
Deterministic Constructions of
Approximate Distance Oracles and Spanners

Liam Roditty1, Mikkel Thorup2, and Uri Zwick1

1 School of Computer Science, Tel Aviv University, Israel
2 AT&T Research Labs, USA

Abstract. Thorup and Zwick showed that for any integer k ≥ 1, it is possible to
preprocess any positively weighted undirected graph G = (V, E), with |E| = m
and |V | = n, in Õ(kmn1/k) expected time and construct a data structure (a
(2k − 1)-approximate distance oracle) of size O(kn1+1/k) capable of return-
ing in O(k) time an approximation δ̂(u, v) of the distance δ(u, v) from u to v
in G that satisfies δ(u, v) ≤ δ̂(u, v) ≤ (2k − 1) ·δ(u, v), for any two vertices
u, v ∈ V . They also presented a much slower Õ(kmn) time deterministic algo-
rithm for constructing approximate distance oracle with the slightly larger size
of O(kn1+1/k log n). We present here a deterministic Õ(kmn1/k) time algo-
rithm for constructing oracles of size O(kn1+1/k). Our deterministic algorithm
is slower than the randomized one by only a logarithmic factor.

Using our derandomization technique we also obtain the first determinis-
tic linear time algorithm for constructing optimal spanners of weighted graphs.
We do that by derandomizing the O(km) expected time algorithm of Baswana
and Sen (ICALP’03) for constructing (2k − 1)-spanners of size O(kn1+1/k) of
weighted undirected graphs without incurring any asymptotic loss in the running
time or in the size of the spanners produced.

1 Introduction

Thorup and Zwick [16] showed that for any integer k ≥ 1, any graph G = (V,E), with
|V | = n and |E| = m, can be preprocessed in Õ(kmn1/k) expected time, producing
an approximate distance oracle of size O(kn1+1/k) capable of returning, in O(k) time,
a stretch 2k − 1 approximation of δ(u, v), for any u, v ∈ V . As discussed in [16],
the stretch-size tradeoff presented by this construction is believed to be optimal. The
approximate distance oracles of [16] improve previous results of [4] and [7]. For other
results dealing with approximate distances, see, [1],[6],[8],[10],[11] [12].

We present here two independent extensions of the result of [16]. The first extension
deals with situations in which we are only interested in approximate distances from
a specified set S ⊆ V of sources. We show that both the construction time and the
space requirements of the appropriate data structure can be reduced in this case. More
specifically, we show that if |S| = s, then the expected preprocessing time can be
reduced from Õ(mn1/k) to Õ(ms1/k) and the space required can be reduced from
O(kn1+1/k) to O(kns1/k). This is significant when s � n. We call the obtained data
structures source-restricted approximate distance oracles.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 261–272, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

262 L. Roditty, M. Thorup, and U. Zwick

We then move on to solve a major open problem raised in [16], namely the de-
velopment of deterministic algorithms for constructing approximate distance oracles
that are almost as efficient as the randomized ones. The deterministic construction in
[16] first computes exact APSP in Õ(mn) time, and then uses the complete distance
matrix to derandomize the randomized construction algorithm. In addition to being
much slower, the space used by the constructed stretch 2k − 1 oracles is increased to
O(kn1+1/k log n). Our new derandomization loses only a logarithmic factor in running
time and suffers no asymptotic loss in space. Thus we get a deterministic Õ(mn1/k)
time algorithm for constructing stretch 2k − 1 approximate distance oracles of size
O(kn1+1/k), solving the problem from [16]. For the source-restricted distance ora-
cles with s sources, the deterministic construction time and space is Õ(ms1/k) and
O(kns1/k), respectively.

The techniques we use to obtain the new deterministic algorithm can also be used to
derandomize the expected linear time algorithm of Baswana and Sen [5] for construct-
ing (2k − 1)-spanners of size O(kn1+1/k), retaining the linear running time and the
O(kn1+1/k) size of the spanners. Similarly, they can be used to improve the determin-
istic algorithm of Dor et al. [10] for the construction of 2-emulators (surplus 2 additive
spanners) of unweighted graphs. The size of the emulators produced is reduced by a
factor of O(

√
log n) to the optimal O(n3/2), with a similar improvement is obtained

in the running time. Furthermore, our techniques can be used to improve the the algo-
rithm of Baswana and Sen [6] for the construction of approximate distance oracles for
unweighted graphs and make it run, deterministically, in O(n2) time, which is optimal
in terms on n. (Due to lack of space we will not elaborate on this result here.)

The new deterministic algorithm uses two new ingredients that are of interest in
their own right and may find additional applications. They are both simple and im-
plementable. The first ingredient is an Õ(qm) time algorithm that given a weighted
directed graph G = (V,E), a subset U ⊆ V of sources, and an integer q, finds for
every vertex v ∈ V the set of the q vertices of U that are closest to v.

The second ingredient is a linear time deterministic algorithm for constructing close
dominating sets. For a definition of this concept, see Section 4.

The rest of this extended abstract is organized as follows. In the next Section we
present the construction of source-restricted approximate distance oracles. In Section 3
we present the algorithm for finding the nearest neighbors. In Section 4 we describe
the linear time algorithm for constructing close dominating sets. In Section 5 we then
present the main result of this paper, an efficient deterministic algorithm for construct-
ing approximate distance oracles. Due to lack of space we cannot describe here the
deterministic version of the linear time spanner construction algorithm of Baswana and
Sen [5]. This algorithm will appear in the full version of the paper.

2 Source-Restricted Approximate Distance Oracles

We present here an extension of the approximate distance oracle construction of [16].

Theorem 1. Let G = (V,E) be an undirected graph with positive weights attached to
its edges. Let k ≥ 1 be an integer, and let S ⊆ V be a specified set of sources. Then, it is

Deterministic Constructions of Approximate Distance Oracles and Spanners 263

algorithm preprok(G, S)

A0 ← S ; Ak ← φ

for i ← 1 to k − 1
Ai ← sample(Ai−1, |S|−1/k)

for every v ∈ V

for i ← 0 to k − 1
let δ(Ai, v) ← min{ δ(w, v) | w ∈ Ai}
let pi(v) ∈ Ai be such that δ(pi(v), v) = δ(Ai, v)

δ(Ak, v) ← ∞
let B(v) ← ∪k−1

i=0 {w ∈ Ai − Ai+1 | δ(w, v) < δ(Ai+1, v)}
let H(v) ← hash(B(v))

Fig. 1. The randomized preprocessing algorithm

possible to preprocess G in Õ(km|S|1/k) expected time, and produce a data structure
of size O(kn|S|1/k), such that for any u ∈ S and v ∈ V it is possible to produce, in
O(k) time, an estimate δ̂(u, v) of the distance δ(u, v) from u to v in G that satisfies
δ(u, v) ≤ δ̂(u, v) ≤ (2k − 1)·δ(u, v).

Thorup and Zwick [16] prove Theorem 1 for the case S = V . The proof of The-
orem 1 is obtained by slightly modifying the construction of [16]. For the sake of
completeness, we give the full details. This also allows us to review the randomized
construction of [16] before presenting a deterministic version of it later in this paper.

Proof. A high level description of the preprocessing algorithm is given in Figure 1.
The algorithm starts by defining a hierarchy A0 ⊇ A1 ⊇ A2 ⊇ · · · ⊇ Ak of subsets
of S in the following way: We begin with A0 = S. For every 1 ≤ i < k, we let Ai

be random subset of Ai−1 obtained by selecting each element of Ai−1, independently,
with probability |S|−1/k. Finally, we let Ak = φ. The elements of Ai are referred to as
i-centers. A similar hierarchy is used in [16]. There, however, we have A0 = V , and Ai,
for 1 ≤ i < k, is obtained by selecting each element of Ai−1 with probability n−1/k.
Interestingly, this is the only change needed with respect to the construction of [16].

Next, the algorithm finds, for each vertex v ∈ V , and each 1 ≤ i < k, the distance
δ(Ai, v) = min{δ(w, v) | w ∈ Ai} and an i-center pi(v) ∈ Ai that is closest to v. (We
assume Ak−1 �= φ.) For every vertex v ∈ V it then defines the bunch B(v) as follows:

B(v) = ∪k−1
i=0 Bi(v) , Bi(v) = {w ∈ Ai | δ(w, v) < δ(Ai+1, v) } .

Note that Bi(v) ⊆ Ai−Ai+1 as if w ∈ Ai+1 then δ(Ai+1, v) ≤ δ(w, v). We show later
that the centers pi(v) can be found in Õ(km) time and that the bunches B(v), and the
distances δ(w, v), for every w ∈ B(v), can be found in Õ(km|S|1/k) expected time.

Finally, for every vertex v ∈ V the preprocessing algorithm constructs a hash table
H(v) of size O(|B(v)|) that stores for each w ∈ B(v) the distance δ(w, v). The hash
table is constructed in O(|B(v)|) expected time using the algorithm of Fredman et al.

264 L. Roditty, M. Thorup, and U. Zwick

[13]. (For a deterministic version, see Alon and Naor [2].) For every w ∈ V we can
then check, in O(1) time, whether w ∈ B(v) and if so obtain δ(w, v).

The total size of the data structure produced is O(kn +
∑

v∈V |B(v)|). We next
show that for every v ∈ V we have E[|B(v)|] ≤ k|S|1/k, and thus the expected size
of the whole data structure is O(kn|S|1/k).

Lemma 1. For every vertex v ∈ V we have E[|B(v)|] ≤ k|S|1/k.

Proof. We show that E[|Bi(v)|] ≤ |S|1/k, for 0 ≤ i < k. For i = k − 1 the claim
is obvious as Bk−1(v) ⊆ Ak−1, and E[|Ak−1|] = |S|1/k. Suppose, therefore, that
0 ≤ i < k − 1, and suppose that Ai was already chosen, while Ai+1 is now about to
be chosen. Let w1, w2, . . . , w� be the vertices of Ai arranged in non-decreasing order
of distance from v. If wj ∈ Ai+1, then Bi(v) ⊆ {w1, w2, . . . , wj−1}. Thus Pr[wj ∈
Bi(v)] ≤ Pr[w1, w2, . . . , wj−1 �∈ Ai+1]. As each vertex of Ai is placed in Ai+1,
independently, with probability p = |S|−1/k, we get that Pr[wj ∈ Bi(v)] ≤ (1−p)j−1

and thus E[|Bi(v)|] ≤ ∑
j≥1(1 − p)j−1 = p−1 = |S|1/k, as required. �

The algorithm used to answer approximate distance queries is given in Figure 2.

Lemma 2. For every u ∈ S and v ∈ V , algorithm distk(u, v) runs in O(k) time and
returns an approximate distance δ̂(u, v) satisfying δ(u, v) ≤ δ̂(u, v) ≤ (2k−1)δ(u, v).

Proof. Let ∆ = δ(u, v). We begin by proving, by induction, that at the start of each
iteration of the while loop we have w ∈ Ai and δ(w, u) ≤ i∆. This clearly holds at the
start of the first iteration, when i = 0, as w = u ∈ S = A0 and δ(w, u) = 0. (Here
is were we use the assumption that u ∈ S.) Suppose, therefore that the claim holds at
the start of some iteration, i.e., w ∈ Ai and δ(w, u) ≤ i∆, and that the while condition,
i.e., w �∈ B(v), is satisfied. Let w′ = pi+1(v) ∈ Ai+1. As w �∈ B(v), we get, by the
definition of B(v), that δ(w′, v) = δ(Ai+1, v) ≤ δ(w, v). We therefore have

δ(w′, v) ≤ δ(w, v) ≤ δ(w, u) + δ(u, v) ≤ i∆ + ∆ = (i + 1)∆ .

Thus, by incrementing i, swapping u and v and letting w ← w′ we reestablish the
invariant condition. (The algorithm performs these operations in a slightly different
order.)

In each iteration of the while loop the algorithm performs only a constant number of
operations. (To check whether w ∈ B(v) it uses the hash table H(v).) As B(v) ⊇ Ak−1

and w ∈ Ai, the algorithm performs at most k−1 iterations and hence the running time
is O(k).

When the while loop terminates, we have δ(w, u) ≤ i∆, w ∈ B(v) and i ≤ k − 1.
The algorithm then returns the estimate δ̂(u, v) = δ(w, u) + δ(w, v) which satisfies

δ(w, u) + δ(w, v) ≤ δ(w, u) + (δ(w, u) + δ(u, v))
= 2δ(w, u) + ∆ ≤ 2(k − 1)∆ + ∆ ≤ (2k − 1)∆ ,

as required. �

Deterministic Constructions of Approximate Distance Oracles and Spanners 265

All that remain, therefore, is to explain how the preprocessing algorithm can be
implemented to run in Õ(km|S|1/k) time. Finding for each vertex v ∈ V and every
0 ≤ i < k the vertex pi(v) ∈ Ai closest to v is fairly easy. For every 0 ≤ i < k we
add a new source vertex si to the graph and connect it with zero weight edges to all
the vertices of Ai. By running Dijkstra’s algorithm (see [9]) we compute the distances
from si to all other vertices and construct a shortest paths tree rooted at si. The distances
thus computed are exactly δ(Ai, v), for every v ∈ V . Using the shortest paths tree it is
easy to identify for every v ∈ V a vertex pi(v) ∈ Ai for which δ(pi(v), v) = δ(Ai, v).
The whole process requires only Õ(km) time.

We next describe an Õ(km|S|1/k) algorithm for constructing the bunches B(v), for
every v ∈ V . Instead of computing the bunches directly, we compute their ‘duals’. For
every i-center w ∈ Ai − Ai+1 we define the cluster C(w) as follows:

C(w) = {v ∈ V | δ(w, v) < δ(Ai+1, v) } , for w ∈ Ai − Ai+1 .

It is easy to see that v ∈ C(w) if and only if w ∈ B(v). We now claim:

Lemma 3. If v ∈ C(w), and u is on a shortest path from w to v in G, then u ∈ C(w).

Proof. Suppose that w ∈ Ai − Ai+1. If u �∈ C(w), then δ(Ai+1, u) ≤ δ(w, u). But
then δ(Ai+1, v) ≤ δ(Ai+1, u) + δ(u, v) ≤ δ(w, u) + δ(u, v) = δ(w, v), contradicting
the assumption that v ∈ C(w). �

It follows that the cluster C(w) can be constructed using the modified version of
Dijkstra’s algorithm given in Figure 3. For the straightforward correctness proof, the
reader is referred to [16]. The running time of the algorithm, when Fibonacci heaps [14]

algorithm distk(u, v)

(Assumption: u ∈ S)

w ← u ; i ← 0

while w �∈ B(v)
i ← i + 1
(u, v) ← (v, u)
w ← pi(u)

return δ(w, u) + δ(w, v)

Fig. 2. Answering a distance query

algorithm cluster(G, w, A)

d[w] ← 0 ; C ← φ
Q ← φ ; insert(Q, w, d[w])

while Q �= φ

u ← extract-min(Q)
C ← C ∪ {u}
for every (u, v) ∈ E

d ← d[u] + �(u, v)
if d < δ(A, v) then

if v �∈ Q then
d[v] ← d ; insert(Q, v, d[v])

else if d < d[v] then
d[v] ← d ; decrease-key(Q, v, d)

return C

Fig. 3. Constructing a cluster

266 L. Roditty, M. Thorup, and U. Zwick

(see also [9]) are used to implement the priority queue Q, is O(mw + nw log nw) =
O(mw + nw log n), where nw = |C(w)| and mw is the total number of edges touching
the vertices of C(w). This is O(log n) time per vertex v in C(w) and constant time per
edge touching such a vertex v. However, v ∈ C(w) ⇐⇒ w ∈ B(v) and E[|B(v)] ≤
ks1/k, so the total expected running time needed for constructing all clusters is O((m+
n log n)ks1/k), as required. The running time can be reduced to O(kms1/k) using the
techniques of Thorup [15]. This completes the proof of Theorem 1. �

3 A Deterministic Algorithm for Finding the q Nearest Centers

Let G = (V,E) be a weighted directed graph and let U ⊆ V be an arbitrary set of
sources, or centers. We start with a formal definition of the set Uq(v) of the q nearest
centers from U of a vertex v ∈ V . We assume that all edge weights are positive. We
also assume, without loss of generality, that V = {1, 2 . . . , n}.

Definition 1 (Nearest centers from U). Let G = (V,E) be a directed graph with
positive edge weights assigned to its edges. Let U ⊆ V be an arbitrary set of sources,
and let 1 ≤ q ≤ |U | be an integer. For every v ∈ V , the set Uq(v) is defined to be the
set of the q vertices of U that are closest to v. Ties are broken in favor of vertices with
smaller indices. More precisely, for every v ∈ V we have Uq(v) ⊆ U , |Uq(v)| = q
and if w1 ∈ Uq(v) while w2 �∈ Uq(v) then either δ(w1, v) < δ(w2, v) or δ(w1, v) =
δ(w2, v) and w1 < w2.

The following lemma, which is reminiscent of Lemma 1, is easily verfied.

Lemma 4. If u ∈ Uq(v) and w lies on a shortest path from u to v in G, then u ∈ Uq(w).

We now claim:

Theorem 2. Let G = (V,E) be a directed graph with positive weights assigned to its
edges. Let U ⊆ V be an arbitrary set of sources, and let 1 ≤ q ≤ |U | be an integer.
Then, the sets Uq(v), for every v ∈ V , can be computed by performing q single-source
shortest paths computations on graphs with at most O(n) vertices and O(m) edges.

Proof. We begin by finding for every vertex v ∈ V its nearest neighbor in U . This is
easily done by adding a new source vertex s to the graph, connecting it with 0 length
edges to all the vertices of U , and computing a tree of shortest paths in the resulting
graph. This gives us U1(v), for every v ∈ V .

Suppose now that we have already computed Ui−1(v), for every v ∈ V . We show
that Ui(v), for every v ∈ V can be obtained by finding a tree of shortest paths in
an auxiliary graph with O(n) vertices and O(m + n) edges. This auxiliary graph is
constructed as follows:

1. Add to G a new source vertex s and copies of all vertices of U . If u ∈ U , we let ū
denote the copy of u. Add a 0 length edges from s to ū, for every u ∈ U .

2. For every edge (v, w) ∈ E:
(a) If Ui−1(v) = Ui−1(w), keep the edge (v, w).

Deterministic Constructions of Approximate Distance Oracles and Spanners 267

(b) Otherwise, if Ui−1(v) �= Ui−1(w) and u is the first vertex in Ui−1(v) −
Ui−1(w), replace the edge (v, w) by an edge (ū, w) of length δ(u, v)+�(v, w).

The auxiliary graph thus contains n + |U | + 1 vertices and m + |U | edges. It is not
difficult to check that u is the i-th nearest neighbor from U of all the vertices in the
subtree of ū in the tree of shortest paths from s in this auxiliary graph. The proof is
fairly straightforward and is omitted due to lack of space. �

4 A Deterministic Construction of Close Dominating Sets

Instead of dealing directly with the close dominating sets from the introduction, it is
convenient first to consider a simpler case phrased in terms of a matrix. In that context,
we will talk about early hitting sets: Let M be an n×k matrix whose elements are taken
from a finite set S of size |S| = s. We assume that the elements in each row of M are
distinct. A set A is said to be a hitting set of M if and only if every row of M contains
an element of A. A standard calculation shows that if each element of S is placed in A,
independently, with probability (c ln n)/k, for some c > 1, then with a probability of at
least 1 − n1−c the resulting set A is a hitting set of M . The expected size of A is then
(c s ln n)/k. We are interested in hitting sets of small size that hit the rows of M close
to their beginnings, at least on average.

Definition 2 (Hitting sums). Let M be an n × k matrix, let A be a set, and let P ≥ 0
be a penalty. Let hit(Mi, A) be the index of the first element of Mi, the i-th row of M ,
that belongs to A, or k + P , if no element of Mi belongs to A. Let hit(M,A) =∑n

i=1 hit(Mi, A) be the hitting sum of A with respect to M .

Note that a set A need not be a hitting set of M for the hitting sum hit(M,A) to be
defined. A penalty of P , plus the length of the row, is paid, however, for each row that is
not hit. Typically, the goal is to hit all rows avoiding all penalties. A set A with a small
hitting sum hit(M,A) is informally referred to as an early hitting set. The following
simple probabilistic lemma proves the existence of small early hitting sets.

Lemma 5. Let M be an n × k matrix whose elements are taken from a finite set S of
size |S| = s and let P ≥ 0 be a penalty. Then, for every 0 < p < 1 there exists a set
A ⊆ S for which n

p2s |A|+hit(M,A) ≤ 2n/p+(1−p)kPn. In particular, if pP ≥ 3n

and pP (1 − p)k ≤ 1 than all rows are hit with |A| < 3ps and hit(M,A) < 3n/p.

Proof. Let A be a random subset of S obtained by selecting each element of S, inde-
pendently, with probability p. It is easy to see that

E[|A|] = p s ,

E[hit(Mi, A)] =
k∑

j=1

(1 − p)j−1 + (1 − p)kP < p−1 + (1 − p)kP ,

and thus E[n
p2s |A| + hit(M,A)] ≤ 2n

p + (1 − p)kPn. This proves the existence of
the required set.

268 L. Roditty, M. Thorup, and U. Zwick

Concerning the last statement, the condition pP (1 − p)−k < 1 implies that the
right hand side is at most 3n/p. By the first condition, this corresponds to at most a
single penalty, but since we have other costs, we conclude that we pay no penalties. The
bounds on |A| and hit(M,A) follow because each term on the left hand size is non-zero
and strictly smaller than the right hand side. �

The main result of this section is a deterministic linear time algorithm for con-
structing early hitting sets that almost match the bounds of Lemma 5. Quite naturally,
the algorithm is based on the method of conditional expectations (see, e.g., Alon and
Spencer [3]). The challenge is to get a running time linear in the size of the matrix M .

Theorem 3. Let M be an n × k matrix whose elements are taken from a finite set S of
size |S| = s and let P ≥ 0 be a penalty. Let 0 < p < 1. Then, there is a deterministic
O(nk) time algorithm that finds a set A ⊆ S for which n

p2s |A|+ hit(M,A) ≤ 3n/p +
(1 − p)kPn. In particular, if pP ≥ 4n and pP (1 − p)k ≤ 1 then all rows are hit with
|A| < 3ps and hit(M,A) < 3n/p.

Proof. Let A0, A1 ⊆ S be two disjoint sets. Define

hit(M | A0, A1) = E[
n

p2s
|A| + hit(M,A) | A1 ⊆ A ⊆ Ac

0] .

In other words, hit(M |A0, A1) is the (conditional) expectation of the random variable
n

p2s |A| + hit(M,A) where the set A is chosen in the following way: Each element of
A1 is placed in A. Each element of A0 is not placed in A. Each other element is placed
in A, independently, with probability p.

Lemma 5 states that hit(M,A) = hit(M | φ, φ) ≤ µ = 2n/p + (1 − p)kPn. Our
goal it to deterministically find a set A ⊆ S such that hit(M | Ac, A) ≤ µ. Suppose that
we have already found two disjoint sets A0, A1 ⊆ S such that hit(M | A0, A1) ≤ µ
and that e ∈ S − (A0 ∪ A1). We then have

hit(M | A0, A1) = p·hit(M | A0, A1 ∪ {e}) + (1 − p)·hit(M | A0 ∪ {e}, A1) .

Thus, at least one of the two conditional expectations appearing above is at least µ. We
choose it and then consider another element that was not yet placed in either A0 and A1.
Continuing in this way, we get two disjoint sets A0, A1 ⊆ S such that A0 ∪ A1 = S
and hit(M | A0, A1) ≤ µ, as required. This is precisely the method of conditional
expectations.

The remaining question is the following: Given hit(M | A0, A1) and an element
e ∈ S − (A0 ∪ A1), how fast can we compute hit(M | A0, A1 ∪ {e}) and hit(M |
A0∪{e}, A1)? Let us focus on the computation of the conditional expectations hit(Mi |
A0, A1 ∪ {e}) and hit(Mi | A0 ∪ {e}, A1) corresponding to the i-th row of M .

Let ni = ni(A1) be the index of the first element in Mi that belongs to A1. If none
of the elements of Mi belongs to A1, we let ni = ∞. Let ni,j = ni,j(A0) be the
number of elements among the first j elements of Mi that do not belong to A0. (We let
ni,0 = 0.) It is easy to see that

hit(Mi | A0, A1) =
min{ni,k}∑

j=1

(1 − p)ni,j−1 +

{
(1 − p)ni,kP if ni = ∞

0 otherwise
.

Deterministic Constructions of Approximate Distance Oracles and Spanners 269

Maintaining the penalty term (1 − p)ni,kP is easy. To simplify the presentation we
therefore ignore this term. (In other words we assume that P = 0. The changes needed
when P > 0 are minimal.) Let

xi,j =

{
(1 − p)ni,j−1 if j ≤ ni ,

0 otherwise .

With this notation, and with the assumption P = 0, we clearly have hit(Mi | A0, A1) =∑k
j=1 xi,j . We now consider the changes that should be made to the xi,j’s when an ele-

ment e is added to A0 or to A1. If e does not appear in Mi, then no changes are required.
Assume, therefore, that Mir = e, i.e., the e is the r-th element in Mi. If r > ni, then
again no changes are required. Assume, therefore, that r < ni.

If e is added to A1, then the required operations are ni ← r and xi,j ← 0, for
r < j ≤ k. If e is added to A0, then the required operations are ni,j ← ni,j − 1, for
r ≤ j ≤ k, and therefore xi,j ← xi,j/(1 − p), again for r ≤ j ≤ k. In both cases, the
new conditional expectation is the new sum

∑k
j=1 xi,j .

These operations can be implemented fairly efficiently using a data structure that
maintains an array x = [x1, x2, . . . , xq] of q real numbers under the following update
operations: init(x) – initialize the array x; scale(i, j, a) – multiply the elements in
the sub-array [xi, . . . , xj] by the constant a; sum – return the sum

∑k
i=1 xi; and

undo – undo the last update operation. (The undo operation is required for tentatively
placing new elements in A0 and then in A1.) Using standard techniques it is not difficult
to implement such a data structure that can be initialized in O(k) time and that can
support each update operation in O(log k) time. However, the description of such a
data structure is not short, and the resulting algorithm would have an over all non-linear
running time of O(nk log k). Luckily, there is a simpler to implement, and a more
efficient, solution. Let us define the following variant of hitting sums:

Definition 3 (Dyadic hitting sums). Let M be an n × k matrix, let A be a set, and
let P ≥ 0 be a penalty. Let hit(Mi, A) = 2�log2 hit(Mi,A)� be the smallest power of 2
greater or equal to the index of the first element of Mi that belongs to A, or q +P , if no
element of Mi belongs to A. Let hit(M,A) =

∑n
i=1 hit(Mi, A) be the dyadic hitting

sum of A with respect to M .

Clearly hit(M,A) ≤ hit(M,A) < 2·hit(M,A). Thus, as in the proof of Lemma 5,
we get that E[n

p2s |A|+hit(M,A)] ≤ 3n/p+(1−p)kPn. The conditional expectation

hit(M | A0, A1) is defined in the obvious analogous way. Now define

k̄ = �log2 k�, n̄i = �log2 ni� , n̄i,j = ni,2j ,

x̄i,j =

{
(1 − p)n̄i,j−1 if j ≤ n̄i ,

0 otherwise .
, ȳi,r = 1 +

r∑
j=1

x̄i,j2j−1

With these definitions we have hit(Mi | A0, A1) = ȳi,k̄−1.
Each update now trivially takes O(k̄) = O(log k) worst-case time, even if we im-

plement the updates naively. Furthermore, we argue that the amortized cost of each
update is only O(1)!

270 L. Roditty, M. Thorup, and U. Zwick

procedure init(i)

x̄i,1 ← 1 − p
ȳi,1 ← 1 + x̄i,1

for j ← 2 to k̄ − 1
x̄i,j ← x̄2

i,j−1

ȳi,j ← ȳi,j−1 + x̄i,j ·2j−1

procedure update0(i, r)

r̄ ← �log2 r	
for j ← r̄ to k̄ − 1

x̄i,j ← x̄i,j/(1 − p)
ȳi,j ← ȳi,j−1 + x̄i,j ·2j−1

return ȳi,k̄−1

procedure update1(i, r)

r̄ ← �log2 r	
for j ← r̄ + 1 to k̄ − 1

x̄i,j ← 0
ȳi,j ← yi,j−1

return ȳi,k̄−1

Fig. 4. Updating the conditional expectations

A complete description of procedures used to initialize and update the conditional
expectations is given in Figure 4. A call to init(i) initializes x̄i,j = (1 − p)2

j−1
and

ȳi,r = 1+
∑r

j=1 x̄i,j·2j−1, for 1 ≤ r ≤ k̄−1. Calls to update0(i, j) and update1(i, j),
respectively, perform the necessary updates to the i-rows of the arrays x[i, j] and y[i, j]
as a result of adding the element e = Mir to A0, or to A1, and return the new value of
hit(Mi|A0, A1). The difference between the old and the new value of hit(Mi|A0, A1)
should also be applied to the global sum hit(M | A0, A1) =

∑n
i=1 hit(Mi|A0, A1).

It is easy to implement an undo(i) procedure that undos the last update performed on
the i-th row. We simply need to record the operations made and undo them in reverse
order. To obtain hit(M,A0, A1), we simply sum hit(Mi|A0, A1) up, for 1 ≤ i ≤ n.
The correctness of the computation follows from the long discussion above.

All that remains is to analyze the complexity of the proposed algorithm. Each el-
ement e ∈ S is considered once by the algorithm. For each appearance of e = Mir

in M we need to call update0(i, r) and update1(i, r). The complexity of these calls is
O(k̄ − r̄ + 1) = O(�log2 k� − �log2 r� + 1). For every 2k̄−j ≤ r ≤ 2k̄−j+1, where
1 ≤ j ≤ k̄, the cost is O(j). Thus, the total cost of handling all the elements of the i-th
row is O(k

∑
j≥1 j2−j) = O(k). The total cost is therefore O(kn), as required. The

last statement of the theorem is derived like the last statement of Lemma 5. �

Theorem 4. A close dominating set of any given size can be found in linear time.

Proof. We now consider the closest dominating set problem from the introduction,
modifying our early hitting set algorithm to solve this problem. The first change is
to let each row Mi to have an individual length ki ≤ k. The total number of elements
is then m =

∑n
i=1 ki. We also make the change that there is only a penalty P for not

hitting a full row Mi with ki = k. It is straightforward to modify the previous early
hitting set algorithm for these variable length rows. Essentially, we just replace k and k̄
by ki and k̄i, and drop the penalty for the partial rows. We then get a deterministic al-
gorithm that in O(m) time finds a hitting set A with the same properties as those stated
in Theorem 3. In particular, if pP ≥ 4n and pP (1 − p)k ≤ 1 then all full rows are hit
with |A| < 3ps and hit(M,A) < 3n/p.

We now need to transform our bipartite graph G = (U, V,E) to the matrix form.
The set S of elements that are placed in the matrix is simply the set U . The matrix
constructed has a row for each vertex v ∈ V . Ideally, the row Mv would contain the

Deterministic Constructions of Approximate Distance Oracles and Spanners 271

neighboring centers u ordered according to the edge weights �(u, v). The list should
be truncated to only contain the k = (s/h)(2 + lnn) nearest centers. The lists with k
centers are the full rows with a penalty P for not being hit. We use p = h/(3s) and
P = 12ns/h. Then pP = 4n and

pP (1 − p)k < 4n exp(−(h/s)(s/h(2 + lnn)) < 4/e2 < 1.

Since the conditions are satisfied, we get a set A hitting all full rows with |A| < 3ps = h,
and hit(M,A) < 3n/p = 9ns/h. This also means that A is a close dominating set.

Our only remaining problem is that we cannot sort neighboring centers according
to distance. However, thanks to the dyadic solution, it suffices to apply a linear time se-
lection algorithm (see, e.g., [9]). First, if a vertex v has more the k neighboring centers,
we apply selection to find the k nearest centers. Next, for r decreasing from �log2 ki�
down to 0, we identify the 2r nearest centers. The total running time is linear, and this
provides a sufficient sorting for the diadic hitting sum algorithm. �

5 A Deterministic Construction of Approximate Distance Oracles

In this section we present a deterministic algorithm for constructing (source-restricted)
approximate distance oracles. The algorithm is slower than the randomized algorithm
of Theorem 1 by only a logarithmic factor. Obtaining such a deterministic algorithm is
one of the open problems mentioned in [16].

Theorem 5. Let G = (V,E) be an undirected graph with positive weights attached to
its edges. Let k ≥ 1 be an integer, and let S ⊆ V be a specified set of sources. Then,
it is possible to preprocess G, deterministically, in Õ(km|S|1/k) time, and produce a
data structure of size O(kn|S|1/k), such that for any u ∈ S and v ∈ V it is possible to
produce, in O(k) time, an estimate δ̂(u, v) of the distance δ(u, v) from u to v in G that
satisfies δ(u, v) ≤ δ̂(u, v) ≤ (2k − 1)·δ(u, v).

algorithm detprek(G, S)

A0 ← S ; Ak ← ∅
p ← 1

4
|S|−1/k ; � ← 3|S|1/k ln n ; P ← n2

for i ← 1 to k − 1
Ni−1 ← near(G, Ai−1, �)
Create bipartite graph B from Ai−1 to V with
an edge (u, v) of length δG(u, v) if u ∈ Ni−1[v].
Ai ← domset(B, s1−i/k)

for every v ∈ V
B(v) ← Ak−1

for i ← 0 to k − 2
B(v) ← B(v)∪{w ∈ Ni[v] | δ(w, v) < δ(Ai+1, v) }

Fig. 5. The deterministic preprocessing algorithm

272 L. Roditty, M. Thorup, and U. Zwick

Proof. The deterministic preprocessing algorithm is given in Figure 5. It is composed
of k − 1 iteration. The i-th iteration constructs the set Ai. We let s = |S| and � =
�s1/k(2 + lnn)�, the iteration begins by finding for each vertex v ∈ V the set Ni[v]
of the � vertices of Ai−1 that are nearest v, using algorithm near of Section 3. The
running time of the algorithm is Õ(ms1/k). Next we create a bipartite graph B from
Ai−1 to V with an edge (u, v) of length δG(u, v) if u ∈ Ni−1[v]. Using the algorithm
of Theorem 4, which we here call domset, we now find a close dominating subset Ai

of size hi = s1−i/k = |Ai−1|/s1/k. Since each vertex have at least s1/k(2 + lnn) =
|Ai−1|/hi(2+ln n) neighboring centers, we know that Ai hits all these neighborhoods.
The result is that in the original graph G, the sum of the number of centers in from Ai−1

nearer than then nearest center in Ai is at most 9|Ai−1|/hi = O(ns1/k). It follows that
the total size of the bunches returned by the algorithm is in O(kns1/k), as required. �

References

1. D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fast estimation of diameter and short-
est paths (without matrix multiplication). SIAM Journal on Computing, 28:1167–1181, 1999.

2. N. Alon and M. Naor. Derandomization, witnesses for Boolean matrix multiplication and
construction of perfect hash functions. Algorithmica, 16:434–449, 1996.

3. N. Alon and J.H. Spencer. The probabilistic method. Wiley-Interscience, 2nd edition, 2000.
4. B. Awerbuch, B. Berger, L. Cowen, and D. Peleg. Near-linear time construction of sparse

neighborhood covers. SIAM Journal on Computing, 28:263–277, 1999.
5. S. Baswana and S. Sen. A simple linear time algorithm for computing (2k − 1)-spanner of

O(n1+1/k) size for weighted graphs. In Proc. of 30th ICALP, pages 384–296, 2003.
6. S. Baswana and S. Sen. Approximate distance oracles for unweighted graphs in O(n2 log n)

time. In Proc. of 15th SODA, pages 264–273, 2004.
7. E. Cohen. Fast algorithms for constructing t-spanners and paths with stretch t. SIAM Journal

on Computing, 28:210–236, 1999.
8. E. Cohen and U. Zwick. All-pairs small-stretch paths. Journal of Algorithms, 38:335–353,

2001.
9. T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to algorithms. The

MIT Press, 2nd edition, 2001.
10. D. Dor, S. Halperin, and U. Zwick. All pairs almost shortest paths. SIAM Journal on Com-

puting, 29:1740–1759, 2000.
11. M. Elkin. Computing almost shortest paths. In Proc. of 20th PODC, pages 53–62, 2001.
12. M.L. Elkin and D. Peleg. (1+ε, β)-Spanner constructions for general graphs. SIAM Journal

on Computing, 33(3):608–631, 2004.
13. M.L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with O(1) worst case

access time. Journal of the ACM, 31:538–544, 1984.
14. M.L. Fredman and R.E. Tarjan. Fibonacci heaps and their uses in improved network opti-

mization algorithms. Journal of the ACM, 34:596–615, 1987.
15. M. Thorup. Undirected single-source shortest paths with positive integer weights in linear

time. Journal of the ACM, 46:362–394, 1999.
16. M. Thorup and U. Zwick. Approximate distance oracles. Journal of the ACM, 52(1):1–24,

2005.

	Introduction
	Source-Restricted Approximate Distance Oracles
	A Deterministic Algorithm for Finding the q Nearest Centers
	A Deterministic Construction of Close Dominating Sets
	A Deterministic Construction of Approximate Distance Oracles

