
structed in a layered way starting with core-OIL, providing a formal seman-
tics for RDF Schema, standard-OIL, which is equivalent to an expressive
description logic with reasoning support, and Instance OIL that adds the
possibility of defining instances.

We have to mention that there is a strong relationship between the OIL language
and RDF Schema as well as DAML+OIL. OIL extends RDF Schema and has
been the main influence in the development if DAML+OIL. The main difference
between OIL and DAML+OIL is an extended expressiveness of DAML+OIL
in terms of complex definitions of individuals and data types. DAML+OIL in
turn has been the basis for the development of OWL, which carries the stamp
of an official W3C recommendation. All observations on DAML+OIL in this
comparison also apply to OWL.

6 Description Logics

We briefly now introduce description logics, which is the logic-based formalism
which is behind the OWL family of web ontology languages. From this brief
Section the parallel with the OWL family of web ontology languages will appear
clear. An extensive treatment of description logics, from friendly introductory
chapters, to the theoretical results, up to the description of applications and
systems, can be found in the Handbook of Description Logics [1]. Consistently

16 G. Antoniou, E. Franconi, and F. van Harmelen

with the informal notion of semantics introduced above for the web ontology
languages, description logics are considered as a structured fragment of predi-
cate logic. ALC is the minimal description language including full negation and
disjunction—i.e., propositional calculus.

The basic types of a DL language are concepts, roles, and features. A concept
is a description gathering the common properties among a collection of individ-
uals; from a logical point of view it is a unary predicate ranging over the domain
of individuals. A concept corresponds to a class in the web ontology languages.
Inter-relationships between these individuals are represented either by means of
roles (which are interpreted as binary relations over the domain of individuals)
or by means of features (which are interpreted as partial functions over the do-
main of individuals). Roles correspond to properties of RDF and OWL, while
features correspond to functional properties. In this Section, we will consider the
Description Logic ALCQI, extending ALC with qualified cardinality restrictions
and inverse roles.

According to the syntax rules of Figure 1, ALCQI concepts (denoted by the
letters C and D) are built out of primitive concepts (denoted by the letter A),
roles (denoted by the letter R), and primitive features (denoted by the letter
f); roles are built out of primitive roles (denoted by the letter P) and primitive
features. The top part of Figure 1 defines the ALC sublanguage. Please also
note that features are introduced as shortcuts; in fact, they can be expressed by
means of axioms using cardinality restrictions, as we already noticed for OWL
DL.

C, D → A | A (primitive conc.)

� | top (top)

⊥ | bottom (bottom)

¬C | (not C) (complement)

C � D | (and C D . . .) (conjunction)

C � D | (or C D . . .) (disjunction)

∀R.C | (all R C) (univ. quantifier)

∃R.C | (some R C) (exist. quantifier)

f ↑ | (undefined f) (undefinedness)

f : C | (in f C) (selection)

≥n R.C | (atleast n R C) (min cardinality)

≤n R.C (atmost n R C) (max cardinality)

R → P | P (primitive role)

f | f (primitive feature)

R−1 (inverse R) (inverse role)

Fig. 1. Syntax rules for ALCQI

Introduction to Semantic Web Ontology Languages 17

�I = ΔI

⊥I = ∅
(¬C)I = ΔI \ CI

(C � D)I = CI ∩ DI

(C � D)I = CI ∪ DI

(∀R.C)I = {i ∈ ΔI | ∀j.RI(i, j) ⇒ CI(j)}
(∃R.C)I = {i ∈ ΔI | ∃j.RI(i, j) ∧ CI(j)}

(f ↑)I = ΔI \ dom fI

(f : C)I = {i ∈ dom fI | CI(fI(i))}
(≥n R.C)I = {i ∈ ΔI | �{j ∈ ΔI | RI(i, j) ∧ CI(j)} ≥ n}
(≤n R.C)I = {i ∈ ΔI | �{j ∈ ΔI | RI(i, j) ∧ CI(j)} ≤ n}

(R−1)I = {(i, j) ∈ ΔI × ΔI | RI(j, i)}

Fig. 2. Extensional semantics of ALCQI

Let us now consider the formal semantics of ALCQI. We define the meaning
of concepts as sets of individuals—as for unary predicates—and the meaning of
roles as sets of pairs of individuals—as for binary predicates. This is the for-
malised notion of instantiation of the domain we introduced at the beginning
of this chapter. Formally, an interpretation is a pair I = (ΔI , ·I) consisting of
a set ΔI of individuals (the domain of I) and a function ·I (the interpretation
function of I) mapping every concept to a subset of ΔI , every role to a sub-
set of ΔI × ΔI , and every feature to a partial function from ΔI to ΔI , such
that the equations in Figure 2 are satisfied. The semantics of the language can
also be given by stating equivalences among expressions of the language and
First Order Logic formulae. An atomic concept A, an atomic role P , and an
atomic feature f , are mapped respectively to the open formulæA(γ), P (α, β),
and f(α, β) – with f a functional relation, also written f(α) = β. Figure 3 gives
the transformational semantics of ALCQI expressions in terms of equivalent
FOL well-formed formulæ. A concept C and a role R correspond to the FOL
open formulae FC(γ) and FR(α, β) respectively. It is worth noting that, using
the standard model-theoretic semantics, the extensional semantics of Figure 2
can be derived from the transformational semantics of Figure 3.

For example, we can consider the concept of happy fathers, defined us-
ing the primitive concepts Man, Doctor, Rich, Famous and the roles CHILD,
FRIEND. The concept happy fathers can be expressed in ALCQI as

Man � (∃CHILD.�)�
∀CHILD. (Doctor � ∃FRIEND. (Rich � Famous)),

i.e., those men having some child and all of whose children are doctors having
some friend who is rich or famous.

An ontology is called in DL a knowledge base, and formally it is a finite set
Σ of terminological axioms – these are the ontology statements; it can also be
called a terminology or TBox. For a concept name A, and (possibly complex)

18 G. Antoniou, E. Franconi, and F. van Harmelen

�I ∼ true

⊥I ∼ false

(¬C)I ∼ ¬FC(γ)

(C � D)I ∼ FC(γ) ∧ FD(γ)

(C � D)I ∼ FC(γ) ∨ FD(γ)

(∃R.C)I ∼ ∃x.FR(γ, x) ∧ FC(x)

(∀R.C)I ∼ ∀x.FR(γ, x) ⇒ FC(x)

(f ↑)I ∼ ¬∃x. f(γ, x)

(f : C)I ∼ ∃x. f(γ, x) ∧ FC(x)

(≥n R.C)I ∼ ∃≥nx.FR(γ, x) ∧ FC(x)

(≤n R.C)I ∼ ∃≤nx.FR(γ, x) ∧ FC(x)

(R−1)I ∼ FR(β, α)

Fig. 3. FOL semantics of ALCQI

concepts C,D, terminological axioms are of the form A
.= C (concept definition),

A � C (primitive concept definition), C � D (general inclusion statement). An
interpretation I satisfies C � D if and only if the interpretation of C is included
in the interpretation of D, i.e., CI ⊆ DI . It is clear that the last kind of axiom
is a generalisation of the first two: concept definitions of the type A

.= C – where
A is an atomic concept – can be reduced to the pair of axioms (A � C) and
(C � A). Another class of terminological axioms – pertaining to roles R,S –
are of the form R � S. Again, an interpretation I satisfies R � S if and only if
the interpretation of R – which is now a set of pairs of individuals – is included
in the interpretation of S, i.e., RI ⊆ SI . An interpretation I is a model of a
knowledge base Σ iff every terminological axiom of Σ is satisfied by I. If Σ
has a model, then it is satisfiable; thus, checking for KB satisfiability is deciding
whether there is at least one model for the knowledge base. Σ logically implies
an axiom α (written Σ |= α) if α is satisfied by every model of Σ. We say
that a concept C is subsumed by a concept D in a knowledge base Σ (written
Σ |= C � D) if CI ⊆ DI for every model I of Σ. For example, the concept

Person � (∃CHILD. Person)
denoting the class of parents—i.e., the persons having at least a child which is
a person—subsumes the concept

Man � (∃CHILD.�)�
∀CHILD. (Doctor � ∃FRIEND. (Rich � Famous))

denoting the class of happy fathers – with respect to the following knowledge
base Σ:

Doctor
.= Person � ∃DEGREE. Phd,

Man
.= Person � sex : Male,

i.e., every happy father is also a person having at least one child, given the
background knowledge that men are male persons, and that doctors are persons.

Introduction to Semantic Web Ontology Languages 19

A concept C is satisfiable, given a knowledge base Σ, if there is at least one
model I of Σ such that CI
= ∅, i.e. Σ
|= C ≡ ⊥. For example, the concept

(∃CHILD. Man) � (∀CHILD. (sex : ¬Male))
is unsatisfiable with respect to the above knowledge base Σ. In fact, an individual
whose children are not male cannot have a child being a man.

7 The Importance of Correct Inference

An ontology inference engine based on description logics (such as iFaCT or
Racer) can offer a reasoning service to applications willing to properly use an
ontology. As we have already noticed, the inferential process’s complexity de-
pends strictly on the adopted ontology language’s expressivity: the inference
engine becomes increasingly complex as the ontology language becomes more
expressive. In fact, theoreticians have proved that you can’t build a complete
inference engine for OWL Full, although it’s possible to use existing description
logic systems as inference engines for OWL Lite and OWL DL.

Designing and implementing complete inference engines for expressive ontol-
ogy languages isn’t easy. As a prerequisite, you must have formal proof that
the algorithms are complete with respect to the ontology language’s declared
semantics. The description logics community – which provides the theoretical
foundations to the OWL family of web ontology languages – has 20-plus years of
experience to help provide theoretical results, algorithms, and efficient inference
systems for all but the most expressive OWL languages. We can understand
how important it is for an inference engine to be complete with the following
example.

Suppose a military agency asks you to write an ontology to recognise whether
a particular individual description indicates some sort of “enemy” concept so that
an application can take appropriate automatic action (such as shooting) given
the inference engine’s answer. If the inference engine is sound but incomplete, it
will recognise most but not all enemies because it isn’t a complete reasoner. Be-
cause it is sound, however, it won’t confuse a friendly soldier with an enemy. So,
the application will start the automatic shooting procedure only when the sys-
tem recognises without doubt that someone is an enemy. The application could
fail to shoot an enemy, but field soldiers can take traditional backup (nonau-
tomatic) action. Soundness is more important because you don’t want to shoot
your own soldiers. So far, so good.

The agency has another application strictly related to the first one. The task
is now to recognise an individual description as an allied soldier to activate auto-
matic procedures that will alert the soldier to the headquarters’ secret position.
Again, the system must have a sound inference engine because the agency doesn’t
want to disclose secret information to enemies. Moreover, incompleteness is not
a major problem because the defence system can still be valid even if a soldier
doesn’t know where the headquarters is located.

The agency decides, of course, to use the same shared ontology for both
applications. After all, the task in one case is to decide whether a soldier is

20 G. Antoniou, E. Franconi, and F. van Harmelen

an enemy and in the other case decide whether he or she isn’t. So the second
application can use the same ontology as the first, but it exploits the outcome
in a dual way. Unfortunately, it turns out that the agency can’t use the same
ontology for both tasks if the ontology language’s inference engine is sound but
incomplete. If a sound but incomplete reasoning system exists for solving, say,
the first problem (recognising enemies), you can’t use the same reasoning system
as a sound (and possibly incomplete) procedure for solving the second problem
(recognising allies). In fact, using the same procedure for solving the second
problem would be unsound – it will say an individual isn’t an enemy when he
or she actually is. Although this is harmless for the first problem, it is bad for
the second, dual one. It would disclose valuable military secrets to enemies.

To solve this problem, one must have both a sound and complete inference
engine for the ontology language. This rules out using OWL Full for the above
application because having a complete inference engine with this language is
impossible. The same of course holds for OWL DL inference engines without
guaranteed completeness properties.

It is important that Semantic Web application developers consider properly
whether such completeness properties are required for their applications.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider,
editors. Description Logic Handbook: Theory, Implementation and Applications.
Cambridge University Press, 2003.

2. F. van Harmelen and D. Fensel. Practical Knowledge Representation for the Web.
In Proc. IJCAI’99 Workshop on Intelligent Information Integration, 1999

3. D. Fensel, I. Horrocks, F. van Harmelen, D.L. McGuinness and Peter F. Patel-
Schneider. OIL: An Ontology Infrastructure for the Semantic Web. IEEE Intelli-
gent Systems 16,2 (2001): 38-44

4. P. Karp, V. Chaudri and J. Thomere. An XML-Based Ontology Exchange Lan-
guage. Available at http://www.ai.sri.com/∼ pkarp/xol

5. R. Kent. Conceptual Knowledge Modelling Language. Available at
http://www.ontologos.org/CKML/

6. S. Luke and J. Hefflin. SHOE 1.01 Proposal Specification. Available at
http://www.cs.umd.edu/projects/plus/SHOE

7. J. Pan and I. Horrocks. (FA) and RDF MT: Two Semantics for RDFS. In Proc.
2003 International Semantic Web Conference (ISWC 2003), LNCS 2870, Springer
2003,30-46

8. P. Patel-Schneider, I. Horrocks and F. van Harmelen. Reviewing the Design of
DAML+OIL: An Ontology Language for the Semantic Web. In Proc. Eighteenth
National Conference on Artificial Intelligence, AAAI Pres 2002

9. D.L. McGuinness and F. van Harmelen. OWL Web Ontology Language Overview.
Available at http://www.w3.org/TR/owl-features/

10. M.K. Smith, Chris Welty and D.L. McGuinness. OWL Web Ontology Language
Guide. Available at http://www.w3.org/TR/owl-guide/

11. G. Antoniou and F. van Harmelen. Web Ontology Language: OWL. In S. Staab
and R. Studer (Eds), Handbook on Ontologies in Information Systems, Springer
2003

Introduction to Semantic Web Ontology Languages 21

12. G. Antoniou and F. van Harmelen. A Semantic Web Primer, MIT Press 2004
13. F. Manola and E. Miller. RDF Primer. Available at http://www.w3c.or.kr/

Translation/PR-rdf-primer-20031215/
14. G. Schreiber. The Web is not well-formed. IEEE Intelligent Systems 17,2 (2002)
15. P.F. Patel-Schneider, P. Hayes and I. Horrocks. OWL Web Ontology Lan-

guage Semantics and Abstract Syntax. Available at http://www.w3.org/TR/owl-
semantics/

16. A. Gomez-Perez and O. Corcho. Ontology Languages for the Semantic Web. IEEE
Intelligent Systems 2002, 54-60

Rules and Ontologies in F-Logic�

Michael Kifer

Department of Computer Science,
State University of New Your at Stony Brook,

Stony Brook, NY 11794, U.S.A.
kifer@cs.stonybrook.edu

Abstract. F-logic is a formalism that integrates logic with object-oriented
programming in a clean and declarative fashion. It has been successfully
used for information integration, ontology modeling, agent-based sys-
tems, software engineering, and more. This paper gives a brief overview
of F-logic and discusses its features from the point of view of an ontology
language.

1 Introduction

F-logic [15] extends classical predicate calculus with the concepts of objects,
classes, and types, which are adapted from object-oriented programming. In
this way, F-logic integrates the paradigms of logic programming and deductive
databases with the object-oriented programming paradigm.

Most of the applications of F-logic have been as a language for intelligent
information systems based on the logic programming paradigm, and this was
the original motivation for the development of F-logic. More recently, F-logic has
been used to represent ontologies and other forms of Semantic Web reasoning
[9, 8, 25, 1, 7, 4, 14].

Currently several implementations of the rule-based subset of F-logic are
available. Ontobroker [20] is a commercial F-logic based engine developed by
Ontoprise. It is designed as a knowledge-base component for a Java application.
FLORA-2 [32] is an open-source system that was developed at Stony Brook as
part of a research project. Unlike Ontobroker which is designed to serve Java
applications, FLORA-2 is a complete programming environment for develop-
ing knowledge-intensive applications. It integrates F-logic with other novel for-
malisms such as HiLog [6] and Transaction Logic [5]. TRIPLE [23] is a partial
implementation of F-logic with a particular emphasis on interoperability with
RDF. Older systems based on F-logic are also available: SILRI1 and FLORID.2

In this paper we first survey the main features of F-logic and then discuss its
use as an ontology language.

� This work was supported in part by NSF grant CCR-0311512 and by U.S. Army
Medical Research Institute under a subcontract through Brookhaven National Lab.

1 http://ontobroker.semanticweb.org/silri/
2 http://www.informatik.uni-freiburg.de/ dbis/florid/

, LNCS 3564, pp. 22–34, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

N. Eisinger and J. Ma�luszyński (Eds.): Reasoning Web 2005

Rules and Ontologies in F-Logic 23

2 Overview of F-Logic

F-logic extends and subsumes predicate calculus both syntactically and seman-
tically. In particular, it has a monotonic logical entailment relationship, and
its proof theory is sound and complete with respect to the semantics. F-logic
comes in two flavors: the first-order flavor and the logic programming flavor.
The first-order flavor of F-logic can be viewed as a syntactic variant of classical
logic, which makes an implementation through source-level translation possible
[15, 27, 32]. The logic programming flavor uses a subset of the syntax of F-logic,
but gives it a different, non-first-order semantics.

To understand the relationship between the first-order variant of F-logic
and its logic programming variant, recall that standard logic programming [17]
is built on top of the rule-based subset of the classical predicate calculus by
adding non-monotonic extensions. By analogy, object-oriented logic program-
ming is built on the rule-based subset of F-logic by adding the appropriate
non-monotonic extensions [31, 32, 20]. These extensions are intended to capture
the semantics of negation-as-failure (like in standard logic programming [26])
and the semantics of multiple inheritance with overriding (which does not arise
in the standard case).

2.1 Basic Syntax

F-logic uses first-order variable-free terms to represent object identity (abbr.,
OID); for instance, john and father(mary) are possible Ids of objects. Objects
can have single-valued or set-valued attributes. For instance,

mary[spouse→ john, children→→{alice,nancy}].
mary[children→→{jack}].

Such formulas are called F-logic molecules. The first formula says that object
mary has an attribute spouse, which is single-valued and whose value is the OID
john. It also says that the attribute children is set-valued and its value is a set
that contains two OIDs: alice and nancy. We emphasize “contains” because
sets do not need to be specified all at once. For instance, the second formula
above says that mary has an additional child, jack.

While some attributes of an object are specified explicitly, as facts, other
attributes can be defined using deductive rules. For instance, we can derive
john[children→→{alice, nancy, jack}] using the following deductive rule:

X[children→→{C}] :- Y[spouse→ X, children→→{C}].
Here we adopt the standard convention in logic programming that uppercase
symbols denote variables while symbols beginning with a lowercase letter denote
constants.

F-logic objects can also have methods, which are functions that take argu-
ments. For instance,

john[grade(cs305,fall2004)→ 100, courses(fall2004)→→{cs305,cs306}].

24 M. Kifer

says that john has a single-valued method, grade, whose value on the arguments
cs305 (a course identifier) and fall2004 (a semester designation) is 100; it also
has a set-valued method courses, whose value on the argument fall2004 is a
set of OIDs that contains course identifiers cs305 and cs306. Like attributes,
methods can be defined using deductive rules.

The F-logic syntax for class membership is john:student and for subclass
relationship it is student::person. Classes are treated as objects and it is possi-
ble for the same object to play the role of a class in one formula and of an object
in another. For instance, in the formula student:class, the symbol student
plays the role of an object, while in student::person it appears in the role of
a class.

In addition, F-logic provides the means for specifying schema information
through signature formulas. For instance, person[name⇒ string, child⇒⇒
person] is a signature formula that says that class person has two attributes:
a single-valued attribute name and a set-valued attribute child. It further says
that, the first attribute returns objects of type string and the second returns
sets of objects such that each object in the set is of type person. F-logic also
supports first-order predicate syntax and in this way it extends classical pred-
icate calculus and integrates the relational and object-oriented paradigms in
knowledge representation.

We remark that attempts are being made to unify the syntax of the various
implementations of F-logic, such as Ontobroker [20] and FLORA-2 [32]. Among
the more significant forthcoming changes (as far as this overview goes) are that
all attributes will be treated as set-valued (for which → will be used instead of
→→). To capture the single-valued attributes of old, cardinality constraints will
be introduced. The syntax of variables will also change: instead of capitalization,
all variables will be prefixed with the “?” prefix.

2.2 Querying Meta-information

F-logic provides simple and natural means for exploring the structure of object
data. Both schema information associated with classes and the structure of in-
dividual objects can be queried by simply putting variables in the appropriate
syntactic positions. For instance, to find the set-valued methods that are defined
in the schema of class student and return objects of type person, one can ask
the following query:

?- student[M⇒⇒ person].

The next query is about the type of the results of the attribute name in class
student. In addition, the query returns all the superclasses of class student.

?- student::C and student[name⇒ T].

The above queries are schema-level meta-queries because they involve the sub-
class relationship and the type information (as indicated by the operators ::,
⇒ , and ⇒⇒). In contrast, the following queries involve object data (rather than
schema); they return the methods that have a known value for the object with
the OID john:

Rules and Ontologies in F-Logic 25

?- john[SingleM→ SomeValue].
?- john[SetM→→ SomeValue].

Like the previous queries, the last two deal with meta-information about ob-
jects, but they examine object data rather than schema. Therefore, they are
called instance-level meta-queries. The two kinds of meta-queries can return dif-
ferent results for several reasons. First, in case of semistructured data, schema
information might be incomplete, so additional attributes might be defined for
individual objects but not mentioned in the schema. Second, even if the schema
is complete, the values of some attributes can be undefined for some objects. In
this case, the undefined attributes will not be returned by instance-level meta-
queries, but they would be returned by schema-level meta-queries.

2.3 Path Expressions

In addition to the basic syntax, F-logic supports so-called path expressions, which
generalize the dot-notation in object-oriented programming languages such as
Java or C++. Path expressions simplify navigation along attribute and method
invocations, and help avoid explicit join conditions [10].

A single-valued path expression, O.M, refers to the unique object R for which
O[M→ R] holds; a set-valued path expression, O..M, refers to some object, R,
such that O[M→→{R}] holds. Here the symbols O and M can be either OIDs or
other path expressions. Furthermore, M can be a method with arguments. For
instance, O.M(P1,. . .,Pk) is a valid path expression that refers to the object R
that satisfies O[M(P1,. . .,Pk)→ R].

Since path expressions can occur anywhere an OID is allowed, they can be
nested within other F-logic molecules and provide alternative and much more
concise ways of addressing objects in a knowledge base. For instance, the path
expression

Paper[authors→→{Author[name→ john]}].publication..editors
refers to all editors of those papers in which john is the name of a coauthor. An
equivalent representation in terms of the basic F-logic syntax would be

Paper[authors→→ Author] and Author[name→ john] and
Paper[publication→ P] and P[editor→→ E]

The reader has probably noticed the conceptual similarity between the path
expressions in F-logic, introduced in [10], and the language of XPath, which was
developed later but with a similar purpose in mind.

2.4 Additional Features

F-logic includes a number of other language constructs that can be very use-
ful in knowledge representation in general and on the Semantic Web in par-
ticular. One of these important features is the equality predicate, :=:, which
can be used to declare two objects to be the same. For instance, mary :=:
mother(john) asserts that the object with the OID mary and the object with

26 M. Kifer

the OID mother(john) are one and the same object. The presence of explicit
equality goes against the grain of standard logic programming, which assumes a
particular built-in theory of equality, where two variable-free terms are equal if
and only if they are identical. A common use of explicit equality on the Semantic
Web is to provide assertions stating that a pair of syntactically different URIs
refer to the same document.

Another important feature of some of the F-logic implementations, such as
FLORA-2, is integration with HiLog [6]. This allows a higher degree of meta-
programming in a clean and logical way. For instance, one can ask a query of
the form

?- person[M(Arg)⇒ person].

and obtain a set of all methods that take one argument, are declared to be part
of the schema of class person, and return results that are objects belonging to
class person. Note that M(Arg) is not a first-order term, since it has a variable
in the position of a function symbol; such terms are not allowed in Prolog-based
logic programming languages.

Later additions to F-logic include reification and anonymous object identity
[30, 14]. Both features are deemed to be important for Semantic Web and are in-
cluded in RDF [16, 13]. It has been argued, however, that the RDF formalization
of these notions is less that optimal and that the proposal requires significant
extensions in order to be useful for advanced applications [30]. A convincing use
of the extensions provided by F-logic has been given in [14] in the context of
Semantic Web Services.

2.5 Inheritance

F-logic supports both structural and behavioral inheritance. The former refers to
inheritance of method types from superclasses to their subclasses and the latter
deals with inheritance of method definitions from superclasses to subclasses.

Structural inheritance is defined by very simple inference rules:

If subcl::cl, cl[attr �⇒ type] then subcl[attr �⇒ type]
If obj:cl, cl[attr �⇒ type] then obj[attr⇒ type]

Similar rules hold for the types of the multi-valued attributes, which are desig-
nated using the arrows �⇒⇒ and ⇒⇒ . The statement cl[attr �⇒ type] in the
above rules states that attr is an inheritable attribute, which means that both
its type and value are inheritable by the subclasses and members of class cl. In-
heritability of the type of an attribute is indicated with the star attached to the
symbol �⇒ . In all previous examples we have been dealing with non-inheritable
attributes, which were designated with star-less arrows. Note that when the type
of an attribute is inherited to a subclass it remains inheritable. However, when
it is inherited to a member of the class it is no longer inheritable.

Type inheritance is not overridable; instead all types accumulate. For in-
stance, from

Rules and Ontologies in F-Logic 27

faculty::employee.
manager::employee.
john:faculty.
faculty[reportsTo �⇒ faculty].
employee[reportsTo �⇒ manager].

we can derive two statements by inheritance: john[reportsTo �⇒ faculty] and
john[reportsTo �⇒ manager]. The type expression for the more specific super-
class, faculty, does not override the type expression for the less specific class
employee. The intended interpretation is that whoever john reports to must be
both a manager and an employee. These two statements can be replaced with a
single statement of the form john[reportsTo �⇒ (faculty and manager)].

Behavioral inheritance is more complex. To get a flavour of behavioral inher-
itance, consider the following small knowledge base:

royalElephant::elephant.
clyde:royalElephant.
elephant[color �→ grey].
royalElephant[color �→ white].

Like with type definitions, a star attached to the arrow, �→ , designates an
inheritable method. For instance, color is an inheritable attribute in classes
elephant and royalElephant. The inference rule that guides behavioral inher-
itance can informally be stated as follows. If obj is an object and cl is a class,
then

obj:cl, cl[attr �→ value] should imply obj[attr→ value]

unless the inheritance is overwritten by a more specific class. The meaning of
the exception here is that the knowledge base should not imply the formula
obj[attr→ value] if there is an intermediate class, cl′, which overrides the
inheritance, i.e., if obj : cl′, cl′ :: cl are true and cl′[attr �→ value′] (for some
value′
= value) is defined explicitly.3 A similar exception exists in case of multi-
ple inheritance conflicts. Note that inheritable attributes become non-inheritable
after they are inherited by class members. In the above case, inheritance of the
grey color is overwritten by the white color and so clyde[color→ white] is
derived by the rule of inheritance.

2.6 Semantics

The semantics of F-logic is based on the notion of F-structures, which extend the
notion of semantic structures in classical predicate calculus. OIDs are interpreted
in F-structures as elements of the domain and methods (and attributes) are
interpreted as partial functions of suitable arities. The first argument of each
such function is the Id of the object in whose context the method or the attribute

3 The notion of an explicit definition seems obvious at first but, in fact, is quite subtle.
Details can be found in [28].

28 M. Kifer

is defined. Signature formulas are interpreted by functions whose properties are
made to fit the common properties of types. Details of F-structures can be found
in [15].

Armed with the notion of the F-structures, a first-order entailment relation is
defined in a standard way: φ |= ψ if and only if every F-structure that satisfies φ
also satisfies ψ. This entailment together with the sound and complete resolution-
based proof theory [15] are the basis of the first-order variant of F-logic.

The semantics of the logic programming variant of F-logic is built by analogy
with the corresponding development in deductive databases. The meaning of
negation is made non-monotonic and is based on an extension of the well-founded
semantics [26]. The interesting and nontrivial aspect of this extension is not due
to negation (negation is handled analogously to [26]) but due to the behavioral
inheritance with overriding. Earlier we have seen an informal account of inference
by inheritance. Although the rules of such inference seem natural, they present
subtle problems when behavioral inheritance is used together with deductive
rules. To understand the problem, consider the following example.

cl[attr �→ v1].
subcl::cl.
obj:subcl.
subcl[attr �→ v2] :- obj[attr→ v1].

If we apply the rule of inheritance to this knowledge base, then obj[attr→ v1]
should be inherited, since no overriding takes place. However, once obj[attr→
v1] is derived by inheritance, subcl[attr �→ v2] can be derived by deduction,
and now we have a chicken-and-egg problem. Since subcl is a more specific super-
class of obj, the derivation of subcl[attr �→ v2] appears to override the earlier
inheritance of obj[attr→ v1]. But this, in turn, undermines the reason for de-
riving subcl[attr �→ v2]. The above is only one of several suspicious derivation
patterns that arise due to interaction of inheritance and deduction. The original
solution reported in [15] was not model-theoretic and was problematic in several
other respects as well. A satisfactory and completely model-theoretic solution
was proposed in [28, 29].

3 F-Logic as an Ontology Language

From the beginning, F-logic has been viewed as a natural candidate for an on-
tology language due to its direct support for object-oriented concepts, its frame-
based syntax, and extensive support for meta-programming [9, 8, 25]. More re-
cently it has been adopted as a basis for ontology languages for Semantic Web
Services: WSML and SWSL [7, 4].

3.1 The Basic Techniques

A typical ontology includes three main components:

1. A taxonomy of classes. This includes the specification of the class hierarchy,
i.e., which classes are subclasses of other classes.

Rules and Ontologies in F-Logic 29

2. Definitions of concepts. These definitions specify the allowed attributes of
each class, their types, and other properties (like symmetry or transitivity).

3. Definitions of instances. Instances (i.e., concrete data objects) are defined
by indicating which concepts (i.e., classes) they belong to and by speci-
fying concrete values for the attributes of those instances. Sometimes the
values might not be given explicitly, but only their existence may be as-
serted with various degrees of precision. For instance, ∃ F john[father→ F]
or john[father→ bob]∨john[father→ bill]. Some concepts may not have
explicitly defined instances. Instead, their instances may be defined by de-
ductive rules. The latter concepts are akin to database views.

In F-logic, class taxonomies are represented directly using the subclass relation-
ship ::. Concept definitions are represented using signature formulas, such as
person[name �⇒ string, spouse �⇒ person]. Special properties of certain at-
tributes can be expressed using rules. For instance, to state that spouse is a
symmetric relationship in class person one can write

X[spouse→ Y] :- Y:person and Y[spouse→ X].

Finally, instance definitions can be specified as facts using data molecules as
follows:

john:student.
john[name→ John, address→ ’123 Main St.’, spouse→ Mary].

Derived classes can be defined using rules. For instance, if the concepts of
student and employee are already defined, we can define a new concept,
workstudy using the following rule:

X:workstudy :-
X:(student and employee) and X[jobtype→ J] and J:clerical.

Properties can also be defined using rules. For instance, if the properties
mother and father are already defined, we can define the properties of parent
and ancestor as follows:

X[parent→ P] :- X[mother→ P].
X[parent→ P] :- X[father→ P].
X[ancestor→ A] :- X[parent→ A].
X[ancestor→ A] :- X[parent→ P] and P[ancestor→ A].

Various implementations of F-logic introduced several forms of more concise
syntax. For instance, the workstudy rule above can be written as

X:workstudy :- X[jobtype→ J:clerical]:(student and employee).

the two parent rules can be abbreviated to

X[parent→ P] :- X[mother→ P or father→ P]].

and the second ancestor rule can be written as

X[ancestor→ A] :- X[parent→ P[ancestor→ A]].

30 M. Kifer

3.2 Relationship to Description Logics

No discussion of F-logic as an ontology language is complete without a compari-
son with description logics (abbr. DL) [2] and, in particular, with languages such
as OWL [24]. Since the first-order flavor of F-logic is an extension of classical
predicate logic, it is clear that a description logic subset can be defined within
F-logic and, indeed, this has been done [3]. In this sense, F-logic subsumes DLs.
However, as mentioned earlier, most applications of F-logic (and all implemen-
tations known to us) use the logic programming flavor of the logic so a proper
comparison would be made with that flavor.

Unlike DLs, F-logic is computationally complete. This can be a blessing or a
curse depending on how one looks at this matter. On one hand, the expressive
power of F-logic provides for a simple and clear specification of many problems
that are beyond the expressive power of any DL. On the other hand, expressive
F-logic knowledge bases provide no computational guarantees. However, many
workers in the field dismiss this problem as a non-issue for two reasons:

– The exponential complexity of many problems in description logics provides
very little comfort in practice, especially in reasoning with large ontologies.

– A vast class of computational problems in F-logic is decidable and has poly-
nomial complexity. This includes all queries to knowledge bases that do not
use function symbols and includes a large subclass of queries that are beyond
the expressive power of DLs. Furthermore, research in logic programming
and deductive database has identified large classes of knowledge bases with
function symbols where query answering is decidable (for instance, [19]).

Nevertheless, there are two aspects where DLs provide more flexibility. First, DLs
allow the user to represent existential information. For instance, one can say that
there is a person with certain properties without specifying any concrete instance
of such a person. In F-logic one can express only an approximation of such a
statement using Skolem functions. Similarly, DLs admit disjunctive information
into the knowledge base. For instance, one can say that John has a book or a
bicycle. The corresponding statement in F-logic is only an approximation:

john[has→ #:(book or bicycle)].

The symbol # here denotes a unique Skolem constant that does not occur any-
where else in the knowledge base. While this may be an acceptable approxi-
mation in some cases, it is still significantly weaker that the corresponding DL
statement.

For instance, if upon closer examination it becomes known that John does
not have a book, then in DLs we would conclude that John has a bicycle.
In the logic programming flavor of F-logic (as in other logic programming
systems) we cannot even state that John has no books directly—one has to
employ some rather complex tricks. Some extensions of standard logic pro-
gramming support explicit negation and this can make negative information
easier to specify. For instance, this problem could be overcome by combin-
ing F-logic with Courteous Logic Programming [11, 12]. Other extensions allow

Rules and Ontologies in F-Logic 31

disjunctive information in the rule heads [22, 18], which permits statements like
john[father→ bob] ∨ john[father→ bill].

3.3 Example: An OWL-S Profile

We now give a more extensive example of an ontology specified using F-logic—
part of an OWL-S profile [21]. OWL-S is an OWL-based Web ontology, which
is intended to provide Web service providers with a core set of constructs for
describing the properties and capabilities of their Web services. OWL-S often
refers to externally defined data types using the namespace notation. Although
some implementation of F-logic support URIs and namespaces, our example will
omit all namespace definitions and will reference the corresponding external data
types and concepts by enclosing them in single quotes, e.g., ’xsd:string’.

’service:ServiceProfile’ : ’owl:Class’.
’Profile’ :: ’service:ServiceProfile’
’Profile’[

serviceName *=> ’xsd:string’,
textDescription *=> ’xsd:string’,
’rdfs:comment’*->’Definition of Profile’,
contactInformation *=>> ’Actor’,
hasProcess *=> ’process:Process’,
serviceCategory *=>> ServiceCategory,
serviceParameter *=>> ServiceParameter,
hasParameter *=>> ’process:Parameter’,
hasInput *=>> ’process:Input’,
hasOutput *=>> ’process:ConditionalOutput’,
hasPrecondition *=>> ’expr:Condition’,
hasEffect *=>> ’process:ConditionalEffect’

].

hasInput[subpropertyof ->> hasParameter].
hasOutput[subPropertyOf ->> hasParameter].

// Definition of subPropertyOf
Obj[P ->> Val] :- S[subPropertyOf ->> P] and Obj[S ->> Val].

’ServiceCategory’ : ’owl:Class’.
’ServiceCategory’[

categoryName *=> ’xsd:string’,
taxonomy *=> ’xsd:string’,
value *=> ’xsd:string’,
code *=> ’xsd:string’

].

’ServiceParameter’ : ’owl:Class’.
’ServiceParameter’[

32 M. Kifer

serviceParameterName *=> ’xsd:string’,
sParameter *=> ’owl:Thing’

].

’Actor’ : ’owl:Class’.
’process:Process’ : ’owl:Class’.
’expr:Condition’ : ’owl:Class’.
’process:Input’ : ’owl:Class’.
’process:ConditionalOutput’ : ’owl:Class’.
’process:ConditionalEffect’ : ’owl:Class’.
’process:Parameter’ : ’owl:Class’.

The above ontology is fairly simple. The frame-based syntax of F-logic enables
concise and clear description of the properties of the various classes defined by
OWL-S. The only place where a more sophisticated aspect of F-logic is necessary
is the definition of subPropertyOf, a property that applies to attributes when
they are considered as objects in their own right. To define the meaning of this
property we use an F-logic rule.

OWL distinguishes between object properties and data type properties, and
defines two OWL classes for that. The class ’owl:ObjectProperty’ is populated
by object properties, which are attributes whose range is an OWL class. The
class ’owl:DataTypeProperty’ is populated by data type properties, which are
defined as attributes whose range is an XML type, such as ’xsd:string’. Since
OWL-S is an OWL-based ontology, every property must be explicitly specified
to be in either the ’owl:ObjectProperty’ class or the ’owl:DataTypeProperty’
class. In F-logic this can be done much more elegantly using rules:

Prop:property(Range) :- Domain[Prop �⇒ Range or Prop �⇒⇒ Range].
Prop:’owl:ObjectProperty’ :-

Prop : property(Range) and Range : ’owl:Class’.
Prop:’owl:DataTypeProperty’ :-

Prop : property(Range) and not Range : ’owl:Class’.

This example provides a glimpse on how the ability of F-logic to operate at the
meta-level provides significant benefits in terms of conciseness and readability
of ontology specifications.

4 Conclusion

We provided an overview of the main concepts underlying F-logic with particular
attention to its use as an ontology language. We illustrates the key modeling
capabilities of F-logic on a number of examples, which culminated with a larger
example of a piece of the OWL-S ontology. Due to lack of space, we could not
describe the semantics and the proof theory of the logic—neither of its first-order
flavor nor of its logic programming flavor. However, the necessary details can be
found in the references.

Rules and Ontologies in F-Logic 33

References

1. J. Angele and G. Lausen. Ontologies in F-logic. In S. Staab and R. Studer,
editors, Handbook on Ontologies in Information Systems, pages 29–50. Springer
Verlag, Berlin, Germany, 2004.

2. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors.
The Description Logic Handbook. Cambridge University Press, 2002.

3. M. Balaban. The F-logic approach for description languages. Annals of Mathe-
matics and Artificial Intelligence, 15(1):19–60, 1995.

4. D. Berardi, H. Boley, B. Grosof, M. Gruninger, R. Hull, M. Kifer, D. Mar-
tin, S. McIlraith, J. Su, and S. Tabet. SWSL: Semantic Web Services
Language. Technical report, Semantic Web Services Initiative, April 2005.
http://www.daml.org/services/swsl/.

5. A. Bonner and M. Kifer. A logic for programming database transactions. In
J. Chomicki and G. Saake, editors, Logics for Databases and Information Systems,
chapter 5, pages 117–166. Kluwer Academic Publishers, March 1998.

6. W. Chen, M. Kifer, and D. Warren. HiLog: A foundation for higher-order logic
programming. Journal of Logic Programming, 15(3):187–230, February 1993.

7. J. de Bruijn, H. Lausen, R. Krummenacher, A. Polleres, L. Predoiu, and D. Fensel.
The WSML family of representation languages. Technical report, DERI, March
2005. http://www.wsmo.org/TR/d16/d16.1/.

8. S. Decker, D. Brickley, J. Saarela, and J. Angele. A query and inference service
for RDF. In QL’98 - The Query Languages Workshop, December 1998.

9. D. Fensel, M. Erdmann, and R. Studer. OntoBroker: How to make the WWW
intelligent. In Proceedings of the 11th Banff Knowledge Acquisition for Knowledge-
Based Systems Workshop, Banff, Canada, 1998.

10. J. Frohn, G. Lausen, and H. Uphoff. Access to objects by path expressions and
rules. In Proceedings of the Intl. Conference on Very Large Databases, pages 273–
284, Santiago, Chile, 1994. Morgan Kaufmann, San Francisco, CA.

11. B. Grosof. Prioritized conflict handling for logic programs. In International Logic
Programming Symposium, pages 197–211, 1997.

12. B. Grosof. A courteous compiler from generalized courteous logic programs to
ordinary logic programs. Technical Report RC 21472, IBM, July 1999.

13. P. Hayes. RDF model theory. W3C Working Draft, 10 October 2003. Available
at http://www.w3.org/TR/rdf-mt/.

14. M. Kifer, R. Lara, A. Polleres, and C. Zhao. A logical framework for web service
discovery. In Semantic Web Services Workshop, November 2004.

15. M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-
based languages. Journal of ACM, 42:741–843, July 1995.

16. G. Klyne and J. J. Carroll. Resource description framework (RDF): Concepts
and abstract syntax. W3C Working Draft, 10 October 2003. Available at
http://www.w3.org/TR/rdf-concepts/.

17. J. W. Lloyd. Foundations of Logic Programming (Second, extended edition).
Springer series in symbolic computation. Springer-Verlag, New York, 1987.

18. J. Lobo, J. Minker, and A. Rajasekar. Foundations of Disjunctive Logic Program-
ming. MIT Press, Cambridge, Massachusetts, 1992.

19. N.Lindenstrauss and Y. Sagiv. Automatic termination analysis of logic programs.
In International Conference on Logic Programming, 1997.

20. Ontoprise, GmbH. OntoBroker Manual. http://www.ontoprise.com/.
21. OWL-S Coalition. OWL-S: Semantic markup for Web services. Release 1.1.

http://www.daml.org/services/owl-s/1.1/, December 2004.

34 M. Kifer

22. T. Przymusinski. Well-founded and stationary models of logic programs. Annals
of Mathematics and Artificial Intelligence, 12:141–187, 1994.

23. M. Sintek, S. Decker, and A. Harth. The TRIPLE system. http://triple. seman-
ticweb.org/, 2003.

24. M. K. Smith, C. Welty, and D. L. McGuinness. OWL Web ontology lan-
guage guide. W3C Candidate Recommendation, 18 August 2003. Available at
http://www.w3.org/TR/owl-guide/.

25. S. Staab and A. Maedche. Knowledge portals: Ontologies at work. The AI Maga-
zine, 22(2):63–75, 2000.

26. A. Van Gelder, K. Ross, and J. S. Schlipf. The well-founded semantics for general
logic programs. J. ACM, 38(3):620–650, July 1991.

27. G. Yang and M. Kifer. Implementing an efficient DOOD system using a
tabling logic engine. In First International Conference on Computational Logic,
DOOD’2000 Stream, July 2000.

28. G. Yang and M. Kifer. Well-founded optimism: Inheritance in frame-based knowl-
edge bases. In Intl. Conference on Ontologies, DataBases, and Applications of
Semantics for Large Scale Information Systems (ODBASE), October 2002.

29. G. Yang and M. Kifer. Inheritance and rules in object-oriented semantic Web lan-
guages. In Rules and Rule Markup Languages for the Semantic Web (RuleML03),
volume 2876 of Lecture Notes in Computer Science. Springer Verlag, November
2003.

30. G. Yang and M. Kifer. Reasoning about anonymous resources and meta statements
on the Semantic Web. Journal on Data Semantics, LNCS 2800, 1:69–98, September
2003.

31. G. Yang, M. Kifer, and C. Zhao. FLORA-2: A rule-based knowledge representation
and inference infrastructure for the Semantic Web. In International Conference on
Ontologies, Databases and Applications of Semantics (ODBASE-2003), November
2003.

32. G. Yang, M. Kifer, and C. Zhao. FLORA-2: User’s Manual. http://flora.
sourceforge.net/, March 2005.

Web and Semantic Web Query Languages:
A Survey

James Bailey1, François Bry2, Tim Furche2, and Sebastian Schaffert2

1 NICTA Victoria Laboratory,
Department of Computer Science and Software Engineering,

The University of Melbourne, Victoria 3010, Australia
http://www.cs.mu.oz.au/~jbailey/

2 Institute for Informatics,University of Munich,
Oettingenstraße 67, 80538 München, Germany

http://pms.ifi.lmu.de/

Abstract. A number of techniques have been developed to facilitate
powerful data retrieval on the Web and Semantic Web. Three categories
of Web query languages can be distinguished, according to the format
of the data they can retrieve: XML, RDF and Topic Maps. This ar-
ticle introduces the spectrum of languages falling into these categories
and summarises their salient aspects. The languages are introduced us-
ing common sample data and query types. Key aspects of the query
languages considered are stressed in a conclusion.

1 Introduction

The Semantic Web Vision

A major endeavour in current Web research is the so-called Semantic Web, a
term coined by W3C founder Tim Berners-Lee in a Scientific American article
describing the future of the Web [37]. The Semantic Web aims at enriching
Web data (that is usually represented in (X)HTML or other XML formats) by
meta-data and (meta-)data processing specifying the “meaning” of such data
and allowing Web based systems to take advantage of “intelligent” reasoning
capabilities. To quote Berners-Lee et al. [37]:

“The Semantic Web will bring structure to the meaningful content of
Web pages, creating an environment where software agents roaming from
page to page can readily carry out sophisticated tasks for users.”

The Semantic Web meta-data added to today’s Web can be seen as advanced
semantic indices, making the Web into something rather like an encyclopedia. A
considerable advantage over conventional encyclopedias printed on paper, how-
ever, is that the relationships expressed by Semantic Web meta-data can be
followed by computers, very much like hyperlinks can be followed by human
readers and programs. Thus, these relationships are well-suited for use in draw-
ing conclusions automatically:

, LNCS 3564, pp. 35–133, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
N. Eisinger and J. Ma�luszyński (Eds.): Reasoning Web 2005

36 J. Bailey et al.

Writing

NovelEssay

Historical
Novel

Historical
Essay

Classic Mediæval Modern

Fig. 1. A categorisation of books as it might occur in a Semantic Web ontology

“For the Semantic Web to function, computers must have access to struc-
tured collections of information and sets of inference rules that they can
use to conduct automated reasoning.”[37]

A number of formalisms have been proposed for representing Semantic Web
meta-data, in particular RDF [217], Topic Maps [155], and OWL (formerly
known as DAML+OIL) [23, 150]. These formalisms usually allow one to describe
relationships between data items, such as concept hierarchies and relations be-
tween concepts. For example, a Semantic Web application for a book store could
assign categories to books as shown in Figure 1. A customer interested in novels
might also get offers for books that are in the subcategory Historical Novels and
in the sub-subcategories Classic, Mediæval and Modern, although these books
are not directly contained in the category Novels, because the data processing
system has access to the ontology and can thus infer the fact that a book in the
category Mediæval is also a Novel.

Whereas RDF and Topic Maps merely provide a syntax for representing
assertions like “Book A is authored by person B”, schema or ontology languages
such as RDFS [51] and OWL allow one to state properties of the terms used in
such assertions, e.g. “no ‘person’ can be a ‘text’ ”. Building upon descriptions of
resources and their schemas (as detailed in the architectural road map for the
Semantic Web [36]), rules expressed in formalisms like SWRL [151] or RuleML
[43] additionally allow one to specify actions to take, knowledge to derive, or
constraints to enforce.

Importance of Query Languages for the Web and Semantic Web

The enabling requirement for the Semantic Web is an integrated access to the
data on the Web that is represented in any of the above-mentioned formalisms
or in formalisms of the “standard Web”, such as (X)HTML, SVG, or any XML
application. This data access is the objective of Web and Semantic Web query
languages. A wide range of query languages for the Semantic Web exist, ranging
from pure “selection languages” with only limited expressivity, to full-fledged
reasoning languages capable of expressing complicated programs, and from query

Web and Semantic Web Query Languages: A Survey 37

languages restricted to a certain data representation format (e.g. XML or RDF),
to general purpose languages supporting several different data representation
formats and allowing one to query data on both the standard Web and the
Semantic Web at once.

Structure and Goals of This Survey

This survey aims at introducing the query languages proposed for the major
representation formalisms of the standard and Semantic Web: XML, RDF, and
Topic Maps. The intended audience are students and researchers interested in
obtaining a greater understanding of the relatively new area of Semantic Web
querying, as well as researchers already working in the field that want a survey of
the state of the art in existing query languages. This survey does not aim to be
a comprehensive tutorial for each of the approximately 50 languages discussed.
Instead, it tries to highlight important or noteworthy aspects, only going in
depth for some of the more widespread languages. The following three questions
are at the heart of this survey:

1. what are the core data retrieval capabilities of each query language,
2. to what extent, and what forms of reasoning do they offer, and
3. how are they realised?

Structure. After briefly discussing the three different representation formats
XML, RDF, and Topic Maps in Section 2.1, each of the languages is introduced
with sample queries against a common Semantic Web scenario (cf. Section 2.2).
The discussion is divided into three main parts, corresponding to the three dif-
ferent data representation formats XML, RDF, and Topic Maps. The survey
concludes with a short summary of language features desirable for Semantic
Web query languages. The outline is as follows:

1. Introduction
2. Preliminaries

2.1 Three Data Formats: XML, RDF and Topic Maps
2.2 Sample Data: Classification-based Book Recommender
2.3 Sample Queries

3. XML Query and Transformation Languages
3.1 W3C’s Query Languages:The Navigational Approach
3.2 Research Prototypes: The Positional Approach to XML Querying

4. RDF Query Languages
4.1 The SPARQL Family
4.2 The RQL Family
4.3 Query Languages inspired from XPath, XSLT or XQuery
4.4 Metalog: Querying in Controlled English
4.5 Query Languages with Reactive Rules
4.6 Deductive Query Languages
4.7 Other RDF Query Languages

38 J. Bailey et al.

5. Topic Maps Query Languages
5.1 tolog: Logic Programming for Topic Maps
5.2 AsTMA?: Functional Style Querying of Topic Maps
5.3 Toma: Querying Topic Maps inspired from SQL
5.4 Path-based Access to Topic Maps

6. Conclusion

Selection of Query Languages. This survey focuses on introducing and com-
paring languages designed primarily for providing efficient and effective access
to data on the Web and Semantic Web. In particular, it excludes the following
types of languages:

– Programming language tools for XML. General-purpose programming lan-
guages supporting XML as native data type are not considered, e.g. XM-
Lambda [205], CDuce [27], XDuce [152], Xtatic (http://www.cis.upenn.
edu/∼bcpierce/xtatic/), Scriptol (http://www.scriptol.com/), and Cω
(http://research.microsoft.com/Comega/ [206]). XML APIs are not con-
sidered, e.g.: DOM [9], SAX (http://www.saxproject.org/), and XmlPull
(http://www.xmlpull.org/). XML-related language extensions are not con-
sidered, e.g.: HaXML [276] for Haskell, XMerL [282] for Erlang, CLP(Flex)
[88] for Prolog, or XJ [145] for Java. General-purpose programming lan-
guages with Web service support are also not considered, e.g.: XL [116, 117],
Scala [218], Water [235].

– Reactive languages. A reactive language allows specification of updates and
logic describing how to react when events occur. Several proposals have been
made for adapting approaches such as ECA (Event-Condition-Action) rules
to the Web, cf. [4] for a survey. There is, of course, a close relationship
between such reactive languages and query languages, with the latter often
being embedded within the former.

– Rule languages. Transformations, queries, consequences, and reactive be-
haviours can be conveniently expressed using rules. The serialisation of rules
for their exchange on the Web is investigated in the RuleML [43] initiative.
Similar to reactive languages, rule languages are also closely related to query
languages.

– OWL query languages. Query languages designed for OWL, e.g., OWL-QL
[113], are not considered for two reasons: (1) They are still in their infancy,
and their small number makes interesting comparisons hardly possible, (2)
the languages proposed so far can only query schemas, i.e., meta-data but not
data, and access data only through meta-data, e.g., returning the instances
of a class.

A pragmatic approach has been adopted in this survey: A language of one of the
above-mentioned four kinds is considered if querying is one of its core aspects,
or if it offers a unique form of querying not covered by any of the other query
languages considered in the survey. Authoring tools, such as visual editors, are
only considered with a query language that they are based upon. The storing or

Web and Semantic Web Query Languages: A Survey 39

indexing of Web data is not covered (for a survey on storage systems for XML
cf. [280], for RDF cf. to [190]).

Despite these restrictions, the number of languages is still quite large. This
reflects a considerable and growing interest in Web and particularly Semantic
Web query languages. Indeed, standardisation bodies have recently started the
process of standardisation of query languages for RDF and Topic Maps. It is our
hope that this survey will help to give an overview of the current state of the
art in these areas.

2 Preliminaries

2.1 Three Data Formats: XML, RDF and Topic Maps

XML. Originally designed as a replacement for the language SGML as a format
for representing (structured) text documents, XML nowadays is also widely used
as a format for representing and exchanging arbitrary (structured) data:

The “Extensible Markup Language (XML) is a simple, very flexible text
format derived from SGML [. . .]. Originally designed to meet the chal-
lenges of large-scale electronic publishing, XML is also playing an in-
creasingly important role in the exchange of a wide variety of data on
the Web and elsewhere.”1

An “XML document” is a file, or collection of files, that adheres to the general
syntax specified in the XML Recommendation [48], independent of the concrete
application. XML documents consist of an optional document prologue and a
document tree containing elements, character data and attributes, with a dis-
tinguished root element.

Elements. Elements are used to “mark up” the document. They are identified by
a label (called tag name) and specified by opening and closing tags that enclose
the element content. Opening tags are of the form <label ...> and contain the
label and optionally a set of attributes (see below). Closing tags are of the form
</label> and contain only the label.

Elements may contain either other elements, character data, or both (mixed
content). In analogy with the document tree, such content is often referred to as
children of an element. Interleaving of the opening and closing tags of different
elements (e.g. <i>Text</i>) is forbidden. The order of elements is sig-
nificant (so-called document order). This is a reasonable requirement for storing
text data, but might be too restrictive when storing data items of a database.
Applications working with XML data thus often ignore the document order. If
an element contains no content, it may be abbreviated as <label/>, i.e. the
“closing slash” is contained in the start tag.

Attributes. Opening tags of elements may contain a set of key/value pairs called
attributes. Attributes are of the form name = "value", where name may contain

1 http://www.w3.org/XML/

40 J. Bailey et al.

the same characters as element labels and value is a character sequence which is
always enclosed in quotes. An opening tag may contain attributes in any order,
but each attribute name can occur at most once.

References. References of various kinds, (like ID/IDREF attributes and hyper-
text links) make it possible to refer to an element instead of explicitly including
it.

Document Tree. An XML document can be seen as a rooted, unranked2, and
ordered3 tree, if one does not consider the various referencing or linking mecha-
nisms of XML. Although this interpretation is that of the data model retained
for XML (cf. XML Infoset [94], XQuery, XPath [111]) and most XML query lan-
guages, it is too simplistic. Indeed, references (as expressed, e.g. through ID and
IDREF attributes or hypertext links) make it possible to express both oriented
and non-oriented cycles in an XML document.

RDF and RDFS. RDF [25, 172] data is sets of “triples” or “statements” of
the form (Subject,Property,Object). RDF data is commonly seen as a directed
graph, whose nodes correspond to a statement’s subject and object and whose
arcs correspond to a statement’s property (thus relating a subject with an ob-
ject). For this reason, properties are also often referred to as “predicates”. Nodes
(i.e. subjects and objects) are labeled by either (1) URIs describing (Web) re-
sources, or (2) literals (i.e. scalar data such as strings or numbers), or (3) are
unlabeled, being so-called anonymous or “blank nodes”. Blank nodes are com-
monly used to group or “aggregate” properties. Specific properties are prede-
fined in the RDF and RDFS specifications [51, 148, 172, 194], e.g. rdf:type for
specifying the type of properties, rdfs:subClassOf for specifying class-subclass
relationships between subjects/objects, and rdfs:subPropertyOf for specifying
property-subproperty relationships between properties. Furthermore, RDFS has
“meta-classes”, e.g. rdfs:Class, the class of all classes, and rdfs:Property,
the class of all properties.4

RDFS allows one to define so-called “RDF Schemas” or “ontologies”, sim-
ilar to object-oriented data models. The inheritance model of RDFS exhibits
some peculiarities: (1) resources can be classified in different classes that are
not related in the class hierarchy, (2) the class hierarchy can be cyclic (so that
all classes on the cycle are “subclass equivalent”), (3) properties are first-class
objects, and (4) in contrast to most object-oriented formalisms, RDF does not
describe which properties can be associated with a class, but instead the domain
and range of a property. Based on an RDFS schema, “inference rules” can be
specified, for instance the transitivity of the class hierarchy, or the type of an
untyped resource that has a property associated with a known domain.

RDF can be serialised in various formats, the most frequently being XML.
Early approaches to RDF serialisation have raised considerable criticism due to

2 i.e. the number of children of an element is not bounded.
3 i.e. the children of an element are ordered.
4 this survey tries to use self-explanatory prefixes for namespaces where possible.

Web and Semantic Web Query Languages: A Survey 41

their complexity. As a consequence, a surprisingly large number of RDF seriali-
sations have been proposed, cf. [60] for a detailed survey.

OWL [23, 204, 261] extends RDFS with a means for defining description
vocabularies for Web resources. OWL is only considered superficially in this
survey, cf. Section 1.

Topic Maps. Topic Maps [155, 232] have been inspired from work in library
sciences and knowledge indexing. The main concepts of Topic Maps are “topics”,
“associations”, and “occurrences”. Topics might have “types” that are topics.
Types correspond to the classes of object-oriented formalisms, i.e., a topic is
related to each of its types in an instance-class relationship. A topic can have one
or more “names”. Associations are n-ary relations (with n ≥ 2) between topics.
Associations might have “role types” and “roles”. Occurrences are information
resources relevant to a topic. An occurrence might have one or several types
characterising the occurrence’s relevance to a topic, expressed by “occurrence
roles” and “occurrence role types” in the formalism HyTM [155], or only by
“occurrence types” in the formalism XTM [232].

“Topic characteristics” denote the names a topic has, what associations it
partakes in, and what its occurrences are. “Facets” (a concept of HyTM but
not of XTM) are attribute-value pairs that can be attached to any kind of topic
map component for explanation purposes. Facets are thus a means to attach to
Topic Maps meta-data in another formalism. “Subject identifiers” denote URIs
of resources (called “subject indicators” or sometimes also “subject identifiers”)
that describe in a human-readable form the subject of a Topic Map component.
Commonly, subjects and topics stand in one-to-one relationships, such that they
can be referred to interchangeably.

Like RDF data, Topic Maps can be seen as oriented graphs with labeled nodes
and edges. Topic Maps offer richer data modeling primitives than RDF. Topic
Maps allow relationships, called associations, of every arity, while RDF only
allows binary relationships, called properties. Initial efforts towards integrating
RDF and Topic Maps are described in [126, 177]. Interestingly, Topic Maps
associations are similar to the “extended links” of the XML linking language
XLink (http://www.w3.org/XML/Linking/).

2.2 Running Example: Classification-Based Book Recommender

In the following, we shall consider as a running example queries in a simple book
recommender system describing various properties and relationships between
books. It consists of a hierarchy (or ontology) of the book categories Writing,
Novel, Essay, Historical Novel, and Historical Essay, and two books The
First Man in Rome (a Historical Novel authored by Colleen McCullough) and
Bellum Civile (a Historical Essay authored by Julius Caesar and Aulus Hir-
tius, and translated by J.M. Carter). Figure 2 depicts this data as a (simplified)
RDF graph [51, 172, 184]. Note in particular that a Historical Novel is both, a
Novel and an Essay, and that books may optionally have a translator, as is the
case for Bellum Civile. To illustrate the properties of the different kinds of query

42 J. Bailey et al.

Fig. 2. Sample Data: representation as a (simplified) RDF graph

languages, the data is in the following represented in the three representation
formalisms RDF, Topic Maps, and XML.

The simple ontology in the book recommender system only makes use of the
subsumption (or “is-a-kind-of”) relation rdfs:subClassOf and the instance (or
“is-a”) relation rdf:type. Though small and simple, this ontology is sufficient to
illustrate the most important aspects of ontology querying. In particular, query-
ing this ontology with query languages for the standard Web already requires
one to model and query this data in an ad hoc fashion, i.e. there is no unified way
to represent this data. A possible representation is shown in the XML example
below.

The RDF, Topic Maps, and XML representations of the sample data refer
to the “simple datatypes” of XML Schema [39] for scalar data: Book titles and
authors’ names are “string”, (untyped or typed as xsd:string), publication
years of books are “Gregorian years”, xsd:gYear. The sample data is assumed
to be stored at http://example.org/books#, a URL chosen in accordance to
RFC 2606 [105] in the use of URLs in sample data. Where useful, e.g when

Web and Semantic Web Query Languages: A Survey 43

referencing the vocabulary defined in the ontology part of the data, this URL is
associated with the prefix books.

Sample Data in RDF. The RDF representation of the book recommender
system directly corresponds to the simplified RDF graph in Fig. 2. It is given
here in the Turtle serialisation [24].

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix foaf: <http://xmlns.org/foaf/0.1/> .

:Writing a rdfs:Class ;

rdfs:label "Novel" .

:Novel a rdfs:Class ;

rdfs:label "Novel" ;

rdfs:subClassOf :Writing .

:Essay a rdfs:Class ;

rdfs:label "Essay" ;

rdfs:subClassOf :Writing .

:Historical_Essay a rdfs:Class ;

rdfs:label "Historical Essay" ;

rdfs:subClassOf :Essay .

:Historical_Novel a rdfs:Class ;

rdfs:label "Historical Novel" ;

rdfs:subClassOf :Novel ;

rdfs:subClassOf :Essay .

:author a rdfs:Property ;

rdfs:domain :Writing ;

rdfs:range foaf:Person .

:translator a rdfs:Property ;

rdfs:domain :Writing ;

rdfs:range foaf:Person .

_:b1 a :Historical_Novel ;

:title "The First Man in Rome" ;

:year "1990"^^xsd:gYear ;

:author [foaf:name "Colleen McCullough"] .

_:b1 a :Historical_Essay ;

:title "Bellum Civile" ;

:author [foaf:name "Julius Caesar"] ;

:author [foaf:name "Aulus Hirtius"] ;

:translator [foaf:name "J. M. Carter"] .

Books, authors, and translators are represented by blank nodes without iden-
tifiers, or with temporary identifiers indicated by the prefix “ :”.

Sample Data in Topic Maps. The Topic Map representation of the book
recommender system makes use of the Linear Topic Maps syntax [121]. Subclass-
superclass associations are identified using the subject identifiers of XTM [232].
For illustration purposes, the title of a book is represented as an occurrence of
that book/topic.

44 J. Bailey et al.

/* Association and topic types for subclass-superclass hierarchy */

[superclass-subclass = "Superclass-Subclass Association Type"

@ "http://www.topicmaps.org/xtm/1.0/core.xtm#superclass-subclass"]

[superclass = "Superclass Role Type"

@ "http://www.topicmaps.org/xtm/1.0/core.xtm#superclass"]

[subclass = "Subclass Role Type"

@ "http://www.topicmaps.org/xtm/1.0/core.xtm#subclass"]

/* Topic types */

[Writing = "Writing Topic Type" @ "http://example.org/books#Writing"]

[Novel = "Novel Topic Type" @ "http://example.org/books#Novel"]

[Essay = "Essay Topic Type" @ "http://example.org/books#Essay"]

[Historical_Essay = "Historical Essay Topic Type"

@ "http://example.org/books#Historical_Essay"]

[Historical_Novel = "Historical Novel Topic Type"

@ "http://example.org/books#Historical_Novel"]

[year = "Topic Type for a Gregorian year following ISO 8601"

@ "http://www.w3.org/2001/XMLSchema#gYear"]

[Person = "Person Topic Type" @ "http://xmlns.org/foaf/0.1/Person"]

[Author @ "http://example.org/books#author"]

[Translator @ "http://example.org/books#translator"]

/* Associations among the topic types */

superclass-subclass(Writing: superclass, Novel: subclass)

superclass-subclass(Writing: superclass, Essay: subclass)

superclass-subclass(Novel: superclass, Historical_Novel: subclass)

superclass-subclass(Essay: superclass, Historical_Essay: subclass)

superclass-subclass(Essay: superclass, Historical_Novel: subclass)

superclass-subclass(Person: superclass, Author: subclass)

superclass-subclass(Person: superclass, Translator: subclass)

/* Occurrence types */

[title = "Occurrence Type for Titles" @ "http://example.org/books#title"]

/* Association types */

[author-for-book = "Association Type associating authors to books"]

[translator-for-book =

"Association Type associating translators to books"]

[publication-year-for-book =

"Association Type associating translators to books"]

/* Topics, associations, and occurrences */

[p1: Person = "Colleen McCullough"]

[p2: Person = "Julius Caesar"]

[p3: Person = "Aulus Hirtius"]

[p4: Person = "J. M. Carter"]

[b1: Historical_Essay = "Topic representing the book ’First Man in Rome’"]

author-for-book(b1, p1: author)

publication-year-for-book(b1, y1990)

{b1, title, [[The First Man in Rome]]}

[b2: Historical_Novel = "Topic representing the book ’Bellum Civile’"]

author-for-book(b2, p2: author)

author-for-book(b2, p3: author)

Web and Semantic Web Query Languages: A Survey 45

translator-for-book(b2, p4: translator)

{b2, title, [[Bellum Civile]]}

The representation given above has been chosen for illustrating query lan-
guage features. In reality, a different representation might be more natural. For
instance, a ternary association connecting a book with its author(s), translator,
and year of publication could be used. Also, instead of separate associations for
author and translator, use of a generic association between persons and books,
and use of roles for differentiation would be reasonable.

Sample Data in XML. XML has no standard way to express relationships
other than parent-child. The following is thus one of many conceivable ad hoc
XML representations of the data in the book recommender system. Its use is
obviously highly application-specific.

<bookdata xmlns:xsd="http://www.w3.org/2001/XMLSchema#">

<book type="Historical_Novel">

<title>The First Man in Rome</title>

<year type="xsd:gYear">1990</year>

<author> <name>Colleen McCullough</name> </author>

</book>

<book type="Historical_Essay">

<title>Bellum Civile</title>

<author> <name>Julius Caesar</name> </author>

<author> <name>Aulus Hirtius</name> </author>

<translator> <name>J. M. Carter</name> </translator>

</book>

<category id="Writing">

<label>Writing</label>

<category id="Novel">

<label>Novel</label>

<category id="Historical_Novel">

<label>Historical Novel</label>

</category>

</category>

<category id="Essay">

<label>Essay</label>

<category id="Historical_Essay">

<label>Historical Essay</label>

</category>

<category idref="Historical_Novel" />

</category>

</category>

</bookdata>

For the sake of brevity, the above representation does not express that authors
and translators are persons. Note the use of ID/IDREF references for expressing
the types (e.g. “Novel”, “Historical_Novel”) of books.

One of the XML-based serialisations of the RDF or Topic Maps represen-
tations of the sample data could be used for comparing XML query languages.

46 J. Bailey et al.

Instead, in this article, the XML representation given above is used, because
these XML-based serialisations of the RDF or Topic Maps representations are
awkward, complicated to query, and can yield biased comparisons.

2.3 Sample Queries

The different query languages are illustrated using five types of queries against
the sample data. This categorisation is inspired by Maier [192] and Clark [87].

Selection and Extraction Queries. Selection Queries simply retrieve parts
of the data based on its content, structure, or position. The first query is thus:

Query 1. “Select all Essays together with their authors (i.e. author items and
corresponding names)”

Selection Queries are used in the following to illustrate basic properties of
query languages, like the basic means of addressing data, the supported answer
formats, or the way related information (like author names or book titles) is se-
lected and delivered (grouping). Extraction Queries extract substructures, and
can be considered as a special form of Selection Query. Such queries are com-
monly found on the Semantic Web. The following query extracts a substructure
of the sample data (e.g. as an RDF subgraph):

Query 2. “Select all data items with any relation to the book titled ‘Bellum
Civile’.”

Reduction Queries. Some queries are more concisely expressed by specifying
what parts of the data not to include in the answer. On the Semantic Web,
such reduction queries are e.g. useful for combining information from different
sources, or for implementing different levels of trust: It might be desirable to
create a simple list of books from the data in the recommender system, leaving
out ontology information and translators:

Query 3. “Select all data items except ontology information and translators.”

Restructuring Queries. In Web applications, it is often desirable to restruc-
ture data, possibly into different formats/serialisations. For example, the con-
tents of the book recommender system could be restructured to an (X)HTML
representation for viewing in a browser, or derived data could be created, like
inverting the relation author:

Query 4. “Invert the relation author (from a book to an author) into a relation
authored (from an author to a book).”

In particular, RDF requires restructuring for reification, i.e. expressing “state-
ments about statements”. When reifying, a statement is replaced by three new
statements specifying the subject, predicate, and object of the old statement. For
example, the statement “Julius Caesar is author of Bellum Civile” is reified by
the three statements “the statement has subject Julius Caesar”, “the statement
has predicate author”, and “the statement has object Bellum Civile”.

Web and Semantic Web Query Languages: A Survey 47

Aggregation Queries. Restructuring the data also includes aggregating sev-
eral data items into one new data item. As Web data usually consists of tree-
or graph-structured data that goes beyond flat relations, we distinguish between
value aggregation working only on the values (like SQL’s max(·), sum(·), . . .)
and structural aggregation working also on structural elements (like “how many
nodes”). Query 5 uses the max(·) value aggregation, while Query 6 uses struc-
tural aggregation:

Query 5. “Return the last year in which an author with name ‘Julius Caesar’
published something.”

Query 6. “Return each of the subclasses of ‘Writing’, together with the average
number of authors per publication of that subclass.”

Related to aggregation are grouping (collecting several data items at some
common position, e.g. a list of authors) and sorting (extending grouping by
specifying in which order to arrange data items). Note that they are not mean-
ingful for all representation formalisms. For instance, sorting in RDF only makes
sense for sequence containers, as RDF data in general does not specify order for
statements.

Combination and Inference Queries. It is often necessary to combine in-
formation that is not not explicitly connected, like information from different
sources or substructures. Such queries are useful with ontologies that often spec-
ify that names declared at different places are synonymous:

Query 7. “Combine the information about the book titled ‘The Civil War’ and
authored by ‘Julius Caesar’ with the information about the book with identifier
bellum_civile.”

Combination queries are related to inference, because inference refers to combin-
ing data, as illustrated by the following example: If the books entitled “Bellum
Civile” and “The Civil War” are the same book, and ‘if ‘Julius Caesar” is an
author of “Bellum Civile”, then ‘Julius Caesar’ is also an author of “The Civil
War”.

Inference queries e.g. compute transitive closures of relations like the RDFS
subClassOf relation:

Query 8. “Return the transitive closure of the subClassOf relation.”

Not all inference queries are combination queries, as the following example illus-
trates:

Query 9. “Return the co-author relation between two persons that stand in au-
thor relationships with the same book.”

Some query languages have closure operators applicable to any relation, while
other query languages have closure operators only for certain, predefined re-
lations, e.g., the RDFS subClassOf relation. Some query languages support
general recursion, making it possible and easy to express the transitive closure
of every relation.

48 J. Bailey et al.

3 XML Query and Transformation Languages

Most query and transformation languages for XML specify the structure of the
XML data to retrieve using one of the following approaches:

– Navigational approach. Path-based navigation through the XML data queried.
– Positional approach. Query patterns as “examples” of the XML data queried.
– Relational expressions referring to a “flat” representation of the XML data

queried.

Languages already standardized, or currently in the process of standardisation
by the W3C, are of the first kind, while many research languages are of the
second kind. This article does not consider languages of the third kind, e.g.,
monadic datalog [128, 130] and LGQ [224]. Such languages have been proposed
for formalizing query languages and reasoning about XML queries. This article
also does not consider special purpose languages like ELog [21] which are not tai-
lored towards querying by humans. Finally, this article does not consider XML
query languages focused on information retrieval, e.g., XirQL [120], EquiX [89],
ELIXIR [82], XQuery/IR [49], XXL [270], XirCL [210], XRANK [142], PIX [5],
XSEarch [90], FleXPath [8], and TeXQuery [7]. Although these languages pro-
pose interesting and novel concepts and constructs for combining XML querying
with information retrieval methods, they (a) do not easily compare to the other
query languages in this survey and (b) mostly do not provide additonal insight
on the non-IR features of query languages.

3.1 W3C’s Query Languages: Navigational Approach

Characteristics of the Navigational Approach. The navigational languages for
XML are inspired from path-based query languages designed for relational or
object-oriented databases. Most such database query languages (e.g., GEM [286],
an extension of QUEL, and OQL [73]) require fully specified paths, i.e., paths
with explicitly named nodes following only parent-child connections. OQL ex-
presses paths with the “extended dot notation” introduced in GEM [286]: “SELECT
b.translator.name FROM Books b” selects the name, or component, of the
translator of books (note that there must be at most one translator per book for
this expression to be legal).

Generalized Path Expressions. Generalized (or regular) path expressions [83,
119], allow more powerful constructs than the extended dot notation for speci-
fying paths, e.g., the Kleene closure operator on (sub-)paths . As a consequence
and in contrast to the extended dot notation, generalized path expressions do
not require explicit naming of all nodes along a path.

Lorel. Lorel [2] is an early proposal for a query language originally designed
for semistructured data, a data model that was introduced with the “Object
Exchange Model (OEM)” [127, 230], and can be seen as a precursor of XML.
Lorel’s syntax resembles that of SQL and OQL, extending OQL’s extended dot
notation to generalized path expressions. Lorel provides a means for expressing:

Web and Semantic Web Query Languages: A Survey 49

– Optional data: In Lorel, the query SELECT b.translator.name FROM Books
b returns an empty answer, whereas in OQL it causes a type error, if there
is no translator for a book.

– Set-valued attributes: In Lorel, b.author.name selects the names of all au-
thors of a book, whereas in OQL it is only valid if there is only a single
author.

– Regular path expressions, e.g. a (strict) Kleene closure operator for express-
ing navigation through recursively defined data structures and alternatives
in both labeling and structure.

The following Lorel query expresses Query 1 against the sample data (treating
attributes as sub-elements since OEM has no attributes):

select xml(results:(

select xml(result:(

select B, B.author

from bookdata.book B

where B.type = bookdata.(category.id)+

))))

Lines 1 and 2 are constructors for wrapping the selected books and their
authors into XML elements. Note the use of the strict Kleene closure operator
+ in line 5. Note also that Lorel allows entire (sub-) paths to be repeated, as do
most query languages using generalized path expressions.

To illustrate further aspects of Lorel, assume that one is only interested
in books having “Julius Caesar” either as author or translator. Assume also
that, as in some representations of the sample data, cf. 2.2, the literal giving
the name of the author is either wrapped inside a name child of the author
element, or directly included in the author element. Selection of such books can
be expressed in Lorel by adding the following expression to the query after line
5 B.(author|translator).name? = "Julius Caesar".

StruQL. StruQL [114, 115] relies on path expressions similar to that of Lorel.
StruQL is another early (query and) transformation language for semi-structured
data using Skolem functions for construction.

Data Selection with XPath. XPath is presented in [86] and [258, 269], as
well as many online tutorials. It was defined originally as part of XSL, an activ-
ity towards defining a stylesheet language for XML (in replacement of SGML’s
stylesheet language DSSSL). XPath provides expressions for selecting data in
terms of a navigation through an XML document. In contrast to the previous
approaches based on generalized path expressions, XPath provides a syntax in-
spired from file systems, aiming at simplicity and conciseness. Conciseness is
an important aspect of XPath, since it is meant to be embedded in host lan-
guages, such as XSLT or XPointer. Other aspects such as formal semantics,
expressiveness, completeness, and complexity, have not played a central role in
the development of XPath but have recently been investigated at length.

50 J. Bailey et al.

Data Model. An XML document is considered as an ordered and rooted tree
with nodes for elements, attributes, character data, namespaces declaration,
comments and processing instructions. The root of this tree is a special node
which has the node for the XML document element as child. In this tree, ele-
ment nodes are structured reflecting the element nesting in the XML document.
Attribute and namespace declaration nodes are children of the node of the ele-
ment they are specified with. Nodes for character data, for comments, and for
processing instructions are children of the node of the element in which they
occur, or of the root node if they are outside the document element. Note that
a character node is always “maximal”, i.e., it is not allowed that two character
data nodes are immediate siblings. This model resembles the XML Information
Set recommendation [94] and has become the foundation for most activities of
the W3C related to query languages.

Path Expressions. The core expressions of XPath are “location steps”. A loca-
tion step specifies where to navigate from the so-called “context node”, i.e., the
current node of a path traversal. A location step consists of three parts: an “axis”,
a “node-test”, and an optional “predicate”. The axis specifies candidate nodes in
terms of the tree data model: the base axes self, child, following-sibling,
and following (selecting the context node, their children, their siblings, or all el-
ements if they occur later in document order, resp.), the transitive and transitive-
reflexive closure axes descendant and descendant-or-self of the axis child,
and the respective “reverse” (or inverse) axes parent, preceding-sibling,
preceding, ancestor, and ancestor-or-self. Two additional axes, attributes
and namespace, give access to attributes and namespace declarations. Both
node-tests and predicates serve to restrict the set of candidate nodes selected
by an axis. The node-test can either restrict the label of the node (in case of
element and attribute nodes), or the type of the node (e.g., restrict to comment
children of an element). Predicates serve to further restrict elements to some
neighborhood (which nodes are in the neighborhood of the node selected by an
axis and node-test) or using functions (e.g., arithmetic or boolean operators).

Successive location steps are separated by “/” to form a path expression.
A path expression can be seen as a nested iteration over the nodes selected by
each location step. E.g., the path expression child::book/descendant::name
expresses: “for each book child of the context node select its name descendant”.

XPath compares to generalized path expressions as follows:

– XPath allows navigation in all directions, while generalized path expressions
only allow vertical and downwards navigation.

– XPath provides closure axes, but does not allow closure of arbitrary path
expressions, e.g. as provided in Lorel.

– XPath has no means for defining variables, as it is intended to be used
embedded in a host language that may provide such means. In contrast,
Lorel and StruQL offer variables for connecting path expressions, making it
possible to specify so-called tree or graph queries. Instead, XPath predicates
may contain nested path expressions and thus allow the expression of tree
and even some graph queries. However, not all graph queries can be expressed

Web and Semantic Web Query Languages: A Survey 51

this way. This has been recognized in XPath 2.0 [31], a revision of XPath
currently under development at the W3C.

Reverse navigation has been considered for generalized path expressions, cf. [68,
69]). However, it has been shown in [225] that reverse axes do not increase the
expressive power of path navigations.

Without closure of arbitrary path expressions, XPath cannot express regular
path expressions such as a.(b.c)*.d (meaning “select d’s that are reached via
one a and then arbitrary many repetitions of one b followed by one c”) and
a.b*.c, cf. [199, 200], where also a first-order complete extension to XPath is
proposed that can express the second of the above-mentioned path expressions.

Query 1 can only be approximated in XPath as follows:

/descendant::book[attribute::type =

/descendant::category[attribute::id = "Essay"]/

descendant-or-self::category/attribute::id]

XPath always returns a single set of nodes and provides no construction.
Therefore, it is not possible to return authors and their names together with the
book.

XPath also has an “abbreviated syntax”. In this syntax the above query can
more concisely be expressed as:

//book[@type = "Essay" or //category[@::id = "Essay"]/

descendant-or-self::category/@id]

Query 2 can be expressed in (abbreviated) XPath as:

//book[title="Bellum Civile"]

XPath returns a set of nodes as result of a query, the serialization being
left to the host language. Most host languages consider as results the sub-trees
rooted at the selected nodes, as desired by this query. The link to the category
is not expressed by means of the XML hierarchy and therefore not included in
the result.

Query 3 can be approximated in XPath (assuming we identify “ontology
information” with category elements):

/bookdata//*[name(.) != "translator" and name(.) != "category"]

This query returns all descendants of the document element bookdata the la-
bels of which (returned by the XPath function name) are neither "translator"
nor "category". While this might at first glance seem to be a convenient solu-
tion for Query 3 (the set of nodes returned by the expression indeed does not
contain translators and categories), the link between selected book nodes and
the excluded translators is not removed and in most host languages of XPath
the translators would be included as part of their book parent.

Queries 4 and 7–9 cannot be expressed in XPath because they all require
some form of construction.

Aggregations, needed by Query 5, are provided by XPath. Query 5 can be
expressed as follows:

52 J. Bailey et al.

max(//book[author/name="Julius Caesar"]/year)

The aggregation in Query 6 can be expressed analogously. However, Query 6
like Query 1 cannot be expressed in XPath properly due to the lack of construc-
tion.

XPath in Industry and Research. Thanks to XPath’s ubiquity in W3C standards
(in XML Schema [108], in XSLT [85], in XPointer [135], in XQuery [42], in
DOM Level 3), XPath has been adopted widely in industry both as part of
implementations of the afore-mentioned W3C standards and in contexts not
(yet) considered by the W3C, e.g., for policy specifications. It has also been
included in a number of APIs for XML processing in languages for providing
easy access to data in XML documents.

XPath has also been deeply investigated in research. Formal semantics for
(more or less complete) fragments for XPath have been proposed in [129, 225,
275]. Surprisingly, most popular implementations of XPath embedded within
XSLT processors exhibit exponential behavior, even for fairly small data and
large queries. However, the combined complexity of XPath query evaluation has
been shown to be P-complete [131, 132]. Various sub-languages of XPath (e.g.,
forward XPath [225], Core or Navigational XPath [132], [26]) and extensions
(e.g., CXPath [199]) have been investigated, mostly with regard to expressive-
ness and complexity for query evaluation. Also, satisfiability of positive XPath
expressions is known to be in NP and, even for expressions without boolean oper-
ators, NP-hard [149]. Containment of XPath queries (with or without additional
constraints, e.g., by means of a document schema) has been investigated as well,
cf., e.g., [98, 211, 250, 285]. Several methods providing efficient implementations
of XPath relying on standard relational database systems have been published,
cf., e.g., [137, 138, 226].

Currently, the W3C is, as part of its activity on specifying the XML query
language XQuery, developing a revision of XPath: XPath 2.0 [31]. See [164] for
an introduction. The most striking additions in XPath 2.0 are: (1) a facility
for defining variables (using for expressions), (2) sequences instead of sets as
answers, (3) the move from the value typed XPath 1.0 to extensive support for
XML schema types in a strongly typed language, (4) a considerably expanded
library of functions and operators [193], and (5) a complete formal semantics
[104].

Project pages:
http://www.w3.org/TR/xpath for XPath 1.0
http://www.w3.org/TR/xpath20/ for XPath 2.0

Implementations:
numerous, mostly as part of implementations of XPath host languages or
APIs for processing XML (e.g., W3C’s DOM Level 3)

Online demonstration:
none (offline XPathTester http://xml.coverpages.org/ni2001-05-25-a.
html)

Web and Semantic Web Query Languages: A Survey 53

XPathLog. XPathLog [203] is syntactically an extension of XPath but its seman-
tics and evaluation are based on logic programming, more specifically F-Logic
and FLORID [188]. XPathLog extends the syntax of XPath as follows: (1) vari-
ables may occur in path expressions, e.g., //book[name → N] → B binds B to
books and N to the names of the books, and (2) both existential and universal
quantifiers can be used in Boolean expressions. The data model of XPathLog
deviates considerably from XPath’s data model: XML documents are viewed
in XPathLog as edge-labeled graphs with implicit dereferencing of ID/IDREF
references. XPathLog provides means for constructing new or updating the ex-
isting XML data, as well as more advanced reactive features such as integrity
constraints.

Project page:
http://dbis.informatik.uni-goettingen.de/lopix/

Implementation:
With the LoPiX system, available from the project page

Online demonstration:
none

FnQuery. FnQuery [254] is another approach for combining path expressions
with logic programming. Attribute lists are used to define a novel representation
of XML in Prolog called “field-notation”. Data in this representation can then
be queried using FnPath: E.g., the expression

D^bookdata^book-[^title:’Bellum Civile’, ^year:1992]

returns the book with title “Bellum Civile” published in “1990” if the sample
data from Section 2.2 is bound to D. As XPathLog FnQuery allows multiple
variables in a path expression. It has been used, e.g., for visualizing knowledge
bases [256] and querying OWL ontologies [255].

Project page:
http://www-info1.informatik.uni-wuerzburg.de/database/research
seipel.html

Implementation:
not publicly available

Online demonstration:
none

The Transformation Language XSLT. XSLT [85], the Extensible Stylesheet
Language, is a language for transforming XML documents. Transformation is
here understood as the process of creating a new XML document based upon a
given one. The distinction between querying and transformation has become in-
creasingly blurred as expressiveness of both query and transformation languages
increase. Typically, transformation languages are very convenient for expressing
selection, restructuring and reduction queries, such as Query 3 above.

54 J. Bailey et al.

XSLT uses an XML syntax with embedded XPath expressions. While the
XML syntax makes processing and generation of XSLT stylesheets easier (cf.
[279]), it has been criticized as hard to read and overly verbose. Also XPath
expressions use a non-XML syntax requiring a specialized parser.

XSLT Computations. An XSLT program (called “stylesheet” reflecting the ori-
gin of XSLT as part of the XSL project) is composed of one or more transforma-
tion rules (called templates) that recursively operate on a single input document.
Transformation rules are guarded by XPath expressions. In a template, one can
specify (1) the resulting shape of the elements matched by the guard expression
and (2) which elements in the input tree to process next with what templates.
The selection of the elements to process further is done using an XPath expres-
sion. If no specific restriction is given, all templates with guards matching these
elements are considered, but one can also specify a single (named) template or
a group of templates by changing the so-called mode of processing. XSLT allows
also recursive templates. However, recursion is limited: except for templates con-
structing strings only, the result of a template is immutable (a so-called result
tree fragment) and cannot be input for further templates except for literal copies.
This means in particular, that no views can be defined in XSLT. Work in [169]
shows that XSLT is nevertheless Turing complete, by using recursive templates
with string parameters and XSLT’s powerful string processing functions.

XSLT 2.0. Recently this and other limitations (e.g., the ability to process only a
single input document, no support for XML Schema, limited support for names-
paces, lack of specific grouping constructs) have lead to a revision of XSLT:
XSLT 2.0 [167]. As with XQuery 1.0, this language is based upon XPath 2.0 [31].
It addresses the above mentioned concerns, in particular adding XML schema
support, powerful grouping constructs, and proper views. The XQuery 1.0 and
XPath 2.0 function and operator library [193] is also available in XSLT 2.0.

Sample Queries. All example queries can be expressed in XSLT. Query 2 and 5
to 8 are omitted as their solutions are similar enough to solutions shown in the
following.

Query 1 can be expressed in XSLT as follows:

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<results>

<xsl:apply-templates select="//book[@type =

//category[@id = ’Essay’]/descendant-or-self::category/@id]"/>

</results>

</xsl:template>

<xsl:template match="book">

<result>

<xsl:copy select = "."/>

<xsl:apply-templates select="author|author/name" />

Web and Semantic Web Query Languages: A Survey 55

</result>

</xsl:template>

<xsl:template match="author|author/name">

<xsl:copy-of select="." />

</xsl:template>

</xsl:stylesheet>

This stylesheet can be evaluated as follows:

– try to match the root node (matched by the guard / of the template in
line 3) with the guards of templates in the style-sheet (only first template
matches)

– create a <results> element and within it try to recursively apply the tem-
plates to all nodes matched by the XPath expression in the select attribute
of the apply-templates statement in line 5.

– such nodes are book elements matched by the second template which creates
a <result> element, makes a shallow copy of itself and recursively applies
the rules to the book’s author children and their name children.

– for each author or name of an author, copy the complete input to the result.

Aside from templates, XSLT also provides explicit iteration, selection, and as-
signment constructs: xsl:for-each, xsl:if, xsl:variable among others. Us-
ing these constructs one can formulate Query 1 alternatively as follows:

<results xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:for-each select="//book[@type = //category[@id = ’Essay’]/

descendant-or-self::category/@id]">

<result>

<xsl:copy select = "."/>

<xsl:for-each select = "author|author/name">

<xsl:copy-of select="." />

</xsl:for-each>

</result>

</xsl:for-each>

</results>

The xsl:for-each expressions iterate over the elements of the node set se-
lected by the XPath expression in their select attribute. Aside from the ex-
pressions for copying input this very much resembles the solution for Query 1 in
XQuery shown in the following section.

Whereas the first style of programming in XSLT is sometimes referred to
as rule-based, the latter one is known as the “fill-in-the-blanks” style, as one
specifies essentially the shape of the output with “blanks” to be filled with the
result of XSLT expressions. Other programming styles in XSLT can be identified,
cf. [165].

Query 3 can be expressed in XSLT as follows:

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

56 J. Bailey et al.

<xsl:template match="@*|node()">

<xsl:copy>

<xsl:apply-templates select="@*|node()"/>

</xsl:copy>

</xsl:template>

<xsl:template match="translator | category" />

</xsl:stylesheet>

The first template specifies that for all attributes and nodes, the node itself
is copied and their (attribute and node) children are processed recursively. The
second template specifies that for translators and category elements, nothing is
generated (and their children are not processed). Notice that the first template
also matches translator and category elements. For such a case where multiple
templates match, XSLT uses detailed conflict resolution policies. In this case,
the second template is chosen as it is more specific than the first one (for more
the details of resolution rules, refer to [85]).

Query 4 can be expressed in XSLT as follows:

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<bookdata>

<xsl:apply-template

select="//author[not(name = preceding::author/name)]" />

</bookdata>

</xsl:template>

<xsl:template match="author">

<person>

<name><xsl:value-of select="name" /></name>

<authored>

<xsl:apply-templates

select="//book[author/name=current()/name]" />

</authored>

</person>

</xsl:template>

<xsl:template match="book">

<book>

<xsl:copy-of select="@*" />

<xsl:copy-of select="*[name() != ’author’]" />

</book>

</xsl:template>

</xsl:stylesheet>

The preceding axis from XPath is used to avoid duplicates in the result. Also
note the use of the current() function in the second template. This function
always returns the current node considered by an XSLT expression. Here, it
returns the author element last matched by the second template. This function
is essentially syntactic sugar to limit the use of variables (cf. solution for Query
9).

Web and Semantic Web Query Languages: A Survey 57

Query 9 can be expressed in XSLT as follows:

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<results>

<xsl:for-each select="//author">

<xsl:variable name="author" select="." />

<xsl:for-each select="$author/following-sibling::author">

<co-authors>

<name> <xsl:value-of select="$author/name" /> </name>

<name> <xsl:value-of select="current()/name" /> </name>

</co-authors>

</xsl:for-each>

</xsl:for-each>

</results>

</xsl:template>

</xsl:stylesheet>

Here, the solution is quite similar to the XQuery solution for Query 9 shown
below (but can use in following-sibling axis that is only optionally available
in XQuery), as variables and xsl:for-each expressions are used. The solution
uses xsl:for-each, as the inner and the outer author are processed differently. A
solution without xsl:for-each is possible but requires parameterized templates
and named or grouped templates:

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<results>

<xsl:apply-template select="//author" />

</results>

</xsl:template>

<xsl:template match="author">

<xsl:apply-template select="following-sibling::author"

mode="co-author">

<xsl:with-param name="first-co-author" select="." />

</xsl:apply-templates>

</xsl:template>

<xsl:template match="author" mode="co-author">

<xsl:param name="first-co-author" />

<co-authors>

<name> <xsl:value-of select="$first-co-author/name" /> </name>

<name> <xsl:value-of select="name" /> </name>

</co-authors>

</xsl:template>

</xsl:stylesheet>

Note that for clarity neither of these solutions avoids duplicates if two persons
are co-authors of multiple books.

58 J. Bailey et al.

XSLT in Industry and Academia. XSLT has been the first W3C language for
transforming and querying XML and thus has been adopted quickly and widely.
A multitude of implementations exist (e.g. as part of the standard library for
XML processing in Java) as well as good practical introductions (e.g.., [165,
269]).

Research on XSLT has not received the same attention that XPath and
XQuery have, in particular not from the database community. A more detailed
overview of research issues on XSLT and its connection to reactive rules is given
in [13], here only some core results are outlined: Formal semantics for (frag-
ments of) XSLT have been investigated in [38, 171]. [169] gives a proof showing
that XSLT is Turing complete. Analysis of XSLT is examined in [103], which
proposes four analysis properties and presents an analysis method based on the
construction of a template association graph, which conservatively models the
control flow of the stylesheet. There is also an important line of theoretical re-
search with regard to analysis of the behaviour of XSLT. Work in [214] presents
a theoretical model of XSLT and examines a number of decision questions for
fragments of this model. Work in [198] examines the question of whether the out-
put of an XML transformation conforms to a particular document type. Type
checking is also addressed in [272].

Efficient evaluation of XSLT programs is also an important topic. In [156,
186], translations to SQL are considered. Work in [274] describes incremental
methods for processing multiple transformations. Work in [249] proposes a lazy
evaluation for XSLT programs, while [166] describes optimizations based on ex-
periences from the widely used XSLT processor Saxon. Other specific techniques
for optimizing XSLT programs and evaluation are described in [102, 134, 143,
273]. Further engineering aspects of XSLT programs have also received atten-
tion, namely transformation debugging [12] and automatic stylesheet generation
[227, 279].

Project page:
http://www.w3.org/Style/XSL/

Implementation:
very numerous, see project page

Online demonstration:
none

Fxt. fxt [33], the functional XML transformer, is a transformation language sim-
ilar to XSLT, in particular with respect to its syntax. However, instead of XPath
expressions fxt uses fxgrep patterns that are based on an expressive grammar for-
malisms and can be evaluated very efficiently (cf. [32]). Fxt ’s computation model
is also more restricted than that of XSLT due to the lack of named templates.

Project page:
http://atseidl2.informatik.tu-muenchen.de/∼berlea/Fxt/

Implementation:
available from the project page

Web and Semantic Web Query Languages: A Survey 59

Fig. 3. Treemap representation of a VXT rule(Pietriga et al. [233], c© ACM Press)

Online demonstration:
none

VXT. VXT [233] is a visual language and interactive environment for specifying
transformations of XML documents. It is based on the general purpose trans-
formation language Circus5: Whereas most other XML query languages employ
some form of graph-shaped visualization for both data and queries, VXT uses
treemaps [157] for representing hierarchies: the nesting of the elements in the
document is reflected by nested of nodes. As XSLT, VXT uses rules to specify
transformations. A rule consists in treemap representation of the queried data
and the constructed data. The two representations are linked by various typed
edges indicating, e.g., the copying of a matching node or its content, cf. 3

Project page:
none

Implementation:
not publicly available

Online demonstration:
none

The Query Language XQuery. Shortly before the publication of the final
XPath 1.0 and XSLT 1.0 recommendations, the W3C launched an activity to-
wards specifying an XML query language. In contrast to XSLT, this query lan-
guage aims at a syntax and semantics making it convenient for database systems.
Requirements and use cases for the language have been given in [78, 79, 192].
A number of proposals, e.g., XQL and Quilt, have been published in answer to
this activity, each with varying influence on XQuery [42], the language currently
under standardisation at the W3C:

XQL [244, 245] notably influenced the development of XPath. Although XQL
did not consider the full range of XPath axes, some language features that have
not been included in XPath, e.g., existential and universal quantifiers and an
extended range of set operations, are under reconsideration for XPath 2.0.

Quilt [77] is in spirit already close to the current version of XQuery, mainly
lacking the extensive type system developed by the W3C’s XML query working
group. It can be considered the predecessor of XQuery.

5 http://www.xrce.xerox.com/solutions/circus.html

60 J. Bailey et al.

Although the development and standardisation of XQuery [42] is not com-
pleted, XQuery’s main principles have been unchanged during at least the last
two of its four years of development. In many respects, it represents the “state-
of-the-art” of navigational XML query languages.

XQuery Principles. At its core, XQuery is an extension of XPath 2.0 adding
functionalities needed by a “full query language”. The most notable of these
functionalities are:

– Sequences. Where in XPath 1.0 the results of path expressions are node
sets, XQuery and XPath 2.0 use sequences. Sequences can be constructed or
result from the evaluation of an XQuery expression. In contrast to XPath 1.0,
sequences cannot only be composed of nodes but also from atomic values,
e.g., (1, 2, 3) is a proper XQuery sequence.

– Strong typing. Like XPath 2.0, XQuery is a strongly typed language. In par-
ticular, most of the (simple and complex) data types of XML Schema are
supported. The details of the type system are described in [104]. Further-
more, many XQuery implementations provide (although it is an optional
feature) static type checking.

– Construction, Grouping, and Ordering. Where XPath is limited to selecting
parts of the input data, XQuery provides ample support for constructing
new data. Constructors for all node types as well as the simple data types
from XML Schema are provided. New elements can be created either by so-
called direct element constructors (that look just like XML elements) or by
what is referred to as computed element constructors, e.g. allowing the name
of a newly constructed element to be the result of a part of the query. For
examples on these constructors, see the implementations for Query 1 and 3
below.

– Variables. Like XPath 2.0, XQuery has variables defined in so-called FLWOR
expressions. A FLWOR expression usually consists in one or more for, an
optional where clause, an optional order by, and a return clause. The for
clause iterates over the items in the sequence returned by the path expres-
sion in its in part: for $book in //book iterates over all books selected by
the path expression //book. The where clause specifies conditions on the se-
lected data items, the order by clause allows the items to be processed in a
certain order, and the return clause specifies the result of the entire FLWOR
expression (often using constructors as shown above). Additionally, FLWOR
expressions may contain, after the for clauses, let clauses that also bind
variables but without iterating over the individual data items in the sequence
bound to the variable. FLWOR expressions resemble very much XSLT’s ex-
plicit iteration, selection, and assignment constructs described above.

– User-defined functions. XQuery allows the user to define new functions spec-
ified in XQuery (cf. implementation of Query 3 below). Functions may be
recursive.

– Unordered sequences. As a means for assisting query optimization, XQuery
provides the unordered keyword, indicating that the order of elements in

Web and Semantic Web Query Languages: A Survey 61

sequences that are constructed or returned as result of XQuery expressions is
not relevant. E.g., unordered{for $book in //book return $book/name}
indicates that the nodes selected by //book may be processed in any order
in the for clause and the order of the resulting name nodes also can be arbi-
trary (implementation dependent). Note that inside unordered query parts,
the result of any expressions querying the order of elements in sequences
such as fn:position, fn:last is non-deterministic.

– Universal and existential quantification. Both XPath 2.0 and XQuery 1.0
provide some and all for expressing existentially or universally quantified
conditions (see implementation of Query 9 below).

– Schema validation. XQuery implementations may (optionally) provide sup-
port for schema validation, both of input and of constructed data, using the
validate expression.

– Full host language. XQuery completes XPath with capabilities to set up the
context of path expressions, e.g., declaring namespace prefixes and default
namespace, importing function libraries and modules (optional), and (again
optionally) providing flexible means for serialization that are in fact shared
with XSLT 2.0 (cf. [168]).

In at least one respect, XQuery is more restrictive than XPath: not all of
XPath’s axes are mandatory, ancestor, ancestor-or-self, following,
following-sibling, preceding, and preceding-sibling do not have to be
supported by an XQuery implementation. This is, however, no restriction to
XQuery’s expressiveness, as expressions using reverse axes (such as ancestor)
can be rewritten, cf. [225], and the “horizontal axes”, e.g., following and
following-sibling, can be replaced by FLWOR expressions using the << and
>> operators that compare two nodes with respect to their position in a sequence.

For a formal semantics for XQuery 1.0 (and XPath 2.0) see [104]. Compre-
hensive but easy to follow introductions to XQuery are given in, e.g., [53, 163].

Sample Queries. All nine sample queries can be expressed in XQuery. In the
following, an expression of Query 2 is omitted because it can be expressed as
a simplification of the XQuery expression of Query 1 given below. Query 5 can
be expressed as for XPath, cf. above. Expressions of Query 8 and 9 are similar.
Since the expression for Query 9 in XQuery exhibits an interesting anomaly, it
is given below and no expression for Query 8 is given.

Query 1 can be expressed in XQuery as follows (interpreting the phrase “an
essay” as a book with type attribute equal to the id of the category “Essay” or
one of its sub-categories represented as descendants in the XML structure):

<results> {

let $doc := doc("http://example.org/books")/bookdata

let $sub-of-essay :=

$doc//category[@id="Essay"]/descendant-or-self::category

for $book in $doc//book

where $book/@type = $sub-of-essay/@id

return

62 J. Bailey et al.

<result>

{ $book }

{ $book/author }

{ $book/author/name }

</result> }

</results>

Note the use of the let clause in line 2: the sequence of all sub-categories of
the category with id “Essay” including that category itself (we use the reflex-
ive transitive axis descendant-or-self) is bound to the variable. However, in
contrast to a for expression, this sequence is not iterated over. Instead of the
where clause in line 4 a predicate could be added to the path expression in line
3 resulting in the expression $doc//book[@type = $sub-of-essay/@id].

Query 3 requires structural recursion over the tree, while constructing new
elements that are identical to the ones encountered, except omitting translator
and category nodes. The following implementation shows the use of a user-
defined, recursive function that copies the tree rooted at its first parameter $e,
except all nodes in the sequence given as second parameter.

declare function

local:tree-except($e as element(),

$exceptions as node()*) as element()*

{

element {fn:node-name($e)} {

$e/@* except $exceptions, (: copy the attributes :)

for $child in $element/node() except $exceptions

return

if $child instance of element()

(: for elements process them recursively :)

local:tree-except($section)

else (: others (text, comments, etc. copy :)

$child

}

};

document {

let $doc := doc("http://example.org/books")/bookdata

let $exceptions := $doc//translator union $doc//category

local:tree-except($doc, $exceptions)

}

Note the typing of the parameters: the first parameter is a single element,
the second, a sequence of nodes and the function returns a sequence of elements.
In the main part of the query, the document constructor is used to indicate that
its content is to be the document element of the constructed tree.

Query 4 can be expressed in XQuery as follows:

<bookdata> {

let $a := doc("http://example.org/books")//author

Web and Semantic Web Query Languages: A Survey 63

for $name in distinct-values($a/name)

return

<person>

<name> { $name } </name>

<authored

{

for $b in doc("http://example.org/books")//book

where some $ba in $b/author

satisfies $ba/name = $name

return

<book> { $b/@*, $b/* except $b/author } </book>

}

</authored

</person>

}

</bookdata>

This implementation is in fact similar to the implementation of use case
XMP-Q4 in [79] and exhibits two noteworthy functionalities: (1) The use of
distinct-value in line 3 to avoid duplication in the result, if an author occurs
multiple times in the document. (2) The use of an existentially quantified condi-
tion in lines 10–11, to find books where some (read: at least one) of the authors
have the same name as the currently considered author.

Using aggregation expressions (see lines 8 and 10), Query 6 can be expressed
in XQuery as follows:

<results> {

let $doc := doc("http://example.org/books")/bookdata

for $category in $doc//category[@id="Essay"]//category

return

<category>

{ $category/@id }

<average-number-of-authors>{

fn:avg(for $book in $doc//book

where @type = $category/@id

return fn:count($book/author))

}

</average-number-of-authors>

</category>

}

</results>

Combining data can be expressed in a very compact manner in XQuery, as
the following expression of Query 7 shows:

<book>

{ for $book in doc("http://example.org/books")//book

where title="Bellum Civile" and author/name="Julius Caesar"

return ($book/@*, $book/*)

}

64 J. Bailey et al.

{

for $book in doc("http://example.org/books")//book

where @id="bellum_civile"

return ($book/@*, $book/*)

}

</book>

Query 9 can be expressed in XQuery as follows:

<results>

{ let $doc := doc("http://example.org/books")

for $book in doc("http://example.org/books")//book

for $author in $book/author

for $co-author in $book/author

where $author << $co-author

return

<co-authors>

<name> { $author/name } </name>

<name> { $co-author/name } </name>

</co-authors>

}

</results>

This implementation does not treat the case where two authors co-authored
multiple books. In this case, duplicates are created by the above solution. To
avoid this the following refinement uses the before operator << in combination
with a negated condition, for specifying that only such pairs of authors should be
considered, where there is no book that occurs prior to the currently considered
one and which is also co-authored by the current pair of authors:

<results>

{ let $doc := doc("http://example.org/books")

for $book in doc("http://example.org/books")//book

for $author in $book/author

for $co-author in $book/author

where $author << $co-author and not(

some $pb in doc("http://example.org/books")//book

satisfies ($pb << $book and

$pb//author/name = $author/name and

$pb//author/name = $co-author/name))

return

<co-authors>

<name> { $author/name } </name>

<name> { $co-author/name } </name>

</co-authors>

}

</results>

XQuery in Industry and Research. From the very start, XQuery’s development
has been followed by industry and research with equal interest (for reports on the

Web and Semantic Web Query Languages: A Survey 65

challenges and decisions during this process see, e.g., [106, 109]). Even before the
development has finished, initial practical introductions to XQuery have been
published, e.g., [53, 163]. Industry interest is also visible in the simultaneous
development of standardized XQuery APIs, e.g., for Java [107], and numerous
implementations, both open source (e.g., Galax [112]) and commercial (BEA
[118], IPSI-XQ [110]). Aside from these main-memory implementations, one can
also find streamed implementations of XQuery (e.g., [22, 173]) where the data
flows by as the query is evaluated. First results on implementing XQuery on top
of standard relational databases (e.g., [97, 139]) indicate that this approach leads
to very efficient query evaluation if a suitable relational encoding of the XML
data is used. For more implementations, see the XQuery project page at the W3C
and the proceedings of the first XIME-P workshop on “XQuery Implementation,
Experience and Perspectives”6.

It is intuitively clear that XQuery is Turing complete since it provides re-
cursive functions and conditional expressions. A formal proof of the Turing-
completeness of XQuery is given in [169]. Efficient processing and (algebraic)
optimization of XQuery, although acknowledged as crucial topics, have not yet
been sufficiently investigated. First results are presented, e.g., in [80, 81, 101, 202,
268, 287, 288]. Moreover, techniques for efficient XPath evaluation, as discussed
above, can be a foundation for XQuery optimization.

Beyond querying XML data, it has also been suggested to use XQuery for data
mining [278], for web service implementation [228], for querying heterogeneous
relational databases [281], for access control and policy descriptions [216], for
synopsis generation [92], and as the foundation of a visual XML query language
(XQBE) [10], of a XML query language with full-text capabilities [6, 7], and of
an update [54, 76, 243] and reactive [46] language for XML.

Project page:
http://www.w3.org/XML/Query

Implementations:
widely implementated (more than 30 implementations), a list of implemen-
tations is available at the project page

Online demonstrations:
several, e.g.: http://www.oakleaf.ws/xquery/xquerydemo.aspx
http://oasys.ipsi.fhg.de/xquerydemo/
http://131.107.228.20/xquerydemo/demo.aspx

3.2 Research Prototypes: The Positional Approach to XML
Querying

Characteristics of the Positional Approach. The languages discussed in
the following all take the positional approach for locating data in an XML doc-
ument. This approach is often derived from logic or functional programming
where patterns are used to specify the position of interesting data inside larger
structures.

6 http://www-rocq.inria.fr/gemo/Gemo/Projects/XIME-P/

66 J. Bailey et al.

Essentially, positional languages use expressions that mimic the data to be
queried. This allows tree- or graph-shaped queries to be expressed very similar
to tree- or graph-shaped data (as “examples” of the data to be queried, cf.
[290]), whereas navigational languages do not provide this close correspondence.
However, many languages in this sections (e.g., UnQL, TQL, and Xcerpt) do
actually use path expressions mostly as convenient shorthands for parts of queries
that are shaped like a single path.

Languages using this “query-by-example” style for queries mostly fall into two
categories: (a) query languages influenced by logic or functional programming
(UnQL, XML-QL, XMAS, XML-RL, TQL) and (b) visual query languages or
visual interfaces for textual query languages (XML-GL, BBQ, and X2’s visual
query interface).

UnQL. UnQL [64, 65, 66] (the Unstructured Query Language) is a query lan-
guage originally developed for querying semistructured data and nested rela-
tional data-bases with cyclic structures. It has later been adopted to querying
XML, but the origins are still apparent in many language properties (for exam-
ple, UnQL has a non-XML syntax that is very similar to OEM’s syntax and does
not support querying or construction of ordered data).

The evaluation model and core language of UnQL is based upon structural
recursion over labeled trees. It provides both a functional-style language for
expressing recursions over trees, cf. [65] and a more approachable surface syntax.7

The following expression uses functional style pattern matching for selecting
all books in a tree.

fun f1(T1 ∪ T2) = f1(T1) ∪ f1(T2)

| f1({ L ⇒ T }) = if L = book then {result ⇒ book ⇒ T} else f1(T)

| f1({}) = {}

| f1(V) = {}

UnQL’s surface syntax uses query patterns and construction patterns and a
query consists of a single select ... where ... or traverse rule that separate
construction from querying. Queries may be nested, in which case the separation
of querying and construction is abandoned.

Query 1 can be expressed in UnQL as

select { results ⇒ {

select { result ⇒ { Book,

select { author ⇒ {

author ⇒ Author,

authorName ⇒ Name

} }

where { author ⇒ \Author } ← Book,

{ name ⇒ \Name } ← Author

where { book ⇒ \Book } ← Bib

where bookdata ⇒ Bib ← DB

7 The syntax from [64, 65] is used and not the slightly differing syntax in [66].

Web and Semantic Web Query Languages: A Survey 67

The ← scopes a query pattern, i.e., it specifies that the left-hand query pat-
tern is to be found in bindings for the right-hand variable. The⇒ operator is the
direct edge traversal operator. E.g., book ⇒ author specifies that author is a
direct child of book in the XML document. Recursive traversals can be specified
using regular path expressions including regular expressions over labels. E.g., _*
traverses over arbitrary many elements with any label, [^book]* over arbitrary
many elements with any label except book.

UnQL also provides traverse clauses for reduction and restructuring queries
like Query 3:

traverse DB given X

case translator ⇒ _ then X := {}

case category ⇒ _ then X := {}

case \L ⇒ _ then X := {l ⇒ X}

This query is evaluated by traversing the tree in the database and matching
recursively each element against the three case expressions. All elements except
translators and categories are copied to the newly constructed tree, structured
as in the input data.

UnQL is probably the first language to propose a pattern-based querying (al-
beit with subqueries instead of rule chaining) for semistructured data (including
XML).

Evaluation and optimization of UnQL has been investigated in [64, 66].
UnQL’s evaluation is founded in graph simulation, see [66]. [64] shows that all
queries expressible in UnQL can be evaluated in PTIME. This is true even for
queries against cyclic graph data (e.g. XML documents using cyclic ID/IDREF
references). This efficiency is reflected by UnQL’s expressiveness: on trees en-
coding relational or nested relational databases, UnQL is exactly as expressive
as relational or nested relational algebra, resp.

Project page:
http://www.research.att.com/∼suciu/unql-home.html8

Implementation:
available from the project page

Online demonstration:
none

XML-QL. XML-QL [99, 100] is a pattern- and rule-based query language for
XML developed specifically to address the W3C’s call for an XML query lan-
guage (that resulted in the development of XQuery). Like UnQL, it uses query
patterns (called element patterns in [99]) in a WHERE clause. Such patterns can
be augmented by variables for selecting data. The result of a query is specified
as a construction patterns in the CONSTRUCT clause. An XML-QL query always
consists of a single WHERE-CONSTRUCT rule, which may be divided into several
(nested) subqueries.

8 Not accessible at the time of writing.

68 J. Bailey et al.

Query 1 can be expressed in XML-QL as follows:

WHERE

<bookdata>

<book>

</> ELEMENT_AS $b

</>

CONSTRUCT

<results>

<result>

$b

WHERE <author>

<name> $n </>

</> ELEMENT_AS $a

CONSTRUCT $a

$n

</>

</>

Variables are preceded in XML-QL by $. Note how the grouping of authors
with their books is expressed using a nested query. Also note the tag minimiza-
tion (end tags abbreviated by </> as in SGML), e.g., in line 4 and 5. In line 4,
the variable $b is restricted to data matching the pattern in lines 3 and 4. Such
“pattern restrictions” are indicated in XML-QL using the ELEMENT AS keyword.

One of the main characteristics of XML-QL is that it uses query patterns
containing multiple variables that may select several data items at a time instead
of path selections that may only select one data item at a time. Furthermore,
variables are similar to the variables of logic programming, i.e. “joins” can be
evaluated over variable name equality. Since XML-QL does not allow one to
use more than one separate rule, it is often necessary to employ subqueries to
perform complex queries.

Query 6 cannot be expressed in XML-QL due to lack of aggregation, in
particular structural aggregation (e.g., counting the number of children of an
element). The following query returns all books classified in a sub-category of
“Novel”:

WHERE

<book type=$Sub>

</> ELEMENT_AS $b,

<category id=’Novel’>

<category* id=$Sub>

</>

</>

CONSTRUCT $b

As discussed, above joins are simply expressed by repeated occurrences of the
same variable (lines 2 and 5). In line 5 a further feature of XML-QL is shown:
instead of element labels one can use regular path expressions in patterns.

Web and Semantic Web Query Languages: A Survey 69

Transformation queries such as Query 2, where the output closely resembles
the input except for some rather localized changes (e.g., omission of elements or
changing labels), cannot in general be expressed in XML-QL.

Also XML-QL does not provide any means for testing the non-existence of
elements and therefore cannot express queries such as “Return all books that
have no translator.”.

No results on complexity or expressiveness of XML-QL have been published.

Project page:
http://www.research.att.com/∼mff/xmlql/doc/

Implementation:
available from the project page

Online demonstration:
none

XMAS. XMAS [189], the XML Matching And Structuring language is an XML
query language developed as part of MIX [18] and builds upon XML-QL. Like
XML-QL, XMAS uses query patterns and construction patterns, and rules of
the form CONSTRUCT ...WHERE However, XMAS extends XML-QL in that
it provides a powerful grouping construct, instead of relying on subqueries for
grouping data items within an element.

Query 1 can be expressed in XMAS as follows:

WHERE

<bookdata>

$B: <book>

$A: <author>

<name> $N </name>

</>

</>

</>

CONSTRUCT

<results>

<result>

$B

<book-author>

$A

<name> $N </name>

</> {$A,$N}

</> {$B}

</>

Here, one can observe the two main syntactic differences to XML-QL: (1)
In XMAS, grouping is expressed by enclosing the variables on whose bindings
the grouping is performed in curly braces and attaching them to the end of the
subpattern that specifies the structure of the resulting instances. In the above
example, a result element is created for every instance of $B (indicated by {$B}
after the closing tag of the element result). Within every such result element,

70 J. Bailey et al.

all authors of a book (indicated by {$A}) are collected nested in book-author el-
ements (the book-author element is necessary for grouping variables are allowed
only after closing tags or single variables in XMAS).

(2) XMAS also provides a more compact syntax for pattern restrictions that
allow one to restrict the admissible bindings of a variable as seen in line 3 ($B
in front of the subpattern instead of XML-QL’s ELEMENT_AS $B at the end).

Grouping queries can be specified even more concisely by using “implicit
collection labels”: instead of specifying the grouping variables explicitly, all vari-
ables nested inside square brackets are considered grouping variables for that
grouping, unless there is another grouping (i.e., block enclosed by square brack-
ets) closer to the variable occurrence. Using implicit collection labels, Query 1
can be expressed as:

WHERE

<bookdata>

$B: <book>

$A: <author>

<name> $N </name>

</>

</>

</>

CONSTRUCT

<results>

[<result>

$B

[<book-author>

$A

<name> $N </name>

</book-author>]

</>]

</>

No results on complexity or expressiveness of XMAS have been published.
BBQ [215] is a visual interface for XMAS that allows browsing of XML data

as well as authoring of XMAS queries based on a DTD of the data to be queried.
Figure 4 shows the two-pane query editor with a query pattern on the left and
an (empty) construct pattern at the right.

Project page:
http://www.db.ucsd.edu/projects/MIX/

Implementation:
publicly available only as part of the BBQ online demonstration

Online demonstration:
using BBQ http://www.db.ucsd.edu/Projects/MIX/BBQ User Interface.
html

XML-RL. XML-RL [187] is a a pattern-based query language based on logic
programming. Patterns are expressed by terms that may contain logic variables

Web and Semantic Web Query Languages: A Survey 71

Fig. 4. Screenshot of BBQ’s query editor (Munroe and Papakonstantinou [215],

c© Kluwer, B.V.)

and may be partly abbreviated with a path syntax similar to abbreviated XPath.
An XML-RL query program consists of one or more rules denoted by A ⇐
L1, . . . , Ln where A is used for construction and L1, . . . , Ln are query pattern.
Rules may interact via rule chaining and it is possible to use recursion.

Query 1 can be expressed in XML-RL as follows:

/results/result: (book:$b, {author: $a}, {authorName: $n})

⇐
(file:bib.xml)

/bookdata/book: $b(author: $a(name:$n))

The URL in line 3 defines the input data for the query. Analogously it is also
possible to give an URL in the construct part of the query (line 1). Notice the
curly brackets in line 1. They specify, that authors and author names are to be
grouped by book.

XML-RL does not provide specific support for transformation queries such
as Query 3, but they can be solved using recursive rules.

Query 6 can be expressed in XML-RL.

/results/result: ($i, avg-number-of-authors: $avg)

⇐
(file:bib.xml)

/bookdata/category: (@id: Writing, category//category/@id: $i),

(file:bib.xml)

/bookdata/book: #b (@type: $i, author: #a),

$avg = count(#a) ÷ count(#b) ;

72 J. Bailey et al.

/bookdata/category: (@id: Writing, category/@id: $i),

(file:bib.xml)

/bookdata/book: #b (@type: $i, author: #a),

$avg = count(#a) ÷ count(#b)

This rule has two alternative query expressions (separated as in Prolog by ;)
but only a single head. The first alternative covers the case of indirect sub-
categories of “Writing”, the second the case of direct ones. In both cases, the id
attribute of a category is selected and joined with the type attribute of books.
The books are collected in the list variable #b, all their authors in the list variable
#a. Finally, the average number of authors per publication in that sub-category
is computed by dividing the number of elements in the two lists.

No results on complexity or expressiveness of XML-RL have been published.

Project page:
none

Implementation:
not publicly available

Online demonstration:
none

TQL. TQL [70, 93] is an XML query language based upon ambient logic [71], a
modal logic conceived for describing the structural and computational properties
of distributed and mobile computation. Ambient logic uses, for the structural
descriptions at least, a logic of labeled trees and is thus a reasonable foundation
for an XML query language.

[70] describes a representation of XML documents in ambient logic, called
“information trees”: XML is considered an edge-labeled graph. No distinction
between attributes and elements is considered. Also the order of elements in an
XML document is not preserved.

Based upon this data structure, TQL queries are specified as from ...select
rules. Query and construction are separated (except for grouping queries that
are, as in XML-QL and UnQL, expressed using nested queries), the query is spec-
ified in the from clause, the construction in the select clause. TQL programs
consist of a single such rule. Instead of chaining rules, recursion is provided by
a special recursion operator rec similar to the minimal and maximal fix point
operators in modal logic. The following expression (taken from [70]) can be used
as a condition in from clauses and test, recursively, whether a tree is binary:

rec $Binary. 0 Or (%[$Binary] | %[$Binary])

Variables are indicated in TQL using $. The expression %[$Binary] matches
elements with arbitrary label (indicated by the wild card %) and satisfying the
condition specified in square brackets, viz. to be binary trees.

Query 1 can be expressed in TQL as follows (assuming $Bib is bound to the
sample data from Section 2.2:

Web and Semantic Web Query Languages: A Survey 73

from $Bib |= .bookdata[.book [$Book]]

select

results [result [

book [$Book]

| from $Book |= .author [

$Author And .name [$Name]]

select

author-and-name [author [$Author], name [$Name

]]

]

]

As stated above, grouping queries are expressed using nested queries. Notice,
how in line 1 (and in line 6) the $Book ($Author) variables are bound to the
sub-tree reached by a matching book (author) edge.

TQL provides a rich path syntax for abbreviating path-shaped queries. E.g.,
the expression

from $Bib |= .bookdata.%*.category[!.id[Writing] | .category*.label[$Label]

select $Label

returns the value of all labels reachable over arbitrary many category edges
(.category*) from a category that may occur at any depth (.%*) and has no
id with value “Writing”.

In [70], it is claimed that TQL is particularly well suited for testing integrity
constraints or schema validation, as it provides full boolean expressions including
negation, existential, universal quantification, and (structural) recursion with the
rec operator.

Project page:
http://www.di.unipi.it/∼ghelli/tql/

Implementation:
available from the project page

Online demonstration:
none

Xcerpt. Xcerpt [30, 56, 58, 247, 248] is a query language designed after prin-
ciples given in [63] for querying both data on the “standard Web” (e.g., XML
and HTML data) and data on the Semantic Web (e.g., RDF, Topic Maps, etc.
data). This Section addresses using Xcerpt on the “standard Web”, Section 4.6,
on the Semantic Web.

Xcerpt is “data versatile”, i.e. the same Xcerpt query can access and generate,
as answers, data in different Web formats. Xcerpt is “strongly answer-closed”,
i.e. it not only allows one to construct answers in the same data formats as the
data queries like, e.g., XQuery [78], but also allows further processing of the data
generated by this same query program. Xcerpt’s queries are pattern-based and
allow to incompletely specify the data to retrieve, by (1) not explicitly specify-
ing all children of an element, (2) specifying descendant elements at indefinite

74 J. Bailey et al.

depths (restrictions in the form of regular path expressions being possible), and
(3) specifying optional query parts. Xcerpt’s evaluation of incomplete queries is
based on a novel unification algorithm called “simulation unification” [57, 62].
Xcerpt’s processing of XML documents is graph-oriented, i.e., Xcerpt is aware of
the reference mechanisms (e.g., ID/IDREF attributes and links) of XML. Xcerpt
is rule-based. An Xcerpt rule expresses how data queried can be re-assembled
into new data items. One might say that an Xcerpt rule corresponds to an SQL
view. Xcerpt allows both traversal of cyclic documents and recursive rules, termi-
nation being ensured by so-called memoing, or tabling, techniques. Xcerpt rules
can be chained forward or backward, backward chaining being the processing of
choice for the Web. Indeed, if rules can, like Xcerpt’s rules, query any Web site,
then a forward processing of rule-based programs could require starting a pro-
gram’s evaluation at all Web sites. Xcerpt is inspired from Logic Programming.
However, since it does not offer backtracking as a programming concept, Xcerpt
can also be seen “set-oriented functional”.

All of the queries from Section 2.3 can be expressed in Xcerpt. In the follow-
ing, solutions for Query 2, 5, 7, and 8 are omitted as they are similar to other
solutions shown.

Query 1 can be expressed in Xcerpt as follows:

GOAL

results [

all result [

var Book,

all var Author,

all var AuthorName

]

]

FROM

bookdata {{

var Book → book {{

var Author → author {{

name [var AuthorName] }}

}}

}}

END

As stated above, Xcerpt rules allow a separation of construction and query-
ing. In the query part (enclosed by FROM and END), a pattern of the requested
data is specified: a bookdata element with a book child (associated with the
variable Book using the “pattern restriction” operator →) that in turn has an
author child (bound to the variable Author) with a name child whose content
is bound to the Variable AuthorName. Notice the use of double curly braces in
line 10, indicating an incomplete, unordered pattern. A matching bookdata el-
ement may have additional children not specified in the query and the order
among the children is irrelevant for the query. Square brackets as in line 13 and
in the construct part (between GOAL and FROM) specify that the order of the

Web and Semantic Web Query Languages: A Survey 75

children matters. Single brackets specify that the pattern is complete. Note that
incomplete query patterns might result in several alternative variable bindings.

Similar to XMAS, Xcerpt allows to group answers using the constructs all
and some. Intuitively, all t collects all possible different instances of the subex-
pression t that might result from alternative variable bindings. As shown in
the example above, grouping constructs may also be nested. In the example
above, the construct term creates a result subterm for each alternative bind-
ing of Book, and within each such result subterm, it groups all authors and
authornames associated with that particular book.

In general, an Xcerpt program may contain multiple rules, as shown in the
following solution for Query 3:

GOAL

var Result

FROM

transform [bookdata {{ }}, result [var Result]]

END

CONSTRUCT

transform [var Element, result []]

FROM

desc var Element → /translator|category/

END

CONSTRUCT

transform [var Element, result [var Label [all var Child]]]

FROM

and {

desc var Element → var Label [[var Child]]

where {

and { var Label != "translator", var Label != "category }

},

transform [var Child, result [var ChildTransformed]]

}

END

Xcerpt rules come in two flavors: GOAL ... FROM ... END and CONSTRUCT
... FROM ... END. The first may only occur once in a program, specifies the
ultimate result of the entire program similar to Prolog goals, and does not par-
ticipate in rule chaining. The latter form is used for all other rules.

Here, the two lower rules transform (recursively) an input element as specified
in the query: if it is a translator or a category the result of the transformation
is empty, otherwise the children of the element are recursively transformed and
the result of these transformations is used to reconstruct the structure of the
input data.

Notice the use of the desc operator in lines 10 and 17 indicating a pattern
that is incomplete in depth. Also notice the use of a where clause in line 18 to
restrict matches to elements that are neither translators nor categories. In line

76 J. Bailey et al.

17, a label variable is used: whereas the variable Element is bound to the entire
element matched by the pattern, Label is bound to the label of the element, i.e.,
a string such as “book”.

Query 4 can be expressed in Xcerpt as follows:

GOAL

bookdata [

all person [

name [var Name],

authored [

all book [

all var NonAuthorChildren

] group by { var Book }

]

]

]

FROM

bookdata {{

desc var Book → book [[

author {{ name [var Name] }},

var NonAuthorChildren → !/author/ {{ }}

]]

}}

END

In the query part all books (at any depth) are selected together with the
names of their authors and non-author children (notice the use of a negated
regular expression on the label for the non-author children). For each name of
an author, a person element is constructed (note the position of the all in line
3) containing the name and an authored element. In the author element all
books for that author are nested again using all with a group by clause for
explicitly naming the grouping variable.

Query 6 can be expressed in Xcerpt as follows:

GOAL

results [

all category [

attributes [id [var ID]],

average-number-of-authors [

div(count(all var Author), count(all var Book))

]

]

]

FROM

bookdata {{

desc category {{ attributes {{ id [var ID] }} }},

desc var Book → book {{

attributes {{ type [var ID] }},

desc var Author → author {{ }}

Web and Semantic Web Query Languages: A Survey 77

}}

}}

END

The average number of authors is calculated in line 6 using the structural
aggregation function count over all books and authors for a category. In typical
logic-programming style, the join between the id attribute of categories and the
type attribute of books is expressed by repeating the same variable.

Query 9 can be expressed in Xcerpt as follows:

GOAL

results [

all co-authors [

name [var Author],

name [var CoAuthor]

]

]

FROM

bookdata {{

desc book {{

author {{ name {{ var Author }} }},

author {{ name {{ var CoAuthor }} }}

}}

END

This query profits from two features of Xcerpt: (1) Xcerpt’s simulation uni-
fication is injective. This ensures that the two children of the book element in
line 10 are different without requiring the query author to explicit state that the
author and the co-author must be different. (2) Xcerpt’s grouping is set based
and uses unification for equality, i.e., two terms with same structure and values
are considered equal even if they represent distinct elements in the input. There-
fore the above program does not generate duplicates (as, e.g, the first XQuery
solution for Query 9 in Section 3.1x).

A visual language, called visXcerpt [28, 29], has been conceived as a visual
rendering of textual Xcerpt programs, making it possible to freely switch during
programming between the visual and textual view, or rendering, of a program
(cf. Figure 5 showing a textual and visual representation of an Xcerpt query).

Static type checking methods have been developed for Xcerpt [59, 283] that
are based on seeing tree grammars in their various disguises, e.g., DTD, XML
Schema, RelaxNG, as definitions of abstract data type.

A declarative semantics for Xcerpt has been proposed in [62, 247]. A formal
procedural semantics for Xcerpt has been proposed in [62] in the form of a a proof
procedure. An implementation of this semantic in Haskell has been realized using
Constraint Programming techniques [247]. The XQuery use case [79] has been
worked out in Xcerpt (cf. [174] (in German) and [45]). Based on Xcerpt and
extending it, a reactive language called XChange [55, 61] for updates and events
on the Web is currently being developed.

78 J. Bailey et al.

Fig. 5. Xcerpt and visXcerpt representation of a query

Fig. 6. Graph representation of an XML-GL query(Ceri et al. [75], c© Elsevier, Inc.)

Project page:
http://www.xcerpt.org/

Implementation:
available from the project page

Online demonstration:
http://demo.xcerpt.org and, using visXcerpt, http://visxcerpt.xcerpt.
org/

XML-GL. XML-GL [74, 75, 91] is a visual, rule-based query language for XML.
Queries are specified as rules with a clear separation between query and con-
struction. Queries are specified on the left-hand of a rule, construction on the
right-hand. Figure 6 shows an XML-GL rule. Both sides of a rule are essen-
tially (visual) patterns of the graph structure to be matched or constructed,
but enriched with visual representations of a number of additional operators
and functions (such as arithmetic operators, wildcards, predicates, negation, or-
dering, etc.). Connections between the two sides indicate where matched data
occurs in the result.

Although XML-GL programs contain only a single rule, complex queries may
contain multiple left-hand and right-hand sides for expressing set queries, such
as unions, differences, cartesian product, and even heterogeneous unions. The
original proposal of XML-GL does not allow recursive rules, but in [222] an
extension of XML-GL in this direction is proposed.

Web and Semantic Web Query Languages: A Survey 79

Fig. 7. XQBE Query(Braga et al. [47], c© Elsevier, Inc.)

Fig. 8. Screenshot of XQBE’s query editor(Braga et al. [47], c© Elsevier, Inc.)

Recently, a visual interface for XQuery, called XQBE [10, 47], based on XML-
GL has been developed. Figure 7 shows the XQBE representation of the following
XQuery expression (Query XMP-Q1 in [79]):

<bib>

{

for $b in document("www.bn.com/bib.xml")/bib/book

where $b/publisher="Addison-Wesley" and $b/@year>1991

return <book year="{$b/@year}"> {$b/title} </book>

}

</bib>

Based on this visualization of XQuery expressions, an interactive editor for
XQuery expressions is described in [47] (cf. Figure 8).

Project page:
XQBE: http://dbgroup.elet.polimi.it/xquery/XQBE.html

Implementation:
XQBE: available from the project page

80 J. Bailey et al.

Fig. 9. Screenshot of X2’s query editor(Meuss et al. [209], c© Springer-Verlag)

Online demonstration:
none

X2’s Visual Interface. X2 [209] is a system for visual exploration and retrieval
of XML databases. It provides an interactive environment for authoring visual
queries, see Figure 9. The employed query language is rather restricted, but
supports querying the order of elements and can be evaluated very efficiently
(see [207]). Instead of constructing new data based on the results of a query,
the system gathers all matched data in a novel data structure called “Complete
Answer Aggregates” [207, 208] and allows the user to browse this structure,
thereby exploring the data contained in the database. While browsing, the user
can refine and reissue the query.

Project page:
http://www.cis.uni-muenchen.de/people/Meuss/caa.html and
http://www.cis.uni-muenchen.de/∼weigel/Projekte/X2.html

Implementation:
not publicly available

Online demonstration:
none

4 RDF Query Languages

RDF Query Languages can be grouped into several families that differ in as-
pects like data model, expressivity, support for schema information, and kind of
queries. As a “family”, we consider languages that build upon each other, are

Web and Semantic Web Query Languages: A Survey 81

heavily influenced by each other, or share a large part of their properties. In
the following, we shall consider the six families SPARQL, RQL, XPath-, XSLT-,
and XQuery-based Languages, Metalog, Reactive Languages, and Deductive Lan-
guages. In addition, we briefly introduce a number of additional languages that
don’t fall into one of the above-mentioned families.

4.1 The SPARQL Family

The SPARQL family consists of the four query languages SquishQL, RDQL,
SPARQL, and TriQL. Common to all four languages in this family is that they
“regard RDF as triple data without schema or ontology information unless ex-
plicitly included in the RDF source”.

Basic RDF Access: SquishQL and RDQL. The main objectives of SquishQL
[212, 213] are ease-of-use and similarity to SQL. SquishQL relies on a query
model for RDF influenced by [141]. SquishQL offers so-called “triple patterns”
and conjunctions between triple patterns for specifying parts of RDF graphs to
retrieved. “This results in quite a weak pattern language but it does ensure that
in a result all variables are bound.” [213]. SquishQL queries have the following
form:

SELECT variables (identifies the variables whose bindings are returned)
FROM model URI
WHERE list of triple patterns
AND boolean expression (the filter to be applied to the result)
USING name FOR URI, . . .

In SquishQL, Query 1 can be expressed as follows:

SELECT ?essay, ?author, ?authorName

FROM http://example.org/books

WHERE (?essay, <rdf:type>, <books:Essay>),

(?essay, <books:author>, ?author),

(?author, <books:name>, ?authorName)

USING books FOR http://example.org/books#,

rdf FOR http://www.w3.org/1999/02/22-rdf-syntax-ns#

In SquishQL, Query 2 can (almost) be expressed as follows:

SELECT ?property, ?propertyValue

FROM http://example.org/books

WHERE (?essay, <books:book-title>, "Bellum Civile")

(?essay, ?property, ?propertyValue),

USING books FOR http://example.org/books#

A property value can be a node with other properties, that an answer to
Query 2 should return. Since SquishQL has no means to express recursion, such
indirect properties cannot be returned by the above query if the schema of the
data is unknown or recursive.

82 J. Bailey et al.

Other queries from Section 2.3 cannot be expressed in SquishQL.
In a SquishQL query, the AND clause serves to express constraints on variable

values so as filter the bindings returned. The following query returns the URIs
of persons that have authored a book with title “Bellum Civile”.

SELECT ?person

FROM http://example.org/books

WHERE (?book, <books:author>, ?person)

(?book, <books:title>, ?title)

AND ?title = ’Bellum Civile’

An answer to an SquishQL query is a set of bindings for the variables occur-
ring in the query. SquishQL does not support RDFS concepts.

Project page:
Inkling: http://swordfish.rdfweb.org/rdfquery/

Implementation:
Inkling [212]

RDQL, a “RDF Data Query Language”, is an evolution of the SquishQL
versions SquishQL [213], and Inkling [212] influenced by rdfDB [140]. RDQL has
been recently submitted to the W3C for standardisation [213, 251, 252, 253].
RDQL queries have the same form as SquishQL queries. As with SquishQL, an
answer to an RDQL query is a set of bindings for the variables occurring in the
query. Like SquishQL, RDQL supports only selection and extraction queries.

RDQL is intentionally kept simple, operating only on the data level of RDF,
with the goal to make RDQL amenable to standardisation as a “low-level RDF
language”. RDQL’s authors see inferencing as a possible feature of an “RDF
implementation”, not of the query language RDQL: “if a graph implementation
provides inferencing to appear as ‘virtual triples’ (i.e. triples that appear in the
graph but are not in the ground facts), then an RDQL query will include those
triples as possible matches in triple patterns.” [253]. As a consequence, queries
referring to RDFS relations such as type, set or class are cumbersome and/or
complex.

The RDQLPlus (http://rdqlplus.sourceforge.net/) implementation of
RDQL provides a language extension, called RIDIQL [284]. RIDIQL supports
updates and a transparent use of the inference abilities of the Jena Toolkit [136].

Project pages:
http://www.hpl.hp.com/semweb/rdql.htm
RDFStore: http://rdfstore.sourceforge.net/

Implementations:
Jena Toolkit [136, 251, 252, 253], RAP (RDF API for PHP) [221], PHP XML
Classes (http://phpxmlclasses.sourceforge.net/), RDFStore [240],
Rasqal (http://www.redland.opensource.ac.uk/rasqal/),
Sesame (http://www.openrdf.org/index.jsp),
RDQLPlus (http://rdqlplus.sourceforge.net/),
3store (http://sourceforge.net/projects/threestore/) [146].

Web and Semantic Web Query Languages: A Survey 83

Online demonstrations:
Sesame: http://www.openrdf.org/demo.jsp
RAP: http://www3.wiwiss.fu-berlin.de/rdfapi-php/test/custom
rdql test.php
RDFStore: http://demo.asemantics.com/rdfstore/www2003/

SquishQL and RDQL queries cannot be composed. Negation can be used
in filters, or AND clauses, as in the previous query, but not in WHERE clauses,
i.e. triple patterns can only occur positively. Disjunctions and optional matching
cannot be expressed. Although a variable in SquishQL and RDQL queries can be
bound to blank nodes, there is no way to specify blank nodes in SquishQL’s and
RDQL’s triple patterns. As a consequence, a query returning the blank nodes
of a graph cannot be expressed in SquishQL and RDQL. SquishQL and RDQL
have no form of recursion or iteration: By conjunction of triple patterns, one
can express in SquishQL and RDQL only paths of a given length. Only selection
and extraction queries can be expressed in SquishQL and RDQL, i.e., of the
queries of Section 2.3, only Query 1 and (an approximation of) Query 2. Like
SquishQL, RDQL does not support RDFS concepts, although at least one of its
implementations, that given in the Jena Toolkit [136], supports the transitive
closures of the RDFS relations rdfs:subClassOf and rdfs:subPropertyOf. No
formal semantics has been defined for SquishQL or RDQL. The complexity of
SquishQL and RDQL has not been investigated so far.

SPARQL. SPARQL [239], a “Query Language for RDF” formerly called BrQL
[238], has been developed by members of the W3C “RDF Data Access” Working
Group. SPARQL is an extension of RDQL [253] designed according to require-
ments and use cases [87] and is still under development. SPARQL extends RDQL
with facilities to:

– Extract RDF subgraphs.
– Construct, using CONSTRUCT clauses, one new RDF graph with data from

the RDF graph queried. Like RDQL queries, the new graph can be specified
with triple, or graph, patterns.

– Return, using DESCRIBE clauses, “descriptions” of the resources matching
the query part. The exact meaning of “description” is not yet defined, cf.
[267] for a proposal.

– Specify OPTIONAL triple or graph query patterns, i.e., data that should con-
tribute to an answer if present in the data queried, but whose absence does
not prevent to return an answer.

– Testing the absence, or non-existence, of tuples.

SPARQL queries have the following form:

PREFIX Specification of a name for a URI (like RDQL’s USING)
SELECT Returns all or some of the variables bound in the WHERE clause.
CONSTRUCT Returns a RDF graph with all or some of the variable bindings.
DESCRIBE Returns a “description” of the resources found.

84 J. Bailey et al.

ASK Returns whether a query pattern matches or not
WHERE list, i.e., conjunction of query (triple or graph) patterns
OPTIONAL list, i.e., conjunction of optional (triple or graph) patterns
AND boolean expression (the filter to be applied to the result)

An extension of Query 1 returning the translators of a book, if there are some,
can be expressed in SPARQL as follows:

PREFIX books: http://example.org/books#

PREFIX rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

SELECT ?essay, ?author, ?authorName, ?translator

FROM http://example.org/books

WHERE (?essay books:author ?author),

(?author books:authorName ?authorName)

OPTIONAL (?essay books:translator ?translator)

Using the CONSTRUCT clause, restructuring and non-recursive inference queries
can be expressed in SPARQL. Query 4 can be expressed in SPARQL as follows:

PREFIX books: http://example.org/books#

CONSTRUCT (?y books:authored ?x)

FROM http://example.org/books

WHERE (?x books:author ?y)

and Query 9 by

PREFIX books: http://example.org/books#

CONSTRUCT (?x books:co-author ?y)

FROM http://example.org/books

WHERE (?book books:author ?x)

(?book books:author ?y)

AND (?x neq ?y)

Project page:
http://www.w3.org/2001/sw/DataAccess/

Implementation:
none

Online demonstration:
none

TriQL. TriQL extends RDQL by constructs supporting querying of named
graphs [72], as introduced in TriG [40] by the authors of TriQL. Named graphs
allow one to filter RDF statements after their sources or authors, like in the
following query: “Return the books with rating above a threshold of 5, using only
information asserted by Marcus Tullius Cicero.” This can be expressed in TriQL
as follows:

SELECT ?books

WHERE ?graph (?books books:rating ?rating)

Web and Semantic Web Query Languages: A Survey 85

(?graph swp:assertedBy ?warrant)

(?warrant swp:authority <http://people.net/cicero>)

USING books FOR http://example.org/books#,

swp FOR <http://www.w3.org/2004/03/trix/swp-1/>

Project page:
http://www.wiwiss.fu-berlin.de/suhl/bizer/TriQL/

Implementation:
none

Online demonstration:
none

4.2 The RQL Family

Under “RQL family”, we group the three languages RQL, SeRQL, and eRQL.
Common to these languages is that they support combining data and schema
querying. Furthermore, the RDF data model they rely on slightly deviates from
the standard data model for RDF and RDFS: (1) cycles in the subsumption hier-
archy are forbidden, and (2) for each property, both a domain and a range must
be defined. These restrictions ensure a clear separation of the three abstraction
layers of RDF and RDFS: (1) data, i.e. description of resources such as persons,
XML documents, etc., (2) schemas, i.e. classifications for such resources, and
(3) meta-schemas specifying meta-classes such as rdfs:Class, the class of all
classes, and rdfs:Property the class of all of properties. They make possible a
flexible type system tailored to the specificities of RDF and RDFS.

RQL. RQL, the “RDF Query Language”, is developed at ICS-FORTH [84, 158,
159, 160, 161], and the base for the two other members of the RQL family, SeRQL
and eRQL.

Basic Schema Queries. A salient feature of RQL is the use of the types from
RDFS schemas. The query subClassOf(books:Writing) returns the sub-classes
of the class books:Writing9. A similar query, using subPropertyOf instead of
subClassOf, returns the the sub-properties of a property . The following query
returns the domain ($C1) and range ($C2) of the property author defined at the
URI named book (The prefix $ indicates “class variable”, i.e., a variable ranging
on schema classes). It can be expressed in RQL in three different manners:

1. using class variables:
SELECT $C1, $C2 FROM {$C1}books:author{$C2}

USING NAMESPACE books = &http://example.org/books#

2. using a type constraint :
SELECT C1, C2 FROM Class{C1}, Class{C2}, {;C1}books:author{;C2}

USING NAMESPACE books = &http://example.org/books#

3. without class variables or type constraints:

9 Assuming: USING NAMESPACE books = &http://example.org/books-rdfs#

86 J. Bailey et al.

SELECT C1, C2 FROM subClassOf(domain(book:author)){C1},

subClassOf(range(books:author)){C2}

USING NAMESPACE books = &http://example.org/books#

The query topclass(books:Historical Essay) returns the top of the sub-
sumption hierarchy, i.e., books:Writing, cf. Figure 2. A similar query returns
leaves of the subsumption hierarchy. The query nca(books:Historical Essay,
books:Historical Novel) returns the nearest common ancestor of the classes
of ‘historical essays’ and ‘historical novels’, i.e., the class books:Essay of ‘essays’.
RQL has “property variables” prefixed by @ using which RDF properties can be
queried (like classes using class variables). The following query, with property
variables prefixed by @, similar to the formerly introduced class variables, re-
turns the properties, together with their actual ranges, that can be assigned to
resources classified as books:Writing:

SELECT @P, $V FROM {;books:Writing}@P{$V}

USING NAMESPACE books = &http://example.org/books#

Combining these facilities, Query 8 is expressible in RQL as follows:
SELECT X, Y FROM Class{X}, subClassOf(X){Y}.

Data Queries. With RQL, data can be retrieved by its types, by navigating
to the appropriate position in the RDF graph. Restrictions can be expressed
using filters. Classes, as well as properties, can be queried for their (direct
and indirect10) extent. The query books:Writing returns the resources clas-
sified books:Writing or one of its sub-classes. This query can also be expressed
as follows: SELECT X FROM books:Writing{X}. Prefixing the variable X in the
previous queries, yields queries returning only resources directly classified as
books:Writing, i.e., for which a statement (X, rdf:type, books:Writing) ex-
ists. The extent of a property can be similarly retrieved. The query ^books:author
returns the pairs of resources X, Y that stand in the books:author relation, i.e.,
for which a statement (X, books:author, Y) exists. RQL offers extended dot no-
tation as used in OQL [73], for navigation in data and schema graphs. This is
convenient for expressing Query 1:

SELECT X, Y, Z FROM {X;books:Essay}books:author{Y}.books:authorName{Z}

USING NAMESPACE books = &http://example.org/books#

The data selected by an RDF query can be restricted with a WHERE clause:

SELECT X, Y FROM {X;books:Essay}books:author.books:authorName{Y},

? {X}books:title{T}

WHERE T = "Bellum Civile"

USING NAMESPACE books = &http://example.org/books#

10 i.e. deduceable by inference.

Web and Semantic Web Query Languages: A Survey 87

Mixed Schema and Data Queries. With RQL, access to data and schema can be
combined in all manners, e.g., the expression X;books:Essay restricts bindings
for variable X to resources with type books:Essay. Types are often useful for
filtering, but type information can also be interesting on their own, e.g., to return
a “description” of a resource understood as its schema:

SELECT $C, (SELECT @P, Y FROM {Z ; ^$D} ^@P {Y}

WHERE Z = X and $D = $C)

FROM ^$C {X}, {X}books:title{T} WHERE T = "Bellum Civile"

USING NAMESPACE books = &http://example.org/books#

This query returns the classes under which the resource with title “Bellum
Civile” is directly classified; ^$C{X} selects the values in the direct extent of any
class.

Further features of RQL are not discussed here, e.g., support for containers,
aggregation, and schema discovery. Although RQL has no concept of “view”,
extension RVL [191] of RQL gives a facility for specifying views. In RVL the
inverse relation of books:author can be defined as a view as follows:

CREATE NAMESPACE mybooks = &http://example.org/books-rdfs-extension#

VIEW authored(Y, X) FROM {X}books:author{Y}

USING NAMESPACE books = &http://example.org/books#

RQL has been criticised for its large number of features and choice of syntac-
tic constructs (like the prefixes ^ for calls and @ for property variables), which
resulted in the simplifications SeRQL and eRQL of RDF. RQL is far more ex-
pressive than most other RDF query languages, especially those of the SquishQL
family. Most queries of Section 2.3, except those queries referring to the tran-
sitive closures of arbitrary relations, can be expressed in RQL: RDF supports
only the transitive closures of rdfs:subClassOf and rdfs:subPropertyOf.

Query 1 is already given in RQL above. Query 2 cannot be expressed in RQL
exactly, since RQL has no means to select “everything related to some resource”.
However, a modified version of this query, where a resource is described by
its schema, is also given above. Reduction queries, e.g. Query 3, can often be
concisely expressed in RQL, in particular if types are available:

SELECT S, @P, O

FROM (Resources minus (SELECT T FROM {B}books:translator{T})){S},

(Resources minus (SELECT T FROM {B}books:translator{T})){O},

{S}@P{O}

USING NAMESPACE books = &http://example.org/books#

An implementation of the restructuring Query 4 is given above in the exten-
sion RVL of RQL. RQL is convenient for expressing aggregation queries, e.g.,
Query 5:

max(SELECT Y

FROM {B;books:Writing}books:author.books:authorName{A},

{B}books:pubYear{Y}

WHERE A = "Julius Caesar")

88 J. Bailey et al.

Inference queries that do not need recursion, e.g., Query 9, can be expressed
in RQL as follows:

SELECT A1, A2 FROM {Z}books:author{A1}, {Z}books:author{A2}

WHERE A1 != A2

USING NAMESPACE books = &http://example.org/books#

In RVL, an expression of Query 9 can actually create new statements as
follows:

CREATE NAMESPACE mybooks = &http://example.org/books-rdfs-extension#

VIEW mybooks:co-author(A1, A2)

FROM {Z}books:author{A1}, {Z}books:author{A2} WHERE A1 != A2

USING NAMESPACE books = &http://example.org/books#

Both typing rules and a formal semantics for RQL have been specified [161].
No formal complexity study of RDF has been published yet. An implementation
of RDF is given with the so-called “ICS-FORTH RDFSuite”. RQL has influenced
several later proposals for RDF query languages, e.g., BrQL and SPARQL, cf.
Section 4.1.

Project page:
http://139.91.183.30:9090/RDF/RQL/

Implementation:
RDFSuite (http://139.91.183.30:9090/RDF/index.html)

Online demonstration:
http://139.91.183.30:8999/RQLdemo/

SeRQL. SeRQL [52, 67] is derived from RQL and differs from the latter as
follows:

– SeRQL does not support RDF and RDFS types, except literal types.
– SeRQL modifies and extends RQL’s path expressions. SeRQL compound

path expressions instead use an “empty node”, {}, for path concatena-
tion. SeRQL provides a shorthand notation for retrieving several values
of a property in a single path expression, simplifying, e.g., Query 9: In
SeRQL, one can write FROM {Book} <books:author> {X, Y} instead of
FROM {Book} <books:author> {X}, {Book} <books:author> {Y}.
Furthermore, SeRQL supports optional path expressions (using square brack-
ets), e.g.: SELECT * FROM {Book} <books:title> {Title};

[<books:translator> {Translator} [<books:age> {Age}]].
– SeRQL provides a shorthand notation for expressing several properties of a

resource in a FROM clause. The following SeRQL query returns the authors
of books entitled “Bellum Civile” having a translator named “J.M. Carter”
(note the ‘;” separating the different properties):
SELECT Author FROM {Book} <books:title> {"Bellum Gallicum"};

<books:translator>{}<books:translatorName>{"J.M. Carter"};

<books:author> {Author}

USING NAMESPACE books = <!http://example.org/books#>

Web and Semantic Web Query Languages: A Survey 89

– SeRQL eases querying a reified statement by enclosing the non-reified version
of the statement in curly brackets.

SeRQL cannot express all queries of Section 2.3. Selection and extraction queries
can be expressed in SeRQL (with the same limitation as with RQL, cf. above).
In contrast to RQL, SeRQL has neither set operations, nor existential or uni-
versal quantification. As a consequence, Query 3 cannot be expressed in SeRQL.
Thanks to the CONSTRUCT clause, SeRQL, like RQL, can express restructuring
and simple inference queries, e.g., Query 4 can be expressed as:

CONSTRUCT {Author} <mybooks:authored> {Book}

FROM {Book} <books:author> {Author}

USING NAMESPACE books = <!http://example.org/books#>

mybooks = <!http://example.org/books-rdfs-extension#>

Aggregation queries cannot be expressed in SeQL (according to [67], adding
aggregation to to SeRQL is planned). The transitive closure of rdfs:subClassOf
is provided in SeRQL’s implementation by means of the RDFS-aware storage of
Sesame. However, neither the transitive closures of arbitrary relations nor general
recursion can be expressed in SerQL.

Project page:
Sesame http://www.openrdf.org/

Implementation:
Implementation in Prolog11: http://gollem.swi.psy.uva.nl/twiki/pl/
bin/view/Library/SeRQL

Online demonstrations:
http://www.openrdf.org/demo.jsp

eRQL. eRQL [271] proposes a radical simplification of RQL based mostly on
a keyword-based interface. It is the expressed goal of the authors of eRQL to
provide with a “Google-like query language but also with the capacity to profit
of the additional information given by the RDF data”.12 eRQL has only three
query constructs:
One-word queries. Single words are valid eRQL queries, e.g., the query CAESAR
returns all statements in which the string “CAESAR” occurs in any manner.
Surprisingly, “phrase queries” like “Bellum civile” do not seem to be expressible
in eRQL.
Neighbourhood queries. Neighbourhood queries are expressed by varying numbers
of curly braces indicating the level of neighbourhood. They return not only the
statements containing a word, as one-word queries, but also the statements re-
lated to (“in the neighbourhood of”) a statement. For instance, the {{CAESAR}}
returns the following statements (cf. Figure 2):

11 Using the Semantic Web library of SWI Prolog http://www.swi-prolog.org/.
12 http://www.dbis.informatik.uni-frankfurt.de/∼tolle/RDF/eRQL/

90 J. Bailey et al.

_:1 books:author _:2. _:1 books:title "Bellum Civile".

_:1 books:authorName "Julius Caesar". _:1 books:translator _:4.

_:1 books:author _:3.

{{{CAESAR}}} extends the “neighbourhood” one step further, etc.
Conjunctive and disjunctive queries. Both, neighbourhood and one-word queries
can be combined using the boolean operators AND and OR. No negation is pro-
vided, however.

Many queries of Section 2.3 cannot be expressed in eRQL. The extraction
query Query 2 can be approximated in eRQL as: {{"Bellum" AND "Civile"}}.
eRQL does not allow the selection of a neighbourhood of unknown size around
a resource, e.g., for obtaining a “concise-bounded descriptions” [267]. Indeed, in
contrast to the claims of eRQL’s authors, this requires knowledge of the schema
of the data queried. Nevertheless, the need for a language like eRQL is evident
for exploiting RDF data with search engines.

Project page:
http://www.dbis.informatik.uni-frankfurt.de/∼tolle/RDF/eRQL/

Implementation(s):
eRQLEngine cf. project page

Online demonstration:
none

4.3 Query Languages Inspired from XPath, XSLT or XQuery

This section is devoted to languages inspired from, or extending XML query
languages. Some of them (viz. [246, 266, 277]) can be implemented with a few
additional functions and/or by normalising the data before querying.

XQuery for RDF: The “Syntactic Web Approach”. [242, 246] propose
to rely on the XML Query Language XQuery (cf. Section 3.1) for querying
RDF data. The approach, called “Syntactic Web”, consists of (1) a preliminary
“normalisation” of the RDF data being queried essentially by (a) serialising RDF
data in XML as collections of statements, and (b) grouping the statements by
their subjects, and (2) defining in XQuery, functions conveying the semantics
of RDFS, e.g., a function rdf:instance-of-class returning the (sequence of
the) resources (represented by their description element) that are (direct or
indirect) instances of a class:

define function rdf:instance-of-class($t as element(description)*,

$base-name as xs:string)

as element(description)*

{

$t[rdf:type = $base-name]

,

for $i in $t[rdfs:subClassOf = $base-name]

return rdf:instance-of-class($t, string($i/@rdf:about))

}

Web and Semantic Web Query Languages: A Survey 91

Using the function defined above, and assuming a convenient normalisation
of the RDF data queried, Query 1 can be expressed as follows:

let $t := document("http://example.org/books")//description

for $essay in rdf:instance-of-class($t, "books:Essay"),

$author in $t[rdf:about = $essay/books:author]

return <result> {$essay, $author} </result>

The “Syntactic Web” approach also proposes a normalisation of Topic Maps
and specific XQuery functions for querying Topic Maps data. This approach has
several advantages. It makes it possible to return answers in any possible XML
format and to query both, standard Web and Semantic Web data with the same
query language, providing the uniformity advocated in [231]. [257] suggests a
similar approach.

Project page:
none

Implementation(s):
not publicly available

Online demonstration:
none

XSLT for RDF: TreeHugger and RDF Twig. Similar in spirit to the Syn-
tactic Web Approach [242, 246], TreeHugger [266] proposes to rely on XSLT
for querying and transforming RDF data. Due to limitations of XSTL 1.0, the
normalisation of RDF data is not performed by an XSLT program, but by “ex-
tension functions”. The normalisation of RDF is based on the “striped syntax”
[50], with properties represented both as elements and attributes (causing prob-
lems with multi-valued properties). Three extension functions are provided: (1)
for loading an RDF document, (2) for loading an RDF document and handling
the vocabulary of RDFS, and (3) for loading an RDF document and handling
the vocabulary of both RDFS and OWL. XPath, upon which XSLT relies, is
extended with a prefix inv for querying the inverse of an RDF property.

Query 1 can be expressed as follows in TreeHugger:

<results xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:books="http://example.org/books#"

xmlns:th="http://rootdev.net/net.rootdev.treehugger.TreeHugger"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xsl:version="1.0">

<!-- Load RDF document -->

<xsl:variable name="doc"

select="th:documentRDFS(’http://example.org/books’)" />

<xsl:for-each select="$doc/books:Essay">

<xsl:for-each select="books:author/*">

<result>

92 J. Bailey et al.

<xsl:value-of select="inv:books:author" />

<xsl:value-of select="." />

<authorName>

<xsl:value-of select="books:authorName/*" />

</authorName>

</result>

</xsl:for-each>

</xsl:for-each>

</results>

Project page:
http://rdfweb.org/people/damian/treehugger/

Implementation(s):
Cf. project page

Online demonstration:
http://swordfish.rdfweb.org/discovery/2003/09/treehugger/

RDF Twig [277] is another extension of XSLT 1.0, with functions for query-
ing RDF. It is based on “redundant” or “non-redundant” depth or breadth first
traversals of the RDF graph, , i.e., traversals that repeat or do not repeat el-
ements in the XML-based representation of RDF that are reachable from by
various paths. Two query mechanisms are provided: A small set of logical oper-
ations on the RDF graph, and an interface to RDQL cf. Section 4.1.

Query 1 can be expressed as follows in RDF Twig:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0"

xmlns:rt="http://nwalsh.com/xslt/ext/com.nwalsh.xslt.saxon.RDFTwig"

xmlns:twig="http://nwalsh.com/xmlns/rdftwig#"

xmlns:books="http://example.org/books#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<xsl:template match="/">

<xsl:variable name="model"

select="rt:load(’http://example.org/books’)"/>

<!-- this is used as default model from now on-->

<xsl:variable name="pType"

select="rt:property(’http://www.w3.org/1999/02/22-rdf-syntax-ns#’,

’type’)"/>

<xsl:variable name="essays"

select="rt:find($label, ’books:Essay’)"/>

<xsl:variable name="tree"

select="rt:twig($essays)/twig:result"/>

<results>

<xsl:for-each select="rt:find($label, ’books:Essay’)">

<result>

<xsl:value-of select="rt:twig(.)" />

<xsl:value-of select="rt:twig(.)/twig:result/books:author" />

</result>

</xsl:for-each>

Web and Semantic Web Query Languages: A Survey 93

</results>

</xsl:template>

Project page:
http://rdftwig.sourceforge.net/

Implementation:
Cf. project page

Online demonstration:
none

Versa. Developed as part of the Python-based 4Suite XML and RDF toolkit13,
Versa [219, 220, 223] is a query language for RDF inspired from, but significantly
different to, XPath. Versa can be used in lieu of XPath in the XSLT version of
4Suite. Like the Syntactic Web Approach, TreeHugger, and RDF Twig, Versa
is aligned with XML. Like XPath, Versa can be extended by externally defined
functions. Versa’s authors claim that Versa is easier to learn than RDF query
languages inspired from SQL.

Versa has constructs for a forward traversal of one or more RDF proper-
ties, e.g., all() - books:author -> * selects those resources that are author
of other resources. Instead of the wildcard *, string-based restrictions can be
expressed. Using Versa’s forward traversal operators, Query 1 can be expressed
as follows:

distribute(type(books:Essay), ".",

"distribute(.-books:author->*, ".", ".-books:authorName->*)")

The function distribute() returns a list of lists containing the result of the
second, third, . . . argument valuated starting from each of the resources selected
by the first argument. As in XPath, . denotes the current node.

Versa has a Forward filter for selecting the subject of a statement, e.g.,
type(books:Essay) |- books:title -> eq("Bellum Civile") returns the es-
says entitled “Bellum Civile”. Versa has also constructs for a backward traversal
(but no backward filter), e.g., the essays entitled “Bellum Civile” can also be re-
turned by (books:Essay <- rdf:type - *) |- books:title -> eq("Bellum
Gallicum"). Versa’s function traverse serves to traverse paths of arbitrary
length, e.g., the following query returns all sub-classes of books:Writing:

traverse(books:Writing, rdf:subClassOf, vtrav:inverse, vtrav:transitive)

Similarly, Versa’s function filter provides a general filter, e.g., all essays en-
titled “Bellum Gallicum” having a translator named “J. M. Carter” are returned
by the following query:

filter(books:Essay <- rdf:type - *,

". - books:title -> eq(’Bellum Gallicum’)",

". - books:translator -> books:translatorName -> eq(’J. M. Carter’)"

13 http://4suite.org/

94 J. Bailey et al.

Selection and extraction queries can be easily implemented in Versa, although
the selection of related items is not very convenient, as the above implementation
of Query 1 demonstrates. In contrast to most RDF query languages, Versa allows
the extraction of RDF subgraphs of arbitrary sizes, as required by Query 2.
Reduction queries can be expressed in Versa, e.g., using negation or set difference.
Query 3 can be implemented in Versa as follows:

difference(all(),

union(type(rdfs:Class),

union(type(rdfs:Property,

all() <- books:translator - *))

)

)

Restructuring, combination, and inference queries cannot be expressed in
Versa, as the result of a Versa query is always a list (possibly a list of lists).
However, Query 4 and 9 can be approximated in Versa as follows:

distribute(all(), ". - books:author -> *", ". - books:author -> *")

Answers to this query include ”Julius Caesar” (as if he would be a co-author
of himself !). This does not seem to be avoidable with Versa. Versa also provides
several aggregation functions. Query 5 can be expressed as follows in Versa:

max(filter(all(),

". - books:author -> books:authorName -> eq(’Julius Caesar’)"

)

- books:year -> *)

Query 6 can be implemented in Versa using the function length as follows:

distribute(traverse(books:Writing, rdf:subClassOf,

vtrav:inverse,vtrav:transitive),

".",

"max(length((. <- rdf:type *) - books:author -> *))"

)

Neither a formal semantics, nor the language complexity have been investi-
gated so far.

Project page:
http://uche.ogbuji.net/tech/rdf/versa/

Implementation(s):
available as part of 4Suite from http://4suite.org/

Online demonstration:
none

Web and Semantic Web Query Languages: A Survey 95

Path-Based Access to RDF: RDF Path, RPath, RxPath, RxSLT, and
RxUpdate. [229] sketches a language called RDF Path. RDF Path’s syntax is
similar to that of XPath. Node-tests for RDF data are added, e.g., arc() and
subj(), and constructs of XPath not relevant for RDF are dropped. Functions
and value tests are not considered in depth in this early draft. The fact that,
in contrast to XML trees, RDF graphs do not have roots is not considered. As
a consequence, finding a starting point for an RDF Path expression is an open
issue.

Query 1 is not expressible, since related information cannot be selected. A
variation of Query 2, “Return the names of all authors of historical essays entitled
‘Bellum Civile’.” can be expressed as follows:

*[rdf:type/books:Historical_Essay books:title/"Bellum Civile"]/

books:author/*/books:authorName

Project page:
http://infomesh.net/2003/rdfpath/

Implementation(s):
none

Online demonstration:
none

RPath [201] is another adaption of XPath to RDF, though focused on two
RDF applications, CC/PP, a formalism for expressing device profiles, and UAProf,
a formalism for expressing characteristics of (mobile) computers such as screen
resolution and colour depth. RPath has location steps, vertex-edge-tests corre-
sponding to node-tests in XPath, and predicates. RPath differences from XPath
reflect the differences between the data models of XML and RDF, e.g., RPath’s
axes can follow a path along vertices (RDF predicates) and edges (RDF subjects
and objects). As with RDF Path, the fact that RDF graphs are not rooted is not
considered. Thus, it is not clear where an RPath expression should start from.
This might not be too serious a problem, for the CC/PP and UAProf yield RDF
graphs that are rooted two-level trees.

The variation of Query 2 considered above, “Return the names of all authors
of historical essays entitled ‘Bellum Civile’.” can be expressed as follows:

/@vertex()[

rdf:type/@books:Historical_Essay and

books:title/@vertex()[equals(‘Bellum Civile’)]

]/books:author/books:authorName

In contrast to most RDF query languages inspired from XPath, RPath does
not require specifying paths where expressions match vertices, i.e., RDF classes,
and edges (properties), alternate (like in striped RDF [50]). Thus, the previous
query can also be expressed as follows:

outerVertex::vertex()[

outEdge::rdf:type/outVertex::books:Historical_Essay and

96 J. Bailey et al.

outEdge::books:title/outVertex::vertex()[equals(‘Bellum Civile’)]

]/outEdge::books:author/outEdge::books:authorName

Project page:
none

Implementation(s):
prototype in Java, based on a CC/PP engine from Sun

Online demonstration:
none

RxPath is another adaption of XPath to RDF, defined within the project
Rx4RDF14, aiming at improving the accessibility of RDF for non-experts. In
contrast to RDF Path and RPath, and similarly to TreeHugger and RDF Twig,
RxPath is essentially “a mapping between the RDF Abstract Syntax to the XPath
Data Model” [263]. This mapping is performed in four steps:

1. A top-level XML element is created for every RDF resource where the tag
is the type of the resource,

2. “Each root element has a child element for each statement the resource is
the subject of. The name of each child is [the] name of the property in the
statement” [262],

3. “Each of these children have [a] child text node if the object of the statement
is a literal or a child element if the object is a resource.” [262], and

4. “Object elements have the same name and children as the equivalent root
element for the resource, thus defining a potentially infinitely recursive tree.”
[262].

Since this mapping might lead to infinite trees, RxPath relies on a circularity-test
for the evaluation of such axes ensuring that elements previously encountered
are skipped (as a consequence, blank nodes have to be assigned a unique URI.)
Furthermore, RxPath changes the semantics of the closure axes to only con-
sider elements representing RDF properties in the original RDF model (this is
easy as the mapping from RDF into an XML document discussed above uses
a striped representation of RDF statements [50]). Finally, an expression such
as descendant::rdf:type only matches an element representing an rdf:type
property if all elements on the path to that property that represent any RDF
property actually represent an rdf:type property. Thus, descendant::rdf:type
is actually closer to the regular tree expression (rdf:type._)* than to the XPath
expression descendant::rdf:type.

The variation of Query 2 considered above, “Return the names of all authors
of historical essays with the title ‘Bellum Civile’.” can be expressed as follows
(assuming the prefix books denotes http://example.org/books-rdfs#):

/books:Historical_Essay[books:title = ‘Bellum Civile’]/

books:author/*/books:authorName

14 Phttp://rx4rdf.liminalzone.org/rx4rdf

Web and Semantic Web Query Languages: A Survey 97

Based on RxPath, two languages have been defined, RxSLT [264] and Rx-
Update [265]. RxSLT is “syntactically identical to XSLT 1.0” [264], but uses
RxPath instead of XPath 1.0. RxUpdate is syntactically very similar to XUp-
date [185], but again uses RxPath instead of XPath to update RDF models.
Note that RxSLT, like XSLT, is only capable of producing XML. Thus, new
RDF data can only be created by using the XML serialisation of RDF.

Project page:
http://rx4rdf.liminalzone.org/rx4rdf

Implementation(s):
Cf. project page (prototype in Python)

Online demonstration:
none

RDFT and the Query Language of Nexus: XSLT-Style RDF Query
Languages. RDFT [95] is a draft proposal closely related to XSLT 1.0. Like
XSLT 1.0., RDFT uses templates that are matched recursively against the data
structure. Since the structural recursion is performed against an RDF graph
which can be cyclic, termination must be ensured. This issue has not yet been
addressed. RDFT uses an adaption of XPath, called NodePath, for querying
RDF graphs expressed in XML as “striped” [50]. Querying RDFS or OWL data
has not yet been addressed.

RDFT only supports a subset of XSLT. A macro mechanism is introduced,
as illustrated in lines 3–7 and 10 of the following implementation of Query 1 (for
simplicity, only books and their authors are returned without considering the
author’s names):

<rt:stylesheet rt:version="1.0"

xmlns:rt="http://purl.org/vocab/2003/rdft/">

<rt:macro-set rt:prefix="rdf">

<rt:macro name="type"

value="resource(

’http://www.w3.org/1999/02/22-rdf-syntax-ns#type’)/resource()"/>

</rt:macro-set>

<rt:root-template>

<rt:apply-templates

rt:select="/resource()[rdf:type =

resource("http://example.org/books#Essay")/>

</rt:root-template>

<!-- Template for the Essay

<rt:template pattern="resource()[rdf:type =

resource(’http://example.org/books#Essay’)" />

<xsl:value-of select="." />

<rt:apply-templates

rt:select="resource(’http://example.org/books#author’)/resource()/>

</rt:template>

<!-- Template for the author -->

<rt:template

98 J. Bailey et al.

pattern="resource(’http://example.org/books#author’)/resource()">

<xsl:value-of select="." />

</rt:template>

</rdft:stylesheet>

The [95] specification is not clear about the result of such a query: An XML
tree or some form of an RDF graph? The description of rt:element seems to
indicate the former, the description of rt:value-of the latter.

Project page:
http://www.semanticplanet.com/2003/08/rdft/spec

Implementation(s):
none

Online demonstration:
none

[1] sketches another approach to querying RDF, and some form of XML,
using an XSLT-like language. The basic idea is to translate RDF (expressed in
XML) and also some non-RDF XML documents into a hierarchy of (attribute
carrying) elements, based on the relations between the elements. The result of
a query is some (hierarchical) view over this element tree. [1] does not address
cyclic relations among elements but the language used seems to indicate that
only proper hierarchies can be queried. RDF statements are mapped to nodes
of an XML document as follows: Nodes represent RDF properties, an RDF
statement (S, P, O) is represented by edges from all nodes representing some
property with the value S to a node representing the property P with value
O. A resource that never occurs as an object is assigned as value to a special
property called query:seed. [1] seems to indicate that there can be only one such
query:seed node, an assumption that does not hold for general RDF graphs.
The query language provides a means for matching such property nodes based
on the identifier (represented as URI or XML QName) of the property and the
type (as determined by an rdf:type statement) of the value of the property.

Query 1 can be expressed as follows:

<query:plan>

<query:template match="query:seed" type="books:Essay">

<query:call name="query:insert" rename="book">

<query:call name="query:format" rename="title"

value="book:title" />

<query:call name="query:traverse" />

</query:call>

</query:template>

<query:template match="book:author">

<query:call name="query:insert" rename="author">

<query:call name="query:format" rename="name"

value="book:authorName" />

</query:call>

</query:template>

</query:plan>

Web and Semantic Web Query Languages: A Survey 99

An excerpt of the result of this query on the sample data from Figure 2 would
be:

...

<book title="Bellum Civile">

<author name="Julius Caesar" />

<author name="Aulus Hirtius" />

</book>

...

Project page:
none

Implementation(s):
not publicly available, no report on any implementation

Online demonstration:
none

XsRQL: An XQuery-Style RDF Query Language. XsRQL [162], an XQuery-
style RDF Query Language, is inspired from XQuery 1.0 [41], aiming at simplic-
ity and flexibility. XsRQL departs from XQuery as follows: (1) The data model
is adapted from RDF ([162] is rather vague on this point), (2) the path language
considered is adapted to RDF and has only the axis child, (3) RDF properties
are distinguished (from subjects and objects) by using @.15

Query 1 can be approximated in XsRQL as follows:

declare prefix books: = <http://example.org/books#>;

declare prefix rdf: = <http://www.w3.org/1999/02/22-rdf-syntax-ns#>;

for $essay in

datasource(<http://example.org/books>)//*[@rdf:type/books:Essay],

$author in $essay/@books:author/*

return

$essay, $author, $author/@books:authorName/*

XsRQL neither supports closure, nor a descendant-like axis, nor some other
means of traversing an arbitrary-length path in the data structure. Therefore, it
is not possible to also return resources classified by any sub-class of books:Essay.

Project page:
http://www.fatdog.com/xsrql.html

Implementation(s):
none

Online demonstration:
none

15 In XPath, @ indicate (flat) XML attributes. Since RDF properties are structured,
in XsRQL a path expression may follow a @ step.

100 J. Bailey et al.

4.4 Metalog: Querying in Controlled English

Metalog [195, 196, 197] is a system for querying and reasoning with Semantic
Web data. Its early proposal has led to the claim that “Metalog has been the
first semantic web system to be designed, introducing reasoning within the Se-
mantic Web infrastructure by adding the query/logical layer on top of RDF” cf.
http://www.w3.org/RDF/Metalog/. Metalog notably differs from other RDF
query languages for two reasons: (1) Metalog combines querying with reasoning,
and (2) the language syntax is a controlled natural language (English), i.e., a
non-ambiguous language reminding of natural language.

Query 1 can be expressed in Metalog as follows:

comment: some definitions of variables (or representations)

ESSAY represents the term "Essay"

from the ontology "http://example.org/books#".

AUTHORED-BY represents the verb "author"

from the ontology "http://example.org/books#".

IS represents the verb "rdf:type"

from RDF "http://www.w3.org/1999/02/22-rdf-syntax-ns#".

BELLUM_CIVILE represents the book "Bellum_Civile"

from the collection of books "http://example.org/books#".

comment: RDF triples written as Metalog statements.

BELLUM_CIVILE IS an ESSAY.

BELLUM_CIVILE is AUTHORED-BY "Julius Caesar".

BELLUM_CIVILE is AUTHORED-BY "Aulus Hirtius".

comment: a Metalog query

do you know SOMETHING that IS an ESSAY and that is AUTHORED-BY SOMEONE?

Project page:
http://www.w3.org/RDF/Metalog/

Implementation(s):
Cf. project page

Online demonstration:
none

4.5 Query Languages with Reactive Rules

Algae. Algae16 is an RDF query language developed as part of the W3C An-
notea project (http://www.w3.org/2001/Annotea/) aiming at enhancing Web
pages with semantic annotations, expressed in RDF and collected from ‘anno-
tation servers’, as Web pages are browsed. Algae is based on two concepts: (1)
“Actions” are the directives ask, assert, and fwrule that determine whether an
expression is used to query the RDF data, insert data into the graph, or to spec-
ify ECA-like rules. (2) Answers to Algae queries are bindings for query variables

16 Also called “Algae2”. This survey follows [237] and retains the name “Algae”.

Web and Semantic Web Query Languages: A Survey 101

Table 1. Answer to Query 1

?title ?translator Proof

“Bellum Civile” “J. M. Carter” _:1 rdf:type <http://exam...ks-rdfs#Essay>.

_:1 books:author _:2.

_:2 books:authorName ‘‘Julius Caesar’’.

_:1 books:title ‘‘Bellum Civile’’.

_:1 books:translator ‘‘J. M. Carter’’.

as well as triples from the RDF graph as “proofs” of the answer. Algae queries
can be composed. Syntactically, Algae is based on the RDF syntax N-triples
[133]. Algae extends the N-triple syntax with the above mentioned “actions”
and with so-called “constraints”, written between curly brackets, that specify
further arithmetic or string comparisons to be fulfilled by the data retrieved.

Query 1 can be expressed as follows:

ns rdf = <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

ns books = <http://example.org/books#>

read <http://example.org/books> ()

ask (?essay rdf:type <http://example.org/books#Essay> .

?essay books:author ?author .

?author books:authorName ?authorName)

collect(?essay, ?author, ?authorName)

This query becomes more interesting if we are not only interested in the titles
of essays written by “Julius Caesar” but also want the translators of such books
returned, if there are any:

ns rdf = <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

ns books = <http://example.org/books#>

read <http://example.org/books> ()

ask (?essay rdf:type <http://example.org/books#Essay> .

?essay books:author ?author .

?author books:authorName ‘‘Julius Caesar’’ .

?essay books:title ?title .

~?essay books:translator ?translator .

)

collect(?title, ?translatorName)

Note ~ used to declare ‘translator’ an optional. This query returns the answer
given in Table 1.

Query 2 and Query 4 cannot be expressed in Algae due to the lack of closure,
recursion, and negation. Queries 5 and 6 cannot be expressed in Algae due to
the lack of aggregation operators. All other queries can be expressed in Algae,
most of them requiring ‘extended action directives’ [236].

No formal semantics has been published for Algae.

102 J. Bailey et al.

Project page:
http://www.w3.org/2004/05/06-Algae/ and for the Annotea project
http://www.w3.org/2001/Annotea/

Implementation(s):
W3C Annotation Server http://annotest.w3.org/annotations

Online demonstration:
Query interface to the W3C Annotation Server using Algae as query lan-
guage: http://annotest.w3.org/annotations?explain=false

iTQL. iTQL, a query and update language, has been defined for Kowari Meta-
store, an open source database for the storage of RDF data. iTQL offers com-
mands for querying, select, updating, delete and insert, and transaction
management, commit and rollback. The syntax of iTQL is reminiscent of SQL,
and therefore also of RDQL. The querying capabilities of iTQL are limited
like those of RDQL: iTQL supports only simple selections. iTQL allows nested
queries.

Query 1 can be expressed as follows in iTQL:

alias <http://example.org/books#> as books;

alias <http://www.w3.org/2000/01/rdf-schema#> as rdfs;

alias <http://www.w3.org/1999/02/22-rdf-syntax-ns#> as rdf;

select $essay, $author, $authorName

where $essay <books:author> $author

and $author <books:authorName> $authorName

and $essay <rdf:type> $type

and (trans($type <rdfs:subClassOf> <books:Essay>)

or $type <tks:is> <books:Essay>)

iTQL’s function trans computes the transitive closure of a relation, in the
example of rdfs:subClassOf. Paths of arbitrary length in an RDF graph can
be traversed using iTQL’s function walk. Like SQL, iTQL allows sorted answers
and accessing answers in a paged mode using limit and offset.

Project page:
http://www.kowari.org

Implementations:
Kowari Metastor
Tucana Knowledge Server

Online demonstration:
none

WQL. WQL, Wilbur Query Language, is the name given in [182] to query
primitives of Ivanhoe [180], a frame-based API inspired from [153, 178] for the
Nokia Wilbur Toolkit [183], a collection of APIs for XML, RDF, and DAML
written in CLOS, Common Lisp Object System [181].

In WQL, like in Ivanhoe, a RDF or DAML resource is represented as a frame
with a slot for each property. The (possibly multiple) values of a slot correspond

Web and Semantic Web Query Languages: A Survey 103

to objects of RDF statements, with the resources represented by the frame as
subjects. Three WQL variants are discussed and compared in [144]:

– a basic query language, WQL proper, with constructs value and all-values
for a path-based selection of one or all resources, and relatedp for testing
resource relations.

– an embedding, called WQL+CL, of the above-mentioned basic language in
Common Lisp.17

– WQL+CL+inference, an extension of WQL+CL, with a data store providing
inferencing based upon the “transparent” (or “hidden”) inference extensions
described in [179].

In the following, WQL proper and, where appropriate, the “transparent infer-
encing” of WQL+CL+inference are considered. WQL+CL is not considered, for
it is more akin to a programming language than a query language.

The following query returns the labels of all classes the book identified by
http://example.org/books\#Bellum Civile belongs to:

(setf *db* (make-instance ’db))

(load-db (make-url "http://example.org/books")

:locator "http://example.org/books")

(add-namespace "books" "http://example.org/books#")

(all-values !"http://example.org/books#Bellum_Civile"

’(:seq !rdf:type (:seq (:rep* !rdfs:subClassOf) !rdfs:label)))

Note :seq constructing a sequence of slots, i.e., RDF relations, to be tra-
versed by the query and :rep* traversing the transitive closure of a slot/relation.
all-values returns all resources, (represented as frames, reachable on the speci-
fied path from the source frame, i.e., the frame with identifier http://example.
org/books\#Bellum Civile.

Project page:
Wilbur Toolkit: http://wilbur-rdf.sourceforge.net/

Implementation:
Cf. project page

Online demonstration:
none

4.6 Deductive Query Languages

N3QL. N3QL, sketched in [35], is derived from the rule fragment of Notation
3 [34] (shorthand N3), a syntax for and extension of RDF with variables, rules,
and quoting for easy expression of statements about statements. N3QL differs
from the rule fragment of N3 in that its syntax has “query language style” clauses
such as select and where.

17 It is unclear whether WQL+CL restricts Common Lisp.

104 J. Bailey et al.

An N3QL query is an N3 expression and all N3QL reserved words are the
RDF properties of an RDF (usually, but not necessarily) blank node representing
the query.

Query 1 can be expressed as follows in N3QL:

@prefix books: <http://example.org/books#>.

@prefix n3ql: <http://www.w3.org/2004/ql#>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

[] n3ql:select { n3ql:result n3ql:is (?book ?author ?authorName) };

n3ql:where { ?book rdf:type books:Essay;

?book books:author ?author;

?author books:authorName ?authorName }.

The answer to this query is the RDF graph specified in the n3ql:select
clause, a set of RDF collections (indicated by the collection constructor ()) of
bindings for the three variables.

[35] seems to indicate that a N3QL query is equivalent to a N3 rule, the where
part of the N3QL query being the rule’s premise, and the select part, the rule’s
consequence. However, whereas N3 rules can express transitive closures, this is
not the case of N3QL queries. The following N3 rule specifies the transitive
closure of a RDF property:

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

{?x rdfs:subClassOf ?z; ?z rdfs:subClassOf ?y}

=> {?x rdfs:subClassOf ?y}

Note that the description of N3QL does not clearly specify which of the
syntactic constructs of N3 can be used in N3QL. [35] states that N3QL is a
restricted form of N3 where formulae cannot be nested and literals cannot be
subjects of statements. The N3 syntax for anonymous nodes, for navigating in
the RDF graph using path expressions, and for quantified variables gives rise to
concise expressions of of queries such as “Return the books written by the author
named ‘Julius Caesar’.”:

@prefix books: <http://example.org/books#>.

@prefix n3ql: <http://www.w3.org/2004/ql#>.

[] n3ql:select { n3ql:result n3ql:is (?book) };

n3ql:where { ?book!books:author!books:authorName ‘‘Julius Caesar’’ }.

Project page:
http://www.w3.org/DesignIssues/N3QL.html

Implementations:
CWM http://www.w3.org/2000/10/swap/doc/cwm.html
EulerSharp http://eulersharp.sourceforge.net/2003/03swap/

Online demonstration:
none

Web and Semantic Web Query Languages: A Survey 105

R-DEVICE. R-DEVICE [19] is a “deductive object-oriented knowledge-base
system for querying and reasoning about RDF metadata.”18 It is a reimplemen-
tation of the X-DEVICE language [20] in the C Language Integrated Produc-
tion System, or CLIPS, cf. http://www.ghg.net/clips/CLIPS.html, using the
CLIPS Object-Oriented Language, COOL. RDF triples are mapped to objects
as follows:

– RDF resources are represented as objects, the types of which are the re-
source’s RDF types, i.e., the values of the rdf:type properties. For resources
that are classified in multiple classes, a ‘dummy class’ is introduced which
represents a common subclass of all the classes the resource is classified in.

– RDF properties are realized as multi-slots, i.e., slots with multiple values,
in the class which is the domain of the property. If no domain is given, i.e.,
if the property can be applied to any resources, a slot is added to the class
representing rdfs:Resource, the top of the RDF resource hierarchy.

Assertions generated, e.g., through rules, can require dynamic class and/or ob-
ject re-definitions.

Query 1 can be expressed as follows:

(deductiverule q1

?book <- (? (rdf:type books:Essay) (books:author ?author))

?author <- (? (books:authorName ?authorName))

=>

(result (book ?book) (author ?author) (authorName ?authorName))

)

Note the production-rule like syntax of R-DEVICE.
R-DEVICE provides constructs for traversing arbitrary length paths of slots

and objects, properties and resources, both with and without restriction on the
type of slot that may be traversed. This allows one to implement both Query 2
and Query 8. Query 2 can be expressed as follows:

(deductive rule q2

?book <- (? (rdf:type books:Essay) (books:title ‘‘Bellum Civile’’)

(($?p) ?related)

=>

(result (book ?book) (related ?related))

)

Project page:
http://lpis.csd.auth.gr/systems/r-device.html

Implementation:
Cf. project page

Online demonstration:
none

18 http://lpis.csd.auth.gr/systems/r-device.html

106 J. Bailey et al.

TRIPLE. TRIPLE [147, 259, 260] is a rule-based query, inference, and trans-
formation language for RDF. TRIPLE is based upon ideas published in [96].
TRIPLE’s syntax is close to F-Logic [170]. F-Logic is convenient for querying
semi-structured data, e.g., XML and RDF, as it facilitates describing schema-
less or irregular data [188]. Other approaches to querying XML and/or RDF
are XPathLog and the ontology management platform Ontobroker19. TRIPLE
has been designed to address two weaknesses of previous approaches to query-
ing RDF: (1) Predefined constructs expressing RDFS’ semantics that restrain a
query language’s extensibility, and (2) lack of formal semantics.

Instead of predefined RDFS-related language constructs, TRIPLE offers Horn
logic rules (in F-Logic syntax) [170]. Using TRIPLE rules, one can implement
features of, e.g., RDFS. Where Horn logic is not sufficient, as is the case of
OWL, TRIPLE is designed to be extended by external modules implementing,
e.g., an OWL reasoner. Thanks to its foundations in Horn logic, TRIPLE can
inherit much of Logic Programming’s formal semantics. Referring to, e.g., a
representation of UML in RDF [176, 177], the authors of TRIPLE claim in
[260] that TRIPLE is well-suited to query non-RDF meta-data. This can be
questioned, especially if, in spite of [126], one considers the rather awkward
mappings of Topic Maps into RDF proposed so far.

TRIPLE differs from Horn logic and Logic Programming as follows [260]:

– TRIPLE supports resources identified by URIs.
– RDF statements are represented in TRIPLE by slots, allowing the grouping

and nesting of statements; like in F-Logic, Path expressions inspired from
[119] can be used for traversing several properties.

– TRIPLE provides concise support for reified statements. Reified statements
are expressed in TRIPLE enclosed angle brackets, e.g.:
Julius Caesar[believes-><Junius Brutus[friend-of -> Julius Caesar]>]

– TRIPLE has a notion of module allowing specification of the ‘model’ in
which a statement, or an atom, is true. ‘Models’ are identified by URIs that
can prefix statement or atom using @.

– TRIPLE requires an explicit quantification of all variables.

Query 1 can be approximated as follows:

rdf := ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’.

books := ’http://example.org/books#’.

booksModel := ’http://example.org/books’.

FORALL B, A, AN result(B, A, AN) <-

B[rdf:type -> books:Essay;

books:author -> A[books:authorName -> AN]]@booksModel.

This query selects only resources directly classified as books:Essay. Query 1
is properly expressed below.

TRIPLE’s rules give rise to specify properties of RDF. [260] gives the follow-
ing implementation of a part of RDFS’s semantics:

19 http://www.ontoprise.de/products/ontobroker

Web and Semantic Web Query Languages: A Survey 107

rdf := ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’.

rdfs := ’http://www.w3.org/2000/01/rdf-schema#’.

type := rdf:type.

subPropertyOf := rdfs:subPropertyOf.

subClassOf := rdfs:subClassOf.

FORALL Mdl @rdfschema(Mdl) {

transitive(subPropertyOf).

transitive(subClassOf).

FORALL O,P,V O[P->V] <-

O[P->V]@Mdl.

FORALL O,P,V O[P->V] <-

EXISTS S S[subPropertyOf->P] AND O[S->V].

FORALL O,P,V O[P->V] <-

transitive(P) AND EXISTS W (O[P->W] AND W[P->V]).

FORALL O,T O[type->T] <-

EXISTS S (S[subClassOf->T] AND O[type->S]).

}

Inference from range and domain restrictions of properties are not imple-
mented by the rule given above. This is not limitation of TRIPLE, though, for
the following rules provides them:

FORALL S,T S[type-$>$T] <-

EXISTS P, O (S[P-$>$O] AND P[rdfs:domain-$>$T]).

FORALL O,T O[type->T] <-

EXISTS P, S (S[P-$>$O] AND P[rdfs:range-$>$T]).

With the rules given above, the approximation of Query 1 given above only
needs to be modified so as to express the ‘model’ it is evaluated against: instead
of @booksModel, @rdfschema(booksModel) should be used, i.e., the original
‘model’ should be extended with the above-mentioned implementing RDFS’ se-
mantics. Most queries of Section 2.3 can be expressed in TRIPLE. Aggregation
queries cannot be expressed in TRIPLE, for the language does not support ag-
gregation.

[260] specifies an RDF, and therefore XML, syntax for a fragment of TRIPLE.
By relying on translations to RDF, one can query data in different formalisms
with TRIPLE, e.g., RDF, Topic Maps, and UML. This, however, might lead to
rather awkward queries. Some aspects of RDF, viz. containers, collections, and
anonymous nodes, are not supported by TRIPLE. The complexity of TRIPLE
has not been investigated so far.

Project page:
http://triple.semanticweb.org/

Implementation:
Cf. project page

108 J. Bailey et al.

Online demonstration:
Cf. project page
http://ontoagents.stanford.edu:8080/triple/20

Xcerpt. Xcerpt [30, 56, 58, 248], cf. http://xcerpt.org, is a language for
querying both data on the “standard Web” (e.g., XML and HTML data) and
data on the Semantic Web (e.g., RDF, Topic Maps, etc. data). Using Xcerpt
for querying XML data is addressed in Section 7. This Section is devoted to
applying Xcerpt to querying RDF data.

Three features of Xcerpt are particularly convenient for querying RDF data.
(1) Xcerpt’s pattern-based incomplete queries are convenient for collecting re-
lated resources in the neighbourhood of some given resources and to express
traversals of RDF graphs of indefinite lengths. (2) Xcerpt chaining of (possibly
recursive rules) is convenient for expressing RDFS’s semantics, e.g., the transitive
closure of the subClassOf relation, as well as all kinds of graph traversals. (3)
Xcerpt’s optional construct is convenient for collecting properties of resources.

All nine queries from Section 2.3 can be expressed in Xcerpt’s both on the
XML serialization (cf. Section 3.2) and on the RDF serialization of the sample
data from Section 2.2. The following Xcerpt programs show solutions for the
queries against the RDF serialization.

[44] proposes two views on RDF data: as in most other RDF query languages
as plain triples with explicit joins for structure traversal and as a proper graph.

On the plain triple view, Query 1 can be expressed in Xcerpt as follows:

DECLARE ns-prefix rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"

DECLARE ns-prefix books = "http://example.org/books#"

GOAL

result [

all essay [

id [var Essay],

all author [

id [var Author],

all name [var AuthorName]

]

]

]

FROM

and{

RDFS-TRIPLE [

var Essay:uri{}, "rdf:type":uri{}, "books:Essay":uri{}

],

RDF-TRIPLE [

var Essay:uri{}, "books:author":uri{}, var Author:uri{}

],

20 Not functioning at the time of writing.

Web and Semantic Web Query Languages: A Survey 109

RDF-TRIPLE [

var Author:uri{}, "books:authorName":uri{}, var AuthorName

]

}

END

Using the prefixes declared in line 1 and 2, the query pattern (between
FROM and END) is a conjunction of tree queries against the RDF triples rep-
resented in the predicate RDF-TRIPLE. Notice that the first conjunct actually
uses RDFS-TRIPLE. This view of the RDF data contains all basic triples plus the
ones entailed by the RDFS semantics [148] (cf. [44] for a detailed description).
Using RDFS-TRIPLE instead of RDF-TRIPLE ensures that also resources actually
classified in a sub-class of books:Essay are returned.

Xcerpt’s approach to RDF querying shares with [242] and a few other ap-
proaches in Section 4.3 the ability to construct arbitrary XML as in this rule.

On Xcerpt’s graph view of RDF, the same query can be expressed as follows:

DECLARE ns-prefix rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"

DECLARE ns-prefix books = "http://example.org/books#"

GOAL

result [

all essay [

id [var Essay],

all author [

id [var Author],

all name [var AuthorName]

]

]

]

FROM

RDFS-GRAPH {{

var Essay:uri {{

rdf:type {{ "books:Essay":uri {{ }} }},

books:author {{

var Author:uri {{

books:name {{ var AuthorName }}

}}

}}

}}

}}

END

The RDF graph view is represented in the RDF-GRAPH predicate. Here, the
RDFS-GRAPH view is used that extends RDF-GRAPH as RDFS-TRIPLE extends
RDF-TRIPLE. Triples are represented similar to striped RDF/XML: each resource
is a direct child element in RDF-GRAPH with a sub-element for each statement
with that resource as object. The sub-element is labeled with the URI of the
predicate and contains the object of the statement. As Xcerpt’s data model is a
rooted graph this can be represented without duplication of resources.

110 J. Bailey et al.

In contrast to the previous query no conjunction is used but rather a nested
pattern that naturally reflects the structure of the RDF graph with the excep-
tion that labeled edges are represented as nodes with edges to the elements
representing their source and sink.

To illustrate this graph view, consider the following rule showing how to
generate the graph view from the triple view introduced above:

CONSTRUCT

RDF-GRAPH {

all var Subject @ var Subject:var SubjectType {

all optional var Predicate {

^var Object

},

all optional var Predicate {

var Literal

}

} }

FROM

or{

RDF-TRIPLE[

var Subject:var SubjectType{},

var Predicate:uri{},

optional var Literal as literal{{}},

optional var Object:/uri|blank/{{}}

],

RDF-TRIPLE[

/.*/:/.*/{{}},

/.*/:/.*/{{}},

var Subject:var SubjectType{{}}

] }

END

Notice the use of the optional keyword in lines 16 and 17. This indicates
that the contained part of the pattern does not have to occur in the data, but if
it does occur the contained variables are bound appropriately. Optional allows
queries with alternatives to be expressed very concisely and is therefore crucial
for RDF where all properties are optional by default.

In lines 3 and 5 the construction of a graph is shown: by using the operators
@ and ^ a (possibly cyclic) link can be constructed.

Xcerpt rules are convenient for making the language “RDF serialisation trans-
parent”. For each RDF serialisation, a set of rules expresses a translation from
or into that serialisation. However, the rules for parsing RDF/XML [25], the
official XML serialisation, are very complex and lengthy due to the high degree
of flexibility RDF/XML allows. They can be found in [44], similar functions for
parsing RDF/XML in XQuery are described in [246]. The following rules parse
RDF data serialised in the RXR (Regular XML RDF) format [11], a far simpler
and more regular RDF serialisation.

The following rule extracts all triples from an RXR document. Since different
types (such as URI, blank node, or literal) of subjects and objects of RDF triples

Web and Semantic Web Query Languages: A Survey 111

are represented differently in RXR, the conversion of the RXR representation
into the plain triples is performed in separate rules, see [44].

DECLARE ns-prefix rxr = "http://ilrt.org/discovery/2004/03/rxr/"

CONSTRUCT

RDF-TRIPLE[

var Subject, var Predicate:uri{}, var Object

]

FROM

and[

rxr:graph {{

rxr:triple {

var S → rxr:subject{{}},

rxr:predicate{ attributes{ rxr:uri{ var Predicate } } },

var O → rxr:object{{}}

}

}},

RXR-RDFNODE[var S, var Subject],

RXR-RDFNODE[var O, var Object]

]

END

Querying RDF data with Xcerpt is the subject of ongoing investigation [44].

4.7 Other RDF Query Languages

RDF-QBE [241] is inspired from QBE [289, 290], the database query language
that introduced the celebrated “Query by Example” paradigm. An RDF graph,
expressed in the syntax of Notation 3 [34]), is used to describe query patterns,
variables are expressed as blank nodes that, according to [172] doe not have
explicit identifiers. The representation of variables as blank nodes leads to a
major restriction of RDF-QBE : Query patterns can only be tree-shaped.21 RDF-
QBE is especially convenient for expressing selection and extraction queries.
However, the expressive power of RDF-QBE is limited: Not all queries of Section
2.3 can be expressed.

Project page:
none

Implementation:
described in [241] but not publicly available

Online demonstration:
none

RDFQL. RDFQL is the query language of RDF Gateway [154], a platform
for developing and deploying Semantic Web applications combining a “native”

21 [241] (wrongly) suggests that this restriction reduces query-answering to tree match-
ing because the data queried is not necessarily tree-shaped.

112 J. Bailey et al.

RDF database engine, a Web server, and a server-side scripting language. The
RDF database engine allows for the integration of standard and Semantic Web
using so-called “virtual tables” and inference rules for deductive reasoning (so
far, libraries for OWL and RDFS are provided). RDF Gateway supports sev-
eral serialisations of RDF, viz. RDF/XML, N3, and NTriples. Although similar
to RDQL, cf. Section 4.1, RDFQL differs from RDQL as follows: (1) RDFQL
includes database commands for transaction management, e.g., commit and roll-
back, (2) RDFQL includes SQL-like update commands, (3) RDFQL allows ac-
cessing data from disk-based, in-memory, or external22 “data sources”, and (4)
RDFQL’s command INFER allows specification of deduction rules to be used
when querying.

With RDFQL’s rules, the semantics of RDFS can be expressed as follows:

RULEBASE rdfs

{

INFER {[rdf:type] ?a [rdf:Property]} from {?a ?x ?y};

INFER {[rdf:type] ?x ?z} from {[rdfs:domain] ?a ?z} and {?a ?x ?y};

INFER {[rdf:type] ?u ?z} from {[rdfs:range] ?a ?z}

and {?a ?x ?u} and uri(?u)=?u;

INFER {[rdf:type] ?x [rdfs:Resource]} from {?a ?x ?y};

INFER {[rdf:type] ?u [rdfs:Resource]} from {?a ?x ?u} and uri(?u)=?u

INFER {[rdfs:subPropertyOf] ?a ?c}

from {[rdfs:subPropertyOf] ?a ?b} and {[rdfs:subPropertyOf] ?b ?c}

INFER {?b ?x ?y} from {[rdfs:subPropertyOf] ?a ?b}

and {?a ?x ?y}

INFER {[rdfs:subClassOf] ?x [rdfs:Resource]}

from {[rdf:type] ?x [rdfs:Class]}

INFER {[rdfs:subClassOf] ?x ?z} from {[rdfs:subClassOf] ?x ?y}

and {[rdfs:subClassOf] ?y ?z}

INFER {[rdf:type] ?a ?y} from {[rdfs:subClassOf] ?x ?y}

and {[rdf:type] ?a ?x}

}

{?P ?S ?O} denotes in RDFQL an RDF statement with subject S, prop-
erty P , and object O, i.e., RDFQL uses a prefix notation for RDF statements.
uri(?u)=?u serves to detect whether the object of an RDF statement is a re-
source (in which case it has an URI and this URI is equal to the “value” of the
resource itself) or a literal.

Query 1 can be implemented as follows:

session.namespaces["books"] = "http://example.org/books#";

var booksdata = new DataSource("http://example.org/books");

SELECT ?essay, ?author, ?authorName USING booksdata WHERE

{[rdf:type] ?essay [books:Essay]}

and {[books:author] ?essay ?author}

and {[books:authorName] ?author ?authorName}

ORDER BY ?authorName DESC;

22 I.e., identified, e.g., by an URI.

Web and Semantic Web Query Languages: A Survey 113

Project page:
http://www.intellidimension.com/

Implementations:
RDF Gateway
Cf. project page for a limited, non-commercial use

Online demonstration:
none23

5 Topic Maps Query Languages

5.1 tolog: Logic Programming for Topic Maps

tolog [122, 123, 124, 125] is the query language of the Ontopia Knowledge Suite24.
tolog has also been selected in April 2004 as an initial straw-man for the ISO
Topic Maps Query Language. tolog is inspired from Logic Programming and
has SQL-style constructs. tolog provides a means for identifying a topic by its
(internal) identifier and its subject indicator, e.g., the topic (type) “Novel” of
the sample data can be accessed either by its identifier Novel, or its subject
indicator i"http://example.org/books#Novel".25 URI prefixes can be used,
e.g., using books for i"http://example.org/books#" gives rise to the short
form books:Novel for the above-mentioned subject indicator. Note that tolog
URI prefixes contain indicators and therefore differ from XML namespaces. In
tolog, all occurrences of variables must be prefixed with $.

The original version of tolog [123]) has two kinds of Prolog-like “predi-
cates”, “built-in” and “dynamic association predicates”. tolog has a “dynamic
association predicate” for querying the extent of each association type, e.g.,
authors-for-book(b1, $AUTHOR: author) selects the authors of book b1 (note
the association role identifying the topic ‘author’). tolog has only two “dynamic
association predicates” similar to “dynamic occurrence predicates”. The origi-
nal version of tolog has only two “built-in predicates”, instance-of($INSTANCE,
$CLASS) and direct-instance-of($INSTANCE, $CLASS), conveying the seman-
tics of the subsumption hierarchy.

The current version of tolog [122, 124] has further built-in predicates, e.g.,
role-player and association-role, for enumerating the associations, associ-
ation roles, occurrences, and topics. These allow querying arbitrary topic maps
without a-priori knowledge of the types used in the topic maps. Query 2 can
only be implemented only using these predicates:

select $RELATED from

title($BOOK, "Bellum Civile"),

related($BOOK, $RELATED)?

related($X, $Y) :- {

23 However, the project page implemented in RDF Gateway is a show case.
24 http://www.ontopia.net/solutions/products.html
25 The prefix i serves to distinguish different identifiers.

114 J. Bailey et al.

role-player($R1, $X), association-role($A, $R1),

association-role($A, $R2), role-player($R2, $Y) |

related($X, $Z), related($Z, $Y)

}.

Conjunctions are expressed, as in Prolog, by commas. Disjunctions are in
curly braces the disjuncts being separated by |.

The built-in predicates instance-of and direct-instance-of can indeed
be implemented using tolog rules as follows [123]:

direct-instance-of($INSTANCE, $CLASS) :-

i"http://psi.topicmaps.org/sam/1.0/#type-instance"(

$INSTANCE : i"http://psi.topicmaps.org/sam/1.0/#instance",

$CLASS : i"http://psi.topicmaps.org/sam/1.0/#class").

super-sub($SUB, $SUPER) :-

i"http://www.topicmaps.org/xtm/1.0/core.xtm#superclass-subclass"(

$SUB : i"http://www.topicmaps.org/xtm/1.0/core.xtm#subclass",

$SUPER : i"http://www.topicmaps.org/xtm/1.0/core.xtm#superclass").

descendant-of($DESC, $ANC) :- {

super-sub($DESC, $ANC) |

super-sub($DESC, $INT), descendant-of($INT, $ANC)

}.

instance-of($INSTANCE, $CLASS) :- {

direct-instance-of($INSTANCE, $CLASS) |

direct-instance-of($INSTANCE, $DCLASS), descendant-of($DCLASS, $CLASS)

}.

Negation is available, however its semantics in tolog is not yet specified [124].
tolog has constructs for aggregation and sorting (although deemed insufficient
[124]), paged queries using limit and offset as in SQL, and a module concept.
Thanks to tolog’s (possibly recursive) rules, Queries 7 and 8 can be implemented
in tolog.

Neither the formal semantics, nor the complexity of tolog have been investi-
gated yet.

Project page:
http://www.ontopia.net/omnigator/docs/query/tutorial.html26

Implementations:
Ontopia Knowledge Suite: http://www.ontopia.net/solutions/products.
html
Topic Maps toolkit TM4J: http://tm4j.org/

Online demonstrations:
Omnigator: http://www.ontopia.net/
http://www.ontopia.net/omnigator/models/index.jsp27

26 Tutorial.
27 The demonstrator does not seem to support testing tolog queries.

Web and Semantic Web Query Languages: A Survey 115

5.2 AsTMA?: Functional Style Querying of Topic Maps

AsTMa? [14, 15] is a functional query language in the style of XQuery [41].
AsTMa? offers several path languages for accessing data in topic maps. With
AsTMa?, answers can be re-structured, yielding new XML documents.

Query 1 can be implemented as follows:

<books>

{ forall [$book (Writing)] in http://example.org/books

return

<book>

{$book,

forall $author in ($book -> author / author-for-book) return

<author>

{$author}

<name>{$author/bn}</name>

</author>

</book> }

</books>

Query 1 can also be implemented as follows, using path expressions for ac-
cessing topics and associations:

<books>

{ forall [$book (Writing)] in http://example.org/books

return

<book>

{$book,

forall [(author-for-book)

Writing : $book

author: $author]

in http://example.org/books return

<author>

{$author}

<name>{$author/bn}</name>

</author>

</book> }

</books>

Project page:
http://astma.it.bond.edu.au/querying.xsp

Implementation):
As part of the Perl XTM module, available via CPAN

Online demonstration:
http://astma.it.bond.edu.au/query/

5.3 Toma: Querying Topic Maps Inspired from SQL

Toma [175, 234] combines SQL syntax and path expressions for querying Topic
Maps, i.e., the following query selects all books, specified as topics classified as
Writing, with their authors:

116 J. Bailey et al.

select topic[book], topic[author]

from topic-type["Writing"].topic[book],

topic[book]..assoc[a]..topic[author],

assoc-type["author-for-book"].assoc[a]

Toma provides access to all Topic Maps concepts, including the subsumption
hierarchy. Information about a topic such as topic identifier, basename, and sub-
ject identifier are accessed using the long name, or . notation, common in object-
oriented languages, e.g., $topic.bn = ’Julius Caesar’ compares the base-
name, short bn, of topics, short by $topic, with the string “Julius Caesar”. Asso-
ciations can be traversed using ->, predefined associations with special semantics,
such as the instance-of and superclass-subclass associations, can be traversed
transitively when traversing the subsumption hierarchy. $start.super(1..*)
selects all super-classes of the current class. Instead of 1..*, an interval, or a
single number, can indicate how many superclass-subclass associations should
be traversed. A similar notation is available for instance-of associations.

Query 1 can be expressed as follows:

select $book, $author, $author.bn

where $book.type(1..*).id = ’Writing’

and author-for-book%a->Writing = $book

and author-for-book%a->author = $author

Query 3 can be expressed as follows:

select $topic

where $topic.type(1..*).si.sir != ’http://example.org/books#Translator’

and not exists ($t.type(1) = $topic)

and not exists ($t.type(1..*) = $x and $topic.super(1..*) = $x)

This query selects all topics that are neither used as type of another topic,
nor typed Translator. All topics are selected that neither (a) have the subject
identifier http://example.org/books#Translator, nor (b) are the type of some
topic, nor (c) are a sub-class of some topic that is some topic’s type.

Project page:
http://www.spaceapplications.com/toma/

Implementation:
Not freely available

Online demonstration:
none

5.4 Path-Based Access to Topic Maps: XTMPath and TMPath

Following the success of XPath, a number of path-based query languages have
been proposed for Topic Maps, cf. [16] for an overview of a plea for the inclusion
of path navigation in the upcoming ISO Topic Maps query language.

XTMPath [17] is a path-based query language relying on the XTM [232]
serialisation of topic maps in XML. The following path selects all topics that are

Web and Semantic Web Query Languages: A Survey 117

(directly) typed
Historical Novel:

topic[instanceOf/topicRef/@href = "\#Historical_Novel"]}

This path expression reflects the XTM serialisation:

<topic id="b1">

<instanceOf> <topicRef xlink:href="#Historical_Novel"/> </instanceOf>

</topic>

Note that (1) Only a limited subset of the XPath constructs is supported by
XTMPath, mostly the child and descendant axis and some simple predicates (in
XPath’s abbreviated syntax), and (2) XTMPath operates on data conforming
to a single DTD28, viz., the DTD of XTM DTD [17], leading to treating the axis
“child” like the axis “descendant” with a few exceptions, e.g., instanceOf.

Project page:
http://cpan.uwinnipeg.ca/htdocs/XTM/XTM/Path.html

Implementation:
Available from CPAN as part of the XTM toolkit

Online demonstration:
none

6 Conclusion: Salient Aspects of the Query Languages
Considered

This article is an attempt to give a survey of both query languages proposed
for the “standard Web” (i.e., basically XML data), and query languages for the
Semantic Web (i.e. mostly RDF and Topic Maps). Query languages targeting
OWL have not been considered in this survey, because as of writing (March
2005), they still are in their infancy and the few languages proposed so far can
only query meta-data.

Inspite of the exclusions described in Section 1 (programming languages tools
for XML, reactive languages for the Web, rules languages, and OWL query
languages) a considerable number of languages have been considered in this
article. Indeed, we are not aware of any other effort to survey Web and/or
Semantic Web query languages at the same level of depth and breadth.

Even though the field is moving extremely fast and new proposals are always
emerging, it is already possible and worthwhile to stress some of the salient
aspects of Web and Semantic Web query languages:

Path vs. Logic or Navigational vs. Positional. Web and Semantic Web query lan-
guages express basic queries using one of two paradigms, paths à la XPath, or

28 Document Type Definition, cf. [48].

118 J. Bailey et al.

Logic, à la Logic Programming. These two paradigms can also be named “naviga-
tional” and “positional”, respectively, stressing that (path-oriented) navigations
inherently conflict with referential transparency. One might expect that both
kinds of languages will continue to be investigated, yielding interesting oppor-
tunities for further comparison and research.

Logical Variables. When Web and Semantic Web query languages have variables,
they almost always are logical variables, i.e., Logic Programming or Functional
Programming variables, as opposed to variables in imperative programming lan-
guages that are amenable to explicit assignments.

Referential Transparency and (Weak or Strong) Answer-Closure. Referential
Transparency (i.e., within the same scope, an expression always means the same),
the trait of declarative languages, is, if not fully achieved, obviously striven for
by both positional and logic, query languages, especially in Semantic Web query
languages. Some query languages are “weakly answer-closed” or “answer-closed”
in the sense of [79], i.e., they deliver answers in the formalism of the data queried.
A few query languages are “strongly answer-closed”, i.e., they make query pro-
grams possible that can further process data generated by these very programs.
Arguably, strong answer-closure is important for structuring programs and sus-
taining the so-called “separation of concerns” in programming. One might expect
that positional Web and Semantic Web query languages will mature into well-
designed, referentially transparent and strongly answer-closed languages.

Backtracking-Free Logic Programming or Set-Oriented Functional Query Evalu-
ation. Positional, or logic query languages that offer construct similar to rules
or views, are, with a few exceptions or unclear cases, backtracking-free. Equiv-
alently, they can be called set-oriented functional. This convergence of two pro-
gramming paradigms in Web query languages seems promising for further re-
search.

Incomplete Queries and Answers. Many query languages offer means for incom-
plete specifications of queries, paying tribute to the “semi-structured” [3] nature
of data on the Web, i.e., that data on the Web either has no schemas or does not
fully respect its schema. Incomplete query specifications are extremely useful on
the Semantic Web, too. In querying an RDF graph or topic maps, incomplete
queries are very useful for easily accessing the neighbourhood of resources. Indeed
such incomplete specifications considerably simplify and ease programming.

Versatile vs. Data Format Specific Query Languages. Most RDF query languages
are RDF-specific, and even specifically designed for one serialisation. The au-
thors are convinced that an evolution towards data format “versatile” languages
that are capable of easily accommodating XML, RDF, Topic Maps, OWL, etc.
without requiring “serialisation consciousness” from the programmer, should be
striven for.

Reasoning Capabilities. Interestingly, but not surprisingly, not all XML query
languages have views, rules, or similar concepts allowing the specification of other
forms of reasoning. Surprisingly, the same holds true of RDF query languages.

Web and Semantic Web Query Languages: A Survey 119

Many authors of RDF query languages see deduction and reasoning to be a fea-
ture of an underlying RDF store offering materialisation, i.e., completion of RDF
data with derivable data prior to query evaluation. This is surprising, because
one might expect many Semantic Web applications to access not only one RDF
data store at one Web site, but instead many RDF data stores at different Web
sites and to draw conclusions combining data from different stores. Such an RDF
query scenario requires, on the decentralised and open Web, deduction at query
time, i.e., when queries are evaluated.29

Language Engineering. Language engineering issues, e.g., abstract data types
and static type checking, modules, polymorphism, and abstract machines, have
clearly not yet made their way in the Web query languages, as they did not in
database query languages. This situation opens avenues for promising research
of great practical, as well as theoretical relevance.

Acknowledgements

The authors are thankful to Renzo Orsini, Ian Horrocks, Michael Kraus, and
Oliver Bolzer for stimulating discussions and useful suggestions during the pro-
duction of the report [60], that has been an important input for this overview.

This research has been funded by the European Commission and by the Swiss
Federal Office for Education and Science within the 6th Framework Programme
project REWERSE number 506779 (cf. http://rewerse.net).

References

[1] Langdale Consultants . Nexus Query Language. Online only, 2000.
[2] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. The Lorel

Query Language for Semistructured Data. International Journal on Digital
Libraries1(1):68-88, April 1997., 1(1):68–88, 1997.

[3] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations to
Semistructured Data and XML. Morgan Kaufmann, 1999.

[4] J. Alferes, W. May, and P. Patranjan. State of the Art on Evolution and Reac-
tivity, 2004.

[5] S. Amer-Yahia, M. F. Fernandez, D. Srivastava, and Y. Xu. PIX: Exact and
Approximate Phrase Matching in XML. In Proc. ACM SIGMOD Conf., 2003.

[6] S. Amer-Yahia, C. Botev, S. Buxton, P. Case, J. Doerre, D. McBeath, M. Rys,
and J. Shanmugasundaram. XQuery and XPath Full-Text. W3C, 2004. URL
http://www.w3.org/TR/xquery-full-text-requirements/.

[7] S. Amer-Yahia, C. Botev, and J. Shanmugasundaram. TeXQuery: A Full-Text
Search Extension to XQuery. In Proc. Int. World Wide Web Conf., 2004.

[8] S. Amer-Yahia, L. V. S. Lakshmanan, and S. Pandit. FleXPath: Flexible Struc-
ture and Full-Text Querying for XML. In Proc. ACM SIGMOD Conf., 2004.

29 Indeed, materialising conclusions from all possible combinations of Web sites is in-
feasible.

120 J. Bailey et al.

[9] V. Apparao, S. Byrne, M. Champion, S. Isaacs, I. Jacobs, A. L. Hors, G. Nicol,
J. Robie, R. Sutor, C. Wilson, and L. Wood. Document Object Model (DOM)
Level 1 Specification. Recommendation, W3C, 10 1998.

[10] E. Augurusa, D. Braga, A. Campi, and S. Ceri. Design and Implementation of
a Graphical Interface to XQuery. In Proc. Symposium of Applied Computing,
pages 1163–1167. ACM Press, 2003. ISBN 1-58113-624-2. doi: http://doi.acm.
org/10.1145/952532.952759.

[11] D. Backett. Modernising Semantic Web Markup. In Proc. XML Europe, April
2004.

[12] E. Bae and J. Bailey. CodeX: an approach for debugging XSLT transformations.
In Web Information Systems Engineering, 2003. WISE 2003. Proceedings of the
Fourth International Conference on, 2003.

[13] J. Bailey. Transformation and Reaction Rules for Data on the Web. In Proc.
Australasian Database Conference, 2005.

[14] R. Barta. AsTMa? Tutorial. Technical report, Bond University, 2003.
[15] R. Barta. AsTMa= Language Definition. Online only, 2007.
[16] R. Barta. Path Language for Topic Maps: Full speed ahead? Online only, 2004.
[17] R. Barta and J. Gylta. XTM::Path, 2002.
[18] C. Baru, A. Gupta, B. Ludäscher, R. Marciano, Y. Papakonstantinou, and P. Ve-

likhov. XML-Based Information Mediation with MIX. In Proc. ACM SIGMOD
International Conference on Management of Data, 1999.

[19] N. Bassiliades and I. Vlahavas. Capturing RDF Descriptive Semantics in an
Object Oriented Knowledge Base System. In Proc. International Word Wide
Web Conference, May 2003.

[20] N. Bassiliades and I. Vlahavas. Intelligent Querying of Web Documents Using a
Deductive XML Repository. In Proc. Hellenic Conference on Artificial Intelli-
gence, April 2002.

[21] R. Baumgartner, S. Flesca, and G. Gottlob. The Elog Web Extraction Lan-
guage. In Proc. International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning, December 2001.

[22] R. J. Bayardo, D. Gruhl, V. Josifovski, and J. Myllymaki. An Evaluation of
Binary XML Encoding Optimizations for fast Stream based XML Processing.
In Proc. Int. World Wide Web Conf., pages 345–354. ACM Press, 2004. ISBN
1-58113-844-X. doi: http://doi.acm.org/10.1145/988672.988719.

[23] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. McGuinness, P. Patel-
Schneider, and L. Stein. OWL Web Ontology Language—Reference. W3C, 2004.
URL http://www.w3.org/TR/owl-ref/.

[24] D. Beckett. Turtle - Terse RDF Triple Language, February 2004.
[25] D. Beckett and B. McBride. RDF/XML Syntax Specification (Revised). W3C,

2004. URL http://www.w3.org/TR/rdf-syntax-grammar/.
[26] M. Benedikt, W. Fan, and G. Kuper. Structural Properties of XPath Fragments.

In Proc. International Conference on Database Theory, 2003.
[27] V. Benzaken, G. Castagna, and A. Frisch. CDuce: An XML-Centric General-

Purpose Language. In Proc. International Conference on Functional Program-
ming, 2003.

[28] S. Berger, F. Bry, and S. Schaffert. A Visual Language for Web Querying and
Reasoning. In Proc. Workshop on Principles and Practice of Semantic Web
Reasoning, LNCS 2901. Springer-Verlag, December 2003.

[29] S. Berger, F. Bry, S. Schaffert, and C. Wieser. Xcerpt and visXcerpt: From
Pattern-Based to Visual Querying of XML and Semistructured Data. In Proc.
Int. Conf. on Very Large Databases, 2003.

Web and Semantic Web Query Languages: A Survey 121

[30] S. Berger, F. Bry, O. Bolzer, T. Furche, S. Schaffert, and C. Wieser. Xcerpt and
visXcerpt: Twin Query Languages for the Semantic Web. In Proc. Int. Semantic
Web Conf., 11 2004. I4 I3.

[31] A. Berglund, S. Boag, D. Chamberlin, M. Fernandez, M. Kay, J. Robie, and
J. Simeon. XML Path Language (XPath) 2.0. W3C, 2005.

[32] A. Berlea and H. Seidl. Binary Queries for Document Trees. Nordic Journal of
Computing, 11(1):41–71, 2004.

[33] A. Berlea and H. Seidl. fxt—A Transformation Language for XML Documents.
Journal of Computing and Information Technology, Special Issue on Domain-
Specific Languages, 2001.

[34] T. Berners-Lee. Notation 3, an RDF language for the Semantic Web. Online
only, 2004.

[35] T. Berners-Lee. N3QL—RDF Data Query Language. Online only, 2004.
[36] T. Berners-Lee. Semantic Web Road Map. Online only, 2004.
[37] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web—A new form of

Web content that is meaningful to computers will unleash a revolution of new
possibilities. Scientific American, 2001.

[38] G. J. Bex, S. Maneth, and F. Neven. A Formal Model for an Expressive Fragment
of XSLT. Information Systems, 27(1):21–39, 2002. ISSN 0306-4379. doi: http:
//dx.doi.org/10.1016/S0306-4379(01)00033-3.

[39] P. Biron and A. Malhotra. XML Schema Part 2: Datatypes. W3C, 2001. URL
http://www.w3.org/TR/xmlschema-2/.

[40] C. Bizer. The TriG Syntax. Online only, April 2004.
[41] S. Boag, D. Chamberlin, M. Fernandez, D. Florescu, J. Robie, and J. Simeon.

XQuery 1.0: An XML Query Language. W3C, 2005.
[42] S. Boag, D. Chamberlin, M. F. Fernndez, D. Florescu, J. Robie, and J. Simon.

XQuery 1.0: An XML Query Language. Working draft, W3C, 2 2005.
[43] H. Boley, B. Grosof, M. Sintek, S. Tabet, and G. Wagner. RuleML Design. Online

only, 2002.
[44] O. Bolzer. Towards Data-Integration on the Semantic Web: Querying RDF with

Xcerpt. Diplomarbeit/Master thesis, University of Munich, 2 2005.
[45] O. Bolzer, F. Bry, T. Furche, S. Kraus, and S. Schaffert. Development of Use

Cases, Part I: Illustrating the Functionality of a Versatile Web Query Language.
Deliverable I4-D3, REWERSE, 3 2005. I4.

[46] A. Bonifati, D. Braga, A. Campi, and S. Ceri. Active XQuery. In Proc. Int.
Conf. on Data Engineering, page 403. IEEE Computer Society, 2002.

[47] D. Braga, A. Campi, S. Ceri, and E. Augurusa. XQuery by Example. In Proc.
Int. World Wide Web Conf., 2003.

[48] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. Ex-
tensible Markup Language (XML) 1.0 (Third Edition). W3C, 2004. URL
http://www.w3.org/TR/REC-xml/.

[49] J.-M. Bremer and M. Gertz. XQuery/IR: Integrating XML Document and Data
Retrieval. In Int. Workshop on the Web and Databases, 2002.

[50] D. Brickley. RDF: Understanding the Striped RDF/XML Syntax. Online only,
October 2001.

[51] D. Brickley, R. Guha, and B. McBride. RDF Vocabulary Description Language
1.0: RDF Schema. W3C, 2004. URL http://www.w3.org/TR/rdf-schema/.

[52] J. Broekstra and A. Kampman. SeRQL: A Second Generation RDF Query Lan-
guage. In Proc. SWAD-Europe Workshop on Semantic Web Storage and Re-
trieval, 2003.

122 J. Bailey et al.

[53] M. Brundage. XQuery: The XML Query Language. Addison-Wesley, 2004.
[54] E. Bruno, J. L. Maitre, and E. Murisasco. Extending XQuery with Transfor-

mation Operators. In Proc. ACM symposium on Document Engineering, pages
1–8. ACM Press, 2003. ISBN 1-58113-724-9. doi: http://doi.acm.org/10.1145/
958220.958223.

[55] F. Bry and P.-L. Pătrânjan. Reactivity on the Web: Paradigms and Applications
of the Language XChange. In Proc. Symposium of Applied Computing. ACM, 3
2005. I4 I5.

[56] F. Bry and S. Schaffert. A Gentle Introduction into Xcerpt, a Rule-based Query
and Transformation Language for XML. In Proc. Int. Workshop on Rule Markup
Languages for Business Rules on the Semantic Web, 2002.

[57] F. Bry and S. Schaffert. Towards a Declarative Query and Transformation Lan-
guage for XML and Semistructured Data: Simulation Unification. In Proc. Int.
Conf. on Logic Programming, volume 2401 of LNCS. Springer-Verlag, 7 2002.

[58] F. Bry and S. Schaffert. The XML Query Language Xcerpt: Design Principles,
Examples, and Semantics. In Proc. Int. Workshop on Web and Databases, volume
2593 of LNCS. Springer-Verlag, 2002.

[59] F. Bry, W. Drabent, and J. Maluszynski. On Subtyping of Tree-structured Data
A Polynomial Approach. In Proc. Workshop on Principles and Practice of Se-
mantic Web Reasoning, St. Malo, France, volume 3208 of LNCS. REWERSE,
Springer-Verlag, 9 2004. I4 I3.

[60] F. Bry, T. Furche, L. Badea, C. Koch, S. Schaffert, and S. Berger. Identification
of Design Principles for a (Semantic) Web Query Language. Deliverable I4-D1,
REWERSE, 2004.

[61] F. Bry, P.-L. Pătrânjan, and S. Schaffert. Xcerpt and XChange: Logic Program-
ming Languages for Querying and Evolution on the Web. In Proc. Int. Conf. on
Logic Programming, LNCS, 2004.

[62] F. Bry, S. Schaffert, and A. Schröder. A contribution to the Semantics of Xcerpt,
a Web Query and Transformation Language. In Proc. Workshop Logische Pro-
grammierung, March 2004.

[63] F. Bry, T. Furche, L. Badea, C. Koch, S. Schaffert, and S. Berger. Querying
the Web Reconsidered: Design Principles for Versatile Web Query Languages.
Journal of Semantic Web and Information Systems, 1(2), 2005. I4.

[64] P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A Query Language and
Optimization Techniques for Unstructured Data. In Proc. ACM SIGMOD Conf.,
pages 505–516. ACM Press, 1996. ISBN 0-89791-794-4. doi: http://doi.acm.org/
10.1145/233269.233368.

[65] P. Buneman, S. B. Davidson, and D. Suciu. Programming Constructs for Un-
structured Data. In Proc. Int. Workshop on Database Programming Languages,
page 12. Springer-Verlag, 1996. ISBN 3-540-76086-5.

[66] P. Buneman, M. Fernandez, and D. Suciu. UnQL: A Query Language and Algebra
for Semistructured Data Based on Structural Recursion. VLDB Journal, 9(1):
76–110, 2000.

[67] A. b.v. and S. A. Ltd. The SeRQL query language, chapter 5. Aduna b.v., Sirma
AI Ltd., 2002.

[68] D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Y. Vardi. Containment
of Conjunctive Regular Path Queries with Inverse. In Proc. Int. Conf. on the
Principles of Knowledge Representation and Reasoning, pages 176–185, 2000.

[69] D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Y. Vardi. Query Processing
using Views for Regular Path Queries with Inverse. In Proc. ACM Symposium
on Principles of Database Systems, pages 58–66, 2000.

Web and Semantic Web Query Languages: A Survey 123

[70] L. Cardelli and G. Ghelli. TQL: a Query Language for Semistructured Data based
on the Ambient Logic. Mathematical Structures in Computer Science, 14(3):285–
327, 2004. ISSN 0960-1295. doi: http://dx.doi.org/10.1017/S0960129504004141.

[71] L. Cardelli and A. D. Gordon. Anytime, Anywhere: Modal Logics for Mobile
Ambients. In Proc. Symposium on Principles of Programming Languages, pages
365–377. ACM Press, 2000. ISBN 1-58113-125-9. doi: http://doi.acm.org/10.
1145/325694.325742.

[72] J. Carroll, C. Bizer, P. Hayes, and P. Stickler. Named Graphs, Provenance and
Trust. Technical Report HPL-2004-57, HP Labs, 2004.

[73] R. G. G. Cattell, D. K. Barry, M. Berler, J. Eastman, D. Jordan, C. Russell,
O. Schadow, T. Stanienda, and F. Velez, editors. Object Data Standard: ODMG
3.0. Morgan Kaufmann, 2000.

[74] S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Paraboschi, and L. Tanca:. XML-
GL: A Graphical Language for Querying and Reshaping XML Documents. In
Proc. W3C QL’98 – Query Languages, 1998.

[75] S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Paraboschi, and L. Tanca. XML-
GL: a Graphical Language for Querying and Restructuring XML Documents. In
Proc. Int. World Wide Web Conf., 1999.

[76] D. Chamberlin and J. Robie. XQuery Update Facility Requirements. Working
draft, W3C, 2005.

[77] D. Chamberlin, J. Robie, and D. Florescu. Quilt: An XML Query Language for
Heterogeneous Data Sources. In Proc. Workshop on Web and Databases, 2000.

[78] D. Chamberlin, P. Fankhauser, M. Marchiori, and J. Robie. XML Query
(XQuery) Requirements. W3C, 2003.

[79] D. Chamberlin, P. Fankhauser, D. Florescu, M. Marchiori, and J. Robie. XML
Query Use Cases. W3C, 2005.

[80] L. Chen and E. A. Rundensteiner. ACE-XQ: A CachE-aware XQuery Answering
System. In Proc. Workshop on the Web and Databases, 2002.

[81] Z. Chen, H. V. Jagadish, L. V. Lakshmanan, and S. Paparizos. From Tree Pat-
terns to Generalized Tree Patterns: On Efficient Evaluation of XQuery. In Proc.
Int. Conf. on Very Large Databases, 2003.

[82] T. T. Chinenyanga and N. Kushmerick. An Expressive and Efficient Language
for XML Information Retrieval. Journal of the American Society for Information
Science and Technology, 53(6):438–453, 2002.

[83] V. Christophides, S. Cluet, and G. Moerkotte. Evaluating Queries with Gener-
alized Path Expressions. In Proc. ACM SIGMOD International Conference on
Management of Data, pages 413–422, 1996.

[84] V. Christophides, D. Plexousakis, G. Karvounarakis, and S. Alexaki. Declarative
Languages for Querying Portal Catalogs. In Proc. DELOS Workshop: Informa-
tion Seeking, Searching and Querying in Digital Libraries, 2000.

[85] J. Clark. XSL Transformations (XSLT) Version 1.0. W3C, 1999.
[86] J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0. W3C, 1999.
[87] K. Clark. RDF Data Access Use Cases and Requirements. W3C, 2004.
[88] J. Coelho and M. Florido. CLP(Flex): Constraint Logic Programming Applied

to XML Processing. In Proc. Int. Conf. on Ontologies, Databases, and Applica-
tions of Semantics for Large Scale Information Systems, volume 3291 of LNCS.
Springer-Verlag, 2004.

[89] S. Cohen, Y. Kanza, Y. Kogan, Y. Sagiv, W. Nutt, and A. Serebrenik. EquiX—
a search and query language for XML. Journal of the American Society for
Information Science and Technology, 53(6):454–466, 2002. ISSN 1532-2882. doi:
http://dx.doi.org/10.1002/asi.10058.

124 J. Bailey et al.

[90] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv. XSEarch: A Semantic Search
Engine for XML. In Proc. Int. Conf. on Very Large Databases, 2003.

[91] S. Comai, E. Damiani, and P. Fraternali. Computing Graphical Queries over
XML Data. ACM Transactions on Information Systems, 19(4):371–430, 2001.
ISSN 1046-8188. doi: http://doi.acm.org/10.1145/502795.502797.

[92] S. Comai, S. Marrara, and L. Tanca. XML Document Summarization: Using
XQuery for Synopsis Creation. In Proc. Int. Workshop on Database and Expert
Systems Applications, 2004.

[93] G. Conforti, G. Ghelli, A. Albano, D. Colazzo, P. Manghi, and C. Sartiani. The
Query Language TQL. In Proc. Int. Workshop on the Web and Databases, 2002.

[94] J. Cowan and R. Tobin. XML Information Set (Second Edition). W3C, 2004.
URL http://www.w3.org/TR/2004/REC-xml-infoset-20040204/.

[95] I. Davis. RDF Template Language 1.0. Online only, September 2003.
[96] S. Decker, D. Brickley, J. Saarela, and J. Angele. A Query and Inference Service

for RDF. In Proc. W3C QL’98 – Query Languages 1998, December 1998.
[97] D. DeHaan, D. Toman, M. P. Consens, and M. T. zsu. A Comprehensive XQuery

to SQL Translation using Dynamic Interval Encoding. In Proc. ACM SIGMOD
Conf., pages 623–634. ACM Press, 2003. ISBN 1-58113-634-X. doi: http://doi.
acm.org/10.1145/872757.872832.

[98] A. Deutsch and V. Tannen. Containment and Integrity Constraints for
XPath Fragments. In Proc. Int. Workshop on Knowledge Representation meets
Databases, 2001.

[99] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. XML-QL: A
Query Language for XML. In Proc. W3C QL’98 – Query Languages 1998. W3C,
1998.

[100] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A Query Lan-
guage for XML. In Proc. Int. World Wide Web Conf., 1999.

[101] A. Deutsch, Y. Papakonstantinou, and Y. Xu. The NEXT Logical Framework
for XQuery. In Proc. Int. Conf. on Very Large Databases, 2004.

[102] C. Dong and J. Bailey. Optimization of XML Transformations Using Template
Specialization. In Proc. Int. Conf. on Web Information Systems Engineering,
2004.

[103] C. Dong and J. Bailey. Static Analysis of XSLT Programs. In Proc. Australasian
Database Conf., pages 151–160. Australian Computer Society, Inc., 2004. ISBN
1-111-11111-1.

[104] D. Draper, P. Frankhauser, M. Fernndez, A. Malhotra, K. Rose, M. Rys, J. Simon,
and P. Wadler. XQuery 1.0 and XPath 2.0 Formal Semantics. Working draft,
W3C, 2 2005.

[105] D. Eastlake and A. Panitz. Reserved Top Level DNS Names. RFC 2606, IETF,
1999.

[106] A. Eisenberg and J. Melton. An early Look at XQuery. SIGMOD Record, 31
(4):113–120, 2002. ISSN 0163-5808. doi: http://doi.acm.org/10.1145/637411.
637433.

[107] A. Eisenberg and J. Melton. An early Look at XQuery API for JavaTM(XQJ).
SIGMOD Record, 33(2):105–111, 2004. ISSN 0163-5808. doi: http://doi.acm.
org/10.1145/1024694.1024717.

[108] D. Fallside. XML Schema Part 0: Primer. W3C, 2001. URL http://www.

w3.org/TR/xmlschema-0/.
[109] P. Fankhauser. XQuery Formal Semantics: State and Challenges. SIGMOD

Record, 30(3):14–19, 2001. ISSN 0163-5808. doi: http://doi.acm.org/10.1145/
603867.603870.

Web and Semantic Web Query Languages: A Survey 125

[110] P. Fankhauser and P. Lehti. XQuery by the book: The IPSI XQuery Demonstra-
tor. In XML Conference & Exhibition, 2002.

[111] M. Fernandez, A. Malhotra, J. Marsh, M. Nagy, and N. Walsh. XQuery 1.0 and
XPath 2.0 Data Model. W3C, 2004.

[112] M. Fernndez, J. Simon, B. Choi, A. Marian, and G. Sur. Implementing XQuery
1.0 : The Galax Experience. In Proc. Int. Conf. on Very Large Databases, 2003.

[113] R. Fikes, P. Hayes, and I. Horrocks. OWL-QL – A Language for Deductive Query
Answering on the Semantic Web. Journal of Web Semantics, To appear.

[114] D. Florescu, M. Fernandez, A. Levy, and D. Suciu. A Query Language and Pro-
cessor for a Web-site Management System. In Proc. Workshop on Management
of Semi-structured Data, 1997.

[115] D. Florescu, A. Levy, M. Fernandez, and D. Suciu. A Query Language for a
Web-site Management System. SIGMOD Record, 26(3):4–11, 1997.

[116] D. Florescu, A. Grnhagen, and D. Kossmann. XL: An XML Programming Lan-
guage for Web Service Specification and Composition. In Proc. International
World Wide Web Conference, May 2002.

[117] D. Florescu, A. Grnhagen, and D. Kossmann. XL: An XML Programming Lan-
guage for Web Service Specification and Composition. Computer Networks, 42
(5), 2003.

[118] D. Florescu, C. Hillery, D. Kossmann, P. Lucas, F. Riccardi, T. Westmann, M. J.
Carey, and A. Sundararajan. The BEA Streaming XQuery Processor. VLDB
Journal, 13(3):294–315, 2004. ISSN 1066-8888. doi: http://dx.doi.org/10.1007/
s00778-004-0137-1.

[119] J. Frohn, G. Lausen, and H. Uphoff. Access to Objects by Path Expressions and
Rules. In Proc. International Conference on Very Large Databases, 1994.

[120] N. Fuhr and K. Gross. XIRQL: a Query Language for Information Retrieval in
XML Documents. In Proc. ACM Conference on Research and Development in
Information Retrieval, 2001.

[121] L. Garshol. The Linear Topic Map Notation. Online only, 2007.
[122] L. Garshol. tolog–Language tutorial. Online only, 2004.
[123] L. Garshol. tolog 0.1. Technical report, Ontopia, 2003.
[124] L. Garshol. Extending tolog—Proposal for tolog 1.0. In Proc. Extreme Markup

Languages, 2003.
[125] L. Garshol. tolog—A topic map query language. In Proc. XML Europe, 2001.
[126] L. M. Garshol. Living with Topic Maps and RDF. Online only, 2003.
[127] R. Goldman, S. Chawathe, A. Crespo, and J. McHugh. A Standard Textual

Interchange Format for the Object Exchange Model (OEM). Technical report,
Database Group, Stanford University, 1996.

[128] G. Gottlob and C. Koch. Monadic Datalog and the Expressive Power of Lan-
guages for Web Information Extraction. In 51, editor, Journal of the ACM,
volume 1, pages 74–113, 2004.

[129] G. Gottlob and C. Koch. Monadic Queries over Tree-Structured Data. In Proc.
Annual IEEE Symposium on Logic in Computer Science, pages 189–202. IEEE
Computer Society, 2002. ISBN 0-7695-1483-9.

[130] G. Gottlob, C. Koch, and R. Pichler. Efficient Algorithms for Processing XPath
Queries. In Proc. International Conference on Very Large Databases, 2002.

[131] G. Gottlob, C. Koch, and R. Pichler. XPath Query Evaluation: Improving Time
and Space Efficiency. In Proc. International Conference on Data Engineering,
2003.

[132] G. Gottlob, C. Koch, and R. Pichler. The Complexity of XPath Query Evalua-
tion. In Proc. ACM Symposium on Principles of Database Systems, 2003.

126 J. Bailey et al.

[133] J. Grant and D. Backett. RDF Test Cases. W3C, February 2004.

[134] S. Groppe and S. Bttcher. XPath Query Transformation based on XSLT
Stylesheets. In Proc. Int. Workshop on Web Information and Data Manage-
ment, pages 106–110. ACM Press, 2003. ISBN 1-58113-725-7. doi: http:
//doi.acm.org/10.1145/956699.956723.

[135] P. Grosso, E. Maier, J. Marsh, and N. Walsh. XPointer Framework. W3C, 2003.
URL http://www.w3.org/TR/xptr-framework/.

[136] H. L. S. W. R. Group. Jena – A Semantic Web Framework for Java. Online only,
2004.

[137] T. Grust. Accelerating XPath Location Steps. In Proc. ACM SIGMOD Conf.,
2002.

[138] T. Grust, M. V. Keulen, and J. Teubner. Accelerating XPath Evaluation in any
RDBMS. ACM Transactions on Database Systems, 29(1):91–131, 2004. ISSN
0362-5915. doi: http://doi.acm.org/10.1145/974750.974754.

[139] T. Grust, S. Sakr, and J. Teubner. XQuery on SQL Hosts. In Proc. Int. Conf.
on Very Large Databases, 2004.

[140] R. Guha. rdfDB Query Language. Online only, 2000.

[141] R. Guha, O. Lassila, E. Miller, and D. Brickley. Enabling Inferencing. In Proc.
W3C QL’98 – Query Languages 1998, December 1998.

[142] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRANK: Ranked Key-
word Search over XML Documents. In Proc. ACM SIGMOD Conf., 2003.

[143] Z. Guo, M. Li, X. Wang, and A. Zhou. Scalable XSLT Evaluation. In Proc. Asia
Pacific Web Conference, 2004.

[144] P. Haase, J. Broekstra, A. Eberhart, and R. Volz. A Comparison of RDF Query
Languages. In Proc. International Semantic Web Conference, 2004.

[145] M. Harren, M. Raghavachari, O. Shmueli, M. Burke, V. Sarkar, and R. Bor-
dawekar. XJ: Integration of XML Processing into Java. In Proc. International
World Wide Web Conference, 2004.

[146] S. Harris and N. Gibbins. 3store: Efficient Bulk RDF Storage. In Proc. Interna-
tional Workshop on Practical and Scalable Semantic Systems, 2003.

[147] A. Harth. Triple Tutorial. Online only, 2004.

[148] P. Hayes and B. McBride. RDF Semantics. W3C, 2004. URL http://

www.w3.org/TR/rdf-mt/.

[149] J. Hidders. Satisfiability of XPath Expressions. In Int. Workshop on Databse
Programming Languages, 2003.

[150] I. Horrocks, F. van Harmelen, and P. Patel-Schneider. DAML+OIL.
Joint US/EU ad hoc Agent Markup Language Committee, 2001. URL
http://www.daml.org/2001/03/daml+oil-index.html.

[151] I. Horrocks, P. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean.
SWRL: A Semantic Web Rule Language—Combining OWL and RuleML. W3C,
2004. URL http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/.

[152] H. Hosoya and B. Pierce. XDuce: A Typed XML Processing Language. ACM
Transactions on Internet Technology, 3(2):117–148, 2003.

[153] J. Hynynen and O. Lassila. On the Use of Object-Oriented Paradigm in a Dis-
tributed Problem Solver. AI Communications, 2(3):142–151, 1989.

[154] Intellidimension. RDF Gateway. Online only, 2004.

[155] ISO/IEC 13250 Topic Maps. International Organization for Standardiza-
tion, 1999. URL http://www.y12.doe.gov/sgml/sc34/document/0322 files/

iso13250-2nd-ed-v2.pdf.

Web and Semantic Web Query Languages: A Survey 127

[156] S. Jain, R. Mahajan, and D. Suciu. Translating XSLT Programs to Efficient SQL
Queries. In Proc. Int. World Wide Web Conf., pages 616–626. ACM Press, 2002.
ISBN 1-58113-449-5. doi: http://doi.acm.org/10.1145/511446.511526.

[157] B. Johnson and B. Shneiderman. Tree-maps: a Space-Filling Approach to the
Visualization of Hierarchical Information Structures. In Proc. Int. Conf.on Vi-
sualization, pages 284–291, 1991.

[158] G. Karvounarakis, V. Christophides, D. Plexousakis, and S. Alexaki. Querying
RDF Descriptions for Community Web Portals. In Proc. Journees Bases de
Donnees Avancees, 2001.

[159] G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl.
RQL: A Declarative Query Language for RDF. In Proc. International World
Wide Web Conference, May 2002.

[160] G. Karvounarakis, A. Magkanaraki, S. Alexaki, V. Christophides, D. Plexousakis,
M. Scholl, and K. Tolle. Querying the Semantic Web with RQL. Computer
Networks and ISDN Systems Journal, 42(5):617–640, August 2003.

[161] G. Karvounarakis, A. Magkanaraki, S. Alexaki, V. Christophides, D. Plexousakis,
M. Scholl, and K. Tolle. RQL: A Functional Query Language for RDF. In
P. Gray, P. King, and A. Poulovassilis, editors, The Functional Approach to Data
Management, chapter 18, pages 435–465. Springer-Verlag, 2004. ISBN 3-540-
00375-4.

[162] H. Katz. XsRQL: an XQuery-style Query Language for RDF. Online only, 2004.
[163] H. Katz, D. Chamberlin, D. Draper, M. Fernandez, M. Kay, J. Robie, M. Rys,

J. Simeon, J. Tivy, and P. Wadler. XQuery from the Experts: A Guide to the
W3C XML Query Language. Addison-Wesley, 1st edition, 8 2003.

[164] M. Kay. XPath2.0 Programmer’s Reference. John Wiley, 8 2004.
[165] M. Kay. XSLT 2.0 Programmer’s Reference. John Wiley, 3rd edition, 8 2004.
[166] M. Kay. XSLT and XPath Optimization. In XML Europe, 2004.
[167] M. Kay. XSL Transformations (XSLT) Version 2.0. W3C, 2005.
[168] M. Kay, N. Walsh, H. Zongaro, S. Boag, and J. Tong. XSLT 2.0 and XQuery 1.0

Serialization. Working draft, W3C, 2 2005.
[169] S. Kepser. A Simple Proof of the Turing-Completeness of XSLT and XQuery. In

Proc. Extreme Markup Languages, 2004.
[170] M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object Oriented and

Frame Based Languages. Journal of ACM, 42:741–843, 1995.
[171] C. Kirchner, Z. Oian, P. Singh, and J. Stuber. Xemantics: a Rewriting Calculus-

Based Semantics of XSLT. Technical Report A01-R-386, LORIA, 2002.
[172] G. Klyne, J. Carroll, and B. McBride. Resource Description Framework

(RDF): Concepts and Abstract Syntax. W3C, 2004. URL http://www.w3.org/

TR/rdf-concepts/.
[173] C. Koch, S. Scherzinger, N. Schweikardt, and B. Stegmaier. FluXQuery: An

Optimizing XQuery Processor for Streaming XML Data. In Proc. Int. Conf. on
Very Large Databases, 2004.

[174] S. Kraus. Use Cases für Xcerpt: Eine positionelle Anfrage- und Transforma-
tionssprache für das Web. Diplomarbeit/Master thesis, University of Munich,
2004.

[175] R. Ksiezyk. Answer is just a question [of matching Topic Maps]. In Proc. XML
Europe, 2000.

[176] M. Lacher and S. Decker. On the Integration of Topic Maps and RDF Data. In
Proc. Extreme Markup Languages, 2001.

[177] M. Lacher and S. Decker. RDF, Topic Maps, and the Semantic Web. Markup
Languages: Theory and Practice, 3(3):313–331, December 2001.

128 J. Bailey et al.

[178] O. Lassila. BEEF Reference Manual—A Programmer’s Guide to the BEEF
Frame System, Second Version. Technical Report HTKK-TKO-C46, Department
of Computer Science, Helsinki University of Technology, 1991.

[179] O. Lassila. Taking the RDF Model Theory Out for a Spin. In Proc. Semantic
Web Working Symposium, June 2002.

[180] O. Lassila. Ivanhoe: an RDF-Based Frame System. Online only, 2004.

[181] O. Lassila. Enabling Semantic Web Programming by Integrating RDF and Com-
mon Lisp. In Proc. Semantic Web Working Symposium, july 2001.

[182] O. Lassila. Wilbur Query Language Comparison. Online only, 2004.

[183] O. Lassila. Wilbur Semantic Web Toolkit. Online only, 2004.

[184] O. Lassila and R. Swick. Resource Description Framework (RDF) Model
and Syntax Specification. W3C, 1999. URL http://www.w3.org/TR/1999/

REC-rdf-syntax-19990222/.

[185] A. Laux and L. Martin. XUpdate—XML Update Language. XML:DB Initiative,
2000. URL http://xmldb-org.sourceforge.net/xupdate/xupdate-wd.html.

[186] J. Liu and M. Vincent. Query translation from XSLT to SQL. In Proc. Int.
Database Engineering and Applications Symposium, 2003.

[187] M. Liu. A Logical Foundation for XML. In Proc. International Conference on
Advanced Information Systems Engineering. Springer-Verlag, 2002.

[188] B. Ludäscher, R. Himmeroeder, G. Lausen, W. May, and C. Schlepphorst. Man-
aging Semistructured Data with FLORID: A Deductive Object-oriented Perspec-
tive. Information Systems, 23(8):1–25, 1998.

[189] B. Ludäscher, Y. Papakonstantinou, and P. Velikhov. A Brief Introduction to
XMAs. Database Group, University of California, San Diego, 1999.

[190] A. Magkanaraki, G. Karvounarakis, V. Christophides, D. Plexousakis, and
T. Anh. Ontology Storage and Querying. Technical Report 308, Foundation
for Research and Technology Hellas, April 2002.

[191] A. Magkanaraki, V. Tannen, V. Christophides, and D. Plexousakis. Viewing
the Semantic Web Through RVL Lenses. In Proc. International Semantic Web
Conference, October 2003.

[192] D. Maier. Database Desiderata for an XML Query Language. In Proc. W3C
QL’98 – Query Languages 1998, December 1998.

[193] A. Malhotra, J. Melton, and N. Walsh. XQuery 1.0 and XPath 2.0 Functions
and Operators. Working draft, W3C, 2 2005.

[194] F. Manola, E. Miller, and B. McBride. RDF Primer. W3C, 2004. URL http://

www.w3.org/TR/rdf-primer/.

[195] M. Marchiori and J. Saarela. Towards the Semantic Web: Metalog. Online only,
1999.

[196] M. Marchiori and J. Saarela. Query + Metadata + Logic = Metalog. In Proc.
W3C QL’98 – Query Languages 1998, December 1998.

[197] M. Marchiori, A. Epifani, and S. Trevisan. Metalog v2.0: Quick User Guide.
Technical report, W3C, 2004.

[198] W. Martens and F. Neven. Frontiers of tractability for typechecking simple
XML transformations. In Proceedings of the ACM Symposium on Principles of
Database Systems (PODS), pages 23–34, 2004.

[199] M. Marx. Conditional XPath, the First Order Complete XPath Dialect. In Proc.
ACM Symposium on Principles of Database Systems, pages 13–22. ACM, 6 2004.

[200] M. Marx. XPath with Conditional Axis Relations. In Proc. Extending Database
Technology, 2004.

Web and Semantic Web Query Languages: A Survey 129

[201] K. Matsuyama, M. Kraus, K. Kitagawa, and N. Saito. A Path-Based RDF Query
Language for CC/PP and UAProf. In Proc. IEEE Conference on Pervasive
Computing and Communications Workshops, 2004.

[202] N. May, S. Helmer, and G. Moerkotte. Quantifiers in XQuery. In Proc. Int.
Conf. on Web Information Systems Engineering, 2003.

[203] W. May. XPath-Logic and XPathLog: A Logic-Programming Style XML Data
Manipulation Language. Theory and Practice of Logic Programming, 3(4):499–
526, 2004.

[204] D. McGuinness and F. van Harmelen. OWL Web Ontology Language—Overview.
W3C, 2004. URL http://www.w3.org/TR/owl-features/.

[205] E. Meijer and M. Shields. XMLambda: A functional language for constructing
and manipulating XML documents. Online only, 1999.

[206] E. Meijer, W. Schulte, and G. Bierman. Programming with Circles, Triangles
and Rectangles. In Proc. XML Conference and Exhibition, 2003.

[207] H. Meuss and K. U. Schulz. Complete Answer Aggregates for Treelike Databases:
a novel Approach to combine querying and navigation. ACM Transactions on
Information Systems, 19(2):161–215, 2001. ISSN 1046-8188. doi: http://doi.
acm.org/10.1145/382979.383042.

[208] H. Meuss, K. U. Schulz, and F. Bry. Towards Aggregated Answers for Semistruc-
tured Data. In Proc. Int. Conf. on Database Theory, pages 346–360. Springer-
Verlag, 2001. ISBN 3-540-41456-8.

[209] H. Meuss, K. U. Schulz, F. Weigel, S. Leonardi, and F. Bry. Visual Exploration
and Retrieval of XML Document Collections with the Generic System X2. Jour-
nal on Digital Libraries, 2005.

[210] H. Meyer, I. Bruder, A. Heuer, and G. Weber. The Xircus Search Engine. In
INEX Workshop, pages 119–124, 2002.

[211] G. Miklau and D. Suciu. Containment and Equivalence for an XPath Frag-
ment. In Proc. ACM Symposium on Principles of Database Systems, pages 65–
76. ACM Press, 2002. ISBN 1-58113-507-6. doi: http://doi.acm.org/10.1145/
543613.543623.

[212] L. Miller. Inkling: RDF query using SquishQL. Online only, 2004.
[213] L. Miller, A. Seaborne, and A. Reggiori. Three Implementations of SquishQL, a

Simple RDF Query Language. In Proc. International Semantic Web Conference,
June 2002.

[214] T. Milo, D. Suciu, and V. Vianu. Typechecking for XML transformers. In
Proceedings of the Nineteenth ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, May 15-17, 2000, Dallas, Texas, USA, pages
11–22. ACM, 2000. ISBN 1-58113-214-X.

[215] K. D. Munroe and Y. Papakonstantinou. BBQ: A Visual Interface for Integrated
Browsing and Querying of XML. In Proc. Conf. on Visual Database Systems,
pages 277–296. Kluwer, B.V., 2000. ISBN 0-7923-7835-0.

[216] M. Murata, A. Tozawa, M. Kudo, and S. Hada. XML Access Control using Static
Analysis. In Proc. ACM Conf. on Computer and Communications Security, pages
73–84. ACM Press, 2003. ISBN 1-58113-738-9. doi: http://doi.acm.org/10.1145/
948109.948122.

[217] M. Nilsson, W. Siberski, and J. Tane. Edutella Retrieval Service: Concepts and
RDF Syntax. Online only, June 2004.

[218] M. Odersky. Report on the Programming Language Scala. Technical report,
Ecole Polytechnique Federale de Lausanne, 2002.

[219] U. Ogbuji. Versa by example. Online only, 2004.

130 J. Bailey et al.

[220] U. Ogbuji. Thinking XML: Basic XML and RDF techniques for knowledge man-
agement: Part 6: RDF Query using Versa. Online only, April 2002.

[221] R. Oldakowski and C. Bizer. RAP: RDF API for PHP. In Proc. International
Workshop on Interpreted Languages, 2004.

[222] B. Oliboni and L. Tanca. A Visual Language should be easy to use: a Step
Forward for XML-GL. Information Systems, 27(7):459–486, 2002. ISSN 0306-
4379. doi: http://dx.doi.org/10.1016/S0306-4379(02)00007-8.

[223] M. Olson and U. Ogbuji. Versa Specification. Online only, 2003.
[224] D. Olteanu. Evaluation of XPath Queries against XML Streams. Disserta-

tion/Ph.D. thesis, University of Munich, 1 2005.
[225] D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath: Looking Forward. In

Proc. EDBT Workshop on XML-Based Data Management, volume 2490 of LNCS.
Springer-Verlag, 3 2002.

[226] P. O’Neil, E. O’Neil, S. Pal, I. Cseri, G. Schaller, and N. Westbury. ORDPATHs:
Insert-friendly XML Node Labels. In Proc. ACM SIGMOD Conf., pages 903–
908. ACM Press, 2004. ISBN 1-58113-859-8. doi: http://doi.acm.org/10.1145/
1007568.1007686.

[227] K. Ono, T. Koyanagi, M. Abe, and M. Hori. XSLT Stylesheet Generation by
Example with WYSIWYG Editing. In Proc. Symposium on Applications and
the Internet, 2002.

[228] N. Onose and J. Simeon. XQuery at your Web Service. In Proc. Int. World
Wide Web Conf., pages 603–611. ACM Press, 2004. ISBN 1-58113-844-X. doi:
http://doi.acm.org/10.1145/988672.988754.

[229] S. Palmer. Pondering RDF Path. Online only, 2003.
[230] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object Exchange across

Heterogeneous Information Sources. In Proc. International Conference on Data
Engineering, pages 251–260, 1995.

[231] P. Patel-Schneider and J. Simeon. The Yin/Yang Web: XML Syntax and RDF
Semantics. In Proc. International World Wide Web Conference, May 2002.

[232] S. Pepper and G. Moore. XML Topic Maps (XTM) 1.0. TopicMaps.org, 2001.
URL http://www.topicmaps.org/xtm/index.html.

[233] E. Pietriga, J.-Y. Vion-Dury, and V. Quint. VXT: a Visual Approach to XML
Transformations. In Proc. ACM Symposium on Document Engineering, pages
1–10. ACM Press, 2001. ISBN 1-58113-432-0. doi: http://doi.acm.org/10.1145/
502187.502189.

[234] R. Pinchuk. Toma - Topic Map Query Language. Online only, 2004.
[235] M. Plusch. Water: Simplified Web Services and XML Programming. Wiley, 2002.

ISBN 0764525360.
[236] E. Prud’hommeaux. Algae Extension for Rules. Online only, 2004.
[237] E. Prud’hommeaux. Algae RDF Query Language. Online only, 2004.
[238] E. Prud’hommeaux and A. Seaborne. BRQL – A Query Language for RDF.

Online only, 2004.
[239] E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF, Febru-

ary 2005.
[240] A. Reggiori and D.-W. van Gulik. RDFStore—Perl API for RDF Storage. Online

only, 2004.
[241] D. Reynolds. RDF-QBE: a Semantic Web Building Block. Technical Report

HPL-2002-327, HP Labs, 2002.
[242] J. Robie. The Syntactic Web: Syntax and Semantics on the Web. In Proc. XML

Conference and Exposition, December 2001.

Web and Semantic Web Query Languages: A Survey 131

[243] J. Robie. Updates in XQuery. In XML Conference & Exhibiton, 2001.
[244] J. Robie, J. Lapp, and D. Schach. XML Query Language (XQL). In Proc. W3C

QL’98 – Query Languages 1998, December 1998.
[245] J. Robie, E. Derksen, P. Frankhauser, E. Howland, G. Huck, I. Macherius, M. Mu-

rata, M. Resnick, and H. Schning. XQL (XML Query Language). Online only,
1999.

[246] J. Robie, L. M. Garshol, S. Newcomb, M. Fuchs, L. Miller, D. Brickley,
V. Christophides, and G. Karvounarakis. The Syntactic Web: Syntax and Se-
mantics on the Web. Markup Languages: Theory and Practice, 3(4):411–440,
2001.

[247] S. Schaffert. Xcerpt: A Rule-Based Query and Transformation Language for the
Web. Dissertation/Ph.D. thesis, University of Munich, 2004.

[248] S. Schaffert and F. Bry. Querying the Web Reconsidered: A Practical Introduc-
tion to Xcerpt. In Proc. Extreme Markup Languages, August 2004.

[249] S. Schott and M. L. Noga. Lazy XSL Transformations. In Proc. ACM Symposium
on Document Engineering, pages 9–18. ACM Press, 2003. ISBN 1-58113-724-9.
doi: http://doi.acm.org/10.1145/958220.958224.

[250] T. Schwentick. XPath Query Containment. SIGMOD Record, 2004.
[251] A. Seaborne. RDQL – RDF Data Query Language. Online only, 2004.
[252] A. Seaborne. A Programmer’s Introduction to RDQL. Online only, 2002 April.
[253] A. Seaborne. RDQL – A Query Language for RDF. Online only, January 2004.
[254] D. Seipel. Processing XML-Documents in Prolog. In Workshop on Logic Pro-

gramming, 2002.
[255] D. Seipel and J. Baumeister. Declarative Methods for the Evaluation of Ontolo-

gies. KI–Knstliche Intelligenz, 4:51–57, 2004.
[256] D. Seipel, J. Baumeister, and M. Hopfner. Declaratively Querying and Visualiz-

ing Knowledge Bases in XML. In Proc. Int. Conf. on Applications of Declarative
Programming and Knowledge Management, 2004.

[257] R. Shearer. REX evaluation. Online only, 2004.
[258] J. E. Simpson. XPath and XPointer. O’Reilly, 1st edition, 9 2002.
[259] M. Sintek and S. Decker. TRIPLE—An RDF Query, Inference, and Transfor-

mation Language. In Proc. Deductive Database and Knowledge Management,
October 2001.

[260] M. Sintek and S. Decker. TRIPLE—A Query, Inference, and Transformation
Language for the Semantic Web. In Proc. International Semantic Web Confer-
ence, June 2002.

[261] M. Smith, C. Welty, and D. McGuinness. OWL Web Ontology Language—Guide.
W3C, 2004. URL http://www.w3.org/TR/owl-guide/.

[262] A. Souzis. RxPath. Online only, 2004.
[263] A. Souzis. RxPath Specification Proposal. Online only, 2004.
[264] A. Souzis. RxSLT. Online only, 2004.
[265] A. Souzis. RxUpdate. Online only, 2004.
[266] D. Steer. TreeHugger 1.0 Introduction. Online only, 2003.
[267] P. Stickler. CBD—Concise Bounded Description. Online only, 2004.
[268] I. Tatarinov and A. Halevy. Efficient Query Reformulation in peer Data Man-

agement Systems. In Proc. ACM SIGMOD Conf., pages 539–550. ACM Press,
2004. ISBN 1-58113-859-8. doi: http://doi.acm.org/10.1145/1007568.1007629.

[269] J. Tennison. XSLT and XPath On The Edge. John Wiley, 10 2001.

132 J. Bailey et al.

[270] A. Theobald and G. Weikum. The XXL Search Engine: Ranked Retrieval of
XML Data using Indexes and Ontologies. In Proc. ACM SIGMOD Conf., pages
615–615. ACM Press, 2002. ISBN 1-58113-497-5. doi: http://doi.acm.org/10.
1145/564691.564768.

[271] K. Tolle and F. Wleklinski. easy RDF Query Language (eRQL). Online
only, 2004. URL http://www.dbis.informatik.uni-frankfurt.de/∼tolle/
RDF/eRQL/.

[272] A. Tozawa. Towards Static Type Checking for XSLT. In Proc. ACM Symposium
on Document Engineering, pages 18–27. ACM Press, 2001. ISBN 1-58113-432-0.
doi: http://doi.acm.org/10.1145/502187.502191.

[273] A. Trombetta and D. Montesi. Equivalences and Optimizations in an Expressive
XSLT Fragment. In Proc. Int. Database Engineering and Applications Sympo-
sium, 2004.

[274] L. Villard and N. Layada. An Incremental XSLT Transformation Processor for
XML Document Manipulation. In Proc. Int. World Wide Web Conf., pages 474–
485. ACM Press, 2002. ISBN 1-58113-449-5. doi: http://doi.acm.org/10.1145/
511446.511508.

[275] P. Wadler. Two semantics for XPath. Online only, 2000.

[276] M. Wallace and C. Runciman. Haskell and XML: Generic Combinators or Type-
Based Translation. In Proc. International Conference on Functional Program-
ming, 1999.

[277] N. Walsh. RDF Twig: accessing RDF graphs in XSLT. In Proc. Extreme Markup
Languages, 2003.

[278] J. W. W. Wan and G. Dobbie. Mining Association Rules from XML data using
XQuery. In Proc. Workshop on Australasian Information Security, Data Mining
Web Intelligence, and Software Internationalisation, pages 169–174. Australian
Computer Society, Inc., 2004.

[279] S. Waworuntu and J. Bailey. XSLTGen: A System for Automatically Generating
XML Transformations via Semantic Mappings. In Proc. Int. Conf. on Conceptual
Modeling, 2004.

[280] F. Weigel. A Survey of Indexing Techniques for Semistructured Documents.
Master’s thesis, Institute for Informatics, University of Munich, http://www.

pms.ifi.lmu.de/index.html\#PA Felix.Weigel, 2002.

[281] N. Wiegand. Investigating XQuery for Querying across Database Object Types.
SIGMOD Record, 31(2):28–33, 2002. ISSN 0163-5808. doi: http://doi.acm.org/
10.1145/565117.565122.

[282] U. Wiger. XMErl—Interfacing XML and Erlang. In Proc. International Erlang
User Conference, 2000.

[283] A. Wilk and W. Drabent. On Types for XML Query Language Xcerpt. In Proc.
Workshop on Principles and Practice of Semantic Web Reasoning, LNCS 2901.
Springer-Verlag, 2003.

[284] C. Wilper. RIDIQL Reference. Online only, 2004.

[285] P. T. Wood. On the Equivalence of XML Patterns. In Proc. Int. Conf. on Com-
putational Logic, pages 1152–1166. Springer-Verlag, 2000. ISBN 3-540-67797-6.

[286] C. Zaniolo. The Database Language GEM. In Proc. ACM SIGMOD Conf., 1983.

[287] X. Zhang, B. Pielech, and E. A. Rundesnteiner. Honey, I shrunk the XQuery!:
an XML Algebra Optimization Approach. In Proc. International Workshop on
Web Information and Data Management, pages 15–22. ACM Press, 2002. ISBN
1-58113-593-9. doi: http://doi.acm.org/10.1145/584931.584936.

Web and Semantic Web Query Languages: A Survey 133

[288] X. Zhang, K. Dimitrova, L. Wang, M. E. Sayed, B. Murphy, B. Pielech,
M. Mulchandani, L. Ding, and E. A. Rundensteiner. Rainbow: multi-XQuery
Optimization using Materialized XML Views. In Proc. ACM SIGMOD Conf.,
pages 671–671. ACM Press, 2003. ISBN 1-58113-634-X. doi: http://doi.acm.
org/10.1145/872757.872861.

[289] M. Zoof. Query By Example. In Proc. AFIPS National Computer Conference,
1975.

[290] M. Zoof. Query By Example: A Data Base Language. IBM Systems Journal, 16
(4):324–343, 1977.

Evolution and Reactivity for the Web

José Júlio Alferes1 and Wolfgang May2

1 Centro de Inteligência Artificial - CENTRIA, Universidade Nova de Lisboa,
2829-516 Caparica, Portugal

jja@di.fct.unl.pt
2 Institut für Informatik, Universität Göttingen, 37083 Göttingen, Germany

may@informatik.uni-goettingen.de

Abstract. The Web and the Semantic Web, as we see it, can be un-
derstood as a “living organism” combining autonomously evolving data
sources, each of them possibly reacting to events it perceives. Rather
than a Web of data sources, we envisage a Web of Information Systems,
where each such system, besides being capable of gathering information
(querying persistent data, as well as “listening” to volatile data such as
occurring events), is capable of updating persistent data, communicating
the changes, requesting changes of persistent data in other systems, and
being able to react to requests from other systems. The dynamic char-
acter of such a Web requires declarative languages and mechanisms for
specifying the evolution of the data.

In this course we will talk about foundations of evolution and reactive
languages in general, and will then concentrate on some specific issues
posed by evolution and reactivity in the Web and in the Semantic Web.

1 Introduction

Use of the Web today –commonly known as the “World Wide Web”– mostly
focuses on the page-oriented perspective: most of the Web consists of browsable
HTML pages only. From this point of view, the Web can be seen as a graph
that consists of the resources as nodes, and the hyperlinks form the edges. Here,
queries are stated against individual nodes, or against several nodes. As such, the
Web is mainly seen from its static perspective of autonomous sources, whereas
the behavior of the sources, including active interaction of resources does not
play any important role here.

But there is more on the Web of today than HTML pages. Leaving the su-
perficial point of view of HTML pages, the Web can be seen as a set of data
sources, some of which are still browsing-oriented, but there are also database-
like resources that can actually be queried. Moreover, there are specialized in-
formation sources like Web Services and Portals.

With these representations, the perspective may shift more to the idea of a
Web consisting of (a graph of) information systems. In these information sys-
tems, data extraction may be thought not only in terms of local queries, but also
in terms of global queries that are stated against the Web, or against a group

, LNCS 3564, pp. 134–172, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
N. Eisinger and J. Ma�luszyński (Eds.): Reasoning Web 2005

Evolution and Reactivity for the Web 135

(or community) of nodes on the Web. Given the highly heterogeneous and au-
tonomous characteristics of the Web, this requires appropriate query languages,
and a way to deal with the integration of data from the various sources.

But such an infrastructure of autonomous sources should allow for more than
querying. Consider a set of sources of travel agencies and airline companies. It
is important to be capable of querying such a set for, e.g. timetables of flights,
availability of flight tickets, etc. But a Web consisting of information systems
should allow for more. For example: it should allow for drawing conclusions
based on knowledge (e.g. in the form of derivation rules) available on each node;
it should allow for making reservations via a travel agency, and automatically
make the corresponding airline company (and also other travel agencies) aware of
that; it should allow airline companies to change their selling policies, and have
travel agencies automatically aware of those changes; etc. The Web, as we see it,
with such capabilities can be seen as forming an active, “living” infrastructure
of autonomous systems, where reactivity, evolution and its propagation plays a
central role.

In this course, we discuss issues related to this question. The focus and the
message of the course is on the concepts – specific formalisms are given as ex-
amples and illustrations. Section 2 classifies different kinds of evolution and
reactivity in the (Semantic) Web and motivates the use of rules, especially ECA
rules as the target formalism. Section 3 discusses foundations for modeling and
reasoning about temporal issues, i.e., formalizing temporal structures, specifica-
tion of actions and processes, and events. These concepts are then combined in
Section 4 where existing rule-based approaches to evolution and reactivity are
discussed. The application of these concepts to the Semantic Web is then dis-
cussed in Section 5. A proposal how such a framework could look like is sketched
in Section 6.

2 Concepts in Evolution and Reactivity in the Web

2.1 Local and Global Reactivity and Evolution

In contrast to the conventional (Hypertext) Web, the Semantic Web consists
of active nodes that are able to answer queries, to evolve and to communicate.
Evolution of the Web is a twofold aspect: on today’s Web, evolution means
mainly evolution of individual Web sites that are updated locally. In contrast,
considering the Web as a “living organism” that consists of autonomous data
sources, but that will show a global “behavior” leads to a notion of evolution of
the Web as cooperative evolution of (the state of) its individual resources.1

Below, we incrementally introduce such behavior and sketch the concepts that
arise: simple reactive behavior (non-state-changing), local evolution of nodes (i.e.
state-changing), and collaboration of nodes, both non-state-changing and state-
changing.

1 For further details on the global behavior, and its relation to querying and evolution
aspects see [42].

136 J.J. Alferes and W. May

Pure Reactivity Without Evolution. The most basic and primitive activity
on the Web is query answering. From the point of view of the user, querying is
a static issue: there is no actual dynamic aspect in it (except possibly a delay).
Nevertheless, from the point of view of the resources, there comes reactivity into
play: when answering queries, the resources must answer in reaction to a query
message, and in case that the query is answered with cooperation of several
resources, the resources do also exchange messages.

Local Updates and Evolution. The state of such a Web node can be classified
into three conceptual levels: facts (e.g. in XML, RDF or OWL; divided into data
and metadata); a knowledge base given by derivation rules; and behavior (e.g.,
reaction patterns), e.g. of a Web Service.

When updating the Conventional Web, the update is expressed as a specific
update operation on a specific Web site, using e.g. an XML update language.
For the Semantic Web data formats, RDF and OWL, also update languages are
available. Here, simple data updates and ontology evolution has to be distin-
guished.

Global Evolution. The power of the Semantic Web raises from the combina-
tion of the knowledge and behavior of sets of data sources. Especially, as an
intelligent Web, a cooperative evolution of (the state of) its individual nodes is
required.

Thus, having data flow and dependencies between Web sites, besides a plain
communication mechanism, mechanisms to maintain consistency between Web
sites by update propagation are required. Update propagation consists of (i)
propagating an update, and (ii) processing/materializing the update at another
Web resource. The latter, as we have just seen, is solved by local update lan-
guages. So, the remaining problem turns out to be how to communicate changes
on the (Semantic) Web. Often a change is not propagated as an explicit update,
but there must be “evolution” of “the Web” as a consequence of a change to
some information.

For this, it is clear that we need a “global” language for communicating
changes, and communication strategies for how to propagate pieces of informa-
tion through the Semantic Web, seeing it globally as the union of all information
throughout the Web. In it, the Semantic-property of the Web is crucial for au-
tomatically mediating between several actual schemata.

In this setting, evolution on the Web takes place by: either local changes in
data sources via updates; or local evolution of Web Services by reaction to events
on the Web due to their own, specified, behavior.

2.2 Event-Condition-Action (Reactive) Rules for Evolution

Following a well-known and successful paradigm, we propose to use rules, more
specifically, reactive rules according to the Event-Condition-Action (ECA) para-
digm for the specification of reactivity. An important advantage of them is that
the content of the communication can be separated from the generic semantics

Evolution and Reactivity for the Web 137

of the rules themselves. Cooperative and reactive behavior is then based on
events (e.g., an update at a data source where possibly others depend on). The
depending resources detect events (either they are delivered explicitly to them,
or they poll them via the communication means of the Web; see next section)
Then, conditions are checked (either simple data conditions, or e.g. tests if the
event is relevant, trustable etc.), which are queries to one or several nodes and
are to be expressed in the proposed query framework. Finally, an appropriate
action is taken (e.g., updating own information accordingly). The action part can
also be formulated as a transaction whose ACID properties ensure that either all
actions in a transaction are performed, or nothing of is done; this also allows to
check postconditions. In the literature, ECA rules are also referred to as triggers,
active rules, or reactive rules.

The language for the ECA rules must comprise a language for describing
events (in the “Event” part; there are atomic events, such as simple data up-
dates or incoming messages, and composite events such as “if first A happens
and then B”), the language for queries (in the “Condition” part), and a language
for actions (including updates) and transactions (in the “Action” part). An im-
portant requirement here is that event specification and detection be as much
declarative and application-level as possible. This point calls for modular design
of the sublanguages and the ECA language, and the respective processors.

Usually, ECA rules are patterns that contain variables to be bound in the
event part that are communicated to the condition and action parts.
A well-known example for simple ECA rules are e.g. the SQL triggers:

ON database-update WHEN condition BEGIN pl/sql-fragment END

where the values of the updated tuple are accessible as old and new.
These triggers react on local events in the database. For cooperative evolution

and reactivity on the Web, events and other information must be communicated.

2.3 Communication Structure and Propagation of Knowledge

Communication on the Web as a living organism consisting of autonomous
sources takes place as peer-to-peer communication. In this setting, evolution takes
place if a resource (or its knowledge) evolves locally, and another resource that
depends upon it also evolves (as a reaction). The communication can be classified
by communication strategies.

– Push: an information source informs a client of the updates. A directed,
targeted propagation of changes by the push strategy is only possible along
registered communication paths. It takes place by explicit messages, that can
be update messages, or just information about what happened. In this case,
control flow and data flow are in parallel and synchronous.

– Pull: resources that obtain information from a source can pull updates by ei-
ther explicitly asking whether it executed some updates recently, or can regu-
larly update themselves based on queries against the source. Communication
is based on queries and answers (that are in fact again sent as messages).

138 J.J. Alferes and W. May

In this case, control flow and data flow are antiparallel, which has obvious
drawbacks.

The above basic forms describe direct communication. Advanced communication
strategies are then based on these, providing more efficient data and control flow:

– broadcast: general push to all peers.
– blackboard: separates the data source from answering of pull -queries and al-

lows for a pre-filtering by a short push (to the blackboard) from where clients
pull.

– publish-and-subscribe services (see e.g. [60]) receive messages from publish-
ers and notify subscribers if the messages match the subscriptions. Here,
the communication follows a pure push pattern, i.e., information (published
items) are pushed from their originators to the pub/sub service, and derived
information (notification about changes) is pushed from the pub/sub service
to its subscribers.

– continuous query systems (see e.g., NiagaraCQ [14]) allow users to “register”
queries at the service that then continuously evaluates the query (together
with other queries) against the source, and informs the user about the an-
swer (or when the answer changes). Here, communication combines pull and
push: the CQ system pulls information from sources, and pushes derived
information to the end user.

Note that both in the case of push and pull strategies, the actual reactivity, i.e.,
how the instance that is informed reacts on an event, can be expressed by ECA
rules as described in the previous section:

– push: on an event (update), send a message (control flow + data flow).
– pull: regularly send a query (control flow) and, on a query, send an answer

(data flow).
– The behavior of pub/sub and continuous query systems can also be expressed

by simple ECA rules.

3 Foundations of Evolution and Reactivity

In the previous section we described the concepts that enable evolution and
reactivity on the Semantic Web. In this section, we describe the theoretical
background and formal means for analyzing and describing these concepts2.

For dealing with evolution, be it in the Web or in any other context, a formal
understanding of how the knowledge evolves and how to represent such evolution
is needed. We start this section by describing foundational work on models for
(temporal) knowledge evolution, that considers sequences of states. We then
proceed by presenting temporal logics, that allow to reason about evolution in
these models. When considering evolving sequences of states, the actions that

2 A more complete survey on these foundational issues can be found at [1].

Evolution and Reactivity for the Web 139

cause transitions of states are also relevant. For this, in Sections 3.3 and 3.4,
we show logics for dealing with transition systems and formalisms for defining
(complex) actions, respectively. Finally, we focus our attention on events, which
in general are manifestations (i.e. visible consequences) of action execution, that
may trigger evolution.

All these concepts are combined in Section 4, where existing rule-based ap-
proaches for evolution and reactivity are exposed.

3.1 Models of Dynamics and Temporal Structures

Kripke structures serve as a generic model-theoretic framework for multi-state
structures: the semantics of the individual states is given by some single-state
interpretations, and the Kripke structure provides the “infrastructure” that con-
nects the states. Some (arbitrary) logic is used for the single-state interpretations,
and this logic is extended, in a modular way, with additional concepts for han-
dling the multi-state aspects. This can be done by modalities (in our situation,
temporal modalities, but modalities of knowledge and belief are also often used).

Many approaches to multi-state reasoning use Kripke structures explicitly;
here, temporal logics will be described. Other, often specialized, formalisms ex-
tend single-state formalisms with a notion of state (in which Kripke structures
are –more or less explicitly– the model of choice).

Yet other formalisms –although basically mappable to Kripke semantics–
put emphasis on the dynamic aspects, whereas the individual states and their
properties become less important (Transaction Logic, and, even much stronger,
process calculi).

Kripke Structures. Assume some logic (e.g., first-order logic) to describe in-
dividual states. A (first-order) Kripke structure is a triple K = (G,R,M) where
G is a set of states (to be interpreted as states or possible worlds), R ⊆ G ×G is
an accessibility relation, and M is a function which maps every state g ∈ G to a
(first-order) structure M(g) = (M(g),U(g)) over Σ with universe U(g). G and
R are called the frame of K. A path p in a Kripke structure K = (G,R,M) is a
sequence p = (g0, g1, g2, . . .), gi ∈ G with R(gi, gi+1) holding for all i.

As mentioned above, Kripke structures provide just a multi-state “infrastruc-
ture”: a suitable single-state-logic must then be chosen for an application, which
is then extended to Kripke structures. Temporal extensions, where the Kripke
structure is interpreted as a temporal structure, are suitable for our project.
Even in the area of temporal applications, there are different interpretations of
Kripke structures.

Labeled Transition Systems/Path Structures. Labeled transition systems
are one of the fundamental concepts for modeling processes (cf. [51], [61]). We
present LTSs here (semantically equivalent to the original literature) as an exten-
sion of the above Kripke Structures. A labeled transition system (LTS) consists
of a set G of states/configurations, a set A of actions/labels (elementary actions,

140 J.J. Alferes and W. May

or programs), and, for every a ∈ A, R(a) ⊆ G × G is a binary relation that
provides the interpretation of actions (i.e., the labeled accessibility relation).

M(g0)

g0

M(g1)

g1

M(g2)

g2 . . .

a1 a2

R(a1) = {(g0, g1), . . .} and R(a1) = {(g1, g2), . . .}

Fig. 1. Excerpt of a Kripke Structure as an LTS

Another view of the same thing are path structures. The idea goes back to
propositional Dynamic Logic [32], the term path model came up with Process
Logic [34], where especially extended, derived accessibility relations for compos-
ite actions/programs/processes are defined (see Section 3.3).

3.2 Temporal Logics

Temporal –and other– model logics provide modal operators for modalizing the
semantics of formulas of an underlying single-state logic. Due to the historical
development of modal logics, the modal operators � and � were introduced.
�F stands for “F is necessary true”, resp. “F holds in all possible worlds”,
and �F for “F is possibly true”, resp. “there is some possible world where F
holds”. Translated to modal logic of time (temporal logic), the operators are
interpreted as: �F – “always” (F holds in all subsequent states), and �F –
“sometimes” (F eventually holds). For reasoning in temporal Kripke structures,
there are two alternatives: linear time considers a single path, whereas branching
time considers a whole tree-like structure.

Linear Time Temporal Logics. The most intuitive idea for interpreting tem-
poral logic is a sequence of states. Here, the basic operators of temporal modal
logic are others, having a pure temporal semantics: ◦ (“nexttime”) and until:

– ◦F : in the next state, F holds.
– F until G: there is a subsequent state where G holds, and in all states between

now and this state, F holds.

The semantics of the temporal modal operators � and �, is equivalently defined
via until (note that there is a also an inductive definition based on ◦ which is
typically used for model checking-like approaches):

– �P := true until P and �P := ¬�¬P .

The Logics PLTL and FOTL. Linear Temporal Logic LTL (as propositional
PLTL or as first-order FOTL) extends propositional logic with the above tem-
poral operators: each state is a propositional or first-order interpretation, and

Evolution and Reactivity for the Web 141

the states are connected as a linear Kripke structure (or, a single path in a
branching Kripke structure is considered).
The language of LTL formulas is defined as follows:

– Every (propositional or first-order) formula is an LTL formula.
– With F and G LTL formulas, ◦F , �F , �F and (F until G) are LTL formulas.

The satisfaction relation |=LTL (for short also denoted by |=) is defined according
to the inductive definition of the syntax with respect to a propositional or first-
order (infinite) linear Kripke structure K = (G = {g1, g2, . . .}, {(n, n+1) | n ∈
IN},M), based on the propositional satisfaction relation |=PL or |=FOL:
Let g = gi a state in K, A an atomic formula, F and G LTL formulas and, in
the first-order case, χ a variable assignment. Then,

(g, χ) |= A :⇔ (M(g), χ) |=PL/FOL A ,

(g, χ) |= ¬F :⇔ not (g, χ) |= F ,

(g, χ) |= F ∧G :⇔ (g, χ) |= F and (g, χ) |= G ,

(gi, χ) |= ◦F :⇔ (gi+1, χ) |= F ,

(gi, χ) |= F until G :⇔ there is a j ≥ i s.t. (gj , χ) |= G
and for all k : i ≤ k < j, (gk, χ) |= F .

Branching Time Temporal Logics. Applying the classical temporal modal-
ities � and � (without ◦ and until) in a branching structure leads to surprising
interpretations: Whereas in linear time logic, g |= �F means that F will eventu-
ally hold in the possible future (“sometimes”), the same formula for branching
time means that there is a future, where F will eventually hold (“not never”).
For this aspect and the (dis)advantages of linear vs. branching time logic, see [37]
(L. Lamport: “’Sometimes’ is Sometimes ’Not Never’”) and [20] (E. A. Emerson
and C.-L. Lei: “Modalities for Model Checking: Branching Time Strikes Back”)
and several other papers.

The Logic CTL. For combining the expressiveness of both linear and branching
time logic, the logics UB (unified branching time) [5] and CTL (Computation
Tree Logic) [16] have been introduced:

– temporal modal operators ◦, �, � and until (although � and � can be ex-
pressed by until, they are used here as “basic” operators to obtain the syntax
definition described below),

– an existential path quantifier E (“there exists a path such that ...”) and a
universal path quantifier A (“on all paths”).

CTL distinguishes between two different types of formulas: state formulas that
hold in a state (all first-order formulas are state-formulas), and path formulas,
that hold on paths, i.e., on sequences of states.

The language of CTL-formulas does not allow arbitrary combinations, but is
defined as follows:

142 J.J. Alferes and W. May

– Every first-order formula is a CTL-state formula.
– With F and G CTL-state formulas, ¬F , F ∧ G and F ∨ G are CTL-state

formulas.
– With F a CTL-state formula and x a variable, ∀x : F and ∃x : F are CTL-

state formulas.
– With F and G CTL-state formulas, ◦F , �F , �F and (F until G) are CTL-

path formulas.
– With P a CTL-path formula, ¬P is a CTL-path formula.
– With P a CTL-path formula, AP and EP are CTL-state formulas.
– Every CTL-state formula is a CTL-formula.

With the above definition, in CTL every (possibly negated) modal operator is
immediately preceded by a path quantifier.

The satisfaction relation |=CTL (for short also denoted by |=) is defined ac-
cording to the inductive definition of the syntax with respect to a first-order
Kripke structure K = (G,R,M), based on the first-order satisfaction relation:

Let g ∈ G be a state, p = (g0, g1, . . .) a path in K, A an atomic first-order
formula, F and G CTL-state formulas, P a CTL-path formula and χ a variable
assignment. Then,

(g, χ) |= A :⇔ (M(g), χ) |=PL/FOL A ,

(g, χ) |= ¬F :⇔ not (g, χ) |= F ,

(g, χ) |= F ∧G :⇔ (g, χ) |= F and (g, χ) |= G ,

(p, χ) |= ◦F :⇔ (g1, χ) |= F ,

(p, χ) |= F until G :⇔ there is an i ≥ 0 s.t. (gi, χ) |= G and
for all j : 0 ≤ j < i, (gi, χ) |= F ,

(p, χ) |= ¬P :⇔ not (p, χ) |= P ,

(g, χ) |= EP :⇔ there is a path p =(g = g0, g1, . . .) in K s.t. (p, χ) |=P .

The semantics of the modal operators �, �, and of the path quantifier A is
defined via until and E:

�P := true until P , �P := ¬�¬P , AP := ¬E¬P .

Extensions. There exist multiple extensions of CTL in different directions. The
CTL family itself provides even more expressiveness,

– CTL+ and CTL� extend to arbitrary combinations of temporal operators
to path formulas; especially, “fairness” requirements cannot be expressed in
CTL, but need more complex path formulas:
• “Justice” requires that an action that is executable continuously (“wait-

ing”) from a certain state on, is eventually executed:
CTL�: A((��(Action waiting))→ �(Action is executed))
(carefully note the implication semantics A→ B ⇔ ¬A∨B of this formula)

Evolution and Reactivity for the Web 143

• “Compassion (strong Fairness)” is the (stronger) requirement that every
action that is executable/asked for infinitely often, is also eventually exe-
cuted: CTL�: A((��(Action waiting))→ �(Action is executed))

– The semantics of the accessibility relation wrt. execution of actions is con-
sidered e.g., in Dynamic Logic and Hennessy-Milner-Logic (see subsequent
sections).

– Past Tense Logics add past-time temporal operators: • (previous state), �
(sometimes in the past), � (always in the past), and since (e.g., A since B),
symmetrical to the future tense operators.
In [22], it is shown that in the propositional case, past-tense connectives do
not increase the expressiveness of temporal logic. The use of modal temporal
logic for executable process specifications is described in [23], quite similar
to Transaction Logic (see Section 4.3).

3.3 Logics for Labeled Transition Systems and Path Structures

The above approaches formalize a sequence of states without any special se-
mantics for the transition. When considering evolving sequences of states, the
transition is also relevant. In approaches taking this into account, in general
there is a set A of (atomic) actions with which the transitions are labeled. The
labeled transition relation leads straightforwardly to polymodal logics (i.e., each
modality is also labeled with actions).

The following logics use not only atomic actions in their formulas, but de-
fine also restricted languages for composite actions or programs based on these
actions.

Dynamic Logic. Dynamic Logic [32, 33, 52] provides a logic for labeled transi-
tion systems. The main difference between CTL and Dynamic Logic lies in the
scope of the modalities: There, the modal operators � and � are interpreted
in their historical sense as “possibly” and “necessarily”, i.e., they do not apply
to paths here, but only to single transitions. The modal operators are labeled
with programs given by the algebra 〈A, {; ,∪,� }〉, (“;” denotes sequential com-
position, ∪ denotes alternative composition (“choice”), and � denotes iteration).
With every program a, a binary transition relation R(a) ⊂ G × G is assigned.
– any (propositional or) first order formula is a DL formula, and
– for any DL formula F and any action or program a, 〈a〉DLF is a DL formula

with the semantics

g |= 〈a〉DLF ⇔ there is a state h such that (g, h) ∈ R(a) and h |= F .

In agreement with the tradition, �DLF := ¬�DL¬F is defined to be the dual
of �DL.

Here, the difference between the interpretation of the modal operators be-
tween CTL and Dynamic Logic becomes visible: In CTL, the modal operators
reach into the future along a single path and the path quantifiers range or-
thogonally over all possible futures, speaking about paths not about states. In

144 J.J. Alferes and W. May

Dynamic Logic, the modal operators look ahead one step on every path (i.e.,
they correspond to CTL’s path quantifiers, not to CTL’s modal operators).
Thus, the eventually, always, and until -operators can not be expressed in DL
without resorting to a fixpoint logic. Instead, “if now, a is executed, F will
definitely/probably hold” can be expressed.

Hennessy-Milner Logic. In [58] and [48], Hennessy-Milner-Logic, HML, a
modal logic interpretation of the CCS calculus (see Section 3.4) is given whose
modalities are very similar to those of Dynamic Logic. The set of formulas of
Hennessy-Milner-Logic, FmlHML, is defined inductively as

– T ∈ FmlHML ,
– F ∈ FmlHML ⇒ ¬F ∈ FmlHML ,
– F,G ∈ FmlHML ⇒ F ∧G ∈ FmlHML ,
– F ∈ FmlHML and a ∈ A ⇒ �aHMLF ∈ FmlHML .

(instead of �aHML , also 〈a〉HML can be written).
CCS (see Section 3.4) does not use a notion of propositional or first-order states,
but is based on the notion of processes as nodes of its LTS structures. The
satisfaction relation |=HML (for short also denoted by |=) between processes and
HML-formulas is defined similar to Dynamic Logic by

1. P |= T for all processes P ,
2. P |= ¬F :⇔ not P |= F ,
3. P |= F ∧G :⇔ P |= F and P |= G ,

4. P |= �aHMLF :⇔ there is a process P ′ s.t. P a→ P ′ and P ′ |= F .

Additionally, derived expressions in HML are defined:
– F ≡ ¬T ,
– F ∨G ≡ ¬(¬F ∧ ¬G) ,
– �aHMLF ≡ 〈a1〉HML . . . 〈an〉HMLF for a = a1. · · · .an ,
– �aHMLF ≡ ¬�aHML¬F .

Similar to the discussion about CTL and Dynamic Logic above, it is not possible
in HML to express properties like “P will eventually execute a” or “in the next
step, P will execute a”. Instead, “if now, a is executed, F will definitely/probably
hold” can be expressed.

Process Logic. In contrast to Dynamic Logic and Hennessy-Milner Logic,
where all formulas apply to states, the syntax of logics for path structures fo-
cusses on the notion of path formulas: their |=-relation relates paths to formulas.
Nevertheless, in those logics, paths consisting of exactly one state actually take
the role of states.

Process Logic [34] is a (propositional) logic for describing activities, based on
path structures. It uses path structures with a slightly different focus of the

Evolution and Reactivity for the Web 145

semantics of formulas: P is a relation assigning sets of paths to programs, i.e.,
it extends R to compound programs (thereby defining a restricted language of
compound programs or transactions):

– if α and β are programs, then so are αβ, α ∪ β, and α∗.

Note that Process Logic does not have a notion of “parallel” actions. The acces-
sibility relation is in the same way extended to these programs:

Pα = Rα for actions/primitive programs α,
Pαβ = PαPβ = {pq | p ∈ Pα and q ∈ Pβ} ,
Pα∪β = Pα ∪ Pβ ,
Pα∗ =

⋃
i<ω Pαi .

In Process Logic, all formulas are path formulas, i.e., evaluated against paths.
Its syntax extends Dynamic Logic with the following connectives:

– if X and Y are formulas, then so are fX, and X suf Y .
– if α is a program and X is a formula, then �α PRX is a formula.

The satisfaction relation |= is extended to a relation between paths and state
formulas. Let p = (so, s1, . . .) be a path.

p |= X ⇔ s0 |= X for primitive (propositional or first-order) formulas X.
(not explicit, but see [34–Def.4.1, p.155])

p |= fX ⇔ s0 |= X .
p |= X suf Y ⇔ there is a q ∈ Pα s.t.

(i) q is a proper suffix of p and q |= Y , and
(ii) for all r, if r is a proper suffix of p and q is a proper

suffix of r, then r |= X .
p |= �α PRX ⇔ there is a q ∈ Pα s.t. pq |= X .

Note that the semantics of �α PR is different from the usual semantics of �:
p |= �α PRX states that from the endpoint of path p, there is a path q executing
α s.t. then the whole path pq satisfies X.

Transaction Logic (cf. Section 4.3) is another logic which is based on path
structures; using temporal connectives instead of temporal modal operators.

Summary and Examples. While the static aspects (i.e., the states) use the
same formalism (except in Hennessy-Milner Logic), i.e., propositional or first-
order logic (where special approaches exist that use predicates only (Datalog) or
functions only (Evolving Algebras) [30, 31]), the dynamic aspects are described
differently in the above approaches as shown below:

Example 1. Consider two persons, Alice and Bob who have bank accounts with
a given balance given by a function, balance(name). Actions are debit(name, amount)
and deposit(name, amount).
Considering the excerpt of a Kripke Structure given in Figure 1, e.g.,

M(g0) = {balance(Alice) = 200, balance(Bob) = 100} ,
(g0, g1) ∈ R(debit(Alice, 20)) , (g1, g2) ∈ R(deposit(Bob, 20)) .

146 J.J. Alferes and W. May

Obviously,

M(g1) = {balance(Alice) = 180, balance(Bob) = 100} and
M(g2) = {balance(Alice) = 180, balance(Bob) = 120} .

The semantics of debit can be specified in Hennessy-Milner Logic and Dynamic
Logic by

∀Acc,Am1, Am2 :
balance(Acc1) = Am→ [debit(Acc1, Am2)]balance(Acc1) = Am1–Am2

(where [a] denotes the “always” modality �a).

Both logics allow now for reasoning about sequences, e.g., expressing a simple in-
tegrity constraint that any sequence of actions debit(Acc1, Am) and deposit(Acc2, Am)
keeps the sum of the overall balances unchanged.
Hennessy-Milner Logic can express this by

∀Acc1, Acc2, Am,B1, B2, Sum :
Sum = balance(Acc1)+balance(Acc2)→

[debit(Acc1, Am) · deposit(Acc2, Am)]Sum = balance(Acc1)+balance(Acc2) .

Analogous for Dynamic Logic (with “;” as sequential concatenation).
Process Logic’s transition relation P for programs will e.g. contain

(g0, g2) ∈ Pdebit(Alice,20) deposit(Bob,20) ,

making the above “transition by a composite action” explicit in the model. We
also have

(g0, g1) |= f(balance(Alice) = 200 ∧ balance(Bob) = 100) ∧
〈deposit(Bob, 20)〉last(balance(Alice) = 180 ∧ balance(Bob) = 120)
with last as formally defined in [34] .

The above example shows that modal logics are useful for reasoning about tem-
poral structures, especially proving correctness. Up to here, “actions” occurred
only for the definition of paths that then satisfy formulas – i.e., to check if some-
thing “is true” after executing some actions. Also, the notions of actions and
events are not really distinguishable, because both notions are identified with
the labels of the transitions. So far, one can see an action as an action from the
point of view of generating the next state, and as an event from the point of
view of looking at the transition afterwards.

For specifying pure evolution, the notions of actions, transactions (that have
to satisfy several requirements), and processes are used to describe what se-
quences of transitions are actually executed. When coming to reactivity, we want
to express implications (rules) that under certain circumstances, something must
be done. These circumstances can not only be static conditions, but also dynamic
occurrences of events. The goal of these rules is to check if something happened,
and then to make something happen.

Evolution and Reactivity for the Web 147

3.4 Actions, Transactions, and Processes

Some of the above languages already define restricted mechanisms for (reasoning
about the effects of) actions and composite actions. Other, rule-based formalisms
will be discussed in Section 4.1. There are also several frameworks and formalisms
for the definition of composite actions as programs, processes, or transactions
(which is essentially the same from different points of view and with different
consequences regarding parallelism and interference). Simple “programs” have
been discussed above for Dynamic Logic. More complex specifications of activ-
ities and interaction, e.g. between different Web nodes, can be given in terms
of Process Algebras that are discussed just below. Transaction Logic is another,
rule based formalism for defining, executing, and even a restricted amount of
planning that will be discussed later in Section 4.3.

Process Algebras. Process Algebras describe the semantics of processes in
an algebraic way, i.e., by a set of elementary processes (carrier set) and a set
of constructors. The semantics can either be given as denotational semantics,
i.e., by specifying the denotation of every element of the algebra (e.g., CSP –
Communicating Sequential Processes, [35]), or as an operational semantics by
specifying the behavior of every element of the algebra (e.g., CCS – Calculus
of Communicating Systems, [45, 46]). Processes defined by Process Algebras can
e.g. be used for the specification of communication, i.e., for basic protocols, or for
defining the behavior of interacting (Semantic) Web Services (note that process
algebras provide concepts for defining infinite processes), or in the action part
of ECA rules.

Basic Process Algebra (BPA). For a given set A of atomic actions,

BPAA = 〈A, {⊥,+, ·}〉
is the basic algebra – i.e., containing the least reasonable set of operators – for
constructing processes over A. ⊥ is a constant denoting a deadlock, + denotes
alternative composition, and · denotes sequential composition: if x and y are
processes, then x+y and x · y are processes (syntax and semantics are formally
introduced later on with CCS). These are essentially the processes that have also
been presented above in Dynamic Logic and Hennessy-Milner-Logic.

Calculus of Communicating Systems (CCS). CCS extends BPA by more expres-
sive operators. The carrier set of a CCS [45, 46, 47] algebra is given by a set A of
action names from which processes are built by using several connectives. Every
element of the algebra is called a process. By carrying out an action, a process
changes into another process. Considering the modeling as an LTS, a process
can be regarded as a state or a configuration. Action names become labels and
the transition relation is given by the rules specifying the execution of actions.
A CCS algebra with a carrier set A is defined as follows:

1. With X a (process) variable, X is a process expression.
2. Every a ∈ A is a process expression.

148 J.J. Alferes and W. May

3. With a ∈ A and P a process expression, a : P is a process expression (pre-
fixing; sequential composition).

4. With P and Q process expressions, P × Q is a process expression (parallel
composition).

5. With I a set of indices, Pi : i ∈ I process expressions,
∑

i∈I Pi is a process
expression (alternative composition).

6. With A ⊆ A a set of actions and P a process expression, P � A is a process
expression (restriction to a set of visible actions).

7. With I a set of indices, Xi variables, Pi process expressions, fixjXP is a
process expression (definition of a communicating system of processes). The
fix operator binds the variables Xi, and fixj is one of the |I| processes which
are defined by this expression.

The fix operator can be omitted if defining equations of the form Q := P are
allowed, where Q is a new process identifier and P is a process expression. Process
expressions not containing any free variables are processes.
The (operational) semantics of a CCS algebra is given by transition rules:

a : P a→ P ,
Pi

a→ P∑
i∈I Pi

a→ P
(for i ∈ I) ,

P a→ P ′ Q b→ Q′

P ×Q ab→ P ′ ×Q′
,

,
P a→ P ′

P � A a→ P ′ � A
(for a ∈ A) ,

Pi{fix XP /X} a→ P ′

fixiXP a→ P ′ .

Additionally, there are some derived operators and constants

0 :=
∑

∅
Pi , P1+P2 :=

∑

i∈{1,2}
Pi ,

and, for asynchronous communication and delays,

∂P := fix X(1 : X + P) , X not free in P , and
P1|P2 := P × ∂Q + ∂P ×Q

with the corresponding transition rules

P a→ P ′

P+Q a→ P ′ ,
Q a→ Q′

P+Q a→ P ′ , ∂P 1→ ∂P ,
P a→ P ′

∂P a→ P ′

P a→ P ′

P |Q a→ P ′|Q ,
Q a→ Q′

P |Q a→ P |Q′ ,
P a→ P ′ Q b→ Q′

P |Q ab→ P ′|Q′

In CCS and related concepts, such as CSP [35] and ACP [6], there is no explicit
notion of states, the properties of a state are given by the (sequences of) actions
which can be executed.

Evolution and Reactivity for the Web 149

Example 2. Consider again the scenario of Example 1. There, it has been de-
scribed how to reason about a structure. Having now a notion of processes, we
can describe how transitions belong together:

– a common money transfer is already a simple process:
transfer(Am,Acc1, Acc2) := debit(Acc1, Am) : deposit(Acc2, Am) .

– a standing order (i.e., a banking order that has to be executed regularly) is
defined as a fixpoint process. The following process transfers a given amount
from one account to another every first of a month:
fix X(rec msg(first of month) : debit(Acc1, Am) : deposit(Acc2, Am) : ∂X)

(assuming the receipt of a message as a communicating action).
– A more detailed view could e.g. communicate with the repository for checking

if the balance will stay positive:

fix X(rec msg(first of month) : send msg(query (Acc1 > Am?)) :
(∂ : rec msg(yes) : debit(Acc1, Am) : deposit(Acc2, Am)+
(∂ : rec msg(no) : send msg(error))) : ∂X)

In this example, the fact that it is the 1st of a month is communicated explicitly
by sending (issued e.g. by a timer process) and receiving actions.

Another way would be to consider “1st of a month” as an event and, instead
of a fixpoint process, have a rule that states “if this event occurs, then do ...”.
Also, for querying the account, this model uses active waiting (∂) – here it would
also be possible to have a rule that reacts on the incoming message.

3.5 Event Languages and Event Algebras

The main difference between actions and events is roughly that an event is the
visible consequence of an action. E.g., the action is to “debit of 200 E from
Alice’s bank account”, and visible events are “a change of Alice’s bank account”
(that is immediately detectable from an update), or “the balance of Alice’s
bank account becomes below zero” (which has to be derived from an update).
Additionally, there are system events and external events like temporal events
(“1st of a month”) and incoming messages. Obviously, actions and events are
correlated, but an action can raise several events, raising the problem how events
are detected. In this section we focus on languages for event specification and on
event detection.

In the context of the Web, an (atomic) event is in general any detectable oc-
currence, i.e., local events (updates, temporal events, and transactional events),
incoming messages including queries and answers, updates of data anywhere in
the Web, or any occurrences somewhere in an application, that are (possibly)
represented in explicit data, or signaled events.

Reactivity is in general not based on atomic events only, but uses the notion
of composite events, e.g., “when E1 happened and then E2 and E3, but not E4

after at least 10 minutes, then do A”. Composite events are usually defined in
terms of an event algebra.

150 J.J. Alferes and W. May

So, there is the need for several integrated languages: a language for atomic
events and their metadata, and (application-specific) languages for expressing
the contents of different types of events, and a declarative language for describing
complex events, together with algorithms for handling complex events. The latter
languages are not concerned with what the information contained in the event
might be, but only with types of events.

Complex Events, Event Algebras

Event Algebras. The term “algebra” describes a very generic (mathematical)
concept that has many applications in Computer Science: Boolean Algebra, Re-
lational Algebra, or natural numbers (with only an operator succ(.), or with
operators “+” and “*”) are algebras. An algebra consists of a “domain” (i.e.,
a set of “things”), and a set of operators (with a given arity). Operators map
elements of the domain to other elements of the domain. Algebra terms are
formed by nesting operators. Each of the operators has a “semantics”, that is, a
definition how the result of applying it to some input should look like. Algebra
expressions are built over basic constants and operators (inductive definition).

For an event algebra, the constants are the atomic events, and the operators
serve for combining composite events, e.g.: “A and B”, “A or B”, or “A and
then B”. Event algebras contain not only the aforementioned straightforward
conjunctive, disjunctive and sequential connectives, but also additional opera-
tors. A bunch of event algebras have been defined that provide also e.g. “negative
events” in the style that “when E1 happened, and then E3 but not E2 in between,
then do something”, “periodic” and “cumulative” events, e.g., [13, 55].

An Example. In [13], an event algebra which is used for event detection in the
context of ECA-rules (“on 〈event〉 if 〈condition〉 do 〈action〉”) in active databases
is proposed. Semantically, an event is a predicate E : T → {true, false} where
T denotes a set of time instances (or, in embedding into the model of Kripke
structures, transitions where the event could be detected). For a given set of
elementary events, the set of events is defined inductively:

– If E and F are events, then E∇F and E�F are events.
– If E1, . . . , En are events and m < n ∈ IN, then ANY(m,E1, . . . , En) is an

event.
– If E and F are events, then E;F is an event.
– If E1, E2 and E3 are events, then A(E1, E2, E3) and A∗(E1, E2, E3) are

events.
– If E1, E2 and E3 are events, then ¬(E1)[E2, E3] is an event.

The semantics of composite events is defined as follows, where detection of a
complex event means that its “final” atomic subevent is detected:

(1) (E∇F)(t) :⇔ E1(t) ∨ E2(t) ,
(2) (E�F)(t) :⇔ E1(t) ∧ E2(t) ,
(3) (E1;E2)(t) :⇔ ∃t1 ≤ t : E1(t1) ∧ E2(t) ,

Evolution and Reactivity for the Web 151

(4) ANY(m,E1, . . . , En)(t) :⇔ ∃t1 ≤ . . . ≤ tm–1 ≤ t, 1 ≤ i1, . . . , im ≤ n pairwise
distinct s.t. Eij

(tj) for 1 ≤ j < m and Eim
(t),

(5) ¬(E2)[E1, E3](t) :⇔ E3(t) ∧ (∃t1 : E1(t1)∧
∧ (∀t2 : t1 ≤ t2 < t : ¬(E2(t2) ∨ E3(t2)))) ,

(6) A(E1, E2, E3)(t) :⇔ E2(t) ∧ (∃t1 : E1(t1) ∧ (∀t2 : t1 ≤ t2 < t : ¬E3(t2))),
(7) A∗(E1, E2, E3)(t) :⇔ ∃t1 ≤ t : E1(t1) ∧ E3(t) ,

when this event occurs, a specified action for every
occurrence of E2 has to be executed in t.

The constructs ∇ (“or”) and � (“and”) are standard and straightforward.
“(E1;E2)” denotes the successive occurrence of E1 and E2, where in case that
E2 is a complex event, it is possible that subevents of E2 occur before E1 occurs.
ANY denotes the occurrence of m events out of n in arbitrary order, which is
also expressible by a special ∇-�-;-schema. (5) is a complex event which detects
the non-occurrence of E2 in the interval between E1 and the next E3. (6) is an
“aperiodic” event which is signaled whenever E2 occurs after E1 without E3 oc-
curring in-between. Note that ¬(E2)[E1, E3] occurs with the terminating event
E3 whereas A(E1, E2, E3) occurs with every E2 in the interval (if E3 never oc-
curs, the interval is endless). The “cumulative aperiodic event” (7) occurs with
E3 and then requires the execution of a given set of actions corresponding to
the occurrences of E2 in the meantime. Thus, it is not a simple event, but more
an active rule, stating a temporal implication of the form “if E1 occurs, then
for each occurrence of an instance of E2, collect its parameters, and when E3

occurs, report all collected parameters (in order to do something)”.
In general, events are parameterized, and event specifications contain free

variables that are bound in the event detection.

Example 3. Consider again the scenario of Example 1. Events in this scenario
are e.g. “1st of a month”, “a deposit to account x” (in this case, the event directly
corresponds to an action), or “the balance of account x goes below zero” (due to
a debit action). Composite events are e.g.,“there were no deposits to an account
for 100 days” which can be expressed in the above event language as

E1(Acct) :=
(¬(∃X : deposit(Acct,X)))[deposit(Acct, Am) ∧ t = date, date = t+100days] .

An aperiodic event is e.g. “the balance of account x goes below zero and there
is another debit without any deposit in-between” which is expressed in the above
event language as

E2(Acct) := A(debit(Acct, Am1) ∧ balance(Acct) < 0,
debit(Acct, Am2), deposit(Acct, Am3)) .

A cumulative periodic event is e.g. used for “after the end of a month, send an
account statement with all entries of this month:

E3(Acct, list) :=
A∗(first of month, (debit(Acct, Am)∇deposit(Acct, Am)), first of next month)

152 J.J. Alferes and W. May

where the event occurs with first of next month and carries a list of the debit
and deposit actions.

Event Detection. As described above, an event algebra mainly consists of the
definition of event combinators and their semantics (given in general in terms of
sequences that “satisfy” the composite event). For practical issues, it is necessary
to detect the event. Since events are volatile data (and for efficiency reasons),
it is not possible to do this by querying, but event detection must be done
incrementally on-the-fly.

Work on complex events does not only define the semantics of events and
complex events, but in general also describes algorithms for efficient detection
and tracing of events. Incremental residuation has been used in [55] in an ap-
proach that uses an event-style algebra for scheduling of tasks, which is similar
to the reduction steps in the operational semantics given in Section 3.4 for CCS.

Past tense modalities with incremental bookkeeping have been employed for
checking temporal constraints and temporal conditions in ECA-style rules, e.g.
in [15, 56]. [15] uses full first-order past temporal logic, with ∃ and ∀ quantifiers.
[56] replaces the quantifiers by a functional assignment [X ← t]ϕ(X) that binds
a variable X to the value of a term t in a given state. This ensures safety
of formulas, but the full expressiveness of using a universal quantifier is not
provided.

From the theoretical point of view, the used techniques amount to the same
principles, although formalized differently by residuation, automata, graph tech-
niques and rewriting.

They are in general restricted to the area of distributed/active databases
where the location and communication of events is fixed.

Example 4. Consider again the scenario of Example 3.
Detection of the first event means to start event detection of E1(Acct) (with

internal parameter t0) for Acct whenever a deposit occurs at timepoint t0. The
detection ends when either another deposit to Acct occurs, or the date t0+100 days
is reached, and the event actually occurs.

Detection of the second event means to start event detection of E2(Acct)
whenever a debit occurs and the resulting balance is below zero. The detection
ends when either a deposit to Acct occurs (then, the event is not reported), or
another debit happens (then, the event is actually detected and reported).

Detection of the third event means to start event detection of E3(Acct) at
the first day of a month. Internal bookkeeping is done for every debit or deposit
(action/event), and the event finally occurs at the first day of the next month.

Considering an event “(if) balance of Account changes (then immediately
phone me)”, the detection means to translate it as “either a debit or a deposit
occurs”.

In the (Semantic) Web, event detection requires to solve two issues:

– translating (atomic) event specifications into underlying actions (as the final
one in the above example), and

Evolution and Reactivity for the Web 153

– detecting remote events. Up to now, events were always considered to be
local, or at least communicated explicitly by messages.

3.6 Combining Static and Dynamic Aspects

It is desirable that event sequences can be combined with requirements on the
state of resources at given intermediate timepoints, e.g. “when at timepoint t1,
a cancelation comes in and somewhere in the past, a reservation request came
in at a timepoint when all seats were booked, then, the cancelation is charged
with an additional fee”. In this case, the event detecting engine has to state a
query at the moment when a given (sub)event is detected. For being capable of
describing these situations, a formalism (and system) that deals with sequences
of events and queries is required. This is not covered by the above approaches
(except in some extent [15]).

A language that covers these issues will be presented in Section 4.3: Trans-
action Logic.

4 Rule-Based Languages for Evolution and Reactivity

Rule-based languages for evolution and reactivity can mainly be grouped into
two aspects:

– languages defining individual actions directly in terms of their effects on a
structure. These languages can immediately be used for “programming” and
reasoning.

– languages defining the higher-level interplay of actions, i.e., when and how a
certain sequence of actions has to be executed. Here also transaction models
have to be considered.

4.1 Action Languages

Action languages are formal models that are used for representing actions and for
reasoning about the effects of actions [53, 4, 24, 25, 27, 28, 29, 18] that have been
mainly developed in the Knowledge Representation and Reasoning community.

Central to this method of formalizing actions is the concept of a labeled
transition system (LTS). Usually, the states are first-order structures, where the
predicates are divided into static and dynamic ones, the latter called fluents
(cf. [54]). Action programs (in languages such as language B and C, below)
are sets of sentences that describe the transitions by specifying which dynamic
predicates change in the environment after the execution of an action. Evolving
Algebras/Abstract State Machines, also described below, are a special kind of
action programs.

Usual problems here are to predict the consequences of the execution of a
sequence of (sets of) actions, or to determine a set of actions implying a desired
conclusion in the future (planning). Several action query languages exist that
allow for querying such a transition system, going beyond the simple queries

154 J.J. Alferes and W. May

of knowing what is true after a given sequence of actions has been executed
(allowing e.g. to reason about which sets of actions lead to a state where some
goal is true, i.e. planning as in [18]).

Situation Calculus. The first, and most prominent concept here is the situa-
tion calculus (originally in [44], reprinted in [43], see also [53]).

States (or situations) are elements of the domain, occurring as an argument
for distinguished predicates holds(p(x), s) and occurs(a(x), s) where p is a pred-
icate of the application domain and a is an action. Events (mainly equivalent
to actions) in a situation produce new situations: do a(s) denotes the situation
which is obtained by executing an action a in a situation s. A situation is a
first order functional term do an(do an–1(. . . (do a1(s0)))), where ai are actions
and s0 is a constant denoting the initial situation; the values of fluents in s0 are
specified by formulas of the form holds(p(x), s0).
Actions are characterized by preconditions, e.g.

occurs(a(x), S)→ holds(p(x), S)

and their normal effect, e.g.

holds(p(x), S) ∧ occurs(a(x), S)→ holds(q(y), do a(x)(S))

describing how an action changes some fluents. The frame problem is solved by
adding axioms for assuming that fluents which are not explicitly changed, remain
unchanged.

There exist different versions of the situation calculus, e.g., the one used
in GOLOG [40], a logic programming language. There, the predicate holds is
omitted and the preconditions are characterized by a distinguished predicate, i.e.
Poss(a(x), s) ≡ holds(p(x), S). In GOLOG, frame axioms are stated explicitly.

Statelog. Statelog [38] provides a logical framework for active rules which pre-
cisely and unambiguously defines the meaning of rules. Moreover, it allows to
study fundamental properties of active rules like termination, confluence and
expressive power.

A Statelog rule r is an expression of the form

[S+k0]H ← [S+k1]B1, . . . , [S+kn]Bn

where the head H is a Datalog atom, Bi are Datalog literals (atoms A or negated
atoms ¬A), and ki ∈ IN0. Access to different database states is accomplished via
state terms of the form [S+k] , where S+k denotes the k-fold application of the
unary function symbol “+1” to the state variable S. A rule r is called local it
k0 = ki for all i = 1, . . . , n, progressive, if k0 ≥ ki for all i = 1, . . . , n, and
1-progressive, if k0 = ki+1 for all i = 1, . . . , n. A Statelog program is a finite
set of progressive Statelog rules. In general, the rules of a Statelog program
define a sequence of (intermediate) transitions. A Statelog activity (raised by an
external event that makes some progressive rule applicable) ends when no more

Evolution and Reactivity for the Web 155

progressive rules are applicable. Then the system is idle until the next external
event occurs.

Logic Programming notions (e.g., local stratification) and declarative seman-
tics (e.g., perfect model) developed for deductive rules can be applied directly
to Statelog. It uses a notion of state-stratified semantics as the canonical model
of a Statelog program wrt. a given database state: P is called state-stratified, if
there are no negative cyclic rule dependencies within a single state. This notion
is closely related to XY-stratification [65] and ELS-stratification [36].

Language B. The B language [27, 25] is a generalization of the so-called lan-
guage A [24](which itself represents the propositional fragment of the ADL for-
malism [50]). It allows conditional and non-deterministic actions and, unlike A,
also for the representation of actions with indirect effects. A program in B is a
set of static and dynamic laws, of the forms, respectively:

L if F, and
A causes L if F

where L is a fluent literal, F a conjunction of literals, and A an action name.
Intuitively a static law states that every possible state satisfying the conjunction
F must also satisfy L, and a dynamic law states that if F is satisfied when
action A occurs then L is true in the subsequent state. Given a set of static
and dynamic laws, a labeled transition system is defined. Basically, states are all
interpretations closed under the static laws, and there is an arc from a state s
to a state s′ with label a iff all Ls of dynamic rules of the form a causes L if F ,
where F holds in s, belong to s′, and nothing else differs from s to s′.

A program in A is as in B but without static laws. Besides the above briefly
described language B, several other extension of the language A exist. Language
AR [26], as for B, also allows for modeling indirect effects of actions but in
this case, instead of static laws, constraints of the form always F , where F
is a propositional formula, are used. Language AK [57] further extends AR
for formalizing sensing actions (i.e. actions for determining the truth value of
fluents). Another extension of A is the language PDL [41] which is particularly
tailored for specifying policies. A survey and comparisons on extensions of A can
be found in [19].

Language C. As in language B, also in C [29, 28] statements of the language
are divided into static and dynamic laws. The main distinction between C and
B, besides the fact that C allows for arbitrary formulas to be caused by actions
(rather than simply literals as in B) and arbitrary formulas as conditions (rather
than conjunction only), is that C distinguishes between asserting that a fluent
“holds” and making the stronger assertion that “it is caused”, or “has a causal
explanation”.

A program in C is a set of static and dynamic laws of the forms, respectively:

caused F if G, and
caused F if G after U

156 J.J. Alferes and W. May

where F and G are formulas over fluent literals, and U is a formula with both
fluent literals and action names.

Intuitively, a static law states that the formula G causes the truth of the for-
mula F , and a dynamic rule states that after U , the static rule “caused F if G”
is in force. The definition of a transition system for C is based on causal theories
[28]. The idea behind causal theories is that something is true iff it is caused by
something else. Every state s is now characterized by a set M(s) and a causal
theory T (s) (consisting of the static rules from P and possibly additional ones).
Given a causal theory T and a set M of fluents, the causal theory TM of formulae
is defined as follows:

TM = {F | “caused F if G” ∈ T and M |= G}

We say M is a causal model of T iff M is the unique model of TM . For all states
s in the LTS, the interpretation M(s) must be a causal model of T (s).

Given a state s with T (s), M(s) and a set of actions K (executed in a
transition), the resulting causal theory T (s,K) is given by the static laws of P
and the static laws enforced by the dynamic laws whose preconditions are true
in M(s) ∪ K. Then there is an arc with label K between s and a state s′ iff
T (s′) = T (s,K) and M(s′) is a causal model of T (s, k). It is worth noting that
in C, contrary to B, fluent inertia is not assumed by default.

Various extensions to C have recently appeared in the literature. Most promi-
nently, the language C++ [28] and the language K [18]. C++ further allows for
multi-valued, additive fluents which can be used to encode resources and allows
for a more compact representation of several practical problems. The language
K allows for representing and reasoning about incomplete states, and for solving
planning problems.

For more details on these languages, as well on the implementation of frag-
ments of them in logic programming, see [19, 25, 28].

Evolving Algebras/Abstract State Machines. The concept of “Evolving
Algebras” has been introduced for specifying the operational semantics of pro-
cesses in [30, 31]. Evolving Algebras have originally not been introduced from the
logical point of view, but for describing the operational semantics of processes
in the sense of Turing’s Thesis: “Every algorithm can be described by a suitable
Evolving Algebra”. Thus, for any given algorithm, on any level of abstraction
an Evolving Algebra can be given.

In universal algebra, a first-order structure over a signature where the equality
symbol is the only relation symbol (i.e., everything is represented by functions),
is called an algebra.

The signature Σ of an Evolving Algebra is a finite set of function symbols,
each of them with a fixed arity, including 0-ary constants. Note that every re-
lation can be represented by its characteristic function. The names in Σ are
divided into two groups: static and dynamic functions (i.e., fluents as in e.g.,
Situation Calculus [53], GOLOG [40], also [54]). A state of an Evolving Algebra
over Σ is then an interpretation of Σ, inducing an evaluation of terms.

Evolution and Reactivity for the Web 157

An Evolving Algebra EA is given by an initial state Z(EA) (which also deter-
mines the interpretation of the static function symbols for all states) and a pro-
gram P(EA) (a set of transition rules and rule schemata) describing the change
of the interpretation of state-dependent function symbols in a Pascal-like syntax.

An elementary update rule is an update of the interpretation of a function
symbol at one location: f(t1, . . . , tn) := t0 , where f is an n-ary function symbol
and ti are terms.

The set of rules is defined by structural induction by defining blocks and
conditionals (if-then); also rule schemata that contain free variables are allowed.
A program P(EA) of an Evolving Algebra EA is a finite set of rules and rule
schemata. A program is then executed by applying rules, inducing again a Kripke
structure.

4.2 Event-Condition-Action Rules in Databases

Event-Condition-Action rules have already been motivated in Section 2.2 as a
common means to express system behavior. They are intuitively easy to under-
stand, and provide a well-understood formal semantics: when an event occurs,
evaluate a condition, and if the condition is satisfied then execute an action.
Above, we have discussed several approaches for the event and action parts. Ad-
ditionally, several execution models can be chosen that specify how the rule is
applied (before or after or deferred, statement-oriented or set-oriented, its trans-
actional embedding etc.), modified by further policies of the ECA engine (e.g.
for conflict resolution).

Depending on the choice of the above sublanguages and semantics, a broad
range of behaviors can be designed. ECA languages based on atomic events
are e.g. used for maintaining consistency (as in the well-known SQL triggers) in
course of execution of a surrounding process. On the other end of the range, ECA
languages that allow for complex events can themselves be used for specifying
the behavior of a system in a rule-based way.

Types of ECA rules. Mainly, two kinds of ECA rules can be distinguished:

– low-level: rules that react directly on changes of the underlying data. These
are provided as triggers in most database systems, e.g., SQL, of the form

ON database-update WHEN condition BEGIN pl/sql-fragment END

where the values of the updated tuple are accessible as old and new.
– application-level: ECA engines that react on application-level events that are

raised by updates of underlying data, messages etc.

4.3 Transaction Logic

Transaction Logic TR [8] is another comprehensive rule-based formalism that
does not have a strict ECA distinction, but follows the Logic Programming
style. In TR, in contrast to modal logic where states are given as first-order
structures, states are given as abstract theories over a signature L – that can
e.g. be first-order theories, or OWL-based worlds. The evaluation of formulas

158 J.J. Alferes and W. May

wrt. states is provided by an abstract state data oracle Od that answers queries
(possibly with free variables) for every individual state. Transitions are given
by the state transition oracle Ot which maps pairs of database states to sets of
ground formulas (over a set A of action names, corresponding to the labels of
the elementary transitions). Thus, with G denoting the set of state identifiers,
(G,Ot,Od) gives the same information as a labeled Kripke structure, an LTS,
or a path model for Process Logic.

Since in Transaction Logic, the internal representation and model of states is
not predetermined, structures of any type are allowed as a basis. For example,
a pure functional signature (e.g. static algebras), a pure relational signature
(Datalog), first-order, or even object-oriented (F-Logic) or OWL models can be
used in the data oracle.

Formally, the semantics of TR formulas is based on a version of path struc-
tures, i.e., the satisfaction of formulas is defined on paths, not on states: A path
of length k ≥ 1 is a finite sequence π = 〈D1,D2, . . . ,Dk〉 of state identifiers;
π1 ◦ π2 = 〈D1, . . . ,Di〉 ◦ 〈Di, . . . ,Dk〉 is a split of π.
A path structure (here: over a first-order L) M is a triple 〈U , IF , Ipath〉 where
– U is the domain of M,
– IF is a (state-independent) interpretation of the function symbols in L,
– Ipath assigns to every path π = 〈D1, . . . ,Dn〉 a semantic structure 〈U , IF , IP〉

where IP is an interpretation of the predicate symbols in L ∪ A.
Ipath is subject to two restrictions:

– Compliance with the data oracle: Ipath(〈D〉) |= φ for every φ ∈ Od(D),
– Compliance with the transition oracle: Ipath(〈D1,D2〉) |= a whenever a ∈
Ot(D1,D2).

Transaction formulas are built by the connectives ¬,∨,∧,⊕,⊗, and the quanti-
fiers ∃ and ∀. Let π be a path and β a variable assignment. Then,

for formulas of the state language L:
(M, 〈D〉, β) |=TR s–fml ⇔ (Ipath(〈D〉), β) |=(Od,Ot) s–fml

⇔ s–fml ∈ Od(D) ,
for formulas of the transition language A:
(M, 〈D1,D2〉, β) |=TR t–fml ⇔ (Ipath(〈D1,D2〉), β) |=(Od,Ot) t–fml

⇔ t–fml ∈ Ot(D1,D2) ,
(M, π, β) |=TR φ⊗ ψ ⇔ (M, π1, β) |=TR φ and (M, π2, β) |=TR ψ

for some split π = π1 ◦ π2 of π , and
(M, π, β) |=TR φ⊕ ψ ⇔ (M, π1, β) |=TR φ or (M, π2, β) |=TR ψ

for every split π = π1 ◦ π2 of π .

Due to the restriction of Ot to elementary actions, parallel composition of ac-
tions in a single transition is not possible. In [9], an interleaving semantics for
parallelism is given.

Example 5. Consider again the states from Example 1 (note that the function
balance is interpreted state-dependently), consider the path π := 〈g0, g1, g2〉. For

Evolution and Reactivity for the Web 159

each state gi, Od(gi) is the theory induced by M(gi). The transition oracle Ot

represents the transition relation R, i.e., φ ∈ Ot(g, g′) if and only if (g, g′) ∈
R(φ) for action literals φ:

Ot(g0, g1) = {debit(Alice, 20)} and Ot(g1, g2) = {deposit(Bob, 20)} .

We have (M, π) |= debit(Alice, 20) ⊗ deposit(Bob, 20) and also – mixing state
and transition queries
(M, π) |= (balance(Alice)+balance(Bob) = 300)⊗ debit(Alice, 20)⊗

deposit(Bob, 20)⊗ (balance(Alice)+balance(Bob) = 300) .

ECA Semantics by Serial Implication. In the same way as standard impli-
cation is derived from disjunction as A→ B ⇔ ¬A∨B, (right) serial implication
is defined as A⇒ B ⇔ ¬A⊕B (which is the main application of the serial dis-
junction). With this, temporal constraints in the style of ECA rules can be
defined.

Example 6. Consider again Examples 1 and 5. The rule “if there is a debit
and the resulting balance is below zero, then send a message” is specified by

debit(Acct, Am)⊗ balance(Am) < 0⇒ sendmsg(...) .

Analogously, left serial implication allows for stating preconditions.

Transaction Bases and the Serial Horn Fragment. A transaction base is
a set of formulas of the form a0 ← a1 ⊗ . . . ⊗ an, which play a special role for
Transaction Logic programming, providing a top-down SLD-style proof proce-
dure. With such rules, transactions can be defined, providing a declarative spec-
ification of the database evolution. To execute a0 (in LP terminology: to prove
a0) in a state D means to execute or prove a0 ← a1 ⊗ . . . ⊗ an by generating
intermediate states; thus, the final state a0(D) is “specified” as a1⊗ . . .⊗an(D).
Note that depending on the “nature” of the ai they can denote events (that can-
not be forced, but whose presence constrains the ways to make the body true),
conditions on states (also acting as constraints), or actions (which are then to
be executed/proven as heads of other rules).

Example 7. Consider again Examples 1 and 5. The “money transfer” transac-
tion is defined as

transfer(Am,Acc1, Acc2)← debit(Acc1, Am)⊗ deposit(Acc2, Am) .

Consider now the case that debit and deposit are not atomic actions, but instead
there is an underlying (relational) database with a table balance(Acct, Amount),
manipulated by delete and insert actions. Then, debit and deposit actions can
be specified by their effect on balance:

debit(Acc,Am)←
balance(Acc) = N ⊗ balance.delete(Acc,N)⊗ balance.insert(Acc,N–Am)

deposit(Acc,Am)←
balance(Acc) = N ⊗ balance.delete(Acc1, N)⊗ balance.insert(Acc,N+Am) .

160 J.J. Alferes and W. May

The combination of the above mechanisms for expressing and enforcing con-
straints, expressing ECA rules, defining transactions, planning with SLD res-
olution and further features of Transaction Logic provides a very expressive
framework.

4.4 Transactional Requirements

In general, evolution consists not of arbitrary execution of independent ac-
tions, but of execution of certain processes (e.g. defined as a process algebra
in Section 3.4). The interaction between these processes can be more or less
close:
– each of them runs mainly on independent data, doing only some communi-

cation as provided by CCS, or
– processes run on shared data.

In both cases, besides communication/cooperation there are certain additional
requirements. Here, the database community uses the notion of transactions
for guaranteeing correct behavior. Usually, transactions adhere to the ACID
paradigm:

Atomicity: A transaction is (logically) a unit that cannot be further decom-
posed: its effect is atomic, i.e., all updates are executed completely, or nothing
at all (“all-or-nothing”).

Concistency: A transaction is a correct transition from one state to another.
The final state is not allowed to violate any integrity condition (otherwise
the transaction is undone and rejected).

Isolation: Databases are multi-user systems. Although transactions are running
concurrently, this is hidden against the user (i.e., after starting a transaction,
the user does not see changes by other transactions until finishing his trans-
action, simulated single-user).

Durability: If a transaction completes successfully, all its effects are durable
(=persistent).

In the Web environment, not only “simple” transactions, but also long transac-
tions and hierarchical transactions are used.

Summary. The previous sections – especially those on Kripke Structures and
Modal Logics, ECA rules and Transaction Logics – also illustrate the duality
between seeing evolution as a rule-driven process, and describing it declaratively
via constraints: Modal Logics are primarily used for describing structures via
their constraints and reasoning about them. The semantics of ECA rules is
targeted to generate such a structure (or even more, to generate one possible
path and proceed along it, moving and forgetting from one state to the next).
Transaction Logic can be interpreted as both ways: reasoning about possible
paths, and, as Transaction Logic Programming, running an evolving system.
Moreover, temporal logics etc. allow also to reason about systems of ECA rules
(correctness, termination etc.).

Evolution and Reactivity for the Web 161

5 Evolution and Reactivity on the Web

The previous two sections have introduced the abstract concepts and some sam-
ple formalisms for handling evolution and reactivity. In this section, we present
the current basis and prerequisites for extending and applying these concepts to
the Web and to the Semantic Web. The high-level concepts like Kripke struc-
tures, modal logics, rules, ECA rules, event algebras with event detection mech-
anisms, and transactions apply with slight adaptations to the Semantic Web.
They have to be instantiated for this environment: What are the actions and
events in this setting? What syntactical and semantical frameworks are used for
the high-level concepts?

In today’s Web environment, XML (as a format for storing and exchanging
data), RDF (as an abstract data model for states), OWL (as an additional
framework for state theories), and communication issues (Web Services, SOAP,
WSDL) provide the natural underlying concepts.

5.1 States and Nodes in the Semantic Web

In the Semantic Web as a network of autonomous nodes, there is not a single
“state”, but the notion of “current state” has to deal with different data models,
incompleteness, and inconsistency (which is dealt with in another chapter of this
volume on querying). Thus, every node has its own current view of the global
state. The same holds for events: only events that are somehow known to the
node can be considered.

The knowledge of a node in the Semantic Web is represented in RDF, RDFS,
and/or OWL. OWL provides a model theory, thus, instead of first-order struc-
tures and first-order logic used in classical approaches, Kripke structures and
logics for OWL are a prospective basis.

In the Semantic Web, the state of a node in this setting consists of the
common notion of “state wrt. an application”, and additionally derivation rules
and behavioral rules. In a wider sense also the state of event detection algorithms
belongs of the state of a node. Preferably, all this is expressed in RDF/OWL;
larger internal databases are actually stored in plain XML, but mapped to an
RDF/OWL ontology.

Thus, actions have to be able to change this state: XML updates, RDF up-
dates, ontology updates, and service calls.

5.2 Existing Languages for Updates

XML Updates. There are several proposals for languages that provide up-
date capabilities for XML data. Usually, update languages are designed as an
extension of a query language with update capabilities. At least, an addressing
mechanism for selecting parts of XML documents that are to be modified is
needed.

XML:DB’s XUpdate. XUpdate [64] is an update language developed by the
XML:DB group, its latest language specification was released in late 2000 as

162 J.J. Alferes and W. May

a working draft. Note that, at that time, the query languages XPath, XQL,
and XML-QL and the transformation language XSLT were already defined, but
XQuery did not yet exist. Thus, also the name “XUpdate” is not related to
XQuery. Similar to XSLT, XUpdate is written in XML syntax and makes use
of XPath [62] expressions for selecting nodes to be processed afterwards. Sim-
ple atomic update operations to XML documents are possible with XUpdate.
Several XML database systems implement this language, e.g. eXist [21].

XQuery Update extensions. A proposal to extend XQuery [63] with update capa-
bilities is presented in [59]. XQuery is extended with a FOR ... LET ... WHERE
... UPDATE ... structure. The UPDATE part contains specifications of update
operations (i.e. delete, insert, rename, replace) that are to be executed in se-
quence. For ordered XML documents, two insertion operations are considered:
insertion before a child element, and insertion after a child element. Using a
nested FOR...WHERE clause in the UPDATE part, one might specify an iterative
execution of updates for nodes selected by an XPath expression. Moreover, by
nesting update operations, updates can be expressed at multiple levels within an
XML structure. Update operations very similar to those described in [59] have
been specified and implemented in [39], extended e.g. by means to specify condi-
tional updates. The solution has been incorporated into Software AG’s Tamino1

product.

XChange. XChange [11] is a declarative language for specifying evolution of data
on the (Semantic) Web. XChange builds upon Xcerpt [10, 12], a declarative query
and transformation language for the (Semantic) Web. The XChange update
language uses rules to specify intensional updates, i.e. a description of updates
in terms of queries.

RDF Updates. Basically, languages for RDF updates are built in the same
way as for XML and SQL updates by extending a query language. There is not
yet a definitive decision about an RDF query+update language.

5.3 Atomic Events in the Semantic Web

In the context of the (Semantic) Web, the global handling of events must also be
investigated. In addition to local events, there are remote and “global” events.
Similar to the classical case, there are (local) data level events and rules, and
(local, remote, and global) application-level ones. The notion of composite events
is then defined as usual.

Local Events. Local events are comparable with those discussed before for the
classical case: temporal events, receipts of messages, local data level events and
local application level events. Data level events are e.g. updates of underlying
XML or RDF repositories (we discuss the concrete syntax and semantics later).

1 http://www.tamino.com

Evolution and Reactivity for the Web 163

Application-level events in the Semantic Web are also described or translatable
to RDF (a special case are e.g. SOAP calls).

Remote Events. As illustrated above, detection of, and reaction upon, remote
events is an important feature for the Semantic Web. An event detection engine
must also be able to detect/discover remote events that are not explicitly com-
municated. This is especially the case when working with complex events (see
below). It can be done by using remote event bases (when the location of an
event is known, and it is known that it is traced in an event base), or by regu-
larly polling remote data (e.g. fuel prices at my favorite petrol station, or stock
courses). In this case, again, publish/subscribe systems or continuous-query ser-
vices can be applied (especially, when they maintain a history).

For concrete atomic events, it must also be distinguished between the event
itself (carrying application-specific information), and its metadata, like the type
of event (update, temporal event, receipt of message, . . .), time of occurrence,
the time of detection/receipt (e.g., to refuse it, when it had been received too
late) and the event origin or its generator (if applicable; e.g. in terms of its URI).

Implicit Events. Most of the events can be expressed alternatively as detection
of updates of a given database (communicated via publish/subscribe systems),
or by queries but, especially in the Semantic Web, a declarative specification
from the point of view of an application-level event is intended. The reduction
of the detection to an actual update is then left to the semantic component.

Example 8 (Events). Consider the situation when Oracle bought the Retek
company on 22.3.2005; 11.25 $ per share, 631 million Dollar total. Firstly, this
is an application-level real world event. It is noted by the (Semantic) Web e.g.
as a (local, low-level) database event at New York Stock Exchange as a database
update at 09:00 h AST.

Stock tickers and agents will immediately be informed by push propagation.
An agent in Europe receives a message (raising a local incoming message event)
sent at 9:01h AST, received at 14:02h MET, coming from NYSE (trustable),
with RDF body, containing the above facts. Analyzing the message body, the
agent detects the application level event that Oracle bought Retek together with
the detailed financial facts.

Possible other events that are “detected” in turn by this agent that is probably
running investment rules are e.g., that “Oracle bought some company”, “an IT
company has been bought”, “SAP did not succeed in buying Retek”, etc., possibly
contributing to the detection of composite events.

The original message is also posted to a “Semantic Web Newspaper” service,
where smaller clients poll messages e.g. in the evening. For such a client, the in-
coming event consists e.g. of the information that “at 20:32 PST, I became aware
that at 9:00 AST, ...”. It can now process the pure facts (that probably explain
why the oracle stocks raised/fell during the day), or incorporate the awareness
time, e.g., when processing a rule “if I become aware of a large acquisition less
than 3 hours after the fact, do something ...”.

164 J.J. Alferes and W. May

5.4 ECA Rules in the Semantic Web

There are several abstraction levels on which active rules can be defined:

– programming language level: triggers as built-in constructs of a given database
model, like SQL triggers. Usually they are implemented inside the database.
This level can e.g. directly be based on the DOM Level 2/3 Events [17] or on
the triggers of relational storage of RDF data.

– logical level – XML. Here ECA rules consist of distinguished event-condition-
action parts that are also marked up in XML/RuleML; one of the results of
the research in I5 (jointly with I1) should be an ECA-ML language.
This requires a definition of atomic update events on XML data; probably
on the same level and granularity as updates in XUpdate located by XSL
patterns or by using an update language like XChange.

– semantic level: RDF. Here, several aspects can (also independently) be lifted
from XML:
• use XML-ECA rules on underlying RDF/OWL data,
• use RDF/OWL descriptions of events, conditions, and actions in the XML-

ECA framework,
• use an RDF/OWL ontology even on the rule level. (Conversely, rules in

this ontology can themselves use event/condition/action parts in XML,
and even data in XML).

Updates and Actions. There are different ways how to express the actions to
be taken.

– Explicit updates: In this case the action is an explicit update statement e.g.
described in XUpdate, XQuery+Updates, XChange, or in an RDF Update
language. This requires knowledge of the underlying schema.

– Explicit actions: In this case by calling a procedure/method (SOAP),
– Semantic/Intensional: This requires the declarative specification of what has

to be changed, using an RDF/OWL ontology of changes (to RDF data).

5.5 Trigger-Like Local ECA Rules

Trigger-like local ECA rules have to react directly on the changes of the database,
which is assumed to be in XML or RDF format. While triggers in relational
databases/SQL were only able to react on changes of a given tuple or an attribute
of a tuple, the XML and RDF models call for more expressive event specifications
according to the (tree or graph) structure.

XML. Work on triggers for XQuery has e.g. been described in [7] with Active
XQuery and in [3], emulating the trigger definition and execution model of
the SQL3 standard that specifies a syntax and execution model for ECA rules
in relational databases. Active XQuery uses the same syntax and switches as
SQL’s CREATE TRIGGER.

Evolution and Reactivity for the Web 165

The following proposal has been developed in [2]: For modifications of an
XML tree, the following atomic events could be considered:

– ON DELETE OF xsl-pattern: if a node matching the xsl-pattern is deleted,
– ON INSERT OF xsl-pattern: if a node matching the xsl-pattern is inserted,
– ON MODIFICATION OF xsl-pattern: if anything in the subtree is modified,
– ON UPDATE OF xsl-pattern: the value (text or attribute) of a node matching

the xsl-pattern is modified,
– ON INSERT INTO xsl-pattern: if a node is inserted (directly) into a node

matching the xsl-pattern,
– ON INSERT [IMMEDIATELY] BEFORE|AFTER xsl-pattern: if a node is inserted

(immediately) before or after a node matching the xsl-pattern.

All triggers should make relevant values accessible, e.g., OLD AS ... and NEW
AS ... (like in SQL), both referencing the complete node to which the event
happened, additionally INSERTED AS, DELETED AS referencing the inserted or
deleted node.

Similar to the SQL STATEMENT and ROW triggers, the granularity has to be
specified for each trigger; the following granularities are proposed here:

– FOR EACH STATEMENT (as in SQL),
– FOR EACH NODE: for each node in the xsl-pattern, the rule is triggered only at

most once (cumulative, if the node is actually concerned by several matching
events) per transaction,

– FOR EACH MODIFICATION: each individual modification (possibly for some
nodes in the xsl-pattern more than one) triggers the rule.

For data-dependent information propagation, mainly FOR EACH NODE and FOR
EACH MODIFICATION are adequate.

The implementation of such triggers in XML repositories is probably to be
based on the DOM Level 2/3 Events [17].

RDF. RDF triples, describing properties/values of a resource are much more
similar to SQL. In contrast to XML, there is no assignment of data with subtrees
(which makes it impossible to express “deep” modifications in a simple event;
such things have then to be expressed in the condition part). A proposal can e.g.
be found in [49]. The following proposal has been developed in [2]:

– ON DELETE OF property [OF class],
– ON INSERT OF property [OF class],
– ON UPDATE OF property [OF class].

If a property is removed from/added to/updated of a resource of a given class,
then the event is raised.

166 J.J. Alferes and W. May

Additionally,

– ON CREATE OF class is raised if a new resource of a given class is created.

Probably, also metadata changes have to be detected:

– ON NEW CLASS is raised if a new class is introduced,
– ON NEW PROPERTY [OF CLASS class] is raised, if a new property (optionally:

to a specified class) is introduced.

All triggers should make relevant values accessible, e.g., OLD AS ... and NEW
AS ... (like in SQL), both referencing the original/new value of the property,
RESOURCE AS ... and PROPERTY AS ... refer to the modified resource and the
property (as URIs), respective.
Trigger granularity is FOR EACH STATEMENT or FOR EACH TRIPLE.

5.6 Local and Global ECA Rules

While “triggers” are restricted, programming-language concepts, general ECA
rules provide an abstract concept using an own language. Especially in our set-
ting, they are usually separated from the database. Thus, they do not react on
“physical” events in the database, but on logical events (that nevertheless are
actually raised by events in a database).

Local ECA Rules. Local ECA rules are more general than triggers. They still
react on local events only, but they use an own event language that is based on
a set of atomic events (that are not necessarily simple update operations) and
that usually also allows for composite events. Their event detection mechanism
is not necessarily located in the database. Detection of atomic logical events can
be based on

– database triggers that generate events that are visible/detectable outside the
database, or

– they have to poll the database regularly if such an event occurred.

Global ECA Rules. Global ECA rules have to be used if a composite event
consists of subevents at different locations (or if the source of an event is not
able to process local rules). When considering global rules in the Web and in the
Semantic Web, the local ECA concept has to be extended stepwise:

– “distributed” variants of the above local ECA rules, with events that explic-
itly mention a database/node where the event is located (e.g., “change of
xpath-expr at url”),

– rules that react on events in a set of known databases (e.g., “when a new
researcher is added at one of the participants nodes” (which itself is a dynamic
set)),

– high-level rules of an application, that are not based on schema knowledge
of individual databases, often even not explicitly on a given database (e.g.,

Evolution and Reactivity for the Web 167

“when a publication p becomes known that deals with ...”). Here, Seman-
tic Web reasoning comes heavily into play even for detecting atomic events
“somewhere in the Web”. Such rules will probably be used in the “Travel
Planning Scenario”.

Requirements. The target of development and definition of languages for (ECA)
rules, events, and actions in the Semantic Web should be a semantic approach,
i.e., based on an (extendible) ontology for rules, events, and actions that also
allows for reasoning about these concepts.

6 A Framework Proposal, Conclusions and Further
Issues

Languages. For developing an ECA proposal for the Semantic Web, several
languages with well-defined interfaces are needed. In [2], a preliminary framework
for expressing ECA rules for the Semantic Web has been proposed.

ECA rules are marked up in the language that we will probably call ECA-
ML (XML), or even formulated more abstractly in RDF, using an OWL ECA
ontology. In general, the rules use sublanguages for describing events (metadata,
including a contents part that contains the actual event), according to an event
ontology (EventML), conditions (allowing to embed XQuery), and (trans)actions
(embedding SOAP for service calls as atomic actions). A language for actual
messages (XML, to be exchanged) is also needed.

An important principle here is to provide a framework that covers the con-
cepts described above, not specific languages – there are multiple possible event,
condition (query), and (trans)action languages. Thus, we propose a metamodel
with a (basic) set of languages embedded in a modular concept of languages:

Rule Language. The rule language ECA-ML (namespace eca), provides rule el-
ements with event, condition, and action subelements. These in turn contain
subelements of event, condition, and action markup languages. The concrete
language can be indicated as a language attribute (e.g., as a commonly known
name, or as a URI where further information can be found).

Example 9. Consider the Rewerse Personalized Portal scenario as described
in [2]. The scenario consists of participants’ nodes, working group nodes, and a
central project node.

The following rule propagates the change of a person’s phone number from
a participant’s node to the information server of a working group. It reacts on
a change of a phone number in the local database. If the person whose number
changes, belongs to the working group (checked by an XPath query against the
WG’s database), the change is propagated to a remote server (by an explicit
XQuery+Update statement against the WG’s database):

168 J.J. Alferes and W. May

<eca:rule>
<variable name="WGUrl">http://...</variable>
<eca:event>

<evt:atomic>
<change-of select="person//phone">
<variable name="phone" select="."/>
<variable name="person" select="$phone/ancestor::person"/>

</change-of>
</evt:atomic>

</eca:event>
<eca:condition language="XPath">

$WGUrl//person[matches(name,$person/name)]
</eca:condition>
<eca:action language="XQuery+Updates">

update $WGUrl
set //person[matches(name,$person/name)]/phone := $phone

</eca:action>
</eca:rule>

Event Language. The proposal contains a simple event language that allows to
express terms in an event algebra. The basis are atomic events that can again be
given in several languages. The generic approach proposes an XSL-style language
for detecting changes in the local database (syntactic XML sugar to the trigger
events in Section 5.5). The event language comprises constructs like <seq>, <disj>,
<conj>, <forany> and <forall> with <variable> subelements, <cumulative> with
appropriate switches, etc.

Condition Language. For condition languages, we propose to use existing lan-
guages like XPath, XQuery, RDQL, Xcerpt etc.

Action Language. The proposal contains a simple action language that allows to
express composite actions. The basis are atomic actions that can again be given
in several languages (e.g., XUpdate, XQuery+Update, XChange, or SOAP calls).
The action language comprises constructs like <seq>, <conj>, <if test=“...”> and
<while test=“...”> with appropriate switches, and <forall> with <variable> subele-
ments, providing similar constructs as for CCS process specifications.

Implementation Issues. The modular design of the languages must be mirrored
in a modular design of the architecture. For providing composability, the modules
must adhere to standardized interfaces. The overall architecture must provide
addressing and coupling mechanisms for addressing modules and services that
implement concrete languages over the Web.

Conclusion. Research in Evolution and Reactivity for the Semantic Web re-
quires a profound knowledge of existing concepts, logics, and formal methods in

Evolution and Reactivity for the Web 169

the areas of (active and distributed) databases, software engineering, and Web
technology such as semistructured data and communication mechanisms.

Further Issues. Due to the restricted space (and time), a lot of issues has not
been discussed here: evolution at the level of RDF/OWL, evolution of rules of
knowledge bases and behavioral rules, evolution in communities of peers, and
super-peers and concepts from agent and multi-agent systems.

References

1. J. J. Alferes, J. Bailey, M. Berndtsson, F. Bry, J. Dietrich, A. Kozlenkov, W. May,
P. L. Pătrânjan, A. Pinto, M. Schroeder, and G. Wagner. State-of-the-art on
evolution and reactivity. Technical Report IST506779/Lisbon/I5-D1/D/PU/a1,
REWERSE, September 2004.

2. J. J. Alferes, M. Berndtsson, F. Bry, M. Eckert, N. Henze, W. May, P. L. Pătrânjan,
and M. Schroeder. Use-cases on evolution. Technical Report IST506779/Lisbon/I5-
D2/D/PU/a1, REWERSE, September 2004.

3. James Bailey, Alexandra Poulovassilis, and Peter T. Wood. An event-condition-
action language for XML. In Int. WWW Conference, 2002.

4. C. Baral, M. Gelfond, and Alessandro Provetti. Representing actions: Laws, obser-
vations and hypotheses. Journal of Logic Programming, 31(1–3):201–243, April–
June 1997.

5. M. Ben-Ari, Z. Manna, and A. Pnueli. The temporal logic of branching time. In
8th Annual ACM Symp. on Principles of Programming Languages, 1981.

6. J. A. Bergstra and J. W. Klop. Algebra of communicating processes with abstrac-
tion. Theoretical Computer Science, 1(37):77–121, 1985.

7. Angela Bonifati, Daniele Braga, Alessandro Campi, and Stefano Ceri. Active
XQuery. In Intl. Conference on Data Engineering (ICDE), pages 403–418, San
Jose, California, 2002.

8. A. J. Bonner and M. Kifer. An overview of transaction logic. Theoretical Computer
Science, 133(2):205–265, 1994.

9. A. J. Bonner and M. Kifer. Concurrency and communication in transaction logic.
In ICDT’95: Advances in Logic-Based Languages, 1995.

10. François Bry and Sebastian Schaffert. Towards a declarative query and transfor-
mation language for XML and semistructured data: Simulation unification. In Intl.
Conf. on Logic Programming (ICLP), number 2401 in LNCS, pages 255–270, 2002.

11. François Bry, Paula Lavinia Pătrânjan, and Sebastian Schaffert. Xcerpt and
XChange: Deductive Languages for Data Retrieval and Evolution on the Web.
In Proc. of Workshop on Semantic Web Services and Dynamic Networks, Ulm,
Germany, (22nd – 24th September 2004). GI, 2004.

12. François Bry and Sebastian Schaffert. Querying the Web Reconsidered: A Practical
Introduction to Xcerpt. In Proc. of Extreme Markup Languages 2004, Montreal,
Quebec, Canada, (2nd – 6th August 2004), 2004.

13. S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim. Composite events
for active databases: Semantics, contexts and detection. In Proceedings of the 20th
VLDB, pages 606–617, 1994.

14. Jianjun Chen, David J. deWitt, Feng Tian, and Yuang Wang. NiagaraCQ: A
scalable continuous query system for internet databases. In ACM Intl. Conference
on Management of Data (SIGMOD), pages 379–390, 2000.

170 J.J. Alferes and W. May

15. Jan Chomicki. Efficient checking of temporal integrity constraints using bounded
history encoding. ACM Transactions on Database Systems (TODS), 20(2):149–
186, 1995.

16. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. In Proc. of the IBM Workshop on Logics of
Programs, number 131 in Lecture Notes in Computer Science, 1981.

17. Document object model (DOM). http://www.w3.org/DOM/, 1998.

18. Thomas Eiter, Wolfgang Faber, Nicola Leone, Gerald Pfeifer, and Axel Polleres. A
Logic Programming Approach to Knowledge-State Planning: Semantics and Com-
plexity. ACM Transactions on Computational Logic, 5(2):206–263, 2004.

19. Thomas Eiter, Wolfgang Faber, Gerald Pfeifer, and Axel Polleres. Declarative
planning and knowledge representation in an action language. In Ioannis Vlahavas
and Dimitris Vrakas, editors, Intelligent Techniques for Planning. Idea Group, Inc.,
2004.

20. E. A. Emerson and C.-L. Lei. Modalities for model checking: Branching time strikes
back. In 12th Annual ACM Symp. on Principles of Programming Languages, 1985.

21. eXist: an Open Source Native XML Database. http://exist-db.org/.

22. D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of fair-
ness. In ACM Symposium on Principles of Programming Languages, pages 163–173,
1980.

23. Dov Gabbay. The declarative past, and imperative future: Executable temporal
logic for interactive systems. In B. Banieqbal, B. Barringer, and A. Pnueli, editors,
Temporal Logic in Specification, number 398 in Lecture Notes in Computer Science,
pages 409–448. Springer, 1989.

24. M. Gelfond and V. Lifschitz. Representing actions and change by logic programs.
Journal of Logic Programming, 17:301–322, 1993.

25. M. Gelfond and V. Lifschitz. Action languages. Electronic Transactions on Arti-
ficial Intelligence, 2(3-4):193–210, 1998.

26. E. Giunchiglia, G. Kartha, and V. Lifschitz. Representing actions: Indeterminacy
and ramifications. Artificial Intelligence, 95:409–443, 1997.

27. E. Giunchiglia, J. Lee, V. Lifschitz, N. Mc Cain, and H. Turner. Representing ac-
tions in logic programs and default theories: a situation calculus approach. Journal
of Logic Programming, 31:245–298, 1997.

28. E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, and H. Turner. Nonmonotonic
causal theories. Artificial Intelligence, 153:49–104, 2004.

29. E. Giunchiglia and V. Lifschitz. An action language based on causal explanation:
Preliminary report. In AAAI’98, pages 623–630, 1998.

30. Y. Gurevich. Logic and the challenge of computer science. In Current Trends in
Theoretical Computer Science, pages 1–57. Computer Science Press, 1988.

31. Y. Gurevich. Evolving algebras 1993: Lipari guide. In E. Börger, editor, Specifica-
tion and Validation Methods, pages 9–36. Oxford University Press, 1995.

32. D. Harel. First-Order Dynamic Logic. Number 68 in Lecture Notes in Computer
Science. Springer, 1979.

33. D. Harel. Dynamic Logic. In D. Gabbay and F. Guenther, editors, Handbook
of Philosophical Logic, Volume II - Extensions of Classical Logic, pages 497–604.
Reidel Publishing Company, 1984.

34. D. Harel, D. Kozen, and R. Parikh. Process Logic: Expressiveness, decidability,
completeness. Journal of Computer and System Sciences, 25(2):144–170, 1982.

35. C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

Evolution and Reactivity for the Web 171

36. David B. Kemp, Kotagiri Ramamohanarao, and Peter J. Stuckey. ELS Programs
and the Efficient Evaluation of Non-Stratified Programs by Transformation to ELS.
In Tok Wang Ling, Alberto O. Mendelzon, and Laurent Vieille, editors, Intl. Con-
ference on Deductive and Object-Oriented Databases (DOOD), number 1013 in
Lecture Notes in Computer Science, pages 91–108, Singapore, 1995. Springer.

37. L. Lamport. ’sometimes’ is sometimes ’not never’. In 7th Annual ACM Symp. on
Principles of Programming Languages, 1980.

38. Georg Lausen, Bertram Ludäscher, and Wolfgang May. On logical foundations of
active databases. In Jan Chomicki and Gunter Saake, editors, Logics for Databases
and Information Systems, chapter 12, pages 389–422. Kluwer Academic Publishers,
1998.

39. Patrick Lehti. Design and Implementation of a Data Manipulation Processor for
an XML Query Language (diploma thesis), August 2001. Technische Universität
Darmstadt.

40. H.J. Levesque, R. Reiter, Y. Lesprance, F. Lin, and R. Scherl. Golog: A logic pro-
gramming language for dynamic domains. Journal of Logic Programming, 31:59–83,
1997.

41. J. Lobo, R. Bhatia, and S.Naqvi. A policy description language. In National
Conference on Artificial Intelligence (AAAI), 1999.

42. Wolfgang May, José Júlio Alferes, and François Bry. Towards generic query, up-
date, and event languages for the Semantic Web. In Principles and Practice of
Semantic Web Reasoning (PPSWR), number 3208 in Lecture Notes in Computer
Science, pages 19–33. Springer, 2004.

43. John McCarthy. Formalizing Common Sense. Ablex, Norwood, 1990.

44. John McCarthy and P. J. Hayes. Some philosophical problems from the standpoint
of artificial intelligence. Machine Intelligence, 4, 1969.

45. R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science,
25:267–310, 1983.

46. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

47. R. Milner. Operational and algebraic semantics of concurrent processes. In
J. v. Leeuwen, editor, Handbook of Theoretical Computer Science, volume B: For-
mal Models and Semantics, chapter 19, pages 1201–1242. Elsevier, 1990.

48. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Information
and Computation, 1(100):1–77, 1992.

49. George Papamarkos, Alexandra Poulovassilis, and Peter T. Wood. Event-
condition-action rule languages for the semantic web. In Workshop on Semantic
Web and Databases (SWDB’03), 2003.

50. E. Pednault. Exploring the middle ground between STRIPS and the Situation
Calculus. In Proc. of the 1st International Conference on Principles of Knowl-
edge Representation and Reasoning (KR’89), pages 324–332. Morgan Kaufmann
Publishers Inc., 1989.

51. G. Plotkin. A structured approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University, 1981.

52. V. R. Pratt. Semantical considerations on Floyd-Hoare Logic. In 17.th IEEE Symp.
on Foundations of Computer Science, pages 109–121, 1976.

53. R. Reiter. Proving properties of states in the situation calculus. Artificial Intelli-
gence, 64(2):337–351, 1993.

54. E. Sandewall. Features and Fluents: A Systematic Approach to the Representation
of Knowledge about Dynamical Systems. Oxford University Press, 1994.

172 J.J. Alferes and W. May

55. Munindar P. Singh. Semantical considerations on workflows: An algebra for in-
tertask dependencies. In Intl. Workshop on Database Programming Languages,
electronic Workshops in Computing, Gubbio, Italy, 1995. Springer.

56. A. Prasad Sistla and Ouri Wolfson. Temporal Conditions and Integrity Constraints
in Active Database Systems. In Proceedings ACM SIGMOD International Confer-
ence on Management of Data (SIGMOD 1995), pages 269–280, 1995.

57. T. Son and C. Baral. Formalizing sensing actions - a transition function based
approach. Artificial Intelligence, 125(1-2):19–91, 2001.

58. C. Stirling. Temporal logics for CCS. In Linear Time, Branching Time and Par-
tial Order in Logics and Models of Concurrency, number 354 in Lecture Notes in
Computer Science, pages 660–672. Springer, 1989.

59. Igor Tatarinov, Zachary G. Ives, Alon Halevy, and Daniel Weld. Updating XML. In
ACM Intl. Conference on Management of Data (SIGMOD), pages 133–154, 2001.

60. Feng Tian, Berthold Reinwald, Hamid Pirahesh, Tobias Mayr, and Jussi Mylly-
maki. Implementing a scalable XML publish/subscribe system using relational
database systems. In ACM Intl. Conference on Management of Data (SIGMOD),
2004.

61. J. van Benthem and J. Bergstra. Logic of transition systems. Journal of Logic,
Language, and Information, 3:247–283, 1995.

62. World Wide Web Consortium, http://www.w3.org/TR/xpath. XML Path Lan-
guage (XPath), Nov 1999.

63. World Wide Web Consortium, http://www.w3.org/TR/xquery/. XQuery: A
Query Language for XML, Feb 2001.

64. XML:DB Initiative, http://xmldb-org.sourceforge.net/. XUpdate - XML Update
Language, September 2000.

65. Carlo Zaniolo. A unified semantics for active and deductive databases. In N. W.
Paton and M. W. Williams, editors, Proceedings of the 1st International Workshop
on Rules in Database Systems, Workshops in Computing, pages 271–287. Springer-
Verlag, 1994. ISBN 3-540-19846-6.

Personalization for the Semantic Web�

Matteo Baldoni1, Cristina Baroglio1, and Nicola Henze2

1 Dipartimento di Informatica, Università degli Studi di Torino,
c.so Svizzera 185, I-10149, Torino, Italy
{baldoni, baroglio}@di.unito.it

2 ISI - Semantic Web Group, University of Hannover,
Appelstr. 4, D-30167 Hannover, Germany

henze@kbs.uni-hannover.de

Abstract. Searching for the meaning of the word “personalization” on
a popular search engine, one finds twenty-three different answers, includ-
ing “the process of matching categorized content with different end users
based on business rules ... upon page request to a Webserver”, “using
continually adjusted user profiles to match content or services to individ-
uals”, and also “real-time tailoring of displays, particularly Web pages,
to a specific customer’s known preferences, such as previous purchases”.
A little more generally, personalization is a process by which it is pos-
sible to give the user optimal support in accessing, retrieving, and stor-
ing information, where solutions are built so as to fit the preferences,
the characteristics and the taste of the individual. This result can be
achieved only by exploiting machine-interpretable semantic information,
e.g. about the possible resources, about the user him/herself, about the
context, about the goal of the interaction. Personalization is realized by
an inferencing process applied to the semantic information, which can be
carried out in many different ways depending on the specific task. The
objective of this paper is to provide a coherent introduction into issues
and methods for realizing personalization in the Semantic Web.

1 Introduction

Personalized information systems aim at giving the individual user optimal sup-
port in accessing, retrieving, and storing information. The individual require-
ments of the user are to be taken into account in such different dimensions like
the current task, the goal of the user, the context in which the user is requesting
the information, the previous information requests or interactions, the working
process s/he is involved in, the level of expertise, the device s/he is using to

� This research has partially been funded by the European Commission and by the
Swiss Federal Office for Education and Science within the 6th Framework Programme
project REWERSE number 506779 (cf. http://rewerse.net). Matteo Baldoni and
Cristina Baroglio have also been supported by MIUR Cofin 2003 “Logic-based de-
velopment and verification of multi-agent systems (MASSiVE)” national project.

, LNCS 3564, pp. 173–212, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
N. Eisinger and J. Ma�luszyński (Eds.): Reasoning Web 2005

174 M. Baldoni, C. Baroglio, and N. Henze

display the information, the bandwidth and availability of the communication
channel, the abilities (disabilities or handicaps) of the user, his/her time con-
straints, and many, many more. Different research disciplines have contributed
to explore personalization techniques and to evaluate their usefulness within var-
ious application areas: E.g. hypertext research has studied personalization in the
area of so-called adaptive hypertext systems, collaborative filtering research has
investigated recommender systems, artificial intelligence techniques have been
widely used to cluster Web data, usage data, and user data, reasoning and un-
certainty management has been adopted to draw conclusions on appropriate
system behavior, and so forth.

Many attempts have been done to apply personalization techniques to the
World Wide Web as a natural extension of work on hypertext and hyperme-
dia, however, the Web is an information space thought for human to human
communication, while personalization requires software systems (broadly speak-
ing “machines”) to take part to the interaction and help. Such systems require
knowledge to be expressed in a machine-interpretable format, which in the Web
is not available. The development of languages for expressing information in a
machine-processable form is characteristic of the Semantic Web initiative, as
Tim Berners-Lee pointed out since 1998. Over this knowledge layer, the use of
inferencing mechanisms is envisioned as a fundamental means for performing
a content-aware navigation, producing an overall behavior that is closer to the
user’s intuition and desire. This is the reason why the Semantic Web is the most
appropriate environment for realizing personalization. In other words, the Se-
mantic Web is deeply connected to the idea of personalization in its very nature.

In the following we will see how the notion of personalization applies to the
Semantic Web, overview the expectations, the mechanisms, the languages and
tools, and set the state of the art. The paper is organized as follows. Section 2
introduces personalization as the key feature of the Semantic Web. Section 3
reports the state of the art in personalized Web systems, mainly based on the
concept of “user model”. Section 4 explains how WWW adaptive systems can
take advantage of the Semantic Web. Conclusions follow.

2 Demands of Personalization in the (Semantic) Web

The objective of the Semantic Web is a content-aware navigation and fruition
of the resources. This means being able, by means of proper mechanisms, to
identify those resources that better satisfy the requests not only on the basis
of descriptive keywords but also on the basis of knowledge. There is, in fact,
a general agreement that the use of knowledge increases the precision of the
answers. Such a knowledge, as we will see, represents different things, information
about the user, the user’s intentions, the context. One of the key features that
characterize the Semantic Web is that its answers are always personalized or
adapted so to meet specific requirements. It will not be the case that the answer
to a query about “book” will contain links to bookshops and links to travel
agencies. This Web of knowledge is currently being built on top of the more

Personalization for the Semantic Web 175

traditional World Wide Web and requires the definition of proper languages and
mechanisms. Let us now introduce a few basic concepts.

The first key concept is that of user model, that is a machine-interpretable
representation of knowledge about the user. The user model, however, may con-
tain different kinds of information; depending on what the user model contains,
different reasoning technique might be necessary. Often the user model contains
general information, e.g. age and education. In this case, in the tradition of works
on personalization, the adaptation occurs at the level of information selection
and, especially, presentation. Different users better understand different ways of
explaining things. Choosing the best possible communication pattern is funda-
mental in application systems that supply a kind of information which, because
of its nature, might be difficult to understand but that it is important for the
user to comprehend. Think, for example, to health-care systems, where medical
information is supplied to persons of different age and education. In order for
this kind of task to be executed, it is necessary to enrich the data sources and the
data itself with semantic information. To this aim, one of the greatest difficulties
is to define adequate ontologies.

More and more frequently, however, the Semantic Web is not seen as an
information provider but as a service provider. This is actually in the line with
the latest view of the World Wide Web as a platform for sharing resources
and services. We can divide services in two families: “world services” and “web
services”. A world service is, for instance, a shop, a museum, a restaurant, whose
address, type and description is accessible over the Web. A Web service, instead,
is a resource, typically a software device, that can be automatically retrieved and
invoked over the Web, possibly by another service.

To begin with, let us consider services of the former kind, world services. The
scenarios in which these services are considered adopt user models, in which a
different kind of information is considered: the location of the user, which is sup-
posed to vary along time. Typically this information is not supplied by the user
but it is obtained by the system in a way that is transparent to him/her. In the
simplest case, the user (a tourist or a person who is abroad for work) describes
in a qualitative way a service of interest, as done with the regular Web browsers.
The answer, however, contains only information about world services that are
located nearby. The scenario can be made more complex if one adds the time
dimension. In this case the user is not necessarily interested in a service that is
available now, the system is requested to store the user’s desire and alert the
user whenever a matching event occurs, that refers to a service that is nearby.
As an example, consider a user who loves classical ballet. He is traveling, and has
just arrived at Moscow. After a couple of days he receives an SMS informing him
that in the weekend Romeo and Juliet is going to be held at the Boljsoi Theater
and that tickets are available. Notice that besides a different kind of informa-
tion contained in the user model, also the mechanism by which personalization
is obtained is very different from the previous case: here the answer changes
according to the context, in this case given by the position of the user in space
and time, and the answer is not always immediately subsequent the query. As

176 M. Baldoni, C. Baroglio, and N. Henze

we have seen, in fact, a triggering mechanism is envisioned that alerts the user
whenever an event that satisfies the description occurs. The word “triggering
mechanism” makes one think of a sort of reactive system, nevertheless, many
alternatives might be explored and, in particular, inference mechanisms. More-
over, this approach is suitable also to a very different application domain, such
as ambient intelligence, where appliances are the world services to be handled.

Strongly related to these topics, the recent success of decentralized applica-
tions has caused a growing attention towards decentralized approaches to user
modeling. In this framework, the target applications include personal guides
for navigation or ambient devices, integrated Web-sites (e.g. newspapers), por-
tals (e.g. Yahoo), e-commerce Web-sites (e.g. Amazon), or recommender sites
(e.g. MovieLens). In ubiquitous environments distributed sensors follow a user’s
moves and, based on the tasks typically performed by him/her, on preferences
induced from history and on the specific characteristics of the given context,
perform adaptation steps to the ambient-dependent features of the supported
functionalities.

As a last observation, when the answer is time-delayed, as described, the
descriptions of the services (or more in general, of the events) of interest are
sometimes considered as part of the user model. In this case the user model
does not contain general information about the user but a more specific kind of
information. Alternatively, this can be seen as a configuration problem: I config-
ure a personalized assistant that will warn me when necessary. It is interesting
to observe that no-one considers these as queries. An example application is a
personalized agenda: the idea is to use an automatic configuration system for
filling the agenda of a tourist, taking into account his/her preferences and the
advertisements of cultural events in the visited area as they are published. In-
deed, filling the agenda could be considered as the topmost level of a system
that also retrieves services triggered by events and biased by the user’s location.
This kind of systems should perform also personalization w.r.t. the device by
which the user interacts with the system (mobile, laptop).

Many scenarios that refer to world services could naturally be extended so
as to include Web services. In this case, the meaning of localization should be
revised, if at all applicable, while the idea of combining services, as proposed
in the case of the tourist agenda, should be explored with greater attention;
Web service automatic composition is, actually, quite a hot topic as research
in the field proves [20, 5]. Both, Web-service-based and ubiquitous computing,
applications can be considered as conglomerates of independent, autonomous
services developed by independent parties. Such components are not integrated
at design time, they are integrated dynamically at run-time, according to the
current needs. A frequently used metaphor is a free-market of services where the
user buys a complex service, that is composed dynamically on the basis of the
available (smaller) services. For example, an e-learning course can be assembled
dynamically by composing learning objects stored in independent repositories.
The composition is performed so as to satisfy the specific characteristics of the
student. For instance, a vision-impaired student will be returned audio materials.

Personalization for the Semantic Web 177

Another, orthogonal, case is the one in which the user model contains (or is
accompanied by) the description of what the user would like to achieve. There
are situations in which this description cannot be directly related to specific re-
sources or services, but it is possible to identify (or compose) a set of resources
so as to satisfy the user’s desires. In this case a planning process is to be en-
acted. Sometimes besides the planning process other reasoning techniques are
envisioned in order to supply a more complete support to the user. An appli-
cation domain in which the goal-driven approach seems particularly promising
is, once again, e-learning. In this case the goal is the learning goal of the user,
that is to say a high-level description of the knowledge that s/he would like to
acquire, and the plan contains the learning resources that the user should use for
acquiring the desired expertise. The whole interaction with the user is supposed
to be carried on through a browser. It is important to remark that students are
not the only kind of users of this sort of systems. Also teachers should access
them but with a different aim. For instance, a teacher might look for learning re-
sources for a new course that s/he will teach. A new notion is, then, introduced,
that of role. Not only user models contain general or specific information about
the users’ interests but they also contain the role that the user plays. Depending
on the role, different views might be supplied by the system (personalization at
the level of presentation) and different actions might be allowed. Rather than
being just one of the many features from a user model, the role could, actually,
be considered as orthogonal to it (the role is independent from the specific user).
Beyond e-learning, the concept of role is useful in many application domains. In
health care, there are patients and there are doctors and nurses. In tourism,
there are tourists and there are travel agencies.

Another basic concept is that of domain knowledge. For understanding the
meaning of this word, let us consider the intuitive application case of e-learning.
Here the system needs to be supplied with a body of knowledge that not only
contains the semantic description of the single learning resources, but it also
contains definitions of more abstract concepts, not directly related to the courses
and defined on the basis of other concepts. This knowledge is used to bias the
construction of solutions that make sense from a pedagogical point of view. The
use of a knowledge of this kind might be exported also to other application
domains, whenever similar reasoning techniques are adopted.

Summarizing, the goal of personalization in the Semantic Web is to make eas-
ier the access to the right resources. This task entails two orthogonal processes:
retrieval and presentation. Retrieval consists in finding or constructing the right
resources when they are needed, either on demand or (as by the use of automatic
updates) when the information arises in the network. Once the resources have
been defined they are presented in the most suitable way to the user, taking into
account his/her own characteristics and preferences. To these aims it is neces-
sary to have a model of the user, that is, a representation of those characteristics
according to which personalization will occur. It is also necessary to apply in-
ferencing techniques which, depending on the task, might range from the basic
ontology reasoning mechanisms supplied by Description Logics (like subsump-

178 M. Baldoni, C. Baroglio, and N. Henze

tion and classification) to the most various reasoning techniques developed in
Artificial Intelligence.

3 Personalization in the World Wide Web

Personalization in the World Wide Web can be compared to creating individual
views on Web data according to the special interests, needs, requirements, goals,
access-context, etc. of the current beholder. The ideas and solutions for creating
these individual views are manifold and require interdisciplinary engagement:
human computer interaction specialists, e.g. for creating meaningful user inter-
faces with good usability rankings; artificial intelligence experts, e.g. for mining
Web data, or for creating dynamic and accurate models of users; and software
engineers for creating generic infrastructure for maintaining personalized views
on Web data, and for sufficient user interaction support.

In this article, we focus on those aspects of personalization which aim at
improving the selection, access and retrieval of Web resources. The creation of
appropriate user interfaces and user awareness is out of scope of this article.

Definition 1 (Personalizing the access to Web data). Personalizing the
access to Web data defines the process of supporting the individual user in find-
ing, selecting, accessing, and retrieving Web resources (or meaningful sub-sets
of this process).

With this definition, we can more precisely say that the process of personaliza-
tion is a process of filtering the access to Web content according to the individual
needs and requirements of each particular user. We can distinguish two different
classes of filters: those filter which have been created for a certain hypermedia
system, and those, which have been created for a network of Web resources.
The difference between these filters is in the way how they treat the underlying
document space: if they have precise information on the structure and relations
between the documents (this means the hypertext system), or whether they use
dynamics and networking effects in the Web in order to provide individual views
on Web data.

The first class of filters has been investigated since the beginnings of the
nineties of the last century under the topic of Adaptive Hypermedia Systems.
The second belongs to Web Mining techniques, both Web usage and Web con-
tent mining. The personalized systems based on Web mining are often called
recommender systems, which are in focus of research since the mid-nineties of
the last century.

In the following, we describe techniques and methods for personalization in
the field of adaptive hypermedia (see Section 3.1), and Web mining (see Section
3.2). Afterwards, we will summarize approaches to user modeling.

Personalization for the Semantic Web 179

3.1 Adaptive Hypermedia Systems

An adaptive hypermedia system enlarges the functionality of a hypermedia sys-
tem. It personalizes a hypermedia systems for the individual users: Each user has
her or his individual view and individual navigational possibilities for working
with the hypermedia system. A general definition of hypertext / hypermedia is
given in [58]:

Definition 2 (Hypertext). A set of nodes of text which are connected by links.
Each node contains some amount of information (text) and a number of links to
other nodes.

Definition 3 (Hypermedia). Extension of hypertext which makes use of mul-
tiple forms of media, such as text, video, audio, graphics, etc.

Discussions on the definitions of hypertext can be found for example in [24, 47].
The terms hypertext and hypermedia are often synonymous [47]. Throughout
this text, we use the term hypermedia. For a general, functionality-oriented defi-
nition of adaptive hypermedia systems, we follow the proposal of P. Brusilovsky
[17].

Definition 4 (Adaptive hypermedia system). “By adaptive hypermedia
systems we mean all hypertext and hypermedia systems which reflect some fea-
tures of the user in the user model and apply this model to adapt various visible
aspects of the system to the user.”

The support of adaptive methods in hypermedia systems is advantageous if there
is one common system which serves many users with different goals, knowledge,
and experience, and if the underlying hyperspace is relatively large [17]. Adap-
tation of hypermedia systems is also an attempt to overcome the “lost in hy-
perspace problem” (for a discussion, see for example [47]). The user’s goals and
knowledge can be used for limiting the number of available links in a hypermedia
system.

Techniques in Adaptive Hypermedia. As we have explained, a hypermedia
system consists of documents which are connected by links. Thus, there are
generally two aspects which can be adapted to the users: the content and the
links. Let us begin with content level adaptation.

By adapting the content to a user, the document is tailored to the needs
of the user, for example by hiding too specialized information or by inserting
some additional explanations. According to [17], we can identify the following
methods for content level adaptation:

– Additional explanations: Only those parts of a document are displayed to a
user which fit to his goals, interest, tasks, knowledge, etc.

– Prerequisite explanations: Here the user model checks the prerequisites nec-
essary to understand the content of the page. If the user lacks to know some
prerequisites, the corresponding information is integrated in the page.

180 M. Baldoni, C. Baroglio, and N. Henze

– Comparative explanations: The idea of comparative explanations is to explain
new topics by stressing their relations to known topics.

– Explanation variants: By providing different explanations for some parts of
a document, those explanations can be selected which are most suited for
the user. This extends the method of prerequisite explanations.

– Sorting: The different parts of a document are sorted according to their
relevance for the user.

The following techniques are used for implementing the above stated adaptation
methods [17]:

– Conditional text: Every kind of information about a knowledge concept is
broken into text parts. For each of these text parts, the required knowledge
for displaying it to the user is defined.

– Stretch text: Some keywords of a document can be replaced by longer de-
scriptions if the user’s actual knowledge requires that.

– Page or page fragment variants: Here, different variants of whole pages or
parts of them are stored.

– Frame based technique: This technique stores page and fragment variants into
concept frames. Each frame has some slots which present the page or page
fragments in a special order. Certain rules decide which slot is presented to
the user.

Content level adaptation requires sophisticated techniques for improved pre-
sentation. The current systems using content level adaptation do so by enriching
their documents with meta information about prerequisite or required knowl-
edge, outcome, etc. The documents or fragments contained in these systems
have to be written more than once in order to obtain the different explanations.

Link Level Adaptation. By using link level adaptation, the user’s possibilities to
navigate through the hypermedia system are personalized. The following meth-
ods show examples for adaptive navigation support:

– Direct guidance: Guide the user sequentially through the hypermedia system.
Two methods can be distinguished, “next best” and “page sequencing” (or
“trails”). The former provides a next-button to navigate through the hyper-
text. The latter generates a reading sequence through the entire hypermedia
or through some part of it.

– Adaptive sorting: Sort the links of a document due to their “relevance” to
the user. The relevance of a link to the user is based on the system’s assump-
tions about him/her. Some systems sort links depending on their similarity
to the present page. Or by ordering them according to the required pre-
requisite knowledge. These methods are known as “similarity sorting” and
“prerequisite knowledge sorting”.

– Adaptive hiding: Limit the navigational possibilities by hiding links to irrele-
vant information. Hiding of links can be realized by making them unavailable
or invisible.

Personalization for the Semantic Web 181

– Link annotation: Annotate the links to give the user hints about the content
of the pages they point to. The annotation might be text, coloring, an icon, or
dimming. The most popular method for link annotation (in the educational
area) is the so called “traffic light metaphor”. Here the educational state of
a link is estimated by the system with respect to the user’s actual knowledge
state. The link pointing to the page is then annotated by a colored ball. A
red ball in front of a link indicates that the user lacks some knowledge for
understanding the pages; thus the page is not recommended for reading. A
yellow ball indicates links to pages that are not recommended for reading;
this recommendation is less strict than in case of a red ball. A green ball is
in front of links which lead to recommended pages. Grey balls give the hint
that the content of the corresponding page is already known to the user.
Variants in the coloring exist. A mix of traffic light metaphor and adaptive
hiding is also used in some systems. For an evaluation about adaptive hiding
and adaptive navigation we refer to [67].

– Map annotation: Here, graphical overviews or maps are adapted with some
of the above mentioned methods.

Techniques for link level adaptation depend on the specific system and are, for
example, discussed in [17]. Here the assumptions that the system makes about
the user play an important role to decide what and how to adapt. Link level
adaptation restricts the number of links and thus the number of navigational
possibilities. It is useful to prevent the user from “getting lost in hyperspace”.
As in the case of content level adaptation, a description of the content of the
documents is required for implementing the adaptation tasks.

Case Study: Adaptive Educational Hypermedia Systems. Adaptive ed-
ucational hypermedia systems (AEHS) have been developed and tested in vari-
ous disciplines and have proven their usefulness for improved and goal-oriented
learning and teaching. In this section, we propose a component-based logical
description of AEHS, in contrast to the functionality-oriented definition 4. This
component-based definition is motivated by Reiter’s theory of diagnosis [62]
which settles on characterizing systems, observations, and diagnosis in first-order
logic (FOL). We decompose adaptive educational hypermedia systems into ba-
sic components, according to their different roles: Each adaptive (educational)
hypermedia system is obviously a hypermedia system, therefore it makes as-
sumptions about documents and their relations in a document space. It uses a
user model to model various characteristics of individual users or user groups.
During runtime, it collects observations about the user’s interactions. Based on
the organization of the underlying document space, the information from the
user model and from the system’s observation, the adaptive functionality is pro-
vided.

In this section, we will give a logic-based definition for AEHS. We have cho-
sen first order logic (FOL) as it allows us to provide an abstract, generalized
formalization. The notation chosen in this paper refers to [64]. The aim of this
logic-based definition is to accentuate the main characteristics and aspects of
adaptive educational hypermedia.

182 M. Baldoni, C. Baroglio, and N. Henze

Definition 5 (Adaptive Educational Hypermedia System (AEHS)). An
Adaptive Educational Hypermedia System (AEHS) is a Quadruple

(DOCS, UM, OBS, AC)

with

DOCS: Document Space: A finite set of first order logic (FOL) sentences with
constants for describing documents (and knowledge topics), and predicates
for defining relations between these constants.

UM: User Model: A finite set of FOL sentences with constants for describing
individual users (user groups), and user characteristics, as well as predicates
and rules for expressing whether a characteristic applies to a user.

OBS: Observations: A finite set of FOL sentences with constants for describing
observations and predicates for relating users, documents/topics, and obser-
vations.

AC: Adaptation Component: A finite set of FOL sentences with rules for de-
scribing adaptive functionality.

The components “document space” and “observations” describe basic data
(DOCS) and run-time data (OBS). The user model and adaptation components
process this data, e.g. for estimating a user’s preferences (UM), or for deciding
about beneficial adaptive functionalities for a user (AC). A collection of existing
AEHS, described according to this logic-based formalism, is reported in [36, 35].
In these works a characterization is given of the systems belonging to the first
generation of AEHS (e.g. Interbook [18]), to the second generation of adaptive
educational hypermedia systems (e.g. NetCoach [71] and KBS Hyperbook [34]),
as well as of a recent system, which is also an authoring framework for adaptive
educational hypermedia (AHA!2.0 [15]).

To make an example, let us then describe by the above formalism an AEHS,
called Simple, having the following functionality. Simple can annotate hypertext-
links by using the traffic light metaphor with two colors: red for non recom-
mended, green for recommended pages. Later, we will extend this system to
demonstrate the use (and the usefulness) of a domain model in an AEHS. Sim-
ple can be modeled by a quadruple (DOCSs, UMs, OBSs, ACs), whose elements
are defined as follows:

– DOCSs: This component is made of a set of n constants and a finite set
of predicates. Each of the constants represents a document in the document
space (the documents are denoted by D1, D2, . . ., Dn). The predicates define
pre-requisite conditions, i.e. they state which documents need to be studied
before a document can be learned, e.g. preq(Di, Dj) for certain Di �= Dj

means that Dj is a prerequisite for Di. N.B.: This AEHS does not employ
an additional knowledge model.

– UMs: it contains a set of m constants, one for each individual user U1, U2,
. . ., Um.

– OBSs: A special constant (Visited) is used within the special predicate obs
to denote whether a document has been visited: obs(Di, Uj , Visited) is the
observation that a document Di has been visited by the user Uj .

Personalization for the Semantic Web 183

– ACs: This component contains constants and rules. One constant (Recom-
mended for reading) is used for describing the values of the “learning state”
of the adaptive functionality, two constants (Green Icon and Red Icon) for
representing values of the adaptive functionality. The learning state of a
document is described by a set of rules of kind:

∀Ui∀Dj(∀Dkpreq(Dj , Dk) =⇒
obs(Dk, Ui, V isited)) =⇒

learning state(Dj , Ui, Recommended for reading)

This component contains also a set of rules for describing the adaptive link
annotation with traffic lights. Such rules are of kind:

∀Ui∀Dj learning state(Dj , Ui, Recommended for reading)
=⇒ document annotation(Dj , Ui, Green icon)

or of kind:

∀Ui∀Dj¬learning state(Dj , Ui, Recommended for reading)
=⇒ document annotation(Dj , Ui, Green icon)

We can extend this simple AEHS by using a knowledge graph instead of a
domain graph. The system, called Simple1, is able to give a more differentiated
traffic light annotation to hypertext links than Simple. It is able to recommend
pages (green icon), to show which links lead to documents that will become
understandable (dark orange icon), which might be understandable (yellow icon),
or which are not recommended yet (red icon). As in the previous case, let us
represent Simple1 by a quadruple (DOCSs1, UMs1, OBSs1, ACs1):

– DOCSs1: The document space contains all axioms of the document space of
Simple, DOCSs, but it does not contain any of the predicates. In addition, it
contains a set of s constants which name the knowledge topics T1, T2, . . ., Ts

in the knowledge space. It also contains a finite set of predicates, stating the
learning dependencies between these topics: depends(Tj , Tk), with Tj �= Tk,
means that topic Tk is required to understand Tj .
The documents are characterized by predicate keyword which assigns a non-
empty set of topics to each of them, so ∀Di∃Tjkeyword(Di, Tj), but keep in
mind that more than one keyword might be assigned to a same document.

– UMs1: The user model is the same as in Simple, plus an additional rule which
defines that a topic Ti is assumed to be learned whenever the correspond-
ing document has been visited by the user. To this aim, Simple 1 uses the
constant Learned.
The rule for processing the observation that a topic has been learned by a
user is as follows (p obs is the abbreviation for “processing an observation”):

∀Ui∀Tj(∃Dkkeyword(Dk, Tj) ∧ obs(Dk, Ui, V isited)
=⇒ p obs(Tj , Ui, Learned)

184 M. Baldoni, C. Baroglio, and N. Henze

– OBSs1: Are the same as in Simple.
– ACs1: The adaptation component of Simple1 contains two further constants

(w.r.t. Simple), representing new values for the learning state of a document.
Such constants are: Might be understandable and Will become understandable
(the meaning is intuitive). Two more constants are added for representing
new values for adaptive link annotation. They are: Orange Icon and Yel-
low Icon. Such constants appear in the rules that describe the educational
state of a document, reported hereafter.
The first rule states that a document is recommended for learning if all the
prerequisites to the keywords of this document have already been learnt:

∀Ui∀Dj(∀Tkkeyword(Dj , Tk) =⇒
(∀Tldepends(Tk, Tl) =⇒ p obs(Tl, Ui, Learned)

=⇒ learning state(Dj , Ui, Recommended for reading)))

The second rule states that a document might be understandable if at least
some of the prerequisites have already been learnt by this user:

∀Ui∀Dj(∀Tkkeyword(Dj , Tk) =⇒
(∃Tldepends(Tk, Tl) =⇒

p obs(Tl, Ui, Learned)
∧¬learning state(Dj , Ui, Recommended for reading)

=⇒ learning state(Dj , Ui,Might be understandable)))

The third rule entails that a document will become understandable if the
user has some prerequisite knowledge for at least one of the document’s
keywords:

∀Ui∀Dj(∃Tkkeyword(Dj , Tk) =⇒
(∃Tldepends(Tk, Tl) =⇒

p obs(Tl, Ui, Learned)
∧¬learning state(Dj , Ui,Might be understandable)

=⇒ learning state(Dj , Ui,Will become understandable)))

Four rules describe the adaptive link annotation:

1) ∀Ui∀Dj learning state(Dj , Ui, Recommended for reading)
=⇒ document annotation(Dj , Ui, Green Icon)

2) ∀Ui∀Dj learning state(Dj , Ui,Will become understandable)
=⇒ document annotation(Dj , Ui, Orange Icon)

3) ∀Ui∀Dj learning state(Dj , Ui,Might be understandable)
=⇒ document annotation(Dj , Ui, Y ellow Icon)

4) ∀Ui∀Dj¬learning state(Dj , Ui, Recommended for reading)
=⇒ document annotation(Dj , Ui, Red Icon)

Discussion: Why a logical characterization of adaptive (educational)
hypermedia is needed. With Brusilovsky’s definition of adaptive hypermedia,

Personalization for the Semantic Web 185

we can describe the general functionality of an adaptive hypermedia system, and
we can compare which kind of adaptive functionality is offered by such a system.

In the literature, we can find reference models for adaptive hypermedia, e.g.
the AHAM Reference Model [16], or the Munich Reference Model [43]. Both the
AHAM and Munich Reference models extend the Dexter Hypertext Model [31],
and provide a framework for describing the different components of adaptive
hypermedia systems. In both cases, the focus is posed on process modeling and
on the engineering of adaptive hypermedia applications, so we can say that these
models are process-oriented.

However, a formal description of adaptive educational hypermedia, which al-
lows for a system-independent characterization of the adaptive functionality, is
still missing. Currently, we cannot answer a request like the following: “I want
to apply the adaptive functionality X in my system. Tell me what information
is required with the hypermedia-documents, which interactions at runtime need
to be monitored, and what kind of user model information and user modeling is
required”. At the moment, we can only describe the functionality with respect
to a specific environment, which means we can describe the functionality only
in terms of the system that implements it. We cannot compare different imple-
mentations nor can we benchmark adaptive systems. A benchmark of adaptive
systems would require at least a comparable initial situation, observations about
a user’s interactions with the system during some defined interaction period, be-
fore the result of the system is returned, the adaptive functionality as well as the
changes in the user model.

The logical definition of adaptive educational hypermedia given here focuses
on the components of these systems, and describes which kind of processing
information is needed from the underlying hypermedia system (the document
space), the runtime information which is required (observations), and the user
model characteristics (user model). The adaptive functionality is then described
by means of these three components, or more precisely: how the information from
these three components, the static data from the document space, the runtime-
data from the observations, and the processing-data from the user model, is
used to provide the adaptive functionality. The aim of this logical definition
of adaptive educational hypermedia is to provide a language for describing the
adaptive functionality, to allow comparison of adaptive functionality in a well-
grounded way, and to enable the re-use of an adaptive functionality in different
contexts and systems.

There is, actually, a need for a formalism expressing adaptive functionalities
in a system-independent and re-usable manner, which allows their application in
various contexts. In the educational context, a typical scenario where re-usable
adaptive functionality is required would be: Imagine a learner who wants to
learn a specific subject. The learner registers to some learning repository, which
stores learning objects. According to his/her current learning progress, some of
the learning objects which teach the subject s/he is interested in are useful, some
of them require additional knowledge that the learner does not have so far (in
accordance to his/her user model), and some might teach the subject only on the

186 M. Baldoni, C. Baroglio, and N. Henze

surface and are too easy for this learner. This kind of situation has been studied
in adaptive educational hypermedia in many applications, and with successful
solutions. However, these solutions are specific to certain adaptive hypermedia
applications, and are hardly generalizable for re-use in different applications. An-
other reason why the adaptive functionality is not re-usable today is related to
the so-called open corpus problem in adaptive (educational) hypermedia [33, 19],
which states that currently, adaptive applications work on a fixed set of docu-
ments which is defined at the design time of the system, and directly influences
the way adaptation is implemented, e.g. that adaptive information like “required
prerequisites” is coded on this fixed set of documents.

3.2 Web Mining

In contrast to the approach in adaptive hypermedia, personalization with aid of
Web mining does not work on such well-defined corpora like a hypertext system.
Instead, it uses effects and dynamics in the network structure in order to detect
(virtual) relations between Web resources.

The World Wide Web is seen as the Web graph. In this graph, Web resources
are the nodes, and links between the Web resources are the edges. NB: as it is
practically impossible to create a complete snapshot of the World Wide Web
at a certain time point, this Web graph is not a completely known structure.
On the contrary, in the case of adaptive hypermedia systems, the underlying
hypermedia graph models completely the hypertext.

The approaches in Web Mining-based personalization are centered around
detecting relations between Web resources. These relations can be existing re-
lations, this means hyperlinks between Web resources, or virtual relations, this
means that two or more Web resources are related to each other but are not
connected via some hyperlink. These existing or virtual relations between Web
resources are mined on basis of the Web graph. We can distinguish two main
approaches for detecting the relations: Mining based on the content of the Web
resources, or mining based on the usage of the Web resources. The two approaches
can of course be combined.

Normally, Web Mining-based personalization has no external models like do-
main or expert models, as those used in adaptive hypermedia, but instead create
dynamic models which grow with the number of Web resources integrated into
the model.

Recommendation Techniques for Web Mining. In the following, we sum-
marize major recommendation techniques according to Burke [21]. We can distin-
guish between content-based, collaborative, demographic, utility-based, and know-
ledge-based recommendations. Let U and I be respectively a set of users and a
set of items, and U denotes an individual user. Let us outline these techniques:

– Content-based recommendation:
• each user is assumed to operate independently of other users;
• recommendations can exploit information derived from document con-

tents;

Personalization for the Semantic Web 187

• The system builds user models in the following way: initially, users apply
candidate profiles against their own preferences. For example, a candidate
user profile for the rating of today’s news article is presented, the user
can accept or reject the ratings for the articles. The profile is maintained
by exploiting keywords and content descriptors which contribute to the
rating of each article.
• The quality of the learnt knowledge is measured against the classical

measures of Information Retrieval, i.e. precision and recall (see e.g. [4]).
• The typical background consists of features of items in I, the typical

input to the mining process consists of the user’s ratings of some items
in I. A learning process is enacted that generates a classifier fitting the
user’s preferences, expressed by the ratings. The constructed classifier is
applied to all the items in I, for finding out which might be of interest.
• limitations:
∗ as in all inductive approaches, items must be machine-parsable or

with assigned attributes;
∗ only recommendations based on what the user has already seen be-

fore (and indicated to like) can be taken into account but negative
information is as well important;
∗ stability vs. plasticity of recommendations;
∗ no filtering based on quality, style, or point-of-view (only based on

content;
– Collaborative recommendations (social information filtering):

• This technique is basically a process of “word-of-mouth”, in fact the
items are recommended to a user based upon values assigned by other
people with similar taste. The underlying hypothesis is that people’s
tastes are not randomly distributed: there are general trends and pat-
terns within the taste of a person as well as between groups of people.
Also in this case a user model is to be built. To this aim the users are
initially required to explicitly rank some sample objects.
• The input used for computing the predictions is a set of “Ratings of

similar users”, where the similarity is measured on the basis of the user
profile values.
• The mining process begins with the identification of those users in U that

result similar to �, and extrapolates the possible interests and likings of
the user at issue from the ratings that similar users gave to items in I.

• Limitations:
∗ a critical mass of users is required before the system can make rec-

ommendations;
∗ how to get the first rating of a new object?
∗ stability vs. plasticity of recommendations.

Demographic recommendation, utility-based recommendation and knowledge-
based recommendation are variants which require additional data about the
user beyond rating of items:

188 M. Baldoni, C. Baroglio, and N. Henze

– Demographic recommendations
In this case, demographic information about all the users in U is exploited:
similarly to the previous case, the users that are close to U are identified,
but in this case similarity is computed on the demographic data. Then, the
ratings of these users on items in I are used to produce recommendations to
the user at issue.

– Utility-based recommendations
In this case the preferences of U are coded by a utility function, which is
applied to all the items in I for defining recommendations.

– Knowledge-based recommendations
The knowledge-based approach to recommendation works on a description
of the user’s needs and on a body of knowledge that describes how items can
meet various needs. An inferencing process is used to match the description
of the user’s needs with the items that can help the user and, thus, are to
be recommended.

Case Study: Web Usage Mining in an Online Shop. In this case study,
we will see how we can improve selling strategies in an artificial online shop. Our
online shop sells a small variety of products. Our goal is to find out which items
are commonly purchased together in order to make for example some selected
frequent-customers special bundle-offers which are likely to be in their interest.

To detect relations between data items, the concept of association rules can
be used. Association rules aim at detecting uncovered relations between data
items, this means relationships which are not inherent in the data like functional
dependencies, and normally do not necessarily represent a sort of causality or
correlation between the items. A database in which an association rule is to be
found is viewed as a set of tuples: each tuple contains a set of items; the items
represent the items purchased, and the tuples denote the list of items purchased
together. For a definition of association rules, we follow [26]:

Definition 6 (Association Rule). Given a set of items I = {I1, I2, . . . , Im}
and a database of transactions D = {t1, t2, . . . , tn} where ti = {Ii1, Ii2, . . . Iik}
and Iij ∈ I, an association rule is an implication of the form X =⇒ Y , where
X,Y ⊂ I are sets of items classed itemsets and X ∩ Y = ∅.

To identify the “important” association rules, the two measures support and
confidence are used (see [26]):

Definition 7 (Support). The support (s) for an association rule X =⇒ Y
is the percentage of transactions in the database that contain X ∪ Y .

support(X =⇒ Y) =
|{ti ∈ D : X ∪ Y ⊂ ti}|

|D|
Definition 8 (Confidence / Strength). The confidence or strength (α)
for an association rule X =⇒ Y is the ratio of the number of transactions that
contain X ∪ Y to the number of transactions that contain X.

confidence(X =⇒ Y) =
|{ti ∈ D : X ∪ Y ⊂ ti}|
|{ti ∈ D : X ⊂ ti}|

Personalization for the Semantic Web 189

The support measures how often the rule occurs in the database, while the
confidence measures the strength of a rule. Typically, large confidence values and
smaller support values are used, and association rules are mined which satisfy
at least a minimum support and a minimum confidence.

The hard part in the association rule mining process is to detect the high-
support (or frequent) item-sets. Computationally less costly is then the checking
of the confidence. Algorithms for uncovering frequent item-sets exist in the liter-
ature [26], most prominent is the Apriori-algorithm [1], which uses the property
of frequent itemsets that all subset of a frequent itemset must be frequent, too.

Example: An online Book Shop This (artificial) online book shop sells five dif-
ferent books: Semantic Web, Winnie the Pooh, Data Mining, Faust, and Modern
Statistics.

Transaction Items
t1 Semantic Web, Winnie the Pooh, Data Mining
t2 Semantic Web, Data Mining
t3 Semantic Web, Faust, Data Mining
t4 Modern Statistics, Semantic Web
t5 Modern Statistics, Faust

Customer X is a very good customer, and to tighten the relationship to cus-
tomer X, we want to make a personal and attractive offer. We see him ordering
a book on “Semantic Web”. Which bundle offer might be interesting for him?
Which book shall we offer to a reduced price: Winnie the Pooh, Data Mining,
Faust, or Modern Statistics? We are looking for association rules which have a
minimum-support of 30% and a confidence of 50%. The association rules we are
interested in are thus :

Semantic Web =⇒ Data Mining support: 60%, confidence: 75 %
Semantic Web =⇒ Faust support: 20%, confidence: 25%
Semantic Web =⇒ Winnie the Pooh support: 20%, confidence: 25 %
Semantic Web =⇒ Modern Statistics support: 20%, confidence: 25 %

An often seen pattern is that the books “Semantic Web” and “Data Mining”
are bought together, and the association rule “Semantic Web =⇒ Data Mining”
satisfies the minimum support of 30%. In 60% of the cases in which customers
bought the book “Semantic Web”, they also bought the book “Data Mining”
(confidence: 60%). Thus, we decide to offer our valuable customer the book
“Data Mining” in a personal offer for an attractive price.

NB: The general “association rule problem” is to mine association rules which
satisfy a given support and confidence; in the above example, we simplify the
approach by asking whether a certain item is obtained in some association rule.

3.3 User Modeling

In a user model, a system’s estimations about the preferences, often performed
tasks, interests, and so forth of a specific end user (or group of users) are specified

190 M. Baldoni, C. Baroglio, and N. Henze

(in the following, we will only refer to “the user” wherever a single user a suf-
ficient homogeneous group of users can be meant). We can distinguish between
the user profile and the user model. A User profile provides access to certain
characteristics of a user. These characteristics are modeled as attributes of the
user. Thus, a user profile of user U gives the instantiations of attributes for U at
a certain timepoint t. Instead, the task of the user model is to ascertain the val-
ues in the user profile of a user U . Thus, the user model must provide updating
and modification policies of the user profile, as well as instructions to detect and
evaluate incidents which can lead to update or modification processes. Methods
for drawing appropriate conclusions about the incidents must be given, as well
as mechanisms for detecting discrepancies in the modeling process. Advanced
user modeling approaches also provide mechanisms for dealing with uncertainty
in the observations about a user, appropriate error detection mechanisms, and
can prioterize the the conclusion on observed incidents.

A very simple user profile identifies all the pages that a user U has visited,
therefore, it is a set of couples:

(P, visited)

A simple user model which can create this-like user profiles contains the following
rule for interpreting incidents:

“if U visits page Pthen insert (P, visited) into the user profile of U”

An extension of this simple user model is to recognize the observation that a
user U has bookmarked some page P and note this in the user profile:

“if U bookmarks page Pthen insert (P, important) into the user profile of U”

We will not go into detail on user modeling in this article (for more in-depth
information refer to [41]). But even from this simple user models above, we can
see that interpretation about the user interactions is not at all an easy task.
E.g. if we observe a user U bookmarking a page P: How can we distinguish
that U has stored this page for future reference based on the content of the
page from the fact that U stored this page only because he liked the design
of the page? Can we really be sure that bookmarking expresses favor for a
page in contrast to denial? Appropriate mechanisms for dealing with uncertainty
in the observations about the user, and for continuous affirmation of derived
conclusions are essential for good user models (a good reference for studying
numerical uncertainty management in user modeling is e.g. given in [38]).

User modeling approaches for Adaptive Hypermedia can take advantage of
the underlying hypermedia structure or the domain models associated with the
hypermedia system. Task models, expert models, or other, external models are
used to model the user with respect to this external model. This approach is
called overlay modeling [30]. As an example, for educational hypermedia systems,
the learner’s state of knowledge is described as a subset of the expert’s knowledge
of the domain, hence the term “overlay”. Student’s lack of knowledge is derived
by comparing it to the expert’s knowledge.

Personalization for the Semantic Web 191

The critical part of overlay modeling is to find the initial knowledge esti-
mation. The number of observations for estimating the knowledge sufficiently
well must be small. In addition, a student’s misconceptions of some knowledge
concepts can not be modeled. A great variety of approaches for user modeling
is available, see e.g. [42, 69]

User Modeling for Web Mining. For Web Mining, the absence of a structured
corpus of documents leads to different approaches for user modeling. An interest
and/or content-profile of a user is generated (with the aid of classification or
clustering techniques from machine learning) based on observations about the
user’s navigation behavior. A stereotype user modeling approach [63] classifies
users into stereotypes: Users belonging to a certain class are assumed to have
the same characteristics. When using stereotype user modeling, the following
problem can occur: the stereotypes might be so specialized that they become
obsolete (since they consist of at most one user), or a user cannot be classified
at all.

Discussion. The user modeling process is the core of each personalization pro-
cess, because here the system’s estimations about the user’s needs are specified.
If the system identifies the needs not correctly, the personalization algorithms
–regardless how good they are– will fail to deliver the expected results for this
erroneous modeled user.

3.4 Conclusion: Personalization in the World Wide Web

To develop systems which can filter information according to the requirements
of the individual, which can learn the needs of users from observations about
previous navigation and interaction behavior, and which can continuously adapt
to the dynamic interests and changing requirements is still one of the challenges
for building smart and successful Web applications. Although the necessity to
“support the users in finding what they need at the time they want” is obvious,
building and running personalized Web sites is still a cost-intensive venture which
sometimes underachieves [40].

Looking at the techniques in adaptive hypermedia, we can see that re-usability
of these techniques is still an unsolved problem. We require a formalism express-
ing adaptive functionality in a system-independent and re-usable manner, which
allows us to apply this adaptive functionality in various contexts, as it has been
done e.g. for the adaptive educational hypermedia systems (see Section 3.1).
Another reason why adaptive functionality is not re-usable today is related to
the so-called open corpus problem in adaptive hypermedia, which states that cur-
rently, adaptive applications work on a fixed set of documents which is defined at
the design time of the system, and directly influences the way adaptation is im-
plemented, e.g. that adaptive information like “required prerequisites” is coded
on this fixed set of documents. The introduction of standards for describing such
metadata is a step forwards - and is currently undertaken in the Semantic Web.

192 M. Baldoni, C. Baroglio, and N. Henze

Looking at the personalization techniques based on Web mining, we can see
that the filtering techniques (content-based, collaborative-based, demographic-
based, utility-based, knowledge-based, or others) are limited as they require a
critical mass of data before the underlying machine learning algorithms produce
results of sufficient quality. Explicit, machine-readable information about single
Web resources as given in the Semantic Web could be used for improving the
quality of the input data for the algorithms.

4 Personalization for the Semantic Web

Functionalities for performing personalization require a machine-processable
knowledge layer that is not supplied by the WWW. In the previous section
we have studied techniques for developing adaptive systems in the WWW with
all the difficulties and limitations brought by working at this level. Let us now see
how adaptive systems can evolve benefiting of the Semantic Web. In particular,
since the capability of performing some kind of inferencing is fundamental for
obtaining personalization, let us see how the introduction of machine-processable
semantics makes the use of a wide variety of reasoning techniques possible, thus
widening the range of the forms that personalization can assume.

4.1 An Overview

The idea of exploiting reasoning techniques for obtaining adaptation derives from
the observation that in many (Semantic Web) application domains the goal of
the user and the interaction occurring with the user play a fundamental role.
Once the goal to be achieved is made clear, the system strives for achieving it,
respecting the constraints and the needs of the user and taking into account
his/her characteristics. In this context, the ability of performing a semantic-
based retrieval of the necessary resources, that of combining the resources in a
way that satisfies the user’s goals, and, if necessary, of remotely invoking and
monitoring the execution of a resource, are fundamental. All these activities can
be performed by adopting automated reasoning techniques. To make an exam-
ple, suppose that, for some reason, a student must learn something about the
Semantic Web for a University course. Suppose that the student has access to a
repository of educational resources that does not contain any material under the
topic “Semantic Web”. Let us suppose, however, that the repository contains a
lot of information about XML-based languages, knowledge representation, on-
tologies, and so forth: altogether this information gives knowledge about the
Semantic Web, the problem is retrieving it. A classical search engine would not
be able to do it, unless the word “Semantic Web” is explicitly contained in the
documents. This result can be obtained only by a system that is able to draw
as an inference the fact that all these topics are elements of the Semantic Web.

In the Semantic Web every new feature or functionality is built as a new
layer that stands on top of the previous ones. Tim Berners-Lee has described
this process and structure as the “Semantic Web Tower”. In this representation

Personalization for the Semantic Web 193

reasoning belongs to the logic and proof layers that lay on the ontology layer.
This vision allows the Semantic Web to be developed incrementally.

Data on the Web is basically considered as the set of the available Web re-
sources, each identified by a URI (uniform resource identifier). Such resources
are mainly represented by plain XML (eXtensible Markup Language) descrip-
tions. XML stands at the bottom of the tower. It allows a Web document to be
written in a structured way, exploiting a user-defined vocabulary. It is perfect as
a data interchange format, however, it does not properly supply any semantic
information. Sometimes, when the domain is very closed and controlled, the tags
can be considered as being associated with a meaning but the solution is risky
and the application as such cannot be safely extended.

Semantic annotation of data is done by means of RDF (Resource Descrip-
tion Framework). RDF [59] is the basic Semantic Web (XML-based) language for
writing simple statements about Web resources. Each statement is a binary pred-
icate that defines a relation between two resources. These predicates correspond
to logical facts. Given semantically-annotated data it is possible to perform some
kinds of reasoning. In particular, some query languages have been developed that
allow the automatic transformation of RDF-annotated data. Two of the main
query languages that are used to transform data encoded in RDF are TRIPLE
and RDQL. They are both quite simple in the inferencing that they allow.

TRIPLE [66] is a rule language for the Semantic Web which is based on Horn
logic and borrows many basic features from F-Logic but is especially designed
for querying and transforming RDF models. In contrast to procedural program-
ming languages, such as C or Java, it is a declarative language which shares
some similarities with SQL or Prolog. TRIPLE programs consist of facts and
rules, from which it is possible to draw conclusions for answering queries. The
language exploits reasoning mechanism about RDF-annotated information re-
sources; translation tools from RDF to TRIPLE and vice versa are provided. An
RDF statement, i.e. a “triple”, is written as subject[predicate -> object].
RDF models are explicitly available in TRIPLE: statements that are true in a
specific model are written as ”@model”. Connectives and quantifiers (e.g. AND,
OR, NOT, FORALL, EXISTS) for building logical formulae from statements are al-
lowed as usual.

RDQL [61] is a query language for RDF and is provided as part of the Jena
Semantic Web Framework [39] from HP labs, which also includes: an RDF API,
facilities for reading and writing RDF in RDF/XML, N3 and N-Triples, an OWL
API, and in-memory and persistent storage. RDQL provides a data-oriented
query model so that there is a more declarative approach to complement the
fine-grained, procedural Jena API. It is “data-oriented” in that it only queries
the information held in the models; there is no inference being done. Of course,
the Jena model may be “smart” in that it provides the impression that certain
triples exist by creating them on-demand. However, the RDQL system does not
do anything other than take the description of what the application wants, in the
form of a query, and returns that information, in the form of a set of bindings.

194 M. Baldoni, C. Baroglio, and N. Henze

Going back to our example, by using RDF we could semantically annotate
the resources that give explanations about XML-based languages, ontologies,
knowledge representation, etc. However, the use that we want to do of such
resources requires that each of them is explicitly associated to every topic it
might have correlations with. This should be done even though some of the
topics are related with each other, for instance XML is related to RDF and
XML is related to Semantic Web, but also RDF is related to Semantic Web,
and ideally we could exploit such relations to infer properties of the available
resources. What is still missing is the possibility of expressing knowledge about
the domain.

RDF Schema [60] adds a new layer of functionalities by allowing the rep-
resentation of ontologies. This is done by introducing the notion of “class” of
similar resources, i.e. objects showing a set of same characteristics. Resources
are then viewed as “individuals” of some class. Classes can be divided in “sub-
classes”, the result is a hierarchical structure. From an extensional point of view,
every instance of a class is also an instance of its super-class, as such it inherits
the properties of that class. It is possible to exploit this mechanism to perform
simple inferences about instances and classes w.r.t. the hierarchical structure. A
more powerful ontology language is OWL [54] (Web Ontology Language). OWL,
the W3C standard for ontology representation, builds on top of RDF and RDF-
S and allows the representation of more complex relations, such as transitivity,
symmetry, and cardinality constraints.

It is possible to reason about ontologies by means of techniques that are typ-
ical of Description Logics. Basically, such techniques are aimed at classification,
that is, if a resource is an instance of a class, then it will also be an instance
of its super-classes. Also, if a resource satisfies a set of properties that define a
sufficient condition to belonging to a given class, then the resource is an instance
of that class. By means of these techniques we can satisfy the goal of the user
of our example: in fact, if we have an ontology in which Semantic Web has as
subclasses XML-based languages, knowledge representation, and so on, and we
have a set of resources that are individuals of such classes, it is possible to infer
that they are also individuals of Semantic Web. The introduction of these infer-
encing mechanisms is a fundamental step towards personalization, although in
order to have real personalization something more is to be done. Indeed, if two
different users are both interested in the Semantic Web the system will return
as an answer the same set of resources because it does not take into account any
information about them.

So far, reasoning in the Semantic Web is mostly reasoning about knowledge
expressed in some ontology and the ontology layer is the highest layer of the
Semantic Web tower that can be considered as quite well assessed. The layers
that lie on top of it, in particular the logic layer and the proof layer, are still
at a primitive level. The lesson learnt from the analysis that we have done is
that for making some personalization we need to represent and reason about
knowledge and the Semantic Web offers this possibility. Let us, then, see what
kinds of knowledge are necessary for performing personalization.

Personalization for the Semantic Web 195

Fig. 1. The Semantic Web tower. Personalization occurs at the ontology layer but
mostly at the logic and proof layers

4.2 Knowledge and Reasoning About Knowledge

A system that performs some kind of personalization needs to represent differ-
ent kinds of knowledge: knowledge about the user, knowledge about the user’s
purpose (sometimes considered as included in the user’s description), knowledge
about the context, knowledge about the resources that can be queried, retrieved
or composed, and domain knowledge that is used by the inferencing mechanism
for obtaining personalization.

Knowledge about the user can roughly be viewed as partitioned in generic
knowledge about the user’s characteristics and preferences and in “state” knowl-
edge. By the word “state knowledge” we hereby mean information that can
change and that is relevant w.r.t. a specific application system, such as which
exams have been passed in the case of e-learning.

A user’s goal most of the times is considered as being coincident with a query
but there are some distinctive features to take into account. First of all, a query
presupposes an answer, and it implies a selection process, that can be performed
by means of the most various techniques. The answer is supposed to be returned
within a few seconds. In some applications, however, the goal corresponds to
a general interest of the user. For example, the user might be a fan of a given
music band and whenever the band performs in the user’s town, s/he would like
to be informed automatically. In this case, we can view the goals as conditions
that can are embedded in rules: when some event satisfies a rule condition, the
rule is triggered and, typically, the user is warned in a way that can be subject
to further personalization (e.g. w.r.t. the physical device that is used –laptop,
mobile, hand-held–). In this case, the answer, that depends on location and time,
might be returned days or weeks after the rule has been set. Moreover, the same
rule might be activated many times by many different events. A third kind of
goal, that we have seen, is more abstract and not directly interpretable as a query.
It is, for instance, the case of a learning goal: a learning goal is a description of
the expertise that a user would like to acquire. The system uses this information

196 M. Baldoni, C. Baroglio, and N. Henze

to build a solution that contains many Web resources, to be used as learning
materials. None of them is (possibly) directly tied with the learning goal; the
goal will be reached by the user if s/he will follow the proposed reading path. In
other words, the composition of resources is a means for reaching the goal.

In performing resource selection, also knowledge about the context plays a
very important part. In many applications, three kinds of contextual information
can be identified: location in time, location in space, and role. Location in time
and space is used for refining resource selection, that is, only those resources that
fit the context description, are shown. The context description is not necessarily
expressed by the user, since it might as well be obtained in other ways. In
ubiquitous and in ambient computing it could be returned by a sensor network.
Roles are predefined views, possibly with a limitation of the actions, that the role
players can execute. They are used to personalize the selection of information
sources, the selection of information and, of course, presentation.

For performing semantic-based processing on the Web it is necessary that
the Web resources are semantically annotated. This is normally done by means
of ontologies. Even though semantic annotation is not so much diffused, the
languages for writing such annotations are pretty well assessed. One of the major
difficulties is, actually, to retrieve –if any– an ontology that is suitable to the
application at hand, avoiding to write a new one unless really necessary.

The last kind of knowledge that is often necessary in personalization tasks,
that we called domain knowledge, is aimed at giving a structure to the knowledge.
Domain knowledge relates the ontological terms in a way that can be exploited by
other inferencing mechanisms, and not only to perform ontological reasoning. For
instance, planning is a useful reasoning technique for obtaining personalization;
there are proposals in the literature that suggest to bias the search of a plan
by introducing solution schemas, that correspond to abstract descriptions of
solutions that “make sense”. For instance, in the e-learning applications when
a course is constructed out of a set of available learning materials, the course
must “make sense” also from a pedagogical point of view, see [7]. One can then
imagine to have a high-level description of the structure of interest, not related to
specific materials, which is personalized and filled with contents on demand, in a
way that fits the specific user. Moreover, in many scenarios it is useful to express
some event-driven behavior (e.g. in the already mentioned touristic application
domain). It is especially at this level that rules can play a fundamental role in
the construction of personalization systems in the Semantic Web.

Beyond Ontologies: Some Examples. The first scenario that we consider is
set in one of the leading application areas for personalization: education. The
most typical problem in this framework consists in determining an “optimal
reading sequence” through a hyper-space of learning objects (a learning object is
a resource with educational purposes). The word optimal does not mean that this
is absolutely the best solution, it means that it specifically fits the characteristics
and the needs of the given user. It is optimal for that user. So the aim is to
support the user in the acquisition of some desired knowledge by identifying a
reading path that best fits him/her. Considerable advancements have been yield

Personalization for the Semantic Web 197

in this field, with the development of a great number of Web-based systems, like
ELM-Art [70], the KBS hyperbook system [34], TANGOW [22], WLog [6] and
many others, based on different, adaptive and intelligent technologies.

Different methods have been proposed on how to determine which reading
path to select or to generate in order to support in the best possible way the
learner’s navigation through the hyper-space. All of them require to go one step
beyond the ontology layer. In fact, pure ontological annotation and ontological
reasoning techniques (though necessary) are not sufficient to produce, in an au-
tomatic way, the desired sequencing. If in our ontology the class “Semantic Web”
is divided in the classes “XML-based languages”, “knowledge representation”,
and “ontologies” we will be able to conclude that each of the individuals that
belong to the sub-classes also belong to the super-class. What we cannot do is
to impose that the student will be presented resources about all such topics, be-
cause only the conjunction of the three will let him/her satisfy his/her learning
goal. Another thing that we cannot do is to impose that a given topic is pre-
sented before another one because only in this way the student will understand
them.

If, on the one hand, it is necessary to annotate the actual learning objects,
with the ontological terms that represent identifiable pieces of knowledge related
to the learning objects themselves, on the other, it is also necessary to structure a
domain knowledge in a way that it is possible to perform the personalization task.
The desire is to develop an adaptation component, that uses such a knowledge,
together with a representation of the user’s learning goal and of knowledge about
the user, for producing sequences that fit the user’s requirements and character-
istics, based on the available learning objects. Such an adaptation component
exploits knowledge representations that are not ontologies (though they use on-
tologies) and it exploits reasoning mechanisms that are not ontological reasoning
mechanisms. For instance, in the application domain that has been taken into
account, goal-directed reasoning techniques seem particularly suitable.

To this purpose, one solution is to interpret the learning resources as atomic
actions. In fact, each learning resource has a set of preconditions (competences
that are necessary for using it) and a set of effects (the supplied competences).
Competences can be connected by causal relationships. Rational agents could
use such descriptions and the user’s learning goal, expressed as well in terms
of competences, for performing the sequencing task. This is, for instance, the
solution adopted in the WLog system [6], which exploits techniques taken from
the research area of “reasoning about actions and change” (planning, temporal
projection, and temporal explanation) for building personalized solutions.

Another example concerns Web services. Generally speaking, a Web service
can be seen as any device that can automatically be accessed over the Web.
It may alternatively be a software system or a hardware device; a priori no
distinction is made. The main difference between a Web service and other de-
vices that are connected to a network stands in the kind of tasks that can be
performed: a Web service can be automatically retrieved by searching for the
desired functionality (in a way that is analogous to finding Web pages by means

198 M. Baldoni, C. Baroglio, and N. Henze

of a search engine, given a set of keywords), it can be automatically invoked,
composed with other Web services so to accomplish more complex tasks, it must
be possible to monitor its execution, and so on. In order to allow the execution of
these tasks, it is necessary to enrich the Web service with a machine-processable
description, that contains all the necessary information, such as what the service
does, which inputs it requires, which results are returned, and so forth. A lot
of research is being carried on in this area and none of the problems that we
have just enumerated has met its final solution yet. Nevertheless, there are some
proposals, especially due to commercial coalitions, of languages that allow the
description of the single services, and their interoperation. In this line, the most
successful are WSDL [72] and BPEL4WS [14]. This initiative is mainly carried
on by the commercial world, with the aim of standardizing registration, look-up
mechanisms and interoperability.

Among the other proposals, OWL-S [55] (formerly DAML-S) is more con-
cerned with providing greater expressiveness to service description in a way that
can be reasoned about [20]. In particular, a service description has three con-
ceptual levels: the profile, used for advertising and discovery, the process model,
that describes how a service works, and the grounding, that describes how an
agent can access the service. In particular, the process model describes a service
as atomic, simple or composite in a way inspired by the language GOLOG and
its extensions [45, 50]. In this perspective, a wide variety of agent technologies
based upon the action metaphor can be used. In fact, we can view a service as
an action (atomic or complex) with preconditions and effects, that modifies the
state of the world and the state of agents that work in the world. The process
model can, then, be viewed as the description of such an action; therefore, it
is possible to design agents, which apply techniques for reasoning about actions
and change to Web service process models for producing new, composite, and
customized services.

Quoting McIlraith [51]: “[. . .] Our vision is that agents will exploit user’s
constraints and preferences to help customize user’s requests for automatic Web
service discovery, execution, or composition and interoperation [. . .]”. In differ-
ent words, personalization is seen as reasoning about the user’s constraints and
preferences and about the effects, on the user’s knowledge and on the world, of
the action “interact with a Web service”. Techniques for reasoning about actions
and change are applied to produce composite and customized services.

A better personalization can be achieved by allowing agents to reason also
about the conversation protocols followed by Web services. Conversation proto-
cols rule the interactions of a service with its interlocutors: the protocol defines
all the possible “conversations” that the service can enact. Roughly speaking,
we can consider it as a procedure built upon atomic speech acts. So far, however,
no language for Web service specification, e.g. OWL-S, allows the explicit rep-
resentation of the communicative behavior of Web services at an abstract level,
i.e. in a way that can be reasoned about. Let us, however, explain with a simple
example how this would be useful: an agent, which is a user’s personal assistant,
is requested to book a ticket at a cinema where they show a certain movie; as a

Personalization for the Semantic Web 199

further constraint, the agent does not have to use the user’s credit card number
along the transaction. While the first is the user’s goal, the additional request
constrains the way in which the agent will interact with the service. In this case,
in order to personalize the interaction according to the user’s request, it is indeed
necessary to reason about the service communications. Another possible task of
the personal assistant is the organization of a journey: it is necessary to find and
make work together (compose) services for finding a flight, renting a car, making
a reservation at some hotel, maybe the user’s personal calendar, etc. All services
that have been developed independently and for simpler purposes.

Personalization may involve also other kinds of reasoning, that require knowl-
edge to be represented in other ways. Among them defeasible reasoning, which
allows taking into account degrees of preference represented as priorities be-
tween rules (e.g. DR-DEVICE [11]), Answer Set Programming [27], that can deal
with incomplete information and default knowledge, reactivity to events [48] (the
so called ECA rules –event, condition, action–), that allow the propagation of
knowledge updates through the Web. All these approaches and techniques con-
ceptually lie at the logic and proof layers of the Semantic Web tower and rely
on some kind of rule language.

Rule languages and rule systems are, actually, in the mainstream of research
in the Semantic Web area, especially for what regards exchange of rule sets
between applications. Works in this direction include initiatives for the definition
of rule markup languages. The aim of introducing rules is to support in a better
and wider way the interaction of systems with users as well as of systems with
other systems over the Web. Rule markup languages are designed so to allow the
expression of rules as modular, stand-alone units in a declarative way, and to
allow the publishing and interchange of rules among different systems. Different
perspectives can be considered [68]. Rules can be seen as statements that define
the terms of the domain, they can be seen as formal statements, which can be
directly mapped to executable statements of a software platform, and they can
also be considered as statements in a specific executable language.

Two examples of rule markup languages are RuleML [52] and SWRL [37].
The former is a deductive logic language based on XML and RDF. SWRL is a
more recent proposal aimed at adding to the OWL language, for defining Web
ontologies, the possibility of including Horn-like clauses. The idea is to add the
possibility of making deductive inferences that cannot be accomplished by the
ontology reasoning techniques. For instance, a consequence of this kind: if X has
a brother Y and X has a son Z, then Y is an uncle of Z.

The most important aspect of the standards is its adoption, which implies
a diffusion of the inference engines that implement them. The hope is that in
the near future browsers will support RuleML engines, SWRL engines, and so
forth, enabling the use of knowledge over the Web, in the same easy way in
which they currently support languages like Java and JavaScript. On the other
hand, besides the standards, the way is open for building, on top of the ontology
layer, languages that support heterogeneous reasoning mechanisms, that fit the
requirements of specific personalization problems. This is the reading key of the

200 M. Baldoni, C. Baroglio, and N. Henze

following section, where a case study is presented together with reasoning tech-
niques for tackling the personalization task. Further examples of personalization
problems, reasoning techniques, and prototype systems can be found in [2].

4.3 Case Study: Personalization in an E-Learning Scenario

Let us focus on e-learning and see how reasoning can help personalization in
this context. We will begin with the annotation of the learning resources, then,
we will introduce some reasoning techniques, all of which exploit a new level of
knowledge thus allowing a better personalization.

A learning object can profitably be used if the learner has a given set of
prerequisite competences; by using it, the learner will acquire a new set of com-
petences. Therefore, a learning object can be interpreted as an action: in fact,
an action can be executed given that a set of conditions holds, and by executing
it, a set of conditions will become true. So, the idea is to introduce at the level
of the learning objects, some annotation that describes both their pre-requisites
and their effects. Figure 2 shows an example of how this could be done. To make
the example realistic, the annotation respects the standard for learning object
metadata LOM. LOM allows the annotation of the learning objects by means of
an ontology of interest (see for instance [56]), by using the attribute classifica-
tion. A LOM classification consists of a set of ontology elements (taxons), with
an associated role (the purpose). The taxons in the example are taken from the
DAML version of the ACM computer classification system ontology [53]. The
reference to the ontology is contained in the source element. Since the XML-
based representation is quite long, for the sake of brevity only two taxons have
been reported: the first (relational database) is necessary in order to understand
the contents of the learning object, while the other (scientific databases) is a
competence that is supplied by the learning object.

The proposed annotation expresses a set of learning dependencies between
ontological terms. Such dependencies can be expressed in a declarative formalism,
and can be used by a reasoning system. So, given a set of learning objects each
annotated in this way, it is possible to use the standard planners, developed by
the Artificial Intelligence community (for instance, the well-known Graphplan
[13]), for building the reading sequences. Graphplan is a general-purpose planner
that works in STRIPS-like domains; as all planners, the task that it executes is
to build a sequence of atomic actions, that allows the transition from an initial
state to a state of interest, or goal state. The algorithm is based on ideas used
in graph algorithms: it builds a structure called planning graph, whose main
property is that the information that is useful for constraining the plan search
is quickly propagated through the graph as it is built.

General-purpose planners search a sequence of interest in the whole space
of possible solutions and allow the construction of learning objects on the basis
of any learning goal. This is not always adequate in an educational application
framework, where the set of learning goals of interest is fairly limited and the
experience of the teachers in structuring the courses and the learning materials
is important. For instance, a teacher due to his/her own experience may believe

Personalization for the Semantic Web 201

<lom xmlns="http://www.imsglobal.org/xsd/imsmd_v1p2"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.imsglobal.org/xsd/imsmd_v1p2 imsmd_v1p2p2.xsd">

<general>

<title>

<langstring>module A</langstring>

</title>

</general>

...

<classification>

<purpose>

...

<value><langstring>Prerequisite</langstring></value>

</purpose>

<taxonpath>

<source>

<langstring>http://daml.umbc.edu/ontologies/classification.daml

</langstring>

</source>

<taxon>

<entry>

<langstring xml:lang="en">relational database</langstring>

</entry>

</taxon>

</taxonpath>

</classification>

...

<classification>

<purpose>

...

<value><langstring>Educational Objective</langstring></value>

</purpose>

<taxonpath>

<source>

<langstring>http://daml.umbc.edu/ontologies/classification.daml

</langstring>

</source>

<taxon>

<entry>

<langstring xml:lang="en">scientific databases</langstring>

</entry>

</taxon>

</taxonpath>

</classification>

</lom>

Fig. 2. Excerpt from the annotation for the learning object ’module A’: “relational
database” is an example of prerequisite while “scientific databases” is an example of
educational objective

202 M. Baldoni, C. Baroglio, and N. Henze

that topic A is to be presented before topic B, although no learning dependence
emerges from the descriptions of A and B. This kind of constraint cannot be
exploited by a general-purpose planner, being related to the teaching strategy
adopted by the teacher.

On the other hand, it is not reasonable to express schemas of this kind in
terms of specific learning objects. The ideal solution is to express the afore-
mentioned schemas as learning strategies, i.e. a rule (or a set of rules) that
specifies the overall structure of the learning object, expressed only in terms of
competences. The construction of a learning object can, then, be obtained by
refining a learning strategy according to specific requirements and, in particular,
by choosing those components that best fit the user.

Reasoning About Actions. Reasoning about actions and change is a kind
of temporal reasoning where, instead of reasoning about time itself, one reasons
on phenomena that take place in time. Indeed, theories of reasoning about ac-
tions and change describe a dynamic world changing because of the execution
of actions. Properties characterizing the dynamic world are usually specified by
propositions which are called fluents. The word fluent stresses the fact that the
truth value of these propositions depends on time and may vary depending on
the changes which occur in the world.

The problem of reasoning about the effects of actions in a dynamically chang-
ing world is considered one of the central problems in knowledge representation
theory. Different approaches in the literature took different assumptions on the
temporal ontology and then they developed different abstraction tools to cope
with dynamic worlds. However, most of the formal theories for reasoning about
action and change (action theories) describe dynamic worlds according to the
so-called state-action model. In the state-action model the world is described in
terms of states and actions that cause the transition from a state to another.
Typically it is assumed that the world persists in its state unless it is modified
by an action’s execution that causes the transition to a new state (persistency
assumption).

The main target of action theories is to use a logical framework to describe
the effects of actions on a world where all changes are caused by the execution of
actions. To be precise, in general, a formal theory for representing and reasoning
about actions allows us to specify:

1. causal laws, i.e. axioms that describe domain’s actions in terms of their
precondition and effects on the fluents;

2. action sequences that are executed from the initial state;
3. observations describing the value of fluents in the initial state;
4. observations describing the value of fluents in later states, i.e after some

action’s execution.

The term domain description is used to refer to a set of propositions that
express causal laws, observations of the fluents values in a state and possibly
other information for formalizing a specific problem. Given a domain description,

Personalization for the Semantic Web 203

the principal reasoning tasks are temporal projection (or prediction), temporal
explanation (or postdiction) and planning.

Intuitively, the aim of temporal projection is to predict an action’s future ef-
fects based on even partial knowledge about the current state (reasoning from
causes to effect). On the contrary, the target of temporal explanation is to infer
something on the past states of the world by using knowledge about the current
situation. The third reasoning task, planning, is aimed at finding an action se-
quence that, when executed starting from a given state of the world, produces
a new state where certain desired properties hold.

Usually, by varying the reasoning task, a domain description may contain
different elements that provide a basis for inferring the new facts. For instance,
when the task is to formalize the temporal projection problem, a domain descrip-
tion might contain information on (1), (2) and (3), then the logical framework
might provide the inference mechanisms for reconstructing information on (4).
Otherwise, when the task is to deal with the planning problem, the domain de-
scription will contain the information on (1), (3), (4) and we will try to infer
(2), i.e. which action sequence has to be executed on the state described in (3)
for achieving a state with the properties described in (4).

An important issue in formalization is known as the persistency problem. It
concerns the characterization of the invariants of an action, i.e. those aspects
of the dynamic world that are not changed by an action. If a certain fluent f
representing a fact of the world holds in a certain state and it is not involved
by the next execution of an action a, then we would like to have an efficient
inference mechanism to conclude that f still hold in the state resulting from a’s
execution.

Various approaches in the literature can be broadly classified in two cate-
gories: those choosing classical logics as the knowledge representation language
[49, 44] and those addressing the problem by using non-classical logics [57, 23,
65, 29] or computational logics [28, 10, 46, 8]. Among the various logic-based ap-
proaches to reasoning about actions one of the most popular is still the situation
calculus, introduced by Mc Carthy and Hayes in the sixties [49] to capture change
in first order classical logic. The situation calculus represents the world and its
change by a sequence of situations. Each situation represents a state of the world
and it is obtained from a previous situation by executing an action. Later on,
Kowalski and Sergot have developed a different calculus to describe change [44],
called event calculus, in which events producing changes are temporally located
and they initiate and terminate action effects. Like the situation calculus, the
event calculus is a methodology for encoding actions in first-order predicate logic.
However, it was originally developed for reasoning about events and time in a
logic-programming setting.

Another approach to reasoning about actions is the one based on the use of
modal logics. Modal logics adopts essentially the same ontology as the situation
calculus by taking the state of the world as primary and by representing actions
as state transitions. In particular, actions are represented in a very natural way
by modalities whose semantics is a standard Kripke semantics given in terms of

204 M. Baldoni, C. Baroglio, and N. Henze

accessibility relations between worlds, while states are represented as sequences
of modalities.

Both situation calculus and modal logics influenced the design of logic-based
languages for agent programming. Recently the research about situation calculus
gained a renewed attention thanks to the cognitive robotic project at University
of Toronto, that has lead to the development of a high-level agent programming
language, called GOLOG, based on a theory of actions in situation calculus [45].
On the other hand, in DyLOG [9], a modal action theory has been used as a basis
for specifying and executing agent behavior in a logic programming setting, while
the language IMPACT is an example of use of deontic logic for specifying agents:
the agent’s behavior is specified by means of a set of rules (the agent program)
which are suitable to specify, by means of deontic modalities, agent policies, that
is which actions an agent is obliged to take in a given state, which actions it is
permitted to take, and how it chooses which actions to perform.

Introducing Learning Strategies. Let us now show how the schemas of so-
lution, or learning strategies, can be represented by means of rules. In particular,
we will use the notation of the language DyLOG.

Learning strategies, as well as learning objects, should be defined on the
basis of an ontology of interest. One common need is to express conjunctions or
sequences of learning objects. So for instance, one can say that in his/her view,
it is possible to acquire knowledge about database management only by getting
knowledge about all of of a given set of topics, and, among these, relational
databases must be known before distributed databases are introduced.

An example that is particularly meaningful is preparing the material for a
basic computer science course: the course may have different contents depend-
ing on the kind of student to whom it will be offered (e.g. a Biology student,
rather than a Communication Sciences student, rather than a Computer Sci-
ence student). Hereafter, we consider the case of Biology students and propose
a DyLOG procedure, named ’strategy(’informatics -for biologists’)’. This proce-
dure expresses, at an abstract level, a learning strategy for guiding a biology
student in a learning path, which includes the basic concepts about how a com-
puter works, together with a specific competence about databases. Notice that
no reference to specific learning objects is done.

strategy(′informatics for biologists′) is
achieve goal(has competence(′computer system organization′)) ∧
achieve goal(has competence(′operating systems′)) ∧
achieve goal(has competence(′database management′)).
. . .

achieve goal(has competence(′database management′)) is
achieve goal(has competence(′relational databases′)) ∧
achieve goal(has competence(′query languages′)) ∧
achieve goal(has competence(′distributed databases′)) ∧
achieve goal(has competence(′scientific databases′)).

Personalization for the Semantic Web 205

strategy is defined as a procedure clause, that expresses the view of the strat-
egy creator on what it means to acquire competence about computer system
organization, operating systems, and database management.

Suppose that module A is the name of a learning object. Interpreting it as an
action, it will have preconditions and effects expressed as in Figure 2. We could
represent module A and its learning dependencies in DyLOG in the following
way:

access(learningObject(′module A′)) possible if
has competence(′distributed database′) ∧
has competence(′relational database′).

access(learningObject(′module A′)) causes
has competence(′scientific databases′).

Having a learning strategy and a set of annotated learning objects, it is pos-
sible to apply procedural planning (supplied by the language) for assembling a
reading path that is a sequence of learning resources that are annotated as re-
quired by the strategy. Opposite to general-purpose planners, procedural plan-
ning searches for a solution in the set of the possible executions of a learning
strategy. Notice that, since the strategy is based on competences, rather than
on specific resources, the system might need to select between different courses,
annotated with the same desired competence, which could equally be selected
in building the actual learning path. This choice can be done based on external
information, such as a user model, or it may be derive from a further interaction
with the user. Decoupling the strategies from the learning objects results in a
greater flexibility of the overall system, and simplifies the reuse of the learning
objects. As well as learning objects, also learning strategies could be made public
and shared across different systems.

Other Approaches to Rule-Based Personalization in an e-Learning
Scenario. The above example is just one possible way in which personaliza-
tion can be realized in the Semantic Web in a practical context. Remaining in
the e-learning application domain, many other forms of personalization can be
thought of, which require other approaches to rule representation and reason-
ing. Hereafter, we report another example that is taken from a real system. The
personalization rules that we will see realize some of the adaptation methods of
adaptive educational hypermedia systems (see Section 3.1). The application sce-
nario is a Personal Reader3 [32, 12] for learning resources. This Personal Reader
helps the learner to view the learning resources in a context: In this context,
more details related to the topics of the learning resource, the general topics the
learner is currently studying, examples, summaries, quizzes, etc. are generated
and enriched with personal recommendations according to the learner’s current
learning state [32, 25]. Let us introduce and comment some of the rules that
are used by the Personal Reader for learning resources to determine appropri-

3 http://www.personal-reader.de

206 M. Baldoni, C. Baroglio, and N. Henze

ate adaptation strategies. These personalization rules have been realized using
TRIPLE.

Generating links to more detailed learning resources is an adaptive functional-
ity in this example Personal Reader. The adaptation rule takes the isA hierarchy
in the domain ontology, in this case the domain ontology for Java programming,
into account to determine domain concepts which are details of the current
concept or concepts that the learner is studying on the learning resource. In par-
ticular, more details for the currently used learning resource is determined by
detail learningobject(LO, LO DETAIL) where LO and LO Detail are learn-
ing resources, and where LO DETAIL covers more specialized learning concepts
which are determined with help of the domain ontology.

FORALL LO, LO_DETAIL detail_learningobject(LO, LO_DETAIL) <-

EXISTS C, C_DETAIL(detail_concepts(C, C_DETAIL)

AND concepts_of_LO(LO, C) AND concepts_of_LO(LO_DETAIL, C_DETAIL))

AND learning_resource(LO_DETAIL) AND NOT unify(LO,LO_DETAIL).

Observe that the rule does neither require that LO DETAIL covers all special-
ized learning concepts, nor that it exclusively covers specialized learning con-
cepts. Further refinements of this adaptation rule are of course possible. The
rules for embedding a learning resource into more general aspects with respect
to the current learning progress are similar.

Another example of a personalization rule for generating embedding context
is the recommendation of quiz pages. A learning resource Q is recommended as
a quiz for a currently learned learning resource LO if it is a quiz (the rule for
determining this is not displayed) and if it provides questions to at least some
of the concepts learned on LO.

FORALL Q quiz(Q) <-

Q[’http://www.w3.org/1999/02/22-rdf-syntax-ns#’:type ->

’http://ltsc.ieee.org/2002/09/lom-educational#’:’Quiz’]

FORALL Q, C concepts_of_Quiz(Q,C) <-

quiz(Q) AND concept(C) AND

Q[’http://purl.org/dc/elements/1.1/’:subject -> C].

FORALL LO, Q quiz(LO, Q) <-

EXISTS C (concepts_of_LO(LO,C) AND concepts_of_Quiz(Q,C)).

Recommendations are personalized according to the current learning progress
of the user, e. g. with respect to the current set of course materials. The following
rule determines that a learning resource LO is recommended if the learner studied
at least one more general learning resource (UpperLevelLO):

FORALL LO1, LO2 upperlevel(LO1,LO2) <-

LO1[’http://purl.org/dc/terms#’:isPartOf -> LO2].

FORALL LO, U learning_state(LO, U, recommended) <-

EXISTS UpperLevelLO (upperlevel(LO, UpperLevelLO) AND

p_obs(UpperLevelLO, U, Learned)).

Personalization for the Semantic Web 207

Additional rules deriving stronger recommendations (e. g., if the user has
studied all general learning resources), less strong recommendations (e.g., if one
or two of these haven’t been studied so far), etc., are possible, too. Recommen-
dations can also be calculated with respect to the current domain ontology. This
is necessary if a user is regarding course materials from different courses at the
same time.

FORALL C, C_DETAIL detail_concepts(C, C_DETAIL) <-

C_DETAIL[’http://www.w3.org/2000/01/rdf-schema#’:subClassOf -> C]

AND concept(C) AND concept(C_DETAIL).

FORALL LO, U learning_state(LO, U, recommended) <-

EXISTS C, C_DETAIL (concepts_of_LO(LO, C_DETAIL)

AND detail_concepts(C, C_DETAIL) AND p_obs(C, U, Learned)).

However, the first recommendation rule, which reasons within one course will
be more accurate because it has more fine–grained information about the course
and therefore on the learning process of a learner taking part in this course. Thus,
a strategy is to prioritize those adaptation rule which take most observations and
data into account, and, if these rules cannot provide results, apply less strong
rules. This can be realized by defeasible rules [3]: Priorities are used to resolve
conflicts, e.g. by giving external priority relations (N.B.: these external priority
relations must be acyclic). For example: Rule r1 determines that the learning
state of a learning object is recommended for a particular user if the user has
learnt at least one of the general, introductory learning objects in the course,
while r2 says that a learning object is not recommended if the learner has not
learnt at least one of the more general concepts. In the following code, r1 > r2
defines a degree of preference: only when the first rule cannot be applied, the
system tries to apply the second.

r1: EXISTS UpperLevelLO (upperlevel(LO, UpperLevelLO) AND

p_obs(UpperLevelLO, U, Learned))

=> learning_state(LO, U, recommended)

r2: FORALL C, C_DETAIL (concepts_of_LO(LO, C_DETAIL)

AND detail_concepts(C, C_DETAIL) AND NOT p_obs(C, U, Learned)

=> NOT learning_state(LO, U, recommended)

and r1 > r2.

5 Conclusions

Personalization, which has become one of the major endeavors of research over
the Web, has been studied since the mid 90’s in fields like Adaptive Hypermedia
and Web Mining. In Adaptive Hypermedia each user has a personalized view of
the hypermedia system as well as individual navigation alternatives. Personal-
ization is carried out either selecting the proper level of contents, that the user

208 M. Baldoni, C. Baroglio, and N. Henze

can read, or by modifying the set of links to other documents (for instance by
hiding certain connections). Web Mining, on the other hand, is mostly concerned
with the identification of relations between Web resources which are not directly
connected through links. These new relations can be induced on the basis of
resource contents or on the basis of regularities in the behavior of a set of inde-
pendent users. All these approaches have been applied to the WWW, allowing
the realization of adaptive systems even in absence of a universally agreed se-
mantics and of standard languages and tools for representing and dealing with
semantics. This heterogeneity entails some limitations. In fact, any technique
used to deliberate whether a certain resource or link is to be shown to the user
requires a lot of information, about the user, about the reasons for which the
user should access that resource, and so on. Actually, most of the early person-
alization systems either managed “closed-world” resources, as it was the case of
many systems for e-learning that handled given repositories of learning materials
as well as of e-commerce tools, or they were based on user models refined during
the direct interaction with the user.

The birth of the Semantic Web brought along standard models, languages,
and tools for representing and dealing with machine-interpretable semantic de-
scriptions of Web resources, giving a strong new impulse to research on personal-
ization. Just as the current Web is inherently heterogeneous in data formats and
data semantics, the Semantic Web will be heterogeneous in its reasoning forms
and the same will hold for personalization systems developed in the Semantic
Web. In this lecture we have analyzed some possible applications of techniques
for reasoning about actions and change and of techniques for reasoning about
preferences, the so called defeasible logic, but, indeed, the availability of a variety
of reasoning techniques, all fully integrated with the Web, opens the way to the
design and the development of forms of interaction and of personalization that
were unimaginable still a short time ago. To this aim it is necessary to integrate
results from many areas, such as Multi-Agent Systems, Security, Trust, Ubiq-
uitous Computing, Ambient Intelligence, Human-Computer Interaction and, of
course, Automated Reasoning.

This paper is just an introduction to personalization over the Semantic Web,
that presents issues, approaches, and techniques incrementally. We have started
from the World Wide Web and, then, moved to more abstract levels step by
step towards semantics and reasoning, a pattern that follows the classical view
of the Semantic Web as a tower of subsequent layers. More than being exhaustive
w.r.t all the different techniques and methods that have been proposed in the
literature, we have tried to give a complete overview, that includes historical
roots, motivations, interconnections, questions, and examples. In our opinion,
personalization plays a fundamental role in the Semantic Web, because what
is the Semantic Web but a knowledge-aware Web, able to give each user the
answers that s/he expects? Research in this field is at the beginning.

Personalization for the Semantic Web 209

Acknowledgements

The authors are indebted with all the researchers who took part to the stimulat-
ing discussions during the meetings of REWERSE and in particular of working
group A3 in Munich and Hannover. Special thanks to Viviana Patti and Laura
Torasso, who actively contribute to the project.

References

1. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc.
20th Int. Conf. Very Large Data Bases (VLDB), 1994.

2. G. Antoniou, M. Baldoni, C. Baroglio, R. Baungartner, F. Bry, T. Eiter, N. Henze,
M. Herzog, W. May, V. Patti, S. Schaffert, R. Schidlauer, and H. Tompits. Rea-
soning methods for personalization on the semantic web. Annals of Mathematics,
Computing & Teleinformatics (AMCT), 2(1):1–24, 2004.

3. G. Antoniou and F. van Harmelen. A Semantic Web Primer. MIT Press, 2004.
4. R. Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval. ACM

Press, 1999.
5. M. Baldoni, C. Baroglio, A. Martelli, and V. Patti. Reasoning about interaction

protocols for web service composition. In M. Bravetti and G. Zavattaro, editors,
Proc. of 1st Int. Workshop on Web Services and Formal Methods, WS-FM 2004,
volume 105 of Electronic Notes in Theoretical Computer Science, pages 21–36.
Elsevier Science Direct, 2004.

6. M. Baldoni, C. Baroglio, and V. Patti. Web-based adaptive tutoring: an approach
based on logic agents and reasoning about actions. Artificial Intelligence Review,
22(1), September 2004.

7. M. Baldoni, C. Baroglio, V. Patti, and L. Torasso. Reasoning about learning
object metadata for adapting scorm courseware. In L. Aroyo and C. Tasso, editors,
Proc. of Int. Workshop on Engineering the Adaptive Web, EAW’04: Methods and
Technologies for personalization and Adaptation in the Semantic Web, pages 4–13,
Eindhoven, The Netherlands, August 2004.

8. M. Baldoni, L. Giordano, A. Martelli, and V. Patti. An Abductive Proof Procedure
for Reasoning about Actions in Modal Logic Programming. In J. Dix et al., editor,
Proc. of NMELP’96, volume 1216 of LNAI, pages 132–150. Springer-Verlag, 1997.

9. M. Baldoni, L. Giordano, A. Martelli, and V. Patti. Programming Rational Agents
in a Modal Action Logic. Annals of Mathematics and Artificial Intelligence, Special
issue on Logic-Based Agent Implementation, 41(2-4):207–257, 2004.

10. C. Baral and T. C. Son. Formalizing Sensing Actions - A transition function based
approach. Artificial Intelligence, 125(1-2):19–91, January 2001.

11. N. Bassiliades, G. Antoniou, and I. Vlahavas. A defeasible logic system for the
semantic web. In In Proc. of Principles and Practice of Semantic Web Reasoning
(PPSWR04), volume 3208 of LNCS. Springer, 2004.

12. Robert Baumgartner, Nicola Henze, and Marcus Herzog. The personal publication
reader: Illustrating web data extraction, personalization and reasoning for the se-
mantic web. In Proceedings of 2nd European Semantic Web Conference, Heraklion,
Greece, May 2005.

13. A. Blum and M. Furst. Fast planning through planning graph analysis. Artificial
Intelligence, 90:281–300, 1997.

210 M. Baldoni, C. Baroglio, and N. Henze

14. BPEL4WS. http://www-106.ibm.com/developerworks/library/ws-bpel. 2003.
15. P. De Bra, A. Aerts, D. Smits, and N. Stash. AHA! version 2.0: More adapta-

tion flexibility for authors. In Proceedings of the AACE ELearn’2002 conference,
October 2002.

16. P. De Bra, G.J. Houben, and H. Wu. AHAM: A dexter-based reference model for
adaptive hypermedia. In ACM Conference on Hypertext and Hypermedia, pages
147–156, Darmstadt, Germany, 1999.

17. P. Brusilovsky. Methods and techniques of adaptive hypermedia. User Modeling
and User Adapted Interaction, 6(2-3):87–129, 1996.

18. P. Brusilovsky, J. Eklund, and E. Schwarz. Web-based Educations for All: A Tool
for Development Adaptive Courseware. In Proceedings of the Sevenths Interna-
tional World Wide Web Conference, WWW’98, 1998.

19. Peter Brusilovsky. Adaptive hypermedia. User Modeling and User-Adapted Inter-
action, 11:87–110, 2001.

20. J. Bryson, D. Martin, S. McIlraith, and L. A. Stein. Agent-based composite services
in DAML-S: The behavior-oriented design of an intelligent semantic web. In J. Liu
N. Zhong and Y. Yao, editors, Web Intelligence. Springer-Verlag, Berlin, 2002.
Agent-Based Composite Services in DAML-S: The Behavior-Oriented Design of
an Intelligent Semantic Web.

21. R. Burke. Hybrid recommender systems: Survey and experiments. User Modeling
and User-Adapted Interaction, 12:331–370, 2002.

22. R.M. Carro, E. Pulido, and P. Rodruez. Dynamic generation of adaptive internet-
based courses. Journal of Network and Computer Applications, 22:249–257, 1999.

23. M. Castilho, O. Gasquet, and A. Herzig. Modal tableaux for reasoning about
actions and plans. In S. Steel, editor, Proc. ECP’97, LNAI, pages 119–130, 1997.

24. P. de Bra. Hypermedia structures and systems: Online Course at Eindhoven Uni-
versity of Technology, 1997. http://wwwis.win.tue.nl/2L690/.

25. P. Dolog, N. Henze, W. Nejdl, and M. Sintek. The Personal Reader: Personalizing
and Enriching Learning Resources using Semantic Web Technologies. In Proc. of
the 3rd International Conference on Adaptive Hypermedia and Adaptive Web-Based
Systems (AH 2004), Eindhoven, The Netherlands, 2004.

26. M. H. Dunham, editor. Data Mining. Prentice Hall, 2003.
27. M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive

databases. New Generation Computing, 9, 1991.
28. M. Gelfond and V. Lifschitz. Representing action and change by logic programs.

Journal of Logic Programming, 17:301–321, 1993.
29. L. Giordano, A. Martelli, and C. Schwind. Dealing with concurrent actions in

modal action logic. In Proc. ECAI-98, pages 537–541, 1998.
30. I.P. Goldstein. The genetic graph: A represenation for the evolution of procedural

knowledge. In D. Sleeman and J.S.Brown, editors, Intelligent Tutoring Systems.
Academic Press, 1982.

31. F. Halasz and M. Schwartz. The Dexter hypertext reference model. Communica-
tions of the ACM, 37(2):30–39, 1994.

32. N. Henze and M. Kriesell. Personalization Functionality for the Semantic Web:
Architectural Outline and First Sample Implementation. In Proccedings of the 1st
International Workshop on Engineering the Adaptive Web (EAW 2004), co-located
with AH 2004, Eindhoven, The Netherlands, 2004.

33. N. Henze and W. Nejdl. Extendible adaptive hypermedia courseware: Integrating
different courses and web material. In Proccedings of the International Conference
on Adaptive Hypermedia and Adaptive Web-Based Systems (AH 2000), Trento,
Italy, 2000.

Personalization for the Semantic Web 211

34. N. Henze and W. Nejdl. Adaptation in open corpus hypermedia. IJAIED Special
Issue on Adaptive and Intelligent Web-Based Systems, 12, 2001.

35. N. Henze and W. Nejdl. Logically characterizing adaptive educational hy-
permedia systems. Technical report, University of Hannover, April 2003.
http://www.kbs.uni-hannover.de/Arbeiten/Publikationen/2003/ TechReportHen-
zeNejdl.pdf.

36. N. Henze and W. Nejdl. A logical characterization of adaptive educational hyper-
media. New Review of Hypermedia, 10(1), 2004.

37. I. Horrocks, P. Patel-Schneider, H. Boley, S. Tabet, and B. Grosof.
SWRL: a semantic web rule language combining OWL and RuleML, 2004.
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521.

38. A. Jameson. Numerical uncertainty management in user and student modeling:
An overview of systems and issues. User Modeling and User Adapted Interaction,
5(3/4):193–251, 1996.

39. Jena - A Semantic Web Framework for Java, 2004. http://jena.sourceforge.net/.
40. Jupiter Research Report, October 14th, 2003. http://www.jupitermedia.com/

corporate/releases/03.10.14-newjupresearch.html.
41. A. Kobsa. User modeling: Recent work, prospects and hazards. In M. Schneider-

Hufschmidt, T. Kühme, and U. Malinowski, editors, Adaptive User Interfaces:
Principles and Practice. Elvesier, 1993.

42. A. Kobsa. Generic user modeling systems. User Modeling and User-Adapted In-
teraction, 11:49–63, 2001.

43. N. Koch. Software Engineering for Adaptive Hypermedia Systems: Reference
Model, Modeling Techniques and Development Process. PhD thesis, Ludwig-
Maximilians-Universitt Mnchen, 2001.

44. R. Kowalski and M. Sergot. A Logic-based Calculus of Events. New Generation
of Computing, 4:67–95, 1986.

45. H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. B. Scherl. GOLOG: A
Logic Programming Language for Dynamic Domains. J. of Logic Programming,
31:59–83, 1997.

46. J. Lobo, G. Mendez, and S. R. Taylor. Adding Knowledge to the Action Description
Language A. In Proc. of AAAI’97/IAAI’97, pages 454–459, Menlo Park, 1997.

47. D. Lowe and W. Hall. Hypermedia and the Web. J. Wiley and Sons, 1999.
48. W. May, J.J. Alferes, and F. Bry. Towards generic query, update, and event lan-

guages for the semantic web. In in Proc. of Principles and Practice of Semantic
Web Reasoning (PPSWR04), volume 3208 of LNCS. Springer, 2004.

49. J. McCarthy and P. Hayes. Some, Philosophical Problems from the Standpoint of
Artificial Intelligence. Machine Intelligence, 4:463–502, 1963.

50. S. McIlraith and T. Son. Adapting Golog for Programming the Semantic Web. In
5th Int. Symp. on Logical Formalization of Commonsense Reasoning, pages 195–
202, 2001.

51. S. A. McIlraith, T. C. Son, and H. Zenf. Semantic Web Services. IEEE Intelligent
Systems, pages 46–53, March/April 2001.

52. Rule ML. http://www.ruleml.org.
53. Association of Computing Machinery. The ACM computer classification system,

2003. http://www.acm.org/class/1998/.
54. OWL, Web Ontology Language, W3C Recommendation, February 2004.

http://www.w3.org/TR/owl-ref/.
55. OWL-S: Web Ontology Language for Services, W3C Submission, November 2004.

http://www.org/Submission/2004/07/.

212 M. Baldoni, C. Baroglio, and N. Henze

56. W. Nejdl P. Dolog, R. Gavriloaie and J. Brase. Integrating adaptive hypermedia
techniques and open rdf-based environments. In Proc. of The 12th Int. World
Wide Web Conference, Budapest, Hungary, 2003.

57. H. Prendinger and G. Schurz. Reasoning about action and change. a dynamic logic
approach. Journal of Logic, Language, and Information, 5(2):209–245, 1996.

58. R. Rada. Interactive Media. Springer, 1995.
59. RDF. http://www.w3c.org/tr/1999/rec-rdf-syntax-19990222/. 1999.
60. RDFS. http://www.w3.org/tr/rdf-schema/. 2004.
61. RDQL - query language for RDF, Jena, 2005. http://jena.sourceforge.net/

RDQL/.
62. R. Reiter. A theory of diagnosis from first principles. Artifical Intelligence, 32,

1987.
63. E. Rich. User modeling via stereotypes. Cognitive Science, 3:329–354, 1978.
64. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice

Hall, 1995.
65. C. B. Schwind. A logic based framework for action theories. In J. Ginzburg et al.,

editor, Language, Logic and Computation, pages 275–291. CSLI, 1997.
66. M. Sintek and S. Decker. TRIPLE - an RDF Query, Inference, and Transformation

Language. In I. Horrocks and J. Hendler, editors, International Semantic Web
Conference (ISWC), pages 364–378, Sardinia, Italy, 2002. LNCS 2342.

67. M. Specht. Empirical evaluation of adaptive annotation in hypermedia. In ED-
Media and ED-Telekom, Freiburg, Germany, 1998.

68. G. Wagner. Ruleml, swrl and rewerse: Towards a general web rule lan-
guage framework. SIG SEMIS Semantic Web and Information Systems, 2004.
http://www.sigsemis.org/articles/copy of index html.

69. Geoffrey I. Webb, Michael J. Pazzani, and Daniel Billsus. Machine learning for
user modeling. User Modeling and User-Adapted Interaction, 11:19–29, 2001.

70. G. Weber and P. Brusilovsky. ELM-ART: An Adaptive Versatile System for Web-
based Instruction. IJAIED Special Issue on Adaptive and Intelligent Web-Based
Systems, 12, 2001.

71. G. Weber, H.C. Kuhl, and S. Weibelzahl. Developing adaptive internet based
courses with the authoring system NetCoach. In Proc. of the Third Workshop on
Adaptive Hypermedia, AH2001, 2001.

72. WSDL. http://www.w3c.org/tr/2003/wd-wsdl12-20030303/. version 1.2, 2003.

, LNCS 3564, pp. 213–250, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Attempto Controlled English:
A Knowledge Representation Language

Readable by Humans and Machines

Norbert E. Fuchs, Stefan Höfler, Kaarel Kaljurand, Fabio Rinaldi,
and Gerold Schneider

Department of Informatics & Institute of Computational Linguistics,
University of Zurich, Switzerland

{fuchs, hoefler, kalju, gschneid, rinaldi}@ifi.unizh.ch
http://www.ifi.unizh.ch/attempto/

Abstract. Attempto Controlled English (ACE) is a knowledge repre-
sentation language with an English syntax. Thus ACE can be used by
anyone, even without being familiar with formal notations. The At-
tempto Parsing Engine translates ACE texts into discourse represen-
tation structures, a variant of first-order logic. Hence, ACE turns out to
be a logic language equivalent to full first-order logic. The two views of
ACE — natural language and logic language — complement each other,
and render ACE both human- and machine-readable. This paper covers
both views of ACE. In the first part we present the language ACE in
a nutshell, and in the second part we give an overview of the discourse
representation structures derived from ACE texts.

1 Introduction

Attempto Controlled English (ACE) is a controlled natural language, i.e. a pre-
cisely defined subset of full English that can automatically and unambiguously
be translated into full first-order logic. One could say that ACE is a first-order
logic language with the syntax of a subset of English. Thus ACE is readable by
humans and machines. ACE seems completely natural, but is in fact a formal
language that must be learned. Experience shows that one or two days suffice to
learn ACE’s small number of construction and interpretation rules. More time,
though, will be needed to become fluent in ACE.

ACE is based on Discourse Representation Theory [5] whose central concern
is to assign meaning to natural language texts and discourses, and to account for
the context dependence of meaning. While in general the context of a natural
language text is only vaguely defined and can vary, the context of an ACE text is
completely fixed. Concretely, an ACE text consists of a sequence of interrelated
sentences where each sentence can anaphorically refer to noun phrases occurring
in previous sentences. Thus, each sentence is interpreted in the context of the
preceding sentences. No further context exists.

N. Eisinger and J. Ma�luszyński (Eds.): Reasoning Web 2005

214 N.E. Fuchs et al.

Furthermore, the Attempto system is not associated with any specific ap-
plication domain, or with any particular formal method. By itself it does not
contain any knowledge of application domains, of formal methods, or of the
world in general. Thus users must explicitly define domain knowledge — defi-
nitions, constraints, ontologies — through ACE texts. Words occurring in ACE
texts are processed by the Attempto system as uninterpreted syntactic elements,
i.e. any interpretation of these words is solely performed by the human writer
or reader.

The Attempto Parsing Engine (APE) translates ACE texts unambiguously
into discourse representation structures (DRS) the representation language of
Discourse Representation Theory. DRSs use a variant of first-order logic, and
can be easily translated into any formal language equivalent to first-order logic.
For the current version 4 of ACE we developed an extended form of discourse
representation structures that allows us to express complex linguistic features,
for instance plurals, in first-order logic, and that furthermore supports logical
deductions on ACE texts.

A DRS can get a model-theoretic semantics [5], and we can assign the same
semantics, i.e. unique meaning, to the ACE text from which the DRS was derived.
Thus, the Attempto system treats every ACE sentence as unambiguous, even if
people may perceive the same sentence as ambiguous in full English.

2 ACE in a Nutshell

This section is a brief introduction into ACE 4. For a full account readers should
consult the ACE documentation found at the Attempto website (see [1]).

Sections 2.1 to 2.6 describe the syntax of ACE 4, sections 2.7 to 2.9 summarize
the handling of ambiguity, and section 2.10 explains anaphoric references.

2.1 Vocabulary

The vocabulary of ACE comprises

– predefined function words (e.g. determiners, conjunctions, prepositions),
– content words (nouns, verbs, adjectives, and adverbs).

The Attempto system provides a basic lexicon of content words. Users can
define additional, e.g. domain specific, content words with the help of a lexical
editor, or can import existing lexica. User-defined words take precedence over
words found in the basic lexicon.

2.2 Grammar

The grammar of ACE defines and constrains the form and the meaning of ACE
sentences and texts. ACE’s grammar is expressed as a small set of construction
rules.

Attempto Controlled English 215

2.3 ACE Texts

An ACE text is a sequence of anaphorically interrelated sentences. There are

– simple sentences, and
– composite sentences.

2.4 Simple Sentences

A simple sentence describes a situation that can be an event or a state.

A customer inserts 2 cards.
A card is valid.

Simple ACE sentences have the following general structure:

subject + verb + complements + adjuncts

A new customer inserts 2 valid cards.

possessive nouns and of-prepositional phrases

John’s customer inserts a card of Mary.

or proper nouns and variables as appositions

The customer Mr Miller inserts a card A.

Other modifications of nouns are possible through relative sentences

A customer who is new inserts a card that he owns.

Every sentence has a subject and a verb. Complements (direct and indirect
objects) are necessary for transitive verbs (insert something) and ditransitive
verbs (give something to somebody), whereas adjuncts (adverbs, prepositional
phrases) are optional.

All elements of a simple sentence can be elaborated upon to describe the
situation in more detail. To further specify the nouns customer and card, we
could add adjectives:

Furthermore, there are query sentences that allow users to interrogate the
contents of an ACE text.

which are described below since they make a sentence composite. We can also
detail the insert-event, e.g. by adding an adverb

216 N.E. Fuchs et al.

A customer inserts some cards manually.

or equivalently

A customer manually inserts some cards.

or by adding prepositional phrases, e.g.

A customer inserts some cards into a slot.

We can combine enhancements to arrive at

John’s customer who is new inserts a valid card of Mary manually into
a slot A.

2.5 Composite Sentences

Composite sentences are recursively built from simpler sentences through coor-
dination, subordination, quantification, and negation.

Coordination by and is possible between sentences and between phrases of the
same syntactic type.

A customer inserts a card and the machine checks the code.
A customer inserts a card and enters a code.
An old and trusted customer enters a card and a code.

A customer inserts a card or enters a code.

A customer inserts a VisaCard or inserts a MasterCard, and inserts a
code.

means that the customer inserts a VisaCard and a code or, alternatively a Mas-
terCard and a code.

Note that the coordination of the noun phrases a card and a code represents
a plural object.

Coordination by or is possible between sentences, relative clauses and verb
phrases.

Coordination by and and or is governed by the standard binding order of
logic, i.e. and binds stronger than or. Commas can be used to override the
standard binding order. Thus the sentence

There are two forms of subordination: relative sentences and if-then sentences.
Relative sentences starting with who, which, and that allow to add detail to
nouns, e.g.

Attempto Controlled English 217

A customer who is new inserts a card that he owns.

If a card is valid then a customer inserts it.

To express that all involved customers insert cards we can write

Every customer inserts a card.

There is a card that every customer inserts.

ACE does not know the passive voice. To state that every card is inserted
by a customer we write somewhat indirectly

For every card there is a customer who inserts it.

Negation allows us to express that something is not the case, e.g.

A customer does not insert a card.
A card is not valid.

To negate something for all objects of a certain class one uses no

No customer inserts more than 2 cards.

or, equivalently, there is no

There is no customer who inserts a card.

To negate a complete statement one uses sentence negation

It is not the case that a customer inserts a card.

With the help of if-then sentences we can specify conditional or hypothetical
situations, e.g.

Note the anaphoric reference via the pronoun it in the then-part to the noun
phrase a card in the if-part.

Quantification allows us to speak about all objects of a certain class, or to
denote explicitly the existence of at least one object of this class. The textual
occurrence of a universal or existential quantifier opens its scope that extends
to the end of the sentence, or in coordinations to the end of the respective
coordinated sentence.

This sentence means that each customer inserts a card that may, or may
not, be the same as the one inserted by another customer. To specify that all
customers insert the same card — however unrealistic that situation seems —
we can write

218 N.E. Fuchs et al.

2.6 Query Sentences

Query sentences permit us to interrogate the contents of an ACE text. There
are yes-no queries and wh-queries.

A customer inserts a card.

then we can ask

Does a customer insert a card?

to get a positive answer.

A new customer inserts a valid card manually.

we can ask for each element of the sentence, e.g.

Who inserts a card?
Which customer inserts a card?
What does the customer insert?
How does the customer insert a card?

Note, however, that we cannot ask for the verb itself.

There is John and there is a card that John enters. Does John enter the
card?

2.7 Constraining Ambiguity

To constrain the ambiguity of full natural language ACE employs three simple
means

– some ambiguous constructs are not part of the language; unambiguous al-
ternatives are available in their place,

– all remaining ambiguous constructs are interpreted deterministically on the
basis of a small number of interpretation rules,

– users can either accept the assigned interpretation, or they must rephrase
the input to obtain another one.

Yes/no-queries establish the existence or non-existence of a specified situa-
tion. If we specified

With the help of wh-queries, i.e. queries with query words, we can interrogate
a text for details of the specified situation. If we specified

Questions can also be constructed by a sequence of declarative sentences
followed by one query sentence. This can be used to temporarily add information
to an already existing ACE text before one asks the question. Here is an example.

Attempto Controlled English 219

2.8 Avoidance of Ambiguity

Here is an example how ACE replaces ambiguous constructs by unambiguous
constructs.

A customer inserts a card that is valid and opens an account.

A customer inserts {a card that is valid} and opens an account.

A customer inserts a card that is valid and that opens an account.

with the interpretation

A customer inserts {a card that is valid and that opens an account}.

2.9 Interpretation Rules

However, not all ambiguities can be safely removed from ACE without rendering
it artificial. To deterministically interpret otherwise syntactically correct ACE
sentences we use about 20 interpretation rules. Here are some examples.

If we write

The customer inserts a card with a code.

we get the interpretation

The customer {inserts a card with a code}.

that reflects ACE’s interpretation rule that a prepositional phrase always mod-
ifies the verb.

In full natural language relative sentences combined with coordinations can
introduce ambiguity, e.g.

In ACE the sentence has the unequivocal meaning that the customer opens
an account. This is reflected by

To express the alternative — though not very realistic — meaning that the
card opens an account the relative pronoun that must be repeated, thus yielding
a coordination of relative sentences.

However, this is probably not what we meant to say. To express that the code
is associated with the card we can employ the interpretation rule that a relative
sentence always modifies the immediately preceding noun phrase, and rephrase
the input as

220 N.E. Fuchs et al.

The customer inserts a card that carries a code.

yielding the interpretation

The customer inserts {a card that carries a code}.

or — to specify that the customer inserts a card and a code — as

The customer inserts a card and a code.

Adverbs can precede or follow the verb. To disambiguate the sentence

The customer who inserts a card manually enters a code.

we employ the interpretation rule that the postverbal position has priority.

The customer who {inserts a card manually} enters a code.

2.10 Anaphoric References

Usually ACE texts consist of more than one sentence, e.g.

A customer enters a card and a code. If a code is valid then SimpleMat
accepts a card. If a code is not valid then SimpleMat rejects a card.

A customer enters a card and a code. If the code is valid then SimpleMat
accepts the card. If the code is not valid then SimpleMat rejects the card.

A customer enters a card and a code. If [the code] is valid then SimpleMat
accepts [the card]. If [the code] is not valid then SimpleMat rejects [the
card].

What does“most recent and most specific” mean? Given the sentence

A customer enters a red card and a blue card.

then

To express that all occurrences of card and code should mean the same card
and the same code, ACE provides anaphoric references via the definite article,
i.e.

During the processing of the ACE text all anaphoric references are replaced
by the most recent and most specific accessible noun phrase that agrees in gender
and number, yielding

Attempto Controlled English 221

The card is correct.

yields

[The blue card] is correct.

while

The red card is correct.

yields

[The red card] is correct.

A customer does not enter a card. The card is correct.

cannot refer to a card.

Anaphoric references are also possible via personal pronouns

A customer enters a card and a code. If it is valid then SimpleMat accepts
the card. If it is not valid then SimpleMat rejects the card.

or via variables

A customer enters a card CARD and a code CODE. If CODE is valid
then SimpleMat accepts CARD. If CODE is not valid then SimpleMat
rejects CARD.

Anaphoric references via definite articles and variables can be combined.

A customer enters a card CARD and a code CODE. If the code CODE
is valid then SimpleMat accepts the card CARD. If the code CODE is
not valid then SimpleMat rejects the card CARD.

Note that proper nouns like SimpleMat always refer to the same object.

3 Extended Discourse Representation Structures in

Attempto Controlled English

3.1 Introductory Notes

The Attempto Parsing Engine (APE) translates ACE texts unambiguously into
extended discourse representation structures (DRS) that have the following char-
acteristics:

What does “accessible” mean? According to Discourse Representation The-
ory noun phrases introduced in if-then sentences, universally quantified sentences
or negations cannot be used anaphorically in subsequent sentences. Thus the card
in

222 N.E. Fuchs et al.

– they use only a small number of predefined predicates,
– they represent information derived from words as arguments of the prede-

fined predicates,
– they have eventuality types,
– they use a lattice-theoretic representation of objects that allows us to encode

plurals in first-order language,
– they contain quantity information.

3.2 Notation

APE translates an ACE text unambiguously into an internal representation using
Prolog notation

paragraph(DRS,Text)

where Text stands for the predicate text/1, the only argument of which is a list
of the input sentences represented as character strings. The example text

John enters a card. Every card is green.

would thus be represented as

text([’John enters a card.’, ’Every card is green.’])

The discourse representation structure derived from the ACE text is stored in
the first argument DRS of paragraph/2 as

drs(Domain,Conditions)

drs([A,B],[condition(A),condition(B)])

In the following we will explain extended discourse representation structures
by means of illustrative examples. Readers are referred to [2] for a practical
introduction to Discourse Representation Theory.

Section 3.2 introduces the notation used in this report. Sections 3.3 to 3.11
describe discourse representation structures derived from declarative ACE sen-
tences, and section 3.12 those derived from ACE query sentences.

The first argument of drs/2 is a list of discourse referents, i.e. quantified
variables naming objects of the domain of discourse. The second argument of
drs/2 is a list of simple and complex conditions for the discourse referents.
The list separator ‘,’ stands for logical conjunction. Simple conditions are logical
atoms, while complex conditions are built from other discourse representation
structures with the help of the logical connectors negation ‘-’, disjunction ‘v’,
and implication ‘=>’.

is usually pretty-printed as

Attempto Controlled English 223

A B

condition(A)
condition(B)

The above DRS corresponds to the standard first-order logic (FOL) representa-
tion

∃AB : condition(A) ∧ condition(B)

Accordingly, a negated DRS like

¬
A B

condition(A)
condition(B)

corresponds to the standard FOL representation

¬∃AB : condition(A) ∧ condition(B)

and is internally represented as

-drs([A,B],[condition(A),condition(B)])

in the Attempto system. We have defined -/1 as a prefix operator which stands
for the logical ‘¬’.

A

condition(A)
⇒

B

condition(B)

corresponding to the standard FOL representation

∀A : condition(A) → ∃B : condition(B)

is internally represented as

drs([A],[condition(A)]) => drs([B],[condition(B)])

The disjunction

A

condition(A)
∨

B

condition(B)

In a DRS, all variables are thus existentially quantified unless they stand in
the restrictor of an implication. The implication

corresponding to the standard FOL notation

224 N.E. Fuchs et al.

∃A : condtion(A) ∨ ∃B : condition(B)

is likewise internally represented as

drs([A],[condition(A)]) v drs([B],[condition(B)])

The predicates =>/2 and v/2 are defined as infix operators.

A B

condition(A)

¬
condition(B)

is represented as

drs([A,B],[condition(A),-drs([],[condition(B)])])

For example, the noun card that customarily would be represented as

∃A : card(A)

is represented here as

∃A : object(A, card, object), ...

relegating the predicate ‘card’ to the constant ‘card’ used as an argument in the
predefined predicate ‘object’.

The example text

John enters a card. Every card is green.

In nested discourse representation structures, a DRS can occur as an element
of the conditions list of another DRS. Therefore

The discourse representation structure uses a reified, or ‘flat’ notation for
logical atoms (see [4]).

As a consequence, the large number of predicates in the customary represen-
tation is replaced by a small number of predefined predicates. This allows us to
conveniently formulate axioms for the predefined predicates within the Attempto
Reasoner RACE (see [3]).

Logical atoms occurring in drs/2 are actually written as Atom-I (using an
infix operator -/2) where the index I refers to the I-th element of the list in
text/1, i.e. to the sentence from which Atom was derived.

the DRS of which is

Attempto Controlled English 225

A B C D E

named(B,‘John’)
object(B,named entity,person)
structure(B,atomic)
quantity(B,cardinality,count unit,A,eq,1)
structure(D,atomic)
quantity(D,cardinality,count unit,C,eq,1)
object(D,card,object)
predicate(E,event,enter,B,D)

F G

structure(G,atomic)
quantity(G,cardinality,count unit,F,eq,1)
object(G,card,object)

⇒

H I

property(I,green)
predicate(H,state,be,G,I)

will thus internally be represented as

paragraph(drs([A,B,C,D,E],[named(B,‘John’)-1,

object(B,named entity,person)-1,structure(B,atomic)-1,

quantity(B,cardinality,count unit,A,eq,1)-1,structure(D,atomic)-1,

quantity(D,cardinality,count unit,C,eq,1)-1,object(D,card,object)-1,

predicate(E,event,enter,B,D)-1,drs([F,G],[structure(G,atomic)-2,

quantity(G,cardinality,count unit,F,eq,1)-2,

object(G,card,object)-2])=>drs([H,I],[property(I,green)-2,

predicate(H,state,be,G,I)-2])]),text([‘John enters a card.’,

‘Every card is green.’]))

3.3 Noun Phrases

ACE noun phrases (NP) are headed by a countable noun such as card, a mass
noun such as bread, or they are a proper names such as Mary or pronouns such
as she. All ACE NPs except proper names and pronouns are introduced by a
determiner. We also introduce special determiners called generalized quantifiers,
NP conjunctions and measurement NPs.

The following sections provide the discourse representation structures for a
selected number of ACE 4 sentences in the form they will be output by APE.

Using illustrative ACE 4 examples this paper describes the language of ex-
tended DRSs derived from ACE texts. For a complete description of the ACE
4 language itself please refer to the ACE 4 Language Manual found on the At-
tempto web site [1].

226 N.E. Fuchs et al.

a card

A B

structure(B,atomic)
quantity(B,cardinality,count unit,A,eq,1)
object(B,card,object)

no card

¬

A B

structure(B,atomic)
quantity(B,cardinality,count unit,A,eq,1)
object(B,card,object)

every card

A B

structure(B,atomic)
quantity(B,cardinality,count unit,A,eq,1)
object(B,card,object)

⇒
...

Singular Countable Noun Phrases. Singular countable NPs are typically
introduced by an existential quantifier such as a or a universal quantifier such as
every. Both quantifiers can also be negated. Existentially quantified NPs are typi-
cally introduced with an indefinite article a if they are new discourse participants
and with a definite article the if they refer to a referent that has been previously
introduced. A noun phrase with a definite article that does not anaphorically
refer to a previously introduced noun phrase is treated as if having an indefinite
article, i.e. as a new discourse participant.

Attempto Controlled English 227

not every card

¬

A B

structure(B,atomic)
quantity(B,cardinality,count unit,A,eq,1)
object(B,card,object)

⇒
...

Mass Nouns Non-countable nouns, also called mass nouns, are introduced
by some in their existential and all in their universal affirmative version. Both
quantifiers can also be negated.

some money

A

structure(A,mass)
object(A,money,object)

no money

¬

A B

structure(B,mass)
object(B,card,object)

all money

A

structure(A,mass)
object(A,money,object)

⇒
...

.

228 N.E. Fuchs et al.

not all money

¬

A

structure(A,mass)
object(A,money,object)

⇒
...

Proper Names Proper names denote a unique object. They can be singular
or plural.

John

A B

named(B,‘John’)
object(B,named entity,person)
structure(B,atomic)
quantity(B,cardinality,count unit,A,eq,1)

Plural Noun Phrases Plural NPs are of known or unknown quantity. If the
quantity is unknown but restricted, a generalized quantifier (at least, at most,
more than, less than) can be used. Plurals introduce group objects of which the
ndividual constituents form parts.

some cards

A B

structure(B,group)
quantity(B,cardinality,count unit,A,geq,2)

D

structure(D,atomic)
part of(D,B)

⇒ object(D,card,object)

.

.

Attempto Controlled English 229

2 cards

A B

structure(B,group)
quantity(B,cardinality,count unit,A,eq,2)

D

structure(D,atomic)
part of(D,B)

⇒ object(D,card,object)

at least 2 cards

A B

structure(B,group)
quantity(B,cardinality,count unit,A,geq,2)

D

structure(D,atomic)
part of(D,B)

⇒ object(D,card,object)

Plural Interpretations In ACE, a plural noun phrase has a default collective
reading. In order to express a distributive reading, a noun phrase has to be pre-
ceded by the marker each of. Since the relative scope of a quantifier corresponds
to its surface position, we use there is/are and for each of to move a quantifier
to the front of a sentence and thus widen its scope.

The natural English sentence

2 girls lift 2 tables.

has a multitude of readings (see [6]), eight of which can be expressed in ACE.
Here we present two of these eight readings.

The first one shows the default collective reading of both 2 girls and 2 tables,
while the second shows the distributive reading of 2 girls and the collective
reading of 2 tables. The other six readings can be expressed analogously using
each of and there is/are.

.

230 N.E. Fuchs et al.

2 girls lift 2 tables.

A B C D E

structure(B,group)
quantity(B,cardinality,count unit,A,eq,2)

F

structure(F,atomic)
part of(F,B)

⇒ object(F,girl,person)

structure(D,group)
quantity(D,cardinality,count unit,C,eq,2)

G

structure(G,atomic)
part of(G,D)

⇒ object(G,table,object)

predicate(E,event,lift,B,D)

Each of 2 girls lifts 2 tables.

A B

structure(B,group)
quantity(B,cardinality,count unit,A,eq,2)

C

structure(C,atomic)
part of(C,B)

⇒ object(C,girl,person)

D

structure(D,atomic)
part of(D,B)

⇒

E F G

structure(F,group)
quantity(F,cardinality,count unit,E,eq,2)

H

structure(H,atomic)
part of(H,F)

⇒ object(H,table,object)

predicate(G,event,lift,D,F)

Attempto Controlled English 231

Non-anaphoric Pronouns Anonymous objects can be introduced by non-
anaphoric pronouns. They offer a natural way to express a passive voice situation
in ACE.

someone / somebody / something

A

structure(A,dom)

no one / nobody / nothing

¬
A

structure(A,dom)

everyone / everybody / everything

A

structure(A,dom) ⇒
...

not everyone / not everybody / not everything

¬ A

structure(A,dom) ⇒
...

.

232 N.E. Fuchs et al.

Noun Phrase Conjunction NPs can be conjoined, introducing a plural ob-
ject into the discourse. The default interpretation of conjoined plurals (e.g. a
customer and a clerk) is that the individuals act together. Both the conjoined
plural object and the individuals can be anaphorically referred to.

a customer and a clerk

A B C D E F

structure(B,group)
quantity(B,cardinality,count unit,A,eq,2)
sum of(B,[D,F])
structure(D,atomic)
quantity(D,cardinality,count unit,C,eq,1)
object(D,customer,person)
proper part of(D,B)
structure(F,atomic)
quantity(F,cardinality,count unit,E,eq,1)
object(F,clerk,person)
proper part of(F,B)

Measurement Noun Phrases Mass NPs cannot be counted but oftencome in
defined amounts. This can be expressed by using measurement NPs. Also plural
object quantities can be expressed in this way.

1 kg of gold

A B

structure(B,mass)
quantity(B,weight,kg,A,eq,1)
object(B,gold,object)

2 kg of apples

A B

structure(B,group)
quantity(B,weight,kg,A,eq,2)

C

structure(C,atomic)
part of(C,B)

⇒ object(C,apple,object)

.

.

Attempto Controlled English 233

3.4 Verb Phrases

Verbs fall into classical subcategories known as intransitive (e.g. wait), transitive
(e.g. enter something), and ditransitive (e.g. give something to somebody). ACE
also knows the copula be. The copula can be followed by a (simple, transitive or
comparative) adjective, noun phrase or a prepositional phrase.

The customer waits.

A B C

structure(B,atomic)
quantity(B,cardinality,count unit,A,eq,1)
object(B,customer,person)
predicate(C,state,wait,B)

John enters a card.

A B C D E

named(B,‘John’)
object(B,named entity,person)
structure(B,atomic)
quantity(B,cardinality,count unit,A,eq,1)
structure(D,atomic)
quantity(D,cardinality,count unit,C,eq,1)
object(D,card,object)
predicate(E,event,enter,B,D)

A clerk gives a password to a customer.

A B C D E F G

structure(B,atomic)
quantity(B,cardinality,count unit,A,eq,1)
object(B,clerk,person)
structure(D,atomic)
quantity(D,cardinality,count unit,C,eq,1)
object(D,password,object)
structure(F,atomic)
quantity(F,cardinality,count unit,E,eq,1)
object(F,customer,person)
predicate(G,event,give to,B,D,F)

234 N.E. Fuchs et al.

A card is valid.

A B C D

structure(B,atomic)
quantity(B,cardinality,count unit,A,eq,1)
object(B,card,object)
predicate(C,state,be,B,D)
property(D,valid)

A card is valid and correct.

A B C D

structure(B,atomic)
quantity(B,cardinality,count unit,A,eq,1)
object(B,card,object)
predicate(C,state,be,B,D)
property(D,valid)
property(D,correct)

2 codes are valid.

A B C D

structure(B,group)
quantity(B,cardinality,count unit,A,eq,2)

D

structure(D,atomic)
part of(D,B)

⇒ object(D,code,object)

predicate(C,state,be,B,D)
property(D,valid)

Each of 2 codes is valid.

A B

structure(B,group)
quantity(B,cardinality,count unit,A,eq,2)

C

structure(C,atomic)
part of(C,B)

⇒ object(C,code,object)

D

structure(D,atomic)
part of(D,B)

⇒

E F

predicate(E,state,be,D,F)
property(F,valid)

Attempto Controlled English 235

John is a rich customer.

A B C D E

named(B,‘John’)
object(B,named entity,person)
structure(B,atomic)
quantity(B,cardinality,count unit,A,eq,1)
structure(D,atomic)
quantity(D,cardinality,count unit,C,eq,1)
object(D,customer,person)
property(D,rich)
predicate(E,state,be,B,D)

A customer is richer than John.

A B C D E F

named(B,‘John’)
object(B,named entity,person)
structure(B,atomic)
quantity(B,cardinality,count unit,A,eq,1)
structure(D,atomic)
quantity(D,cardinality,count unit,C,eq,1)
object(D,customer,person)
property(F,richer than,B)
predicate(E,state,be,D,F)

John is in the bank.

A B C D E

named(B,‘John’)
object(B,named entity,person)
structure(B,atomic)
quantity(B,cardinality,count unit,A,eq,1)
predicate(C,state,be,B)
structure(D,atomic)
quantity(D,cardinality,count unit,E,eq,1)
object(D,bank,object)
modifier(C,location,in,D)

236 N.E. Fuchs et al.

3.5 Verb Phrase Coordination

Verb phrases can be conjoined (and) and disjoined (or).

A screen flashes and blinks.

A B C D

structure(B,atomic)
quantity(B,cardinality,count unit,A,eq,1)
object(B,screen,object)
predicate(C,event,flash,B)
predicate(D,state,blink,B)

A screen flashes or blinks.

A B

structure(B,atomic)
quantity(B,cardinality,count unit,A,eq,1)
object(B,screen,object)

C

predicate(C,event,flash,B) ∨
D

predicate(D,state,blink,B)

3.6 Modifying Verb Phrases

Facultative additional information detailing, for instance, how or where an action
is performed is expressed by modifying the verb by an adverb or a prepositional
phrase.

A customer enters a card quickly.

A B C D E

structure(B,atomic)
quantity(B,cardinality,count unit,A,eq,1)
object(B,customer,person)
structure(D,atomic)
quantity(D,cardinality,count unit,C,eq,1)
object(D,card,object)
predicate(E,event,enter,B,D)
modifier(E,manner,none,quickly)

Adverbs can precede or follow the verb they modify. In case of ambiguity,
attachment to following adverbs is preferred. Adverbs fall into semantic classes
such as manner, time, location, direction.

Attempto Controlled English 237

John enters a card in a bank.

A B C D E G F

named(B,‘John’)
object(B,named entity,person)
structure(B,atomic)
quantity(B,cardinality,count unit,A,eq,1)
structure(D,atomic)
quantity(D,cardinality,count unit,C,eq,1)
object(D,card,object)
predicate(E,event,enter,B,D)
structure(G,atomic)
quantity(G,cardinality,count unit,F,eq,1)
object(G,bank,object)
modifier(E,location,in,G)

John enters a card in the morning.

A B C D E G F

named(B,‘John’)
object(B,named entity,person)
structure(B,atomic)
quantity(B,cardinality,count unit,A,eq,1)
structure(D,atomic)
quantity(D,cardinality,count unit,C,eq,1)
object(D,card,object)
predicate(E,event,enter,B,D)
structure(G,atomic)
quantity(G,cardinality,count unit,F,eq,1)
object(G,morning,time)
modifier(E,time,in,G)

3.7 Modifying Nouns and Noun Phrases

ACE offers a wide range of NP modifications: adjectives, relative clauses, of-PPs,
Saxon genitives, possessive pronouns, and appositions.

Prepositional phrases (PPs) follow the verb they modify. The semantic class
of a PP depends on the preposition of the PP as well as on the type of the noun
occurring in the PP.

238 N.E. Fuchs et al.

Adjectives An adjective or a conjunction of adjectives precede a noun.

A rich customer waits.

A B C

structure(B,atomic)
quantity(B,cardinality,count unit,A,eq,1)
property(B,rich)
object(B,customer,person)
predicate(C,state,wait,B)

The rich and old customer waits.

A B C

structure(B,atomic)
quantity(B,cardinality,count unit,A,eq,1)
property(B,rich)
property(B,old)
object(B,customer,person)
predicate(C,state,wait,B)

Relative Sentences Relative sentences are an important natural language op-
tion to express complex NP modification.

A customer enters a card which is valid.

A B C D E F G H

structure(B,atomic)
quantity(B,cardinality,count unit,A,eq,1)
object(B,customer,person)
structure(E,atomic)
quantity(E,cardinality,count unit,D,eq,1)
object(E,card,object)
property(H,valid)
predicate(F,state,be,E,H)
predicate(G,event,enter,B,E)

.

.

Attempto Controlled English 239

A customer enters a card which is green and which is valid.

A B C D E F G H I

structure(B,atomic)
quantity(B,cardinality,count unit,A,eq,1)
object(B,customer,person)
structure(D,atomic)
quantity(D,cardinality,count unit,C,eq,1)
object(D,card,object)
property(H,green)
predicate(E,state,be,D,H)
property(I,valid)
predicate(F,state,be,D,I)
predicate(G,event,enter,B,D)

A customer enters a card which is green or which is red.

A B C D G

structure(B,atomic)
quantity(B,cardinality,count unit,A,eq,1)
object(B,customer,person)
structure(D,atomic)
quantity(D,cardinality,count unit,C,eq,1)
object(D,card,object)

E H

property(H,green)
predicate(E,state,be,D,H)

∨

F I

property(I,red)
predicate(F,state,be,D,I)

predicate(G,event,enter,B,D)

of -Prepositional Phrases NPs can be modified by of-PPs. Other PP modi-
fication of NPs is not possible but can be rephrased using relative sentences.

The surface of the card has a green color.

A B C D E F G

structure(B,atomic)
quantity(B,cardinality,count unit,A,eq,1)
object(B,surface,object)
structure(D,atomic)
quantity(D,cardinality,count unit,C,eq,1)
property(D,green)
object(D,color,object)
predicate(E,state,have,B,D)
structure(F,atomic)
quantity(F,cardinality,count unit,G,eq,1)
object(F,card,object)
relation(B,surface,of,F)

.

240 N.E. Fuchs et al.

Possessive Nouns Possessive noun phrases are either introduced by a Saxon
genitive (e.g. Peter’s) or a possessive pronoun (e.g. his).

The customer’s card is valid.

A B C D E F

structure(B,atomic)
quantity(B,cardinality,count unit,A,eq,1)
object(B,card,object)
property(F,valid)
predicate(C,state,be,B,F)
structure(D,atomic)
quantity(D,cardinality,count unit,E,eq,1)
object(D,customer,object)
relation(B,card,of,D)

Appositions Appositions of noun phrases can be proper names, quoted strings
or variables.

The customer Mr Miller enters a card.

A B C D E

structure(B,atomic)
quantity(B,cardinality,count unit,A,eq,1)
object(B,customer,person)
named(B,‘Mr Miller’)
object(B,named entity,person)
structure(D,atomic)
quantity(D,cardinality,count unit,C,eq,1)
object(D,card,object)
predicate(E,event,enter,B,D)

A customer X enters the password ”Jabberwocky”.

A B C D E

structure(B,atomic)
quantity(B,cardinality,count unit,A,eq,1)
object(B,customer,person)
variable(B,‘X’)
structure(D,atomic)
quantity(D,cardinality,count unit,C,eq,1)
object(D,password,object)
quoted string(D,‘Jabberwocky’)
predicate(E,state,enter,B,D)

.

.

Attempto Controlled English 241

3.8 Conditional Sentences

Conditional sentences combine two sentences by an if-then construction.

If the password is valid then the machine accepts the request.

A B C D

property(A,valid)
predicate(B,state,be,D,A)
object(D,password,object)
quantity(D,cardinality,count unit,C,eq,1)
structure(D,atomic)

⇒

E F G H I

predicate(E,unspecified,accept,G,I)
object(G,machine,object)
quantity(G,cardinality,count unit,F,eq,1)
structure(G,atomic)
object(I,request,object)
quantity(I,cardinality,count unit,H,eq,1)
structure(I,atomic)

3.9 Coordinated Sentences

Coordinated sentences combine simpler sentences by and and or.

The screen blinks and John waits.

A B C D E F

structure(B,atomic)
quantity(B,cardinality,count unit,A,eq,1)
object(B,screen,object)
predicate(C,state,blink,B)
named(E, ‘John’)
object(E,named entity,person)
structure(E,atomic)
quantity(E,cardinality,count unit,D,eq,1)
predicate(F,state,wait,E)

A screen blinks or John waits.

D E

A B C

structure(B,atomic)
quantity(B,cardinality,count unit,A,eq,1)
object(B,screen,object)
predicate(C,state,blink,B)

∨
F

predicate(F,state,wait,E)

named(E, ‘John’)
object(E,named entity,person)
structure(E,atomic)
quantity(E,cardinality,count unit,D,eq,1)

242 N.E. Fuchs et al.

3.10 Quantified Sentences

Quantified sentences allow users to express existential quantification and univer-
sal quantification. Furthermore, a construct there is followed by a noun phrase
introduces an existentially quantified singular object. Similarly, there are intro-
duces a plural object.

a card ⇔ There is a card.

A B

structure(B,atomic)
quantity(B,cardinality,count unit,A,eq,1)
object(B,card,object)

John enters a card.

A B C D E

named(B,‘John’)
object(B,named entity,person)
structure(B,atomic)
quantity(B,cardinality,count unit,A,eq,1)
structure(D,atomic)
quantity(D,cardinality,count unit,C,eq,1)
object(D,card,object)
predicate(E,event,enter,B,D)

John enters every code. (= If there is a code then John enters it.)

A B

named(B,‘John’)
object(B,named entity,person)
structure(B,atomic)
quantity(B,cardinality,count unit,A,eq,1)

C D

structure(D,atomic)
quantity(D,cardinality,count unit,C,eq,1)
object(D,code,object)

⇒
E

predicate(E,event,enter,B,D)

Attempto Controlled English 243

There is a code such that every clerk enters it.

A B

structure(B,atomic)
quantity(B,cardinality,count unit,A,eq,1)
object(B,code,object)

C D

structure(D,atomic)
quantity(D,cardinality,count unit,C,eq,1)
object(D,clerk,person)

⇒
E

predicate(E,event,enter,D,B)

For every code (there is) a clerk (such that he) enters it.

A B

structure(B,atomic)
quantity(B,cardinality,count unit,A,eq,1)
object(B,code,object)

⇒

C D E

structure(D,atomic)
quantity(D,cardinality,count unit,C,eq,1)
object(D,clerk,person)
predicate(E,event,enter,D,B)

3.11 Negation

ACE offers many ways to negate noun phrases, quantified noun phrases, verb
phrases and complete sentences.

John enters no code.

A B

named(B,‘John’)
object(B,named entity,person)
structure(B,atomic)
quantity(B,cardinality,count unit,A,eq,1)

¬

C D E

structure(D,atomic)
quantity(D,cardinality,count unit,C,eq,1)
object(D,code,object)
predicate(E,event,enter,B,D)

244 N.E. Fuchs et al.

John enters not every code.

A B

named(B,‘John’)
object(B,named entity,person)
structure(B,atomic)
quantity(B,cardinality,count unit,A,eq,1)

¬

C D

structure(D,atomic)
quantity(D,cardinality,count unit,C,eq,1)
object(D,code,object)

⇒
E

predicate(E,event,enter,B,D)

John enters not more than 2 codes.

A B

¬

C D E

predicate(C,unspecified,enter,A,D)
structure(D,group)
quantity(D,cardinality,count unit,E,greater,2)

F

structure(F,atomic)
part of(F,D)

⇒ object(F,code,object)

object(A,named entity,person)
quantity(A,cardinality,count unit,B,eq,1)
structure(A,atomic)
named(A,’John’)

Every screen does not blink.

A B

structure(B,atomic)
quantity(B,cardinality,count unit,A,eq,1)
object(B,screen,object)

⇒
¬

C

predicate(C,state,blink,B)

Attempto Controlled English 245

A card is not valid.

A B

structure(B,atomic)
quantity(B,cardinality,count unit,A,eq,1)
object(B,card,object)

¬

C D

property(D,valid)
predicate(C,state,be,B,D)

It is not the case that a screen blinks.

¬

A B C

structure(B,atomic)
quantity(B,cardinality,count unit,A,eq,1)
object(B,screen,object)
predicate(C,state,blink,B)

3.12 Query Sentences

Yes/no-questions ask for the existence of a state of affairs. These questions are
translated exactly as their declarative counterparts.

Does John enter a card?

A B C D E

object(C,card,object)
quantity(C,cardinality,count unit,B,eq,1)
structure(C,atomic)
predicate(D,event,enter,A,C)
object(A,named entity,person)
quantity(A,cardinality,count unit,E,eq,1)
structure(A,atomic)
named(A,‘John’)

246 N.E. Fuchs et al.

Is the card valid?

A B C D

object(B,card,object)
quantity(B,cardinality,count unit,A,eq,1)
structure(B,atomic)
property(C,valid)
predicate(D,state,be,B,C)

Who/What/Which-Questions Who/what/which-questions ask for the sub-
jects or the objects of sentences. These questions are translated as their declar-
ative counterparts but contain additional conditions for the query words.

Who enters what?

A B C

query(A,who)
structure(A,dom)
query(B,what)
structure(B,dom)
predicate(C,event,enter,A,B)

Which customer enters a card?

A B C D E

query(B,which)
structure(B,atomic)
quantity(B,cardinality,count unit,A,eq,1)
object(B,customer,person)
structure(D,atomic)
quantity(D,cardinality,count unit,C,eq,1)
object(D,card,object)
predicate(E,event,enter,B,D)

Where/When/How/...-Questions Where/when/how/...-questionsask forde-
tails of an action. These questions are translated as their declarative counterparts
but contain additional conditions for the query words.

.

.

Attempto Controlled English 247

Where does John enter a card?

A B C D E F G

named(G,‘John’)
structure(G,atomic)
quantity(G,cardinality,count unit,A,eq,1)
object(G,named entity,person)
query(F,E,where)
modifier(B,location,F,E)
predicate(B,event,enter,G,C)
structure(C,atomic)
quantity(C,cardinality,count unit,D,eq,1)
object(C,card,object)

When does John enter a card?

A B C D E F G

named(G,‘John’)
structure(G,atomic)
quantity(G,cardinality,count unit,A,eq,1)
object(G,named entity,person)
query(F,E,when)
modifier(B,time,F,E)
predicate(B,event,enter,G,C)
structure(C,atomic)
quantity(C,cardinality,count unit,D,eq,1)
object(C,card,object)

How does John enter a card?

A B C D E F G

named(G,‘John’)
structure(G,atomic)
quantity(G,cardinality,count unit,A,eq,1)
object(G,named entity,person)
query(F,E,how)
modifier(B,manner,F,E)
predicate(B,event,enter,G,C)
structure(C,atomic)
quantity(C,cardinality,count unit,D,eq,1)
object(C,card,object)

248 N.E. Fuchs et al.

3.13 Predicate Declarations

modifier(X,K,Preposition,Y/Adverb)

X discourse referent of the event or state that is modified
K ∈ {location, origin, direction, time, start, end, duration, instrument,

comitative, manner, ...}
Y discourse referent of an object, i.e. the NP of the modifying PP

named(X,ProperName)

X discourse referent of the object that is named

object(X,Noun,K)

X discourse referent of the object that is denoted by the noun
K ∈ {person, object, time}

part of(X,Y)

X discourse referent of an (atomic) object
Y discourse referent of a (group) object

predicate(E,D,Verb,X)

E discourse referent of the event or state that is denoted by the verb
D ∈ {event, state}
X discourse referent of the subject

predicate(E,D,Verb,X,Y)

E discourse referent of the event or state that is denoted by the verb
D ∈ {event, state}
X discourse referent of the subject
Y discourse referent of the direct object

predicate(E,D,Verb,X,Y,Z)

E discourse referent of the event or state that is denoted by the verb
D ∈ {event, state}
X discourse referent of the subject
Y discourse referent of the direct object
Z discourse referent of the indirect object

proper part of(X,Y)

X discourse referent of an (atomic) object
Y discourse referent of a (group) object

property(X,IntransitiveAdjective)

X discourse referent of the object a property of which is described
by the adjective

Attempto Controlled English 249

property(X,Comparative/TransitiveAdjective,Y)

X discourse referent of the object that is described
Y discourse referent of the object with which X is compared or the

object of the adjective

property(X,TransitiveComparative,Y,Z)

X discourse referent of the object that is described
Y discourse referent of the object of the adjective
Z discourse referent of the object with which X is compared

quantity(X,K,I,Q,J,N)

K ∈ {cardinality, weight, size, length, volume, ...}
I ∈ {count unit, kg, cm, liter, ...}
X discourse referent of the object the quantity of which is indicated
Q discourse referent of the (reified) quantity of X
J ∈ {eq, leq, geq, greater, less}
N a number

query(X,Q)

X discourse referent of the object that is asked for
Q ∈ {who, what, which}

query(P,Y,Q)

P preposition
Y discourse referent of an object, i.e. the NP of the modifying PP

or an adverb
Q ∈ {where, when, how, ...}

quoted string(X,QuotedString)

X discourse referent of the object that is denoted by the quoted
string

relation(X,Relation,of,Y)

X discourse referent of the object that is related to Y
Y discourse referent of the object that is related to X

structure(X, D)

X discourse referent of the object the structure of which is indicated
D ∈ {atomic, group, mass, dom}

sum of(X,L)

X discourse referent of a (group) object
L list of discourse referents of objects that are a proper part of X

variable(X,Variable)

X discourse referent of an object that is denoted by the variable

250 N.E. Fuchs et al.

4 Conclusions

Attempto Controlled English (ACE) is a knowledge representation language with
a dual face — humans can read ACE texts and machines can process them. ACE
has already been used as specification language, as knowledge representation
language, and as interface language to formal systems. We believe, that the
attributes of ACE — specifically its ability to express business and policy rules
— make it a prime candidate for the knowledge representation and query tasks
of the semantic web.

5 Acknowledgment

The authors would like to thank Uta Schwertel, a former collaborator of the
project Attempto, for her important contributions to the project.

References

1. Attempto Website. http://www.ifi.unizh.ch/attempto.
2. Patrick Blackburn and Johan Bos. Working with Discourse Representation Struc-

tures, volume 2nd of Representation and Inference for Natural Language: A First
Course in Computational Linguistics. September 1999.

3. Norbert E. Fuchs and Uta Schwertel. Reasoning in Attempto Controlled English. In
Workshop on Principles and Practice of Semantic Web Reasoning (PPSWR 2003),
Lecture Notes in Computer Science, Hannover, 2003. Springer.

4. Jerry R. Hobbs. Ontological Promiscuity. In Proceedings of the 23rd Annual Meeting
of the ACL. University of Chicago, 1985.

5. Hans Kamp and Uwe Reyle. From Discourse to Logic: Introduction to Modeltheoretic
Semantics of Natural Language, Formal Logic and Discourse Representation Theory.
Kluwer, Dordrecht/Boston/London, 1993.

6. Uta Schwertel. Plural Semantics for Natural Language Understanding — A Compu-
tational Proof-Theoretic Approach. PhD thesis, University of Zurich, Zurich, 2003.

, LNCS 3564, pp. 251 – 274, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Rule Modeling and Markup

Gerd Wagner

Institute of Informatics, Brandenburg University of Technology at Cottbus,
P.O.Box 10 13 44, 03013 Cottbus, Germany

G.Wagner@tu-cottbus.de

Abstract. In this paper we address several issues of rule modeling on the basis
of UML. We discuss the relationship between UML class models and OWL
vocabularies. We show how certain rules can be specified in a class diagram
with the help of OCL. We also show how rule concepts can be described, and
how the abstract syntax of RDF, OWL, SWRL and RuleML can be defined, by
means of UML class diagrams in a concise way.

1 Introduction

Rules play an important role not only in everyday life but also in computational
formalisms and information systems. They define derived concepts as elements of the
information state structure and constrain or prescribe the behavior of people and IT
systems. In particular, rules are being used to express privacy protection and access
control policies, both of which are important issues on the Web.

As we model the state structure and behavior of a system to be analyzed or to be
designed, we also have to model the rules defining the derived elements of its
information base and governing its behavior. Therefore, rule modeling is part of a
general model-driven approach to software and information systems engineering.

Rules always come on top of a vocabulary. There is no rule without an underlying
vocabulary. Consequently, for being able to see how rules can be modeled and
represented in formal languages, we also have to understand how vocabularies are
being modeled and expressed. in formal languages.

1.1 Specifying Vocabularies

While the recommended method for specifying domain vocabularies, as part of
systems analysis, in general software engineering is to use the Unified Modeling
Language1 (UML) for making a class model in the semi-visual form of a class
diagram, the W3C has recommended to use the languages RDF and OWL2 for
specifying vocabularies as part of Web applications. In particular, OWL has a great
overlap with UML class models. However, while UML class models have a visual

1 See http://www.uml.org/.
2 RDF is the Resource Description Framework (see http://www.w3.org/RDF/). OWL is the

Web Ontology Language (see http://www.w3.org/2004/OWL).

N. Eisinger and J. Małuszy ski (Eds.): Reasoning Web 2005

252 G. Wagner

syntax and are widely used in academic and industrial software engineering activities,
they don't have a formal logic semantics. OWL, on the other hand, has a formal logic
semantics, but has no visual syntax and is not (yet?) widely used in industry.

Clearly, both languages can benefit from each other:

− OWL vocabularies can be captured in the user-friendly form of class diagrams.
For this purpose the UML provides an extension mechanism that allows to use
OWL-specific elements in a class diagram. Expressing OWL construct as
elements of a UML class model gives OWL a kind of operational semantics
and makes it accessible to software engineers who are not familiar with, and
not willing to learn, the description logic semantics of OWL.

− UML class diagrams can be mapped to OWL vocabularies and, in this way,
obtain a logical semantics.

There is yet another good reason to consider UML: UML class diagrams can also be
used as a visual language to describe the vocabulary, and the abstract syntax, of all
kinds of languages in a concise visual manner. The particular fragment of UML class
modeling that has been proposed for this purpose by the OMG is called Meta-Object
Facility3 (MOF); we call it MOF/UML in the sequel We use MOF/UML in this
article for describing the abstract syntax, or the language model, of RDF, OWL,
SWRL4 and RuleML. This representation helps to identify commonalities and
differences between these languages.

1.2 Modeling Rules

Since rules are based on vocabularies, it is natural to add rule constructs to the
language of UML class models for obtaining a general rule modeling language. For
this purpose, the UML has been supplemented by the Object Constraint Language
(OCL), which allows to add integrity rules (called invariants) and derivation rules to
a class model in order to constrain or derive certain model elements. However, UML
and OCL do not provide any visual syntax for rules, nor do they support other kinds
of rules. In particular, the concept of reaction (or event-condition-action) rules is not
supported at all in UML.

The Model Driven Architecture5 (MDA) is a framework for software development
defined by the Object Management Group (OMG). It is based on a fundamental
distinction between three different modeling levels:

1. the level of semi-formal business domain modeling, called 'computation-
independent' modeling (CIM),

2. the level of platform-independent logical design modeling, in short: platform-
independent modeling (PIM), and

3. the level of platform-specific implementation modeling, in short: platform-specific
modeling (PIM).

3 See http://www.omg.org/mof.
4 See the subsection on SWRL below.
5 See http://www.omg.org/mda.

 Rule Modeling and Markup 253

As illustrated in Fig. 1, we consider rules at these three different abstraction levels:

1. At the business domain (CIM) level, rules are statements that express (certain
parts of) a business/domain policy (e.g., defining terms of the domain language or
defining/constraining domain operations) in a declarative manner, typically using a
natural language or a visual language. Examples are:

(R1) “The driver of a rental car must be at least 25 years old”

(R2) “A gold customer is a customer with more than $1Million on deposit”

(R3) “An investment is exempt from tax on profit if the stocks have been bought
more than a year ago”

(R4) “When a share price drops by more than 5% and the investment is exempt
from tax on profit, then sell it”

R1 is an integrity rule, R2 and R3 are derivation rules, and R4 is a reaction rule
(see below for explanations of these rule categories).

2. At the platform-independent operational design (PIM) level, rules are formal
statements, expressed in some formalism or computational paradigm, which can be
directly mapped to executable statements of a software system. Examples of rule
languages at this level are SQL:1999, OCL 2.0, and DOM Level 3 Event Listeners.
Remarkably, SQL provides operational constructs for all three business rule
categories mentioned above: checks/assertions operationalize a notion of integrity
rules, views operationalize a notion of derivation rules, and triggers operationalize
a notion of reaction rules.

3. At the platform-specific implementation (PSM) level, rules are statements in a
language of a specific execution environment, such as Oracle 10g views, Jess 3.4,
XSB 2.6 Prolog, or the Microsoft Outlook 6 Rule Wizard.

Generally, rules are self-contained knowledge units that typically involve some form
of reasoning. They may, for instance, specify:

− static or dynamic integrity constraints (e.g. for constraining the state space or the
execution histories of a system),

− derivations (e.g. for defining derived concepts),
− reactions (for specifying the reactive behavior of a system in response to events)

Given the linguistic richness and the complex dynamics of application domains, it
should be clear that any specific mathematical account of rules, such as classical logic
Horn clauses, must be viewed as a limited descriptive theory that captures just a
certain fragment of the entire conceptual space of rules, and not as a definitive,
normative account. Rather, we need a pluralistic approach to the heterogeneous
conceptual space of rules. Therefore, the goal should be to define a family of rule
languages capturing the most important types of rules. While these languages should
come with a recommended standard semantics, their rule expressions may, in
addition, allow alternate semantics, which are also considered acceptable. This will
accommodate various formalisms based on non-standard logics, supporting temporal,
fuzzy, defeasible, and other forms of reasoning.

254 G. Wagner

Fig. 1. Various rule concepts and rule languages at different levels of abstraction

We assume that the reader is familiar with the basic conceptual modeling constructs
of UML class diagrams (types/classes, attributes, associations, role names,
multiplicity constraints, aggregations, generalization) and to some degree also with
OCL. We explain some of theses modeling constructs in the next section when
discussing an example..

The structure of this article is as follows: after showing with an example ho to use
UML class models for specifying vocabularies and rules in section 2, the foundational
vocabularies of OWL/SWRL and RuleML are compared with each other in section 3.
In section 4, different rule categories are discussed and modeled as class diagrams. In
section 5, MOF/UML meta-models of OWL, SWRL and RuleML are presented.
Finally, in section 6, the relationship between UML class models and OWL
vocabularies is discussed.

2 Rule Modeling and Markup – An Example

An example, where a derived attribute in a UML class model is defined by a
derivation rule, is the following:

A car is available for rental if it is not assigned to any rental contract and
does not require service.

This rule defines the derived Boolean-valued attribute isAvailable of the class
RentalCar by means of an association isAssignedTo between cars and rental
contracts and the stored Boolean-valued attribute requiresService, as shown in the
UML class diagram in Fig. 2.

This class diagram specifies a vocabulary fragment consisting of

− two basic entity types (classes), RentalCar and RentalContract
− one attribution fact type that can be verbalized as: RentalCar has String as

RentalCarID;

 Rule Modeling and Markup 255

− two subtypes of RentalCar, AvailableRentalCar and the derived subtype
RentalCarRequiringService, both being represented by Boolean-valued
attributes

− an association fact type: RentalCar isAssignedTo RentalContract, which comes
with three integrity rules and a clarification:

1. Functional: It is necessary that each RentalCar isAssignedTo at most one
RentalContract.

2. Inverse Total: It is necessary that each RentalContract is assigned at least one
RentalCar.

3. Inverse functional: It is necessary that each RentalContract is assigned at
least one RentalCar

4. Not total: It is possible that a RentalCar isAssignedTo no RentalContract

An implicational OCL invariant, attached to the RentalCar class rectangle, is used
to state that for a specific rental car whenever there is no rental contract associated
with it, and it does not require service, then it must be available (for a new rental). In
this OCL invariant expression, the condition RentalContract->isEmpty()
means that the set of associated rental contracts must be empty.

Fig. 2. An OCL invariant that constrains the derived attribute isAvailable

However, such an OCL invariant does not really define anything but rather puts a
constraint on the model elements it refers to. OCL 2.0, in addition to expressing
integrity rules ('invariants'), also allows to express derivation rules for defining
derived elements of a class model. Using this possibility, we get the following OCL
expression:

context RentalCar::isAvailable : Boolean derive:
RentalContract->isEmpty() and not requiresService

This OCL derivation rule assigns the truth value of the conjunction

RentalContract->isEmpty() and not requiresService

to the Boolean attribute isAvailable of the class RentalCar, and in this way it
is a definition and not just a constraint.

256 G. Wagner

We now present the concrete XML syntax of this rule according to the RuleML
0.88 syntax. Notice that the head element corresponds to the Conclusion, and the
body element corresponds to the Condition of Fig. 6. It is assumed that the attribute
requiresService is optional, that is it does not need to have a value (in case it is
unknown whether a particular car requires service or not). By contrast, the attribute
isAvailable is assumed to be mandatory.

The first condition of this rule, RentalContract->isEmpty(), corresponds
to a negation-as-failure, which is expressed by the tag <naf> in RuleML, while
the second condition, not requiresService, corresponds to a strong
negation since it requires that the value of this Boolean attribute is explicitly false.
If it would be unknown, its negation with not would result in unknown and not in
true. So, this rule involves two kinds of negation, marked up with <Naf> and <Neg>
in RuleML:

<Implies>
 <head>
 <Atom>
 <Rel>isAvailable</Rel>
 <Var>Car</Var>
 </Atom>
 </head>
 <body>
 <Atom>
 <Rel>RentalCar</Rel>
 <Var>Car</Var>
 </Atom>
 <Neg>
 <Atom>
 <Rel>requiresService</Rel>
 <Var>Car</Var>
 </Atom>
 </Neg>
 <Naf>
 <Atom>
 <Rel>isAssignedToRentalContract</Rel>
 <Var>Car</Var>
 </Atom>
 </Naf>
 </body>
</Implies>

Rule markup languages are a vehicle for using rules on the Web. They allow
deploying, publishing and communicating rules on the Web. They are also converging
towards a lingua franca for exchanging rules between different systems and tools.

In a narrow sense, a rule markup language is a concrete (XML-based) rule syntax
for the Web. In a broader sense, it should be defined by an abstract syntax as a
common basis for defining various concrete languages serving different purposes. The
main purpose of a rule markup language is to permit reuse, interchange and
publication of rules.

 Rule Modeling and Markup 257

3 Foundational Concepts for Vocabularies and Rules

Rules are built on vocabularies, which include proper names designating individuals,
type terms designating entity types (or classes) and fact types expressions designating
fact types or predicates.

In this section, we discuss the foundational concepts (or meta-concepts) being used
in this report and the terms we are using to designate them. These concepts, and their
canonical designations, are described in a foundational vocabulary, which is also
called a foundational (or ‘upper level’) ontology. They define a range of top-level
domain-independent ontological categories, which form a general foundation for
more elaborated domain-specific vocabularies. Our foundational vocabulary is based
on the Unified Foundational Ontology (UFO) proposed in [1,2].

Our analysis is focused on four languages for expressing vocabularies and rules:

1. SBVR – "Semantics of Business Vocabularies and Rules", the main submission to
the OMG BSBR CFP [3]

2. UML – the Unified Modeling Language of the OMG [4]
3. RDF – the Resource Description Framework of the W3C [5]
4. OWL – the Web Ontology Language of the W3C [6]

All these languages come with their own foundational vocabulary, employing
different (or the same) designations for the same (or different) concepts. We will
therefore use our own 'unified' foundational vocabulary as defined in the first column,
called REWERSE I1 (after the name of the REWERSE working group on rule
markup), of the terminology tables below. The I1 foundational vocabulary helps to
understand the differences and overlaps among these terminologies.

For simplicity, we will not always be consistent in distinguishing the conceptual from the
terminological level; we will, for instance, often say "rule" instead of "rule expression",
"fact" instead of "fact statement", and "fact type" instead of "fact type expression".

3.1 Things, Sets, Entities and Individuals

A thing is 'anything perceivable or conceivable’. This includes concrete entities and
also abstract things such as sets A set is a thing that has other things as members (in
the sense of set theory).

An entity is a thing that is not a set; neither the set-theoretic membership relation
nor the subset relation can unfold the internal structure of an entity. An individual is
an entity that does not have any instances, i.e., that is not an entity type. A data value
is a member of a datatype, which is a particular kind of named set.

3.2 Entity Types and Datatypes

An entity type is an entity that has an extension (the set of entities that are instances of
it) and an intension, which includes an applicability criterion for determining if an
entity is an instance of it. A basic entity type is an entity type whose instances are
individuals. A datatype is a set whose members are data values.

258 G. Wagner

Table 1. Different kinds of things

REWERSE-I1 UML SBVR RDF OWL
thing n.a. n.a. n.a.
entity

Thing
n.a.

individual
object

resource (an
instance of
rdfs:Resource)

individual (an
instance of
owl:Thing)

data value data value

individual concept
literal (an instance
of rdfs:Literal)

data value

Table 2. Different kinds of entity types

REWERSE-I1 UML SBVR RDF OWL
entity type n.a.

basic (1st order)
entity type

type / class
class (an
instance of
rdfs:Class)

class (an
instance of
owl:Class, which
is a subclass of
rdfs:Class)

datatype datatype

object type /
general
concept

datatype (an instance of
rdfs:Datatype)

In Fig. 3, the foundational vocabulary about things, sets, entities and individuals
adopted by I1 from UFO is described in the form of a UML class diagram.

Fig. 3. The foundational vocabulary about things, sets, entities and individuals adopted by I1
from UFO

In Fig. 4 the foundational vocabulary supported by RDF(S) is summarized. Notice
that rdfs:Class is an instance of itself. Fig. 5 describes the relationships between some
basic RDF(S) concepts and their OWL counterparts.

 Rule Modeling and Markup 259

3.3 Facts and Statements

We distinguish between 5 different kinds of facts (or atomic statements), as depicted
by Table 3. In addition to the basic fact kinds of classification facts, association facts
and attribution facts, we also consider categorization facts and aggregation facts. A
categorization fact states that an entity, as an instance of a type, is an instance of a
'category', i.e. a subtype of that type. An aggregation fact is a part-whole statement.

3.4 Fact Types

A fact type corresponds to a predicate in predicate logic. But while there is no further
distinction between different kinds of predicates in standard predicate logic, we
distinguish between four different kinds of fact types as depicted in Table 4.

Fig. 4. The foundational vocabulary supported by RDF(S)

Fig. 5. The relationships between RDF(S) concepts and their OWL counterparts

260 G. Wagner

Table 3. Different kinds of facts

REWERSE-I1 UML SBVR RDF OWL
association fact link associative fact n.a. n.a.
binary
association
(reference
property) fact

binary link binary associative
fact

individual-valued
property fact

attribution fact object-attribute-
value triple

is-property-of fact

triple,
statement

data-valued
property fact

classification
fact

instanceOf
dependency

assortment fact rdf:type
statement

classification fact

categorization
fact

n.a. categorization fact n.a. n.a.

aggregation fact aggregation link partitive fact n.a. n.a.
generalization
statement

generalization specialization fact subclassOf
statement

subclass axiom

Table 4. Different kinds of fact types

REWERSE-I1 UML SBVR RDF OWL
association
fact type

association fact type n.a. n.a.

binary
association
fact type

binary
association

binary
associative fact
type

individual-valued
property (an instance
of owl:ObjectProperty)

attribution fact
type attribute is-property-of

fact type

property (an
instance of
rdf:Property) data-valued property

(an instance of
owl:DatatypeProperty)

categorization
fact type

n.a. categorization
fact type

n.a. n.a.

aggregation
fact type aggregation partitive fact

type n.a. n.a.

4 Rule Categories

We briefly discuss the main categories of rules: integrity rules, derivation rules,
reaction rules, production rules and transformation rules. The different parts of a rule
expression can be any of the five semantic categories listed in Table 5.

Table 5. Semantic categories of rule expression parts

Type Semantic Category
Logical Sentence Truth value
Logical Formula Function from variable bindings to truth values
Event Term Event
Action Term Action
Term Can denote anything (an element from some term algebra)

 Rule Modeling and Markup 261

4.1 Derivation Rules

Logical derivation rules (also called deduction rules), in general, consist of one or
more conditions and one or more conclusions6, which are both roles played by
expressions of the type LogicalFormula.
 For specific types of derivation rules, such as definite Horn clauses or normal logic
programs, the types of condition and conclusion are specifically restricted.

Fig. 6. The abstract concept of derivation rules

For instance, in RuleML 0.85, conditions are quantifier-free logical formulas with
weak and strong negation, called AndOrNafNeg-Formula in Fig. 7. More precisely,
they are quantifier-free predicate logic formulas with weak and strong negation,
called AndOrNafNeg-PL-Formula (this formula class specializes the abstract class
AndOrNafNeg-Formula, which admits also of other kinds of atoms such as OCL-like
atoms, by restricting it to predicate logic atoms).

Fig. 7. Quantifier-free formulas with weak and strong negation

6 Notice that we don’t consider rules with no condition or no conclusion. These expressions are

better not called “rules”, but “facts” and “denial constraints”.

262 G. Wagner

The distinction between weak and strong negation is present in several computational
languages: in extended logic programs it is present in explicit form, while it is only
implicitly present in SQL and OCL. Intuitively speaking, weak negation captures the
absence of positive information, while strong negation captures the presence of
explicit negative information (in the sense of Kleene's 3-valued logic). Under the
preferential model semantics of minimal/stable models, weak negation captures the
computational concept of negation-as-failure (or closed-world negation).

There are three different kinds of atoms in RuleML, as depicted by Fig. 8.

Fig. 8. Three kinds of atomic formulas in RuleML

A positional atom corresponds to an atomic formula in standard predicate logic. A
data predicate atom (also called built-in) is formed with the help of a datatype
predicate. An object description atom corresponds to an OWL individual description:
it refers to an individual, classifies it, and makes a number of property-value-
assertions about it, as depicted in Fig. 10.

Fig. 9. A positional atom consists of a user-defined predicate and a sequence of one or more
individual terms (as defined in Fig. 20) as arguments

In the example discussed in section 2 it may seem that the implicational invariant is
equivalent to the corresponding derivation rule. However, there is an important
conceptual difference between an implicational constraint p → q and the
corresponding derivation rule from p derive q. While the former only constrains the
logical state space (and is also satisfied by the truth of ¬p), it does not prescribe a
derivation procedure to be applied for deriving the conclusion q. We may consider the
rule from p derive q to be one of several possible derivation procedures that comply

 Rule Modeling and Markup 263

with the constraint p → q. Another one would be the derivation procedure consisting
of the two rules from p derive r and from r derive q.

Derivation rules should be semantically distinguished from implications. While an
implication is an expression of a logical formula language (such as classical predicate
logic or OCL), typically possessing a truth-value, a derivation rule is a meta-logical
expression, which does not possess a truth-value, but has the function to generate
derived sentences. There are logics, which do not have an implication connective, but
which have a derivation rule concept. In standard logics (such as classical and
intuitionistic logic), there is a close relationship between a derivation rule (also called
“sequent”) and the corresponding implicational formula: they both have the same
models. For nonmonotonic rules (e.g. with negation-as-failure) this is no longer the
case: the intended models of such a rule are, in general, not the same as the intended
models of the corresponding implication.

Fig. 10. An object description atom refers to an object (its 'subject'), classifies it, and makes a
number of property-value-assertions about it

4.2 Integrity Rules (Constraints)

Integrity rules, also known as (integrity) constraints, consist of a constraint modality
and a constraint assertion, which is a sentence in some logical language such as first-
order predicate logic or OCL. This is depicted in Fig. 11. We consider two constraint
modalities: the alethic and the deontic one. The alethic constraint modality can be
expressed by a phrase such as "it is necessarily the case that". The deontic constraint
modality can be expressed by phrases such as "it is obligatory that" or "it should be
the case that". Notice that in English the phrase "it must be the case that" is
ambiguous: it can denote either the alethic or the deontic modality.

The constraint assertion is a logical sentence that must necessarily, or that should,
hold in all evolving states and state transition histories of the discrete dynamic system
to which it applies. Notice that not only software systems, but also physical,

264 G. Wagner

Fig. 11. The abstract concept of integrity rules

biological and social systems, such as organizations, can be viewed as discrete
dynamic systems. Typically, we describe the natural and social laws that govern
material (i.e. physical, biological and social) systems in the form of CIM integrity
rules (at the domain modeling level). Then, when we transform the domain model into
an operational design, we formalize these rules in the chosen PIM language, after
which they no longer refer to the material system itself but to its computational
model. So, a PIM constraint refers to the state (and execution histories) of the
software system that models (or represents) the material system under consideration.

Rule R1 is an example of a (deontic) static CIM constraint. An example of a
(deontic) dynamic CIM constraint is: “The confirmation of a rental reservation must
lead to an allocation of a car of the requested car group for the requested date prior to
that date”. Well-known languages for expressing PIM constraints are SQL and OCL.
In logic programming, rules with empty heads (also called “denials”) corresponding
to the negation of the conjunction of all body atoms are sometimes used as
constraints.

4.3 Reaction Rules

Reaction rules are the second important type of rule in RuleML. Integrity and
transformation rules have not received as much attention as derivation and reaction
rules. Reaction rules are considered to be the most important type of business rule in [7].

Fig. 12. The abstract concept of reaction rules

 Rule Modeling and Markup 265

Reaction rules consist of a mandatory triggering event term, an optional condition,
and a triggered action term or a post-condition (or both), which are roles of type
EventTerm, LogicalFormula, ActionTerm, and LogicalFormula, respectively, as
shown in Fig. 12. While the condition of a reaction rule is, exactly like the condition
of a derivation rule, a quantifier-free formula, the post-condition is restricted to a
conjunction of possibly negated atoms (called CAN-formula)..

Action and event terms may be composite and specified in different ways. For
instance, the UML Action Semantics could be used to specify triggered actions in a
platform-independent manner.

There is a little known parallel between derivation rules and reaction rules.
Reaction rules are to dynamic (temporal logic) implication constraints what derivation
rules are to static implication constraints.

There are basically two types of reaction rules: those that do not have a post-
condition, which are the well-known Event-Condition-Action (ECA) rules, and those
that do have a post-condition, which we call ECAP rules.

Fig. 13. The post-condition in a reaction rules is a conjunction of possibly negated atoms, also
called CAN-formula

The post-condition of a reaction rule is either an atomic formula, a negation of an
atomic formula or a conjunction of these (thus corresponding to a disjunctive normal
form conjunct). This is called a CAN-Formula in Fig. 13. Such a definite formula
specifies an update in a declarative way.

Event-Condition-Action-Postcondition (ECAP) rules extend ECA rules by adding
a postcondition that accompanies the triggered action. ECAP rules allow specifying
the effect of a triggered action on the system state in a declarative manner, instead of
specifying this state change procedurally by means of corresponding state change
operations (like SQL UPDATEs).

An application-specific ECA rule language may be used in software applications
for handling application events in an automated fashion. A prominent example of this
is the Microsoft Outlook rule wizard, which allows specifying email handling rules
referring to incoming (or outgoing) message events.

266 G. Wagner

4.4 Production Rules

Production rules consist of a condition and a produced action, which are roles of the
type LogicalFormula and ActionTerm, respectively, as shown in Fig. 14. While OCL
could be used in a platform-independent production rule language to specify
conditions on an object-oriented system state, the UML Action Semantics could be
used to specify produced actions.

These rules have become popular as a widely used technique to implement ‘expert
systems’ in the 1980s. However, in contrast to (e.g. Prolog) derivation rules, the
production rule paradigm lacks a precise theoretical foundation and does not have a
formal semantics. This problem is partly due to the fact that early systems used
production/ECA-like rules, where the semantic categories of a rule’s events and
conditions in the left-hand-side, and of its actions and effects in the right-hand-side,
were mixed up.

Fig. 14. The abstract concept of production rules

Production rules do not explicitly refer to events, but events can be simulated in a
production rule system by externally asserting corresponding facts into the working
memory. In this way, production rules can implement reaction rules.

A derivation rule can be implemented by a production rule of the form if-
Condition-then-assert-Conclusion using the special action assert that changes the
state of a production rule system by adding a new fact to the set of available facts.

Production rule platforms are the rule technology that is most widely used in the
business rules industry. Well-known examples of production rule systems are JESS,
Fair Isaac/Blaze Advisor, iLOG Rules/JRules, CA Aion, ART*Enterprise, Haley, and
ESI Logist.

5 Semantics of Business Vocabularies and Rules

The Semantics of Business Vocabularies and Rules (SBVR) is an OMG proposal [3]
for developing and structuring business vocabularies suited for business people to
express business rules. A business vocabulary contains all the specialized terms and
definitions of concepts that a given organization or community uses in their talking
and writing in the course of doing business.

 Rule Modeling and Markup 267

The SBVR follows a common-sense definition of ‘business rule’ as a rule that is
under business jurisdiction. ‘Under business jurisdiction’ is taken to mean that the
business can enact, revise and discontinue their business rules as they see fit.

All business rules need to be actionable. This means that a person who knows
about a business rule could observe a relevant situation (including his or her own
behavior) and decide directly whether or not the business was complying with the
rule. Just because business rules are actionable, this does not imply they are always
automatable. Many business rules, especially operative business rules, are not
automatable in IT systems.

In SBVR, a rule is “an element of guidance that introduces an obligation or a
necessity”. The two fundamental categories of rule are:

− Structural Rule (necessities): These are rules about how the business chooses to
organize (i.e., ‘structure’) the things it deals with. Structural Rules supplement
definitions.:

− Operative Rules (obligations): These are rules that govern the conduct of business
activity. In contrast to Structural Rules, Operative Rules are ones that can be
directly violated by people involved in the affairs of the business.

The preferred mode of expression for vocabularies and rules is SBVR Structured
English, a controlled English that works with verbalization patterns and font markup.

The SBVR Structured English is not meant to offer all of the variety of common
English, but rather, it uses a small number of English structures and common words to
provide a simple and straightforward mapping.

The following keywords are used in SBVR Structured English:

• IF, THEN, OR, AND, NOT – designate logical connectives
• The keyword "the": 1. Used with a designation to make a pronominal reference to a

previous use of the same designation; this is formally a binding to a variable of a
quantification. 2. Introduction of a name of an individual thing or of a definite
description.

• The keywords "a, an": Universal or existential quantification, depending on context
based on English rules.

• The keyword "that": 1. When preceding a designation for a type or role, this is a
binding to a variable (as with ‘the’). 2. When after a designation for a type or role
and before a designation for a fact type, this is used to introduce a restriction on
things denoted by the previous designation based on facts about them

Below, we use the following font types markup for the different parts of a SBVR
Structured English expression:

 type term – designates a type (that is part of a vocabulary being used or defined)
 type term – This markup is applied to a type term in the special case where the

term is used to name the represented concept rather than to refer to things
denoted by the term. This is a reference to the concept itself.

 connecting verb phrase – designates a (user-defined) domain predicate symbol
 predefined connecting verb phrase – designates a predefined predicate symbol
 name – designates an individual or data value

268 G. Wagner

This markup differs from the original SBVR markup, but is equivalent. The
description of the SBVR Structured English is divided into sections:

− Expressions in SBVR Structured English
− Describing a Vocabulary
− Vocabulary Entries
− Specifying a Rule Set
− Rule and Clarification Entries

There are two styles of SBVR Structured English:

1. Prefixed Rule Keyword Style
2. Embedded (Mixfix) Rule Keyword Style

The Prefix Style introduces rules by prefixing a statement with keywords that convey
a modality

Operative Business Rules and Clarifications Structural Rules and Clarifications

It is obligatory that It is necessary that
It is prohibited that It is impossible that
It is permitted that It is possible that

The Embedded Style features the use of rule keywords embedded (usually in front of
verbs) within rules statements of appropriate kind. The following key words are used
within expressions having a verb (often modified to be infinitive) to form verb
complexes that add a modal operation.

Operative Business Rules and Clarifications Structural Rules and Clarifications

… must … … always …
… must not … … never …
… may … … sometimes …

5.1 Examples of SBVR-Style Rule Expressions

UML associations are verbalized as association fact type expressions. For instance,
consider the binary association between the classes rental car and rental in Fig. 15. It
can be verbalized by the following fact type expressions:

rental car is assigned to a rental

Rules can be verbalized on the basis of fact type expressions. For instance, the rule
that defines the derived association fact type

rental car is available at branch

can be expressed in the following way:

IF rental car is stored at the branch AND rental car is NOT a rental car
scheduled for service AND rental car is NOT assigned to a rental THEN rental
car is available at the branch.

 Rule Modeling and Markup 269

Fig. 15. A business vocabulary fragment for the domain of car rental

In OCL, this derivation rule can be expressed as:

context Branch::availableCar: RentalCar derive:
self.storedCar->select(c |
 not oclIsKindOf(RentalCarScheduledForService)
 and c.Rental->isEmpty())

6 MOF/UML Metamodels as Language Definitions

UML class models also allow to specify the abstract syntax of a language. The set of
class modeling core constructs needed for this purpose is called Meta Object Facility
(MOF). The MOF/UML language models are also called metamodels. They allow a
concise definition of a language in a graphical notation.

We briefly show how the abstract syntax of OWL, SWRL and RuleML can be
defined by means of MOF/UML language models.

6.1 OWL

The W3C Web Ontology Language OWL defines an ontology as a set of axioms and a
set of facts, as shown in Fig. 16.

270 G. Wagner

Fig. 16. An OWL ontology consists mainly of 'axioms' and 'facts'

There are six kinds of axioms. Three kinds of axioms allow to state conceptual
relationships: disjointness axioms, class expression equivalences and subsumption
atoms; whereas the remaining kinds of axioms allow to 'define' datatypes, classes and
(various kinds of) properties.7 A fact is either an equality/inequality assertion, or an
'individual description', which refers to an individual term and aggregates a number of
classification facts and property-value-facts about it, as depicted in Fig. 17.

Fig. 17. An OWL 'individual description fact' is a collection of classification facts, attribution
facts and binary association facts, all concerning one particular individual

7 Notice that, strictly speaking, the semantics of OWL does not support the computational

distinction between definition and constraint, which is reflected by the distinction between
invariants and derivation rules in OCL, and which is also an essential part of the SBVR
approach. Class 'definitions' in OWL are typically expressed by means of equivalence axioms.

 Rule Modeling and Markup 271

Fig. 18. An RDF data literal is either a plain literal, possibly associated with a language, or a
typed literal

Fig. 19. A datatype in OWL is an RDF datatype or a data literal enumeration, or it is equal to
the set of RDF literals

Fig. 20. The abstract syntax of SWRL rules

6.2 SWRL

The Semantic Web Rule Language (SWRL) extends the concept of an OWL ontology
by adding a notion of logical variables and terms as well as a seventh kind of axiom,

272 G. Wagner

called 'rule', which is a kind of implication that allows to include property atoms and
built-in atoms in the condition and conclusion part of a rule.

Fig. 21. There are two kinds of logical terms: object terms and data terms

6.3 RuleML

In RuleML 0.88, a rulebase or knowledge base (KB) consists of universally quantified
atoms, implications and atom equivalences, as depicted in Fig. 23. RuleML atoms
have been defined in Fig. 8.

Fig. 22. The conclusion of a RuleML derivation rule is either an atom or a strongly negated
atom

Fig. 23. A RuleML knowledge base consists of universally quantified atoms, implications and
atom equivalences

 Rule Modeling and Markup 273

7 Correspondence Between OWL and UML

As already described in Table 1, there is a close correspondence between OWL and
UML. We summarize the commonalities and differences between UML and OWL in
Table 6.

Table 6. Commonalities and differences between UML and OWL

UML OWL
datatype datatype
class class
n.a. class description
association n.a.

binary association individual-valued property (an instance of
owl:ObjectProperty)

attribute data-valued property (an instance of
owl:DatatypeProperty)

aggregation n.a.
multiplicity constraint cardinality restriction
generalization subsumption axiom
n.a. class expression equivalence
n.a. anonymous class expression

UML binary associations correspond to OWL object properties. For instance, the
association

corresponds to the following OWL property axiom (expressed in the abstract syntax
of OWL):

ObjectProperty(supplier
 domain(person) range(vendor) inverseOf(customer))

UML attributes correspond to OWL datatype property axioms. For instance, consider
the following attributes of a class person:

The attribute phone number corresponds to the following OWL datatype property
axiom:

DatatypeProperty(phone_number
 domain(person) range(xsd:string))

UML multiplicity constraints correspond to OWL cardinality restrictions. But while
the graphical notation for multiplicity constraints in UML is simple and elegant, the

274 G. Wagner

OWL syntax for cardinality restrictions is rather cumbersome and hard to read. A
related issue is the lack of a shorthand for total properties. While properties can be
declared to be functional and inverse functional, there is no corresponding shorthand
construct for declaring a property to be total, resp. inverse total.

Another usability issue is the lack of a convenient mechanism in OWL to declare
classes as mutually disjoint, which is the default assumption in UML

Since many core constructs of UML class models can be mapped to OWL, such a
mapping provides a logical semantics for UML class models Exploiting this mapping
possibility and the inference tools available for OWL, UML tools could e.g. check the
consistency of a class diagram by running an OWL. inference engine.

8 Conclusions

We have shown that there is a close correspondence between the Web ontology
language OWL and the vocabulary language of UML class diagrams, which can be
exploited for capturing OWL ontologies with the more user-friendly graphical
notation of UML. UML class diagrams, in the form of MOF/UML metamodels, can
also be used to define the abstract syntax of OWL, SWRL and RuleML. These
language metamodels provide a level of abstraction that allows to unify apparently
distinct constructs. For instance, the metamodel for RuleML 'slot atoms' (better called
object description atoms) shown in Fig. 10, reveals that RDF descriptions and OWL
individual descriptions can be mapped to this RuleML construct.

References

[1] G. Guizzardi & G. Wagner. A Unified Foundational Ontology and some Applications of it
in Business Modeling. In P. Green and M. Rosemann (Eds.), Business Systems Analysis
with Ontologies, IDEA Publishing, 2005.

[2] G. Guizzardi & G. Wagner. Towards Ontological Foundations for Agent Modelling
Concepts Using the Unified Foundational Ontology. In P. Bresciani et al. (Eds.): AOIS
2004, LNAI 3508, pp. 110 – 124, Springer-Verlag, 2005.

[3] Semantic of Business Vocabulary and Business Rules (SBVR). Revised Submission to
OMG BEI RFP br/2003/06/03, http://www.omg.org/cgi-bin/doc?bei/2005-03-01.

[4] UML, http://www.uml.org/.
[5] G.Klyne and J.J.Caroll (Eds.), Resource Description Framework (RDF): Concepts and

Abstract Syntax, W3C, 2004.
[6] OWL Web Ontology Language, http://www.w3.org/2004/OWL.
[7] Taveter K., Wagner, G.: Agent-Oriented Enterprise Modeling Based on Business Rules.

In Proc. of 20th Int. Conf. on Conceptual Modeling (ER2001), Springer-Verlag, LNCS
2224, pp. 527–540, 2001.

Information Extraction for the Semantic Web

Robert Baumgartner1, Thomas Eiter2, Georg Gottlob1, Marcus Herzog1

and Christoph Koch1

1 Database and Artificial Intelligence Group,
Institute of Information Systems, Vienna University of Technology

Favoritenstrasse 9-11, 1040 Vienna, Austria
{baumgart, gottlob, herzog, koch}@dbai.tuwien.ac.at

2 Knowledge-Based Systems Group
Institute of Information Systems, Vienna University of Technology

Favoritenstrasse 9-11, 1040 Vienna, Austria
eiter@kr.tuwien.ac.at

Abstract. The World Wide Web represents a universe of knowledge and
information. Unfortunately, it is not straightforward to query and access
the desired information. Languages and tools for accessing, extracting,
transforming, and syndicating the desired information are required. The
Web should be useful not merely for human consumption but additionally
for machine communication. Therefore, powerful and user-friendly tools
based on expressive languages for extracting and integrating information
from various different Web sources, or in general, various heterogeneous
sources are needed. The tutorial gives an introduction to Web technolo-
gies required in this context, and presents various approaches and tech-
niques used in information extraction and integration. Moreover, sample
applications in various domains motivate the discussed topics and pro-
viding data instances for the Semantic Web is illustrated1.

Keywords: Web data extraction, Semi-structured Data, Wrapper Lan-
guages and Systems, Web data integration, Semantic Web.

1 Motivation and Global Context

1.1 Introduction

Today the Semantic Web [7] is still a vision. On the other hand, the unstruc-
tured Web already contains millions of documents which are not queryable as a
database and heavily mix layout and structure. Moreover, they are not anno-
tated at all. There is a huge gap between Web information and the qualified,
structured data as usually required in corporate information systems. According
to the vision of the Semantic Web, all information available on the Web will

1 This research has been partially supported by REWERSE - Reasoning on the Web
(rewerse.net), Network of Excellence, 6th European Framework Program.

, LNCS 3564, pp. 275–289, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
N. Eisinger and J. Ma�luszyński (Eds.): Reasoning Web 2005

276 R. Baumgartner et al.

Web
HTML pages

Layout

Corporate EDP
applications
Structured data,
data bases, XML

Structure

Wrapper
Technology

Bridging the Gap

Fig. 1. Bridging the Gap

be suitably structured, annotated, and qualified in the future. However, until
this goal is reached, and also, towards a faster achievement of this goal, it is
absolutely necessary to (semi-)automatically extract relevant data from HTML
documents and automatically translate this data into a structured format, e.g.,
XML. Once transformed, data can be used by applications, stored into databases
or populate ontologies.

Figure 1 exhibits the gap between, on the one hand, structured databases
or ontologies used for enterprise data processing, and on the other hand, the
vast amount of web data optimized merely for layout and almost impossible to
query. Web data extraction technology addresses these issues and enables appli-
cation and system designers to bridge this gap. A program that extracts data
and transforms it into another more structured format or markups the content
with semantic information is usually referred to as wrapper. There exists a large
number of different wrapping methods and software tools, and the designer of an
intelligent system thus faces the problem of selecting appropriate components for
designing an intelligent system embedding Web data. Our tutorial shall provide
some guidance.

1.2 Wrapper Technology

Wrapper technology is a new leap forward in interacting with (especially) semi-
structured and loosely structured data such as Web data. Wrapper and inte-
gration technology is often confused with search engine technology, which is,
however, somewhat orthogonal. Figure 2 puts these and other different tech-
nologies concerning Web data into context with each other. The two axes of
Figure 2 are the Information Complexity (horizontal) and the kind of the ac-
cessed and retrieved information (vertical); based upon the latter are the usage
possibilities of the retrieved information.

– Search engines crawl the whole Web, but they merely return links. Docu-
ments are parsed only up to keyword indices needed as a result of the search.
The search engine’s result is a list of URLs.

– Notification Tools regularly search merely a small number of Web pages
tracking for interesting changes. The Web document has to be parsed and
relevant changes have to be detected. User interaction is generally required
to identify relevant portions of text and structure.

– Text Categorization Tools rate a document, e.g. classify it as a document
that belongs to a particular domain. Such tools require parsing a document
and analyzing its content, and are often using statistics or natural language

Information Extraction for the Semantic Web 277

Link Document 2-dim. Data Set n-dim. Data Set

Read
and
Collect
Link

Notify

Rate
and
Classify

Automatic
Information
Processing
into Appli-
cations

Use of retrieved
information

Search Engines
Crawler/Spider

e.g. Google

Notification Tools
Parser

e.g. Mind-It

Text Categorizer
Parser

e.g. Autonomy

Data Extraction
Wrapper

e.g. RoboSuite

Data Extraction
Wrapper
e.g. Lixto

Information
Complexity

Fig. 2. Comparing Web Technologies

analysis. One of the main aspects for the end user are the possibilities of
personalization.

– Wrappers transform data, in our case unstructured or semi-structured data
into structured data. They do not simply return links or parsed and rated
documents, but relevant data extracted from usually a set of similarly struc-
tured documents. One wrapper is not capable of extracting data from ar-
bitrary Web pages, however, with the big advantage of a very structured
response. Information extracted with wrappers can easily be pushed to en-
terprise applications, databases or ontologies.

Whereas information retrieval targets to analyze and categorize documents,
information extraction collects and structures entities inside of documents.

1.3 Web Application Integration

A further step is integration of extracted data into enterprise processes. Integra-
tion brokers provide infrastructure for sharing information between applications
(EAI, B2B), many of them featuring Web connectors. Business Activity Mon-
itoring vendors strive to deliver instant awareness of business critical events
to customers. Heterogeneous environments such as integration and mediation
systems require a conceptual information flow model. Web Data Extraction and
Integration technologies open the way to use today’s Web as the largest database
to provide input for business intelligence applications (including cooperative and
non-cooperative sites) and to reuse data for portals and personalisation and for
portal-based cross-company communication. Moreover, static Web data can be
turned into dynamic Web Services.

The application areas are manifold - every vertical business domain requires
to analyse, monitor and interact with Web data – a few sample cases are given
in Section 5. In this tutorial we will discuss a sample scenario used in the REW-
ERSE project.

278 R. Baumgartner et al.

2 State of the Art and Techniques in Web Information
Extraction

2.1 Wrapper Generation Languages

Stand-alone wrapper programming languages are specialized high-level program-
ming languages offering features for web communication, deep web navigation,
and web data extraction.

Some well-known representatives of wrapper generation languages include
Florid [26] (using a logic-programming formalism), Pillow [8] (an HTML/XML
programming library for logic programming systems), Jedi [17] (using attributed
grammars), Tsimmis [15] and Araneus [2].

In Tsimmis, the extraction process is based on a procedural program which
skips to the required information, allows temporary storages, split and case state-
ments, and to follow links. However, the wrapper output has to obey the docu-
ment structure. In Araneus, a wrapper designer can create relational views from
web pages by computationally fast and advanced text extracting and restruc-
turing formalisms, in particular using procedural “Cut and Paste” exception
handling inside regular grammars. In general, all manual wrapper generation
languages are difficult to use by laypersons.

2.2 Automated Wrapper Generation Approaches

Machine learning approaches generally rely on learning from examples and counter-
examples of a large number of Web pages. Very prominent approaches include
Stalker [30] and Wien [22]. Stalker [30] specializes general SkipTo sequence pat-
terns based on labelled HTML pages. An approach to maximise specific patterns
is introduced by Davulcu et al. [10].

Kushmerick et al. [22] create robust wrappers based on predefined extrac-
tors; their visual support tool WIEN receives a set of training pages, where the
wrapper designer can label relevant information and the system tries to learn
a wrapper. Their approach does not use HTML parse trees. Kushmerick also
contributed to the wrapper verification problem [21].

The RoadRunner [9] approach does not need labelled examples, but derives
rules from a number of given pages by distinguishing the structure and the con-
tent. It uses an interesting generation of pattern names based on offset-criteria in
addition to the applied semi-structured wrapping technology. Some approaches
such as [12] offer generic wrapping techniques. Such approaches have the advan-
tage that they can wrap arbitrary Web pages never seen before, on the other
hand the disadvantage that they are restricted to particular domains (such as
detecting addresses).

Other examples include Softmealy [16] (using finite-state transducers) and
MIA [34] (prolog-based wrappers using anti-unification; neural networks to gen-
eralize and learn texts). NoDoSe [1] extracts information from plain string
sources and provides a user interface for example labelling. It has restricted
capabilities to deal with HTML.

Information Extraction for the Semantic Web 279

In general, drawbacks of machine-learning approaches are limited expressive
power and the large number of required example pages. In case of systems that
do not rely on labelled examples the main drawback is the low percentage of
correctness of the extracted data.

2.3 Supervised Wrapper Generation

Interactive approaches allow for semi-automatic extraction generation and offer
convenient visual dialogues to generate a wrapper based on a few examples and
user interaction. Supervised interactive wrapper generation tools include W4F
[33], XWrap [24], Wiccap [25], SGWrap [27], Wargo [31], DEByE [32] and Lixto
(Section 4).

W4F uses an SQL-like query language called HEL. Parts of the query can
be generated using a visual extraction wizard which is limited to returning the
full DOM tree path of an element. However, the full query must be programmed
by the wrapper designer manually. Hence, W4F requires expertise with both
HEL and HTML. HEL requires tricky use of index variables and fork constructs
to correctly describe a complex pattern structure. XWrap uses a procedural
rule system and provides limited expressive power for pattern definition. XWrap
lacks visual facilities for imposing external or internal conditions to a pattern, but
instead is rather template-based. The division into two description levels and the
automatic hierarchical structure extractor limits the ways to define extraction
patterns.

In general, many supervised wrapper generation tools require manual post-
processing and do not offer the browser-displayed document for labelling. Addi-
tionally, many systems neglect the capabilities of Deep Web navigation such as
form filling; however, in practice this is highly required, as most information is
hidden somewhere in the Deep Web [6].

The area of supervised wrapping is also the one mostly explored by commer-
cial software products such as RoboSuite [19], FirstRain and QL2.

3 Classifications of Wrapper Generation Systems

3.1 Existing Taxonomies

A number of classification taxonomies for wrapper development languages and
environments have been introduced in various survey papers [13, 20, 23].

In [20] a detailed analysis of wrapper-generation software is given. There,
an ample number of wrapping tools especially regarding extraction from HTML
data are classified according to various criteria. A condensed comparison is avail-
able on the Web [36]. The paper moreover contains a detailed comparison be-
tween the freeware tool Lapis [28] and the commercial tool RoboSuite [19].

The principle differentiation of this taxonomy is between “Freeware” and
“Commercial Tools,” with further criteria being: Supported output formats;
Availability of Java API; Open Source or availability of demo version; Language
of source code; Presence of GUI; Presence of a built-in editor; Scripting language

280 R. Baumgartner et al.

(and use of regular expressions and document object models); Connectivity to
other applications; Further features; Release cycle.

Another type of classification is given in [23]. In this paper, web data extrac-
tion tools are classified as

– Languages for wrapper development;
– HTML-aware tools;
– NLP-based (Natural Language Processing) tools;
– Wrapper induction tools;
– Modeling-based tools;
– Ontology-based tools.

So, while [20] is a feature-based classification, the one in [23] stresses the
mode of wrapper creation.

A classification of machine learning approaches is given in [13]. The authors
compare approaches based upon the following aspects:

– the technique employed;
– the supported formats;
– complexity of extracted data structure;
– the capability to deal with missing values;
– the capability to deal with permutation of values.

Especially the capabilities to deal with missing values and permutation of
values contribute to the robustness of a wrapper. Moreover, the supported for-
mats are of high interest as is the complexity of the output data structure (and
the expressiveness of a wrapper language in general). Authors of methods and
systems for inductive wrapper generation usually compare their approaches us-
ing the (currently not maintained and updated) RISE wrapper repository [29].
This wrapper repository comprises an ample number of sample Web pages of
various domains.

3.2 Desiderata for Wrapper Generation Tools

As extension to the taxonomies presented above we compiled a list of desiderata
for a good wrapper generation system to be usable in practice.

– High expressive power. The system should enable the definition of com-
plex, structurally organized patterns from Web pages and translate the cor-
responding data (the so-called pattern instances) into a corresponding hier-
archically structured XML document.

– Robustness. Wrappers are generally aimed at extracting information from
similarly structured Web pages of changing content. It is obvious that wrap-
pers risk failing to deliver a correct result if the structure of the source
documents changes. However, we expect a good wrapper to have a certain
degree of robustness, i.e., insensibility to minor structural changes (such as
introduction of a new banner).

Information Extraction for the Semantic Web 281

– Runtime Efficiency. The method should provide efficient algorithms and
the system should implement these algorithms efficiently such that the sys-
tem becomes usable in practice and is highly scalable.

– Smooth XML Interface. The method or system should provide a smooth
and user-friendly way of translating the extracted data into XML in order
to make it accessible to further processing, e.g. via XML query engines or
well-known transformation languages such as XSLT. Ideally, the translation
to XML is done automatically on the basis of the information gathered from
the designer during the process of defining extraction patterns.

– n-Dimensional Data Structures. In many cases it is not sufficient to
generate XML data comprising two levels, i.e. representing a relational table.
In general, wrapper output shall support arbitrarily nested XML output
data.

– Semantic Web Interface. A good wrapper generation system shall be
able to populate ontologies with instance data and even extend an ontology
based on concepts extracted from the Web. Ideally, the extraction language
is logic-based and compatible to languages used for reasoning in ontologies.

– Semi-structured and Unstructured File Support. Although many for-
mats such as CSV files require to parse flat strings, it contributes to robust-
ness if a wrapper language supports a tree model for loosely structured
formats such as HTML, too. The use of both a document object model and
regular expressions operating on strings form the base of a powerful extrac-
tion language.

– Platform Independence. For integration into a mediation framework sup-
ported platforms might be a decision criteria.

Regarding wrapper design, moreover, a few more criteria are relevant:

– User friendliness. It should allow a human wrapper designer to design,
program, or specify wrappers in a very short time.

– Good learnability. The learning effort for being able to understand the
method or use the system should be as small as possible. The method or
system should be accessible to and usable by a non-technical content manager
who is not a programmer or a computer scientist.

– Good visual support. It should offer the wrapper designer a GUI for spec-
ifying wrappers or XML translations. Ideally, the visual user interface allows
a wrapper designer to work directly on displayed sample source documents
(e.g. on HTML Web pages) and supports a purely visual way of defining
extraction patterns.

– Ease of accessibility and installation. The system should be widely
accessible and should not require particular installation efforts. Ideally, the
system provides an interface so that it uses a standard Web browser.

– Parsimony of samples. In case the method or system uses sample pages
as a basis for constructing wrappers, it should require only very few of these
(a single one at best) for most applications. The reason is that, in many
cases, a wrapper designer has only one or very few sample pages at hand.

282 R. Baumgartner et al.

We believe that Lixto satisfies the above criteria very well. In the next section
we illustrate a sample wrapper generation based on the Lixto system.

4 Lixto

4.1 Wrapping the Web with Lixto

The Lixto data extraction project [3] was started in the year 2000 as academic
project and by now led to a commercial enterprise with an established customer
base, and allows us to view web wrapping from two perspectives, from the one
of theory and from the one of practice. This project has engendered several fun-
damental questions that led to theoretical results. Lixto has a number of unique
characteristics by which it distinguishes itself from the state-of-the-art in Web
wrapping and which would not have been possible without foundational research
using results and techniques from database theory that, however, remained fo-
cussed on producing a working, and practical, industrial-strength software sys-
tem. Lixto’s distinctive features are summarized in the following.

– Lixto employs a fully visual wrapper specification process, which allows for a
steep learning curve and high productivity in the specification of wrappers.
Neither manual fine-tuning nor knowledge of HTML or the internal wrapping
language is necessary.

– With Lixto, very expressive visual wrapper generation is possible: It allows
for the extraction of target patterns based on surrounding landmarks, on
the content itself, on HTML attributes, on the order of appearance, and
on semantic and syntactic concepts. Lixto even allows for more advanced
features such as Web crawling and recursive wrapping.

– The visual specification framework is based on an internal logic-based lan-
guage similar to datalog, Elog.

– Elog has been closely studied. In particular, it was shown that its core frag-
ment captures precisely the expressiveness of monadic second-order logic
(MSO) over trees it is therefore quite expressive and can still be evaluated
very efficiently [14].

– High robustness: Insensitivity to minor structural changes and warnings in
case of major changes.

– A Data Aggregation and Runtime Environment where wrappers are embed-
ded (described in Section 4.3).

We believe that this presents Web wrapping as a significant new applica-
tion of logic (programming) to information systems. The database programming
language datalog, which has received considerable attention from the database
theory community over many years but has ultimately failed to attract a large
following in database practice, would deserve to experience a “rebirth” in the
context of trees and the Web.

Information Extraction for the Semantic Web 283

4.2 Wrapper Generation Example

In the following, we describe a step-by-step construction of a wrapper in Lixto
Visual Wrapper from the viewpoint of an application designer who creates this
application. As sample application we choose the REWERSE Personal Publi-
cation Reader (see Section 5.3) [4]. The Personal Publication Reader offers an
integrated and personalized view on publication data from REWERSE project
members. The publication data is extracted from the individual project members
Web pages on a regular base using Lixto.

A human being tends to assign semantic meaning to parts of a Web page;
a designer does not think of table row as of a set with text values, but rather
as a publication entry. Therefore, the basic building block of a Lixto wrapper
program is a so-called pattern, a container for pieces of information with the same
meaning. Patterns are structured in a hierarchical fashion. In the lower half of
the Visual Wrapper’s UI (see Figure 3) an active example Web page is displayed
for marking example instances: For each type of Web page, an own wrapper
has to be created; in the following the wrapper creation for the publications of
Munich is illustrated.

Fig. 3. Lixto Visual Wrapper: Wrapping Publication Pages

In this case, the designer identifies one of the list items (each resembling a
publication) as a pattern PublicationLine. Once a pattern is created, the designer
continues with visually defining a filter, a crucial part of the pattern which
defines how to extract relevant information from its parent pattern instances.
Internally, filters are represented in Elog, but the language is entirely hidden
from the wrapper designer.

284 R. Baumgartner et al.

Defining a filter expects the designer to select an example publication with
two mouse clicks on the example Web page. A filter definition continues with
optional fine-tuning of properties for the generated generalization of the chosen
example. It is possible to visually debug the wrapper program, i.e., to test filters.
Typically, operators test filters after adding new components. Based on results,
the designer decides whether to extend (i.e., add a filter) or shrink (i.e., add
condition to an existing filter) the set of matched instances.

In this example, the system displays the complete list of matched publications
for the so-far created filter by highlighting parts of the Web page. In cases
where the system generalization does not detect all instances correctly, additional
conditions can be imposed.

Next a child pattern Title of the just defined pattern is created and then
a filter with the condition that the extracted element is in italics. The pattern
Author on the Munich page can be easily characterized, too, by the fact that a
special hyperlink is present and that the author names precede the title.

In a similar fashion the remaining patterns are defined and the wrapper is
stored. The XML Companion of the publication web page that can be regularly
generated by applying the wrapper is comprised of entries like the one given
below:

<Publication>

<Title>Visual Exploration and Retrieval of XML Document

Collections with the Generic System X2</Title>

<Author>Holger Meuss</Author>

[...]

<Author>Francois Bry</Author>

<Year>2004</Year>

<Link>http://www.pms.informatik.uni-muenchen.de/

publikationen/PMS-FB/PMS-FB-2004-12.pdf</Link>

</Publication>

As next step the XML data of the various sources has to be combined, cleaned,
syndicated into the ontology, and regulary scheduled. These operations are car-
ried out by configuring a visual information flow in the Lixto Transformation
Server.

4.3 Lixto Transformation Server

Heterogeneous environments such as integration and mediation systems require a
conceptual information flow model. The usual setting for the creation of services
based on Web wrappers is that information is obtained from multiple wrapped
sources and has to be integrated; often source sites have to be monitored for
changes, and changed information has to be automatically extracted and pro-
cessed. Thus, push-based information systems architectures in which wrappers
are connected to pipelines of post-processors and integration engines which pro-
cess streams of data are a natural scenario, which is supported by the Lixto
Transformation Server [5]. The overall task of information processing is com-

Information Extraction for the Semantic Web 285

posed into stages that can be used as building blocks for assembling an informa-
tion processing pipeline. The stages are to

– acquire the required content from the source locations; this component re-
sembles the Lixto Visual Wrapper plus Deep Web Navigation and Form
iteration;

– integrate and transform content from a number of input channels and tasks
such as finding differences,

– interact with external processes, and
– format and deliver results in various formats and channels and connectivity

to other systems.

The actual data flow within the Transformation Server is realized by hand-
ing over XML documents. Each stage within the Transformation Server accepts
XML documents (except for the wrapper component, which accepts HTML),
performs its specific task (most components support visual generation of map-
pings), and produces an XML document as result. This result is put to the
successor components. Boundary components have the ability to activate them-
selves according to a user-specified strategy and trigger the information pro-
cessing on behalf of the user. From an architectural point of view, the Lixto
Transformation Server may be conceived as a container-like environment of vi-
sually configured information agents. The pipe flow can model very complex
unidirectional information flows (see Figure 4). Information services may be
controlled and customized from outside of the server environment by various
types of communication media such as Web Services.

Fig. 4. Lixto Transformation Server: Rewerse Publication Data Flow

286 R. Baumgartner et al.

4.4 Visual Data Aggregation Example

In the Personal Publication Reader scenario, the application designer visually
composes the information flow from Web sources to an RDF presentation that
is handed over to the Personal Publication Reader once a week.

First, the application designer creates Source components that contain Lixto
wrappers. In the source components (that are reflected as disks in Figure 4) a
schedule is defined how often which Web source is queried and Deep Web navi-
gation sequences containing logins and forms can be stored. Next, the wrapper
designer can combine the XML documents by adding integration components.

In the “XSL” components publication data is harmonized to fit into a com-
mon structure, an attribute “origin” is added containing the institution’s name,
and author names are harmonized by being mapped to a list of names known by
the system. The triangle in Figure 4 represents a data integration unit; here data
from the various institutions is put together and duplicate entries are removed.
IDs are assigned to each publication in the subsequent step. Finally, the XML
data structure is mapped to a defined RDF structure (this happens in the lower
arc symbol in Figure 4) and passed on to the Personal Publication Reader as
described below. A second deliverer component delivers the XML publication
data additionally.

This application can be easily enhanced by connecting further Web sources.
For instance, abstracts from www.researchindex.com can be queried for each
publication lacking this information and joined to each entry, too. Another pos-
sibility is to extract organization and people data from the institution’s Web
pages to inform the ontology to which class in the taxonomy an author belongs
(such as full professor).

5 Application Domains

5.1 Business Intelligence: Web-ETL

Companies from all branches and sizes are forced nowadays to make operative
decisions within days or even hours – just 25 years ago, similar decisions took
weeks or months [35]. Thus, business management is interested in increasing
the internal data retrieval speed. At the same time, the external data sources
considered should be broadened to improve information quality.

A systematic observation of competitor activities becomes a critical success
factor for business to early identify chances in the market, anticipate competitor
activities, recognize new and potential competitors, learn from errors and success
stories of competitors, and validate and enhance own strategic goals, processes
and products.

This process of collecting and analyzing information about competitors on
the market is called “competitive intelligence” [18]. Nowadays, a lot of basic
information about competitors can be retrieved legally from public information
sources, such as Web sites, annual reports, press releases or public data bases.

Information Extraction for the Semantic Web 287

On the one hand, powerful tools for Extracting, Transforming and Loading
(ETL-tools) data from source systems into a BI data warehouse are available
today. They support the data extraction from internal applications in an effi-
cient way. On the other hand, there is a growing need to integrate also external
data, such as market information, into these systems. The World Wide Web, the
largest database on earth, holds this huge amount of relevant information. Ad-
vanced data extraction and information integration techniques as described in
this tutorial are required to process Web data automatically. Increasing demand
for such data leads to the question of how this information can be extracted,
transformed to a semantically useful structure, and integrated with a “Web-
ETL” process into a Business Intelligence system.

5.2 Business Processes in the Automotive Industry

Many business processes in the automotive industry are carried out by means of
web portal interaction. Business critical data from various divisions such as qual-
ity management, marketing and sales, engineering, procurement, supply chain
management, and competitive intelligence has to be manually gathered from web
portals and websites. By automation, automotive part suppliers can dramatically
reduce the cost associated with these processes while at the same time improving
the speed and reliability with which these processes are carried out. Instead of
manually browsing and searching for results on these sites, wrapper technology
automatically gathers the data and renders the results in a structured format
such as XML. Data in this format is then ideally suited for processing by various
enterprise applications or distributing through various communication channels.
The automation of such manually performed processes can help to tremendously
save time. It also enables employees to react more quickly to changes and news,
paving the way to the “real-time enterprise”.

5.3 Gathering Data for Semantic Web Applications

The Personal Reader Framework (www.personal-reader.de) is an environment
for designing, implementing and maintaining personal Web-content Readers [11].
These personal Web-content Readers allow a user to browse information (the
Reader part), and to access personal recommendations and contextual informa-
tion on the currently regarded Web resource (the Personal part).

The architecture of the Personal Reader is a rigorous approach for applying
recent Semantic Web technologies. It allows to design, implement and main-
tain Personal Web Content Readers. One application, the Personal Publication
Reader [4] uses Lixto to extract Web data of publications and transform the
data to RDF for usage in the Personal Reader Framework as illustrated above.

6 Conclusion and Summary

Extraction technologies for the web as of today help unfold the structure of
the desired pieces of information from HTML documents and translate it into

288 R. Baumgartner et al.

XML and subsequently, into a semantic representation if desired in a very cost-
effective way. This bridges the gap between unstructured Web data and struc-
tured databases, and is an important step towards the creation of the Semantic
Web. Web Data Extraction and Integration technologies open the way to use
today’s web as the largest database to provide input for business intelligence ap-
plications (including cooperative and non-cooperative sites) and to reuse data for
portals and personalisation and for portal-based cross-company communication.

References

1. B. Adelberg. NoDoSE - a tool for semi-automatically extracting semi-structured
data from text documents. In Proc. of SIGMOD, 1998.

2. P. Atzeni and G. Mecca. Cut and paste. In Proc. of PODS, 1997.

3. R. Baumgartner, S. Flesca, and G. Gottlob. Visual web information extraction
with Lixto. In Proc. of VLDB, 2001.

4. R. Baumgartner, N. Henze, and M. Herzog. The personal publication reader:
Illustrating web data extraction, personalization and reasoning. In Proc. of ESWC,
2005.

5. R. Baumgartner, M. Herzog, and G. Gottlob. Visual programming of web data
aggregation applications. In Proc. of IIWeb-03, 2003.

6. M. K. Bergman. The deep web: Surfacing hidden value. BrightPlanet White Paper,
http://www.brightplanet.com/technology/deepweb.asp.

7. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. In Scientific
American, May 2001.

8. D. Cabeza and M. Hermenegildo. Distributed WWW programming using (Ciao-
)Prolog and the PiLLoW library. TPLP, 1(3), 2001.

9. V. Crescenzi, G. Mecca, and P. Merialdo. Roadrunner: Towards automatic data
extraction from large web sites. In Proceedings of 27th International Conference
on Very Large Data Bases, pages 109–118, 2001.

10. H. Davulcu, G. Yang, M. Kifer, and I. Ramakrishnan. Computat. aspects of re-
silient data extract. from semistr. sources. In Proc. of PODS, 2000.

11. P. Dolog, N. Henze, W. Nejdl, and M. Sintek. The Personal Reader: Personalizing
and Enriching Learning Resources using Semantic Web Technologies. In Procced-
ings of the 3nd International Conference on Adaptive Hypermedia and Adaptive
Web-Based Systems (AH 2004), Eindhoven, The Netherlands, 2004.

12. O. Etzioni, M. Cafarella, D. Downey, S. Kok, A. Popescu, T. Shaked, S. Soder-
land, D. S. Weld, and A. Yates. Web-Scale Information Extraction in KnowItAll
(Preliminary Results). In Proceedings of the World Wide Web Conference 2004,
2004.

13. S. Flesca, G. Manco, E. Masciari, E. Rende, and A. Tagarelli. Web wrapper in-
duction: a brief survey. AI Communications Vol.17/2, 2004.

14. G. Gottlob and C. Koch. Monadic datalog and the expressive power of languages
for Web Information Extraction. In Proc. of PODS, 2002.

15. J. Hammer, H. Garcia-Molina, J. Cho, R. Aranha, and A. Crespo. Extract-
ing semistructured information from the web. In Proc. Workshop on Mang. of
Semistructured Data, 1997.

16. C.-N. Hsu and M. Dung. Generating finite-state transducers for semistructured
data extraction from the web. Information Systems, 23/8, 1998.

Information Extraction for the Semantic Web 289

17. G. Huck, P. Fankhauser, K. Aberer, and E. Neuhold. JEDI: Extracting and syn-
thesizing information from the web. In Proc. of COOPIS, 1998.

18. L. Kahaner. Competitive Intelligence: How to Gather, Analyse Information to
Move your Business to the Top. Touchstone Press, 1998.

19. Kapowtech. RoboSuite, 2003. Published on http://www.kapowtech.com.
20. S. Kuhlins and R. Tredwell. Toolkits for generating wrappers. In Net.ObjectDays,

2002.
21. N. Kushmerick. Wrapper verification. World Wide Web Journal, 2000.
22. N. Kushmerick, D. Weld, and R. Doorenbos. Wrapper induction for information

extraction. In Proc. of IJCAI, 1997.
23. A. H. Laender, B. A. Ribeiro-Neto, A. S. da Silva, and J. S. Teixeira. A brief

survey of web data extraction tools. In Sigmod Record 31/2, 2002.
24. L. Liu, C. Pu, and W. Han. XWrap: An extensible wrapper construction system

for internet information. In Proc. of ICDE, 2000.
25. Z. Liu, F. Li, and W. K. Ng. Wiccap Data Model: Mapping Physical Websites to

Logical Views. In Proceedings of the 21st International Conference on Conceptual
Modelling (ER2002), Tempere, Finland, October 7-11 2002.

26. W. May, R. Himmeröder, G. Lausen, and B. Ludäscher. A unified framework for
wrapping, mediating and restructuring information from the web. In WWWCM.
Sprg. LNCS 1727, 1999.

27. X. Meng, H. Wang, C. Li, and H. Kou. A schema-guided toolkit for generating
wrappers. In Proc. of WEBSA2003, 2003.

28. R. C. Miller and B. A. Myers. LAPIS: Smart Editing with Text Structure. In
Proceedings of the CHI 2002 Conference on Human Factors in Computing Systems,
Minneapolis, Minnesota, USA, pages 496–497. ACM Press, Apr. 2002.

29. I. Muslea. RISE: Repository of Online Information Sources Used in Information
Extraction Tasks, 1998. Published on http://www.isi.edu/info-agents/RISE/.

30. I. Muslea, S. Minton, and C. Knoblock. A hierarchical approach to wrapper in-
duction. In Proc. of 3rd Intern. Conf. on Autonomous Agents, 1999.

31. J. Raposo, A. Pan, M. Alvarez, J. Hidalgo, and A. Vina. The Wargo System:
Semi-Automatic Wrapper Generation in Presence of Complex Data Access Modes.
In Proceedings of DEXA 2002, Aix-en-Provence, France, 2002.

32. B. Ribeiro-Neto, A. H. F. Laender, and A. S. da Silva. Extracting semi-structured
data through examples. In Proc. of CIKM, 1999.

33. A. Sahuguet and F. Azavant. Building light-weight wrappers for legacy web data-
sources using W4F. In Proc. of VLDB, 1999.

34. B. Thomas. Anti-unification based learning of T-wrappers for information extrac-
tion. In Workshop on Machine Learning for IE, 1999.

35. E. Tiemeyer and H. E. Zsifkovitis. Information als Führungsmittel: Executive In-
formation Systems. Konzeption, Technologie, Produkte, Einführung. 1st edition,
1995.

36. R. Tredwell and S. Kuhlins. Wrapper Generating Tools, 2003. Published on
http://www.wifo.uni-mannheim.de/∼kuhlins/wrappertools/.

Reuse in Semantic Applications

Uwe Aßmann

Institut für Software- und Multimediatechnik (SMT),
Technische Universität Dresden

uwe.assmann@inf.tu-dresden.de

http://www-st.inf.tu-dresden.de�

Abstract. Applications using semantic technology are not fundamen-
tally different from other software products. As standard applications,
they need a well-defined development process, an appropriate modelling
technology, and, to decrease construction cost, a good reuse technology
for models and components. This paper shows that employing ontologies
can help to enlarge the reuse factor. Ontologies improve the refinement
process in object-oriented software development, simplify design of prod-
uct lines, improve interoperability in component-based systems, and help
in service-based applications, such as web services. Hence, ontologies will
play an important role in the future engineering of software products.

The reuse factor for software artifacts is a mission-critical figure for software-
dependent companies. Mainly to save costs, applications, web services, enterprise
services, and entire product families require a fair amount of reuse of models,
components, and more complex frameworks. Basically, two forms of reuse can
be distinguished: refinement-based reuse, in which domain and analysis models
are successively refined to implementations, and compositional reuse, in which
components on different abstraction levels are reused in many applications. The
paper shows that ontologies help to improve the effectivity of both forms of
software reuse.

Let’s start with the first issue. Refinement-based reuse of ontologies plays an
important role not only in the construction of singular applications, but also of
product families. In the standard object-oriented design process, when dealing
with one system at a time, refinements are the major development steps (Fig. 1).
Requirements analysis constructs an analysis model, which captures the major
functional and non-functional requirements of a system. Since the deliveries of
a system are provided in an application domain, the requirements specification
has to include a definition of a domain vocabulary or a domain model (a domain
vocabulary with interrelations). Usually, this model is the result of the domain
analysis, being constructed in interviews with the customers. Because experience
shows that errors in requirement analysis are those that cost most [10] and all
later steps are based on the domain model, the construction of a sound domain

� Work partially supported by European Community under the IST programme, con-
tract IST-2003-506779-REWERSE [6].

, LNCS 3564, pp. 290–304, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
N. Eisinger and J. Ma�luszyński (Eds.): Reasoning Web 2005

Reuse in Semantic Applications 291

Fig. 1. Standard layout of object-oriented development

model is very important. Since ontologies play the role of standardized, approved
models for application domains, how can we integrate them into the domain
analysis?

In contrast to the development of one singular system, the second half of
the 1990s has considered the development of product lines (product families),
which consist of a set of related products that share as many common parts
as possible [5]. The goal of a product line is to reuse specifications on the re-
quirements and design level, as well as code components on the implementation
level (Fig. 2). In product-line engineering, the role of the domain analysis is even
more important (see top of Fig. 2): the domain model reveals commonalities for
all products in the line, as well as possible variabilities, leading to specific prod-
ucts [9]. The domain model is reused for all products of the line, being refined to
an analysis model for all products, then extended by design variants to designs
of the specific product designs, which in turn are extended by code components
to the product implementations. Consequently, product lines provide a planned
form of reuse: product variants are foreseen, their variabilities are analyzed, and
the engineering process handles the shared artefacts (the framework) together
with all variants. Clearly, product lines will play an important role also in future
web engineering. As soon as several related web services can be envisaged for an
application domain, the development process should share common requirement,
design, and implementation artifacts. And this raises the question how domain
ontologies can be related to domain models of product lines, in particular for
web service families.

Product-line-based thinking has promoted the invention of component mod-
els, schemas for design and implementation components, which provide a better
reusability compared to standard object-oriented technology, since they follow

292 U. Aßmann

Fig. 2. Standard process to construct product line

standards (component-based software engineering). At the moment, component
models are mainly focused on the reuse of implementation artifacts, i.e., they
provide standard interfaces for sets of classes, objects, layers, or other software
agglomerations. For instance, an Enterprise Java Bean (EJB) provides four stan-
dard interfaces for a set of enclosed classes [11]. These interfaces offer a standard-
ized lookup service for components, hide the middleware that glues the beans
together, and provide standard protocols to access their services. While EJB is a
Java-focused component model, also language-interoperable models exist, such
as CORBA [18], or WSDL [8]. These approaches provide a standardized way to
relate interfaces of components even if they have been written in different lan-
guages. However, in language-homogeneous as well as language-heterogeneous
component models, standardization has been applied to the interfaces, but not
the types of component parameters, which still stem from self-made models. How
can ontologies help here?

For web services, interoperability is also of vital importance, because, on the
web, many different component languages are employed. Beyond that, however,
service-oriented applications require a lookup-and-find of services on the intra- or
internet. Obviously, standardized terminology is crucial for precise matchmaking.
So, can ontologies contribute here?

This paper conjectures that ontologies will play an important role in the
construction of software applications. Firstly, ontologies are being refined step
by step towards the implementations (Sec. 1). Secondly, ontologies can specify
constraints for the products of a product line (Sec. 2). Additionally, applications
in product lines can be layered in the sense that the most general layer consists
of terms of the ontology (Sec. 2.1). On the other hand, compositional reuse is
more important in component-based software engineering. Here, ontologies, due

Reuse in Semantic Applications 293

to their standardization effect, increase interoperability (Sec. 3) and improve the
matchmaking of components and services (Sec. 4).

1 Refinement-Based Reuse of Ontologies in the Software
Development

Ontologies will play a major role in application development, both for singu-
lar applications as well as product lines. In this section, we argue that domain
ontologies can be employed as domain models for software artifacts. They in-
crease the level of standardization, because they specify shared and approved
vocabulary for all applications in a domain. Hence, domain ontologies should
be explicitly introduced as an integral part of the object-oriented development
process, from which all development starts (Fig. 3).

Fig. 3. Enhanced object-oriented development process, starting from a domain ontol-
ogy

Let us investigate in more detail, which role a domain model plays in software
development. Usually, the domain model is a base ingredient of every software
product. It is put up as an integral part of the requirements analysis and contains
all concepts the user of the system knows about the domain. This permits the
user to talk about the functionality of the system and express her requirements.
Technically, the domain model is refined to an analysis model, modelling the
environment and the users of the system, the use cases, the system inputs and
results. Hence, the central question of the analysis model, “what can I do with
the system?”, critically depends on vocabulary of the domain model. Secondly,

294 U. Aßmann

Fig. 4. Domain model of a simple course management system

the domain model is reused in the design model, which treats the question: “How
is the system structured?”. To answer this, the design structures have to fit to the
concepts in the requirements specifications and have to provide structural solu-
tions for them. Finally, also the implementation uses domain concepts, because,
to answer the question “How does the system work?”, the implementation con-
cepts have to support the design structures as well as the requirements. Hence,
all system artifacts rely on the concepts of the domain model.

Example 1. Fig. 4 contains the domain model of a course management system,
which we will use as a running example. Usually, such a system has to rely on
concepts such as Course, Company, Teacher, Student, Lesson, Exam, or Exercise
throughout all development phases.

Ontologies resemble domain models in software engineering, but additionally
provide standardization for a large group of users. This effect suggest a slightly
modified software process. Instead of starting the requirements analysis by a
domain analysis, an approved domain ontology can be reused.

Example 2. For the course management system, there might be off-the-shelf on-
tologies, such as a course ontology or a business ontology from which we can reuse
concepts (Fig. 5). In this example, only the concepts Teacher, Student, Course,
and Company can be reused. Missing concepts have to be added, when the anal-
ysis model is constructed, such as CoursePart, Exercise, and Exam. Also, the
domain concepts will be refined, adding new features. Hence, the analysis model
of the course management system contains concepts from domain ontologies and
adds new, application-specific concepts, typical for the application.

Reuse in Semantic Applications 295

Fig. 5. Analysis model of web course, extended from ontologies

Ontologies offer several opportunities to improve the process of constructing
analysis models. First of all, domain ontologies have usually been constructed by
domain experts who understand the application domain. Often, when software
engineers model application domains, the customer is misunderstood, and the
model contains flaws. If a domain ontology is reused, this should not happen,
because ontologies have been agreed on and employed by many people, so that
their conceptualizations are stabilized and mature. This is not always the case
with self-made analysis models.

Secondly, the ontological constraints, expressed by description logic or other
more general rule languages, enable the engineer to specify integrity constraints
for her models. Since these constraints are inherited to the models further down
in the development chain (Fig. 3), also analysis model, design model, and im-
plementation can be verified against the integrity constraints. Actually, such
application domain constraints yield system invariants that must hold for all
parts of the system and throughout its entire life time.

Thirdly, domain ontologies can be very useful, when constructing use cases.
A use case is a use scenario of the system, putting up the relationships of a user
(actor) with an action (function) of the system [17]. In an ontology-enriched
analysis model, the use cases employ the standardized concepts from the ontolo-
gies for actors and actions. This does not only yield a more precise semantics for
the use cases, but also inherits the ontological constraints to them.

Example 3. For instance, a disjointness constraint specifying that teachers can-
not be students can be inherited from the course ontology via the analysis model
to the use case diagrams, further to the design model, and the implementation.

296 U. Aßmann

This ensures that the actor sets Teacher and Student are disjoint at all points
in the life-cycle of the system.

Additionally, a use case can be regarded a triple of (actor, action, actor) and can
be equipped with cardinalities (multiplicities). Hence, it is similar to a triple, i.e.,
an axiom in an ontology. Once actors and actions are chosen to be concepts of
an ontology, use cases can be seen as natural extensions of the ontology for the
specification of requirements. This paves the way for understanding use cases as
ontology extensions in requirement specifications.

Fourthly, while software models usually are behavioral models, ontologies are
declarative models. Typically, they are stateless, which makes them simpler to
be extended, simpler to maintain, and simpler to comprehend.

Fifthly, logic-based models, such as ontologies, can represent large parts of
the model intensionally. Derived model parts can be computed by deduction,
starting from explicitly stated facts, rules, and constraints. This keeps the orig-
inal models small.

Lastly, ontologies can deal with different abstraction layers. Beyond domain
ontologies, there are more general ontologies, such as upper level ontologies [19].
This suggests a layering of analysis models, in which several layers are made up
by ontologies of different abstraction levels.

2 Ontologies and Domain Models in Product Lines

Starting from a domain ontology, also a family of applications can be constructed.
Then the construction process for the entire product line inherits the advantages
discussed in the last section. However, ontologies can be used for more purposes
in a product line. In the following, we deal with such product-line ontologies.

Example 4. Fig. 6 contains two design variants of a product line for course man-
agement. Two course management systems are modeled, one for free courses and
one for non-free courses. It can be seen that both variants need different design
extensions of the analysis model.

Firstly, the design constraints of the product family can be specified with an
ontology (see the right part of Fig. 7). Such a specification contains integrity
constraints on the architecture of all products. These constraints may specify
structural or behavioral invariants of products or the architectural style of the
family [1]. This resembles the use of constraints in domain ontologies, however,
here, the constraints do not constrain the application concepts, but the system
concepts.

Example 5. Architectural styles usually constrain the kind of components and
connectors that can be used. For instance, the UNIX shell provides filter compo-
nents that are connected via the connectors pipes or files (pipe-and-filter style).
Connectors are directed, and filter components have input and output ports
(stdin, stdout, stderr). All these constraints can easily be specified with an OWL

Reuse in Semantic Applications 297

Fig. 6. Two design models in a product line for a course management system

ontology. If a product line should be built based on shell scripts, a product-line
ontology can constrain their assemblage, so that only components and connectors
fitting to pipe-and-filter style can be employed.

Example 6. It could be asked, whether it is justified to use the word ontology
for a system model. Actually, the community to use a product line may be very
large. Typical examples are business software product lines. They are run in
thousands of sites throughout the world, involving hundreds of thousands of
people. Hence, a product-line ontology defines a technical vocabulary for many
people. And such a vocabulary may be very well called an ontology.

Secondly, variant selection or exclusion constraints can be specified with ontolo-
gies (see the left part of Fig. 7). The configuration space of a product line may be
enormously large, can span over several stages, and must be stable over many
years. Many constraints exist that distinguish product from product, specify
product constraints, such as consistency criteria, or select design variants and
implementation components.

Example 7. Business software product lines, being installed at many sites, are
configured over several stages: pre-configuration at the software house, config-
uration in the deploying company, post-configuration by system consultants in
the deployment company, and user-configuration by end users. In all these cases,
a product-line ontology to specify configuration constraints will be of great help:
it can guide the multi-stage configuration process, ensuring variant consistency
for all products.

Due to these advantages, we expect that large product lines will be steered by
product-line ontologies.

298 U. Aßmann

Fig. 7. Enhanced product-line development process, starting from a domain ontology,
steered by design and configuration constraints in product-line ontologies

2.1 Reuse of Domain Ontologies in Layered Frameworks

A well-known architectural style for a product line is a layered framework [7]. In
a layered framework, a layer expresses knowledge with regard to a specific appli-
cation concern. An application object (often called a business object) cross-cuts
all layers and consists of role objects, one per layer, that encapsulate the layer-
specific knowledge. Applications are built by plugging new application specific
layers on top of the layers of the framework.

Example 8. Fig. 8 contains a layered framework for an application in the course
domain. There are 4 layers in an application (type in domain model, payment,
topic of course, end-user device), of which the first two two are framework and
the latter two are application layers. Each application object is expressed as
a layered object, with role objects in all layers. For instance, it is possible to
model an exam of a free English course for a PC desktop as a cross-cut through
all layers, as well as a student subscribed to a course in IT basics, using a PDA.

In a layered application, upper layers depend on lower layers, but not vice versa.
Application layers depend on framework layers, but framework layers are inde-
pendent of application layers. Inside the framework layers, more specific layers
depend on more general and abstract layers. Hence, in this scheme, because it
contains the most basic knowledge of the application, the domain model will
cover one or two basic layers. When integrating ontologies into the software pro-
cess using layered frameworks, it is straightforward to fill one or two layers from
domain ontologies. Whereas in standard object-oriented applications a domain
model is refined towards an application model (Sec. 1), in a layered framework

Reuse in Semantic Applications 299

Fig. 8. Two courses, expressed as layered objects in a layered application. Left: an
exam of a free English course for a PC desktop. Right: a student subscribed to a
course in IT basics, using a PDA

the domain role objects are taken from ontologies and plugged together with
other role objects, which stem from analysis models, design models, and imple-
mentation components.

Layered frameworks have been used for large product lines of thousands of
applications [7]. They can also be applied to products on the Semantic Web, gen-
erating families of semantic applications [2]. And within such layered frameworks,
ontologies will play a major role, modelling the domain roles of the application
objects. Hence, also here, ontologies will play a major role for reuse.

3 Supporting Interoperability with Ontologies -
Compositional Reuse

Ontologies simplify interoperability because they define shared, standardized
types for an application domain. We saw in Sec. 1 that this circumstance can be
used to derive refined models, starting from domain ontologies. However, there
is a second use case for ontologies here: concepts from an ontology can be used
as standardized types in component interfaces and concept relations can be used
as standardized relations between types. Once components talk the same types
and relations, they become interoperable.

Components appear on many abstraction levels, from design to code to im-
plementation [3, 4]. On all levels, however, we can discern a component model,
a composition technology, and a composition language, which glues the compo-
nents together. Usually, a component model defines content and the interface
concepts of the components, the composition technique describes how compo-
nents are composed to larger components, and the composition language de-

300 U. Aßmann

scribes the system structure in-the-large. However, no matter, how diverse the
component models are, no matter which reuse abstractions they provide, compo-
nents receive information from their environment (required interface) and deliver
information to their environment (provided interface). This information, passed
through ports or parameters, can be typed, and if a type is an ontological con-
cept, interoperability is improved.

Fig. 9. Two components, exchanging information. By default, a port of a component is
typed in the language of the component. Mappings can be defined to IDL specifications
or ontologies

Firstly, ontological concepts can be used as types for interaction of binary
components. Many classical component models, such as CORBA [18] or COM+
inside .NET [12] use a type mapping to map a type of component language L1

to a type in an interface definition language (IDL), and another type mapping to
map the IDL specification to component language L2 (Fig. 9). Usually, from such
mappings, an IDL compiler generates conversion code for the transported data.
However, usually, type specifications in an IDL are not shared nor standardized
for a domain. Hence, it is better to use ontologies here. If a mapping is defined
from both parameter types to a type in an ontology (or a derived type model,
see Sec. 1), TL1and TL2 get a standardized meaning, agreed on by a user com-
munity. Thus, an ontology can play the role of a mediating type model between
components written in different languages and for different environments.

Example 9. ECTS grades (European credit transfer system) depend on a polit-
ical agreement for European educational systems. One could say, ECTS grades
provide an ontology of grading in Europe. The ontology uses relative grading,
grouping all students of a course into 6 quality levels (10% of the best, 20% of
the best, etc.). Using the ECTS concepts as a types enables the components of
course management systems to exchange course grades in a simple way.

Reuse in Semantic Applications 301

Example 10. Also the refinement-based reuse of domain models (Sec. 1) relies
on type mappings. If a domain ontology is refined to an analysis model, all onto-
logical concepts and their relationships are extended to classes and relationships
in the analysis model. Since extension is a simple form of type mapping, the
domain ontology plays the role of a mediating ontology for all analysis models
that are derived from it. Using the extension relationship as a type mapping, the
refinement process maps the concepts of many analysis models to each other.
This enables the designers to correlate analysis models of different applications.
Also, they can define analysis model variants for a product line. This extends
the scheme of Sec. 2 and allows for requirements variants for different products.

Fig. 10. Matchmaking between client and server component. The service is described
by the client with a set of desired properties from a component (query). This is matched
to the provided properties of the service, specified by the server

4 Ontologies in Service-Oriented Applications and Web
Services

The arguments of the previous section also hold for the use of ontologies as
type models for web services, because web services can be regarded as a specific
component model. However, a web service has a service-oriented invocation pro-
tocol, differing from standard invocation protocols in that a service is not called
by name, but by semantic and contextual search (Fig. 10). A service-oriented
application requires that yellow page directories exist, which map semantic de-
scriptions of services to names and location of services. In other words, yellow
pages map attributes of services to names. The service-oriented architecture
binds a service to a request by evaluating a query of the client (matchmaking).
Since the name of a service is no longer a qualifying criterion for the binding,
semantic descriptions should be as precise and interoperable as possible.

Ontologies simplify matchmaking. Since they provide standardized terminol-
ogy and standardized ontological relations between the terms, queries can specify
not only keywords with a precise, shared, and standardized meaning (semantic

302 U. Aßmann

search), but also contextual information for search in context, where the context
is defined by the ontological relations of the terms. This contextual search seems
to be one of the major advantages of a search guided by ontologies.

Example 11. A web course on IT basics can not only be queried by the stan-
dardized word IT-basics (being semantic search) but also in context, by relating
it to courses such as IT-advanced or IT-preparatory. It is possible to say: find
me an IT basics course, which has a preceding preparatory IT course and has a
follow-up advanced IT course (contextual search).

In the literature, there are several approaches how to realize matchmaking for
lookup of services in service-oriented architectures. Here, we present a specific
approach that is most promising in combination with ontologies, faceted match-
making. It relies on faceted information classification: a component (or service)
is described in several facets, dimensions, which are orthogonal to and indepen-
dent of each other [14]. In our context, each facet is described by an ontology.
Matchmaking engines can look up a service by stating the desired properties for
all facets.

Example 12. A course in the unified Bologna world of European education can be
described by several facets, e.g., topic area (computer science, music, literature,
etc.), level of advancement (undergraduate, graduate), cost (free, non-free), and
country (Germany, Italy, WesternEurope, EasternEurope, etc.). Every facet can
be described by an ontology, in this case on topic area, level, cost, and country.
A semantic description of a course selects one value for each facet and forms a
tuple. For instance, a free undergraduate music course could be described by the
tuple (topic area = music, advancement = undergraduate, cost = free, country =
WesternEurope). Searching a course throughout the course databases in Europe
consists of comparing the tuple point-wise to database entries. The values need
not match exactly, instead, subsumption in the facet ontologies can be used
to deliver refinement of matchings. For example, if free-course is subsumed by
non-free-course, the matcher can yield a free course, even if the client desired a
non-free one. Also, a matchmaker can return a (music, undergraduate, non-free,
Germany)-course which should fit the client’s desires.

Facet classification has been invented in library science to simplify the descrip-
tion and search for books [16]. Classifications can be arranged in facets if sev-
eral partitions of a group of objects exist that are orthogonal [15]. In domain
modelling, this is often the case, and we conjecture, that this is also true for
classifications of services. Without facets, multiple inheritance hierarchies have
to be specified, which are often clumsy and error-prone. With facets, service
classifications become simple.

Example 13. To describe the services of a UNIX system, [14] employed a 4-
faceted scheme (function, logical object, implementation object, tool). UNIX
services can be described with appropriate facet values, e.g., (function = append,
logical class = line, implementation class = file, tool = text editor), which means

Reuse in Semantic Applications 303

“append a line to a file with a text editor”. It is reported that facets simplified
the description of the components, improved the understanding of their domain,
and facilitated the search in component libraries.

Next, if every facet is described by an ontology, the service descriptions are
standardized for a user group and improve understanding of service semantics.
Already [14] suggested to use controlled vocabulary to improve the effectiveness
of the search. Also, the facet classification is rather immune to extensions. Ex-
tending one facet leaves all others invariant.

Example 14. If Europe is extended with a new member state, the matchmaking
algorithm can deliver new courses from the new member state, without affecting
the rest of the semantic specifications at all.

Finally, the accuracy of the search can be improved by synonym lists (the-
sauri) [14]. Synonyms increase the chances for a match because they permit
to search not only for keywords, but also for their synonyms. Beyond synonyms
other refinement relations of concepts can be used to improve the search [13].

Example 15. Often, Great Britain is used as a synonym for England, Scotland,
and Wales. Synonyms allows for matchmaking on any of the keywords, so that
students looking for a course need not bother about geographic and political
details.

Good matchmaking algorithms, such as facet-based search, improve the prob-
ability to find a service on the internet. In combination with ontologies, stan-
dardized conceptualizations of domains, the search will be much more effective.
In turn, this will increase the reuse factor for services.

5 Conclusion

It looks like ontologies will be the basis of the future software development
process, both for singular applications as well as product lines. This holds for
standard applications, as well as applications on the web, including web services.
In the software process, refinement is the main activity: material is added step
by step to the domain ontology, which is being reused for many applications. In
product families, design, product, and configuration constraints can be specified
by product-line ontologies shared by the user community. Alternatively, a sys-
tem can be plugged together by role layers from a layered framework, sharing
domain ontology layers. Finally, ontologies increase reuse in component-based
applications because they provide standardized models for mediation between
components and increase the efficiency of service matchmaking algorithms.

References

1. Gregory Abowd, Robert Allen, and David Garlan. Using Style to Understand
Descriptions of Software Architecture. In Proceedings of the ACM SIGSOFT ’93
Symposium on the Foundations of Software Engineering, pages 9–20, December
1993.

304 U. Aßmann

2. Uwe Aßmann. Composing frameworks and components for families of semantic web
applications. In International Workshop on Principles and Practice of Semantic
Web Reasoning (PPSWR 03), number 2901 in Lecture Notes in Computer Science,
pages 1–15. Springer, December 2003.

3. Uwe Aßmann. Invasive Software Composition. Springer-Verlag, February 2003.
4. Uwe Aßmann. Architectural styles for active documents. In Special Edition Soft-

ware Composition Science of Computer Programming. Elsevier, January 2005.
5. Don Batory, Rich Cardone, and Yannis Smaragdakis. Object-oriented frameworks

and product lines. In P. Donohoe, editor, Proceedings of the First Software Product
Line Conference, pages 227–247, August 2000.

6. Francois Bry and alia. Rules in a Semantic Web Environment (REWERSE). EU
Project 6th framework. IST-2004-506779. http://www.rewerse.net.

7. Dirk Bäumer, Guido Gryczan, Rolf Knoll, Carola Lilienthal, Dirk Riehle, and Heinz
Züllighoven. Framework development for large systems. Communications of the
ACM, 40(10):52–59, oct 1997.

8. Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana.
Web service description language (WSDL) language definition. Technical report,
W3C, 2001. http://www.w3.org/TR/wsdl.

9. Krzysztof Czarnecki and Ulrich Eisenecker. Generative Programming: Methods,
Techniques, and Applications. Addison-Wesley, Reading, MA, 2000.

10. Albert Endres and Dieter Rombach. A Handbook of software and systems engi-
neering - Empirical observations, laws and theories. Addison-Wesley, 2003.

11. JavaSoft. Enterprise Java Beans (TM), April 2000. Version 2.0.
12. Juval Löwy. COM and .NET. O’Reilly, Sebastopol, CA, 2001.
13. Rym Mili, Ali Mili, and Roland T. Mittermeir. Storing and retrieving software

components: A refinement based system. IEEE Transactions on Software Engi-
neering, 23(7):445–460, July 1997.

14. Rubén Prieto-Dı́az and Peter Freeman. Classifying software for reuse. IEEE Soft-
ware, 4(1):6–16, January 1987.

15. Uta Priss. Faceted knowledge representation. Electronic Transactions on Artificial
Intelligence, 4:21–33, 2000.

16. S. R. Ranganathan. Elements of Library Classification. Asia Publishing House,
Bombay, 1962.

17. James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling Lan-
guage Reference Manual. Addison-Wesley, Reading, MA, 1999.

18. Jon Siegel. OMG overview: CORBA and the OMA in enterprise computing. Com-
munications of the ACM, 41(10):37–43, October 1998.

19. John F. Sowa. Knowledge Representation: Logical, Philosophical, and Computa-
tional Foundations. Brooks Cole Publishing Co., 2000.

Towards Types for Web Rule Languages

W�lodzimierz Drabent1,2

1 Institute of Computer Science, Polish Academy of Sciences,
ul. Ordona 21, Pl – 01-237 Warszawa, Poland

2 Department of Computer and Information Science, Linköping University,
S – 581 83 Linköping, Sweden
drabent@ipipan.waw.pl

Abstract. Various schema languages have been introduced to describe
(classes of) Web documents (DTD, XML Schema, Relax NG). We present
mathematical treatment of their main features. We are interested in the
sets of documents a schema defines; such sets will be called types. Using a
mathematical formalism makes it possible to discuss chosen aspects of a
schema language in a precise and simple way. Otherwise they are hidden
among numerous details of a large and sophisticated schema language.

Our goal is typing of rule languages, more precisely approximately de-
scribing their semantics by means of types. Thus we are interested in
formalisms for types that facilitate constructing (efficient) algorithms
performing those operations on types that are needed in type checking
and type inference for rules.

1 Introduction

Various schema languages have been introduced to describe (classes of) Web
documents (DTD [10], XML Schema [11], Relax NG [6]). We present mathe-
matical treatment of their main features. We are mainly interested in the sets
of documents a schema defines; such sets are sometimes called types. Using a
mathematical formalism makes it possible to discuss chosen aspects of a schema
language in a precise and simple way. Otherwise they are hidden among numer-
ous details of a large and sophisticated schema language.

Our main goal is typing of rule languages; by this we mean describing ap-
proximately their semantics by means of types. Such descriptions can be used for
finding (certain kinds of) errors in the rules. Knowing that a rule is to be applied
to data from a given type, we can compute the type of rule results. If the type is
incompatible with the expectations of the programmer then there is an error in
the rule. Assume that the expectations are formalized by providing a type de-
scription of the expected results. Then it can be automatically checked whether
the actual results are in the given type. In other words, one can automatically
check correctness of a rule with respect to an approximate specification (given
by means of types). These ideas apply to sets of rules too. Sometimes the com-
puted types are approximate and the checks are partial (answering “correct” or

, LNCS 3564, pp. 305–317, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
N. Eisinger and J. Ma�luszyński (Eds.): Reasoning Web 2005

306 W. Drabent

“maybe incorrect”); still it is useful to have a possibility of automatic checking
certain properties of rule programs and of obtaining hints about possible errors.

So we are interested in formalisms for specifying types that facilitate con-
structing (efficient) algorithms performing those operations on types that are
needed in type checking and type inference for rules. Often there is a trade-off
between the expressive power of a formalism and the efficiency of the related
algorithms.

A related subject is typechecking of XML queries and transformations: check-
ing whether the results of queries (or transformations) applied to XML data from
a given type are within an (another) given type. Substantial theoretical work in
this area has been done (see [2, 17] and references therein). That work considers
formalizations of (substantial subsets of) XQuery and XSLT. Various cases of
such typechecking problem have been studied, some of them shown to be unde-
cidable, many others of non-polynomial complexity. Similar difficulties can be
expected with dealing with types for Web rule languages. This suggests that one
should also look for approximate, but efficient, solutions.

In the next section we introduce an abstraction of XML data as data terms.
Section 3 presents a standard formalism of tree automata. Tree automata define
sets of trees, or equivalently of terms, where each symbol has a fixed arity. This
is too restrictive for modelling Web data, where the number of children of a
tree node is not fixed. In other words, we want to deal with unranked terms.
In Section 4 we present a generalization of tree automata to sets of unranked
terms. The general formalism is rather powerful. It can define sets which cannot
be described by means of DTD and XML Schema. Also some related algorithmic
problems, for instance inclusion check, are of high complexity. In section 5 we
discuss some useful restrictions of the formalism.

2 Semistructured Data

The data on the Web are presented in the form of XML documents. By database
researchers a term semistructured data is often used [1]. This term is related to
the fact that the data format does not follow any database schema; instead the
data are to a certain extent self-explanatory.

XML documents can be seen as trees. From our point of view it is convenient
to abstract from syntactic details of XML. We define a formal language of data
terms to model tree-structured data. Our notion of data terms has been influ-
enced by Xcerpt, a query language for Web data (see e.g. [21]). Data terms are
trees. The children of a node of a data term may be ordered or unordered. We
will call such trees mixed trees to indicate their distinction from both ordered
and unordered trees. Node labels of the trees correspond to XML tags and at-
tribute names. An attribute list of an XML tag can be modelled as an unordered
set of children, as exemplified later on.

We begin with an alphabet L of labels and an alphabet B of basic con-
stants. We assume that L and B are disjoint and countably infinite. Basic con-
stants represent some basic values, such as numbers or strings, while labels are

Towards Types for Web Rule Languages 307

tree constructors, and will represent XML tags and attribute names. In con-
trast to function symbols of mathematical logic, the labels do not have fixed
arities. The generalization of the notion of a term, allowing arbitrary number of
arguments of a function symbol, is called unranked term. Data terms further gen-
eralize unranked terms, as in addition to argument sequences they also permit
unordered sets of arguments.

From basic constants and labels we construct data terms for representing
mixed trees. The linear ordering of children will be indicated by the brackets [,],
while unordered children are placed between the braces {, }.

Definition 1. A data term is an expression defined inductively as follows:

– Any basic constant is a data term,
– if l is a label and t1, . . . , tn are n ≥ 0 data terms, then l[t1 · · · tn] and

l{t1 · · · tn} are data terms.

A data term which is not a basic constant is called labelled. Data terms not
containing {, } will be called ordered.

For a labelled data term t = l[t1 · · · tn] or t = l{t1 · · · tn}, its root, denoted
root(t), is l. If t is a basic constant then root(t) = t.

Example 2. Consider the following XML element

<CD price="15.90" year="1994">
Praetorius Mass
<subtitle></subtitle>
<artist>Gabrielli Consort and Players</artist>

</CD>

It can be represented as a data term

CD[attributes{ price[15.90] year [1994] }
Praetorius Mass
subtitle[]
artist[Gabrielli Consort and Players]
]

where 15.90, 1994, Praetorius Mass, Gabrielli Consort and Players are basic con-
stants and attributes, price, year, subtitle, artist are labels.

The data terms l[] or l{} are different. One may consider it more natural not
to distinguish between the empty sequence and the empty set of arguments. We
have chosen to distinguish them to simplify the definition above, and some other
definitions and algorithms.

Notice that the component terms are not separated by commas. This no-
tation is intended to stress the fact that the label l in a data term l[t1 · · · tn]
(or l{t1 · · · tn}) is not an n-argument function symbol. It has rather a single
argument which is a sequence (string) of data terms t1, . . . , tn (where n ≥ 0).

308 W. Drabent

3 Tree Automata

Finite automata (FA) are a simple, important, and well known formalism for
defining sets of strings. We present tree automata [13, 7], a generalization of FA
for sets of terms.

A run of a finite automaton M on an input string x can be seen as an
assignment of states to the suffixes of x. The first suffix is x, the last one is the
empty string ε. The suffix can be understood as the part of x not yet read by
M . To the longest suffix x the run assigns the initial state of M . If a state q is
assigned to a suffix ay (where a is a single symbol) then the transition function of
M determines (from q and a) the state assigned to suffix y. If the state assigned
to suffix ε is a final state then the run is accepting.

If M is deterministic then for each input string there exist exactly one run.
This is not the case for nondeterministic finite automata. Moreover, a run of such
automaton may be a partial function, not assigning any state to some suffix y
of the input string (and to all the suffixes of y). The language defined by a FA
M is the set of those strings for which there exists an accepting run.

A tree automaton (TA) deals with terms instead of strings. A basic idea is
that a run assigns states to subterms of the input term (instead of suffixes of the
input string of a FA). We informally describe tree automata and an equivalent
formalism of regular term grammars.

We begin with a finite set of function symbols Σ, each symbol f ∈ Σ has its
arity arity(f) ≥ 0. A bottom-up tree automaton (buTA) over Σ is a tuple
M = (Q,Σ,F,Δ), where Q is a finite set of states, F ⊆ Q is a set of final states
and Δ is a set of transition rules, of the form

f(q1, . . . , qn)→ q,

where f ∈ Σ, q, q1, . . . , qn ∈ Q, and n = arity(f). In particular, if f is a constant
then the rule is of the form f → q. A run of M on an input term t is constructed
by assigning states to subterms of t. (Formally, we have to deal with subterm
occurrences, as a term t′ may occur many times in t, e.g. when t = f(t′, t′). For
a full definition see e.g. [7].) A state q is assigned to a subterm f(t1, . . . , tn) only
if some states q1, . . . , qn are assigned respectively to the terms t1, . . . , tn and Δ
contains the rule f(q1, . . . , qn) → q. If there exists such a run assigning a final
state q ∈ F to t then t is accepted by M . The set of the terms accepted by
M is called the tree language recognized (or defined, or accepted) by M , and
denoted L(M).

So a computation starts with assigning states to the constants in t, by ap-
plying rules of the form a → q. Then iteratively: having assigned states to to
the subterms t1, . . . , tn of a subterm f(t1, . . . , tn), a rule from Δ is applied, if
possible, to assign a state to f(t1, . . . , tn).

A bottom-up tree automaton is deterministic if there are no two rules
with the same left hand side. It turns out that any set defined by a bottom-up
tree automaton is defined by a deterministic one. (A deterministic buTA M ′

equivalent to a given buTA M can be obtained by a construction similar to the

Towards Types for Web Rule Languages 309

standard one used for FA [7]; each state of M ′ is a set of states of M . This
construction may result in exponential growth of the number of states.)

The sets of terms defined by bottom-up tree automata are sometimes called
regular tree languages (or recognizable tree languages).

We can consider a different kind of tree automata. Instead of starting at
the leaves of the tree, the computation may start at the root. By a top-down
tree automaton (tdTA) we mean a tuple M = (Q,Σ, I,Δ), where Q,Σ are
as above, I ⊆ Q is a set of initial states and Δ is a set of transition rules of the
form

q → f(q1, . . . , qn),

(where f ∈ Σ, q, q1, . . . , qn ∈ Q and n = arity(f)). Given an input term t, a
run assigns an initial state q0 ∈ I to t, and if a state q is assigned to a subterm
f(t1, . . . , tn) and a rule q → f(q1, . . . , qn) is in Δ then states q1, . . . , qn can be
respectively assigned to the subterms t1, . . . , tn. A run for t is called accepting if
it assigns a state to each subterm of t. A term t is accepted by M if there exists
an accepting run for t.

A top-down tree automaton is deterministic if it has one initial state and
has no two rules with the same left hand side and the same function symbol.

The top-down and bottom-up tree automata are equivalent, they define the
same class of languages. (For a proof it is sufficient to reverse the rules, and
exchange the sets of final and initial states.) Notice that this transformation
applied to a deterministic bottom-up automaton does not necessarily produce a
deterministic top-down one. Indeed, deterministic top-down tree automata define
a proper subset of regular tree languages. For instance, the set {f(a, b), f(b, a)}
is not defined by any deterministic tdTA.

It is sometimes convenient to view top-down tree automata as grammars
(called regular term grammars or regular tree grammars,1 see e.g. [8, 7]). Let
M = (Q,Σ, I,Δ) be such an automaton. In the corresponding grammar, the
states of M become non-terminal (unary) symbols of the grammar, and the
initial states become start symbols. We consider terms built out of Σ ∪ Q and
a derivation relation ⇒ on such terms: t1 ⇒ t2 iff t2 is obtained from t1 by
replacing an occurrence of a nonterminal q by a term f(q1, . . . , qn) such that the
rule q → f(q1, . . . , qn) is in Δ. The language generated by the grammar is

{ t | q ⇒∗ t, q ∈ I, t does not contain symbols from Q }.

This set is equal to the language accepted by the automaton M . (We skip a
proof, based on showing that an accepting run of M assigns a state q to an
input term t iff q ⇒∗ t, for any term t over Σ).

The class of regular tree languages is closed under union, complement and
intersection [7]. We briefly outline the proofs. To construct a buTA for the union
of regular tree languages L1, L2, take two buTA Mi = (Qi, Σ, Fi,Δi) (i = 1, 2)
respectively for L1 and L2, with disjoint sets of states. Automaton (Q1 ∪ Q2,

1 However [18] applies this name to a formalism defining sets of unranked trees.

310 W. Drabent

Σ, F1 ∪ F2, Δ1 ∪ Δ2) accepts L1 ∪ L2. A TA for L1 ∩ L2 can be obtained by
a constructing a product automaton from M1 and M2 (and the construction is
polynomial). Exchanging the final and non final states in a deterministic buTA
for a tree language L results in a buTA for the complement of L.

It can be decided in time O(|t| · |M |) whether a term t is accepted by a TA
M (where |t|, |M | are respectively the sizes of t, M). If M is a deterministic
buTA (or deterministic tdTA) then the membership can be tested in linear
time. Checking whether L(M) = ∅ is linear, while checking emptiness of the
complement of L(M) is EXPTIME-complete. Also checking whether L(M1) ⊆
L(M2) is EXPTIME-complete. For details and proofs see [7]. For deterministic
tdTA polynomial algorithms for checking L(M1) ⊆ L(M2) exist, see e.g. [12, 9].

4 Tree Automata Generalized

Tree automata are not directly applicable to semistructured data. They deal
with terms in which each symbol has a fixed arity, while in semistructured data
the number of arguments of a symbol is not fixed.

A straightforward solution is to apply a standard way of representing trees
as binary trees [16]. In such a binary tree the first child of a node n represents
the list of children of n in the original tree, while the second child represents the
(tail of the list of) siblings of n.

↓
n
|↓
→ sister of n

�· · ·
→ · · ·

daughter of n → daughter of n → · · ·
↓ ↓
· · · · · ·

Such representation is used for instance by [15]. A disadvantage is that the
representation obscures the structure of the original tree; the (next) sibling of n
is treated in the same way as its (first) child, while the children of n are treated
differently. It seems more elegant and clear to provide a formalism to directly
describe semistructured data. It turns out that such approach has some actual
technical advantages.

There exist various equivalent generalizations of tree automata to unranked
terms [18, 3, 15]. They follow a common main idea. In tree automata (or regular
tree grammars) the children of a node are described by a single sequence (of
states or nonterminals). The generalizations replace a single sequence by a regu-
lar language. In this way the formalism is able to specify a set of tree sequences,
which are allowed as the children of a given tree node.

Some of the formalisms are formulated as defining sets of trees (e.g. [18]),
some other as defining sets of sequences of trees (in other words of ordered
forests, or of hedges, e.g. [3, 15]). This difference is inessential, as we may express
a sequence t1, . . . , tn of trees as a tree f(t1, . . . , tn), where f is a selected new
symbol. The grammatical formalism described below defines sets of trees.

Towards Types for Web Rule Languages 311

As our abstraction of semistructured data we choose data terms (cf. Sec-
tion 2). The purpose of this paper is to discuss defining sets of data terms, so
we do not consider a way of specifying sets of basic constants. Instead we as-
sume that we have an alphabet C of type constants, and for each C ∈ C a
corresponding set [[C]] of basic constants is given. The formalism also employs
an alphabet V of type variables. The symbols from V ∪ C will play the role of
grammar nonterminals, they will be called type names.

A regular language (of strings) over V ∪C will be called a regular type lan-
guage. As a way of specifying regular type languages we choose regular expres-
sions; they may be replaced by other formalisms, like (deterministic or nondeter-
ministic) finite automata. By a regular type expression we mean a regular ex-
pression over the alphabet V∪C. Thus ε, φ and any type constant or type variable
T are regular type expressions, and if τ, τ1, τ2, are type expressions then (τ1τ2),
(τ1|τ2) and (τ∗) are regular type expressions. As usually, every regular type ex-
pression τ denotes a regular language L(τ) over the alphabet V ∪ C: L(ε) = {ε},
L(φ) = ∅, L(T) = {T}, L((τ1τ2)) = L(τ1)L(τ2), L((τ1|τ2)) = L(τ1) ∪ L(τ2),
and L((τ∗)) = L(τ)∗. We adopt the usual notational conventions [14], where the
parentheses are suppressed by assuming the following priorities of operators: ∗,
concatenation, |.

As syntactic sugar for regular expressions we will also use the following no-
tation:

– τ(n : m), or τ (n:m), where n ≤ m, as a shorthand for τn|τn+1| · · · |τm,
notice that τ∗ can be seen as τ(0 :∞)

– τ+ as a shorthand for ττ∗,
– τ ? as a shorthand τ(0 : 1),

where τ is a regular expression and n is a natural number and m is a natural
number or ∞.

Definition 3. A type definition D is a finite set of rules of the form

T → l[τ] or T → l{τ}

where T is a type variable, l is a label, τ a regular expression over V ∪ C (i.e. a
regular type expression), and no two rules with the same T and l occur in D.

The regular expression τ is called the content model of the rule. A rule be-
ginning with a type name T is said to be a rule for T . The form of the content
models in rules of the form T → l{τ} is restricted, as explained below.

The two kinds of rules are used to distinguish ordered and unordered argu-
ments of a label. A rule T → l[τ] describes a family of data terms where the
children of the root l are ordered and their sequence is described by the regular
expression τ . In the second case the children of l are unordered and we abstract
from the order of symbols in the strings from L(τ). Thus the full power of regular
expressions is not needed here. We will usually require that the regular expres-
sions in the rules of the form T → l{τ} are multiplicity lists, i.e. they are of

312 W. Drabent

the form s
(n1:m1)
1 · · · s(nk:mk)

k where k ≥ 0 and s1, . . . , sk are distinct type names.
A different kind of restrictions is considered in [20, 2].

A type definition defines a set of data terms by means of rewriting of data
patterns.

Definition 4. A data pattern is inductively defined as follows

– a type variable, a type constant, and a basic constant are data patterns,
– if d1, . . . , dn for n ≥ 0 are data patterns and l is a label then l[d1 · · · dn] and

l{d1 · · · dn} are data patterns.

Thus data terms are data patterns, and data patterns may be seen as data terms
with some subterms replaced by type names. Now we are ready to define the
rewriting relation of a type definition.

Definition 5 (of →D). Let D be a type definition and d, d′ be data patterns.
d→D d′ iff one of the following holds:

1. For some type variable T
– there exists a rule T → l[r] in D and a string s ∈ L(r), or
– there exists a rule T → l{r} in D, a string s0 ∈ L(r), and a permutation

s of s0

such that d′ is obtained from d by replacing an occurrence of T in d, respec-
tively, by l[s] or by l{s}.

2. d′ is obtained from d by replacing an occurrence of a type constant S by a
basic constant in [[S]].

As usually, a sequence d1 →D · · · →D dn is called a derivation of D. Deriva-
tion may end with a data term. This gives the semantics for type definitions:

Definition 6. Let D be a type definition. The type [[T]]D associated with a
type name T by D is defined as the set of all data terms t that can be obtained
from T :

[[T]]D = { t | T →∗
D t and t is a data term }.

Additionally we define the set of data terms specified by a given data pattern d,
and by a given regular expression τ :

[[d]]D = { t | d→∗
D t and t is a data term },

[[τ]]D = { t1 · · · tk | t1 ∈ [[T1]]D, . . . , tk ∈ [[Tk]]D for some T1 · · ·Tk ∈ L(τ) }.
A set S of data terms is called a type or a regular set if S = [[T]]D for some
type definition D and type name T .

Notice that type definitions generalize regular term grammars. Assuming a
fixed arity arity(l) for each label l, a type definition containing only rules of the
form T → l[T1 · · ·Tarity(l)] is a regular term grammar.

Example 7. Assume that #name ∈ C and consider the following type defini-
tion D:

Towards Types for Web Rule Languages 313

Person → person[Name (M |F) Person(0 :2)]
Name → name[#name]
M → m[]
F → f []

Let john, mary, bob ∈ [[#name]]. Extending the derivation

Person → person[Name M Person]→∗ person[name[#name]m[]Person]

one can check that the following data term is in [[Person]]

person[name[john]m[] person[name[mary] f [] person[name[bob]m[]]]].

5 Useful Restrictions of Type Definitions

The formalism of type definitions introduced in the previous section is rather
general. This has some disadvantages. For instance, inclusion checking for sets
defined by type definitions is EXPTIME-hard. It is interesting to find out classes
of type definitions for which some problems can be solved more efficiently. This
section presents a few such classes; it is mainly based on the classification pro-
posed by Murata, Lee, and Mani [18]. (A newer version of that paper is [19].)
That classification is made from the point of view of membership checking, but
it is also useful when other problems are considered. The work [18, 19] dealt
only with ordered trees (in our formalism this means ordered data terms). We
provide a straightforward generalization of the classification of [18, 19] to mixed
trees (i.e. arbitrary data terms).

In what follows we also explain briefly the relation between the discussed
classes of definitions, and DTD and XML Schema. It should also be mentioned
that the schema language Relax NG [6] is able to define any regular set of
ordered data terms (formally, any set of XML documents corresponding to such
data term set).

There is already a restriction imposed in the Definition 3, namely that there
are no two rules for the same type variable T and with the same label l. This
restriction is not severe, as any two rules T → lατ1β, T → lατ2β with the
same T, l and the same parentheses αβ are equivalent to one rule T → lατ1|τ2β.
However the restriction implies that in a type [[T]]D defined by a type definition
there cannot occur data terms of the form l{τ} and of the form l[τ] (with the
same l). We expect that that this restriction is not important from a practical
point of view.

A natural question arises whether we need multiple rules for one type name.

Definition 8. A type definition D will be called single-label if D contains
at most one rule for each type name T .

We show that the sets defined by type definitions are finite unions of sets
defined by single-label type definitions.

314 W. Drabent

Proposition 9. Let D be a type definition. There exists a single-label defini-
tion D′ such that for each type variable T occurring in D we have [[T]]D =
[[T1| · · · |Tn]]D′ for some type names T1, . . . , Tn.

Proof. Let T → liαiτiβi (i = 1, . . . , n) be the rules from D for a type variable
T (where αiβi are parentheses [] or {}). By Definition 3 the labels l1, . . . , ln are
distinct. Introduce new type variables T1, . . . , Tn. Replace the i-th rule above by
Ti → liαiτiβi. Replace each occurrence of T in the content model of a rule by
(T1| · · · |Tn). For the resulting type definition DT we have [[T]]D = [[T1| · · · |Tn]]DT

and [[U]]D = [[U]]DT
for all the other type names occurring in D. D′ is obtained

by repeating this transformation for all the type variables for which rules in D
exist.

Consider a type definition D. Following [18] we define a notion of compet-
ing type names. Distinct type variables T1, T2 are competing (w.r.t. D) if D
contains rules with T1 and T2 as the left hand sides and with the same label l.
Distinct type constants C1, C2 are competing if [[C1]] ∩ [[C2]] �= ∅.
Definition 10. A type definition is called local if it does not contain compet-
ing type names.

Example 11. Consider a type definition

D = {Book → book[Author∗], Author → man[#], Author → woman[#] },
where Book,Author ∈ V, # ∈ C, and book,man,woman ∈ L. No two type
names of D are competing, thus D is local. D is not single-label; removing one
of the rules for Author results in a single-label definition.

The intention for introducing local definitions is simplifying the membership
check. If D is local then for any data term t there is at most one type name Tt

(occurring in D) such that t ∈ [[Tt]]D. Thus to check whether l[t1 · · · tn] ∈ [[T]]D
it is sufficient to check, for a single sequence Tt1 , . . . , Ttn

, whether ti ∈ [[Tti
]]D for

i = 1, . . . , n, whether a rule T → l[τ] exists in D, and whether Tt1 · · ·Ttn
∈ L(τ).

Checking if l{t1 · · · tn} ∈ [[T]]D is similar.
Sections 3.2 and 5.1 of [18] point out correspondence between DTD’s [10] and

local type definitions. Indeed, any DTD represented as a data definition is local.
This is due to not distinguishing between type variables and labels; each rule of
the data definition is of the form l → l[τ]. On the other hand local definitions
are more general than DTD, as they allow different labels for the same type
variable, like in Ex. 11. (Papers [18, 19] do not discuss this issue and all the
example definitions they use are single-label). So it is more accurate to state
that DTD’s correspond to data definitions which are local, single-label and do
not contain rules with {}.
Example 12. Consider the type definition D from Example 11 and assume that
[[#]] is the set of character strings. Removing the last rule from D results in
a type definition D′ corresponding to the DTD: <!ELEMENT book (man*)>
<!ELEMENT man (#PCDATA)> .

Towards Types for Web Rule Languages 315

Definition D does not correspond to any DTD, as [[Author]] contains data
terms with two roots, man and woman. Transforming D into a single-label
definition as in the proof of Proposition 9 results in a definition which is not
local.

The conditions on local type definitions can be weakened without requiring
any substantial modifications of the outlined membership checking algorithm.
Namely it is sufficient that, for a given t, in any content model of D there is at
most one T such that t ∈ [[T]]D.

Definition 13. A type definition D is called single-type if no content model
in a rule of D contains competing type names [18]. A type definition D is proper
if it is single-type and single-label [22, 5].

Example 14. Consider the type definition D from Example 11 and rules

D′ = {Library → lib{Reader∗}, Reader → man[#], Reader → woman[#] }.

Definition D ∪ D′ is single-type but not proper and not local. Removing from
D ∪D′ the two rules with label man results in a proper definition.

Paper [18, 19] explains that the sets defined by XML Schema [11], with ex-
clusion of a few constructs, can be defined by single-type type definitions. One
of the excluded constructs is the mechanism of xsi :type. Actually, “single-type”
can be replaced here by “proper”, as all the elements of a set defined by an XML
Schema have the same main tag.

An important property is that inclusion of sets defined by proper type defini-
tions can be checked in polynomial time. More precisely, [5] presents an algorithm
which checks whether [[T1]]D1 ⊆ [[T2]]D2 , where D2 is proper and D1 is arbitrary.
(Definition D1 is required to be single-label, but this restriction can be aban-
doned.) The algorithm works in time polynomial w.r.t. the sizes of D1, D2 and
the sizes of deterministic finite automata equivalent to the content models of
D1, D2. Unfortunately, the latter are exponential w.r.t. the sizes of regular ex-
pressions. It is known that construction of deterministic FA is of linear time for
1-unambiguous regular expressions [4]. Thus inclusion can be checked in polyno-
mial time for type definitions D1, D2 with 1-unambiguous content models, where
D2 is proper.

The restrictions above can be further weakened for rules with parentheses [],
by considering the positions on which type names occur in the strings from L(τ).
We do not discuss this issue here.

The classes discussed in this section can be parameterized by the way the
regular languages in the content models are specified. As the discussion above
on inclusion checking for proper definitions suggests, an important class of type
definitions is that with content models given by deterministic FA (or by regular
expressions which can be transformed to such automata in linear or polyno-
mial time). This class is also distinguished in the work on complexity of XML
transformations (cf. [17] and the references therein). That work also introduces

316 W. Drabent

a class of bottom-up deterministic (unranked) tree automata, which in our ap-
proach correspond to type definitions such that whenever a definition contains
rules T1 → lα1τ1β1 and T2 → lα2τ2β2 for distinct T1, T2 then L(τ1)∩L(τ2) = ∅.

The class of regular sets of data terms is closed under intersection, union
and complementation. The classes of the sets defined by local, single-type and
proper type definitions are closed under intersection but not under union (hence
not under complementation) [18, 19, 5].

Conclusions

The intention of this text is to introduce the reader to formalisms for defining sets
of trees; the intended application is typechecking of rule languages for Web appli-
cations. First we presented tree automata as a generalization of finite automata
for strings. Tree automata define sets of terms where each function symbol has a
fixed arity. This is too restrictive from the point of view of modelling Web data.
For this task unranked terms are needed, where arity of symbols is not fixed. We
deal with a slightly more general concept of data terms, where the arguments
of a symbol can be ordered or unordered. A generalization (called type defini-
tions) of tree automata for data terms is shown in Section 4. Some algorithmic
problems, like inclusion check, are of non polynomial complexity already for tree
automata. We outlined some restrictions of the formalism; for such restrictions
more efficient algorithms exist. We briefly discussed the correspondence of these
restrictions to DTD and XML Schema.

Acknowledgement. This research has been partially funded by the Euro-
pean Commission and by the Swiss Federal Office for Education and Science
within the 6th Framework Programme project REWERSE number 506779
(cf. http://rewerse.net).

References

1. S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations to
Semistructured Data and XML. Morgan Kaufmann, 1999.

2. N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu. XML with data values:
Typechecking revisited. J. Comput. Syst. Sci., 66(4):688–727, 2003.

3. A. Brüggemann-Klein, M. Murata, and D. Wood. Regular tree and regular hedge
languages over unranked alphabets. Technical Report HKUST-TCSC-2001-0, The
Hongkong University of Science and Technology, April 2001.

4. A. Brüggemann-Klein and D. Wood. One-unambiguous regular languages. Infor-
mation and Computation, 142(2):182–206, May 1998.

5. François Bry, W�lodzimierz Drabent, and Jan Ma�luszyński. On subtyping of tree-
structured data: A polynomial approach. In Hans Jürgen Ohlbach and Sebastian
Schaffert, editors, Principles and Practice of Semantic Web Reasoning, Second In-
ternational Workshop (PPSWR 2004), volume 3208 of Lecture Notes in Computer
Science, pages 1–18. Springer-Verlag, 2004.

Towards Types for Web Rule Languages 317

6. J. Clark and M. Murata (editors). RELAX NG specification, December 2001.
http://www.oasis-open.org/committees/relax-ng/spec-20011203.html.

7. H. Common, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Ti-
son, and M. Tommasi. Tree automata techniques and applications. http://

www.grappa.univ-lille3.fr/tata/, 2002.
8. P. Dart and J. Zobel. A regular type language for logic programs. In F. Pfenning,

editor, Types in Logic Programming, pages 157–187. The MIT Press, 1992.
9. W. Drabent, J. Maluszynski, and P. Pietrzak. Using parametric set constraints

for locating errors in CLP programs. Theory and Practice of Logic Programming,
2(4–5):549–610, 2002.

10. Extensible markup language (XML) 1.0 (second edition), W3C recommendation
6 October 2000. http://www.w3.org/TR/REC-xml.

11. D. C. Fallside (ed.). XML Schema part 0: Primer. W3C Recommendation, http://
www.w3.org/TR/xmlschema-0/, 2001.

12. J. Gallagher and D. A. de Waal. Fast and precise regular approximations of logic
programs. In P. Van Hentenryck, editor, Proc. of the Eleventh International Con-
ference on Logic Programming, pages 599–613. The MIT Press, 1994.

13. F. Gécseg and M. Steinby. Tree languages. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Languages, volume 3, Beyond Words. Springer-Verlag,
1997.

14. J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, 2nd edition, 2001.

15. H. Hosoya, J. Vouillon, and B. C. Pierce. Regular expression types for XML. In
ICFP 2000, pages 11–22, 2000.

16. Donald E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer
Programming. Addison-Wesley, Reading, Massachusetts, second edition, 1973.

17. W. Martens and F. Neven. Frontiers of tractability for typechecking simple XML
transformations. In PODS 2004, pages 23–34, 2004.

18. M. Murata, D. Lee, and M. Mani. Taxonomy of XML schema languages using
formal language theory. In Extreme Markup Langages, Montreal, Canada, 2001.
http://www.cs.ucla.edu/~dongwon/paper/.

19. M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Taxonomy of XML schema
languages using formal language theory. Submitted, 2003.

20. F. Neven and T. Schwentick. XML schemas without order. Unpublished, 1999.
21. Sebastian Schaffert and François Bry. Querying the Web Reconsidered: A Prac-

tical Introduction to Xcerpt. In Proceedings of Extreme Markup Languages 2004,
Montreal, Quebec, Canada (2nd–6th August 2004), 2004.

22. A. Wilk and W. Drabent. On types for XML query language Xcerpt. In Interna-
tional Workshop, PPSWR 2003, Mumbai, India, December 8, 2003, Proceedings,
number 2901 in LNCS, pages 128–145. Springer-Verlag, 2003.

Author Index

Alferes, José Júlio 134
Antoniou, Grigoris 1
Aßmann, Uwe 290

Bailey, James 35
Baldoni, Matteo 173
Baroglio, Cristina 173
Baumgartner, Robert 275
Bry, François 35

Drabent, W�lodzimierz 305

Eiter, Thomas 275

Franconi, Enrico 1
Fuchs, Norbert E. 213
Furche, Tim 35

Gottlob, Georg 275

Henze, Nicola 173
Herzog, Marcus 275
Höfler, Stefan 213

Kaljurand, Kaarel 213
Kifer, Michael 22
Koch, Christoph 275

May, Wolfgang 134

Rinaldi, Fabio 213

Schaffert, Sebastian 35
Schneider, Gerold 213

van Harmelen, Frank 1

Wagner, Gerd 251

	Frontmatter
	Introduction to Semantic Web Ontology Languages
	Rules and Ontologies in F-Logic
	Web and Semantic Web Query Languages: A Survey
	Evolution and Reactivity for the Web
	Personalization for the Semantic Web
	Attempto Controlled English: A Knowledge Representation Language Readable by Humans and Machines
	Rule Modeling and Markup
	Information Extraction for the Semantic Web
	Reuse in Semantic Applications
	Towards Types for Web Rule Languages
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

