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Abstract. Reversible cellular automata (RCA) are models of massively
parallel computation that preserve information. They consist of an array
of identical finite state machines that change their states synchronously
according to a local update rule. By selecting the update rule properly
the system has been made information preserving, which means that any
computation process can be traced back step-by-step using an inverse au-
tomaton. We investigate the maximum range in the array that a cell may
need to see in order to determine its previous state. We provide a tight
upper bound on this inverse neighborhood size in the one-dimensional
case: we prove that in a RCA with n states the inverse neighborhood is
not wider than n − 1, when the neighborhood in the forward direction
consists of two consecutive cells. Examples are known where range n− 1
is needed, so the bound is tight. If the forward neighborhood consists of
m consecutive cells then the same technique provides the upper bound
nm−1 − 1 for the inverse direction.

1 Introduction

Cellular automata (CA) are discrete dynamical systems consisting of a grid of
identical finite state machines whose states are updated synchronously at dis-
crete time steps according to a local update rule. Cellular automata possess
several fundamental properties of the physical world: they are massively par-
allel, homogeneous and all interactions are local. It is therefore not surprising
that physical and biological systems have been successfully simulated using cel-
lular automata models. The physical nature of cellular automata may have even
greater importance when applied in the opposite direction, that is, when using
the physics to simulate cellular automata. Many cellular automata are computa-
tionally universal — including some extremely simple ones, as reported recently
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by S. Wolfram [12] — so the most powerful massively parallel computers in the
future may be implementations of cellular automata based on some physical
phenomena of microscopic scale. Energy efficiency of such an implementation
requires that the simulated universal CA obeys the rules of physics, including
reversibility and conservation laws. Non-reversibility always implies energy dis-
sipation, usually in the form of heat.

A cellular automaton is called reversible if there is another cellular automaton
— the inverse CA — that computes the inverse function. The inverse CA retraces
the computation steps back in time. There are simple reversible cellular automata
that are computationally universal [5]. Universality is even possible in the one-
dimensional space [7], that is, when the cells are organized along a line. Reversible
CA have been popular topics of study since the early years of CA research, and
many interesting facts have been discovered.

It is well known that injectivity and reversibility of CA are equivalent con-
cepts: if a CA function has an inverse (i.e. it is one-to-one) then this inverse is
always a CA function [2, 9]. This means that in order to backtrack the computa-
tion, each cell only needs to know the states of a finite number of its neighbors.
The question this article investigates is the extent of the neighborhood that
may be needed. In two- and higher dimensional cellular automata this inverse
neighborhood can be extremely large: there is namely no algorithm to deter-
mine if a given CA is reversible, which means that the extent of the inverse
neighborhood cannot be bounded by any computable function of the number
of states [4]. In the one-dimensional case the reversibility question is decidable,
and a trivial quadratic upper bound O(n2) exists [1], where n is the number
of states and the neighborhood in the forward direction has been fixed to two
consecutive cells.

We improve this bound to linear n− 1 where n is the number of states. This
bound is tight as examples of one-dimensional reversible CA are known whose
inverse neighborhoods reach this bound [3]. If the neighborhood in the forward
direction consists of m consecutive cells rather than two cells, then the same
argument provides an upper bound nm−1−1 for the inverse neighborhood. This
is not known to be tight: [3] only provides examples of cellular automata with
2n states whose inverse neighborhoods reach this size.

2 Definitions and Basic Properties

In this section we present precise definitions and some basic properties of re-
versible cellular automata, and Welch sets and indices. Our proofs are based on
elementary linear algebra, so we also recall some linear algebra concepts.

2.1 Cellular Automata

Formally, a one-dimensional cellular automaton, CA for short, is a 3-tuple system

A = (S, N, f),
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where S = {1, 2, . . . , n} is a finite state set, N is a neighborhood vector

N = (x1, . . . , xm) ∈ Zm

of m distinct integers, and f is a mapping from Sm to S representing the local
update rule of the CA. The cells are laid on an infinite line and are indexed by
Z, the set of integers. The neighbors of a cell situated on position x ∈ Z are all
the cells on positions x + xi, i = 1, . . . , m. The local update rule f determines
the future state of a cell according to the states of its neighbors.

A configuration c of a CA A is a mapping

c : Z → S

which specifies the states of all the cells. We are denoting by C the set of all
configurations. The global transition function

G : C → C
describes the evolution of the CA and is obtained by a simultaneous application
of the local update rule f on all cells:

G(c)(x) = f(c(x + x1), . . . , c(x + xm)),

for all x ∈ Z. It is common to identify a cellular automaton with its global
transition function G, and talk about cellular automaton function G or, when
there is no risk of confusion, simply cellular automaton G.

If the neighborhood vector is (−r, . . . , r) then the CA is called radius-r au-
tomaton. The special case r = 1 is the nearest neighbor neighborhood. In this
work we mainly consider CA whose neighborhood is even smaller and consists
of just two consecutive integers. If N = (0, 1) we say that we have a radius-1

2
CA. Figure 1 shows the trellis whose rows are consecutive configurations of a
radius-1

2 cellular automaton, and the rows are shifted to make the neighborhood
look symmetric. Note that any CA can be viewed as a radius- 1

2 CA over a larger
state set if we divide the configurations into sufficiently long blocks and use the
blocks as ”super cells”. The partitioning may shift in time, but the computation
is essentially the same.

Two CA are called equivalent if their global functions are identical. The
following facts are easy to see: If two cellular automata are equivalent then
there is a third equivalent CA whose neighborhood is the intersection of the
neighborhoods of the first two CA. Hence, each CA function G has a minimal
neighborhood, that is, a neighborhood that is contained in the neighborhoods of
all CA that specify G. We call it the neighborhood of G. The interval from the
smallest to the largest element of the minimal neighborhood is the neighborhood
range for G. It is the smallest contiguous segment that can be used as the
neighborhood to specify G.

A CA A with global function G is called reversible, for short RCA, if there
exists another CA, called the inverse automaton of A, whose global transition
function is G−1, the inverse of G. The minimal neighborhood of G−1 is called the
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time

Fig. 1. Dependencies in a radius- 1
2

cellular automaton

inverse neighborhood of A or G. Each cell can uniquely determine its previous
state by looking only at the states contained in the inverse neighborhood.

A CA A is called injective (surjective, bijective) if its global transition rule
G : C → C is an injective (surjective, bijective, respectively) function. It has been
known since the early 60’s that injective cellular automata are automatically also
surjective [6, 8], while the converse is not necessarily true. It is also known that
all bijective CA are reversible [2, 9]. We have

Property 1 ([2, 6, 8, 9]). In cellular automata, reversibility, bijectivity and in-
jectivity are equivalent. They imply surjectivity.

2.2 Welch Sets and Indices

From now on we consider radius-1
2 RCA only. We frequently need to apply the

CA on partial configuration where we only know the states on some contiguous
interval. Since the exact location of the interval on the line is irrelevant, we
specify such configurations as finite or infinite words. For the state set S we
denote by S∗ the set of all words over alphabet S, by Sk the set of words of
length k, by Sω the set of one-way infinite words that are infinite to the right,
and by ωS the set of words that are infinite to the left. CA A = (S, (0, 1), f)
specifies the functions G : S∗ −→ S∗, G : Sω −→ Sω and G : ωS −→ ωS (all
denoted by the same symbol G) defined by

– G(a1a2 . . . ak) = b1b2 . . . bk−1 where each bi = f(ai, ai+1),
– G(a1a2 . . .) = b1b2 . . . where each bi = f(ai, ai+1),
– G(. . . a2a1) = . . . b2b1 where each bi = f(ai+1, ai).

For each w ∈ Sω we set

L(w) = {a ∈ S | G(au) = w for some u ∈ Sω }
and call it the left Welch set of w. It contains all the states that were possible one
time step earlier at the leftmost cell that affects w, see Figure 2. Analogously,
for any w ∈ ωS we define the right Welch set as

R(w) = {a ∈ S | G(ua) = w for some u ∈ ωS }.
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����

L(w)

w

Fig. 2. The left Welch set L(w) of the infinite word w consists of all possible states in
the indicated cell

These sets were introduced already in [2], and have since been reinvented inde-
pendently by many authors. The Welch sets have the following nice properties [2]:

Property 2. Let A = (S, (0, 1), f) be reversible and let n = |S| be the number
of states. Then for every w ∈ Sω and v ∈ ωS we have

|L(w)| · |R(v)| = n.

Consequently, the cardinalities |L(w)| and |R(v)| are independent of the choice
of w and v.

We denote by nL the size of left Welch sets and by nR the size of the right Welch
sets, and call them the left and the right Welch index. Then nL · nR = n.

The following result is another useful property of the Welch sets [2]:

Property 3. Let A = (S, (0, 1), f) be reversible. Then for every w ∈ Sω and
v ∈ ωS we have

|L(w) ∩ R(v)| = 1,

i.e. the intersection of any left Welch set with any right Welch set is a singleton.

The following proposition relates the Welch sets to the minimal inverse neigh-
borhood of the CA:

Proposition 1. Let A = (S, (0, 1), f) be reversible. Then the inverse neighbor-
hood of G is included in the interval

{−r, . . . , l − 1}
if and only if

– L(uw) = L(uv) for all u ∈ Sl and w, v ∈ Sω, and
– R(wu) = R(vu) for all u ∈ Sr and w, v ∈ ωS.

Proof. First, notice that even though the given interval does not at first appear
symmetric, it in fact contains l positions to the right of the cell and r positions
to the left of the cell, if the cells are shifted to the right as in Figure 1.

(=⇒) Suppose that {−r, . . . , l − 1} contains the inverse neighborhood of G and
let u ∈ Sl and w, v ∈ Sω be arbitrary. Let us prove that L(uw) ⊆ L(uv). Then
by symmetry we have L(uw) = L(uv).
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Fig. 3. Configurations γuw and γuv agree in all the positions up to l − 1

If a ∈ L(uw) then there exists some α ∈ Sω such that G(aα) = uw. Pick an
arbitrary β ∈ ωS and let γ = G(βa). Then G(βaα) = γuw, where letter a and
the first letter of u are in the position 0 of the cellular array. Consider then the
configuration γuv, where the first letter of u is still in position 0, see Figure 3.
It agrees with γuw in positions up to l − 1. By applying the inverse cellular
automata to γuv we must therefore get state a in position 0, which means that
a ∈ L(uv).

Analogously we get the claim concerning the right Welch sets.

(⇐=) Suppose l and r are such that for all v ∈ Sl and α1, α2 ∈ Sω we have
L(vα1) = L(vα2), and that for all u ∈ Sr and β1, β2 ∈ ωS we have R(β1u) =
R(β2u). Then the inverse function G−1 is computed by the cellular automaton
that uses the neighborhood (−r, . . . , l − 1) and has the local update rule

g(uv) = R(βu) ∩ L(vα)

for u ∈ Sr, v ∈ Sl and all α ∈ Sω and β ∈ ωS. The above intersection always
contains a unique element, due to Property 3.

2.3 Vector Interpretation of Sets

In our proofs we take advantage of dimension arguments on vector spaces. Any
subset X of the state set S = {1, 2, . . . , n} is interpreted as the 0-1 vector �X in
Rn whose i’th coordinate is 1 if i ∈ X and 0 if i �∈ X. The single element sets
{a} then correspond to the unit coordinate vectors of Rn and they form a basis
of the vector space Rn. Notice that for any X,Y ⊆ S the inner product �X · �Y is
the cardinality of their intersection X ∩ Y . The vectors �L and �R corresponding
to left and right Welch sets L and R will be called left and right Welch vectors,
respectively.

Let us denote by Θ the null space {(0, 0, . . . 0)} and by I the one-dimensional
space generated by vector (1, 1, . . . , 1). For any U ⊆ Rn the subspace of Rn

generated by U is denoted as 〈U〉.
Let A = (S, (0, 1), f) be reversible. For any c ∈ S we define a linear function

hc : Rn −→ Rn as follows. For every b ∈ S we have hc(�b) = �H where�b is the basis
vector corresponding to b and H = {a | f(a, b) = c}. This uniquely specifies the
linear function hc. Vector �X, corresponding to a set X ⊆ S of states, is mapped
according to hc( �X) =

∑
b∈X hc(�b). Note that hc( �X) is not always a 0-1 vector, so

it does not necessarily represent a set. However, the next proposition states that
if L is a left Welch set then hc(�L) is a 0-1 vector representing a left Welch set:
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Proposition 2. Let A = (S, (0, 1), f) be reversible, and let c ∈ S be arbitrary.
For every w ∈ Sω we have hc(�L(w)) = �L(cw).

Proof. It is enough to show that (i) for every a ∈ L(cw) there is a unique
b ∈ L(w) such that f(a, b) = c, and (ii) for any a �∈ L(cw) there is no b ∈ L(w)
such that f(a, b) = c. Parts (i) and (ii) imply then that the vector hc(�L(w)) has
1 and 0 in coordinates i for all i ∈ L(cw) and i �∈ L(cw), respectively.

Claim (ii) is trivial, as if there would exist b ∈ L(w) such that f(a, b) = c
then G(abα) = cw where α ∈ Sω is such that G(bα) = w. This contradicts the
assumption a �∈ L(cw).

Consider then claim (i). Since a ∈ L(cw) there is some bα ∈ Sω such that
G(abα) = cw. This b satisfies the condition in (i). If b′ ∈ L(w) is another state
with the property f(a, b′) = c then G(ab′β) = cw for some β ∈ Sω. But then
G(γabα) = G(γab′β) for any γ ∈ ωS which, by injectivity, implies that b = b′.

Analogously, let us define linear functions gc(�a) = �H where H = {b | f(a, b) =
c}. They naturally have the similar property concerning the right Welch sets:

Proposition 3. Let A = (S, (0, 1), f) be reversible, and let c ∈ S be arbitrary.
For every w ∈ ωS we have gc(�R(w)) = �R(wc).

3 The Inverse Neighborhood Range

In this section we prove that the size of the inverse neighborhood range of a
radius-1

2 RCA A = (S, (0, 1), f) is less than or equal to n − 1, where n is the
number of states. We do this by creating two decreasing chains of linear subspaces
of Rn based on the Welch sets. The first elements of the chains are the subspaces

L0 = 〈�L(w) − �L(v) | w, v ∈ Sω〉, and
R0 = 〈�R(w) − �R(v) | w, v ∈ ωS〉,

that is, the spaces generated by the differences between any two left Welch
vectors and any two right Welch vectors, respectively. The goal is to prove the
following theorem:

Theorem 1. Let A = (S, (0, 1), f) be reversible, and let L0 and R0 be the sub-
spaces defined above. Then the inverse neighborhood range of G contains at most
dimL0 + dimR0 elements. More precisely, the inverse neighborhood of G is in-
cluded in the interval

{−dimR0, . . . ,dimL0 − 1}.
Proof. For every k = 0, 1, 2, . . . define the following subspaces of Rn:

Lk = 〈�L(uw) − �L(uv) | u ∈ Sk, w, v ∈ Sω〉, and
Rk = 〈�R(wu) − �R(vu) | u ∈ Sk, w, v ∈ ωS〉.

We make the following observations:
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– There is l such that Ll = Θ, the null space,
– Lk+1 ⊆ Lk for every k = 0, 1, 2, . . ., and
– if Lk+1 = Lk then Lj = Lk for every j ≥ k.

To prove the first fact, choose l and r such that the inverse neighborhood of G
is included in the interval {−r, . . . , l − 1}. According to Proposition 1, L(uw) =
L(uv) for every u ∈ Sl and w, v ∈ Sω. But then all generators of Ll are zero
vectors, hence Ll = Θ.

The second fact is trivial since all the generators of Lk+1 are among the
generators of Lk.

For the third fact, notice that �L(cuw) − �L(cuv) = hc(�L(uw) − �L(uv)). This
means that, for every k = 0, 1, 2, . . ., the generators of Lk+1 are obtained from
the generators of Lk by applying the homomorphisms hc with all c ∈ S. Conse-
quently,

Lk+1 = 〈hc( �X) | c ∈ S, �X is a generator of Lk 〉
= 〈hc( �X) | c ∈ S, �X ∈ Lk〉.

In other words, Lk+1 is determined by Lk. It follows that if Lk+1 = Lk then
Lk+2 = Lk+1, and therefore Lj = Lk for all j ≥ k.

Our three facts imply that

L0 � L1 � L2 � . . . � Ll = Θ

for some l. Since the dimension of the subspaces decreases at every step, we must
have l ≤ dimL0.

The analogous reasoning can be done on the right Welch sets. We conclude
that there are numbers l ≤ dimL0 and r ≤ dimR0 such that Ll = Rr = Θ.
Then l has the property that L(uw) = L(uv) for every u ∈ Sl and w, v ∈ Sω,
and r has the property that L(wu) = L(vu) for every u ∈ Sr and w, v ∈
ωS. According to Proposition 1, the inverse neighborhood of G is included
in the interval {−r, . . . , l − 1} and hence also in the interval {−dimR0, . . . ,
dimL0 − 1}.

Upper bounds on the dimensions of the spaces L0 and R0 provide nice limits
on the inverse neighborhood:

Corollary 1. Let A = (S, (0, 1), f) be reversible. Then dimL0 +dimR0 ≤ n−1
where n is the number of states. Hence the inverse neighborhood range of G has
at most size n − 1

Proof. This follows from the facts that vector spaces L0 and R0 are orthogonal
to each other and also to the one-dimensional space I generated by the vector
(1, 1, . . . , 1). Let �L1− �L2 and �R1− �R2 be two arbitrary generators of L0 and R0,
respectively. Their inner product is

(�L1 − �L2) · (�R1 − �R2) = �L1 · �R1 − �L1 · �R2 − �L2 · �R1 + �L2 · �R2 = 1− 1− 1 + 1 = 0,
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where we have used Property 3 of the Welch sets. So spaces L0 and R0 are
orthogonal to each other. With (1, 1, . . . , 1) we get the inner product

(�L1 − �L2) · (1, 1, . . . , 1) = nL − nL = 0,

where nL is the left Welch index. Here we used Property 2 of the Welch sets.
Analogously R0 is seen orthogonal to I.

Now we can reason as follows: Since the three spaces are orthogonal, we have

dimL0 + dimR0 + dim I = dim(L0 ⊕R0 ⊕ I) ≤ dim Rn = n,

so
dimL0 + dimR0 ≤ n − 1.

We can also use our theorem to bound the inverse neighborhood from either side
separately:

Corollary 2. Let A = (S, (0, 1), f) be reversible, and let nL and nR be its left
and right Welch indices, respectively. Then dimL0 ≤ n−nL and dimR0 ≤ n−nR

where n is the number of states. Hence the inverse neighborhood of G is contained
in the interval

{nR − n, . . . , n − nL − 1}.

Proof. Consider the left Welch vectors �L(u), u ∈ Sω. Each is a 0-1 vector with
nL ones. Every state belongs to some left Welch set, so each position has one
in some of the vectors. Out of all this vectors, we can extract a set of linearly
independent ones as follows. First, extract an arbitrarily vector. Then, for any
state a ∈ S such that the corresponding position is zero in all the vectors already
selected, extract a left Welch vector having one in position a, and add it to the
set of linearly independent vectors. Repeat the process until each position is
covered by at least one selected vector. It is clear that the extracted vectors are
linearly independent, and since each vector covers nL positions there are at least
n

nL
vectors selected. Since n

nL
= nR, it follows easily that there are at least nR

linearly independent left Welch vectors.
Next we use the following well known property: if �v1, �v2, . . . , �vk are k lin-

early independent vectors, then �v2 − �v1, �v3 − �v1, . . . , �vk − �v1 are k − 1 linearly
independent vectors. We apply this to the nR linearly independent left Welch
vectors and obtain the result that the generators of L0 contain at least nR − 1
linearly independent vectors, so dimL0 ≥ nR − 1. On the other hand we know
by Corollary 1 that dimL0 + dimR0 ≤ n − 1, so

dimR0 ≤ (n − 1) − dimL0 ≤ (n − 1) − (nR − 1) = n − nR.

Analogously we can prove that dimL0 ≤ n − nL.
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The previous corollaries were proved in [3] in the special case that one of
the Welch indices is 1. This constraint simplifies the proofs very much. The
techniques used in [3] were quite different. Examples were also provided in [3]
of reversible CA with n states and Welch index 1 whose inverse neighborhood
reached the size n− 1. Hence the bound of Corollary 1 is tight. We do not know
if there are such examples for other values of the Welch indices, and also we do
not know if the bounds in Corollary 2 are tight.

4 Larger Neighborhoods

So far we have been concerned with radius-1
2 cellular automata. With larger

forward neighborhoods larger inverse neighborhoods are possible. The notions
of the Welch sets and indices can be generalized to such settings. Let m be the
size of the neighborhood range in the forward direction, that is, m consecutive
positions can be used as the forward neighborhood. Then the elements of the
Welch sets are words of length m− 1 over alphabet S, and the Welch indices nL

and nR satisfy the relation nL ·nR = nm−1. By a straightforward generalization
of the proofs in the previous section we obtain the following results:

Theorem 2. Let A = (S, (0, . . . ,m − 1), f) be a reversible CA with n states
and forward neighborhood range m. Then the inverse range has size at most
nm−1 − 1. Moreover, the size of the left inverse neighborhood is less than or
equal to nm−1 − nR while the size of the right inverse neighborhood is less than
or equal to nm−1 − nL, where nL and nR are the left and right Welch indices.

The bound in Theorem 2 is not known to be tight. The best known examples
are automata with 2n states whose inverse neighborhood have range nm−1 [3].

5 Final Remarks

We have shown that the inverse neighborhood of a one-dimensional reversible
cellular automaton of size n is at most n−1 when the neighborhood in the forward
direction consists of only two consecutive cells. We have also generalized this
result for the case when the forward neighborhood is wider, i.e., if it contains
m consecutive cells, then the size of the inverse neighborhood is bounded by
nm−1 − 1. The proof uses several properties of the Welch sets, as well as some
algebraic results concerning dimension of vector spaces.

The present paper gives rise to several open problems. E.g., we do not know if
the generalized bound nm−1−1 for the size of the inverse neighborhood is tight.
This is indeed the case if m = 2: see [3] for an example of a reversible cellular
automaton with left and right Welch indexes equal to 1 and n respectively, and
with inverse neighborhood size equal to n − 1. Also, for any nL, nR ∈ N, it
remains open to find examples of reversible cellular automata with left and right
Welch indexes equal to nL and nR respectively, such that the size of the inverse
neighborhood is maximal, i.e., equal to n − 1 = nL · nR − 1.



420 E. Czeizler and J. Kari

There are quadratic time algorithms in the literature testing for surjectivity
and injectivity of a given cellular automaton, see [1] and [10]. Although it is
improbable that a linear algorithm exists, some improvements may be possible.
For example, Lemma 3 from [1] can now be improved from quadratic to linear,
although the time complexity of the injectivity algorithm, based on that result,
does not change.
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