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Abstract. This paper presents an efficient approach to the classifica-
tion of the affine equivalence classes of cosets of the first order Reed-
Muller code with respect to cryptographic properties such as correlation-
immunity, resiliency and propagation characteristics. First, we apply
the method to completely classify with this respect all the 48 classes
into which the general affine group AGL(2, 5) partitions the cosets of
RM(1, 5). Second, after distinguishing the 34 affine equivalence classes
of cosets of RM(1, 6) in RM(3, 6) we perform the same classification for
these classes.

1 Introduction

Many constructions of Boolean functions with properties relevant to cryptogra-
phy are recursive. The efficiency of the constructions relies heavily on the use of
appropriate functions of small dimensions. Another important method for con-
struction is the random and heuristic search approach. As equivalence classes
are used to provide restricted input of such optimization algorithms, it is very
important to identify which equivalence classes obtain functions with desired
properties.

In this paper, we present an efficient approach (based on some group-
theoretical considerations) for the classification of affine equivalence classes of
cosets of the first order Reed-Muller code with respect to cryptographic prop-
erties such as correlation-immunity, resiliency, propagation characteristics and
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their combinations. We apply this method to perform a complete classification of
all the 48 orbits of affine equivalent cosets of RM(1, 5) (classified by Berlekamp
and Welch [1] according to weight distributions), with respect to the above men-
tioned cryptographic properties. Partial results for this case on the existence
and their number have already been mentioned in [3, 13, 14, 16]. In this paper,
we study this problem into more detail and show in which classes these functions
appear and how to enumerate them. The method also allows us, if necessary, to
generate all the Boolean functions of 5 variables that possess good cryptographic
properties. Our approach can also be extended for Boolean functions of higher
dimension. As an illustration we apply it to the cubic functions of 6 variables
using a proper classification of the cosets of RM(1, 6) in RM(3, 6).

The paper is organized as follows. In Sect. 2, we present some general back-
ground on Boolean functions. In Sect. 3, we describe our approach which will
be used in Sect. 4 for a complete classification of the affine equivalence classes
of the Boolean functions of 5 variables. In Sect. 5, we first show how to derive
the RM(3, 6)/RM(1, 6) equivalence classes together with their sizes. Using this
information we classify them according to the most important cryptographic
properties.

2 Background on Boolean Functions

A Boolean function f is a mapping from F
n
2 into F2. It can be represented by

a truth table, which is a vector of length 2n consisting of its function values
(f(0), . . . , f(1)). Another way of representing a Boolean function is by means of
its algebraic normal form (ANF):

f(x) =
⊕

(a1,...,an)∈F
n
2

h(a1, . . . , an)xa1
1 . . . xan

n ,

where f and h are functions on F
n
2 . The algebraic degree of f , denoted by deg(f),

is defined as the highest number of variables in the term xa1
1 . . . xan

n in the ANF
of f .

Two Boolean functions f1 and f2 on F
n
2 are called equivalent if and only if

f1(x) = f2(xA ⊕ a) ⊕ xB
t ⊕ b, ∀x ∈ F

n
2 , (1)

where A is a nonsingular binary n × n-matrix, b is a binary constant, and a,B
are n-dimensional binary vectors. If B, b are zero, the functions f1 and f2 are
said to be affine equivalent. A property is called affine invariant if it is invariant
under affine equivalence.

The study of properties of Boolean functions is related to the study of Reed-
Muller codes. The codewords of the r-th order Reed-Muller code of length 2n,
denoted by RM(r, n), are the truth tables of Boolean functions with degree less
or equal to r. The number of codewords is equal to 2

∑ r
i=0 (n

i) and the minimum
number of positions in which any two codewords u, v differ (denoted by d(u, v))
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is 2n−r. The Hamming weight of a vector v is denoted by wt(v) and equals the
number of non-zero positions, i.e. wt(v) = d(v, 0).

In 1972, Berlekamp and Welch classified all 226 cosets of RM(1, 5) into 48
equivalence classes under the action of the general affine group AGL(2, 5) [1].
Moreover for each equivalence class the weight distribution and the number of
cosets in that class has been determined.

Before describing the cryptographic properties that are investigated in this
paper, we first mention two important tools in the study of Boolean functions f
on F

n
2 . The Walsh transform of f is a real-valued function over F

n
2 that can be

defined as

Wf (ω) =
∑

x∈F
n
2

(−1)f(x)⊕x·ω = 2n − 2wt(f ⊕ x · ω) , (2)

where x · ω = xωt = x1ω1 ⊕ x2ω2 ⊕ · · · ⊕ xnωn is the dot product of x and
ω. The nonlinearity Nf of the function f is defined as the minimum distance
between f and any affine function which can be expressed as Nf = 2n−1 −
1
2 maxω∈F

n
2
|Wf (ω)|.

The autocorrelation function of f is a real-valued function over F
n
2 that can

be defined as

rf (ω) =
∑

x∈F
n
2

(−1)f(x)⊕f(x⊕ω). (3)

For two equivalent functions f1 and f2 such that f1(x) = f2(xA⊕a)⊕xB
t⊕b,

it holds that [15]:

Wf1(w) = (−1)aA−1wt+aA−1B
t
+bWf2(((w ⊕ B)(A−1)t) (4)

rf1(w) = (−1)wB
t

rf2(wA) . (5)

A Boolean function is said to be correlation-immune of order t, denoted by
CI(t), if the output of the function is statistically independent of the combination
of any t of its inputs. If the function is also balanced (equal number of zeros and
ones in the truth table), then it is said to be resilient of order t, denoted by
R(t). These definitions of correlation-immunity and resiliency can be expressed
by spectral characterization as given by Xiao and Massey [8].

Definition 1. [8] A function f(x) is CI(t) if and only if its Walsh transform
Wf satisfies Wf (ω) = 0, for 1 ≤ wt(ω) ≤ t. If also Wf (0) = 0, the function is
called t-resilient.

A Boolean function is said to satisfy the propagation characteristics of degree
p, denoted by PC(p) if the function f(x)⊕f(x⊕ω) is balanced for 1 ≤ wt(ω) ≤ p.
If the function f(x)⊕f(x⊕ω) is also t-resilient, the function f is called a PC(p)
function of order t. Or, by using the autocorrelation and Walsh spectrum, the
definition can also be expressed as follows:
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Definition 2. [14] A function f(x) is PC(p) if and only if its autocorrelation
transform rf satisfies rf (ω) = 0, for 1 ≤ wt(ω) ≤ p. If also Wf(x)⊕f(x⊕w)(a) = 0
for all a with 0 ≤ wt(a) ≤ t, the function f is said to satisfy PC(p) of order t.

If rf (ω) = ±2n, the vector ω is called a linear structure of the function f . It is
easy to prove that the set of linear structures forms a linear space [6].

We now present some known results which will be used in the rest of the
paper. First of all, we start with mentioning several trade-offs between the above
described properties of a Boolean function.

Theorem 1. (Siegenthaler’s Inequality [17]) If a function f on F
n
2 is CI(t),

then deg(f) ≤ n − t. If f is t-resilient and t ≤ n − 2, then deg(f) ≤ n − t − 1.

Theorem 2. [14] If a function f on F
n
2 satisfies PC(p) of order t with 0 ≤ t <

n− 2, then deg(f) ≤ n− t− 1 for all p. If t = n− 2 then the degree of f is equal
to 2.

Theorem 3. [20] If a function f on F
n
2 is t-resilient and satisfies PC(p), then

p + t ≤ n − 1. If p + t = n − 1, then p = n − 1, n is odd and t = 0.

Another important result is the following divisibility theorem proven by Carlet
and Sarkar [4].

Theorem 4. If a coset of the RM(1, n) with representative Boolean function f
of degree d contains CI(t) (resp. t-resilient) functions, then the weights of the
functions in f + RM(1, n) are divisible by

2t+�n−t−1
d � (resp. 2t+1+�n−t−2

d �) . (6)

From this Theorem together with Dickson’s theorem on the canonical representa-
tions of quadratic Boolean functions [11], we derive a classification of correlation-
immune (resp. resilient) quadratic functions in any dimension.

Proposition 1. If the coset of RM(1, n) with representative x1x2⊕x3x4⊕· · ·⊕
x2h−1x2h ⊕ ε where ε is an affine function of x2h+1 through xn and h ≤

⌊
n
2

⌋
given by Dickson’s theorem contains CI(t) (resp. t-resilient) functions then

h ≤ n − t −
⌊

n − t − 1
2

⌋
− 1 (resp. h ≤ n − t −

⌊
n−t−2

2

⌋
− 2).

Proof. The weight of the function equals (depending on the parameter h) [11]:

weight 2n−1 − 2n−h−1 2n−1 2n−1 − 2n−h−1

number 22h 2n+1 − 22h+1 22h

The statement of the proposition follows from the divisibility theorem of Carlet
and Sarkar applied on the weights. ��

Remark 1. Using Proposition 1 together with the bound h ≤
⌊

n
2

⌋
, we obtain

that the order of resiliency for quadratic functions is less or equal to
⌈

n
2

⌉
− 1,

which was also stated in [18].
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3 General Outline of Our Method

In this section we describe our main approach for the classification of equivalence
classes (also called orbits) of cosets of the first order Reed-Muller code RM(1, n)
with respect to cryptographic properties such as correlation-immunity, resiliency,
propagation characteristics and their combinations. For the sake of simplicity we
shall refer to such a property as a C-property. For a given function f we denote by
ZCf the set of vectors which are mapped to zero by the transform corresponding
to the considered C-property (e.g. Walsh transform for correlation-immunity and
resiliency, autocorrelation for propagation characteristics) and call it a zero-set
of f with respect to this C-property. We also refer to any set of n linearly
independent vectors in F

n
2 as a basis.

Our method employs the idea behind the “change of basis” construction as
previously used by Maitra and Pasalic [12], and Clark et al. [5].

Let R be a representative coset of a given orbit O under the action of the
general affine group AGL(2, n). R is partitioned into subsets consisting of affine
equivalent functions. Denote by T the family of these subsets. Let us fix one
T ∈ T and a function f ∈ T .

From equations (4) and (5) and the definition of the corresponding C-property,
it follows that for any function with this property, affine equivalent to f , a ba-
sis in ZCf with certain properties exists. Conversely, for any proper basis in
ZCf and a constant from F

n
2 we can apply an invertible affine transformation

to f (derived by the basis and the constant) such that its image f̃ possess the
C-property. Therefore the number Nf of functions affine equivalent to f and
satisfying a certain C-property can be determined by counting bases in ZCf .
Moreover it can be seen that this number does not depend on the specific choice
of f from T , since for two different functions f1 and f2 from T there exists one-
to-one correspondence between the sets of their proper bases in the zero-sets. It
is important to note that in case of Walsh transform we use the fact that vector
B defined in previous section is 0.

In the following theorem we prove the formula that gives the number NC of
functions with C-property in the orbit O.

Theorem 5. Let R be a representative coset of a given orbit O under the action
of the general affine group AGL(2, n). Then the number NC of functions with
C-property in this orbit can be computed by the formula:

NC = KO
∑
f∈R

Bf , (7)

where Bf is the number of proper bases in ZCf and KO = n!|O|
|GL(2,n)| .

Proof. We will find the number of functions with C-property in the orbit O by
counting bases in zero-sets ZCf . But this way we count each function |S(f)| =
Sf times, where S(f) is the stabilizer subgroup of function f in AGL(2, n).
Therefore taking into account considerations preceding the theorem, the number
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NT of functions equivalent to the functions from T and satisfying the C-property
is equal to

NT = Nf =
2nn!Bf

Sf
, (8)

where Bf is the number of proper bases in ZCf . The factor n! appears since
any arrangement of a given basis represents different function. Let |O| be the
number of cosets in the orbit O. Then substituting Sf = |AGL(2,n)|

|O||T | in (8) we get

NT =
2nn!|O|Bf |T |
|AGL(2, n)| = KOBf |T | , (9)

where KO = n!|O|
|GL(2,n)| and GL(2, n) is the general linear group.

Therefore the number of all functions with C-property belonging to the orbit
O is: ∑

T∈T
NT = KO

∑
T∈T

Bf |T | = KO
∑
f∈R

Bf . (10)

��
In order to avoid difficulties when determining affine equivalent functions in

R we prefer to use the last expression of (10). Thus, to compute the number NC

of functions with C-property in the orbit O we shall apply the following formula

NC = KO
∑
f∈R

Bf . (11)

4 Boolean Functions of Less Than 5 Variables

For the study of functions in n variables with n ≤ 4, we refer to [3] and [14]. In [3,
Sect. 4.2], a formula is derived for the number of (n − 3)-resilient functions and
the number of balanced quadratic functions of n variables. In [14, Table 1], the
number of quadratic functions that satisfy PC(l) of order k with k + l ≤ n are
determined for n ≤ 7. Consequently, taking into account the trade-offs mentioned
in Sect. 2, to cover all classes only the class with representative x1x2x3 ⊕ x1x4

with n = 4 should be considered in relation with its propagation characteristics.
It can be easily computed by exhaustive search that its size is 26 880 and that
it contains 2 816 PC(1) functions.

We now count the number of functions satisfying correlation-immunity, re-
siliency, propagation characteristics and their combinations in each of the 48
affine equivalence classes of RM(1, 5) by using the method explained in Sect. 3.
Note that only the cosets with even weight need to be considered. Numerical
results can be found in tables 1 through 5. In the tables, the functions are rep-
resented by means of an abbreviated notation (only the digits of the variables)
and the sum should be considered modulo 2. We refer to the extended version
of the paper concerning details about the computation.
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Table 1. The Number of functions satisfying 1-CI, 1-Resilient, 1-PC, 1-PC with
resiliency properties

Representative NCI(1) NR(1) NPC(1) NPC(1)∩BalNPC(1)∩CI(1)NPC(1)∩R(1)

2345 512 0 0 0 0 0
2345+12 28 160 0 163 840 71 680 0 0
2345+23 1 790 0 0 0 0 0

2345+23+45 14 336 0 0 0 0 0
2345+12+34 1 146 880 0 0 0 0 0
2345+123 6 400 0 0 0 0 0

2345+123+12 76 800 0 0 0 0 0
2345+123+24 17 280 0 645 120 201 600 0 0
2345+123+14 385 400 0 737 280 253 440 640 0
2345+123+45 102 400 0 1 904 640 714 240 0 0

2345+123+12+34 230 400 0 0 0 0 0
2345+123+14+35 122 880 0 11 550 720 2 887 680 0 0
2345+123+12+45 7 680 0 0 0 0 0
2345+123+24+35 0 0 3 440 640 430 080 0 0
2345+123+145 138 240 0 276 480 77 760 0 0

2345+123+145+45 27 648 0 0 0 0 0
2345+123+145+24+45 414 720 0 1 966 080 614 400 4 160 0
2345+123+145+35+24 6 144 0 2 654 208 497 664 384 0

123 16 640 11 520 0 0 0
123+45 0 0 1 310 720 0 0 0
123+14 216 000 133 984 94 720 65 120 10 560 5 280

123+14+25 69 120 24 960 1 582 080 791 040 19 200 0
123+145 0 0 0 0 0 0

123+145+23 1 029 120537 600 0 0 0 0
123+145+24 0 0 0 0 0 0

123+145+23+24+35 233 472 96 960 0 0 0 0

12 4 840 4 120 2 560 2 240 1 120 840
12+34 896 0 46 592 23 296 896 0

Table 2. The Number of 2-CI functions

Representative NCI(2) NCI(2)∩PC(1)

123+145+23+24+35 384 0
12 640 120

Table 3. The Number of functions satisfying PC(1) of order 1 and 2

Representative NPC(1) of ord 1 NPC(1) of ord 2

123+45 5 120 0
123+14 30 720 0

12 2 240 960
12+34 13 952 704
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Table 4. The Number of functions satisfying PC(2)

Representative NPC(2) NPC(2)∩Bal NPC(2)∩CI(1) NPC(2) of ord 1 NPC(2) of ord 2

2345+123+145+35+24 12 288 2 304 384 0 0
123+14+25 199 680 99 840 3 840 0 0

12+34 28 672 23 296 896 1 792 64

Table 5. The Number of functions satisfying PC(3) and PC(4)

Representative NPC(3) NPC(4) NPC(3)∩Bal NPC(4)∩Bal NPC(3) of ord 1 NPC(4) of ord 1

12+34 10 752 1 792 5 376 896 1 792 64

5 Boolean Functions of 6 Variables and Degree 3

In this section first we show how to find the 34 affine equivalence classes of
RM(3, 6)/RM(1, 6), together with the orders of their size. Then we count in
each class the number of resilient and PC functions.

5.1 Classification of RM(3, 6)/RM(1, 6)

Table 1 in [9] presents the number of affine equivalence classes of RM(s, 6) in
RM(r, 6) with −1 ≤ s < r ≤ 6. In RM(3, 6)/RM(1, 6) there are 34 equivalence
classes. In order to classify the affine equivalence classes in RM(3, 6)/RM(1, 6),
we use the 6 representatives fi⊕RM(2, 6) for 1 ≤ i ≤ 6 of the equivalence classes
of RM(3, 6)/RM(2, 6) as given in [10]: f1 = 0, f2 = 123, f3 = 123 + 245, f4 =
123 + 456, f5 = 123 + 245 + 346, f6 = 123 + 145 + 246 + 356 + 456. For each
representative, we run through all functions consisting only of quadratic terms
and distinguish the affine inequivalent cosets of RM(1, 6) by using the frequency
distribution of absolute values of the Walsh and autocorrelation distribution as
affine invariants. These indicators suffice to distinguish all 34 affine equivalence
classes.

In order to employ the approach described in Sect. 3 we also need to know
the sizes of these orbits. They were computed during the classification phase
by multiplying the final results by the sizes of the corresponding orbits in
RM(3, 6)/RM(2, 6) given in [10]. To check these results in the cases of f2, f4

and f6 we obtained linear systems for unknown sizes by taking into account
the weight distributions of the cosets of RM(1, 6) and the weight distribution
of the corresponding representative of RM(3, 6)/RM(2, 6) to which these cosets
belong. Of course if f1 = 0 one can use also [11, Theorem 1 and Theorem 2,
p.436]. The results obtained in these two ways coincide. We refer to Table 6 for
the sizes of the orbits.

Remark 2. The 150 357 affine equivalence classes were classified for the first
time by Maiorana [7]. They also are mentioned on the webpage maintained by
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Table 6. The number of resilient and PC functions in the classes of RM(3, 6)/RM(1, 6)

Representative NR(1) NR(2) NPC(1)(×128) NPC(2)(×128) Number of Cosets

f1 12 51 800 14 840 121 0 651
14+23 569 696 0 13 440 4 900 18 228

16+25+34 0 0 13 888 13 888 13 888

f2 0 532 480 44 800 0 0 1 395 × 8
14 19 914 720 826 560 17 240 0 1 395 × 392

24+15 49 257 600 268 800 1 249 440 52 080 1 395 × 2 352
16+25+34 0 0 1 874 880 1 874 880 1 395 × 1 344

45 0 0 929 280 0 1 395 × 3 584
123+16+45 0 0 18 744 320 1 881 600 1 395 × 25 088

f3 0 0 0 0 0 54 684 × 32
13 416 604 160 5 174 400 0 0 54 684 × 320
14 0 0 0 0 54 684 × 480
16 0 0 21 396 480 0 54 684 × 7 680
26 0 0 33 152 0 54 684 × 32

26+13 264 627 040 1 411 200 4 659 200 47 040 54 684 × 320
26+14 0 0 14 058 240 1 411 200 54 684 × 480

13+15+26+34 0 0 10 499 328 10 499 328 54 684 × 192
34+16 0 0 0 0 54 684 × 23 040

34+13+15 1 89807·1010 82 897 920 1 250 304 0 54 684 × 192

f4 0 0 0 0 0 357 120 × 64
14 0 0 2 486 400 0 357 120 × 3 136

15+24 0 0 572 315 · 1010 0 357 120 × 64
34+25+16 0 0 505 258 · 1010 1 290 240 357 120 × 64

f5 0 0 0 0 0 468 720 × 448
12+13 0 0 3 609 586 0 468 720 × 18

15 0 0 60 211 200 0 468 720 × 14 336
12+13+25 3 287 027 200 8 601 600 0 0 468 720 × 2 222

14+25 0 0 75 018 240 0 468 720 × 1 344
35+26+25+12 0 0 6 719 569 920 6 719 569 920 468 720 × 14 336

25+15+16 0 0 1 434 240 0 468 720 × 64

f6 0 0 0 1 326 080 0 166 656 × 3 584
12+13 0 0 7 956 480 0 166 656 × 21 504

23+15+14 0 0 37 079 040 0 166 656 × 7 680

Fuller: http://www.isrc.qut.edu.au/people/fuller/ together with the de-
gree, nonlinearity, maximum value in autocorrelation spectrum and truth tables
of Boolean functions of dimension 6. Here we describe another approach for find-
ing the 34 affine equivalence classes of functions of degree 3. One reason for this
is that our method requires the sizes of the orbits, which are not given by Fuller.

5.2 Cryptographic Properties

In order to count the number of functions that satisfy certain cryptographic
properties, the same approach as used for n = 5 is applied on these 34 classes of
RM(3, 6)/RM(1, 6). In Table 6, we present the classes together with the numbers

http://www.isrc.qut.edu.au/people/fuller/
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of functions in these classes that satisfy t-resiliency with t ≤ 2 and propagation
characteristics of degree less or equal to 2. The last columns represents the sizes
of the orbits.

By the Siegenthaler’s inequality, 3-resilient functions should have degree less
or equal to 2. Only the class with representative x1x2 contains 3-resilient func-
tions and there are in total 1 120 3-resilient functions of dimension 6 (see also [3]).

For functions satisfying PC of higher degree, we have the following results.
Besides the bent functions which are PC(6), only the class with representative
x1x4⊕x2x3 contains PC(3) functions with a total of 128×420, as also computed
in [14].

6 Conclusions

In this paper, we present a complete classification of the set of Boolean functions
of 5 variables with respect to the most important cryptographic properties. Our
method can also be applied to Boolean functions of dimension 6. As an example,
we compute the 34 affine equivalence classes of RM(3, 6)/RM(1, 6) and deter-
mine the number of resilient and PC functions belonging to each class. Moreover,
we show a practical way to find the affine equivalence classes of Boolean func-
tions. This method can be extended to dimension 7.
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