
Append-Only Signatures�

Eike Kiltz��, Anton Mityagin� � �, Saurabh Panjwani†, and Barath Raghavan‡

Department of Computer Science and Engineering,
University of California, San Diego, USA

{ekiltz, amityagin, panjwani, barath}@cs.ucsd.edu

Abstract. We present a new primitive – Append-only Signatures (AOS)
– with the property that any party given an AOS signature Sig[M1]
on message M1 can compute Sig[M1‖M2] for any message M2, where
M1‖M2 is the concatenation of M1 and M2. We define the security
of AOS, present concrete AOS schemes, and prove their security un-
der standard assumptions. In addition, we find that despite its simple
definition, AOS is equivalent to Hierarchical Identity-based Signatures
(HIBS) through efficient and security-preserving reductions. Finally, we
show direct applications of AOS to problems in network security. Our
investigations indicate that AOS is both useful in practical applications
and worthy of further study as a cryptographic primitive.

Keywords: Algebraic Signatures, Append-only Signatures, Hierarchical
Identity-based Signatures.

1 Introduction

In many real-world applications, users and programs alike require notions of
delegation to model the flow of information. It is often required that delegation
from one party to another enables the delegatee to “append” to the information
it received but to do nothing more. For example, in wide-area Internet routing,
each network passes a routing path advertisement to its neighboring networks,
which then append to it information about themselves and forward the updated
advertisement to their neighbors. For security, the route advertisements must
be authenticated; intermediate networks must be incapable of modifying routes
except according to the protocol (that is, by appending their names to already-
received advertisements). Likewise, in the context of secure resource delegation
for distributed systems, users need to delegate their share of resources to other
users, who may then re-delegate to other users by including their own resources in

� Any opinions, findings, and conclusions or recommendations expressed in this ma-
terial are those of the authors and do not necessarily reflect the views of the NSF.

�� Supported in by a DAAD postdoc fellowship.
� � � Supported in part by NSF grants ANR-0129617 and CCR-0208842.

† Supported in part by NSF grant 0313241.
‡ Supported by a NSF Graduate Research Fellowship.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 434–445, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Append-Only Signatures 435

the pool. In many of these applications, it is desirable that delegation is possible
without parties having to share any cryptographic keys and that the authenticity
of any information received through a series of delegations is verifiable based only
on the identity of the first party in the chain.

To directly address these needs, we present a new cryptographic primitive
called Append-Only Signatures (AOS). An AOS scheme enables the extension
of signed messages and update of the corresponding signatures, without requiring
possession of the signing key. That is, any party given an AOS signature Sig[M1]
on message M1 can compute Sig[M1‖M2] for any message M2, where M1‖M2

is the concatenation of M1 and M2. The verifier of the final signature needs
the initial signer’s public key but does not need to know the public keys or any
other information from intermediate signers except the message data appended.
Clearly, such a scheme cannot be secure according to the standard notion of
security for signatures. Instead, we define an AOS scheme to be secure if it is
infeasible to forge signatures of messages that are not obtained by extending
already-signed messages. A formal definition appears in Section 2.

In Section 3 we present several provably secure AOS schemes, offering differ-
ent tradeoffs of flexibility and efficiency. Our first construction shows a generic
approach to building AOS schemes from any standard digital signature scheme
using certificate chains. The construction works as follows: The secret and public
keys for the AOS scheme are obtained by running the key generator for SIG.
For any message M = M1‖M2‖ · · · ‖Mn, each Mi being a symbol in some prede-
termined message space, the AOS signature of M is defined as a sequence of n
public keys pk1, pk2, · · · , pkn (generated using the key generator for SIG) and a
sequence of n certificates binding the message symbols to these public keys. The
ith certificate in the chain binds the message symbol Mi to the corresponding
public key pki and is signed using the secret key, ski−1, corresponding to pki−1.
The secret key, sk0, of the AOS scheme signs the first certificate in the chain
while the secret key skn (corresponding to the last public key), is revealed as
part of the AOS signature and is used for appending new symbols to M . We
observe that if the message space is small enough, we can make use of “weaker”,
and more efficient, signature schemes without compromising the security of the
resulting AOS scheme. Using aggregation techniques of [2, 10] one can reduce
the length of the signature by a factor of two.

We also present a more efficient construction of AOS for applications in which
the message space is constant size and the total number of append operations
performed is also constant. This construction is based on a seemingly stronger
assumption (than that of the existence of signature schemes) and makes use of
pseudorandom generators and collision-resistant hash functions (CRHFs).

Relation to Hierarchical Identity-Based Signatures. Identity-Based
Signature (IBS) schemes, due to Shamir [14], are signature schemes in which
the identity of the signer (for example, her email address) plays the role of his
public key. Such schemes assume the existence of a trusted authority that holds
a master public-private key pair that is used to assign secret keys to users based

436 E. Kiltz et al.

on their identities. Anyone can verify signatures on messages signed by a user
knowing only the master public key and the identity of that user. Hierarchical
IBS (HIBS) schemes, proposed by Gentry and Silverberg [4], are identity-based
signature schemes in which users are arranged in a hierarchy and a user at any
level in this hierarchy can delegate secret keys to her descendants based on their
identities and her own secret key. To verify the signature created by any user, one
needs to know only the identity of the user (and her position in the hierarchy)
and the public key of the root user.

HIBS can be implemented using certificate chains (as suggested in [4]) and
the resulting construction bears a strong resemblance to the certificate-based
construction of AOS we give in this paper. Upon closer examination, we find
that the similarity between the two constructions is not accidental: it is an
artifact of the close relationship between the two primitives themselves—AOS
and HIBS are, in fact, tightly equivalent. This means that (a) there exist generic
transformations from any HIBS scheme into a corresponding AOS scheme and,
likewise, from any AOS scheme into a corresponding HIBS scheme; and (b)
these transformations are extremely efficient (the derived scheme is as efficient
as the scheme being derived from) and highly security-preserving (an adversary
attacking the derived scheme can be transformed into an adversary attacking the
original one, losing only a constant factor in efficiency and query complexity).
Section 4 gives details.

A benefit of this equivalence is that it considerably simplifies the notion of
HIBS and makes security analysis for HIBS schemes less onerous: AOS is simpler
than HIBS, and, for any HIBS scheme, it is typically easy to find an equivalent
AOS scheme whose security properties carry over to the corresponding HIBS
scheme. For example, our security proof for certificate-based AOS translates to
a security proof for certificate-based HIBS (originally proposed in [4]). Although
this construction of HIBS was known prior to our work, it was never analyzed
in the literature, and, to the best of our knowledge, we give the first proof of
security for it. Furthermore, our construction of AOS based on pseudorandom
generators and CRHFs yields a novel approach to designing HIBS and can be
useful for some restricted scenarios (for example, in a constant-depth hierarchy
wherein each user signs messages from a constant-size message space). We re-
mark that both these constructions yield HIBS schemes in the standard model
and neither involves the use of computationally intensive bilinear maps (this is
in contrast with some recent results on HIBS [3]).

Application to Secure Routing. In Section 5 we discuss an important real-
life application of AOS in internet routing security.

Related Work. Append-only signatures belong to a general class of primitives
called algebraic signatures. Informally, an algebraic signature scheme allows the
creation of signatures on a message M using the signatures on some known
messages, M1,M2, . . . ,Mn, and the public key, provided M can be obtained
from the known messages using some prespecified set of (n-ary) operations, say
O = {f1, f2, · · · , fm}. That is, given the signatures, sig[M1], . . . , sig[Mn] and

Append-Only Signatures 437

the public key, it is easy to compute sig[fi(M1, . . . ,Mn)] for any fi ∈ O. In
our setting, each fi has arity 1 and appends some fixed message symbol Mi to
an input message M . Security for algebraic signatures is defined in a manner
similar to our approach to security of AOS (that is, it should be hard to forge
signatures of messages that cannot be obtained by applying the operations in
O to already-signed messages). Examples of algebraic signatures studied in the
literature include transitive signatures by Micali and Rivest [12], homomorphic
signatures by Johnson, Molnar, Song and Wagner [7], and graph-based algebraic
signatures by Hevia and Micciancio [5].

Although no obvious relation exists between our primitive and any of the
previously studied algebraic signature primitives, we do note that some of the
techniques we use in our constructions parallel prior techniques. For example, our
construction of AOS schemes using CRHFs can be viewed as a special instance
of graph-based algebraic signature schemes studied in [5] (although the set of
update operations considered there are different from the append operation that
we consider).

2 Append-Only Signatures

Informally, append-only signatures (AOS) are signatures that enable the pub-
lic extension of existing signatures. That is, any party given an AOS signature
Sig on a message (M1, . . . ,Mn) can compute an AOS signature on any message
(M1, . . . ,Mn,Mn+1). (As in the introduction, one could represent the message
(M1, . . . ,Mn) as the string M1|| . . . ||Mn which better captures the idea of ap-
pending. However, since we want to differentiate between the message “A”‖“B”
and the message symbol “AB”, we prefer to think of messages as n-tuples. That
is, in our example, we have the two different tuples (A,B) and (AB)). Besides
the append operation, AOS is the same as ordinary signatures. That is, given
only an AOS signature on the message (M1, . . . ,Mn) it should be infeasible to
forge an AOS signature on any message not having (M1, . . . ,Mn) as a prefix.

Let AOS.MSpace be any set of symbols (for example, {0, 1} or {0, 1}∗). A mes-
sage of length n is an n tuple of symbols written as M [1..n] = (M1,M2, . . . ,Mn).
The special case of n = 0 is the empty message, denoted ε. We use the symbol
� to denote the prefix relation over the messages. An append-only signature
(AOS) scheme with respect to the message space AOS.MSpace is a collection of
three polynomial-time algorithms: a setup algorithm (AOS.Setup), an append
algorithm (AOS.Append), and a verify algorithm (AOS.Vfy), defined as follows:

– AOS.Setup takes the security parameter as input and outputs a pair of keys:
the public key AOS.pk and the secret key Sig[ε], which is the signature on
the empty message ε.

– AOS.Append takes the public key AOS.pk, a signature on a message M [1..n−
1] = (M1, . . . Mn−1), of length n − 1, and a symbol Mn ∈ AOS.MSpace and
produces a signature on the message M [1..n] = (M1, . . . ,Mn).

– AOS.Vfy takes the public key AOS.pk, a message M [1..n], and a signature
sig, and returns either true or false.

438 E. Kiltz et al.

All algorithms can be randomized. Additionally, the scheme should have the
property that for any pair (AOS.pk,Sig[ε]) and any message M [1..n], the sig-
nature sig obtained by iteratively appending M1, . . . ,Mn to Sig[ε] should be
accepted by AOS.Vfy. Appendig the symbols one-by-one should be the only way
of generating a signatures on the message M [1..n]. This fact ensures history in-
dependence of AOS: that is, no party, given an AOS signature, can tell whether
the signature was created by the owner of the secret key or whether it passed
through multiple parties that appended symbols at every step. History indepen-
dence is a useful property to have in most applications, as already highlighted
in previous work on algebraic signatures [7].

Definition 1. Let AOS = (AOS.Setup,AOS.Append,AOS.Vfy) be an AOS
scheme, let k be the security parameter, and let A be an adversary. We con-
sider the experiment:

Experiment Expaos-uf-cma
AOS,A (k)

MSGSet ← ∅ ; (AOS.pk, Sig[ε])
$← AOS.Setup(1k)

(M [1..n], sig)
$← AAOSSign(·)(AOS.pk)

if AOS.Vfy(AOS.pk, M [1..n], sig) = true

and ∀J [1..j] � M [1..n] : J [1..j] �∈ MSGSet
then return 1 else return 0

Oracle AOSSign(M [1..n])

Add M [1..n] to MSGSet
return Extract(M [1..n])

Oracle Extract(M [1..i]) // defined recursively

if i = 0 then return Sig[ε]
else if Sig[M [1..i]] = defined

then return Sig[M [1..i]]

else Sig[M [1..i]]
$← AOS.Append(AOS.pk, M [1..i − 1],Extract(M [1..i − 1]), Mi)

return Sig[M [1..i]]

The aos-uf-cma-advantage of an adversary A in breaking the security of the
scheme AOS is defined as Advaos-uf-cma

AOS ,A (k) = Pr[Expaos-uf-cma
AOS ,A (k) = 1] , and

AOS is said to be unforgeable under chosen message attacks (aos-uf-cma se-
cure) if the above advantage is a negligible function in k for all polynomial-time
adversaries A.

Note that A is given access to the oracle AOSSign(·), not to the oracle
Extract(·) (the latter is used internally by AOSSign(·) to create intermediate
signatures).

3 Efficient AOS Constructions

We briefly sketch our constructions for AOS in this section. More details (in-
cluding proofs of all theorems) can be found in [9].

Certificate-Based Append-Only Signatures. We present an efficient con-
struction of a provably-secure AOS scheme based on a public-key signature
scheme. Let SGN = (SGN.G, SGN.S, SGN.V) be a signature scheme with a space
of public keys SGN.PKSpace and message space SGN.MSpace = AOS.MSpace ×

Append-Only Signatures 439

SGN.PKSpace. That is, messages to be signed by SGN are tuples of the form
(M,pk), where M ∈ AOS.MSpace and pk ∈ SGN.PKSpace. An AOS signa-
ture Sig of M [1..n] is a tuple (pk1, sig1, . . . , pkn, sign, skn), where for 1 ≤
i ≤ n, (pk i, sk i) are random public/secret key pairs of the public-key signature
scheme SGN and sig i is a signature on the tuple (Mi, pk i) under the secret key
ski−1. The signature sig0 is signed with the secret key sk0, which is the signa-
ture of ε (the master secret key). Our AOS scheme AOS1 with message space
AOS.MSpace is specified as follows:

– AOS.Setup(1k): Run SGN.G(1k) to generate a pair (pk0, sk0) and returns it
as AOS public/secret key pair.

– AOS.Append(AOS.pk, Sig[M [1..n]],Mn+1): Parse Sig as (pk1, sig1, . . . , pkn,
sign, skn). Run SGN.G(1k) to generate a pair (skn+1, pkn+1). Compute
sign+1 ← SGN.Sskn

(Mn+1, pkn+1). Return (pk1, sig1, . . . , pkn+1, sign+1,
skn+1).

– AOS.Vfy(AOS.pk,M [1..n], Sig): Parse Sig as (pk1, sig1, . . . , pkn, sign, skn).
Set pk0 to be the master public key AOS.pk. For i = 1..n − 1 verify that
SGN.V(pki−1, sig i, (Mi, pki)) = true. If any of the verifications fail, return
false. If all the verifications succeed, verify that (skn, pkn) is a valid secret
key/public key pair (by signing and veryfing a signature on a random message
under skn).

Theorem 2. The AOS scheme AOS1 is aos-uf-cma secure assuming that the
public-key signature scheme SGN is unforgeable under choosen message attacks.

Shorter Signatures via Aggregation. An aggregate signature scheme,
ASGN = (ASGN.G,ASGN.S,ASGN.AGG,ASGN.V), allows the aggregation of n
signatures on n distinct messages from n distinct users into a single signature.
Its verification algorithm, ASGN.V(n, ·), takes an aggregated signature, n mes-
sages, and n public keys and verifies that the n users signed the n messages.
When using the certificate-based construction of AOS from Section 3, we can
use sequential signature aggregation to shrink the size of the signature (without
significantly decreasing security or efficiency). To be more precise, the length
of an AOS signature of a message of length n can be condensed to one signa-
ture of ASGN , n public keys of ASGN , and one secret key of ASGN . We note
that there are two known signature aggregation techniques. The first scheme,
given in [2], is based on bilinear maps. The second scheme (only supporting se-
quential aggregation) is from [10] and can be based on homomorphic trapdoor
permutations (such as RSA). Both aggregation schemes are in the random oracle
model.

AOS via Hash Trees. If the number of symbols in the alphabet AOS.MSpace
is small, AOS can be efficiently implemented using hash trees [11]. This ap-
proach suffers from dramatic complexity blowup as the size of the message
space increases, but uses only secret-key primitives and provides good secu-
rity guarantees. We believe that this construction is useful in computationally

440 E. Kiltz et al.

constrained applications. Here we show how to construct an AOS scheme AOS2
with message space AOS.MSpace = {0, 1} and message length restricted to d.
The construction uses a pseudorandom generator G : {0, 1}k → {0, 1}2k and a
collision-resistant hash function H : {0, 1}k × {0, 1}k → {0, 1}k . We denote by
Gi : {0, 1}k → {0, 1}k the i-th k -bit component of G for i ∈ {0, 1}.

Consider the graph T depicted in the left part of Figure 1, whose nodes are
denoted as shown on the figure (the upper part (UT) in round brackets and the
lower part (LT) in square brackets). In general, the graph T has d levels in both
upper and lower parts. For any node u = 〈v1, . . . , vj〉 from the upper part of the
graph, we define the complement of u, denoted Comp(u), to be the minimal set
of nodes in LT − {ε̃} such that every path from ε to ε̃ passes through exactly
one node from {u} ∪Comp(u). An example of a complement set is given on the
right half of Figure 1.

ε

〈0〉 〈1〉
〈0, 0〉 〈0, 1〉〈1, 0〉 〈1, 1〉
[0, 0] [0, 1]

[1, 0] [1, 1]

[0] [1]

ε̃

ε

〈0, 1〉

[0, 0]

[1]

ε̃

Fig. 1. Structure of the hash-tree construction for d = 2. The diagram on the left
depicts the hash tree. The diagram on the right highlights the node u = 〈0, 1〉 (shown
in black) and the set of its complements, Comp(u) (shown in gray)

In AOS2, a message M = (M1, . . . ,Mn) is assosiated with a node u =
〈M1, . . . ,Mn〉 from the upper part of the graph. Each node u is assosiated with
a k-bit value key(u), which is called the“key” of the message. The setup algo-
rithm assigns these values in a top-down manner, starting from the root node ε.
Initially, the root key key(ε) is chosen at random from {0, 1}k . Keys of all the
other nodes in the upper part of T are obtain by repeated application of G: keys
of left and right children of a node u are G0(key(u)) and G1(key(u)), respec-
tively. Keys of the nodes on the highest lower level are obtained by applying G0

to their parents’ keys; keys of the other nodes in the lower part are obtained by
applying H to their parents’ keys. The setup algorithm outputs key(ε̃) as the
public key and key(ε) as the secret key of AOS.

The signature of a node u consists of the keys in the set {u}∪Comp(u). Note
that given a signature of u, one can compute the keys of all the descendants

Append-Only Signatures 441

of u including the last node ε̃. Verification of a signature is done by computing
the keys of all the descendants of u and comparing the obtained key(ε̃) with
the public key. The append algorithm, given a signature of u = 〈M1, . . . ,Mn〉
and a bit Mn+1, computes the key of u′ = 〈M1, . . . ,Mn+1〉 (which is a child of
u) and the keys of all the nodes in Comp(u′) (which are descendants of u and
Comp(u)). It returns these keys as a signature on (M1, . . . ,Mn+1).

Theorem 3. If G(·) is a secure pseudorandom generator, G0(·), G1(·), are se-
cure one-way functions and H(·, ·), G0(·), and G1(·) are all collision-resistant
hash functions, then AOS2 is aos-uf-cma secure.

AOS via One-Time Signatures. We observe that we can combine the ideas
of the certificate-based AOS and the hash-tree AOS to gain a more efficient
append-only signature scheme when the message space is small. Assume the
message space AOS.MSpace consists of m elements, where m is a constant. Then
we can use our certificate-based construction AOS1 instantiated with an m-
time signature scheme. m-time signatures can be efficiently constructed using
hash-trees (see [5, 13] for the definition and efficient constructions of one-time
and m-time signatures). In addition, the security proof of AOS1 guarantees un-
forgeability if SGN is at least an |AOS.MSpace|-time signature scheme.

Compact AOS. In the full version of the paper [9] we show how to use a
recent technique of Boneh, Boyen and Goh [1] to get an AOS scheme in which
the signature size is proportional to the square root of the length of the
message.

4 Relations Between HIBS and AOS

In this section, we show that the concepts of AOS and Hierarchical Identity-
based Signatures (HIBS) are in fact equivalent.

We start with a formal defintion of HIBS. Let HIBS.IDSpace be any set of
identities (typically {0, 1}∗). A hierarchical identity of length n is an n-tuple
of identities from HIBS.IDSpace, written as I[1..n] = (I1, I2, . . . , In). The root
identity is denoted as I[1..0] or ε. Again we use the symbol � to denote the
prefix relation over the set of hierarchical identities.

A HIBS scheme over identity space HIBS.IDSpace is made up of four (possibly
randomized) algorithms: a setup algorithm HIBS.Setup, a key delegation algo-
rithm HIBS.KeyDel, a signing algorithm HIBS.Sign and a verification algorithm
HIBS.Vfy.

Definition 4. Given a HIBS scheme HIBS = (HIBS.Setup, HIBS.KeyDel,
HIBS.Sign, HIBS.Vfy), security parameter k and adversary A consider the fol-
lowing experiment:

442 E. Kiltz et al.

Experiment Exphibs-uf-cma
HIBS,A (k)

IDSet ← ∅
(HIBS.pk, HIBS.SK[ε]) ← HIBS.Setup(1k)
(I[1..n],M , sig)

← ACorrupt(·),Sign(·,·)(HIBS.pk)
if HIBS.Vfy(I[1..n],M , sig) = true

and ∀ j ≤ n I[1..j] �∈ IDSet
and (I[1..n],M) �∈ MSGSet

then return 1 else return 0

Oracle Corrupt(I[1..n])

IDSet ← IDSet ∪ {I[1..n]}
return Extract(I[1..n])

Oracle Sign(I[1..n],M)

MSGSet ← MSGSet ∪ {(I[1..n],M)}
sk ← Extract(I[1..n])
return HIBS.Sign(sk, I[1..n],M)

Oracle Extract(I[1..i]) // defined recursively

if i = 0 return HIBS.SK[ε]
else if HIBS.SK[I[1..i]] = defined

then return HIBS.SK[I[1..i]]
else sk ← HIBS.KeyDel(HIBS.pk, I[1..i − 1],Extract(I[1..i − 1]), Ii)

return sk

The hibs-uf-cma-advantage of an adversary A in breaking the security of the
scheme HIBS is defined as Advhibs-uf-cma

HIBS ,A (k) = Pr[Exphibs-uf-cma
HIBS ,A (k) = 1], and

HIBS is said to be existentially unforgeable under chosen message attacks (hibs-
uf-cma secure) if the above advantage is a negligible function in k for all poly-
nomial time adversaries A.

Constructing AOS from HIBS. We set AOS.MSpace = HIBS.IDSpace and
associate an AOS message (M1, . . . , Mn) of length n with the hierarchical iden-
tity I[1..n] = (M1, . . . ,Mn) of depth n. We then define the signature of this
message as the secret key HIBS.SK[I[1..n]] of I[1..n]. Given the above anal-
ogy between signatures of messages and secret keys of hierarchical identities,
we construct an AOS scheme given a HIBS scheme as follows. Appending to
a given signature in AOS is done using key delegation in HIBS . The verifica-
tion of an AOS signature HIBS.SK[I[1..n]] is done by signing a random message
M ∈ HIBS.MSpace under the secret key HIBS.SK[I[1..n]] and verifying that the
resulting signature is valid. A formal construction is given in the full version [9].

Theorem 5. If the HIBS scheme HIBS = (HIBS.Setup, HIBS.KeyDel, HIBS.Sign,
HIBS.Vfy) is hibs-uf-cma secure, then the above AOS scheme is aos-uf-cma
secure.

Constructing HIBS from AOS. A naive approach to building a HIBS scheme
from an AOS scheme would be as follows: for any hierarchical identity I[1..n],
define HIBS.SK[[]I[1..n]] as the AOS signature on I[1..n] and the HIBS signature
created with HIBS.SK[[]I[1..n]] on message M as the AOS signature formed by
appending M to HIBS.SK[[]I[1..n]]. However, it can be shown that such a scheme
is insecure. Our tweak is to insert a unique identifier to separate identities and
messages. Let AOS = (AOS.Setup,AOS.Append,AOS.Vfy) be an AOS scheme
with message space AOS.MSpace. Let HIBS.IDSpace and HIBS.MSpace be sub-
sets of AOS.MSpace such that there is some symbol ∆ from the AOS message
space which is not a valid identity for the HIBS scheme (∆ can still be in the

Append-Only Signatures 443

HIBS message space). Then we can construct a HIBS scheme with identity space
HIBS.IDSpace and message space HIBS.MSpace as follows:

Construction 6. HIBS = (HIBS.Setup,HIBS.KeyDel,HIBS.Sign,HIBS.Vfy):

– HIBS.Setup(1k): Run the AOS.Setup(1k) to generate a pair (AOS.pk, Sig[ε]);
output it as the master public/private key pair for HIBS .

– HIBS.KeyDel(HIBS.pk,HIBS.SK[I[1..n]], In+1): The delegation algorithm in-
terprets HIBS.SK[I[1..n]] as an AOS signature of I[1..n]. It appends to the
signature a symbol In+1 and outputs the resulting signature as the secret
key of I[1..n + 1].

– HIBS.Sign(HIBS.pk,HIBS.SK[In],M): The signing algorithm for HIBS inter-
prets HIBS.SK[I[1..n]] as an AOS signature of I[1..n]. It appends a symbol ∆
to HIBS.SK[I[1..n]] and then appends the message M to the resulting AOS
signature to get the final signature sig.

– HIBS.Vfy(HIBS.pk, I[1..n],M , sig): The verification algorithm for HIBS ver-
ifies if sig is a valid AOS signature of (I1, . . . , In,∆,M).

The following theorem is proven in the version [9]:

Theorem 7. If the AOS scheme AOS = (AOS.Setup,AOS.Append,AOS.Vfy) is
aos-uf-cma secure, then the HIBS scheme HIBS from Construction 6 is hibs-uf-
cma secure.

5 Applications

An important application of AOS is in the construction of secure routing pro-
tocols for the Internet. The Border Gateway Protocol (BGP), which is the pri-
mary routing protocol used today in the Internet, has some well-known security
weaknesses which require cryptographic solutions. While there have been many
proposals for securing BGP in the past [8, 6], each must develop its own crypto-
graphic constructions due to the lack of any primitive designed specifically for
this application. In the discussion below, we briefly describe Internet routing and
explain how our primitive is useful for ensuring important security requirements
in BGP.

The Internet is composed of various autonomous systems (ASes), each having
control over some portion of the IP address space. BGP is the protocol used to
spread information about the routes to all IP addresses in this network of ASes.
Initially, all ASes advertise the IP addresses they own to their neighboring ASes.
Upon receipt of such advertisements, each neighbor records this information, ap-
pends itself to the advertized route and sends the new information further down.
The process repeats with the next AS in the chain and eventually, all ASes learn
a route to the originating AS (In case an AS receives two or more routes to the
same IP address, it selects one of them based on some local policy). Authenticity
of route announcements is essential for ensuring the correct behaviour of BGP
for otherwise, malicious ASes can play havoc with the Internet traffic. For exam-
ple, if an AS truncates the route in some advertisement or modifies it selectively,

444 E. Kiltz et al.

it could convince its neighbors to forward all their traffic to it, which it could
then modify or drop at will (incidents of this nature have indeed occured in the
recent past [6]).

Append-only Signatures are a useful tool in addressing this problem. Suppose
that an AS R0 wishes to announce routes for some IP prefix it owns. It first gener-
ates an AOS public-private key pair, distributes the public key AOS.pk through-
out the network (this can be done through a PKI as in [8, 6]) and to every neigh-
boring AS Ri1 , sends the usual BGP information along with the AOS signature
AOS.Append(AOS.pk,Sig[ε], Ri1). In order to continue the advertisement process,
Ri1 sends to each of its own neighbors Ri2 a BGP announcement containing the
route (R0, Ri1) and the signature AOS.Append(AOS.pk, Sig[Ri1], Ri2). In other
words, R0 appends the label of its neighbor Ri1 into the AOS signature chain
and Ri1 further appends the label of Ri2 into it. The advertisement process con-
tinues in this manner until all ASes in the network receive information about a
route to R0. Each recipient can verify the validity of the announced route using
the public key AOS.pk. If the AOS scheme is secure, then all that a malicious
AS can do now is to append one of its neighbors into the AOS signature chain
(since each Ri can check that the AS it receives a route from was the last to be
appended before Ri). In practice, the number of path advertisements received by
an AS from any given source AS is extremely small: as observed in real routing
data [6], the odds that an AS receives more than 15 path advertisements com-
ing from the same source are about 1 in a 1000. This enables us to use m-time
signature schemes (with m = 15) for an efficient AOS with reasonable security
guarantee. For more details and other applications of AOS, see [9].

6 Final Remarks and Open Problems

Finalization of AOS Signature. A property of append-only signature
schemes which might be needed by some applications is the ability to “final-
ize” the signature, that is, to modify the signature of a message in a way that
prohibits any further appending. The general solution to this problem is to use
a special symbol Θ (from the message space) to denote the end of the message.
When one wants to finalize the signature of some message, he should append Θ
to the signature. Messages that contain symbol Θ in the middle of the message
(not as the last symbol) are therefore considered to be invalid.

Restricted AOS. In AOS, anyone can append and verify signatures. In certain
scenarios, however, one may want to restrict the ability to append messages to a
limited group of users. Still, anyone should be able to verify the signatures. We
call this extension of AOS Restricted Append-Only Signatures (RAOS). Using a
symmetric encryption scheme we show in the full version [9] how to modify a
given AOS scheme to get an RAOS scheme.

Shorter AOS signatures. Given that wide-area routing protocols propagate
a large number of messages, compact signatures are desirable. Thus we raise an

Append-Only Signatures 445

open problem of whether it is possible to build an AOS scheme with constant
signature length (in both message length and maximal message length). This
problem is equivalent to building a HIBS scheme where secret keys of the users
have constant length (in the depth of the given user in the hierarchy and in the
maximal depth of the hierarchy).

Acknowledgments

We thank Mihir Bellare (for suggesting an improvement to the proof of Theo-
rem 2) and Daniele Micciancio (for useful insight about the definition of AOS).
Thanks also to the anonymous reviewers for helpful comments.

References

1. D. Boneh, X. Boyen and E.-J. Goh. Hierarchical identity based encryption with
constant size ciphertext. In Proceedings of EUROCRYPT 2005, LNCS, 2005.

2. Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and
verifiably encrypted signatures from bilinear maps. In Proceedings of EURO-
CRYPT 2003, volume 2656 of LNCS, pages 416–432, 2003.

3. S. S. M. Chow, L. C. K. Hui, S. M. Yiu, and K. P. Chow. Secure hierarchical
identity based signature and its application. In Proceedings of ICICS 2004, pages
480–494, 2004.

4. Craig Gentry and Alice Silverberg. Hierarchical id-based cryptography. In Pro-
ceedings of ASIACRYPT 2002, volume 2501 of LNCS, pages 548–566, 2002.

5. Alejandro Hevia and Daniele Micciancio. The provable security of graph-based
one-time signatures and extensions to algebraic signature schemes. In Proceedings
of ASIACRYPT 2002, volume 2501 of LNCS, pages 379 – 396, 2002.

6. Yih-Chun Hu, Adrian Perrig, and Marvin Sirbu. SPV: secure path vector routing
for securing BGP. In Proceedings of the ACM SIGCOMM , pages 179–192, 2004.

7. Robert Johnson, David Molnar, Dawn Xiaodong Song, and David Wagner. Ho-
momorphic signature schemes. In Proceedings of CT-RSA 2002, volume 2271 of
LNCS, pages 244–262, 2002.

8. Stephen Kent, Charles Lynn, and Karen Seo. Secure border gateway protocol
(S-BGP). In IEEE Journal on Selected Areas in Communications, 18(4):582–592,
2000.

9. Eike Kiltz, Anton Mityagin, Saurabh Panjwani and Barath Raghavan. Append-
Only Signatures. Full version. http://eprint.iacr.org/2005/124

10. Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and Hovav Shacham. Sequen-
tial aggregate signatures from trapdoor permutations. In Proceedings of EURO-
CRYPT 2004, volume 3027 of LNCS, pages 74–90, 2004.

11. Ralph C. Merkle. A digital signature based on a conventional encryption function.
In Proceedings of CRYPTO’87, volume 293 of LNCS, pages 369–378, 1988.

12. Silvio Micali and Ronald L. Rivest. Transitive signature schemes. In Proceedings
of CT-RSA 2002, volume 2271 of LNCS, pages 236–243, 2002.

13. Leonid Reyzin and Natan Reyzin. Better than biba: Short one-time signatures with
fast signing and verifying. In Proceedings of 7th Australasian Conference ACSIP,
2002.

14. Adi Shamir. Identity-based cryptosystems and signature schemes. In Proceedings
of CRYPTO’84, volume 196 of LNCS, pages 47–53, 1985.

	Introduction
	Append-Only Signatures
	Efficient AOS Constructions
	Relations Between HIBS and AOS
	Applications
	Final Remarks and Open Problems

