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Abstract. Let G = (V, E) be a directed graph and let P be a shortest
path from s to t in G. In the replacement paths problem we are required to
find, for every edge e on P , a shortest path from s to t in G that avoids e.
We present the first non-trivial algorithm for computing replacement
paths in unweighted directed graphs (and in graphs with small integer
weights). Our algorithm is Monte-Carlo and its running time is Õ(m

√
n).

Using the improved algorithm for the replacement paths problem we get
an improved algorithm for finding the k simple shortest paths between
two given vertices.

1 Introduction

Let G = (V,E) be a graph, let s, t ∈ V be two vertices in G, and let P be a
shortest path from s to t in G. In certain scenarios, edges in the graph G may
occasionally fail, and we are thus interested in finding, for every edge e on the
path P , the shortest path from s to t in G that avoids e. This problem is refereed
to as the replacement paths problem.

The replacement paths problem for undirected graphs is a well studied prob-
lem. An O(m + n log n) time algorithm for the problem was given by Malik et
al. [13]. A similar algorithm was independently discovered, much later, by Her-
shberger and Suri [7]. Hershberger and Suri [7] claimed that their algorithm also
works for directed graphs, but this claim turned out to be false (see Hershberger
and Suri [8]). Nardelli et al. [14] gave an O(mα(m,n)) time algorithm for the
undirected version of the problem using the linear time single source shortest
paths algorithm of Thorup [18].

All the results mentioned above for the replacement paths problem work
only for undirected graphs. This situation is partially explained by an Ω(m

√
n)

lower bound for the replacement paths problem for directed graphs in the path-
comparison model of Karger et al. [10] given by Hershberger et al. [9].

The replacement paths problem in directed graphs can be trivially solved in
O(|P |(m + n log n)) = O(mn + n2 log n) time by removing each edge on P from
the graph and finding a shortest path from s to t. No faster algorithm for the
problem was previously known.

The replacement paths problem in directed graphs is strongly motivated by
the following applications:

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 249–260, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



250 L. Roditty and U. Zwick

The fastest algorithm to compute a set of k simple shortest paths in a directed
graph uses in each iteration a replacement paths algorithm. This algorithm which
was given independently by Yen [20] and Lawler [12], has a running time of
O(kn(m + n log n)). An o(mn) algorithm for the replacement paths problem
implies immediately on o(mn) algorithm for the k simple shortest paths problem.

The second motivation for studying replacement paths is the Vickrey pricing
of edges. Suppose we like to find the shortest path from s to t in a directed
graph G in which edges are owned by selfish agents. As noted by Nisan and
Ronen [15], a mechanism that offers to pay dG|e=∞(s, t) − dG|e=0(s, t) to the
owner of edge e, for any edge e on the shortest path from s to t, and zero
otherwise, forces the edge owners to reveal their true cost. This kind of pricing
is called Vickrey pricing. Computing the first quantity for every edge in the
graph is equivalent to computing the replacement paths between s and t. (For
further details see Hershberger and Suri [7] and Demetrescu et al. [4]).

We present here the first non-trivial algorithm for the replacement paths
problem in directed graphs. It improves immediately the running time of the
two applications mentioned above. Our algorithm is randomized and its running
time is Õ(m

√
n) time. This seemingly matches the lower bound of Hershberger et

al. [9]. Unfortunately, our algorithm works only for unweighted directed graphs,
or directed graphs with small integer weights, while the lower bound of [9] is for
generally weighted directed graphs.

One of the ingredients used in our algorithm for the replacement paths prob-
lem is a simple sampling technique used before to develop parallel algorithms
(Ullman and Yannakakis [19]), static algorithms (Zwick [21]) and dynamic al-
gorithms (Henzinger and King [6], Baswana et al. [1, 2] Roditty and Zwick
[17, 16]) for paths problems. This technique on its own, however, does not sup-
ply an improved algorithm for the replacement paths problems and other ideas
are needed.

Demetrescu and Thorup [3] considered the more general problem of finding,
for every pair of vertices u, v ∈ V and every edge e ∈ E, a shortest path from u
to v that avoids e. They devise a data structure of size O(n2 log n) capable of
answering each such query in O(log n) time. The preprocessing time needed for
constructing this data structure is, however, Õ(mn2). The preprocessing time can
be reduced to Õ(mn1.5) at the price of increasing the size of the data structure
to O(n2.5). (For a recent improvement, see Demetrescu et al. [4].)

We also consider two variants of the replacement paths problem. Assume
again that G = (V,E) is a directed graph and that P is a shortest path from s
to t in G. In the restricted replacement paths problem, we are required to find,
for every edge e = (u, v) on the path P , a shortest path from u to t in G that
avoids e. This corresponds to a scenario in which the failure of the edge e = (u, v)
is only detected at u (see Figure 1(b) for example). In the edge replacement
paths problem we are required to find, for every edge e = (u, v) on the path P , a
shortest path from u to v in G that avoids e, ( see Figure 1(c) for example). Our
Õ(mn1/2) time algorithm for the replacement paths problem can be adapted to
solve these two versions of the problem.
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Fig. 1. Three detours and the auxiliary graph used to find short detours

We next turn our attention to the k shortest paths problem. Given a graph
G = (V,E), two vertices s, t ∈ V and an integer k, we are required to find
the k shortest paths from s to t in G. Eppstein [5], gave an O(m + n log n +
k) time algorithm for the directed version of the problem. However, the paths
returned by Eppstein’s algorithm are not necessarily simple. i.e., they may visit
certain vertices more than once. In the k simple shortest paths problem, the
paths returned should all be simple. Katoh et al. [11] gave an O(k(m+n log n))
time algorithm for solving the k simple shortest paths problem for undirected
graphs. Yen [20] and Lawler [12] gave an O(kn(m+n log n)) time algorithms for
solving the problem for directed graphs. It is interesting to note that, as for the
replacement paths problem, the directed version of the problem seems to be much
harder than the undirected version. Using our Õ(m

√
n) time algorithm for the

replacement paths problem we obtain a randomized Õ(km
√

n) time algorithm
for the k simple shortest paths problem for unweighted directed graphs and for
directed graphs with small integer weights.

We also show that computing the k simple shortest paths can be reduced to
O(k) computations of a second simple shortest path between s and t, each time
in a different subgraph of G. Thus, to obtain an o(kmn) time algorithm for the
k simple shortest paths problem it is enough to obtain an o(mn) time algorithm
for the second shortest path problem.

The rest of this extended abstract is organized as follows. In the next section
we describe our replacement paths algorithm and its adaption to the different
variants of the replacement paths problem mentioned above. In Section 3 we show
that the k simple shortest paths between two given vertices can be found by at
most 2k invocations of an algorithm for finding the second shortest path between
a given pair of vertices. As the second simple shortest path can be trivially
found by solving the replacement paths problem, we obtain an Õ(km

√
n) time

algorithm for the k simple shortest paths problem for unweighted graphs. We
end in Section 4 with some concluding remarks and open problems.

2 Replacements Paths

In this section we describe an algorithm for solving the replacement paths
problem for unweighted directed graphs and directed graphs with small inte-
ger weights. Let G = (V,E) be a directed graph and let s and t be two vertices
in the graph. Let P (s, t) = 〈u0, u1, . . . , u�〉 be a shortest path from s = u0 to
t = u�. Let PE(s, t) = 〈(u0, u1), (u1, u2), . . . , (ul−1, u�)〉 be the set of edges of
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this path. The objective of a replacement path algorithm is to find for every edge
e ∈ PE(s, t) a shortest path P ′(s, t) in the graph Ge = (V,E \ {e}).

We start by defining detours:

Definition 1 (Detours). Let P (s, t) be a simple path from s to t. A simple
path D(u, v) is a detour of P (s, t) if D(u, v) ∩ P (s, t) = {u, v} and u precedes v
on P (s, t).

Three detours of a shortest path from s to t are depicted in Figure 1. A
shortest path from s to t that avoids the edge (ui, ui+1) of the shortest path
P (s, t) = 〈u0, u1, . . . , u�〉 is composed of an initial portion 〈u0, u1, . . . , uj〉 of P ,
where 0 ≤ j ≤ i, a detour D(uj , uj′), where i + 1 ≤ j′ ≤ �, and then the final
portion 〈uj′ , . . . , u�〉 of P .

Let L be a parameter to be chosen later. A detour is said to be short if its
length is at most L. Otherwise, it is said to be long. (Note that we are considering
here only the length of the detour, not the total length of the resulting path
from s to t. For example, the detour in Figure 1(a) is longer than the one in
Figure 1(b), but the resulting paths may have the same length.)

We find separately the best short detours and the best long detours. The
short detours are found in Section 2.1 in Õ(mL) time. The long ones are found
in Section 2.2 in Õ(mn/L) time. Setting L =

√
n, we get that the running time

of both algorithms is Õ(m
√

n). By choosing for every edge the best short or long
detour, we obtain all the optimal replacement paths.

2.1 Finding Short Detours

We now describe an Õ(mL) time algorithm for finding the best detours of length
at most L. We can easily find the best detours that start in a given vertex
u on the shortest path P (s, t) by running the BFS algorithm from u in the
graph G − PE . However, doing so from each vertex on P may require n BFS
computation which is too time consuming. The main observation made in this
Section is that if v0, v1, . . . , vk are vertices on P (s, t) that are at a distance of
at least 2L apart from each other, then the best short detours from all these
vertices can be found by one run of Dijkstra’s algorithm on a suitably modified
graph. Thus, O(L) runs suffice to find all short detours.

More specifically, to find the best detours from the vertices u0, u2L, . . . , u2kL,
were k = � �

2L�, we consider the graph G − PE to which we add a new source
vertex r and an edge (r, u2iL) of weight iL, for every 0 ≤ i ≤ k. The weight of all
the edges of E − PE is set to 1. We denote the weight function of the auxiliary
graph with wt. Note that the weight assigned to the edge (r, u2iL) is iL, and not
2iL as might have been expected. Also, note that even though we are interested
in detours that are of length at most L, the distance between every two selected
vertices should be at least 2L. The reason to that will become clear in the proof
of Theorem 1. The resulting auxiliary graph, which we denote by GA, is depicted
in Figure 1.

We claim that by running Dijkstra’s algorithm, from r, on GA we find all the
best short detours that start in one of the selected vertices. We then run this
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algorithm ShortDet(P, b, L)

〈u0, u1, . . . , u�〉 ← P

V ′ ← V ∪ {r}
E′ ← E \ P E

for each e ∈ E′ do wt(e) ← 1

for i ← 0 to �(� − b)/(2L)�
E′ ← E′ ∪ {(r, u2iL+b)}
wt(r, u2iL+b) ← iL

δ′ ← Dijkstra(r, (V ′, E′, wt))

for i ← 0 to �(� − b)/(2L)�
g ← 2iL + b
for j ← 1 to L

if δ′(r, ug+j) ≤ (i + 1)L then
RD[g, j] ← δ′(r, ug+j) − iL

else
RD[g, j] ← ∞

algorithm ShortRepPath(P, L)

〈u0, u1, . . . , u�〉 ← P

for b ← 0 to 2L − 1
ShortDet(P, b, L)

Q ← φ

for i ← 0 to � − 1

for j ← i + 1 to min{i + L, �}
Insert(Q, (i, j), RD[i, j − i] + i + � − j)

for j ← max{i − L, 0} to i − 1
Delete(Q, (j, i))

(a, b) ← findmin(Q)
len ← RD[a, b − a] + a + � − b
RP [i] ← 〈len, a, b〉

Fig. 2. The algorithm for finding short detours and short replacement paths

algorithm 2L − 1 more times to find short detours emanating from the other
vertices of P (s, t). In the i-th run we find the short detours emanating from one
of the vertices ui, u2L+i, . . . , u2kL+i.

We let δ(u, v) denote the distance from u to v in the graph G. We let δ−(u, v)
denote the distance from u to v in the graph G−PE , i.e., the graph G with the
edges of the path P removed. (The minus sign is supposed to remind us that
the edges of P are removed from the graph.) We let δA(u, v) denote the distance
from u to v in the auxiliary graph GA. We now claim:

Theorem 1. If δA(r, u2iL+j) ≤ (i + 1)L, where 0 ≤ i ≤ k and 1 ≤ j ≤ L, then
δ−(u2iL, u2iL+j) = δA(r, u2iL+j) − iL. Otherwise, δ−(u2iL, u2iL+j) > L.

Proof. For brevity, let vi = u2iL and vij = u2iL+j . Assume at first that δA(r, vij) ≤
(i + 1)L. Consider a shortest path from r to vij in GA. Let (r, vq) be the first
edge on the path. If q < i, then we have

δA(r, vij) = qL + δ−(vq, vij) ≥ qL + 2(i − q)L + j

= (2i − q)L + j ≥ (i + 1)L + j > (i + 1)L ,

a contradiction. Note that if the distance between any vi and vi+1 was L instead
of 2L then for q < i we do have δA(r, vij) ≤ (i + 1)L.

Similarly, if q > i then we again have δA(r, vij) = qL+ δ−(vq, vij) > (i+1)L.
Thus, we must have q = i and δA(r, vij) = iL + δ−(vi, vij), as required.
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On the other hand, if δ−(vi, vij) ≤ L, then clearly

δA(r, vij) ≤ wt(r, vi) + δ−(vi, vij) ≤ iL + L = (i + 1)L ,

as required. �

A description of the resulting algorithm, which we call ShortDet is given
in Figure 2. By running the algorithm with the parameter b ranging from 0 to
2L − 1 we find, for every vertex on the path, the best short detours starting at
it. This information is gathered in the table RD.

The entry RD[i, j] gives us the length of the shortest detour starting at ui

and ending at ui+j , if that length is at most L. To find the shortest path from s
to t that avoids the edge (ui, ui+1) and uses a short detour, we need to find
indices i − L ≤ a ≤ i and i < b ≤ i + L for which the expression

δ(s, ua) + δ−(ua, ub) + δ(ub, t) = a + RD[a, b − a] + (� − b)

is minimized. An algorithm, called ShortRepPath, for finding such replacement
paths is given in Figure 2. Algorithm ShortRepPath uses a priority queue Q.
When looking for the shortest replacement path for the edge (ui, ui+1), the
priority queue Q contains all pairs (a, b) such that i−L ≤ a ≤ i and i < b ≤ i+L.
The key associated with a pair (a, b) is naturally a+RD[a, b−a]+(�−b). In the
start of the iteration corresponding to the edge (ui, ui+1), we insert the pairs
(i, j), for i + 1 ≤ j ≤ i + L into Q, and remove from it the pairs (j, i), for
i−L ≤ j ≤ i. A findmin operation on Q then returns the minimal pair (a, b). It
is easy to see that the complexity of this process is only Õ(nL). Thus, the total
running time of the algorithm is Õ(mL), as required. We have thus proved:

Theorem 2. Algorithm ShortRepPath finds all the shortest replacement paths
that use short detours. Its running time is Õ(mL).

2.2 Finding Long Detours

To find long detours, i.e., detours that are of length at least L, we use the
following simple sampling lemma. (To the best of our knowledge, it was not
used before in the context of finding replacement paths).

Lemma 1. Let D1,D2, . . . , Dq ⊆ V such that |Di| ≥ L for 1 ≤ i ≤ q and |V | =
n. If R ⊆ V is a random subset obtained by selecting each vertex, independently,
with probability (c ln n)/L, for some constant c, then with probability of at least
1 − q · n−c we have Di ∩ R �= φ for every 1 ≤ i ≤ q.

For every pair of vertices u and v on the path P for which the shortest detour
from u to v is of length at least L, let D(u, v) be such a shortest detour. By the
lemma, if R is a random set as above, then with a probability of at least 1−n2−c

we have D(u, v)∩R �= φ, for every such pair u and v. The choice of the random
set R is the only randomization used by our algorithm.
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Our algorithm for finding the best replacement paths that use long detours
starts by calling sample(V, (4 ln n)/L) which selects a random set R in which
each vertex v ∈ V is placed, independently, with probability (4 lnn)/L. The
expected size of R is clearly Õ( n

L ). We assume, throughout the section, that
D(u, v) ∩ R �= φ, whenever |D(u, v)| ≥ L.

For every sampled vertex r ∈ R, the algorithm maintains two priority queues
Qin[r] and Qout[r] containing indices of vertices on P . When looking for a
replacement path for the edge (ui, ui+1) we have Qin[r] = {0, 1, . . . , i} and
Qout[r] = {i + 1, . . . , �}. The key associated with an element j ∈ Qin[r] is
j+δ−(uj , r). The key associated with an element j ∈ Qout[r] is δ−(r, uj)+(�−j).

Recall that δ−(u, v) is the distance from u to v in G − PE . The algorithm
computes δ−(r, v) and δ−(v, r), for every r ∈ R and v ∈ V , by running two BFS’s
from r, for each r ∈ R, one in G−PE and one in the graph obtained from G−PE

by reversing all the edges. (Only one of these BFS’s is explicitly mentioned
in LongRepPath.) The total running time of computing these distances is
Õ(mn/L).

To find the shortest replacement path for the edge (ui, ui+1) that passes
through a given vertex r ∈ R, the algorithm needs to find an index 0 ≤ a ≤ i
which minimizes the expression a + δ−(ua, r), and an index i < b ≤ � which
minimizes the expression δ−(r, ub) + (� − b). The minimizing index a is found
by a findmin operation on Qin[r] and the minimizing index b is found by a
findmin operation on Qout[r].

It is not difficult to check that the total running time of the algorithm is
Õ(mn/L), as required. We have thus proved:

Theorem 3. Algorithm LongRepPath finds, with very high probability, all the
shortest replacement paths that use long detours. Its running time is
Õ(mn/L).

2.3 The Replacement Paths Algorithm and Its Variants

The algorithms ShortRepPath and LongRepPath find the best short and
long replacement paths available to bypass every edge on a given shortest path.
By passing on their output and picking the minimal path found for every edge
we obtain the solution for the replacement paths problem as promised.

There are another two natural variants of replacement paths that can be
solved by our short and long detours detection.

Let G = (V,E) be a directed graph and let P be a shortest path from s
to t in G. In the restricted replacement paths problem, we are required to find,
for every edge e = (u, v) on the path P , a shortest path from u to t in G that
avoids e. This corresponds to a scenario in which the failure of the edge e = (u, v)
is only detected at u. In the edge replacement paths problem we are required to
find, for every edge e = (u, v) on the path P , a shortest path from u to v in G
that avoids e.

To solve the above two problems the main idea of short and long detours
remains unchanged. The only change is in the set from which we choose the best
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detour to be used to bypass a given edge. This set is now updated according to
the structural restrictions given by the problem definition.

For the restricted replacement paths after finding the short detours by the
algorithm ShortDet we maintain the heap subject to the following constraint:
If we currently searching for a restricted replacement path to bypass the edge
(ui, ui+1) the heap contains only detours that emanate from ui.

In a similar manner, when searching for a restricted replacement path com-
posed from a long detour to bypass the edge (ui, ui+1) we use only detours that
emanate from ui. Thus, we only need one heap for this process. A pseudo-code
of the algorithm will be given in the full version of this paper. We claim:

Theorem 4. Algorithm ResRepPath, with L =
√

n, finds, with very high
probability, all the restricted shortest replacement paths. Its running time is
Õ(m

√
n).

Using similar constraints on the set from which paths are picked we can adapt
our ideas to solve also the edge replacement paths problem.

3 The k Simple Shortest Paths Problem

The k simple shortest paths problem (also known as the k shortest loopless
paths) is a fundamental graph theoretic problem. Let G = (V,E) be a directed
graph and let s and t be two vertices of the graph. Let k be an integer. The
target is to find the k simple shortest paths from s to t. This version of the
problem is considered to be much harder than the general version in which non-
simple paths (i.e. paths that may contain a loop) are allowed to be among the
k shortest paths. The k shortest non-simple paths can be computed in time of
O(m + n log n + k) using an algorithm of Eppstein [5]. In cases that a shortest
paths tree can be computed in O(m + n), Eppstein’s algorithm has a running
time of O(m + n + k). However, the running time of the restricted problem is
much worse. The best algorithm is due to Yen [20] and Lawler [12]. It has a
running time of O(kn(m + n log n)).

In this section we show that for unweighted directed graphs (and for graphs
with small integer weights) the running time of O(kn(m + n log n)) can be sig-
nificantly improved using our new replacement paths algorithm. We obtain a
randomized algorithm with running time of O(km

√
n log n).

We also reduce the problem of computing k simple shortest paths to O(k)
computations of a second shortest path each time in a different subgraph of G.
This reduction works in weighted graphs. Both Yen [20] and Lawler [12] use O(k)
computations of replacement paths. Our reduction implies that we can focus our
efforts in improving the second shortest path algorithm, which may turn out to
be an easier problem than the replacement paths problem. We only deal in this
section with simple paths thus we refer to a simple path simply by saying a path.

The algorithm for computing k shortest paths works as follow. It maintains
a priority queue Q of paths from s to t. The key attached with each path is
its length. The algorithm preforms k iterations. The priority queue is initialized



Replacement Paths and k Simple Shortest Paths 257

s

t

t t

t

t

t

P4

P2 P1

P3

P5

P6

algorithm k-SimplePath(G(V, E), s, t, k)

P1(s, t) ← Dijkstra(G(V, E), s, t)
T ← P1(s, t)
Insert(Q, (SP(G(V, E), P1(s, t)), 1))
for i ← 2 to k

(Pi(s, t), j) ← findmin(Q)
Make a copy of Pi(vi, t) and hang it on ui in T
Insert(Q, (SP(G(V, E \ Ed(vi)), Pi(vi, t)), i))
Insert(Q, (SP(G(V, E \ Ed(vj)), Pj(vj , t)), j))

Fig. 3. A deviations tree and our k-simple shortest paths algorithm

with a second shortest path of a shortest path from s to t. In the i-th iteration
the algorithm picks from Q the path with the minimal length and remove it.
Let Pi(s, t) = 〈s, u1, . . . u�−1, t〉 be the i-th path picked by the algorithm. This
path is added to the output as the i-th shortest path. To describe the output
structure we need the following definition:

Definition 2 (Deviation edge and Deviations tree). For k = 1 the devia-
tions tree is simply a copy of a shortest path from s to t. Suppose that the tree
already exists for i−1 paths. Let Pi(s, t) = 〈s, u1, . . . , ul〉 be the i-th shortest path
to be output. Let Pi(s, uj) be the longest subpath of Pi(s, t) that was already part
of the output and thus part of the tree. We make a copy only from Pi(uj+1, t)
and hang it on the copy of uj in the tree. We say that the edge (uj , uj+1) is the
deviation edge of Pi(s, t).

Note that by this definition a vertex may have more than one occurrence in
the deviations tree. However, there are at most k copies of each vertex in the
deviations tree, thus, the size of the tree is O(kn). An example of a deviations
tree is given in Figure 3. The deviation edges are in light color.

The main challenge is to quickly obtain the paths to be added to Q in each
iteration. Suppose we have extracted the i-th shortest path Pi(s, t) from Q.
After having Pi(s, t) in the deviations tree we need to find the new paths to be
added to Q. Let (ui, vi) be the deviation edge of Pi(s, t). In Yen’s algorithm the
path Pi(ui, t) = 〈w1, w2, . . . , wl〉, where w1 = ui and wl = t, is scanned. For
each vertex wj ∈ Pi(ui, t), the algorithm finds a shortest path P ′(wj , t) from
wj to t which does not use the edge (wj , wj+1). In the special case of w1 the
path P ′(w1, t) is obtained when all the edges emanate from the copy of w1 in
the tree are forbidden to use. Each such a path is concatenated to Pi(s, wj) and
added to Q. This is essentially a restricted replacement paths problem for the
path Pi(ui, t). Thus, we can claim the following:

Theorem 5. The algorithm of Yen combined with our restricted shortest paths
algorithm computes k simple shortest paths in Õ(km

√
n) time.
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However, this process generates many paths and most of them are not needed.
Many of these paths can be ruled out without being actually computed by mak-
ing just two computations of second shortest paths in the i-th iteration.

Recall that Pi(s, t) is the i-th shortest path extracted from Q and (ui, vi) is its
deviation edge. Let Ed(vi) be the set of deviation edges emanate from Pi(vi, t).
We compute a second shortest path for the path Pi(vi, t) in the graph G(V,E \
Ed(vi)), concatenate it to Pi(s, vi) and add it to Q. This path is associated to
Pi(s, t). Note that in the first computation of a second shortest path for Pi(vi, t)
the set Ed(vi) is empty by its definition. However, we are not done yet. The
extracted path Pi(s, t) is associated to some other path Pj(s, t), where j < i.
Since we have extracted the path associated to Pj(s, t) we need to find a new
path, other than Pi(s, t), to associate to Pj(s, t). Let (uj , vj) be the deviation
edge of Pj(s, t). We compute a second shortest path for the path Pj(vj , t) in the
graph G(V,E \ Ed(vj)). By its definition the set Ed(vj) contains in this stage
the deviation edge of Pi(s, t), thus, the resulting second shortest path will be
other than Pi(s, t). We concatenate this path to Pj(s, vj) and add it to Q. The
algorithm is given in Figure 3. We assume that the deviation edge of the path
Pi(s, t) if exists is (ui, vi). For the path P1(s, t) we treat s as the head of a
deviation edge. We use the algorithm of Dijkstra to compute a shortest path
from s to t and the algorithm SP to compute a second shortest path given a
shortest path.

Next, we justify why the extracted path is only associated to one other path
or more precisely why a path cannot be added to Q as a second shortest path
of two different paths.

Lemma 2. In any stage all paths in Q are distinct.

Proof. To the purpose of the proof only we divide the paths of the graph into
disjoint sets. Each set is associated with a path which already was picked from Q.
The set Ci is associated with the path Pi(s, t). We prove that these sets exist
and any second shortest path in Q is associated to a different set. This implies
that all paths in Q are distinct.

We set C1 to be all the paths in the graph. After finding a second shortest path
for the first time we divide C1 into two sets. Let (u2, v2) be the deviation edge of
P2(s, t) then C2 is set to be all the paths from C1 that have the prefix P2(s, v2)
and C1 is set to C1 \ C2. Obviously, C1 and C2 are disjoint. Now computing a
second shortest path for P2(v2, t) and concatenating it with P2(s, v2) results in
a path from C2 and computing a second shortest path for the path P1(s, t) in
G(V,E\Ed(s)) results in a second shortest path in C1. (Note that Ed(s) contains
the edge (u2, v2).) Thus, the paths added to Q are from two disjoint sets. We
prove by induction that in general it also holds.

Suppose that right before the i-th extraction we have i− 1 disjoint sets, such
that for any j ≤ i − 1 the set Cj is associated to Pj(s, t) and a path composed
from the concatenation of Pj(s, vj) and a second shortest path of Pj(vj , t) in the
graph G(V,E \Ed(vj)) is the path in Q from Cj . We show that right before the
i+1-th extraction this invariant still holds. Let Pi(s, t) be the path picked from Q
in the i-th extraction. By the induction hypothesis we know that there is a set
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Cj , disjoint from all the others, such that Pi(s, t) ∈ Cj and Pj(s, t) is associated
with Cj . Let (ui, vi) be the deviation edge of Pi(s, t). We divide Cj into two sets
as follow, Ci will have the paths from Cj with the prefix Pi(s, vi) and Cj is set
to Cj \Ci. The resulted sets are disjoint. Now computing a second shortest path
for Pi(vi, t) and concatenating it with Pi(s, vi) results in a path from Ci and
computing a second shortest path for the path Pj(vj , t) in G(V,E \Ed(vj)) and
concatenating it with Pj(s, vj) results in a second shortest path in Cj . In this
process the two paths added to Q are from different disjoint sets and the above
invariant still holds. �

It follows that once a path is out of Q only two second shortest path compu-
tations have to be done. We now claim the correctness of the algorithm.

Lemma 3. The algorithm computes k simple shortest paths.

Proof. The proof is by induction. For i = 1 the claim trivially holds. Suppose
that the i − 1 first paths are found by our algorithm. We prove that the i-th
path is found also. Let W be the weight of the i-th shortest path. Let Pi(s, t)
be an i-th shortest path. Let (ui, vi) be its deviation edge and let Pj(s, t) be the
path Pi(s, t) deviates from. We will show that the path Pi(s, t) or other path of
the same length must be associated to Pj(s, t).

Let (u′, v′) be the closest deviation edge to (ui, vi) on the path Pj(s, ui), if
exists, or let v′ = s otherwise. Consider the last time a second shortest path
computation was done for the path Pj(v′, t) before the i-th extraction. The
weight of the path P obtained in this computation is at most W since all the
edges of Pi(ui, t) are eligible to use. Suppose that the length of P is strictly less
than W then by the induction hypothesis the path P is extracted before the
i-th extraction. By our algorithm when P is extracted we recompute a second
shortest path for Pj(v′, t), the path that P was associated to. However, the
second shortest path computation that have added P was the last computation
done for Pj(v′, t) before the i-th extraction, a contradiction. �

The following Theorem stems from Lemma 2 and Lemma 3.

Theorem 6. The algorithm described above computes correctly the k simple
shortest paths of a directed graph by O(k) computation of second shortest paths.

4 Concluding Remarks and Open Problems

We presented a randomized O(m
√

n) time algorithm for the replacement paths
problem in unweighted graphs and in graphs with small integer weights. Many
problems are still open, however. In particular, is it possible to obtain an o(mn)
time algorithm for the replacement paths problem in weighted directed graphs?
Is it possible to obtain an o(mn) time algorithm for the second simple shortest
path in weighted directed graphs. A positive answer to one of these questions will
yield an o(kmn) time algorithm for finding the k simple shortest paths problem
in weighted directed graphs.
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