
Up-to Techniques for Weak Bisimulation

Damien Pous

ENS Lyon

Abstract. Up-to techniques have been introduced to enhance the bisim-
ulation proof method for establishing bisimilarity results. While up-to
techniques for strong bisimilarity are well understood, in the weak case
they come as a collection of unrelated results, and lack a unified presen-
tation. We propose a uniform and modular theory of up-to techniques
for weak bisimulation that captures existing proof technology and in-
troduces new techniques. Some proofs rely on non trivial – and new –
commutation results based on termination guarantees.

Introduction

Bisimilarity is a widely used behavioural equivalence in concurrency theory.
It can be seen as the finest extensional equivalence that enjoys a natural for-
mulation and nice mathematical properties. Bisimilarity can be defined as the
greatest bisimulation. Given a labelled transition system (LTS), allowing one to
write transitions between states of the form P →α P ′ (meaning that a state P
can perform an action α and evolve to P ′), we say that a relation R between
states is a bisimulation whenever the leftmost diagram below holds: if P and Q
are related by R and P →α P ′, there is Q′ such that Q →α Q′ and R relates P ′

and Q′, and symmetrically for the transitions of Q.

P
α

R Q
α

P ′ R Q′

P
α

R Q
α

P ′ F(R) Q′

P
α

R Q
α

P ′ S Q′

P
α

R Q
α

P ′ R Q′

Bisimulation is the most popular technique to establish bisimilarity results:
to prove that P and Q are bisimilar (written P ∼ Q), exhibit a bisimulation
R such that P R Q. Up-to techniques for bisimulation have been introduced to
alleviate the task of bisimulation proofs, by working with smaller relations. The
proof scheme is shown on the second diagram above: a correct up-to technique
is given by a function F from relations to relations such that if we prove that R
‘evolves to’ F(R), then we know that R ⊆∼. The advantage is that R need not
be a bisimulation (and can be ‘much smaller’ than a bisimulation). The notion
of evolution of relations (depicted on the third diagram, where R evolves to S
— its informal meaning is made precise below) serves as the basis of [8], where a
general theory of up-to techniques for bisimulation is presented. The correspond-
ing framework gives a unified and modular view of known up-to techniques, that
can be combined together to yield powerful proof techniques for bisimilarity.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 730–741, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Up-to Techniques for Weak Bisimulation 731

Up to now, we have implicitly been referring to strong bisimulation. When
analysing nontrivial systems, however, one is often interested in the weak ver-
sion, where a special action, called τ , is isolated, and the game of bisimulation is
redefined by abstracting over τ transitions (τ is treated as a silent action, while
other actions are visible). In the weak version of the bisimulation game, as shown
on the rightmost diagram above, Q responds to P →α P ′ by performing an �α
transition: this means that Q can do zero or several silent steps before and after
the transition along α, or even not move at all in the case where α = τ (and sym-
metrically when Q offers a challenge). One might then want to follow the same
path as above: redefine the evolution of relations, and look for some functions F
that yield correct up-to proof techniques for weak bisimilarity (written ≈). An
important motivation for doing so is that in general, weak bisimulation proofs
tend to be much larger than strong bisimulation proofs, so that having up-to
techniques for the weak case is at least as important as in the strong case.

Unfortunately, in the weak case, irregularities appear, the paradigmatic ex-
ample being given by the unsoundness of the ‘weak bisimulation up to weak
bisimilarity’ proof technique. We recall the counterexample, from [9]. We sup-
pose that the reader is familiar with CCS, and define R � {(τ.a, 0)}. Let us
show that R is a weak bisimulation up to ≈, i.e., that R evolves to ≈R≈ (we
use juxtaposition to denote relation composition). The right process, 0, cannot
move. The only move the left process can do is a τ transition to a, to which the
right process answers by no move, and we get the pair (a, 0). Now since we are
reasoning up to ≈, and since a ≈ τ.a, we are allowed to replace this pair with
(τ.a, 0), and we are back in R. Nevertheless, we obviously cannot conclude that
τ.a and 0 are bisimilar processes.

Novel and useful proof techniques have been introduced to circumvent this dif-
ficulty [9, 3], notably based on the expansion preorder [1], that allows one to avoid
situations where one can ‘undo a τ transition’ as in the example above. However,
as we have experienced in a recent study [4], in some cases reasoning up to ex-
pansion is not possible. The intuitive reason can be formulated as follows: when
a process P expands a process Q, P has to be more efficient (in terms of internal
computations, represented by silent transitions) than Q at every step. Typically,
expansion is a well suited relation to get rid of intermediate computation steps
that do not affect the behaviour of the system. However, it is common (in par-
ticular, it is the case in [4]) that along such transitions, an increased efficiency is
achieved at the cost of some initial computation. Because of its ‘very controlled’
nature, expansion fails in handling this kind of pre-calculation techniques.

In the present work, we develop a theory of up-to techniques for weak bisim-
ulation that enjoys nice properties in terms of generality and modularity, and
we introduce new useful proof techniques for weak bisimilarity that can be used
in that framework.

We start by adapting the work of [7] to the weak case, yielding the notion of
monotonic function over relations. We explore the class of monotonic functions,
and argue that it is too restrictive. We are thus led to relax the notion of mono-
tonicity, and introduce weakly monotonic functions, for which up-to techniques

732 D. Pous

can be applied only to reason about visible actions (those that cannot be undone
by ≈). We then show under which conditions monotonic and weakly monotonic
functions can be combined together to obtain sound proof techniques. The re-
sulting framework gives a unified and modular account of existing technology for
weak bisimulation proofs. Beyond that, we validate some proof principles, such
as ‘up to bisimilarity and transitivity on visible actions’, that to our knowledge
had not been proposed before.

We then attack the question of finding alternatives to the expansion relation
to handle τ transitions in weak bisimulation proofs. We propose an up to con-
trolled bisimulation technique. The notion of controlled bisimulation intuitively
captures the idea of avoiding ‘going back in time’ in bisimulation proofs. We in-
troduce relaxed expansion, a co-inductively defined relation that is a controlled
bisimulation and is coarser than expansion. We also propose two new proof prin-
ciples for which the control on τ steps exploits a different kind of argument, based
on termination guarantees. The corresponding correctness proofs are best for-
mulated as rewriting results, that are technically difficult and may be of interest
per se; we therefore describe them in that setting in a dedicated section. All our
results have been formally checked using the Coq proof assistant [7]. For the lack
of space, most are omitted in this extended abstract. They can be found in [5].

Outline of the paper. In Sect. 1, we introduce some necessary background and
show where the approach of [8] breaks when adapted to the weak case. We de-
velop our theory of up-to techniques for weak bisimulation in Sect. 2, introducing
monotonic and weakly monotonic functions. In Sect. 3 we introduce controlled
simulations and present new up-to techniques based on this notion. The correct-
ness of some of these techniques is supported by the proofs given in Sect. 4, which
are formulated in the setting of commutation results. We give final remarks in
Sect. 5.

1 The Problem of “Weak Bisimulation Up to”

1.1 Labelled Transition Systems, Relations, Evolution

We consider a labelled transition system (LTS) (P,L,→), with domain P, labels
or actions in L and transition relation →⊆ P × L × P. The elements of P are
called processes and are denoted by P,Q. We distinguish a silent action, τ ∈ L.
We let α, β (resp. a, b) range over actions, in L (resp. visible actions, in L\{τ}).
We write P →α Q when (P, α,Q) ∈ → (so that P →a Q stands for a transition of
P along a visible action a).

We let R,S,B, E range over binary relations (simply called relations in the
sequel) on processes, and denote respectively by R+,R=,R� the transitive, re-
flexive, transitive and reflexive closure of the relation R. P R Q stands for
(P,Q)∈R. The composition of two relations R and S, written RS, is defined
by RS � {(P,Q) s.t. P R T and T S Q for some process T}. We will also need
the inverse of a relation: R−1 � {(P,Q) s.t. Q R P}. I will denote the identity
relation. We say that R contains S (alternatively, that S is contained in R),

Up-to Techniques for Weak Bisimulation 733

written S ⊆ R, if P S Q implies P R Q. A relation R terminates if there is no
infinite sequence P1, P2 . . . such that ∀i, Pi R Pi+1.

Definition 1.1 (weak transitions). The weak transition relation, written �α ,
is defined as the reflexive transitive closure of →τ when α = τ , and the composi-
tion �τ →a �τ for α = a ∈ L\{τ}.
Definition 1.2 (evolution). Let α be an action and R,S two relations. We
say that R α-evolves to S, if whenever P R Q, P →α P ′ implies Q �α Q′ and
P ′ S Q′ for some Q′. Given two relations R and S, we say that:

– R evolves to S, denoted by R � S, if R α-evolves to S for all α ∈ L,
– R evolves silently to S, denoted by R �τ S, if R τ -evolves to S,
– R evolves visibly to S, denoted by R �v S, if R a-evolves to S for all

a ∈ L\{τ}.
Our notion of evolution is the ‘asymmetric’ version of progression in [8]: R

progresses to S in the sense of [8] iff R evolves to S and R−1 evolves to S−1.
In the following, we build a theory of up-to techniques to reason about sim-

ulations. This leads to simpler developments, and we show at the end of each
section how to use the results to obtain proof techniques for bisimulation.

In the definition below, and in the remainder of the paper, we implicitly refer
to weak relations. There are several equivalent definitions of bisimilarity. The
following directly gives the standard way to prove a bisimilarity result between
two processes P and Q: exhibit a bisimulation R containing the pair (P,Q).

Definition 1.3 (simulation, bisimulation, expansion). Let R be a relation,
R is a simulation (resp. silent simulation) if R � R (resp. R �τ R).
R is a bisimulation if R and R−1 are simulations. Two processes P and Q are
bisimilar, written P ≈ Q, if P R Q for some bisimulation R.

Expansion, denoted by �, is the largest relation such that �−1 is a simulation,
and, whenever P � Q,

1. P →τ P ′ implies Q →τ Q′ and P ′ � Q′ for some Q′, or P ′ � Q;
2. P →a P ′ implies Q →a Q′ and P ′ � Q′ for some Q′.

1.2 The Difficulty in the Weak Case

We now adapt the theory of up-to techniques of [8] to the weak case, and show
where the difficulties arise. We let F ,G range over functions from relations to
relations. We say that F contains G, written G ⊆ F , if G(R) ⊆ F(R) for any
relation R. Given a relation S, we define identity (U), constant-to-S (S̃), S-left-
chaining (S•) and S-right-chaining (•S) as follows:

U(R) � R S̃(R) � S S• (R) � SR •S(R) � RS
We define four constructors, i.e., functions from functions to functions: com-

position (◦), union (∪), iteration (∗) and chaining (�), as follows:

(F ◦ G)(R) � F(G(R))
(F ∪ G)(R) � F(R) ∪ G(R)
(F�G)(R) � F(R)G(R)

(F0)(R) � R
(Fn+1)(R) � Fn(R) ∪ F(Fn(R))

(F∗)(R) �
⋃

n≥0 Fn(R)

734 D. Pous

Definition 1.4 (monotonicity). A function F is monotonic if R ⊆ S entails
F(R) ⊆ F(S) and the following conditions hold:

(1)
{R �τ S

R ⊆ S ⇒ F(R) �τ F(S) (2)
{R � S

R ⊆ S ⇒ F(R) �v F(S)

This slightly strengthens the notion of respectfulness found in [8], in which the
two kinds of transitions are treated uniformly. While the results of this section
would hold using respectful functions, we will need this separation between silent
and visible actions in Sect. 2.2.

Proposition 1.5 (correctness of monotonic functions). Let F be a mono-
tonic function. If R � F(R), then F∗(R) is a simulation.

This proposition ensures that a monotonic function provides a sound up-to
technique: whenever we can prove that R evolves to F(R), then R is contained
in F∗(R), which is a simulation. We now exhibit some monotonic functions, and
show how to combine them to obtain more powerful techniques.

Lemma 1.6. Let S be a simulation, U , S̃, •S and �• are monotonic functions.

In the sequel, we will say that a constructor respects a predicate P over
functions, if, given arguments that satisfy P, it returns a function satisfying P.

Lemma 1.7. Constructors ◦, ∪ and ∗ respect monotonicity.

We can now apply our framework to reason about bisimulation relations, and
revisit a result from [9]. We show that the proof becomes elementary.

Theorem 1.8. If R � � R=≈ and R−1 � � (R−1)=≈, then R ⊆ ≈.

Proof. Using the previous results, F(R) � � R=≈ is monotonic, and F∗(R)
and F∗(R−1) are simulations. Then ≈F∗(R) and F∗(R−1)≈ are simulations.
We check that (≈F∗(R))−1 = F∗(R−1)≈, so that R ⊆≈F∗(R) ⊆ ≈. ��

The transitivity problem. The ≈-left-chaining function is not monotonic. As a
consequence, the chaining constructor does not respect monotonicity in general.
Indeed, when trying to prove the monotonicity of ≈•, we lack some hypotheses
about silent transitions to close the corresponding diagram.

2 A Smooth Theory for the Weak Case

2.1 A Weaker Notion of Monotonicity

When looking at the counterexample given in the Introduction, we can observe
that the problem is related to silent transitions: unlike visible transitions, they
can be cancelled by ≈. We now exploit this observation to relax the definition
of monotonicity, which leads to a smoother theory, where reasoning up to weak
bisimilarity is allowed, but on visible actions only.

Up-to Techniques for Weak Bisimulation 735

Definition 2.1 (weak monotonicity). A function F is weakly monotonic if
R ⊆ S entails F(R) ⊆ F(S) and the following conditions hold:

(1) R �τ R ⇒ F(R) �τ F(R) (2)
{R �τ R, R �v S

S �τ S, R ⊆ S ⇒ F(R) �v F(S)

The main difference w.r.t. Definition 1.4 is in clause (1): instead of respecting
silent evolutions, a weakly monotonic function has to respect silent simulations.
On the visible side (2), we suppose that R and S are silent simulations. The
immediate consequence of these modifications appears in the following result:
the up-to function may only be used on visible evolutions, and the candidate
relation R has to be a silent simulation.

Proposition 2.2 (correctness of weakly monotonic functions). Let F be
weakly monotonic. If R �τ R, and R �v F(R), then F∗(R) is a simulation.

Now we study the class of weakly monotonic functions: the following lemma
ensures that the functions given by Lemma 1.6 can be used in the setting of
weakly monotonic functions. Furthermore, weakly monotonic functions can be
composed using the most important constructors:

Lemma 2.3. Any monotonic function is weakly monotonic. Composition (◦),
union (∪), iteration (∗) and chaining (�) respect weak monotonicity.

The closure under the chaining constructor naturally suggests the use of interest-
ing up-to techniques, and in particular up to transitivity, given by F(R) = R�,
and up to weak bisimilarity, using F(R) = ≈R ≈.

2.2 Combining Monotonicity and Weak Monotonicity

In introducing weakly monotonic functions, we have restricted the use of up-
to techniques to visible steps. We show how to develop further this approach
by combining a monotonic function and a weakly monotonic function so as to
employ constrained up-to techniques on silent steps, and full-fledged up-to tech-
niques on visible steps.

Proposition 2.4 (unified up-to technique). Let F be monotonic and G be
weakly monotonic, and suppose further that F ⊆ G.

If R �τ F(R) and R �v G(R), then (G∗)∗(R) is a simulation.

In this result, we have to iterate G twice for technical reasons (see [5] for
details). The following theorem is the counterpart of Theorem 1.8 in the richer
setting we have introduced:

Theorem 2.5. If
{R �τ � R=≈
R �v (R∪≈)� and

{R−1 �τ � R−1=≈
R−1 �v (R−1 ∪≈)� then R ⊆≈.

We thus have a modular theory of up-to techniques for weak bisimulation that
follows the approach for the strong case in [8]. Technically, the main improvement
over previous works is the ability to exploit weaker hypotheses when reasoning
about visible steps: for instance, up to transitivity (R �v R�) and up to weak
bisimilarity (R �v ≈R≈) techniques entail valid proof methods.

736 D. Pous

3 Beyond Expansion

3.1 Controlled Relations

In this section, we enrich our framework with the possibility to use alternatives
to � (which is the best we can do using Theorem 2.5) to handle τ transitions
in bisimulation proofs. We define a class of relations that are controlled w.r.t.
silent transitions, meaning that they prevent silent steps from being cancelled
in an up-to bisimulation game.

The left-chaining functions associated to such relations are not weakly mono-
tonic, and we thus have to depart from the theory we have developed so far.
Roughly, a controlled relation is defined as a relation that induces a correct
proof technique when used as a left-chaining up-to technique. The following
technical definition introduces a uniform way to plug a non weakly monotonic
left-chaining function into our setting.

Definition 3.1 (controlled relation). We says that B is a controlled relation
if the following holds for all relations R, S:

(1) R �τ B�R ⇒ B�R �τ B�R (2)
{R �τ B�R
R �v S, S �τ S ⇒ B�R �v B�S .

Remark 3.2. Note that a controlled relation need not be a simulation. However,
by taking R = S = I, we see that if B is controlled, then B� is a simulation.
Also, the union of two controlled relations is not necessarily a controlled relation.
Thus, this does not a priori induce a notion of controlled bisimilarity.

We say that B is a controlled bisimulation if it is a controlled relation con-
tained in bisimilarity.

We now show how controlled relations can be used in simulation proofs.

Definition 3.3 (transparency). Given a relation B and a function F , F is
B-transparent if F(B�R) ⊆ B�F(R) for any relation R.

F is transparent if it is B-transparent for any relation B.

Proposition 3.4 (up to controlled relation). Let F and G be two func-
tions, and B a relation such that: B is a controlled relation, F is monotonic and
B-transparent, G is weakly monotonic. Suppose moreover that G contains F and
B�•. If R �τ B�F(R) and R �v G(R), then (G∗)∗(R) is a simulation.

Lemma 3.5. The identity and all S-right-chaining functions are transparent.
If B ⊆ S then the constant-to-S function is B-transparent.

The composition, union and iteration constructors respect B-transparency.

In practise, we will work with S = ≈ and require that B ⊆ ≈, so that
condition B ⊆ S will be satisfied.

Also notice that �•, the expansion-left-chaining function, is not transparent
in general. This hence prevents us from encompassing the up to expansion proof
technique in the statement of the following theorem.

Up-to Techniques for Weak Bisimulation 737

Theorem 3.6. Let B be a controlled bisimulation.

If
{R �τ B�R=≈
R �v (R∪ ≈)� and

{R−1 �τ B�R−1=≈
R−1 �v (R−1 ∪ ≈)� then R ⊆ ≈.

This theorem is the counterpart of Theorem 2.5 using a controlled bisimula-
tion instead of �. A refined version of this result, in which two distinct controlled
bisimulations are used for the silent evolutions of R and R−1, also holds. This
can be useful in particular because the class of controlled bisimulations is not
closed under union, as explained in Remark 3.2.

The remainder of the section is devoted to the construction of controlled
relations.

3.2 Relaxed Expansion

Definition 3.7 (relaxed expansion). A relation E is a relaxed expansion if
whenever P E Q,

1. P →τ P ′ implies Q →τ Q′ and P ′ E Q′ for some Q′ or P ′ E Q,
2. P →a P ′ implies Q →a �τ Q′ and P ′ E Q′ for some Q′.

Relaxed expansion, denoted by �, is the union of all relaxed expansions E such
that E−1 is a simulation.

When P � Q and P →a P ′, Q has to do immediately a transition along a,
but then can do as many silent transitions as necessary. The intuition behind
the definition of relaxed expansion is that, using this possibility, Q can do some
‘preliminary internal computation’ in order to be able to remain faster than P
until the next visible action.

Lemma 3.8. � is a relaxed expansion, and we have: � � � � ≈.

Proof. The first point and the inclusions are straightforward. We illustrate the
strictness of the inclusions using CCS processes: a.b � a.τ.b holds but not a.b �
a.τ.b, and a ≈ τ.a holds but not a � τ.a. ��
Theorem 3.9. A relaxed expansion is a controlled relation. � is a controlled
bisimulation.
In general, � is not a congruence: for instance, in CCS, a.b � a.τ.b holds but not
a | a.b � a | a.τ.b. We remark that � is very close to almost weak bisimilarity,
defined in [9]; the definition of � only fits better to our setting.

3.3 Introducing Termination Guarantees

We now show how to obtain controlled relations using termination guarantees.
The theorems below follow from general results about commuting diagrams,
presented in Sect. 4. Their proofs are thus deferred to that section.

Theorem 3.10. Let B be a relation such that B � B+ and B terminates. Then
B is a controlled relation.

738 D. Pous

Theorem 3.11. Let B be a relation such that B � B� and B+→τ + terminates.
Then B is a controlled relation.

Unlike �, where the control on silent moves is fixed by the co-inductive def-
inition of the relation, in these two results we start with a relation that roughly
respects the – too permissive – weak bisimulation game, and constrain it a pos-
teriori, in such a way that it cannot cancel silent steps indefinitely. For example,
the erroneous up-to relation B = {(a, τ.a)} is rejected because B evolves to
I = B0, and B+→τ + = {(a, a)} obviously does not terminate.

There are processes that are not related by �, but by a relation satisfying
the conditions of the previous theorems: consider (a | (νb)b, τ.a) or (a + a, τ.a).

Like for controlled relations, there is no direct way to define the greatest
relation satisfying the requirements in Theorems 3.10 and 3.11, the main reason
being that the union of terminating relations does not terminate in general. Also
remark that the termination of B+→τ + does not entail the termination of B or
→τ . Theorem 3.11 can thus be applied to systems exhibiting infinite chains of τ
transitions (e.g., π or CCS with replication).

We can use the up-to techniques we have defined previously to show the evo-
lution condition in the above theorems (B � B+ or B � B�). However one has
to be careful, because the simulation relation obtained with these techniques is
F∗(B). Depending on F , this relation may be reflexive, which discards Theo-
rem 3.10, or just quite complex, so that proving the termination of F∗(B) or
F∗(B)+→τ + may be delicate.

4 Results About Commuting Diagrams

In this section, we work in the more general setting of diagrams, commonly
found in rewriting theory. In addition to R,S we let →, ↪→ and � range over
relations. As before, →+ (resp. �) is the transitive (resp. reflexive transitive)
closure of →. We shall say that four relations (R,→,S, ↪→) form a diagram,
denoted (R,→) (S, ↪→), if whenever P R Q and P → P ′, there is Q′ such
that P ′ S Q′ and Q ↪→ Q′ (in our proofs, we shall sometimes adopt the usual
graphical notation for diagrams). We say that two relations R and → commute
if (R,→) (R,→). Notice that a relation R is a simulation iff R commutes
with �α for all α ∈ L.

4.1 A First Termination Argument

Lemma 4.1. Let B, → be two relations such that B terminates.
If (B,→) (B+,�), then B+ and � commute.

Remark 4.2. The commutation hypothesis (B,→) (B+,�) cannot be weak-
ened to (B,→) (B�,�), or to “whenever P B Q and P → P ′, P ′ = Q or there
is Q′ such that P ′ B+ Q′ and Q � Q′”. Indeed, if we define

B � { (2, 3), (3, 4), (1, 0) }
→ � { (3, 2), (2, 1), (1, 0) } 0 1

B
2

B
3 B 4

Up-to Techniques for Weak Bisimulation 739

B terminates and satisfies the two alternative hypotheses; 2 B� 4 and 2 → 1, but
there is no i s.t. 4 � i and 1 B� i.

A similar result: “if B terminates and (B,→) (B+,�), then B� and �
commute” is given in [10–Exercise 1.3.2]. However we are interested in show-
ing the stronger result below, in which diagrams can be composed with other
relations (this is necessary to obtain controlled simulations).

Lemma 4.3. Let B,→, ↪→ be three relations such that B terminates.
If (B,→) (B+,�) and (B, ↪→) (B+,�↪→), then B+ and �↪→ commute.

Proof. By induction over the well-founded relation B−1 with the predicate φ(P ′):
“For all P,Q such that P �↪→ P ′ and P B+ Q, there is Q′ such that Q �↪→ Q′

and P ′ B+ Q′”. ��
Proposition 4.4. Let B,→, ↪→,R,S,� be six relations such that B terminates.

If
{

(B,→) (B+,�)
(B, ↪→) (B+,�↪→) and

{
(R,→) (B�R,�)
(R, ↪→) (B�S,��)

then (B�R,�↪→) (B�S,��).

We can now give the first deferred proof from the previous section:

Proof (of Theorem 3.10).

1. Suppose R �τ B�R, we apply Proposition 4.4, taking →τ for →, and the
identity relation for ↪→, �, and S.

2. Suppose furthermore R �v S and S �τ S. Lemma 4.1 ensures that B+ is
a silent simulation. We close the diagram marked with a (*) below with a
simple induction.

a

B
(H) a

τ

B+

(Lem. 4.1) τ

B+

a

R
(H) a

τ

S
(∗) τ

S
We then apply Proposition 4.4, using →τ for →, →a �τ for ↪→ and �. ��

4.2 A Generalisation of Newman’s Lemma

Lemma 4.5. Let B,→,R be three relations such that B+→+ terminates.
If (B,→) (B�,�) and (R,→) (B�R,�), then B�R and � commute.

Proof. It suffices to prove (B�R,→) (B�R,�): the commutation result then
follows by a simple induction. We use an induction over the well-founded order
induced by the termination of B+→+, with the predicate φ(P): “For all P ′, Q
such that P → P ′ and P B�R Q, there is Q′ such that Q � Q′ and P ′ B�R Q′”
(IH1). Then we do a second induction on the derivation of P B�R Q (IH2).
From the first hypothesis, we get Pn such that the leftmost diagram below holds
(we show the interesting case where P0 →+ Pn). We use the internal induction

740 D. Pous

to obtain Q1 in the central diagram; this is possible since any process P ′′ such
that P0 B+ →+ P ′′ satisfies P B+ →+ P ′′: the external induction hypothesis
is preserved. Finally, using a third induction on the derivation P1 � Pn, we
close the diagram by applying n− 1 times the external induction hypothesis (all
processes between P1 and Pn satisfy P B+→+ Pi).

P B P0 B�R Q

(H) P1

P ′ B� Pn

P B P0 B�R
(IH2)

Q

P1 B�R Q1

P ′ B� Pn

P B P0 B�R Q

P1 B�R
(IH1)

n−1

Q1

P ′ B� Pn B�R Q′

��
By taking R = I in this lemma, we obtain the following corollary:

Corollary 4.6. Let B,→ be two relations such that B+→+ terminates.
If (B,→) (B�,�), then B� and � commute.

By taking B =→, we get Newman’s lemma: “Local confluence and termi-
nation entail confluence”. A different generalisation of this confluence lemma
to commutation can be found in [2–Lemma 4.26]. However, the latter result
is weaker than ours since it requires the termination of B∪ →, and thus the
termination of both B and →.

Remark 4.7 (up-to techniques and commuting diagrams). The previous corollary
admits a direct and elegant proof using the decreasing diagram techniques of
van Oostrom et al. [2–Theorem 4.25]. The details of this proof are given in [5].
However, results like Lemma 4.5 and Proposition 4.8 cannot be proved within
the setting of [2], because they express properties beyond ‘pure commutation’.

Fournet [3] and others have been using results from [2] to validate up-to
techniques for barbed equivalences. This is not directly comparable to the present
work, since in that setting, commutation results apply directly (visible actions
are not taken into account). Moreover, these works do not exploit results based
on termination guarantees on the relations between processes.

Proposition 4.8. Let B,→,R, ↪→,S,� be six relations s.t. B+→+ terminates.

If
{

(B,→) (B�,�)
(B, ↪→) (B�,�↪→) and

{
(R,→) (B�R,�)
(R, ↪→) (B�S,��)

then (B�R,�↪→) (B�S,��).

Like in the proof of Theorem 3.10, we use Proposition 4.8 and Corollary 4.6
to establish Theorem 3.11.

5 Concluding Remarks

Applications of our proof techniques. We have analysed two example systems
where existing methods do not really help in establishing bisimilarity results,
while the techniques we have presented are applicable, and indeed simplify

Up-to Techniques for Weak Bisimulation 741

the proofs. One of these examples comes from the work reported in [4] (which
presents a direct bisimilarity proof). For lack of space, we do not present these
here; the interested reader can refer to the long version of this paper [5]. More
experience on case studies has to be developed in order to have a better un-
derstanding of how our techniques can be best combined, and how to tune the
distinction between visible and internal computation steps.

A theorem prover formalisation of our results.All results in this paper have been
formally checked in the Coq proof assistant [7], and the descriptions of the proofs
we give actually closely follow the proof scripts (available from [6]). This is of
particular interest for the proofs in Sect. 4, which require non trivial and error-
prone reasoning, especially when reasoning about nested inductions.

Results about decreasing diagrams. Due to the presence of labelled transitions,
results about decreasing diagrams from [2] are not applicable directly in our
setting. We plan to study how the theory of [2] can be adapted to keep track
of visible actions. This could be a way to provide an abstract approach for the
definition of ‘up to transitivity’ techniques based on termination guarantees.

Acknowledgements. We would like to thank Davide Sangiorgi for his com-
ments and suggestions, and Daniel Hirschkoff for helpful discussions and a great
help during the redaction process.

References

1. S. Arun-Kumar and M. Hennessy. An efficiency preorder for processes. Acta
Informatica, 29(9):737–760, 1992.

2. M. Bezem, J. W. Klop, and V. van Oostrom. Diagram techniques for confluence.
Information and Computation, 141(2):172–204, 1998.

3. C. Fournet. The Join-Calculus: a Calculus for Distributed Mobile Programming.
PhD thesis, Ecole Polytechnique, 1998.

4. D. Hirschkoff, D. Pous, and D. Sangiorgi. An Efficient Abstract Machine for Safe
Ambients. Technical Report 2004–63, LIP – ENS Lyon, 2004. An extended abstract
appeared in the proceedings of COORDINATION’05.

5. D. Pous. Up-to Techniques for Weak Bisimulation. Technical Report 2005–16,
LIP – ENS Lyon, 2005.

6. D. Pous. Web appendix of this paper, 2005.
Available at http://perso.ens-lyon.fr/damien.pous/upto.

7. INRIA projet Logical. The Coq proof assistant. http://coq.inria.fr/.
8. D. Sangiorgi. On the Bisimulation Proof Method. Mathematical Structures in

Computer Science, 8:447–479, 1998.
9. D. Sangiorgi and R. Milner. The problem of “Weak Bisimulation up to”. In Proc.

CONCUR ’92, volume 630 of Lecture Notes in Computer Science, pages 32–46.
Springer Verlag, 1992.

10. TeReSe. Term Rewriting Systems. Cambridge University Press, 2003.

	The Problem of ``Weak Bisimulation Up to''
	Labelled Transition Systems, Relations, Evolution
	The Difficulty in the Weak Case

	A Smooth Theory for the Weak Case
	A Weaker Notion of Monotonicity
	Combining Monotonicity and Weak Monotonicity

	Beyond Expansion
	Controlled Relations
	Relaxed Expansion
	Introducing Termination Guarantees

	Results About Commuting Diagrams
	A First Termination Argument
	A Generalisation of Newman's Lemma

	Concluding Remarks

