
Certified Memory Usage Analysis�

David Cachera1, Thomas Jensen2, David Pichardie1, and Gerardo Schneider2,3

1 IRISA/ENS Cachan (Bretagne), Campus de Ker Lann, 35170 Bruz, France
2 IRISA/CNRS, Campus de Beaulieu, 35042 Rennes cedex, France

3 Dept. of Informatics, Univ. of Oslo, PO Box 1080 Blindern, N-0316 Oslo, Norway

Abstract. We present a certified algorithm for resource usage analysis, appli-
cable to languages in the style of Java byte code. The algorithm verifies that a
program executes in bounded memory. The algorithm is destined to be used in
the development process of applets and for enhanced byte code verification on
embedded devices. We have therefore aimed at a low-complexity algorithm de-
rived from a loop detection algorithm for control flow graphs. The expression
of the algorithm as a constraint-based static analysis of the program over simple
lattices provides a link with abstract interpretation that allows to state and prove
formally the correctness of the analysis with respect to an operational semantics
of the program. The certification is based on an abstract interpretation framework
implemented in the Coq proof assistant which has been used to provide a com-
plete formalisation and formal verification of all correctness proofs.

Keywords: Program analysis, certified memory analysis, theorem proving, con-
straint solving.

1 Introduction

This paper presents a certified algorithm for resource usage analysis, aimed at veri-
fying that a program executes in bounded memory. Controlling the way that software
consumes resources is a general concern to the software developer, in particular for soft-
ware executing on embedded devices such as smart cards where memory is limited and
cannot easily be recovered. Indeed, for Java Card up to version 2.1 there is no garbage
collector and starting with version 2.2 the machine includes a garbage collector which
may be activated invoking an API function at the end of the execution of the applet.
This has lead to a rather restrictive programming discipline for smart cards in which the
programmer must avoid memory allocation in parts of the code that are within loops.
We provide a certified analysis that automatically and efficiently can check that such a
programming discipline is respected on a Java Card. This analysis can be deployed in
two contexts:

1. As part of a software development environment for smart cards. In that case, it will
play a role similar to other program analyses used in type checking and optimisa-
tion.

� This work was partially supported by the French RNTL project ”Castles”.

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 91–106, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

92 D. Cachera et al.

2. As part of an extended on-card byte code verifier that checks applets and software
down-loaded on the card after it has been issued.

In both scenarios, there is a need for certification of the analysis. In the first case, the
analysis will be part of a software development process satisfying the requirements
of the certification criteria. In the second case, the analysis will be part of the card
protection mechanisms (the so-called Trusted Computing Base) that have to be certified.
The current implementation has a time complexity that is sufficiently low to integrate it
in a development tool. However, we have not yet paid attention to the space complexity
of the algorithm and current memory consumption excludes any analysis to take place
on-device.

The analysis is a constraint-based static analysis that works by generating a set of
constraints from the program byte code. These constraints define a number of sets that
describe a) whether a given method is (mutually) recursive or can be called from (mu-
tually) recursive methods, and b) whether a method can be called from intra-procedural
cycles. This information is then combined to identify memory allocations (or any other
type of resource-sensitive instructions) that could be executed an unbounded number of
times. By casting the analysis as a constraint-based static analysis we are able to give a
precise semantic definition of each set and use the framework of abstract interpretation
to prove that the analysis provide correct information for all programs. The paper offers
the following contributions:

– A constraint-based static analysis that formalises a loop-detecting algorithm for
detecting methods and instructions that may be executed an unbounded number of
times.

– A formalisation based on abstract interpretation of the link between the analysis
result and the operational semantics for the underlying byte code language.

– A certification of the analysis in the form of a complete formalisation of the analysis
and the correctness proof within the Coq theorem prover.

The paper is organised as follows. Section 2 briefly introduces the byte code lan-
guage of study. Section 3 gives an informal presentation of the algorithm and its relation
to an operational trace semantics. In Section 4 we formalise the correctness relationship.
In Section 5 we give a general description of the structure of the Coq proof. Section 6
exposes some complexity considerations and presents some benchmarks. Section 7 de-
scribes the background for this work and compares with existing resource analyses.
Section 8 concludes.

2 Java Card Byte Code

Our work is based on the Carmel intermediate representation of Java Card byte code
[11]. The Carmel language consists of byte codes for a stack-oriented machine whose
instructions include stack operations, numeric operations, conditionals, object creation
and modification, and method invocation and return. We do not deal with subroutines
(the Java jsr instruction) or with exceptions. These instructions can be treated in our
framework but complicates the control flow and may lead to inferior analysis results.

Certified Memory Usage Analysis 93

instructionAtP (m, pc) = instr

〈〈h, 〈m, pc, l, s〉, sf 〉〉 →instr 〈〈h, 〈m, pc + 1, l′, s′〉, sf 〉〉
instructionAtP (m, pc) = if pc′

n = 0

〈〈h, 〈m, pc, l, n :: s〉, sf 〉〉 →if pc′

〈〈h, 〈m, pc′, l, s〉, sf 〉〉

instructionAtP (m, pc) = if pc′
n �= 0

〈〈h, 〈m, pc, l, n :: s〉, sf 〉〉 →if pc′

〈〈h, 〈m, pc + 1, l, s〉, sf 〉〉

instructionAtP (m, pc) = goto pc′

〈〈h, 〈m, pc, l, s〉, sf 〉〉 →goto pc′

〈〈h, 〈m, pc′, l, s〉, sf 〉〉

instructionAtP (m, pc) = new cl
∃c ∈ classes(P) with nameClass(c) = cl

(h′, loc) = newObject(cl, h)

〈〈h, 〈m, pc, l, s〉, sf 〉〉 →new cl

〈〈h′, 〈m, pc + 1, l, loc :: s〉, sf 〉〉

instructionAtP (m, pc) = invokevirtual M
h(loc) = o m′ = methodLookup(M, o) f = 〈m, pc, l, loc :: V :: s〉

f ′ = 〈m′, 1, V, ε〉 f ′′ = 〈m, pc, l, s〉
〈〈h, f, sf 〉〉 →invokevirtual M 〈〈h, f ′, f ′′ :: sf 〉〉

instructionAtP (m, pc) = return f ′ = 〈m′, pc′, l′, s′〉
〈〈h, 〈m, pc, l, v :: s〉, f ′ :: sf 〉〉 →return 〈〈h, 〈m′, pc′ + 1, l′, v :: s′〉, sf 〉〉

Fig. 1. Carmel operational semantics

The formal definition of the language is given as a small-step operational seman-
tics with a state of the form 〈〈h, 〈m, pc, l, s〉, sf 〉〉, where h is the heap of objects,
〈m, pc, l, s〉 is the current frame and sf is the current call stack (a list of frames). A
frame 〈m, pc, l, s〉 contains a method name m and a program point pc within m, a set
of local variables l, and a local operand stack s (see [15] for details). Let StateP be the
set of all the states of a given program P . We will write simply State if P is understood
from the context. The transition relation →I describes how the execution of instruc-
tion I changes the state. This is extended to a transition relation → on traces such that
tr ::: s1 → tr ::: s1 ::: s2 if there exists an instruction I such that s1 →I s2

1.
The instructions concerned with control flow and memory allocation: if, goto,

invokevirtual, return and new, need a special treatment in our analysis. The rest of
the instructions may have different effects on the operand stack and local variables but
behave similarly with respect to memory and control flow (move to the next instruction
without doing any memory allocation). For clarity and in order to focus on the essen-
tials, these instructions have been grouped into one generic instruction instr with this
behaviour. Fig. 1 shows the rules describing the operational semantics of Carmel.

The rule for the generic instruction instr is formalised as a (non-
deterministic) transition from state 〈〈h, 〈m, pc, l, s〉, sf 〉〉 to any state of form
〈〈h, 〈m, pc + 1, l′, s′〉, sf 〉〉. Instructions if and goto affect the control flow by modi-

1 Here and everywhere in the paper, “:::” denotes the “cons” operation for traces (appending an
element to the right of the trace). We will use “::” as the “cons” operation of the operand stack
(the top of the stack being on the left).

94 D. Cachera et al.

fying the pc component of the state. The if instruction produces a jump to an indicated
program point pc′ if the top of the operand stack is 0; otherwise it moves to the instruc-
tion pc + 1. The goto pc′ unconditionally jumps to pc′. The new instruction modifies
the heap (h′) creating an object of class cl on location loc; loc is added to the stack and
the pc is incremented.

The rule for invokevirtual is slightly more complicated. Let M be a method
name. The instruction invokevirtual M at address (m, pc) of state σ = 〈〈h, f, sf 〉〉
may only occur if the current frame f of σ has an operand stack of the form loc :: V :: s,
i.e., it starts with a heap location denoted by loc, followed by a vector of values V . The
actual method that will be called is to be found in the object o that resides in the heap h
at the address h(loc), and the actual parameters of that method are contained in the vec-
tor V . Then, the methodLookup function searches the class hierarchy for the method
name M in the object o, and returns the actual method to which the control will be
transferred. The new method, together with its starting point pc = 1, its vector V of ac-
tual parameters, and an empty operand stack ε, constitute a new frame f ′ pushed on top
of the call stack of the resulting state σ′ = 〈〈h, f ′, f ′′ :: sf 〉〉, where f ′′ = 〈m, pc, l, s〉
is the frame to be taken into account after the completion of the method invocation.
Finally, the return instruction pops the control stack and execution continues at the
program point indicated in the frame that is now on top of the control stack.

The partial trace semantics �P � of a Carmel program P is defined as the set of
reachable partial traces:

�P � =
{

s0 :: s1 :: · · · :: sn ∈ State+

∣∣∣∣ s0 ∈ Sinit ∧
∀k < n, ∃i, sk →i sk+1

}
∈ ℘(State+)

where Sinit is the set of initial states.

3 Specification of the Analysis

The memory usage analysis detects inter- and intra-procedural loops and checks if the
creation of new objects may occur inside such loops, leading to unbounded memory
consumption. Intuitively, the algorithm consists of the following steps:

1. Compute the set of potential ancestors of a method m in the call graph: Anc(m);
2. Determine the set of methods that are reachable from a mutually recursive method:

MutRecR;
3. Compute the set of potential predecessors of a program point pc in a method m:

Pred(m, pc);
4. Determine the set of methods that may be called from intra-procedural loops:

LoopCall ;
5. Combining all these results (Unbounded(P)): phases 1 to 4 are used to detect if

a new object creation may occur in a loop, leading to a potentially unbounded
memory usage.

Notice that step 3 is the only intra-procedural computation. In the following, we de-
scribe the rules for obtaining each of the above-mentioned sets and explain informally
how they are related to the operational semantics. This relationship is formalised in
Section 4 which proves the correctness of the analysis.

Certified Memory Usage Analysis 95

(m, pc) : invokevirtual mID m′ ∈ implements(P, mID)

Anc(m) ∪ {m} ⊆ Anc(m′)

Fig. 2. Rule for Anc

m ∈ Anc(m)

{m} ⊆ MutRecR

Anc(m) ∩ MutRecR �= ∅
{m} ⊆ MutRecR

Fig. 3. Rules for MutRecR

3.1 Computing Ancestors of a Method (Anc)

Anc associates to each method name the set of potential ancestors of this method in
the call graph. The type of Anc is thus methodName → ℘(methodName). Fig. 2
shows the rule corresponding to the invokevirtual instruction for computing the set
Anc(m′): for each method m′ which may be called by a method m, it determines that
the set of ancestors of m′ must contain m as well as all the ancestors of m. The function
implements is a static over-approximation of the dynamic method lookup function. It
returns all possible implementations of a given method with name mID relative to a
program P . We do not specify it in further detail. No constraint is generated for any
other instruction different from invokevirtual since we are here interested only in
the method call graph.

Intuitively, given a trace, if the current method being executed is m, then Anc(m)
contains all the methods appearing in the current stack frame.

3.2 Determining Mutually Recursive Methods (MutRecR)

MutRecR contains the mutually recursive methods as well as those reachable from a
mutually recursive method. Fig. 3 shows the rules used to compute the set MutRecR:
if m is in the list of its ancestors, then it is mutually recursive, and all the descendants
of a mutually recursive method are reachable from a mutually recursive method. The
result of the computation of MutRecR can be seen as a marking of methods: methods
reachable from mutually recursive methods may be called an unbounded number of
times within the execution of an inter-procedural loop. Instructions in these methods
may be executed an unlimited number of times. For an example, see Fig. 4: methods
are represented with rectangles, thin arrows represent local jumps (goto), and thick
arrows represent method invocations. Shaded methods are those in MutRecR.

Intuitively, given a trace where the current method being executed is m, if m �∈
MutRecR, then m does not appear in the current stack frame, and all methods in this
stack frame are distinct.

3.3 Computing Predecessors of a Program Point (Pred)

Given a method m, Pred(m, pc) contains the set of predecessors of the program point
pc in the intra-procedural control flow graph of method m. The type of Pred is thus
methodName × progCount → ℘(progCount). Fig. 5 shows the rules (one for each

96 D. Cachera et al.

����
����
����
����
����
����
����

����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

��
��
��
��

��
��
��
��

����

��
��
��
��

��
��
��
��

������

��
��
��
��

������

m m m

m

m m

m

m1

2 3 4

5

6 7

8

Fig. 4. Example of mutually recursive reachable methods

(m, pc) : instr

Pred(m, pc) ∪ {pc} ⊆ Pred(m, pc + 1)

(m, pc) : if pc′

Pred(m, pc) ∪ {pc} ⊆ Pred(m, pc + 1)
Pred(m, pc) ∪ {pc} ⊆ Pred(m, pc′)

(m, pc) : goto pc′

Pred(m, pc) ∪ {pc} ⊆ Pred(m, pc′)

Fig. 5. Rules for Pred

instruction) used for defining Pred . For instructions that do not induce a jump (instr
stands for any instruction different from if and goto), the set of predecessors of a
program point pc, augmented with pc itself, is transferred to its direct successor pc +1.
For the if instruction, the two branches are taken into account. For a goto instruction,
the set of predecessors of the current program point pc, augmented with pc itself, is
transferred to the target of the jump.

To relate Pred to the execution traces, we need to define the notion of current
execution of a method: the current execution of a method m in a trace tr ′ = tr :::
〈〈h, 〈m, pc, l, s〉, sf 〉〉 is the set of all program points (m, pc′) appearing in a maximal
suffix of tr ′ that does not contain a program point where a call to m is performed.
Intuitively, given a trace, Pred(m, pc) represents the set of all programs points pc′ ap-
pearing in the current execution of m.

3.4 Determining Method Calls Inside Loops (LoopCall)

The LoopCall set contains the names of the methods susceptible to be executed an
unbounded number of times due to intra-procedural loops. Fig. 6 shows the rules used
for computing LoopCall . The first rule says that if a method m′ is possibly called by a
method m at program point pc, and if pc is within an intra-procedural loop of m (pc is
in the set of its predecessors), then m′ may be called an unbounded number of times.

Certified Memory Usage Analysis 97

(m, pc) : invokevirtual mID m′ ∈ implements(P, mID) pc ∈ Pred(m, pc)

{m′} ⊆ LoopCall

(m, pc) : invokevirtual mID m′ ∈ implements(P, mID) m ∈ LoopCall

{m′} ⊆ LoopCall

Fig. 6. Rules for LoopCall

����
����
����
����
����
����
����

����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

���� ����

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

����

���
���
���
���

m m m

m

m m

m

m1

2 3 4

5

6 7

8

Fig. 7. Marking methods called from inside an intra-procedural loop

Furthermore, if m may be called an unbounded number of times and m calls m′, then
this property is inherited by m′.

Intuitively, given a trace tr where the method currently being executed is m, if m �∈
LoopCall then for each method m′ at point pc′ performing a call to m, (m′, pc′) appears
only once in the current execution of m′. For an example of the result of this phase of the
algorithm, see Fig. 7. The newly shaded methods m6 and m7 are in LoopCall because
of the call from within the loop in method m5.

3.5 The Main Predicate (Unbounded(P))

So far, the constraints we defined yield an algorithm that detects inter- and intra-
procedural loops of a given program P . We now can specialise this algorithm for de-
termining if the memory usage of our program is certainly bounded. The final result
consists in a predicate Unbounded(P) which is computed by the rule depicted in Fig.
8. This rule sums up the previous results, by saying that if a new object creation may

(m, pc) : newo cl m ∈ MutRecR ∨ m ∈ LoopCall ∨ pc ∈ Pred(m, pc)

Unbounded(P)

Fig. 8. Rule for Unbounded(P)

98 D. Cachera et al.

occur inside a loop (directly or indirectly, as described by the sets Anc, LoopCall ,
MutRecR and Pred) then Unbounded(P) is true.

4 Correctness

The correctness proof follows a classic abstract interpretation approach in which we
show that the information computed by the constraints is an invariant of the trace se-
mantics of a program P . For each previously defined function or set X (Anc, MutRecR,
LoopCall , Pred and Unbounded(P)) we use the following schema:

1. Prove that all the domains are lattices and that they have no infinite, strictly increas-
ing chains (ascending chain condition).

2. Determine a set of constraints for defining X .
3. Define a concretisation function γX in order to relate concrete domains (sets of

traces) and abstract domains (X).
4. Prove that all partial traces of a given program are correctly approximated by X ,

i.e., that ∀t ∈ �P �, t ∈ γX(X). This result is a consequence of the classical
characterisation of �P � as the least element of the following set:

⎧⎨
⎩S ∈ ℘(Trace)

∣∣∣∣∣∣ Sinit ⊆ S ∧
∀t1, t2 ∈ Trace,
if t1 ∈ S and t1 → t2
then t2 ∈ S

⎫⎬
⎭

We must prove the following two intermediary lemmas:

For any trace t1 ∈ �P �, if t1 ∈ γX(X) and t1 → t2, then t2 ∈ γX(X). (1)

For any trace t ∈ Sinit , t ∈ γX(X). (2)

5. Analyse a given applet P , which consists then of 1) constructing the set of con-
straints associated to the program 2) solving this system with a classic fixed point
iteration whose termination is ensured by the lattice ascending chain condition.

Steps 1 to 4 are proof-theoretical while step 5 is algorithmic. All these steps are
performed in the Coq proof assistant. Steps 1, 2 and 5 benefit from the framework
proposed in [3] and thus no new proof is required. We only need to prove steps 3 and 4,
for which the property (1) represents the core of the work:

Lemma 1. For any trace t1 ∈ �P �, if t1 ∈ γX(X) and t1 → t2, then t2 ∈ γX(X).

We now define the concretisation functions γX for Anc, MutRecR, Pred and
LoopCall .

Anc. The concretisation function for Anc formalises the fact that m′ calls m (directly
or indirectly) in a trace t by examining the call stack of each element in t:

γAnc : (methodName → ℘(methodName)) −→ ℘(State+)

X
→
{

t ∈ State+

∣∣∣∣ for all 〈〈h, 〈m, pc, l, s〉, sf 〉〉 in t
for all m′ appearing in sf , m′ ∈ X(m)

}

Certified Memory Usage Analysis 99

MutRecR. Given a method name m and a partial trace t, we say that “m is ever executed
with a safe callstack in t” (which is denoted by the SafeCallStack(m, t) predicate) iff
for all 〈〈h, 〈m, pc, l, s〉, sf 〉〉 in t, m does not appear in sf and all methods in sf are
distinct.

The concretisation function for MutRecR is then defined by:

γMutRecR : ℘(methodName) −→ ℘(State+)

X
→
{

t ∈ State+

∣∣∣∣ for all m ∈ methodName, if m �∈ X ,
then SafeCallStack(m, t) holds

}

Pred . The associated concretisation function is

γPred : (methodName × progCount → ℘(progCount)) −→ ℘(State+)

X
→
{

t ∈ State+

∣∣∣∣ for all prefix t′ ::: 〈〈h, 〈m, pc, l, s〉, sf 〉〉 of t,
if SafeCallStack(m, t) then current(t′,m) ⊆ X(m, pc)

}

where current(t′,m) is the set of program points which appear in the current execution
of m relative to the trace t′.

LoopCall . Given two method names m and m′, and a partial trace t, we use the
predicate OneCall to state that m is called at most once within each invocation
of m′. Formally, OneCall is defined by OneCall(m,m′, t) iff for all prefix t′ :::
〈〈h, 〈m, pc, l, s〉, sf 〉〉 of t, and for all positions (m′, pc′) where a call to m is performed,
pc′ occurs only once in the corresponding current execution of m′.

The concretisation function for LoopCall is then defined by:

γLoopCall : ℘(methodName) −→ ℘(State+)

X
→

⎧⎪⎪⎨
⎪⎪⎩

t ∈ State+

∣∣∣∣∣∣∣∣

for all prefix t′ ::: 〈〈h, 〈m, pc, l, s〉, sf 〉〉 of t,
if SafeCallStack(m, t) and m �∈ X ,
then for all m′ in methodName,
OneCall(m,m′, t) holds

⎫⎪⎪⎬
⎪⎪⎭

To prove the correctness of Unbounded(P) we need to prove the following lemma:

Lemma 2. If for all program point (m, pc) where an instruction new is found we have
m �∈ MutRecR ∪ LoopCall and pc �∈ Pred(m, pc), then there exists a bound Max new

so that
∀t ∈ �P �, |t|new < Max new

where |t|new counts the number of new instructions which appear in the states of the
trace t.

To establish the above result we first prove an inequality relation between the
number of executions of the different methods. We write Exec(m, t) for the num-
ber of executions of a method m found in a trace t. Similarly, Max invoke(m) is the
maximum number of invokevirtual instructions which appear in a method m. Let
m ∈ Call(m′) denote that m′ calls m.

Lemma 3. For all methods m, if m �∈ MutRecR ∪ LoopCall then for all t ∈ �P �,

Exec(m, t) ≤
∑

m∈Call(m′)

Exec(m′, t) · Max invoke(m′).

100 D. Cachera et al.

Using this lemma we prove that the number of executions of the method m in the trace
t is bounded, as expressed in the following lemma.

Lemma 4. There exists a bound Max exec such that for all methods m which verify
m �∈ LoopCall ∪ MutRecR, we have

∀t ∈ �P �, Exec(m, t) ≤ Max exec.

To conclude the proof of Lemma 2 we need to prove the following result, establish-
ing that if a method is not (mutually) recursive, nor reachable from a mutually recursive
one and it is not in a intra-method cycle, then the number of new instructions is bounded.

Lemma 5. Given a method m which verifies m �∈ MutRecR ∪ LoopCall , if for all
program points (m, pc) in m where an instruction new is found, pc �∈ Pred(m, pc)
holds then

∀t ∈ �P �, |t|mnew ≤ Exec(m, t)

where |t|mnew counts the number of instructions new which appears in the states of the
trace t in the method m.

Lemma 2 follows then from the following inequality:

∀t ∈ �P �, |t|new =
∑
m

|t|mnew ≤ MethodMaxP · Max invoke

where MethodMaxP is the number of methods in program P .
The correctness of our analysis is a corollary of Lemma 2:

Theorem 1. ¬Unbounded(P) ⇒ ∃Max new, ∀t ∈ �P �, |t|new < Max new.

5 Coq Development

The following section gives an overview of the structure of the Coq development. It
is meant to give an intuition for how the development of a certified analyser can be
done methodologically [3] and to serve as a first guide to the site [13] from which the
analyser and the Coq specification and proofs can be downloaded, compiled and tested.

The formalisation of Java Card syntax and semantics is taken form an existing data
flow analyser formalised in Coq [3]. The analysis consists in calculating the sets Anc,
MutRecR, Pred and LoopCall that are indexed by program methods and program
points. This naturally leads to a representation as arrays of sets, defined in the following
way using Coq modules:

Module MAnc := ArrayLattice(FiniteSetLattice).
Module MMutRec := FiniteSetLattice.
Module MPred:= ArrayLattice(ArrayLattice(FiniteSetLattice))
Module MLoopCall := FiniteSetLattice.
Module MUnbounded := BoolLattice.

Certified Memory Usage Analysis 101

This leads to a type for eg. Pred that is dependent on the actual program P to analyse.
Once the program P is supplied, we construct the actual set Pred , properly indexed by
the methods and program points of P .

Each of the four type of sets gives rise to a specific kind of constraints. For example,
the constraints defining the set Pred are given the following definition

Inductive ConstraintPred : Set :=
C4: MethodName -> progCount -> progCount ->

(FiniteSetLattice.Pos.set -> FiniteSetLattice.Pos.set)
-> ConstraintPred.

Thus, each constraint is constructed as an element of a data type that for a given method
m and two instructions at program points pc and pc’ provides the transfer function that
links information at one program point to the other. The actual generation of constraints
is done via a function that recurses over the program, matching each instruction to see
if it gives rise to the generation of a constraint.The following definition corresponds to
the Coq formalisation of the constraint rules depicted on Fig. 5.

Definition genPred (P:Program) (m:MethodName) (pc:progCount)
(i:Instruction) : list ConstraintPred :=

match i with
return_v => nil

| goto pc’ => (C4 m pc pc’ (fun s =>(add_set pc s)))::nil
| If pc’ => (C4 m pc pc’ (fun s => (add_set pc s)))::

(C4 m pc (nextAddress P pc)
(fun s => (add_set pc s)))::nil

| _ => (C4 m pc (nextAddress P pc)
(fun s => (add_set pc s)))::nil

The result of the constraint generation is a list of constraints that together specify
the sets Anc, Pred , MutRecR and LoopCall . When calculating the solution of the
constraint system, we use the technique that the resolution of a constraint system can
be done by interpreting each constraint as a function that computes information to add
to each state and then increment the information associated with the state with this
information. Formally, for each constraint of the form f(X(m, pc1)) � X(m, pc2)
over an indexed set X (such as Pred), we return a function for updating the indexed set
by replacing the value of X at (m, pc2) by the value f(X(m, pc1)).

Definition F_Pred (c:ConstraintPred) :
MPred.Pos.set -> MPred.Pos.set :=

match c with
(C4 m pc1 pc2 f)=> fun s => update s m pc2 (f (s m pc1))

The resolution of the constraints can now be done using the iterative fix-point solver, as
explained in [3]. The fix-point solver is a function of type

(l: (L → L) list) → (∀f ∈ l, (monotone L f)) →
∃x:A,(∀f ∈ l, (order L (f x) x)) ∧

(∀ y:A (∀f ∈ l, (order L (f y) y)) ⇒(order L x y))

102 D. Cachera et al.

Subject number of lines

syntax + semantics 1000
lattices + solver 3000
Anc, MutRecR, Pred , LoopCall correctness 1300
Unbounded(P)correctness 2500
constraint collecting, monotonicity 1200

total 9000

Fig. 9. Proof effort for the development

that will take a list of monotone functions over a lattice L and iterate these until sta-
bilisation. The proof of this proposition (ie. the inhabitant of the type) is a variant
of the standard Knaster-Tarski fix-point theorem on finite lattices that constructs (and
hence guarantees the existence of) a least fix-point as the limit of the ascending chain
⊥, f(⊥), f2(⊥),

5.1 Correctness Proof in Coq

The remaining parts of the proof effort are dedicated to the correctness of the memory
usage analysis. Two particular points connected with the correctness proof are worth
mentioning:

– The correctness of Unbounded(P) requires much more work than the proof of the
various partial analyses. This is not surprising because of the mathematical diffi-
culties of the corresponding property: counting proofs are well-known examples of
where big gaps can appear between informal and formal proofs.

– In many of the proofs involved in the construction of the analyser, there is one case
for each byte code instruction. Most of the cases are dealt with in the same way.
For the methodology to scale well, the proof effort should not grow proportional to
the size of the instruction set. This is true already for the relatively small Carmel
instruction set (15 instructions) and in particular for the real Java Card byte code
language (180 instructions).

For the latter point, it was essential to use the Coq tactic language of proof scripts (called
tactics in Coq) which allows to apply the same sequence of proof steps to different
subgoals, looking in the context for adequate hypothesis. In this way, most of our proofs
are only divided in three parts: one case for invokevirtual, one case for return
and one case (using an appropriate tactics applied on several subgoals) for the other
instructions. With such a methodology, we can quickly add simple instructions (like
operand stack manipulations) without modifying any proof scripts.

The extracted analyser is about 1000 lines of OCaml code while the total devel-
opment is about 9000 lines of Coq. The following table gives the breakdown of the proof

Certified Memory Usage Analysis 103

effort measured in lines of proof scripts2. Fig. 9 summarises the proof effort for each
part of the certified development of the analyser.

6 Complexity and Benchmarks

The computation of the final result of the algorithm from the constraints defined above
is performed through well-known iteration strategies. Let N denote the number of meth-
ods and Im the number of instructions in method m. The computation of the sets Anc,
MutRecR and LoopCall consists in a fix-point iteration on the method call graph, that is
at most quadratic in N . The computation of Pred for a given method m requires at most
Im × (| number of jumps in m | +1) operations. The computation of Unbounded(P)
requires

∑
m Im ≤ N × max{Im} operations and in the worst case to save Im line

numbers for each instruction (i.e., I2
m). The algorithm may be further optimised by us-

ing a more compact representation with intervals but we have not implemented this.

2 Note that the size of a Coq development can change significantly from one proof script style
to another. The same proofs could have consumed two or three times more script lines if the
capabilities of the proof tactics language were not exploited. Thus, it is the relative size of the
proofs that is more important here.

 0

 20

 40

 60

 80

 100

 120

100 k50 k

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

Program size (LOCs)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

100 k50 k

M
em

or
y

us
ag

e
(m

eg
ab

yt
es

)

Program size (LOCs)

 0

 50

 100

 150

 200

 250

50 k

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

Program size (LOCs)

 0

 100

 200

 300

 400

 500

 600

 700

50 k

M
em

or
y

us
ag

e
(m

eg
ab

yt
es

)

Program size (LOCs)

Fig. 10. Performance measures. The first row corresponds to a variable number of methods with
a fixed number of lines per method, while the second corresponds to a fixed number of methods
with a variable number of lines per method

104 D. Cachera et al.

to guarantee absence of aliasing. Together, this allows to prove the sound reuse of heap
space in the presence of kinds of heap cells (integers, list cells, etc).

Crary and Weirich [5] define a logic for reasoning about resource consumption
certificates of higher-order functions. The certificate of a function provides an over-
approximation of the execution time of a call to the function. The logic only defines
what is a correct deduction of a certificate and has no inference algorithm associated
with it. The logic is about computation time but could be extended to measure memory
consumption.

The most accurate automatic, static analysis of heap space usage is probably the
analysis proposed by Hofmann and Jost [8] that operates on first-order functional pro-
grams. The analysis both determines the amount of free cells necessary before execution
as well as a safe (under)-estimate of the size of a free-list after successful execution of a
function. These numbers are obtained as solutions to a set of linear programming (LP)
constraints derived from the program text. Automatic inference is obtained by using
standard polynomial-time algorithms for solving LP constraints. The correctness of the
analysis is proved with respect to an operational semantics that explicitly keeps track of
the memory structure and the number of free cells.

The Hofmann-Jost analysis is more precise than the analysis presented here but is
too costly to be executed on most embedded devices, in particular smart cards. Rather,
its use lies in the generation of certificates that can then be checked on-card. A simi-

7 Related Work

Hofmann [7] has devised a type system for bounded space and functional in-place up-
date. In this system, a specific �-type is used to indicate heap cells that can be over-
written. A type system for a first-order functional language defines when the reuse
of heap cells due to such type annotations is guaranteed not to alter the behaviour of
the program. Inspired by this work and by Typed Assembly Language of Morrisett et
al. [12], Aspinall and Campagnoni [1] have defined heap-bounded assembly language, a
byte code language equipped with specific pseudo-instructions for passing information
about the heap structure to the type system. The type system use linearity constraints

Fig. 10 gives benchmarks for the performance of the extracted program. These mea-
sure have been performed with a randomly byte code program generator. Given two
parameters N and l, this program generates a well formed Carmel program with N
methods, each of them containing 6 · l lines of byte code. Each group of 6 lines han-
dles a call to a randomly chosen method, a goto and a if instruction with an appari-
tion probability of 1/5. Hence we can easily measure the performance of our extracted
program on big Carmel programs. The first row of Fig. 10 corresponds to a variable
number of methods with a fixed number of lines per method, while the second corre-
sponds to a fixed number of methods with a variable number of lines per method. These
benchmarks show a linear performance in the first case (both in computation time and
memory requirements), and a quadratic performance in the latter.

As the benchmarks show, the extracted program performs very well, in particular
when taking into account that no modification on the extracted code was necessary.

Certified Memory Usage Analysis 105

lar distinction can been observed in on-card byte code verification where the on-card
verifier of Casset et al. [4] relies on certificates generated off-card, whereas the veri-
fier described by Leroy [10] imposes slight language restrictions so that the verifier can
execute on-card.

A similar (but less precise) analysis to ours is presented in [14]. The analysis is
shown to be correct and complete w.r.t. an abstraction of the operational semantics.
One difference with our work is the computation of Pred , which keeps track only of
the program points pc of the branching commands instead of all the visited method
program points, decreasing the space complexity. However, in such work the proofs
are done manually and the semantics being considered is total in contrast with the par-
tial semantics used in our work; this could make the formal proof in Coq much more
difficult.

The certification of our analysis was done by formalising the correctness proof in
the proof assistant Coq. Mechanical verification of Java analysers have so far mainly
dealt with the Java byte code verifier [2, 9, 4]. The first exception is the work reported
in [3] on formalising an interprocedural data flow analyser for Java Card, on which
part of the formalisation of the present analysis is based. The framework proposed in
[3] allows us to concentrate on the specification of the analysis as a set of constraints
and on the correctness of this system with respect to the semantics of the language (see
Section 4). The lattice library and the generic solver of [3] were reused as is to extract
the certified analyser.

8 Conclusion

We have presented a constraint-based analysis for detecting unbounded memory con-
sumption on embedded devices such as Java Card smart cards. The analysis has been
proved correct with respect to an operational semantics of Java byte code and the proof
has been entirely formalised in the theorem prover Coq, providing the first certified
memory usage analysis. The analysis can be used in program processing tools for ver-
ifying that certain resource-aware programming styles have been followed. An impor-
tant contribution of the paper is to demonstrate how such an analysis can be formalised
entirely inside a theorem prover. To the best of our knowledge, this is the first time
that a resource usage analysis has undergone a complete formalisation with machine-
checkable correctness proof. Still, several aspects of the analysis merit further develop-
ment:

– By using the formula established in Lemma 3, we could in principle compute an
over-approximation of the number of new instructions performed during any execu-
tion of the program and thereby produce an estimation of the memory usage. How-
ever, it is unclear whether this algorithm can be expressed in the constraint-based
formalism used here; a specific proof effort would be required for this extension.

– From a programming language perspective, it would be interesting to investigate
how additional restrictions on the programming discipline could be used to lower
the complexity of the analysis, in the style of what was used in [10]. For example,
knowing that the byte code is a result of a compilation of Java source code imme-
diately gives additional information about the structure of the control flow graph.

106 D. Cachera et al.

– A challenge in the smart card setting would be to refine the algorithm to an im-
plementation of a certified on-device analyser that could form part of an enhanced
byte code verifier for protecting the device against resource-consumption attacks.
The main challenge here is to optimise the memory usage of the analysis which is
currently too high. Recent work on verification of C code in Coq [6] could be of
essential use here. Techniques for an actual implementation can be gleaned from
[10] as well as from [14] in order to optimise the computation of Pred .

References

1. David Aspinall and Andrea Compagnoni. Heap bounded assembly language. Journal of
Automated Reasoning, 31(3–4):261–302, 2003.

2. Gilles Barthe, Guillaume Dufay, Line Jakubiac, Bernard Serpette, and Simão Melo de Sousa.
A Formal Executable Semantics of the JavaCard Platform. In Proc. ESOP’01. Springer
LNCS vol. 2028, 2001.

3. David Cachera, Thomas Jensen, David Pichardie, and Vlad Rusu. Extracting a data flow
analyser in constructive logic. In Proc. ESOP’04, number 2986 in Springer LNCS, pages
385–400, 2004.

4. Ludovic Casset, Lilian Burdy, and Antoine Requet. Formal Development of an embedded
verifier for Java Card Byte Code. In Proc. of IEEE Int. Conference on Dependable Systems
& Networks (DSN), 2002.

5. Karl Crary and Stephanie Weirich. Resource bound certification. In Proc. 27th ACM
Symp. on Principles of Programming Languages (POPL’00), pages 184–198. ACM Press,
2000.

6. Jean-Christophe Filliâtre and Claude Marché. Multi-Prover Verification of C Programs. In
Proc. ICFEM 2004, number 3308 in Springer LNCS, pages 15–29, 2004.

7. Martin Hofmann. A type system for bounded space and functional in-place update. Nordic
Journal of Computing, 7(4):258–289, 2000.

8. Martin Hofmann and Stefan Jost. Static prediction of heap space usage for first-order func-
tional programs. In Proc. of 30th ACM Symp. on Principles of Programming Languages
(POPL’03), pages 185–197. ACM Press, 2003.

9. Gerwin Klein and Tobias Nipkow. Verified Bytecode Verifiers. Theoretical Computer Sci-
ence, 298(3):583–626, 2002.

10. Xavier Leroy. On-card bytecode verification for Java card. In I. Attali and T. Jensen, edi-
tors, Smart card programming and security, (E-Smart 2001), pages 150–164. Springer LNCS
vol. 2140, 2001.

11. Renaud Marlet. Syntax of the JCVM language to be studied in the SecSafe project. Technical
Report SECSAFE-TL-005, Trusted Logic SA, May 2001.

12. Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to typed assembly
language. ACM Trans. Program. Lang. Syst., 21(3):527–568, 1999.

13. David Pichardie. Coq sources of the development. http://www.irisa.fr/lande/
pichardie/MemoryUsage/.

14. Gerardo Schneider. A constraint-based algorithm for analysing memory usage on Java cards.
Technical Report RR-5440, INRIA, December 2004.

15. Igor Siveroni. Operational semantics of the Java Card Virtual Machine. J. Logic and Alge-
braic Programming, 58(1-2), 2004.

	Introduction
	Java Card Byte Code
	Specification of the Analysis
	Computing Ancestors of a Method (Anc)
	Determining Mutually Recursive Methods (MutRecR)
	Computing Predecessors of a Program Point (Pred)
	Determining Method Calls Inside Loops (LoopCall)
	The Main Predicate (Unbounded(P))

	Correctness
	Coq Development
	Correctness Proof in Coq

	Complexity and Benchmarks
	Related Work
	Conclusion
	References

