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Abstract. With the integration of cameras, mobile phones have evolved
into networked personal image capture devices. Camera phones can per-
form image processing tasks on the device itself and use the result as
an additional means of user input and a source of context data. In this
paper we present a system that turns such phones into mobile sensors for
2-dimensional visual codes. The proposed system induces a code coordi-
nate system and visually detects phone movements. It also provides the
rotation angle and the amount of tilting of the camera as additional in-
put parameters. These features enable applications such as item selection
and interaction with large-scale displays. With the code coordinate sys-
tem, each point in the viewed image – and therefore arbitrarily shaped
areas – can be linked to specific operations. A single image point can
even be associated with multiple information aspects by taking different
rotation and tilting angles into account.

1 Introduction

With the integration of CCD cameras, mobile phones have become networked
personal image capture devices. As image resolution improves and computing
power increases, they can do more interesting things than just taking pictures
and sending them as multi media messages over the mobile phone network. For
example, programmable camera phones can perform image processing tasks on
the device itself and use the result as an additional means of input by the user
and a source of context data.

In this paper, we present a visual code system that turns camera phones
into mobile sensors for 2-dimensional visual codes. For that, we elaborate on
and extend our initial ideas presented in [1]. We assume scenarios where camera
phones are used to sense a scene that contains one or more visual codes. By
recognizing a code tag, the device can determine the code value, the targeted
object or image element (even if the object or image element itself is not equipped
with a code tag), as well as additional parameters, such as the viewing angle of
the camera. The system is integrated with a visual phone movement detection
scheme, which provides three degrees of freedom and turns the mobile phone
into an optical mouse. Code recognition and motion detection are completely
performed on the phone itself. The phone’s wireless communication channel is
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used to retrieve online content related to the selected image area or to trigger
actions (either in the background infrastructure or on a nearby larger display),
based on the sensed code and its parameters.

These features enable local interaction with physical objects, printed doc-
uments, as well as virtual objects displayed on electronic screens in the user’s
vicinity. Mobile phones are in reach of their users most of the time and are thus
available in many everyday situations. They are therefore ideal bridging devices
between items in the real world and associated entities in the virtual world. Vi-
sual codes provide visible “entry points” into the virtual world, starting from the
local surroundings. This offers a natural way of local interaction and strengthens
the role of mobile phones in a large number of usage scenarios. The visual code
system also provides the basis for superimposing textual or graphical informa-
tion over the camera image in close real-time in the sense of augmented reality.
This entails a manifold of application possibilities in situations where informa-
tion is to be closely linked to physical objects. An example is the maintenance
of devices or apparatuses in the field: Individual parts of an apparatus are as-
sociated with visual codes. With the help of the visual code system, graphical
information which is aligned with the items in the image, is superimposed over
the camera image.

The novelty of the proposed system is its code coordinate system, the visual
detection of phone movement, and the determination of the rotation angle and
amount of tilting. These features enable interesting applications, beyond simple
item selection, such as interaction with nearby active displays. The recognition
algorithm precisely determines the coordinates of a targeted point in the code
coordinate system, which is independent of the orientation of the camera relative
to the code tag (distance, rotation, tilting) and also independent of the camera
parameters (focal distance, etc.). This enables the association of each point in the
viewed image – and therefore arbitrarily shaped areas – with specific operations.
A single visual code can be associated with multiple such areas and a single
image point can be associated with multiple information aspects using different
rotation and tilting angles.

2 Related Work

Sony’s CyberCode [2] is related to our approach, but does not operate on mobile
phone class devices and does not use phone movement and other additional pa-
rameters for interaction in the way we propose. CyberCodes store 24 bits of data.
In addition to the ID, the 3-D position of the tagged objects is determined. The
proposed applications for CyberCodes are augmented reality systems, various
direct manipulation techniques involving physical objects, and indoor guidance
systems.

TRIP [3] is an indoor location tracking system based on printable circular
markers, also called “TRIPtags”. It employs CCD cameras plugged into stan-
dard PCs for code recognition, 3-D location, and orientation detection. TRIPtags
have an address space of just 19683 (= 39) possible codes, which makes them im-
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practicable to encode universally unique IDs, like Bluetooth MAC addresses. In
contrast to our system, TRIP is designed for use with stationary cameras which
are distributed in a networked environment. It relies on a CORBA infrastructure
and a centralized recognition engine named “TRIPparser”. In our system, code
recognition is completely done on the mobile phones, which enhances scalability,
and code sightings are distributed wirelessly.

The FieldMouse [4] is a combination of a barcode reader and a pen-shaped
mouse. The mouse detects relative (∆x, ∆y) movement. If the location of a
barcode on a flat surface is known to the system, absolute locations can be
computed by first scanning the barcode and then moving the FieldMouse. This
enables various kinds of paper-based GUIs.

A number of commercial efforts exist to recognize product codes with mobile
phones. An example is AirClic (www.airclic.com), which provides tiny barcode
readers that can be attached to mobile phones. The disadvantage of this approach
is the necessity of an additional device, which increases the physical size and
weight of the mobile phone and consumes additional energy. Barcode readers also
do not provide the orientation and selection features of camera based approaches.

SpotCodes (www.highenergymagic.com) are a commercialized derivative of
the TRIP tags mentioned above for use with camera phone devices. They recog-
nize the rotation of the code tag in the image, but do not provide an orientation-
independent code coordinate system and do not detect relative camera movement
independent of codes in the camera image. A number of interaction possibilities
are described on the Web page and in [5], such as rotation controls and sliders.

An increasing number of companies offer mobile phones with the ability to
read QR Codes [6]. They implement the core functionality of decoding QR Codes.
They do not, however, have the code coordinate system, rotation, tilting, and
visual movement detection features that are integrated in our system.

The same applies to Semacode (semacode.org), which uses standard Data
Matrix [7] codes to implement physical hyperlinks and load Web pages in the
phone’s browser. Example applications are live urban information, such as the
position of GPS-equipped buses, information on nearby shops and services, and
semacodes on business cards and conference badges.

3 Visual Code, Recognition Algorithm, and Phone
Movement Detection

The mobile phone devices we consider have severely limited computing resources
and often lack a floating point unit. Hence, the use of floating point operations
has to be minimized. The typical phone camera generates low to medium quality
color images in VGA (640 × 480 pixels) or lower resolution. The relatively poor
image quality determines the minimal size of code features that can be reliably
recognized. The code features therefore have to be more coarsely grained than
those of most available visual codes. In our evaluation it became clear that color
should not be used as a code feature, because of the large differences in color
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values, depending on varying lighting conditions. Moreover, color codes are more
expensive to print and harder to reproduce than simple black-and-white codes.

Because of the mobility inherent to camera phones, scanned codes might ap-
pear at any orientation in the camera image. They can be arbitrarily rotated
and tilted, which complicates image recognition. We decided to constructively
use these characteristics by measuring the amount of tilting and rotation of a
code tag in the image and use them as additional input parameters. Another
feature we deemed essential is the ability to map arbitrary points in the image
plane to corresponding points in the code plane, i.e. to compute the code coor-
dinates of arbitrary image pixels, and vice versa. In particular, this enables the
conversion of the pixel coordinates of the camera focus – which is the point the
user aims at – into corresponding code coordinates and the selection of image
elements located at these code coordinates. This coordinate mapping can also
be used for removing the perspective distortion of image parts.

These characteristics mark out the design space for the visual codes and form
the basis for the further discussion. The code layout is pictured in Fig. 1. It con-
sists of the following elements: a larger and a smaller guide bar for determining
the location and orientation of the code, three cornerstones for detecting the dis-
tortion, and the data area with the actual code bits. The combination of larger
and smaller guide bars is beneficial for detecting even strongly tilted codes. In
the bottom of Fig. 1 the code coordinate system is shown. Each code defines its
own local coordinate system with its origin at the upper left edge of the code
and one unit corresponding to a single code bit element. Depending on the code
size, the mapping between points in the image plane and points in the code plane
is more precise than a single coordinate unit. The x-axis extends in horizontal
direction to the left and to the right beyond the code itself. Correspondingly, the
y-axis extends in vertical direction beyond the top and bottom edges of the code.
For each code found in a particular input image, the code recognition algorithm
establishes a bijective mapping between arbitrary points in the code plane and
corresponding points in the image plane.

origin of code 
coordinate
system (0,0) (10,0)

(0,10)

distortion
correction
feature

code bit elements
(capacity: 83 bit)

orientation
feature
(guide bars)

Fig. 1. The layout of the visual code (left) and the code coordinate system (right)

3.1 Recognition Algorithm

The recognition algorithm performs the following main steps on the camera
image and produces a code information object for each detected code.
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– Input: Camera image
– Output: Set of code information objects, comprising

• the code value,
• the image pixel coordinates of the corner stones and guide bars,
• the rotation angle of the code in the image,
• the amount of horizontal and vertical tilting,
• the distance of the camera to the code,
• a projective warper object for the code, which implements a planar ho-

mography (see below) used to transform image coordinates to code co-
ordinates and vice versa,

• the width and height of the originating image,
• a flag indicating the result of error checking.

Gray Scaling and Adaptive Thresholding. To produce a gray scaled ver-
sion of the colored input image, we use the formula gray = (red + green)/2,
instead of the ITU-standardized formula for luminance Y = 0.2126 × red +
0.7152 × green + 0.0722 × blue. The blue color component is omitted, since it
has the lowest quality in terms of sharpness and contrast. Our simple formula
is computationally efficient and produces an adequate starting point for thresh-
olding. Efficiency in this step is of utmost importance for the performance of
the whole recognition algorithm, because every single image pixel has to be gray
scaled.

An adaptive thresholding method is taken to produce a black-and-white ver-
sion of the gray scaled image, because the brightness of the camera image is not
constant and the visual code may be unevenly illuminated. We slightly modified
the adaptive thresholding algorithm described in [8], where the basic idea is to
use a weighted moving average of the gray values while running through the
image in a snake-like fashion (alternating left to right and right to left scanline
traversal). Our adaptation takes the previous scanline of each examined scanline
into account in order to avoid artifacts in every other line, resulting from the
zigzag traversal of the scanlines. The average gs(n) is updated according to

gs(n) = gs(n − 1) · (1 − 1
s
) + pn

with pn denoting the gray value of the current pixel and s = 1
8w the width of

the moving average (w is the image width). gs is initialized with gs(0) = 1
2cs,

where c is the maximum possible gray value. The color of the thresholded pixel
T (n) is then chosen as (t = 15):

T (n) =
{

1 if pn < gs(n)
s · 100−t

100
0 otherwise

Gray scaling and adaptive thresholding turned out to be the most time con-
suming phase of the recognition process. Therefore, we replaced any floating
point operations in this part by shifted integer operations, which resulted in a
significant performance improvement.
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Region Identification and Labeling. This step consists of finding regions of
neighboring black pixels, counting them, and assigning a number to each. The
algorithm we use is a well known two-phase method: In the first phase, the image
is traversed row by row, assigning preliminary labels to the regions found. During
this process, it may happen that two regions with different labels turn out to be
in fact the same region. In this case, the equivalence of the two temporary labels
is stored in a table. The second phase resolves the equivalencies by merging the
corresponding regions and assigns a final label to each region.

In the implementation, gray scaling, adaptive thresholding, and the first
phase of region labeling are bundled for performance reasons and are done in
a single scan through the image, i.e., pixels that are thresholded as foreground
pixels are immediately assigned a label and any label equivalences are recorded.

Calculation of Region Shapes and Orientations. In order to identify can-
didates for orientation bars among the regions found, the notion of second-order
moments is used [9]. From these moments, the major and minor axis of each
region is determined. The ratio of the lengths of these axes is a good measure
for the “eccentricity” of a region: perfect circles and squares have a ratio equal
to one whereas line segments have a ratio close to zero. This is very useful to
identify regions with a bar-like shape.

The second-order moments of a region consisting of the set of pixels R and
having the center of gravity (x̄, ȳ) are defined as follows:

µxx =
1

|R|
∑

(x,y)∈R

(x − x̄)2,

µyy =
1

|R|
∑

(x,y)∈R

(y − ȳ)2,

µxy =
1

|R|
∑

(x,y)∈R

(x − x̄)(y − ȳ),

where x̄ =
1

|R|
∑

(x,y)∈R

x, ȳ =
1

|R|
∑

(x,y)∈R

y

From these moments, an ellipsis E = {(x, y)|dx2 +2exy + fy2 ≤ 1} that has the
same major and minor axis as the region can be defined by setting:

(
d e
e f

)
=

1
4µxxµyy − µ2

xy

(
µyy −µxy

−µxy µxx

)

Furthermore, the orientation vector of the major axis is calculated as
(

− sinα
cosα

)
, where α =

1
2

arctan
2e

d − f
.
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Locating and Evaluating the Codes. Locating codes in the image is done
by looking for guide bar candidates and by finding corresponding cornerstones.
Guide bar candidates are found by simply selecting those regions whose axis
ratio lies in a certain range around the expected ideal axis ratio. The range has
to be large enough to allow for tilted codes. For each of these candidates, the size
and orientation of the region is used to estimate the expected positions of the
second guide bar and the three cornerstones. It is then checked whether these
features are actually present at the estimated positions. Cornerstone candidates
found are only accepted if their axis ratio is above a certain limit.

Computing the Projective Mapping from Code Coordinates to Image
Coordinates. Since the code elements are coplanar, there exists a unique ho-
mography (projective transformation matrix) between the code plane and the
image plane. The projective mapping can be calculated once four corresponding
points are known [10]. In our algorithm, the correspondences are the centers of
the three cornerstones plus the center of the second guide bar:

Code element Image coordinates Code coordinates
upper left cornerstone (x0, y0) (0, 0)
upper right cornerstone (x1, y1) (10, 0)
second guide bar (x2, y2) (8, 10)
lower left cornerstone (x3, y3) (0, 10)

Code coordinates (u, v) are mapped to image coordinates (x, y) with

x =
au + bv + 10c

gu + hv + 10
, y =

du + ev + 10f

gu + hv + 10
.

The parameters a to h are calculated from the four reference points (xi, yi),
i ∈ {0, . . . , 3}, as follows:

∆x1 = x1 − x2 ∆y1 = y1 − y2 ∆x2 = x3 − x2 ∆y2 = y3 − y2

Σx = 0.8x0 − 0.8x1 + x2 − x3 Σy = 0.8y0 − 0.8y1 + y2 − y3

g =
Σx∆y2 − Σy∆x2

∆x1∆y2 − ∆y1∆x2

h =
Σy∆x1 − Σx∆y1

∆x1∆y2 − ∆y1∆x2

a = x1 − x0 + gx1

b = x3 − x0 + hx3

c = x0

d = y1 − y0 + gy1

e = y3 − y0 + hy3

f = y0

Computing the Projective Mapping from Image Coordinates to Code
Coordinates. The inverse mapping to the one described above is important for
applications which select items visible in the image. Given the coordinates of a
pixel, the corresponding code coordinates can thus be obtained. Image coordi-
nates (x, y) are mapped to code coordinates (u, v) as follows:

u = 10 · Ax + By + C

Gx + Hy + I
, v = 10 · Dx + Ey + F

Gx + Hy + I
, with
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A = e − fh

B = ch − b

C = bf − ce

D = fg − d

E = a − cg

F = cd − af

G = dh − eg

H = bg − ah

I = ae − bd

Rotation Angle. The rotation angle gives the rotation of the visual code in the
image in degrees counterclockwise (0-359◦). A code that has the same orientation
as the image has rotation angle 0◦ (like the ones in Fig. 1). The rotation is
determined by mapping the points (0,0) and (100,0) from the code coordinate
system to the image coordinate system, resulting in the image points (ax, ay),
and (bx, by). The rotation angle is then determined as the arc tangent of the
difference quotient of a and b.

Horizontal and Vertical Tilting. The term tilting denotes the amount of
inclination of the image plane relative to the code plane. Horizontal tilting is
the amount of inclination of the image plane relative to the horizontal axis of
the code. Analogously, vertical tilting denotes the amount of inclination of the
image plane relative to the vertical axis of the code. Tilting values of 1 mean
no tilting, a value less than 1 means tilting towards the left/top, and a value
greater than 1 means tilting towards the right/bottom.

The tilting parameters are computed as follows: Four image points with con-
stant distance h (image height) from the image center point in the axis directions
of the code coordinate system are computed. They are mapped to correspond-
ing code coordinates and their distances to the center point are computed. The
ratios of these distances determine the tilting parameters tx and ty. They are
independent of the size of the code in the image. From these ratios the tilting
angles tαx and tαy can be determined, if a constant r is known that depends on
the camera parameters. It can be obtained experimentally. For the Nokia 6600,
e.g., this parameter has the value r = 1.64177.

i = image coordinates of the image center point
c = CodeCoordinates(i)

x = ImageCoordinates(c + (1, 0)) − i

y = ImageCoordinates(c + (0, 1)) − i

u = x/|x|
v = y/|y|

l = |CodeCoordinates(i − hu) − c|
r = |CodeCoordinates(i + hu) − c|
t = |CodeCoordinates(i − hv) − c|
b = |CodeCoordinates(i + hv) − c|
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tx = l/r

ty = t/b

tαx = arctan
(

r
tx − 1
tx + 1

)

tαy = arctan
(

r
ty − 1
ty + 1

)

Code Distance. If the real code size sreal (the real distance between the cen-
ters of the upper left and the upper right cornerstones) and the camera’s focal
distance f are known, the metric distance from the camera to the untilted visual
code can be computed from simage (the pixel distance between the centers of the
upper cornerstones in the camera image) using the pinhole model as (wimage is
the pixel width of the image)

Dcamera,code =
sreal × f

simage/wimage
.

Since sreal and f are typically not known and we want to use the code distance
for interaction purposes rather than measuring its exact value, we define the
distance in terms of the size of the visual code in the image. We set dcamera,code :=
100 for the farthest distance at which a code is recognized in view finder mode.
For the Nokia 6600 this is the case when simage = 25 pixels, which amounts to
15.625% of the image width. Hence the distance is computed as

dcamera,code =
15.625

simage/wimage
.

Should sreal and f be known, the metric distance can still be computed
from dcamera,code. For the Nokia 6600, the range of distances at which codes are
recognized in view finder mode are: 11 − 46 cm for sreal = 69 mm, 3.5 − 14 cm
for sreal = 21 mm, 2.3 − 9 cm for sreal = 13.6 mm.

Reading the Encoded Bits. Once the positions of the guide bars and corner
stones have been identified and a suitable projective mapping has been com-
puted, reading the encoded bits is simply a matter of testing the appropriate
pixels (x, y) of the black-and-white image, using code coordinates (u, v) with
u, v ∈ {0, ..., 10} and (x, y) = ImageCoordinates((u, v)).

Error Detection. In order to detect pixel errors and false orientation features,
the code bits are protected by an (83,76,3) linear code that generates an 83-bit
code word from a 76-bit value and has a Hamming distance of 3.

3.2 Phone Movement Detection

The code recognition algorithm is combined with a phone movement detection
algorithm that solely relies on image data obtained from the camera. It does
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not require any additional hardware components, such as accelerometers. It is
integrated with the visual code recognition algorithm in such a way that the
latter only examines images for visual codes when the detected phone movement
is below a certain threshold. If the phone is quickly moved, it is very unlikely
that the user aims at a specific code. Trying to locate codes in the image in such
a case would not be sensible.

The algorithm provides the relative x, y, and rotational motion of the phone,
representing three degrees of freedom. With the movement detection, the camera
phone thus becomes an optical mouse. The algorithm works as follows: Succes-
sive images from the camera are dispatched to the view finder to render them
on the device display. Every n-th frame (depending on the performance of the
phone) is used for phone movement detection. The image is divided in 16 × 16
pixel blocks. For each block, 16 pixels are sampled (out of the 256 available pix-
els in each block) and their average gray value is computed. Then, the blocks of
the current image are compared to the blocks of the previously sampled frame.
The block arrays are displaced against each other in x and y direction using
values for ∆x and ∆y from {−3, . . . , 3}. The difference values are computed and
normalized with the number of compared blocks (which depends on the amount
of displacement) and the minimal difference is chosen as the most likely amount
of (∆x, ∆y) movement relative to the image before. Relative rotation θ is com-
puted in a similar fashion, but rotating the block images against each other. The
current block image is rotated by ∆α values between −24◦ and 24◦, with a step
width of 6◦. The rotational coordinate mappings are precomputed and stored
in tables for performance reasons. Again, the differences of the resulting block
images are compared to the previous block image and the minimal difference is
chosen as the most likely amount of relative rotation.

This simple algorithm works quite reliably and detects the relative motion
even if the sampled backgrounds only have a limited number of features, like a
wall or a floor. Because only a few pixels are sampled, the algorithm performs
quickly and leaves enough time for doing the actual code recognition. On a Nokia
6600, it produces about five (x, y, θ) triples per second.

The code recognition and motion detection algorithms were implemented in
C++ for Symbian OS (v6.1, v7.0s, and v8.0a). Replacing floating point opera-
tions by shifted integer operations reduced the time consumption of the thresh-
olding phase from 2000 ms to less than 400 ms on a Nokia 7650 for a 640×480
pixel camera image. The total execution time of the recognition algorithm on
the same device amounts to about 700 ms if less than 5 codes are present, and
up to 1500 ms if 30 codes are present – which is rather uncommon in typical
applications. The picture-taking process for 640×480 pixel images takes about
850 ms, resulting in an overall average delay of about 2000 ms. Low resolution
160×120 pixel images that are generated during the view finding process are
recognized much faster, i.e. in close real-time as the device moves relative to the
detected code(s).
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4 Item Selection Using Relative Focus Position, Rotation
Angle, and Tilting Determination

In this section we show how the additional input parameters that the code recog-
nition algorithm provides can be combined to realize novel interaction patterns.

Fig. 2. Selection from a table: the code coordinates determine the table row, the camera
rotation specifies the concrete information aspect to display

When aiming the phone camera at the target item, the image of this target
item appears on the display. It is continuously updated as the phone is moved.
The center of the display contains a crosshair to facilitate precise selection, as
can be seen in the screenshots in Fig. 2. To further facilitate item selection,
the display contains a magnified portion of the area around the display center.
The level of magnification can be adjusted with the joystick. The mapping from
image coordinate system to code coordinate system enables the precise selection
of items in the image, requiring just a single code element for multiple items.
Image items may be menu entries, arbitrarily shaped regions in a picture, or the
cells of a table.

Further input parameters comprise the rotation of the code tag in the image
and the amount of tilting of the image plane relative to the code plane. The
tilting parameter identifies the viewing position (from left, from right, from top,
from bottom). Both parameters can be used to associate multiple information
aspects with a single point in the code coordinate system.

For an effective interaction, the user has to be provided with indications about
the possible interactions. This can be achieved by superimposing visual cues on
the display image that indicate at what rotation angles and viewing positions
what kind of information is to be expected. We currently investigate different
kinds of symbols that guide the user in his or her interactions with visual codes.
An indication of user interaction normally consists of a symbol denoting the
kinds of physical interaction – like movement, rotation, or tilting – and a set
of symbols for the associated actions that are triggered as a consequence of the
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interaction. The latter comprise symbols for typical functions of a mobile phone,
such as placing a phone call or starting the WAP browser. Another possibility is
to print interaction cues next to the code. This was realized with a visual code
dialer application. The printed code contains a phone number and is surrounded
by words indicating the function that is triggered when the phone is tilted in
that direction: Just below the code it says “Call”, to the left it says “SMS”,
and to the right the word “Store” is printed. Scanning from a central position
immediately places a call, scanning from the left opens the phone’s SMS editor
with the number already entered into the appropriate field, and scanning from
the right looks up the contact information on a server and stores it on the phone.

Fig. 3. Example of a weather forecast newspaper page containing visual codes. The
17 regions on the map and all entries in the table are individually mapped to different
URLs and thus hyperlinked to specific online content

In newspapers, online background information to articles, advertisements, or
information which quickly gets obsolete, like weather forecasts or stock quotes,
can be linked via visual codes. Fig. 3 shows a cut-out of a newspaper page con-
taining a geographic map with the current weather data and a table containing
the snow conditions for various regions. The dotted lines drawn on the newspa-
per page indicate sensitive areas that are individually linked to online content.
Such a mapping can be easily created with suitable content creation software.
As a prototype, we developed a mapping tool for drawing the areas in the im-
age and specifying the associated URL for each region. The tool computes the
coordinates of these areas in the coordinate systems of the codes present in the
image, and stores this data as an XML file. Multiple URLs can be specified
for each region by taking into account rotation, distance, and tilting. As shown
in Fig. 3, a single code suffices to select any one of the multiple areas and ta-
ble entries, respectively. By rotating the mobile device, different aspects of the
online information can be chosen: In the example, vertical orientation shows
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the snow depth for the selected area, while a slight rotation shows the current
temperature. Other conceivable operations include showing the currently open
skiing trails, calling the local tourist information office, and booking rail and
lift tickets. The current weather data is retrieved from a server and the display
of the phone is updated in real time as the crosshair is moved across the table
entries and geographic regions and as the phone is rotated clockwise and coun-
terclockwise. A video that demonstrates this type of interaction is available at
visualcodes.sourceforge.net.

The ability to link multiple items to a single code based on their code coordi-
nates and to associate multiple information aspects to a single point depending
on rotation and tilting has a number of usability advantages. In the example
above, it would of course be possible to present a table of the current snow con-
ditions of all regions on the map to the user once the code has been recognized.
But it is difficult to effectively show a table containing all the attributes on the
small amount of available display space. It also requires the user to scroll through
the – possibly lengthy – table and locate the data of interest in a second step.
The presented approach avoids both of these problems. It gives direct and im-
mediate feedback to the user and presents exactly the scanned item and selected
information aspect.

5 Visual Codes and Large-Scale Displays

A compelling class of applications for visual codes, the code coordinate system
feature, and the relative movement detection involves the interaction with large-
scale wall displays, as they are increasingly found in public or semi-public places.
Today’s wall displays are mostly limited to the passive reception of information.
At public places, keyboards and other input devices are often not installed,
because of potential problems with vandalism. If passers-by carry their own
interaction devices in the form of a camera phone, this problem is eliminated.
Example locations for interactive public wall displays are train stations, airports,
bus stops, shopping malls, and museums.

To investigate the interaction possibilities, we set up a projected display that
contains a 3-D model of a number of visual codes arranged on an invisible sphere
as shown in Fig. 4. The model is implemented using Java 3D [11]. The screen
model is controlled by the motion of the camera phone. The phone and the screen
are connected via Bluetooth. Motion updates are sent as (x, y, θ) triples to the
active display. Phone movement in horizontal direction results in a rotation of the
sphere around the y-axis, vertical motion results in a rotation around the x-axis,
and rotating the phone results in sphere rotation around the z-axis. Because
of the relatively low update rate, the movement of the sphere is interpolated
between motion updates from the phone, in order to obtain a smooth visually
pleasing movement. The updates are frequent enough to be able to effectively
control the display contents.

In addition to rotating the sphere containing the codes, aiming at a visual
code shown on the wall display brings up an associated menu. Individual menu
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Aiming at a visual
code shown on
the wall display

Selecting a menu
item (uses code 

coordinate system)

Content related to
menu item appears
on phone screen

Fig. 4. Phone movement detection and item selection for interaction with a projected
wall display

items can now be selected, whereupon the related content is transferred to the
phone and shown on the device screen. In the demo application, the visual codes
are permanently visible. They could also be superimposed over the large-scale
display image just before scanning them. This could be synchronized by the
Bluetooth connection between the phone and the display.

The motion detection was informally tested by a number of subjects and
worked very well. We provided the test subjects with a number of tasks, such
as rotating a certain menu to the foreground and selecting a specific menu item.
After a short period of practice, the subjects quickly became familiar with this
type of interaction. This application was shown as a demonstration at [12].

We are currently investigating the idea of a “Photo Wall”, which uses a large-
scale display to organize photos taken with the camera phone, because this is
difficult to do on the device itself. The large-scale display is also used as an
access point to a photo printing service or one’s online photo collection. The
interaction mechanisms described above are investigated to perform interaction
tasks such as navigating through, selecting, deleting, rotating, and manipulating
the photos.

6 Conclusion

In this paper we have presented extended features of a visual code system for
camera equipped mobile phones. It performs well on resource constrained phone
devices with low to medium resolution cameras. Besides detecting visual codes
in the user’s vicinity and thus linking physical objects to online content, it has
a number of supplementary features. It provides the code coordinates, the code
rotation angle, and the tilting of the image plane relative to the code plane
as additional input parameters. These parameters can be determined without
prior calibration. Phone movement detection is integrated with the visual code
system. It provides (x, y, θ) motion parameters and turns the mobile phone into
an optical mouse.
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We have shown how these input parameters can be used and combined to
provide novel interaction patterns with objects in the user’s local environment.
The user can pick up multiple information items which are located at known
code coordinate positions relative to a single code tag, by aiming the camera
focus at the appropriate location. By slightly rotating or tilting the phone, the
user has the opportunity to select between different information aspects. We
have also shown how phone movement detection and visual code recognition can
be combined to interact with individual items on a large-scale wall display.

In the future, camera phones might play a prominent role as ubiquitous per-
sonal image recognition devices and for local interaction with physical objects
that their users encounter in everyday settings. New services can be associated
with printed documents, wall displays, TV programs, or general consumer prod-
ucts when they are made interactive by techniques as described in this paper.
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Appendix

We have explored the integrated phone movement detection features in a num-
ber of ways. As the camera detects phone movement relative to the back-
ground, the content of the phone display is continuously updated. No visual
code needs to be present in the view of the camera. With this technique we
have built a camera controlled wireframe model of a house, a pong game whose
slider can be controlled by tilting the wrist left and right, and an applica-
tion showing a large subway map that is scrolled in response to phone move-
ment. These applications are shown in Fig. 5 and are available for download at
visualcodes.sourceforge.net.

Fig. 5. Wireframe model (left), pong game (middle), and subway map (right), all
controlled by the visual detection of phone movement
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