
Congruences for Visibly Pushdown Languages�

Rajeev Alur1, Viraj Kumar2, P. Madhusudan2, and Mahesh Viswanathan2

1 University of Pennsylvania, Philadelphia, PA, USA
alur@cis.upenn.edu

2 University of Illinois at Urbana-Champaign, Urbana, IL, USA
{kumar, madhu, vmahesh}@cs.uiuc.edu

Abstract. We study congruences on words in order to characterize the
class of visibly pushdown languages (Vpl), a subclass of context-free
languages. For any language L, we define a natural congruence on words
that resembles the syntactic congruence for regular languages, such that
this congruence is of finite index if, and only if, L is a Vpl. We then
study the problem of finding canonical minimal deterministic automata
for Vpls. Though Vpls in general do not have unique minimal automata,
we consider a subclass of VPAs called k-module single-entry VPAs that
correspond to programs with recursive procedures without input parame-
ters, and show that the class of well-matched Vpls do indeed have unique
minimal k-module single-entry automata. We also give a polynomial time
algorithm that minimizes such k-module single-entry VPAs.

1 Introduction

The class of visibly pushdown languages (Vpl), introduced in [1], is a subclass
of context-free languages accepted by pushdown automata in which the input
letter determines the type of operation permitted on the stack. Visibly push-
down languages are closed under all boolean operations, and problems such as
inclusion, that are undecidable for context-free languages, are decidable for Vpl.
Vpls are relevant to several applications that use context-free languages such as
the model-checking of software programs using their pushdown models [1, 2, 3].
Recent work has shown applications in other contexts: in modeling semantics
of effects in processing XML streams [4], in game semantics for programming
languages [5], and in identifying larger classes of pushdown specifications that
admit decidable problems for infinite games on pushdown graphs [6].

Our main result in this paper is a characterization of the class of Vpls in
terms of congruences on strings. It is well known that the syntactic congruence,
which is defined as w1 ≈ w2 when for every u, v, uw1v ∈ L if and only if
uw2v ∈ L, has finite index precisely for languages L that are regular. Our central

� This research was partially supported by ARO URI award DAAD19-01-1-0473,
NSF awards CCR-0306382 and CCF 04-29639, and DARPA/AFOSR MURI award
F49620-02-1-0325.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 1102–1114, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Congruences for Visibly Pushdown Languages 1103

thesis is that for Vpls L, when we restrict our attention to well-matched words
w1 and w2 (i.e., words where every push transition has a corresponding pop
transition and vice versa), the syntactic congruence has finite index. Moreover,
for languages consisting only of well-matched words, if the syntactic congruence
on well-matched words has finite index then the language is a Vpl. For languages
containing strings that are not well-matched, we need some additional conditions
only because no congruence on well-matched words can saturate such a language.
Our characterization of Vpls is a natural generalization of the Myhill-Nerode
theorem for regular languages— when restricted to languages that do not require
any push or pop operations, our congruence coincides with the right congruence
defined by Myhill and Nerode [7, 8].

One important consequence of the congruence based characterization of reg-
ular (word) languages and regular tree languages is that for any regular language
there is a unique minimum state deterministic automaton recognizing the lan-
guage, which can also be constructed efficiently [8, 9]. For Vpls, however, we
show that in general there is no unique minimum state recognizer. Thus, while
our characterization yields the construction of a canonical deterministic accep-
tor for Vpls, it may not in general be minimal. An implicit consequence of the
results in [1] is that Vpls have canonical deterministic pushdown automata. It
is shown in [1] that with any language L, a language of trees called stack trees,
can be associated such that L is a Vpl exactly when the corresponding set of
stack trees form a regular tree language. The unique minimal bottom-up tree
automaton accepting the language of stack trees can then be translated to a
canonical deterministic visibly pushdown automaton. However, since bottom-up
tree automata can only be translated into deterministic pushdown automata
with exponentially more states, the implicit construction in [1] does not result
in necessarily small deterministic Vpas.

Visibly pushdown automata are a natural model for programs with recursive
procedure calls and finite data types. Such programs are called Boolean programs
in the literature on software model checking [3]. When modeling a program as
a visibly pushdown automaton, the natural structure the model assumes is one
where the machine’s states are partitioned into k modules, one for each procedure
in the program. As one expects, these modules are such that from a state in a
module, a sequence of calls and returns to other modules results in a state of
the same module. Moreover, if the programs modeled are such that the calls to
modules have no input parameters (or if a function is modeled separately for each
possible value of its input parameters), then the visibly pushdown automaton
assumes additional structure, namely that every call results in going to a unique
state in the module corresponding to the call. We call such structured VPAs k-
module single-entry VPAs (k-SEVPAs). They correspond roughly to the model
of recursive state machines with a single entry per module [10].

Though visibly pushdown languages in general do not have unique minimum-
state recognizers, partitioning the calls into the modules they correspond to
fixes enough additional structure that there is a minimum-state k-SEVPA that
respects the partition and accepts the language. More precisely, we show that

1104 R. Alur et al.

for any partition of the call-alphabet into k-sets, there is a unique minimum-
state k-SEVPA accepting any well-matched Vpl L. If k = 0 (that is, there
are no calls), the result is equivalent to the Myhill-Nerode theorem for regular
languages. The characterization of this unique minimal k-SEVPA is done via a
set of k + 1 congruences on words. We also present an algorithm which, given
any deterministic k-SEVPA accepting a well-matched language, minimizes it in
O(n3) time, where n is the size of the original machine.

The rest of the paper is organized as follows. We first recall the definitions of
visibly pushdown languages and visibly pushdown automata in Section 2. Our
main result characterizing visibly pushdown languages in terms of language the-
oretic congruences is presented in Section 3. We also show that Vpls, in general,
do not have unique minimum state deterministic recognizers. In Section 4, we
define the notion of how partitions on calls define k-module single-entry VPAs
and prove that every (well-matched) Vpl has a unique minimal k-SEVPA ac-
cepting it. We also present an example of a family of languages for which the
minimal 1-module machine is super polynomial in the size of the smallest vis-
ibly pushdown automaton recognizing it. Conclusions and open problems are
presented in Section 5.

2 Preliminaries

In this section, we recall definitions of visibly pushdown automata and visibly
pushdown languages, and introduce some notation that we will use in the rest of
the paper.

Pushdown Alphabet. A pushdown alphabet is a tuple Σ̂ = (Σcall, Σret, Σint) that
comprises three disjoint finite alphabets— Σcall is a finite set of calls, Σret is a
finite set of returns, and Σint is a finite set of internal actions. For any such Σ̂,
let Σ = Σcall ∪Σret ∪Σint. In the paper we will use u, v, u1, . . . for strings in Σ∗,
c, c1, ci, . . . for elements of Σcall, r, r1, ri, . . . for elements of Σret, and i, i1, ij , . . .
for elements of Σint.

Visibly Pushdown Automata. For visibly pushdown automata, unlike the case
of pushdown automata, it turns out that deterministic VPAs are as power-
ful as a non-deterministic VPAs [1]. In light of this, we will only consider de-
terministic VPAs. A visibly pushdown automaton (VPA) on finite strings over
Σ̂ = (Σcall, Σret, Σint) is a tuple M = (Q, q0, Γ, δ,QF) where Q is a finite set of
states, q0 ∈ Q is the initial state, Γ is a finite stack alphabet that contains a
special bottom-of-stack symbol ⊥, δ = δcall ∪ δret ∪ δint is the transition func-
tion, where δcall : Q × Σcall → Q × (Γ \ {⊥}), δret : Q × Σret × Γ → Q, and
δint : Q × Σint → Q, and QF ⊆ Q is a set of final states.

If δcall(q, c) = (q′, γ), where c ∈ Σcall and γ �= ⊥, there is a push-transition
from q on input c where on reading c, γ is pushed onto the stack and the control

changes from state q to q′; we denote such a transition by q
c/γ−−→ q′. Similarly, if

δret(q, r, γ) = q′, there is a pop-transition from q on input r where γ is read from

Congruences for Visibly Pushdown Languages 1105

the top of the stack and popped (if the top of the stack is ⊥, then it is read but
not popped), and the control changes from q to q′; we denote such a transition

by q
r/γ−−→ q′. If δint(q, i) = q′, there is an internal-transition from q on input i

where on reading i, the state changes from q to q′; we denote such a transition
by q

i−→ q′. Note that there are no stack operations on internal transitions.

Acceptance. A stack is a non-empty finite sequence over Γ ending in the bottom-
of-stack symbol ⊥. The set of all stacks is denoted as St = (Γ \ {⊥})∗ · {⊥}. A
configuration is a pair (q, σ) such that q is a state and σ ∈ St . The transition
function of a VPA can be used to define how the configuration of the machine
changes in a single step: we say δ((q, σ), a) = (q′, a′) 1 if one of the following
holds:

1. If a ∈ Σcall then there exists γ ∈ Γ such that δcall(q, a) = (q′, γ) and σ′ = γ ·σ
2. If a ∈ Σret, then there exists γ ∈ Γ such that δret(q, a, γ) = q′ and either

γ �= ⊥ and σ = γ · σ′, or γ = ⊥ and σ = σ′ = ⊥
3. If a ∈ Σint is an internal action, then δint(q, a) = q′ and σ′ = σ

The transitive closure of the single-step transition function, which we also denote
by δ, can be easily defined in the standard inductive manner. For a stack σ ∈ St ,
we define the function δσ : Q × Σ∗ → Q as δσ(q, u) = q′ whenever δ((q, σ), u) =
(q′, σ′) for some σ′ ∈ St .

A string u ∈ Σ∗ is accepted by VPA M if δ⊥(q0, u) ∈ QF . The language of
M , L(M), is the set of strings accepted by M .

Visibly Pushdown Languages. A language over finite strings L ⊆ Σ∗ is a visibly
pushdown language (Vpl) with respect to Σ̂ (a Σ̂-Vpl) if there is a VPA M

over Σ̂ such that L(M) = L.

Matched calls and returns. Let MR(Σ̂) denote the set of all strings where every
return has a matched call before it, i.e. u ∈ MR(Σ̂) if for every prefix u′ of
u, the number of return symbols in u′ is at most the number of call symbols
in u′. Similarly, let MC (Σ̂) denote the set of all strings where every call has a
matching return after it, i.e. u ∈ MC (Σ̂) if for every suffix u′ of u, the number
of call symbols in u′ is at most the number of return symbols in u′. The set of
well-matched strings over Σ̂ is WM (Σ̂) = MR(Σ̂) ∩ MC (Σ̂).

A Σ̂-Vpl L is said to be well-matched if L ⊆ WM (Σ̂).

Remark 1. For every w ∈ WM (Σ̂), there is a unique matching between call and
return symbols such that every call-symbol always precedes its matching return-
symbol and the substring w′ between a matching pair of call and return symbols
is a well-matched string.

1 We abuse notation and use δ for both the transition function of the automaton and
the single step transition function on configurations.

1106 R. Alur et al.

3 Congruence Based Characterization of Vpls

In this section we present a congruence based characterization of when a language
over Σ̂ is a visibly pushdown language. Before presenting the characterization
for general Vpls, we first consider the case of Vpls that have only well-matched
words.

3.1 Well-Matched Visibly Pushdown Languages

For a language L over the pushdown alphabet Σ̂ = (Σcall, Σret, Σint), consider
the following congruence on well-matched words:

w1 ≈ w2 iff ∀u, v ∈ Σ∗, uw1v ∈ L iff uw2v ∈ L

Recall that this is the standard syntactic congruence restricted to well-matched
words over Σ̂. For example, if Σ̂ = ({c}, {r}, ∅) and L = {cn.rn | n ≥ 0}, then
there are only two equivalence classes that ≈ defines: {cnrn | n ≥ 0} and the
complement of this set with respect to WM (Σ̂).

Analogous to the case of regular languages, the finiteness of the number of
equivalence classes of the syntactic congruence (on well-matched words) provides
a precise characterization of well-matched Vpls.

Theorem 1. L is a well-matched Σ̂-Vpl iff ≈ (as defined above) has finitely
many equivalence classes.

Proof. Suppose L is a Σ̂-Vpl and M = (Q, q0, Γ, δ,QF) is a VPA over Σ̂ with
(unique) initial state q0 such that L(M) = L. Every well-matched string w
defines a function fw : Q → Q as follows: fw(q) = δ⊥(q, w). Define the following
equivalence on well-matched strings:

w1 ≈M w2 iff fw1 = fw2

Observe that ≈M has finitely many equivalence classes (bounded by |Q||Q|). We
will show that ≈M is a refinement of ≈, thus establishing that ≈ is also of finite
index. Consider w1 ≈M w2. Then for any u, v ∈ Σ∗, we know

δ((q0,⊥), uw1v) = δ(δ(δ((q0,⊥), u), w1), v)
= δ(δ(δ((q0,⊥), u), w2), v) since fw1 = fw2

= δ((q0,⊥), uw2v)

Hence uw1v ∈ L iff uw2v ∈ L, and so w1 ≈ w2. Thus ≈M is a refinement of ≈.
Observe that this proof does not rely on L being a well-matched language.

To prove the converse, consider a language L such that ≈ is of finite index. We
construct a deterministic (but incomplete2) VPA that recognizes L and whose

2 A VPA is incomplete if the transition function δ is not total. An incomplete VPA
can be easily modified to yield a VPA with at most one extra “dead” state to which
all undefined transitions go.

Congruences for Visibly Pushdown Languages 1107

states are the equivalence classes of ≈. Consider a string with no unmatched re-
turns u = w1c1w2c2 · · · ckwk+1 ∈ MR(Σ̂), where c1, . . . ck are the unmatched call
symbols in u, and w1, . . . wk+1 are well-matched strings between the unmatched
call symbols. The automaton we construct will maintain the following invariant:
after reading the string u ∈ MR(Σ̂), the state of the machine will be [wk+1]≈
and the stack will be ([wk]≈, ck)([wk−1]≈, ck−1) · · · ([w1]≈, c1)⊥.

The formal construction of VPA M = (Q, q0, Γ, δ,QF) is as follows: Q =
{[w]≈ |w ∈ WM (Σ̂)}, q0 = [ε]≈, Γ = {⊥}∪(Q×Σcall), and QF = {[w]≈ |w ∈ L}.
The transition function δ is defined as follows.

– [w]≈
i−→ [wi]≈ for every i ∈ Σint

– [w]≈
c/([w]≈,c)−−−−−−→ [ε]≈ for every c ∈ Σcall

– [w]≈
r/([w′]≈,c)−−−−−−−→ [w′cwr]≈ for every r ∈ Σret

The above machine has no pop transitions when ⊥ is the only symbol on the
stack. Observe that the definitions of QF and δ are sound because ≈ saturates L 3

and ≈ is a congruence with respect to well-matched words. Further, it is easy to
verify that the above invariant is maintained. Thus, after reading a well-matched
word w, the automaton will be in the state [w]≈ and hence L = L(M)∩WM (Σ̂).
Since WM (Σ̂) is a Vpl, and Vpls are closed under intersection, the result
follows. �

3.2 General Visibly Pushdown Languages

For visibly pushdown languages that are not necessarily well-matched, ≈ being
of finite index is not sufficient. This is because ≈ is no longer a congruence that
saturates the Vpl. We need to define two additional congruences on strings—
one that will capture the behavior of a state when the stack only has ⊥, and one
that will capture the behavior when the stack has more than one element. The
reason we need to distinguish the cases of the stack having only ⊥ and that of the
stack having additional elements, is because symbols in Σret behave differently.
In the first case, elements of Σret are like internal actions which leave the stack
unchanged, and in the second case they result in the stack being popped.

For a language L over Σ̂, define the following congruences.

For u1, u2 ∈ Σ∗, u1 ≡ u2 iff ∀v ∈ MR(Σ̂). u1v ∈ L iff u2v ∈ L

For u1, u2 ∈ MC (Σ̂), u1 ∼0 u2 iff ∀v ∈ Σ∗. u1v ∈ L iff u2v ∈ L

Intuitively, the congruence ≡ says that the two strings u1 and u2 cannot be
distinguished by experiments (v ∈ MR(Σ̂)) that do not examine the stacks
reached on u1 and u2. The congruence ∼0 is only defined on strings where every
call is matched. Thus, after reading such a word, any VPA will only have ⊥ on the
stack. Starting from such configurations, as was observed earlier, return symbols

3 An equivalence ≡ saturates L iff either [w]≡∩L = ∅ or [w]≡ ⊆ L, for any equivalence
class [w]≡ of ≡.

1108 R. Alur et al.

behave like internal actions, and the congruence is the usual Myhill-Nerode right
congruence. We now present the main theorem of this paper.

Theorem 2. L is a Σ̂-Vpl iff ≈, ≡ and ∼0 all have finite index.

Proof. For a Vpl L, let M = (Q, q0, Γ, δ,QF) be a VPA recognizing L. In the
proof of Theorem 1, we already showed that ≈ will have finite index. Define the
following two equivalences over words in Σ∗:

u1 ≡M u2 iff δ⊥(q0, u1) = δ⊥(q0, u2)
u1∼0

Mu2 iff δ⊥(q0, u1) = δ⊥(q0, u2)

It can be shown that ≡M refines ≡, and ∼M
0 refines ∼0 when restricted to

MC (Σ̂) (proof skipped in the interests of space). Hence, both ≡ and ∼0 have
finitely many equivalence classes.

For the converse, we show that L is a Vpl by once again constructing a VPA
M whose states are equivalence classes of the congruences we have defined,
but the construction is a bit more involved. The main intuition behind the
construction is to ensure that the following invariant is maintained after M
has read a string u ∈ Σ∗

– If u ∈ MC (Σ̂) then the state of M is [u]∼0 and the stack is ⊥.
– If u = vc1w1 · · · ckwk, where v ∈ MC (Σ̂), each wj ∈ WM (Σ̂), and each

cj ∈ Σcall, then M is in state ([u]≡, [wk]≈) and the stack is
([wk−1]≈, ck) · · · ([w1]≈, c2)([v]∼0 , c1)⊥.

The formal construction of M is as follows. M = (Q, q0, Γ, δ,QF) where
Q = {[u]∼0 | u ∈ MC (Σ̂)} ∪ {([u]≡, [w]≈) | u ∈ Σ∗, w ∈ WM (Σ̂)}; q0 = [ε]∼0 ;
Γ = Q × Σcall ∪ {⊥}; QF = {[u]∼0 | u ∈ L} ∪ {([u]≡, [w]≈) | u ∈ L}; and δ is
defined as follows:

– [u]∼0

i−→ [ui]∼0 for every i ∈ Σint

– [u]∼0

c/([u]∼0 ,c)−−−−−−−→ ([uc]≡, [ε]≈) for every c ∈ Σcall

– [u]∼0

r/⊥−−→ [ur]∼0 for every r ∈ Σret

– ([u]≡, [w]≈) i−→ ([ui]≡, [wi]≈) for every i ∈ Σint

– ([u]≡, [w]≈)
c/(([u]≡,[w]≈),c)−−−−−−−−−−−→ ([uc]≡, [ε]≈) for every c ∈ Σcall

– ([u]≡, [w]≈)
r/([u′]∼0 ,c)−−−−−−−→ [u′cwr]∼0 for every r ∈ Σret

– ([u]≡, [w]≈)
r/(([u′]≡,[w′]≈),c)−−−−−−−−−−−−→ ([u′cwr]≡, [w′cwr]≈) for every r ∈ Σret

The correctness of the construction relies on the intuition outlined earlier and is
skipped in the interests of space. �

Remark 2. Note that in the case where Σcall = Σret = ∅ (i.e. for regular lan-
guages), the machine M constructed in Theorem 2 is the unique minimum-state

Congruences for Visibly Pushdown Languages 1109

q0

q1 q2

q3 q4

c1/x c2/x

q5

r/x r/x

a

a b

b

b

b a

a

q0

q1

q5q2 q4

q3

r/x,y

r/x r/y

b

b

a
a

a

b

b

a

c2/yc1/x

Fig. 1. Two non-isomorphic minimum-state VPAs

automaton for L because the only reachable states will be of the form [w]∼0 ,
where w ∈ Σ∗.

Despite the above remark, the VPA M constructed in Theorem 2 need not
be a minimum-state Σ̂-VPA accepting L. Furthermore,

Proposition 1. There are Vpls that have no unique minimum-state VPA ac-
cepting them.

To illustrate the above proposition, consider the VPAs in Figure 1. Let Σ̂ =
({c1, c2}, {r}, {a, b}). Let L = c1L1r + c2L2r, where L1 is the regular language
over {a, b} such that the number of a’s is even, and L2 is the regular language over
{a, b} such that the number of b’s is even. The figure shows two non-isomorphic
minimum-state Σ̂-VPAs accepting L. In both machines, the initial state is q0

and the following transitions have been omitted in the figure for readability: in

both machines, every call-transition not shown is of the form q
cj/z−−−→ q2, and

every other transition not shown goes to state q2.
Notice that the first machine consists of two distinct “modules”, one rec-

ognizing L1 and one recognizing L2, and the call symbol c1 or c2 determines
which module is “invoked”. In contrast, the second machine consists of a sin-
gle recognizer for both L1 and L2, and this module is invoked regardless of the
call symbol. As this example illustrates, it is not clear when splitting the task
of recognition into distinct modules reduces the total number of states in the
VPA. In the following section, we consider a restricted class of VPAs for which
the partition of the VPA into modules has already been provided and the call-
symbol determines which module is to be invoked. The task then is to minimize
the number of states of the automaton, while preserving the given partition of
states into modules.

1110 R. Alur et al.

4 k-Module Single-Entry Visibly Pushdown Automata

In this section we show that the class of well-matched Vpls have unique minimum-
state k-module single-entry automata (k-SEVPA). As mentioned in the introduc-
tion, these automata are motivated by models of programs with finite data-types,
and are similar to single-entry recursive state machines [10] (see [11] for a precise
comparison).

k-SEVPAs. Let {Σj
call}k

j=1 be a partition of Σcall. A VPA M = (Q, q0, Γ, δ,QF)
is a k-module single-entry VPA with respect to {Σj

call}k
j=1 if there is a partition

{Qj}k
j=0 of Q and distinguished states qj ∈ Qj for every j = 1, . . . , k such that:

1. QF ⊆ Q0, q0 ∈ Q0;
2. Γ = {⊥} ∪ (Q × Σcall);
3. if q

i−→ q′ for some i ∈ Σint, then ∃j. q, q′ ∈ Qj ;

4. if q
c/(q,c)−−−−→ q′ for some c ∈ Σj

call, then q′ = qj ;

5. if q′
r/(q,c)−−−−→ q′′ for some c ∈ Σcall, then ∃j. q, q′′ ∈ Qj .

Intuitively, Q0 is the base module (corresponding to the ‘main’ module of a
program), and the transition relation is such that a call leads to a unique state
in the module corresponding to the call (in models of programs, this state will be
the initial control state of the function called), and upon return will return to the
calling module. Such automata are no less expressive than VPAs: as Theorem 3
below shows, for any partition of call symbols, any well-matched VPL is accepted
by some k-SEVPA.

We use the abbreviation k-SEVPA for such machines and explicitly denote
them as M = ((Q, q0, Γ, δ,QF), {Σ1

call, . . . , Σ
k
call}, {Q0, . . . , Qk}, {q1, . . . , qk}). For

example, for the first VPA in Figure 1, given the partition Σcall = {{c1}, {c2}},
there is a partition of Q as {Q0, Q1, Q2}, where Q0 = {q0, q5}, Q1 = {q1, q3},
and Q2 = {q2, q4} witnessing the fact that this is a 2-SEVPA. Similarly, for the
second VPA, given the partition Σcall = {{c1, c2}}, there is a partition of Q as
{Q0, Q1}, where Q0 = {q0, q5} and Q1 = {q1, q2, q3, q4} establishing that it is a
1-SEVPA.

Remark 3. The automaton constructed in Theorem 1 is a 1-SEVPA. However,
in general, this VPA will be much bigger than the smallest 1-SEVPA. The reason
for this is similar to the reason why the finite automaton constructed for regular
languages from the syntactic congruence is much larger than that obtained from
the syntactic right congruence. Thus, in order to characterize the minimal k-
SEVPAs, we need a new congruence that partitions words like the Myhill-Nerode
right congruence does for regular languages.

In our construction of the minimal k-SEVPA for a language L, we will use
k + 1 congruences. To model the case when the stack only has ⊥, we will use
∼0 (defined in Section 3.2 on strings with matched calls). For the case when
the stack has additional symbols, we need k new congruences that make use of

Congruences for Visibly Pushdown Languages 1111

the fact that the states of the machine are partitioned into k modules identified
by the call symbol. Given a k-SEVPA M = (M ′, {Σj

call}k
j=1, {Qj}k

j=0, {qj}k
j=1)

accepting a language L over Σ̂, define the following congruences on well-matched
strings: for every j = 1, . . . , k,

w1 ∼j w2 iff ∀u, v ∈ Σ∗∀c ∈ Σj
call. ucw1v ∈ L iff ucw2v ∈ L

Since ∼j ’s will be used to define states when the stack has more than just ⊥,
when defining the equivalence we only need to consider contexts where there is
an unmatched call. We are ready to present the main theorem of this section.

Theorem 3. For any well-matched Σ̂-Vpl L and any partition {Σj
call}k

j=1 of
Σcall, there is a unique (upto isomorphism) minimum-state k-SEVPA for L with
respect to this partition.

Proof. We first show that given any partition {Σcall}k
j=1 of Σcall, there is a k-

SEVPA M that recognizes L. We construct M using the equivalences {∼j}k
j=1

and ∼0 (defined in Section 3.2 on strings with matched calls). We then show
that this machine M is the unique minimum-state k-SEVPA that recognizes L.
The construction of M relies on the observation that ∼0 and ∼j ’s all have finite
index if L is a Vpl. From Theorems 1 and 2, we know that when L is a Vpl,
∼0 and ≈ are of finite index. Since ≈ is a refinement of ∼j for every j, it follows
that all ∼j ’s are also of finite index. For 0 ≤ j ≤ k, we use the notation [u]j to
denote the equivalence class of ∼j containing u.

The formal construction of M = ((Q, q0, Γ, δ,QF), {Σj
call}k

j=1, {Qj}k
j=0,

{qj}k
j=1) is: Q0 = {[u]0 | u ∈ MC (Σ̂)}, and for every j = 1, . . . , k, Qj =

{[w]j | w ∈ WM (Σ̂)}. For every j ≥ 0, qj = [ε]j , and QF = {[u]0 | u ∈ L}.
The transition function δ is given as follows.

– For every i ∈ Σint and j ≥ 0, [u]j
i−→ [ui]j

– For every c ∈ Σj′
call and j ≥ 0, [u]j

c/([u]j ,c)−−−−−−→ [ε]j′

– For every r ∈ Σret and j, j′ ≥ 0, [w]j
r/([u]j′ ,c)−−−−−−→ [ucwr]j′

– For every r ∈ Σret, [u]0
r/⊥−−→ [ur]0

QF is well-defined because ∼0 is an equivalence that saturates L. The transition
function is consistent because u1i ∼j u2i whenever u1 ∼j u2 and i ∈ Σint, and
because when u1 ∼j′ u2 and w1 ∼j w2, u1cw1r ∼j′ u2cw2r for every j > 0, j′ ≥ 0
and c ∈ Σj

call, r ∈ Σret. Thus, the above machine is well defined. Further observe
that the following invariant is maintained during the execution: after reading a
string u

– If u ∈ MC (Σ̂) then the state of M is [u]0 and the stack is ⊥.
– If u = vc1w1 . . . clwl, where v ∈ MC (Σ̂), each cj ∈ Σ

mj

call and each wj ∈
WM (Σ̂), then the state of M is [wl]ml

and the stack is
([wl−1]ml−1 , cl) . . . ([w1]m1 , c2)([v]0, c1)⊥.

1112 R. Alur et al.

Hence, if a string reaches a final state, we are guaranteed that the stack only
has ⊥, and recognizes L. The formal proof of correctness is skipped.

Consider any k-SEVPA M ′ = ((Q′, q′0, Γ
′, δ′, Q′

F), {Σj
call}k

j=1, {Q′
j}k

j=0,

{q′j}k
j=1) recognizing L. We show that M is the unique minimum-state k-SEVPA

by demonstrating a homomorphism from M ′ to M . In other words, we construct
an onto function f :

⋃
j≥0 Q′

j → ⋃
j≥0 Qj having the following properties.

1. f(q′j) = qj for every j ≥ 0

2. For any i ∈ Σint, if p′ i−→M ′ q′ then f(p′) i−→M f(q′)

3. For any c ∈ Σcall, if p′
c/(p′,c)−−−−−→M ′ q′ then f(p′)

c/(f(p′),c)−−−−−−−→M f(q′)

4. For any r ∈ Σret, if p′
r/(s′,c)−−−−−→M ′ q′ then f(p′)

r/(f(s′),c)−−−−−−−→M f(q′)

Thus, we will be able to conclude that | ∪ Q′
j | ≥ | ∪ Qj |, and if | ∪ Q′

j | = | ∪ Qj |
then f witnesses an isomorphism between M and M ′.

The homomorphism f from M ′ to M is defined as follows:

f(q′) =

{
[u]0 if ∃u ∈ MC (Σ̂). δ′⊥(q′0, u) = q′

[w]j if ∃u ∈ Σ∗, c ∈ Σj
call, w ∈ WM (Σ̂). δ′⊥(q′0, ucw) = q′

Note that f(q′j) = [ε]j for every 0 ≤ j ≤ k. Observe that f maps states of Q′
j

to the equivalence classes of ∼j for every 0 ≤ j ≤ k. We need to show that f is
well defined, i.e., f is indeed a function and does not map a state of M ′ to two
different states of M . This follows from the following lemma.

Lemma 1. If u1, u2 ∈ MC (Σ̂) are such that δ′⊥(q′0, u1) = δ′⊥(q′0, u2), then u1 ∼0

u2. In addition, for well-matched strings w1 and w2 and every j = 1, . . . , k, if
δ′⊥(q′j , w1) = δ′⊥(q′j , w2) then w1 ∼j w2.

The proof of the above lemma is similar to the proofs in Theorems 1 and 2
where we show our congruences to have finite index. Thus, f is indeed a function.
Further, f is clearly onto. Also, f preserves initial state and distinguished states
qj , by definition. It preserves the transitions of M ′ because ∼0 and ∼j ’s are
congruences. This completes the proof that there is a unique minimum-state
k-SEVPA. �

While the above theorem shows that each (well-matched) Vpl has a unique
k-SEVPA with respect to a given partition of Σcall, the constructed machine
may be much bigger than the smallest VPA recognizing the language because in
a k-SEVPA, each module is constrained to have a unique “entry” (an entry is the
destination of a push-transition). The presence of multiple entries can greatly
reduce the size of the VPA as the following proposition shows.

Proposition 2. For positive integers m,n, there is a family of well-matched
Vpls Lm,n such that the smallest VPA recognizing Lm,n has at most O(nm)
states, while the smallest 1-SEVPA recognizing Lm,n has at least nm states.

Congruences for Visibly Pushdown Languages 1113

As the following theorem states, there is an efficient algorithm to minimize
k-SEVPAs. The algorithm is omitted due to lack of space, but can be found
along with the proof of correctness and complexity analysis in [11].

Theorem 4. Given a k-SEVPA M with respect to a partition {Σj
call}k

j=1 of
Σcall accepting a well-matched language L, the unique minimum-state k-SEVPA
with respect to {Σj

call}j that accepts L can be computed in time O(n3), where n
is the size M .

5 Conclusions

We presented a characterization of Vpls in terms of congruences on strings of
finite index and gave constructions of canonical automata recognizing visibly
pushdown languages. We showed that while Vpls in general do not have unique
minimum-state deterministic recognizers, the class of well-matched Vpls do have
unique minimal k-module single-entry deterministic visibly pushdown automata
(k-SEVPAs) for any fixed partition of the call symbols.

Our constructions of visibly pushdown automata based on congruences can,
in general, result in automata with exponentially more states than a smallest
deterministic visibly pushdown automaton recognizing the language. A char-
acterization and construction of visibly pushdown automata that are at most
polynomial in the size of the smallest automaton recognizing a language is an
interesting open problem.

We presented a minimization algorithm for k-SEVPAs that runs in time
O(n3). The computational complexity of the problem of constructing the small-
est k-SEVPA given any visibly pushdown automaton (not necessarily k-module)
is open, and would be interesting to investigate.

Acknowledgements. We would like to thank a referee for strengthening the
lower bound for Proposition 2.

References

1. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proceedings of STOC
’04, ACM Press (2004) 202–211

2. Alur, R., Etessami, K., Madhusudan, P.: A temporal logic of nested calls
and returns. In: Proceedings of TACAS ’04. LNCS 2988, Springer (2004)
467–481

3. Ball, T., Rajamani, S.: Bebop: A symbolic model checker for boolean programs.
In: SPIN 2000 Workshop on Model Checking of Software. LNCS 1885. Springer
(2000) 113–130

4. Pitcher, C.: Visibly pushdown expression effects for XML stream processing. In:
Programming Language Technologies for XML. (2005) 1–14

5. Murawski, A., Walukiewicz, I.: Third-order idealized algol with iteration is decid-
able. In: FOSSACS. 3441 (2005) 202–218

6. Löding, C., Madhusudan, P., Serre, O.: Visibly pushdown games. In: Proceedings
of FSTTCS’04. LNCS (2004)

1114 R. Alur et al.

7. Nerode, A.: Linear automaton transformations. In: Proc. AMS. Volume 9. (1958)
541–544

8. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison Wesley (1979)

9. Hopcroft, J.E.: An n log n algorithm for minimizing the states in a finite au-
tomaton. In: The Theory of Machines and Computations. Acad. Press (1971)
189–196

10. Alur, R., Benedikt, M., Etessami, K., Godefroid, P., Reps, T., Yannkakis, M.: Anal-
ysis of recursive state machines. ACM Transactions on Programming Languages
and Systems (to appear) (2005)

11. Alur, R., Kumar, V., Madhusudan, P., Viswanathan, M.: Congruences for visibly
pushdown languages. Technical Report UIUCDCS-R-2005-2565, UIUC (2005)

	Introduction
	Preliminaries
	Congruence Based Characterization of PD1OT1cmrcmrmmnnnscVpls
	Well-Matched Visibly Pushdown Languages
	General Visibly Pushdown Languages

	k-Module Single-Entry Visibly Pushdown Automata
	Conclusions

