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Abstract. The Metropolis algorithm is simulated annealing with a fixed
temperature. Surprisingly enough, many problems cannot be solved more
efficiently by simulated annealing than by the Metropolis algorithm with
the best temperature. The problem of finding a natural example (arti-
ficial examples are known) where simulated annealing outperforms the
Metropolis algorithm for all temperatures has been discussed by Jerrum
and Sinclair (1996) as “an outstanding open problem.” This problem
is solved here. The examples are instances of the well-known minimum
spanning tree problem. Moreover, it is investigated which instances of the
minimum spanning tree problem can be solved efficiently by simulated
annealing. This is motivated by the aim to develop further methods to
analyze the simulated annealing process.

1 Introduction

Simple randomized search heuristics like randomized local search (RLS), the
Metropolis algorithm (MA), simulated annealing (SA), evolutionary algorithms
(EA), and genetic algorithms (GA) find many applications. One cannot hope
that they outperform sophisticated problem-specific algorithms for well-studied
problems. They are easy to implement and good alternatives if one does not
know efficient problem-specific algorithms and if one shies away from developing
a clever algorithm. They are the tool of choice in black-box optimization where
the problem instance is hidden from the algorithm. And they are useful as parts
of hybrid algorithms combining general search principles with problem-specific
modules.

Hence, it is interesting to understand the working principles behind these
heuristics. The aim is to analyze the expected optimization time and the success
probability within a given time bound of heuristics applied to specific problems.
Up to now there are not many of such results. One reason is that the heuristics
are not designed to support their analysis (in contrast to many problem-specific
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algorithms). To simplify the problem many authors have first investigated quite
artificial problems hoping to develop methods which can be used in many other
situations.

Here, we are interested in simulated annealing and the Metropolis algorithm
(which can be defined as SA with a fixed temperature). Both algorithms are
defined in Section 2. It is an obvious question how to use the freedom to choose a
cooling schedule for SA and whether this option is essential. Little is known about
this leading Jerrum and Sinclair (1996, page 516) to the following statement: “It
remains an outstanding open problem to exhibit a natural example in which
simulated annealing with any non-trivial cooling schedule provably outperforms
the Metropolis algorithm at a carefully chosen fixed value of α.” In their paper,
α is the temperature. The notion of a “natural example” is vague, but the known
examples are obviously artificial. Sorkin (1991) has proven the considered effect
for a so-called fractal energy landscape. The chaotic behavior of this function
asks for different temperatures in different phases of the search. The artificial
example due to Droste, Jansen, and Wegener (2001) allows a simpler analysis.

Jerrum and Sorkin (1998) have analyzed the Metropolis algorithm for the
graph bisection problem. They focus the interest on problems from combinato-
rial optimization: “Unfortunately no combinatorial optimization problem that
has been subjected to rigorous theoretical analysis has been exhibited this phe-
nomenon: those problems that can be solved efficiently by simulated annealing
can be solved just as effectively by ‘annealing’ at a single carefully selected tem-
perature. A rigorous demonstration that annealing is provably beneficial for some
natural optimization problems would rate as a significant theoretical advance.”

Our problem of choice is the minimum spanning tree problem (MSTP) which
is contained in all textbooks on combinatorial optimization and should be ac-
cepted as “natural optimization problem.” It should be obvious that SA cannot
beat MA for each problem instance. E. g., for graphs where all edge weights equal
1 the frozen MA (at temperature 0) cannot be beaten by SA. In Section 3, we
describe the notion of efficiency for randomized search heuristics and, in Section
4, we describe simple instances of the MSTP where SA outperforms MA. The
underlying graphs will be so-called connected triangles (CT), see Figure 1.

. . .

Fig. 1. Graphs called connected triangles.

The idea is to produce examples as simple as possible. This allows proofs
which can be taught in introductory courses on randomized search heuristics.
Afterwards, we try to understand which instances of the MSTP can be solved
efficiently by SA and MA, only by SA, or by none of them. Weights w1, . . . , wm

are called (1 + ε)-separated if wi > wj implies wi ≥ (1 + ε) · wj . For each
ε(m) = o(1) there are graphs with (1 + ε(m))-separated weights such that SA
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cannot attack them efficiently (Section 5). For each constant ε > 0, SA can
attack all graphs with (1 + ε)-separated weights efficiently (Section 6). These
results imply that SA outperforms MA on a much larger class of graphs than
the connected triangles discussed in Section 4. We finish with some conclusions.

It should be obvious that we do not hope that SA or MA beats the well-known
algorithms due to Kruskal and to Prim. Again we like to transfer a statement
of Jerrum and Sorkin (1998) from minimum bisections to minimum spanning
trees (MSTs): “Our main contribution is not, then, to provide a particularly
effective algorithm for the minimum bisection problem . . . , but to analyze the
performance of a popular heuristic applied to a reasonably realistic problem in
combinatorial optimization.”

2 Metropolis Algorithm, Simulated Annealing, and
Minimum Spanning Trees

An instance of the MSTP consists of an undirected graph G = (V, E) with n
vertices and m edges and a weight w(e) for each edge e. Weights are positive
integers. The problem is to find an edge set E′ connecting all vertices with
minimal total weight. The edges are numbered and edge sets are described as
characteristic vectors, i. e., x ∈ {0, 1}m describes the set of edges ei where xi = 1.
This formalization is well-suited for MA and SA.

We describe the Metropolis algorithm with temperature T for minimization
problems on {0, 1}m. The first search point x is chosen in some way discussed
later. Each round of an infinite loop consists of local change and selection.

Local change: Let x be the current search point. Choose i ∈ {1, . . . , m} uni-
formly at random and flip xi, i. e., let x′ = (x′

1, . . . , x
′
m) where x′

j = xj , if
j �= i, and x′

i = 1 − xi.
Selection of the new current search point with respect to a fitness function f :

if f(x′) ≤ f(x): select x′,
if f(x′) > f(x): select x′ with probability exp{−(f(x′)−f(x))/T}, otherwise
select x.

We have to discuss some details in order to ensure that our results are not based
on too special choices. Randomized search heuristics do not produce a certificate
that a search point is optimal. Therefore, the algorithm contains an infinite loop,
but the run time is defined as the number of rounds until an optimal search point
is produced. A round cannot be performed in time O(1) but quite efficiently and
people have agreed to count the number of rounds.

We choose 1m as starting point. This is similar to the choice 0m for the max-
imum matching problem (Sasaki and Hajek (1988)) and the maximum clique
problem (Jerrum (1992)). The starting points are the worst legal solutions. This
choice of the starting point implies that we cannot apply the lower bound tech-
nique for MA due to Sasaki (1991) which ensures only the existence of some bad
starting point. It would be an alternative to start with a search point chosen
uniformly at random. For many graphs, we then choose a non-legal solution (an
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unconnected graph) and the fitness function has to contain hints directing the
search to legal search points. It is not difficult to obtain similar results in this
situation. However, most papers on MA and SA only work on legal search points.

We have chosen the fitness function f where f(x) = ∞ for search points x
describing unconnected graphs and where f(x) is the total weight of all chosen
edges if x describes a connected graph. Unconnected graphs are never accepted as
current search points. This again is in accordance with Sasaki and Hajek (1988)
and Jerrum (1992). All search points are legal solutions in the graph bisection
problem and therefore Jerrum and Sorkin (1993, 1998) start with randomly
chosen search points.

We follow Sasaki and Hajek (1988) and Jerrum (1992) in allowing only 1-bit
neighborhoods. Neumann and Wegener (2004) have analyzed RLS with 1-bit
and 2-bit flips (RLS equals the frozen MA at temperature T = 0) and a simple
EA for the MSTP. These algorithms do not select new search points which are
worse than the old one. Hence, their search strategy is completely different from
the strategy applied by MA and SA that have to accept sometimes worsenings
to find the optimum. Flips of two bits allow to include an edge into a tree
and to exclude simultaneously an edge of the newly created cycle. RLS and the
simple EA find an MST in an expected number of O(m2(log m + log wmax))
steps, where wmax denotes the maximal weight. Note that we are not looking
for a “best” algorithm for the MSTP. The main idea of an elitist EA is to reject
worsenings and to escape from local optima by non-local steps. The main idea
of MA and SA is to work with very local steps and to escape from local optima
by accepting worsenings. The situation here is similar to the case of maximum
matchings where also flips of 2 bits are helpful to shorten augmenting paths,
compare Sasaki and Hajek (1988) who analyze SA with 1-bit flips only and Giel
and Wegener (2003) who analyze RLS with 1-bit and 2-bit flips and a simple
EA.

Finally, we introduce SA based on a cooling schedule T (t). The initial tem-
perature T (1) may depend on m and the largest possible weight wmax. The
temperature T (t) applied by the selection operator in step t equals αt−1 · T (1),
where α < 1 is a constant which may depend on m and an upper bound on
wmax. This cooling schedule does not include any knowledge about the problem
instance. We use a kind of “continuous cooling”, other possibilities are longer
phases with a constant temperature or dynamic cooling schedules that depend
on the success rate (where a step is called successful if x′ is selected) or the rate
of f -improving steps.

3 Efficiency Measures

There are many well-known convergence results on MA and SA. We want to
distinguish “efficient behavior” from non-efficient one. The first idea is to define
efficiency as expected polynomial time. We think that this is not a good choice.
There may be a small probability of missing a good event for temperatures in
some interval [T1, T2]. For temperatures smaller than T1 it may be very unlikely



Simulated Annealing Beats Metropolis in Combinatorial Optimization 593

that the good event happens. This may cause a superpolynomial or even expo-
nential expected run time although the run time is polynomially bounded with
overwhelming probability.

Definition 1. Let A be a randomized search heuristic (RSH) running for a
polynomial number of p(m) rounds and let s(m) be the success probability, i. e.,
the probability that A finds an optimal search point within this phase. A is called

– successful, if s(m) ≥ 1/q(m) for some polynomial q(m),
– highly successful, if s(m) ≥ 1 − 1/q(m) for some polynomial q(m), and
– successful with overwhelming probability, if s(m) = 1 − e−Ω(mε) for some

ε > 0.

One can be satisfied with successful RSHs, since then multistart variants not
depending on p and q are successful with overwhelming probability and have
an expected polynomial run time. An RSH is called unsuccessful if, for each
polynomial p, the success probability within p(m) steps is o(m−k) for each con-
stant k. This implies a superpolynomial expected optimization time. Moreover,
multistart variants do not help.

4 Simulated Annealing Beats Metropolis on Some
Simple Graphs

Our plan is to present simple graphs where SA beats MA for each temperature.
The graphs should allow proofs as simple as possible. The idea behind the chosen
graphs is the following. The problem to compute an MST on graphs with many
two-connected components is separable, i. e., an MST consists of MSTs on the
two-connected components. We investigate graphs where each two-connected
component can be handled easily by MA with a well-chosen temperature, but
different components need different temperatures. To keep the analysis easy the
components have constant size. This implies that, for high temperatures, each
component can be optimized, but the solutions are not stable. They are destroyed
from time to time and then reconstructed. Therefore, it is unlikely that all the
components are optimized simultaneously. SA can handle these graphs efficiently.

As announced, we investigate connected triangles (CT), see Figure 1, with
m = 6n edges. The number of triangles equals 2n and the number of vertices
equals 4n + 1. The weight profile (w1, w2, w3) of a triangle is simply the ordered
vector of the three edge weights. We investigate CTs with n triangles with weight
profile (1, 1, m) and n triangles with weight profile (m2, m2, m3). The unique
MST consists of all edges of weight 1 or m2.

Theorem 1. The probability that the Metropolis algorithm applied to CTs with
n triangles with weight profile (1, 1, m)and n triangles with weight profile (m2, m2,
m3) computes the MST within ecm steps (c a positive constant which is small
enough) is bounded above by e−Ω(m), i. e., MA is unsuccessful on these instances.
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Proof. We distinguish the cases of high temperature (T ≥ m) and low temper-
ature (T < m).

The low temperature case is easy. We do not care about the triangles with
weight profile (1, 1, m). For each other triangle, MA accepts the exclusion of
the first flipping edge. By Chernoff bounds, with probability 1 − 2−Ω(m), we
obtain Ω(m) triangles where the first spanning tree contains the heavy edge. In
order to obtain the MST it is necessary to include the missing edge of weight
m2. If this edge is chosen to flip, the probability of selecting the new search
point equals e−m2/T ≤ e−m. Hence, the success probability within em/2 steps
is e−Ω(m).

In the high temperature case, we do not care about the heavy triangles. For
the light triangles, we distinguish between complete triangles (the search point
chooses all three edges), optimal triangles (the two weight-1 edges are chosen),
and bad triangles. The status of each triangle starts with “complete” and follows
a Markov chain with the following transition probabilities:

complete optimal bad
complete 1 − 3/m 1/m 2/m
optimal 1

m · e−m/T 1 − 1
m · e−m/T 0

bad 1
m · e−1/T 0 1 − 1

m · e−1/T

Let Xt be the number of optimal triangles after time step t, i. e., X0 = 0. We
are waiting for the first point of time t when Xt = n. Obviously, |Xt+1−Xt| ≤ 1.
Moreover,

Prob(Xt+1 = a + 1 | Xt = a) ≤ n − a

m

since it is necessary to flip the heaviest edge in one of the at most n−a complete
triangles, and

Prob(Xt+1 = a − 1 | Xt = a) =
a

m
· e−m/T ≥ a

3m

since T ≥ m and since it is necessary to flip the heaviest edge in one of the
optimal triangles and to accept the new search point. Since we are interested
in lower bounds, we use the upper bound for the probability of increasing a
and the lower bound for the probability of decreasing a. Ignoring steps not
changing a, we obtain the following transition probabilities for the new Markov
chain Yt:

Prob(Yt+1 = a − 1|Yt = a) =
a/(3m)

a/(3m) + (n − a)/m
=

a

3n − 2a
.

There has to be a phase where the Y -value increases from (10/11)n to n without
reaching (9/11)n. In such a phase the probability of decreasing steps is bounded
below by (9/11)n

3n−(18/11)n = 3
5 . Applying results on the gambler’s ruin problem, the
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probability that one phase starting at a = (10/11)n and finishing at a = (9/11)n
or a = n stops at a = n is bounded above by

((3/2)n/11 − 1)/((3/2)2n/11 − 1) = e−Ω(m)

since the probability of decreasing steps is at least by a factor of 3/2 larger than
the probability of increasing steps. Hence, the probability of finding the MST
within ecm steps, c > 0 small enough, is bounded by e−Ω(m). ��
Theorem 2. Let p be a polynomial and let the cooling schedule be described by
T (1) = m3 and α = 1−1/(cm) for some constant c > 0. If c is large enough, the
probability that simulated annealing applied to CTs with n (1, 1, m)-triangles and
n (m2, m2, m3)-triangles computes the MST within 3cm lnm steps is bounded
below by 1 − 1/p(m).

Proof. We only investigate the search until the temperature drops below 1. This
phase has a length of at most 3cm lnm steps and contains two subphases where
the temperature is in the interval [m2, m5/2] or in the interval [1, m1/2]. The
length of each subphase is at least (c/4)m lnm.

If T ≤ m5/2, the probability of including an edge of weight m3 is bounded
above by e−m1/2

. Each run where such an event happens is considered as unsuc-
cessful. If T ∈ [m2, m5/2] and an (m2, m2, m3)-triangle is optimal, this triangle
remains optimal unless the event considered above happens. Applying Chernoff
bounds to each edge and choosing c large enough, the probability of not flipping
edges of each triangle at least c′′ log m times is bounded by m−k, c′′ > 0 and k
arbitrary constants. This is a second source of bad behavior. Now, we investigate
one (m2, m2, m3)-triangle and the steps flipping one of its edges. For each com-
plete or bad triangle, there is a chance that it turns into optimal within the next
two steps concerning this triangle. This happens if the right two edges flip in
the right order (probability 1/9) and the inclusion of the edge with weight m2 is
accepted (probability e−m2/T ≥ e−1). The probability of not having a good pair
among the at least (c′′/2) log m step pairs, can be made much smaller than m−k

by choosing c′′ large enough. Altogether, the probability that the first subphase
does not finish with MSTs on all (m2, m2, m3)-triangles can be made smaller
than 1/(3p(m)).

The same calculations for T ∈ [1, m1/2] and the (1, 1, m)-triangles show
that the probability that the second subphase does not finish with MSTs on
all (1, 1, m)-triangles can be made smaller than 1/(3p(m)). Finally, the proba-
bility that an (m2, m2, m3)-triangle has turned from optimal into non-optimal
after the first subphase is smaller than 1/(3p(m)). This proves the theorem. ��
We have proved that SA is highly successful for the considered graph instances.
It is easy to choose a cooling schedule such that SA is even successful with
overwhelming probability, e. g., T (1) = m3 and α = 1 − 1/m2. See Neumann
and Wegener (2004) to compare SA with simple evolutionary algorithms.
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This section contains the result announced in the title of the paper. In the
remaining sections, we investigate which graphs can be handled efficiently by
MA and SA, only by SA, or by none of them.

5 Connected Triangles with the Same Weight Profile

It is interesting to understand how much different weights have to differ such
that MA or SA are able to construct efficiently an MST. For this reason, we
investigate graphs consisting of connected triangles in more detail. In this section,
we consider the case of n CTs with the same weight profile (w, w, (1+ ε(m)) ·w)
where ε(m) > 0. We distinguish the cases where ε(m) is bounded below by a
positive constant ε and the case where ε(m) = o(1).

Theorem 3. If ε(m) ≥ ε > 0, MA with an appropriate temperature finds the
MST on CTs with n (w, w, (1 + ε(m)) · w)-triangles in expected polynomial time
and is successful with overwhelming probability.

Proof. A good temperature has to fulfil two properties:

– It has to be low enough to distinguish w-edges effectively from (1 + ε) · w-
edges.

– It has to be high enough to allow the inclusion of a w-edge in expected
polynomial time.

We choose γ := 3/ε and T := w/(γ ·lnm). The probability to accept the inclusion
of a w-edge equals e−w/T = m−γ while the corresponding probability for a
((1 + ε(m)) · w)-edge equals m−γ·(1+ε(m)) ≤ m−γ−3. We analyze the success
probability of a phase of length mγ+2 starting with an arbitrary connected graph.
The event to accept the inclusion of a heavy edge is considered as an unsuccessful
phase. The probability of this event is bounded above by 1/m. Following the
lines of the proof of Theorem 2 we have for each triangle with overwhelming
probability Ω(mγ+1) steps flipping an edge of this triangle which we partition
into Ω(mγ+1) pairs of consecutive steps. The probability that a complete or bad
triangle is turned within such two steps into an optimal one is Ω(m−γ). Hence,
with overwhelming probability, all triangles turn into optimal during this phase
and with probability at least 1 − 1/m none of them is turned into non-optimal.
Hence, the expected number of phases is O(1) and the probability that a sequence
of m phases is unsuccessful is exponentially small. ��

It is obvious how to tune the parameters in order to get improved run times.
We omit such calculations which do not need new ideas. SA finds the MST
in polynomial time with a probability exponentially close to 1 if it starts with
T (1) := w/(γ · lnm) and has a cooling schedule that cools down the temperature
sufficiently slow. This follows in the same way as Theorem 3.

Theorem 4. If ε(m) = o(1), MA and SA are unsuccessful on CTs with
n (w, w, (1 + ε(m)) · w)-triangles.
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Proof. First, we investigate MA. The search starts with n complete triangles
and each one has a probability of 2/3 to be turned into a bad one before it is
turned into an optimal one. With overwhelming probability, at least n/2 bad
triangles are created where the missing w-edge has to be included in order to be
able to turn it into an optimal triangle. The probability of including a w-edge
within a polynomial number of p(m) steps is bounded above by p(m) · e−w/T .
This is bounded below by Ω(m−k) only if e−w/T = Ω(m−γ) for some constant
γ > 0. Hence, we can assume that T ≥ w/(γ · lnm) for some constant γ > 0.

Let p∗(T ) be the probability of accepting the inclusion of a w-edge and p∗∗(T )
the corresponding probability for a ((1+ ε(m)) ·w)-edge. Since T ≥ w/(γ · lnm)
and ε(m) = o(1),

p∗(T )/p∗∗(T ) = e−w/T · e(1+ε(m))·w/T

= eε(m)·w/T

≤ eε(m)·γ·ln m

= mε(m)·γ .

Choosing m large enough, this gets smaller than any mδ, δ > 0. It will turn out
that this advantage of w-edges against ((1 + ε(m)) · w)-edges is too small. The
stochastic process behind MA can be described by the parameters b (number
of bad triangles) and c (number of complete triangles). We use the potential
function 2b + c which starts with the value n and has the value 0 for the MST.
The value of the potential function changes in the following way:

– It increases by 1 if a complete triangle turns into a bad one or an optimal
one turns into a complete one. The probability of the first event equals
2c/m, since we have to flip one of the two light edges of one of the complete
triangles. The probability of the second event equals p∗∗(T ) · (n − b − c)/m
since we have to flip the heavy edge in one of the n − b − c optimal triangles
and to accept this flip.

– It decreases by 1 if a complete triangle turns into an optimal one (probability
c/m) or a bad triangle turns into a complete one (probability p∗(T ) · b/m).

– It remains unchanged, otherwise.

Since we are interested in lower bounds on the optimization time, we can
ignore all non-accepted steps, i. e., all steps not changing the potential. If b ≤
n1/2 and m is large enough, the probability that an accepted step increases the
potential is at least 3/5. This claim is equivalent to

2c/m + p∗∗(T ) · (n − b − c)/m

2c/m + p∗∗(T ) · (n − b − c)/m + c/m + p∗(T ) · b/m
≥ 3

5

which is equivalent to

2c + p∗∗(T ) · (n − b − c) ≥ 9
5
c +

3
5

· p∗∗(T ) · (n − b − c) +
3
5
p∗(T ) · b

and
1
5
c +

2
5
p∗∗(T ) · (n − b − c) ≥ 3

5
· p∗(T ) · b.
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This is obviously true if c ≥ 3 · b. Otherwise, n − b − c ≥ n − 4b ≥ n − 4n1/2 and
it is sufficient to show that

2 · p∗∗(T ) · (n − 4n1/2) ≥ 3 · p∗(T ) · n1/2

or
p∗(T )/p∗∗(T ) ≤ 2

3
(n1/2 − 4).

We have shown that this holds for large enough m, since n = Ω(m). The claim
for MA follows now from results on the gambler’s ruin problem. The probability
to start with a potential of n1/2/2 and to reach the value 0 before the value n1/2

is exponentially small. Finally, we investigate a polynomial number of p(m) steps
of SA. Let d be chosen such that p(m) ≤ md. We claim that it is unlikely that the
potential drops below n1/2/4 within md steps. With overwhelming probability,
we produce a bad triangle. Therefore, it is necessary to accept the inclusion
of a w-edge. Hence, as seen above, only steps where the temperature is at least
w/(γ ·lnm) for some appropriate constant γ > 0 have to be considered. However,
the analysis of MA treats all these temperatures in the same way. The probability
to start with a potential of n1/2/2 and to reach the value n1/2/4 before (3/4)n1/2

is still exponentially small. ��
The proof also shows that SA with an arbitrary cooling schedule is unsuc-

cessful in the considered situation.

6 Simulated Annealing Is Successful for (1+ε)-Separated
Weights

We have seen in Theorem 4 that MA and even SA are unsuccessful on certain
graphs if we allow that different weights may differ by a factor of 1+ε(m) where
ε(m) is an arbitrary function such that ε(m) = o(1). Here, we prove that SA is
highly successful on all graphs if the different weights differ at least by a factor
of 1 + ε for some constant ε > 0.

Before proving this result, we repeat some well-known facts about MSTs. Let
E1, . . . , Er be the partition of the edge set E such that all edges in Ei have the
same weight Wi and W1 > · · · > Wr. Let ci, 1 ≤ i ≤ r + 1, be the number of
connected components of Gi := (V, Ei ∪ · · · ∪ Er). Each MST contains exactly
ai := ci+1 − ci Ei-edges such that the chosen edges from Ei ∪ · · · ∪ Er span
the connected components of Gi. A set E∗

i of ai Ei-edges is called optimal if
G∗

i := (V, E∗
i ∪ Ei+1 ∪ · · · ∪ Er) has the same connected components as Gi. An

MST contains exactly the edges of optimal sets E∗
1 , . . . , E∗

r . The set E∗
i is not

necessarily uniquely defined. The idea of the proof is the following. There is some
point of time ti, 1 ≤ i ≤ r + 1, such that, with large probability, the following
holds. After step ti, no inclusion of an edge from E1 ∪ · · ·∪Ei is accepted and at
step ti the current search point has chosen among all Ej-edges, 1 ≤ j ≤ i−1, an
optimal subset E∗

j . This implies that after step ti no edges from E1∪· · ·∪Ei−1 are
included (the first property) or excluded (this would destroy the connectedness
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of the graph described by the search point). Moreover, no edges from Ei are
included and we hope to exclude enough Ei-edges until step ti+1 such that then
the search point chooses an optimal set E∗

i of Ei-edges. Note that after time
step ti the set of chosen Ei-edges is always a superset of an optimal set E∗

i since,
otherwise, the considered graph would be unconnected. Finally, the properties
imply that at step tr+1 the search point describes an MST.

Theorem 5. Let the weights of the edges be bounded by 2m and (1+ε)-separated
for some constant ε > 0, i. e., wi > wj implies wi ≥ (1 + ε) · wj. SA with an
appropriate cooling schedule is highly successful when searching for an MST on
such graphs.

Proof. Let T (1) := 2m, γ := 8/ε, α be the cooling factor such that it takes mγ+7

steps to decrease the temperature from T to T/(1 + ε/2), and β be defined by
(1 + ε/2)β = 2. Then we set tr+1 := 2βmγ+8. Until step tr+1, the temperature
has dropped (far) below 1/m. Our claim is that, with a probability of 1−O(1/m),
the search point at step tr+1 describes an MST.

To follow the proof strategy discussed above let ti, 1 ≤ i ≤ r, be the ear-
liest point of time when T (ti) ≤ Wi/((1 + ε) · γ · lnm). The probability of
accepting the inclusion of an edge of weight Wi after step ti is bounded above
by m−γ−8. During the next mγ+7 steps, with overwhelming probability, there
are O(mγ+6) steps flipping a specified edge and the probability to accept this
edge at least once is O(1/m2). Afterwards, the temperature has dropped by
a factor of 1/(1 + ε/2). The probability to accept this edge is then bounded
by m−γ−12 and the probability to accept the edge during the next mγ+7 steps
is O(1/m5). This argumentation can be continued implying that the proba-
bility to accept the inclusion of the considered edge after step ti is O(1/m2).
Hence, with probability 1 − O(1/m), it holds that, for all i, edges of weight
Wi are not included after step ti. In the following, we assume that this event
holds.

We assume that at step ti the search point chooses optimal sets E∗
1 , . . . , E∗

i−1
and a superset E′

i of an optimal set E∗
i . This is obviously true for i = 1. We

analyze the steps ti, . . . , ti + mγ+7 − 1. The probability to accept an edge with
weight w ≤ Wi+1 in one step is bounded below by m−γ−4 during this phase. By
our assumption, we do not include edges of weight w ≥ Wi. Let bi := |E′

i|− |E∗
i |

at step ti. As long as |E′
i| > |E∗

i | there are at least |E′
i| − |E∗

i | candidate Ei-
edges whose exclusion is possible. The exclusion of such an edge is only ac-
cepted if this edge lies on a cycle. Either the edge lies on a cycle or there is
a missing edge of weight w ≤ Wi+1 whose inclusion creates a cycle contain-
ing the considered Ei-edge. If no cycle with an Ei-edge exists, the probability
of creating such a cycle in the next step is at least m−γ−5. If a cycle with an
Ei-edge exists, the probability to destroy the cycle by excluding an Ei-edge is
at least 1/m (there may be more than one Ei-edge on the cycle). Let us as-
sume that we do not exclude bi Ei-edges within the considered mγ+7 steps.
Let s be the number of steps in this phase where a cycle with an Ei-edge exists.
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If s ≥ m3/2, then the probability of less than bi ≤ m steps excluding an Ei-
edge on the cycle is exponentially small. If s < m3/2, then the probability that
among the at least mγ+7 − m3/2 steps without a cycle with Ei-edges there are
less than m3/2 steps creating such a cycle is exponentially small. Hence, with
overwhelming probability, enough Ei-edges are excluded and the claim holds for
step ti+1.

Altogether, with a probability of 1 − O(1/m), SA has found an MST after
O(mγ+8) steps. ��

It is easy to see that we can generalize the result to weights up to 2p(m) for
a polynomial p. The run time increases by a factor of O(p(m)/m). It is possible
to tune the parameters to obtain better run times. However, the purpose of
Theorem 4 and Theorem 5 was to identify the border (with respect to quotients
of different weights) between cases where SA is highly successful and cases where
SA can be unsuccessful. With respect to these aims we have obtained optimal
results. It is easy to generalize our results to prove that SA is always highly
successful if one is interested in (1 + ε)-optimal spanning trees. It remains an
open problem to find other sufficient conditions implying that MA or SA is
successful or unsuccessful on the MSTP.

7 Conclusions

The paper contributes to the theory of randomized search heuristics, in particu-
lar, the Metropolis algorithm and simulated annealing. The problem to present
a natural example from combinatorial optimization where simulated annealing
beats the Metropolis algorithm is solved by investigating the problem of com-
puting minimum spanning trees. Moreover, the minimal factor between different
weights to guarantee that simulated annealing finds minimum spanning trees
efficiently is determined.
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