

Lecture Notes in Computer Science 3580
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Luís Caires Giuseppe F. Italiano
Luís Monteiro Catuscia Palamidessi
Moti Yung (Eds.)

Automata, Languages
and Programming

32nd International Colloquium, ICALP 2005
Lisbon, Portugal, July 11-15, 2005
Proceedings

13

Volume Editors

Luís Caires
Universidade Nova de Lisboa, Departamento de Informatica
2829-516 Caparica, Portugal
E-mail: Luis.Caires@di.fct.unl.pt

Giuseppe F. Italiano
Universitá di Roma “Tor Vergata”
Dipartimento di Informatica, Sistemi e Produzione
Via del Politecnico 1, 00133 Roma, Italy
E-mail: italiano@disp.uniroma2.it

Luís Monteiro
Universidade Nova de Lisboa, Departamento de Informatica
2829-516 Caparica, Portugal
E-mail: lm@di.fct.unl.pt

Catuscia Palamidessi
INRIA Futurs and LIX, École Polytechnique
rue de Saclay, 91128 Palaiseau, France
E-mail: catuscia@lix.polytechnique.fr

Moti Yung
RSA Laboratories and Columbia University
Computer Science Department
1214 Amsterdam Av., New York, NY 10027, USA
E-mail: moti@cs.columbia.edu

Library of Congress Control Number: 2005928673

CR Subject Classification (1998): F, D, C.2-3, G.1-2, I.3, E.1-2

ISSN 0302-9743
ISBN-10 3-540-27580-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-27580-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11523468 06/3142 5 4 3 2 1 0

Preface

The 32nd International Colloquium on Automata, Languages and Programming
(ICALP 2005) was held in Lisbon, Portugal from July 11 to July 15, 2005.
These proceedings contain all contributed papers presented at ICALP 2005, to-
gether with the papers by the invited speakers Giuseppe Castagna (ENS), Leonid
Libkin (Toronto), John C. Mitchell (Stanford), Burkhard Monien (Paderborn),
and Leslie Valiant (Harvard). The program had an additional invited lecture by
Adi Shamir (Weizmann Institute) which does not appear in these proceedings.

ICALP is a series of annual conferences of the European Association for
Theoretical Computer Science (EATCS). The first ICALP took place in 1972.
This year, the ICALP program consisted of the established track A (focusing on
algorithms, automata, complexity and games) and track B (focusing on logic,
semantics and theory of programming), and innovated on the structure of its
traditional scientific program with the inauguration of a new track C (focusing
on security and cryptography foundation).

In response to a call for papers, the Program Committee received 407 sub-
missions, 258 for track A, 75 for track B and 74 for track C. This is the highest
number of submitted papers in the history of the ICALP conferences. The Pro-
gram Committees selected 113 papers for inclusion in the scientific program.
In particular, the Program Committee for track A selected 65 papers, the Pro-
gram Committee for track B selected 24 papers, and the Program Committee
for track C selected 24 papers. All the work of the Program Committees was
done electronically.

ICALP 2005 was held in conjunction with the Annual ACM International
Symposium on Principles and Practice of Declarative Programming
(PPDP 2005). Additionally, the following workshops were held as satellite events
of ICALP 2005: the 2nd Workshop on Automated Reasoning for Security Proto-
col Analysis (ARSPA), the 1st International Workshop on Verification of COn-
current Systems with dynaMIC Allocated Heaps (COSMICAH), the 1st Inter-
national Workshop on New Developments in Computational Models (DCM), the
4th International Workshop on Parallel and Distributed Methods in Verification
(PDMC), the 4th International Workshop on Proof Theory, Computation, Com-
plexity (PCC), the Workshop on Structures and Deduction — The Quest for the
Essence of Proofs (DS), the 2nd Workshop on Structural Operational Semantics
(SOS), and the Workshop on Semigroups and Automata (WSA).

We wish to thank all authors who submitted papers for consideration, the
Program Committees for their hard work, as well as the external reviewers who
assisted the Program Committees in the evaluation process.

We thank the sponsors and the Gulbenkian Foundation of Lisbon for host-
ing ICALP 2005. We are also grateful to the Department of Informatics of the

VI Preface

Faculty of Sciences and Technology, New University of Lisbon, in particular the
administrative office and the technical support service.

Last but not least, we would like to thank Andrei Voronkov for providing the
conference management software EasyChair. It was of great help in handling the
submissions and the electronic PC meeting.

Lúıs Caires
Giuseppe F. Italiano

Lúıs Monteiro
Catuscia Palamidessi

Moti Yung

Organization

Program Committee

Track A

Lars Arge, Duke University, USA
Giorgio Ausiello, University of Rome “La Sapienza”, Italy
Surender Baswana, Max-Planck-Institut für Informatik, Saarbrücken,

Germany
Hans Bodlaender, University of Utrecht, The Netherlands
Véronique Bruyère, University of Mons-Hainaut, Belgium
Adam Buchsbaum, AT&T Labs Research, USA
Josep Diaz, Universitat Politècnica de Catalunya, Spain
David Eppstein, University of Irvine, USA
Andrew Goldberg, Microsoft, USA
Monika Henzinger, Google and ETH Lausanne, Switzerland
Giuseppe F. Italiano, University of Rome “Tor Vergata”, Italy (Chair)
Marios Mavronicolas, University of Cyprus, Cyprus
Peter Bro Miltersen, University of Aarhus, Denmark
Mike Paterson, University of Warwick, UK
Dominique Perrin, Université de Marne la Vallée, France
Seth Pettie, Max-Planck-Institut für Informatik, Saarbrücken, Germany
Yuval Rabani, Technion, Israel
Antonio Restivo, University of Palermo, Italy
José Rolim, University of Geneva, Switzerland
Dorothea Wagner, University of Karlsruhe, Germany
Tandy Warnow, University of Texas at Austin, USA
Christos Zaroliagis, CTI and University of Patras, Greece

Track B

Kenichi Asai, Ochanomizu University, Japan
Jos Baeten, Eindhoven University of Technology, The Netherlands
Peter Buneman, University of Edinburgh, UK
Zoltan Esik, University of Szeged, Hungary and Rovira University, Spain
Javier Esparza, University of Stuttgart, Germany
Marcelo Fiore, Christ’s College and University of Cambridge, UK
Manuel Hermenegildo, Universidad Politècnica de Madrid, Spain
Delia Kesner, Université Paris VII, France
Kim Guldstrand Larsen, University of Aalborg, Denmark
Gopalan Nadathur, University of Minnesota, USA

VIII Organization

Uwe Nestmann, EPFL, Switzerland
Catuscia Palamidessi, INRIA, France (Chair)
Amr Sabry, University of Indiana, USA
Davide Sangiorgi, Università di Bologna, Italy
Roberto Segala, Università di Verona, Italy
Harald Søndergaard, University of Melbourne, Australia

Track C

David Basin, ETH Zurich, Switzerland
Christian Cachin, IBM Research, Switzerland
Alfredo De Santis, Università di Salerno, Italy
Cynthia Dwork, Microsoft Research, USA
Matt Franklin, U.C. Davis, USA
Michael Goodrich, U.C. Irvine, USA
Andrew D. Gordon, Microsoft Research, UK
Roberto Gorrieri, Università di Bologna, Italy
Yuval Ishai, Technion, Israel
Phil MacKenzie, DoCoMo Labs, USA
Tatsuaki Okamoto, NTT Labs, Japan
David Pointcheval, ENS Paris, France
Tal Rabin, IBM Research, USA
Omer Reingold, Weizmann Institute, Israel
Adi Rosen, Technion, Israel
Amit Sahai, UCLA, USA
Andre Scedrov, University of Pennsylvania, USA
Igor Shparlinski, Macquarie University, Australia
Nigel Smart, University of Bristol, UK
Moti Yung, Columbia University and RSA Laboratories, USA (Chair)

Organizing Committee

Lúıs Caires, Conference Co-chair
Lúıs Monteiro, Conference Co-chair
António Ravara, Workshops Co-chair
Vasco Vasconcelos, Workshops Co-chair
Margarida Mamede
João Costa Seco
José Pacheco

Organization IX

List of External Referees

Track A

Karen Aardal
Scott Aaronson
Saurabh Aggarwal
Marjan van den Akker
Cyril Allauzen
Jean-Paul Allouche
Luca Allulli
Carme Alvarez
Andris Ambainis
Marcella Anselmo
Sanjeev Arora
Albert Atserias
Vincenzo Auletta
Jose Balcazar
Jeremy Barbay
Amotz Bar-Noy
Tugkan Batu
Michael Baur
Marie-Pierre Béal
Luca Becchetti
Philip Bille
Yvonne Bleischwitz
Maria J. Blesa
Avrim Blum
Luc Boasson
Vincenzo Bonifaci
Paola Bonizzoni
Vasco Brattka
Gerth Stølting Brodal
Peter Buergisser
Harry Buhrman
Luciana S. Buriol
Costas Busch
Cristian S. Calude
Massimiliano Caramia
Jean Cardinal
Olivier Carton
Patrick Cegielski
Julien Cervelle
J.-M. Champarnaud
Sunil Chandran

Moses Charikar
Hubie Chen
Joseph Cheriyan
Janka Chlebikova
Bogdan Chlebus
Christian Choffrut
George Christodoulou
Serafino Cicerone
Julien Clément
Andrea Clementi
Eric de La Clergerie
Bruno Codenotti
Edith Cohen
Anne Condon
Pier Francesco Cortese
Stefano Crespi-Reghizzi
Peter Damaschke
Fabrizio d’Amore
Camil Demetrescu
Kedar Dhamdhere
Christoph Dorr
Petros Drineas
Christoph Durr
Stephan Eidenbenz
Amr Elmasry
Thomas Erlebach
Alex Fabrikant
Rolf Fagerberg
Jacques Farré
Lene Favrholdt
Rainer Feldmann
Stephen A. Fenner
Antonio Fernandez
Henning Fernau
Paolo Ferragina
Jiri Fiala
Irene Finocchi
Fedor Fomin
Lance Fortnow
Dimitris Fotakis
Paolo G. Franciosa

Gudmund Frandsen
Alan Frieze
Andrea Frosini
Marco Gaertler
Martin Gairing
Emden Gansner
Naveen Garg
William Ian Gasarch
Leszek Gasieniec
Georgiadis Georgios
Kostis Georgiou
Arkadeb Ghosal
Dora Giammarresi
Raffaele Giancarlo
Aristides Gionis
Ashish Goel
Paul Golberg
Robert Görke
Fabrizio Grandoni
Serge Grigorieff
Alexander Grigoriev
Joachim Gudmundsson
Rachid Guerraoui
Dan Gusfield
Gus Gutoski
M. Hajiaghayi
Magnus M. Halldorsson
Kristoffer Hansen
Sariel Har-Peled
Ramesh Hariharan
Herman Haverkort
Illya V. Hicks
Mika Hirvensalo
John Hitchcock
Martin Holzer
Han Hoogeveen
Peter Hoyer
Juraj Hromkovic
Cor Hurkens
Lucian Ilie
Costas Iliopoulos

X Organization

Piotr Indyk
Garud Iyengar
Kamal Jain
Petr Jančar
Klaus Jansen
Mark Jerrum
David Johnson
Adrian Johnstone
Marcin Jurdzinski
Erich Kaltofen
Juhani Karhumäki
Anna Karlin
Marek Karpinski
Claire Kenyon
Richard Kenyon
Iordanis Kerenidis
Leonid Khachiyan
Rohit Khandekar
Pekka Kilpelainen
Lefteris Kirousis
Ralf Klasing
Rolf Klein
Bettina Klinz
Adam Klivans
Pascal Koiran
Jochen Konemann
Spyros Kontogiannis
Guy Kortsarz
Arie Koster
Manolis Koubarakis
Elias Koutsoupias
Daniel Kral
Evangelos Kranakis
Dieter Kratsch
Michael Krivelevich
Ravi Kumar
Viraj Kumar
Dietrich Kuske
Shay Kutten
Gregory Lafitte
Jens Lagergren
Sophie Laplante
Michel Latteux
Luigi Laura
Van Bang Le

Thierry Lecroq
Stefano Leonardi
Pierre Leone
Xiang-Yang Li
Paolo Liberatore
Christian Liebchen
Michael Loizos
Thomas Luecking
George Lueker
Alejandro Maas
Marina Madonia
Malik Magdon-Ismail
Frederic Magniez
Mohammad Mahdian
Christos Makris
Sebastian Maneth
Alberto Spaccamela
Maurice Margenstern
Vangelis Markakis
Chip Martel
Giancarlo Mauri
Jacques Mazoyer
Pierre McKenzie
Frank McSherry
Steffen Mecke
Dieter van Melkebeek
Carlo Mereghetti
Wolfgang Merkle
Ramgopal Mettu
Ulrich Meyer
Dimitrios Michail
Christian Michaux
Filippo Mignosi
Vahab Mirrokni
Michael Mitzenmacher
Shuichi Miyazaki
Kousha MoaveniNejad
Mehryar Mohri
Burkhard Monien
Cris Moore
Shlomo Moran
Burkhard Morgenstern
Kenichi Morita
Gabriel Moruz
Thomas Moscibroda

Philippe Moser
Anca Muscholl
Umberto Nanni
Konstantinos Nedas
Mark-Jan Nederhof
Jaroslav Nesetril
Frank Neven
Sotiris Nikoletseas
John Noga
Rasmus Pagh
Jakob Illeborg Pagter
Rina Panigrahy
Anindya Patthak
Christian N.S. Pedersen
David Peleg
Sriram Pemmaraju
Giovanni Pighizzini
Jean-Eric Pin
Giuseppe Pirillo
Nadia Pisanti
Andrzej Proskurowski
J. Radhakrishnan
Harald Raecke
Mathieu Raffinot
Srinivasa Rao
David Rappaport
Jean-François Raskin
S.S. Ravi
John Reif
Jan Reimann
Omer Reingold
Eric Rémila
Christophe Reutenauer
Michel Rigo
Adi Rosen
Martin Rotteler
Tim Roughgarden
Gilles Roussel
Alexander Russell
Jacques Sakarovitch
Peter Sanders
Pierluigi San Pietro
Miklos Santha
Martin Sauerhoff
Guido Schaefer

Organization XI

Thomas Schank
Christian Schindelhauer
Torsten Schlieder
Anita Schöbel
Sylvain Schmitz
Étienne Schramm
Frank Schulz
Elizabeth Scott
Luc Segoufin
Helmut Seidl
Pranab Sen
Géraud Sénizergues
Maria Serna
Rocco Servedio
Jeffrey Shallit
Micha Sharir
Peter Shor
Riccardo Silvestri
Alistair Sinclair
Spiros Skiadopoulos
Martin Skutella
Roberto Solis-Oba
Robert Spalek
Klaus Ambos Spies

Paul Spirakis
Venkatesh Srinivasan
Ludwig Staiger
Yannis Stamatiou
Cliff Stein
David Steurer
Leen Stougie
Howard Straubing
Martin Strauss
K.S. Sudeep
Peng Sun
Maxim Sviridenko
Mario Szegedy
Claude Tadonki
Kunal Talwar
Gerard Tel
Dimitrios Thilikos
Wolfgang Thomas
Karsten Tiemann
Luca Trevisan
Panayiotis Tsaparas
Kostas Tsichlas
Marc Uetz
Ugo Vaccaro

Kasturi Varadarajan
Vijay V. Vazirani
S. Venkatasubramanian
Adrian Vetta
Eric Vigoda
Emanuele Viola
Rakesh V. Vohra
Heribert Vollmer
Nicolai Vorbjov
Osamu Watanabe
Pascal Weil
Klaus Wich
Peter Widmayer
Jef Wijsen
Gerhard Woeginger
Alexander Wolff
Deng Xiaotie
Hiroaki Yamamoto
Mihalis Yannakakis
Norbert Zeh
Li Zhang
Wieslaw Zielonka
Uri Zwick

Track B

Elvira Albert
Thorsten Altenkirch
Rajeev Alur
Sergio Antoy
André Arnold
Benjamin Aziz
Brian Babcock
James Bailey
Vincent Balat
José Balcázar
Michael Baldamus
Jiri Barnat
Gerd Behrmann
Martin Berger
Jan Bergstra
Luca Bianco
Lars Birkedal
Frédéric Blanqui

Benedikt Bollig
Johannes Borgström
Dragan Bošnački
Debora Botturi
Ahmed Bouajjani
Patricia Bouyer
Julian Bradfield
Mario Bravetti
Franck van Breugel
Sébastien Briais
Geoffrey Brown
Glenn Bruns
Antonio Bucciarelli
Francisco Bueno
Nadia Busi
Lúıs Caires
Cristiano Calcagno
Manuel Campagnolo

Manuel Carro
D. Caucal
Witold Charatonik
Krishnendu Chatterjee
Chiyan Chen
James Cheney
Tom Chothia
Horatiu Cirstea
Rance Cleaveland
John Cochran
Thomas Colcombet
Andrea Corradini
Flavio Corradini
Alin Deutsch
Silvano Dal-Zilio
Vincent Danos
Alexandre David
Anuj Dawar

XII Organization

Soeren Debois
Yuxin Deng
M. Dezani-Ciancaglini
Volker Diekert
Rachid Echahed
Norm Ferns
Thomas Hildebrandt
Matthew Flatt
Cédric Fournet
Michael Franssen
Fabio Gadducci
Jacques Garrigue
Floris Geerts
Blaise Genest
Dan R. Ghica
Rob van Glabbeek
Patrice Godefroid
Jan Friso Groote
Sudipto Guha
Vesa Halava
James Harland
Russ Harmer
Tobias Heindel
Holger Hermanns
Thomas Hildebrandt
Kees Huizing
Hans Hüttel
Atsushi Igarashi
Jacob Illum Rasmussen
Anna Ingólfsdóttir
Radha Jagadeesan
Achim Jung
Marcin Jurdziński
Yukiyoshi Kameyama
Deepak Kapur
Claude Kirchner
Christoph Koch
Simon Kramer
Antońın Kučera
Werner Kuich
Ruurd Kuiper
K. Narayan Kumar
Orna Kupferman
Marcos Kurban
Martin Kutrib

Barbara König
Salvatore La Torre
Daniel Leivant
Stéphane Lengrand
Michael Leuschel
Leonid Libkin
Didier Lime
Jim Lipton
Kamal Lodaya
Markus Lohrey
Pedro López
Etienne Lozes
Michael Luttenberger
Bas Luttik
Angelika Mader
A. Maggiolo Schettini
Istvan Majzik
Luc Maranget
Julio Mariño
Hidehiko Masuhara
Sjouke Mauw
Guy McCusker
Paul-André Melliès
Michael Mendler
Massimo Merro
Dale Miller
Kevin Millikin
Alexandre Miquel
Alberto Momigliano
Madhavan Mukund
Anca Muscholl
Anders Møller
Francesco Zappa Nardelli
Damian Niwinski
Dirk Nowotka
Jan Obdržálek
Martin Otto
Matthew Parkinson
Justin Pearson
Simon Peyton Jones
Frank Pfenning
Iain Phillips
Sophie Pinchinat
G. Michele Pinna
François Pottier

Marc Pouzet
John Power
Germán Puebla
Jean-François Raskin
Anders Ravn
Henrik Reif Andersen
Didier Rémy
Eike Ritter
Francesca Rossi
Wojciech Rytter
Jean-Paul Sansonnet
Vijay Saraswat
Stefan Schwoon
Géraud Senizergues
Natalia Sidorova
Petr Sosik
Jeremy Sproston
Jiri Srba
Graham Steel
Martin Steffen
Colin Stirling
Oldřich Stražovský
Martin Strecker
Thomas Streicher
Martin Sulzmann
Stephanie Swerich
Paulo Tabuada
Vanessa Teague
P.S. Thiagarajan
Hayo Thielecke
Marc Tommasi
Lorenzo Tortora de Falco
Frank D. Valencia
Dirk Van Gucht
Daniele Varacca
Helmut Veith
Bob Veroff
Alicia Villanueva
Erik de Vink
Walter Vogler
Marc Voorhoeve
Jérôme Vouillon
Roel de Vrijer
David S. Warren
Hiroshi Watanabe

Organization XIII

Stephanie Weirich
Joe Wells
J. Winkowski
Anthony Wirth
James Worrell

Eric Van Wyk
Hongwei Xi
Alexander Yakhnis
Mihalis Yannakakis
Dachuan Yu

Hans Zantema
Marc Zeitoun
Wieslaw Zielonka
Pascal Zimmer

Track C

Mart́ın Abadi
Michel Abdalla
Alessandro Acquisti
Saurabh Agarwal
Alessandro Aldini
Giuseppe Ateniese
Michael Backes
Zuzana Beerliova
Kamel Bentahar
Carlo Blundo
Marcello Bonsangue
Xavier Boyen
Marzia Buscemi
Jan Camenisch
Marco Carbone
Dario Catalano
Qi Cheng
Jung Hee Cheon
Mika Cohen
Hubert Comon-Lundh
Scott Contini
Nicolas Courtois
Silvia Crafa
Paolo D’Arco
Stephanie Delaune
Giovanni Di Crescenzo
Pierpaolo Degano
Christophe Doche
Seiji Doi
Paul Hankes Drielsma
Claudiu Duma
Orr Dunkelman
Antonio Durante
Sandro Etalle
Pooya Farshim
Serge Fehr
Sebastian Fischmeister

Riccardo Focardi
Pierre-Alain Fouque
Cédric Fournet
Jessica Fridrich
Martin Gagne
Steven Galbraith
Pierrick Gaudry
Rosario Gennaro
Craig Gentry
Rob Granger
Claudio Guidi
Shai Halevi
Amir Herzberg
Omer Horvitz
Markus Jakobsson
Marc Joye
Bruce Kapron
Hartmut Klauck
Ralf Kuesters
Sebastien Kunz-Jacques
Eyal Kushilevitz
Peeter Laud
Kristin Lauter
Peter Leadbitter
Shiyong Lu
Ben Lynn
Anna Lysyanskaya
Matteo Maffei
Toshiaki Makita
John Malone-Lee
Heiko Mantel
Barbara Masucci
Alexander May
Willi Meier
Phong Nguyen
Jesper Buus Nielsen
Kobbi Nissim

Dan Page
Enes Pasalic
Rafael Pass
Kenny Paterson
Manas Patra
Erez Petrank
Duong Hieu Phan
Krzysztof Pietrzak
Benny Pinkas
Alexander Pretschner
Zulfikar Ramzan
Oded Regev
Leonid Reyzin
Mike Roe
Alon Rosen
Sabina Rossi
Michael Scott
Andrei Serjantov
Ronen Shaltiel
Vitaly Shmatikov
Christoph Sprenger
Martijn Stam
Pante Stanica
Ron Steinfeld
Jacques Stern
Koutarou Suzuki
Tamir Tassa
Yael Tauman-Kalai
Luca Trevisan
A. Troina
Luca Vigano
Ivan Visconti
Bogdan Warinschi
Brent Waters
Diego Zamboni

XIV Organization

Sponsors

Fundação para a Ciência e Tecnologia, Ministério da Ciência e Ensino Superior
Centro de Informática e Tecnologias da Informação/FCT/UNL
Centro de Lógica e Computação/IST/UTL

Table of Contents

Invited Lectures

Holographic Circuits
Leslie G. Valiant . 1

Probabilistic Polynomial-Time Semantics for a Protocol Security Logic
Anupam Datta, Ante Derek, John C. Mitchell, Vitaly Shmatikov,
Mathieu Turuani . 16

A Gentle Introduction to Semantic Subtyping
Giuseppe Castagna, Alain Frisch . 30

Logics for Unranked Trees: An Overview
Leonid Libkin . 35

Nash Equilibria, the Price of Anarchy and the Fully Mixed Nash
Equilibrium Conjecture

Martin Gairing, Thomas Lücking, Burkhard Monien,
Karsten Tiemann . 51

Data Structures I

The Tree Inclusion Problem: In Optimal Space and Faster
Philip Bille, Inge Li Gørtz . 66

Union-Find with Constant Time Deletions
Stephen Alstrup, Inge Li Gørtz, Theis Rauhe, Mikkel Thorup,
Uri Zwick . 78

Optimal In-place Sorting of Vectors and Records
Gianni Franceschini, Roberto Grossi . 90

Towards Optimal Multiple Selection
Kanela Kaligosi, Kurt Mehlhorn, J. Ian Munro, Peter Sanders 103

Cryptography and Complexity

Simple Extractors via Constructions of Cryptographic Pseudo-random
Generators

Marius Zimand . 115

XVI Table of Contents

Bounds on the Efficiency of “Black-Box” Commitment Schemes
Omer Horvitz, Jonathan Katz . 128

On Round-Efficient Argument Systems
Hoeteck Wee . 140

Computational Bounds on Hierarchical Data Processing with
Applications to Information Security

Roberto Tamassia, Nikos Triandopoulos . 153

Data Structures II

Balanced Allocation and Dictionaries with Tightly Packed Constant
Size Bins

Martin Dietzfelbinger, Christoph Weidling . 166

Worst Case Optimal Union-Intersection Expression Evaluation
Ehsan Chiniforooshan, Arash Farzan,
Mehdi Mirzazadeh . 179

Measure and Conquer: Domination – A Case Study
Fedor V. Fomin, Fabrizio Grandoni, Dieter Kratsch 191

Cryptography and Distributed Systems

Optimistic Asynchronous Atomic Broadcast
Klaus Kursawe, Victor Shoup . 204

Asynchronous Perfectly Secure Communication over One-Time Pads
Giovanni Di Crescenzo, Aggelos Kiayias . 216

Single-Prover Concurrent Zero Knowledge in Almost Constant Rounds
Giuseppe Persiano, Ivan Visconti . 228

Graph Algorithms I

LCA Queries in Directed Acyclic Graphs
Miroslaw Kowaluk, Andrzej Lingas . 241

Replacement Paths and k Simple Shortest Paths in Unweighted
Directed Graphs

Liam Roditty, Uri Zwick . 249

Table of Contents XVII

Deterministic Constructions of Approximate Distance Oracles and
Spanners

Liam Roditty, Mikkel Thorup, Uri Zwick . 261

An Õ(m2n) Randomized Algorithm to Compute a Minimum Cycle
Basis of a Directed Graph

Telikepalli Kavitha . 273

Security Mechanisms

Basing Cryptographic Protocols on Tamper-Evident Seals
Tal Moran, Moni Naor . 285

Hybrid Trapdoor Commitments and Their Applications
Dario Catalano, Ivan Visconti . 298

On Steganographic Chosen Covertext Security
Nicholas Hopper . 311

Classification of Boolean Functions of 6 Variables or Less with Respect
to Some Cryptographic Properties

An Braeken, Yuri Borissov, Svetla Nikova, Bart Preneel 324

Graph Algorithms II

Label-Guided Graph Exploration by a Finite Automaton
Reuven Cohen, Pierre Fraigniaud, David Ilcinkas, Amos Korman,
David Peleg . 335

On the Wake-Up Problem in Radio Networks
Bogdan S. Chlebus, Leszek G ↪asieniec, Dariusz R. Kowalski,
Tomasz Radzik . 347

Distance Constrained Labelings of Graphs of Bounded Treewidth
Jiř́ı Fiala, Petr A. Golovach, Jan Kratochv́ıl . 360

Optimal Branch-Decomposition of Planar Graphs in O(n3) Time
Qian-Ping Gu, Hisao Tamaki . 373

Automata and Formal Languages I

NFAs With and Without ε-Transitions
Juraj Hromkovič, Georg Schnitger . 385

XVIII Table of Contents

On the Equivalence of Z-Automata
Marie-Pierre Béal, Sylvain Lombardy, Jacques Sakarovitch 397

A Tight Linear Bound on the Neighborhood of Inverse Cellular
Automata

Eugen Czeizler, Jarkko Kari . 410

Groupoids That Recognize Only Regular Languages
Martin Beaudry, François Lemieux, Denis Thérien 421

Signature and Message Authentication

Append-Only Signatures
Eike Kiltz, Anton Mityagin, Saurabh Panjwani, Barath Raghavan 434

Hierarchical Group Signatures
M̊arten Trolin, Douglas Wikström . 446

Designated Verifier Signature Schemes: Attacks, New Security Notions
and a New Construction

Helger Lipmaa, Guilin Wang, Feng Bao . 459

Single-Key AIL-MACs from Any FIL-MAC
Ueli Maurer, Johan Sjödin . 472

Algorithmic Game Theory

The Efficiency and Fairness of a Fixed Budget Resource Allocation Game
Li Zhang . 485

Braess’s Paradox, Fibonacci Numbers, and Exponential
Inapproximability

Henry Lin, Tim Roughgarden, Éva Tardos, Asher Walkover 497

Automata and Logic

Weighted Automata and Weighted Logics
Manfred Droste, Paul Gastin . 513

Restricted Two-Variable FO+MOD Sentences, Circuits and
Communication Complexity

Pascal Tesson, Denis Thérien . 526

Table of Contents XIX

Computational Algebra

Suitable Curves for Genus-4 HCC over Prime Fields: Point Counting
Formulae for Hyperelliptic Curves of Type y2 = x2k+1 + ax

Mitsuhiro Haneda, Mitsuru Kawazoe, Tetsuya Takahashi 539

Solvability of a System of Bivariate Polynomial Equations over a
Finite Field

Neeraj Kayal . 551

Cache-Oblivious Algorithms and Algorithmic
Engineering

Cache-Oblivious Planar Shortest Paths
Hema Jampala, Norbert Zeh . 563

Cache-Aware and Cache-Oblivious Adaptive Sorting
Gerth Stølting Brodal, Rolf Fagerberg, Gabriel Moruz 576

Simulated Annealing Beats Metropolis in Combinatorial Optimization
Ingo Wegener . 589

On-line Algorithms

Online Interval Coloring and Variants
Leah Epstein, Meital Levy . 602

Dynamic Bin Packing of Unit Fractions Items
Wun-Tat Chan, Tak-Wah Lam, Prudence W.H. Wong 614

Reordering Buffer Management for Non-uniform Cost Models
Matthias Englert, Matthias Westermann . 627

Security Protocols Logic

Combining Intruder Theories
Yannick Chevalier, Michaël Rusinowitch . 639

Computationally Sound Implementations of Equational Theories
Against Passive Adversaries

Mathieu Baudet, Véronique Cortier, Steve Kremer 652

Password-Based Encryption Analyzed
Mart́ın Abadi, Bogdan Warinschi . 664

XX Table of Contents

Random Graphs

On the Cover Time of Random Geometric Graphs
Chen Avin, Gunes Ercal . 677

On the Existence of Hamiltonian Cycles in Random Intersection
Graphs

Charilaos Efthymiou, Paul G. Spirakis . 690

Optimal Cover Time for a Graph-Based Coupon Collector Process
Nedialko B. Dimitrov, C. Greg Plaxton . 702

Stability and Similarity of Link Analysis Ranking Algorithms
Debora Donato, Stefano Leonardi, Panayiotis Tsaparas 717

Concurrency I

Up-to Techniques for Weak Bisimulation
Damien Pous . 730

Petri Algebras
Eric Badouel, Jules Chenou, Goulven Guillou . 742

A Finite Basis for Failure Semantics
Wan Fokkink, Sumit Nain . 755

Spatial Logics for Bigraphs
Giovanni Conforti, Damiano Macedonio, Vladimiro Sassone 766

Encryption and related Primitives

Completely Non-malleable Schemes
Marc Fischlin . 779

Boneh-Franklin Identity Based Encryption Revisited
David Galindo . 791

Single-Database Private Information Retrieval with Constant
Communication Rate

Craig Gentry, Zulfikar Ramzan . 803

Concurrent Zero Knowledge in the Public-Key Model
Giovanni Di Crescenzo, Ivan Visconti . 816

Table of Contents XXI

Approximation Algorithms I

A Faster Combinatorial Approximation Algorithm for Scheduling
Unrelated Parallel Machines

Martin Gairing, Burkhard Monien, Andreas Woclaw 828

Polynomial Time Preemptive Sum-Multicoloring on Paths
Annamária Kovács . 840

The Generalized Deadlock Resolution Problem
Kamal Jain, MohammadTaghi Hajiaghayi, Kunal Talwar 853

Facility Location in Sublinear Time
Mihai Bădoiu, Artur Czumaj, Piotr Indyk, Christian Sohler 866

Games

The Complexity of Stochastic Rabin and Streett Games
Krishnendu Chatterjee, Luca de Alfaro, Thomas A. Henzinger 878

Recursive Markov Decision Processes and Recursive Stochastic Games
Kousha Etessami, Mihalis Yannakakis . 891

Decidability in Syntactic Control of Interference
James Laird . 904

Idealized Algol with Ground Recursion, and DPDA Equivalence
Andrzej S. Murawski, Chin-Hao Luke Ong, Igur Walukiewicz 917

Approximation Algorithms II

From Primal-Dual to Cost Shares and Back: A Stronger LP Relaxation
for the Steiner Forest Problem

Jochen Könemann, Stefano Leonardi, Guido Schäfer,
Stefan van Zwam . 930

How Well Can Primal-Dual and Local-Ratio Algorithms Perform?
Allan Borodin, David Cashman, Avner Magen . 943

Approximating Max kCSP - Outperforming a Random Assignment
with Almost a Linear Factor

Gustav Hast . 956

XXII Table of Contents

Lower Bounds

On Dynamic Bit-Probe Complexity
Corina E. Pǎtraşcu, Mihai Pǎtraşcu . 969

Time-Space Lower Bounds for the Polynomial-Time Hierarchy on
Randomized Machines

Scott Diehl, Dieter van Melkebeek . 982

Lower Bounds for Circuits with Few Modular and Symmetric Gates
Arkadev Chattopadhyay, Kristoffer Arnsfelt Hansen 994

Probability

Discrete Random Variables over Domains
Michael W. Mislove . 1006

An Accessible Approach to Behavioural Pseudometrics
Franck van Breugel, Claudio Hermida, Michael Makkai,
James Worrell . 1018

Noisy Turing Machines
Eugene Asarin, Pieter Collins . 1031

Approximation Algorithms III

A Better Approximation Ratio for the Vertex Cover Problem
George Karakostas . 1043

Stochastic Steiner Trees Without a Root
Anupam Gupta, Martin Pál . 1051

Approximation Algorithms for the Max-coloring Problem
Sriram V. Pemmaraju, Rajiv Raman . 1064

Automata and Formal Languages II

Tight Lower Bounds for Query Processing on Streaming and External
Memory Data

Martin Grohe, Christoph Koch, Nicole Schweikardt 1076

Table of Contents XXIII

Decidability and Complexity Results for Timed Automata via Channel
Machines

Parosh Aziz Abdulla, Johann Deneux, Joël Ouaknine,
James Worrell . 1089

Congruences for Visibly Pushdown Languages
Rajeev Alur, Viraj Kumar, P. Madhusudan, Mahesh Viswanathan . . . 1102

Approximation Algorithms IV

Approximation Algorithms for Euclidean Group TSP
Khaled Elbassioni, Aleksei V. Fishkin, Nabil H. Mustafa,
René Sitters . 1115

Influential Nodes in a Diffusion Model for Social Networks
David Kempe, Jon Kleinberg, Éva Tardos . 1127

An Optimal Bound for the MST Algorithm to Compute Energy
Efficient Broadcast Trees in Wireless Networks

Christoph Ambühl . 1139

New Approaches for Virtual Private Network Design
Friedrich Eisenbrand, Fabrizio Grandoni, Gianpaolo Oriolo,
Martin Skutella . 1151

Algebraic Computation and Communication
Complexity

Hadamard Tensors and Lower Bounds on Multiparty Communication
Complexity

Jeff Ford, Anna Gál . 1163

Lower Bounds for Lovász-Schrijver Systems and Beyond Follow from
Multiparty Communication Complexity

Paul Beame, Toniann Pitassi, Nathan Segerlind 1176

On the l-Ary GCD-Algorithm in Rings of Integers
Douglas Wikström . 1189

Concurrency II

A Fully Abstract Encoding of the π-Calculus with Data Terms
Michael Baldamus, Joachim Parrow, Björn Victor 1202

XXIV Table of Contents

Orthogonal Extensions in Structural Operational Semantics
Mohammad Reza Mousavi, Michel A. Reniers . 1214

Basic Observables for a Calculus for Global Computing
Rocco De Nicola, Daniele Gorla, Rosario Pugliese 1226

Compositional Verification of Asynchronous Processes via Constraint
Solving

Giorgio Delzanno, Maurizio Gabbrielli . 1239

String Matching and Computational Biology

Optimal Spaced Seeds for Faster Approximate String Matching
Martin Farach-Colton, Gad M. Landau, S. Cenk Sahinalp,
Dekel Tsur . 1251

Fast Neighbor Joining
Isaac Elias, Jens Lagergren . 1263

Randomized Fast Design of Short DNA Words
Ming-Yang Kao, Manan Sanghi, Robert Schweller 1275

Quantum Complexity

A Quantum Lower Bound for the Query Complexity of Simon’s Problem
Pascal Koiran, Vincent Nesme, Natacha Portier 1287

All Quantum Adversary Methods Are Equivalent
Robert Špalek, Mario Szegedy . 1299

Quantum Complexity of Testing Group Commutativity
Frédéric Magniez, Ashwin Nayak . 1312

Analysis and Verification

Semantic-Based Code Obfuscation by Abstract Interpretation
Mila Dalla Preda, Roberto Giacobazzi . 1325

About Hoare Logics for Higher-Order Store
Bernhard Reus, Thomas Streicher . 1337

The Polyranking Principle
Aaron R. Bradley, Zohar Manna, Henny B. Sipma 1349

Table of Contents XXV

Geometry and Load Balancing

Approximate Guarding of Monotone and Rectilinear Polygons
Bengt J. Nilsson . 1362

Linear Time Algorithms for Clustering Problems in Any Dimensions
Amit Kumar, Yogish Sabharwal, Sandeep Sen . 1374

Dynamic Diffusion Load Balancing
Petra Berenbrink, Tom Friedetzky, Russell Martin 1386

Concrete Complexity and Codes

On the Power of Random Bases in Fourier Sampling: Hidden Subgroup
Problem in the Heisenberg Group

Jaikumar Radhakrishnan, Martin Rötteler, Pranab Sen 1399

On the Hardness of Embeddings Between Two Finite Metrics
Matthew Cary, Atri Rudra, Ashish Sabharwal . 1412

Improved Lower Bounds for Locally Decodable Codes and Private
Information Retrieval

Stephanie Wehner, Ronald de Wolf . 1424

Model Theory and Model Checking

Preservation Under Extensions on Well-Behaved Finite Structures
Albert Atserias, Anuj Dawar, Martin Grohe . 1437

Unsafe Grammars and Panic Automata
Teodor Knapik, Damian Niwiński, Pawe�l Urzyczyn,
Igor Walukiewicz . 1450

Signaling P Systems and Verification Problems
Cheng Li, Zhe Dang, Oscar H. Ibarra, Hsu-Chun Yen 1462

Author Index . 1475

Holographic Circuits

Leslie G. Valiant�

Division of Engineering and Applied Sciences,
Harvard University, Cambridge,

MA 02138, USA

Abstract. Holographic circuits are defined here to be circuits in which
information is represented as linear superpositions. Holographic circuits
when suitably formulated can be emulated on classical computers in poly-
nomial time. The questions we investigate are those of characterizing the
complexity classes of computations that can be expressed by holographic
circuits.

1 Introduction

A holographic reduction [V04] between two computational problems is a reduc-
tion that preserves the sum of the solutions without preserving any correspon-
dences among the individual solutions. A polynomial time holographic algorithm
is an algorithm derived by applying a polynomial time holographic reduction to
a problem having a classical polynomial time algorithm. Such holographic algo-
rithms have been derived for several counting problems for which no polynomial
time algorithms had been known before. This previous work used the Fisher-
Kasteleyn-Temperley (FKT) algorithm for counting perfect matchings in planar
graphs as the starting classical algorithm, which itself may be viewed as a clas-
sical reduction to the problem of computing the Pfaffian of an antisymmetric
matrix.

This present paper develops holographic computation in two directions. First,
the object of evaluation is now a computation or circuit, rather than a combi-
natorial problem. Second, it uses the Pfaffian itself as the starting point, and
bypasses the FKT construction and the constraint of planarity.

2 Universal Operations Sets for Complexity Classes

Holographic circuits offer a new approach to computation in the following sense.
Suppose we view a conventional computation as an acyclic circuit embedded in
a plane. Then one possible listing of the atomic constituents of computation is:

� This research was supported in part by grants NSF-CCR-03-10882, NSF-CCR-98-
77049, NSF-CCF-04-27129 and by the National Security Agency (NSA) anad Ad-
vanced Research and Development Activity (ARDA) under Army Research Office
(ARO) contract DAAD19-01-1-0506.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 1–15, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 L.G. Valiant

(i) Inputs of constants 0 or 1,
(ii) Boolean gates AND, OR, and NOT,
(iii) Fanout or replication,
(iv) Crossovers of wires in the planar embedding,

For nondeterministic computation we would add:

(v) Nondeterministic generation of 0 or 1 as inputs, and
(vi) Summation of circuit values over all generated input vectors.

In the holographic framework the sum (vi) over all possible computations of
a circuit will be, by design, computable in polynomial time. This becomes mean-
ingful if (v), or some similar nondeterministic operation, is available, since that
offers polynomial time simulation of nondeterministic computations. In classical
computation, of course, (i)–(iv) are trivial, while nondeterministic summation
(vi) appears highly problematic. In the holographic formulation, it is the other
way around: nondeterministic summation (vi) is easy but (i)–(iv), or (v), may be
problematic. As we shall show, we can realize various subsets of (i)–(v) consis-
tently. If all five could be so realized then P#P = P would follow. By consistently
we mean here that they can be realized with a common basis, as explained in
the following sections.

We note that there are numerous other possible listings of the atomic con-
stituents of computation besides the one above. For complexity classes X,Y we
define such a universal operations set for X with respect to Y, (or a UOS for X
with respect to Y) to be a list of operations such that if they can be realized in a
common basis then X = Y is implied. In this paper we shall restrict attention to
and assume the case that Y = NC2. It is clearly interesting then to investigate
such UOS’s for X = NP, X = ⊕ P, and X = #P, among others.

The present paper is therefore oriented towards the simulation of computa-
tional circuits as opposed to the solution of particular combinatorial problems.
We have to emphasize that known algebraic relations, the matchgate indentities
[V02a, V02b], present obstacles to some of the more obvious attempts at encod-
ing general classes of computations, such as NP or BQP, in this manner at least
when using the smallest bases. However, the question of whether these obstacles
can be overcome, perhaps by means of larger bases, remains open.

3 Matchgates and Matchcircuits

We start with some standard graph-theoretic notions and their relation to the
Pfaffian of a matrix [BR91, M00]. We then go on to define the notions of Pfaffi-
anSum, matchgates, character matrices, and matchcircuits, closely following the
treatment in [V02a, V02b].

A weighted undirected graph, or simply a graph, G is a triple (V,E,W) where
V is a set of vertices each represented by a distinct positive integer, E is a set
of edges or unordered pairs (i, j) of the vertices i, j ∈ V , and W is the set of
weights, each weight w(i, j) corresponding to the edge (i, j) ∈ E.

Holographic Circuits 3

An n × n matrix B is skew-symmetric if for all i, j (1 ≤ i, j ≤ n) B(i, j) =
−B(j, i). The matrix of the graph G = (V,E,W) where V = {1, 2, . . . , n} is the
n× n matrix M(G) where the (i, j) entry M(G)(i, j) is defined to equal:

(i) w(i, j) if i < j,
(ii) −w(i, j) if i > j, and
(iii) 0 otherwise.

In the more general case that V = {k1, k2, . . . , kn} where k1 < k2 < . . . < kn,
weight w(ki, kj) replaces w(i, j) in (i) and (ii) in this definition. For brevity we
shall abbreviate M(G) by G whenever it is clear that a matrix is intended.

The Pfaffian of an n× n skew-symmetric matrix B is defined to be zero if n
is odd, one if n = 0, and if n is even with n = 2k and k > 0 then it is defined as:

Pf(B) =
∑

π

επw(i1, i2)w(i3, i4) . . . w(i2k−1, i2k)

where

(i) π = [i1, i2, i3, . . . , i2k] is a permutation on [1, 2, . . . , n],
(ii) summation is over all such permutations π where further

i1 < i2, i3 < i4, . . . , i2k−1 < i2k, and
i1 < i3 < i5 < . . . < i2k−1, and

(iii) επ ∈ {−1, 1} is the sign of the permutation π, i.e., it is −1 or +1 according to
whether the number of transpositions or swaps of pairs of distinct elements
ij , ik, needed to reorder π to the identity permutation is odd or even. (An
equivalent definition in this context is that it is the sign or parity of the
number of overlapping pairs, where a pair of edges (i2r−1, i2r), (i2s−1, i2s) is
overlapping iff i2r−1 < i2s−1 < i2r < i2s or i2s−1 < i2r−1 < i2s < i2r. Note
that it is implicit here that i2r−1 < i2r and i2s−1 < i2s.)

A matching E∗ ⊆ E of G is a set of edges such that if (i, j), (r, s) are distinct
edges in E∗ then i, j, r, s are all distinct vertices. In a graph with an even
number 2k of nodes a matching E∗ is perfect if it contains k edges. (Then every
i ∈ V is an endpoint of, or is saturated by, some edge in E∗.)

We shall use the following graph-theoretic interpretation of the Pfaffian. If B
is the matrix of the graph G then there is a one-to-one correspondence between
monomials in the Pfaffian of B and the perfect matchings in G. The monomial
w(i1, i2) w(i3, i4) . . . w(i2k−1, i2k) in Pf(G) corresponds to the perfect matching
{(i1, i2), (i3, i4), . . . , (i2k−1, i2k)} in G. The coefficient επ of this monomial will
be the parity of the numbers of overlapping pairs of edges, in the sense defined
above.

For an n × n matrix B and any set A = {i1, · · · , ir} ⊆ {1, · · · , n} we denote
by B[A] the (n − r) × (n − r) matrix obtained by deleting from B all the rows
and columns indexed by A. The following is from [V02a]:

Definition. The PfaffianSum of an n×n skew-symmetric matrix B is the poly-
nomial over indeterminates λ1 . . . λn

PfS(B) =
∑
A

(∏
i∈A

λi

)
Pf(B[A]).

4 L.G. Valiant

Summation here is over the various principal minors obtained from B by deleting
some subset A of the indices. In this paper we shall only need the instances in
which each λi is fixed to be 0 or 1. The i for which λi = 0 can be thought of
as the unomittable indices, and those with λi = 1 as the omittable indices. Then
for this (0,1)-case the PfaffianSum is simply the sum of the Pf(B[A]) over those
A that contain only omittable indices.

We shall simulate each gate of a computation by what we call a matchgate.
A matchgate Γ is a quadruple (G,X, Y, T) where G is a graph (V,E,W), X ⊆ V
is a set of input vertices, Y ⊆ V is a set of output vertices, and T ⊆ V is a set
of omittable vertices such that (i) X, Y and T are all disjoint, and (ii) ∀i ∈ T if
j ∈ X then j < i and if j ∈ Y then j > i. A matchgate is an (m,n)-matchgate
if it has m input nodes and n output nodes. It is an input gate if n = 0 and an
output gate if m = 0. It is an even gate if it has no omittable nodes.

The matchings we consider will be those that saturate all the unomittable
nodes, i.e. V − T , and also some, possibly empty, subset of T . Whenever we
refer to the PfaffianSum of a matchgate fragment, such as G′ in the following
paragraph, we shall assume the substitutions λi = 1 if i ∈ T , and λi = 0
otherwise.

We call X∪Y the external nodes. For Z ⊆ X∪Y we consider the matchings of
a larger graph that contains G as a subgraph such that the Z nodes are matched
by edges external to G, and the remaining elements of X ∪Y by edges of G. We
define the character χ(Γ , Z) of Γ with respect to Z ⊆ X ∪ Y to be the product

μ(Γ , Z)PfS(G′)

where: (a) G′ = (V − Z,E′,W ′) where further E′ is the restriction of E to edges
with both endpoints in V −Z, and W ′ is the corresponding restriction of W , and
(b) the modifier μ(Γ , Z) ∈ {−1, 1} counts the parity of the number of overlaps
between matched edges in E′ and matched external edges. We consider there to
exist one matched external edge from each node in X ∩ Z and from each node in
Y ∩Z. The other endpoint of each of the former is some node of lower index than
any in V , and of each of the latter is some node of index higher than any in V .

The character of a matchgate, therefore, characterizes the contribution of G
to the PfaffianSum of a larger graph, and takes into account overlaps between
its internal edges and the external edges that link its external nodes to the rest
of the graph. The significance of condition (ii) in the definition of matchgates is
that it guarantees that the modifier μ(Γ , Z) is always well defined: for any fixed
Z the external edges that arise are uniquely defined, but it has to be guaranteed
that the parity of the overlap of any one such external edge with every matching
of E′ that saturates all the unomittable nodes is the same. Condition (ii) ensures
this by not allowing an omittable node in the gate to be numbered intermediate
between the endpoints of an external edge. (That case might produce different
overlap parity for the given external edge and the various internal matchings
depending on whether the omittable node was in the matching.) To verify this,
note that if for i ∈ X ∩ Z there are r nodes j < i where j ∈ V − Z, then the
parity of the overlap of the external edge from i with the internal edges is the
parity of r.

Holographic Circuits 5

We define the character χ(Γ) of Γ as the 2|X∪Y | values of χ(Γ , Z) for the
various 2|X∪Y | possible choices of Z. In particular, we think of the character
as a 2|X| × 2|Y | matrix where the rows represent the subsets of the inputs X,
and the columns the subsets of the outputs Y . Matchgates with |X| = |Y | = k
can then be regarded as matrix transformations defined by a square character
matrix. For example k = 1 corresponds to one-bit 2× 2 matrix transformations,
and k = 2 corresponds to two-bit 4× 4 transformations. In all cases we need to
specify a correspondence between subsets of X and the rows of the matrix, and
another correspondence between subsets of Y and the columns of the matrix. In
this paper we shall specify these correspondences as necessary. In general, here
as in [Va02a] and [Va02b] we assume what we call a normal ordering in which
both the rows and columns are in increasing order when the subsets of externally
matched nodes Z are represented in binary in the sense of the following example.
Suppose X = {1, 2, 3} and Y = {7, 8, 9}. Then the rows will be ordered 1,2,...,8,
as Z ranges over ∅, {1}, {2}, {1,2}, {3}, {1,3}, {2,3}, {1,2,3}. The columns are
in the same order if 1 is identified with 9, 2 with 8, and 3 with 7. (N.B. The
definition for this in [Va02b] was inaccurate.)

We say that matchgate Γ = (G,X, Y, T) with G = (V,E,W) has normal
numbering if the numbering of V is consecutive and X,Y have minimal and
maximal numbers respectively. Formally, V = {1, 2, · · · , |V |} and ∀i ∈ X,∀j ∈ Y
and ∀k ∈/ X ∪ Y it is the case that i < k < j.

We shall construct matchcircuits by composing normally numbered match-
gates in the manner of Figure 1. This is the same as in [V02a] except that we
are making the input and output gates more general. The purpose of the con-
struction is to ensure that the PfaffianSum properties of the circuit conform to
the composition of the corresponding properties of the individual matchgates,
without interfering sign effects. Then for any input vector generated by the in-

Fig. 1. An example of a matchcircuit composed of five input gates on the left, four
output gates on the right, and three intermediate gates G1, G2, G3. The internal nodes
and edges in the gates are not shown. The nodes are numbered in increasing order from
left to right. The bold edges show an example of the edges in a perfect matching of the
circuit, excluding any matched edges internal to the individual gates

6 L.G. Valiant

put gates the remaining circuit will compute a value equal to the composition
of the functions computed by the gates. The proof there of the Main Theorem
supports the following more general statement.

Main Theorem. Consider a matchcircuit Γ composed of gates as shown in
Figure 1. Suppose that every gate is:

(i) a gate with diagonal character matrix,
(ii) an even gate applied to consecutive bits xi, xi+1, · · ·xi+j for some j > 0,
(iii) an arbitrary gate applied to bits x1, · · · , xj for some j > 1, or
(iv) input or output gates on consecutive bits xi, xi+1, · · · , xi+j for some j > 0.

Then the PfaffianSum of Γ equals the sum over all the input vectors generated
by the input gates of the value of the circuit defined by the remaining gates.

4 Bases

A basis b of size k is a set of distinct nonzero vectors of length 2k with entries from
a field F . In this paper the set will always consist of two vectors corresponding
to the Boolean 1 and 0, and denoted by p and n respectively. Each of the 2k

components of p or n is interpreted as corresponding to an element of {0, 1}k,
where the 1’s represent the subset of the input or output nodes in a matchgate
that are to be matched by external edges. We denote the size k of b by | b |,
and a basis of size k is also called a k-basis. If q, r are two vectors of length l1, l2
we denote by s = q⊗ r their tensor product, which is of length l1l2 and in which
sil2+j = qirj for 0 ≤ i < l1 and 0 ≤ j < l2.

The standard basis is the one with k = 1, p = (0, 1),n = (1, 0). An even basis is
one in which every component pi and ni is zero if i corresponds to an odd number
of nodes being matched externally. Note that an even 2-basis has nonzero com-
ponents in p, n, only for the vector components representing 00 and 11. A special
case of an even 2-basis is the two-rail basis, in which the only nonzero component
in p is for 11, and the only nonzero component in n is for 00.

We shall seek to construct matchgates that perform various operations over
various bases. For example, we say that a 2-input 1-output matchgate performs
the AND operation over basis b if for the four combinations of inputs n ⊗ n,
n ⊗ p, p ⊗ n, and p ⊗ p, the outputs are n, n, n, and p, respectively. Also, we
shall use the name of an operation, such as AND, to represent the set of bases
for which there exists a matchgate to realize that operation. Further, we shall
denote by X∗ (e.g., AND∗ if the operation is AND) the set of bases for which
there is an even matchgate that realizes operation X.

5 Basis Classes

We shall seek to use matchgates to simulate Boolean circuits. Thus we shall
endeavor to simulate such basic functions as ”and”, ”swap”, ”fanout” and ”cnot”

Holographic Circuits 7

gates. In the definitions below we shall assume that b = (n, p) is a basis of size
k, and hence that n, p, are of length 2k.

We shall now define some basis classes that each correspond to something
that can be viewed as a primitive constituent of computation. Interspersed with
the definitions will be statements of some of their simpler properties.

(i) Generating Constants

Defn. GEN0: Set of b such that there is a (0,|b|)-matchgate with χ = n.
Defn. GEN1: Set of b such that there is a (0,|b|)-matchgate with χ = p.
Defn. GEN01: Set of b such that there is a (0,|b|)-matchgate with χ = n
and another with χ = p. (Clearly GEN01 = GEN0 ∩ GEN1.)
Defn. GEN0+1: Set of b such that there is a (0,|b|)-matchgate with χ = n+ p.

Proposition 1. GEN0, GEN1, GEN01, GEN0+1 each contain all the 1-bases
and 2-bases for any field.

Proof. This can be deduced from Proposition 1 in [V02a], or proved more di-
rectly as follows. For 2-bases consider the following matchgate where node 1 is
omittable, and the output nodes are {3, 4}.

Suppose we wish to generate the 1×4 character matrix (a1, a2, a3, a4) where or-
dering (∅, {4}, {3}, {3,4}) is implied on the matrix columns. Then, by inspection,

a1 = zu− vy + xw,

a2 = u,

a3 = −v,

a4 = x.

For example, by the definition of the character matrix, a3 is the Pfaffian of
the graph with node set {3} omitted, adjusted by the multiplicative modifier
μ = −1, since this is the overlap between the internal and external edges (i.e.
between the internal edge (2,4) and the external edge from 3.)

Clearly we can set a2, a3, a4 to arbitrary values by setting u, v, x appropri-
ately. If at least one of a2, a3, a4 is nonzero then we can also set a1 arbitrarily
by setting z, y, w appropriately. In the special case that a2 = a3 = a4 = 0,
we modify the matchgate so that node 1 is not omittable and x = 0. This sets

8 L.G. Valiant

a2 = a3 = a4 = 0. Also a1 = zu − vy can then be set arbitrarily. Finally, for
1-bases consider the output nodes to be just {4}. �

(ii) Swapping

Defn. SWAP: Set of bases b such that there is a (2|b|, 2|b|)-matchgate where
(p⊗ p)χ = p⊗ p, (n⊗ p)χ = p⊗ n, (p⊗ n)χ = n⊗ p, (n⊗ n)χ = n⊗ n.

Proposition 2. Every even basis belongs to SWAP* for any field.

Proof. Suppose the basis is a k-basis. We imagine 2k parallel wires. The task is
to interchange the contents of the top k wires with the contents of the bottom
k wires. To do this we use the matrix⎛⎜⎜⎝

1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1

⎞⎟⎟⎠
as a “pseudoswap” for pairs of bits on adjacent wires. To implement a SWAP
gate between two sets of k wires we have the two sets of k wires cross and place
a pseudoswap gate at all the k2 intersections. Since we have an even basis, in
every situation that contributes to the Pfaffian, an even number of the wires in
each group of k will have a 1 bit on it. Hence 1 values will need to be “inter-
changed” with 0 values an even number of times. Hence an even number of the
pseudoswap gates will have their -1 entry invoked, and hence the overall contri-
bution will always be +1. Finally note that this is realizable by a matchgate over
the standard basis by virtue of Proposition 4 in [V02a], and in particular by the
following matchgate with input ordering (∅,{1},{2},{1,2}) and output ordering
(∅,{4},{3},{3,4}). �

Proposition 3. Every basis over any field of characteristic 2 belongs to SWAP*.

Proof. Immediate. �

Proposition 4. There is no independent 1-basis for SWAP for the complex
numbers.

Holographic Circuits 9

Proof. This can be deduced from the definition of SWAP by solving the set of
equations that define SWAP, together with the five matchgate identities [V02a],
using a polynomial solver such as Singular [GPS01]. �

(iii) Fanout

The replication of influence, or fanout, is a very basic constituent of compu-
tation.

Defn. FANOUT: Set of b such that there is a (|b|, 2|b|)-matchgate with nχ =
n⊗ n and pχ = p⊗ p.

Perhaps surprisingly, there does exist a 1-basis for FANOUT.

Proposition 5. For any field with characteristic different from 2 there exists a
1-basis for FANOUT*.

Proof. Consider the one bit basis n, p = (1,−1), (1, 1). It can be verified that(
1 −1
1 1

)(
1 0 0 1
0 1 1 0

)
=

(
1 −1 −1 1
1 1 1 1

)
and that the second matrix is realized by the matchgate with V = {1, 2, 3, 4},
with input {1}, outputs {3, 4}, and V = {(1, 2), (2, 3), (2, 4), (3, 4)} where all the
edges have weight one except for (2,4) which has weight −1. �

Proposition 6. There is no independent 1-basis of characteristic 2 for FANOUT.

Proof. From the matchgate identities. �

Propositions 4 and 6 show that for 1-bases SWAP ∩ FANOUT = ∅ for any
field. We therefore go on to consider notions of replication that are no stronger,
and possibly more restricted than fanout. These are GENEQ and GENOPP
which output pairs of equal or opposite values, but take no inputs.

Defn. GENEQ: Set of b such that there is a (0, 2|b|)-matchgate with χ =
p⊗ p + n⊗ n.

Defn. GENOPP: Set of b such that there is a (0, 2|b|)-matchgate with
χ = p⊗ n + n⊗ p.

Proposition 7. There is no independent even 2-basis for GENEQ* for any
field.

Proof. Consider an even 2-basis (a, 0, 0, b), (c, 0, 0, d). Then any (0,4)-matchgate
for GENEQ has to generate the (1× 16)-character matrix

(a2 + c2, 0, 0, ab + cd, 0, 0, 0, 0, 0, 0, 0, 0, ab + cd, 0, 0, b2 + d2).

10 L.G. Valiant

But from this matchgate one can easily construct a (2,2)-matchgate with
(4× 4) character matrix ⎛⎜⎜⎝

a2 + c2 0 0 ab + cd
0 0 0 0
0 0 0 0

ab + cd 0 0 b2 + d2

⎞⎟⎟⎠
The construction requires the creation of 2 new input nodes each connected

by chains of 2 edges to the first two output nodes, which are no longer considered
as output nodes.

But the first matchgate identity then implies that ad = bc, which contradicts
(a, 0, 0, b), (c, 0, 0, d) being idependent. �

Proposition 8. GEN0+1 ∩ FANOUT ⊆ GENEQ for any field.

Proof. If we append, in the manner of Figure 3 in [V02a], the matchgate for
FANOUT to one for GEN0+1 we obtain one for GENEQ. �

Proposition 9. For any field GENEQ and GENOPP contain all 1-bases.

Proof. Immediate from Proposition 1 applied to 2-bases. �

Proposition 10. There is no independent even 2-basis for GENOPP* for any
field.

Proof. Similar to the proof of Proposition 7. �

(iv) Boolean operations

Defn. NOT: Set of b such that there is a (|b|, |b|)-matchgate with p = nχ
and n = pχ.
Defn. AND: Set of b such that there is a (2 |b|, |b|)-matchgate where (p⊗p)χ =
p, and (n⊗ n)χ = (n⊗ p)χ = (p⊗ n)χ = n.

Proposition 11. The standard basis does not belong to AND*, nor does any
independent 1-basis over a field of characteristic 2.

Proposition 12. There is a 1-basis for AND* over any field with characteristic
different from 2.

Proof. k = 1 : n, p = (1, 1), (2, 0),

χ =

⎛⎜⎜⎝
1
2 0
0 1

2
0 1

2
1
2 0

⎞⎟⎟⎠
The matchgate that realizes this is (V,E) where V = {1, 2, 3, 4}, the in-

puts are {1, 2}, the output is {4}, E = {(1, 2), (1, 3), (2, 3), (3, 4)} with weights
1,−1/2, 1/2,
1/2, respectively. �

Holographic Circuits 11

Defn. BOOL: Set of b such that there are AND, OR and NOT matchgates for b.
Defn. MON: Set of b such that there are AND and OR matchgates for b.

Various relations are immediate. For example BOOL ⊇ NAND ∩ GEN1
since NOT can be obtained from NAND using GEN1, and OR can be obtained
from AND and NOT. Note that neither swap nor replication is needed in these
classical Boolean simulations.

Proposition 13. The 2-rail basis belongs to BOOL for any field.

Proof. We can realize AND using k = 2 : n, p = (1, 0, 0, 0), (0, 0, 0, 1). The match-
gate that realizes this is (V,E) where V = {1, 2, 3, 4, 5, 6}, inputs are {1, 2, 3, 4},
outputs are {5, 6}, E = {(1, 6), (2, 5), (2, 3), (3, 6), (4, 5)} all with weight 1. Simi-
larly NOT and hence OR are also realizable. �

(v) Universality in the sense of quantum computation

Defn. ONEBITUNIV: Set of b such that for all complex numbers α, β, γ, δ,
there is a (|b|,|b|)-matchgate with nχ = αn + βp, and pχ = γn + δp.

Proposition 14. The two rail basis belongs to ONEBITUNIV for any field.

Proof. For realizing the mapping (
α β
γ δ

)
in the two rail basis use the matchgate that realizes⎛⎜⎜⎝

α 0 0 β
0 α β 0
0 γ δ 0
γ 0 0 δ

⎞⎟⎟⎠ .

If δ = 0 then by inverting the input or output we first move a nonzero entry to
the lower right position in the matrix. �

Defn: CNOT: Set of b such that there is a (2|b|, 2|b|)-matchgate where (n ⊗
n)χ = n⊗ n, (n⊗ p)χ = n⊗ p, (p⊗ n)χ = p⊗ p, (p⊗ p)χ = p⊗ n.
Defn. ISWAP: Set of b such that there is a (2|b|, 2|b|)-matchgate where
(n⊗ n)χ = n⊗ n, (n⊗ p)χ = ip⊗ n, (p⊗ n)χ = in⊗ p, (p⊗ p)χ = p⊗ p, where
i is the square root of −1.
Defn. UNIV: Set of b over the complex numbers such that a universal set of
gates, in the sense of quantum computation, can be realized for b.

Note that CNOT [BBC+95,CN01] together with the set of all one-bit gates
form a universal set. The same holds for ISWAP [EWD+01] together with all
one-bitgates.

Proposition 15. There is no independent 1-basis for CNOT for the complex
numbers.

12 L.G. Valiant

Proposition 16. The standard basis can realize ISWAP for the complex num-
bers.

Proof. ISWAP over the standard basis requires a character matrix:⎛⎜⎜⎝
1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 1

⎞⎟⎟⎠
This can be realized by the matchgate (V,E) where V = {1, 2, 3, 4}, inputs are
{1, 2}, outputs are {3, 4}, E = {(1, 3), (2, 4)} with weights −i,−i respectively. �

(vi) Translations from and to the standard basis

Defn. ENCODE: Set of b such that there is a (1, |b|) -matchgate where the
first row of χ is n and the second is p.

Proposition 17. There is no even 2-basis for ENCODE.

Proof. The matchgate identities preclude this. �

Defn. DECODE: Set of b such that there is a (|b|, 1)-matchgate with nχ = (1, 0)
and pχ = (0, 1).

Proposition 18. ENCODE, DECODE each contain all the 1-bases.

Proof. Similar to proof of Proposition 1. �

6 Some Universal Operations Sets

There appear to be an enormous variety of interesting universal operations sets
with respect to NC2. Here we shall give examples for each of #P, ⊕P, QBP,
and P.

Our first example shows that one does not need the general FANOUT op-
eration for universality over #P or ⊕P. The ability to produce complementary
pairs of bits is sufficient.

Proposition 19. (i){GENOPP, SWAP∗, MON} over any field of infinite char-
acteristic is a universal operations set for #P, as is also {GENEQ, SWAP∗,
MON}.
(ii){GENOPP, MON} over GF[2] is a universal operations set for ⊕P.

Proof. We need to establish that fanout, of the limited form of producing pairs
of opposite bits (GENOPP), is enough to give #P- and ⊕P-completeness, as
is also GENEQ for #P-completeness. For this we shall need that the counting
and parity problems of read-twice Boolean formulae (i.e. where each variable
occurs twice) are #P- and ⊕P-complete. For read-twice CNF formulae #P-
completeness was proved in the monotone case [BD97], and this will be sufficient

Holographic Circuits 13

for the GENEQ result. Also, for more general formulae consisting of ∧ and ∨
gates #P- and ⊕P-completeness can be proved if each variable occurs just once
positively and once negated [Va05]. This will give the GENOPP results. Let us
therefore consider formulae F obtained in one of these two ways.

We now construct a matchcircuit to evaluate such a formula F . The circuit
has no inputs and starts with the GENOPP/GENEQ gates on the left. There
will be k output nodes corresponding to the k bits of the output if the basis has
size k. Wires crossing are implemented by SWAP* gates, which exist over GF[2]
by virtue of Proposition 3. Finally the gates will be assembled in the manner of
Figure 1.

We view each GENOPP/GENEQ gate as assigning a value p⊗ n or n⊗ p /
p ⊗ p or n⊗n in the first instance. For each combination of assignments to the,
say m, GENOPP/GENEQ gates the Boolean gates will simulate the execution
of the formula being encoded, so that the final output will have n or p according
to whether the formula would have the Boolean value 0 or 1.

In the actual matchcircuit all 2m assignments are computed simultaneously
and added, so that if K of the assignments give value 1 and 2m −K give value
0 then the PfaffianSum of the matchcircuit will be Kp + (2m −K)n. Pick any
component, say i, in which vectors n and p differ. There must be one since they
are distinct. Suppose that pi − ni = x. Now delete the ith output node so as to
insist that the corresponding component has value 1, and make the remaining
output nodes omittable. Then the PfaffianSum of the matchcircuit must equal
2mni+Kx. The number K of solutions can be obtained then immediately. (Note
that the Pfaffian can be computed with the correct sign in polynomial time (e.g.
[GM94, L97]).

This completes the proof except that for the case of infinite characteristic we
need to explain why even gates are not necessary for MON or GENOPP/GENEQ.
The main reason is that since we assume that we have even gates for SWAP∗, we
can ensure that all other operations are done on consecutive bits x1, x2, · · · , xk

so that the conditions of the Main Theorem are satisfied. We note that the
GENOPP/GENEQ gates have no inputs and can be placed at the left of the
circuit so that each one generates a consecutive sequence of bits (e.g. for 3-bases
the second such gate could generate x7, x8, · · · , x12.) �

Next we observe that existing results in quantum computation are sufficient
to provide the following universal operations set for BQP.

Proposition 20. The set {GEN01, UNIV*, SWAP*} over the complex numbers
is a universal operations set for BQP. If GEN01 is replaced by GEN0+1 then
it is a UOS for #P. We note that UNIV is a broad class. For example, it has
been shown that any entangling 2-bit transformation in conjunction with all 1-
bit transformations is in UNIV [BD+02, BB02]. A transformation is entangling
if it maps some tensor product of two one-bit vectors to something that cannot
be expressed as a tensor product of two one-bit vectors.

We can also formulate a question that corresponds to P=?NC2.

14 L.G. Valiant

Proposition 21. The sets {GEN01, FANOUT, BOOL, SWAP* } and {GEN01,
FANOUT*, BOOL*} over any field are universal operations sets for P. If GEN01
is replaced by GEN0+1 then over fields of characteristic zero they are UOS’s for
#P, and over characteristic two, for ⊕P.

7 Interpretation

As described in the introduction, we can regard deterministic computation as the
composition of four components: Boolean operations, some form of fanout, swap,
and constant inputs. Nondeterministic computation is the composition of these
with the components of nondeterministic constant generation, and exponential
summation. In conventional models of computation the first four components
are trivial, and the last two appear to be problematic.

In our formulation each of the four components is achievable separately in
some basis, and also in many combinations together. Proposition 19 identifies the
three components MON, GENOPP, and SWAP as being sufficient for universal-
ity over #P. Our results show that common bases exist for some interesting pairs
of operations. The basis {(1,1),(2,0)} is common to AND and GENOPP, the 2-
rail basis{(1,0,0,0),(0,0,0,1)} is common to BOOL and SWAP, and the standard
basis {(1,0),(0,1)} over GF[2] is common to SWAP and GENOPP. Also, Propo-
sitions 20 and 21 give some distinct decompositions in terms of UNIV, and in
terms of BOOL and FANOUT, respectively. Numerous further such decomposi-
tions can be described.

Our approach therefore gives a new methodology for searching for exotic
algorithms for problems that are currently believed to be intractable. It is pos-
sible that such searches will fail but in that case there is some hope that our
model will serve as a useful “restricted” model of computation for which lower
bounds can be proved. If one fixes a field and the appropriate parameters then
the question of whether any of the set intersections considered is nonempty, is
equivalent to determining whether a fixed set of polynomial equations has a
common solution. Small instances of such problems can be solved mechanically
by computer algebra systems. We have shown that there is considerable richness
in the properties of nonstandard bases for some fundamental computational op-
erations, and therefore expect that exploring these further will be of interest
whatever the ultimate outcome.

References

[BBC+95] A. Barenco, et al., Elementary gates for quantum computation, Phys.Rev.
A52 (1995) 3457.

[BD97] R. Bubley and M. Dyer, Graph orientations with no sink and an approx-
imation for a hard case of #SAT, In Proceedings of the Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 248-257, New Or-
leans, Louisiana a, 5-7 January 1997

Holographic Circuits 15

[BD+02] M.J. Bremmer, C.M. Dawson, J.L. Dodd, A. Gilchrist, A.W. Harrow, D.
Mortimer, M.A. Nielsen, and T.J. Osborne, A Practical scheme for quan-
tum computation with any two-qubit entangling gate, Phys. Rev. Lett.,
89, 247902 (2002).

[BR92] R.A. Brualdi and H.J. Ryser, Combinatorial Matrix Theory, Cambridge
University Press, Cambridge, 1991.

[BB02] J.L. Brylinski and R. Brylinski, Universal quantum gates, in Mathemat-
ics of Quantum Computation, Chapman & Hall/CRC Press,Boca Raton,
Florida, 2002 (edited by R. Brylinski and G. Chen).

[CN01] M. A. Chuang and I. L. Nielsen, Quantum Computation and Quantum
Information. Cambridge University Press, 2001.

[EWD+01] P. Echternach, et al. Universal quantum gates for single Cooper pair
box bases quantum computing, Quantum Information and Computation,
(2001) 143-150. (Also quant-ph/0112025.)

[GM94] G. Gallbiati and F. Maftioli, Discrete Applied Math. v51 (1994) 269-275.
[GPS01] G.-M. Greuel, G. Pfister, and H. Schönemann, Singular 2.0: A Computer

Algebra System for Polynomial Computations. Centre for Computer Al-
gebra, University of Kaiserslautern, (2001).

[HS90] H.B. Hunt III and R.E. Stearns. The complexity of very simple boolean
formulas with applications. SIAM J. Comput. 19:1 (1990) 44-70.

[L97] P.D. Lax, Linear Algebra, Wiley, New York, 1997.
[M00] K. Murota, Matrices and Matroids for Systems Analysis, Springer-Verlag,

Berlin, 2000.
[P95] C.H. Papadimitriou. Computational Complexity, Addison Wesley, 1995.
[V02a] L. G. Valiant, Quantum circuits that can be simulated classically in poly-

nomial time. SIAM J. on Computing, 31:4 (2002) 1229-1254.
[V02b] L. G. Valiant. Expressiveness of matchgates, Theoretical Computer Sci-

ence, 289:1(2002) 457-471.
[V04] L.G. Valiant. Holographic algorithms, Proc. 45th Annual IEEE Symp. on

Foundations of Computer Science (2004) IEEE Press, 306-315.
[V05] L.G. Valiant, Completeness for parity problems, manuscript, 2005.

Probabilistic Polynomial-Time Semantics for a
Protocol Security Logic�

Anupam Datta1, Ante Derek1, John C. Mitchell1,
Vitaly Shmatikov2, and Mathieu Turuani3

1 Dept. Computer Science, Stanford University, Stanford, CA
2 Dept. Computer Science, University of Texas, Austin, TX

3 LORIA-INRIA Nancy, France

Abstract. We describe a cryptographically sound formal logic for prov-
ing protocol security properties without explicitly reasoning about prob-
ability, asymptotic complexity, or the actions of a malicious attacker.
The approach rests on a new probabilistic, polynomial-time semantics
for an existing protocol security logic, replacing an earlier semantics that
uses nondeterministic symbolic evaluation. While the basic form of the
protocol logic remains unchanged from previous work, there are some in-
teresting technical problems involving the difference between efficiently
recognizing and efficiently producing a value, and involving a reinterpre-
tation of standard logical connectives that seems necessary to support
certain forms of reasoning.

1 Introduction

Security analysis of network protocols is a successful scientific area with two im-
portant but historically independent foundations, one based on logic and sym-
bolic computation, and one based on computational complexity theory. The sym-
bolic approach, which uses a highly idealized representation of cryptographic
primitives, has been a successful basis for formal logics and automated tools.
Conversely, the computational approach yields more insight into the strength
and vulnerabilities of protocols, but it is more difficult to apply and it involves
explicit reasoning about probability and computational complexity. The pur-
pose of this paper is to suggest that formal reasoning, based on an abstract
treatment of cryptographic primitives, can be used to reason about probabilistic
polynomial-time protocols in the face of probabilistic polynomial-time attacks.

� This work was partially supported by NSF CyberTrust Grant 0430594, Collabora-
tive research: High-fidelity methods for security protocols, by the DoD University
Research Initiative (URI) program administered by the Office of Naval Research
under Grant N00014-01-1-0795, by OSD/ONR CIP/SW URI through ONR Grant
N00014-04-1-0725, by NSF CCR-0121403, Computational Logic Tools for Research
and Education, and by the NSF Cybertrust grant to the PORTIA project. M. Tu-
ruani’s activities at Stanford were also funded by a postdoctoral grant from INRIA.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 16–29, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Probabilistic Polynomial-Time Semantics for a Protocol Security Logic 17

We do this by proposing a new semantics for a variant of an existing logic. The
new semantics brings forward some interesting distinctions that were not avail-
able in the coarser symbolic model, and also raises some apparently fundamental
issues about the inherent logic of asymptotic probabilistic properties.

The Protocol Composition Logic [2, 7, 8, 10] uses a modal operator similar
to Floyd-Hoare logic. Intuitively, the formula ψ [P]X ϕ means that if ψ is true
at some point in the execution of a protocol (in the presence of a malicious
attacker), then ϕ will be true after agent X performs the sequence P of actions.
The pre- and post-conditions may describe actions taken by various principals
and characterize the information that is available to or hidden from them. The
semantics we explore in this paper recasts the methods of [15] in a logical setting,
and reflects accepted modelling approaches used in the field of cryptography,
particularly [5, 17].

Our central organizing idea is to interpret formulas as operators on proba-
bility distributions on traces. Informally, representing a probability distribution
by a set of equi-probable traces (each tagged by the random sequence used to
produce it), the meaning of a formula ϕ on a set T of traces is the subset T ′ ⊆ T
in which ϕ holds. This interpretation yields a probability: the probability that ϕ
holds is the ratio |T ′|/|T |. Conjunction and disjunction are simply intersection
and union. There are several possible interpretations for implication, and it is
not clear at this point which will prove most fruitful in the long run. In the
present paper, we interpret ϕ =⇒ ψ as the union of ¬ϕ and the composition
of ψ with ϕ; the latter is also the conditional probability of ψ given ϕ. This
interpretation supports a soundness proof for a sizable fragment of the protocol
logic, and resembles the probabilistic interpretation of implication in [16]. Since
the logic does not mention probability explicitly, we consider a formula “true”
if it holds with asymptotically overwhelming probability.

In previous work [2, 7, 8, 10] over a symbolic semantic model, the atomic for-
mula Has(X,m) means that m is in the set of values “derivable,” by a simple
fixed algorithm, from information visible to X. The simple fixed algorithm is cen-
tral to what is called the Dolev-Yao model, after [9] and much subsequent work
by others. In replacing the symbolic semantics with a computational semantics
based on probabilistic polynomial time, we replace the predicate Has with two
predicates, Possess and Indist. Intuitively, Possess(X,m) means that there is an
algorithm that computes the value of m with high probability from information
available to X, while Indist(X,m) means that X cannot feasibly distinguish m
from a random value chosen according to the same distribution. However, certain
technical problems discussed in Section 7 lead us to work with slightly simplified
semantics of these predicates that capture our intuition most strongly when the
possessing principal is assumed honest (in the sense of following the protocol)
and the predicate Indist only appears with positive polarity. Fortunately, these
syntactic conditions are met in many formulas expressing authentication and
secrecy properties.

Several groups of researchers have either formulated connections between
symbolic logic and feasible probabilistic computation, or developed relationships

18 A. Datta et al.

between symbolic and computational models. In particular, Abadi and Rogaway
[1] propose a logical characterization of indistinguishability by passive eavesdrop-
pers that has been studied by a number of others, and Kapron and Impagliazzo
suggest a formal logic for reasoning about probabilistic polynomial-time indis-
tinguishability [13]. Some semantic connections between symbolic and computa-
tional models have been developed by a team at IBM Zurich, e.g., [3], with other
connections explored in a series of related papers by Micciancio, Warinschi, and
collaborators [15, 18, 6]. Herzog [11, 12] shows that if a protocol attack exists in
a Dolev-Yao model, there is an attack in a computational model. More recent
related work also appears in [14, 6].

Section 2 presents the syntax for defining roles of a protocol, while the syntax
of the logic appears in Section 3. Some axioms and proof rules are described in
Section 4, followed by a short proof example in Section 5. Section 6 presents the
probabilistic polynomial-time execution and attacker model. The semantics of
the logic are given in Section 7, and concluding remarks in Section 8.

2 Protocol Syntax

We use a simple “protocol programming language” based on [10, 7, 8] to represent
a protocol by a set of roles, such as “Initiator”, “Responder” or “Server”, each
specifying a sequence of actions to be executed by a honest participant. The
syntax of terms and actions is given in Table 1.

Names, sessions and threads: We use X̂, Ŷ , . . . as names for protocol partic-
ipants. Since a particular participant might be involved in more than one session
at a time, we will give unique names to sessions and use (X̂, s) to designate a
particular thread being executed by X̂. All threads of a participant X̂ share
the same asymmetric key denoted by X. As a notational convenience, we will
sometimes write X̃ for an arbitrary thread of X̂.

Terms, actions, and action lists: Terms name messages and their parts, such
as nonces, keys, variables and pairs. For technical reasons, we distinguish basic
terms from terms that may contain encryption. To account for probabilistic en-
cryption, encrypted terms explicitly identify the randomness used for encryption.

Table 1. Syntax of protocol terms and actions

Terms:

N ::= X̂ (name)
K ::= X (key)
S ::= s (session)
n ::= r (nonce)
T ::= (N, S) (thread)
V ::= x (term variable)
tB ::= V |K |T |N |n | 〈tB , tB〉 (basic term)
t ::= tB | {t}nK |〈t, t〉 (term)

Actions:
a ::=
| new T, n
| V := enc T, t, K
| V := dec T, t, K
| match T, t/t
| send T, t
| receive T, V

Probabilistic Polynomial-Time Semantics for a Protocol Security Logic 19

Specifically, {t}n
K indicates the encryption of t with key K using randomness n

generated for the purpose of encryption. We write m ⊆ m′ when m is a subterm
of m′ ∈ t.

Actions include nonce generation, encryption, decryption, pattern match-
ing, and communication steps (sending and receiving). An ActionList consists
of a sequence of actions that contain only basic terms. This means that en-
cryption cannot be performed implicitly; explicit enc actions, written as assign-
ment, must be used instead. We assume that each variable will be assigned
at most once, at its first occurrence. For any s ∈ ActionList, we write s|X
to denote the subsequence of s containing only actions of a participant (or a
thread) X.

Strands, roles, protocols and execution: A strand is an ActionList, con-
taining actions of only one thread. Typically we will use notation [ActionList]X̃
to denote a strand executed by thread X̃ and drop the thread identifier from the
actions themselves. A role is a strand together with a basic term representing
the initial knowledge of the thread. A protocol is a finite set of Roles, together
with a basic term representing the initial intruder knowledge.

An execution strand is a pair ExecStrand ::= InitialState(I);ActionList
where I is a data structure representing the initial state of the protocol, as
produced by the initialization phase from Section 6. In particular, this includes
the list of agents and threads, the public/private keys and honesty/dishonesty
tokens of each agent, and the roles played by each thread.

3 Logic Syntax

The syntax of formulas is given in Table 2. Protocol proofs will usually use modal
formulas of the form ψ[P]X̃ϕ, as explained intuitively in the introduction of
the paper. Most formulas have the same intuitive meaning in the computational
semantics as in the symbolic model [7, 8], except for predicates Possess and Indist.
We summarize the meaning of formulas informally below, with precise semantics
in the next section.

Action Predicates:
a ::= Send(T, t) |Receive(T, t) |New(T, n)

Formulas:
ϕ ::= a | t = t | Start(T) |Possess(T, t) | Indist(T, t) |Fresh(T, t) |Honest(N) |

Start(T) |Contains(t, t) |ContainsOut(t, t, t) |DecryptsHonest(T, t) |
Source(T, t, t) |ϕ ∧ ϕ |ϕ ∨ ϕ | ∃V ar. ϕ | ∀V ar. ϕ | ¬ϕ |ϕ ⊃ ϕ |ϕ ⇒ ϕ

Modal formulas:
Ψ ::= ϕ [Strand]T ϕ

Table 2. Syntax of the logic

20 A. Datta et al.

For every protocol action, there is a corresponding action predicate which
asserts that the action has occurred in the run. For example, Send(X̃, t) holds
in a run where the thread X̃ has sent the term t. Fresh(X̃, t) means that the
value of t generated by X̃ is “fresh” in the sense that no one else has seen any
messages containing t, while Honest(X̂) means that X̂ is acting honestly, i.e.,
the actions of every thread of X̂ precisely follows some role of the protocol. The
Source predicate is used to reason about the source of a piece of information,
such as a nonce. Intuitively, the formula Source(Ỹ , u, {m}r

X) means that the only
way for a thread X̃ different from Ỹ to know u is to learn u from the term {m}r

X ,
possibly by some indirect path.

The predicate Fresh is definable by Fresh(X̃, v) ≡ New(X̃, v) ∧ ¬(∃u.
Send(X̃, u) ∧ Contains(u, v)) and classical implication is definable by A ⊃ B ≡
¬A ∨B.

In the symbolic model [7, 8],the predicate Has states that a principal can
“derive” a message or its contents from the information gathered during protocol
execution. We use Possess(X̃, t) to state that it is possible to derive t by Dolev-
Yao rules from X̃’s view of the run and Indist(X̃, t) to state that no probabilistic
polynomial-time algorithm, given X̃’s view of the run, can distinguish t from a
random value from the same distribution. Typically, we use Possess to say that
some honest party obtained some secret, and Indist to say that the attacker does
not have any partial information about a secret.

4 Proof System

The proof system used in this paper is based on the proof system developed
in [7, 8, 2]. Some example axioms and rules are given in Table 3; the full presen-
tation is deferred to the extended version of this paper. These axioms express
reasoning principles that can be justified using complexity-theoretic reductions,
information-theoretic arguments, and asymptotic calculations. However, the ad-
vantage of the proof system is that its justification using cryptographic-style
arguments is a one-time mathematical effort; protocol proofs can be carried out
symbolically using the proof system without explicitly reasoning about prob-
ability and complexity. Another advantage of the axiomatic approach is that
different axioms and rules rest on different cryptographic assumptions. There-
fore, by examining the axioms and rules used in a specific proof, we can identify
specific properties of the cryptographic primitives that are needed to guarantee
protocol correctness. This provides useful information in protocol design because
primitives that provide weaker properties often have more efficient constructions.

Axioms: Axioms AN2 and AN3 capture some of the properties of nonce gen-
eration. Informally, AN2 states that if a thread X̃ generates a fresh nonce x
and does not perform any additional actions, then x is indistinguishable from a
random value for all other threads. The soundness of this axiom is established by
a simple information-theoretic argument. The informal interpretation of axiom
S1 (also called the “Source” axiom) is that, unless a ciphertext is decrypted,
a thread which does not possess the decryption key cannot extract any par-

Probabilistic Polynomial-Time Semantics for a Protocol Security Logic 21

Axioms:

AN2 :
[new x]X̃ Ỹ �= X̃ ⇒ Indist(Ỹ , x)

AN3 :
[new x]X̃Fresh(X̃, x)

S1 : Source(Ỹ , u, {m}rX) ∧ ¬DecryptsHonest(X̂, {m}rX) ∧ Ẑ �= X̂ ∧ Ẑ �= Ŷ ∧
Honest(X̂) ∧ Honest(Ŷ)⇒ Indist(Z̃, u)

Proof rules:

θ[P]Xϕ θ′ ⊃ θ ϕ ⊃ ϕ′

θ′[P]Xϕ′ G3
θ[P1]Xϕ ϕ[P2]Xψ

θ[P1P2]Xψ
SEQ

ϕ ϕ⇒ ψ
ψ

MP
ϕ
∀x.ϕ

GEN

Table 3. Fragment of the proof system

tial information about the plaintext. The soundness of this axiom is proved by
a complexity-theoretic reduction. Specifically, we show that if an attacker can
break this property, then there is another attacker that can break the underlying
IND-CCA2 secure encryption scheme [4].

Inference rules: Inference rules include generic rules from modal logics (e.g.
G3), sequencing rule SEQ used for reasoning about sequential composition of
protocol actions and a rule (called the honesty rule) for proving protocol invari-
ants using induction. These rules are analogous to proof rules from our earlier
work [7, 8].

First-order axioms and rules: We use two implications: a conditional impli-
cation⇒, discussed and defined precisely in section 7, and a classical implication
⊃ with A ⊃ B ≡ ¬A ∨B. While standard classical tautologies hold for classical
implication, some familiar propositional or first-order tautologies may not hold
when written using ⇒ instead of ⊃. However, modus ponens and the gener-
alization rule above are sound. The soundness of modus ponens relies on the
simple asymptotic fact that the sum of two negligible functions is a negligible
function. In future work, we hope to develop a more complete proof system for
the first-order fragment of this logic.

5 Example

In this section, we present a simple protocol and state a secrecy property that can
be proved using the proof system. The interested reader is referred to [10, 7, 8]
for further explanation and examples. The two protocol roles are:

Init ≡ [new x; y := enc〈x, X̃〉, Y ; send X̂, Ŷ , y]X̃
Resp ≡ [receive z; match z/〈X̂, Ŷ , z′〉; z′′ := dec z′, Y]Ỹ

22 A. Datta et al.

The initiator generates a new nonce and sends it encrypted to the responder.
The responder receives the message and recovers the nonce by decrypting the
ciphertext. We can prove that if X̃ completes the protocol with Ỹ , then x will
be a shared secret between them, provided both agents are honest. Formally,

Start(X̃)[Init]X̃Honest(X̂) ∧ Honest(Ŷ) ∧ (Z̃ �= X̃) ∧ (Z̃ �= Ỹ) ⇒ Indist(Z̃, x)

Since the meaning of Indist(Z̃, x) (formally defined in Section 7) is that Z̃ can-
not distinguish the secret nonce x from a randomly chosen nonce, this formula
expresses a standard form of secrecy used in the cryptographic literature.

The axiomatic proof uses AN2, a variant of S1, and modus ponens MP.
The proof idea is that at the point the initiator produces the nonce x, by AN2,
it is indistinguishable from random to everyone else other than X̃ and Ỹ . It
continues to remain indistinguishable since it appears on the network under
encryption with a public key whose corresponding private key is not available to
the attacker. This part of the reasoning is codified by an axiom that is similar to
S1 and relies on the fact that the encryption scheme used is IND-CCA2 secure.
Modus ponens is used in the general first-order reasoning involved in the proof.

6 Protocol Execution

Given a protocol, adversary, and value of the security parameter, we define a
set of protocol traces, each associated with the random bits that produce this
sequence of actions and additional randomness for algorithms used in the se-
mantics of formulas about the run. The definition proceeds in two phases. In the
initialization phase, we assign a set of roles to each principal, identify a subset
which is honest, and provide all entities with private-public key pairs and random
bits. In the execution phase, the adversary executes the protocol by interacting
with honest principals, as in the accepted cryptographic model of [5].

Initialization: We fix the protocol Q, adversary A, security parameter η, and
some randomness R of size polynomially bounded in η. Each principal and each
thread (i.e., an instance of a protocol role executed by the principal) is assigned
a unique bitstring identifier. We choose a sufficiently large polynomial number
of bitstrings i ∈ I ⊆ {0, 1}η to represent the names of principals and threads.
Randomness R is split into ri for each honest i ∈ I (referred to as “coin tosses
of honest party i”) and RA (referred to as “adversarial randomness”).

The adversary designates some of the principals as honest and the rest of the
principals as dishonest. Intuitively, honest principles will follow one or more roles
of the protocol faithfully. The adversary chooses a set of threads, and to each
thread it assigns a strand (a program to be executed by that thread), under the
restriction that all threads of honest principals are assigned roles of protocol Q.

The key generation algorithm K of a public-key encryption scheme (K, E ,D)
is run on 1η for each participant a using randomness ra, and producing a public-
private key pair (pka, ska). The public key pka is given to all participants and to
the adversary A; the private key is given to all threads belonging to this principal
and to the adversary if the principal is dishonest.

Probabilistic Polynomial-Time Semantics for a Protocol Security Logic 23

Generating Computational Traces: Following [5], we view an agent i trying
to communicate with agent j in protocol session s as a (stateful) oracle Πs

i,j . The
state of each oracle is defined by a mapping λ from atomic symbols to bitstrings
(with variables and nonces renamed to be unique for each role) and a counter c.
Each oracle proceeds to execute a step of the protocol as defined by actions in
the corresponding role’s action list, when activated by the adversary.

We omit the details of communication between the adversary and the oracles,
and focus on computational interpretation of symbolic protocol actions. Let ac

be the current action in the ActionList defining some role of participant i in
session s, i.e., Thread = (i′, s′) where i = λ(i′), s = λ(s′).

If ac = (new (i′, s′), v), then update λ so that λ(v) = NonceGen(Ri),
where NonceGen is a nonce generation function(e.g., NonceGen simply ex-
tracts a fresh piece of Ri). If ac = (v := enc (i′, s′), j, u), then update λ so
that λ(v) = E(λ(u), pkj , Ri) where E(λ(u), pkj , Ri) is the result of executing the
public-key encryption algorithm on plaintext λ(u) with public key pkj and fresh
randomness extracted from Ri. For brevity, we omit computational interpreta-
tion of decryption and matching (pairing, unpairing, and equality-test) actions.
Sending a variable send (i′, s′), v is executed by sending λ(v) to the adversary,
and receiving receive (i′, s′), v is executed by updating λ so that λ(v) = m
where m is the bitstring sent by the adversary.

At any time during the protocol execution, the adversary A may record any
internal, private message on a special knowledge tape. This tape is not read by
any participant of the protocol. However, its content will be made available to the
test algorithms used to decide if a given security formula containing Indist(...)
is valid or not. Let K be [(i1,m1), .., (in,mn)] the list of messages mk written by
A on the knowledge tape, indexed by the number of actions ik already executed
when mk was written (position in the protocol execution). This index will be
useful to remember a previous state of the knowledge tape.

At the end of the protocol execution, the adversary A outputs a pair of
integers (p1, p2) on an output tape. When the security formula is a modal formula
θ[P]Xϕ, these two integers represent two positions in the protocol execution
where the adversary claims that the formula is violated, i.e. that θ is true in p1

but ϕ is false in p2, with P between p1 and p2. Let O be this pair (p1, p2) of
integers written on the output tape.

The symbolic trace of the protocol is the execution strand e ∈ ExecStrand
which lists, in the order of execution, all honest participant actions and the
dishonest participant’s send and receive actions. This strand contains two
parts: InitialState(I) stores the initialization data, and the rest is an ordered
list of all exchanged messages and honest participants’ internal actions.

Definition 1. (Computational Traces) Given a protocol Q, an adversary A,
a security parameter η, and a sequence of random bits R ∈ {0, 1}p(η) used
by the honest principals and the adversary, a run of the protocol is the tuple
〈e, λ,O,K,R〉 where e is the symbolic execution strand, λ : Term(e) → {0, 1}p(η)

maps the symbolic terms in e to bitstrings, O is the pair of integers written on

24 A. Datta et al.

the output tape, and K is the indexed list of messages written on the knowledge
tape. Finally, p(x) is a polynomial in x.

A computational trace is a run with two additional elements: RT ∈ {0, 1}p(η),
a sequence of random bits used for testing indistinguishability, and σ : FV ar(ϕ) →
{0, 1}p(η), a substitution that maps free variables in a formula to bitstrings. The
set of computational traces is

TQ(A, η) = {〈e, λ,O,K,R,RT , σ〉 |R,RT chosen uniformly}.

Definition 2. (Participant’s View) Given a protocol Q, an adversary A, a se-
curity parameter η, a participant X̃ and a trace t = 〈e, λ,O,K,R,RT , σ〉 ∈
TQ(A, η), V iewt(X̃) represents X̃ ′s view of the trace. It is defined precisely as
follows:

If X̂ is honest, then V iewt(X̃) is the initial knowledge of X̃, a representation
of e|X̃ and λ(x) for any variable x in e|X̃ . If X̂ is dishonest, then V iewt(X̃)
is the union of the knowledge of all dishonest participants X̃ ′ after the trace t
(where V iewt(X̃ ′) is defined as above for honest participants) plus K, the mes-
sages written on the knowledge tape by the adversary.

The following three definitions are used in the semantics of the predicate
Indist(). Informally, based on some trace knowledge K, the distinguisher D tries
to determine which of two bitstrings is the value of a symbolic term. One of the
bitstrings will be the computational value of the term in the current run, while
the other will be a random bitstring of the same structure, chosen in a specific
way. The order of the two bitstrings presented to the distinguisher is determined
by an LR Oracle using a random selector bit.

Definition 3. (LR Oracle) The LR Oracle [4] is used to determine the order
in which two bitstrings are presented depending on the value of the selector bit,
i.e. LR(s0, s1, b) = 〈sb, s1−b〉.

Definition 4. (Distinguishing test input) Let u be a symbolic term and σ be a
substitution that maps variables of u to bitstrings. We construct another bitstring
f(u, σ, r), whose symbolic representation is the same as u. Here, r is a sequence
of bits chosen uniformly at random. The function f is defined by induction over
the structure of the term u.

– Nonce u : f(u, σ, r) = r
– Name/Key u : f(u, σ, r) = σ(u)
– Pair u = 〈u1, u2〉 : f(〈u1, u2〉, σ, r1; r2) = 〈f(u1, σ, r1), f(u2, σ, r2)〉
– Encryption u = {v}n

K : f({v}n
K , σ, r1; r2) = E(f(v, σ, r1), σ(K), r2)

Definition 5. (Distinguisher) A distinguisher D is a polynomial time algorithm
which takes as input a tuple 〈K, t, 〈s0, s1〉, R, η〉, consisting of knowledge K, sym-
bolic term t, two bitstrings s0 and s1, randomness R and the security parameter
η, and outputs a bit b′.

Probabilistic Polynomial-Time Semantics for a Protocol Security Logic 25

The next definition is used while defining semantics of modal formulas. Given
a set T of traces and a strand P of actions executed by a thread X̃, the set TP

includes only those traces from T which contain P . Pre(TP) is obtained from TP

by taking the initial segment of each trace upto the point where P starts. The
precondition of a modal formula is evaluated over this set. Post(TP) is similarly
defined; the only difference is now the trace is cut at the point that P ends. The
postcondition of a modal formula is evaluated over this set. The begin and end
positions are determined by the component O in the trace.

Definition 6. (Splitting computational traces) Let T be a set of computational
traces and t = 〈e, λ,O,K,R,RT , σ〉 ∈ T . O = 〈p1, p2〉, e = InitialState(I); s,
and s = s1; s2; s3 with p1, p2 the start and end positions of s2 in s. Given a
strand P executed by participant X̃, we denote by TP the set of traces in T for
which there exists a substitution σ′ which extends σ to variables in P such that
σ′(P) = λ(s2 |X̃). The complement of this set is denoted by T¬P and contains all
traces which do not have any occurrence of the strand P . We define the set of
traces Pre(TP) = {t[s ← s1,K ← K≤p1 , σ ← σ′] | t ∈ TP }, where K≤p is the
restriction of the knowledge tape K to messages written before the position p. We
define the set of traces Post(TP) = {t[s← s1; s2,K ← K≤p2 , σ ← σ′] | t ∈ TP }.

7 Computational Semantics

The semantics of a formula ϕ on a set T of computational traces is a subset T ′ ⊆
T that respects ϕ in some specific way. For many predicates and connectives, the
semantics is essentially straightforward. For example, an action predicate such
as Send selects a set of traces in which a send occurs. However, the semantics of
predicates Indist and Possess is inherently more complex.

Intuitively, an agent possesses the value of an expression (such as another
agent’s nonce or key) if the agent can compute this value from information it
has seen, with high probability. If an agent is honest, and therefore follows the
rules of the protocol, then it suffices to use a simple, symbolic algorithm for
computing values from information seen in the run of a protocol. For dishonest
agents, we would prefer in principle to allow any probabilistic polynomial-time
algorithm. However, quantifying over such algorithms, in a way that respects
the difference between positive and negative occurrences of the predicate in a
formula, appears to introduce some technical complications. Therefore, in the
interest of outlining a relatively simple form of computational semantics, we
will use a fixed algorithm. This gives a useful semantics for formulas where
Possess(X̃, u) is used under the hypothesis that X̂ is honest. We leave adequate
treatment of the general case for future work.

Intuitively, an agent has partial information about the value of some expres-
sion if the agent can distinguish that value, when presented, from a random value
generated according to the same distribution. More specifically, an agent has par-
tial information about a nonce u if, when presented with two bitstrings of the
appropriate length, one the value of u and the other chosen randomly, the agent

26 A. Datta et al.

has a good chance of telling which is which. As with Possess, there are technical
issues associated with positive and negative occurrences of the predicate. For
positive occurrences of Indist, we should say that no probabilistic polynomial-
time algorithm has more than a negligible chance, where as for ¬Indist(. . .) we
want to say that there exists a probabilistic polynomial-time distinguisher. In
order to present a reasonably understandable semantics, and establish a useful
basis for further exploration of computational semantics of symbolic security
logics, we give an interpretation that appears accurate for formulas that have
only positive occurrences of Indist and could be somewhat anomalous for formu-
las that contain negative occurrences. This seems adequate for reasoning about
many secrecy properties, since these are expressed by saying that at the end of
any run of the protocol, a value used in the run is indistinguishable from random.

Conditional implication θ ⇒ ϕ is interpreted using the negation of θ and
the conditional probability of ϕ given θ. This non-classical interpretation of
implication seems to be essential for relating provable formulas to cryptographic-
style reductions involving conditional probabilities. In particular, the soundness
proof for the “source” axiom S1, not proved in this conference paper, uses the
conditional aspect of this implication in a fundamental way. On the other hand,
⇒ coincides with ⊃ in formulas where Indist does not appear on the right hand
size of the implication.

We inductively define the semantics |[ϕ]| (T,D, ε) of a formula ϕ on the set
T of traces, with distinguisher D and tolerance ε. The distinguisher and toler-
ance are not used in any of the clauses except for Indist, where they are used to
determine whether the distinguisher has more than a negligible chance of distin-
guishing the given value from a random value. In definition 7 below, the tolerance
is set to a negligible function of the security parameter and T = TQ(A, η) is the
set of traces of a protocol Q with adversary A.

–
∣∣∣[Send(X̃, u)

]∣∣∣ (T,D, ε) is the collection of all 〈e, λ,O,K,R,RT , σ〉 ∈ T such

that some action in the symbolic execution strand e has the form send Ỹ , v
with λ(Ỹ) = σ(X̃) and λ(v) = σ(u). Recall that σ maps formula variables to
bitstrings and represents the environment in which the formula is evaluated.

– |[a(· , ·)]| (T,D, ε) for other action predicates a is similar to Send(X̃, u).
–

∣∣∣[Honest(X̂)
]∣∣∣ (T,D, ε) is the collection of all 〈e, λ,O,K,R,RT , σ〉 ∈ T where

e = InitialState(I); s and σ(X) is designated honest in the initial config-
uration I. Since we are only dealing with static corruptions in this paper,
the resulting set is either the whole set T or the empty set φ depending on
whether a principal is honest or not.

–
∣∣∣[Start(X̃)

]∣∣∣ (T,D, ε) includes all traces 〈e, λ,O,K,R,RT , σ〉 ∈ T where e =

InitialState(I); s and λ(s)|σ(X̃) = ε. Intuitively, this set contains traces in
which X̃ has executed no actions.

– |[Contains(u, v)]| (T,D, ε) includes all traces 〈e, λ,O,K,R,RT , σ〉 ∈ T such
that there exists a series of decryptions with {λ(k) | k ∈ Key} and projections
(π1,π2) constructing σ(v) from σ(u). This definition guarantees that the
result is the whole set T if v is a symbolic subterm of u.

Probabilistic Polynomial-Time Semantics for a Protocol Security Logic 27

– |[ContainsOut(u, v, t)]| (T,D, ε) includes all traces 〈e, λ,O,K,R,RT , σ〉 ∈ T
such that there exists a series of projections (π1,π2) and decryptions with
{λ(k) | k ∈ Key}, where σ(t) is never decomposed, creating σ(v) from σ(u).
This definition ensures that the result is the whole set T if v is a symbolic
subterm of u but is not a subterm of t.

– |[θ ∧ ϕ]| (T,D, ε) = |[θ]| (T,D, ε) ∩ |[ϕ]| (T,D, ε).
– |[θ ∨ ϕ]| (T,D, ε) = |[θ]| (T,D, ε) ∪ |[ϕ]| (T,D, ε).
– |[¬ϕ]| (T,D, ε) = T \ |[ϕ]| (T,D, ε) .
– |[∃x. ϕ]| (T,D, ε) =

⋃
β(|[ϕ]| (T [x← β], D, ε)[x← σ(x)])

with T [x ← β] = {t[σ[x ← β]] | t = 〈e, λ,O,K,R,RT , σ〉 ∈ T}, and β any
bitstring of polynomial size.

– |[θ ⇒ ϕ]| (T,D, ε) = |[¬θ]| (T,D, ε)∪ |[ϕ]| (T ′, D, ε), where T ′ = |[θ]| (T,D, ε).
Note that the semantics of ϕ is taken over the set T ′ given by the semantics
of θ, as discussed earlier in this section.

– |[u = v]| (T,D, ε) includes all traces 〈e, λ,O,K,R,RT , σ〉 ∈ T such that
σ(u) = σ(v).

–
∣∣∣[DecryptsHonest(Ỹ , {u}r

X)
]∣∣∣ (T,D, ε) = |[ϕ]| (T,D, ε) with ϕ = Honest(X̂)∧

∃v. v := dec Ỹ , {u}r
X .

–
∣∣∣[Source(Ỹ , u, {m}r

X)
]∣∣∣ (T,D, ε) = |[∃v.∀w.ϕ]| (T,D, ε) with :

ϕ = New(Ỹ , u) ∧ Contains(m, u)
∧ Contains(v, {m}r

X) ∧ Send(Ỹ , v)
∧ ¬ContainsOut(v, u, {m}r

X)
∧ (v �= w ∧ Contains(w, u)) ⇒ ¬Send(Ỹ , w)

–
∣∣∣[Possess(X̃, u)

]∣∣∣ (T,D, ε) includes all traces t = 〈e, λ,O,K,R,RT , σ〉 ∈ T

such that σ(u) can be built from V iewt(σ(X̃)) with the Dolev-Yao deduction
rules.

–
∣∣∣[Indist(X̃, u)

]∣∣∣ (T, ε,D) = T if

|{D(V iewt(σ(X̃)), u, LR(σ(u), f(u, σ, r), b), RD, η) = b | t ∈ T}|
|T | ≤ 1

2
+ ε

and the empty set φ otherwise. Here, the random sequence b; r;RD = RT ,
the testing randomness for the trace t.

– |[θ[P]X̃ϕ]| (T,D, ε) = T¬P ∪ |[¬θ]| (Pre(TP), D, ε) ∪ |[ϕ]| (Post(TP), D, ε)
with T¬P , Pre(TP), and Post(TP) as given by Definition 6.

Definition 7. A protocol Q satisfies a formula ϕ, written Q |= ϕ, if ∀A provid-
ing an active protocol adversary, ∀D providing a probabilistic-polynomial-time
distinguisher, ∀ν giving a negligible function, ∃N, ∀η ≥ N ,

| |[ϕ]| (T,D, ν(η)) | / |T | ≥ 1− ν(η)

28 A. Datta et al.

where |[ϕ]| (T,D, ν(η)) is the subset of T given by the semantics of ϕ and T =
TQ(A, η) is the set of computational traces of protocol Q generated using adver-
sary A and security parameter η, according to Definition 1.

Theorem 1. (Soundness) ∀Q, ∀ϕ, Q � ϕ ⇒ Q |= ϕ

8 Conclusion and Future Work

We propose a computational semantics for a variant of the Protocol Composi-
tion Logic presented in [2, 7, 8, 10]. The associated soundness theorem implies
that it is possible to reason symbolically, and at a high level, about probabilistic
polynomial-time security properties. Although omitted from this conference pa-
per, the soundness proof uses a combination of information-theoretic arguments,
calculations about negligible functions, and cryptographic-style reductions in-
volving encryption. While the semantics given here has some imperfections, such
as an interpretation of indistinguishability that only seems appropriate for for-
mulas where Indist appears with positive polarity, the general approach seems
promising. We look forward to future efforts to lift certain restrictions on the
logic, explore the semantics and axiomatization of logical connectives over proba-
bilistic polynomial-time interpretations, and extend the approach suggested here
to additional cryptographic primitives, such as signatures and hash functions.
One interesting research direction might be to develop a version of this seman-
tics based on information-theoretic security, since that may provide some useful
insight into problems we encountered in developing the semantics.

Acknowledgments: Thanks to Bogdan Warinschi, Andre Scedrov, and Dan
Boneh for many insightful comments and suggestions.

References

1. M. Abadi and P. Rogaway. Reconciling two views of cryptography (the compu-
tational soundness of formal encryption). Journal of Cryptology, 15(2):103–127,
2002.

2. M. Backes, A. Datta, A. Derek, J. C. Mitchell, and M. Turuani. Compositional
analysis of contract signing protocols. In Proceedings of 18th IEEE Computer
Security Foundations Workshop. IEEE, 2005. To appear.

3. M. Backes, B. Pfitzmann, and M. Waidner. A universally composable crypto-
graphic library. Cryptology ePrint Archive, Report 2003/015, 2003.

4. M. Bellare, A. Boldyreva, and S. Micali. Public-key encryption in a multi-user
setting: Security proofs and improvements. In Advances in Cryptology - EURO-
CRYPT 2000, Proceedings, pages 259–274, 2000.

5. M. Bellare and P. Rogaway. Entity authentication and key distribution. In Pro-
ceedings of the 13th Annual International Cryptology Conference on Advances in
Cryptology (CRYPTO ’93), pages 232–249. Springer-Verlag, 1994.

6. V. Cortier and B. Warinschi. Computationally sound, automated proofs for se-
curity protocols. In Proceedings of 14th European Symposium on Programming
(ESOP’05), Lecture Notes in Computer Science, pages 157–171. Springer-Verlag,
2005.

Probabilistic Polynomial-Time Semantics for a Protocol Security Logic 29

7. A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. A derivation system for secu-
rity protocols and its logical formalization. In Proceedings of 16th IEEE Computer
Security Foundations Workshop, pages 109–125. IEEE, 2003.

8. A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. A derivation system and
compositional logic for security protocols. Journal of Computer Security, 2005. To
appear.

9. D. Dolev and A. Yao. On the security of public-key protocols. IEEE Transactions
on Information Theory, 2(29):198–208, 1983.

10. N. Durgin, J. C. Mitchell, and D. Pavlovic. A compositional logic for proving
security properties of protocols. Journal of Computer Security, 11:677–721, 2003.

11. J. Herzog. The Diffie-Hellman key-agreement scheme in the strand-space model. In
Proceedings of 16th IEEE Computer Security Foundations Workshop, pages 234–
247, 2003.

12. J. Herzog. Computational Soundness for Standard Assumptions of Formal Cryp-
tography. PhD thesis, MIT, 2004.

13. R. Impagliazzo and B. M. Kapron. Logics for reasoning about cryptographic con-
structions. In Proceedings of the 44th Annual IEEE Symposium on Foundations of
Computer Science (FOCS ’03), pages 372–383. IEEE, 2003.

14. R. Janvier, L. Mazare, and Y. Lakhnech. Completing the picture: Soundness of
formal encryption in the presence of active adversaries. In Proceedings of 14th
European Symposium on Programming (ESOP’05), Lecture Notes in Computer
Science, pages 172–185. Springer-Verlag, 2005.

15. D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence
of active adversaries. In Theory of Cryptography Conference - Proceedings of TCC
2004, volume 2951 of Lecture Notes in Computer Science, pages 133–151. Springer-
Verlag, 2004.

16. N. J. Nilsson. Probabilistic logic. Artificial Intelligence, 28(1):71–87, 1986.
17. V. Shoup. On formal models for secure key exchange (version 4). Technical Report

RZ 3120, IBM Research, 1999.
18. B. Warinschi. A computational analysis of the Needham-Schroeder(-Lowe) proto-

col. In Proceedings of 16th Computer Science Foundation Workshop, pages 248–
262. ACM Press, 2003.

A Gentle Introduction to Semantic Subtyping�

Giuseppe Castagna1 and Alain Frisch2

1CNRS, École Normale Supérieure de Paris, France
2INRIA, Rocquencourt, France

Abstract. Subtyping relations are usually defined either syntactically by a for-
mal system or semantically by an interpretation of types into an untyped denota-
tional model. This work shows how to define a subtyping relation semantically
in the presence of boolean connectives, functional types and dynamic dispatch
on types, without the complexity of denotational models, and how to derive a
complete subtyping algorithm. The presentation is voluntarily kept informal and
discursive and the technical details are reduced to a minimum since we rather
insist on the motivations, the intuition, and the guidelines to apply the approach.

1 Introduction

Many recent type systems rely on a subtyping relation. Its definition generally depends
on the type algebra, and on its intended use. We can distinguish two main approaches
for defining subtyping: the syntactic approach and the semantic one. The syntactic
approach—by far the more used—consists in defining the subtyping relation by ax-
iomatising it in a formal system (a set of inductive or coinductive rules); in the seman-
tic approach (for instance, [1, 4]), instead, one starts with a model of the language and
an interpretation of types as subsets of the model, then defines the subtyping relation
as the inclusion of denoted sets, and, finally, when the relation is decidable, derives a
subtyping algorithm from the semantic definition.

The semantic approach has several advantages but it is also more constraining. Find-
ing an interpretation in which types can be interpreted as subsets of a model may be
a hard task. A solution to this problem was given by Haruo Hosoya and Benjamin
Pierce [9, 8, 7] with the work on XDuce. The key idea is that in order to define the
subtyping relation semantically one does not need to start from a model of the whole
language: a model of the types suffices. In particular Hosoya and Pierce take as model
of types the set of values of the language. Their notion of model cannot capture func-
tional values. On the one hand, the resulting type system is poor since it lacks function
types. On the other hand, it manages to integrate union, product and recursive types and
still keep the presentation of the subtyping relation and of the whole type system quite
simple.

In [6, 5], together with Véronique Benzaken, we extended the work on XDuce and
reframed it in a more general setting: we show a technique to define semantic sub-

� Joint ICALP/PPDP 2005 keynote talk, short overview. The full article is included in the pro-
ceedings of PPDP ’05 [3]

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 30–34, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

A Gentle Introduction to Semantic Subtyping 31

typing in the presence of a rich type system including function types, but also arbi-
trary boolean combinations (union, intersection, and negation types) and in the pres-
ence of lately bound overloaded functions and type-based pattern matching. The aim
of [6, 5] was to provide a theoretical foundation on the top of which to build the lan-
guage CDuce [2], an XML-oriented transformation language. This motivation needed a
rather heavy technical development that concealed a side—but important—contribution
of the work, namely a generic and uniform technique (or rather, a cookbook of tech-
niques) to define semantic subtyping when straightforward set-theoretic interpretation
does not work, in particular for arrow types. Here we concentrate on this second as-
pect of the work: we get rid of many features (e.g. patterns and pattern matching,
full-fledged overloading, pattern variable type inference,. . .), skip many technical de-
tails, and focus on the basic intuition to gradually introduce our approach. This re-
sults in a presentation along which we explain the reader how to take her/his favourite
set of type constructors (e.g. arrows, but also records, lists, pointers, channels, etc.)
and add to it a complete set of boolean combinators: union, intersection and negation
types.

Our hope is that this work will provide the reader with enough intuition and a de-
tailed roadmap to decide whether it is possible/interesting to endow her/his favourite
language with a set-theoretically defined subtyping relation.

2 Overview of the Approach

Our objective is to define give a semantic definition of a subtyping relation by interpret-
ing types as sets and subtyping as set inclusion. We thus need to define a set-theoretic
model of types. This model is usually defined by starting from a model of the terms
of the object language. For a language with function types, we have to interpret the
duality of functions as terms and as functions on terms. This yields the need to solve
complicated recursive domain equations that hardly combines with a set-theoretic inter-
pretation of types, whence the introduction of restrictions in the definition of semantic
subtyping (e.g. no function types, no negation types, etc . . .).

Note however that in order to define semantic subtyping all we need is a set-theoretic
model of types. The construction works even if we do not have a model of terms. The
definition of a semantic subtyping relation needs neither an interpretation for applica-
tions (that is, an applicative model) nor the solution of complicated domain equations.

The first key idea to generalise semantic subtyping is, then, to dissociate the model
of types from the model of terms and define the former independently from the latter. In
other words, the interpretation of types must not forcedly be based on an interpretation
of terms. More formally, what we do is first to define an interpretation function for types
� � : Types → P(D), where P denotes the powerset, andD is some domain (which may
not be expressive enough to interpret terms). Then, we define the subtyping relation as
follows:

s ≤ t
def⇐⇒ �s� ⊆ �t�.

The second key idea is that we do not need � � to state what types mean, but just to
describe how types are related. And to this end, all that matters is when � � is equal to
zero. Indeed,

32 G. Castagna and A. Frisch

s ≤ t ⇐⇒ �s� ⊆ �t� ⇐⇒ �s� ∩ �t� = ∅ ⇐⇒ �s� ∩ �¬¬¬t� = ∅ ⇐⇒ �s∧∧∧¬¬¬t� = ∅

where the overbar denotes complementation in D. Thus, we can concentrate our efforts
just on the � �-counterimage of the empty set and disregard the behaviour of � � on the
remaining types.

Types as Sets of Values. Nevertheless, to ensure type safety, the meaning of types has
to be somewhat correlated with the language. A classical solution is to interpret types
as sets of values, that is, as the results of well-typed computations in the language. More
formally, the values of a typed language are all the terms that are well-typed, closed, and
in normal form. Interpreting types a sets of values is much easier than interpreting them
as sets of terms: since a closed application usually denotes a redex, then by restricting
to the sole values we avoid the need to interpret application and, therefore, also the need
to solve complicated domain equations. This is the solution adopted by XDuce, where
values are XML documents and types are sets of documents.

But if we consider a language with arrow types, that is a language with higher order
functions, then the applications come back again: arrow types must be interpreted as
sets of function values, that is, as sets of well-typed closed lambda abstractions, and
applications may occur in the body of these abstractions. Here is where XDuce stops
and it is the reason why it does not include arrow types.

A Circularity to Break. Introducing arrow types is problematic because it slips ap-
plications back again in the interpretation of types. However this does not mean that
we need a semantic interpretation for application, it just implies that we must define
how application is typed. In particular, since functional values are well-typed lambda
abstractions, then to interpret functional types we must be able to type the applications
that occur in the body of lambda abstractions. Now this is not an easy task in our con-
text: in the absence of higher order functions the set of values of type constructors such
as products or records can be inductively defined from basic types without resorting to
any typing relation (this is why the Hosoya Pierce approach works smoothly). With the
arrow type constructor, instead, this can be done only by using a typing relation which
yields to a circularity: in order to define the subtyping relation we need an interpretation
of the types of the language; for this we have to define which are the values of an arrow
type; this needs that we define the typing relation for applications, which in turns needs
the definition of the subtyping relation.

Thus, if we want to define the semantic subtyping of arrow types we must find a
way the avoid this circularity. The simplest way to avoid it is to break it. We already
said that to define set-theoretic subtyping we must have a model of types; it is also clear
that the typing relation must use subtyping; on the contrary it is not strictly necessary
for our model to be based on the interpretation of values, this is just convenient since it
ties the types with the language the types are intended for. This is therefore the weakest
link and we can break it. So the idea is to start from a model (of the types) defined
independently (but not too much) from the language the types are intended for (and
therefore independently from its values), and then from that define the rest: subtyping,
typing, set of values.

A Gentle Introduction to Semantic Subtyping 33

For a given type algebra and a language, the approach can be summarised as follows:

1. First, we define a notion of set-theoretic model of the type algebra. In such a model,
set-theoretic connectives in the type algebra (that is union, intersection, and nega-
tion) must be interpreted in a set-theoretic way. Also, the notion of model must
capture the essence of the type constructors, and in particular of the function types.
For instance, in [6, 5], we show that an extensional interpretation of functions as
binary relations is suitable for a language with overloaded functions and dynamic
type dispatch.

2. There might be several models, each of them induces a specific subtyping relation
on the type algebra. We only need to prove that there exists at least one model, and
to pick one, which we call the bootstrap model. In [6, 5], we exhibit a model with
an universal property: it induces the largest possible subtyping relation.

3. Now we have a (hopefully) suitable subtyping relation available, we can focus again
on the language itself and consider its typing rules (which depend on the subtyping
relation). The rich set-theoretic structure of models helps us to carry out the meta-
theoretic study of the system, and to prove easily classical properties such as the
transitivity of subtyping, subsumption elimination, and so on.

4. The typing judgement for the language produces a new natural set-theoretic inter-
pretation of types: a type t denotes the set of values of type t. This interpretation
induces a new subtyping relation, which might be different from the one we used
to define the type system. However, if the definition of the models and the typing
rules have been carefully chosen, then we can expect the two subtyping relations to
coincide. This is the case in [6, 5].

The last step is the most critical one. It consists in “closing the circle”: even if we have
used a detour to create a subtyping relation, in the end we obtain a consistent system
where types are interpreted as sets of values and subtyping is exactly set-inclusion of
types. The rest of the story is standard: we can define the operational semantics for
the language (we consider a language whose semantics is driven by types) and prove a
type preservation result by a classical syntactic argument. This proof requires a lot of
intermediate properties about the subtyping relation, which can be obtained easily using
the definition of model. Also, we can use set-theoretic reasoning to derive from this
definition an actual algorithm to compute the subtyping relation. As for the subtyping
relation, this algorithm obviously depends on the bootstrap model we have chosen.

In the full version [3] we show the details of this construction and hint at how it
can be applied to other type constructors such as product, lazy, reference, and channel
types.

References

1. A. Aiken and E. L. Wimmers. Type inclusion constraints and type inference. In Proc. of the
7th ACM Conference on Functional Programming and Computer Architecture, 1993.

2. V. Benzaken, G. Castagna, and A. Frisch. CDuce: an XML-friendly general purpose language.
In ICFP ’03, 8th ACM International Conference on Functional Programming, 2003.

3. G. Castagna and A. Frisch. A gentle introduction to semantic subtyping. In Proc. of PPDP
’05, the 7th ACM Symposium on Principles and Practice of Declarative Programming, 2005.

34 G. Castagna and A. Frisch

4. F. Damm. Subtyping with union types, intersection types and recursive types II. Research
Report 816, IRISA, 1994.

5. Alain Frisch. Théorie, conception et réalisation d’un langage de programmation fonctionnel
adapté à XML. PhD thesis, Université Paris 7, December 2004.

6. A. Frisch, G. Castagna, and V. Benzaken. Semantic Subtyping. In Proc. of LICS ’02, the 7th
Annual IEEE Symposium on Logic in Computer Science, pages 137–146, 2002.

7. H. Hosoya and B. Pierce. XDuce: A typed XML processing language. ACM Transactions on
Internet Technology, 3(2):117–148, 2003.

8. H. Hosoya. Regular Expression Types for XML. PhD thesis, University of Tokyo, 2001.
9. H. Hosoya and B. C. Pierce. Regular expression pattern matching for XML. In Proc. of

POPL ’01, the 25th Annual ACM Symposium on Principles of Programming Languages, 2001.

Logics for Unranked Trees: An Overview

Leonid Libkin�

University of Toronto
libkin@cs.toronto.edu

Abstract. Labeled unranked trees are used as a model of XML documents, and
logical languages for them have been studied actively over the past several years.
Such logics have different purposes: some are better suited for extracting data,
some for expressing navigational properties, and some make it easy to relate
complex properties of trees to the existence of tree automata for those proper-
ties. Furthermore, logics differ significantly in their model-checking properties,
their automata models, and their behavior on ordered and unordered trees. In this
paper we present a survey of logics for unranked trees.

1 Introduction

Trees arise everywhere in computer science, and there are numerous formalisms in the
literature for describing and manipulating trees. Some of these formalisms are declar-
ative and based on logical specifications: for example, first-order logic, or monadic
second-order logic, or various temporal or fixed-point logics over trees. Others are pro-
cedural formalisms such as various flavors of tree automata, or tree transducers, or tree
grammars. All these formalisms have found numerous applications in verification, pro-
gram analysis, logic programming, constraint programming, linguistics, and databases.

Until recently, most logical formalisms for trees dealt with ranked trees [18, 58]: in
such trees, all nodes have the same fixed number of children (or, a bit more generally,
the number of children of a node is determined by the label of that node). Over the past
several years, however, the focus has shifted towards unranked trees, in which there are
no restrictions on the number of children a node can have. Although unranked trees
have been considered in the 60s and 70s, and are related to feature trees over an infinite
set of features that have been investigated by computational linguists, their systematic
study was initiated by the development of XML (eXtensible Markup Language). XML
is a data format which has become the lingua franca for information exchange on the
world wide web. XML data is typically modeled as labeled unranked trees [42].

This connection has led to a renewed interest in logical and procedural formalisms
for unranked trees: one uses logical formalisms for expressing declarative queries, and
procedural formalisms for evaluating them. Logics over unranked trees appeared in
large numbers over the past 7–8 years, and they come in many flavors in shapes. Com-
mon to them is a close connection to automata models, and quite often to temporal and
modal logics, especially when one describes properties of paths through a document.

� Complete version of this survey can be found at www.cs.toronto.edu/˜libkin/publ.html.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 35–50, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

36 L. Libkin

Let us now review some of the parameters according to which logics for unranked
trees can be classified.

The yardstick logic. Most formalisms are “inspired” by either first-order logic (FO), or
monadic second-order logic (MSO) that extends FO by quantification over sets. Query
languages and schema formalisms for XML tend to use MSO as the yardstick: for ex-
ample, XML DTDs are (almost) equivalent to MSO sentences, and various language
for extraction of data from XML documents have the power of MSO unary queries.
On the other hand, navigational aspects of XML, in particular, logics capturing various
fragments of XPath, are usually related to FO and its fragments.

Arity of queries. Most commonly one considers Boolean or unary queries. Boolean
queries evaluate to true or false. Checking if an XML document conforms to a schema
specification is represented by a Boolean query. Unary queries correspond to formulae
in one free variable, and thus produce a set of nodes. E.g., extracting sets of nodes, or
evaluating XPath expressions relative to the root naturally give rise to unary queries.

Complexity of model-checking. The model-checking problem asks whether a tree T sat-
isfies a logical sentence ϕ. If ϕ is an MSO sentence ϕ, it can be evaluated in linear time
in the size of T , by converting to a tree automaton. But there is a price to pay: in terms
of the size of ϕ, the complexity becomes non-elementary. This type of trade-offs is one
of the central issues in dealing with logics over trees.

Ordered vs. unordered trees. In unranked XML trees, children of the same node are or-
dered by a sibling ordering. If such an order is present, we speak of ordered unranked
trees. In many cases, however, this ordering is irrelevant, and some models, such as
feature trees, do not impose any ordering on siblings. There is considerable difference
between the expressiveness of logics and automata models depending on the availabil-
ity of sibling ordering. The presence of ordering also affects the yardstick logic, since
without order often counting is needed to match the power of automata models [19].

The paper is organized as follows. After we give basic definitions in Section 2, we
review logics for ordered trees in Section 3. We start with MSO-related logics, including
syntactic restrictions of MSO, a datalog-based logic, and the μ-calculus. We then turn
to FO-related logics, present analogs of LTL and CTL� that have been studied for
expressing navigational properties, and also look at conjunctive queries over trees. In
Section 4 we turn to trees that lack the sibling ordering, and show that in many logics
some form of counting needs to be added to compensate for the missing ordering. In
Section 5 we look at the model-theoretic approach in the spirit of automatic structures.

2 Trees, Logics, and Automata

Tree domains, trees, and operations on trees. Nodes in unranked trees are elements of
N∗ – that is, finite strings whose letters are natural numbers. A string s = n0n1 . . .
defines a path from the root to a give node: one goes to the n0th child of the root, then
to the n1th child, etc. We write s1 · s2 for the concatenation of strings s1 and s2.

We need some basic binary relations on N∗ – the child and next-sibling relations:

s ≺ch s′ ⇔ s′ = s · i for some i ∈ N;
s ≺ns s′ ⇔ s = s0 · i and s′ = s0 · (i + 1) for some s0 ∈ N∗ and i ∈ N.

Logics for Unranked Trees: An Overview 37

We also use the first child relation: s ≺fc s · 0. We shall use ∗ to denote the reflexive-
transitive closure of a relation. Thus, ≺∗

ch is the descendant relation (including self),
and ≺∗

ns is a linear ordering on siblings.

Definition 1 (Tree domain). A tree domain D is a finite prefix-closed subset of N∗ (i.e.,
if s ∈ D and s′ is a prefix of s, then s′ ∈ D) such that s · i ∈ D implies s · j ∈ D for
all j < i.

Let Σ be a finite alphabet.

Definition 2 (Σ-trees). An ordered unranked Σ-labeled tree T is a structure

T = 〈D,≺∗
ch,≺∗

ns, (Pa)a∈Σ〉,

where D is a tree domain, ≺∗
ch and ≺∗

ns are the descendant relation and the sibling
ordering, and Pa’s are interpreted as disjoint sets whose union is the entire domain D.

An unordered unranked tree is defined as a structure 〈D,≺∗
ch, (Pa)a∈Σ〉.

Thus, a tree consists of a tree domain together with a labeling on its nodes: if s ∈ Pa,
then the label of s is a. In this case we write λT (s) = a.

First-order and Monadic Second-Order Logic. We only consider relational vocabular-
ies: finite lists (R1, . . . , Rm) of relation symbols, each Ri with an associated arity ni.
Over trees, relation symbols are binary (e.g., ≺ch,≺ns,≺∗

ch) or unary (Pa’s for a ∈ Σ).
Formulae of first-order logic (FO) are built from atomic formulae x = x′, and R(x̄),

where x, x′ are variables, and x̄ is a tuple of variables, using the Boolean connectives
∨,∧,¬ and quantifiers ∃ and ∀. If a formula ϕ has free variables x̄, we shall write ϕ(x̄).

Formulae of monadic second-order logic (MSO) in addition allow quantification
over sets. We shall normally denote sets of nodes by upper case letters. Thus, MSO
formulae have the usual first-order quantifiers ∃xϕ and ∀xϕ as well as second-order
quantifiers ∃Xϕ and ∀Xϕ, and new atomic formulae X(x), where X is a second-order
variable and x is a first-order variable. An MSO formula may have both free first-order
and second-order variables. If it only has free first-order variables, then it defines a
relation on the universe of the structure.

Note that relations ≺ch and ≺ns are definable, in FO, from ≺∗
ch and ≺∗

ns. In MSO
one can define ≺∗

ch from ≺ch; however, it is well-known that in FO this is not possible.
This is why we chose ≺∗

ch and ≺∗
ns, rather than ≺ch and ≺ns, as our basic relations.

Definition 3 (Definability in logic). Given a logic L, we say that a set of trees T is
definable in L if there is a sentence ϕ of L such that T ∈ T iff T |= ϕ. We say that
a unary query Q (that selects nodes from trees) is definable in L if there is a formula
ψ(x) of L such that s ∈ Q(T) iff T |= ψ(s), for every tree T and a node s in T .

Unranked Tree Automata. An nondeterministic unranked tree automaton, NUTA [56,
9], over Σ-labeled trees is a tripleA = (Q,F, δ) where Q is a finite set of states, F ⊆ Q
is the set of final states, and δ is a mapping Q×Σ → 2Q∗

such that δ(q, a) is a regular
language over Q (normally represented by a regular expression over Q). A run of A
on a tree T with domain D is a function ρA : D → Q such that, if s is a node with n
children, and it is labeled a, then the string ρA(s ·0) · · · ρA(s ·(n−1)) is in δ(ρA(s), a).

38 L. Libkin

In particular, if s is a leaf labeled a, then ρA(s) = q implies that ε ∈ δ(q, a). A run
is accepting if ρA(ε) ∈ F , that is, the root is in an accepting state. A tree T is accepted
by A if there exists an accepting run. We let L(A) denote the set of all trees accepted
by A. Such sets of trees will be called regular.

Binary trees and translations. A binary tree domain is a prefix-closed subset D of {0, 1}∗
such that if s · i ∈ D, then s · (1 − i) ∈ D (that is, a node is either a leaf, or both its
children are in D). A (binary) nondeterministic tree automaton, NTA, is a quadruple
Ab = (Q, q0, F, δ) where Q and F are as before, q0 is the initial state, and δ is a func-
tion Q×Q×Σ → 2Q. A run ρAb

on a binary tree T with domain D is a function from
D to Q such that if s is a leaf labeled a, then ρAb

(s) ∈ δ(q0, q0, a), and if s · 0, s · 1
belong to D, and s is labeled a, then ρAb

(s) ∈ δ(ρAb
(s · 0), ρAb

(s · 1), a). A run is
accepting if ρAb

(ε) ∈ F , and L(Ab) is the set of all binary trees for which there exists
an accepting run. Such sets are called regular.

There is a well-known regularity-preserving translation between ranked and un-
ranked trees. It was used in [49] to show decidability of SωS (but here we shall apply it
only to finite tree domains). The idea of the translation is that the first successor in the
binary tree corresponds to the first child, and the second successor to the next sibling.
More precisely, we define a mapping R : N∗ → {0, 1}∗ such that R(ε) = ε, and if
R(s) = s′, where s = s0 · i, then R(s · 0) = s′ · 0 and R(s0 · (i + 1)) = s′ · 1. If D
is an unranked tree domain, we let R(D) be {R(s) | s ∈ D} together with R(s) · 1
if s is a non-leaf last child, and R(s) · 0 if s a leaf, other than the last sibling (these
additions ensure that R(D) is a binary tree domain). We define R(T) to be a tree with
domainR(D), whereR(s) has the same label as s, and the added nodes are labeled by
a symbol ⊥ �∈ Σ. The following is a folklore result.

Lemma 1. For every NUTA A, there is an NTA Ab such that L(Ab) = {R(T) | T ∈
L(A)}, and for every NTA Ab there is an NUTA A such that the above holds.

3 Ordered Trees

In this section we only deal with ordered unranked trees. We first survey MSO-based
logics, and then move to FO-based ones.

3.1 MSO and Its Relatives

As we mentioned already, MSO is often used as a yardstick logic for trees, because of
its close connection to regular languages. The following result belonged to folklore, and
was explicitly stated in [41].

Theorem 1. A set of unranked trees is regular iff it is definable in MSO.

When one considers binary trees, this result says that regular sets of binary trees are
precisely those MSO-definable, and if we look at strings, which may be viewed as trees
without branching, we obtain that regular languages are precisely those MSO-definable.
Of course these are well-known results by Büchi [10], and Thatcher, Wright [57].

There is also a close connection between automata, MSO, and a formalism for
describing XML schemas, called DTDs (which are essentially extended context-free

Logics for Unranked Trees: An Overview 39

grammars). A DTD d over an alphabet Σ is a collection of rules a→ ea, where a ∈ Σ
and ea is a regular expression over Σ. We shall assume there is at most one such rule
for each a ∈ Σ. A Σ-labeled tree T satisfies d, if for each node s of T with n children,
and λT (s) = a, the string λT (s ·0) · · ·λT (s · (n−1)) is in the language denoted by ea.

Each DTD is easily definable by an unranked tree automaton: in fact its states just
correspond to labels of nodes. This, however, is too restrictive to capture full definability
in MSO, but a slight extension of DTDs does precisely that. An extended DTD over Σ
is a triple (Σ′, d′, g) where Σ′ ⊇ Σ, with g being a mapping g : Σ′ �→ Σ, and d′ is
a DTD over Σ′. A Σ-labeled tree T satisfies (Σ′, d′, g) if there is a Σ′-labeled tree T ′

that satisfies d′ such that T = g(T ′). The following was established in [56].

Proposition 1. A set of unranked trees is MSO definable iff it is the set of all trees
satisfying some extended DTD (Σ′, d′, g).

Theorem 1 talks about MSO sentences, but it can be extended to unary MSO queries
using the concept of query automata [44]. A (nondeterministic) query automaton over
unranked Σ-labeled trees is a quadruple QA = (Q,F, δ, S) where A = (Q,F, δ) is an
UNTA, and S is a subset of Q×Σ. Such a query automaton defines a unary queryQQA
that selects nodes s in T such that (ρA(s), λT (s)) ∈ S for some accepting run ρA.

Theorem 2. (see [44, 41, 24]) A unary queryQ on unranked trees is MSO-definable iff
it is of the form QQA for some query automaton.

One can also define the semantics universally ((ρA(s), λT (s)) ∈ S for all accept-
ing runs) and the result still holds. Query automata have a deterministic counterpart;
however, in the deterministic version, two passes over the tree are required; see [44].

Theorems 1 and 2 are constructive. In particular, every MSO sentence ϕ can be
effectively transformed into an automaton Aϕ that accepts a tree T iff T |= ϕ. Since
tree automata can be determinized, this gives us a O(‖T‖) algorithm to check whether
T |= ϕ, if ϕ is fixed1. However, it is well-known that the size of Aϕ (even for string
automata) cannot be bounded by an elementary function in ‖ϕ‖ [55]. An even stronger
result of [23] says that there could be no algorithm for checking whether T |= ϕ that
runs in time O(f(‖ϕ‖) · ‖T‖), where f is an elementary function, unless PTIME=NP.

Nonetheless, these results do not rule out the existence of a logic L that has the
same power as MSO and yet permits faster model-checking algorithms. Even looking
at a simpler case of FO on strings, where results of [23] also rule out O(f(‖ϕ‖) · |s|)
algorithms for checking if a string s satisfies ϕ, with f being an elementary function,
the logic LTL (linear-time temporal logic) has the same expressiveness as FO [33] and
admits model-checking algorithm with running time 2O(‖ϕ‖) · |s|.
Logic ETL. The first logic for unranked trees that has the power of MSO and model-
checking complexity matching that of LTL appeared in [43] and was called ETL (ef-
ficient tree logic). It was obtained by putting syntactic restrictions on MSO formulae,
and at the same time adding new constructors for formulae, which are not present in
MSO, but are MSO-definable.

1 We use the notation ‖T‖, ‖ϕ‖ to denote the sizes of natural encodings of trees and formulae.

40 L. Libkin

The atomic formulae of ETL are the same as for MSO, except that we are allowed
to use both ≺ch and ≺∗

ch and are not allowed to use the next-sibling relation ≺∗
ns. ETL

is closed under Boolean combinations (which are required to be in DNF), guarded
quantification, and path formulae. The rules for guarded quantification are:

– if ϕ(x, y,X) is an ETL formula, then ∃y (x ≺ch y ∧ ϕ) and ∃y (x ≺∗
ch y ∧ ϕ) are

ETL formulae;
– if ϕ(x,X) is an ETL formula, then ∃X (x ≺∗

ch X ∧ ϕ) is an ETL formula. Here
x ≺∗

ch X means that X only contains descendants of x. In this case ϕ cannot
contain vertical path formulae (defined below).

Path formulae are defined as follows:

– if e is a regular expression over ETL formulae ψ(u, v), then e↓(x, y) is a (verti-
cal path) ETL formula. The semantics is as follows: T |= e↓(s, s′) if there is a
child-relation path s = s0, s1, . . . , sn = s′ in T and a sequence of ETL formulae
ψi(u, v), i ≤ n − 1, such that T |= ψi(si, si+1) for each i ≤ n − 1, and the
sequence ψ0 . . . ψn−1 matches e.

– if e is a regular expression over ETL formulae ψ(u, X̄), then e→(x, X̄) is a (hori-
zontal path) ETL formula. Then T |= e→(s, X̄) if children s · i, i ≤ k of s can be
labeled with ETL formulae ψi(u, X̄) such that T |= ψi(s · i, X̄) for all i, and the
sequence ψ0 . . . ψk matches e.

Theorem 3. (see [43]) With respect to Boolean and unary queries, ETL and MSO are
equally expressive. Furthermore, each ETL formula ϕ can be evaluated on a tree T in
time 2O(‖ϕ‖) · ‖T‖.

Monadic datalog. Another approach to obtaining the full power of MSO while keeping
the complexity low is based on database query language datalog (cf. [1]). A datalog
program is a sequence of rules H:–P1, . . . , Pk where H and all Pi’s are atomic formu-
lae. The predicate H is called the head of the rule, and every variable that appears in H
is required to appear in one of the Pi’s. Given a datalog program P , predicates which
appear as a head of some rule are called intensional, and other predicates are called
extensional. If all intensional predicates are monadic (of the form H(x)), then P is a
monadic datalog program. The semantics is a standard fixed-point semantics, see, e.g.,
[1]. An intensional unary predicate of a program P defines a unary query.

For extensional predicates, we shall need Leaf, LastChild, and Root. Given a tree
domain D, they are interpreted as Leaf = {s ∈ D | ¬∃s′ ∈ D : s ≺ch s′}, LastChild =
{s · i ∈ D | s · (i + 1) �∈ D} and Root = {ε}.

Theorem 4. (see [25]) A unary query over unranked trees is definable in MSO iff it
is definable in monadic datalog over extensional predicates ≺fc, ≺ns, Leaf, LastChild,
Root, and Pa, a ∈ Σ. Furthermore, each monadic datalog query (P,H) can be evalu-
ated on a tree T in time O(‖P‖ · ‖T‖).

μ-calculus. Yet another way of getting a logic equivalent to MSO is suggested by a
close connection between MSO and the modal μ-calculus Lμ on ranked trees, which
can easily be extended to the unranked case by using the connection between ranked

Logics for Unranked Trees: An Overview 41

and unranked trees. It was shown in [22, 47] that every property of infinite binary trees
definable in MSO is also be definable in Lμ. To deal with unranked trees, we shall define
Lμ over Σ-labeled structures that have several binary relations E1, . . . , Em, cf. [2].
Formulae of Lμ[E1, . . . , Em] are given by

ϕ := a (a ∈ Σ) | X | ϕ ∨ ϕ | ¬ϕ | �(Ei)ϕ | μX ϕ(X),

where in μX ϕ(X), the variable X must occur positively in ϕ. Given a tree T with
domain D, s ∈ D, and a valuation v for free variables (each v(X) is a subset of D), we
define the semantics (omitting the rules for letters a ∈ Σ and Boolean connectives) by

– (T, v, s) |= X iff s ∈ v(X).
– (T, v, s) |= �(Er)ϕ iff (T, v, s′) |= ϕ for some s′ with (s, s′) ∈ Er.
– (T, v, s) |= μX ϕ(X) iff s is in the least fixed point of the operator defined by ϕ.

An Lμ formula ϕ without free variables naturally defines a unary query on trees ({s |
(T, s) |= ϕ}) and a Boolean query on trees (by checking if (T, ε) |= ϕ).

Using the translation into ranked trees, it is easy to show (see [3]):

Proposition 2. The class of Boolean MSO queries on unranked trees is precisely the
class of Boolean queries defined by Lμ[≺fc,≺ns].

It is also possible to characterize unary MSO queries over unranked trees in terms
of the full μ-calculus Lfull

μ (cf. [59]) which adds backward modalities �(E−
i)ϕ with the

semantics (T, s) |= �(E−
i)ϕ iff (T, s′) |= ϕ for some s′ such that (s′, s) ∈ Ei.

Proposition 3. (see [3]) The class of unary MSO queries on unranked trees is precisely
the class of queries defined by Lfull

μ [≺ch,≺ns].

3.2 FO and Its Relatives

While much is known about FO on both finite and infinite strings, it has not been as
extensively studied for trees until recently. Recall that over strings – which we can
view as trees with only unary branching – FO defines precisely the star-free languages
(cf. [58]), and over both finite and infinite strings FO has exactly the power of LTL [33].

In contrast, the natural analog of star-free expressions over binary trees captures
not FO but MSO [48]. One well-known equivalent logical description of FO on binary
trees is Hafer-Thomas’s theorem [31] stating that over finite binary trees, FO = CTL�

(CTL� is a branching time temporal logic widely used in verification, cf. [16], and it
will be defined shortly). Actually, the result of [31] shows that CTL� is equivalent to
MSO with second-order quantification over paths only, but over finite trees this frag-
ment of MSO is equivalent to FO.

The interest in logics over unranked trees whose power is equal to or subsumed by
that of FO stems from the fact that navigational features of XPath can be described in
FO. XPath [17] is a W3C standard for describing paths in XML documents. Thus, it is
very natural to look for connections between XPath, FO on trees, and temporal logics,
which are designed to talk about properties of paths.

Logics introduced in the context of studying XPath, and more generally, naviga-
tional properties of XML documents, can be roughly subdivided into two groups. Firstly,
one may try to establish analogs of Kamp’s theorem (stating that FO = LTL over

42 L. Libkin

strings) for trees. Secondly, one can try extended Hafer-Thomas’s theorem (the equiva-
lence FO = CTL�) from binary to unranked trees.

XPath and Temporal Logics. First, recall the syntax of LTL over alphabet Σ:

ϕ,ϕ′ := a, a ∈ Σ | ϕ ∨ ϕ′ | ¬ϕ | Xϕ | X−ϕ | ϕUϕ′ | ϕSϕ′.

Formulae of LTL are interpreted over finite or infinite strings over Σ. Given a string
s = a0a1 . . ., the semantics is as follows: (s, i) |= a iff ai = a, (s, i) |= Xϕ (“next”
ϕ) iff (s, i + 1) |= ϕ; (s, i) |= X−ϕ iff (s, i − 1) |= ϕ; (s, i) |= ϕUϕ′ (ϕ “until” ϕ′)
if there exists j ≥ i such that (s, j) |= ϕ′ and (s, k) |= ϕ for all i ≤ k < j, and the
semantics of the dual ϕSϕ (ϕ “since” ϕ′) is that there exists j ≤ i such that (s, j) |= ϕ′

and (s, k) |= ϕ for all j < k ≤ i. (Note: it is possible to avoid X and X− by defining a
strict semantics for U and S, without requiring ϕ to be true in (s, i)).

A logic TLtree (tree temporal logic) is a minor extension of LTL:

ϕ,ϕ′ := a, a ∈ Σ | ϕ ∨ ϕ′ | ¬ϕ | X∗ϕ | X−
∗ ϕ | ϕU∗ϕ

′ | ϕS∗ϕ
′,

where ∗ is either ’ch’ (child) or ’ns’ (next sibling). We define the semantics with respect
to a tree and a node in a tree: (T, s) |= a iff λT (s) = a; (T, s) |= Xchϕ if (T, s · i) |= ϕ
for some i; (T, s) |= X−

chϕ if (T, s′) |= ϕ for the node s′ such that s′ ≺ch s; (T, s) |=
ϕUchϕ

′ if there is a node s′ such that s ≺∗
ch s′, (T, s′) |= ϕ′, and for all s′′ �= s′

satisfying s ≺∗
ch s′′ ≺∗

ch s′ we have (T, s′′) |= ϕ. The semantics of Sch is defined by
reversing the order in the semantics of Uch, and the semantics of Xns,X−

ns,Uns, and Sns

is the same by replacing the child relation with the next sibling relation.
As Lμ, the logic TLtree naturally defines unary and Boolean queries on trees.

Theorem 5. (see [38]) A unary or Boolean query over unranked trees is definable in
FO iff it is definable in TLtree.

In both CTL� and XPath formalisms there are two kinds of formulae: those eval-
uated in nodes of trees, and those evaluated on paths in trees (these are state and path
formulae of CTL� and filter and location path expressions of XPath).

We now look at XPath-inspired logics, and present them using a slight modification
of the syntax that keeps all the main XPath constructions and yet makes the connection
with temporal logics more visible. The language CXPath [38] (Conditional XPath) is
defined to have node formulae α and path formulae β given by:

α, α′ := a, a ∈ Σ | ¬α | α ∨ α′ | Eβ
β, β′ := ?α | step | (step/?α)+ | β/β′ | β ∨ β′

where step is one of the following: ≺ch, ≺−
ch, ≺ns, or ≺−

ns. Intuitively Eβ states the
existence of a path starting in a given node and satisfying β, ?α tests if α is true in the
initial node of a path, and / is the composition of paths.

Formally, given a tree T , we evaluate each node formula in a node s, and each path
formula in a pair of nodes (s, s′). The main semantic rules are:

– (T, s) |= Eβ iff there is s′ such that (T, s, s′) |= β;
– (T, s, s′) |=?α iff s = s′ and (T, s) |= α;

Logics for Unranked Trees: An Overview 43

– (T, s, s′) |= step iff (s, s′) ∈ step;
– (T, s, s′) |= β/β′ iff for some s′′ we have (T, s, s′′) |= β and (T, s′′, s′) |= β′;
– (T, s, s′) |= (step/?α)+ if there exists a sequence of nodes s = s0, s1, . . . , sk =

s′, k > 0, such that each (si, si+1) is in step, and (T, si+1) |= α for each i < k.

The language Core XPath [26] is obtained by only allowing step+ as opposed to
(step/?α)+ in the definition of path formulae. Notice that since step+ = (step/?true),
where true =

∨
a∈Σ a, we have Core XPath ⊆ CXPath.

Core XPath corresponds to XPath as defined by W3C [17], while CXPath represents
an addition to XPath proposed by [38]. Node formulae of either CXPath or Core XPath
naturally define unary queries on trees. These can be characterized as follows.

Theorem 6. a) (see [38]) The node formulae of CXPath have precisely the power of
FO unary queries.

b) (see [39]) The node formulae of Core XPath have precisely the power of unary
FO2 queries (that is, FO with two variables) in the vocabulary ≺ch,≺∗

ch,≺ns,≺∗
ns.

A CTL�-Like Logic. CTL� is a branching time temporal logic used in verification of
reactive systems. Here we define it with past connectives, using the syntax close to that
of [35]. In CTL�, one also has node (normally called state) formulae and path formulae,
but path formulae are evaluated on paths, not on arbitrary pairs of nodes.

We define CTL�
past node formulae α, and child and sibling path formulae β∗, for ∗

being ’ch’ or ’ns’, as follows:

α, α′ := a (a ∈ Σ) | ¬α | α ∨ α′ | Eβch | Eβns

β∗, β
′
∗ := α | ¬β∗ | β∗ ∨ β′

∗ | X∗β∗ | X−
∗ β∗ | β∗U∗β

′
∗ | β∗S∗β

′
∗

The semantics is standard and omitted here. The following can be seen as an analog of
the equivalence FO = CTL� for finite binary trees [31].

Theorem 7. (see [3]) A unary or Boolean query over unranked trees is definable in FO
iff it is definable in CTL�

past.

Conjunctive Queries Over Unranked Trees. Conjunctive queries are a very important
class of database queries: they correspond to the ∃,∧-fragment of FO. These are the
same queries that can be expressed by selection, projection, and join in relational al-
gebra, and thus they form the core of database queries. The complexity of evaluating a
conjunctive query ϕ over a database D is in NP, in terms of both the size of ϕ and the
size of D. In fact, the problem is NP-hard, and there has been a large body of work on
classifying tractable cases (see, e.g., [28, 30]).

In the case of unranked trees, conjunctive queries are formulae of the form ϕ(x̄) =
∃ȳ R1 ∧ . . . ∧ Rk, where each Ri is either Pa(z) or z ≺ z′, where z, z′ are variables
among x̄, ȳ, and ≺ is one of ≺ch,≺∗

ch, ≺ns, or ≺∗
ns. We write CQ(≺1, . . . ,≺m) to de-

note the class of conjunctive queries over unranked trees in which only unary predicates
Pa and binary predicates among ≺i can be used.

Theorem 8. (see [27]) The maximal tractable classes of queries CQ(≺1, . . . ,≺m),
where all≺i’s are among {≺ch,≺∗

ch,≺ns,≺∗
ns}, are CQ(≺ch,≺ns,≺∗

ns) and CQ(≺∗
ch);

all others are NP-hard.

44 L. Libkin

4 Unordered Trees

In unordered trees, nodes can still have arbitrarily many children, but the sibling order-
ing≺ns is no longer available. Logics considered for unordered unranked trees typically
introduce some form of counting, see [3, 19, 20, 21, 40, 46, 51, 53, 54].

An explanation for this comes from a modified notion of automata for unordered
unranked trees. A counting nondeterministic unranked tree automaton is a tuple Ac =
(Q,F, δ), where Q is a set of states, and F ⊆ Q is a set of final states. Let VQ be the
set of variables {vk

q | q ∈ Q, k > 0}. Then the transition function δ maps each pair
(q, a) ∈ Q × Σ into a Boolean function over VQ. A run of A on an unordered tree T
with domain D is a mapping ρAc

: D → Q such that if ρAc
(s) = q for a node s labeled

a, then the value of δ(q, a) is 1, where each variable vk
qi

is set to 1 if s has at least k
children s′ with ρAc

(s′) = qi, and to 0 otherwise. A run is accepting if ρAc
(ε) ∈ F ,

and the set of unordered trees accepted by Ac is denoted by Lu(Ac).
A counting query automaton QAc is defined as (Q,F, δ, S) where S ⊆ Q × Σ; it

selects nodes s in a run ρ where (ρAc
(s), λT (s)) ∈ S. The following appears not to

have been stated explicitly, although it follows easily from results in [41, 44, 53].

Theorem 9. a) A set of unordered unranked trees is MSO-definable iff it is of the form
Lu(Ac) for a counting nondeterministic unranked tree automaton Ac.

b) A unary query over unordered unranked trees is MSO-definable iff it is definable
by a counting query automaton QAc.

MSO and FO Over Unordered Trees. Define the counting μ-calculus Cμ (cf. [32]) as an
extension of Lμ with formulae �≥k(E)ϕ. The semantics of (T, s) |= �≥k(E)ϕ is as
follows: there exist distinct elements s1, . . . , sk such that (s, si) ∈ E and (T, si) |= ϕ
for every 1 ≤ i ≤ k. The next result follows from [60], as was noticed in [32]:

Theorem 10. Over unordered unranked trees, MSO and Cμ[≺ch] have precisely the
same power with respect to Boolean queries.

For first-order logic, counting extensions of both the temporal logic TLtree and
CTL� give us analogs of Kamp’s and Hafer-Thomas’s theorems. Define TLtree

count as a
version of TLtree in which only modalities for the child relation are used, but in addition
we have formulae Xk

chϕ, with the semantics that (T, s) |= Xk
chϕ iff there are at least k

children s′ of s such that (T, s′) |= ϕ.
We also extend CTL� to a logic CTL�

count in which we have new state formulae
EXk

chα, where α is a state formula, with the same semantics as above.

Theorem 11. (see [40, 51]) Over unordered unranked trees, the classes of Boolean
queries expressed in FO, TLtree

count, and CTL�
count over binary relation≺ch, are the same.

For unary queries, the equivalence FO = TLtree
count still holds [51], and FO can be

shown to be equivalent to an extension of CTL� with both counting and the past [3].

Extensions and More Powerful Counting. Consider now a scenario in which we deal
with unordered trees, but in our formulae we can refer to some arbitrary ordering on
siblings: after all, in any encoding of a tree, siblings will come in some order. Of course

Logics for Unranked Trees: An Overview 45

we do not want any particular order to affect the truth value, so we want our formulae,
even if they use an ordering, to be independent of a particular ordering that was used.

This is the standard setting of order-invariance, an important concept in finite model
theory, cf. [36]. We say that an MSO sentence ϕ over vocabulary including≺∗

ch and≺∗
ns

is≺ns-invariant if for every unordered tree T and every two expansions T≺1
ns and T≺2

ns

with sibling-orderings ≺1
ns and ≺2

ns we have T≺1
ns |= ϕ⇔ T≺2

ns |= ϕ. A ≺ns-invariant
sentence defines a Boolean query on unordered trees.

We now define MSOmod [19] as an extension of MSO with modulo quantifiers: for
each set variable X , and k > 1, we have set new formulae Qk(X) which are true iff the
cardinality of X is congruent to 0 modulo k.

Theorem 12. (see [20]) Over unordered unranked trees,≺ns-invariant Boolean queries
are precisely the Boolean queries definable in MSOmod.

Further extensions in terms of arithmetic power have been considered [53, 54]. Re-
call that Presburger arithmetic refers to the FO theory of the structure 〈N,+〉. Define
Presburger MSO, or PMSO, as an extension of MSO over unordered trees with the
following rule: if ϕ(x̄, y, X̄) is a PMSO formula and α(v̄) a Presburger arithmetic
formula with |X̄| = |v̄| = n, then [ϕ/α](x̄, y, X̄) is a PMSO formula. Given valu-
ation s̄, s0, S̄ for free variables, with S̄ = (S1, . . . , Sn), let mi be the cardinality of
{s′ | s0 ≺ch s′ and s′ ∈ Si}. Then [ϕ/α](s̄, s0, S̄) is true iff α(m1, . . . ,mn) is true.

It is easy to see that MSO � MSOmod � PMSO over unordered trees. Still, PMSO
is captured by a decidable automaton model.

Define Presburger unordered tree automata just as counting automata except that δ
maps pairs from Q × Σ into Presburger formulae over vq, for q ∈ Q. We interpret vq

as the number of children in state q, and a transition is enabled if the corresponding
Presburger formula is true in this interpretation.

Theorem 13. (see [53]) Presburger unordered tree automata and PMSO are equiva-
lent. Furthermore, both emptiness and universality are decidable for Presburger un-
ordered tree automata.

Further extensions with counting have been considered for fixed-point logics [54]
and the μ-calculus with modulo-quantifiers [3].

Edge-Labeled Unordered Trees. There are several areas where edge-labeled trees play
a prominent and role, and traditionally logical formalisms have been designed for such
data. For example, there are feature logics, used extensively in computational linguistics
[15], or spatial logics used for describing networks and mobile agents [14]: in both cases
one deals with unordered edge-labeled trees.

In the setting of feature trees, one has an infinite set of features F , and in an un-
ordered unranked tree every edge is labeled by an element f ∈ F such that each node
s has at most one outgoing edge labeled f for each f ∈ F . Furthermore, nodes may be
labeled by elements of some alphabet Σ, as before. It is thus natural to model feature
trees as structures 〈D, (Ef)f∈F , (Pa)a∈Σ〉 such that the union of all Ef ’s forms the
child relation of a tree, and no node has two outgoing Ef -edges. In the context of com-
putational linguistics, one commonly used [5] logic for feature trees is the propositional

46 L. Libkin

modal logic that, in the context of feature structures (not necessarily trees), is also often
supplemented with path-equivalence [50], as well as regular expressions [34].

Ambient logics are modal logics for trees that have been proposed in the context of
mobile computation [14] and later adapted for tree-represented data [12, 13]. One views
trees as edge-labeled and defines them by the grammar

T, T ′ := Λ | T |T ′ | a[T], a ∈ Σ,

with the equivalences that | is commutative and associative, and that T |Λ ≡ T . Here Λ
is the empty tree, | is the parallel composition, and a[T] adds an a-labeled edge on top of
T . If we extend≡ to a congruence in the natural way, then every tree is equivalent to one
of the form a1[T1]| . . . |am[Tm], which is viewed as a tree whose root has m outgoing
edges labeled a1, . . . , am, with subtrees rooted at its children being T1, . . . , Tm.

There were several similar logics proposed in [11, 12, 13, 14, 21]. Here we consider
the logic from [11] whose formulae are given by

ϕ,ϕ′ := ⊥ | Λ | ϕ ∧ ϕ′ | ¬ϕ | ϕ|ϕ′ | ϕ � ϕ′ | a[ϕ] | ϕ@a, a ∈ Σ.

The semantics is as follows: ⊥ is false; Λ is only true in a tree equivalent to Λ, T |=
ϕ1|ϕ2 iff T ≡ T1|T2 with Ti |= ϕi, i = 1, 2; T |= ϕ � ϕ′ if for every T ′ |= ϕ we have
T |T ′ |= ϕ′; T |= a[ϕ] iff T ≡ a[T ′] with T ′ |= ϕ, and T |= ϕ@a iff a[T] |= ϕ.

The study of ambient logics for trees took a different path compared to other logics
seen in this survey; in particular, the focus was on type systems for tree languages and
thus on proof systems for logics, rather than model-checking, its complexity, automata
models, and comparison with other logics.

However, the ambient logic above does not take us outside of the MSO expres-
siveness: this can be seen by going from edge-labeled trees to node-labeled ones. The
translation is simple: the label of each edge (x, y) becomes the label of y. The root will
have a special label Root that cannot occur as a label of any other node. The only mod-
ification in the logic is that now we have formulae Λa for a ∈ Σ, which are true in a
singleton-tree labeled a. The resulting logic is easily translated into MSO. For example,
ϕ|ϕ′ states that the children of the root can be partitioned into two sets, X and X ′, such
that the subtree that contains all the X-children satisfies ϕ and the subtree that contains
all the X ′-children satisfies ϕ′. For ϕ�ϕ′, one can consider ¬(ϕ�ϕ′) saying that there
exists a tree T ′ such that T ′ |= ϕ and T |T ′ |= ¬ϕ′, and use nondeterministic counting
automata to guess this tree T ′.

5 Automatic Structures

In this section we look at a different kind of logics for unranked trees, using the standard
approach of model theory. Let TREE(Σ) be the set of all Σ-labeled unranked trees.
We consider structures of the form M = 〈TREE(Σ), Ω〉 where Ω is a set of relation,
constant, and function symbols.

Let Defn(M) be the family of n-dimensional definable sets over M: that is, sets of
the form {T̄ ∈ TREE(Σ)n | M |= ϕ(T̄)}, where ϕ(x1, . . . , xn) is an FO formula in
the vocabulary Ω. We shall be looking at structures M so that definable sets would be

Logics for Unranked Trees: An Overview 47

relations definable in MSO or other logics. In particular, such relations will be given by
automata, and thus structures M of this kind are called automatic structures.

Following known automatic structures for strings [4, 6], we introduce several predi-
cates on trees: the extension predicate, node tests, and domain equality. For two trees T1

and T2 with domains D1 and D2, we say that T2 is an extension of T1, written T1 T2,
if D1 ⊆ D2, and the labeling function of T2 agrees with the labeling function of T1

on D1. It will actually be more convenient to work with two extension relations: ex-
tension on the right → and extension down ↓. For T1 → T2, we require that every
s ∈ D2 −D1 be of the form s′ · i when s′ · j ∈ D1 for some j < i. For T1 ↓ T2, we
require that every s ∈ D2 −D1 have a prefix s′ which is a leaf of T1. Define La to be
true in a tree T if the rightmost node is labeled a. Finally, T1 ≈dom T2 iff D1 = D2.

Now we have the following structures:

Tuniv = 〈TREE(Σ), →, ↓, (La)a∈Σ , ≈dom〉
T = 〈TREE(Σ), →, ↓, (La)a∈Σ〉

Theorem 14. (see [37]) a) For every n ≥ 1, Defn(Tuniv) is precisely the class of regu-
lar n-ary relations over TREE(Σ).

b) Def1(T) = Def1(Tuniv) is the class of regular unranked tree languages, but for
every n > 1, Defn(T) � Defn(Tuniv).

Working with Tuniv makes it easy to write rather complicated properties of tree lan-
guages, and then Theorem 14 implies that those languages are regular. For example,
if X ⊆ TREE(Σ) is regular, then the set of trees T such that all their extensions can
be extended on the right to a tree in X is regular. Indeed, this is easy to write in FO
over Tuniv, if we have a membership test for X , which is definable by Theorem 14.
Also, conversions from formulae to automata are effective for both T and Tuniv, which
implies decidability of their theories.

Other logics over unranked trees can be naturally represented over these structures:
for example, Boolean FO queries are precisely sets of trees definable over T if quantifi-
cation is restricted to single branches [37].

A Different View of Unranked Trees. We conclude by presenting a different view of un-
ranked trees and a different structure for them that makes it easy to talk about about their
extensions in which new children may be inserted between existing ones. For example,
if we have a tree T with domain D = {ε, 0, 1}, and we want to add more children of
the root, they would have to be added on the right, e.g, we may have an extension with
domain {ε, 0, 1, 2, 3}. But what if we want to add a child on the left of 0, and two chil-
dren between 1 and 2? Intuitively, we need a new tree domain {ε,−1, 0, 1

3 ,
2
3 , 1} then.

We now capture this situation and present a different automatic structure that makes it
easy to derive that certain relations on trees are regular.

A rational unranked tree domain is a finite prefix-closed subset of Q∗. Relation
≺∗

ch is defined for rational domains just as before, and relation ≺∗
ns is now given by

s · r ≺∗
ns s · r′ iff r ≤ r′. Then an unranked tree T over a rational unranked tree domain

is, as before, a structure T = 〈D,≺∗
ch,≺∗

ns, (Pa)a∈Σ〉.

48 L. Libkin

Let TREEQ(Σ) be the set of all unranked trees with rational unranked tree domains.
Note that different elements of TREEQ(Σ) may be isomorphic as trees; we denote this
isomorphism relation by ∼=.

Define the extension relation over trees in TREEQ(Σ) as before. A branch is
a tree T ∈ TREEQ(Σ) such that the set {T ′ | T ′ T} is linearly ordered by .
It follows from the definition of rational unranked tree domains that the domain of a
branch consists of all the prefixes of some string s ∈ Q∗. Let La(T) be true iff T is a
branch whose leaf is labeled a, and let T1 <lex T2 be true iff T1 and T2 are branches
with leaves s1 and s2, and s1 <lex s2. We then define the structure

TQ
univ = 〈TREEQ(Σ), , <lex, ≈dom, (La)a∈Σ〉.

Proposition 4. The structure TQ
univ is interpretable in Tuniv. Furthermore, there is a

definable subset of the image of TREEQ(Σ) that contains exactly one representative of
each ∼=-equivalence class.

That is, under the mapping ι : TREEQ(Σ)/ ∼=→ TREE(Σ), definable sets over
TQ

univ become precisely the regular tree languages. Hence, expressing properties of un-
ranked trees in first-order logic over TQ

univ allows us to conclude easily that certain tree
languages are regular, and thus MSO-definable.

6 Other Directions and Conclusions

We present very briefly some directions for future work (for more detailed discussion,
see the full version).

Among problems that need to be addressed are the following: (a) How does one
compare different logics over unranked trees? One way is in terms of their succinctness
[29]. (b) Connection between ambient logics and other logics presented there is not yet
adequately understood. (c) We do not know much about logics over string representa-
tions of trees (which occur naturally, for example, in streaming XML applications [52]).
(d) Nor do we know much about handling data values which are present in XML trees.
Some early results were reported in [45, 8], complemented recently by a nice decidabil-
ity result that works on strings with data values [7].

Acknowledgments. I am grateful to Cristiana Chitic, Christoph Koch, Maarten Marx,
Frank Neven, Joachim Niehren, Gerald Penn, Thomas Schwentick, and Luc Segoufin
for their comments.

References

1. S. Abiteboul, R. Hull, V. Vianu. Foundations of Databases, Addison Wesley, 1995.
2. A. Arnold, D. Niwinski. Rudiments of μ-calculus. Elsevier, 2001.
3. P. Barceló, L. Libkin. Temporal logics over unranked trees. In LICS’05.
4. M. Benedikt, L. Libkin, T. Schwentick, L. Segoufin. Definable relations and first-order query

languages over strings. J. ACM, 50 (2003), 694–751.

Logics for Unranked Trees: An Overview 49

5. P. Blackburn. Structures, languages and translations: the structural approach to feature logic.
In Constraints, Language and Computation, AP, 1994, pages 1–27.

6. A. Blumensath and E. Grädel. Automatic structures. In LICS’00, pages 51–62.
7. M. Bojanczyk, C. David, A. Muscholl, T. Schwentick, L. Segoufin. Two-variable logic on

words with data. 2005.
8. P. Bouyer, A. Petit, D. Thérien. An algebraic characterization of data and timed languages.

In CONCUR 2001, pages 248–261.
9. A. Brüggemann-Klein, M. Murata, and D. Wood. Regular tree and regular hedge languages

over unranked alphabets: Version 1, 2001. HKUST Tech. Report.
10. J.R. Büchi. Weak second-order arithmetic and finite automata. Zeit. Math. Logik

Grundl. Math. 6 (1960), 66–92.
11. C. Calcagno, L. Cardelli, A. Gordon. Deciding validity in a spatial logic for trees.

J. Funct. Progr., to appear.
12. L. Cardelli. Describing semistructured data. SIGMOD Record 30 (2001), 80–85.
13. L. Cardelli, G. Ghelli. A query language based on the ambient logic. In ESOP 2001, pages

1–22.
14. L. Cardelli, A. Gordon. Anytime, anywhere: Modal logics for mobile ambients. In POPL

2000, pages 365–377.
15. B. Carpenter. The Logic of Typed Feature Structures. Cambridge, 1992.
16. E. Clarke, O. Grumberg, and D. Peled. Model Checking. The MIT Press, 1999.
17. J. Clark and S. DeRose. XML Path Language (XPath). W3C Recommendation, Nov. 1999.

www.w3.org/TR/xpath.
18. H. Comon et al. Tree Automata: Techniques and Applications. Available at

www.grappa.univ-lille3.fr/tata. October 2002.
19. B. Courcelle. The monadic second-order logic of graphs I: Recognizable sets of finite graphs.

Inf.&Comput. 85 (1990), 12–75.
20. B. Courcelle. The monadic second-order logic of graphs V: On closing the gap between

definability and recognizability. TCS 80 (1991), 153–202.
21. S. Dal-Zilio, D. Lugiez, C. Meyssonnier. A logic you can count on. In POPL 2004, pages

135–146.
22. E. A. Emerson, C. Jutla. Tree automata, mu-calculus and determinacy. In FOCS 1991, pages

368–377.
23. M. Frick, M. Grohe. The complexity of first-order and monadic second-order logic revisited.

In LICS 2002, 215–224.
24. M. Frick, M. Grohe, C. Koch. Query evaluation on compressed trees. In LICS 2003, pages

188-197.
25. G. Gottlob, C. Koch. Monadic datalog and the expressive power of languages for web infor-

mation extraction. J. ACM 51 (2004), 74–113.
26. G. Gottlob, C. Koch, R. Pichler, and L. Segoufin. The complexity of XPath query evaluation

and XML typing. J. ACM, 2005, to appear.
27. G. Gottlob, C. Koch, K. Schulz. Conjunctive queries over trees. In PODS 2004, pages

189–200.
28. G. Gottlob, N. Leone, and F. Scarcello. The complexity of acyclic conjunctive queries. J.

ACM, 48 (2001), 431–498.
29. M. Grohe, N. Schweikardt. Comparing the succinctness of monadic query languages over

finite trees. In CSL 2003, pages 226–240.
30. M. Grohe, T. Schwentick, and L. Segoufin. When is the evaluation of conjunctive queries

tractable? In STOC 2001, pages 657–666.
31. T. Hafer, W. Thomas. Computation tree logic CTL* and path quantifiers in the monadic

theory of the binary tree. ICALP 1987, pages 269–279.

50 L. Libkin

32. D. Janin, G. Lenzi. Relating levels of the mu-calculus hierarchy and levels of the monadic
hierarchy. In LICS 2001, pages 347–356.

33. H.W. Kamp. Tense Logic and the Theory of Linear Order. PhD Thesis, UCLA, 1968.
34. B. Keller. Feature Logics, Infinitary Descriptions and Grammar. CSLI Press, 1993.
35. O. Kupferman, A. Pnueli. Once and for all. In LICS’95, pages 25–35.
36. L. Libkin. Elements of Finite Model Theory. Springer, 2004.
37. L. Libkin, F. Neven. Logical definability and query languages over unranked trees. In LICS

2003, pages 178–187.
38. M. Marx. Conditional XPath, the first order complete XPath dialect. In PODS 2004, pages

13–22.
39. M. Marx and M. de Rijke. Semantic characterizations of XPath. In TDM Workshop on XML

Databases and Information Retrieval, 2004.
40. F. Moller, A. Rabinovich. Counting on CTL*: on the expressive power of monadic path

logic. Information and Computation, 184 (2003), 147-159.
41. F. Neven. Design and Analysis of Query Languages for Structured Documents. PhD Thesis,

U. Limburg, 1999.
42. F. Neven. Automata, logic, and XML. In CSL 2002, pages 2–26.
43. F. Neven, Th. Schwentick. Expressive and efficient pattern languages for tree-structured

data. In PODS 2000, pages 145–156. Corrigendum at http://www.mathematik.uni-
marburg.de/̃ tick/

44. F. Neven, Th. Schwentick. Query automata over finite trees. Theor. Comput. Sci. 275 (2002),
633–674.

45. F. Neven, Th. Schwentick, V. Vianu. Towards regular languages over infinite alphabets. In
MFCS 2001, pages 560–572.

46. J. Niehren, A. Podelski. Feature automata and recognizable sets of feature trees. TAPSOFT
1993, pages 356–375.

47. D. Niwinski. Fixed points vs. infinite generation. In LICS 1988, pages 402–409.
48. A. Potthoff, W. Thomas. Regular tree languages without unary symbols are star-free. In FCT

1993, pages 396–405.
49. M. Rabin. Decidability of second-order theories and automata on infinite trees. Trans. AMS

141 (1969), 1–35.
50. W. C. Rounds, R. Kasper. A logical semantics for feature structures. In 24th Annual Meeting

of the Assoc. for Computational Linguistics, 1986, pages 257–266.
51. B.-H. Schlingloff. Expressive completeness of temporal logic of trees. Journal of Applied

Non-Classical Logics 2 (1992), 157–180.
52. L. Segoufin, V. Vianu. Validating streaming XML documents. In PODS 2002, pages 53–64.
53. H. Seidl, Th. Schwentick, A. Muscholl. Numerical document queries. In PODS 2003, 155–

166.
54. H. Seidl, Th. Schwentick, A. Muscholl, P. Habermehl. Counting in trees for free. In ICALP

2004, pages 1136–1149.
55. L. Stockmeyer and A. Meyer. Cosmological lower bound on the circuit complexity of a small

problem in logic. Journal of the ACM, 49 (2002), 753–784.
56. J.W. Thatcher. Characterizing derivation trees of context-free grammars through a general-

ization of finite automata theory. JCSS 1 (1967), 317–322.
57. J.W. Thatcher and J.B. Wright. Generalized finite automata theory with an application to a

decision problem of second-order logic. Mathematical Systems Theory, 2(1):57–81, 1968.
58. W. Thomas. Languages, automata, and logic. In Handbook of Formal Languages, Vol. 3,

Springer-Verlag, 1997.
59. M. Y. Vardi. Reasoning about the past with two-way automata. In ICALP 1998, pages

628–641.
60. I. Walukiewicz. Monadic second-order logic on tree-like structures. TCS 275 (2002), 311–

346.

Nash Equilibria, the Price of Anarchy and the Fully
Mixed Nash Equilibrium Conjecture�

Martin Gairing, Thomas Lücking,
Burkhard Monien, and Karsten Tiemann��

Department of Computer Science, Electrical Engineering and Mathematics,
University of Paderborn, Fürstenallee 11, 33102 Paderborn, Germany
{gairing, luck, bm, tiemann}@uni-paderborn.de

1 Introduction

Motivation-Framework. Apparently, it is in human’s nature to act selfishly. Game
Theory, founded by von Neumann and Morgenstern [39, 40], provides us with strategic
games, an important mathematical model to describe and analyze such a selfish behav-
ior and its resulting conflicts. In a strategic game, each of a finite set of players aims for
an optimal value of its private objective function by choosing either a pure strategy (a
single strategy) or a mixed strategy (a probability distribution over all pure strategies)
from its strategy set. Strategic games in which the strategy sets are finite are called fi-
nite strategic games. Each player chooses its strategy once and for all, and all players’
choices are made non-cooperatively and simultaneously (that is, when choosing a strat-
egy each player is not informed of the strategies chosen by any other player). One of the
basic assumption in strategic games is that the players act rational, that is, consistently
in pursuit of their private objective function. For a concise introduction to contemporary
Game Theory we recommend [25].

One of the most widely used solution concepts for strategic games is the concept
of Nash equilibrium. It represents a stable state in which no player wishes to leave
unilaterally its own strategy in order to improve the value of its private objective func-
tion. A Nash equilibrium is called pure if all players choose a pure strategy, otherwise
mixed. Many algorithms have been developed to compute a Nash equilibrium (see [27]
for an overview). Though the celebrated results of Nash [30, 31] ensure the existence
of a mixed Nash equilibrium, the complexity to compute such a Nash equilibrium is
widely unknown. Papadimitriou [32] advocates it to be “the most important concrete
open question on the boundary of P today”.

Rosenthal [33] introduced a special class of strategic games, now widely known as
congestion games. Here, the strategy set of each player is a subset of the power set of
given resources. The players share a private objective function, defined as the sum (over
their chosen resources) of functions in the number of players sharing this resource. In
his seminal work, Rosenthal [33] showed with help of a potential function that con-

� This work has been partially supported by the DFG-SFB 376 and by the European Union
within the 6th Framework Programme under contract 001907 (DELIS).

�� International Graduate School of Dynamic Intelligent Systems.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 51–65, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

52 M. Gairing et al.

gestion games (in sharp contrast to general strategic games) always admit at least one
pure Nash equilibrium. Later, Milchtaich [28] considered two extensions of congestion
games, namely weighted congestion games in which the players have weights and
thus different influence on the congestion of the resources, and congestion games with
player-specific payoff-functions in which the players do not share a private objective
function.

Another class of (weighted) congestion games are (weighted) network congestion
games [8, 11] in which the strategy sets correspond to paths in a network. Koutsoupias
and Papadimitriou [21] considered a very simple member of this class, now known as
KP-model. The network consists of a single source and a single destination which are
connected by parallel links. Associated with each link is a capacity representing the
rate at which the link processes load, that is, the total weight of players assigned to this
link. Thus, the latency functions are linear. Each of the players selfishly routes from
the source to the destination by choosing a probability distribution over the links. The
private objective function of a player is defined as its expected latency.

Koutsoupias and Papadimitriou [21] were not only interested in the computational
complexity of Nash equilibria but also in the degradation of the social welfare of the
system due to the selfish behavior of the players. In order to measure this social wel-
fare, they introduced a global objective function, usually coined as social cost, which
is defined as the expected maximum latency on a link, where the expectation is taken
over all random choices of the players. The price of anarchy, also called coordination
ratio, measures the extent to which non-cooperation approximates cooperation. It is de-
fined as the worst-case ratio between the value of social cost in a Nash equilibrium and
that of some social optimum. So, the price of anarchy represents a rendezvous of Nash
equilibrium, a concept fundamental to Game Theory, with approximation, an ubiqui-
tous concept in Theoretical Computer Science today (see, e.g., [38]).

Mavronicolas and Spirakis [26] introduced the notion of a fully mixed Nash equi-
librium in which each player chooses every link with positive probability. Gairing et
al. [15] conjectured that, in case of its existence, the fully mixed Nash equilibrium
is the worst Nash equilibrium with respect to social cost. This so-called Fully Mixed
Nash Equilibrium Conjecture is simultaneously intuitive and natural. To support intu-
ition, observe that the fully mixed Nash equilibrium favors collisions between differ-
ent players (since each player assigns its item with positive probability to every link).
This increased probability of collisions should favor an increase to social cost. To sup-
port significance, note that the Fully Mixed Nash Equilibrium Conjecture identifies the
worst-case Nash equilibrium of all instances. We stress that, in sharp contrast, the price
of anarchy only determines the worst-case Nash equilibrium of worst-case instances.

Recently, the KP-model was extended to restricted strategy sets [2, 13] where the
strategy set of each player is a subset of the links. In addition, the KP-model was ex-
tended to general latency functions and studied with respect to different definitions of
social cost [1, 14]. Inspired by the arisen interest in the price of anarchy, the much older
Wardrop-model [3, 6, 41] was re-investigated [35, 36]. In this weighted network conges-
tion game, weight can be split into arbitrary pieces. The social welfare of the system is
defined as the sum of the edge latencies. An equilibrium in the Wardrop-model can be
interpreted as a Nash equilibrium in a game with infinitely many players, each carrying

Nash Equilibria, the Price of Anarchy and the Fully Mixed Nash Equilibrium 53

an infinitesimal amount of weight. Finally, the price of anarchy found its way into con-
gestion games [4, 11].

In this paper, we give a thorough survey on the most exciting results on finite
(weighted) congestion games and the special classes mentioned above. In particular,
we review the findings on the existence and computational complexity of pure Nash
equilibria. Furthermore, we discuss results on the price of anarchy. Last but not least,
we survey known facts on fully mixed Nash equilibria.

Overview. The rest of this paper is organized as follows. After a formal definition of
(weighted) congestion games in Section 2, we turn our attention to the existence and
computational complexity of pure Nash equilibria in Section 3. In Section 4, we con-
sider the price of anarchy before we investigate fully mixed Nash equilibria in Section 5.
We conclude, in Section 6, with some open problems.

2 Definitions and Notations

For all integers k ≥ 0, we denote [k] = {1, . . . , k}.
A weighted congestion game Γ is a tuple

Γ =
(
n,E, (wi)i∈[n], (Si)i∈[n], (fe)e∈E

)
.

Here, n is the number of players and E is the finite set of resources. For every player
i ∈ [n], wi is the weight and Si ⊆ 2E is the strategy set of player i. Denote W =∑

i∈[n] wi and S = S1 × . . . × Sn. For every resource e ∈ E, the latency function
fe : R+ �→ R+ describes the latency on resource e.

In a congestion game, the weights of all players are equal. Thus, the private cost
of a player only depends on the number of players choosing the same resources. A
congestion game is symmetric if the players share a strategy set.

2.1 Strategies and Assignments

A pure strategy for player i ∈ [n] is some specific si ∈ Si whereas a mixed strategy
Pi = (p(i, si))si∈Si

is a probability distribution over Si, where p(i, si) denotes the
probability that player i chooses the pure strategy si.

A pure assignment is an n-tuple L = (s1, . . . , sn) ∈ S whereas a mixed assignment
P = (P1, . . . , Pn) is represented by an n-tuple of mixed strategies. A mixed assignment
is fully mixed if p(i, si) > 0 for all i ∈ [n] and si ∈ Si.

2.2 Private Cost

Fix any pure assignment L, and denote by le(L) =
∑

i∈[n],si
e wi the load on resource
e ∈ E. The private cost of player i ∈ [n] is defined by

PCi(L) =
∑
e∈si

fe (le(L)) .

For a mixed assignment P, the private cost of player i ∈ [n] is

PCi(P) =
∑
L∈S

p(L) · PCi(L) .

54 M. Gairing et al.

2.3 Social Cost

Associated with a weighted congestion game Γ and a mixed assignment P is the social
cost as a measure of social welfare. We consider the following three definitions of social
cost:

– Sum of private costs SCSUM(P) =
∑
i∈[n]

PCi(P)

– Maximum of private costs SCMAX(P) = max
i∈[n]

PCi(P)

– Expected maximum latency SC∞(P) =
∑
L∈S

p(L) ·max
i∈[n]

PCi(L)

Let ∗ ∈ {SUM,MAX,∞}. The optimum associated with a weighted congestion game
is defined by OPT∗ = minP SC∗(P).

2.4 Nash Equilibria and Price of Anarchy

We are interested in a special class of (mixed) assignments called Nash equilibria [30,
31] that we describe here. Given a weighted congestion game and an associated mixed
assignment P, a player i ∈ [n] is satisfied if it can not improve its private cost by uni-
laterally changing its strategy. Otherwise, player i is unsatisfied. The mixed assignment
P is a Nash equilibrium if and only if all players i ∈ [n] are satisfied. Depending on the
type of assignment, we differ between pure, mixed and fully mixed Nash equilibria.

The mixed price of anarchy, also called coordination ratio and denoted PoAmixed,
is the maximum value, over all instances Γ and Nash equilibria P, of the ratio SC∗(P)

OPT∗
.

If we restrict to pure Nash equilibria, then we speak of the pure price of anarchy and
denote it by PoApure.

2.5 Selfish Steps

Fix any pure assignment L. In a selfish step, exactly one unsatisfied player is allowed
to change its pure strategy such that its private cost decreases. A selfish step is greedy if
the player chooses its best strategy. Clearly, selfish steps define a neighborhood of pure
assignments that can be reached from L. The assignment L has an empty neighborhood
if and only if L is a Nash equilibrium. Thus, a pure Nash equilibrium corresponds to a
local optimum. This stresses the close relationship of selfish steps on the one hand and
local search processes on the other hand.

2.6 Special Weighted Congestion Games

Weighted Network Congestion Games. In a weighted network congestion game the
strategies of a player correspond to paths from a source to a destination in a network.
Thus, this class of games can be interpreted as routing games. If the players share
the same source and destination, then we have a weighted single-commodity network
congestion game, otherwise a weighted multi-commodity network congestion game.
The underlying network of a weighted single-commodity network congestion game is
called l-layered if all paths from source to destination have length l.

Nash Equilibria, the Price of Anarchy and the Fully Mixed Nash Equilibrium 55

KP-Model. Koutsoupias and Papadimitriou [21] considered a special weighted network
congestion game, now widely known as the KP-model. In this model, each of the n
players is allowed to use exactly one of m resources (here called links), that is, Si =
[m] for all i ∈ [n]. The players are called identical if all weights are equal, otherwise
arbitrary. Associated with each link j ∈ [m] is a capacity cj representing the rate at
which link j processes load. Clearly, the latency on link j is fj(lj) = lj

cj
, showing that

the latency functions are linear. If c1, . . . , cm are equal, then the resources are identical,
otherwise related. Denote C =

∑
j∈[m] cj . In order to measure the social welfare of the

system, Koutsoupias and Papadimitriou [21] considered the expected maximum latency.
A natural goal is to identify a Nash equilibrium with worst social cost for a given

instance. For the model of related links, Gairing et al. [15] conjectured that, in case
of its existence, the fully mixed Nash equilibrium is the worst Nash equilibrium with
respect to social cost.

Fully Mixed Nash Equilibrium Conjecture ([15]). Consider the model of arbitrary
players and related links. Then, for any instance such that a fully mixed Nash equilib-
rium F exists, and for any associated Nash equilibrium P, SC∞(P) ≤ SC∞(F).

Routing Games on Parallel Links. We also consider variants of the KP-model to
which we refer as routing games on parallel links. In particular, we investigate re-
stricted strategy sets in which the players are only allowed to choose from a subset of
links, that is, Si ⊆ [m] for all i ∈ [n].

2.7 Exact Potential Games

A function Φ : (S1× ...×Sn) �→ R is an exact potential function for a game Γ if for ev-
ery pure strategy profile L = (s1, ..., sn), for every player i ∈ [n] and for every strategy
s′i ∈ Si, PCi(L′)−PCi(L) = Φ(L′)−Φ(L), where L′ = (s1, ..., si−1, s

′
i, si+1, ..., sn).

In this case, Γ is an exact potential game. Since all exact potential games admit a pure
Nash equilibrium (see e.g. [29]) these games are of interest in this paper.

3 Existence and Computation of Pure Nash Equilibria

Even though Nash was able to show that every finite game possesses a mixed Nash
equilibrium, the question which class of games admits a pure Nash equilibrium remains
open. In the case of its existence, it is of interest whether it is possible to compute a pure
Nash equilibrium in polynomial time. In this section, we give some positive and some
negative answers to both questions concerning the existence and the polynomial time
computation. We start in Section 3.1 with routing games on parallel links and continue
in Sections 3.2 and 3.3 with congestion games and weighted congestion games.

3.1 Routing Games on Parallel Links

We begin our survey with results on the KP-model. Afterwards we focus on games with
restricted strategy sets.

56 M. Gairing et al.

KP-model. We first turn our attention to the problem of computing a pure Nash equi-
librium. Basically, two different approaches can be found in the literature.

The first approach is to directly compute a pure Nash equilibrium. Fotakis et al. [10]
showed that the LPT algorithm, first explored by Graham [16], yields some pure Nash
equilibrium. Clearly, this holds for parallel links with arbitrary non-decreasing latency
functions. For related links, the social cost of the Nash equilibrium computed by LPT
approximates the social cost of an optimal assignment by a factor between 1.52 and
1.67 [12].

The second approach is to convert a given pure assignment into a Nash equilibrium
without increasing the social cost. This conversion process is called nashification. Since
selfish steps do not increase the social cost and any sequence of selfish steps eventu-
ally reaches a pure Nash equilibrium, selfish steps seem to be suitable for nashification.
However, we have to use them carefully since the number of selfish steps may be expo-
nential in the number of players before reaching a pure Nash equilibrium.

Theorem 1 ([7]). Consider the model of arbitrary players and identical links. Then,
there exists an instance and associated pure assignment for which the maximum length
of a sequence of greedy selfish steps is at least(

n
m−1

)m−1

2(m− 1)!
.

Though there exist sequences of greedy selfish steps of exponential length, it is
possible to use selfish steps to compute a Nash equilibrium in polynomial time if the
links are identical. In particular, always moving an unsatisfied player with maximum
weight to its best link requires at most n greedy selfish steps [15]. For related links, it
is unknown whether selfish steps can be used to implement nashification in polynomial
time. Feldmann et al. [9] chose a different approach not only based on selfish steps.
Their algorithm relies on the following crucial observation.

Lemma 1 ([9]). Consider the model of arbitrary players and related links. Then, for
any pure assignment, a greedy selfish step of an unsatisfied player i1 ∈ [n] with weight
wi1 from a link j1 ∈ [m] to a link j2 ∈ [m] with cj1 ≤ cj2 makes no satisfied player
i2 ∈ [n] with weight wi2 ≥ wi1 unsatisfied.

The algorithm of Feldmann et al. [9] works in two phases. In the first phase, it fills
up links with small capacities with players with small weight as close to SCMAX(L) as
possible (but without exceeding SCMAX(L)), and it collects all these users in a set U . In
the second phase, the algorithm performs greedy selfish steps for unsatisfied players in
U in non-increasing order of the weights. Lemma 1 allows to show that this procedure
results in a pure Nash equilibrium. Implementing the algorithm in a proper way, we get:

Theorem 2 ([9]). Consider the model of arbitrary players and related links. Then, for
any pure assignment L, a pure Nash equilibrium L′ with SC∞(L′) ≤ SC∞(L) can be
computed using O(m2n) time.

Thus, we can apply the PTAS of Hochbaum and Shmoys [17] for scheduling jobs
on related machines and then convert the computed assignment into a pure Nash equi-
librium in polynomial time, and we get:

Nash Equilibria, the Price of Anarchy and the Fully Mixed Nash Equilibrium 57

Corollary 1. There is a PTAS for computing a best pure Nash equilibrium.

Restricted Strategy Sets. Gairing et al. [13] considered a variant of the routing game
on parallel links where there exists at least one player i ∈ [n] with Si � [m]. So, the
strategy sets of the players are restricted.

Gairing et al. [13] combined ideas from blocking flows and the generic PREFLOW-
PUSH algorithm to derive a nashification algorithm for games with restricted strategy
sets on identical links.

Theorem 3 ([13]). Consider the model of arbitrary players with restricted strategy sets
and identical links. Then, for any pure assignment L, a pure Nash equilibrium L′ with
SC∞(L′) ≤ SC∞(L) can be computed from L using O(rmA(logW + m2)) time,
where r is the number of distinct weights and A =

∑
i∈[n] |Si|.

Lenstra et al. [23] showed that an optimum assignment can be approximated within
a factor of 2. It is worth mentioning that the nashification algorithm of Gairing et al. [13]
improves this result since, for any given assignment L, it computes a pure Nash equilib-
rium L′ with SC∞(L′) ≤ (2− 1

w1
) ·OPT∞. Note that we can not hope to approximate

an optimum assignment with factor less than 3
2 unless P = NP [23].

3.2 Congestion Games

In his seminal paper, Rosenthal [33] proved that Φ(L) =
∑

e∈E

∑le(L)
j=1 fe(j) is an

exact potential function for congestion games. An immediate consequence follows:

Theorem 4 ([33]). Every congestion game possesses a pure Nash equilibrium.

Rosenthal’s argumentation implies that every congestion game is an exact potential
game. A result by Monderer and Shapley [29] shows that every exact potential game is
closely related to a congestion game.

Theorem 5 ([29]). Every finite exact potential game is isomorphic to a congestion
game.

Since every congestion game Γ possesses a pure Nash equilibrium the natural ques-
tion arises whether it is possible to compute a pure Nash equilibrium for Γ in polyno-
mial time. It is easy to see that this computational problem is in PLS. The class PLS
(polynomial-time local search) introduced in [19] consists of local search problems for
which local optimality can be verified in polynomial time. Many local search prob-
lems were shown to be complete for this class (see e.g. [19, 22, 37]), including graph
partitioning, weighted satisfiability and traveling salesman problems. For none of these
PLS-complete problems an algorithm is known that is able to compute a local optimum
in polynomial time.

Using a sophisticated PLS-reduction Fabrikant et al. [8] proved that the computation
of a pure Nash equilibrium for symmetric congestion games and asymmetric network
congestion games is PLS-complete (see Figure 1). However, they showed that it is pos-
sible to calculate a pure Nash equilibrium for a symmetric network congestion game in
polynomial time by using a min-cost flow algorithm.

58 M. Gairing et al.

Symmetric Asymmetric

Congestion Games PLS-complete PLS-complete

Network Congestion Games Polynomial time PLS-complete

Fig. 1. Complexity of computing pure Nash equilibria in congestion games [8]

We now switch to the class of congestion games with player-specific payoff-functions
introduced by Milchtaich [28]. Here, a player always selects exactly one resource, that
is, S1 = . . . = Sn = E. Furthermore, the private cost of a player i ∈ [n] on a resource
e ∈ E is described by a load dependent non-increasing latency function f i

e : R+ �→ R+

that may be different from the latency function f j
e for another player j �= i. Milch-

taich [28] considered these games with respect to pure Nash equilibria and sequences
of selfish step. He showed:

Theorem 6 ([28]). Every congestion game with player-specific payoff-function pos-
sesses a pure Nash equilibrium.

Theorem 7 ([28]). There exists a finite congestion game with player-specific payoff-
function that admits a cycle of selfish steps, that is, a sequence of selfish steps starting
and ending in the same assignment.

It follows from the last theorem that games with player-specific payoff-functions do
not admit an exact potential function.

3.3 Weighted Congestion Games

In this section we deal with weighted congestion games where the players may have
different weights. Fotakis et al. [11] showed that there are such games that possess no
pure Nash equilibrium. Moreover, they were able to proof that there is a subclass of
games for which the existence of pure Nash equilibria is guaranteed.

Theorem 8 ([11]). There exist instances of weighted single-commodity network con-
gestion games for which there is no pure Nash equilibrium.

Theorem 9 ([11]). For any weighted multi-commodity network congestion game with
linear latency functions, at least one pure Nash equilibrium exists.

4 Price of Anarchy

The mixed price of anarchy, also known as coordination ratio, has been defined in the
seminal work by Koutsoupias and Papadimitriou [21] as a measure of the extent to
which non-cooperation approximates cooperation. Recall that it is defined as the worst-
case ratio between the value of social cost in a Nash equilibrium and that of a social

Nash Equilibria, the Price of Anarchy and the Fully Mixed Nash Equilibrium 59

optimum. We present results on the pure and the mixed price of anarchy for routing
games on parallel links in Section 4.1, for congestion games in Section 4.2, and for
weighted congestion games in Section 4.3.

4.1 Routing Games on Parallel Links

We start with results on the KP-model. We then focus on the extension of this model
to restricted strategy sets. Finally, we investigate routing games on parallel links with
social cost defined as the sum of the private costs of the players.

KP-model. In the KP-model, latency functions are linear, social cost is defined as the
expected maximum latency and the players may choose any link. For the case of iden-
tical links the pure price of anarchy is upper bounded by a constant. This does not hold
for related links or mixed Nash equilibria. The bounds for mixed Nash equilibria are
shown by first bounding the maximum expected load on a link and then applying a
Hoeffding inequality [18]. All bounds are summarized in Figure 2.

Pure Price of Anarchy Mixed Price of Anarchy

Identical Links 2− 2
m+1

[15] Θ
(

log m
log log m

)
[5, 20]

Related Links Θ
(

log m
log log m

)
[5] Θ

(
log m

log log log m

)
[5]

Fig. 2. Pure and mixed price of anarchy for the KP-model

Restricted Strategy Sets. In case of restricted strategy sets, even for identical links, the
pure price of anarchy cannot be bounded by a constant. This also holds if the weights
are identical. Figure 3 shows bounds on the pure price of anarchy. Note, that the bound
for identical players and related links is only tight if n = m. Awerbuch et al. [2] further
extended their result to mixed Nash equilibria.

Theorem 10 ([2]). Consider the model of arbitrary players with restricted strategy sets
and identical links. Then,

PoAmixed = Θ

(
logm

log log logm

)
.

Identical Players Arbitrary Players

Identical Links Θ
(

log m
log log m

)
[2, 13] Θ

(
log m

log log m

)
[2, 13]

Related Links O
(

log n
log log n

)
[13] m− 1 ≤ PoApure ≤ m [13]

Fig. 3. Pure price of anarchy for the KP-model with restricted strategy sets

60 M. Gairing et al.

Social Cost as Sum of Private Costs. Gairing et al. [14] considered another routing
game on parallel links. In contrast to the KP-model, social cost is defined as the sum of
the private costs of the players. This good natured definition of social cost makes the
analysis significantly simpler and allows the investigation of general non-decreasing
non-constant latency functions. For identical players, Gairing et al. [14] carried over an
upper bound on the pure price of anarchy from the Wardrop-model [35] to the discrete
setting.

Proposition 1 ([14]). Consider the model of identical players and arbitrary links with
non-decreasing and non-constant latency functions. If xfj(x) ≤ α

∑x
t=1 fj(t) for all

x ∈ [n] and j ∈ [m], then for any pure Nash equilibrium L, SCSUM(L) ≤ α ·OPTSUM.

Corollary 2 ([14]). Consider the model of identical players and arbitrary links. If the
latency functions are polynomials with non-negative coefficients and maximum degree
d, then the pure price of anarchy is bounded by d + 1.

In case that all links have the same latency function f(x) = xd, one can show the
following bound on the mixed price of anarchy. Bk is the k’th Bell number and counts
the number of ways that a set of k elements can be partitioned into non-empty subsets.

Theorem 11 ([14]). Consider the model of identical players and identical links with
latency function f(x) = xd, d ∈ N. Then,

sup
w,P

SCSUM(P)
OPTSUM

= Bd+1 .

4.2 Congestion Games

Recently, the pure price of anarchy found its way into congestion games [1, 4]. We
restrict to results of Christodoulou and Koutsoupias [4] since only the abstract of the
paper of Awerbuch et al. [1] was available (note that the latter paper also considers
weighted congestion games). For congestion games with linear latency functions, Fig-
ure 4 summarizes results (both upper and lower bounds) on the pure price of anarchy.
For the case of symmetric congestion games and social cost as the maximum of the
private costs there is still a gap between the upper and the lower bound.

Christodoulou and Koutsoupias [4] also considered polynomial latency functions of
degree d with non-negative coefficients. Figure 5 shows the corresponding bounds.

Both linear and polynomial latency functions were also considered in the Wardrop-
model. Recall that in this model the social welfare of the system is defined as the sum

SCSUM SCMAX

Symmetric 5n−2
2n+1

5n−2
2n+1

≤ PoApure ≤ 5
2

Asymmetric 5
2

Θ(
√

n)

Fig. 4. Pure price of anarchy for congestion games with linear latency functions [4]

Nash Equilibria, the Price of Anarchy and the Fully Mixed Nash Equilibrium 61

SCSUM SCMAX

Symmetric dΘ(d) dΘ(d)

Asymmetric dΘ(d) Ω(nd/(d+1)), O(n)

Fig. 5. Pure price of anarchy for congestion games with polynomial latency functions [4]

of the edge latencies. The pure price of anarchy for linear latency functions is 4
3 [35]

whereas the pure price of anarchy for polynomial latency functions of degree d turned
out to be Θ(d

log d) [34].

4.3 Weighted Congestion Games

The mixed price of anarchy was also studied in weighted congestion games. Fotakis et
al. [11] considered l-layered networks with identical edges each having the same linear
latency function and social cost defined as the expected maximum latency.

Theorem 12 ([11]). For weighted l-layered network congestion games with latency
function fe(x) = x for all e ∈ E, the mixed price of anarchy for social cost as expected

maximum latency is O
(

log m
log log m

)
.

This result is particularly interesting in comparison with the corresponding bound for
the parallel link network (see Figure 2). It shows that under all l-layered networks the
parallel link network has worst mixed price of anarchy.

5 Fully Mixed Nash Equilibria for Routing Games on Parallel
Links

In routing games on parallel links, a fully mixed Nash equilibrium is a special Nash equi-
librium, where each player chooses each link with strictly positive probability. Such a
Nash equilibrium does not always exist. In this section, we give a characterization of in-
stances with a fully mixed Nash equilibrium, we show its uniqueness and we study the
Fully Mixed Nash Equilibrium Conjecture. We do this for two different routing games
on parallel links. We would like to point out that there exist routing games on parallel
links for which the Fully Mixed Nash Equilibrium Conjecture was disproved [24].

KP-model. Mavronicolas and Spirakis [26] were the first to consider fully mixed Nash
equilibria. They showed for the KP-model, that if a fully mixed Nash equilibrium exists,
it is unique and can be easily computed.

Theorem 13 ([26]). Consider the model of arbitrary players and related links. Then,
there exists a fully mixed Nash equilibrium F if and only if

62 M. Gairing et al.

fij =
(
1− mcj

C

)
·
(

1− W

(n− 1)wi

)
+

cj

C
∈ (0, 1)

for all i ∈ [n] and j ∈ [m]. If F exists, then F is unique and F = (fij)i∈[n],j∈[m].

In particular, this implies that for the case of identical links the fully mixed Nash equi-
librium uniquely exists and has probabilities fij = 1

m ,∀i ∈ [n], j ∈ [m].
In [15], the Fully Mixed Nash Equilibrium Conjecture was first explicitly stated for

the KP-model, where social cost is defined as the expected maximum latency. Here, the
ultimate settlement of this conjecture would reveal an interesting complexity-theoretical
contrast between the worst-case pure and the worst-case mixed Nash equilibria. On the
one hand, if the conjecture is valid, then the identification of the worst-case mixed Nash
equilibrium is immediate in the cases where the fully mixed Nash equilibrium exists.
On the other hand, Gairing et al. [15] showed that the worst-case pure Nash equilibrium
is not (2− 2

m+1 − ε)-approximable even on identical links.

Theorem 14 ([15]). Consider the model of arbitrary players and identical links. If, for
any ε with 0 < ε ≤ 1− 2

m+1 , the worst-case pure Nash equilibrium is (2− 2
m+1 − ε)-

approximable, then P = NP .

This result also unfolds an interesting contrast between best and worst-case pure
Nash equilibria. For any ε > 0, a pure Nash equilibrium L with SC∞(L) ≤ (1 + ε) ·
OPT∞ can be computed in polynomial time whereas the computation of a pure Nash
equilibrium L′ with SC∞(L′) ≥ (1 + ε) · OPT∞ is NP-hard.

So far, the Fully Mixed Nash Equilibrium Conjecture has been proved only for
some special cases, namely, two players on identical links [15], two identical players
on related links and identical players on two identical links [24]. Furthermore, it was
shown up to a factor of 49.02 in case of identical players and related links [10] and up
to a factor of 2h(1+ ε) for arbitrary players on identical links, if n = m sufficient large
[15], where h is the factor between the maximum and the average weight of the players.

On the other hand, Gairing et al. [15] proved that the private costs of all players in
a Nash equilibrium are upper bounded by their private costs in the fully mixed Nash
equilibrium. This directly implies:

Theorem 15 ([15]). Consider the model of arbitrary players and related links. If the
fully mixed Nash equilibrium F exists, then, for any mixed Nash equilibrium P, we have
SCSUM(P) ≤ SCSUM(F) and SCMAX(P) ≤ SCMAX(F).

Social Cost as Sum of Private Costs. Fully mixed Nash equilibria were also consid-
ered for identical players and general non-decreasing and non-constant latency func-
tions with respect to social cost defined as the sum of the private costs [14]. In order to
characterize instances where the fully mixed Nash equilibrium exists, Gairing et al. [14]
introduced two classes of links, namely dead links and special links. They showed that
in any Nash equilibrium, none of the players is assigned to a dead link. Moreover, there
exists at most one player who is assigned to any of the special links. Availing these
results, they could give the following thorough characterization.

Nash Equilibria, the Price of Anarchy and the Fully Mixed Nash Equilibrium 63

Theorem 16 ([14]). Consider the model of identical players and links with non-de-
creasing and non-constant latency functions. Then, there exists a fully mixed Nash
equilibrium F if and only if there are no special and no dead links. If F exists then
F is unique.

For every instance define the generalized fully mixed Nash equilibrium as the fully
mixed Nash equilibrium for the instance where the links are restricted to non-special
and non-dead links. If latency functions are non-decreasing, non-constant and convex,
then one can show, that the private cost of each player in a Nash equilibrium is up-
per bounded by its private cost in the generalized fully mixed Nash equilibrium. This
directly implies:

Theorem 17 ([14]). Consider the model of identical players and links with non-de-
creasing, non-constant and convex latency functions. Then, for any Nash equilibrium
P and generalized fully mixed Nash equilibrium F, SCSUM(P) ≤ SCSUM(F) and
SCMAX(P) ≤ SCMAX(F).

6 Open Problems

The flourishing interest in weighted congestion games resulted in a multitude of results
and methods, but raised even more questions remaining tantalizingly open. We only
state some of them:

– Although the results of Nash [30, 31] guarantee the existence of a Nash equilibrium
in strategic games, the computational complexity of computing a Nash equilibrium
is open even if only two players are involved.

– Which classes of symmetric weighted network congestions games possess a pure
Nash equilibrium? For which classes is it possible to compute such a pure Nash
equilibrium in polynomial time?

– It is impossible to approximate a worst-case pure Nash equilibrium within a factor
better than 2− 2

m+1 in the KP-model with identical links [15]. To which extent is it
possible to approximate a worst-case pure Nash equilibrium in the KP-model with
related links or in more general settings?

– Most of the known bounds on the price of anarchy for network congestion games
were shown with respect to social cost defined as sum or maximum of the private
costs of the players [1, 4]. What is the price of anarchy if social cost is defined as
expected maximum latency?

– For the KP-model, Gairing et al. [15] showed that the private costs of all players
in a Nash equilibrium are bounded from above by their private costs in the fully
mixed Nash equilibrium. For which classes of network congestion games does this
property still hold?

– If the players are identical and the links are related, then the Fully Mixed Nash
Equilibrium Conjecture holds up to a factor of 2h(1 + ε), where h is the factor
between the maximum and the average weight of the players [15]. Does there exist
an approximation factor independent of h?

64 M. Gairing et al.

References

1. B. Awerbuch, Y. Azar, and A. Epstein. The Price of Routing Unsplittable Flow. In Proceed-
ings of the 37th Annual ACM Symposium on Theory of Computing (STOC’05), 2005.

2. B. Awerbuch, Y. Azar, Y. Richter, and D. Tsur. Tradeoffs in Worst-Case Equilibria. In
Proceedings of the 1st International Workshop on Approximation and Online Algorithms
(WAOA’03), LNCS 2909, pages 41–52, 2003.

3. M. Beckmann, C. B. McGuire, and C. B. Winsten. Studies in the Economics of Transporta-
tion. Yale University Press, 1956.

4. G. Christodoulou and E. Koutsoupias. The Price of Anarchy of Finite Congestion Games.
In Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC’05),
2005.

5. A. Czumaj and B. Vöcking. Tight Bounds for Worst-Case Equilibria. In Proceedings of the
13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’02), pages 413–420,
2002. Also accepted to Journal of Algorithms as Special Issue of SODA’02.

6. S. C. Dafermos and F. T. Sparrow. The Traffic Assignment Problem for a General Network.
Journal of Research of the National Bureau of Standards, Series B, 73(2):91–118, 1969.

7. E. Even-Dar, A. Kesselmann, and Y. Mansour. Convergence Time to Nash Equilibria. In Pro-
ceedings of the 30th International Colloquium on Automata, Languages, and Programming
(ICALP’03), LNCS 2719, pages 502–513, 2003.

8. A. Fabrikant, C. H. Papadimitriou, and K. Talwar. The Complexity of Pure Nash Equilibria.
In Proceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC’04),
pages 604–612, 2004.

9. R. Feldmann, M. Gairing, T. Lücking, B. Monien, and M. Rode. Nashification and the
Coordination Ratio for a Selfish Routing Game. In Proceedings of the 30th International
Colloquium on Automata, Languages, and Programming (ICALP’03), LNCS 2719, pages
514–526, 2003.

10. D. Fotakis, S. Kontogiannis, E. Koutsoupias, M. Mavronicolas, and P. Spirakis. The Structure
and Complexity of Nash Equilibria for a Selfish Routing Game. In Proceedings of the 29th
International Colloquium on Automata, Languages, and Programming (ICALP’02), LNCS
2380, pages 123–134, 2002.

11. D. Fotakis, S. Kontogiannis, and P. Spirakis. Selfish Unsplittable Flows. Accepted to Theo-
retical Computer Science.

12. D. K. Friesen. Tighter Bounds for LPT Scheduling on Uniform Processors. SIAM Journal
on Computing, 16(3):554–560, 1987.

13. M. Gairing, T. Lücking, M. Mavronicolas, and B. Monien. Computing Nash Equilibria for
Scheduling on Restricted Parallel Links. In Proceedings of the 36th Annual ACM Symposium
on Theory of Computing (STOC’04), pages 613–622, 2004.

14. M. Gairing, T. Lücking, M. Mavronicolas, B. Monien, and M. Rode. Nash Equilibria in
Discrete Routing Games with Convex Latency Functions. In Proceedings of the 31st Inter-
national Colloquium on Automata, Languages, and Programming (ICALP’04), LNCS 3142,
pages 645–657, 2004.

15. M. Gairing, T. Lücking, M. Mavronicolas, B. Monien, and P. Spirakis. Extreme Nash
Equilibria. In Proceedings of the 8th Italian Conference on Theoretical Computer Science
(ICTCS’03), LNCS 2841, pages 1–20, 2003. Also accepted to Theoretical Computer Science,
Special Issue on Game Theory Meets Theoretical Computer Science.

16. R. L. Graham. Bounds on Multiprocessing Timing Anomalies. SIAM Journal of Applied
Mathematics, 17(2):416–429, 1969.

17. D. S. Hochbaum and D. B. Shmoys. A Polynomial Approximation Scheme for Schedul-
ing on Uniform Processors: Using the Dual Approximation Approach. SIAM Journal on
Computing, 17(3):539–551, 1988.

Nash Equilibria, the Price of Anarchy and the Fully Mixed Nash Equilibrium 65

18. W. Hoeffding. Probability Inequalities for Sums of Bounded Random Variables. American
Statistical Association Journal, 58(301):12–30, 1963.

19. D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. How Easy is Local Search? Journal
of Computer and System Sciences, 37(1):79–100, 1988.

20. E. Koutsoupias, M. Mavronicolas, and P. Spirakis. Approximate Equilibria and Ball Fusion.
Theory of Computing Systems, 36(6):683–693, 2003.

21. E. Koutsoupias and C. H. Papadimitriou. Worst-Case Equilibria. In Proceedings of the 16th
International Symposium on Theoretical Aspects of Computer Science (STACS’99), LNCS
1563, pages 404–413, 1999.

22. M. W. Krentel. On Finding and Verifying Locally Optimal Solutions. SIAM Journal of
Computing, 19(4):742–729, 1990.

23. J. K. Lenstra, D. B. Shmoys, and É. Tardos. Approximation Algorithms for Scheduling
Unrelated Parallel Machines. Mathematical Programming, 46:259–271, 1990.

24. T. Lücking, M. Mavronicolas, B. Monien, M. Rode, P. Spirakis, and I. Vrto. Which is the
Worst-Case Nash Equilibrium? In Proceedings of the 28th International Symposium on
Mathematical Foundations of Computer Science (MFCS’03), LNCS 2747, pages 551–561,
2003.

25. A. Mas-Colell, M. D. Whinston, and J. R. Green. Microeconomic Theory. Oxford University
Press, 1995.

26. M. Mavronicolas and P. Spirakis. The Price of Selfish Routing. In Proceedings of the 33rd
Annual ACM Symposium on Theory of Computing (STOC’01), pages 510–519, 2001.

27. R. D. McKelvey and A. McLennan. Computation of Equilibria in Finite Games. In Hand-
book of Computational Economics, 1996.

28. I. Milchtaich. Congestion Games with Player-Specific Payoff Functions. Games and Eco-
nomic Behavior, 13(1):111–124, 1996.

29. D. Monderer and L. S. Shapley. Potential Games. Games and Economic Behavior,
14(1):124–143, 1996.

30. J. F. Nash. Equilibrium Points in n-Person Games. Proceedings of the National Academy of
Sciences of the United States of America, 36:48–49, 1950.

31. J. F. Nash. Non-Cooperative Games. Annals of Mathematics, 54(2):286–295, 1951.
32. C. H. Papadimitriou. Algorithms, Games, and the Internet. In Proceedings of the 33rd

Annual ACM Symposium on Theory of Computing (STOC’01), pages 749–753, 2001.
33. R. W. Rosenthal. A Class of Games Possessing Pure-Strategy Nash Equilibria. International

Journal of Game Theory, 2:65–67, 1973.
34. T. Roughgarden. The Price of Anarchy is Independent of the Network Topology. Journal of

Computer and System Sciences, 67(2):341–364, 2003.
35. T. Roughgarden and É. Tardos. How Bad Is Selfish Routing? Journal of the ACM, 49(2):236–

259, 2002.
36. T. Roughgarden and É. Tardos. Bounding the Inefficiency of Equilibria in Nonatomic Con-

gestion Games. Games and Economic Behaviour, 47(2):389–403, 2004.
37. A. A. Schäffer and M. Yannakakis. Simple Local Search Problems that are Hard to Solve.

SIAM Journal of Computing, 20(1):56–87, 1991.
38. V. Vazirani. Approximation Algorithms. Springer Verlag, 2001.
39. J. von Neumann. Zur Theorie der Gesellschaftsspiele. Mathematische Annalen, 100:295–

320, 1928.
40. J. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior. Princeton

University Press, 1944.
41. J. G. Wardrop. Some Theoretical Aspects of Road Traffic Research. In Proceedings of the

Institute of Civil Engineers, Pt. II, Vol. 1, pages 325–378, 1956.

The Tree Inclusion Problem: In Optimal
Space and Faster

Philip Bille� and Inge Li Gørtz

The IT University of Copenhagen,
Department of Theoretical Computer Science,

Rued Langgaards Vej 7, 2300 Copenhagen S, Denmark
{beetle, inge}@itu.dk

Abstract. Given two rooted, ordered, and labeled trees P and T the
tree inclusion problem is to determine if P can be obtained from T by
deleting nodes in T . This problem has recently been recognized as an
important query primitive in XML databases. Kilpeläinen and Mannila
(SIAM J. of Comp. 1995) presented the first polynomial time algorithm
using quadratic time and space. Since then several improved results have
been obtained for special cases when P and T have a small number of
leaves or small depth. However, in the worst case these algorithms still use
quadratic time and space. In this paper we present a new approach to the
problem which leads to a new algorithm which uses optimal linear space
and has subquadratic running time. Our algorithm improves all previous
time and space bounds. Most importantly, the space is improved by a
linear factor. This will make it possible to query larger XML databases
and speed up the query time since more of the computation can be kept
in main memory.

1 Introduction

Let T be a rooted tree. We say that T is labeled if each node is a assigned a
symbol from an alphabet Σ and we say that T is ordered if a left-to-right order
among siblings in T is given. All trees in this paper are rooted, ordered, and
labeled. A tree P is included in T , denoted P $ T , if P can be obtained from T
by deleting nodes of T . Deleting a node v in T means making the children of v
children of the parent of v and then removing v. The children are inserted in the
place of v in the left-to-right order among the siblings of v. The tree inclusion
problem is to determine if P can be included in T and if so report all subtrees
of T that include P .

Recently, the problem has been recognized as an important query primitive
for XML data and has received considerable attention, see e.g., [15, 16, 18, 17].
The key idea is that an XML document can be viewed as an ordered, labeled

� This work is part of the DSSCV project supported by the IST Programme of the
European Union (IST-2001-35443).

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 66–77, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The Tree Inclusion Problem: In Optimal Space and Faster 67

catalog

book book

author chapter author chapter chapter

john XML name title section title

john databases XML queries

(a) (b)

catalog

book book

author chapter author chapter chapter

john XML name title section title

john databases XML queries

(c)

Fig. 1. Can tree (a) be included in tree (b)? Yes. The embedding is given in (c)

tree and queries on this tree correspond to a tree inclusion problem. As an
example consider Fig. 1. Suppose that we want to maintain a catalog of books
for a bookstore. A fragment of the tree, denoted D, corresponding to the catalog
is shown in (b). In addition to supporting full-text queries, such as find all
documents containing the word ”John”, we can also utilize the tree structure of
the catalog to ask more specific queries, such as ”find all books written by John
with a chapter that has something to do with XML”. We can model this query
by constructing the tree, denoted Q, shown in (a) and solve the tree inclusion
problem: is Q $ D? The answer is yes and a possible way to include Q in D is
indicated by the dashed lines in (c). If we delete all the nodes in D not touched
by dashed lines the trees Q and D become isomorphic. Such a mapping of the
nodes from Q to D given by the dashed lines is called an embedding (formally
defined in Sec. 3).

The tree inclusion problem was initially introduced by Knuth [11–exercise
2.3.2-22] who gave a sufficient condition for testing inclusion. Motivated by ap-
plications in structured databases [9, 12] Kilpeläinen and Mannila [10] presented
the first polynomial time algorithm using O(nPnT) time and space, where nP

and nT is the number of nodes in a tree P and T , respectively. During the last
decade several improvements of the original algorithm of [10] have been sug-
gested [8, 1, 14, 4]. The previously best known bound is due to Chen [4] who
presented an algorithm using O(lPnT) time and O(lP min{dT , lT }) space. Here,
lS and dS denotes the number of leaves of and the maximum depth of a tree S,
respectively. This algorithm is based on an algorithm of Kilpeläinen [8]. Note
that the time and space is still Θ(nPnT) for worst-case input trees.

In this paper we improve all of the previously known time and space bounds.
Combining the three algorithms presented in this paper we have:

68 P. Bille and I.L. Gørtz

Theorem 1. For trees T and P the tree inclusion problem can be solved in
O(min(nP nT

log nT
, lPnT , nP lT log lognT)) time using optimal O(nT + nP) space.

Hence, for worst-case input this improves the previous time and space bounds
by a logarithmic and linear factor, respectively. When P has a small number of
leaves the running time of our algorithm matches the previously best known time
bound of [4] while maintaining linear space. In the context of XML databases
the most important feature of our algorithms is the space usage. This will make
it possible to query larger trees and speed up the query time since more of the
computation can be kept in main memory.

Techniques. Most of the previous algorithms, including the best one [4], are
essentially based on a simple dynamic programming approach from the original
algorithm of [10]. The main idea behind this algorithm is following: Let v ∈ V (P)
and w ∈ V (T) be nodes with children v1, . . . , vi and w1, . . . , wj , respectively.
To decide if P (v) can be included T (w) we try to find a sequence of numbers
1 ≤ x1 < x2 < · · · < xi ≤ j such that P (vk) can be included in T (wxk

) for all
k, 1 ≤ k ≤ i. If we have already determined whether or not P (vs) $ T (wt), for
all s and t, 1 ≤ s ≤ i, 1 ≤ t ≤ j, we can efficiently find such a sequence by
scanning the children of v from left to right. Hence, applying this approach in
a bottom-up fashion we can determine, if P (v) $ T (w), for all pairs (v, w) ∈
V (P)× V (T).

In this paper we take a significantly different approach. The main idea is
to construct a data structure on T supporting a small number of procedures,
called the set procedures, on subsets of nodes of T . We show that any such
data structure implies an algorithm for the tree inclusion problem. We consider
various implementations of this data structure which all use linear space. The
first simple implementation gives an algorithm with O(lPnT) running time. As
it turns out, the running time depends on a well-studied problem known as the
tree color problem. We show a general connection between data structures for the
tree color problem and the tree inclusion problem. Plugging in a data structure
of Dietz [5] we obtain an algorithm with O(nP lT log log nT) running time.

Based on the simple algorithms above we show how to improve the worst-
case running time of the set procedures by a logarithmic factor. The general idea
used to achieve this is to divide T into small trees or forests, called micro trees
or clusters of logarithmic size which overlap with other micro trees in at most 2
nodes. Each micro tree is represented by a constant number of nodes in a macro
tree. The nodes in the macro tree are then connected according to the overlap of
the micro trees they represent. We can efficiently preprocess the micro trees and
the macro tree such that the set procedures use constant time for each micro
tree. Hence, the worst-case running time is improved by a logarithmic factor to
O(nP nT

log nT
).

Our results rely on a standard RAM model of computation with word size
Θ(log n). We use a standard instruction set such as bitwise boolean operations,
shifts, and addition. Most of the proofs are omitted due to lack of space. They
can be found in the full version of the paper [3].

The Tree Inclusion Problem: In Optimal Space and Faster 69

2 Notation and Definitions

In this section we define the notation and definitions we will use throughout the
paper. For a graph G we denote the set of nodes and edges by V (G) and E(G),
respectively. Let T be a rooted tree. The root of T is denoted by root(T). The
size of T , denoted by nT , is |V (T)|. The depth of a node v ∈ V (T), depth(v), is
the number of edges on the path from v to root(T) and the depth of T , denoted
dT , is the maximum depth of any node in T . The set of children of a node v
is denoted child(v). A node with no children is a leaf and otherwise an internal
node. The set of leaves of T is denoted L(T) and we define lT = |L(T)|. We say
that T is labeled if each node v is a assigned a symbol, denoted label(v), from an
alphabet Σ and we say that T is ordered if a left-to-right order among siblings
in T is given. All trees in this paper are rooted, ordered, and labeled.

Let T (v) denote the subtree of T rooted at a node v ∈ V (T). If w ∈ V (T (v))
then v is an ancestor of w, denoted v w, and if w ∈ V (T (v))\{v} then v is a
proper ancestor of w, denoted v ≺ w. If v is a (proper) ancestor of w then w is a
(proper) descendant of v. A node z is a common ancestor of v and w if it is an
ancestor of both v and w. The nearest common ancestor of v and w, nca(v, w), is
the common ancestor of v and w of largest depth. The first ancestor of w labeled
α, denoted fl(w,α), is the node v such that v w, label(v) = α, and no node on
the path between v and w is labeled α. If no such node exists then fl(w,α) = ⊥,
where ⊥ �∈ V (T) is a special null node.

For any set of pairs U , let U |1 and U |2 denote the projection of U to the first
and second coordinate, that is, if (u1, u2) ∈ U then u1 ∈ U |1 and u2 ∈ U |2.

Lists. A list, X, is a finite sequence of objects X = [v1, . . . , vk]. The length of
the list, denoted |X|, is the number of objects in X. The ith element of X, X[i],
1 ≤ i ≤ |X| is the object vi and v ∈ X iff v = X[j] for some 1 ≤ j ≤ |X|. For any
two lists X = [v1, . . . , vk] and Y = [w1, . . . , wk], the list obtained by appending
Y to X is the list X ◦Y = [v1, . . . , vk, w1, . . . , wk]. We extend this notation such
that for any object u, X ◦u denotes the list X ◦ [u]. For simplicity in the notation
we will sometimes write [vi | 1 ≤ i ≤ k] to denote the list [v1, . . . , vk]. A pair list
is a list of pairs of object Y = [(v1, w1), . . . , (vk, wk)]. Here the first and second
element in the pair is denoted by Y [i]1 = vi and Y [i]2 = wi. The projection of
pair lists is defined by Y |1 = [v1, . . . , vk] and Y |2 = [w1, . . . , wk].

Orderings. Let T be a tree with root v and let v1, . . . , vk be the children of v
from left-to-right. The preorder traversal of T is obtained by visiting v and then
recursively visiting T (vi), 1 ≤ i ≤ k, in order. Similarly, the postorder traversal
is obtained by first visiting T (vi), 1 ≤ i ≤ k, and then v. The preorder number
and postorder number of a node w ∈ T (v), denoted by pre(w) and post(w), is
the number of nodes preceding w in the preorder and postorder traversal of T ,
respectively. The nodes to the left of w in T is the set of nodes u ∈ V (T) such
that pre(u) < pre(w) and post(u) < post(w). If u is to the left of w, denoted by
u � w, then w is to the right of u. If u � w, u w, or w ≺ u we write u � w.
The null node ⊥ is not in the ordering, i.e., ⊥ � v for all nodes v.

70 P. Bille and I.L. Gørtz

v1 v2

v5
v6

v7

v3

v4

(a)

v1 v2

v5
v8

v9

v3 v4

v6 v7

(b)

=S1

=S2

=S3

=S4

Fig. 2. In (a) we have mop(S1, S2, S1, S3, S4) = {(v3, v7)} and in (b) we have
mop(S1, S2, S1, S3, S4) = {(v1, v7), (v3, v9)}

Deep Sets. A set of nodes V ⊆ V (T) is deep iff no node in V is a proper ancestor
of another node in V .

Minimum Ordered Pair. For deep sets of nodes V1, . . . , Vk let Φ(V1, . . . , Vk) ⊆
(V1 × · · · × Vk), be the set such that (v1, . . . , vk) ∈ Φ(V1, . . . , Vk) iff v1 � · · · �
vk. If (v1, . . . , vk) ∈ Φ(V1, . . . , Vk) and there is no (v′1, . . . , v

′
k) ∈ Φ(V1, . . . , Vk),

where either v1 � v′1 � v′k � vk or v1 � v′1 � v′k � vk then the pair (v1, vk) is
a minimum ordered pair. The set of minimum ordered pairs for V1, . . . , Vk is
denoted by mop(V1, . . . , Vk). Fig. 2 illustrates mop on a small example. The
following lemma shows that we can compute mop(V1, . . . , Vk) iteratively by first
computing mop(V1, V2) and then mop(mop(V1, V2)|2, V3) and so on.

Lemma 1. For any deep sets of nodes V1, . . . , Vk:(v1, vk) ∈ mop(V1, . . . , Vk) iff
there exists a vk−1 such that (v1, vk−1) ∈ mop(V1, . . . , Vk−1) and (vk−1, vk) ∈
mop(mop(V1, . . . , Vk−1)|2, Vk).

3 Computing Deep Embeddings

In this section we present a general framework for answering tree inclusion
queries. As in [10] we solve the equivalent tree embedding problem. Let P and
T be rooted labeled trees. An embedding of P in T is an injective function
f : V (P) → V (T) such that for all nodes v, u ∈ V (P),

(i) label(v) = label(f(v)). (label preservation condition)
(ii) v ≺ u iff f(v) ≺ f(u). (ancestor condition)
(iii) v � u iff f(v) � f(u). (order condition)

Lemma 2 ([10]). For any trees P and T , P $ T iff there exists an embedding
of P in T .

An example of an embedding is given in Fig. 1(c). We say that the embedding f
is deep if there is no embedding g such that f(root(P)) ≺ g(root(P)). The deep
occurrences of P in T , denoted emb(P, T) is the set of nodes,

emb(P, T) = {f(root(P)) | f is a deep embedding of P in T}.

The Tree Inclusion Problem: In Optimal Space and Faster 71

Note that emb(P, T) must be a deep set in T . Furthermore, by definition the
set of ancestors of nodes in emb(P, T) is the set of subtrees T (u) such that
P $ T (u). Hence, to solve the tree inclusion problem it is sufficient to compute
emb(P, T) and then, using additional O(nT) time, report all ancestors (if any)
of this set.

The key idea in our algorithm for computing deep embeddings is to con-
struct a data structure that allows a fast implementation of the following pro-
cedures, called the set procedures. For all V ⊆ V (T), U ⊆ V (T)× V (T), α ∈ Σ
define:

ParentT (V). Return the set R := {parent(v) | v ∈ V }.
NcaT (U). Return the set R := {nca(u1, u2) | (u1, u2) ∈ U}.
DeepT (V). Return the set R := {v ∈ V | �w ∈ V such that v ≺ w}.
MopT (U, V). Return the set of pairs R such that for any pair (u1, u2) ∈ U ,

(u1, v) ∈ R iff (u2, v) ∈ mop(U |2, V).
FlT (V, α). Return the set R := {fl(v, α) | v ∈ V }.

With the set procedures we can compute deep embeddings. The following pro-
cedure EmbT (v), v ∈ V (P), recursively computes the set of deep occurrences of
P (v) in T . Fig. 3 illustrates how Emb works on a small example.

EmbT (v) Let v1, . . . , vk be the sequence of children of v ordered from left to
right. There are three cases:
1. k = 0 (v is a leaf). Set R := DeepT (FlT (L(T), label(v))).
2. k = 1. Recursively compute R1 := EmbT (v1).

Set R := DeepT (FlT (DeepT (ParentT (R1)), label(v))).
3. k > 1. Compute R1 := EmbT (v1) and U1 := {(r, r) | r ∈ R1}. For i,

1 ≤ i ≤ k, compute Ri := EmbT (vi) and Ui := MopT (Ui−1, Ri).
Finally, compute R := DeepT (FlT (DeepT (NcaT (Uk)), label(v))).

If R = ∅ stop and report that there is no deep embedding of P (v) in T .
Otherwise return R.

Lemma 3. For any two trees T and P , EmbT (v) computes the set of deep oc-
currences of P (v) in T .

Proof. By induction on the size of the subtree P (v). If v is a leaf we imme-
diately have emb(v, T) = DeepT (FlT (L(T), label(v))). Suppose that v is an
internal node with children v1, . . . , vk, k ≥ 1. We show that emb(P (v), T) =
EmbT (v).

If k = 1, w ∈ EmbT (v) implies label(w) = label(v) and there is a node
w1 ∈ EmbT (v1) such that fl(parent(w1), label(v)) = w, i.e., no node on the path
between w1 and w is labeled label(v). By induction EmbT (v1) = emb(P (v1), T)
and thus w is the root of an embedding of P (v) in T . Since EmbT (v) is the deep
set of all such nodes we have w ∈ emb(P (v), T). Conversely, if w ∈ emb(P (v), T)
then label(w) = label(v), there is a node w1 ∈ emb(P (v1), T) such that w ≺
w1, and no node on the path between w and w1 is labeled label(v), that is,
fl(w1, label(v)) = w. Hence, w ∈ EmbT (v).

72 P. Bille and I.L. Gørtz

P T

a1
a a

b2 a4
b b a b b a

a3
a a b a b a a b a b

a a
(a) (b) (c)

a a a

b b a b b a b b a

a a b a b a a b a b a a b a b

a a a
(d) (e) (f)

Fig. 3. Computing the deep occurrences of P into T depicted in (a) and (b) respectively.
The nodes in P are numbered 1–4 for easy reference. (c) Case 1 of Emb. Since 3 and
4 are leaves and label(3) = label(4) we have EmbT (3) = EmbT (4). (d) Case 2 of
Emb. Note that the middle child of the root(T) is not in the set since it is not a deep
occurrence. (e) Case 3 of Emb: The two minimal ordered pairs of the sets of (d) and
(c). (f) nca of the pairs in (e) both give the root node of T which is the only (deep)
occurrence of P

Before considering case 3 we show that Uj = mop(EmbT (v1), . . . ,EmbT (vj))
by induction on j, 2 ≤ j ≤ k. For j = 2 it follows from the definition of MopT

that U2 = mop(EmbT (v1),EmbT (v2)). Hence, assume that j > 2. We have
Uj = MopT (Uj−1,EmbT (vj)) = MopT (mop(EmbT (v1), . . . ,EmbT (vj−1)), Rj).
By definition of MopT , Uj is the set of pairs such that for any pair (r1, rj−1) ∈
mop(EmbT (v1), . . . ,EmbT (vj−1)), we have (r1, rj) ∈ Uj if and only if (rj−1, rj) ∈
mop(mop(EmbT (v1), . . . ,EmbT (vj−1))|2, Rj). It now follows from Lemma 1 that
(r1, rj) ∈ Uj iff (r1, rj) ∈ mop(EmbT (v1), . . . ,EmbT (vj)).

Consider case 3. If k > 1, w ∈ EmbT (v) implies label(w) = label(v) and
there are nodes (w1, wk) ∈ mop(emb(P (v1), T), . . . , emb(P (vk), T)) such that
w = fl(nca(w1, wk), label(v)). Clearly, w is the root of an embedding of P (v)
in T . Assume for contradiction that w is not a deep embedding, i.e., w ≺ u
for some node u ∈ emb(P (v), T). Since w = fl(nca(w1, wk), label(v)) there
must be nodes u1 � · · · � uk, such that ui ∈ emb(P (vi), T), 1 ≤ i ≤ k, and
u = fl(nca(u1, uk), label(v)). However, this contradicts the fact that (w1, wk) ∈
mop(emb(P (v1), T), . . . , emb(P (vk), T)). If w ∈ emb(P (v), T) a similar argu-
ment implies that w ∈ EmbT (v). &'

When the tree T is clear from the context we may not write the subscript T in
the procedure names. Note that since the EmbT (v) is a deep set we can assume
that Parent, Fl, Nca, and Mop take deep sets as input.

The Tree Inclusion Problem: In Optimal Space and Faster 73

4 A Simple Tree Inclusion Algorithm

In this section we a present a simple implementation of the set procedures which
leads to an efficient tree inclusion algorithm. Subsequently, we modify one of the
procedures to obtain a family of tree inclusion algorithms where the complexities
depend on the solution to a well-studied problem known as the tree color problem.

Preprocessing. To compute deep embeddings efficiently we require a data
structure for T which allows us, for any v, w ∈ V (T), to compute ncaT (v, w)
and determine if v ≺ w or v � w. In linear time we can compute pre(v) and
post(v) for all nodes v ∈ V (T), and with these it is straightforward to test the
two conditions. Using a data structure by Harel and Tarjan [7] we can answer
nearest common ancestor queries in O(1) time using O(nT) space and prepro-
cessing time. Hence, our data structure uses linear preprocessing time and space.

Implementation of the Set Procedures. To answer tree inclusion queries we
give an efficient implementation of the set procedures. The idea is to represent
the node sets in a left-to-right order. For this purpose we introduce some helpful
notation. A node list, X, is a list of nodes. If vi � vi+1, 1 ≤ i < |X| then X is
ordered and if v1 � vi+1, 1 ≤ i < |X| then X is semiordered. A node pair list, Y ,
is a list of pairs of nodes. We say that Y is ordered if Y |1 and Y |2 are ordered,
and semiordered if Y |1 and Y |2 are semiordered.

The set procedures are implemented using node lists and node pair lists. All
lists used in the procedures are either ordered or semiordered. As noted in Sec. 3
we may assume that the input to all of the procedures, except Deep, represent
a deep set, that is, the corresponding node list or node pair list is ordered. We
assume that the input list given to Deep is semiordered. Hence, the output of
all the other set procedures must be semiordered.

ParentT (X). Return the list Z := [parent(X[i]) | 1 ≤ i ≤ |X|].
Nca(Y). Return the list Z := [nca(Y [i]) | 1 ≤ i ≤ |Y |].
DeepT (X). Initially, set v := X[1] and Z := []. For each i, 2 ≤ i ≤ k, compare

v and X[i]: If v�X[i] set Z := Z ◦v and v := X[i]. If v ≺ X[i], set v := X[i]
and otherwise (X[i] ≺ v) do nothing. Finally, set Z := Z ◦ v and return Z.

MopT (X,Y). Initially, set Z := []. Find the minimum j such that X[1]2 � Y [j]
and set x := X[1]1, y := Y [j], and h := j. If no such j exists, stop.
As long as h ≤ |Y | do the following: For each i, 2 ≤ i ≤ |X|, do: Set h := h+1
until X[i]2�Y [h]. Compare Y [h] and y: If y = Y [h] set x := X[i]1. If y�Y [h]
set Z := Z ◦ (x, y), x := X[i]1, and y := Y [h]. Finally, set Z := Z ◦ (x, y)
and return Z.

FlT (X,α). Initially, set Y := X, Z := [], and S := []. Repeat until Y := []:
For i = 1, . . . , |Y | if label(Y [i]) = α set Z := Insert(Y [i], Z) and otherwise
set S := S ◦ parent(Y [i]). Set S := DeepT (S), Y := Deep∗

T (S,Z), S := [].
Return Z.

Procedure Fl calls two auxiliary procedures: Insert(v, Z) takes an ordered list
Z and insert the node v such that the resulting list is ordered, and Deep∗(S,Z)

74 P. Bille and I.L. Gørtz

takes two ordered lists and returns the ordered list representing the set Deep(S∪
Z) ∩ S, i.e., Deep∗(S,Z) = [s ∈ S|�z ∈ Z : s ≺ z]. Below we describe the
implementation of Fl in more detail.

We use one doubly linked list to represent all the lists Y , S, and Z. For
each element in Y we have pointers Pred and Succ pointing to the predecessor
and successor in the list, respectively. We also have at each element a pointer
Next pointing to the next element in Y . In the beginning Next = Succ for all
elements, since all elements in the list are in Y . When going through Y in one
iteration we simple follow the Next pointers. When Fl calls Insert(Y [i], Z) we
set Next(Pred(Y [i])) to Next(Y [i]). That is, all nodes in the list not in Y , i.e.,
nodes not having a Next pointer pointing to them, are in Z. We do not explicitly
maintain S. Instead we just save Parent(Y [i]) at the position in the list instead
of Y [i]. Now Deep(S) can be performed following the Next pointers and removing
elements from the doubly linked list accordingly to procedure Deep. It remains
to show how to calculate Deep∗(S,Z). This can be done by running through S
following the Next pointers. At each node s compare Pred(s) and Succ(s) with
s. If one of them is a descendant of s then remove s from the doubly linked list.

Using this linked list implementation Deep∗(S,Z) takes time O(|S|), whereas
using Deep to calculate this would have used time O(|S|+ |Z|).

Complexity of the Algorithm. For the running time of the node list im-
plementation observe that, given the data structure described above, all set
procedures, except Fl, perform a single pass over the input using constant time
at each step. Hence we have,

Lemma 4. For any tree T there is a data structure using O(nT) space and
preprocessing which supports each of the procedures Parent, Deep, Mop, and
Nca in linear time (in the size of their input).

The running time of a single call to Fl might take time O(nT). Instead we will
divide the calls to Fl into groups and analyze the total time used on such a
group of calls. The intuition behind the division is that for a path in P the calls
made to Fl by Emb is done bottom up on disjoint lists of node in T .

Lemma 5. For disjoint ordered node lists V1, . . . , Vk and labels α1, . . . , αk, such
that any node in Vi+1 is an ancestor of some node in Deep(FlT (Vi, αi)), 2 ≤
i < k, all of FlT (V1, α1), . . . ,FlT (Vk, αk) can be computed in O(nT) time.

The proof is omitted due to lack of space. The basic idea in the proof is to show
that any node in T can be in Y at most twice during all calls to Fl.

Using the node list implementation of the set procedures we get:

Theorem 2. For trees P and T the tree inclusion problem can be solved in
O(lPnT) time and O(nP + nT) space.

Proof. By Lemma 4 we can preprocess T in O(nT) time and space. Let g(n)
denote the time used by Fl on a list of length n. Consider the time used by
EmbT (root(P)). We bound the contribution for each node v ∈ V (P). From

The Tree Inclusion Problem: In Optimal Space and Faster 75

Lemma 4 it follows that if v is a leaf the cost of v is at most O(g(lT)). Hence,
by Lemma 5, the total cost of all leaves is O(lP g(lT)) = O(lPnT). If v has a
single child w the cost is O(g(|EmbT (w)|)). If v has more than one child the
cost of Mop,Nca, and Deep is bounded by

∑
w∈child(v) O(|EmbT (w)|). Fur-

thermore, since the length of the output of Mop (and thus Nca) is at most
z = minw∈child(v) |EmbT (w)| the cost of Fl is O(g(z)). Hence, the total cost for
internal nodes is,∑
v∈V (P)\L(P)

O(g(min
w∈child(v)

|EmbT (w)|)+
∑

w∈child(v)

|EmbT (w)|) ≤
∑

v∈V (P)

O(g(|EmbT (v)|)).

Next we bound the sum
∑

v∈V (P) O(g(|EmbT (v)|)). For any w ∈ child(v)
we have that EmbT (w) and EmbT (v) are disjoint ordered lists. Furthermore
we have that any node in EmbT (v) must be an ancestor of some node in
DeepT (FlT (EmbT (w), label(v))). Hence, by Lemma 5, for any leaf to root path
δ = v1, . . . , vk in P , we have that

∑
u∈δ g(|EmbT (u)|) ≤ O(nT). Let Δ denote

the set of all root to leaf paths in P . It follows that,
∑

v∈V (T) g(|EmbT (v)|) ≤∑
p∈Δ

∑
u∈p g(|EmbT (u)|) ≤ O(lPnT).

Since this time dominates the time spent at the leaves the time bound fol-
lows. Next consider the space used by EmbT (root(P)). The preprocessing of
described above uses only O(nT) space. Furthermore, by induction on the size
of the subtree P (v) it follows immediately that at each step in the algorithm at
most O(maxv∈V (P) |EmbT (v)|) space is needed. Since EmbT (v) a deep embed-
ding, it follows that |EmbT (v)| ≤ lT . &'

An Alternative Algorithm. In this section we present an alternative algo-
rithm. Since the time complexity of the algorithm in the previous section is
dominated by the time used by Fl, we present an implementation of this pro-
cedure which leads to a different complexity. Define a firstlabel data structure
as a data structure supporting queries of the form fl(v, α), v ∈ V (T), α ∈ Σ.
Maintaining such a data structure is known as the tree color problem, see e.g.,
[5, 13]. With such a data structure available we can compute Fl(X,α) as the list
[fl(X[i], α) | 1 ≤ i ≤ |X|].

Theorem 3. Let P and T be trees. Given a firstlabel data structure using s(nT)
space, p(nT) preprocessing time, and q(nT) time for queries, the tree inclusion
problem can be solved in O(p(nT) +nP lT · q(nT)) time and O(nP + s(nT) +nT)
space.

Proof. Constructing the firstlabel data structures uses O(s(nT)) space and time
O(p(nT)). As in the proof of Thm. 2 we have that the total time used by
EmbT (root(P)) is bounded by

∑
v∈V (P) g(|EmbT (v)|), where g(n) is the time

used by Fl on a list of length n. Since EmbT (v) is a deep embedding and
each fl takes q(nT) we have,

∑
v∈V (P) g(|EmbT (v)|) ≤

∑
v∈V (P) g(lT) = nP lT ·

q(nT). &'

76 P. Bille and I.L. Gørtz

Several firstlabel data structures are available, for instance, if we want to
maintain linear space, we can use a data structure by Dietz [5] that supports
firstlabel queries in O(log log nT) time using O(nT) space and O(nT) expected
preprocessing time. Plugging in this data structure we obtain,

Corollary 1. For trees P and T the tree inclusion problem can be solved in
O(nP lT log log nT) time and O(nP + nT) space.

Since the preprocessing time p(n) of the firstlabel data structure is expected
the running time of the tree inclusion algorithm is also expected. However, the
expectation is due to a dictionary using perfect hashing and we can therefore
use the deterministic dictionary of [6] with O(nT log nT) worst-case preprocessing
time instead. This does not affect the overall complexity of the algorithm.

5 A Faster Tree Inclusion Algorithm

In this section we present a new tree inclusion algorithm which has a worst-case
subquadratic running time. Due to lack of space we will only give a rough sketch
of the algorithm. A full description of the algorithm can be found in the full
version of the paper [3].

The first step is to divide T into small connected subgraphs, called micro trees
or clusters. Using a technique from [2] we can construct in linear time a cluster
partition of T , consisting of O(nT / log nT) clusters each of size O(log nT), with
the property that any cluster shares at most two nodes with any other cluster.
Each micro tree is represented by a constant number of nodes in a macro tree.
The nodes in the macro tree are then connected according to the overlap of the
micro trees they represent. Note that the total number of nodes in the macro
tree is O(nT / log nT).

In linear time of the tree T we preprocess all the micro trees and the macro
tree such that the set procedures use constant time for each micro tree. Using
a compact node representation we can then implement all the set procedures in
O(nT / log nT) time.

Lemma 6. For any tree T there is a data structure using O(nT) space and
O(nT) expected preprocessing time which supports all of the set procedures in
O(nT / log nT) time.

The proof of the lemma and all details in the implementation of the set proce-
dures can be found in the full version of the paper. We can now compute the
deep occurrences of P in T using the procedure Emb of Sec. 3 and Lemma 6.
Since each node v ∈ V (P) contributes at most a constant number of calls to set
procedures it follows that,

Theorem 4. For trees P and T the tree inclusion problem can be solved in
O(nP nT

log nT
) time and O(nP + nT) space.

Combining the results in Theorems 2, 4 and Corollary 1 we have the main result
of Theorem 1.

The Tree Inclusion Problem: In Optimal Space and Faster 77

Acknowledgments. We thank the reviewers for the many insightful comments.

References

1. L. Alonso and R. Schott. On the tree inclusion problem. In Proc. of Math. Foun-
dations of Computer Science, pages 211–221, 1993.

2. S. Alstrup, J. Holm, K. de Lichtenberg, and M. Thorup. Minimizing diameters of
dynamic trees. In Proc. of Intl. Coll. on Automata, Languages and Programming
(ICALP), pages 270–280, 1997.

3. P. Bille and I. Gørtz. The tree inclusion problem: In optimal space and faster.
Technical Report TR-2005-54, IT University of Copenhagen, January 2005.

4. W. Chen. More efficient algorithm for ordered tree inclusion. J. Algorithms, 26:370–
385, 1998.

5. P. F. Dietz. Fully persistent arrays. In Proc. of Workshop on Algorithms and Data
Structures (WADS), pages 67–74, 1989.

6. T. Hagerup, P. B. Miltersen, and R. Pagh. Deterministic dictionaries. J. Algo-
rithms, 41(1):69–85, 2001.

7. D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM J. Comput., 13(2):338–355, 1984.

8. P. Kilpeläinen. Tree Matching Problems with Applications to Structured Text
Databases. PhD thesis, University of Helsinki, Department of Computer Science,
1992.

9. P. Kilpeläinen and H. Mannila. Retrieval from hierarchical texts by partial pat-
terns. In Proc. of Conf. on Research and Development in Information Retrieval,
pages 214–222, 1993.

10. P. Kilpeläinen and H. Mannila. Ordered and unordered tree inclusion. SIAM J.
Comp., 24:340–356, 1995.

11. D. E. Knuth. The Art of Computer Programming, Volume 1. Addison Wesley,
1969.

12. H. Mannila and K. J. Räihä. On query languages for the p-string data model.
Information Modelling and Knowledge Bases, pages 469–482, 1990.

13. S. Muthukrishnan and M. Müller. Time and space efficient method-lookup for
object-oriented programs. In Proc. of Symp. on Discrete Algorithms, pages 42–51,
1996.

14. T. Richter. A new algorithm for the ordered tree inclusion problem. In Proc. of
Symp. on Combinatorial Pattern Matching (CPM), pages 150–166, 1997.

15. T. Schlieder and H. Meuss. Querying and ranking XML documents. J. Am. Soc.
Inf. Sci. Technol., 53(6):489–503, 2002.

16. T. Schlieder and F. Naumann. Approximate tree embedding for querying XML
data. In Proc. of Workshop On XML and Information Retrieval, 2000.

17. H. Yang, L. Lee, and W. Hsu. Finding hot query patterns over an xquery stream.
The VLDB Journal, 13(4):318–332, 2004.

18. L. H. Yang, M. L. Lee, and W. Hsu. Efficient mining of XML query patterns for
caching. In Proc. of Conference on Very Large Databases (VLDB), pages 69–80,
2003.

Union-Find with Constant Time Deletions

Stephen Alstrup1, Inge Li Gørtz1, Theis Rauhe1,
Mikkel Thorup2, and Uri Zwick3

1 Department of Theoretical Computer Science,
IT University of Copenhagen, Denmark
{stephen, inge, theis}@itu.dk

2 AT&T Research Labs, USA
mthorup@research.att.com

3 School of Computer Science, Tel Aviv University, Israel
zwick@cs.tau.ac.il

Abstract. A union-find data structure maintains a collection of disjoint
sets under makeset, union and find operations. Kaplan, Shafrir and Tar-
jan [SODA 2002] designed data structures for an extension of the union-
find problem in which elements of the sets maintained may be deleted.
The cost of a delete operation in their implementations is the same as
the cost of a find operation. They left open the question whether delete
operations can be implemented more efficiently than find operations. We
resolve this open problem by presenting a relatively simple modification
of the classical union-find data structure that supports delete, as well
as makeset and union, operations in constant time, while still support-
ing find operations in O(log n) worst-case time and O(α(n)) amortized
time, where n is the number of elements in the set returned by the find
operation, and α(n) is a functional inverse of Ackermann’s function.

1 Introduction

A union-find data structure maintains a collection of disjoint sets under the
operations makeset, union and find. A makeset operation generates a singleton
set. A union operation takes two sets and unites them, destroying the two orig-
inal sets. A find operation takes an element and returns a reference to the set
currently containing it. The union-find problem is one of the most fundamental
data structure problems. It has many applications in a wide range of areas. For
an extensive list of such applications, and for a wealth of information on the
problem and many of its variants, see the survey of Galil and Italiano [7].

An extremely simple union-find data structure (attributed by Aho et al. [1]
to McIlroy and Morris), which employs two simple heuristics, union by rank and
path compression, was shown by Tarjan [12] (see also Tarjan and van Leeuwen
[13]) to be amazingly efficient. It performs a sequence of M find operations and N
makeset and union operations in O(N+M α(M,N)) total time. Here α(·, ·) is an
extremely slowly growing functional inverse of Ackermann’s function. In other
words, the amortized cost of each makeset and union operation is O(1), while

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 78–89, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Union-Find with Constant Time Deletions 79

the amortized cost of each find operation is O(α(M + N,N)), only marginally
more than a constant. Fredman and Saks [6] obtained a matching lower bound
in the cell probe model of computation, showing that this simple data structure
is essentially optimal in the amortized setting.

The union by rank heuristics on its own implies that find operations take
O(log n) worst-case time. Here n is the number of elements in the set returned
by the find operation. All other operations take constant worst-case time. It is
possible to trade a slower union for a faster find. Smid [11], building on a result
of Blum [4], gives for any k a data structure that supports union operations in
O(k) time and find operations in O(logk n) time. When k = logn/ log log n, both
the union and find operation take O(log n/ log log n) time. Fredman and Saks
[6] (see also Ben-Amram and Galil [3]) again show that this tradeoff is optimal,
establishing an interesting gap between the amortized and worst-case complex-
ities of the union-find problem. Alstrup et al. [2] present union-find algorithms
with simultaneously optimal amortized and worst-case bounds.

Local Amortized Bounds. As noted by Kaplan et al. [8], the standard amor-
tized bounds for find are global in terms of the total number N of elements ever
created whereas the worst-case bounds are local in terms of the number n of
elements in the current set we are finding. Obviously n may be much smaller
than N . To state more local amortized bounds, we need a non-standard param-
eterization of the inverse Ackermann function. For integers k ≥ 0 and j ≥ 1,
define an Ackermann function Ak(j) as follows

Ak(j) =

{
j + 1 if k = 0,
A

(j+1)
k−1 (j) if k ≥ 1.

Here f (i)(x) is the function f iterated i times on x. Now, define the inverse of
the function ᾱ(j, i), for integer i, j ≥ 0, as

ᾱ(j, i) = min{k ≥ 2 | Ak(j) > i}.

(For a technical reason, ᾱ(j, i) is defined to be at least 2 for every i, j ≥ 0.)
Relating to the standard definition of α, we have α(M,N) = Θ(ᾱ((M/N), N)).
Kaplan et al. [8] present a refined analysis of the classical union-find data struc-
ture showing that the amortized cost of find(x) operation is only O(ᾱ(((M +
N)/N), n). Kaplan et al. [8] state their results equivalently in terms of a three pa-
rameter function that we will not define here. To get a purely local amortized cost
for find, we note that ᾱ(((M+N)/N), n) ≤ ᾱ(1, n) = O(α(n, n)) = O(α(n)).

Union-Find with Deletions. In the traditional version of the union-find prob-
lem elements are created using makeset operations. Once created, however, el-
ements are never destroyed. Kaplan et al. [8] consider a very natural extension
of the union-find problem in which elements may be deleted. We refer to this
problem as the union-find with deletions problem, or union-find-delete for short.

80 S. Alstrup et al.

Using relatively straightforward ideas (see, e.g., [8]) it is possible to design
a union-find-delete data structure that uses only O(N∗) space, handles make-
set, union and delete operations in O(1) worst-case time, and find operations
in O(logN∗) worst-case time and O(α(N∗)) amortized time, where N∗ is the
current number of elements in the whole data structure. The challenge in the
design of union-find-delete data structures is to have the time of a find(x) op-
eration depend on n, the size of the set currently containing x, and not on N∗,
the total number of elements currently contained in all the sets.

Using an incremental background rebuilding technique for each set, Kaplan et
al. [8] describe a way of converting any data structure for the classical union-find
problem into a union-find-delete data structure. The time bounds for makeset,
find and union operations change by only a constant factor, while the time
needed for a delete(x) operation is the same as the time needed for a find(x)
operation followed by a union operation with a singleton set. As a union opera-
tion is usually much cheaper than a find operation, Kaplan et al. [8] thus show
that in both the amortized and the worst-case settings, a delete operation is not
more expensive than a find operation. Combined with their refined amortized
analysis of the classical union-find data structure, this provides, in particular, a
union-find-delete data structure that implements makeset and union operations
in O(1) time, and find(x) and delete(x) operations in O(α(n)) amortized time
and O(log n) worst-case time. They leave open, however, the question whether
delete operations can be implemented faster than find operations.

Our Results. We solve the major open problem raised by Kaplan et al. [8]
and show that delete operations can be performed in constant worst-case time,
while still keeping the O(ᾱ(((M + N)/N), n)) = O(α(n)) amortized cost and
the O(log n) worst-case cost of find operations, and the constant worst-case cost
of makeset and union operations. We recall here that N is the total number
of elements ever created, M is the total number of find operations performed,
and n is the number of elements in the set returned by the find operation.
The data structure that we present uses linear space and is a relatively simple
modification of the classical union-find data structure. It is at least as simple as
the data structures presented by Kaplan et al. [8].

As a by-product we also obtain a very concise potential-based proof of the
O(ᾱ(((M + N)/N), n)) bound, first obtained by Kaplan et al. [8], on the amor-
tized cost of a find operation in the classical setting. We believe that our potential-
based analysis is much simpler than the one given by Kaplan et al. [8].

Our Techniques. Our new union-find-delete data structure, like most other
union-find data structures, maintains the elements of each set in a rooted tree.
As elements can now be deleted, not all the nodes in these trees will contain
active elements. Nodes that contain elements are said to be occupied, while nodes
that do not contain elements are said to be vacant. When an element is deleted,
the node containing it becomes vacant. If proper measures are not taken, then
a tree representing a set may contain too many vacant nodes. As a result, the
space needed to store the tree, and the time needed to process a find operation

Union-Find with Constant Time Deletions 81

may become too large. The new data structure uses a simple collection of local
operations to tidy up a tree after each delete operation. This ensures that at
most half of the nodes in a tree are vacant. More importantly, the algorithm
employs local constant-time shortcut operations in which the grandparent, or
a more distant ancestor, of a node becomes its new parent. These operations,
which may be viewed as a local constant-time variant of the path compression
technique, keep the trees relatively shallow to allow fast find operations.

As with the simple standard union-find, the analysis is the most non-trivial
part. The analysis of the new data structure uses two different potential func-
tions. The first potential function is used to bound the worst-case cost of find
operations. Both potential functions are needed to bound the amortized cost of
find operations. The second potential function on its own can be used to ob-
tain a simple derivation of the refined amortized bounds of Kaplan et al. [8] for
union-find without deletions.

We end this section with a short discussion of the different techniques used
to analyze union-find data structures. The first tight amortized analysis of the
classical union-find data structure, by Tarjan [12] and Tarjan and van Leeuwen
[13], uses collections of partitions and the so-called accounting method. The re-
fined analysis of Kaplan et al. [8] is directly based on this method. A much more
concise analysis of the union-find data structure based on potential functions
can be found in Kozen [9] and Chapter 21 of Cormen et al. [5]. The amortized
analysis of our new union-find-delete data structure is based on small but crucial
modifications of the potential function used in this analysis. As a by product we
get, as mentioned above, a simple proof of the amortized bounds of Kaplan et al.
[8]. Seidel and Sharir [10] presented recently an intriguing top-down amortized
analysis of the union-find data structure. Our analysis is no less concise, though
perhaps less intuitive, and has the additional advantage of bounding the cost of
an amortized operation in terms of the size of the set returned by the operation.

2 Preliminaries

The Union-Find and Union-Find-Delete Problems. A classical union-find
data structure supports the following operations:

– make-set(x): Create a singleton set containing x.
– union(A,B): Combine the sets A and B into a new set, destroying A and B.
– find(x): Return an identifier of the set containing x.

The only requirement from the identifier, or name, returned by a find operation
is that if two elements x and y are currently contained in the same set, then the
calls find(x) and find(y) return the same identifier. Kaplan et al. [8] studied data
structures that also support delete operations:

– delete(x): Delete x from the set containing it.

A delete operation should not change the identifier attached to the set from
which the element was deleted. It is important to note that a delete operation

82 S. Alstrup et al.

does not receive a reference to the set currently containing x. It only receives the
element x itself. As mentioned, Kaplan et al. [8] essentially showed that delete
operations are not more expensive than find operations.

Standard Worst-Case Bounds for Union-Find. We briefly review here
the simple standard union-find data structure that supports makeset and union
operations in constant time and find operations in O(log n) time, as it forms the
basis of our new data structure for the union-find-delete problem.

The elements of each set A are maintained in a rooted tree T = TA. The
identifier of the set A is the root of T . Fixing some terminology, the height of a
node v ∈ T , denoted by h(v), is defined to be 0, if v is a leaf, and max{h(w)|
w is a child of v} + 1, otherwise. Let root(T) denote the root of T . The height
of a tree is the height of its root. For a node v ∈ T let p(v) denote the parent
of v. A node x ∈ T is an ancestor of a node y ∈ T if x is on the path from y to
the root of T—both y and the root included. A node x ∈ T is a descendant of a
node y ∈ T if y is an ancestor of x.

Each node v has an assigned integer rank rank(v). An important invariant
is that for the parent of a node always has a strictly higher rank than the node
itself. The rank of a tree is defined to be the rank of the root of the tree.

We implement the operations as follows.

find(x): Follow parent pointers from x all the way to the root. Return the root
as the identifier of the set.

make-set(x): Create a new node x. Let p(x) ← x, rank(x) ← 0.
union(A,B): Recall that A and B are root nodes. Assume w.l.o.g. that rank(A)≥

rank(B). Make B a child of A. If rank(A)=rank(B), increase rank(A) by one.

Analysis. Trivially, makeset and union operations take constant time. Since
ranks are strictly increasing when following parent pointers, the time of a find
operation applied to an element in a set A is proportional to rank(A). We prove,
by induction, that rank(A) ≤ log2 |A|, or equivalently, that

|A| ≥ 2rank(A) . (1)

When A is just created with make-set(x), it has rank 0 and 20 = 1 elements. If C
is the set created by union(A,B), then |C| = |A|+ |B|. If C has the same rank
as A, or the same rank as B, we are trivially done. Otherwise, we have rank(A) =
rank(B) = k and rank(C) = k + 1, and then |C| = |A| + |B| ≥ 2k + 2k = 2k+1.
This completes the standard analysis of union-find with worst-case bounds.

3 Augmenting Worst-Case Union-Find with Deletions

Each set in the data structure is again maintained in a rooted tree. In the
standard union-find data structure, reviewed in Section 2, the nodes of each
tree were identified with the elements of the set. In the new data structure,
elements are attached to nodes, not identified with them. Some nodes in a tree

Union-Find with Constant Time Deletions 83

are occupied, i.e., have an element attached to them, while others are vacant, i.e.,
have no element attached to them. An element can then be deleted by simply
removing it from the node it was attached to. This node then becomes vacant.
The name of a set is taken to be its root node. As the name of a set is a node,
and not an element, names do not change as a result of delete operations.

An obvious problem with this approach is that if we never remove vacant
nodes from the trees, we may end up consuming non-linear space. To avoid this,
we require our union-find trees to be tidy :

Definition 1. A tree is said to be tidy if it satisfies the following properties:

– Every vacant non-root node has at least two children,
– Every leaf is occupied and has rank 0.

It is easy to tidy up a tree. First, we remove vacant leaves. When a node becomes
a leaf, its rank is reduced to 0. Next, if a vacant non-root node v has a single
child w, we make the parent of v the parent of w and remove v. We call this
bypassing v. The following Lemma is now obvious.

Lemma 1. At most half of the nodes in a tidy tree may be vacant.

Tidy trees thus use linear space. However, tidyness on it own does not yield
a sublinear time bound on find operations. (Note, for example, that a path of
occupied nodes is tidy.) Our next goal would be to make sure that the depth of
a tree is logarithmic in the number of occupied nodes contained in it. Ideally, we
would want all trees to be reduced :

Definition 2. A tree is said to be reduced if it is either

– A tree composed of a single occupied node of rank 0, or
– A tree of height 1 with a root of rank 1 and occupied leaves of rank 0.

Naturally, we will not manage to keep our trees reduced at all times. Reduced
trees form, however, the base case for our analysis.

Keeping the Trees Shallow During Deletions. This section contains our
main technical contribution. We show how to implement deletions so that for
any set A,

|A| ≥ (2/3)(6/5)rank(A) . (2)

Consequently, rank(A) ≤ log6/5(3|A|/2) = O(log |A|+1). As the rank of a tree is
always an upper bound on its height, we thus need to follow at most O(log |A|+1)
parent pointers to get from any element of A to the root identifier.

The key idea is to associate the following value with each node v:

Definition 3. The value val(v) of a node v is defined as

val(v) =

{
(5/3)rank(p(v)) if v is occupied,
(1/2)(5/3)rank(p(v)) if v is vacant.

Here, if v is a root, p(v) = v. The value of a set A is defined as the sum the
values of all nodes in the tree TA representing A: VAL(A) =

∑
v∈TA

val(v).

84 S. Alstrup et al.

The value 5/3 is chosen to satisfy Equation 2 and Lemma 2, 4, and 9 below. In
fact, we could have chosen any constant value in [(1 +

√
5)/2, 2). We are going

to implement deletions in such a way that

VAL(A) ≥ 2rank(A) . (3)

Since the tree representing a set A contains exactly |A| occupied nodes, each of
value at most (5/3)rank(A), and at most |A| vacant nodes in TA, each of value at
most (5/3)rank(A)/2, it will follow that

|A| ≥ 2rank(A)

(3/2)(5/3)rank(A)
= (2/3)(6/5)rank(A),

so (3) will imply (2).
The essential operation used to keep trees shallow is to shortcut from a node v,

giving v a parent higher up over v in the tree. For example, path compression
shortcuts from all nodes in a search path directly to the root. Since ranks are
strictly increasing up through the tree, shortcutting from v increases the value
of v by a factor of at least 5/3. This suggests that we can make up for the loss of
a deleted node by a constant number of shortcuts from nearby nodes of similar
rank. Before proceeding, let us check that reduced trees satisfy (3).

Lemma 2. If the tree representing a set A is reduced then VAL(A) ≥ 2rank(A).

Proof. If A is of height 0, then VAL(A) = (5/3)0 = 1 and 2rank(A) = 1. If A is
of height 1, then VAL(A) ≥ (5/3)1 + (1/2)(5/3)1 = 5/2 while 2rank(A) = 2. &'

Let us for a moment assume that we have an implementation of delete that
preserves, i.e., does not decrease, value, and let us check that the other operations
preserve (3). A makeset operation creates a reduced tree, so (3) is satisfied by
Lemma 2. Also, when we set C := union(A,B), we get VAL(C) ≥ VAL(A) +
VAL(B), and hence (3) follows just like (1).

Paying for a Deletion via Local Rebuilding. We now show how we can
implement a delete operation in constant time, either without decreasing value
of the set from which the element is deleted, or ending up with a reduced tree
representing the set. Suppose we delete an element of A attached to a node u.
As u becomes vacant, we immediately loose half its value. Before u was vacant
the tree was tidy, but now we may have to tidy the tree. If u is not a leaf, the
only required tidying up is to bypass u if it has a single child. If instead u was a
leaf, we first delete u. If p(u) is now a leaf, its rank is reduced to zero, but that
in itself does not affect any value. If p(u) is vacant and now has only one child,
we bypass p(u). This completes the tidying up.

Lemma 3. Let v be the parent of the highest node affected by a delete, including
tidying up. If rank(v) = k, then the maximal loss of value is at most (9/10)(5/3)k.

Union-Find with Constant Time Deletions 85

Proof. It is easy to see that the worst-case is when v = p(p(u)), where u is a
deleted leaf and p(u) is bypassed. Now u lost at most (5/3)k−1 and p(u) lost
(5/3)k/2, while the other child of p(u) gained at least ((5/3)k − (5/3)k−1)/2
from the bypass. Adding up, the total loss is (9/10)(5/3)k. &'

Below we show how to regain the loss from a delete using a pointer to v from
Lemma 3. To find nearby nodes to shortcut from, we maintain two doubly linked
lists for each node v; namely C(v) containing the children of v, and G(v) contain-
ing the children of v that themselves have children. Thus, to find a grandchild
of v, we take a child of a child in G(v). Both lists are easily maintained as chil-
dren are added and deleted: if a child u is added to v, it is added to C(v). If u
is the first child of v, we add v to G(p(v)). Finally, we add u to G(v) if C(u) is
non-empty. Deleting a child is symmetric. Using these lists, we first prove

Lemma 4. In a tidy tree, if node x has rank k and grandchildren, we can gain
Ω((5/3)k) value in O(1) time.

Proof. Using G(x), find a child y of x that have children. If y is occupied, we
can take any child z of y and shortcut to x. This increases the value of z by
at least (1/2)((5/3)k − (5/3)k−1) = (1/5)(5/3)k. We note that y may have rank
much lower than k − 1, but that would only increase our gain. If z is the last
child of y, we remove y from G(x). If, on the other hand, y is vacant, we have
two cases. First note that since the tree is tidy, |C(y)| ≥ 2. If |C(y)| > 2, we can
just take any child z of y and shortcut to x as above. Otherwise C(y) = {z, z′}.
If both z and z′ are occupied, we shortcut both z and z′ to x and remove y.
This gives a gain of at least 2((5/3)k − (5/3)k−1)− (1/2)(5/3)k = (3/10)(5/3)k.
Otherwise, one of them, say z is vacant. Tidyness implies that z has at least two
children. If more than two, any one of them can be shortcut to x gaining at least
(1/2)((5/3)k − (5/3)k−2) = (8/25)(5/3)k. If exactly two, then one of them is
shortcut to y and the other to x while z is removed. The gain in value is at least
(1/2)((5/3)k + 2(5/3)k−2) = (7/50)(5/3)k. We note that all the above shortcuts
preserves tidyness. &'

The following lemma shows how we—using Lemma 4—can regain the value lost
due to a deletion.

Lemma 5. In a tidy tree with a pointer to a node v of rank k, we can increase
the value by t · (5/3)k or get to a reduced tree in O(t) time.

Proof. The proof is constructive. We set x = v and repeat the following until
either we have gained enough value, or reach the base case of a reduced tree:

1. While G(x) is non-empty and there is more value to be gained, apply Lemma 4.
2. If x is not the root, set x = p(x).

In case 1, we gain Ω((5/3)k) per constant time iteration due to Lemma 4. We
cannot get to case 2 twice in a row without getting to case 1, since p(x) ∈
G(p(p(x))). Thus, in O(t) time, we either gain t · (5/3)k in value, or we end
with x the root but with no grand children, that is, a tree of height at most 1.

86 S. Alstrup et al.

If we are in the base case with a tree of height 0 or 1, we set rank(x) to 0 or 1,
respectively. &'
Combining Lemmas 2, 3, and 5 with t = O(1), we implement a deletion in
constant time so that either we have no loss, meaning that (3) is preserved, or
obtaining a reduced tree that satisfies (3) directly. Thus we have proved

Theorem 1. In union-find with deletion we can implement each makeset, union,
and delete in constant time, and each find in O(log n) time.

4 Faster Amortized Bounds

We will now show that we can get much faster amortized bounds for find, yet
preserve the previous worst-case bounds. All we have to do is to use path com-
pression followed by tidying up operations. Path compression of a path from
node v ∈ T to node u ∈ T makes every node on the path a child of u. When we
perform a find from a node v, we compress the path to the root. Our analysis is
new and much cleaner analysis than was previously known even without deletes.

Before going further, we note that path compression consists of shortcuts
that increase value of the previous section, so intuitively, the path compression
can only help the deletions. Below, we first present our new analysis without the
deletions, and then we observe that deletions are only helpful.

Analysis. We assign a potential φ(x) to each node x in the forest. To define the
potential we need some extra functions. Define Q = (M+N

N) and α′(n) = ᾱ(Q,n).
Note that Q ≥ 2 whenever M > 0. Our goal is to prove that the amortized cost
of find is O(α′(n)) where n is the cardinality of the set found. We also define
rank′(v) = rank(v) + Q.

Definition 4. For a non-root node x we define

level(x) = max{k ≥ 0 | Ak(rank′(x)) ≤ rank′(p(x))} ,

index(x) = max{i ≥ 1 | A(i)
level(x)(rank′(x)) ≤ rank′(p(x))} .

We have

0 ≤ level(x) < ᾱ(rank′(x), rank′(p(x))) ≤ α′(rank′(p(x))) , (4)

1 ≤ index(x) ≤ rank′(x) . (5)

Definition 5. The potential φ(x) of a node x is defined as

φ(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α′(rank′(x)) · (rank′(x) + 1) if x root,
(α′(rank′(x))− level(x)) · rank′(x)− index(x) + 1

if x not root and α′(rank′(x)) = α′(rank′(p(x))),
0 otherwise.

Union-Find with Constant Time Deletions 87

The potential Φ(x) of a set A is defined as the sum of the potentials of the nodes
in the tree TA representing the set A: Φ(A) =

∑
x∈TA

φ(x).

At first sight the potential function looks very similar to the standard one
from [5], but there are important differences. Using α(rank(x)) instead of α(N)
we get a potential function that is more locally sensitive. To get this change to
work, we use the trick that the potential of a node is only positive if α′(rank′(x)) =
α′(rank′(p(x))).

From (4) and (5) it immediately follows that the potential of a node x with
α′(rank′(x)) = α′(rank′(p(x))) is strictly positive. We also note that the only
potentials that can increase are those of roots. All other nodes keep their ranks
while the ranks of their parents increase and that can only decrease the potential.

We will now analyze the change in potential due to the operations.

Lemma 6. The cost of makeset is amortized as a constant per makeset plus a
constant per find.

Proof. When we create a new set A with rank 0, it gets potential ᾱ(Q,Q)(Q +
1) = 2(Q+ 1) = O((M +N)/N). Over N makeset operations, this adds up to a
total increase of O(M + N). &'

Lemma 7. The operation union(A,B) does not increase the potential.

Proof. Suppose we make A the parent of B. If the rank of A is not increased,
there is no node that increases potential, so assume that rank′(A) is increased
from k to k + 1. Then k was also the rank of B. If α′(k + 1) > α′(k), then B
gets zero potential along with any previous child of A. The potential of B is
reduced by α′(k) · (k + 1). On the other hand, the potential of A is increased by
(α′(k)+1)·(k+2)−α′(k) ·(k+1) = α′(k)+k+2, which is less than α′(k) ·(k+1),
as k ≥ 2 and α′(k) ≥ 2. (Here we use the fact that ᾱ(j, i) ≥ 2, for every i, j ≥ 0.)

Finally, if α′(k + 1) = α′(k), then the potential of A increases by α′(k) while
the potential of B decreases by at least α′(k), since B was a root with potential
α′(k) · (k + 1) and now becomes a child with potential at most α′(k) · k. &'

Lemma 8. A path compression of length � from a node v up to some node u
decreases the potential by at least � − (2 · α′(rank′(u)) + 1). In particular, the
amortized cost is at most O(α′(rank′(u))).

Proof. The potential of the root does not change due to the path compression.
We will show that at least max{0, l − (2 · α′(rank′(u)) + 2)} nodes have their
potential decreased by at least one.

There are at most α′(rank′(u)) nodes x on the path that had α′(rank′(x)) <
α′(rank′(p(x))) before the operation. The potentials of these nodes do not change.

If node x had α′(rank′(x)) = α′(rank′(p(x))) < α′(rank′(u)), then its poten-
tial drops to 0, and the decrease in x’s potential is therefore at least one.

It remains to account for the nodes x with α′(rank′(x)) = α′(rank(u)). Let x
be a node on the path such that x is followed somewhere on the path by a node
y �= u with level(y) = level(x) = k. There can be at most α′(rank′(u)) + 1 nodes

88 S. Alstrup et al.

on the path that do not satisfy these constraints: The last node before u, u, and
the last node on the path for each level, since level(y) < α′(rank′(u)). Let x be a
node that satisfies the conditions. We show that the potential of x decreases by
at least one. Before the path compression we have rank′(p(y)) ≥ Ak(rank′(y)) ≥
Ak(rank′(p(x))) ≥ Ak(A(index(x))

k (rank′(x))) = A
(index(x)+1)
k (rank′(x)). After the

path compression we have rank′(p(x)) = rank′(p(y)) and thus rank′((p(x)) ≥
A

(index(x)+1)
k (rank′(x)), since rank′(x) does not change and rank′(p(y)) does not

decrease. This means that either index(x) or level(x) must increase by at least
one. Thus φ(x) decreases by at least one. &'

We conclude that the amortized cost of find in a set A is

O(α′(rank′(A))) = O(ᾱ(Q, rank(A) + Q + c)) = O(ᾱ(Q, rank(A))).

The last step follows because ᾱ is defined to be at least 2. Recall that Q = (M+N
N)

and that rank(A) ≤ log2 |A|, so without deletions, this is the desired bound.

Deletion and Path Compression. We now combine the path compression
and amortized analysis with deletions. The potential used in the amortization is
identical for vacant and occupied nodes. It is clear that deletions and tidying up
can only decrease this potential, so they have no extra amortized cost. Likewise, a
path compression can only increase value as it only performs shortcuts. However,
after a path compression, there may be some cleaning to do if some vacant nodes
go down to 0 or 1 children. We start the path compression from a tidy tree where
each vacant node has at least two children, and the compression takes at most
one child from each node on the path. Hence the only relevant tidying up is to
bypass some of the nodes on the path. The tidying up takes time proportional
to the length of the path, so the cost of a find is unchanged.

The tidying up does decreases value, but the loss turns out less than the gain
from the compression.

Lemma 9. Path compression followed by tidying up operations does not de-
crease the value of a tree.

Proof. The path compression involves nodes v0, ..., v� starting in some occupied
node v0 and ending in the root which has some rank k. After the compression,
all nodes v0, .., v�−1 are children of the root v�. If node vi is not bypassed when
tidying up, its value gain is at least ((5/3)rank(v�) − (5/3)rank(vi+1))/2. If vi is
bypassed, then 0 < i < �, and vi is vacant, so the loss is (5/3)rank(vi+1)/2. How-
ever, then vi has a child wi which gains at least ((5/3)rank(v�)− (5/3)rank(vi))/2,
so the total change is

((5/3)rank(v�) − (5/3)rank(vi+1) − (5/3)rank(vi))/2

Since ranks are strictly increasing along a path, this change is positive for all but
i = �−1. On the other hand, the first node v0 is always occupied, and has a gain of
at least (5/3)rank(v�)− (5/3)rank(v1), where 1 ≤ �−1. We can use the value gained
by v0 to pay for the value lost by bypassing both v1 and vl−1. There are two cases.

Union-Find with Constant Time Deletions 89

If both vl−1 and v1 is bypassed we must have l ≥ 4. Combining the changes
in potential for the nodes v0, v1, and vl−1 we get,(5/3)rank(l) − (5/3)rank(v1) −
(1/2)(5/3)rank(v2) − (1/2)(5/3)rank(vl−1) > 0.

If v1 is not bypassed, we get that the total gain for v0 and vl−1 is at least,
(5/3)rank(vl) − (5/3)rank(v1) − (1/2)(5/3)rank(vl), which is always positive. Thus
the overall change in value is positive, or zero if the path has length 0 or 1 and
no compression happens. &'

Since our values and hence (3) are preserved, for any set A, we get rank(A) =
O(log |A|). Thus our amortized cost of a find operation is O(ᾱ(Q,O(log |A|)) =
Θ(ᾱ((M+N

N), |A|). Summing up, we have proved

Theorem 2. If we do a total of M find operations on a total of N makeset
operations, then the operation times can be amortized as follows. We pay only a
constant for each makeset, union, and delete, and for a find on an element in a
set A, we pay O(ᾱ((M+N

N), |A|). Meanwhile, the worst-case bounds of Theorem 1
are preserved.

References

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, 1974.

2. S. Alstrup, A. M. Ben-Amram, and T. Rauhe. Worst-case and amortised optimality
in union-find. In Proceedings of the Thirty-First Annual ACM Symposium on
Theory of Computing (STOC’99), pages 499–506, May 1999.

3. A. M. Ben-Amram and Z. Galil. A generalization of a lower bound technique due
to Fredman and Saks. Algorithmica, 30(1):34–66, 2001.

4. N. Blum. On the single-operation worst-case time complexity of the disjoint set
union problem. SIAM J. Comput., 15(4):1021–1024, 1986.

5. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. MIT Press, 2nd edition, 2001.

6. M. Fredman and M. Saks. The cell probe complexity of dynamic data structures. In
Proceedings of the 21st Annual Symposium on Theory of Computing (STOC ’89),
pages 345–354, New York, May 1989. ACM Association for Computing Machinery.

7. Z. Galil and G. F. Italiano. Data structures and algorithms for disjoint set union
problems. ACM Computing Surveys, 23(3):319, Sept. 1991.

8. H. Kaplan, N. Shafrir, and R. E. Tarjan. Union-find with deletions. In Proc. of the
13th ACM-SIAM Symp. On Discrete Mathematics (SODA), pages 19–28, 2002.

9. D. L. Kozen. The Design and Analysis of Algorithms. Springer, Berlin, 1992.
10. R. Seidel and M. Sharir. Top-down analysis of path compression. SIAM J. Comput.,

34(3):515–525, 2005.
11. M. Smid. A data structure for the union-find problem having good single-operation

complexity. ALCOM: Algorithms Review, Newsletter of the ESPRIT II Basic Re-
search Actions Program Project no. 3075 (ALCOM), 1, 1990.

12. R. E. Tarjan. Efficiency of a good but not linear disjoint set union algorithm.
Journal of the ACM, 22:215–225, 1975.

13. R. E. Tarjan and J. van Leeuwen. Worst-case analysis of set union algorithms.
Journal of the ACM, 31(2):245–281, Apr. 1984.

Optimal In-place Sorting of Vectors and Records

Gianni Franceschini and Roberto Grossi

Dipartimento di Informatica, Università di Pisa,
Largo Bruno Pontecorvo 3, 56127 Pisa, Italy

{francesc, grossi}@di.unipi.it

Abstract. We study the problem of determining the complexity of op-
timal comparison-based in-place sorting when the key length, k, is not
a constant. We present the first algorithm for lexicographically sorting
n keys in O(nk+n log n) time using O(1) auxiliary data locations, which
is simultaneously optimal in time and space.

1 Introduction

We study the computational complexity of the classical problem of comparison-
based sorting by considering the case in which the keys are of non-constant
length, k. We aim at minimizing simultaneously the time and space bounds under
the assumption that the keys are vectors x ∈ Σk of k scalar components over a
totally ordered, possibly unbounded set Σ. Denoting the ith scalar component of
vector x by x(i) for 1 ≤ i ≤ k, we indicate the vector’s chunks by x(i, j), which
are the contiguous portions of x consisting of x(i), x(i + 1), . . . , x(j), where
1 ≤ i ≤ j ≤ k. The lexicographic (or alphabetic) order, x ≤ y, is defined in terms
of the scalar components: either x(1) < y(1) or recursively x(2, k) ≤ y(2, k) for
x(1) = y(1). The model easily extends to k-field records in Σ1 ×Σ2 × · · · ×Σk,
but we prefer to keep the notation simple.

We are given a set V ⊆ Σk of n vectors stored in n vectorial locations,
one vector of V per location. We permit two kinds of operations on the vector
locations: (1) exchange any two vectors in O(k) time; (2) access the ith scalar
component of any two vectors for comparison purposes in O(1) time. Hence,
determining the lexicographic order of any two vectors from scratch takes O(k)
time. We are also given a number of auxiliary locations, each location storing one
integer of O(log n) bits. We employ the standard repertoire of RAM instructions
on the auxiliary locations, with O(1) time per operation.

The model resulting from the above rules naturally extends the comparison
model to keys of non-constant length. (We obtain the comparison model by fixing
k = 1.) We are interested in exploring algorithms using the minimal number of
auxiliary locations, referring to the model using just O(1) auxiliary locations as
the in-place model for vectors. This model is useful for studying, in an abstract
way, the complexity of in-place sorting and searching for a variety of keys: k-
length strings, k-field records, k-dimensional points, k-digit numbers, etc.

One significant example is how to perform in-place searching on a set V of
n vectors. With sophisticated techniques for proving upper and lower bounds

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 90–102, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Optimal In-place Sorting of Vectors and Records 91

on the complexity of searching V in lexicographic order, Andersson, Hagerup,
H̊astad and Petersson have proved in [1] that it requires

Θ

(
k log logn

log log(4 + k log log n
log n)

+ k + logn

)

time. This bound is worse than Θ(k+log n), obtained by searching V plus O(n)
auxiliary locations (e.g., Manber and Myers [18]). Using permutations other
than those resulting from sorting is a way to reach optimality: Franceschini and
Grossi [10] have shown that for any set V of n vectors in lexicographic order,
there exists a permutation of them allowing for Θ(k + log n) search time using
O(1) auxiliary data locations.

In-place sorting is an even more intriguing example in this scenario. Any op-
timal in-place sorting algorithm for constant-sized keys can be turned into an
O(nk log n)-time in-place algorithm for vectors, losing optimality in this way.
The lower bound of Ω(nk + n log n) time easily derives from decision trees [14].
If the number of comparison is to be minimized, the best up-to-date result for
in-place sorting is n log n+O(nk log∗ n) scalar comparisons and n log n+O(nk)
vector exchanges by Munro and Raman [20]. Since each vector exchange takes
O(k) time, the time complexity sums up to O(nk2 + nk log n). For the same
reason, the multikey Quicksort analyzed by Bentley and Sedgewick [4] yields a
non-optimal algorithm of cost O(nk log n) when adapted to run in the in-place
model for vectors, since it requires O(n log n) vector exchanges. The original
version of the algorithm takes O(nk + n log n) time since it can exploit O(n)
auxiliary locations to store the pointers to the vectors. It exchanges the point-
ers rather than the vectors, following the address table sorting suggested in
Knuth [14–p.74]. Recently, Franceschini and Geffert [9] have devised an optimal
in-place algorithm for constant-sized keys with O(n) data moves. Subsequent
results by Franceschini [7, 8] have shown how to achieve cache-obliviousness
or stableness for in-place sorting. However, the O(k)-time cost of each vector
comparison makes these methods non-optimal in our setting. The bit encoding
for vectors in Franceschini and Grossi [10] cannot help either, as it assumes
that vectors are initially sorted while this is actually the major goal in this
paper.

The above discussion highlights the fact that the known algorithms, to the
best of our knowledge, are unable to simultaneously achieve time optimality and
space optimality for sorting vectors (in place). Our main result is that of obtain-
ing the first optimal bounds for sorting an arbitrary set of n vectors in place,
taking Θ(nk + n log n) time and using O(1) auxiliary locations. An implication
of our result is that we can provide optimal in-place preprocessing for efficient
in-place searching [1, 10, 11, 12, 15] when the vectors are initially arranged in any
arbitrary order, with a preprocessing cost of O(nk+n log n) time. Another impli-
cation is that sorting bulky records can be done optimally in place by exchanging
them directly without using the O(n) auxiliary locations required by Knuth’s
address table sorting.

92 G. Franceschini and R. Grossi

2 High-Level Description

We present our in-place sorting algorithm for vectors in a top-down fashion. We
describe how to reduce the original problem to a sequence of simpler sorting
problems to solve. In our description, we identify the n input vectors in V with
their vectorial locations. At the beginning of the computation, V [i] represents
the ith vectorial location, for 1 ≤ i ≤ n, and contains the ith input vector. At the
end of the computation, V [i] contains the vector of rank i after the sorting (ties
for equal vectors are broken arbitrarily). During the intermediate steps, we solve
several instances of a general vector sorting problem, denoted GVSP{m, p, h}
(see Figure 1). Given n vectors in V , we refer to GVSP{m, p, h} as the problem
of sorting a subset of m contiguous vectors in V , using

– O(1) auxiliary locations,
– p vectors as placeholders taken from a contiguous subsequence of p locations

in V ,
– h heavy bits suitably encoded by h pairs of vectors taken from two contiguous

subsequences, each consisting of h locations in V ,

under the requirement that m + p + 2h ≤ n and that the four subsequences of
h, p, m, and h vector locations, respectively, are pairwise disjoint as shown in
Figure 1. Placeholders and heavy bits are defined in the rest of the section.

The general notation of GVSP{m, p, h} is useful for expressing the various
sorting instances that we get by reducing our initial problem, GVSP{n, 0, 0},
to simpler problems (with suitable values of m, p and h). Some basic instances
occur just a constant number of times in the reduction and are easy to solve.

Lemma 1. Any instance of GVSP{O(n/ log n), 0, 0} takes O(nk) time.

Proof. We employ the in-place mergesort of [21] and pay a slowdown of O(k)
in the time complexity, since we run it on O(n/ log n) vectors, each of length k.
The cost is O(k × (n/ log n) log(n/ log n)) = O(nk) time.

We now present the high-level structure of our reduction. In the following,
for any two vectors x and y, we denote the length of their longest common prefix
by lcp(x, y) = max

(
{0} ∪ {1 ≤ � ≤ k : x(1, �) = y(1, �)}

)
.

pairs of vectors encoding heavy bits

placeholders vectors to sort

V

hh mp

n vector locations
︸ ︷︷ ︸

O(1) aux. locations

︸ ︷︷ ︸

Fig. 1. An instance of GVSP{m, p, h}. Each of the n vector locations in V contains
one vector. Each of the O(1) auxiliary locations contains one integer of O(log n) bits

Optimal In-place Sorting of Vectors and Records 93

Heavy Bits (Section 3). To begin with, we reduce an instance of GVSP{n, 0, 0}
to a suitable instance of GVSP{n−o(n), 0, O(n/ log2 n)} plus a constant number
of instances of GVSP{O(n/ log n), 0, 0}. We partition in place the sequence V
into contiguous subsequences L , M , and R, such that for each x ∈ L , y ∈ M
and z ∈ R, we have x ≤ y ≤ z. Moreover, the number of vectors in L equals
that of R, namely, |L | = |R| = O(n/ log n). Assuming that max L �= min R
(otherwise sorting is trivial), we consider the pairs P = {〈L [i],R[i]〉, for 1 ≤
i ≤ |L |}. Note that for every pair 〈x, y〉 ∈ P , vectors x and y are distinct
(x < y) and their first mismatching scalar component is at position lcp(x, y)+1.
Based on this observation we identify a subset H of the pairs in P satisfying two
constraints:

1. |H| = Ω(n/ log2 n).
2. There exists an interval [l, r] ⊆ [1, k] of size max{1, k/ log n}, such that

lcp(x, y) + 1 ∈ [l, r] for every pair 〈x, y〉 ∈ H.

Under constraints 1–2, we can use the vectors in H for implicitly representing
O(n/ log2 n) bits, called heavy bits, so that decoding one heavy bit requires O(1+
k/ log n) time while encoding it takes O(k) time. Let us see why do we need these
bits. When designing an optimal in-place algorithm, the constraint on using just
O(1) auxiliary locations, namely, O(log n) extra bits of information, is rather
stringent. Fortunately, permutations of the keys encode themselves further bits
of informations. Potentially, we are plenty of logh! bits by permuting h distinct
keys. Based on this idea, bit stealing [19] is a basic technique for implicitly
encoding up to h bits of information by pairwise permuting h pairs of keys. In
its original design, the technique encodes a bit with each distinct pair of keys
x and y, such that x < y. The bit is of value 0 if x occurs before y in the
permutation; it’s of value 1 if x occurs after y in the permutation. The main
drawback of this technique in our setting is that we need O(k) time for encoding
and decoding one bit since x and y are vectors. As we shall see, we will require
an amortized number of O(1) encoded bits and O(log n) decoded bits per vector,
so that we have to decrease the cost of decoding to O(1+k/ log n) to stay within
the claimed bounds.

At this stage, sorting V reduces to sorting M as an instance of GVSP{n−
o(n), 0, O(n/ log2 n)}. After that, it also reduces to sorting L and R as instances
of GVSP{O(n/ log n), 0, 0} solved by Lemma 1.

Buffering and Session Sorting (Sect. 4). We solve GVSP{n − o(n), 0,
O(n/ log2 n)} reducing to O(log n) instances of GVSP{O(n/ log n), O(n/ log n),
O(n/ log2 n)} and to O(1) instances of GVSP{O(n/ log n), 0, 0} solved by Lemma
1. We logically divide M into contiguous subsequences M1, . . . , Ms−1, Ms,
where |M2| = · · · = |Ms−1| ≤ |Ms| = O(n/ log n) and s = O(log n). Moreover,
|M1| = O(n/ log n) has a sufficiently large multiplicative constant, so that M1

can host enough vectors playing the role of placeholders. With reference to Fig-
ure 1, we sort the m = O(n/ log n) vectors in each individual Mi, i �= 1, using
the p = O(n/ log n) placeholders in M1 and the h = O(n/ log2 n) heavy bits
encoded by the pairs in H ⊆ L ×R.

94 G. Franceschini and R. Grossi

Let us first give some motivation for using the placeholders while sorting.
Having just n vector locations, we cannot rely on a temporary area of vector
locations for efficiently permuting the vectors with a few moves. We therefore
exploit a virtual form of temporary area using the internal buffering technique of
Kronrod [16]. We designate the vectors in M1 as placeholders for “free memory”
since we do not care to sort them at this stage. Hence, they can be scrambled
up without interplaying with the sorting process that is running on a given Mi,
i �= 1. When we need to move a vector of Mi to the temporary area, we simulate
this fact by exchanging the vector with a suitable placeholder of M1. At the same
time, we should guarantee that this exchange is somehow reversible, allowing us
to put the placeholders back to the “free memory” in M1 without perturbing
the sorting obtained for Mi, i �= 1.

Assuming to have obtained each of M2, . . . , Ms−1, Ms in lexicographic order,
we still have to merge them using the heavy bits in H and the placeholders in
M1. It turns out that this task is non-trivial to be performed. Just to have a
rough idea, let us imagine to run the 2-way in-place mergesort for O(log s) =
O(log log n) passes on them. This would definitively give a non-optimal time
cost for the vectors since the number of vector exchanges would be ω(n), losing
optimality in this way. We introduce a useful generalization of the technique
in [7, 16], thus obtaining what we call session sorting. Let us assume that the
vectors are distinct (we shall disregard this assumption in Section 4).

The main goal of session sorting is that of rearranging all the vectors in
M2, . . . , Ms−1, Ms, so that they are not too far from their final destination. If
any such vector has rank r among all the other vectors in M2M3 · · ·Ms−1Ms,
and occupies a position g > r after session sorting, we guarantee that g − r ≤
|Mi|. (Note that we do not claim anything regarding the case g ≤ r.) Using
this strong property, we show that the sequence of 2-way in-place operations for
merging Mi and Mi+1 for i = 2, 3, . . . , s − 1 (in this order) yields the sorted
sequence. (We remark that this is not generally true if we do not apply session
sorting.) As a result, the entire sequence M2M3 · · ·Ms−1Ms is in lexicographic
order with a linear number of moves.

What remains to do is sorting L , M1, and R individually as instances of
GVSP{O(n/ log n), 0, 0} by Lemma 1. Merging them in place with the rest of
sorted vectors is a standard task giving V in sorted order. Hence, we are left with
an instance of GVSP{O(n/ log n), O(n/ log n), O(n/ log2 n)}, which corresponds
to sorting a given Mi, i �= 1, using the placeholders initially hosted in M1 and
the heavy bits encoded by the pairs in H.

Sorting Each Mi Individually (Section 5). We describe this stage in general
terms. For a given i �= 1, let M ′ = Mi and MB = M1, for the instance of
GVSP{|M ′|, |MB |, |H|} that we are going to solve with the heavy bits in H
(see Figure 1). Using MB as a “free memory” area, we simulate the sorting of
the m′ = |M ′| vectors by inserting them into a suitable structure that is incre-
mentally built inside MB . Each insertion of a vector x ∈ M ′ into the internal
structure of MB exchanges x with a placeholder. After each such exchange we
permute some of the vectors inside MB , so as to dynamically maintain a set of

Optimal In-place Sorting of Vectors and Records 95

O(m′/ log2 m′) pivot vectors in the internal structure. The pivots have buckets
associated inside MB for the purpose of distributing the non-pivot vectors in-
serted up to that point, like in distribution sort. Each bucket contain Θ(log2 m′)
vectors that are kept unsorted to minimize the number of vector exchanges
needed to maintain the internal structure of MB .

The pivots inside MB are kept searchable by a suitable blend of the tech-
niques in [10, 13, 18], requiring to decode O(log n) heavy bits per inserted vector
(which is fine since decoding takes O(1 + k/ log n) time). In particular, we logi-
cally divide each vector x into a concatenation of O(logm′) = O(log n) equally
sized chunks. We only store the lcp information for the chunks considered as
“meta-characters,” thus obtaining an approximation of the lcp information for
the vectors. After that the distribution completes by inserting all the vectors
of M ′ into the internal structure of MB , we sort the buckets individually by
using a constant number of recursive iterations of session sorting whose param-
eters are suitably adapted to the buckets’ size. The base case of the recursion
consists in solving GVSP{O(

√
logm′), O(

√
logm′), 0}, for which we design an

optimal ad-hoc algorithm. After completing the individual sorting of the buck-
ets, which still reside in MB , we exchange them with the placeholders that were
temporarily moved to M ′. We place back the sorted buckets and their pivots to
M ′ according to their relative order, which means that the m′ vectors in M ′

are in lexicographic order. Since this stage is quite full of technicalities, we give
more details in the full paper.

Known Tools. We use a few optimal algorithmic tools for atomic keys: in-place
stable mergesort and in-place merge [21]; in-place selection for order statis-
tics [17]. We apply these algorithms to vectors in a straightforward way by
paying a slowdown of O(k) per elementary step in their time complexity. We
also use Hirschberg’s linear scanning method [11] for searching in place a set of
n vectors of length k, with the simple bound of O(k + n) time. We go through
the convention that the last lowercase letters—. . . , x, y, w, z—denote vectors and
the middle ones—. . . , i, j, k, l, . . .—are auxiliary indices or parameters.

3 Heavy Bits

We detail how to reduce the problem of sorting in place n vectors—an in-
stance of GVSP{n, 0, 0}—to an instance of GVSP{n − o(n), 0, O(n/ log2 n)}
plus a constant number of instances of GVSP{O(n/ log n), 0, 0}. (The nota-
tion for GVSP{m, p, h} is defined in Section 2 and illustrated in Figure 1.)
We recall that we partition in place the sequence V into L , M , and R, where
|L | = |R| = p = O(n/ log n). We obtain this partition by performing order
statistics in place [17] so as to identify the pth and the (n − p + 1)st elements
of V in O(nk) time. In the rest of the paper we assume that wL �= wR; other-
wise, M is made up of all equal vectors and sorting is trivially solved by applying
Lemma 1 to L and R.

96 G. Franceschini and R. Grossi

Let us consider the set of pairs of vectors thus obtained, P = {〈L [i],R[i]〉 :
1 ≤ i ≤ p} ⊆ L ×R. Let us conceptually divide each of these vectors into chunks
of k/� = O(1 + k/ log n) scalar components, where � = min{k, log n}. We index
these chunks from 1 to �, in the order of their appearance inside the vector.
We assign an integer label j to each pair 〈L [i],R[i]〉, where 1 ≤ j ≤ � and
1 ≤ i ≤ p. Since L [i] < R[i] by construction, label j is the index of the chunk
containing the first mismatching position for L [i] and R[i]; that is, it satisfies
(j − 1) k/� ≤ lcp(L [i],R[i]) < j k/�. By the pigeon principle, there must exist
a value of j for which at least p/� = Ω(n/ log2 n) pairs in P are labeled j. We
can identify that value by running at most � in-place scans of L and R, with
an overall cost of O(�× pk) = O(nk) time. With a further scan of L and R, we
single out h = Θ(p/�) = Θ(n/ log2 n) pairs in P that have label j, moving them
in place at the beginning of L and R, respectively. Consequently, we identify
these vectors in the first h locations in L and R by a set of pairs, denoted H:

– H ⊆ P and |H| = h = Θ(n/ log2 n);
– H = {〈L [i],R[i]〉 : 1 ≤ i ≤ h} after the preprocessing;
– there exists j ∈ [1, �] such that (j − 1) k/� ≤ lcp(x, y) < j k/� for every pair
〈x, y〉 ∈ H.

We steal bits in H using the knowledge of j as follows. For 1 ≤ i ≤ h, we
encode the ith bit of value 1 by exchanging L [i] and R[i] in O(k) time; namely,
L [i] occupies now position i inside R and R[i] does it inside L . If the bit is 0,
we leave them at their position (no exchange). In order to decode the ith bit, we
only compare their jth chunk to find their mismatching position in the interval
[(j−1) k/�+1, j k/�]. In this way, we can establish whether or not the two vectors
have been exchanged during encoding (and so we decode either 0 or 1). Decoding
performs at most k/� scalar comparisons and thus takes O(1 + k/ log n) time.
The non-constant cost of bit stealing motivates our choice of referring to these
bits as heavy.

Lemma 2. We can encode h = Θ(n/ log2 n) heavy bits by the pairwise per-
mutation of vectors in H ⊆ L ×R. Encoding one bit requires O(k) time while
decoding it requires O(1+k/ log n) time. Preprocessing requires O(nk) time using
O(1) auxiliary locations.

We keep L and R unsorted for encoding bits until the end of the algorithm.
At that point, we can in-place sort L and R by Lemma 1, in O(nk) time.
Consequently we are left with the problem of sorting M .

Lemma 3. There exists an O(nk)-time reduction from GVSP{n, 0, 0} to
GVSP{n− o(n), 0, O(n/ log2 n)}, using O(1) auxiliary locations.

4 Buffering and Session Sorting

In this section, we detail how to sort the vectors in M , which is an instance
of GVSP{n− o(n), 0, O(n/ log2 n)}. We logically divide M into contiguous sub-
sequences M1, . . . , Ms−1, Ms, called blocks, where |M2| = · · · = |Ms−1| ≤

Optimal In-place Sorting of Vectors and Records 97

|Ms| = O(n/ log n) and s = O(log n). In the following, we assume without
loss of generality that |Ms| = |Ms−1| (if not, we treat Ms differently, apply-
ing Lemma 1 to it). We remark that only a constant number of blocks can be
sorted with the bounds of Lemma 1. Hence we should proceed otherwise. We
designate the O(n/ log n) vectors in M1, for a sufficiently large multiplicative
constant, to act as placeholders [16]. In this way we obtain O(log n) instances
of GVSP{O(n/ log n), O(n/ log n), O(n/ log2 n)}, plus a constant number of in-
stances of GVSP{O(n/ log n), 0, 0} solved by Lemma 1.

We are still missing a crucial part of the reduction performed at this stage,
namely, how to obtain all the vectors in M2M3 · · ·Ms−1Ms in lexicographic
order. We introduce the right-bounded permutations, since they rearrange the
vectors so that each vector cannot occupy a position beyond a bounded dis-
tance to the right of its final position in the sorted sequence. As we will prove,
the net effect of the right-bounded permutation is that we can simulate the
in-place merging scheme by the following scheme: in-place-merge(M2,M3);
in-place-merge(M3,M4); . . . ; in-place-merge(Ms−1,Ms). We describe this per-
mutation in general terms as it is of independent interest.

4.1 Right-Bounded Permutations

We are given three positive integers m, p, q, such that q divides p and p divides
m, satisfying (

m

p
− 1

)
× (q − 1) ≤ p. (1)

Given a sequence B of m vectors, we logically divide it into m/q sub-blocks of
q vectors each, denoted S1, . . . ,Sm/q. The sub-blocks are grouped into blocks
of p/q sub-blocks each, thus logically dividing B into m/p blocks of p vectors
each, denoted B1, . . . ,Bm/p. A right-bounded permutation is the arrangement
of the vectors in B resulting from steps P1–P2, with steps P3–P4 yielding the
sequence in lexicographic order:

P1. For j = 1, . . . ,m/p, sort each block Bj individually.
P2. Sort stably the m/q sub-blocks S1, . . . ,Sm/q according to their first vector

(i.e., comparisons are driven by the minimum vector in each sub-block, and
the rest of the vectors are considered as “satellite data”).

P3. For j = 1, . . . ,m/p, sort each block Bj individually (note that the content
of the blocks changed!).

P4. For j = 1, . . . ,m/p − 1, merge the vectors contained in blocks Bj and
Bj+1.

Lemma 4. For each vector B[i], 1 ≤ i ≤ m, let gi be the number of vectors
B[j] > B[i] such that 1 ≤ j < i right after steps P1–P2. Then

gi ≤
(
m

p
− 1

)
× (q − 1). (2)

98 G. Franceschini and R. Grossi

Proof. Let us consider the arrangement of the vectors in B right after steps P1–
P2. In order to prove equation (2), we need to consider the intermediate ar-
rangement of the vectors in B after step P1 and before step P2. Recall that
we logically divide B into blocks and sub-blocks, indexing the blocks from 1
to m/p. We assign a unique type to each block based on its index, namely, block
Bt is assigned type t, where 1 ≤ t ≤ m/p, since it is the tth block in B. For the
intermediate arrangement above, we say that a vector has type t if it belongs to
Bt (recall that Bt is sorted). We can assign type t to the sub-blocks of each Bt

in the same manner, since each sub-block contains vectors of the same type t by
construction. Hence the type of a sub-block is well defined. We refer to the first
vector of each sub-block, which is also the minimum in it, as the header of the
sub-block.

Let us now resume the arrangement of the vectors in B right after steps P1–
P2. Consider a generic vector B[i] belonging to a sub-block, say S ′ of type t′,
and let gi be defined as above. We give an upper bound to gi so as equation (2)
holds. Specifically, we count the maximum number of vectors contributing to gi.
Let us discuss them by their type. By the stability of the sorting process in
step P2, we know that the vectors of type t′ have maintained the relative order
they had in the intermediate arrangement (after step P1 and before step P2)
and so they cannot contribute to gi.

Let x be the header of the sub-block S ′ containing B[i]. Let us evaluate the
contribution to gi for the vectors of type t′′ �= t′. Consider all sub-blocks of type
t′′: we claim that at most one of them, say S ′′, can contain vectors contributing
to gi. Precisely, S ′′ is the sub-block of type t′′ having the largest header less than
or equal to x. Let y ≤ x be the header of S ′′ and z be one of such contributing
vectors in S ′′. Sub-block S ′′ is laid out before S ′ by construction but z > B[i]
by definition of gi. Note that there can be at most q − 1 such vectors z in S ′′.
For any other sub-block of type t′′, we show that its vectors cannot contribute to
gi. Since the block of type t′′ is sorted after step P1, there are two possibilities
for its sub-blocks S ′′′ �= S ′′: (a) S ′′′ contains all vectors that are less than or
equal to y ≤ x (i.e., S ′′′ is laid out before S ′′); they do not contribute to gi by
transitivity since x ≤ B[i]. (b) S ′′′ contains all vectors that are greater than or
equal to z > B[i] ≥ x (i.e., S ′′′ is laid out after S ′′); they do not contribute
because the header of S ′′′ is strictly larger than x by transitivity and so S ′′′

is laid out after S ′. Summing up, the total contribution to gi for the vectors of
type t′′ �= t′ is at most q − 1 (a subset of the vectors in S ′′). Since there are
m
p − 1 different types other than t′, we obtain the upper bound for equation (2).

Theorem 1. After steps P1–P4, the sequence B is sorted.

Proof. We proceed by induction on the length of prefixes of blocks in B. The
base case is obvious, as we know that B1 is sorted by step P3. Let us assume
that the jth prefix of blocks B1B2 · · ·Bj is sorted by induction, for j ≥ 1.
After step P3, the upper bound in equation (2) still holds for any vector v in
block Bj+1 (modulo the inner permutation due to the sorting of Bj+1). Indeed,
the number of vectors z > v that are laid out before v cannot increase; those

Optimal In-place Sorting of Vectors and Records 99

inside Bj+1 disappear after sorting it and so the upper bound in equation (2) is
anyway valid. By equation (1), we derive that p, the size of each block, is larger
than the upper bound of equation (2). As a result, the number of vectors z > v
that belong to the jth prefix of blocks cannot exceed p. Hence, they should be
contained in the last locations of block Bj since p = |Bj | and B1B2 · · ·Bj is
sorted by induction. This allows us to conclude that after merging Bj and Bj+1,
the (j+1)st prefix of blocks B1B2 · · ·Bj+1 is sorted, thus proving the statement
of the theorem.

4.2 Session Sorting

We apply the steps stated in Theorem 1 to sorting the vectors in M into sessions.
We choose M1 of size O(n/ log n) for the placeholders. We then fix q = log3 n,
p = qn/ log4 n = Θ(n/ log n), and we pick m as the largest multiple of p such
that m ≤ |M | − |M1|. These values satisfy equation (1). We therefore obtain
the logical division of M into blocks M1, . . . , Ms−1, Ms, as expected. We
comment on how to apply steps P1–P4 to M2, . . . , Ms (assuming w.l.o.g. that
|Ms| = |Ms−1|).

In steps P1 and P3, we have to solve a number of m/p = O(log n) instances
of GVSP{O(n/ log n), O(n/ log n), O(n/ log2 n)} (see Section 5).

In step P2, we have just m/q = O(n/ log3 n) vectors to sort, which are the
minimum in each sub-block. We refer to them as headers and to the rest of
the vectors as satellite data (with q − 1 vectors each). We associate a unique
implicit index in the range from 1 to m/q with the satellite data in each sub-
block. We employ the heavy bits in H so as to form a sequence of m/q integers
h1, h2, . . . , hm/q of log n bits each, employed to encode a permutation of these
indexes. Note that we have direct access to any hj , 1 ≤ j ≤ m/q, in O(k log n)
time for encoding it and O(k + logn) time for decoding it by Lemma 2.

At the beginning of step P2, we set hj = j and exchange the jth header
with the jth placeholder in M1, for 1 ≤ j ≤ m/q. We then apply the in-
place stable mergesort on the headers thus collected in M1. Each comparison
cost is O(k) time while each exchange requires O(k log n) time. Indeed, when
exchanging two headers inside M1, say at position j′ and j′′, we have also to
swap the values of hj′ and hj′′ , involving their decoding and encoding in H.
Note that the satellite data is not exchanged but hj′ and hj′′ are correctly
updated to maintain the association of the headers with their satellite data in
the sub-blocks. At the end of the mergesort, we exchange the jth header in M1

with the placeholder temporarily hosted in the hjth sub-block. The total cost is
O((m/q) log(m/q)× (k log n)) = O((n/ log3 n) log n× (k log n)) = o(nk).

We now have to permute the sub-blocks according to the values of h1, . . . , hm/q

encoded in H. Specifically, the hjth sub-block must occupy the jth position
among the sub-blocks to reflect the stable sorting of their headers. We em-
ploy an additional sequence of integers r1, r2, . . . , rm/q encoded in H, initializing
ri = j if and only if hj = i. We proceed incrementally for j = 1, 2, . . . ,m/q − 1
(in this order), preserving the invariant that we have correctly placed the first
j − 1 sub-blocks, with h1, . . . , hm/q and r1, r2, . . . , rm/q suitably updated to re-

100 G. Franceschini and R. Grossi

flect the fact that one permutation is the inverse of the other (in particular,
hj′ = rj′ = j′ for 1 ≤ j′ < j, so the invariant is meaningful for the rest of
the indexes). Note that some of the sub-blocks may have exchanged in order
to place the first j − 1 sub-blocks. Hence, when we refer to the jth and the
hjth sub-blocks, they are taken from the current arrangement of sub-blocks. If
j = hj , the current sub-block is already correctly placed and the invariant is
trivially preserved. Otherwise, we exchange the jth and the hjth sub-blocks by
pairwise exchanging their ith vectors for i = 1, 2, . . . , q. In order to preserve
the invariant, we simultaneously swap the values of hj and hrj

and the val-
ues of rj and rhj

, respectively, re-encoding them in H. Since the exchange of
sub-blocks requires the pairwise exchange of q vectors plus the encoding and
decoding of O(1) values among h1, . . . , hm/q and r1, r2, . . . , rm/q, the cost is
O(qk + k log n). When j = m/q − 1, the last two sub-blocks are placed cor-
rectly and we have performed a total of O(m/q) such exchanges. The final cost
is O(m/q × (qk + k log n)) = O(n/ log3 n × k log3 n) = O(nk). Hence, the total
cost of step P2 is O(nk).

Finally, in step P4, we use the in-place merging with comparison cost O(k).
As a result, we obtain a total cost of O(m/p× pk) = O(nk) for step P4 (and M
is sorted).

Lemma 5. There is an O(nk)-time reduction from GVSP{n − o(n), 0,
O(n/ log2 n)} to a number of O(log n) instances of GVSP{O(n/ log n),
O(n/ log n), O(n/ log2 n)}, using O(1) auxiliary locations.

5 Sorting Each Block Individually

We have to solve an instance of GVSP{O(n/ log n), O(n/ log n), O(n/ log2 n)}
(see Figure 1). We reformulate it as GVSP{m′, O(m′), O(m′/ logm′)}, where
m′ = O(n/ log n) vectors in M ′ should be sorted using a sufficiently large
number O(m′) of placeholders in MB . We need to encode O(1) sequences of
integers of O(logm′) = O(log n) heavy bits each in H ⊆ L × R, totalizing
O(m′/ logm′) heavy bits. We sort M ′ by repeatedly inserting its vectors in
an internal structure maintained inside MB to mimic a distribution sort into
buckets of O(log2 m′) vectors each. Each bucket is sorted by applying a con-
stant number of recursive calls to session sorting (Section 4.2). The base case is
an instance of GVSP{O(

√
logm′), O(

√
logm′), 0}. We first rank the vectors by

linking them in a sorted list without moving the vectors (we mimic the inser-
tion sort in a list without moving vectors). The list pointers of O(log logm′)
bits each, however, are not encoded with heavy bits in this case. Since we
sort one bucket at a time and have O(

√
logm′) such pointers, we can keep

the O(
√

logm′ log logm′) = o(log n) bits for all the pointers in one auxiliary
location. We can access any such pointer in constant time, and we can append
a new pointer to them within the same complexity by using RAM operations.
We apply Hirschberg’s linear scanning to add a new vector to the sorted list
and mimic insertion sort. Hence, the cost per vector is O(k +

√
logm′). After

Optimal In-place Sorting of Vectors and Records 101

setting up the linked list that reflects the sorted order, we permute the vectors
using the temporary buffer of O(

√
logm′) placeholders. Thus the time com-

plexity of GVSP{O(
√

logm′), O(
√

logm′), 0} is bounded by O(k
√

log n+log n).
We summarize the resulting bounds, leaving several technical details to the full
paper.

Lemma 6. An instance of GVSP{O(n/ log n), O(n/ log n), O(n/ log2 n)} takes
O(n + nk/ log n) time using O(1) auxiliary locations.

Theorem 2. An arbitrary set of n vectors of length k can be sorted in place
optimally, taking O(nk + n log n) time and using O(1) auxiliary locations.

References

1. A. Andersson, T. Hagerup, J. H̊astad, and O. Petersson. Tight bounds for searching
a sorted array of strings. SIAM Journal on Computing, 30(5):1552–1578, 2001.

2. L. Arge, P. Ferragina, R. Grossi, and J.S. Vitter. On sorting strings in external
memory. ACM STOC ’97, 540–548, 1997.

3. M.A. Bender, E.D. Demaine, and M. Farach-Colton. Cache-oblivious B-trees. IEEE
FOCS ’00, 399–409, 2000.

4. J.L. Bentley and R. Sedgewick. Fast algorithms for sorting and searching strings.
ACM-SIAM SODA ’97, 360–369, 1997.

5. G.S. Brodal, R. Fagerberg, and R. Jacob. Cache oblivious search trees via binary
trees of small height. ACM-SIAM SODA ’02, 39–48. 2002.

6. T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algo-
rithms. MIT Press, 2001.

7. G. Franceschini. Proximity mergesort: Optimal in-place sorting in the cache-
oblivious model. ACM-SIAM SODA ’04, 284–292, 2004.

8. G. Franceschini. Sorting stably, in-place, with O(n log n) comparisons and O(n)
moves. STACS ’05, to appear, 2005.

9. G. Franceschini and V. Geffert. An In-Place Sorting with O(n log n) Comparisons
and O(n) Moves. IEEE FOCS ’03, 242–250, 2003.

10. G. Franceschini and R. Grossi. No Sorting? better Searching! IEEE FOCS ’04,
491–498, 2004.

11. D.S. Hirschberg. A lower worst-case complexity for searching a dictionary. Proc.
16th Allerton Conference on Comm., Control, and Computing, 50–53, 1978.

12. D.S. Hirschberg. On the complexity of searching a set of vectors. SIAM J. Com-
puting, 9(1):126–129, 1980.

13. A. Itai, A.G. Konheim, and M. Rodeh. A sparse table implementation of priority
queues. ICALP ’81, 417–431, 1981.

14. D.E. Knuth. The Art of Computer Programming III: Sorting and Searching.
Addison–Wesley, 1998.

15. S.R. Kosaraju. On a multidimensional search problem. ACM STOC ’79, 67–73,
1979.

16. M.A. Kronrod. Optimal ordering algorithm without operational field. Soviet Math.
Dokl., 10:744–746, 1969.

17. T.W. Lai and D. Wood. Implicit selection. SWAT ’88, 14–23, 1988.

102 G. Franceschini and R. Grossi

18. U. Manber and G. Myers. Suffix arrays: A new method for on-line string searches.
SIAM Journal on Computing, 22(5):935–948, 1993.

19. J.I. Munro. An implicit data structure supporting insertion, deletion, and search
in O(log2 n) time. Journal of Computer and System Sciences, 33(1):66–74, 1986.

20. J.I. Munro and V. Raman. Sorting multisets and vectors in-place. WADS ’91,
473–480, 1991.

21. J. Salowe and W. Steiger. Simplified stable merging tasks. Journal of Algorithms,
8(4):557–571, 1987.

22. D.E. Willard. Maintaining dense sequential files in a dynamic environment. ACM
STOC ’82, 114–121, 1982.

Towards Optimal Multiple Selection

Kanela Kaligosi1, Kurt Mehlhorn1, J. Ian Munro2, and Peter Sanders3

1 Max Planck Institut für Informatik, Saarbrücken, Germany
{kaligosi, mehlhorn}@mpi-sb.mpg.de

2 University of Waterloo, Ontario, Canada
imunro@uwaterloo.ca

3 Universität Karlsruhe, Germany
sanders@ira.uka.de

Abstract. The multiple selection problem asks for the elements of rank
r1, r2, . . . , rk from a linearly ordered set of n elements. Let B denote
the information theoretic lower bound on the number of element com-
parisons needed for multiple selection. We first show that a variant of
multiple quickselect — a well known, simple, and practical generaliza-
tion of quicksort — solves this problem with B + O(n) expected com-
parisons. We then develop a deterministic divide-and-conquer algorithm
that solves the problem in O(B) time and B + o(B) + O(n) element
comparisons.

1 Introduction

We consider the problem of determining the elements of rank r1, r2, . . . , rk in
an ordered set S with n elements using as few comparisons as possible. The
problem has been studied extensively, primarily at its extreme ends, when one
either requires one or two order statistics (such as the median or the maximum
and minimum) or when all ranks are to be determined, and so the set is to be
sorted. The more general problem can be very helpful in statistical analyses,
providing a clean summary of the data by giving elements of a chosen set of
ranks. Multiple selection is also an ingredient of sample sort [1].

Let Δj := rj − rj−1 where r0 = 0 and rk+1 = n and let1

B = n lg n−
k+1∑
j=1

Δj lgΔj −O(n) =
k+1∑
j=1

Δj lg
n

Δj
−O(n) .

A comparison-based multi-selection algorithm identifies the Δ1 smallest ele-
ments, the Δ2 next smallest elements, . . . , and hence an additional

∑
j Δj lgΔj+

O(n) comparisons suffice to sort the entire set. Thus B is a lower bound for the
number of comparisons needed by any multiselection algorithm, even in the ex-
pected case [5]. Note that this lower bound takes both the input size n and the
structure of the required ranks R into account.

1 Throughout this paper, lg x stands for log2 x.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 103–114, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

104 K. Kaligosi et al.

1.1 Background and Ancient History

The problem of sorting is one of the oldest and most heavily studied in com-
puting. “Interesting” sorting algorithms date back to the 1940’s, or earlier. The
information theoretic lower bound of lg(n!) = n lg n − n lg e + O(lg n) compar-
isons is missed by only about n(lg e− 1) comparisons by mergesort, when n is a
power of 2. Despite such an easy approach to optimality, even Ford-Johnson [9]
merge insertion and other very complex methods still leave a Θ(n) gap (with an
admittedly small constant).

It seems that Charles Dodgeson (Lewis Carroll) was the first to point to
the unfairness of declaring the runner-up (the player losing to the last game to
the winner in a single knockout competition) to be the “second best”. Hoare
[8] proposed a simple O(n) expected case (median) selection algorithm as an
addendum to his original work on Quicksort. Close to a decade later Blum,
Floyd, Pratt, Rivest and Tarjan [2] provided the first median finding technique
with O(n) worst case behavior. The result was certainly a major surprise at the
time, although it is now often presented as a basic example of divide and conquer.
At essentially the same time, two of those authors, Floyd and Rivest [7], gave a
probabilistic method for selection using n + min(r1, n− r1) + o(n) comparisons
in the expected case. This bound is optimal, at least up to o(n) terms, as shown
in [4]. We note that this lower bound exceeds that of the information theoretic
argument, above, for selecting the median by n/2. The difference is even greater
for selecting other ranks.

The contrast between the simple randomized techniques and the complex
worst case approach is striking. The development of the 3n + o(n) worst case
method of Schönhage et al. [14] and the (2.94 · · ·)n method of Dor and Zwick
[6] further amplifies

Multiple selection problems have received much less attention. Chambers [3]
proposed multiple quickselect — a natural generalization of quicksort: Pick a
pivot element m as an estimate for the median of S and partition S into two
sets S≤ = {s ∈ S : s ≤ m} and S> = {s ∈ S : s > m}. Output m as the el-
ement of rank rm:= |S≤| if rm ∈ R. Recurse on (S≤, {r ∈ R : r < rm}) and
(S>, {r − rm ∈ R : r > rm}). The recursion can be broken when R = ∅.

Pohl [12] gave a slick deterministic algorithm for finding the maximum and
minimum of a set in the optimal number of (3n/2) − 1 comparisons. Cunto
and Munro [4] provided optimal and near optimal randomized techniques for
finding elements of two or three ranks. The “full blown” deterministic multise-
lection problem that we address appears to have first been considered by Dobkin
and Munro [5], who suggest a method based on median finding that solves the
problem using 3B +O(n) comparisons.

A quarter century after Chamber’s paper, there has been renewed interest in
the analysis of multiple quickselect. Prodinger [13] has given an exact formula
for the expected number of comparisons performed by multiple quickselect with
random pivot which can be written as 2B/ lg(e) + O(n). Panholzer [11] has
derived very accurate bounds for the expected number of comparisons for the
case that the pivot is the median of 2t+1 random sample elements and where R

Towards Optimal Multiple Selection 105

is a random k element subset of {1, . . . , n}. These bounds show that n lg k+O(n)
expected comparisons are sufficient if t = Ω (lg n). Note that for general R the
lower bound B might be much smaller. For example, consider the set of ranks
R := {(n/i) : i ≤ n}. Observe further that this set has k = Θ(

√
n) elements,

i.e., n lg k = Θ(n lg n). On the other hand, B ≈ n
∑

i
ln(i(i+1))

i(i+1) = Θ(n), i.e.,
there is a logarithmic factor gap between Panholzer’s upper bound and the
lower bound B. It is a natural question whether multiple quicksort is still a
near optimal algorithm for inputs with nonuniformly spread ranks in R. For
example, it was initially not clear to us whether one should choose m such
that S is approximately halved, such that R is approximately halved, or some
compromise between these two strategies.

1.2 The Rest of the Paper

Section 2 introduces our basic proof technique by analyzing an idealized variant
of multiple quickselect that is given the exact median for free. This algorithm
needs at most n lg n−

∑k+1
j=1 Δj lgΔj +rk−r1 +2n comparisons. In Section 3 we

show that multiple quickselect with pivot selection based on random sampling
can closely approximate the idealized algorithm with respect to the expected
number of comparisons. The method is reasonably straightforward and so us-
able in practice: one uses about n comparisons to split S into elements above
and below a pivot value which, with high probability, is quite close to the me-
dian. Some care is required in sampling, but as long as one does not insist on
minimizing lower order terms too vigorously, this aspect of the analysis is fairly
straightforward. Handling the details of the splits is a bit trickier.

Section 4 deals with the deterministic algorithm. As in the deterministic
median algorithm of Blum et al. [2], we represent sets as collections of sorted
sequences. Each sequence has length about � = lg(B/n). The number of se-
quences is about n/�. We determine the median of the median of the sequences,
call it m, and partition each sequence at m using binary search. This has cost
O((n/�) lg �) which is sublinear, if B = ω(n). After partitioning, we have two
collections of sorted sequences on which we recurse. In each collection, we have
short sequences (length less than �) and long sequences (length between � and
2�). As long as we have two short sequences of the same length, we merge them
using an optimal number of comparisons. The key insight is that the amor-
tized cost of merging is nH(α) where nα is the rank of the pivot element and
H(α) = −α lgα − (1 − α) lg(1 − α) is the binary entropy function. A simple
induction shows that the total cost of merging is B + o(B) +O(n) and that the
total cost of partitioning is o(B) +O(n).

2 An Idealized Algorithm

Consider multiple quickselect where we pick the exact median of the current
subproblem as a pivot. Let T (n,R) denote the number of comparisons needed in
the partitioning steps, i.e., we disregard the cost needed for obtaining the pivot.

106 K. Kaligosi et al.

Theorem 1. T (n,R) ≤ n lg n−
k+1∑
j=1

Δj lgΔj + rk − r1 + 2n.

Proof: The proof is by induction. For n = 1 the claim 0 = T (n,R) ≤
0 − 0 + 1 − 1 + 2 is true. Now let ri denote the largest element of R with
ri ≤ n/2. For the induction step we distinguish two cases and substitute the
induction hypothesis for the subproblems in each case.

Case 0 < i < k:

T (n,R) =n− 1 + T
(n

2
, {r1, . . . , ri}

)
+ T

(n

2
, {ri+1 −

n

2
, . . . , rk −

n

2
}
)

≤n− 1 + n lg
n

2
−

k+1∑
j=1

Δj lgΔj + ri − r1 + rk − ri+1 + 2n

+ Δi+1 lgΔi+1 −
(n

2
− ri

)
lg

(n

2
− ri

)
−

(
ri+1 −

n

2

)
lg

(
ri+1 −

n

2

)
≤n lg n−

k+1∑
j=1

Δj lgΔj − rk + r1 + 2n

For the last estimate we have used n − 1 + n lg(n/2) = n lg n − 1 ≤ n lg n and
Lemma 1 below with x = n/2− ri and y = ri+1 − n/2.
Case i = k: (the case i = 0 is symmetric)

T (n,R) =n− 1 + T
(n

2
, R

)
≤n− 1 +

n

2
lg

n

2
−

k+1∑
j=1

Δj lgΔj + rk − r1 + 2
n

2

+ (n− rk) lg(n− rk)−
(n

2
− rk

)
lg

(n

2
− rk

)
Now we use n−1+2n/2 ≤ 2n and, by Lemma 1,
(n− rk) lg(n− rk)−

(
n
2 − rk

)
lg

(
n
2 − rk

)
≤ n

2 lg n
2 + n− rk.

T (n,R) ≤n lg
n

2
−

k+1∑
j=1

Δj lgΔj + rk − r1 + 2n + n− rk .

Finally, observe that n lg n
2 + n− rk = n lg n− rk ≤ n lg n. &'

Lemma 1. For x, y ≥ 0 we have (x+ y) lg(x+ y)− x lg x− y lg y− (x+ y) ≤ 0.

Proof: Let s = x + y and x = γs, with 0 ≤ γ ≤ 1. Then
s(lg s− γ lg(γs)− (1− γ) lg((1− γ)s)− 1)

= s(−γ lg(γ)− (1− γ) lg(1− γ)− 1) = s(H(γ)− 1) ≤ 0. &'

Towards Optimal Multiple Selection 107

3 The Randomized Algorithm

We now analyze a variant of quickselect where the pivot m is the median of
n3/4 sample elements chosen uniformly at random from S with replacement. Let
T (n,R) denote the expected number of comparisons needed to execute this of
multiple quickselect.

Theorem 2. T (n,R) ≤ n lg n−
k+1∑
j=1

Δj lgΔj + rk − r1 + 2n +O
(
k1/4n3/4

)
.

The remainder of this section outlines a proof for the above theorem. Most
probabilistic aspects of the problem are packaged in the following lemma:

Lemma 2. The rank of the pivot m is outside the range [n/2−n3/4, n/2+n3/4]
with probability at most 1/n.

The proof is in the full paper. It is based on Chernoff bounds and very similar
to the proof used in the analysis of the Floyd Rivest algorithm [7] in [10].

Using Lemma 2 we can conclude that

T (n,R) ≤n− 1 +O
(
n3/4

)
+

1
n
T (n,R)

+ (1− 1
n

) max
|n
2 −n′|≤n3/4

(T (n′, R′) + T (n′′, R′′))

where R′ = {r ∈ R : r < n′}, R′′ = {r − n′ : r ∈ R, r > n′} and n′′ = n − n′.
The term n− 1 stems from the comparisons of elements in S \ {m} with m. The
term O

(
n3/4

)
accounts for the expected cost of finding m in the sample using a

(randomized) linear time selection algorithm. The next term is the probability
1/n that m is an inaccurate estimate of the median times a conservative estimate
of the cost in this case — partitioning can never make the subproblems more
difficult than the original problem. Subtracting T (n,R)/n and dividing by 1−1/n
yields

T (n,R) ≤ n +O
(
n3/4

)
+ max

|n
2 −n′|≤n3/4

(T (n′, R′) + T (n′′, R′′)) (1)

We now use induction over n using the induction hypothesis

T (n,R) ≤ n lg n−
k+1∑
j=1

Δj lgΔj + rk − r1 + 2n + (ak1/4 − b)n3/4

where a and b are constants whose value will be implied by constraints showing
up in the proof. First note that for any constant n we can make this work by
choosing a value for a that is sufficiently much larger than b.

For the induction step we will use the following two lemmata which encap-
sulate a number of calculations that we defer to the full paper.

108 K. Kaligosi et al.

Lemma 3. f(δ) := (1 + δ) lg(1 + δ) + (1− δ) lg(1− δ) ≤ 2δ2 for δ ∈ [−1, 1].

Lemma 4. For 0 ≤ i ≤ k and −1 ≤ δ ≤ 1 we have

i1/4(1 + δ)3/4 + (k − i)1/4(1− δ)3/4 ≤ 2(k/2)1/4

To simplify the max term in Eq. (1), consider a fixed value 0 ≤ δ ≤ 2n−1/4

such that n′ = (1 + δ)n
2 (the case δ < 0 is symmetric). Let ri denote the largest

element of R with ri ≤ n′. We get three cases:

Case 0 < i < k: We use the abbreviation I(x) := x lg x.

T (n′, R′) + T (n′′, R′′) ≤ I((1 + δ)
n

2
) + I((1− δ)

n

2
)−

k+1∑
j=1

I(Δj)

+ I(Δi+1)− I(n′ − ri)− I(ri+1 − n′)

+ ri − r1 + 2n′ + (ai1/4 − b)n′3/4

+ rk − ri+1 + 2n′′ + (a(k − i)1/4 − b)n′′3/4

=n lg n− n +
n

2
(I(1 + δ) + I(1− δ))−

k+1∑
j=1

I(Δj)

+ I(Δi+1)− I(n′ − ri)− I(ri+1 − n′)− (ri+1 − ri)

+ 2−3/4a(i1/4(1 + δ)3/4 + (k − i)1/4(1− δ)3/4)n3/4

− 2−3/4((1 + δ)3/4 + (1− δ)3/4)bn3/4 + rk − r1 + 2n

Now we can apply a number of estimates:

I(1 + δ) + I(1 − δ) ≤ 2δ2 ≤ 2(2n−1/4)2 = O
(
n−1/2

)
(using Lemma 3). As in

the idealized case, Lemma 1 can be used to eliminate the I(x) terms not in∑k+1
j=1 I(Δj). Now it follows (using Lemma 4) that

i1/4(1+δ)3/4+(k−i)1/4(1−δ)3/4 ≤ 2(k/2)1/4 = 23/4k1/4. Finally,
−(1 + δ)3/4 − (1− δ)3/4 ≤ −2 +O

(
n−1/2

)
using calculus. So

≤n lg n− n−
k+1∑
j=1

I(Δj) +O
(√

n
)

+ ak1/4n3/4− 21/4bn3/4 + rk − r1 + 2n.

Substituting this back into Eq. (1) we obtain

T (n,R) ≤ n lg n−
k+1∑
j=1

I(Δj)+O
(
n3/4

)
+ ak1/4n3/4− 21/4bn3/4 + rk− r1 +2n .

Since 21/4 > 1 we can use the term b(21/4 − 1)n3/4 to cancel the O
(
n3/4

)
term

by choosing a sufficiently large value for b.

Towards Optimal Multiple Selection 109

Case i = k: This case is a slight generalization of the reasoning from the ideal-
ized algorithm and from the case 0 < i < k. Compared to the idealized case, we
get various O

(
n3/4

)
terms that we need to cancel. For this purpose we use the

term ak1/4((1 + δ)n
2)3/4 = 2−3/4ak1/4n3/4 + O

(
k1/4n1/2

)
. Since 2−3/4 < 1 we

can choose a sufficiently large to cancel all the unwanted lower order terms.

Case i = 0: This case is similar to the case i = k but “easier” because the non-
trivial recursion is on a smaller input. We therefore omit the detailed proof.

4 The Deterministic Algorithm

In this section we present a deterministic algorithm for the multiple selection
problem. It performs B + o(B) +O(n) comparisons.

The algorithms sets � = max(1, (lg(B/n))) and is based on the recursive
procedure multiselect . The input to multiselect is a collection C of non-empty
sorted sequences and a non-empty set R = {r1, . . . , rk} of ranks. Each sequence
in the collection has length at most 2�. The procedure returns the elements of
rank r1, r2, . . . , rk in the input set. We solve the multiselection problem by
calling multiselect with a collection of n sequences of length one each and our
set R of desired ranks.

We call a sequence short if it has length less than �. A collection C satisfies
the length invariant if it contains no two short sequences of the same length.

Procedure multiselect works as follows: If the total number of elements in
the sequences of C is less than 4�2, then solve the problem by sorting all the
elements and if R is empty, simply return. Otherwise, we first establish the length
invariant. As long as there are two short sequences of the same length, we merge
them into a single sequence. Recall that two sorted sequences of length s can be
merged using 2s− 1 comparisons. After the merge step, we have a collection D
of q sequences satisfying the length invariant. We determine the median of the
medians of the sequences in D, call it m, and split every sequence in D at m,
i.e., into the elements smaller than or equal to m and into the elements larger
than m. This gives us collections C ′ and C ′′ of size p′ and p′′, respectively. We
have p′ ≤ q, p′′ ≤ q and p′ + p′′ ≥ q. We also split the ranks and make one or
two recursive calls.

This ends the description of the algorithm. We turn to the analysis. For a
sequence c we use |c| to denote its length. For a collection C of sorted sequences,
let I(C) =

∑
c∈C |c| lg |c| be the information content of the collection. Multi-

select generates a recursion tree T . We use v to denote an arbitrary node of
the recursion tree and introduce the following notation: Iv = I(C) is the in-
formation content of the collection entering node v, pv = |C| is the number of
sequences in the collection and nv =

∑
c∈C |c| is the total length of the sequences

in the collection. Jv = I(D) is the information content of the collection after the
merging step and qv is the number of sequences in the collection. I ′v = I(C ′)
and I ′′v = I(C ′′) are the information content of the sequences resulting from the

110 K. Kaligosi et al.

partitioning step and p′v and p′′v are the number of sequences in these collections,
respectively. Also, the total number of elements in C ′ is αvnv. Finally, we use
Cm

v for the number of comparisons spent on merging in node v and Cp
v for the

number of comparisons spent on computing the median and partitioning in node
v. The total number of comparisons in the calls with nv < 4�2 is O(n lg �), since
the calls are applied to disjoint sets of elements.

Lemma 5. Cm
v ≤ Jv − Iv + qv − pv.

Proof: It takes at most 2s− 1 comparisons to merge two sequence of length s.
Also 2s lg(2s)− 2(s lg s) + 1− 2 = 2s− 1. &'

Lemma 6. Jv ≤ I ′v + I ′′v + nvH(αv).

Proof: Let D = {d1, . . . , dq} be the collection after the merging step and let
n = nv and α = αv. Each di is split into two sequences d′i and d′′i and C ′ is
formed by the non-empty sequences in {d′1, . . . , d′q}. C ′′ is defined analogously.
Define αi as αi = d′i/di. We have (using 0 lg 0 = 0)

Jv − I ′v − I ′′v =
∑

1≤i≤q

(di lg di − d′i lg d′i − d′′i lg d′′i)

=
∑

1≤i≤q

di(lg di − αi lg(αidi)− (1− αi) lg((1− αi)di)

=
∑

1≤i≤q

diH(αi).

Next observe that
∑

i di/n = 1,
∑

i αidi/n =
∑

i d
′
i/n = α. Thus

∑
i(di/n)H(αi)

is a convex combination of the values of H at the arguments αi. Since H is
convex this is bounded by the value of H at the corresponding combination
of the arguments, i.e., by the value at

∑
i(di/n)αi. Thus

∑
i(di/n)H(αi) ≤

H(
∑

i(di/n)αi) = H(α). &'

Lemma 7. Cm
v ≤ nvH(αv) + I ′v + I ′′v − Iv + p′v + p′′v − pv.

Proof: This follows immediately from the two lemmas above and the inequality
qv ≤ p′v + p′′v . &'

The next Lemma shows that the splitting process is reasonably balanced. A
similar Lemma is used in the analysis of the deterministic median algorithm of
Blum et al.

Lemma 8. If nv ≥ 4�2 then 1/16 ≤ αv ≤ 15/16 and H(αv) ≥ 1/4.

Proof: We count the number of elements that are smaller than or equal to the
median of the medians m after partitioning.

Towards Optimal Multiple Selection 111

After the merge step, we have a collection of qv sequences, each of length
at most 2�. Therefore, qv ≥ (nv/2�). Recall that by the invariant of the algo-
rithm there are no two sequences of the same length less than �. Or, in other
words, there can be at most one sequence for each of the lengths 1, . . . , � − 1.
Consider the sequences whose median is less than or equal to m. Their number is
(qv/2) ≥ nv/4�. In the worst case this collection contains one sequence from each
of the lengths 1, . . . , � − 1. Thus, the number of non-short sequences is at least
nv/4�− (�− 1) and each of them has at least (�/2) elements that are less than
or equal to m. Thus, in total they have at least (nv/4�− (�− 1)) (�/2) ≥ nv/8−
�(�− 1)/2 elements. Moreover, the number of elements contained in the short
sequences that are smaller than or equal to m are

∑�−1
i=1 (i/2) ≥ 1/2

∑�−1
i=1 i =

�(�− 1)/4. Therefore, over all αvnv ≥ nv/8− �(�− 1)/4. Similarly, for the num-
ber of elements greater than m we can show that (1−αv)nv ≥ nv/8− �(�− 1)/4
and the claim follows. &'

Consider the recursion tree T generated by the algorithm. This is a binary tree.
The leaves correspond to calls with either nv < 4�2 or empty Rv. Interior nodes
have nv > 4�2 and non-empty Rv. The total cost of merging is∑

v∈T

Cm
v ≤

∑
v∈T

(nvH(αv) + I ′v + I ′′v − Iv + p′v + p′′v − pv).

We first bound
∑

v∈T nvH(αv).

Lemma 9. Let T (n,R) =
∑

v∈T nvH(αv). Then

T (n,R) ≤
k+1∑
j=1

Δj lg
n

Δj
+ rk − r1 + 16n = n lg n−

k+1∑
j=1

Δj lgΔj + rk − r1 + 16n

whenever R is non-empty2.

Proof: We use induction. If n < 4�2 and R is non-empty, T (n,R) = 0 and
the right hand side is at least zero. If R is non-empty, we split into subprob-
lems (n′, R′) and (n′′, R′′), with n′ = αn, n′′ = (1 − α)n, R′ = {r : r ∈ R, r <
n′} and R′′ = {r − n′ : r ∈ R, r > n′}. Then nH(α) = n lg n − n′ lg n′ −
n′′ lgn′′. Let k′ = |R′|. By symmetry, we may assume k′ > 0. Let Δ′

1, . . . , Δ′
k′+1

and Δ′′
1 , . . . , Δ′′

k′′+1 be the sequence of Δ’s for the two subproblems. Then
Δ′

1, . . . , Δ′
k′ , Δ′

k′+1 + Δ′′
1 , Δ′′

2 . . . , Δ′′
k′′+1 is the sequence of Δ’s in the original

problem. We need to distinguish cases.
Assume first k′′ > 0. Then we can apply the induction hypothesis to both

subproblems and obtain (writing x for Δ′
k′+1 and y for Δ′′

1)

2 If R is empty, k = 0 and rk = 0 and r1 = n. This will not make sense in the inductive
proof.

112 K. Kaligosi et al.

T (n,R) ≤ nH(α) + T (n′, R′) + T (n′′, R′′)

≤ n lg n− n′ lg n′ − n′′ lg n′′ + n′ lg n′ −
k′+1∑
j=1

Δ′
j lgΔ′

j + r′k − r1 + 16n′

+ n′′ lg n′′ −
k′′+1∑
j=1

Δ′′
j lgΔ′′

j + rk − rk′+1 + 16n′′

= n lg n−
k+1∑
j=1

Δj lgΔj + rk − r1 + 16n

+ (x + y) lg(x + y)− x lg x− y lg y − (rk′+1 − rk′)

and we have established the induction step using Lemma 1 and x+y = rk′+1−rk′ .
Assume next k′′ = 0. We apply the induction hypothesis to the first subprob-

lem and obtain

T (n,R) ≤ nH(α) + T (n′, R′)

≤ n lg n− n′ lgn′ − n′′ lg n′′ + n′ lgn′ −
∑

1≤j≤k+1

Δ′
j lgΔ′

j + rk − r1 + 16n′

= n lg n−
∑

1≤j≤k+1

Δj lgΔj + rk − r1 + 16n

+ (Δ′
k+1 + n′′) lg(Δ′

k+1 + n′′)−Δ′
k+1 lgΔ′

k+1 − n′′ lgn′′ − 16n′′

We have Δ′
k+1 + n′′ ≤ n ≤ 16n′′ by Lemma 8. An application of Lemma 1

completes the induction step. &'

Lemma 10.
∑

v∈T (I ′v + I ′′v − Iv + p′v + p′′v − pv) ≤ n lg(2�).

Proof: The sum telescopes to

−Iroot − proot +
∑

v ∈ T and there is
no recursive call for C′

(I ′v + p′v) +
∑

v ∈ T and there is
no recursive call for C′′

(I ′′v + p′′v).

The collection entering the root consists of sequences of length 1 and hence
Iroot = 0 and proot = n. The collections for which there is no recursive call
are disjoint and hence their total length is n. Also no sequence is longer than
2� and every sequence is non-empty. Thus their contribution is bounded by
n lg(2�) + n. &'

We next turn to the cost of computing the median of the medians and partition-
ing our sequences at the median of medians. We let β be a constant such that
the median of z elements can be computed with βz comparisons.

Lemma 11. The total cost Cp of computing the median of the medians and
partitioning is bounded by

Towards Optimal Multiple Selection 113

4(lg 2� + β)
�

k+1∑
j=1

Δj lg
n

Δj
+

4(lg 2� + β)
�

(rk − r1) +O(n) +O(β�n) +O(n� lg �) .

Proof: We split the cost for computing medians and partitioning into two parts:
the cost arising from non-short sequences and the cost arising from short se-
quences.

The first three terms refer to the cost of finding the median of medians and
partitioning arising from the non-short sequences. The median of each sequence is
known since they are sorted. At each node v the number of non-short sequences
is at most +nv/�, ≤ nv/� and hence the share of the non-short sequences is
βnv/� comparisons in node v. In order to partition at m we perform binary
search on each sequence with cost at most lg 2�, thus, the cost over all sequences
is at most nv lg 2�/�. Therefore, the comparisons spent in node v for non-short
sequences is (lg 2� + β)nv/�. Next observe that 1 ≤ 4H(αv) for any vertex v and
hence (lg 2� + β)nv/� ≤ 4(lg 2� + β)H(αv)nv/�. The bound now follows from
Lemma 9.

The fourth term refers to the cost contributed by the short sequences for
computing the median of medians. Since we have at most �− 1 short sequences
in each node, they contribute β(� − 1) to the number of comparisons at each
node of the recursion tree. Hence, they contribute an O(β�n) over all.

The last term refers to the cost of partitioning the short sequences at m. At
each node this cost is at most

∑�−1
i=1 lg i ≤ � lg � and the bound follows. &'

Lemma 12. The total cost for the base case of the recursion is bounded by βn.

Proof: The collections for which there is no recursive call are disjoint and the
cost of selecting the median of s elements is βs. &'

Theorem 3. The deterministic multi-selection algorithm uses B+o(B)+O(n)
comparisons.

Proof: Summing the bounds in Lemmas 9, 10, 11,and 12 we obtain the follow-
ing upper bound:

B +O(n) +O(n lg �) +O((1 + lg �)/�) ·B +O(n) +O(n� lg �)

= B +O(n) +O
(

1 + lg lg(B/n)
lg(B/n)

+
lg(B/n) lg lg(B/n)

B/n

)
·B.

This is B + o(B) +O(n). &'

5 Conclusion

We have shown that multiple quickselect performs an optimal number of com-
parisons up to a linear term. There are several ways to improve this linear term
which is particularly interesting when the lower bound is linear itself. For ex-
ample, when rk < n/2 (or r1 > n/2) it pays to choose the pivot such that its

114 K. Kaligosi et al.

rank is just a bit larger than rk (or a bit smaller than r1). It can then be shown
that the linear term is reduced from 2n to 3n/2. Also note that for k = 1 the
algorithm then becomes a special case of the optimal algorithm by Floyd and
Rivest [7]. Likewise, the lower bound could be further refined. However, since
there is even a remaining linear size gap between upper and lower bound for
sorting, completely closing the gap remains a distant possibility.

There is a long standing constant factor gap between the upper bounds for the
best deterministic selection algorithms and the lower bound. Our deterministic
algorithm shows that this gap becomes a lower order term for multiple selection.

Multiple quickselect is obviously highly practical. It might be quite com-
plicated to implement our deterministic algorithm efficiently but at the end it
might work quite well: Its cost is dominated by merging operations that are
known to be quite fast. Moreover, since the algorithm executes batches of many
small binary merging operations, one might execute them in parallel using mul-
tithreading or instruction parallelism. This approach might mitigate the impact
of data dependencies and branch mispredictions.

References

1. G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J. Smith, and
M. Zagha. A comparison of sorting algorithms for the connection machine CM-
2. In 3rd ACM Symposium on Parallel Algorithms and Architectures, pages 3–16,
1991.

2. M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tarjan. Time bounds
for selection. Journal of Computer and System Sciences, 7(4):448–461, 1973.

3. J. Chambers. Partial sorting (algorithm 410). Communications of the ACM,
14:357–358, 1971.

4. W. Cunto and J. I. Munro. Average case selection. J. ACM, 36(2):270–279, 1989.
5. D. P. Dobkin and J. I. Munro. Optimal time minimal space selection algorithms.

Journal of the ACM, 28(3):454–461, 1981.
6. D. Dor and U. Zwick. Selecting the median. In SODA: ACM-SIAM Symposium

on Discrete Algorithms, 1995.
7. R. W. Floyd and R. L. Rivest. Expected time bounds for selection. Commun.

ACM, 18(3):165–172, 1975.
8. C.A.R. Hoare. Find (algorithm 65). Communications of the ACM, 4(7):321–322,

1961.
9. L. R. Ford Jr. and S. B. Johnson. A tournament problem. AMM, 66(5):387–389,

1959.
10. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University

Press, 1995.
11. A. Panholzer. Analysis of multiple quickselect variants. Theor. Comput. Sci.,

302(1-3):45–91, 2003.
12. I. Pohl. A sorting problem and its complexity. Commun. ACM, 15(6):462–464,

1972.
13. H. Prodinger. Multiple quickselect - Hoare’s find algorithm for several elements.

Information Processing Letters, 56:123–129, 1995.
14. A. Schönhage, M. Paterson, and N. Pippenger. Finding the median. J. Comput.

Syst. Sci., 13:184–199, 1976.

Simple Extractors via Constructions of
Cryptographic Pseudo-random Generators

Marius Zimand

Department of Computer and Information Sciences,
Towson University, Baltimore

http://triton.towson.edu/~mzimand

Abstract. Trevisan has shown that constructions of pseudo-random
generators from hard functions (the Nisan-Wigderson approach) also
produce extractors. We show that constructions of pseudo-random gen-
erators from one-way permutations (the Blum-Micali-Yao approach) can
be used for building extractors as well. Using this new technique we build
extractors that do not use designs and polynomial-based error-correcting
codes and that are very simple and efficient. For example, one extractor
produces each output bit separately in O(log2 n) time. These extractors
work for weak sources with min entropy λn, for arbitrary constant λ > 0,
have seed length O(log2 n), and their output length is ≈ nλ/3.

1 Introduction

This paper puts forward a new framework for constructing extractors based on
a new connection between extractors and pseudo-random generators. A pseudo-
random generator takes as input a short random string called the seed and
outputs a long string that cannot be distinguished from a truly random string
by any test that is computable by circuits of bounded size. An extractor has
two inputs: (a) The first one comes from an imperfect (i.e., with biased bits
and correlations among bits) distribution on binary strings of some length and
it is called the weakly-random string; (b) the second one is a short random
seed. The output is a long string that cannot be distinguished from a truly
random string by any test. One difference between pseudo-random generators
and extractors is the number of inputs (one versus two). From a technical point
of view this difference is minor because the known constructions of pseudo-
random generators implicitly do use an extra input which is a function that
in some sense is computationally hard. The fundamental difference is in the
randomness requirement for the output. Thus, while the output of a pseudo-
random generator looks random in a complexity-theoretic way, the output of
an extractor is random (or very close to random) in an absolute information-
theoretic way. Consequently pseudo-random generators and extractors appear
to belong to two very different worlds, and, for many years, the developments in
the construction of pseudo-random generators and extractors went along distinct
research lines.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 115–127, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

116 M. Zimand

Trevisan [Tre01] has made a breakthrough contribution in this area by observ-
ing that the (apparently superficial) similarity between extractors and pseudo-
random generators extends to some of the methods to build the two kind of
objects. For the reasons mentioned above, Trevisan’s result has been extremely
surprising. It has also been an isolated example of a transfer from the complex-
ity theory standard arsenal of techniques to the information theoretical area.
In this paper we extend Trevisan’s observation and establish that, as far as
construction methods are concerned, there is a truly close relationship between
pseudo-random generators and extractors. Specifically, we show that the other
major route (than the one followed by Trevisan) that leads to pseudo-random
generators (of a somewhat different kind) can also be used to construct ex-
tractors. Some explanations are in order at this point. There are two known
approaches for constructing pseudo-random generators. One approach uses as a
building block a hard function f and, in one typical setting of parameters, for
any given k ∈ N, builds a pseudo-random generator g with outputs of length
n that is secure against adversary tests computable in time nk. The running
time to compute g(x) is nk′

, for some k′ > k. This kind of pseudo-random
generators can be used for derandomizing BPP computations. They cannot be
used in cryptography, because in this setting, it is unwise to assume that the
adversary is endowed with less computational power (nk) than the legitimate
users (nk′

). Henceforth we will call this type of pseudo-random generator a “de-
randomization pseudo-random generator” (also known as a Nisan-Wigderson
pseudo-random generator). The second approach uses as a building block a hard
object of a more sophisticated type, namely a one-way function (the hardness
of such a function f consists in the difficulty to invert it, but f must satisfy
an additional property, namely, it should be easy to calculate f(x) given x).
It is known that given a one-way function, one can construct a pseudo-random
generator [HILL99]. An easier construction produces a pseudo-random generator
from any one-way length-preserving permutation. This second approach has the
disadvantage that is using as a building block a more demanding type of object.
The advantage of the method is that a pseudo-random generator g constructed
in this way can be used in cryptography because g(x) can be calculated in time
significantly shorter than the time an adversary must spend to distinguish g(x)
from a truly random string. Henceforth we will call this type of pseudo-random
generator a “crypto pseudo-random generator” (also known as a Blum-Micali-
Yao pseudo-random generator).

Trevisan has shown that the known methods for constructing derandomiza-
tion pseudo-random generators also produce extractors. More precisely, he has
shown that the constructions of pseudo-random generators from hard functions
given by Nisan and Wigderson [NW94] and Impagliazzo and Wigderson [IW97]
can be used almost directly to produce extractors. His method has been extended
in a number of papers to build extractors with increasingly better parameters
(see the survey paper by Shaltiel [Sha02]). In the paper [Tre99], the conference
version of [Tre01], Trevisan has suggested that the methods to construct crypto
pseudo-random generator cannot be used to build extractors. We show that in

Simple Extractors via Cryptographic Pseudo-random Generators 117

fact they can, at least for a combination of parameters that, even though not
optimal, is not trivial. Moreover, we show that the extractors constructed in this
way are very simple and efficient. The first extractor built in this paper follows
almost directly the classical construction of a pseudo-random generator from a
one-way permutation. It runs in O(n log n) time (in the standard RAM model)
and is very simple. The following is a complete description of it. The input con-
sists of the weakly-random string X, of length n = ñ2ñ for some integer ñ, and of
the seed ((x1, . . . , x�), r), with |xi| = ñ, � = O(ñ), and |r| = �ñ. We view X as a
function X : {0, 1}ñ → {0, 1}ñ, and, using the standard procedure, we transform
X into a circular permutation R : {0, 1}ñ → {0, 1}ñ. For i = 0 to m−1 = nΩ(1),
we calculate bi as the inner product modulo 2 of r and (Ri(x1) . . . Ri(x�)). The
output is b0 . . . bm−1. A type of efficiency which has received a lot of attention
recently is that of sublinear time. It may be the case that in some applications
we only need the i-th bit from the sequence of random bits that are extracted
from the weakly-random string. We would like to obtain this bit in time poly-
nomial in the length of the index i, which typically means polylog time in the
input length (under the assumption that each input bit can be accessed in one
time unit). By analogy with the case of list-decodable codes, we call an extractor
with this property, a bitwise locally computable extractor.1 The second extractor
that we build is of this type. It relies on the same basic method used in the
construction of the first extractor, combined with the idea of taking consecu-
tive inputs of the hard function as in the extractor of Ta-Shma, Zuckerman and
Safra [TSZS01]. This second extractor is even simpler and its complete descrip-
tion is as follows. The input consists of the weakly-random string X of length
n = ñ · 2ñ, for some natural number ñ, and of the seed ((x1, . . . , x�), r), with
|xi| = ñ, for all i, � = O(ñ), and |r| = �ñ. We view X as the truth-table of a
function X : {0, 1}ñ → {0, 1}ñ. For i = 0 to m−1 = nΩ(1), we calculate bi as the
inner product modulo 2 of r and (X(x1 + i), . . . , X(x� + i)), where the addition
is done modulo 2ñ. The output is b0 . . . bm−1.

The parameters of the extractors constructed in this paper are not optimal.
Both extractors that have been described above work for weak sources having
min-entropy λn, for arbitrary constant λ > 0, use a random seed of length
O(log2 n), and the output length is approximately nλ/3. A variant of the second
extractor has seed length O(log n) (here, for simplicity, we assume that the
extractor’s error parameter ε is a constant), but the output length reduces to
2O(

√
log n).

Lu’s extractor [Lu04] coupled with the constructions of designs from the
paper of Hartman and Raz [HR03] can be seen to be also a bitwise locally
computable extractor with parameters similar to those of our second extractor
(note that the designs in [HR03] appear to imply extractors with seed length
Ω(log2 n)). Lu’s extractor is using expander graphs and the designs from [HR03]

1 The simpler name locally computable extractor is already taken by a different kind of
efficient extractors, namely by extractors computable in space linear in the output
length, see [Vad04], [Lu04].

118 M. Zimand

need somewhat unwieldy algebraic objects. It seems to us that the extractors
presented in this paper are simpler than all the extractors from the literature.2

At the highest level of abstraction, our extractors follow the “reconstruction
paradigm” (see [Sha02]) typical to Trevisan’s extractor and to its improve-
ments [RRV99, TSZS01, SU01]. The major differences are that our extractors
avoid (1) the use of designs (in this respect they are similar to the extractors
in [TSZS01] and [SU01]), and, perhaps more strikingly, (2) the encoding of the
weakly-random string with an error-correcting code having a good list-decoding
property. Our extractors can be implemented very easily and are thus suitable
for practical applications. For example, they can be utilized to generate one-time
pad keys in cryptosystems based on the bounded-storage model (see the papers
of Lu [Lu04] and Vadhan [Vad04]), or for constructions of error-correcting codes
using the scheme in [TSZ01] (the extractors built in this paper are actually
strong extractors—for definition see, for example [Sha02]—as required by this
scheme). They may also have theoretical applications in situations where the
kind of efficiency achieved by our extractors is essential.

1.1 Definitions

Notations: x - y denotes the concatenation of the strings x and y, |x| denotes
the length of the string x, and ‖A‖ denotes the cardinality of the set A. For
two binary strings x and r of the same length, b(x, r) denotes the inner prod-
uct of x and r viewed as vectors over the field GF(2). Let n ∈ N. Let Xn, Yn

be two distributions on Σn. The statistical distance between Xn and Yn is de-
noted Δstat(Xn, Yn) and is defined by Δstat(Xn, Yn) = maxA⊆{0,1}n |Prob(Xn ∈
A) − Prob(Yn ∈ A)|. The computational distance between Xn and Yn rela-
tive to size S is denoted Δcomp,S(Xn, Yn) and is defined by Δcomp,S(Xn, Yn) =
max |Prob(C(Xn) = 1)− Prob(C(Yn) = 1)|, where the maximum is taken over
all circuits C of size ≤ S. Abusing notation, we identify a circuit C with the
set of strings x for which C(x) = 1. Thus, x ∈ C is equivalent to C(x) = 1.
The min-entropy of a random variable taking values in {0, 1}n is given by
min

{
log 1

Prob(X=a)

∣∣∣ a ∈ {0, 1}n,Prob(X = a) �= 0
}

. For each n ∈ N, let
Un denote the uniform distribution over {0, 1}n.

Definition 1.1. (Extractor) The values n, k, d,m are integer parameters, and
ε > 0 is a real number parameter. A function E : {0, 1}n × {0, 1}d → {0, 1}m

is a (k, ε)-extractor if for every distribution X on {0, 1}n with min-entropy at
least k, the distribution E(X,Ud) is ε-close to the uniform distribution Um in
the statistical sense, i.e., Δstat(E(X,Ud), Um) ≤ ε.

We fix parameters n, d,m and ε and a function E : {0, 1}n × {0, 1}d → {0, 1}m.
Let us consider an arbitrary set W ⊆ {0, 1}m and a string x ∈ {0, 1}n. We say

2 We note that Dziembowski and Maurer [DM04] give a similarly simple construction
of an object that is related to extractors.

Simple Extractors via Cryptographic Pseudo-random Generators 119

that x hits W ε-correctly via E if
∣∣∣∣‖{E(x,y)|y∈{0,1}d}∩W‖

‖{0,1}d‖ − ‖W‖
‖{0,1}m‖

∣∣∣∣ ≤ ε. The

folowing lemma has appeared more or less explicitly in the literature (see, for
example, [Sha02]).

Lemma 1.2. Let E : {0, 1}n × {0, 1}d → {0, 1}m and ε > 0. Suppose that for
every W ⊆ {0, 1}m, the number of x ∈ {0, 1}n that do not hit W ε-correctly via
E is at most 2t, for some t. Then E is a (t + log(1/ε), 2ε)-extractor.

1.2 Overview and Comparison with Trevisan’s Approach

Trevisan’s method is based on the constructions of pseudo-random generators
from hard functions given in [NW94] and in [IW97]. These constructions use a
function f as a block-box and construct from it a function gf that stretches the
input (i.e., |gf (x)| >> |x|) and which has the following property. If there exists a
circuit D that distinguishes gf (x), when x is randomly chosen in the domain of
gf , from the uniform distribution, then there is a small circuit A, which uses D as
a subroutine, such that A calculates f (or an approximation of f , depending on
whether we are using the method in [IW97] or the one in [NW94]). Therefore if f
is a hard function, there can be no circuit D as above of small size and thus gf is
a pseudo-random generator. Trevisan has observed that (1) the truth-table of f
can be viewed as a string produced by a weak source that can serve as an extra
input of the pseudo-random generator, and (2) the circuit A invoking D can
be considered as a special type of a circuit that is endowed with D-gates. By a
standard counting argument, it can be shown that, for any circuit D, regardless of
its size, the set of functions that can be calculated by small circuits with D-gates
is small. A circuit D can be viewed statically as a statistical test (more exactly,
the statistical test associated to the circuit D is the set of strings accepted by
D). In the new terminology, the fact that D distinguishes the distribution of
gf (x) from the uniform distribution with ε bias can be restated as “f does not
hit D ε-correctly via g.” The main property mentioned above can be restated as
saying that the set of functions f that do not hit D ε-correctly is included in the
set of functions computable by small circuits with D-gates. Since the latter set is
small, the former set is small as well, and thus, by Lemma 1.2, the construction
yields an extractor. In a nutshell, Trevisan’s method replaces hard functions (a
complexity-theoretic concept) with random functions (an information-theoretic
concept) and takes advantage of the fact that a random function is hard and
thus the construction carries over in the new setting.

We would like to follow a similar approach for the construction of crypto
pseudo-random generators from one-way permutations. Those constructions do
use a one-way permutation R as a black box to construct a pseudo-random
generator gR, and thus a truth-table of R can be considered as an extra input
of the pseudo-random generator. Also, the proof is a reduction that shows that
if a circuit D distinguishes gR(x) from the uniform distribution, then there is
a small circuit A, invoking the circuit D, that inverts R on a large fraction of
inputs. To close the proof in a similar way to Trevisan’s approach, we would

120 M. Zimand

need to argue that the vast majority of permutations are one-way. It seems that
we hit a major obstacle because, unlike the case of hard functions, it is not
currently known if even a single one-way function exists (and we are seeking an
unconditional proof for the extractors that we build). We go around this obstacle
by allowing algorithms to have oracle access to the function they compute. Thus,
in the above analysis, the circuit A, in addition to invoking the circuit D, will
also have oracle access to the permutation R. In this setting all permutations are
easy to compute because, obviously, there is a trivial constant-time algorithm
that, for any permutation R : {0, 1}n → {0, 1}n, given the possibility to query R,
calculates R(x). We need to argue that only few permutations R are invertible
by algorithms that can query R in a bounded fashion. More precisely we need
to estimate the size of the set of permutations R : {0, 1}n → {0, 1}n that can be
inverted on a set of T elements in {0, 1}n by circuits that can pose Q queries to
R. This problem has been considered by Impagliazzo [Imp96] and by Gennaro
and Trevisan [GT00]. Their techniques seem to work for the case T ·Q < 2n and
lead to extractors that work only for sources with high min-entropy.3

We obtain better parameters by restricting the type of one-way permuta-
tions and the type of circuits that attempt to invert them. A closer look at
the standard construction of Blum-Micali-Yao pseudo-random generators re-
veals that the circuit A with D-gates manages to determine x using only the
values R(x), R2(x), . . . , Rm(x) (where m is the generator’s output length). It is
thus enough to consider only circuits that use this pattern of queries to the per-
mutation R. Intuitively, for a random permutation R, the value of x should be
almost independent of the values of R(x), R2(x), . . . , Rm(x), and thus, a circuit
A restricted as above cannot invert but a very small fraction of permutations.
If we take R to be a random circular permutation, the above intuition can be
easily turned into a proof based on a Kolmogorov-complexity counting argu-
ment. A circular permutation R : {0, 1}n → {0, 1}n is fully specified by the
sequence (R(1), R2(1), . . . , RN−1(1)), where N = 2n. If a circuit A restricted as
above inverts R(x) for all x, then the permutation R is determined by the last
m values in the above sequence, namely RN−m(1), RN−(m−1)(1), . . . , RN−1(1).
Indeed, given the above values, the circuit A can determine RN−m−1(1), which
is R−1(RN−m(1)), and then RN−m−2(1), and so on till R(1) is determined.
Therefore such a permutation R, given the circuit A, can be described concisely
using only m · n bits (for specifying, as discussed, the last m elements in the
above sequence). In fact, in our case, the circuit A does not invert R(x) for all
x ∈ {0, 1}n, and, therefore, the values of R at the points where the inversion
fails have to be included in the description. A further complication is that even
for the successful cases, the circuit A only list-inverts R(x), which means that
A on input R(x) produces a relatively short list of elements, one of which is
x. Thus, one also has to include in the description of R the rank of x in the

3 On the other hand, these extractors have the interesting property that their output
looks random even to statistical tests that have some type of access to the weakly-
random string. These results will be reported in a separate paper.

Simple Extractors via Cryptographic Pseudo-random Generators 121

list produced by A. The quantitative analysis of the standard construction of a
crypto pseudo-random generator shows that if the permutation R does not hit
D ε-correctly, then the circuit A with D-gates is only able to produce for an
ε/m fraction of R(x), x ∈ {0, 1}n, a list with m2/ε2 elements one of which is
x. For interesting values of m (the pseudo generator’s output length), the ε/m
fraction is too small and needs to be amplified to a value of the form (1 − δ),
for a small constant δ. This can be done by employing another technique that is
well-known in the context of one-way functions. Namely, we use Yao’s method of
converting a weak one-way function into a strong one-way function by taking the
direct product. In other words, we start with a circular permutation R, define
(the direct product) R(x1, . . . , x�) = R(x1)- . . .-R(x�) (where - denotes con-
catenation), for some appropriate value of �, and use R in the definition of the
extractor (instead of R in our tentative plan sketched above). It can be shown
that, for � = O((1/δ) log(1/γ)), if a circuit A list-inverts (y1, . . . , y�), with list
size T = m2/ε2, for a γ = ε/m fraction of �-tuples (y1, . . . , y�) ∈ ({0, 1}n)�,
then there is a probabilistic algorithm A′ that list-inverts R(x) with list size
O(n · T · (1/δ) · (1/γ) · log(1/γ)) for a (1 − δ) fraction of x ∈ {0, 1}n. By fixing
the random bits and the queries that depend on these random bits, we can ob-
tain a brief description of R as in our first tentative plan. It follows that only
few permutations R can hit D ε-incorrectly and, therefore, by Lemma 1.2, we
have almost obtained an extractor (we also need to convert an arbitrary function
X : {0, 1}n → {0, 1}n into a circular permutation R : {0, 1}n → {0, 1}n, which
is an easy task).

The second extractor starts from this idea and the observation that, for the
sake of building an extractor, we can work with a function X (i.e., not necessarily
a permutation) and consider consecutive values X(x),X(x + 1), . . . ,X(x + m),
as in the extractor of Ta-Shma, Zuckerman, and Safra [TSZS01]. That extractor
(as well as all the extractors using the “reconstruction paradigm”) takes X to be
the encoding of an arbitrary function X with a good list-decoding property and
some other special algebraic properties. This is necessary, among other things,
for the same type of amplification as in our discussion above. We use instead
a direct-product construction that is much simpler to implement (however, the
cost is a longer seed length).

Because of the space constraints, most of the proofs are omitted. A full version
of the paper is available [Zim05].

2 An Extractor from a Crypto Pseudo-random
Generator

Restricted permutations, restricted circuits

The space from where we randomly choose permutations consists of permu-
tations of a special form. First we consider the set CIRC of all circular per-
mutations R : {0, 1}n → {0, 1}n. Next, for some parameter � ∈ N, we take
the �-direct product of CIRC. This means that for any R ∈ CIRC, we define

122 M. Zimand

R� : {0, 1}�n → {0, 1}�n by R�(x1-x2- . . .-x�) = R(x1)-R(x2)- . . .-R(x�).
We let PERM� be the set {R� | R ∈ CIRC}. We will drop the subscript � when
its value is clear from the context or when it is not relevant in the discussion.

We want to argue that no circuit that queries R in a restricted way can
invert a “large” fraction of R(x) except for a “small” fraction of permutations
R in PERM. In order to obtain adequate values for “large” and “small” we will
impose the following restriction on the pattern of queries that the circuit can
make.

Definition 2.1. An oracle circuit C on inputs of length at least � · n is L-
restricted if on any input x and for all oracles R ∈ PERM�, C only queries
xfirst, R(xfirst), R

2
(xfirst), . . . , R

L−1
(xfirst), where xfirst is the string consisting of

the first � · n bits of x.

We will allow the circuits to attempt to invert R in a weaker form: On input
R(x), CR outputs a small list of strings one of which (in case C succeeds) is x.
When this event happens, we say that CR list-inverts x. We are interested in
estimating the number of permutations R ∈ PERM so that CR list-inverts R(x)
for a large fraction of x.

Definition 2.2. Let C be an oracle circuit. A permutation R is (γ, T)-good for
C if for at least a γ fraction of x ∈ {0, 1}�n, CR on input R(x) outputs a list of
T elements that contains x.

The next lemma shows that a permutation that is (γ, T)-good for a restricted
circuit C admits a short description conditioned by C being given.

Lemma 2.3. Let γ > 0, n ∈ N, L ∈ N, and T ∈ N. Let N = 2n. Let δ > 0 and
let � =

⌈
3
δ · log

(
2
γ

)⌉
. Assume δ ≥ 2e−n and � < L + 1. Let C be an L-restricted

circuit, having inputs of length �n, and let R ∈ PERM� be a permutation that is
(γ, T)-good for C. Then, given C and �, R can be described using a number of bits
that is bounded by 2δNn+Ln+N log n+(log 6)N+N log(1/δ)+N log log(2/γ)+
N log(1/γ) + N log T + 18n2 · L · 1

γ ·
(

1
δ

)2(log 2
γ

)2.

The above lemma allows us to estimate the number of permutations that are
(γ, T)-good for some L-restricted circuit C. We state the result for a particular
combination of parameters that will be of interest in our application.

Lemma 2.4. Let n ∈ N,m ∈ N, ε > 0, δ > 0. Let N = 2n. Consider γ = ε/m
and T = m2 · (1/ε2). Let � = ((3/δ) log(2/γ)). Assume that δ = O(1) and
m2 · (1/ε) = o(N/n4). Let C be an m-restricted circuit, with inputs of length
�n. Then the number of permutations R in PERM� that are (γ, T)-good for C is
bounded by 2h, where h = 3δ ·N · n + 3N logm + 3N log(1/ε).

Analysis of the construction of pseudo-random generators from one-
way permutations
We recall the classic construction (Blum and Micali [BM84] and Yao [Yao82]) of
a pseudo-random generator from a one-way permutation.

Simple Extractors via Cryptographic Pseudo-random Generators 123

The function GR(x, r) is defined by the following algorithm.
Input: R a permutation of {0, 1}�n, x ∈ {0, 1}�n, r ∈ {0, 1}�n.

For i = 0 to m− 1, bi = b(r,R
i
(x)).

Output b0 - b1 - . . .- bm−1.

The following lemma (whose proof follows closely the classical proof – see for
example [Zim04]– and, in addition, analyzes the pattern of queries) establishes
the properties of the above function in an information-theoretic context.

Lemma 2.5. Let C4 be a circuit. Then there are 2m+1 − 4 circuits
C1,1, . . . , C1,2m+1−4 such that

(1) If R is a permutation with |Probx,r(GR(x, r) ∈ C4) − Prob(Um ∈ C4)| > ε,
(i.e., R does not hit C4 ε-correctly via G), then there is some circuit C1,i

such that for at least a fraction ε
m of x, CR

1,i on input R(x) outputs a list of

m2 ·
(

1
ε

)2 strings that contains x (i.e., R is (ε/m,m2/ε2)-good for C1,i).
(2) All the circuits C1,i are (m− 2)-restricted.

The extractor
We first build a special type of extractor in which the weakly-random string is
the truth-table of a permutation in PERM.

The following parameters will be used throughout this section. Let ε > 0, δ >
0, and n,m ∈ N be parameters. Let N = 2n. Let � = ((3/δ) log(2m · (1/ε))).
We consider the set of permutations PERM�. We assume that δ = O(1) and
m2 · (1/ε) = o(N/n4). Let G : PERM� × ({0, 1}�n × {0, 1}�n) → {0, 1}m be the
function defined by the following algorithm (the same as the algorithm for GR

from the previous section).

Parameters: � ∈ N,m ∈ N.
Input: R ∈ PERM�, (x, r) ∈ {0, 1}�n × {0, 1}�n.

For i = 0 to m− 1, bi = b(r,R
i
(x)).

Output b0 - b1 - . . .- bm−1.

The following lemma, in view of Lemma 1.2, shows that G is an extractor for
the special case of weakly-random strings that are truth-tables of permutations
in PERM�.

Lemma 2.6. Let C4 be a test for strings of length m (i.e., C4 ⊆ {0, 1}m).
Let GOOD(C4) = {R ∈ PERM� | R does not hit C4 ε-correctly via G}. Then
‖GOOD(C4)‖ < 2m+h+1, where h = 3δNn + 3N logm + 3N log(1/ε).

Proof. Let C1,1, . . . , C1,2m+1−4 be the 2m+1−4 circuits implied by Lemma 2.5 to
exist (corresponding to the test C4). Let R be in GOOD(C4). Then Lemma 2.5
shows that there is a circuit C1,i from the above list having the following prop-
erty: For at least a fraction γ = ε/m of strings x ∈ {0, 1}�n, CR

1,i on input
R(x) returns a list having T = m2 · (1/ε2) strings, one of which is x. Thus,
R is (γ, T)-good for C1,i (recall Definition 2.2). It follows that the set of per-
mutations R ∈ PERM� that do not hit C4 ε-correctly via G is included in

124 M. Zimand

⋃2m+1−4
1 {R ∈ PERM� | R is (γ, T)-good for C1,i}. Lemma 2.4 shows, that, for

each i ∈ {1, . . . , 2m+1−4}, ‖{R ∈ PERM� | R is (γ, T)-good forC1,i}‖ ≤ 2h. &'

In order to obtain a standard extractor (rather than the special type given by
Lemma 2.6), the only thing that remains to be done is to transform a random
binary string X into a permutation R ∈ CIRC, which determines R ∈ PERM�

that is used in the function G given above. Note that a permutation R ∈ CIRC
is specified by (R(1), R2(1), . . . , RN−1(1)), which is an arbitrary permutation of
the set {2, 3, . . . , N}. Consequently, we need to generate permutations of the set
{1, 2, . . . , N − 1} (which can be viewed as permutations of {2, 3, . . . , N} in the
obvious way). We can use the standard procedure that transforms a function
mapping [N − 1] to [N − 1] into a permutation of the same type. To avoid some
minor truncation nuisances, we actually use a function X : [N] → [N].

Input: X : [N] → [N].
Loop 1: for i = 1 to N − 1, R(i) = i.
Loop 2: for i = 1 to N − 1, Y (i) = 1 + (X(i) mod i).
Loop 3: for i = 1 to N − 1, swap R(i) with R(Y (i)).

Output: permutation R : [N − 1] → [N − 1].

It is easy to see that the number of functions X : [N] → [N] that map via
the above procedure into a given permutation R : [N − 1] → [N − 1] is bounded
by 22N .

We can now present the (standard) extractor. We choose the parameters as
follows. Fix n ∈ N and let N = 2n and N = n · 2n. Let λ ∈ (0, 1) be a constant.
Let α > 0, β > 0 be constants such that α < λ/3, β < (λ− 3α)/4. Let ε ≥ N−β

and m ≤ Nα. Take δ = (λ− 4β − 3α)/4 and � = ((3/δ) log(2m · (1/ε))).

Parameters: n ∈ N, N ∈ N, λ > 0, ε > 0, � ∈ N,m ∈ N, satisfying
the above requirements.

Inputs: The weakly-random string X ∈ {0, 1}N, viewed as the
truth-table of a function X : [N] → [N]; the seed y = (x, r) ∈
{0, 1}�n × {0, 1}�n.

Step 1. Transform X into a permutation RX ∈ PERM�. The
transformation is performed by the above procedure which yields a
permutation R ∈ CIRC, and, next, RX is the �-direct product
of R.

Step 2. Run G on input RX, (x, r).

We have defined a function E : {0, 1}N × {0, 1}2�n → {0, 1}m. Note that the
seed length 2�n is O(log2 N) and the output length m is N

α
, for an arbitrary

α < λ/3.

Theorem 2.7. The function E is a (λN, 2ε)-extractor.

Proof. Let C4 be a subset of {0, 1}m. Taking into account Lemma 1.2, it is
enough to show that the number of strings X ∈ {0, 1}N that do not hit C4

ε-correctly via E is at most 2λN−log(1/ε). Let X ∈ {0, 1}N be a string that

Simple Extractors via Cryptographic Pseudo-random Generators 125

does not hit C4 ε-correctly via E. By the definition of E, it follows that RX

does not hit C4 ε-correctly via G. By Lemma 2.6, there are at most 2m+h+1

permutations R ∈ PERM� that do not hit C4 ε-correctly via G, where h =
3δNn + 3N logm + 3N log(1/ε). Since the number of functions X : [N] → [N]
that map into a given permutation R ∈ PERM� is at most 22N , it follows that
‖{X ∈ {0, 1}N | X does not hit C4 ε-correctly}‖ < 22N ·2m+h+1 < 2λN−log(1/ε),
where the last inequality follows from the choice of parameters. &'

3 A Bitwise Locally-Computable Extractor

We present a bitwise locally-computable extractor: Each bit of the output string
can be calculated separately in O(log2 N), where N is the length of the weakly-
random string. The proof uses the same plan as for the extractor in Section 2,
except that the weakly-random string X is viewed as the truth-table of an ar-
bitrary function (not necessarily a permutation) and the “consecutive”’ values
that are used in the extractor are X(x),X(x + 1), . . . ,X(x + m− 1) (instead of
R(x), R

2
(x), . . . , R

m−1
(x) used in Section 2).

The parameter n ∈ N will be considered fixed throughout this section. We
denote N = 2n and N = n · N . The parameter m ∈ N will be specified later
(it will be a subunitary power of N). The weakly-random string X has length
N , and is viewed as the truth-table of a function X : {0, 1}n → {0, 1}n. For
some � ∈ N that will be specified later we define X : {0, 1}�n → {0, 1}�n by
X(x1 - . . . - x�) = X(x1) - . . . - X(x�), i.e., X is the �-direct product of X.
We also denote x = x1 - . . . - x�. The seed of the extractor will be (x, r) ∈
{0, 1}�n×{0, 1}�n. We define x+1 = (x1 +1)- . . .- (x� +1) (where the addition
is done modulo 2n) and inductively, for any k ∈ N, x+ k + 1 = (x+ k) + 1. The
extractor is defined by

E(X, (x, r)) = b(X(x), r)- b(X(x + 1), r)- . . .- b(X(x + m− 1), r). (1)

It can be shown that, for any constants λ > 0 and α < λ/3, for m ≤ Nα and
ε ≥ N (−(λ−3α)/4), for some � = O(n), E is a (λN, 2ε)-extractor. The proof shows
that if some X ∈ {0, 1}N does not hit ε-correctly some test D ⊆ {0, 1}m via E,
then for “many” x ∈ {0, 1}n, X(x) can derived from X(x−m+1), . . . , X(x−1)
and from the value of X in a few additional points that do not depend on x. It
is then shown that less than 2λN−log(1/ε) elements X ∈ {0, 1}N can have such a
property. The conclusion follows from Lemma 1.2.

The construction scheme of the extractor given in Equation (1) allows some
flexibility in the choice of parameters. We can obtain a quite simple extractor
that has seed length O(log(N)), is capable to extract from sources with min-

entropy λN , for arbitrary constant λ > 0, and has output length ≈ 2(1/3)
√

log(N).
This extractor has a good seed length, however the output length is much smaller
than the min-entropy of the source.

126 M. Zimand

Acknowledgments

I am grateful to Luca Trevisan for his insightful comments on an earlier draft of
this work.

References

[BM84] Manuel Blum and Silvio Micali. How to generate cryptographically strong
sequences of pseudo-random bits. SIAM Journal on Computing, 13(4):850–
864, November 1984.

[DM04] Stefan Dziembowski and Ueli Maurer. Optimal randomizer efficiency in the
bounded-storage model. Journal of Cryptology, 17(1):5–26, January 2004.
(Conference version appeared in Proc. of STOC’02.).

[GT00] R. Gennaro and L. Trevisan. Lower bounds on the efficiency of generic
cryptographic constructions. In Proceedings of the 41st IEEE Symposium
on Foundations of Computer Science, 2000.

[HILL99] J. H̊astad, R. Impagliazzo, L. Levin, and M. Luby. Construction of a pseudo-
random generator from any one-way function. SIAM Journal on Computing,
28(4), 1999.

[HR03] T. Hartman and R. Raz. On the distribution of the number of roots of poly-
nomials and explicit logspace extractors. Random Structures & Algorithms,
23(3):235–263, Oct. 2003.

[Imp96] R. Impagliazzo. Very strong one-way functions and pseudo-random gener-
ators exist relative to a random oracle. (manuscript), January 1996.

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential
circuits: Derandomizing the XOR lemma. In Proceedings of the 29th Annual
ACM Symposium on the Theory of Computing (STOC ’97), pages 220–229,
New York, May 1997. Association for Computing Machinery.

[Lu04] C.J. Lu. Encryption against storage-bounded adversaries from on-line
strong extractors. Journal of Cryptology, 17(1):27–42, January 2004.

[NW94] N. Nisan and A. Wigderson. Hardness vs. randomness. Journal of Computer
and System Sciences, 49:149–167, 1994.

[RRV99] R. Raz, O. Reingold, and S. Vadhan. Extracting all the randomness and
reducing the error in trevisan’s extractor. In Proceedings of the 30th ACM
Symposium on Theory of Computing, pages 149–158. ACM Press, May 1999.

[Sha02] R. Shaltiel. Recent developments in explicit constructions of extractors.
Bulletin EATCS, 77:67–95, June 2002.

[SU01] R. Shaltiel and C. Umans. Simple extractors for all min-entropies and a new
pseudo-random generator. In Proceedings of the 42nd IEEE Symposium on
Foundations of Computer Science, 2001.

[Tre99] L. Trevisan. Constructions of near-optimal extractors using pseudo-random
generators. In Proceedings of the 30th ACM Symposium on Theory of Com-
puting, pages 141–148. ACM Press, May 1999.

[Tre01] L. Trevisan. Extractors and pseudorandom generators. Journal of the ACM,
48(4):860–879, 2001.

[TSZ01] A. Ta-Shma and D. Zuckerman. Extractor codes. In Proceedings of the 33rd
ACM Symposium on Theory of Computing, pages 193–199, 2001.

[TSZS01] A. Ta-Shma, D. Zuckerman, and S. Safra. Extractors from Reed-Muller
codes. In Proceedings of the 42nd IEEE Symposium on Foundations of
Computer Science, 2001.

Simple Extractors via Cryptographic Pseudo-random Generators 127

[Vad04] S. Vadhan. On constructing locally computable extractors and cryptosys-
tems in the bounded-storage model. J. of Cryptology, 17(1):43–77, January
2004.

[Yao82] A. Yao. Theory and application of trapdoor functions. In Proceedings of the
23rd IEEE Symposium on Foundations of Computer Science, pages 80–91,
1982.

[Zim04] Marius Zimand. Computational Complexity: A Quantitative Perspective.
North-Holland Mathematics Studies. vol. 196. Elsevier, 2004.

[Zim05] Marius Zimand. Simple extractors via constructions of crypto-
graphic pseudo-random generators. Technical Report 0501075,
Computing Research Repository, January 2005. Available at
http://arxiv.org/abs/cs.CC/0501075.

Bounds on the Efficiency of “Black-Box”
Commitment Schemes

Omer Horvitz� and Jonathan Katz��

Department of Computer Science,
University of Maryland, College Park, MD 20742

{horvitz, jkatz}@cs.umd.edu

Abstract. Constructions of cryptographic primitives based on general
assumptions (e.g., the existence of one-way functions) tend to be less
efficient than constructions based on specific (e.g., number-theoretic) as-
sumptions. This has prompted a recent line of research aimed at inves-
tigating the best possible efficiency of (black-box) constructions based
on general assumptions. Here, we present bounds on the efficiency of
statistically-binding commitment schemes constructed using black-box
access to one-way permutations; our bounds are tight for the case of
perfectly-binding schemes. We present the bounds in an extension of the
Impagliazzo-Rudich model; that is, we show that any construction beat-
ing our bounds would imply the unconditional existence of a one-way
function (from which a commitment scheme could be constructed “from
scratch”). Our analysis is the first in the area to pertain directly to an
information-theoretic component of the security notion.

1 Introduction

A central goal of modern cryptography has been to characterize the minimal as-
sumptions needed to construct cryptographic tools and protocols. For example,
we now know that one-way functions are sufficient for constructing pseudoran-
dom generators (PRGs) [2, 18, 8, 9], universal one-way hash functions (UOWHFs)
and digital signature schemes [14, 16], private-key encryption schemes [6] and
commitment schemes [13]. In each of these cases, one-way functions are also
known to be necessary [10, 16], making the characterization exact. While impor-
tant from a theoretical point of view, the above constructions have had limited
practical impact due to their inefficiency. In practice, more efficient construc-
tions based on stronger assumptions tend to be used. Moreover, for all of the
examples listed above, no constructions from general assumptions that improve
on the efficiency of the original solutions are known.

The tension between general and efficient constructions has motivated a re-
cent line of research, aimed at understanding the minimal assumptions needed
for efficient constructions of various primitives. Put another way, we ask what is

� Supported by U.S. Army Research Office award DAAD19-01-1-0494.
�� Supported by NSF CAREER award #0447075.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 128–139, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Bounds on the Efficiency of “Black-Box” Commitment Schemes 129

the best possible efficiency that can be achieved (for a particular primitive of in-
terest) if we limit ourselves to constructions based on the weakest cryptographic
assumptions. Initial work by Kim, Simon, and Tetali [12] demonstrated (non-
tight) bounds on the efficiency of constructing universal one-way hash functions
from one-way permutations. Extending their results, Gennaro, Gertner, Katz,
and Trevisan [4] showed that known constructions of UOWHFs based on one-
way permutations are in fact optimal ; they also show efficiency bounds for the
case of PRGs, private-key encryption schemes, and digital signatures based on
one-way permutations, as well as for the case of public-key encryption schemes
based on trapdoor permutations.

It is noted that in all the above bounds, analysis pertains directly to a compu-
tational aspect of the security notion at hand: for PRGs, it is the indistinguisha-
bility of the output from random; for UOWHFs – the computational hardness
of finding a collision with a given element for a random member of the family;
for encryption – the computational indistinguishability of encryptions of dis-
tinct messages; and for signatures – the computational hardness of generating a
forgery. For commitment schemes, appealing to computational formulations of
both the hiding and binding properties resists similar analysis. Taking either of
the properties as information-theoretic introduces new challenges. Indeed, find-
ing lower bounds on the efficiency of commitments from one-way permutations
is left as an open problem in [4].

Our results. Here, we prove lower bounds on the efficiency of (black-box) con-
structions of statistically-binding, interactive commitment schemes based on one-
way permutations. A commitment scheme for m-bit messages is an interactive
protocol between a sender S and a receiver R, where S takes as input a message
M ∈ {0, 1}m. Call the view of R during an interaction with S the commitment.
Informally, a statistically-binding commitment scheme satisfies two properties
(defined more formally in Section 2.2): (1) Hiding : the distribution over com-
mitments to M0 is computationally indistinguishable from the distribution over
commitments to M1, for any M0,M1 and a possibly malicious receiver; and
(2) (statistical) Binding : the probability (over coin tosses of the honest receiver
R) that there exist different M,M ′ and coins s, s′ for S such that the corre-
sponding commitments to M,M ′ are identical is at most εb. When εb = 0 we
say the scheme is perfectly binding. A permutation π : {0, 1}n → {0, 1}n is one-
way with security S if any circuit of size ≤ S inverts π on a fraction ≤ 1/S of
its inputs.

We show that any black-box construction1 of a statistically-binding commit-
ment scheme based on one-way permutations must have the sender query its
oracle Ω((m− log(1 + 2m · εb))/ logS) times. For perfectly-binding schemes, the
bound translates to Ω(m/ logS); for non perfectly-binding schemes, the bound
becomes Ω(log ε−1

b / logS) when m > log ε−1
b , and is essentially Ω(m/ logS) oth-

erwise. We prove our bounds in the model of Gennaro, et al. [4] which, in turn,

1 Using the terminology of [17] (see also [4]), our bounds hold for weak black-box
constructions and thus rule out stronger types of black-box constructions as well.

130 O. Horvitz and J. Katz

extends the model of Impagliazzo and Rudich [11, 15] (see [4] for a detailed com-
parison). In particular, we show that the existence of a construction beating our
efficiency bound would imply the unconditional existence of a one-way function
(and hence P �= NP).

For the case of perfectly-binding schemes constructed from one-way per-
mutations, our bound matches the efficiency achieved by the construction of
Blum [1] as extended by Goldreich and Levin [8] (see also [5]). For statistically-
binding schemes, our bound matches the efficiency achieved by the construction
of Naor [13] for single-bit messages (setting εb = 2−S). Closing the gap for the
case of longer messages remains an interesting open problem.

2 Preliminaries

2.1 One-Way Functions and Permutations

Let Af denote a circuit A with oracle access to the function f . We say that a
function f : {0, 1}n → {0, 1}n is (S, ε)-one-way if for every circuit A of size ≤ S
we have

Pr
x

[Af (f(x)) ∈ f−1(f(x))] ≤ ε.

To reduce the number of parameters, we will call a function S-hard if it is
(S, 1/S)-one way.

Let Πt denote the set of all permutations over {0, 1}t. Then:

Theorem 1 ([4]). For sufficiently large t, a random π ∈ Πt is 2t/5-hard with
probability at least 1− 2−2t/2

.

Let a‖b denote the concatenation of strings a and b. For t < n, let Πt,n denote
the subset of Πn such that π ∈ Πt,n iff π(a‖b) = π̂(a)‖b for some π̂ ∈ Πt. A
corollary to Theorem 1 is that if t = 5 logSp, then for n > t, a randomly chosen
π ∈ Πt,n is Sp-hard with high probability.

Corollary 1 ([4]). For sufficiently large t and n > t, a random π ∈ Πt,n is
2t/5-hard with probability at least 1− 2−2t/2

.

2.2 Commitment Schemes

A commitment scheme for m-bit messages is defined by a pair of probabilis-
tic, interactive algorithms (S,R). The inputs to S, the sender, are a message
M ∈ {0, 1}m and randomness s, while the input to R, the receiver, is random-
ness r. Let 〈S (M ; s),R(r)〉 denote the receiver’s view of an interaction with
the sender on the specified inputs; this view simply consists of the receiver’s
randomness and the messages it receives from the sender during the interaction
(when the receiver makes queries to an oracle, the view additionally includes
the answers it receives from the oracle). We call 〈S (M ; s),R(r)〉 a commitment.
A decommitment consists of a message and sender randomness. We say that a

Bounds on the Efficiency of “Black-Box” Commitment Schemes 131

commitment C = 〈S (M ; s),R(r)〉 can be decommitted to a message M ′ if there
exists a string s′ such that 〈S (M ′; s′),R(r)〉 = C. For a message M , let

〈S (M),R〉 def=
{
s, r

R← {0, 1}∗ : 〈S (M ; s),R(r)〉
}
.

We say that two distributions X ,Y are (S, ε)-indistinguishable, and write

X
(S,ε)
≈ Y, if for every circuit A of size ≤ S, we have∣∣∣∣ Pr

x∈X
[A(x) = 0]− Pr

x∈Y
[A(x) = 0]

∣∣∣∣ ≤ ε.

Definition 1. Let (S,R) be a commitment scheme for m-bit messages. We
say that (S,R) is (Sh, εh)-hiding if for every circuit R∗ of size ≤ Sh, for all
M0,M1 ∈ {0, 1}m, we have

〈S (M0),R∗〉
(Sh,εh)
≈ 〈S (M1),R∗〉.

We say that (S,R) is εb-binding if

Pr
r

[
∃M,M ′ ∈ {0, 1}m

, s, s′ s.t.
〈S (M ; s),R(r)〉 = 〈S (M ′; s′),R(r)〉

]
≤ εb.

We say that (S,R) is εb-binding for an honest sender if for all M ∈ {0, 1}m, we
have

Pr
s,r

[
∃M ′ �= M, s′ s.t.

〈S (M ; s),R(r)〉 = 〈S (M ′; s′),R(r)〉

]
≤ εb.

If εb = 0 we say the scheme is perfectly-binding. Finally, we say that (S,R) is
(Sh, εh, εb)-secure (resp., secure for an honest sender) if (S,R) is (Sh, εh)-hiding
and εb-binding (resp., binding for an honest sender).

A construction of a commitment scheme for m-bit messages (based on one-
way permutations) is a pair of oracle algorithms (S(·),R(·)) such that, for all
π ∈ Πn, (Sπ,Rπ) is a commitment scheme for m-bit messages. We say that
(S(·),R(·)) is (Sp, Sh, εh, εb)-secure (resp., secure for an honest sender) if for
every π ∈ Πn that is Sp-hard, (Sπ,Rπ) is (Sh, εh)-hiding and for every π ∈ Πn

(even those not Sp-hard), (Sπ,Rπ) is εb-binding (resp., binding for an honest
sender). ♦

We note that, in the terminology of [17], our definitions of security for com-
mitment constructions fall in the category of weak black-box constructions. This
is evident in that in the definition of the hiding property, the distinguishing al-
gorithm is not given oracle access to π. As we prove lower bounds, our results
apply to stronger notions of black-box constructions as well, and in particular
to semi- and fully black-box constructions (see [17] for further details.)

132 O. Horvitz and J. Katz

2.3 Pairwise-Independent Hashing

Let H be a family of functions mapping m-bit strings to m′-bit strings. We
assume that the following can be done in time polynomial in m: (1) selecting
a function h ∈ H uniformly at random; (2) given h ∈ H and x ∈ {0, 1}m,
evaluating h(x); and (3) given h∗, deciding whether h∗ ∈ H or not. We say
that H is a pairwise-independent hash family (following [3]) if for any distinct
x1, x2 ∈ {0, 1}m and any y1, y2 ∈ {0, 1}m′

we have:

Pr
h∈H

[h(x1) = y1 ∧ h(x2) = y2] = 2−2m′
.

3 The Lower Bound

Let (S(·),R(·)) be an (Sp, Sh, εh, εb)-secure construction of a commitment scheme
for m-bit messages (based on one-way permutations). We prove that unless S
queries its oracle at least Ω((m − log(1 + 2m · εb))/ logSp) times, there exists
(constructively) a commitment scheme (S̄, R̄) secure for an honest sender which
does not require access to any oracle (i.e., the scheme is secure unconditionally).
Strengthening a result of Impagliazzo and Luby [10] (cf. Lemma 1), this implies
the unconditional existence of a one-way function.

We describe here the intuition behind our proof, assuming for ease of expo-
sition that (S,R) is a non-interactive, perfectly-binding scheme. As in [4], our
starting point is that a random π ∈ Πt,n (for t = Θ(logSp)) is Sp-hard with all
but negligible probability (cf. Corollary 1). So, consider a scheme in which the
sender S ′ simulates a random π ∈ Πt,n for S, using independent random coins2

y. Note that decommitment here consists of both s and y.
It is quite straightforward to show that the resulting scheme still satisfies

hiding. Binding, however, is another matter. Note first that we need only show
binding for an honest sender. That is, we may assume that s and y have been
chosen honestly (i.e., uniformly at random) by S ′. Letting P denote the pairs
of t-bit prefixes of oracle queries made by S ′ during the computation and t-bit
prefixes of corresponding answers, the question then is whether there exist s′, y′

(with associated query/answer prefixes P ′) that form a decommitment of C to
a different message. We first observe, informally, that having P ′ = P will not
help: this is because the original scheme is binding for any choice of π. In fact,
this further implies that for any choice of P ′ there exists at most one message
to which C can be decommitted. Said another way, this means that C can be
decommitted to at most

22t|P | = 22tq

different messages (where q is the number of oracle queries made by the original
sender). Although this clearly violates binding, it does limit the space of possible

2 This can easily be done by selecting random t-bit answer-prefixes to new t-bit query-
prefixes, as needed.

Bounds on the Efficiency of “Black-Box” Commitment Schemes 133

messages somewhat as long as 22tq < m. We now show how to “bootstrap” this
to achieve “full” binding with noticeable probability.

The idea is to modify the scheme as follows: the sender S̄ now chooses a func-
tion h uniformly at random from a pairwise-independent hash family mapping
m-bit strings to m-bit strings. On message M , S̄ now runs S ′ twice (simulating
a random π as before), first on input M and then on input h(M). The com-
mitment also includes h. Hiding for the derived scheme follows easily, as before.
As for binding, denote the two sub-commitments of S̄ by C1 and C2. We have
said already that for each of these commitments there are sets S1, S2, each of
size at most 22t|P | < 2m, such that C1 might potentially be decommitted to any
message from S1 and similarly for C2, S2. But now the commitment C1‖C2‖h
can only be decommitted as a different message if there exists an M ′ ∈ S1 (with
M ′ �= M) for which h(M ′) ∈ S2. The crux of our proof is to show that, with
constant probability over choice of h (and for certain values of |P |), such an
M ′ does not exist. This immediately implies that binding holds with constant
probability.

3.1 A Technical Lemma

We begin by showing that the existence of a commitment scheme secure for
honest senders implies the existence of a one-way function. Although the result
can be derived from [10], we give a simple and more direct proof here.

Lemma 1. Let (S,R) be a commitment scheme for m-bit messages which is
(Sh, εh, εb)-secure for an honest sender. Let SS , SR be the sizes of the circuits
computing S,R, respectively. Then for any � ∈ N, there exists an (Sh − �(SS +
SR), �εh + 2ε�

b)-one-way function.

Proof. Via a standard hybrid argument, running � independent interactions be-
tween S and R on the same, fixed message yields an (Sh, �εh, ε

�
b)-secure com-

mitment scheme for m-bit messages. Let (S�,R�) denote this scheme.
Let f(M, s, r) def= 〈S�(M ; s),R�(r)〉. We claim that f is (Sh−�(SS+SR), �εh+

2ε�
b)-one-way. Assume the contrary. Then there exists a circuit B of size at most

Sh − �(SS + SR) such that

Succowf
B,f

def= Pr
M,s,r

[B(f(M, s, r)) ∈ f−1(f(M, s, r))] > �εh + 2ε�
b.

We use B to construct a circuit A that violates the hiding property of (S�,R�).
On input (M0,M1, C), A computes (M ′, s′, r′) ← B(C), and checks whether
f(M ′, s′, r′) ?= C and whether M ′ ?= M0. If both hold, A outputs 0; otherwise,
it outputs 1. Note that |A| = |B|+ �(SS + SR) ≤ Sh.

Let Bad
def= {(M, s, r)|∃M ′ �= M, s′ : 〈S�(M ; s),R�(r)〉 = 〈S�(M ′; s′),R�(r)〉}.

In what follows, note that if (M ′, s′, r′) ∈ f−1(f(M, s, r)) then r′ = r, as r is
included in the receiver’s view. We have:

134 O. Horvitz and J. Katz

Pr
M0,M1

C∈〈S� (M0),R� 〉

[A(M0,M1, C) = 0]

= Pr
M0,M1

s,r

[
(M ′, s′, r′) ← B(f(M0, s, r)) :

(M ′, s′, r′) ∈ f−1(f(M0, s, r))
∧

M ′ = M0

]

≥ Pr
M0,M1

s,r

[
(M ′, s′, r′) ← B(f(M0, s, r)) :

(M ′, s′, r′) ∈ f−1(f(M0, s, r))
∧

(M0, s, r) �∈ Bad

]

= Pr
M0,M1

s,r

[
(M ′, s′, r′) ← B(f(M0, s, r)) :
(M ′, s′, r′) ∈ f−1(f(M0, s, r))

]

− Pr
M0,M1

s,r

[
(M ′, s′, r′) ← B(f(M0, s, r)) :

(M ′, s′, r′) ∈ f−1(f(M0, s, r))
∧

(M0, s, r) ∈ Bad

]

≥ Pr
M0,M1

s,r

[
(M ′, s′, r′) ← B(f(M0, s, r)) :
(M ′, s′, r′) ∈ f−1(f(M0, s, r))

]
− Pr

M0,M1
s,r

[(M0, s, r) ∈ Bad]

≥ Succowf
B,f − ε�

b > �εh + ε�
b.

Furthermore, we have:

Pr
M0,M1

C∈〈S� (M1),R� 〉

[A(M0,M1, C) = 0]

= Pr
M0,M1

s,r

[
(M ′, s′, r′) ← B(f(M1, s, r)) :

(M ′, s′, r′) ∈ f−1(f(M1, s, r))
∧

M ′ = M0

]

≤ Pr
M0,M1

s,r

[
(M ′, s′, r′) ← B(f(M1, s, r)) :

(M ′, s′, r′) ∈ f−1(f(M1, s, r))
∧

(M1, s, r) ∈ Bad

]
≤ Pr

M0,M1
s,r

[(M1, s, r) ∈ Bad] ≤ ε�
b.

Putting everything together, we have:∣∣∣∣∣ Pr
M0,M1

C∈〈S� (M0),R� 〉

[A(M0,M1, C) = 0]− Pr
M0,M1

C∈〈S� (M1),R� 〉

[A(M0,M1, C) = 0]

∣∣∣∣∣ > �εh.

But this implies that there exist two messages M0,M1 for which A can distin-
guish 〈S�(M0),R�〉 from 〈S�(M1),R�〉 with probability > �εh, contradicting the
hiding property of (S�,R�).

3.2 Main Result

Theorem 2. Let (S(·),R(·)) be an (Sp, Sh, εh, εb)-secure construction of a com-
mitment scheme for m-bit messages that expects an oracle π ∈ Πn. Let t =
5 logSp. If S makes qS ≤ (m − 2 − log(1 + 2m+1 · εb))/4t queries to its oracle,
and εh ≤ 1/8 − 2−Sp , then there exists a commitment scheme for m-bit mes-
sages which is (Sh, 1/4, 1/4)-secure for an honest sender (without access to any
oracle).

Bounds on the Efficiency of “Black-Box” Commitment Schemes 135

Applying Lemma 1, this implies the existence of a one-way function (without
access to any oracle).

Proof. We construct non-interactive commitment scheme (S̄, R̄) for m-bit mes-
sages. The construction makes use of a procedure SIM that simulates a ran-
dom permutation in Πt,n, as follows [4]: SIM takes as input a list L. On a
query x‖x′, where |x| = t, SIM checks whether there exists a y such that
(x, y) ∈ L. If so, SIM returns y‖x′. Otherwise, it picks uniformly at random a
y ∈ {0, 1}t \ {ŷ | ∃x̂ : (x̂, ŷ) ∈ L}, adds (x, y) to L, and returns y‖x′. As usual,
we let SIM(L; y) denote an execution of SIM on input L and randomness y.
We let SIMy denote SIM(∅; y).

Let H be a pairwise-independent family of functions from m-bit strings to
m-bit strings. Define S̄ as follows. On input a message M ∈ {0, 1}m, S̄ chooses
uniformly at random h ∈ H and values s1, r1, y1, s2, r2, y2. It then computes C1 =
〈SSIMy1 (M ; s1),RSIMy1 (r1)〉 and C2 = 〈SSIMy2 (h(M); s2),RSIMy2 (r2)〉. The
resulting commitment is C1‖C2‖h.3 Decommitment consists of all the random
coins used by S̄. We claim that (S̄, R̄) is (Sh, 1/4, 1/4)-secure for an honest
sender. This follows from the following two lemmata.

Lemma 2. (S̄, R̄) is (Sh, 1/4)-hiding.

Proof (of lemma). The hiding property of (S(·),R(·)) guarantees that for any
π ∈ Πn that is Sp-hard, for any circuit B of size ≤ Sh, and for any M0,M1 ∈
{0, 1}m, we have∣∣∣∣ Pr

C∈〈Sπ(M0),Rπ〉
[B(C) = 0]− Pr

C∈〈Sπ(M1),Rπ〉
[B(C) = 0]

∣∣∣∣ ≤ εh.

A straightforward hybrid argument shows that for any π1, π2 ∈ Πn that are
Sp-hard, for any circuit B of size ≤ Sh, and for any M0,M1 ∈ {0, 1}m, we have

∣∣∣∣∣ Pr
h∈H

C1∈〈Sπ1 (M0),Rπ1 〉
C2∈〈Sπ2 (h(M0)),Rπ2 〉

[B(C1‖C2‖h) = 0]− Pr
h∈H

C1∈〈Sπ1 (M1),Rπ1 〉
C2∈〈Sπ2 (h(M1)),Rπ2 〉

[B(C1‖C2‖h) = 0]

∣∣∣∣∣
≤ 2εh.

Corollary 1 shows that a random π ∈ Πt,n is Sp-hard except with probability at
most 2−S5/2

p ≤ 2−Sp . Using the union bound and a simple averaging argument,
we get that for any circuit B of size ≤ Sh and for any M0,M1 ∈ {0, 1}m,

3 The permutations simulated by SIM in the computations of C1, C2 may be different.
The theorem can be strengthened (improving the bounds on εh) by having SIM
provide a consistent simulation for both computations. We forgo this for simplicity.

136 O. Horvitz and J. Katz∣∣∣∣∣ Pr
π1,π2∈Πt,n

h∈H
C1∈〈Sπ1 (M0),Rπ1 〉

C2∈〈Sπ2 (h(M0)),Rπ2 〉

[B(C1‖C2‖h) = 0]− Pr
π1,π2∈Πt,n

h∈H
C1∈〈Sπ1 (M1),Rπ1 〉

C2∈〈Sπ2 (h(M1)),Rπ2 〉

[B(C1‖C2‖h) = 0]

∣∣∣∣∣
≤ 2εh + 21−Sp .

Since SIM perfectly simulates a random π ∈ Πt,n, we have∣∣∣∣∣ Pr
y1,y2
h∈H

C1∈〈SSIMy1 (M0),RSIMy1 〉
C2∈〈SSIMy2 (h(M0)),RSIMy2 〉

[B(C1‖C2‖h) = 0]

− Pr
y1,y2
h∈H

C1∈〈SSIMy1 (M1),RSIMy1 〉
C2∈〈SSIMy2 (h(M1)),RSIMy2 〉

[B(C1‖C2‖h) = 0]

∣∣∣∣∣ ≤ 2εh + 21−Sp .

But that precisely means that∣∣∣∣∣ Pr
C∈〈S̄ (M0),R∗ 〉

[B(C) = 0]− Pr
C∈〈S̄ (M1),R∗ 〉

[B(C) = 0]

∣∣∣∣∣ ≤ 2εh + 21−Sp ≤ 1/4

for any R∗ and any B of size ≤ Sh, where the last inequality uses the assumption
that εh ≤ 1/8− 2−Sp . The hiding property therefore holds as claimed. �

Lemma 3. (S̄, R̄) is 1/4-binding for an honest sender.

Proof (of lemma). (See also Fig. 1.) Fix an arbitrary M ∈ {0, 1}m. Define

C(M, s, r, y) def= 〈SSIMy (M ; s),RSIMy (r)〉.

Since (S̄, R̄) is non-interactive, we are interested in the following probability:

NoBind
def= Pr

h∈H
s1,r1,y1
s2,r2,y2

⎡⎣ ∃M ′ �= M, s′1, y
′
1, s

′
2, y

′
2 s.t.

C(M ′, s′1, r1, y
′
1) = C(M, s1, r1, y1),

C(h(M ′), s′2, r2, y
′
2) = C(h(M), s2, r2, y2)

⎤⎦
(here, we use the fact that r1, r2 and h are explicit in the receiver’s view).

Let Permq
t denote the set of injective functions from t-bit strings to t-bit

strings over domains of size q. Let queriesS(M, s, r, y) ∈ PermqS
t denote the t-bit

prefixes of the queries/answers made by S to its oracle during the execution of
C(M, s, r, y) (i.e., an oracle query a‖a′ by S is answered with b‖a′ in C(M, s, r, y)
iff (a, b) ∈ queriesS(M, s, r, y)). Letting qR denote the number of queriesRmakes
to its oracle, we define queriesR(M, s, r, y) ∈ PermqR

t similarly.

Bounds on the Efficiency of “Black-Box” Commitment Schemes 137

M

h

S(M, s1, r1, y1)
M2

h

{0, 1}m

{0, 1}m
M ′

2

M ′

S(M2, s2, r2, y2)

Fig. 1. S̄ uses the given scheme to generate commitments C1 to M and C2 to
M2 = h(M) (simulating random permutations for (S,R), as needed). C1 (resp.,
C2) may be decommitted to any of the messages in the set S(M, s1, r1, y1) (resp.,
S(h(M), s2, r2, y2)). But for a small number of sender oracle-queries, the sizes of these
sets are small, and the probability that a random h maps a message from one to the
other can be shown to be less than a constant

Say C(M, s, r, y) is good for P ∈ PermqS
t if there do not exist distinct values

M ′,M ′′ along with s′, s′′, y′, y′′ such that

– C(M ′, s′, r, y′) = C(M ′′, s′′, r, y′′) = C(M, s, r, y) ; and
– queriesS(M ′, s′, r, y′) = queriesS(M ′′, s′′, r, y′′) = P.

Say C(M, s, r, y) is good if it is good for all P ∈ PermqS
t . Now, if C(M, s, r, y) is

not good for some P , and M ′,M ′′, s′, s′′, y′, y′′ are the witnesses, then it is also
the case that

queriesR(M ′, s′, r, y′) = queriesR(M ′′, s′′, r, y′′) = queriesR(M, s, r, y),

as queries/answers of the receiver to its oracle are explicit in the receiver’s view.
Furthermore, P ∪queriesR(M, s, r, y) may be extended to a permutation in Πt,n.
Therefore, for any M, s, y and P , we have

Pr
r

[C(M, s, r, y) is not good for P]

≤ Pr
r

⎡⎣∃π ∈ Πt,n extending P∪queriesR(M, s, r, y)
∃M ′,M ′′, s′, s′′ s.t.

〈Sπ(M ′; s′),Rπ(r)〉 = 〈Sπ(M ′′; s′′),Rπ(r)〉

⎤⎦ ≤ εb,

following the binding property of (S,R). Applying the union bound over all(
2t

qS

)
·
∏qS−1

i=0 (2t − i) ≤ 22tqS permutations in PermqS

t , we obtain, for any M, s, y:

Pr
r

[C(M, s, r, y) is not good] ≤ 22tqSεb.

138 O. Horvitz and J. Katz

Assume C
def= C(M, s, r, y) is good. Then there are at most 22tqS possi-

ble messages to which C may be decommitted. This is because for any P ∈
PermqS

t , if C(M ′, s′, r, y′) = C(M ′′, s′′, r, y′′) = C and queriesS(M ′, s′, r, y′) =
queriesS(M ′′, s′′, r, y′′) = P , then it must be the case that M ′ = M ′′. Let
S(M, s, r, y) denote this set.

Viewed this way, we have:

NoBind ≤ Pr
h∈H

s1,r1,y1
s2,r2,y2

⎡⎣ ∃M ′ �= M s.t.
M ′ ∈ S(M, s1, r1, y1)

h(M ′) ∈ S(h(M), s2, r2, y2)

∣∣∣∣∣∣
C(M, s1, r1, y1),

C(h(M), s2, r2, y2)
are good

⎤⎦+22tqS+1·εb,

where the right term represents the probability that either of C(M, s1, r1, y1) or
C(h(M), s2, r2, y2) is not good. Continuing with the left term, we have:

LeftTerm

= Pr
h∈H

s1,r1,y1
s2,r2,y2

⎡⎣ ∃M ′ ∈ S(M, s1, r1, y1) \M
∃M ′

2 ∈ S(h(M), s2, r2, y2) s.t.
h(M ′) = M ′

2

∣∣∣∣∣∣
C(M, s1, r1, y1),

C(h(M), s2, r2, y2)
are good

⎤⎦

=
∑
M2

Pr
h∈H

s1,r1,y1
s2,r2,y2

⎡⎣ ∃M ′ ∈ S(M, s1, r1, y1) \M
∃M ′

2 ∈ S(M2, s2, r2, y2) s.t.
h(M ′) = M ′

2, h(M) = M2

∣∣∣∣∣∣
C(M, s1, r1, y1),
C(M2, s2, r2, y2)

are good

⎤⎦

≤
∑
M2

ŝ1,r̂1,ŷ1 s.t.
C(M,ŝ1,r̂1,ŷ1) good,

ŝ2,r̂2,ŷ2 s.t.
C(M2,ŝ2,r̂2,ŷ2) good,

M ′∈S(M,ŝ1,r̂1,ŷ1)
M ′

2∈S(M2,ŝ2,r̂2,ŷ2)

Pr
h∈H

s1,r1,y1
s2,r2,y2

⎡⎣ s1 = ŝ1, r1 = r̂1, y1 = ŷ1

s2 = ŝ2, r2 = r̂2, y2 = ŷ2

h(M ′) = M ′
2, h(M) = M2

∣∣∣∣∣∣
C(M, s1, r1, y1),
C(M2, s2, r2, y2)

are good

⎤⎦

= 2−2m ·
∑
M2

ŝ1,r̂1,ŷ1 s.t.
C(M,ŝ1,r̂1,ŷ1) good,

ŝ2,r̂2,ŷ2 s.t.
C(M2,ŝ2,r̂2,ŷ2) good,

M ′∈S(M,ŝ1,r̂1,ŷ1)
M ′

2∈S(M2,ŝ2,r̂2,ŷ2)

Pr
s1,r1,y1
s2,r2,y2

⎡⎣s1 = ŝ1, r1 = r̂1, y1 = ŷ1

s2 = ŝ2, r2 = r̂2, y2 = ŷ2

∣∣∣∣∣∣
C(M, s1, r1, y1),
C(M2, s2, r2, y2)

are good

⎤⎦ ,

using the pairwise independence of H. Since |S(M, s, r, y)| ≤ 22tqS , we obtain

LeftTerm ≤ 2−2m · 2m · 24tqS ≤ 24tqS−m.

Putting it together, we have

NoBind ≤ 24tqS−m + 22tqS+1 · εb ≤ 24tqS · (2−m + 2εb) ≤ 1/4,

where the last inequality is due to the assumption that qS ≤ (m − 2 − log(1 +
2m+1 · εb))/4t. �

This completes the proof of the theorem.

Bounds on the Efficiency of “Black-Box” Commitment Schemes 139

Acknowledgments. We thank Virgil Gligor and Chiu-Yuen Koo.

References

1. M. Blum. Coin Flipping by Phone. In 24th IEEE Computer Conference (Comp-
Con), pp. 133–137, 1983. (See also SIGACT News, vol. 15(1), 1983.)

2. M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of
Pseudo-Random Bits. In SIAM J. Computing, vol. 13(4), pp. 850–864, 1984.

3. J. Carter and M. Wegman. Universal Classes of Hash Functions. In Journal of
Computer and System Sciences, vol. 18, pp. 143–154, 1979.

4. R. Gennaro, Y. Gertner, J. Katz, and L. Trevisan. Bounds on the Efficiency of
Generic Cryptographic Constructions. SIAM J. Computing, to appear.

5. O. Goldreich. Foundations of Cryptography, vol. 1: Basic Tools. Cambridge Uni-
versity Press, 2001.

6. O. Goldreich, S. Goldwasser, and S. Micali. On the Cryptographic Applications of
Random Functions. In Advances in Cryptology — CRYPTO 84, LNCS vol. 263,
Springer-Verlag, pp. 276–288, 1985.

7. O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Functions.
In J. ACM, vol. 33(4), pp. 792–807, 1986.

8. O. Goldreich and L. Levin. Hard-Core Predicates for any One-Way Function. In
21st ACM Symposium on Theory of Computing (STOC), ACM, pp. 25–32, 1989.

9. J. H̊astad, R. Impagliazzo, L. Levin, and M. Luby. A Pseudorandom Generator
From any One-Way Function. In SIAM J. Computing, vol. 28(4), pp. 1364–1396,
1999.

10. R. Impagliazzo and S. Luby. One-Way Functions are Essential for Complexity-
Based Cryptography. In 30th IEEE Symposium on Foundations of Computer Sci-
ence (FOCS), IEEE, pp. 230–235, 1989.

11. R. Impagliazzo and S. Rudich. Limits on the Provable Consequences of One-Way
Permutations. In 21st ACM Symposium on Theory of Computing (STOC), ACM,
pp. 44–61,1989.

12. J.H. Kim, D.R. Simon, and P. Tetali. Limits on the Efficiency of One-Way
Permutation-Based Hash Functions. In 40th IEEE Symposium on Foundations of
Computer Science (FOCS), IEEE, pp. 535–542, 1999.

13. M. Naor. Bit Commitment Using Pseudorandomness. In J. Cryptology, vol. 4(2),
pp. 151–158, 1991.

14. M. Naor and M. Yung. Universal One-Way Hash Functions and their Cryptographic
Applications. In 21st ACM Symposium on Theory of Computing (STOC), ACM,
pp. 33–43, 1989.

15. S. Rudich. Limits on the Provable Consequences of One-Way Functions. Ph.D.
thesis, University of California at Berkeley, 1988.

16. J. Rompel. One-Way Functions are Necessary and Sufficient for Secure Signatures.
In 22nd ACM Symposium on Theory of Computing (STOC), ACM, pp. 387–394,
1990.

17. O. Reingold, L. Trevisan, and S. Vadhan. Notions of Reducibility Between Cryp-
tographic Primitives. In 1st Theory of Cryptography Conference, LNCS vol. 2951,
Springer-Verlag, pp. 1–20, 2004.

18. A.C.-C. Yao. Theory and Application of Trapdoor Functions. In 23rd IEEE Sym-
posium on Foundations of Computer Science (FOCS), IEEE, pp. 80–91, 1982.

19. A.C.-C. Yao. How to Generate and Exchange secrets. In 27th IEEE Symposium on
Foundations of Computer Science (FOCS), IEEE, pp. 162–167, 1986.

On Round-Efficient Argument Systems

Hoeteck Wee�

Computer Science Division, UC Berkeley
hoeteck@cs.berkeley.edu

Abstract. We consider the problem of constructing round-efficient
public-coin argument systems, that is, interactive proof systems that are
only computationally sound with a constant number of rounds. We focus
on argument systems for NTime(T (n)) where either the communication
complexity or the verifier’s running time is subpolynomial in T (n), such
as Kilian’s argument system for NP [Kil92] and universal arguments
[BG02, Mic00]. We begin with the observation that under standard
complexity assumptions, such argument systems require at least 2
rounds. Next, we relate the existence of non-trivial 2-round argument
systems to that of hard-on-average search problems in NP and that of
efficient public-coin zero-knowledge arguments for NP. Finally, we show
that the Fiat-Shamir paradigm [FS86] and Babai-Moran round reduction
[BM88] fails to preserve computational soundness for some 3-round and
4-round argument systems.

1 Introduction

1.1 Background and Motivation

Argument systems are like interactive proof systems, except we only require
computational soundness, namely that it is computationally infeasible (and not
impossible) for a prover to convince the verifier to accept inputs not in the
language. The relaxation in the soundness requirement was used to obtain
protocols for NP that are perfect zero-knowledge [BCC88], or constant-round
with low communication complexity [Kil92], and in both cases, seems to also be
necessary [For89, GH98].

In this paper, we focus on the study of round-efficient argument systems for
NTime(T (n)) that do not necessarily satisfy any notion of secrecy, such as witness
indistinguishability (WI), or zero-knowledge (although we do indulge in the
occasional digression). We will however require that either the communication
complexity or the verifier’s running time be subpolynomial in T (n) which is
necessary in some applications, and to rule out the trivial one-round proof
system. Argument systems of the latter type with bounded verifier’s running time
are a crucial component in the use of non-black-box techniques in cryptography
[CGH98, Bar01, Bar04, GK03].

� Work supported by US-Israel BSF Grant 2002246.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 140–152, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On Round-Efficient Argument Systems 141

The study of round-efficient argument systems was initiated by Kilian [Kil92],
who constructed a 4-round public-coin argument system for NP with poly-
logarithmic communication complexity based on a probabilistically checkable
proof (PCP) system for NP. Micali [Mic00] introduced CS Proofs, an argument
system for NEXP satisfying a relatively efficient prover condition and wherein
the verifier runs in polynomial time (much less than the time needed to verify
an NEXP relation). In addition, he provided a non-interactive construction in
the random oracle model, which is essentially derived from scaling up and
then applying the Fiat-Shamir transformation to Kilian’s argument system.
Barak and Goldreich [BG02] adapted Kilian’s construction to obtain universal
arguments (of knowledge), which is a single argument system for any language
in NP, and in addition, satisfies a weak proof-of-knowledge property. We stress
that in a universal argument, the communication complexity and the verifier’s
running time is bounded by an a-priori fixed polynomial in the input length,
whereas the length of the witness may be any arbitrary polynomial in the length
of the input. Both of the constructions in [Kil92] and in [BG02] rely on the
existence of collision-resistant function ensembles.

In this work, we initiate a systematic study of round-efficient argument
systems.

– What is the minimal round complexity of argument systems with bounded
communication complexity or verifier’s running time?

– What are the minimal assumptions and cryptographic primitives needed
for the existence of such argument systems? Are collision-resistant function
ensembles really necessary? What kind of security parameters do we require
from these primitives (possibly as a function of communication complexity)?

– How useful is improving the round efficiency of argument systems for the
construction of round-efficient cryptographic protocols?

– Is there an efficient function ensemble with which we could securely realize
the Fiat-Shamir transformation for the 4-round argument systems in [Kil92]
and [BG02] (as conjectured by Micali in [Mic00])? More generally, is
there some generic round reduction technique that preserves computational
soundness?

We provide partial answers for all of these questions in this paper.

1.2 Our Results

We begin with the observations (possibly known in “folklore”) that under
standard complexity assumptions, the argument systems we are interested in
require at least 2 rounds, and anything provable with such an argument system
can be proven in 4 rounds. Refer to Sec 3 for the precise statements.

Necessity of Hardness Assumptions. We show that under standard com-
plexity assumptions, the existence of 2-round argument systems for NP with
subpolynomial communication complexity implies the existence of hard-on-
average search problems in NP, that is, there is samplable distribution over

142 H. Wee

CSAT instances (circuit satisfiability, namely given a circuit, decide whether
the circuit has a satisfying assignment) with the property that most instances
(say a constant fraction) are satisfiable, but any nonuniform polynomial-time
algorithm on input a random instance from the distribution succeeds in finding
a satisfying assignment for that instance with only negligible probability. Note
that the existence of hard-on-average search problems in NP is possibly weaker
than that of one-way functions and collision-resistant function ensembles.

Zero-Knowledge and 2-Round Argument Systems. We note that the
existence of a 2-round public-coin universal argument of knowledge secure
against subexponential-sized circuits yields a 4-round public-coin zero-knowledge
argument for NP with negligible soundness error; this follows readily from the
work of Barak et al. [Bar01, BLV04]. Such an argument system is almost round-
optimal, as there is no 2-round zero-knowledge argument system for languages
outside of BPP [GO94]. We also relate the existence of non-interactive zero-
knowledge arguments to that 2-round witness-indistinguishable arguments for
NP where the length of the common reference string, messages and proofs
are subpolynomial in the input length. This follows readily from a similar
characterization in [DN00].

Insecurity of the Fiat-Shamir Transformation. We observe that the
constructions of Goldwasser and Kalai [GK03] demonstrating the insecurity of
the Fiat-Shamir transformation as applied to identification schemes also yield
a 4-round argument system such that the instantiation of the Fiat-Shamir
transformation with any efficiently computable function results in a 2-round
protocol that is no longer computationally sound. Note that Barak’s zero-
knowledge argument system [Bar01] already yields a 6-round argument system
for which the Fiat-Shamir transformation is insecure [DNRS03]. We also prove
that there exists a 4-round universal argument of knowledge for which the Fiat-
Shamir transformation fails to preserve the weak proof-of-knowledge property.

Insecurity of Babai-Moran Round Reduction. Babai and Moran [BM88]
used a round reduction procedure to prove that any language having a constant-
round public-coin interactive proof system also has a 2-round public-coin proof
system. In particular, the round reduction procedure preserves soundness of
proof systems. Here, we construct 3-round and 4-round argument systems
for which the round reduction procedure fails to preserve computational
soundness.

A Note on Presentation: We state our results for argument systems with
either bounded communication complexity or bounded verifier’s running time,
depending on which of the two leads to a cleaner statement. In most cases,
an analogous statement can be deduced for the other set-up. Note that a
subpolynomial bound on verifier’s running time must necessarily imply a
subpolynomial bound on the communication complexity.

On Round-Efficient Argument Systems 143

1.3 Additional Related Work

Dwork et al. [DLN+04] investigated the possibility of constructing 2-round
argument systems for NP with poly-logarithmic communication complexity
based on a suggestion of Aiello, Bhatt, Ostrovsky and Rajagopalan, namely,
to compose a PCP system for NP with computational private information
retrieval scheme; their results are mostly negative. Goldreich and H̊astad
[GH98] proved that NP does not have constant-round public-coin proof systems
with subpolynomial communication complexity, unless NP has probabilistic
subexponential time algorithms. Barak et al. [BLV04] proved that the Fiat-
Shamir transformation is in fact secure for proof systems under a non-standard
but very plausible and concrete assumption.

2 Definitions and Setup

Due to space limitations, we refer the reader to [Gol01] to definitions of
interactive protocols, zero-knowledge and witness-indistinguishability.

2.1 Interactive Proofs and Argument Systems

For a relation R ⊆ {0, 1}∗×{0, 1}∗, the language associated with R is LR = {x :
∃y (x, y) ∈ R}.

Definition 1 (interactive proof system). An interactive protocol (P, V) is
an interactive proof system for a language L if there is a relation R such that
L = LR, and functions c, s : IN → [0, 1] such that 1 − c(n) > s(n) + 1/poly(n)
and the following holds:

– (efficiency): the length of all the messages are polynomially-bounded, and V
is computable in probabilistic polynomial time.

– (completeness): If (x,w) ∈ R, then V accepts in (P (w), V)(x) with
probability at least 1− c(|x|),

– (soundness): If x /∈ L, then for every P ∗, V accepts in (P ∗, V)(x) with
probability at most s(|x|).

We call c(·) the completeness error and s(·) the soundness error. We say
that (P, V) has negligible error if both c and s are negligible. We say that it
has perfect completeness if c = 0. P is an efficient prover if P (w) is computable
by a probabilistic polynomial-time algorithm when w ∈ Rx. The communication
complexity of the proof system is the total length of all the messages exchanged by
both parties. For a public-coin protocol (P, V), view(V (x)) is the set of accepting
transcripts on common input x. We also use AMc,s(m(n)) to denote constant-
round public-coin interactive proof systems with completeness error c, soundness
s and communication complexity bounded by m(n).

Definition 2 (argument system). An argument system (P, V) is defined in
the same way as an interactive proof system, with the following modification:

144 H. Wee

– The soundness condition is replaced with computational soundness: For
every nonuniform PPT P ∗ and for all sufficiently long x /∈ L, the verifier V
accepts in (P ∗, V)(x) with probability at most s(|x|).

2.2 Universal Arguments

We begin with the universal language LU : the tuple (M,x, t) (where t is specified
in binary) is in LU is M is a non-deterministic Turing machine that accepts x
within t steps. We use RU to denote the associated relation.

Definition 3 (universal argument). A universal argument for NTime(T (n))
is an argument system (P, V) for LU ∩ NTime(T (n)) that satisfies the following
properties:

– (completeness by a relatively-efficient prover) For every ((M,x, t), w) ∈ Ru

with (M,x, t) ∈ NTime(T (n)),

Pr[V accepts (P (w), V)(M,x, t)] = 1

Furthermore, there exists a polynomial p such that the total time spent by
P (w), on common input (M,x, t), is at most p(TM (x,w)) ≤ p(t).

– (computational soundness) For every nonuniform PPT P ∗, there exists a
negligible function ε(n) such that for every n and every (M,x, t) ∈ {0, 1}n \
LU , the verifier V accepts in (P ∗, V)(M,x, t) with probability at most ε(n).

In addition, we call (P, V) a universal argument of knowledge if it satisfies the
weak proof-of-knowledge property [BG02]. Informally, this means that there is
an efficient oracle machine (the knowledge extractor) that given oracle access to a
cheating prover that convinces the verifier with inverse polynomial probability,
outputs an implicit description of a witness. Both the running time and the
success probability of the knowledge extractor are allowed to depend on the
success probability of the cheating verifier.

Theorem 1 ([BG02]). The existence of (standard) collision-resistant function
ensembles implies the existence of a 4-round public-coin universal argument
of knowledge (Pua, Vua) for NTime(nlog n). In addition, if the collision-resistant
function ensemble is secure against circuits of size 2nε

for some ε > 0, then
(Pua, Vua) is a universal argument of knowledge against circuits of size 2O(nε).

3 Simple Bounds on Round Complexity

The results in this section are probably known in “folklore”. As pointed out in
[BP04], non-interactive (one-round) arguments are equivalent to non-interactive
(one-round) proof systems, since if there exists a prover message that can
convince the verifier of a false statement, the non-uniform prover that has this
message “hard-wired into it”. This essentially rules out non-interactive argument
systems for NP with subpolynomial communication complexity.

On Round-Efficient Argument Systems 145

Proposition 1. Unless NP ⊆ BPTime(2no(1)
), non-interactive argument sys-

tems with subpolynomial communication complexity for NP do not exist.

In the context of efficient-prover argument systems, we have a collapse to 4
rounds (as pointed out to us by Salil Vadhan).

Proposition 2. Suppose there exists collision-resistant function ensembles se-
cure against 2nε

-sized circuits for some ε > 0 and a language in E with 2Ω(n) cir-
cuit complexity. Then, any language L with an efficient-prover argument system
has a 4-round, public-coin, efficient-prover argument system with subpolynomial
(in fact, poly-logarithmic) communication complexity.

This follows from the observation in [BLV04] that any language with an
efficient-prover argument system is contained in MA, which collapses to NP
under the given derandomization assumption. The proposition then follows from
Kilian’s protocol [Kil92].

4 Necessity of Hardness Assumptions

We present hardness assumptions that are necessary for 2-round argument sys-
tems for NP with subpolynomial communication complexity. Under complexity
assumptions, such a protocol cannot be a proof system [GH98]. Hence, there
exists infinitely many no instances that are merely “computationally sound”,
from which we may construct hard-on-average search problems in NP.

Note that we may assume the 2-round argument system has negligible
soundness error, which can be achieved with ω(log n) parallel repetitions [BIN97].
Parallel repetition blows up the communication complexity by a ω(log n)
multiplicative factor, but preserves prover’s complexity, perfect completeness
and public-coin property.

Lemma 1. Suppose a promise problem Π = (ΠY ,ΠN) has a 2-round public-
coin argument system (P, V) with communication complexity m(n), perfect
completeness and negligible soundness error. Then, there exists a subset I ⊂ ΠN

such that:

– Ignoring inputs in I, Π has a AM1,1/2(m(n)) proof system. Formally,
(ΠY ,ΠN \ I) ∈ AM1,1/2(m(n)).

– When x ∈ I, the predicate V (x, ·, ·) induces a hard-on-average search
instances in NP. That is, for every x ∈ I:

Pr
r

[∃ y : V (x, r, y) = 1] ≥ 1/2,

but for every n, every x ∈ I ∩ {0, 1}n and every nonuniform PPT A, there
exists a negligible function ε(n) such that ,

Pr
r

[V (x, r,A(r)) = 1] < ε(n)

146 H. Wee

Remark 1. Note that we may boost the probability of generating a satisfying
assignment for the hard-on-average search instance to 1 − 1/poly(n) while
maintaining the same hardness parameters by taking the or of O(log n)
independent copies of V (x, ·, ·).

Theorem 2. Suppose NP has a 2-round public-coin argument system (P, V)
with communication complexity no(1), perfect completeness and negligible sound-
ness error. Then, at least one of the following is true:

– NP ⊆ AM1,1/2(no(1))
– There exists an infinite set I such that for all x ∈ I, the predicate V (x, ·, ·)

induces a hard-on-average search instance in NP (as formalized in Lemma 1).
This yields an auxiliary-input samplable distribution over search instances in
NP that is infinitely-often hard on average.

Remark 2. The first statement is unlikely to be true as it would imply that
NP ⊆ BPTime(2no(1)

) [GH98]. On the other hand, the latter is possibly weaker
than the existence of (auxiliary input, i.o.) one-way functions. However, it does
imply that there is no probabilistic polynomial-time algorithm for the circuit
satisfiability problem where the number of variables is bounded by no(1).

Remark 3. Salil Vadhan pointed out that if there exists a hard-on-average deci-
sion problem in NP where the instances and witnesses have length bounded by
m(n), then every language has a 2-round argument system with communication
complexity m(n). However, the argument system does not satisfy the efficient
prover constraint, though the constraint is (trivially) satisfied if we consider the
empty language. This shows that the conclusion in Theorem 2 is essentially the
strongest we can hope for without making additional assumptions about the
argument system, for instance, that it has an efficient prover, that it is WI, or
that it is an argument of knowledge.

5 Zero-Knowledge and 2-Round Argument Systems

Barak et. al [BLV04] constructed a 2-round argument for NP that is zero-
knowledge against cheating verifiers of bounded non-uniformity assuming the
existence of a 2-round universal argument secure against 2nε

-sized circuits.
We observe that if we strengthen the soundness requirement on the universal
argument to an argument of knowledge, it follows readily from [Bar01, BLV04]
that there exists a 4-round zero-knowledge argument for NP. The idea is to
convert the universal argument of knowledge into a WI universal argument
of knowledge (with a subexponential-time knowledge extractor) without any
overhead in the number of rounds. To accomplish this, we encrypt the messages of
the universal argument using a weak commitment scheme and prove correctness
using a WI proof for NP [DN00].

On Round-Efficient Argument Systems 147

Theorem 3 ([Bar01, BLV04]). Suppose there exist 2-round public-coin uni-
versal argument of knowledge for NTime(f(n)) for some super-polynomial
f : IN → IN, enhanced trapdoor permutations and collision-resistant function
ensembles secure against 2nε

-sized circuits for some constant ε > 0. Then, there
exists a 4-round public-coin (auxiliary-input) zero-knowledge argument system
for NP, with perfect completeness, negligible soundness error, an efficient prover
and a simulator that runs in strict polynomial time.

Another open problem is whether there exists non-interactive zero-knowledge
(NIZK) arguments or 2-round WI arguments for NP with subpolynomial
communication complexity and randomness [FLS99, KP98, DLN+04]. We do not
know how to construct either primitive starting from an argument system for
NP with subpolynomial communication complexity, but it follows from the
characterization of zaps (a 2-round public-coin WI proof system for NP) in
[DN00] that they are almost equivalent:

Theorem 4 ([FLS99, DN00]). Suppose there exist one-way functions secure
against 2nε

-sized circuits for some constant ε > 0. Then, the following statements
are equivalent:

– There exists a 2-round public-coin efficient-prover honest-verifier WI argu-
ment for NP with subpolynomial communication complexity.

– There exists an efficient-prover NIZK argument for NP where the length of
the common reference string and the proof are subpolynomial in the length
of the input.

Theorem 4 is weaker than the characterization of zaps in [DN00] in that
we can only deduce the existence the existence of honest-verifier WI (but
not cheating-verifier WI) arguments for NP from NIZK. This is because the
construction of zaps from NIZK protocols requires that the underlying NIZK
protocol be a proof system in order to preserve soundness. On the other hand,
we observe that honest-verifier WI is sufficient for the construction of a NIZK
argument for NP.

6 Insecurity of the Fiat-Shamir Transformation

Goldwasser and Kalai [GK03] proved the existence of a (secure) 3-round
public-coin identification scheme for which any instantiation of the Fiat-Shamir
transformation with an efficiently computable function ensemble yields an
insecure signature scheme. As both the identification scheme and the signature
scheme are defined in the public-key model, there is a fairly natural interpretation
of the construction as obtaining a 2-round argument system from a 4-round
argument system via the Fiat-Shamir transformation. The main (albeit minor)
technical difference is in handling auxiliary inputs inherent to argument systems,
as the set-up in [GK03] is inherently uniform (there, the variable is the security

148 H. Wee

parameter, and messages to be signed are thought of as having constant size1).
We also feel that viewing the constructions of [GK03] in the context of argument
systems yields a clearer and simpler presentation of their constructions and
results. The following result has been independently observed by the authors
of [GK03] (but was not explicitly mentioned in [GK03]):

Theorem 5 ([GK03]). Suppose there exists (standard) collision-resistant func-
tion ensembles. Then, there exists a 4-round public-coin argument system with
negligible soundness error, but for which the instantiation of the Fiat-Shamir
transformation with any efficiently function ensemble yields a 2-round protocol
that is not computationally sound (that is, it has a polynomial-sized cheating
prover that succeeds with non-negligible probability).

Remark 4. The cheating prover in the proof of Theorem 5 succeeds with only
a non-negligible probability. It is therefore conceivable while the Fiat-Shamir
paradigm does not in general preserve soundness of 4-round argument systems,
the Fiat-Shamir paradigm along with parallel repetition does preserve soundness
of 4-round argument systems (since parallel repetition does reduce the soundness
error for 2-round argument systems to a negligible quantity [BIN97]).

We also observe that the Fiat-Shamir transformation fails to preserve the
weak proof-of-knowledge property. The proof goes via a case analysis similar to
that in [GK03] (except a lot simpler). Suppose the statement holds for (Pua, Vua);
then we are done. Otherwise, we have a 2-round public-coin universal argument
of knowledge which combined with Barak’s non-uniform generation protocol
[Bar01] yields the desired argument system.

Theorem 6. Suppose there exists (standard) collision-resistant function ensem-
bles. Then, there exists a 4-round public-coin universal argument of knowledge,
but for which the instantiation of the Fiat-Shamir transformation with any
efficiently function ensemble yields a 2-round protocol that does not satisfy the
weak proof-of-knowledge property.

7 Insecurity of Babai-Moran Round Reduction

We start by describing Babai-Moran round reduction. For a public-coin proof
system Π = (P, V) of at most 4 rounds, this procedure has a simple description
and comprises two steps, for some parameter k = poly(n). First, the residual
protocol after the prover’s first message is repeated k times in parallel and the
new verifier accepts if all k repetitions are accepting. Next, second, the order
of the prover’s first message and the verifier’s next message are reversed. We
denote the new protocol by Π rr(k). For protocols with 3 or 4 rounds, the resulting
protocol has 2 rounds.

1 Alternatively, we may consider the forger as forging a family of uniformly computable
messages of length polynomial in the security parameter, infinitely often.

On Round-Efficient Argument Systems 149

Intuitively, Babai-Moran round reduction fails to preserve computational
soundness for the following reasons:

– Parallel repetition fails to reduce soundness error at an exponential rate
beyond 1/poly(n) if we require a black-box proof of security [BIN97].

– A cheating prover can gain significant advantage upon round-switching,
wherein the verifier reveals his coin tosses before the prover sends his next
message.

We exploit the former reasoning in our construction of the 3-round argument
system, as the latter does not seem to apply in this case (made precise in Prop 3)
as the first message of a 3-round argument system is “unconditionally sound”.
For the 4-round argument system, we exploit the latter reasoning in an essential
manner so as to obtain a result that holds even with a non-black-box proof of
security.

Theorem 7 (Babai-Moran round reduction).

(i) Suppose there exists collision-resistant function ensembles secure against
nlog n-sized circuits. Then, there exists a 4-round public-coin argument sys-
tem with negligible soundness error for which Babai-Moran round reduction
yields a 2-round argument system that is not computationally sound.

(ii) There exists a 3-round (relativized) public-coin argument system with negligi-
ble soundness error for which Babai-Moran round reduction yields a 2-round
argument system that is not computationally sound if limited to a black-box
proof of security.

In both constructions, the cheating prover succeeds with probability 1 − neg(n).
This means that even upon applying parallel repetition to the resulting 2-round
argument systems, we would not obtain a computationally sound protocol.

Both constructions are for the empty language L∅. The 4-round protocol,
specified in Fig 1, is a straight-forward simplification of the argument system in
[Kil92]. For 3-round argument systems, we only rule out the case with a black-
box proof of security. In this setting, it suffices to construct a relativized protocol,
wherein all parties (provers, cheating provers, verifier) have oracle access to a
permutation π, as shown in Fig 2. It helps to think of π as a one-way permutation,
although we will require a stronger property that we only know how to prove in
a relativized setting:

Lemma 2 ([GT00]). For all sufficiently large n, there exists a permutation π
on {0, 1}n such that for all oracle circuits A of size nlog n,

Pr[σ ← {0, 1}n; Aπ,Iσ (σ) = y; π(y) = σ] <
1

nlog n

where Iσ is an oracle that on input σ′ �= σ returns π−1(σ′), and ⊥ otherwise.

We note that overcoming the limitation to black-box proof of security for
3-round argument systems will require resolving a well-known open problem:

150 H. Wee

Common input: 1n

1. (V1) verifier sends a random h from H (collision-resistant function ensemble).
2. (P1) prover sends a Merkle-tree commitment to B, where B is an array of nlog n

blocks of 0n.
3. (V2) verifier sends β at random from 1 to nlog n and γ at random from {0, 1}n.
4. (P2) prover decommits to B[β].

Verification: verifier accepts if B[β] decommits to γ.

1. (V1) verifier sends a random h from H, and β1, . . . , βk at random from 1 to
nlog n and γ1, . . . , γk at random from {0, 1}n.

2. (P1) prover sends a Merkle-tree commitment to B, which is an array of nlog n

blocks of 0n, and decommits to B[β1], . . . , B[βk].

Verification: verifier accepts if B[βi] decommits to γi for all i = 1, . . . , k.

Fig. 1. 4-round protocol Π1 and 2-round protocol Π
rr(k)
1 for the empty language L∅

Common input: 1n, oracle access to π (a permutation on {0, 1}n)

1. (P1) prover sends z ∈ {0, 1}n.
2. (V1) verifier sends a random σ in {0, 1}n.
3. (P2) prover sends y ∈ {0, 1}n.

Verification: verifier accepts iff π(y) = z ⊕ σ.

1. (V1) verifier sends random σ1, . . . , σk in {0, 1}n.
2. (P1) prover sends z, y1, . . . , yk ∈ {0, 1}n.

Verification: verifier accepts iff π(yi) = z ⊕ σi, for all i = 1, . . . , k.

Fig. 2. 3-round relativized protocol Π2 and 2-round protocol Π
rr(k)
1 for L∅

Proposition 3. Suppose parallel repetition on 2-round argument systems can
reduce the computational soundness error exponentially fast to 2− poly(n), then
Babai-Moran round reduction yields a collapse of 3-round argument systems to
2-round argument systems.

8 Conclusion

We hope that the collection of observations, connections and results presented
in this paper (one that is perhaps better regarded as a survey) clarifies our
understanding of round-efficient argument systems and motivates further work
in this area, and perhaps a resolution of the main open problem – determining
the exact round complexity of non-trivial argument systems.

On Round-Efficient Argument Systems 151

Acknowledgments

I am very grateful to Yael Tauman Kalai, Luca Trevisan and Salil Vadhan for
their encouragement and insightful discussions on the subject; Salil also gave me
very valuable feedback on earlier versions of this paper. I thank Kobbi Nissim
for bringing [DLN+04] to my attention, and the anonymous referees for helpful
suggestions on the write-up.

References

[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In Proc.
42nd FOCS, 2001.

[Bar04] Boaz Barak. Non-Black-Box Techniques in Cryptography. Ph.D.,
Weizmann Institute of Science, January 2004.

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure
proofs of knowledge. JCSS, 37(2):156–189, 1988.

[BG02] Boaz Barak and Oded Goldreich. Universal arguments and their
applications. In Proc. CCC ’02, 2002.

[BIN97] Mihir Bellare, Russell Impagliazzo, and Moni Naor. Does parallel repetition
lower the error in computationally sound protocols? In Proc. 38th FOCS,
1997.

[BLV04] Boaz Barak, Yehuda Lindell, and Salil Vadhan. Lower bounds for non-
black-box zero knowledge. Cryptology ePrint Archive, Report 2004/226,
2004. Extended abstract in Proc. 44th FOCS, 2003.

[BM88] László Babai and Shlomo Moran. Arthur-Merlin games: a randomized
proof system, and a hierarchy of complexity class. JCSS, 36(2):254–276,
1988.

[BP04] Boaz Barak and Rafael Pass. On the possibility of one-message weak zero-
knowledge. In Proc. 1st TCC, 2004.

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle
methodology, revisited. In Proc. 30th STOC, 1998.

[DLN+04] Cynthia Dwork, Michael Langberg, Moni Naor, Kobbi Nissim, and Omer
Reingold. Succint proofs for NP and spooky interactions. manuscript,
2004.

[DN00] Cynthia Dwork and Moni Naor. Zaps and their applications. In Proc. 41st
FOCS, 2000.

[DNRS03] Cynthia Dwork, Moni Naor, Omer Reingold, and Larry Stockmeyer. Magic
functions. JACM, 50(6):852–921, 2003.

[FLS99] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple noninteractive zero
knowledge proofs under general assumptions. SICOMP, 29(1):1–28, 1999.

[For89] Lance Fortnow. The complexity of perfect zero-knowledge. Advances in
Computing Research, 5:429–442, 1989.

[FS86] Amos Fiat and Adi Shamir. How to prove to yourself: practical solutions
to identification and signature problems. In Proc. Crypto ’86, 1986.

[GH98] Oded Goldreich and Johan H̊astad. On the complexity of interactive proofs
with bounded communication. IPL, 67(4):205–214, 1998.

[GK03] Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the Fiat-
Shamir paradigm. In Proc. 44th FOCS, 2003.

152 H. Wee

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-
knowledge proof systems. J. Cryptology, 7(1):1–32, 1994.

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge
University Press, 2001.

[GT00] Rosario Gennaro and Luca Trevisan. Lower bounds on efficiency of generic
cryptographic constructions. In Proc. 41st FOCS, 2000.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In
Proc. 24th STOC, 1992.

[KP98] Joe Kilian and Erez Petrank. An efficient noninteractive zero-knowledge
proof system for NP with general assumptions. J. Cryptology, 11(1):1–27,
1998.

[Mic00] Silvio Micali. Computationally sound proofs. SICOMP, 30(4):1253–1298,
2000.

Computational Bounds on
Hierarchical Data Processing

with Applications to Information Security�

(Extended Abstract)

Roberto Tamassia and Nikos Triandopoulos

Department of Computer Science, Brown University
{rt, nikos}@cs.brown.edu

Abstract. We introduce hierarchical data processing (HDP) problems,
a class of computations over a collection of values associated with a set
of n elements, based on a directed acyclic graph (DAG). We present
an Ω(log n) lower bound on various computational cost measures for
HDP problems and we develop an efficient randomized DAG scheme
for HDP problems. We apply our results to data authentication through
cryptographic hashing and multicast key distribution using key-graphs.
We show that both problems involve HDP and prove logarithmic lower
bounds on their computational and communication costs. Using our new
DAG scheme, we present a new efficient authenticated dictionary and a
new skip-list version with expected search complexity 1.25 log2 n+O(1).

1 Introduction

In this paper, we present a unified analysis and design of algorithms and data
structures for two important, and seemingly unrelated, information security
problems: the authentication of membership queries in the presence of data repli-
cation at untrusted directories and the distribution of cryptographic keys by the
controller of a dynamic multicast group. For both problems, we provide logarith-
mic lower bounds on various time and space cost measures, develop new efficient
data structures and give an accurate analysis of their performance, taking into
account constant factors in the leading asymptotic term.

Our unified approach is based on the definition of the class of hierarchical data
processing (HDP) problems, where a directed acyclic graph (DAG) describes the
computation of a collection of output values from an input set of n elements. We
define structural cost measures for DAGs that express computational costs in an
HDP problem and prove Ω(log n) lower bounds for them using a reduction from
the problem of searching by comparisons in an ordered set. We also design a new

� This work was supported in part by NSF grants CCF–0311510, IIS–0324846 and
CNS–0303577.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 153–165, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

154 R. Tamassia and N. Triandopoulos

efficient randomized DAG scheme for HDP problems, based on a variation of the
skip-list. Our results for the two information security problems are obtained by
showing that they can be modeled as an HDP problem and by appropriately
applying to their domain the general lower bounds and our new DAG scheme.
This extended abstract omits the details of our work. A full version is available
in [14]. Our contributions are summarized as follows.

Hierarchical Data Processing. In Section 2, we introduce the class of hierarchi-
cal data processing (HDP) problems and initiate their study. This class models
computations on a dynamic set of elements that share the following characteris-
tics. Associated with the elements is a structured collection of values, organized
according to a DAG. Update operations change elements and require adjusting
the values. Also, queries on elements are issued, where typically the answer to a
query is a subset of the associated values. The computational cost of an update
or query operation depends on certain structural properties of the underlying
DAG. In general, HDP provides an abstract model for problems where compu-
tations are performed sequentially and hierarchically according to a DAG and
their complexity depends on the structure of the DAG.

We define various structural cost measures for DAGs and we relate them to
the space and time complexity of queries and updates in an HDP problem. Using
a reduction from the problem of searching by comparisons in an ordered set, we
prove an Ω(log n) lower bound on the space and time complexity of query and
update operations in an HDP problem of size n. We also show that with respect
to HDP problems, trees are optimal DAG structures compared with general
DAGs. In Section 3, we design and analyze a new randomized DAG scheme
for HDP problems, called multi-way skip-list DAG scheme, which is based on a
variation of the skip-list data structure [12]. Our DAG scheme has better cost
measures than previous DAG schemes based on the skip-list data structure.

Data Authentication. An authenticated data structure (ADS) is a distributed
model of data authentication, where a directory answers queries on a data struc-
ture on behalf of a trusted source and provides to the user a cryptographic proof
of the validity of the answer. In the important class of hash-based authenticated
data structures, a digest of the data set is computed by hierarchically applying
a cryptographic hash function over the data set and is digitally signed by the
source.

Early work on ADSs has focused on hash-based authenticated dictionaries,
where Merkle trees are used to authenticate answers to membership queries in-
curring logarithmic authentication cost. General techniques for hash-based query
authentication are presented in [6, 7]. Beyond dictionaries, hash-based ADSs
have been developed for various type of queries, including connectivity queries
in graphs and range queries in two-dimensional point sets [3, 6, 7]. An alterna-
tive approach to the design of an authenticated dictionary, based on the RSA
accumulator (e.g.,[1]) is presented in [4]. Related to ADSs is also work on zero-
knowledge sets and consistency proofs [8, 11]. All existing hash-based authen-
ticated dictionaries have logarithmic authentication cost. Naor and Nissim [10]
posed as an open problem the question of whether one can achieve sublogarith-

Computational Bounds on Hierarchical Data Processing 155

mic authentication cost for dictionaries. We answer this question negatively for
hash-based ADSs.

In Section 4, we present a detailed analysis of the cost of ADSs, focusing on
dictionaries. We show how a hash-based dictionary ADS can be modeled as an
HDP problem. We consider a general authentication technique where hashing
is hierarchically performed over the data set according to a DAG and multiple
digests can be digitally signed by the source. Applying our HDP framework
to this domain, we prove the first nontrivial lower bound on the authentication
cost for dictionaries: any hash-based authenticated dictionary of size n where the
source signs k digests of the data set has Ω(log n

k) update cost, verification cost,
and communication cost in the worst case. We also present a new hash-based
dictionary ADS based on our new DAG scheme.

Multicast Key Distribution. Multicast key distribution refers to a model for real-
izing secrecy in multicast communications among a dynamic group of n users.
Users share secret keys and a common group-key with which they encrypt multi-
cast messages using secret-key encryption. When updates in the multicast group
occur, in order to preserve (forward/backward) security, the group-key needs to
be securely updated. A group controller is responsible for distributing an initial
set of keys to the users and for updating the keys accordingly. Costs associated
with this problem include the number of messages transmitted after an update
and the time spent for key encryptions by the controller. We focus on the widely
studied key-graph scheme (see, e.g., [15]), where possession of keys by users and
key updates are modeled through a DAG. Known constructions based on key-
trees achieve O(log n) communication cost for a group of size n. In [2], the first
lower bounds are given for a special class of key distribution protocols. In [13], an
amortized logarithmic lower bound is presented on the number of messages sent
after an update. A similar amortized logarithmic lower bound is shown in [9] for
a more general class of key distribution protocols, where one can additionally
employ a pseudorandom generator to extract (in a one-way fashion) two new
keys from one key and where multiple nested key encryptions can be used.

In Section 5, we show that the multicast key distribution problem using key-
graphs is an HDP problem and we apply our results to this domain. We perform
the first study of general key-graphs and show that trees are optimal structures.
Our new DAG scheme for multicast key distribution achieves costs closer to the
theoretical optimal. We also prove the first worst-case logarithmic lower bound
on both the communication cost and the computational cost of a single update
operation. We prove that for any instance of the problem of size n, there exists an
update whose communication cost is at least +log2 n,. All previous lower bounds
are amortized, i.e., they refer to a sequence of updates such that the average
cost of an update in the sequence is logarithmic.

Skip-Lists. The skip-list [12] is an efficient randomized data structure for dic-
tionaries. A search in a skip-list with n elements takes 1.5 log2 n + O(1) ex-
pected comparisons. As an application of our improved DAG scheme to search
structures, in Section 6, we present a new version of the skip-list such that the
expected number of comparisons in a search is 1.25 log2 n + O(1).

156 R. Tamassia and N. Triandopoulos

2 Hierarchical Data Processing and Its Theoretical
Limits

In this section, we define structural cost measures for subgraphs of a DAG and
prove lower bounds on them. These cost measures are related to the computa-
tional complexity of operations in HDP problems, as will be shown in the next
sections.
DAG Scheme for HDP. We define here some graph notation. Let G = (V,E) be
a directed acyclic graph. For each node v of G, indeg(v) denotes the in-degree of
v and outdeg(v) denotes the out-degree of v. We denote with Vso ⊂ V the set of
source nodes of G, i.e., nodes v such that indeg(v) = 0 and with Vsi ⊂ V the set
of sink nodes of G, i.e., nodes v such that outdeg(v) = 0. A subgraph H of G is
said to be weakly connected if it is connected when one ignores edge directions.
For any node v in a DAG G, we denote with Gv the subgraph of G consisting
of the nodes that can be reached from v through directed paths.

Definition 1. A DAG scheme Γ is a quadruple (G,S, n, k), where G = (V,E)
is a directed acyclic graph without parallel edges, S ⊂ V is a set of special
nodes and n and k are integers such that: (i) |Vso| = n; (ii) |V | is bounded by a
polynomial in n; and (iii) |S| = k, S ⊃ Vsi and S ∩ Vso = ∅.

We define three structural cost measures for a subgraph of a DAG and based on
them, we define three cost measures for a DAG scheme Γ .

Definition 2. Let H = (VH , EH) be a weakly connected subgraph of a DAG G.
With respect to G: (i) The node size size(H) of H is the number of nodes in H,
i.e., size(H) = |VH |; (ii) the degree size indeg(H) of H is the sum of the in-
degrees (with respect to G) of the nodes of H, i.e., indeg(H) =

∑
v∈H indeg(v);

(iii) the combined size comb(H) of H is the sum of its node and degree sizes,
i.e., comb(H) = size(H)+ indeg(H); (iv) the boundary size bnd(H) of H is the
number of edges of G that enter nodes of H but are not in H.

Definition 3. Given a DAG scheme Γ = (G,S, n, k), let s be a source node of
G. Let P t

s denote the set of directed paths connecting node s to node t in G.
The associated path πs of s is a directed path in Gs that starts at s, ends at
a node of S and has the minimum combined size among all such paths, i.e.,
comb(πs) = minu∈S,p∈P u

s
comb(p). We define the following cost measures for Γ :

(i) the update cost U(Γ) of Γ is U(Γ) = maxs∈Vso
comb(Gs); (ii) the query cost

Q(Γ) of Γ is Q(Γ) = maxs∈Vso
comb(πs) (i.e., maxs minu∈S,p∈P u

s
comb(p)); and

the sibling cost S(Γ) of Γ is S(Γ) = maxs∈Vso
bnd(πs).

Observe that if Γ = (G,S, n, k) is a DAG scheme, H is a subgraph of G and p is
any directed path in G, then we have that (with respect to G): (i) comb(H) =∑

v∈H(1 + indeg(v)) and bnd(p) = 1 + indeg(p) − size(p); (ii) comb(H) >
indeg(H) ≥ size(H) and indeg(H) ≥ bnd(H); (iii) U(Γ) ≥ Q(Γ) > S(Γ).

Our motivation for introducing DAG schemes is that they model an abstract
class of computational problem where a DAG G holds a collection of n input

Computational Bounds on Hierarchical Data Processing 157

elements (stored at source nodes) and a collection of output values (stored at
non-source nodes) that are computed using the DAG. Query operations on ele-
ments return a collection of values. Update operations modify the DAG G and
the input elements, causing corresponding changes to the set of values. Compu-
tations are performed sequentially and hierarchically, according to the hierarchy
induced by the underlying DAG G. The computational cost (time, space, or
communication complexity) of query and update operations can be expressed as
the combined, degree or boundary size of a subgraph (usually Gs or πs, for a
source node s of G), where every node v in the subgraph contributes an amount
proportional to indeg(v) to the cost. Generally, any computational cost measure
for a problem in this class is completely characterized by structural cost mea-
sures of subgraphs of DAG G. We refer to such problems (informally defined due
to space limitations) as hierarchical data processing (HDP) problems.

We study the cost measures of general DAG schemes, derive results that
explain the inherent computational limits that exist in any HDP problem and
characterize optimal DAG scheme structures for these problems. We first show
that the cost measures for a tree-based DAG scheme are related to the number of
comparisons for searching in an ordered set, by drawing a direct analogy between
the sibling cost of any tree-based DAG scheme and the number of comparisons
performed in a search tree corresponding to the DAG scheme. This result forms
the basis for a reduction from searching by comparisons to any computational
procedure of an HDP problem, with cost that is expressed by the sibling cost of
a tree-based DAG scheme. Using this reduction we get the following.

Theorem 1. Any DAG scheme Δ = (T, S, n, 1) such that T is a directed tree
has Ω(log n) update, query and sibling costs.

We show that among all possible DAGs, trees have optimal cost measures.

Theorem 2. Let Γ = (G,S, n, 1) be a DAG scheme. There exists a DAG scheme
Δ = (T, S, n, 1) such that T is a directed tree and U(Δ) ≤ U(Γ), Q(Δ) ≤ Q(Γ),
and S(Δ) ≤ S(Γ).

The above result also applies to a general DAG scheme (G,S, n, k) with k special
nodes. In this case, there exists a forest of trees achieving better performance
with respect to the cost measures being considered. The following theorem sum-
marizes the results of this section with respect to the cost measures of any DAG
scheme.

Theorem 3. Any DAG scheme Γ = (G,S, n, k) has Ω(log n
k) update, query and

sibling costs.

The above results establish a reduction from searching by comparisons to compu-
tations related to HDP problems (computations performed sequentially and hi-
erarchically according to the hierarchy induced by the underlying DAG scheme)
and give us lower bounds on the costs of these computations. Also, the opti-
mality of tree-based DAG schemes over general graphs further characterizes the
optimal schemes for HDP problems. The connection between HDP problems and

158 R. Tamassia and N. Triandopoulos

DAG schemes is illustrated in Sections 4 and 5, where we model two informa-
tion security problems as HDP problems and translate the above results to their
domain.

3 A New DAG Scheme Based on Skip-Lists

In view of the logarithmic lower bounds and the optimality of tree structures for
DAG schemes, we present a new DAG scheme that is based on skip-lists. Our
multi-way skip-list DAG scheme Δ = (T, S, n, 1) is based on the skip-list data
structure and achieves cost measures close to the theoretical optimal.

Skip-Lists and Bridges. A skip-list [12] with probability parameter p is a set of
lists L1, ..., Lh, where L1 stores the element of a totally ordered set (X,) of
size n (sorted according to) and, for each i, each of the elements of list Li

is independently chosen to be contained in Li+1 with probability p. Lists are
viewed as levels and we consider all elements of the same value that are stored
in different levels to form a tower. The level of a tower is the level of its top
element. Each node of a tower has a forward pointer to the successor element in
the corresponding list and a pointer to the element one level below it. A header
tower that stores sentinel element −∞ is included in the skip-list as the left-most
tower of level one more than the maximum level of any other tower in the skip-
list. A node of the skip-list is a plateau node if it is the top node of its tower.
We introduce next the notion of a bridge and define related concepts.

Definition 4. In a skip-list: (i) a bridge b is a maximal sequence of towers
of the same level such that no higher tower lies between them and the plateau
nodes of the towers are all reachable in a sequence using forward pointers; (ii)
the size |b| of bridge b is the number of towers in the bridge and the bridge size
of a tower is the size of the bridge that the tower belongs to; (iii) a child bridge
of b is a bridge that is contained under b and to which a tower of b connects
through forward pointers; (iv) the plateau towers of a tower t are the towers
whose plateau nodes can be reached by a node of t using one forward pointer.

Directed Tree T . We now describe the multi-way skip-list DAG scheme Δ =
(T, r, n, 1), where the directed tree T is defined with respect to a skip-list. By
list node we refer to a node of the skip-list and by DAG node to a node of tree T .
An edge (v, u) in T is directed towards node u. If v, v1, . . . , vl are nodes in T ,
then operation New(v, v1, . . . , vl) on existing DAG nodes creates in T new nodes
u1, . . . , ul and new edges (v1, u2), . . . , (vl−1, ul), (vl, v), (u1, u2), . . . , (ul−1, ul) and
(ul, v), where DAG node u1 becomes a new source node of T . The notion of a
bridge is essential in skip-list DAG T . For each bridge b in the skip-list, a corre-
sponding node v(b) is created in T . We call v(b) the DAG node of b. Node v(b) is
connected in T with the DAG nodes of all the child bridges of b. Thus, DAG T
is defined in a recursive way with respect to a skip-list. First, all bridges in the
skip-list are identified and the DAG node for the outer bridge (header tower)
is created. Then, given that the DAG node v(b) of a bridge b is created, using

Computational Bounds on Hierarchical Data Processing 159

t2 t3t1

v(b3)

v(b1)

v(b2)

t
u1

b

v(b)

t31t22t12t11 t21

v(b21)v(b11)

v(b12)

v(t2)

v(t3)

t1 t2 t3t13

v(b)

v(b22)
v(b13)b

v(t1)

v(b31)

(a) (b)

Fig. 1. Multi-way skip-list DAG Δ, where circle nodes are DAG nodes (bridge DAG
nodes are solid) and square nodes are nodes of the skip-list. DAG node v(b) of bridge
b is recursively connected to the DAG nodes of the child bridges depending on the
following two cases: (a) |b| = 1 and (b) |b| > 1

operation New(·), v(b) is connected with paths in T to the newly created DAG
nodes of the child bridges of b, as follows (see Figure 1).

If |b| = 1 (Figure 1(a)), let t1, ..., tl (in increasing level) be the plateau towers
of the tower t of b . If plateau tower ti belongs to bridge bi, we perform operation
New(v(b), v(b1), . . . , v(bl)) where v(b) is the DAG node of b.

If |b| > 1 (Figure 1(b)), then let k = |b| and let t1, . . . , tk be the towers
of b. For each such tower ti, we create a new DAG node v(ti), 1 ≤ i ≤ k. For
tower tk, we consider its, say l, plateau towers tk1, . . . , tkl and perform operation
New(v(tk), v(bk1), . . . , v(bkl)), where bk1, . . . , bkl are the child bridges of b that
plateau towers tk1, ..., tkl belong to. Moreover, for each tower ti, i < k, of, say
l + 1, plateau towers, we consider its l lowest plateau towers ti1, . . . , til, that
is, for i < k, tower tl+1 is omitted from this sequence. Let bi1, . . . , bil be the
child bridges of b that plateau towers ti1, ..., til belong in. For tower ti, i < k, we
perform operation New(v(ti), v(bi1), . . . , v(bil)). Finally, we add k new edges in
T : edge (v(ti), v(b)) for 1 ≤ i ≤ k. By this construction, T is a directed tree, the
root of T is the DAG node r of the header bridge, and T has exactly n leaves.

We can show that multi-way skip-list Δ achieves cost measures that are close
to the theoretical optimal value of +log2 n,+ 1.

Theorem 4. With respect to a skip-list with probability parameter p, the multi-
way skip-list DAG scheme Δ = (T, r, n, 1) has the following expected cost mea-
sures for any fixed source node s of T with corresponding source to root path πs:

1. E[size(πs)] ≤ 2(1− p) log 1
p
n + O(1);

2. E[indeg(πs)] ≤ (1− p) (1+p)2

p log 1
p
n + O(1);

3. E[bnd(πs)] ≤ (1−p)(1+p2)
p log 1

p
n + O(1); and

4. E[size(T)] ≤ (1 + pq2 + pq + p
q(2−pq2))n, where q = 1− p.

In particular, our multi-way skip-list DAG scheme Δ has better expected cost
measures than the DAG scheme of [5, 12], also based on the skip-list, which we

160 R. Tamassia and N. Triandopoulos

Table 1. Comparison of three tree DAG schemes in terms of their cost measures

E[size(πs)] E[indeg(πs)] E[bnd(πs)] E[size(T)]

red-black tree log2 n 2 log2 n log2 n 2n

standard skip-list 1.5 log2 n 3 log2 n 1.5 log2 n 2n

multi-way skip-list log2 n 2.25 log2 n 1.25 log2 n 1.9n

call standard skip-list DAG scheme. Table 1 summarizes the comparison results
for probability parameter p = 1/2. The comparison between multi-way skip-list
scheme and red-black tree scheme shows an interesting trade-off on the perfor-
mance with respect to the cost measures we study.

4 Data Authentication Through Hashing

We apply our results of Sections 2 and 3 to data authentication through crypto-
graphic hashing. We focus on authenticated dictionaries, ADSs that authenticate
answers to membership queries. ADSs provide a model of computation, where
an untrusted directory answers queries issued by a user on a data structure on
behalf of a trusted source and provides a proof of the validity of the answer to the
user. In this model, authentication is achieved by having the data source signing
some digest of the data, where, for data authentication through hashing, a hash
function is systematically used to produce this digest. On any query, along with
the answer, the signed digest and some information that relates the answer to
this digest are given to the user and these are used for the answer verification.

Authenticated Dictionary. Let X be a data set owned by the source that evolves
through update operations insert and delete. Membership queries contains are
issued about X. A (multivariate extension of a) cryptographic hash function h
is used to produce a digest of set X which is signed by the source (see [6]). In our
study, we actually consider a more general model where several digests are pro-
duced and signed by the source. These digests are computed through a hashing
scheme over a DAG that has k signature nodes t1, . . . , tk and stores the elements
of X at the source nodes. Each node u of G stores a label (hash value) L(u) such
that, if u is a source of G, then L(u) = h(e1, . . . , ep), where e1, . . . , ep are ele-
ments of X, else (u is not a source of G) L(u) = h(L(w1), . . . , L(wl), e1, . . . , eq),
where (w1, u), . . . , (wl, u) are edges of G, e1, . . . , eq are elements of X and p, q
and l are some non negative integers. Without loss of generality, we focus our
study on the canonical case where p = 1 and q = 0, noting that any general
hashing scheme is equivalent to a canonical one. We view the labels L(ti) of the
signature nodes ti of G as the digests of X, computed via the above DAG G.

The authentication technique is based on the following general approach.
The source and the directory store identical copies of the data structure for
X and maintain the same hashing scheme on X. The source periodically signs
the digests of X together with time-stamps and sends the signed time-stamped
digests to the directory. When updates occur on X, they are sent to the directory

Computational Bounds on Hierarchical Data Processing 161

together with the new signed time-stamped digests. When the user poses a query,
the directory returns to the user some answer authentication information, which
consists of: (i) one signed time-stamped digest of X, (ii) the answer to the query
and (iii) a proof consisting of a small collection of labels from the hashing scheme
(or of data elements if needed) that allows the recomputation of the digest. The
user validates the answer by recomputing the digest, checking that it is equal to
the signed one and verifying the signature of the digest. Security against forgery
of proofs by the directory follows from the properties of the signature scheme
and the hash function.

Authentication Overhead. Now we study the performance overhead of computa-
tions related to authentication in an authenticated dictionary based on a hashing
scheme (the analysis is valid for any ADS). This authentication overhead consists
of time overhead for the (i) maintenance of the hashing scheme after updates,
(ii) generation of the answer authentication information in queries, and (iii) ver-
ification of the proof of the answer; communication overhead, defined as the size
of the answer authentication information; storage overhead, given by the num-
ber of hash values used by the authentication scheme; and signature overhead,
defined as the number of signing operations performed at the source (and thus
the number of signatures sent by the source). The time for computing a hash
function is a few orders of magnitude larger than the time for comparing two
basic numerical types. Thus, the rehashing overhead dominates the update time
and the practical performance of an ADS is characterized by the authentication
overhead, which depends on the hash function h in use and the mechanism for
realizing a multivariate hash function from h.

Cryptographic Hash Functions. A collision-resistant hash function h(x) maps a bit
string x of arbitrary length to a hash value of fixed length, such that collisions are
hard to find. We refer to h simply as hash function. Generic constructions of hash
functions are modeled by iterative computations based on a compression function
f(·) that is applied iteratively on the input. For this class of hash functions, there
exist constants c1 and c2 (which may depend on a security parameter) such that,
given an input string x, the computation h(x) takes time T (x) = c1|x| + c2.
Moreover, without loss of generality, we extend h to a multivariate function
using string concatenation. We define h(x1, ..., xd) = h(x1‖...‖xd).

Cost of Data Authentication Through Hashing. Let G be any hashing scheme used
to implement a hash-based authenticated dictionary for set X of size n, where k
signature nodes store hash values signed by the source. Hashing scheme G along
with the signature nodes can be viewed as a DAG scheme Γ = (G,S, n, k),
where special nodes are signature nodes and there are exactly n source nodes
in G storing elements in X. Each cost parameter of the authentication overhead
depends linearly on size(H) and indeg(H) for some subgraph H of G. The node
size corresponds to the number of performed hash operations and the degree size
to the total number of hash values that participate as operands in these hash
operations. In particular, the following holds.

162 R. Tamassia and N. Triandopoulos

Lemma 1. Let Γ = (G,S, n, k) be any hashing scheme used to implement a
hash-based authenticated dictionary for set X, where special nodes are signature
nodes. Let s be a source node of G storing element x ∈ X, Gs be the subgraph
of G that is reachable from s, and πs the associated path of s. We have: (i) an
update operation on element x has update time overhead that is lower bounded by
comb(Gs); (ii) a query operation on element x has verification time overhead that
is lower bounded by comb(πs) and communication overhead that is lower bounded
by bnd(πs); (iii) the storage overhead is size(G). All involved computations are
performed according to the hierarchy induced by G.

Thus, hash-based authentication of membership queries is an HDP problem,
where operations insert/delete are related to the update cost and operation con-
tains is related to the query cost of the underlying DAG scheme. Our results on
DAG schemes indicate that signing multiple hash values does not help and that
tree structures are optimal.

Theorem 5. In the data authentication model through hashing, any hashing
scheme with k signature nodes that implements an authenticated dictionary of
size n has (i) Ω(log n

k) worst-case update and verification time overheads; (ii)
Ω(log n

k) worst-case communication overhead; and (iii) Ω(k) signature overhead.

Theorem 6. An authenticated dictionary of size n implemented with a multi-
way skip-list DAG scheme with probability parameter p achieves the following
expected performance, where c1 and c2 are constants that depend on the hash
function h in use and q = 1− p:
1. the expected hashing overhead of an update or verification operation is at

most (1− p)
(
2c2 + (1+p)2

p c1

)
log 1

p
n + O(1),

2. the expected communication cost is at most (1−p)
(

1+p2

p

)
log 1

p
n+O(1) and

3. the expected storage overhead is at most
(
1 + pq2 + pq + p

q(2−pq2)

)
n.

5 Multicast Key Distribution Using Key-Graphs

In this section, we apply our results of Section 2 and 3 to multicast key distri-
bution.

Multicast Key Distribution. The problem refers to secure communication in mul-
ticast groups. A group consists of a set of n users and a group key controller.
Secret-key cryptography is used to transmit encrypted multicast messages among
users of the group. Messages are encrypted using a group key available to all the
current users of the group. The security problem arises when updates on the
group are performed through users addition to or deletions from the group. The
goal is to achieve confidentiality, i.e., only group members can decrypt messages,
and forward (backward) secrecy, i.e., users deleted from (added to) the group can
not decrypt messages transmitted in the future (past). In this model, the group
controller is responsible for distributing secret keys to the users and updating

Computational Bounds on Hierarchical Data Processing 163

them appropriately after user updates. The idea is that a set of keys, known to
the controller, is distributed to the users, so that a key is possessed by multiple
users and a user possesses multiple keys. In particular, any user is required to
have, except from the group key, a secret key that no other user knows. On
user updates, subsets of these keys need to be updated appropriately by the
controller.

Key-Graphs. Key-graphs (e.g., [15]) provide a framework to implement this idea.
A key-graph models the possession of keys by users and the computations (en-
cryptions at the controller, decryptions at the users) and message transmissions
that need to be performed after an update. A key-graph is a single-sink DAG G,
known by the group controller and the users, that facilitates key updates. The
source nodes of G correspond to users and store their individual secret keys.
The non-source nodes of G correspond to keys that are shared among subsets of
users. The user associated with a source node s of G possesses all and only the
keys that correspond to the subgraph Gs of G (i.e., the nodes reachable from s).
On any update of user s, the keys in Gs have to change to achieve forward and
backward secrecy. The group controller distributes each new key by sending it
encrypted with a previously distributed key.

Cost parameters. The cost parameters of a key distribution scheme using key-
graphs are defined as follows: (i) the encryption cost is the computational cost
at the controller for encrypting all new keys and thus producing the messages
for transmission; (ii) the decryption cost is the computational cost at a user for
decrypting received messages and updating her keys; (iii) the communication
cost is the number of transmitted messages; and (iv) the key-storage cost is the
total number of keys stored at the key controller and at the users.

We can view a key-graph G as DAG scheme Γ = (G,S, n, 1), where S consists
of the unique sink node of G, called group node, and the source nodes correspond
to the users. Each cost parameter of the key distribution scheme depends linearly
on size(H) and indeg(H), for some subgraph H of G. The node size corresponds
to keys stored at users, decryptions and key generations and the degree size
corresponds to the number of messages sent and the number of encryptions
performed during the update.

Definition 5. Let Γ = (G,S, n, 1) be a key-graph scheme and let v be a node
in G. The support Sup(v) of v is the set of users that possess the key stored at v,
i.e., s ∈ Sup(v) if and only if v ∈ Gs. Let U = {u1, ..., uk} be a set of nodes of
G and let T ⊆ Vso be a set of source nodes of G. We say that set U spans set
T if

⋃
1≤i≤k Sup(ui) = T . A node v is said to be safe if v is a source node or

if indeg(v) > 1 and any node set that spans Sup(v) and does not include v has
size at least indeg(v). Key-graph scheme Γ is said to be reduced, if all nodes in
G are safe.

Lemma 2. Let Γ = (G,S, n, 1) be a reduced key-graph scheme used for the mul-
ticast key distribution problem. Then we have: (i) an update operation on a user
that corresponds to a source node s has communication cost at least indeg(Gs)
and encryption cost at least comb(Gs); and (ii) the key-storage cost is size(G).

164 R. Tamassia and N. Triandopoulos

All involved encryptions and decryptions are performed according to the hierar-
chy induced by G.

Multicast key distribution using reduced key-graphs is an HDP problem, where
the cost of an update in the group is related to the update cost of the underlying
DAG scheme. By studying more carefully reduced key-graph schemes and using
Theorems 1 and 2, we can prove the main result of the section.

Theorem 7. For a multicast key distribution problem of size n using key-graphs,
in the worst case, an update operation in the group requires at least +log2 n,
communication cost and Ω(log n) encryption cost. Also, key-tree structures are
optimal over general key-graphs.

6 A New Skip-List Version

From the relation of the sibling cost of any tree-based DAG scheme and the
number of comparisons performed in a search tree corresponding to the DAG
scheme and Theorem 4, we get a new version of the skip-list data structure with
an expected number of comparisons closer to the theoretical optimal +log2 n,+1,
up to an additive constant term, than the one of the standard skip-list. The new
skip-list version can be viewed as a multi-way extension of the skip-list data
structure. We omit the details due to space limitations.

Theorem 8. There is a multi-way version of a skip-list for set X of size n and
probability parameter p, where the expected number of comparisons performed
while searching in X for any fixed element is at most (1−p)(1+p2)

p log2
1
p

log2 n + O(1),

or 1.25 log2 n + O(1) for p = 1
2 .

References

[1] J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to
efficient revocation of anonymous credentials. In Proc. CRYPTO, 2002.

[2] R. Canetti, T. Malkin, and K. Nissim. Efficient communication - storage tradeoffs
for multicast encryption. In Proc. EUROCRYPT, 1999.

[3] P. Devanbu, M. Gertz, C. Martel, and S. G. Stubblebine. Authentic data publi-
cation over the Internet. Journal of Computer Security, 11(3), 2003.

[4] M. T. Goodrich, R. Tamassia, and J. Hasic. An efficient dynamic and distributed
cryptographic accumulator. In Proc. ISC, 2002.

[5] M. T. Goodrich, R. Tamassia, and A. Schwerin. Implementation of an authen-
ticated dictionary with skip lists and commutative hashing. In Proc. DISCEX,
2001.

[6] M. T. Goodrich, R. Tamassia, N. Triandopoulos, and R. Cohen. Authenticated
data structures for graph and geometric searching. In Proc. RSA-CT, 2003.

[7] C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong, and S. G. Stubblebine.
A general model for authenticated data structures. Algorithmica, 39(1), 2004.

[8] S. Micali, M. Rabin, and J. Kilian. Zero-Knowledge sets. In Proc. FOCS, 2003.

Computational Bounds on Hierarchical Data Processing 165

[9] D. Micciancio and S. Panjwani. Optimal communication complexity of generic
multicast key distribution. In Proc. EUROCRYPT, 2004.

[10] M. Naor and K. Nissim. Certificate revocation and certificate update. In Proc.
USENIX Security, 1998.

[11] R. Ostrovsky, C. Rackoff, and A. Smith. Efficient consistency proofs for general-
ized queries on a committed database. In Proc. ICALP, 2004.

[12] W. Pugh. Skip lists: a probabilistic alternative to balanced trees. CACM, 33(6),
1990.

[13] J. Snoeyink, S. Suri, and G. Varghese. A lower bound for multicast key distribu-
tion. In Proc. INFOCOMM, 2001.

[14] R. Tamassia and N. Triandopoulos. Computational bounds on hierarchical data
processing with applications to information security. Manuscript, Brown Univer-
sity, 2005. Full version http://www.cs.brown.edu/cgc/stms/papers/cbhdp.pdf.

[15] C. K. Wong, M. Gouda, and S. S. Lam. Secure group communications using key
graphs. IEEE/ACM Transactions on Networking, 8(1), 2000.

Balanced Allocation and Dictionaries with
Tightly Packed Constant Size Bins

(Extended Abstract)

Martin Dietzfelbinger1,� and Christoph Weidling2,��

1 Technische Universität Ilmenau, 98684 Ilmenau, Germany
martin.dietzfelbinger@tu-ilmenau.de

2 sd&m AG, 63065 Offenbach am Main, Germany
christoph.weidling@sdm.de

Abstract. We study an aspect of the balanced allocation paradigm (also
known as the “two-choices paradigm”). Assume there are n balls and m =
(1 + ε)n/d bins of capacity d each, for a fixed d ≥ 1. To each of the balls
two possible bins are assigned at random. We show that ε > (2/e)d−1

is sufficient to guarantee that with high probability each ball can be
put into one of the two bins assigned to it, without any bin overflowing.
Further, it takes constant time on average for changing the arrangement
to accommodate a new ball, if ε > γ · βd, for some constants γ > 0,
β < 1. The problem may also be described in data structure language.
Generalizing cuckoo hashing (Pagh and Rodler, 2001), we consider a hash
table with m positions, each representing a bucket of capacity d ≥ 1. Key
x may be stored in bucket h1(x) or h2(x), for two fully random hash
functions h1 and h2. For arbitrary ε > 0, we obtain an implementation
of a dynamic dictionary that accommodates n keys in m = (1 + ε)n/d
buckets of size d = O(log(1/ε)). For a lookup operation only two hash
functions have to be evaluated and two contiguous segments of d memory
cells have to be inspected. The expected time for inserting a new key is
constant.

1 Introduction: Bounded Balanced Allocation,
d-Orientability, and Blocked Cuckoo Hashing

In this paper, we study a data allocation problem that can be described in
different terminologies. In the “balanced allocation paradigm” (also known
as the “two-choices paradigm”) we have n balls and m bins. To each ball two
bins are assigned at random. Each ball is to be placed into one of the two bins
assigned to it; the aim is to keep the maximum load in the bins small. Much
work has been devoted to analyzing the online version of this experiment, where
the balls arrive one after the other and are put into a bin upon arrival, and this

� Corresponding author.
�� Affiliated with the Technische Universität Ilmenau while this work was done.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 166–178, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Balanced Allocation and Dictionaries 167

placement can never be changed later. Not that much is known about the offline
version, where all balls with their two choices are given as input. However, it has
been known for quite a while that with high probability1 for n = O(m) constant
bin size is enough to place all balls. Other authors have considered “dynamic”
situations in which the positions of balls may change in the course of a random
process.

In this paper, we ask how well we can utilize the space in the bins if we
fix the capacity of the bins to some number d ≥ 1. That means, given n, we
wish to keep the space overhead ε = dm−n

n as small as possible and still be able
to place the balls w.h.p. We show that ε > (2/e)d−1 is sufficient to guarantee
this. We also consider a dynamic version of the problem. Assume that n balls
are placed and a new ball arrives, with two randomly assigned bins. We show
that the expected time needed to rearrange the balls so that the new ball can
be accommodated as well is constant, as long as ε > γ · βd, for some constants
γ > 0, β < 1. This implies that the expected time to place n balls is O(n). No
estimates for the density that can be achieved asymptotically for fixed bin size
d larger than some small constant have been known before.

The allocation problem with bounded bin size d is equivalent to a version
of the d-orientability problem [12] for random graphs. We say an undirected
graph G = (V,E) of m nodes and n edges is d-orientable if the edges can be
directed in such a way that every node has outdegree not larger than d. Given a
constant d, we ask for upper and lower bounds on the edge density n

m so that a
graph with n randomly placed edges (including loops and multiple edges) is d-
orientable w.h.p. Also, we ask how long it takes to adapt a given edge orientation
when a new random edge arrives.

Yet another formulation of the same problem can be given in data struc-
ture language. We wish to implement dynamic dictionaries so that constant
lookup time is guaranteed. Dynamic dictionaries store keys from a universe U
(possibly together with satellite data) and support the operations insert, delete,
and lookup. Pagh and Rodler’s “cuckoo hashing” method [17] assumes that
each one of n keys is assigned to two locations h1(x) and h2(x) in a hash table of
size m, and can be stored in one of the two locations. Each location has capacity
1. We generalize this approach by considering buckets of capacity d, for some
arbitrary constant d ≥ 1. Our construction results in the following. Assuming
that fully random hash functions are available, we obtain an implementation of a
dynamic dictionary that for given ε > 0 stores n keys in space (1+ ε)n in such a
way that a lookup for x requires evaluating two hash functions and probing two
contiguous blocks of d memory cells. The expected cost of inserting a new key
is (1/ε)O(log log(1/ε)). This compares favorably with the performance of “d-ary
cuckoo hashing”, a different generalization of cuckoo hashing by Fotakis, Pagh,
Sanders, and Spirakis [9]. There d = O(log(1/ε)) independent hash functions are
used to achieve a similar space utilization. The access procedure of our scheme is
more local and hence more suited for cache architectures. Experiments (see [7])

1 abbreviated: “w.h.p.”, meaning “with probability 1− 1
poly(n)

”.

168 M. Dietzfelbinger and C. Weidling

support the hope that the new scheme is competitive with d-ary cuckoo hashing
[17] as far as space utilization is concerned, and allows faster accesses.

Remark 1. For reference, we describe the connection between the hashing for-
mulation and the d-orientability formulation from [2, 12, 19] in detail. Given is
a set S of n keys and two random hash functions h1, h2. We consider a ran-
dom (multi)graph Gu = (V,Eu) with labeled edges. The node set is V = [m] =
{0, . . . ,m−1}, the set of labeled edges is Eu = Eu(S, h1, h2) = {{h1(x), h2(x)} |
x ∈ S}. We say that Gu is d-orientable if the n edges in Eu can be directed in
such a way that each node has outdegree at most d. Assigning such directions
to edges is equivalent to storing the keys in a table with m blocks with maximal
load d, as follows: the edge {y, y′} = {h1(x), h2(x)} is directed from y to y′ if and
only if x is stored in block y. Below, any directed version of Gu with outdegree
bounded by d will be called G = (V,E).

Terminology. In this paper, the algorithms and the analysis are described in
the language of a hash table with two functions. This also makes it possible to
describe a new workaround for the assumption that fully random hash functions
are available for free, see Section 2.3. However, all results readily translate into
the terminology of the balanced allocation paradigm or the graph orientation
paradigm.

1.1 Background and Related Work

Early contributions to the fixed sized bin allocation problem were made in con-
nection with the balanced allocation paradigm. (For a survey of this area, see
[14].) In the seminal paper [1] by Azar, Broder, Karlin, and Upfal it was noted
[10] (also see [2]) that if a set of n ≤ 1.67m balls is allocated to m cells, with two
choices per ball, then with high probability the keys can be placed so that no bin
holds more than two balls. This immediately extends to a scheme for storing n
balls in m bins with a maximum load of d = 2 · (n/(1.67m)) ≤ 2 + 1.2 n

m , which
for m,n large corresponds to a space overhead of ε = 0.2 in our notation.

Simultaneously, observations concerning the existence of such placements
were made in papers on the simulation of parallel random access machines on
distributed memory machines by redundantly storing data (e.g., [3, 13]). In par-
ticular, it was shown there that a maximum load of O(1 + n/m) is achievable
with high probability, even if for allocating the bins hash functions from classes
described in [22] are used.

Sanders et al. [20, 21] studied the static allocation problem with fixed bin
sizes as the combinatorial abstraction of a scheme called “Randomized Duplicate
Allocation (RDA)”, used for storing data blocks on disks. In [21] it was shown
that with high probability a bin size of d = 1 + (n/m) is sufficient (this would
correspond to a bound d ≥ 1

ε in our notation). In [20] the question was asked
how close n/m might be to d = (n/m) so that still block size d is sufficient. No
asymptotic relation between n/m and d was derived. In the analysis of the static
case we start with the condition (2) on d and ε that has been noted already in

Balanced Allocation and Dictionaries 169

[20]. The transformation of this condition into the general relation d > 1+ ln(1/ε)
1−ln 2

by means of calculus has escaped other researchers until this date.
In [2] the online version of the case of heavily loaded bins (i.e., n

m →∞) was
studied. In [4] it was demonstrated that perfect balance (n = dm, with no slack
at all) is impossible w.h.p. if d < γ1 lnn for a suitable constant γ1, while perfect
balance is possible w.h.p. if d > γ2 lnn for some larger constant γ2. Further,
a randomized rebalancing procedure was described and analyzed, with running
time polynomial in n.

On the data structures side, the paper by Pagh and Rodler [17] showed that
m = (2 + ε)n cells are enough if each cell may have load 1 and a key x may
be stored in one of the locations given by two hash functions. It is easy to see
that space below 2n is not sufficient for cuckoo hashing in the simple form. As
a remedy for this situation, Fotakis et al. [9] suggested “d-ary cuckoo hashing”.
Their scheme amounts to the balanced allocation problem with bin size 1 and d
random targets for each ball. They show that with n balls and m = (1+ε)n bins it
is sufficient to have d = O(log(1/ε)) for statically placing the balls and inserting
new balls in expected constant time, w.h.p. This leads to an implementation of
a dictionary for n keys in space (1 + ε)n, where a lookup requires evaluating
d = O(log(1/ε)) hash values and probing d random locations in the worst case.
Inserting a key takes expected constant time. Our result leads to a comparable
space utilization, but has the advantage that only two hash functions have to
be evaluated and two contiguous blocks of d memory cells must be probed in a
search, which has advantages in architectures with caches. The basic structure
of our analysis for the dynamic case is the same as in [9]; however, quite a few
extra technical obstacles have to be overcome.

Recently, Panigrahy [18] studied the dynamic version of the allocation prob-
lem (in the formulation for dynamic hash tables with insertions) for two choices
and bin size d = 2. He established, by analyzing related branching processes,
that inserting keys is possible in expected constant time as long as n ≤ 1.67m.

For lack of space, not all details of the analysis are given in this extended
abstract. They may be found in the technical report version [7].

2 The Results

2.1 The Static Case

A set S of n keys from the universe U is to be stored. We use an array T [0..m−1]
consisting of m = n(1+ε)/d blocks (subarrays) of d cells each. Inside each block
we store up to d keys sequentially. Given two hash functions h1, h2 : U → [m],
we say that h1, h2 are suitable for S and d if it is possible to store each key x
from S in one of the blocks h1(x), h2(x) without any block receiving more than
d keys. If the keys from S are stored according to h1, h2, a lookup procedure is
obvious, which involves evaluating two hash values and searching two blocks.
Our first result is the following theorem, whose proof is outlined in Section 3.

170 M. Dietzfelbinger and C. Weidling

Theorem 1. Let ε > 0 be arbitrary. Assume that d ≥ 1 + ln(1/ε)
1−ln 2 . Let n be

sufficiently large, let S ⊆ U be an arbitrary set of n keys, and let T be a table with
m blocks of size d each, where dm ≥ (1 + ε)n. Further assume that h1, h2 : U →
[m] are fully random hash functions. Then with probability 1 − O(1/md−1) the
functions h1, h2 are suitable for S and d.

2.2 Updates: The Cuckoo Insertion Procedure

Assume n keys are stored in the table T according to h1, h2, with blocks of size
d. Inserting a new key x can best be described in terms of the directed graph G
from Remark 1. In G, find a directed path y0, y1, . . . , y� with y0 ∈ {h1(x), h2(x)}
and y� a node that is “free”, i.e., has outdegree smaller than d. (This means
that block y� contains an empty cell.) The edges that form the path correspond
to keys x1, . . . , x� such that xi is stored in yi−1, but may be stored in yi. After
moving xi from yi−1 to yi, for 1 ≤ i ≤ � (this corresponds to flipping the edges
on the path), node (block) y0 is free, and hence we can store x there. We call a
path y0, y1, . . . , y� as described an “augmenting path” for G and x.

It is very easy to see that if h1, h2 are suitable for S ∪ {x}, then there is an
augmenting path. So the problem is to find an augmenting path fast. As proposed
in [9], a simple approach for this is breadth-first-search (BFS) in G, starting from
{h1(x), h2(x)}. The time for this is proportional to the number of edges probed
before a free node is found. Since the nodes in the part of G that is searched have
outdegree d, this number is not larger than 2(d + d2 + · · · + d�) < 4d�, where �
is the length of a shortest path from {h1(x), h2(x)} to a free node. Thus we will
have to analyze (the distribution of) the distance between {h1(x), h2(x)} and
the set of free nodes. The proof of the following theorem is outlined in Section 4.

Theorem 2. Let ε > 0 be arbitrary. Assume that d ≥ 90.1 · ln(1/ε). Let n be
sufficiently large, let S an arbitrary set of n keys, let x ∈ U − S, and let T
be a table with m blocks of size d each, where dm ≥ (1 + ε)n. Assume that
h1, h2 : U → [m] are fully random hash functions, and that the keys from S
have been stored in T by an algorithm that is ignorant of h1(x), h2(x). Then the
expected time to insert x by the BFS procedure is (1/ε)O(log d).

The constants in the bound are certainly not optimal. In particular, the horren-
dous factor 90.1 is only an artefact of our proof. Numerical estimates suggest
that the approach we use could be tuned to get by with d ≥ 4 ln(1/ε), for ε very
small. — In this extended abstract, we do not address the issue of extra space
(up to O(n)) needed by the BFS, for the following reason: If the technique de-
scribed in Section 2.3 below is used, no more than n2/3 keys have to be handled
at any time, so the scratch space problem vanishes.

An alternative approach to insertion (also suggested in [9]) is to search an
augmenting path by a certain kind of random walk in G, as follows: Assume x
is to be inserted. Repeat the following, starting with z := x:

Calculate h1(z) and h2(z). If one of the two blocks h1(z) or h2(z) is not
full, store z in one such block, and stop. Ties are broken arbitrarily. If

Balanced Allocation and Dictionaries 171

both blocks are full, randomly choose one of the keys stored in these
blocks, call it z′, kick z′ out from its block (this is the “cuckoo step”)
and insert z in its place. Let z := z′, and start again.

Of course, some rules for stopping the loop have to be incorporated. The
implementations used in our experiments [7] are based on this random walk
idea, not on the BFS procedure. It is an intriguing open problem to provide an
analysis of the random walk insertion procedure. (The same question is open for
d-ary cuckoo hashing [9].)

2.3 Sharing Fully Random Hash Functions

For the analysis to carry through, we assume that the hash functions h1, h2

behave fully randomly on S. If in the course of inserting a key it turns out
that h1, h2 are not suitable, we might want to rehash the whole set, using new
hash functions h1, h2. Although in the balanced allocation literature the full
randomness assumption is routinely used, this is not the case in the hashing
literature. Earlier work on hashing (e.g., [3, 9, 13, 17]) has, very carefully, pointed
out ways of working around this problem, for example by using functions from
high-performance universal classes like in [22]. (This would not be sufficient for d-
ary cuckoo-hashing, though.) In [8, 16] it was demonstrated that full randomness
can be simulated by universal hashing at the cost of O(n) words of extra space.
However, using such a construction would be unsatisfactory in our context, since
we aim at getting by with εn extra space.

We propose the following workaround, which might be helpful also in other
contexts. Let ε > 0 and n be given. Using high-performance hash classes [6, 22]
we may choose a function h : U → [n1/3] so that with probability 1 − n−c (for
some constant c) the set S is split into n1/3 pieces Si = {x ∈ S | h(x) = i}
of size ≤ (1 + ε

2)n2/3. (There is no need that S is known or the pieces are
listed.) For each of the pieces Si we run cuckoo hashing with blocks of size d in
a separate table Ti of size (1 + ε)n2/3. It is an easy exercise, using polynomial
hash functions and techniques described in [6], to provide a pair h1, h2 of hash
functions that with high probability behaves fully randomly on a single Si, if
we are allowed to use space n5/6 for storing h1, h2. Since the data structures for
the pieces Si do not interact, we may use the same hash function pair h1, h2

for all pieces Si, i = 0, . . . , n1/3 − 1. The overall space is O(n5/6) = o(n). The
algorithms described in the present paper then has to be applied to each of the
pieces separately. (For details see [7].)

3 Analysis for the Static Case: Proof of Theorem 1

In [20, 21] it is shown that a set S of n keys can be stored in m = (1 + ε)n/d
blocks of size d if and only if for every X ⊆ S it holds that |Γ (X)| ≥ 1

d |X|, where
Γ (X) = {h1(x), h2(x) | x ∈ X}. (This may be seen directly: It is immediate that
S can be stored if and only if the bipartite graph (S, [dm], E), E = {(x, d·hi(x)+
j) | x ∈ S, i ∈ {1, 2}, 0 ≤ j < d} has a matching that covers all nodes in S. Hall’s

172 M. Dietzfelbinger and C. Weidling

marriage theorem [5, p. 31] implies that such a matching exists if and only if
|Γ (X)| ≥ 1

d |X| for all X ⊆ S.) Thus, to prove Theorem 1 it is sufficient to
establish an upper bound on the probability F of the event that there is some
X ⊆ S such that |Γ (X)| < 1

d |X|.

Lemma 1. If ε ≤ 0.25 and d > 1 + ln(1/ε)
1−ln 2 , then F = O(m1−d).

Proof (Outline). For 1 ≤ j ≤ m/(1 + ε), let F (j) be the probability that there
is a set Y of j blocks such that some set X ⊆ S, |X| = dj, satisfies Γ (X) ⊆ Y .
Clearly, F ≤

∑
1≤j≤m/(1+ε) F (j). Using the Chernoff-Hoeffding bound (13) and

the binomial bound (11), we get

F (j) ≤
(
m

j

)(
n(j/m)2

jd

)jd (
n− n(j/m)2

n− jd

)n−jd

≤ (1 + ε)−jdm
m(1+ε−d)

1+ε jj(d−1)(m− j)j−m

(
m2 − j2

m− j(1 + ε)

)d
m−j(1+ε)

1+ε

, (1)

which was already observed in [20, 21]. We examine the expression on the right-
hand side of (1), which we abbreviate by f(j, ε), in different ranges of j. For j = 1
we find f(1, ε) = O(m1−d). — For j, 2 ≤ j < e−4m, we prove that f(j, ε) is a
decreasing function of ε; thus, we can concentrate on the case ε = 0. The sequence
f(j, 0), j = 2, . . . , +e−4m, turns out to be geometrically decreasing; hence we get∑

2≤j≤e−4m F (j) = O(m2−2d). — The most involved calculation concerns the
range e−4m ≤ j ≤ (1−2ε)m. Here we read off from (1) by substituting j = αm,
that f(j, ε) = O(cm) for a constant c < 1, if

d >
α lnα + (1− α) ln(1− α)

α(lnα− ln(1 + ε)) + (1−α(1+ε))(ln(1−α2)−ln(1−α(1+ε)))
1+ε

, (2)

for e−4 ≤ α ≤ 1− 2ε. We prove that the right-hand side of (2) is bounded by

g(α) :=
α lnα + (1− α) ln(1− α)
α lnα + (1− α) ln(1 + α)

(3)

By calculus we show that g is an increasing function and that g(1 − 2ε) <
1− ln ε

1−ln 2 . — For the range j > (1− 2ε)m, we observe that for each ε ≤ 0.25 the
right-hand side of (2) is decreasing in α, if 1− 2ε ≤ α ≤ 1/(1 + ε). &'

4 The Expected Insertion Time: Proof of Theorem 2

We want to examine the expected time of the BFS algorithm for inserting a new
key x in T , as described in Section 2.2 (also recall Remark 1). Just before x is
inserted, a set S of n keys is stored in T . We assume that the directed graph

Balanced Allocation and Dictionaries 173

G determined by this placement is independent of the hash values h1(x), h2(x)
— this is the case if x was never inserted before. We start a BFS in G from
{h1(x), h2(x)} with the aim of finding a shortest path to a node in Y0 := {y ∈
V | y is free in G}. The time for the BFS in G is O(min{n, d�+1}), where � is
the length of such a shortest path. Our aim is to see that the expectation of the
number of edges we have to inspect before a free node is found is O(1). For this,
we analyze the distribution of the number of nodes at different distances to Y0.
(The analysis runs along the lines of that of [9], but we are dealing with quite a
different graph.) — Recursively define, for k ≥ 1:

Xk := {x ∈ S | h1(x) ∈ Yk−1 or h2(x) ∈ Yk−1} and
Yk := {y ∈ [m] | ∃x ∈ Xk : x is stored in y}.

We say that the keys of Xk “hit” Yk−1. It is easy to see that Yk is the set of
nodes from which Y0 can be reached in at most k steps in G. By the definitions,
Yk−1 ⊆ Yk, for k = 1, 2, Inserting a new key x has cost roughly O(d�+1), if
� is minimal with h1(x) ∈ Y� or h2(x) ∈ Y�. The proof strategy is as follows.
We show that with high probability a large constant fraction of the nodes are in
Yk∗+�∗ for suitable constants k∗, �∗. (Lemmas 2, 3, 4, and 5). Beyond that, the
complements [m]− Yk shrink at a rate of roughly d−2/3 (Lemmas 6 and 7). If a
new key x arrives, with constant probability one of the values h1(x), h2(x) will
hit Yk∗+�∗ (causing constant cost). The probability that both h1(x) and h2(x)
hit nodes at a distance k∗ + �∗ + j from Y0 shrinks geometrically with growing
j, at a rate of (d−2/3)2 = d−4/3. This probability is small enough to compensate
the high cost of O(dk∗+�∗+j) for reaching Y0 should this happen. Overall, the
expected insertion cost remains a constant (Lemma 8).

Lemma 2. Let ε ≤ 0.1 and d ≥ 90.1 · ln(1
ε). Then there is a constant β < 1

such that with probability 1−O(mβm) each set of blocks Y that satisfies ε
1+εm ≤

r = |Y | ≤ 5
13m is hit by at least 4

3rd keys from S.

Proof (Outline). A set of blocks Y , |Y | = r, is hit by 4
3rd keys with h1 or h2

if at most n− 4
3rd keys avoid Y with both hash functions h1 and h2. Let F (r)

denote the probability that there is a set Y of size r such that there are more
than n− 4

3rd keys that avoid Y with both hash functions. Employing (13):

F (r) ≤
(
m

r

)(
n
(
1− r

m

)2

n− 4
3rd

)n− 4
3 rd (

n− n
(
1− r

m

)2

4
3rd

) 4
3 rd

. (4)

By n = dm/(1 + ε), the binomial bound (11), and the substitution r = αm we
observe that F (r) < βm for a suitable 0 < β < 1, provided that

d >
α lnα + (1− α) ln(1− α)(

1
1+ε −

4
3α

)(
2 ln(1− α)− ln

(
1− 4(1+ε)α

3

))
+ 4α

3 ln
(

3(2−α)
4(1+ε)

) (5)

174 M. Dietzfelbinger and C. Weidling

for all α between ε
1+ε and 5

13 . The right-hand side of (5) can be shown to be
bounded by 90.1 ln(1/ε), for 0 ≤ ε ≤ 0.1 and ε

1+ε ≤ α ≤ 5
13 . &'

Lemma 3. If the digraph G induced by S being stored meets the conclusion of
Lemma 2, then there is some k∗ ≤ 2 + log 4

3

(
5(1+ε)

13ε

)
such that |Yk∗ | > m

2 .

Proof. Assume k ≥ 1 and |Yk−1| ≤ 5
13m. Consider the set Xk of keys that

hit Yk−1. By the assumption, |Xk| ≥ 4
3d|Yk−1|. By definition, all keys x ∈ Xk

are stored in blocks in Yk. Only d|Yk−1| of them can be stored in Yk−1, so
at least 1

3d|Yk−1| of them must be stored in Yk − Yk−1, which implies that
|Yk − Yk−1| ≥ 1

3 |Yk−1|; hence |Yk| ≥ 4
3 |Yk−1|.

Now let k′ be minimal with |Yk′ | > 5
13m. By the above, it is easy to see that

either |Yk′ | > 1
2m (then we let k∗ = k′) or |Yk′+1| ≥ 4

3 ·
5
13m > 1

2m (then we let
k∗ = k′ + 1). (This holds even if 5m/13 < |Yk′ | ≤ m/2, since then we apply the
conclusion of Lemma 2 to a subset of Yk′ of size +5m/13,.)

Because there are exactly εn free cells in the table, we have |Y0| ≥ εn
d =

ε
1+εm. Thus, |Yk| ≥ ε

1+εm
(

4
3

)k for 0 ≤ k < k′, whence we get k∗ ≤ 1 + k′ ≤
2 +

⌊
log 4

3

(
5(1+ε)

13ε

)⌋
. &'

Lemma 4. Let d ≥ 8. Then there is some β < 1 such that with probability
1−O (βm) we have that each set Y of blocks with m

2 ≤ |Y | ≤ m− 4m
e4d3 is hit by

at least n− 9
10d(m− |Y |) keys.

Proof (Outline). Let Y = [m] − Y and r = |Y |. By (13) and (11) we find that
the probability that there is a set Y with r = m − |Y | in [4m

e4d3 ,
m
2] such that

more than 9
10dr keys hit Y with both hash functions is bounded by

mm

rr(m− r)m−r

(
10r

9(1 + ε)m

) 9
10 rd (

10(m2 − r2)
(10m− 9r(1 + ε))m

) dm
1+ε−

9
10 rd

. (6)

We denote the expression in (6) by f(r, ε). It is not hard to see that f(r, ε) is
decreasing in ε, thus we can concentrate on the case ε = 0. After replacing ε
by 0 in (6), and substituting α = r/m, an expression for a function g(α, d)m

results. For each fixed α the function g(α, d) is decreasing in d. A look at
a Maple plot reveals that g(α, 8) does not exceed max{g(4

e4d3 , 8), g(0.5, 8)} =
g(4

e4d3 , 8) < 1. &'

Lemma 5. If G meets the conclusions of Lemmas 2 and 4, and k∗ satisfies
|Yk∗ | ≥ m

2 , then there is some �∗, �∗ = O(log d) such that m− |Yk∗+�∗ | ≤ 4m
e4d3 .

Proof. The induction proof, which uses Lemma 4, is omitted. &'

The following lemma states a standard expansion property of bipartite ran-
dom graphs, see [15, p. 109].

Balanced Allocation and Dictionaries 175

Lemma 6. Let d ≥ 20, and γ = 4
e4d3 . With probability 1 − O(m−d/2) we have

that each set X ⊆ S of keys with d ≤ |X| ≤ γdm hits more than Δ|X| different
blocks, where Δ = 1

d1/3 + 1
d .

Proof. The probability that there is a set X of j keys, d ≤ j ≤ γdm, that hits
no more than Δj blocks can be bounded by∑

d≤j≤γdm

(
n

j

)(
m

+Δj,

)(
+Δj,
m

)2j

≤
∑

d≤j≤γdm

(
en

j

)j (
em

Δj

)Δj (
Δj

m

)2j

. (7)

Straightforward simplifications, using that d ≥ 20 implies that Δ < 1
2 , lead to

the bound
∑

d≤j≤γdm

(
(e/2)3/2 · d ·

√
j/m

)j

for the right hand side in (7). For
j = d, d + 1, . . . , +γdm, the terms in this sum are geometrically decreasing by a
factor smaller than 1

2 , hence the sum is bounded by O(m−d/2). &'

We conclude that for k ≥ k∗ + �∗ the complements of the sets Yk shrink fast.

Lemma 7. Assume that |[m]−Yk∗+�∗ | ≤ γm and that the hash functions h1, h2

meet the conclusion of Lemma 6. Then the cardinalities aj = |[m] − Yk∗+�∗+j |,
j = 0, 1, 2, . . ., satisfy aj ≤ d−2/3 · aj−1 for j = 1, 2, 3, Hence,

|[m]− Yk∗+�∗+j | ≤ γd−2j/3m, for j = 0, 1, 2,

(In particular, there is some L with Yk∗+�∗+L �= [m] = Yk∗+�∗+L+1.)

Proof. Fix j ≥ 1. If aj = 0, there is nothing to prove; thus assume aj ≥ 1.
Then by the definitions, all aj nodes in [m] − Yk∗+�∗+j are full. That means
that the set Ej of edges in G with tails in [m] − Yk∗+�∗+j has cardinality daj .
By the assumption that the conclusion of Lemma 6 is satisfied the edges in Ej

touch at least Δdaj = (d2/3 + 1)aj nodes overall. Only aj of these nodes are in
[m] − Yk∗+�∗+j . By the definition of the sets Yk, no edge in G can run from a
node in [m]− Yk∗+�∗+j to a node in Yk∗+�∗+(j−1). Hence the heads of the edges
in Ej hit at least (d2/3 +1)aj−aj = d2/3aj distinct nodes in [m]−Yk∗+�∗+(j−1),
which implies that aj−1 ≥ d2/3aj . &'

Lemma 8. Assume Y0, Y1, . . . , Yk∗ , . . . , Yk∗+�∗ , . . . , Yk∗+�∗+L are fixed and ful-
fill the expansion properties from Lemmas 3, 5, and 7. Assume further that
h1(x), h2(x) are random values in [m]. Then the expected number of edges probed
in the BFS insertion procedure for x is (1/ε)O(log d).

Proof. Let Nx be the number of edges of G probed when x is inserted. Let
σk =

∑
0<κ≤k dκ < 2dk, for k ≥ 0, and kx = min{k | h1(x) ∈ Yk or h2(x) ∈ Yk}.

Then the number of edges of G probed when inserting x is not larger than 2σkx
.

Thus, it is sufficient to estimate E(σkx
). We have

E(σkx
) =

∑
q≥1

Prob(σkx
≥ q) =

∑
k≥1

Prob(kx ≥ k) · dk. (8)

176 M. Dietzfelbinger and C. Weidling

The last sum in (8) is estimated in two pieces. We have∑
1≤k≤k∗+�∗

Prob(kx ≥ k) · dk ≤ (k∗ + �∗)dk∗+�∗ . (9)

For the rest of the sum in (8), we notice that by Lemma 7∑
k∗+�∗<k≤k∗+�∗+L

Prob(kx ≥ k) · dk = dk∗+�∗ ·
∑

1≤j≤L

Prob(kx ≥ k∗ + �∗ + j) · dj

≤ dk∗+�∗ ·
∑

1≤j≤L

Prob(h1(x), h2(x) ∈ [m]− Yk∗+�∗+(j−1)) · dj

≤ dk∗+�∗ ·
∑

1≤j≤L

(d−2(j−1)/3)2 · dj < 2dk∗+�∗+1. (10)

The sum of the parts in (9) and (10) is bounded by (k∗ + �∗ + 2)dk∗+�∗+1 =
O(d)O(log(1/ε)) = (1/ε)O(log d). This shows that the expected number of edges
probed in inserting x is bounded by (1/ε)O(log d). &'

To prove Theorem 2 we note that with probability 1 − O(m−d/2) the graph
G satisfies the conclusions of Lemmas 2, 4, and 6. If this is the case, then the
expansion properties of Lemmas 3, 5, and 7 hold, and we may apply Lemma 8
to obtain the claimed bound on the expected insertion time. If G does not have
the expansion properties from Lemmas 3, 5, and 7, and Y0 is reachable from
{h1(x), h2(x)}, the BFS will find an augmenting path in time O(n) — this gives
a contribution of O(m1−d/2) to the expected insertion time. In case Y0 is not
reachable from {h1(x), h2(x)}, the functions h1, h2 are not suitable for S ∪ {x},
and we must perform a total rehashing for all these keys. By Theorem 1 this
happens with probability O(m1−d). It is easily seen that even if we simply insert
the keys by the BFS procedure, and rehash again if necessary, the expected time
for rebuilding the table is O(n). Hence, this last case contributes O(m2−d) to
the expected insertion cost.

5 Conclusion

We obtained new results for a natural data allocation problem arising in dif-
ferent contexts: balanced allocation with two choices, edge orientation in ran-
dom graphs, dynamic dictionaries with worst case constant access time. It is
an intriguing open problem to analyze at least one variant of the random-
walk insertion procedure from Section 2.2, if possible establishing a bound of
O(ln(1/ε)) on the expected number of blocks probed, while maintaining the
bound d = O(log(1/ε)).

Acknowledgement. Remarks from several anonymous referees, which helped
in improving the exposition, are gratefully acknowledged.

Balanced Allocation and Dictionaries 177

References

1. Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. Balanced allocations. SIAM J.
Comput., 29:180–200, 2000.

2. P. Berenbrink, A. Czumaj, A. Steger, and B. Vöcking. Balanced allocations: The
heavily loaded case. In 32nd STOC, pp. 745–754. ACM, 2000.

3. A. Czumaj, F. Meyer auf der Heide, and V. Stemann. Contention resolution in
hashing based shared memory simulations. SIAM J. Comput., 29:1703–1739, 2000.

4. A. Czumaj, Ch. Riley, and Ch. Scheideler. Perfectly balanced allocation. In
RANDOM-APPROX, LNCS 2764, pp. 240–251. Springer, 2003.

5. R. Diestel. Graph Theory. Springer, New York, 1997.

6. M. Dietzfelbinger and F. Meyer auf der Heide. Dynamic hashing in real time.
In Buchmann, J., et al., editor, Informatik · Festschrift zum 60. Geburtstag von
Günter Hotz, pp. 95–119. B. G. Teubner, 1992.

7. M. Dietzfelbinger and C. Weidling. Balanced allocation and dic-
tionaries with tightly packed constant size bins. Technical Report,
http://www.tu-ilmenau.de/fakia/md-papers.html, 2005.

8. M. Dietzfelbinger and P. Woelfel. Almost random graphs with simple hash func-
tions. In 35th STOC, pp. 629–638. ACM, 2003.

9. D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis. Space efficient hash tables with
worst case constant access time. Theory of Computing Systems, 38:229–248, 2005.

10. A. Frieze. Personal communication in [1]. 1990.

11. T. Hagerup and Ch. Rüb. A guided tour of Chernoff bounds. Inf. Process. Lett.,
33:305–308, 1990.

12. R. Karp. Random graphs, random walks, differential equations and the probabilis-
tic analysis of algorithms. In 15th STACS, LNCS 1373, pp. 1–2. Springer, 1998.

13. R. Karp, M. Luby, and F. Meyer auf der Heide. Efficient PRAM simulations on a
distributed memory machine. Algorithmica, 16:517–542, 1996.

14. M. Mitzenmacher, A. W. Richa, and R. Sitaraman. The power of two random
choices: A survey of techniques and results, vol. 1, pp. 255–312. In Rajasekaran et
al., editor, Handbook of Randomized Computing. Kluwer Academic Press, 2001.

15. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

16. A. Östlin and R. Pagh. Uniform hashing in constant time and linear space. In
35th STOC, pp. 622–628. ACM, 2003.

17. R. Pagh and F. F. Rodler. Cuckoo hashing. J. Algorithms, 51:122–144, 2004.

18. R. Panigrahy. Efficient hashing with lookups in two memory accesses. In 16th
SODA. ACM-SIAM, 2005.

19. P. Sanders. Fast priority queues for cached memory. In 1st Workshop ALENEX,
LNCS 1619, pp. 312–327. Springer, 1999.

20. P. Sanders. Reconciling simplicity and realism in parallel disk models. In 12th
SODA, pp. 67–76. ACM-SIAM, 2001.

21. P. Sanders, S. Egner, and J. Korst. Fast concurrent access to parallel disks. In
11th SODA, pp. 849–858. ACM-SIAM, 2000.

22. A. Siegel. On universal classes of fast high performance hash functions, their time-
space tradeoff, and their applications. In 30th FOCS, pp. 20–25. IEEE, 1989.

178 M. Dietzfelbinger and C. Weidling

A Some Inequalities

We will be using the following upper bounds for binomial coefficients:(
n

k

)
≤ nn

kk(n− k)n−k
=

(
1

μμ(1− μ)1−μ

)n

, for 0 ≤ k ≤ n, (11)

where μ = k/n, and (
n

k

)
≤

(e · n
k

)k

. (12)

Further, a standard version of the Chernoff-Hoeffding bounds is used repeatedly:
If X1, . . . , Xn are independent 0-1-valued random variables and X = X1 + · · ·+
Xn, then for E(X) ≤ a ≤ n we have

Prob(X ≥ a) ≤
(

E(X)
a

)a (
n−E(X)

n− a

)n−a

. (13)

(For a proof, see e.g. [11].)

Worst Case Optimal Union-Intersection
Expression Evaluation

Ehsan Chiniforooshan, Arash Farzan, and Mehdi Mirzazadeh

School of Computer Science, University of Waterloo
{echinifo, afarzan, mmirzaza}@cs.uwaterloo.ca

Abstract. We consider the problem of evaluating an expression consist-
ing of unions and intersections of some sorted sets. Given the expression
and the sizes of the sets, we are interested in the worst-case complexity of
evaluating the expression in terms of the sizes of the sets. We assume no
set is repeated in the expression. We show a lower bound on this problem
and present an algorithm that matches the lower bound asymptotically.

1 Introduction

In this paper, we study the problem of evaluating a set expression consisting
of a number of union and intersection operators. Sets are known to be sorted
and we also assume that no set is repeated more than once in the input. While
the worst case complexity in terms of the size of the whole combined input is
straightforward, we measure the running time of algorithms as a function of the
sizes of the input sets; we are interested in a worst-case optimal algorithm.

The problem arises in the context of evaluating search queries in text database
systems; search engines maintain a set S(w) for each word w consisting of all doc-
uments that contain w [1, 7, 11]. Thus, answering to a query such as “Database
OR Search AND Engine”, requires evaluation of the expression S(Database) ∪
(S(Search) ∩ S(Engine)). Note that the queries and their corresponding expres-
sions can become very complicated if the queries are automatically generated [6].

Different variations of the problem have been studied before. The simplest
case which is finding intersection or union of two sets is equivalent to the problem
of merging two ordered sets of sizes m and n, which was studied by Hwang and
Lin [5]. They present an algorithm that matches the information theoretic lower
bound

⌈
log

(
m+n

n

)⌉
. They choose sorted arrays as the format of the input and

a list of cross references (pointers) between arrays as the output format. Later
Brown and Tarjan [2, 3] and Pugh [9] showed how data structures such as AVL-
tree, B-tree, or skip-list can be used as the format of the input and output.

Later, Demaine, López-Ortiz, and Munro [4], studied a somewhat more gen-
eral case in which the number of input sets can be more than two. The expressions
they looked at, though, consist of just one type of operand: they are either all
unions or all intersections. Their algorithm is adaptive; they do not focus on the
worst-case complexity of the problem. They define the difficulty of every possible

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 179–190, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

180 E. Chiniforooshan, A. Farzan, and M. Mirzazadeh

input I as a function D(I), which measures how complicated a proof for the in-
put I is; they focus on minimizing the maximum value of f(I)

D(I) among all inputs
I of size n, where f(I) is the running time of the algorithm on I. The adaptive
problem was generalized by Mirzazadeh [8] to general expressions consisting of
both union and intersection operators.

Neither of the algorithms that we mentioned work optimally in the worst
case in terms of the sizes of the input sets. In this paper, we consider the worst
case complexity as mentioned. We present a lower bound and then an algorithm
that matches the lower bound.

The rest of this paper is organized as follows: In Section 2 we give some
definitions and preliminary observations. In Section 3, Theorem 4, we present
our lower bound and finally, in Section 4, the optimal algorithm is explained.

2 Definitions and Preliminaries

We study the problem of evaluating a set expression when the inputs are ordered
sets and the output is required to be an ordered set as well. We formally define
an input as a pair (T, Γ), where T and Γ are defined as follows. T is an union-
intersection tree representing the expression: every internal node v is assigned a
union or an intersection operator π(v) and each leaf v of T represents an input
set and is assigned an integer size(v). We call T the signature of the input I. Also,
Γ is an assignment function that assigns an ordered set of size size(v) to each
leaf v. For an internal node v with k children u1, . . . , uk, we denote the union or
intersection of Γ (u1), Γ (u2), . . . , and Γ (uk), depending on the operator assigned
to v, by Γ (v). By the result of an input (T, Γ) we mean the set Γ (Root(T)). We
denote the set of nodes of a tree T and the set of leaves of T by VT and leaves(T),
respectively. Without loss of generality, we assume that every internal node has
at least two children, and that the operator assigned to every internal node other
than root differs from the operator assigned to its parent.

In this paper we focus on the comparison-based algorithms which are those
that, for any input I = (T, Γ), use only comparisons in the input sets to compute
the result. In our model, the algorithm has oracle access to Γ , which means that
the algorithm reads the signature of the input and can later submit queries of
the form (x, y) to the oracle, where x and y are members of the input sets. Then,
the oracle informs the algorithm of the relative values of x and y, that is, the
algorithm is told whether x is less than, equal to, or greater than y according to
Γ . In such situations we say x and y are touched by the algorithm. We show the
interaction between the algorithm A and the oracle O on the input (T, Γ) by
〈A,O(Γ)〉(T) = (q1, r1, . . . , qk, rk, R) where qi is the ith query of the algorithm,
ri is the response of O to the ith query, and R = Γ (Root(T)) is the result. We
expect the algorithm to specify ranges of input sets that appear in the result,
rather than to write all elements of the result. This allows us to generate the
output in sub-linear time if possible. More precisely, we define the output format
below. We use S[i] to denote the ith element of a sequence S.

Worst Case Optimal Union-Intersection Expression Evaluation 181

Definition 1. Consider an input I = (T, Γ) and a set S. A cross reference
representation of S is a sequence of triples (v1, b1, b

′
1), . . . , (vn, bn, b

′
n) where vi

is a leaf of T and 1 ≤ bi ≤ b′i ≤ size(vi), for every 1 ≤ i ≤ n, Γ (vj)[b′j] <

Γ (vj+1)[bj+1], for every 1 ≤ j < n, and S = ∪n
i=1 ∪

b′i
j=bi

{Γ (vi)[j]}.

A leaf v of an expression tree T is a shallow leaf if v is a child of Root(T) and
π(Root(T)) = ∪.

We define
(

s
s1,...,sn

)
, when s ≤

∑n
i=1 si as the number of ways to select sets X1,

. . . , Xn of sizes s1, . . . , sn, respectively, such that Xi’s are subsets of a given set
X of size s and ∪n

i=1Xi = X. Note that this definitions matches definition of the
well known notation

(
s

s1,...,sn

)
when

∑n
i=1 si = s. Also for a union-intersection

tree, we define functions ψ∗ and ψ over the set of nodes of T as follows: for a
leaf v we define ψ(v) = size(v). If v is an internal node and u1, . . . , uk is the list
of children of v, we define ψ(v) = mink

i=1 ψ(ui) when v is an intersection node,
and ψ(v) =

∑k
i=1 ψ(ui), otherwise. In fact ψ(v) is the maximum potential size

of Γ (v). Also, for every node v we define ψ∗(v) = minψ(u), where the minimum
is taken over all ancestors u of v, including v itself. Note that the values of ψ
and ψ∗ for all nodes of an expression tree T can be evaluated in time O (|VT |).

Observation 1. Suppose v is an internal node with k children u1, . . . , uk.∑k
i=1 ψ∗(ui) ≥ ψ∗(u) if u is a union node and

∑k
i=1 ψ∗(ui) ≥ 2ψ∗(u), otherwise.

We present an algorithm such that for every signature T , the maximum
running time of the algorithm, over all possible inputs with the signature T , is
minimum.

3 Lower Bounds

In this section, fixing an arbitrary union-intersection tree T , we present a lower
bound on the maximum number of comparisons performed by any algorithm
when it is run on inputs with the signature T . For this purpose, we design an
adversary B that for any given algorithmA and any signature T , as the algorithm
A proceeds and compares members of the input, B fixes relative values of more
members and responds toA. In this way, an assignment function Γ is constructed
gradually and we make sure that there is at least one Γ such that the responses
of B to A are consistent with Γ . For two members x and y, if some certain
conditions (which will be defined later in this section) hold, we say x and y are
similar. We suppose that when a query (x, y) is submitted, in addition to relative
values of x and y, A is informed of whether x and y are similar or not. It is clear
that any lower bound for algorithms working in this new model is a lower bound
for algorithms working in the comparison model as well.

Considering a set OT of size ψ∗(Root(T)), B responds queries such that OT

becomes the result of the final input. We spread the elements of OT down to
the nodes of T such that every vertex v is labeled by a subset of OT of size
ψ∗(v) in such a way that for every union (intersection) vertex v, the union (the
intersection) of labels of its children is the label of v. As a simple observation,

182 E. Chiniforooshan, A. Farzan, and M. Mirzazadeh

suppose that S is the set of leaves having a certain member s of OT in their
“labels”. Then, if s appears in the set associated with every leaf in S, s will
appear in the result. Responses of B will be such that rather than appearing
in sets associated with all leaves in S, s will appear in the sets associated with
leaves in just a subset of S, yet still s will appear in the result of the input. This
subset will be determined based on the behavior of A.

Now we define the above labeling more formally. For convenience, rather
than using real numbers, we will use triples of integers for representing mem-
bers of our sets. Triples are compared to each other according to their lexico-
graphic order. We define the set OT as {(1, 0, 0), (2, 0, 0), . . . , (m, 0, 0)} where
m = ψ∗(Root(T)). Given a triple x = (i, j, k), we call i, j, and k the first, the
second, and the third coordinates of x, respectively.

Definition 2. Given a signature T , Λ : VT �→ 2OT is a proof labeling for T if it
has the following properties: First, Λ(Root(T)) = OT . Second, for every vertex
v ∈ VT , |Λ(v)| = ψ∗(v). Third, if v ∈ VT − leaves(T) and u1, . . . , uk are children
of v, ∪k

i=1Λ(ui) = Λ(v) if v is a union node; otherwise, Λ(ui) = Λ(v), for every
i, 1 ≤ i ≤ k.

B chooses a proof labeling Λ arbitrarily from all possible labellings. Then, B
divides the sequence of members of every leaf v of T into ψ∗(v) regions of sizes⌊

size(v)
ψ∗(v)

⌋
or

⌈
size(v)
ψ∗(v)

⌉
. For a leaf v and integers i and a, if the ith biggest member

of Λ(v) is (a, 0, 0), then the ith region of v is called an a-region. For any a and
any a-region R, B sets the first coordinates of all members of R to a at the
beginning. Thus, given a member x of an a-region and a member y of a b-region
such that a �= b, whenever a query (x, y) is submitted, B can answer the query
without knowledge on the second and the third coordinates.

For any region R, the second coordinate of exactly one element of R, which
is called the key member of R, will be zero. The strategy is to determine the
second coordinates of triples of a region R in such a way that A does not touch
the key member of R before touching log |R| members of R where |R| denotes
the length of R. The second coordinates of members of a region are all distinct
and the third coordinates of non-key members are zero. Moreover, the third
coordinates of the key members are determined in such a way that A needs to
touch all key members (actually we will prove a stronger fact).

Next, we explain the strategy of determining second coordinates of the triples.
For every region R we consider a variable S storing a subsequence in R, initially
R. At any point, the following condition will hold: The second coordinate of
every member in R \ S is already fixed, the second coordinate of every member
of R placed before members of S is at most −|S|, and the second coordinate
of every member of R placed after members of S is at least |S|. Now whenever
a member s of S is touched, if s is the only member of S, B sets its second
coordinate to zero. Otherwise, depending on whether s is in the first half or in
the second half of S, B considers members of S placed after or before S, fixes
second coordinates of these members as explained in Figure 1, and deletes them
from S. Then, by touching each member of R the length of S is divided by at

Worst Case Optimal Union-Intersection Expression Evaluation 183

most two. Since the value of 0 is not assigned to the second coordinate of any
member unless |S| = 1, log |R| members of R have already been touched at the
time the key member of R is being touched. Whenever a member is touched
in which the second coordinate is not determined before, before attempting to
answer the query B, determines the second coordinate according to the method
we described here. Therefore, we have the following theorem.

Theorem 1. If all key members of L ⊆ leaves(T) are touched by A in 〈A,B〉(T),
A has submitted at least

∑
v∈L ψ∗(v) · lg(size(v)

ψ∗(v) + 1) queries.

From now on, when we talk about the strategy of B for responding a given
query (x, y), we assume second coordinates of x and y are determined.

Fig.1. How to determine the second coordinates of members

if |S| = 1 then
– set the second coordinate of s equal to zero;
– set S equal to the empty sequence;

else
suppose s is the ith member of R;
if i < |S| − i + 1 then

– assign values −(|S| − 1), −(|S| − 2), . . . , −(|S| − i) to the second
coordinates of the first i members of S;
– Remove the first i members of S from it;

else
– assign values i− 1, i, . . . , |S| − 1 to the second coordinates of the last
|S| − i + 1 members of S;
– Remove the last |S| − i + 1 members of S from it;

Given a query (x, y) if x and y are from two a-regions, for some a, and the
second coordinate of one of x or y is non-zero (that is at most one of x and y is
a key member), B has enough information to answer the query. We define two
members x and y to be similar if x and y are key members of two a-regions, for
some a. As noted before, A will be informed if x and y are similar. In Subsection
3.1 we show that B can respond to queries on similar members in such a way
that at the end for each member x, A knows which members are similar to x.

Theorem 2. For any signature T , and any deterministic comparison-based al-
gorithm A, if after an interaction 〈A,B〉(T) = (q1, r1, . . . , qk, rk, R), A knows
all sets of similar members, then k ≥ 1

2 (l1 + log6 l2) where l1 and l2 are defined
below, L is the set of non-shallow leaves of T , and u1, . . . , uk are children of v
in the expressions.

l1 =
∑

v∈L ψ∗(v) · lg(size(v)
ψ∗(v) + 1)

l2 =
∏

v:π(v)=∪
(

ψ∗(v)
ψ∗(u1),...,ψ∗(uk)

)

184 E. Chiniforooshan, A. Farzan, and M. Mirzazadeh

Proof. For any proof labeling Λ that B chooses, any key member of a non-
shallow leaf is similar to at least another member. Therefore, A has touched all
key members of non-shallow leaves of T in 〈A,B〉(T). Thus, by Theorem 1, we
have k ≥ l1.

Also, for any member of the result R, A is aware of all similar members to
that member to that member. This means that A has enough information to
figure out what proof labeling B has chosen and thus Λ can be expressed as
a function of the sequence of responses of B, (r1, . . . , rk). Hence, (r1, . . . , rk)
is different for different Λ’s. So, since ri can have only six different values and
the number of possible proof labellings is l2, we have k ≥ log6 l2. Putting this
upper bound for k together with the previous upper bound we conclude that
k ≥ 1

2 (l1 + log6 l2). &'

3.1 The Game

In this part we fix an a and focus on answering queries on key members of a-
regions (which are similar). Let’s focus on the subtree of T consisting of leaves
of T that contain a-regions and their ancestors, and ignore the rest of T . We
have a two player game here between A and B, in which A submits queries
between key members of a-regions until it knows weather a key member of an
a-region appears in the result; B aims to prevent the game from finishing before
A has enough information for calculating the set of members similar to a key
member of an a-regions. The configuration of the game at some specific point
is a tuple (T ,G) where T is a union-intersection tree in which the root is not a
union node or has only one child and G is a graph defined on leaves of T storing
the history of queries submitted. Each leaf is representing only one member
(the key member of its a-region, in our application) and thus we can view a
query as a pair of leaves of T . Moreover, each edge of G is labeled with one
of <, =, or >, demonstrating the respond to that query. A is supposed to not
submit a query twice during the game. v ∈ leaves(T) is G-identical to u ∈
leaves(T) if there is a path from v to u in G such that labels of all edges in the
path are =.

The game finishes when the root in (T ,G) has a witness where a witness of
a node v is a subset of nodes recursively defined as follows. The only witness of
a leaf v is {v}. A set S is a witness of a union node v if v ∈ S and S \ {v} is a
witness of a child of v. For an intersection node v, S is a witness of v if v ∈ S
and every child u of v has a witness Wu such that S = {v} ∪

⋃
u Wu and every

two leaves in S are G-identical. When a game finishes, B wins if G is connected
and the root has a witness; otherwise A is the winner. We prove that B has a
winning strategy.

Moreover, let component(u) be the set of all leaves of T that are connected
to u including u itself. By “(T ,G) can be reduced to (T ′,G′)” we mean that if
B has a wining strategy in (T ′,G′), then B has a winning strategy in (T ,G).
In addition, we say that a vertex of T is unfinished if either it is an internal
node or if it is the only version of its connected component in G. We define four
operations which can be used to reduce a game instance to a smaller one.

Worst Case Optimal Union-Intersection Expression Evaluation 185

Throwing away: A leaf u ∈ leaves(T) can be thrown away if u is a child of
a union node and is unfinished. By this action, we remove u from T and G.
The resulted game is denoted by throwu(T,G).

Joining: A leaf u ∈ leaves(T) can be joined to its sibling v ∈ leaves(T) if u is
a child of an intersection node and v is G-identical to u. By this action, we
remove u from T and G, and we denote the resulted game by joinu→v(T,G).

Contracting: An internal node x ∈ VT − (leaves(T) ∪ {Root(T)}) that is a
child of p ∈ VT can be contracted if it has only one child, say q ∈ VT . By this
action, we remove x from T and make q a child of p. Otherwise, we remove
both x and q from T and make the children of q children of p. We denote
the resulted game by contractx(T,G).

Dispersing: An internal node x ∈ VT − (leaves(T) ∪ {Root(T)}) can be dis-
persed if all its children u1, . . . , uk are leaves, |component(ui)| > 1 for 1 ≤
i ≤ k, and there is at least one child uj of x that is not G-identical to any
other leaf. Moreover, no vertex can be contracted or joined to another ver-
tex. By this action we remove u1, . . . , uk from T and G, and also, we remove
x from T . The resulted game is denoted by dispersex(T,G).

The proof of the next lemma is omitted due to the lack of space.

Lemma 1. Consider a game (T ,G) in which G has an edge between every two
leaves that are G-identical to each other. Then, if one of the above four operations
can be applied on (T ,G) to obtain (T ′,G′), (T ,G) can be reduced to (T ′,G′).

Theorem 3. Suppose that (T,G) is a game. Then, if the following three condi-
tions hold B has a winning strategy.

1. Labels of all edges of G are =.
2. If x is an internal node of T with label ∪, then all its children are unfinished.
3. If x is an internal node of T with label ∩, then at least one of its children is

unfinished.

Proof. Suppose we have a game (T ,G) such that the number of vertices of T
plus the number of connected components of G is n. We can assume that T
does not have any internal node that can be contracted and also no leaf can
be joined to another leaf in T . Otherwise, we can reduce (T ,G) to a smaller
game by either contraction or joining and because the smaller game will satisfy
all three properties, B has a winning strategy. In other words, T does not have
any internal node that has only one child. Also, no two children of an internal
node can be in the same connected component of G. Furthermore, without loss
of generality we can assume that G has an edge between every two leaves that
are G-identical to each other; otherwise, (T ,G) can be reduced to a game that
has this property by adding more edges. Because of properties 2 and 3, (T ,G)
has no witness, and thus, A has not won yet. Therefore, A must submit a query
(u, v) where u, v ∈ leaves(T).

The strategy that B should follow to answer A is summarized in Table 1. In
the table, if a leaf u is labeled with “F”, “N”, or “L” it means that u is a finished

186 E. Chiniforooshan, A. Farzan, and M. Mirzazadeh

Table 1. The strategy of B for answering

F (u) F (v) u v Response Justification
∪ × N × <> (T ,G) is reduced to the smaller game throwu(T ,G).
∩ ∩ F F = The number of components of G is reduced.
∩ ∩ N F = The number of components of G is reduced.
∩ ∩ N N = The number of components of G is reduced.
∩ ∩ L × <> (T ,G) is reduced to the smaller game disperseF (u)(T ,G).

leaf, an unfinished leaf that has another unfinished sibling, or an unfinished leaf
that does not have any other unfinished sibling, respectively. Note that those
cases which can be obtained from one of the cases in Table 3.1 by switching u
and v are omitted due to the symmetry. &'

Having proved Theorem 3, we know the adversary can respond to queries on
key members of a-regions such that the algorithm knows all members similar to
the key member of each a-region, for every 1 ≤ a ≤ m, and also that (a, 0, 0) is
in the result of the root. Thus, Theorem 2 yields the next theorem.

Theorem 4. For any signature T and any deterministic comparison-based algo-
rithm A, there is an input with the signature G such that A submits Ω(l1 +lg l2)
queries where l1 and l2 are defined as in Theorem 2.

4 The Worst-Case Optimal Algorithm

In this section, we present our algorithm that matches the lower bound in Section
3. First we study two special cases separately; these special problems come in
handy in solving the general problem.

The first special case has the form X1 ∪X2 ∪ . . . ∪Xk. This problem in case
when k = 2 has been studied before [5]; to compute A∪B, tight lower and upper
bounds of Θ

(
lg

(|A|+|B|
|A|

))
exist. So suppose k > 2. Defining si = |Xi|, for 1 ≤ i ≤

k and s =
∑k

i=1 si, w. l. o. g., we suppose s1 = max{s1, s2, . . . , sk}. The way we
compute this union of k sets is as follows: we temporarily ignore the first set (i.e.
X1) and compute the union of

⋃k
i=2 Xi in time O((s−s1) lg(k−1)) by using the

well-known k-way merging algorithm [10]. Then, we take the union of X1 with
the result of the merge. The union can be found in time O

(
lg

(
s
s1

))
, as described

by Hwang and Lin [5], but the result is in the cross reference format. It can be
proved that (s − s1) lg(k − 1) ∈ O

(∑k
i=2 lg

(
s
si

))
which is in O

(
lg

(
s

s1,...,sk

))
according to the following lemma (the proof is omitted).

Lemma 2. If s ≤
∑n

i=1 si, then lg
(

s
s1,...,sn

)
≥ 1

2

∑n
i=1 lg

(
s
si

)
. &'

Lemma 3. A cross reference representation of the union of sets X1, X2, . . . , Xk

can be computed in time O
(
lg

(
s

s1,...,sk

))
where si = |Xi| and s =

∑k
i=1 si. &'

Worst Case Optimal Union-Intersection Expression Evaluation 187

The complete proof of Lemma 3 is omitted. In the end, we expand the ranges
of the output to have the union in the sorted list format again. The time this
takes is proportional to the size of the output, which is at most O(

∑k
i=1 |Xk|).

This yields the following theorem:

Theorem 5. A sorted array representation of the union of sets X1, X2, . . . , Xn

can be computed in time O
(
s + lg

(
s

s1,...,sk

))
where si = |Xi| and s =

∑k
i=1 |Xi|.

&'
The second special case has the form Y ∩(X1∪X2∪. . .∪Xk), given that |Y | ≥

|Xi| for each i. This problem for the case when k = 1 (i.e. computing Y ∩X) has
been studied before [5] and tight lower and upper bounds of Θ

(
|X| lg |X|+|Y |

|X|

)
already exist. To solve the problem for k > 1, we first create a boolean array
B of size |Y |, so that each element y in Y has an associated element in the
array (B[y]). We initialize all the elements in it to false; we, then, compute
the intersection of each Xi with Y separately: Yi = Y ∩ Xi. According to the
result just mentioned, this takes O

(∑k
i=1 |Xi| lg |Xi|+|Y |

|Xi|

)
time. When Yi’s are

all computed, we consider them one by one and for each Yi, for all y ∈ Yi, we set
B[y] = true. Then we scan array B and return, as output, each element b iff B[b]
is true. It is clear that scanning through all Yi’s will take

∑k
i=1 |Y ∩Xi| which

is less than the time consumed for all Yi’s. Also creating B in the beginning and
scanning it in the end takes time O(|Y |). Therefore:

Theorem 6. The result set of Y ∩(X1∪X2∪. . .∪Xk), given that |Y | ≥ |Xi|, for
every 1 ≤ i ≤ k, can be computed in O

(
|Y |+

∑k
i=1 |Xi| lg |Xi|+|Y |

|Xi|

)
time. &'

We now turn to the general case and describe the algorithm. We generalize
the problem a little and define two types of problems: in the first type, we are
interested in computing Γ (v) ∩ U , for a given “universal set” U . In the second
type, we are solely asked to compute Γ (v). The procedures Compute (v, U) and
Compute(v) (Figure 2) are designed to solve these two types of problems. The
intuition behind the universal set U in Compute (v, U) is the following: consider
an intersection node v with its children u1, . . . , uk. Suppose we somehow have
processed the subtree rooted at ui for some i, and have obtained Γ (ui). It makes
perfect sense to pass Γ (ui) as a universal set to subtrees rooted at children of
v other than ui so that in reporting back elements, they confine themselves to
the universal set and ignore those that do not appear in the universal set. As
for Compute(v) it turns out that, for some nodes v, the size of the possible
result of a node is less than any universal set we can possibly provide with in
advance. In these cases we do not pass any universal set as it will not save any
computation time.

Next, we investigate the correctness and the running time of the algorithm.
The following theorem can be proved easily by considering different calls to
procedures Compute(v, U) and Compute(v) in Algorithms 1 and 2.

Theorem 7. At each invocation of the procedure Compute(v, U) in Algorithm
1, the precondition |U | ≤ ψ∗(v) holds and the procedure computes Γ (v) ∩ U .

188 E. Chiniforooshan, A. Farzan, and M. Mirzazadeh

Fig. 2 The general algorithm

Algorithm 1 Computing the inter-
section of U with the result set of the
subtree rooted at v (i.e. Γ (v) ∩ U).

Algorithm 2 Computing the result
set of the subtree rooted at v (i.e.
Γ (v)).

Also, at each invocation of that procedure Compute(v) in Algorithm 2, the
precondition ψ(v) = ψ∗(v) holds and the procedure computes Γ (v). &'

Next, we analyze the running times of the procedures by measuring the time
we spend at each node v of the tree, not taking into account the time we spend
in recursive calls. The total running time of the algorithm will be, of course,
the sum of such processing times in nodes of the tree. It is easy to see that no
computation is involved in intersection nodes. Here, we analyze two other types
of nodes (i.e. leaf and union) separately:

Processing Time in Union Nodes: Line 5 is the only one in Algorithm 1 on
which we spend some computing time. Also, in Algorithm 2, only line 4 involved
computation. These two are exactly the special cases we studied in the beginning
of this section. We can prove the following lemma.

Lemma 4. Processing time in a union node v takes time of
O

(∑k
i=1 ψ∗(ui) + lg

(
ψ∗(v)

ψ∗(u1),...,ψ∗(uk)

))
where u1, . . . , uk are children of v. &'

We make a slight change in the algorithm to save time: in the case when the
root of the whole tree is of type union, we use the algorithm in Lemma 3 to
compute the union in the root node as opposed to the algorithm in Theorem 5.
That is, we do not expand the ranges in the result and we keep it in the cross
reference format. Then, in the case when v is the root and is a union node, we
can get a better result than Lemma 4.

.

Worst Case Optimal Union-Intersection Expression Evaluation 189

Lemma 5. If the root is a union node, processing time in the root takes time of
O

(
lg

(
ψ∗(root)

ψ∗(u1),...,ψ∗(uk)

))
where u1, . . . , uk are children of the root. &'

Here we claim that the term
∑k

i=1 ψ∗(ui) in Lemma 4 is negligible when it is
summed over all union nodes. In the sum, ψ∗ of all the children of union nodes
are added together, which means the sum is over all the intersection nodes and
leaves. Now we argue that if S is the set of all intersection nodes of T , we have∑

v∈S ψ∗(v) ≤
∑

v∈L ψ∗(v) where L is the set of non-shallow leaves. This can be
proved by summing up together the inequalities of Observation 1 for all nodes
of the tree.

Theorem 8. Processing in union nodes and leaves takes time of
O (t +

∑
v∈L ψ∗(v) +

∑
union
nodes v

lg
(

ψ∗(v)
ψ∗(u1),ψ∗(u2),...,ψ∗(uk)

)
) where L is the set of

non-shallow leaves and t is the time we spend in non-shallow leaves. &'

Processing Time in Leaf Nodes: If v is a leaf, in line 2 in Algorithm 1,
we compute the intersection of Γ (v) and U . As a precondition, we know that
|U | < ψ∗(v) and also by definition that ψ∗(v) ≤ ψ(v) = size(v), so |U | <
size(v). In the first special case, we showed how to compute the intersection in
time O(|U | lg |U |+size(v)

|U |). Since |U | < ψ∗(v) ≤ size(v), the processing time is in

O
(
ψ∗(v) lg ψ∗(v)+size(v)

ψ∗(v)

)
.

In line 2 of Algorithm 2, we simply return Γ (v) which, by precondition, has
size ψ∗(v). In case v is a shallow leaf by the argument mentioned in Theorem 8,
we use a slightly different method to take the union at the root, and therefore we
do not spend any time in the shallow leaves (we do spend, however, some time
in the root for computing the union, which has been accounted for in Theorem
8.) Thus the following theorem holds:

Theorem 9. In Algorithms 1 and 2, the time spent in each non-shallow leaf is
O

(
ψ∗(v) lg(size(v)

ψ∗(v) + 1)
)

and we spend no time in shallow leaves. &'

We conclude from Theorems 4, 9, and 8 that our algorithm is optimum.

5 Conclusion and Extensions

We studied the problem of evaluating an expression of sorted sets with union
and intersection operands. Complexity of algorithms were measured in terms of
the sizes of the input sets. We proved lower bounds on the worst case complexity
of algorithms that can solve this problem, and later presented an algorithm that
asymptotically matches the lower bound.

An immediate extension to this work is changing its format of input/output
to a more appropriate format. Our assumption for the format of the input is
lists of elements of sets, and the format of the output is a list of cross-references

190 E. Chiniforooshan, A. Farzan, and M. Mirzazadeh

which specify the ranges of the elements. However, with a little effort, the format
of both the input and the output can be changed to balanced search trees. More
specifically, we choose B-trees. Adapting the lower bounds is straightforward;
Theorem 4 will still hold without any modification. As for the upper bound, it
is sufficient to show that we can handle the two special cases in the beginning of
Section 4 with the same time complexity, since the general algorithm only uses
these two for computation. These two special cases can be dealt with in the same
way Demaine et al. [4] handled B-tree representations of their input sets. It is
easy to see that the extra work for assembling and disassembling the B-trees in
their scheme does not affect our bounds in Theorems 5 and 6.

As a future work, one can consider expressions that can have operands of
type complement besides those of type union and intersection.

Acknowledgments

The authors would like to thank Alex Lópex-Ortiz, Peyman Afshani, Reza Dorri,
Narges Simjour, and anonymous referees for their useful comments.

References

1. S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine.
In Proceedings of the seventh international conference on World Wide Web 7, pages
107–117. Elsevier Science Publishers B. V., 1998.

2. M.R. Brown and R.E. Tarjan. A fast merging algorithm. J. ACM, 26(2):211–226,
1979.

3. M.R. Brown and R.E. Tarjan. Design and analysis of a data structure for repre-
senting sorted lists. SIAM Journal of Computing, 9(3):594–614, Aug. 1980.

4. E.D. Demaine, A. Lopez-Ortiz, and J.I. Munro. Adaptive set intersections, unions,
and differences. In Proc. of Eleventh ACM-SIAM Symposium on Discrete Algo-
rithms, SODA, pages 743–752, 2000.

5. F.K. Hwang and S. Lin. A simple algorithm for merging two disjoint linearly
ordered sets. SIAM Journal on Computing, 1(1):31–39, 1972.

6. G. Lee, M. Park, and H. Won. Using syntactic information in handling natural
language quries for extended boolean retrieval model. In Proceedings of the 4th
international workshop on information retrieval with Asian languages, 1999.

7. Mauldin, M.I.Lycos Inc., and PA Pittsburgh. Lycos: design choices in an internet
search service. IEEE Expert, 12(1):8–11, 1997.

8. M. Mirzazadeh. Adaptive comparison-based algorithms for evaluating set queries.
Master’s thesis, School of Computer Science, University of Waterloo, 2004.

9. W. Pugh. A skip list cookbook. Technical Report CS-TR-2286.1, University of
Maryland, 1990.

10. Ronald L. Rivest and Charles E. Leiserson. Introduction to Algorithms. McGraw-
Hill, Inc., 1990.

11. I.H. Witten, T.C. Bell, and A. Moffat. Managing Gigabytes: Compressing and
Indexing Documents and Images. John Wiley & Sons, Inc., 1994.

Measure and Conquer:
Domination – A Case Study

Fedor V. Fomin1 � , Fabrizio Grandoni2 �� , and Dieter Kratsch3

1 Department of Informatics,
University of Bergen, N-5020 Bergen, Norway

fomin@ii.uib.no
2 Dipartimento di Informatica, Università di Roma “La Sapienza”,

Via Salaria 113, 00198 Roma, Italy
grandoni@di.uniroma1.it

3 LITA, Université de Metz, 57045 Metz Cedex 01, France
kratsch@sciences.univ-metz.fr

Abstract. Davis-Putnam-style exponential-time backtracking algorithms
are the most common algorithms used for finding exact solutions of NP-
hard problems. The analysis of such recursive algorithms is based on the
bounded search tree technique: a measure of the size of the subproblems
is defined; this measure is used to lower bound the progress made by the
algorithm at each branching step.

For the last 30 years the research on exact algorithms has been mainly
focused on the design of more and more sophisticated algorithms. How-
ever, measures used in the analysis of backtracking algorithms are usu-
ally very simple. In this paper we stress that a more careful choice of the
measure can lead to significantly better worst case time analysis.

As an example, we consider the minimum dominating set prob-
lem. The currently fastest algorithm for this problem has running time
O(20.850n) on n-nodes graphs. By measuring the progress of the (same)
algorithm in a different way, we refine the time bound to O(20.598n). A
good choice of the measure can provide such a (surprisingly big) improve-
ment; this suggests that the running time of many other exponential-time
recursive algorithms is largely overestimated because of a “bad” choice
of the measure.

Keywords: Algorithms and data structures, exponential-time exact
algorithm, NP-hard problem, dominating set.

1 Introduction

The interest in exact and fast exponential-time algorithms solving hard problems
dates back to the sixties and seventies [13, 25]. The last decade has led to much re-

� Supported by Norges forskningsr̊ad project 160778/V30.
�� Supported by Web-Minds project of the Italian Ministry of University and Research,

under the FIRB program.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 191–203, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

, ,

192 F.V. Fomin, F. Grandoni, and D. Kratsch

search in fast exponential-time algorithms. Examples of recently developed expo-
nential algorithms are algorithms for Maximum Independent Set [15, 23], (Max-
imum) Satisfiability [4, 14, 17, 19, 24, 26], Coloring [2, 3, 6], Treewidth [8], and
many others (see the recent survey written by Woeginger [27] for an overview).

Most of the currently fastest exact algorithms for NP-hard problems are re-
cursive algorithms. In order to bound the total number of subproblems generated
by such algorithms, the bounded search tree technique is often used: one defines
a suitable measure of the size of the subproblems. This measure is used to lower
bound the “progress” made by the algorithm at each branching step.

Though the algorithms considered may be rather complicated, the measures
used in their analysis are usually very simple. In this paper we remark that a
more careful choice of the measure can lead to much tighter time bounds.

In order to show that, we consider one of the best known NP-hard problems:
the minimum dominating set problem. The currently fastest exact algorithm for
this problem is a recursive algorithm of running time O∗(20.850n) on n-nodes
graphs [10, 11]1. Here we present a refined analysis, based on a different measure
of the size of the subproblems generated and show that the same algorithm has
indeed running time O∗(20.598n). This surprisingly big improvement suggests
the possibility that the running times of many other exponential-time recursive
algorithms (including possibly the one presented here) are largely overestimated
because of a “bad” choice of the measure in their analysis. Despite the impor-
tance of the problem, only few works address this issue [2, 7].

Since the current tools do not seem to be strong enough to support an analy-
sis of exponential-time recursive algorithms providing tight running time upper
bounds, it is natural to ask for lower bounds (notice that we are concerned with
lower bounds on the complexity of a particular algorithm and not with lower
bounds on the complexity of an algorithmic problem). A lower bound may give
an idea of how far the analysis is from being tight. There are several results
known on lower exponential bounds for different branching algorithms for SAT
(see e.g. [1, 18]) but we are not aware of lower bounds for existing exponential-
time recursive graph algorithms. One of the reasons to this could be that for
most of the graph problems the construction of good lower bounds is often dif-
ficult even for very simple algorithms. In this paper we prove a Ω(20.333n) lower
bound on the time complexity of our minimum dominating set algorithm. The
large gap between the upper bound and the lower bound suggests the possibility
that the analysis of the algorithm can be further refined (possibly by measuring
the size of the subproblems in a smarter way).

Previous results on dominating set. The minimum dominating set problem
(MDS) is a classic NP-hard graph optimization problem which fits into the broader
class of domination and covering problems on which hundreds of papers have
been written; see e.g. the survey [12] by Haynes et al. The dominating set problem

1 Throughout this paper we use a modified big-Oh notation that suppresses all poly-
nomially bounded factors. For functions f and g we write f(n) = O∗(g(n)) if
f(n) = O(g(n)poly(n)), where poly(n) is a polynomial.

Measure and Conquer: Domination – A Case Study 193

is also one of the basic problems in parameterized complexity [5]; it is W[2]-
complete and thus it is unlikely that the problem is fixed parameter tractable.
What are the best time complexities for the dominating set problem in n-node
graphs G = (V,E) that we can possibly hope for? It has been observed in [9]
that (unless some very unexpected things happen in computational complexity
theory) there is no sub-exponential time (i.e. of running time co(n) for some
constant c) algorithm solving dominating set problem. There is the trivial O∗(2n)
algorithm that simply searches through all the 2n subsets of V . Hence, we can
only hope for time complexities of the form O∗(2cn), with some small value c < 1.
Although MDS is a natural and very interesting problem concerning the design
and analysis of exponential-time algorithms, no exact algorithm for MDS faster
than the trivial one had been known until very recently. In 2004 three different
sets of authors seemingly independently published algorithms breaking the trivial
“2n-barrier”. The algorithm of Fomin et al. [9] uses a deep graph-theoretic result
due to Reed [21], providing an upper bound on the domination number of graphs
of minimum degree three. The most time consuming part of their algorithm is an
enumeration of all subsets of nodes of cardinality at most 3n/8, thus the overall
running time is O∗(20.955n). The algorithm of Randerath and Schiermeyer [20]
uses a very nice and cute idea (including matching techniques) to restrict the
search space. The most time consuming part of their algorithm enumerates all
subsets of nodes of cardinality at most n/3, thus the overall running time is
O∗(20.919n). Finally, the fastest algorithm known prior to our work is due to
Grandoni [10, 11], who described a O∗(20.850n) algorithm for MDS.

Our Results. We show that MDS can be solved in O∗(20.610n) time using poly-
nomial space. The running time of our algorithm can be reduced at the cost of
exponential space to O∗(20.598n) which is a significant improvement of all known
results on MDS. To solve the problem we represent MDS as a set cover problem
which allows us to use a search tree based algorithm. This idea was first used
in [10, 11]. To obtain running time O∗(20.610n) we do not add more and more
sophisticated rules to existing algorithms which is a usual practice to improve on
the exponential base. Instead we give a simple and easy to implement algorithm
and observe how the careful choice of the measure changes the algorithm anal-
ysis dramatically. Our refined analysis leads to a multivariate recurrence. For a
general treatment of this type of recurrences we refer to Eppstein’s paper [7].
Since the analysis of our search tree based algorithms is so depended on the
choice of the measure, it is natural to ask for (exponential) lower bounds on the
running time of the algorithm. We prove that our algorithm requires Ω(20.333n)
steps.

2 Definitions and Basic Algorithm

Let G = (V,E) be an n-node undirected, simple graph without loops. The open
neighborhood of a node v is denoted by N(v) = {u ∈ V : uv ∈ E}, and the closed
neighborhood of v is denoted by N [v] = N(v) ∪ {v}. A set A ⊆ E of edges of

194 F.V. Fomin, F. Grandoni, and D. Kratsch

G = (V,E) is an edge cover, if every node of G is incident to an edge of A; the
edge set A is a matching if no node of G is incident to two edges of A.

The minimum dominating set problem. Let G = (V,E) be a graph. A set
D ⊆ V is called a dominating set for G if every node of G is either in D, or
adjacent to some node in D. The domination number γ(G) of a graph G is the
minimum cardinality of a dominating set of G. The Minimum Dominating Set
problem (MDS) asks to determine γ(G).

The minimum set cover problem. In the Minimum Set Cover problem (MSC)
we are given a universe U of elements and a collection S of (non-empty) subsets
of U . The aim is to determine the minimum cardinality of a subset S ′ ⊆ S which
covers U , that is such that

∪S∈S′S = U .
The frequency of u ∈ U is the number of subsets S ∈ S in which u is contained.
For the sake of simplicity, we always assume in this paper that S covers U :

U = U(S) � ∪S∈SS.

With this assumption, an instance of MSC is univocally specified by S.
We recall that, if all the subsets of S are of cardinality two, MSC can be solved

in polynomial time via the following standard reduction to maximum matching.
Consider the graph G̃ which has a node u for each u ∈ U , and an edge uv for
each subset S = {u, v} in S. Thus we have to compute a minimum edge cover of
G̃. To compute a minimum edge cover of G̃ we compute a maximum matching
M in G̃. Then, for each unmatched node u, we add to M an arbitrary edge
incident to u (if no such edge exists, there is no set cover at all). The subsets
corresponding to M form a minimum set cover.

MDS can be naturally reduced to MSC by imposing U = V and S = {N [v]| v ∈
V }. Note that N [v] is the set of nodes dominated by v, thus D is a dominating set
of G if and only if {N [v]| v ∈ D} is a set cover of {N [v]| v ∈ V }. Thus every min-
imum set cover of {N [v]| v ∈ V } corresponds to a minimum dominating set of G.

At first view such a transformation from one NP-hard problem to another
seems to be completely useless: The only known exact algorithms for MSC are
brute force O∗(2|S|) and O∗(2|U|) [9] dynamic programming algorithms. Both
algorithms result in an O∗(2n) algorithm for MDS and it seems that such an
approach is not interesting. Not at all! On second thought the transformation
from MDS to MSC becomes very helpful. It enables the use of a search tree based
algorithm to solve MSC, and thus also MDS.

Basic algorithm. We consider a simple recursive algorithm msc for solving MSC.
The algorithm is a slight modification of the algorithm from [11] and it makes
use of the following observation.

Lemma 1. For a given MSC instance S:

1. If there are two distinct sets S and R in S, S ⊆ R, then there is a minimum
set cover which does not contain S.

Measure and Conquer: Domination – A Case Study 195

Fig 1 A recursive algorithm for minimum set cover

1 int msc(S) {
2 if(|S| = 0) return 0;
3 if(∃S, R ∈ S : S ⊆ R) return msc(S\{S});
4 if(∃u ∈ U(S)∃ a unique S ∈ S : u ∈ S) return 1+msc(del(S, S));
5 take S ∈ S of maximum cardinality;
6 if(|S| = 2) return poly-msc(S)
7 return min{msc(S\{S}), 1+msc(del(S, S))};
8 }

2. If there is an element u of U which belongs to a unique S ∈ S, then S belongs
to every set cover.

Note that each subset of cardinality one satisfies exactly one of the properties
in Lemma 1.

A basic version of msc is described in Figure 1. If |S| = 0 (line 2), msc(S) = 0.
Otherwise (lines 3 and 4), the algorithm tries to reduce the size of the problem
without branching, by applying one of the Properties 1 and 2 of Lemma 1.
Specifically, if there are two sets S and R, S ⊆ R, we have msc(S) = msc(S\S).
If there is an element u which is contained in a unique set S, we have msc(S) =
1 + msc(del(S,S)), where del(S,S) = {Z|Z = R\S �= ∅, R ∈ S} is the instance
of MSC which is obtained from S by removing the elements of S from the subsets
in S, and by eventually removing the empty sets obtained.

If none of the two properties above applies, the algorithm takes (line 5) a
set S ∈ S of maximum cardinality. If |S| = 2 (line 6), the algorithm directly
solves the problem with the polynomial time algorithm poly-msc based on the
reduction to maximum matching. Otherwise (line 7), it branches on the two
subproblems SIN = del(S,S) (the case where S belongs to the minimum set
cover) and SOUT = S\S (corresponding to the case S is not in the minimum set
cover). Thus

msc(S) = min{msc(S\{S}), 1 + msc(del(S,S))}.

Notice that with simple modifications, the algorithm can also provide one mini-
mum set cover (besides its cardinality).

To emphasize the importance of the measure we sketch the analysis of the
algorithm with a simple measure (taken from [11]). Let us choose the following
measure k(S ′) of the size of a MSC instance S ′,

k(S ′) = |S ′|+ |U(S ′)|.

Let �(k) be the number of leaves in the search tree generated by the algorithm
to solve a problem of size k = k(S). If one of the conditions of lines 3 and 4
is satisfied, �(k) ≤ �(k − 1). Let S be the set selected in line 5. If |S| = 2, the
algorithm directly solves the problem in polynomial time (�(k) = 1). Otherwise
(|S| ≥ 3), the algorithm branches on the two subproblems SOUT = S\{S}

. .

196 F.V. Fomin, F. Grandoni, and D. Kratsch

and SIN = del(S, S). The size of SOUT is k − 1 (one set removed from S).
The size of SIN is at most k − 4 (one set removed from S and at least three
elements removed from U). This brings us to �(k) ≤ �(k − 1) + �(k − 4). We
conclude that �(k) ≤ αk, where α = 1.3802 . . . < 1.3803 is the (unique) positive
root of the polynomial (x4 − x3 − 1). It turns out that the total number of
subproblems solved is within a polynomial factor from �(k). Moreover, solving
each subproblem takes polynomial time. Thus the complexity of the algorithm
is O∗(�(k)) = O∗(αk) = O∗(1.3803|S|+|U|) = O∗(20.465(|S|+|U|)).

In next section we will show how to refine the running time analysis to
O∗(20.305(|S|+|U|)) via a more careful choice of the measure k(S ′) (without mod-
ifying the algorithm!).

3 Refined Analysis

In this section we show that algorithm msc has time complexity
O∗(20.305(|S|+|U|)).

Our result is based on the following observation. Removing a large set has a
different impact on the “progress” of the algorithm than removing a small one.
In fact, when we remove a large set, we decrease the frequency of many ele-
ments. Decreasing elements frequency pays of on long term, since the elements
of frequency one can be filtered out (without branching). A dual argument holds
for the elements. Removing an element of high frequency is somehow preferable
to removing an element of small frequency. In fact, when we remove an element
occurring in many sets, we decrease the cardinality of all such sets by one. This is
good on long term, since sets of cardinality one can be filtered out. Both phenom-
ena are not taken into account in the measure used in [10]. With that measure,
by removing one set (element), we decrease the size of the problem by one, no
matter which is the cardinality (frequency) of the set (element) considered.

This suggests the idea to give a different “weight” to sets of different car-
dinality and to elements of different frequency. In particular, let ni denote the
number of subsets S ∈ S of cardinality i. Let moreover mj denote the number
of elements u ∈ U of frequency j. We will use the following measure k = k(S) of
the size of S:

k(S) =
∑
i≥1

wi ni +
∑
j≥1

vj mj ,

where the weights wi, vj ∈ (0, 1] will be fixed in the following. Note that k ≤
|S|+ |U|. The quantities

Δwi =

{
wi − wi−1 if i ≥ 3,
w2 if i = 2,

and Δvi =

{
vi − vi−1 if i ≥ 3,
v2 if i = 2,

turn out to be useful in the analysis. Intuitively, Δwi (Δvi) is the reduction of
the size of the problem corresponding to the reduction of the cardinality of a set
(of the frequency of an element) from i to i− 1. Note that this holds also in the

Measure and Conquer: Domination – A Case Study 197

case i = 2. In fact, in that case the size of the problem first increases by 1− w2

(1− v2), but the new set of cardinality one (the new element of frequency one)
introduced is removed before the next branching, with a reduction of the size by
one. Thus one has an overall reduction by 1− (1−w2) = w2 (1− (1− v2) = v2).

Theorem 1. Algorithm msc solves MSC in time O∗(20.305(|U|+|S|)).

Proof. The correctness of the algorithm is trivial. In order to simplify the
running time analysis, we will make the following assumptions:

• w1 = v1 = 1 and wi = vi = 1 for i ≥ 6;
• 0 ≤ Δwi ≤ Δwi−1 for i ≥ 2.

Note that this implies wi ≥ wi−1 for every i ≥ 3 (excluding sets of cardinality
one, larger sets have larger weights). Moreover, Δwi = Δvi = 0 for i ≥ 7.

Let Ph(k) be the number of subproblems of size h, 0 ≤ h ≤ k, solved by
msc to solve a problem of size k. Clearly, Pk(k) = 1. Consider the case h < k
(which implies |S| �= 0). If one of the condition of lines 3 and 4 holds, one set S
is removed from S. Thus the reduction of the size of the problem is at least w2

(corresponding to the case |S| = 2) and Ph(k) ≤ Ph(k − w2). Otherwise, let S
be the subset selected in line 5. If |S| = 2, no subproblem is generated (Ph(k) =
0). Otherwise (|S| ≥ 3), msc generates two subproblems SIN = del(S,S) and
SOUT = S\S.

Consider the subproblem SOUT . The size of SOUT decreases by w|S| because
of the removal of S. Let ri be the number of elements of S of frequency i. Note
that there cannot be elements of frequency 1. Consider an element u ∈ S of
frequency i ≥ 2. When we remove S, the frequency of u decreases by one. As
a consequence, the size of the subproblem decreases by Δvi. Thus the overall
reduction of the size of SOUT due to the reduction of the frequencies is at least∑

i≥2

ri Δvi =
6∑

i=2

ri Δvi.

Suppose that there is an element u ∈ S of frequency 2. Let R �= S be the other
set containing u. When we remove S, we have to include R in the set cover.
Thus we reduce the size of the problem by at least w2 (corresponding to the case
|R| = 2). Also R \S is not empty (otherwise condition of line 3 of the algorithm
is met) and thus all elements of R \S are removed when we include R in the set
cover. This reduces the size by at least v2 (corresponding to the case that the
frequency of z is 2). Therefore the overall reduction of the size of SOUT due to
the removal of the sets R is at least r2 w2 + δ(r2) v2, where δ(r2) = 0 for r2 = 0,
and δ(r2) = 1 otherwise.

Consider now the subproblem SIN . The size of SIN decreases by w|S| because
of the removal of S. Consider an element u ∈ S of frequency i (i ≥ 2). The size
of SIN further decreases by vi because of the removal of u. Thus the overall
reduction due to the removal of the elements u of S is∑

i≥2

ri vi =
6∑

i=2

ri vi + r≥7,

198 F.V. Fomin, F. Grandoni, and D. Kratsch

where r≥i is the number of elements of S of frequency at least i. Let R be
a set sharing an element u with S. Note that |R| ≤ |S|. By removing u, the
cardinality of R is reduced by one. This implies a reduction of the size of SIN

by Δw|R| ≥ Δw|S|. Thus the overall reduction of SIN due to the reduction of
the cardinalities of the sets R is at least:

Δw|S|
∑
i≥2

(i− 1) ri ≥ Δw|S|

(
6∑

i=2

(i− 1) ri + 6 · r≥7

)
.

Note that this quantity is 0 for |S| ≥ 7. Putting all together, for all the possible
values of |S| ≥ 3 and of the ri such that

6∑
i=2

ri + r≥7 = |S|,

we have the following set of recursions

Ph(k) ≤ Ph(k −ΔkOUT) + Ph(k −ΔkIN),

where

• ΔkOUT � w|S| +
∑6

i=2 ri Δvi + r2 w2 + δ(r2) v2,

• ΔkIN � w|S| +
∑6

i=2 ri vi + r≥7 + Δw|S|

(∑6
i=2(i− 1) ri + 6 · r≥7

)
.

Since Δw|S| = 0 for |S| ≥ 7, we have that each recurrence with |S| ≥ 8 is
“dominated” by some recurrence with |S| = 7. For this reason, we restrict our
attention only to the cases 3 ≤ |S| ≤ 7. Thus we consider a large but finite
number of recurrences. For every fixed 8-tuple (w2, w3, w4, w5, v2, v3, v4, v5) the
number Ph(k) is upper bounded by αk−h, where α is the largest number from
the set of real roots of the set of equations

αk = αk−Δ kOUT + αk−Δ kIN

corresponding to different combinations of values |S| and ri. Thus the estimation
of Ph(k) boils up to choosing the weights minimizing α. This optimization prob-
lem is interesting in its own and we refer to Eppstein’s work [7] on quasi-convex
programming for general treatment of such problems.

We numerically obtained the following values of the weights:

wi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.3774 if i = 2,
0.7548 if i = 3,
0.9095 if i = 4,
0.9764 if i = 5,

and vi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.3996 if i = 2,
0.7677 if i = 3,
0.9300 if i = 4,
0.9856 if i = 5,

which yields α ≤ 1.2352 . . . < 1.2353. In Table 1 the values of |S| and ri of the
eight worst case recurrences are listed.

Measure and Conquer: Domination – A Case Study 199

Table 1 The eight worst case recurrences

|S| (r2, r3, r4, r5, r6, r≥7)

6 (0, 0, 0, 0, 0, 6)
5 (0, 0, 0, 0, 4, 1)
5 (0, 0, 0, 0, 5, 0)
4 (0, 0, 0, 0, 4, 0)
4 (0, 0, 0, 4, 0, 0)
3 (0, 0, 3, 0, 0, 0)
3 (0, 3, 0, 0, 0, 0)
3 (3, 0, 0, 0, 0, 0)

Let K denote the set of the possible sizes of the subproblems solved. Note
that |K| is polynomially bounded. The total number P (k) of subproblems solved
satisfies:

P (k) ≤
∑
h∈K

Ph(k) ≤
∑
h∈K

αk−h ≤ |K|αk.

The cost of solving a problem of size h ≤ k, excluding the cost of solving the
corresponding subproblems (if any), is a polynomial poly(k) of k. Thus the time
complexity of the algorithm is

O∗(poly(k)|K|αk) = O∗(1.2353|U|+|S|) = O∗(20.305(|U|+|S|)). �

As already observed, MDS can be reduced to MSC by imposing U = V and S =
{N [v]| v ∈ V }. The size of the MSC instance obtained is at most 2n. By simply
combining this reduction with algorithm msc one obtains:

Corollary 1. There is a O∗(20.305(2n)) = O∗(20.610n) algorithm for MDS.

3.1 An Exponential Space Algorithm

The time complexity of msc can be reduced at the cost of an exponential space
complexity via the memorization technique by Robson [22]. The general idea is
the following: The algorithm keeps the solutions of all the subproblems solved.
If the same subproblem turns up more than once, the algorithm is not to run
a second time, but the already computed result is looked up. Note that the
corresponding data structure can be implemented in such a way that the query
time is logarithmic in the number of solutions stored [22].

Theorem 2. Algorithm msc, modified as above, solves MSC in O∗(20.299(|S|+|U|))
time.

Corollary 2. There is an algorithm which solves MDS in time O∗(20.299(2n)) =
O∗(20.598n).

Due to space restrictions, the proof of Theorem 2 is omitted here.

.

200 F.V. Fomin, F. Grandoni, and D. Kratsch

4 An Exponential Lower Bound

By carefully measuring the size of the subproblems, we obtained a much tighter
running time bound. However the bound achieved might still be only a pes-
simistic estimation of the worst case running time of the algorithm. Therefore it
is natural to ask for lower bounds: A lower bound may give an idea of how far
is the bound computed from the real worst case running time.

Let us consider the O∗(20.610n) polynomial-space MDS algorithm mds based
on the reduction to MSC and (the polynomial-space version of) algorithm msc.

Theorem 3. The worst case running time of mds is Ω(2n/3) = Ω(20.333n).

Proof. Consider the following input graph Gn (n ≥ 1): the node set of Gn is
{ai, bi, ci : 1 ≤ i ≤ n}. The edge set of Gn consists of two types of edges: for
each i = 1, 2 . . . , n, the vertices ai, bi and ci induce a triangle Ti; and for each
i = 1, 2, ..., n− 1: {ai, ai+1}, {bi, bi+1} and {ci, ci+1} are edges.

Each node of the search tree corresponds to a subproblem of the MSC problem
with input (U ; S = {Sv : v ∈ V }) where Sv = N [v].

We give a selection rule for the choice of the vertices v (respectively sets Sv)
to be chosen for the branching. Clearly the goal is to choose them such that the
number of nodes in the search tree obtained by the execution of algorithm msc
on graph Gn is as large as possible.

In each round i, i ∈ {2, 3, . . . , n − 1}, we start with a pair P = {xi, yi} of
nodes (belonging to triangle Ti), where {x, y} ⊂ {a, b, c}. Initially P = {a2, b2}.
Our choice makes sure that for each branching node x the cardinality of its set
Sx is five in the current subproblem S, and that no other rules of the algorithm
will apply to a branching node than the one of line 5. Consequently, by line 7
of msc either the set Sv is taken into the set cover (S := del(S, Sv)), or Sv is
removed (S := S \ Sv).

For each pair P = {xi, yi} of nodes we branch in the following 3 ways
1) take Sxi

2) remove Sxi
, and then take Syi

3) remove Sxi
, and then remove Syi

The following new pairs of nodes correspond to each of the three branches:
1) P1 = {ai+2, bi+2, ci+2} \ xi+2

2) P2 = {ai+2, bi+2, ci+2} \ yi+2

3) P3 = {xi+1, yi+1}
On each pair Pj we recursively repeat the process. Thus of the three branches

of Ti two are proceeded on Ti+2 and one is proceeded on Ti+1.
Let T (k) be the number of leaves in the search tree when all triangles up to

Tk have been used for branching. Thus T (k) = 2 ·T (k−2)+T (k−1), and hence
T (k) ≥ 2k−2. Consequently the worst case number of leaves in the search tree of
msc for a graph on n vertices is at least 2n/3−2. �

The lower bound above can be easily improved by considering disconnected
graphs formed by several (disconnected) copies of a carefully chosen small sub-

Measure and Conquer: Domination – A Case Study 201

graph. We did not consider such lower bounds, since algorithm mds can be easily
modified in order to invalidate them (it is sufficient to solve each disconnected
subproblem separately, and then combine the partial solutions).

We may notice that there is a large gap between the O∗(20.610n) upper bound
and the Ω(20.333n) lower bound. This could suggest the possibility that the
analysis of algorithm mds can be further refined (possibly via a further refined
measure of the size of the MSC instances).

5 Conclusions

We investigated the impact of different measures of the size of the problem
in the analysis of exponential-time recursive algorithms. In particular, we con-
sidered the minimum dominating set problem. We showed how a more careful
choice of the measure leads to a much tighter running time bound on the fastest
know algorithm for the problem. Specifically, we reduced the time bound from
O∗(20.850n) to O∗(20.598n) (without modifying the algorithm).

The impressive reduction of the running time achieved for minimum dom-
inating set, suggests the possibility that the time complexity of many other
exponential-time exact algorithms is largely overestimated because of a bad
choice of the measure. Indeed, this could be the case also for our refined analysis
of minimum dominating set. This possibility is somehow supported by the large
gap between the O∗(20.598n) upper bound and the Ω(20.333n) lower bound we
managed to prove.

Another natural problem to play with measure is Independent Set. The best
running time O∗(2n/4) for this problem was claimed by Robson [23]. Though
Robson’s algorithm is extremely technical and complicated, the measure used in
its analysis is very simple (the number of nodes in the graph). Can we refine the
analysis of this algorithm via a different choice of the measure? Moreover, how
fast really are simple algorithms for Independent Set?

References

1. M. Alekhnovich, E.A. Hirsch, and D. Itsykon. Exponential lower bounds for the
running time of DPLL algorithms on satisfiable formulas. Proceedings of the
31st International Colloquium on Automata, Languages and Programming (ICALP
2004), Springer LNCS vol. 3142, 2004, pp. 84–96.

2. R. Beigel and D. Eppstein. 3-coloring in time O(1.3446n): a no-MIS algorithm.
Proceedings of the 36th IEEE Symposium on Foundations of Computer Science
(FOCS 1995), pp. 444–452.

3. J. M. Byskov. Enumerating maximal independent sets with applications to graph
colouring. Operations Research Letters, 32:547–556, 2004.

4. E. Dantsin, A. Goerdt, E. A. Hirsch, R. Kannan, J. Kleinberg, C. Papadim-
itriou, P. Raghavan, and U. Schöning. A deterministic (2− 2/(k + 1))n algorithm
for k-SAT based on local search. Theoretical Computer Science, 289(1):69–83,
2002.

202 F.V. Fomin, F. Grandoni, and D. Kratsch

5. R. G. Downey and M. R. Fellows. Parameterized complexity. Springer-Verlag, New
York, 1999.

6. D. Eppstein. Improved algorithms for 3-coloring, 3-edge-coloring, and constraint
satisfaction. Proceedings of the 12th ACM-SIAM Symposium on Discrete Algo-
rithms (SODA 2001), pp. 329–337.

7. D. Eppstein. Quasiconvex analysis of backtracking algorithms. Proceedings
of the 15th ACM-SIAM Symposium on Discrete Algorithms (SODA 2004),
pp. 781–790.

8. F. V. Fomin, D. Kratsch, and I. Todinca. Exact algorithms for treewidth and min-
imum fill-in. Proceedings of the 31st International Colloquium on Automata, Lan-
guages and Programming (ICALP 2004), Springer LNCS vol. 3142, 2004, pp. 568–
580.

9. F. V. Fomin, D. Kratsch, and G. J. Woeginger. Exact (exponential) algorithms
for the dominating set problem. Proceedings of the 30th Workshop on Graph
Theoretic Concepts in Computer Science (WG 2004), Springer LNCS vol. 3353,
2004, pp. 245-256.

10. F. Grandoni. Exact Algorithms for Hard Graph Problems. PhD thesis, Università
di Roma “Tor Vergata”, Roma, Italy, Mar. 2004.

11. F. Grandoni. A note on the complexity of minimum dominating set. Journal of
Discrete Algorithms. To appear.

12. T. W. Haynes, S. T. Hedetniemi, and P. J. Slater. Fundamentals of domination in
graphs. Marcel Dekker Inc., New York, 1998.

13. M. Held and R.M. Karp. A dynamic programming approach to sequencing prob-
lems. Journal of SIAM, pages 196–210, 1962.

14. K. Iwama and S. Tamaki. Improved upper bounds for 3-SAT. Proceedings of the
15th ACM-SIAM Symposium on Discrete Algorithms (SODA 2004), p.328.

15. T. Jian. An O(20.304n) algorithm for solving maximum independent set problem.
IEEE Transactions on Computers, 35(9):847–851, 1986.

16. E.L. Lawler. A note on the complexity of the chromatic number problem. Infor-
mation Processing Letters 5(3):66–67, 1976.

17. R. Niedermeier and P. Rossmanith. New upper bounds for maximum satisfiability.
Journal of Algorithms, 36(1):63–88, 2000.

18. P. Pudlak and R. Impaglazzio. A lower bound for DLL algorithms for k-SAT. A
lower bound for DLL algorithms for k-SAT (preliminary version). Proceedings of
the 11th ACM-SIAM Symposium on Discrete Algorithms (SODA 2000), pp. 128-
136

19. R. Paturi, P. Pudlak, M. E. Saks, and F. Zane. An improved exponential-time
algorithm for k-SAT. Proceedings of the 39th IEEE Symposium on Foundations
of Computer Science (FOCS 1998), pp. 628–637.

20. B. Randerath and I. Schiermeyer. Exact algorithms for MINIMUM DOMINATING
SET. Technical Report, zaik-469, Zentrum für Angewandte Informatik Köln, April
2004.

21. B. Reed. Paths, stars and the number three. Combinatorics, Probability and
Computing 5:277–295, 1996.

22. J. M. Robson. Algorithms for maximum independent sets. Journal of Algorithms,
7(3):425–440, 1986.

23. J. M. Robson. Finding a maximum independent set in time O(2n/4). Technical
Report 1251-01, LaBRI, Université Bordeaux I, 2001.

Measure and Conquer: Domination – A Case Study 203

24. U. Schoning. A Probabilistic Algorithm for k-SAT and Constraint Satisfaction
Problems. Proceedings of the 40th IEEE Symposium on Foundations of Computer
Science (FOCS 1999), pp. 410-414.

25. R. Tarjan and A. Trojanowski. Finding a maximum independent set. SIAM Journal
on Computing, 6(3):537–546, 1977.

26. R. Williams. A new algorithm for optimal constraint satisfaction and its im-
plications. Proceedings of the 31st International Colloquium on Automata,
Languages and Programming (ICALP 2004), Springer LNCS vol. 3142, 2004,
pp. 1227–1237.

27. G. J. Woeginger. Exact algorithms for NP-hard problems: A survey. Com-
binatorial Optimization – Eureka, You Shrink, Springer LNCS vol. 2570, 2003,
pp. 185–207.

Optimistic Asynchronous Atomic Broadcast

Klaus Kursawe1 and Victor Shoup2

1 KU Leuven
2 New York University

Abstract. This paper presents a new protocol for atomic broadcast
in an asynchronous network with a maximal number of Byzantine fail-
ures. It guarantees both safety and liveness without making any tim-
ing assumptions. Under normal circumstances, the protocol runs in an
extremely efficient “optimistic mode,” while in rare circumstances the
protocol may briefly switch to a less efficient “pessimistic mode.”

1 Introduction

Atomic broadcast is a fundamental building block in fault tolerant distributed
computing. By ordering broadcast requests in such a way that they are deliv-
ered in the same order to all honest recipients, a synchronization mechanism is
provided that deals with many of the most problematic aspects of asynchronous
networks. We present a new protocol for atomic broadcast in an asynchronous
network with a maximal number of Byzantine failures. It guarantees both safety
and liveness without making any timing assumptions or using any type of “fail-
ure detector,” and under normal circumstances is just as efficient as a simple
“Bracha broadcast.”

The FLP “impossibility” result [F+85] implies that there is no deterministic
protocol for Byzantine agreement (and hence, for atomic broadcast) that guar-
antees both safety and liveness. However, there are randomized protocols that
terminate quickly with very high probability.

A protocol for asynchronous Byzantine agreement may be used as a build-
ing block for atomic broadcast. Canetti and Rabin’s protocol [CR93] runs in
polynomial time, but is in fact, highly impractical. The protocol of Cachin et
al. [C+00] is a practical, polynomial-time protocol that makes use of public-
key cryptographic primitives that can be proven correct in the “random oracle”
model [BR93], assuming a computationally bounded adversary; this protocol
relies on a trusted dealer during system set-up, but after this, an arbitrary num-
ber of instances of the protocol can be executed. Building on [C+00], the paper
[C+01] presents a fairly practical protocol for atomic broadcast. However, this
protocol still uses a lot of fairly expensive, public-key operations, and may not
be fast enough for some applications.

Our protocol is inspired by the innovative work of Castro and Liskov [CL99b,
CL99a, C00]. Like their protocol, our protocol works in two phases: an optimistic
phase and a pessimistic phase. The optimistic phase is very “lightweight” —

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 204–215, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Optimistic Asynchronous Atomic Broadcast 205

each request is processed using nothing more than a “Bracha broadcast” [B84]
— in particular, no public-key cryptography is used (only message authentica-
tion codes, which are very cheap, are used). As long as the network is reasonably
behaved, the protocol remains in the optimistic phase — even if some number
of parties, barring a designated leader, are corrupted. If there are unexpected
network delays, or the leader is corrupted, several parties may “time out,” shift-
ing the protocol into the pessimistic phase. The pessimistic phase is somewhat
more expensive than the optimistic phase — both in terms of communication
and computational complexity. Nevertheless, it is still reasonably practical, al-
though certainly not as efficient as the optimistic phase. The pessimistic phase
cleans up any potential “mess” left by the current leader, re-synchronizing the
protocol, after which the optimistic phase starts again with a new leader.

The optimistic phase of our protocol is essentially the same as that of Castro
and Liskov. While [CL99b] relies extensively on expensive public-key crypto-
graphic operations, the optimized versions in [CL99a, C00] do not use on public-
key cryptography in the optimistic phase. Therefore, we expect that in practice,
our protocol is just as efficient as theirs. However, our pessimistic phase is quite
different. In the Castro/Liskov protocol, the new leader is responsible for re-
synchronizing the protocol; this re-synchronization may fail, either because the
new leader is corrupt or because of unexpected network delays, in which case yet
another leader must take on the task of re-synchronization. In contrast, in our
protocol, this re-synchronization is done using a distributed computation, based
on randomized Byzantine agreement, and is guaranteed to succeed, regardless
of the behavior of the corrupted parties and regardless of any network delays.

Castro and Liskov’s protocol is completely deterministic, and hence is sub-
ject to the FLP impossibility result. Indeed, although their protocol guarantees
safety, it does not guarantee liveness, unless one makes additional timing as-
sumptions. Our protocol guarantees both safety and liveness without making
any timing assumptions at all, while being just as efficient in practice as the
Castro/Liskov protocol. The trade-off, of course, is that our protocol is random-
ized and relies on more cryptographic assumptions; however, there is no practical
downside to this, in terms of either security or performance, and so it seems to
be a trade-off worth making.

Our work builds on the work of [C+01] in two ways: we use the same defini-
tional framework as [C+01], and we make novel use of a protocol in [C+01] for
multivalued Byzantine agreement.

Other Related Work. There is a rich literature on ordering broadcast channels,
including several implementations and a broad theoretical basis. However, most
work in the literature is done in the crash-failure model; much less work has been
done in the Byzantine failure model. Rampart [R94] and SecureRing [K+98]
directly transfer crash-failure protocols into the Byzantine setting by using a
modified failure detector along with digital signatures. The disadvantage of this
approach is that it is relatively expensive, as a large number of public-key cryp-
tographic operations need to be performed. Furthermore, there are attacks on
the failure detector [A+95] that can violate the safety of these protocols. Doudou

206 K. Kursawe and V. Shoup

et al. [D+00] take a similar approach to that of Castro and Liskov. However,
their protocol is described in a more abstract and modular way, leading to a
protocol that is somewhat less complex and easier to analyze.

2 System Model and Problem Statement

Our formal system model and definitions of security are the same as in [C+00,
C+01], which models attacks by computationally bounded adversaries. We refer
the reader to [C+01] for complete details. We give only a brief summary here.
We assume a network of n parties P1, . . . , Pn, t of which are corrupted and fully
controlled by an adversary. We shall assume that t < n/3. We also assume a
trusted dealer that is needed only at system set-up time. Informally, the adver-
sary also has full control over the network; the adversary may insert, duplicate,
and reorder messages at will.

More formally, at the beginning of the attack, the trusted dealer is run,
initializing the internal state of the honest parties; the initial state information
for the corrupted parties is given to the adversary. The attack then proceeds
in steps. In each step of the attack, the adversary delivers a single message to
an honest party, upon receipt of which the party updates its internal state and
generates one or more response messages. These response messages indicate their
origin and intended destination; however, the adversary is free to do with these
messages what he wishes: to deliver them when he wishes, in any order that he
wishes; he may also deliver them more than once, or not all. We do assume,
however, that the adversary may not modify messages or “fake” their origin.
This assumption is reasonable, since this property can be effectively enforced
quite cheaply using message authentication codes.

We assume that the adversary’s corruptions are static: the set of corrupted
parties is chosen once and for all at the very beginning of the attack. However,
it should be straightforward to prove that our protocol is secure in an adaptive
corruption model, assuming all underlying cryptographic primitives are secure
in this model.

Because we want to use cryptographic techniques, it does not make sense
to consider “infinite runs” of protocols, but rather, we only consider attacks
that terminate after some bounded amount of steps. The number of steps in the
adversary’s attack, as well as the computational complexity of the adversary, are
assumed to be bounded by a polynomial in some security parameter.

Our protocols are defined such that they are only guaranteed to make progress
to the extent to which the adversary actually delivers messages. To ensure that
such a protocol behaves well in practice, an implementation would have to re-
send messages until receiving (secure) acknowledgments for them. We do not
discuss any of these implementation details any further in this paper.

In our formal model, there is no notion of time. However, in making the
transition from the optimistic phase to the pessimistic phase of our protocol,
we need a way to test if an unexpectedly large amount of time has passed since
some progress has been made by the protocol. That is, we need a “time out”

Optimistic Asynchronous Atomic Broadcast 207

mechanism. This is a bit difficult to represent in a formal model in which there is
no notion of time. Nevertheless, we can effectively implement such a “time out”
as follows: to start a timer, a party simply sends a message to itself, and when
this message is delivered to that party, the clock “times out.” By representing
time outs in this way, we effectively give the adversary complete control of our
“clock.”

We define the message complexity of a protocol as the number of messages
generated by all honest parties. This is a random variable that depends on the ad-
versary and the value of the security parameter, and is denoted MC (ID), where
ID identifies a particular protocol instance. The term probabilistically uniformly
bounded is a technical term that we borrow from [C+01]. Let X be a random
variable associated with a run of a protocol that depends on the adversary and
the value of the security parameter. Informally, “X is probabilistically uniformly
bounded” means that X is distributed “very tightly” around a quantity Y , where
Y is bounded by a polynomial in the security parameter that is independent of
the adversary. See [C+01] for the formal definition.

Our definition of atomic broadcast comes directly from [C+01], with just
some minor notational changes. As we define it, an atomic broadcast primitive
offers one or several broadcast channels, each specified by some channel identi-
fier ID . Before a party can use a channel, it must be explicitly opened. Formally
speaking, this is done by the adversary. At any point, the adversary may deliver
the message (ID , in, a-broadcast,m) to some honest party, where m is an ar-
bitrary bit string (of bounded size); we say the party a-broadcasts the request m
at this point. At any point, an honest party may generate an output message
(ID , out, a-broadcast,m), which is given to the adversary; we say the party
a-delivers the request m at this point. We adopt the following terminological
convention: a “request” is something that is a-broadcast or a-delivered, while a
“message” is something that is sent or delivered in the implementation of the
protocol.

To give higher level protocols the option to block the atomic broadcast pro-
tocol, the delivering party waits for an acknowledgment after every a-delivery
of a request. That is, the number of a-delivered requests is equal to either the
number of acknowledgments or the number of acknowledgments plus one. This
is necessary so that higher-level protocols may satisfy a property analogous to
the efficiency property (see Definition 1 below). Without this ability to synchro-
nize protocol layers, a low-level atomic broadcast protocol could generate an
arbitrary amount of network traffic without a higher-level protocol ever doing
anything useful.

At any point in time, for any honest party Pi, we define B(i) to be the set
of requests that Pi has a-broadcast, and we define D(i) to be the set of requests
that Pi has a-delivered. We say that one request in B(i) is older than another if
Pi a-broadcast the first request before it a-broadcast the second request. At any
point in time, we also define D∗ = ∪honest Pi

D(i).
In discussing the values of the sets B(i), D(i), or D∗ at particular points

in time, we consider the sequence of events E1, . . . , Ek during the adversary’s

208 K. Kursawe and V. Shoup

attack, where each event but the last is either an a-broadcast or a-delivery by an
honest party, and the last event is a special “end of attack” event. The phrase
“at time τ ,” for 1 ≤ τ ≤ k, refers to the point in time just before event Eτ

occurs.

Definition 1 (Atomic Broadcast). A protocol for atomic broadcast satisfies
the following conditions, for all channels ID and all adversaries, with all but
negligible probability.

Agreement: If some honest party has a-delivered m on channel ID, then all
honest parties a-deliver m on channel ID, provided the adversary opens chan-
nel ID for all honest parties, delivers all associated messages, and generates
acknowledgments for every party that has not yet a-delivered m on chan-
nel ID.

Total Order: Suppose one honest party has a-delivered m1, . . . ,ms on channel
ID, and another honest party has a-delivered m′

1, . . . ,m
′
s′ on channel ID

with s ≤ s′. Then ml = m′
l for 1 ≤ l ≤ s.

Validity: There are at most t honest parties Pj with B(j)\D∗ �= ∅, provided
the adversary opens channel ID for all honest parties, delivers all associated
messages, and generates all acknowledgments.

Fairness: There exist a quantity Δ, which is bounded by a fixed polynomial in
the security parameter (independent of the adversary), such that the following
holds. Suppose that at some time τ1, there is a set S of t+ 1 honest parties,
such that for all Pj ∈ S, the set B(j)\D∗ is non-empty. Suppose that there
is a later point in time τ2 such that the size of D∗ increases by more than
Δ between times τ1 and τ2. Then there is some Pj ∈ S, such that the oldest
request in B(j)\D∗ at time τ1 is in D∗ at τ2.

Efficiency: At any point in time, the quantity MC (ID)/(|D∗|+1) is probabilis-
tically uniformly bounded.

Integrity: Every honest party a-delivers a request m at most once on channel
ID. Moreover, if all parties follow the protocol, then m was previously a-
broadcast by some party on channel ID.

3 Protocol Conventions and Notations

At each step of an attack, the adversary delivers a message to an honest party,
and activates the honest party: the party performs some computations, updates
its internal state, generates messages, and then returns control to the adversary.
Messages delivered to a party are appended to the rear of an incoming message
queue. When activated, the party may examine this queue, and remove any
messages it wishes.

A party consists of one or more threads of execution. When a party is ac-
tivated, each thread is in a wait state, waiting for one of the corresponding
conditions to be satisfied. If the condition upon which any thread is waiting is
satsified, the corresponding thread is activated (if several threads could be ac-
tivated, one is chosen arbitrarily), and this thread runs until it reaches another

Optimistic Asynchronous Atomic Broadcast 209

wait state. This process continues until all threads are in wait states whose
conditions are not satisfied, and then control returns to the adversary.

Our protocol syntax is rather self explaining, with one exception. A wait
condition can either receive messages or detect them. In the former case, the
messages are deleted from the queue (and thus do not trigger any further condi-
tions) while in the latter, they remain in the queue. We also define an abstract
timeout mechanism, which allows a process to start or stop the timer or wait
for a timeout. In our model, this is implemented by the party simply sending a
message to itself. As the adversary has full control over message delivery, this
gives him full control over the timer, too.

4 Our New Protocol for Atomic Broadcast

The protocol operates in epochs, each epoch e = 0, 1, 2, etc., consisting of an
optimistic and a pessimistic phase. In the optimistic phase, a designated leader
orders incoming requests by assigning sequence numbers to them and initiating a
Bracha broadcast [B84]; the optimistic phase guarantees the agreement and total
order properties, but not the validity or fairness properties; however, the protocol
can effectively determine if validity or fairness are potentially threatened, and
if so, switch to the pessimistic phase, which cleans up any “mess” left by the
current leader; then the optimistic phase starts again with a new leader.

4.1 Overview and Optimistic Phase

In the optimistic phase of epoch e, when a party a-broadcasts a request m, it
initiates the request by sending a message of the form (ID , initiate, e,m) to
the leader for epoch e. When the leader receives such a message, it 0-binds a
sequence number s to m by sending a message of the form (ID , 0-bind, e,m, s)
to all parties. Sequence numbers start at zero in each epoch. Upon receiving a
0-binding of s to m, an honest party 1-binds s to m by sending a message of the
form (ID , 1-bind, e,m, s) to all parties. Upon receiving n − t such 1-bindings
of s to m, an honest party 2-binds s to m by sending a message of the form
(ID , 2-bind, e,m, s) to all parties. A party also 2-binds s to m if it receives t+1
2-bindings of s to m — this has the effect of “amplifying” 2-bindings, which is
used to ensure agreement. Upon receiving n − t such 2-bindings of s to m, an
honest party a-delivers m, provided all messages with lower sequence numbers
were already delivered, enough acknowledgments have been received, and m was
not already a-delivered.

A party only sends or reacts to 0-, 1-, or 2-bindings for sequence numbers s in
a “sliding window” {w, . . . , w+WinSize−1}, where w is the number of requests
already a-delivered in this epoch, and WinSize is a fixed system parameter.
Keeping the “action” bounded in this way is necessary to ensure efficiency and
fairness.

The number of requests that any party initiates but has not yet a-delivered
is bounded by a parameter BufSize: a party will not initiate any more requests

210 K. Kursawe and V. Shoup

once this bound is reached. We denote by I the set of requests that have been
initiated but not a-delivered, and we call this the initiation queue. If sufficient
time passes without anything leaving the initiation queue, the party “times out”
and complains to all other parties. These complaints are “amplified” analogously
to the 2-bindings. Upon receiving n− t complaints, a party enters the pessimistic
phase of the protocol. This strategy will ensure validity. Keeping the size of I
bounded is necessary to ensure efficiency and fairness.

Also to ensure fairness, a party keeps track of the “age” of the requests in
its initiation queue, and if it appears that the oldest request is being ignored,
i.e., many other requests are being a-delivered, but not this one, then the party
simply refuses to generate 1-bindings until the problem clears up. If t+1 parties
block in this way, they effectively prevent the remaining parties from making any
progress in the optimistic phase, and thus, the pessimistic phase will be entered,
where the fairness problem will ultimately be resolved.

We say that an honest party Pi commits s to m in epoch e, if m is the
sth request (counting from 0) that it a-delivered in this epoch, optimistically or
pessimistically.

Now the details. The state variables for party Pi are as follows.

Epoch number e: The current epoch number, initially zero.
Delivered set D: All requests that have been a-delivered by Pi. It is required to

ensure that requests are not a-delivered more than once; in practice, however,
other mechanisms may be employed for this purpose. Initially, D is empty.

Initiation queue I: The queue of requests that Pi initiated but not yet a-
delivered. Its size is bounded by BufSize. Initially, I is empty.

Window pointer w: w is the number of requests that have been a-delivered
in this epoch. Initially, w = 0. The optimistic phase of the protocol only
reacts to messages pertaining to requests whose sequence number lies in the
“sliding window” {w, . . . , w+WinSize−1}. Here, WinSize is a fixed system
parameter.

Echo index sets BIND1 and BIND2: The sets of sequence numbers which Pi

has 1-bound or 2-bound, respectively. Initially empty.
Acknowledgment count acnt : Counts the number of acknowledgments re-

ceived for a-delivered requests. Initially zero.
Complaint flag complained : Set if Pi has issued a complaint. Initially false.
Initiation time it(m): For each m ∈ I, it(m) is equal to the value of w at the

point in time when m was added to I. Reset to zero across epoch boundaries.
These variables are used in combination with a fixed parameter Thresh to
ensure fairness.

Leader index l: The index of the leader in the current epoch; we simply set
l = (e mod n) + 1. Initially, l = 1.

Scheduled request set SR: Only maintained by the current leader. It con-
tains the set of messages which have been assigned sequence numbers in this
epoch. Initially, it is empty.

Next available sequence number scnt : Only maintained by the leader. Value
of the next available sequence number. Initially, it is zero.

Optimistic Asynchronous Atomic Broadcast 211

/* Initiate m. */
upon receiving a message (ID , in, a-broadcast, m) for some m such that

m /∈ I ∪D and |I| < BufSize (note that we take the oldest such message
first):

Send the message (ID , initiate, e, m) to the leader.
Add m to I; set it(m)← w.

/* 0-bind scnt to m. */
upon receiving a message (ID , initiate, e, m) for some m, such that i = l

and w ≤ scnt < w + WinSize and m /∈ D ∪ SR:
Send the message (ID , 0-bind, e, m, scnt) to all parties.
Increment scnt and add m to SR.

/* 1-bind s to m. */
upon receiving a message (ID , 0-bind, e, m, s) from the current leader for

some m, s such that w ≤ s < w + WinSize and s /∈ BIND1 and ((I = ∅)
or (w ≤ min{it(m) : m ∈ I}+ Thresh)):

Send the message (ID , 1-bind, e, m, s) to all parties; add s to BIND1.
/* 2-bind s to m. */
upon receiving n− t messages of the form (ID , 1-bind, e, m, s) from distinct

parties that agree on s and m, such that w ≤ s < w + WinSize and
s /∈ BIND2:

Send the message (ID , 2-bind, e, m, s) to all parties; add s to BIND2.
/* Amplify a 2-binding of s to m. */
upon detecting t+1 messages of the form (ID , 2-bind, e, m, s) from distinct

parties that agree on s and m, such that w ≤ s < w + WinSize and
s /∈ BIND2:

Send the message (ID , 2-bind, e, m, s) to all parties; add s to BIND2.
/* Commit s to m. */
upon receiving n− t messages of the form (ID , 2-bind, e, m, s) from distinct

parties that agree on s and m, such that s = w and acnt ≥ |D| and
m /∈ D and s ∈ BIND2:

Output (ID , out, a-deliver, m); increment w; add m to D, and re-
move it from I (if present); stop timer.

/* Start timer. */
upon (timer not running) and (not complained) and (I �= ∅) and (acnt ≥ |D|):

start timer.
/* Complain. */
upon timeout:

if not complained : send the message (ID , complain, e) to all parties;
set complained ← true.

/* Amplify complaint. */
upon detecting t + 1 messages (ID , complain, e) from distinct parties, such

that not complained :
Send the message (ID , complain, e) to all parties; set complained ←

true; stop timer.
/* Go pessimistic. */
upon receiving n− t messages (ID , complain, e) from distinct parties, such

that complained :
Execute the procedure Recover below.

Fig. 1. The optimistic phase

212 K. Kursawe and V. Shoup

The protocol for party Pi consists of two threads. The first is a trivial thread
that simply counts acknowledgments for a-delivered requests; it consists of an
infinite loop whose body is as follows:

wait until receiving an acknowledgment; increment acnt
The main thread is an infinite loop whose body is as follows:

case MainSwitch end case
where the MainSwitch is a sequence of upon clauses described in Figure 1.

4.2 Fully Asynchronous Recovery

The recovery protocol is invoked if the optimistic phase appears to not work
properly; this happens if either the leader is faulty or the network is too slow.
Its job is to synchronize the parties by a-delivering all broadcasts that any honest
party may have already a-delivered, and to guarantee the efficiency of the overall
protocol by assuring that some messages are a-delivered. Finally, it hands over
to a new leader to restart a new optimistic phase.

Validated Multivalued Byzantine Agreement. Our recovery-protocol
builds on top of validated multivalued Byzantine agreement (i.e., the agree-
ment is not restricted to a binary value), as defined and implemented in [C+01].
The final agreement value must be legal according to some validation function,
which guarantees that it is some “useful” value. The definition of the validation
function is clear from the context as the exact form of a valid proposal is defined
in the protocol description. In the atomic broadcast protocol, we use the phrase
“propose Xi for multivalued Byzantine agreement on X” to denote the invoca-
tion of a validated multivalued Byzantine agreement protocol, where Xi is Pi’s
initial proposal, and X the resulting agreement value.

Overview of the Recovery Procedure. We distinguish between three types
of requests: (i) requests for which it can be guaranteed that they have been
a-delivered by an honest party; (ii) requests that potentially got a-delivered by
an honest party; (iii) requests for which it can be guaranteed that they have
not been a-delivered by an honest party. For the first two kinds of requests,
an order of delivery might already be defined, and has to be preserved. The
other requests have not been a-delivered at all, so the recovery protocol has
complete freedom on how to order them. They can not be left to the next
leader, however, as an adversary can always force this leader to be thrown
out as well. To guarantee efficiency, the recovery procedure has to ensure that
some request is a-delivered in every epoch. This is precisely the property that
Castro and Liskov’s protocol fails to achieve: in their protocol, without im-
posing additional timing assumptions, the adversary can cause the honest par-
ties to generate an arbitrary amount of messages before a single request is a-
delivered. According to the three types of requests, the recovery protocol consists
of three parts.

Part 1: Requests whose sequence number is determined. A “watermark” ŝe is
jointly computed, which has the property that at least one honest party opti-

Optimistic Asynchronous Atomic Broadcast 213

mistically committed the sequence number ŝe, and no honest party optimistically
committed a sequence number higher than ŝe +2 ·WinSize. After computing the
watermark, all parties “catch up” to the watermark, i.e., commit all sequence
numbers up to ŝe, by simply waiting for t + 1 consistent 2-bindings for each se-
quence number up to the watermark. The work performed in this part constant,
and especially independent of the number of unfinished requests.

Part 2: Requests whose sequence number may be determined. Here, we deal with
the requests that might or might not have been a-delivered by some honest party
in the optimistic phase of this epoch. We have to ensure that if some honest
party has optimistically a-delivered a request, then all honest parties a-deliver
this request as well. The sequence numbers of requests with this property lie in
the interval ŝe+1 . . . ŝe+2 ·WinSize. Each party makes a proposal that indicates
what action should be taken for all sequence numbers in this critical interval.
Again, multivalued Byzantine agreement will be used to determine which of
possibly several valid proposals should be accepted. While this part is relatively
expensive, we can guarantee an upper bound of the number of requests processed
here, which is determined by the window-size parameter.

Part 3: Undetermined Requests. This part is the one that guarantees that some
messages are a-delivered in this epoch. We use a multivalued Byzantine agree-
ment protocol to agree on a certain set of additional requests that should be
a-delivered this epoch. We need to do this to ensure fairness and efficiency.

Terminology of the Recovery Procedure. For any party Pi, and any mes-
sage α, we denote by {α}i a signed version of the message, i.e., α concatenated
with a valid signature under Pi’s public key on α, along with Pi’s identity.

For any s ≥ −1, a strong consistent set Σ for s is a set of t + 1 correctly
signed messages from distinct parties, each of the form {(ID , s-2-bind, e, s′)}j

for some j and s′ ≥ s.
A valid watermark proposal M is a set of n − t correctly signed messaged

from distinct parties, each of the form {(ID , watermark, e, Σj , sj)}j for some j,
where Σj is a strong consistent set of signatures for sj . The maximum value sj

appearing in these watermark messages is called the maximum sequence number
of M.

For any s ≥ 0, a weak consistent set Σ′ for s is a set of n− t correctly signed
messages from distinct parties — each of the form {(ID , w-2-bind, e, s,mj)}j

for some j — such that either all mj = ⊥ (indicating no 2-binding for s), or
there exists a request m and all mj are either m or ⊥. In the former case, we
say Σ′ defines ⊥, and in the latter case, we say Σ′ defines m.

A valid recover proposal P is a set of n − t correctly signed messages from
distinct parties each of the form {(ID , recover-request, e,Qj)}j for some j,
where Qj is a set of at most BufSize requests.

The protocol for the pessimistic phase is presented in Figure 2.
A proof of security of the complete atomic broadcast protocol, as well as a

number of other details, can be found in the full version of this paper [KS01].

214 K. Kursawe and V. Shoup

/* Part 1: Recover requests with a determined sequence-number */
Send a the signed message {(ID , s-2-bind, e, max(BIND2 ∪ {−1}))}i to all

parties.
wait until receiving a strong consistent set Σi for w − 1.
Send the signed message {(ID , watermark, e, Σi, w − 1)}i to all parties.
wait until receiving a valid watermark proposal Mi.
Propose Mi for multivalued Byzantine agreement on a valid watermark pro-

posal M.
Set ŝe ← s̃−WinSize, where s̃ is the maximum sequence number of M.
while w ≤ ŝe do:

wait until receiving t+1 messages of the form (ID , 2-bind, e, m, w)
from distinct parties that agree on m, such that acnt ≥ |D|.

Output (ID , out, a-deliver, m); increment w.
Add m to D, and remove it from I (if present).

/* Part 2: Recover requests with a potentially determined sequence-
number */

For s← ŝe + 1 to ŝe + (2 ·WinSize) do:
If Pi sent the message (ID , 2-bind, e, m) for some m, set m̃ ← m;

otherwise, set m̃← ⊥.
Send the signed message (ID , w-2-bind, e, s, m̃) to all parties.
wait until receiving a weak consistent set Σ′

i for s.
Propose Σ′

i for multivalued Byzantine agreement on a weak consis-
tent set Σ′ for s.

Let Σ′ define m.
If (s ≥ w and m ∈ D) or m = ⊥, exit the for loop and go to Part 3.
If m /∈ D: wait until acnt ≥ |D|; output (ID , out, a-deliver, m);

increment w; add m to D, and remove it from I (if present).

/* Part 3: Recover undetermined Requests */
If w = 0 and I �= ∅: send the message (ID , recover-help, e, I) to all parties.
If w = 0 and I = ∅: wait until receiving a message (ID , recover-help, e,Q),

such thatQ is a non-empty set of at most BufSize requests, andQ∩D = ∅.
If w �= 0 or I �= ∅: set Q ← I.
Send the signed message {(ID , recover-request, e,Q)}i to all parties.
wait until receiving a valid recover proposal Pi.
Propose Pi for multivalued Byzantine agreement on a valid recover proposal P.
Sequence through the request set of P in some deterministic order, and for

each such request m /∈ D, do the following:
wait until acnt ≥ |D|; output (ID , out, a-deliver, m); increment

w; add m to D, and remove it from I (if present).

/* Start New Epoch */
Set e← e+1; l← (e mod n)+1; w ← scnt ← 0; SR ← BIND1 ← BIND2 ←

∅; complained ← false.
For each m ∈ I: send the message (ID , initiate, e, m) to the leader; set

it(m)← 0.

Fig. 2. The pessimistic phase

Optimistic Asynchronous Atomic Broadcast 215

References

[A+95] E. Anceaume, B. Charron-Bost, P. Minet, and S. Toueg. On the formal
specification of group membership services. Tech. Rep. TR95-1534, Cornell
University, Computer Science Department, 1995.

[BR93] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In 1st ACM Conf. on Computer and Commu-
nications Security, pp. 62–73, 1993.

[B84] G. Bracha. An asynchronous [(n − 1)/3]-resilient consensus protocol. In
Proc. of the 3rd Ann. ACM Symp. on Principles of Distributed Computing,
pp. 154–162, 1984.

[C00] M. Castro. Practical Byzantine Fault Tolerance. PhD thesis, Massachusetts
Institute of Technology, 2000.

[C+01] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup. Secure and efficient
asynchronous broadcast protocols. In Advances in Cryptology—Crypto 2001,
pp. 524–541, 2001.

[C+00] C. Cachin, K. Kursawe, and V. Shoup. Random Oracles in Constantinople:
Practical Asynchronous Byzantine Agreement using Cryptography. In ACM
SIGACT-SIGOPS Symp. on Principles of Distributed Computing, pp. 123–
132, 2000.

[CL99a] M. Castro and B. Liskov. Authenticated byzantine fault tolerance without
public-key cryptography. Tech. Memo MIT/LCS/TM-589, MIT Laboratory
for Computer Science, 1999.

[CL99b] M. Castro and B. Liskov. Practical Byzantine fault tolerance. In Proc. 3rd
Symp. Operating Systems Design and Implementation, 1999.

[CR93] R. Canetti and T. Rabin. Fast asynchronous Byzantine agreement with
optimal resilience. In Proc. 25th Ann. ACM Symp. on Theory of Computing,
pp. 42–51, 1993.

[D+00] Doudou, Guerraoui, and Garbinato. Abstractions for devising byzantine-
resilient state machine replication. In SRDS: 19th Symp. on Reliable Dis-
tributed Systems, 2000.

[F+85] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374–382, 1985.

[K+98] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith. The SecureRing
protocols for securing group communication. In 31st Hawaii International
Conference on System Sciences, pp. 317–326, 1998.

[KS01] K. Kursawe, V. Shoup. Optimistic asynchronous atomic broadcast. Cryptol-
ogy ePrint Archive, Report 2001/022, http://eprint.iacr.org, 2001.

[R94] M. K. Reiter. Secure agreement protocols: Reliable and atomic group mul-
ticast in Rampart. In Proc. of the 2nd ACM Conference on Computer and
Communication Security, pp. 68–80, 1994.

Asynchronous Perfectly Secure
Communication over One-Time Pads�

Giovanni Di Crescenzo1 and Aggelos Kiayias2,��

1 Telcordia, Piscataway, NJ, USA
giovanni@research.telcordia.com

2 CSE Dept., University of Connecticut, Storrs, CT, USA
aggelos@cse.uconn.edu

Abstract. The “One-Time Pad” is a fundamental cryptographic pro-
tocol as it represents the ideal in secure unidirectional communication
(i.e., in cases where there is a designated sender and a designated re-
ceiver) both in terms of security (in the presence of eavesdroppers) as
well as in terms of computational efficiency. Surprisingly, no modeling
and investigation of this protocol has been done in important practical
settings, as distributed and asynchronous ones. In this work we introduce
an asynchronous model for multidirectional and multi-player One-Time
Pad asynchronous communication protocols. In this model the random
pad is shared by all players, and there is no designated sender and re-
ceiver; in fact any participating player can act as a receiver at any given
time, players communicate in a totally asynchronous fashion and may
arbitrarily go off-line.

We define the problem of designing One-Time Pad asynchronous com-
munication protocols, where the goal is that of maximizing the amount
of the shared pad used before new randomness needs to be generated,
with the constraint of mantaining the security property under reasonable
adversarial assumptions on the relative behavior of the players and the
network. We present lower bounds and protocol solutions for this prob-
lem that significantly improve over the obvious scenario where parties
use an equal fraction of the pad. Our constructions are non-interactive
in the sense that they require no additional synchronizing communication
beyond the (usual) information that accompanies each ciphertext.

1 Introduction

The “One-Time Pad” is a well-known private-key encryption scheme, originally
invented by Vernam [14] in 1918. Assume Alice and Bob agree on a random key
K (a random “pad”); then, they can communicate securely (that is, without the
eavesdropper Eve obtaining any information about their message) as follows:
On input message m, Alice computes the ciphertext c = m ⊕ [K] where [K]

� Copyright Telcordia.
�� Research partly supported by NSF CAREER Award CNS-0447808.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 216–227, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Asynchronous Perfectly Secure Communication 217

denotes a substring of K of appropriate length and sends it to Bob. Given c,
Bob can recover message m, by decrypting c as m = c ⊕ [K]. Here, ⊕ is the
“exclusive OR” operator, and K is at least as large as m. What makes one-time
pad encryption remarkable is the following two facts (i) as shown by Shannon,
in [13], it holds that any provably-secure (in the information-theoretic sense)
encryption scheme must satisfy |K| ≥ |m| and more specifically one-time pad
is optimally secure in the information theoretic sense. (ii) the encryption and
decryption operations are essentially optimal in terms of time-complexity (being
a mere exclusive-or operation). While the length of the key is inappropriate for
most practical cryptographic applications, one-time pads are widely utilized as
atomic components of more elaborate encryption systems by employing pseudo-
random generators to generate arbitrarily long sequences of pseudo-random bits
given only a short shared random seed (see e.g. [12, 7]). In this case the resulting
pseudorandom sequence is used as a pad. The employment of such pseudorandom
generators allows the transmission of messages longer than the shared key and
security would rely solely on the unpredictability of the pseudo-random generator
(since one-time pad over a truly random pad is information theoretically secure).

Now consider the setting where Alice and Bob both wish to play the sender
or receiver role engaging in a conversation without a predetermined schedule
and in an asynchronous communication setting. In the obvious solution, both
players divide the pad K in two halves and each one uses a separate portion.
Nevertheless, it would be much preferable to allow players to dynamically balance
the pad portion they use depending on their need as this is determined by the
progress of their interaction. In this sense the protocol allowing |K|/2 maximum
total communication by each player individually loses a lot of the one-time pad
efficiency in terms of utilizing their private storage and computation power (we
stress that expanding the shared pad is an expensive operation and players
would wish to utilize the jointly generated pad as efficiently as possible). In
the bidirectional setting, a solution with more efficient pad utilization would
allow the segment that can be expended by Alice in some conversations to be
expended by Bob in others. Note that in the asynchronous setting we consider we
cannot rely on participants being online to execute synchronization steps (and in
this case even deterministic consensus decision is unattainable, [6]), while other
synchronization techniques employing e.g. randomization [2], are clearly quite
expensive in terms of communication for our setting.

The Problem. The problem we consider in this paper is then, as follows: Is
it possible for m ≥ 2 players, sharing a one-time pad of a certain size, to com-
municate securely (that is, without re-using portions of the one-time pad) and
efficiently (that is, by using as much pad material as possible before re-generating
new randomness)? In particular we will seek answers to the above problem where
(i) the communication model is multidirectional and totally asynchronous; (ii)
players do not use additional messages to synchronize themselves; (iii) players
might arbitrarily go off-line or crash. Note that in order to satisfy these con-
straints we will opt for non-interactive protocol constructions: when a player
wishes to transmit a message he should make a decision based only on his local

218 G. Di Crescenzo and A. Kiayias

data on which pad to use next. The adversarial action that we will consider deals
with the relative behavior of the players and the possible delays/swaps that are
introduced during message transmission.

Our results. To describe the class of protocols solving the above problem we
introduce the notion of one-time pad asynchronous communication (OTPAC)
protocols. Our formal definition of secure OTPAC protocols considers an ad-
versary arbitrarily delaying messages and introduces an undelivery parameter d
meaning that, at any time, and for each sender, at most d messages were al-
ready sent by other players but have not been delivered to him yet. Note that
this adversarial behavior refers to the relative behavior of the participants rather
than properties of the network that is assumed to be totally asynchronous. The
adversarial behavior is formally defined by specifying some natural property of a
family of communication patterns (described as graphs) among the players. As
a consequence, protocols for secure communication in this model can be shown
to be secure according to this family of communication patterns.

In order to compare protocols in terms of the allowed flexibility in expending
the shared pad, we define a measure called the “efficiency ratio” that is associated
with each OTPAC protocol. Informally, the ratio is a metric for the maximum
number of random bits from the one-time pad that can be used by any player
before the pad needs to be refreshed. Under this metric, the protocol of the
unidirectional or the synchronous setting exhibits ratio 1 (thus, optimal), while
the protocol of m players equally splitting the pad has ratio 1/m.

We present concrete constructions of secure OTPAC protocols in the asyn-
chronous setting whose efficiency ratio is larger than 1/m and is expressed as a
function of the undelivery parameter d, the number of players m and the num-
ber of pads n. Our general approach for OTPAC protocol construction ensures
improved expendability of the pad by having players maintaining various types
of “logical clocks” [11]. We completely characterize the two party case, by ex-
hibiting a protocol achieving efficiency ratio 1− d/n for d ≤ +n/2,, and a lower
bound that matches this protocol when d ≤ +n/2, and the protocol of 2 players
equally splitting the pad otherwise. In the m-party case, we exhibit a proto-
col with efficiency ratio 1− 1/poly(n) for typical parameter values, and a lower

Number of Proven Secure Other
Protocol players Efficiency Ratio for Constraints

A1 m 1
m

unconditional
A2 m 1 undelivery 0
A3 2 1− d

n
undelivery d d < n/2

A4 m 1− d
n
(L− 2)log m−1 − log m−2

L
undelivery d d < nL1−log m

Fig. 1. Comparison of 4 Protocols. Note that in all cases we assume n � m. A1

refers to the protocol where players use disjoint pad segments, where A2 refers to the
protocol where players employ a jointly maintained counter (players are synchronized).
These two protocols are listed for the sake of comparison. Our main constructions are
protocols A3,A4. L is a parameter of A4

Asynchronous Perfectly Secure Communication 219

bound of 1− d/n for d ≤ +n(m− 1)/m, and 1/m otherwise, the latter matching
the protocol of m players equally splitting the pad. Our upper bound results are
overviewed in figure 1. We note that we know of no previous work in the litera-
ture that considered one-time pads in the asynchronous communication setting.
The problem of designing OTPAC protocols relates to the Do-All (DA) problem
(see, e.g., [5, 4, 10]) and Write-All (WA) problem (see, e.g., [9, 1, 3, 8]) from the
Distributed Computing literature. In fact, from this literature’s viewpoint, de-
signing OTPAC protocols can be thought of as solving a “Do/Write-Once” kind
of problem; this interrelationship will be further analyzed in upcoming work.

2 One-Time Pad Asynchronous Communication

In this section we present definitions for the communication model and protocols,
the security requirements as well as an efficiency metric, which we instantiate
through examples of basic protocols.

OTPAC Protocols. In our setting, m players A1, . . . , Am wish to communi-
cate securely taking advantage of a shared random pad. Players are assumed
to communicate through a network that supports broadcast transmission and
each player can be a sender or a receiver in a certain communication. There is
no global clock that the players can use for synchronization and message de-
lays are unbounded; all messages are eventually delivered but their order is not
necessarily preserved by the network (such assumptions are typical in the Dis-
tributed Computing literature). Each player Ai is initialized by executing an
Initialization procedure, and subsequently sequences of two events may happen
to Ai: Send and Receive, according to the requests of sending messages that the
specific application environment demands from the players in the protocol. Each
player Aj is assumed to have access to the same shared private random pad p
that can be written as the concatenation of n words p1, . . . , pn, of k bits each,
k being the length of one message-block. The communication is driven by a se-
quence of send requests for the players (that can be thought to be adversarially
generated) and are ordered according to some (unknown to the players) global
notion of time; the send requests form the schedule of the protocol denoted by
s = ((s1, t1), . . . , (sv, tv)), where t1 ≤ t2 ≤ · · · ≤ tv correspond to the time of the
send requests and each s� = (j, u) stands for the u-th request of the j-th player.
To achieve the highest possible generality we will assume that each execution of
the protocol takes as input a pad p and follows an arbitrary schedule s. Let us
denote by [n] = {1, . . . , n}. We can now proceed with a formal definition.

Definition 1. Let m,n be positive integers, let Head = [m]× [n], and let Conf
denote a set of possible configurations; at local time t we denote the configuration
of player Aj as Πj [t] ∈ Conf. We define a One-Time-Pad Asynchronous Com-
munication (OTPAC) protocol as a triple of polynomial-size circuits 〈I, S,R〉,
with the following functionality:

I : [m] → Conf S : [m]×Conf → {⊥}∪(Conf×[n]) R : [m]×Conf×Head → Conf

220 G. Di Crescenzo and A. Kiayias

The operation of an OTPAC protocol is as follows: initially every player Aj

executes I(j) → Πj [0] to set its initial configuration. Then the sequence of send
requests in the schedule s is sequentially scanned. Given a send request at time
t, player Aj generates a Send event, by executing S(Πj [t]) → 〈Πj [t + 1], i〉 and
resulting in the transmission of the ciphertext 〈j, i, pi ⊕M〉, where M ∈ {0, 1}k

is the message that player Aj wishes to transmit and 〈j, i〉 ∈ [m] × [n] is the
ciphertext header (note that frequently we will write S(·) instead of S(j, ·) if
the sending player is clear from the context; similarly for R(·)). If S(Πj [t]) = ⊥
player Aj ceases to send messages. Every ciphertext has length logm+log n+k.
A Receive event is triggered by the arrival of a ciphertext 〈j′, i′, C〉 at player Aj

in time t. Player Aj decrypts the message by computing pi′ ⊕ C and updates
its configuration to Πj [t+1]← R(Πj [t], j′, i′). We assume that the S,R circuits
satisfy the property S(Πj [t]) = ⊥ ⇒ S(R(Πj [t], j, i)) = ⊥ for any 〈j, i〉 ∈ Head.
An OTPAC protocol stops when all parties Aj enter in a configuration Πj [t]
such that S(Πj [t]) = ⊥. A particular execution of an OTPAC protocol (namely,
an execution of algorithms I, S,R, for fixed random tapes of all participants)
can be characterized as in the following definition.

Definition 2. A feasible asynchronous communication pattern (ACP) for an m-
player OTPAC protocol 〈I, S,R〉 on input an n-word pad p and a schedule s is
a finite directed acyclic graph P so that the set of its nodes is a subset of IN× IN
and is partitioned into m subsets. Every node 〈j, t〉 is labeled by an element
of Conf, denoted by Πj [t]. P includes the nodes 〈1, 0〉, . . . , 〈m, 0〉 labeled by
I(1), . . . , I(m) respectively, as well as the nodes 〈1, t1,max〉, . . . , 〈m, tm,max〉 such
that for any t > tj,max, 〈j, t〉 �∈ P. For any j, t < tj,max there is an edge from
〈j, t〉 to 〈j, t′〉 for some t′ with t < t′ and such that for all t∗ ∈ {t+1, . . . , t′− 1},
〈j, t∗〉 �∈ P; the node 〈j, t′〉 is the subsequent node of 〈j, t〉. The nodes of P and
their labels fall into either one of the following three categories:

– Send Nodes. It is a node 〈j, t〉 with S(Πj [t]) �= ⊥ that has m outgoing edges
to 〈1, t1〉, . . . , 〈m, tm〉 s.t. tj = t + 1 and at most one incoming edge. The
label of 〈j, t + 1〉 is equal to Π where 〈Π, i〉 ← S(Πj [t]).

– Receive Nodes. It is a node 〈j, t〉 with one incoming edge coming from some
Send-node 〈j′, t′〉 j′ �= j. The label of 〈j, t + 1〉 is equal to R(Πj [t], j′, i′)
where i′ is such that 〈Π ′, i′〉 ← S(Πj′ [t′]).

– Idle Nodes. It is a node 〈j, t〉 that is neither a Send or Receive node. If t > 0,
the node has one incoming and one outgoing edge to its subsequent node
〈j, t′〉 (recall t′ > t); if 〈j, 0〉 is idle then it has no incoming edge. The label
of 〈j, t′〉 is equal to Πj [t].

Any OTPAC protocol A := 〈I, S, C〉 for m players using a random pad p of n k-
bit words and a schedule s defines a family of feasible ACP’s denoted by Fm,n

A,s .
(By Fm,n

A we denote the union, over all schedules s, of the family of feasible
ACP’s Fm,n

A,s .)

Security and efficiency of OTPAC protocols. We define the security of
OTPAC protocols by extending the security notion of the one-time pad from

Asynchronous Perfectly Secure Communication 221

the unidirectional synchronous setting (namely, that the same portion of the
pad should not be used twice) to the asynchronous setting considered here.

Let A be an OTPAC protocol, and Fm,n
A be the set of feasible ACP’s. While

players A1, . . . , Am are attempting to communicate, the adversary is capable of
controlling the network so to both choose a particular schedule of send requests
and swap or delay messages being sent. The goal of the adversary is to force the
re-use of some portion of the pad so that the “one-time” property is lost and
some information can be derived from the transcript. It follows that the only
mechanism available to players to protect the security of their communication
is to reach the ⊥ output of their Send-event state update function S, before the
adversary is capable of violating the one-time property. So given an OTPAC pro-
tocol A, the adversary selects a schedule s that is input to A, and furthermore
selects a pattern P ∈ Fm,n

A,s ; the protocol is executed following the pattern P;
if P contains two Send events that use the same pad segment, then the adver-
sary wins. In conclusion, security of an OTPAC protocol would be argued for a
subfamily of Fm,n

A for which no pad is used twice. Formally,

Definition 3. The Security Property. Let A := 〈I, S, C〉 be an OTPAC
protocol, let Fm,n

A,s the be family of feasible ACP’s for A on input schedule s and
let Fm,n

A,s = ∪sFm,n
A,s . We say that A is insecure on P ∈ Fm,n

A,s if P includes two
Send nodes 〈j, t〉 and 〈j′, t′〉 so that if 〈Π, i〉 ← S(Πj [t]) and 〈Π ′, i′〉 ← S(Πj′ [t′])
it holds that i = i′. Let G = ∪sGs be a family of ACP’s, where for each s,
Gs ⊆ Fm,n

A,s . We say that A is secure on family G, if there exists no schedule s
and no pattern P ∈ Gs such that A is insecure on P.

Naturally, for any given A it would be the most desirable that it is secure
for any P ∈ Fm,n

A . Considering only such protocols though is very restrictive.
Instead, as it is standard in cryptography as well as in distributed systems theory,
we will opt to restrict the behavior of the adversary in meaningful ways and
consider protocols that can be proven secure in such adversarial setting.

Adversarial Setting: Undelivery. A communication pattern P ∈ Fm,n
A,s ad-

mits various total orderings ≺ between the vertices of P (topological sortings of
the graph P). One such sorting ≺ corresponds to the actual “real global time”
(unknown to the participants). Such total orderings can also be called “runs” of
an asynchronous communication pattern P, following the standard terminology
in distributed systems. Note that, as it is common in distributed systems theory,
we assume that no two events happen at the same time, i.e. the total ordering≺ is
strict. A Send event 〈j, t〉 is said to have d undelivered messages w.r.t. a topologi-
cal sorting≺ of P, if there exist d Send events 〈j1, t1〉, . . . , 〈jd, td〉, j �∈ {j1, . . . , jd}
for which it holds 〈j�, t�〉 ≺ 〈j, t〉 for � = 1, . . . , d, and if 〈j, s1〉, . . . , 〈j, sd〉 are the
corresponding Receive events at player Aj it holds that s� > t for � = 1, . . . , d.
For any schedule s, let Um,n

A,s,d denote the subfamily of all ACP’s P ∈ Fm,n
A,s that

have no Send events with d undelivered messages w.r.t. any possible topological
sorting of P. Also, let Um,n

A,d = ∪sUm,n
A,s,d.

Note that undelivery does not describe any fixed property of the network.
More specifically, if an ACP contains a Send event that has d undelivered mes-

222 G. Di Crescenzo and A. Kiayias

sages this does not mean that the network delays messages by a fixed upper
time-bound that is proportional to d. Instead, the adversary controlled the mes-
sage delivery of the network and the random coin tosses of the players’ random
processes in such a way that one of the players initiated a Send-event before
having heard of d Send events of other players that happened concurrently. We
remark that if it was possible for the players to synchronize themselves (e.g., by
using a global clock) it would be easy to restrict the adversary to produce only
ACP’s that belong to Um,n

A,1 , i.e., if a player sends a message the other players
are silent until they receive it. Clearly in such a scenario designing an OTPAC
protocol is a trivial matter. Tackling the asynchronous case where the parameter
d > 1 is the motivation for our investigations.

Efficiency of OTPAC protocols. We introduce a natural metric of the effi-
ciency of an OTPAC protocol with respect to usage of the shared pad vector.

We start with some definitions. The message-count of an ACP P ∈ Fm,n
A ,

denoted by mc(P), is a tuple 〈N1, . . . , Nm〉 denoting the number of Send events
for each of the players A1, . . . , Am. Let G = ∪sGs be a family of ACP’s, where
for each s, Gs ⊆ Fm,n

A,s . Next we define the order of a family G ⊆ Fm,n
A as

N = mins minP∈Gs

∑n
i=1 Ni. Intuitively, the order of G is the maximum number

of messages that all players can send using protocol A when, on input schedule
s, the communication pattern is drawn from Gs. Using this notion, we define our
main metric for OTPAC protocols, which we call the “efficiency ratio,” standing
for the maximum percentage of the pad all players are allowed to use.

Definition 4. The Efficiency Ratio. Let A be an OTPAC protocol with cor-
responding ACP family Fm,n

A and let G = ∪sGs be an ACP family such that for
each s, Gs ⊆ Fm,n

A,s . The efficiency ratio of algorithm A on family G is defined
as α := N

n where N is the order of family G.

Although it does not appear explicitly in the above definition, we stress that
this metric only makes sense for secure executions, as insecure executions can
always have efficiency ratio 1 or even greater. To understand the above notion
it is helpful to recall the two simple protocols described in figure 1: A1 will be
the OTPAC protocol where all players use a disjoint segment in the pad and A2

will be the protocol that all players use the whole pad at the same time while
maintaining a joint counter. It is straightforward to show that A1 has efficiency
ratio 1/m and can be proven secure for all feasible ACP’s Fm,n

A1
, whereas A2 has

efficiency ratio 1, but can be proven secure only for Um,n
A2,1, the family of ACP’s

that are effectively synchronous (no Send-event has an undelivered message). The
protocols A1,A2 represent the two different ends of the spectrum: A1 allows
arbitrary adversarial action but has very small efficiency ratio; on the other
hand A2 allows the highest efficiency ratio nevertheless it can only be proven
secure if we restrict the adversary so much that players communicate in an
effectively synchronous fashion. This motivates our investigations in the rest of
the paper, where we construct OTPAC protocols that trade adversarial action
for efficiency.

Asynchronous Perfectly Secure Communication 223

3 OTPAC Protocol Lower Bounds

In this section we prove lower bounds on the efficiency ratio of OTPAC protocols,
as a function of the number n of elements in the common pad, the number m
of players, and the undelivery parameter d. We start with OTPAC protocols
among 2 players, and then extend the analysis to any number m of players.

The Two-Player Case. Let A be an OTPAC protocol among 2 players. Recall
that we consider adversaries that can choose the request schedule s input to
protocol A and can arbitrarily delay messages, so to force any Send event to
have up to d undelivered messages, where d is an unrestricted parameter (in
particular, note that d ≥ n is equivalent to assuming d = ∞). We obtain the
following:

Theorem 1. Any OTPAC protocolA secure on U2,n
A,d can achieve efficiency ratio

α such that:
– α ≤ 1− d/n if d ≤ +n/2,,
– α ≤ 1/2 if d > +n/2,.

The proof of Theorem 1 starts by assuming, towards contradiction, that there
exists an OTPAC protocol A that can achieve efficiency ratio larger than the
claimed bound on the ACP family U2,n

A,d; finally, it reaches contradiction by show-
ing that A is not secure on this family. An intuition on how the contradiction is
reached goes as follows. First, we show the existence of a schedule s1 on which
the efficiency ratio larger than the claimed bound is achieved by portions of the
random pad only used by party P1. Then we show the existence of a schedule s2

with the analogue property for P2. Finally, we show the existence of a schedule
s and of an adversary, such that in an execution of A on input s the following
holds: at any time the adversary keeps up to d undelivered messages; the view
of P1 is as if s = s1; and the view of P2 is as if s = s2. As a consequence,
both parties use a large number of portions of the random pad, and at least one
portion is used by both parties, thus implying that the protocol is not secure.

The m-Player Case. We now consider an OTPAC protocolA among m players,
for m > 2. We note that in this case we count one undelivered message for each
player that has not received the message yet (that is, if there are 2 receivers that
have not received the same message, then the undelivery parameter satisfies
d = 2). The lower bound on the efficiency ratio of A is then obtained as an
appropriate generalization of the bound in the 2 player case.

Theorem 2. Let m ≤ n. Any OTPAC protocol A secure on Um,n
A,d can achieve

efficiency ratio at most 1− d/n if d ≤ +n(m− 1)/m, or at most 1/m otherwise.

The above theorems imply that protocol A1 (defined in figure 1) has optimal
efficiency ratio for values of d ≥ n/2. Note that this range of values strictly
includes the range d ≥ n, that, in turn, is equivalent to assuming d = ∞; that
is, when no bound at all can be assumed on the undelivery parameter.

224 G. Di Crescenzo and A. Kiayias

4 OTPAC Protocol Constructions: Head-on Collision
Runs

In this section we present two protocol constructions that exhibit more refined
trade-offs between security and efficiency. To increase the efficiency ratio we
allow players to use common pad segments while at the same time maintaining
safe distance between the segments that are actively used during a conversation.
The manner with which players will be expending pad portions will resemble
a “head-on collision run” over the pad vector. We will start with the simpler
two-player case and then discuss the m-player setting.

4.1 The Two Player Setting

Informal Description of the A3 protocol. The two players initialize counters, each
one at the far end of the pad vector. Players expend pads in a “head-on collision
run” to each other while maintaining a “safety distance” from each other’s pad
segment. The safety factor is determined by a parameter d. A formal description
of the protocol will appear in the full version; a graphical representation is in
figure 2. In the lemma below we characterize the ACP’s for which the security
of A3 fails.

Fig. 2. A head-on collision run: protocol A3

Lemma 1. Let P ∈ Fm,n
A3

for which A3 is insecure. Then, P has Send-event
with at least d + 1 undelivered messages.

Theorem 3. The OTPAC protocol A3 is secure for U2,n
A3,d ⊆ F

2,n
A3

The efficiency
ratio of A3 over U2,n

A3,d equals 1− d/n.

Because of Theorem 1, we obtain that protocol A3 has optimal efficiency ratio
over family U2,n

A3,d+1 ⊆ F
2,n
A3

for d ≤ +n/2,.

4.2 The Multi-player Setting

In this section we will generalize the OTPAC protocol A3 to the multi-player
setting. The protocol A4 is a multilayer recursive generalization of protocol A3.
Refer to figure 3 for a graphical depiction of the four player setting.

Below we describe the protocol A4 and we assume for simplicity that it
involves m = 2δ players. Note that to avoid cluttering of notation and due to
lack of space we will only give an informal (but sufficiently detailed) description

Asynchronous Perfectly Secure Communication 225

Fig. 3. Multilayered head-on collision runs: protocol A4

of the algorithms 〈I,R, S〉. We give some notation first: every player is identified
by a δ-bitstring id. For a string a we denote by [a]j the symbol in the j-th location.
It holds that a = [a]1 . . . [a]δ if a is a δ-long string. If b is a bit, we denote by b its
complement. The neighbor set (res. native set) of degree j for a player id is a set of
bitstrings a so that (i) [a]� = [id]� for � = 1, . . . , j−1 (ii) [a]j = [id]j , (respectively
: [a]j = [id]j), and (iii) [a]� ∈ {0, 1} for all � = j + 1, . . . , δ. The pad vector will
be divided into a number of sub-divisions using a parameter L (thought to be
a small function in n). The sub-division of degree � for � = 1, . . . , δ − 1 will be
comprised of L� components. Finally in the sub-division of degree δ we will have
actual pad segments of length s := n/Lδ−1.

The main idea of the protocol is that at the δ-subdivision we will have in-
dividual players implementing the two-player protocol in head-on collision run
fashion. Then, at the δ−1 subdivision we will have groups of 2 players operating
in head-on collision fashion, and so on.

A player id maintains a position variable for himself pid ∈ {1, . . . , L}δ−1 ×
{1, . . . , s}. Note that a position maps to a specific pad inside the n-long pad-
vector by specifying one of the Lδ−1 sub-divisions of degree δ − 1 as well as a
pad location inside this sub-division. Every player assumes an initial position
in the pad vector. In particular player id assumes the initial position pinit

id with
[pinit

id]� = 1([id]� =? 0) + L([id]� =? 1) for � = 1, . . . , δ − 1 and [pinit
id]δ = 1([id]� =?

0) + s([id]� =? 1). This pid = pinit
id will be the first pad used by player id if

he wishes to send a message. The header of a ciphertext will be of the form
〈id, pid〉.

Every player will maintain information about the movements of his neighbor-
ing subsets of users. In particular, player id will maintain δ counters v1, . . . , vδ

for the neighboring subsets of users. These counters are initialized as follows:
v� = 1([id]� =? 0) + L([id]� =? 1) and vδ = 1([id]δ =? 0) + s([id]δ =? 1) If a
message is received that has header 〈id∗, p∗〉, player id will compute the function
α := α(id, id∗) = j ∈ {1, . . . , δ} such that [id]� = [id∗]� for all � < j; this α is
called the nativity degree between two players. Conceptually, for two players id
and id∗ the nativity degree specifies the highest level at which the two players are
facing each other in a head-on collision run (either by themselves, or as members
of larger groups).

226 G. Di Crescenzo and A. Kiayias

Upon receiving a message with header 〈id∗, p∗〉, player id takes the following
actions: (i) it computes the nativity degree α. (ii) for all the sub-divisions for
which player id moves together with id∗ as members of the same group, player id
must make sure that he advances together with his group. Player id belongs to the
same group of players with id∗ for all the subdivisions of degree � ∈ {1, . . . , α−1}
(note: if α = 1 this set is empty). If id is not “trailing” behind then it should hold
that [pid]� = [p∗]� for all � = 1, . . . , α − 1. In this case no further action would
be required. On the other hand, let j ∈ {1, . . . , α − 1} be the smallest integer
such that [pid]j �= [p∗]j . Player id determines his movement direction within the
group at the subdivision of degree j, which is “to the right” if [id]j = 0 or “to the
left” if [id]j = 1. Then, in case the direction is to the right, the player performs
the operation: if [pid]j < [p∗]j set [pid]j = [p∗]j . In case the direction is to the
left, the player does instead: if [pid]j > [p∗]j set [pid]j = [p∗]j . If one of the above
two modifications takes place and the value [pid]j is updated, then id resets the
remaining values of pid as follows [pid]� = [pinit

id]� for � = j + 1, . . . , δ. The above
update allows to a player that is trailing behind on a certain level to “catch up”
with his native players; it follows that a player may change his position in the
pad vector because of the movement of his native players. (iii) Regarding the
neighboring players, one neighboring counter needs to be updated: vα; to update
counter vα player id determines the movement direction of the neighboring set
of players at the α-level (to the right if [id∗]α = 0, or to the left if [id∗]α = 1) and
performs the update: if vα < [p∗]α and [id∗]α = 0 then vα = [p∗]α; if vα > [p∗]α
and [id∗]α = 1 then vα = [p∗]α. Note that player id will ignore any information
provided by p∗ and refers to a level greater to the nativity degree.

Having described the semantics of the counters we proceed now to see how
a player id having just used the pad at position pid, advances to the next pad
that he can use. The player needs to determine the status of every level � ∈
{1, . . . , δ} among two possible states: stay and jump. The state computation for
level � = 1, . . . , δ − 1 is as follows: the player checks whether |[pid]� − v�| ≥ 2
and in this case assigns to level � the state stay; for the δ-th level the state
stay is assigned if |[pid]δ − vδ| > d where d is a given fixed parameter. If all
levels are assigned state stay then player id will use the adjacent pad, i.e., if
pid = l1l2 . . . lδ−1lδ the next pad will be at pnew

id = l1l2 . . . lδ−1(lδ + 1) if [id]δ = 0
(movement to the right) or pnew

id = l1l2 . . . lδ−1(lδ − 1) if [id]δ = 1 (movement
to the left). If all levels are assigned the state jump then player id terminates.
Now let j be the highest level that is assigned a stay state (and it holds that the
(j + 1)-th state is at the jump state). Then, player id will assume the position
pnew

id defined as (i) [pnew
id]� = [pid]� for � = 1, . . . , j, (ii) [pnew

id]j+1 = [pinit
id]j+1 + 1 if

[id]j+1 = 0, or [pnew
id]j+1 = [pinit

id]j+1 − 1 if [id]j+1 = 1; finally (iii) [pnew
id]� = [pinit

id]�
for � = j+2, . . . , δ (recall that pinit

id is the initial position of player id). In addition
to the above, player id must update all its neighbor counters v� for the levels
� = j + 1, . . . , δ to their initial position, as in the beginning of the protocol,
v� = 1([id]� =? 0) + L([id]� =? 1) and vδ = 1([id]δ =? 0) + s([id]δ =? 1).

A formal description of the protocol will appear in the full version.

Asynchronous Perfectly Secure Communication 227

Lemma 2. Assume parameters L, d, δ = logm such that n/Lδ−1 > d. Let P ∈
Fm,n

A4
be an an asynchronous communication pattern for which protocol A4 is

insecure. Then, P has Send-event with at least d + 1 undelivered messages.

Theorem 4. The OTPAC protocol A4 is secure for Um,n
A4,d ⊆ F

2,n
A4

The efficiency
ratio of A4 over Um,n

A4,d equals 1− 2(δ − 2)/L− (L− 2)δ−1d/n.

We note that in the typical case m = O(1), d = O(nε), ε < 1, it is possible
to select the parameter L so that the efficiency ratio becomes 1− 1/poly(n), i.e.,
arbitrarily close to 1 for sufficiently large n.

Acknowledgement. The authors thank O. Kornievskaia and A. Shvartsman
for helpful discussions.

References

1. R. Anderson and H. Woll, Algorithms for the Certified Write-All Problem, in SIAM
Journal on Computing, vol. 139(1), 1997, p. 1–16.

2. James Aspnes, Randomized protocols for asynchronous consensus, Invited survey
paper for Distributed Computing, PODC 20th anniversary issue. 2002.

3. J. Buss, P. Kanellakis, P. Ragde, and A. Shvartsman, Parallel Algorithms for Pro-
cess Failures and Delays, in Journal of Algorithms, vol. 20(196), 1997, p. 45–86.

4. R. De Prisco, A. Mayer and M. Yung, Time-Optimal Message-Efficient Work-
Performance in the Presence of Faults, in Proc. of PODC 94.

5. C. Dwork, J. Halpern and O. Waarts, Performing Work Efficiently in the Presence
of Faults, in SIAM Journal on Computing, vol. 27, 1998, p. 1457–1491.

6. Michael J. Fischer, Nancy A. Lynch and Mike Paterson, Impossibility of Distributed
Consensus with One Faulty Process, JACM 32(2): 374-382 (1985)

7. Oded Goldreich, The Foundations of Cryptography - Vol. 1, Cambridge University
Press, 2001.

8. J. Groote, W. Hesselink, S. Mauw, and R. Vermeulen, An Algorithm for the Asyn-
chronous Write-All Problem based on Process Collision, in Distributed Computing,
vol. 14(2), 2001, p. 75–81.

9. P. Kanellakis and A. Shvartsman, Efficient Parallel Algorithms Can Be Made Ro-
bust, in Distributed Computing, vol. 5(4), 1992, p. 201–217.

10. D. Kowalski and A. Shvartsman, Performing Work with Asynchronous Processors:
Message-Delay-Sensitive Bounds, in Proc. of PODC 2003, p. 265–274

11. Leslie Lamport,Time, Clocks, and the Ordering of Events in a Distributed System
CACM 21(7): 558-565 (1978)

12. Michael Luby, Pseudorandomness and Cryptographic Applications, Princeton Uni-
versity Press, 1996.

13. C. E. Shannon, A Mathematical Theory of Communication, The Bell System Tech-
nical Journal 27, 1948, 379-423, 623-656.

14. G. Vernam, Secret Signaling Systems, US Patent, 1919.

Single-Prover Concurrent Zero Knowledge in
Almost Constant Rounds�

Giuseppe Persiano and Ivan Visconti

Dipartimento di Informatica ed Appl.,
Università di Salerno, Italy

{giuper, visconti}@dia.unisa.it

Abstract. In this paper we study the round complexity of concurrent
zero-knowledge arguments and show that, for any function β(n) = ω(1),
there exists an unbounded concurrent zero-knowledge argument system
with β(n) rounds. Our result assumes that the same prover is engaged
in several concurrent sessions and that the prover has a counter whose
value is shared across concurrent executions of the argument. Previous
constructions for concurrent zero knowledge required a (almost) loga-
rithmic number of rounds [Prabhakaran et al. - FOCS 2002] in the plain
model or seemingly stronger set-up assumptions.

Moreover, we construct two β(n)-round unbounded concurrent zero-
knowledge arguments that are mutually concurrent simulation sound for
any β(n) = ω(1). Here we assume that each party has access to a counter
and that the two protocols are used by the same two parties to play
several concurrent sessions of the two protocols.

1 Introduction

Since its introduction, the concept of a zero-knowledge proof system and the sim-
ulation paradigm have been widely used to prove the security of many protocols.
The notion of concurrent zero knowledge [2] formalizes security in a scenario in
which several verifiers access concurrently a prover and maliciously coordinate
their actions so to extract information from the prover. In [3] it has been showed
that in the black-box model Ω̃(log n) round are necessary for concurrent zero
knowledge for non-trivial languages. The first concurrent zero-knowledge proof
system for NP has been given by [4] that showed that O(nε) are sufficient for
any ε > 0. Poly-logarithmic round-complexity was achieved in [5] and, finally,
in [1] it is shown that Õ(log n) rounds are sufficient. The proof systems pre-
sented in [4, 5, 1] are black-box zero knowledge and the round-complexity of the
proof system of [1] is almost optimal in view of the lower bound proved in [3].
Thus unlike the stand-alone case, black-box concurrent zero knowledge cannot
be achieved in a constant number of rounds.

� Work supported by Network of Excellence ECRYPT under contract IST-2002-
507932.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 228–240, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Single-Prover Concurrent Zero Knowledge in Almost Constant Rounds 229

Different models have been presented in which round-efficient black-box con-
current zero knowledge is possible. In [2, 6, 7] constant-round concurrent zero-
knowledge proof systems have been presented by relaxing the asynchrony of
the model or the zero-knowledge property. In [8, 9], constant-round concurrent
zero-knowledge proof systems have been presented assuming the existence of a
common reference string or a shared random string (i.e., a trusted third party)
while in [10] a constant-round concurrent zero-knowledge with concurrent sound-
ness argument system is shown by assuming that there exists a public reposi-
tory that contains the public keys of the verifiers. Furthermore, Pass [12] gave a
constant-round concurrent zero-knowledge argument with a super-polynomial-
time simulator. In [13], Barak presented a non-black-box constant-round bounded-
concurrent zero-knowledge argument system. The construction of [13] assumes
that the maximum number of concurrent sessions is known in advance.

Simulation-sound zero knowledge. Simulation-sound zero knowledge has been
introduced in [14] for the purpose of constructing cryptosystems secure against
adaptive chosen-ciphertext attacks. This concept is related to the concept of
non-malleability introduced in [15]. Indeed, both notions deal with an adversary
(called the man-in-the-middle) that simultaneously participates to many execu-
tions of two proof systems and acts as a prover in the former and as a verifier in
the latter. The adversary has complete control over the scheduling of the mes-
sages in the executions of the protocols. Informally, two zero-knowledge proof
systems are said mutually concurrent simulation sound if the information that
the man-in-the-middle adversary collects as a verifier from concurrent sessions
played with a simulated prover of the former proof system does not help him to
prove a false statement in the latter proof system and vice versa. Here the man-
in-the-middle can choose to see simulated proofs of true and false statements.

Simulation-sound zero knowledge plays an important role for proving the
security of protocols. Indeed, when the simulation paradigm is used to prove
the security of a protocol, the simulator could, in some cases, need to simulate
the proof of a false statement. Here simulation soundness is crucial since the
adversary could gain knowledge from such a proof in order to prove a false
statement in another protocol.

Our results. In this paper we show that, for any function β such that β = ω(1),
there exists a β(n)-round concurrent zero-knowledge argument system for any
language in NP . Our argument system assumes that: 1) the prover is equipped
with a counter that counts the total number of bits he has sent so far in all
sessions; 2) the argument system remains zero knowledge provided that one
single prover is engaged by the adversarial verifier in any polynomial number of
(unbounded) concurrent sessions.

We stress that our set-up assumptions seem no-stronger than the ones made
in [2, 6, 7, 8, 10]. Comparing our result with the bounded-concurrent result of
[13], we stress that our construction does not assume knowledge of an a-priori
bound on the number of concurrent sessions. On the other hand, our construc-
tion requires a super-constant number of rounds. Finally, we remark that the

230 G. Persiano and I. Visconti

concurrent zero-knowledge property of our construction is obtained by means of
an efficient simulator.

Relying upon our construction of concurrent zero knowledge we present two
β(n)-round argument systems that are concurrent zero knowledge and mutually
concurrent simulation sound for any β = ω(1). Here we require set-up assump-
tions inherited from the concurrent zero-knowledge argument on which they are
based: 1) each party is equipped with a counter that is used to keep track of the
total length of some of the messages sent; 2) the two protocols are played by the
same two players with roles inverted.

Comparison with known assumptions. In the past, round-efficient concurrent
zero knowledge has been achieved by making assumptions that decrease the
power of an adversarial concurrent verifier. For example timing assumptions
(used in [2, 6, 7]) limit the power of adversarially scheduling the communication
between prover and verifier (by imposing a bound on the delays experienced by
the messages), bounded concurrency (used in [13]) upper bounds the number of
concurrent sessions. When concurrent zero knowledge is obtained in presence of
a common reference string [8, 9], the adversarial concurrent verifier is assumed
not to corrupt the party that generated a common reference string and that this
party securely preserves (or erases) any secret information about the string.

In contrast, our assumptions are quite different in nature. Let us discuss the
case of concurrent zero knowledge (the same discussion can be used for the two
arguments that are mutually concurrent simulation-sound and concurrent zero-
knowledge). First of all, we claim that the need of a counter for a prover is a
very weak assumption. Indeed, we only require that the adversarial concurrent
verifier cannot modify the value of the counter of the prover. Our results continue
to hold if the adversary is allowed to read the value of the counter.

Our second requirement forbids an adversarial concurrent verifier the ex-
ecution of concurrent sessions with different provers. In comparison with the
assumptions made in the literature, in our case the adversarial verifier can still
open any polynomial number of concurrent sessions with complete control on the
scheduling of the messages. There is no bound on the delay of the messages and
no trusted party is assumed. Instead, the zero-knowledge property concerns an
attack of an adversarial verifier that tries to gain knowledge from a given prover.
It is interesting that such a restriction allows the design of round-efficient and
concurrent-secure protocols.

Constant-round arguments. Our construction leaves as an open problem the con-
struction (even under our set-up assumptions) of a constant-round concurrent
zero-knowledge argument for all NP and of constant-round mutually concurrent
simulation-sound and concurrent zero-knowledge arguments. Indeed for the case
of zero knowledge one would like to prove the following informal statement.

Statement 1 (Open problem.). There exist a constant c and an argument
system (P, V) such that for all constants k and all adversaries V � that open at
most nk concurrent sessions, (P, V) takes at most c rounds and the view of V �

can be simulated in polynomial time.

Single-Prover Concurrent Zero Knowledge in Almost Constant Rounds 231

Instead we prove the following weaker statement which can be seen as an inter-
mediate result towards the proof of Statement 1.

Statement 2. There exists an argument system (P, V) such that for all con-
stants k and all adversaries V � that open at most nk concurrent sessions, there
exists a constant c such that (P, V) takes at most c rounds and the view of V �

can be simulated in polynomial time.

Indeed, in our construction the number of rounds depends on the degree of
concurrency. However, we show that a super-polynomial number of sessions are
needed in order to force a super-constant number of rounds. Statement 2 should
be contrasted with the following statement proved in [13] (corresponding to
bounded-concurrent zero knowledge).

Statement 3 ([13]). There exists a constant c such that for all constants k
there exists an argument system (P, V) such that for all adversaries V � that
open at most nk of concurrent sessions, (P, V) takes at most c rounds and the
view of V � can be simulated in polynomial time.

2 Concurrent Zero Knowledge

We now define the zero knowledge requirement that is of interest for this paper:
concurrent zero knowledge.

Definition 1. Let 〈P, V 〉 be an interactive or argument system for a language
L. We say that a probabilistic polynomial-time adversarial verifier V � is a con-
current adversary if it concurrently runs a polynomial number of interaction
with a prover P , without any restrictions over the scheduling of the messages in
the different interactions with P . Moreover we say that the transcript of such a
concurrent interaction consists of the common inputs and the sequence of prover
and verifier messages exchanged during the interaction. We refer to viewP

V �(x)
as the random variable describing the content of the random tape of V � and the
transcript of the concurrent interactions between P and V �.

Definition 2. Let 〈P, V 〉 be an interactive argument system for a language
L. We say that 〈P, V 〉 is concurrent zero knowledge if, for each probabilistic
polynomial-time concurrent adversary V � there exists a probabilistic polynomial-
time algorithm SV � such that the ensembles {viewP

V �(x)}x∈L and {SV �(x)}x∈L

are computationally indistinguishable.

The above definition (and our construction of a concurrent zero-knowledge
argument system) considers the case of a single prover that potentially runs
several sessions with the adversarial verifier. Such a definition can be extended
to a multi-prover setting in which the adversarial verifier concurrently runs a
polynomial number of sessions with possibly different provers. In the standard
model when a concurrent adversary is considered, the multi-prover setting and

232 G. Persiano and I. Visconti

the single-prover setting coincide since a single-prover in each interaction is obliv-
ious of the existence of each other interaction. Instead in our settings, we rely
on the fact that the prover knows an upper bound on the length of the view of
the verifier he is interacting with and this is possible if there is only one prover.

We now present our construction of a concurrent zero-knowledge argument
system for any language in NP. We start by describing the model in Section 2.1,
we give a high-level description of the protocol in Section 2.2, we describe its
main components in Section 2.3 and 2.4, and, finally, the protocol and the proofs
of its properties are presented in Section 2.5.

2.1 The Model

Our (unbounded) concurrent zero-knowledge argument system requires a model
richer than the standard plain model for concurrent zero knowledge used by
the previous unbounded-concurrent black-box zero-knowledge argument systems
of [4, 1, 5] and the bounded-concurrent non-black-box zero-knowledge argument
system of [13]. Indeed, our argument system is based on the following two set-up
assumptions.

1. The prover is equipped with a counter that counts the total number of bits
that he has sent in all the sessions. The counter can not be modified by the
adversarial verifier.

2. The argument system is zero knowledge provided that the same prover is
engaged by the adversarial verifier in any polynomial number of concurrent
sessions.

The first assumption requires that the prover is stateful as the counter is
shared by all concurrent sessions. Moreover, the adversarial verifier cannot mod-
ify this value. The fact that the adversarial verifier can run many concurrent
sessions against only one prover is a consequence of the first assumption since in
general a stateful prover behaves differently from another stateful prover when
their states are different. Obviously, this does not constitute an issue in the plain
model for concurrent zero knowledge where the prover is stateless.

2.2 A High Level Description

Our protocol follows the FLS paradigm [16] that has been used for the bounded-
concurrent zero-knowledge argument system of Barak [13]. An FLS-type pro-
tocol is composed of two subprotocols: a preamble subprotocol and a witness-
indistinguishable argument subprotocol. In an FLS-type protocol, the goal of the
preamble subprotocol is to allow prover and verifier that are interacting on input
a statement “x ∈ L”, to create an augmented statement “(x ∈ L) ∨ (τ ∈ Λ)” to
be proved later in the witness-indistinguishable argument subprotocol. In [13],
the auxiliary statement “τ ∈ Λ” informally stands for “com is the commitment of
h(A) where A is a program that on input a sufficiently short string tr outputs r
in time bounded by a slightly super-polynomial function”. The simulator of [13]

Single-Prover Concurrent Zero Knowledge in Almost Constant Rounds 233

sets A equal to the description of the adversary and tr to its view. To guarantee
soundness it is enough that r is sufficiently longer than tr.

Since we want unbounded-concurrent zero knowledge, we cannot give a bound
on the length of the string tr. Instead, our preamble consists of several itera-
tions (corresponding to increasing values for the length of tr) in which the
prover asks the verifier for increasingly long strings r. The prover stops when
he receives a string r whose length is at least twice the length of the transcript
of all the concurrent sessions1. The prover maintains a counter to count the
length of the transcript of the concurrent sessions. Notice that since the number
of rounds of the preamble is not known at the beginning of the protocol, the
randomness owned by the verifier could be not sufficient to complete the proto-
col. Therefore, we assume that the verifier has at least an n-bit random string
that he stretches round by round of the preamble by means of a pseudorandom
generator.

A non-black-box simulator S, interacting with a concurrent adversary V � and
given access to the code of V �, commits to its code and randomness by setting
A = V �. Then in the argument subprotocol S proves that there exists a string
tr (the transcript of the interaction between the simulator and V �) for which
the machine whose code has been committed (that is V �) would give as output
r when receiving tr as input.

The statement is obviously true and S has a witness for it (i.e., the decommit-
ment, the description of the adversary and the sufficiently short transcript). S
finishes by running the prover’s program for the witness indistinguishable argu-
ment. Notice that the simulator runs the same number of sub-preambles played
by the prover.

For the round complexity of the protocol, it can be seen that for each con-
stant k there exists a constant ck such that, if the adversary starts at most nk

concurrent sessions, the protocols will take at most ck rounds. Thus, for any
function β(n) = ω(1), we can conclude that, for any polynomial number of
concurrent sessions, our protocol takes (for sufficiently large n) at most β(n)
rounds.

2.3 The Preamble Subprotocol

Auxiliary inputs. On input x of length n, prover P has a witness w for x ∈ L
and a counter c that is shared by all concurrent executions of P .

The preamble step by step. Let H = {hα} be an ensemble of collision-resistant
hash functions secure against nO(log n)-time adversaries. Each function of hα ∈ H
maps any string to a string of length 3|α|. V randomly picks a hash function h
by randomly picking an n-bit string α and sends (a description of) h = hα to P .
Moreover V picks a random seed s for the pseudorandom generator G and will
use the output of G on input s as a random tape.

1 The transcript of a session that we consider here consists of all the messages sent by
the prover.

234 G. Persiano and I. Visconti

Then the prover uses a statistically binding commitment scheme (G, Com, Dec)
to compute (com, dec) = Com(h(0n)), sends com to the verifier and increments c
by |com|.

Now the prover and the verifier repeat the following iteration, starting with
i = 1, until the preamble is declared completed:

1. at the i-th iteration, V randomly picks a 2ni-bit string ri and sends it to the
prover;

2. if c ≤ ni then the preamble is declared completed and P sends the bit “1”
to V to mark the end of the preamble; otherwise, P sends the bit “0” to ask
V to perform iteration i = i + 1. In both cases, P increments the counter c
by 1.

2.4 The Argument Subprotocol

The argument subprotocol consists in the execution of a witness-indistinguishable
universal argument for proving statement “(x ∈ L) ∨ (τ ∈ Λ).” We stress that
during the execution of the argument subprotocol the prover increments c to
keep track of the number of bits he has sent. Let us now describe the language
Λ and the string τ .

We say that (h, com, r) ∈ Λ if (com, dec) = Com(h(A)) and there exists tr of
length |tr| < |r|/2 such that A, on input tr, outputs r in at most nlog log n/2

steps.
The triple τ = (h, com, r) used by the prover in the argument subprotocol

consists of the (description of the) collision-resistant hash function h picked
by the verifier, the commitment com sent by the prover and the last string r
sent by the verifier during the preamble protocol. Obviously, the prover runs the
witness indistinguishable universal argument subprotocol for Ntime(nlog log n) for
proving statement “(x ∈ L)∨(τ ∈ Λ)” using w such that (x,w) ∈ RL as witness.
The simulator instead uses his knowledge of the code of the verifier to compute
(com, dec) = Com(h(V �)) in the preamble. Therefore, if V � in the i-th iteration
of the loop of the preamble subprotocol, on input a transcript tr of the messages
sent by the simulator such that |tr| ≤ ni, outputs a 2ni-bit message r, the triple
(dec, V �, tr) is a witness for (h, com, r) ∈ Λ and therefore for “(x ∈ L)∨(τ ∈ Λ)”.
Thus the simulator runs the code of the prover of the witness-indistinguishable
universal argument subprotocol using (dec, V �, tr) as witness.

2.5 The Concurrent Zero-Knowledge Argument System

Our concurrent zero-knowledge argument system for all languages in NP com-
bines the preamble subprotocol from Section 2.3 and the witness-indistinguishable
universal argument for Ntime(nlog log n) from Section 2.4. By using the techniques
introduced in [17] our construction only needs the existence of collision-resistant
hash function ensembles that are secure with respect to polynomial-time algo-
rithms.

Single-Prover Concurrent Zero Knowledge in Almost Constant Rounds 235

Theorem 1. Assuming the existence of collision-resistant hash function ensem-
bles that are secure against polynomial-time algorithms, then there exists (con-
structively) a β(n)-round concurrent zero-knowledge argument system for NP
for any β(n) = ω(1).

The proof of Theorem 1, is omitted from this extended abstract.

3 Concurrent Simulation Soundness

In this section we show that the concurrent zero-knowledge argument system pre-
sented in Section 2 can be used to construct two mutually concurrent simulation-
sound and concurrent zero-knowledge argument systems. More precisely, in this
section we show that, under set-up assumptions similar to those used to con-
struct the concurrent zero-knowledge argument of Section 2, there exists (con-
structively) a pair of β(n)-round concurrent zero-knowledge argument systems
that are mutually concurrent simulation sound for any β = ω(1).

Man-in-the-middle adversary. The strong notion of simulation-sound zero knowl-
edge deals with an adversary A that mounts a man-in-the-middle attack at two
arguments SSP0 = 〈P0, V0〉 and SSP1 = 〈P1, V1〉. The adversary A acts as
a verifier in an instance of protocol SSP0 and as a prover in a (concurrently
played) instance of protocol SSP1. A has complete control of the communica-
tion channel and can decide the scheduling of the messages. Informally, SSP0

is simulation sound with respect to SSP1 if the “simulated” proof of a (possibly
false) statement seen by A as a verifier of SSP0 does not help him to prove a
false statement in SSP1. If SSP0 = SSP1 then we say that SSP0 is self sim-
ulation sound. If SSP0 is simulation sound with respect to SSP1 and SSP1 is
simulation sound with respect to SSP0 then we say that SSP0 and SSP1 are
mutually simulation sound.

A concurrent man-in-the-middle adversary A is allowed to play several con-
current instances of SSP0 and SSP1 (instead of just one for each protocol). In
this case, if the “simulated” proofs of both true and false statements in SSP0 do
not help A to prove a false statement in SSP1 we say that SSP0 is concurrently
simulation sound with respect to SSP1. We will consider this stronger notion of
simulation soundness.

We denote by {outS0,A
A,V1

(x1, . . . , xpoly(n), x
′
1, . . . , x

′
poly(n)

)} the distribution
of the output of V1 after a concurrent man-in-the-middle attack of A. We as-
sume that in SSP0, S0 simulates the proofs for both true and false statements
(x1, . . . , xpoly(n)) and in SSP1 A tries to prove statements (x′

1, . . . , x
′
poly(n)

).
The output of V1 in such an experiment is therefore a vector of bits (b1, . . . ,
bpoly(n)) where bi = 1 means that V1 accepted the proof for x′

i while bi = 0
means that V1 rejected the proof for x′

i, for i = 1, . . . , poly(n).
We now give a formal definition of concurrent simulation soundness that we

use in our construction.

236 G. Persiano and I. Visconti

Definition 3. Let SSP0 = 〈P0, V0〉 and SSP1 = 〈P1, V1〉 be two argument sys-
tems for a language L. We say that SSP0 is concurrently simulation-sound with
respect to SSP1 if, for any concurrent man-in-the-middle adversary A, there
exists a probabilistic polynomial-time algorithm SA such the probability that the
i-th bit of {outSA,A

A,V1
(x1, . . . , xpoly(n), x

′
1, . . . , x

′
poly(n)

)} is 1 and x′
i �∈ L for

i ∈ {1, . . . , poly(n)} is negligible.

3.1 The Additional Assumptions of Our Model

We show in the next section a pair of mutually (unbounded) concurrent
simulation-sound and concurrent zero-knowledge arguments. For our construc-
tions we will need set-up assumptions very similar to the ones used for concur-
rent zero knowledge. As for the case of concurrent zero knowledge, we do not
assume the existence of any trusted third party nor of trusted sources of shared
randomness. Our protocol is based on the following two set-up assumptions.
1. Each party is equipped with a counter that gives at each step the total

number of bits he has sent so far in all sessions in which he acts as a prover
in both protocols and as a verifier in only one of the two protocols.

2. SSP0 and SSP1 are played by the same two players with roles inverted.

As in the previous construction, the first assumption makes the parties stateful
since they need to propagate the value of the counter across concurrent sessions.
The fact that we need to restrict the adversary to mount an attack against only
one player (although this single player is allowed to play both as a prover and
as a verifier in several concurrent sessions) is a consequence of our first set-up
assumption. Indeed for stateless parties, it does not make a difference whether
the prover and verifier that are interacting with the man-in-the-middle adversary
are the same or not.

We stress that in this model, the argument system of Section 2 is also con-
current non-malleable (we stress that non-malleability requires that proofs of
true statements do not help the adversary for proving a different statement) and
concurrent zero-knowledge. Indeed, the fact that we only have to deal with two
parties implies that the simulator controls both the prover and the verifier played
by the honest parties (in particular the simulator has access to the randomness
used by these algorithms) which makes things much easier. This approach does
not work for obtaining simulation soundness; in this case the adversary can
request to see the (simulated) proofs of polynomially many true and false state-
ments which makes the design of concurrent simulation-sound argument systems
more difficult. Let us now concentrate on simulation soundness.

3.2 The Mutually Concurrent Simulation-Sound Argument
Systems

In this section we describe the two argument systems that are mutually concur-
rent simulation-sound and concurrent zero knowledge, that is both are concur-
rent zero knowledge and each one is concurrently simulation sound with respect
to the other one.

Single-Prover Concurrent Zero Knowledge in Almost Constant Rounds 237

For our construction, we use some techniques introduced in [11], and there-
fore we need cryptographic primitives that are secure with respect to super-
polynomial-time adversaries.

Using an ensemble of collision resistant hash functions that is secure against
T (n)O(1)-adversaries, the universal argument presented in [17, 13] is sound with
respect to adversaries running in time T (n). By plugging such a strengthened
universal argument in the concurrent zero-knowledge argument system of Sec-
tion 2, and assuming that even in the preamble such stronger hash functions are
used, we have that the resulting concurrent zero-knowledge argument systems is
sound against adversaries running in time T (n).

In order to obtain two mutually concurrent simulation-sound and concur-
rent zero-knowledge argument systems, we use the following approach. We show
a concurrent zero-knowledge argument system SSP1 that has also a straight-
line simulator that by running in time nO(log n) inverts a one-way permutation
(here we use the recent techniques of [12, 11]). We then show a concurrent zero-
knowledge argument system SSP0 that is sound with respect to nO(log2 n) ad-
versaries. Informally, concurrent simulation soundness of SSP1 with respect to
SSP0 is proved in the following way. An adversarial prover P �

0 for SSP0 that
proves a false statement while concurrently interacting in any polynomial num-
ber of sessions as a prover of SSP0 and as a verifier of SSP1 can be used to break
the stand-alone soundness of SSP0. We use here the existence of an nO(log n)-
time straight-line simulator for SSP1, since it can be easily extended to play also
the role of verifier in SSP0

2, therefore a relay strategy for the session in which
P �

0 proves a false statement can be use to break in time nO(log n) the stand-alone
soundness of SSP0 that is assumed to work against nO(log2 n) adversaries.

For proving the concurrent simulation soundness of SSP0 with respect to
SSP1 we use a different technique since the previous approach can not work in
both directions at the same time. The idea is that for proving the simulation
soundness of SSP0 with respect to SSP1, it is necessary to consider an adversary
P �

1 that plays both the role of prover in concurrent sessions of SSP1 and the
role of verifier in concurrent sessions of SSP0. The zero-knowledge simulator of
SSP0 suffices here for simulation soundness but it has to consider the view of the
adversary P �

1 that also includes the messages that he receives in SSP1. In case
P �

1 has proved a false statement for SSP1, we get a contradiction with respect to
the stand-alone soundness of SSP1. This can be achieved by performing a relay
strategy with a real verifier V1. The original parameter (i.e., the counter) of the
concurrent zero-knowledge argument system of Section 2 includes in SSP0 the
messages of the sessions of SSP0 received by P �

1 when playing the role of verifier
and the messages of SSP1 received by P �

1 when playing the role of prover. Since
the same does not hold for SSP1 (where the prover only counts the bits sent as

2 This additional work does not damage the simulation of SSP1 since such simulation
is not based on the knowledge of the code of the adversary and its input. Instead,
the simulation is based on the power of breaking a primitive that is assumed to be
hard for no(log n)-time algorithms.

238 G. Persiano and I. Visconti

a prover of SSP1), the communication complexity of SSP1 is short enough to
allow the desired round complexity in SSP0.

We now give the details of the two protocols while the formal proofs are
omitted from this extended abstract.

The first protocol. The first of the two mutually concurrent simulation-sound
and concurrent zero-knowledge arguments is referred to as SSP0 and is the con-
current zero-knowledge protocol of Section 2 with the following modification.
First of all, SSP0 is the strengthened concurrent zero-knowledge argument sys-
tem (as discussed above) that is sound against nO(log2 n)-adversaries (i.e., we
set T (n) = nO(log2 n)). For this reason, we assume the existence of an ensemble
of hash functions that are collision resistant with respect to algorithms run-
ning in time nO(log2 n). Moreover, the counter is incremented also by |m| when
a message m is sent as a verifier in some concurrent execution of SSP1. Obvi-
ously, when only concurrent zero knowledge is considered, this last case never
occurs. During the universal argument phase the prover proves the statement
“x ∈ L ∨ τ = (h, com, r) ∈ Λ” where h is the collision resistant hash function
selected by the verifier, com is the commitment sent by the prover and r is the
last message sent by the verifier during the preamble. It is easy to see that the
modified protocol is still concurrent zero knowledge and has the same round
complexity as the one discussed in Section 2. For proving (stand-alone) sound-
ness, notice that by the soundness and the weak proof of knowledge properties
of the witness indistinguishable universal argument, an extractor algorithm ob-
tains in time nO(log log n) the witness used by the adversarial prover for proving a
false statement. Therefore, in this case he obtains a triple (dec,M, tr) such that
M(tr) = r where |tr| ≤ |r|/2, and M outputs r in at most nlog log n/2 steps.

The second protocol. The second of the two mutually concurrent simulation-
sound arguments is referred to as SSP1 and is the concurrent zero-knowledge
protocol of Section 2 with the following modifications. First of all, SSP1 is the
strengthened concurrent zero-knowledge argument system (as discussed above)
that is witness indistinguishable with respect to nO(log n)-adversaries (i.e., we set
T (n) = nO(log n)). Then we assume the existence of a one-way permutation f such
that f is hard to invert with respect to algorithms running in time nO(log log n)

but can be inverted in time nO(log n). In the first round the verifier still chooses
an hash function. In addition, V picks a random string u in the domain of f
and sends v = f(u) to the prover. The language Λ is the same used for the
concurrent zero-knowledge argument system of Section 2: τ = (h, com, r) ∈ Λ if
com is a commitment of h(A) and there exists a string tr such that |tr| ≤ |r|/2,
and M(tr) outputs r in at most nlog log n/2 steps.

During the witness indistinguishable universal argument of knowledge the
prover proves knowledge of a witness y for either (x, y) ∈ L or τ = (h, com, r) ∈ Λ
or such that f(y) = v.

It is easy to see that the modified protocol is still concurrent zero knowledge
and has the same round complexity as the original one. Only the (stand-alone)
soundness property is affected by this update. However, notice that the only

Single-Prover Concurrent Zero Knowledge in Almost Constant Rounds 239

difference with respect to soundness of the argument system of Theorem 1 is
that the extractor of the universal argument could also extract a witness y such
that f(y) = v. However, since the extractor runs in time nO(log log n), we have
that the one-way permutation is inverted in time no(log n) that contradicts the
assumed hardness of f .

Protocol SSP1 admits also a quasi-polynomial-time simulator that by run-
ning in time nO(log n) inverts any polynomial number of one-way permutations
and therefore can simulate in a straight-line fashion any polynomial number of
session of SSP1 without using knowledge of the description of the adversarial
verifier. Notice that such a simulator still has to run the algorithm of the prover
during the preamble, in order to maintain the same round complexity of the real
prover.

References

1. Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent Zero-Knowledge with Loga-
rithmic Round Complexity. In Proc. of FOCS ’02, IEEE Computer Society Press
366–375

2. Dwork, C., Naor, M., Sahai, A.: Concurrent Zero-Knowledge. In Proc. of STOC
’98, ACM (1998) 409–418

3. Canetti, R., Kilian, J., Petrank, E., Rosen, A.: Black-Box Concurrent Zero-
Knowledge Requires ω(log n) Rounds. In Proc. of STOC ’01, ACM (2001) 570–579

4. Richardson, R., Kilian, J.: On the Concurrent Composition of Zero-Knowledge
Proofs. Proceeding of Eurocrypt ’99. Vol. 1592 of LNCS, Springer-Verlag (1999)
415–431

5. Kilian, J., Petrank, E.: Concurrent and Resettable Zero-Knowledge in Poly-
Logarithmic Rounds. In Proc. of STOC ’01, ACM (2001) 560–569

6. Dwork, C., Sahai, A.: Concurrent Zero-Knowledge: Reducing the Need for Timing
Constraints. In Proc. of Crypto ’98. Vol. 1462 of LNCS, Springer-Verlag (1998)
442–457

7. Goldreich, O.: Concurrent Zero-Knowledge with Timing, Revisited. In Proc. of
STOC ’02, ACM (2002) 332–340

8. Damgard, I.: Efficient Concurrent Zero-Knowledge in the Auxiliary String Model.
In Proc. of Eurocrypt ’00. Vol. 1807 of LNCS, Springer-Verlag (2000) 418–430

9. Blum, M., De Santis, A., Micali, S., Persiano, G.: Non-Interactive Zero-Knowledge.
SIAM J. on Computing 20 (1991) 1084–1118

10. Di Crescenzo, G., Persiano, G., Visconti, I.: Constant-Round Resettable Zero
Knowledge with Concurrent Soundness in the Bare Public-Key Model. In Proc. of
Crypto ’04. Vol. 3152 of LNCS, Springer-Verlag (2004) 237–253

11. Pass, R., Rosen, A.: Bounded-Concurrent Secure Two-Party Computation in a
Constant Number of Rounds. In Proc. of FOCS ’03, IEEE Computer Society
Press (2003)

12. Pass, R.: Simulation in Quasi-Polynomial Time and Its Applications to Protocol
Composition. In Proc. of Eurocrypt ’03. Vol. 2045 of LNCS, Springer-Verlag (2003)
160–176

13. Barak, B.: How to Go Beyond the Black-Box Simulation Barrier. In Proc. of FOCS
’01, IEEE Computer Society Press (2001) 106–115

240 G. Persiano and I. Visconti

14. Sahai, A.: Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen-
Ciphertext Security. In Proc. of FOCS ’99, IEEE Computer Society Press (1999)
543–553

15. Dolev, D., Dwork, C., Naor, M.: Non-Malleable Cryptography. SIAM J. on Com-
puting 30 (2000) 391–437

16. Feige, U., Lapidot, D., Shamir, A.: Multiple Non-Interactive Zero Knowledge
Proofs Under General Assumptions. SIAM J. on Computing 29 (1999) 1–28

17. Barak, B., Goldreich, O.: Universal Arguments and Their Applications. In: IEEE
Conference on Computational Complexity (CCC ’02), IEEE Computer Society
Press (2002)

LCA Queries in Directed Acyclic Graphs

Miroslaw Kowaluk1,� and Andrzej Lingas2,��

1 Institute of Informatics, Warsaw University, Warsaw
kowaluk@mimum.edu.pl

2 Department of Computer Science, Lund University, 22100 Lund
Fax +46 46 13 10 21

Andrzej.Lingas@cs.lth.se

Abstract. We present two methods for finding a lowest common ances-
tor (LCA) for each pair of vertices of a directed acyclic graph (dag) on
n vertices and m edges.

The first method is surprisingly natural and solves the all-pairs LCA
problem for the input dag on n vertices and m edges in time O(nm). As
a corollary, we obtain an O(n2)-time algorithm for finding genealogical
distances considerably improving the previously known O(n2.575) time-
bound for this problem.

The second method relies on a novel reduction of the all-pairs LCA
problem to the problem of finding maximum witnesses for Boolean ma-
trix product. We solve the latter problem and hence also the all-pairs

LCA problem in time O(n2+ 1
4−ω), where ω = 2.376 is the exponent of

the fastest known matrix multiplication algorithm. This improves the

previously known O(n
w+3

2) time-bound for the general all-pairs LCA
problem in dags.

1 Introduction

The problem of finding a lowest common ancestor (LCA) in a tree, or more gen-
erally, in a directed acyclic graph (dag) is one of the basic algorithmic problems.
An LCA of vertices u and v in a dag is an ancestor of both u and v which has no
descendant that is an ancestor of u and v, see Fig. 1 for example. We consider the
problem of preprocessing a dag such that LCA queries can be answered quickly
for any pair of vertices. It has a variety of important applications, e.g., in object
inheritance in programming languages, analysis of genealogical data and lattice
operations for complex systems (see [2] for details and further references).

For trees, linear-time preprocessing is sufficient to answer LCA queries in
constant time [7]. For general dags, after an O(n

w+3
2)-time preprocessing, LCA

queries can be answered in constant time [2] (where n is the number of vertices
and ω = 2.376 is the exponent of the fastest known matrix multiplication algo-

� Research supported by KBN grant 4T11C04425.
�� Research supported in part by VR grant 621-2002-4049.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 241–248, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

242 M. Kowaluk and A. Lingas

1

2 3
4

5

6 7

8 9

Fig. 1. The LCA of 8 and 9 are 1 and 5

rithm). A lower bound Ω(nw) by reduction of the transitive closure problem to
all-pairs LCA in dags is also given in [2].

We present two methods of efficiently preprocessing a directed graph on n
vertices and m edges in order to answer an LCA query for any pair of vertices
in constant time, subsuming the previously known best results from [2].

The first method is surprisingly natural and solves the all-pairs LCA problem
for the input dag on n vertices and m edges in time O(nm). For sparse dags,
this method is optimal and substantially faster than the known O(n

w+3
2)-time

general method from [2]. As a corollary, we obtain an O(n2)-time algorithm
for finding genealogical distances considerably improving the previously known
O(n2.575) time-bound for this problem [2].

The second method efficiently reduces the all-pairs LCA problem to the
problem of finding maximum (index) witnesses for Boolean matrix product.
We solve the latter problem and hence also the all-pairs LCA problem in time
O(n2+ 1

4−ω). Since 2 + 1
4−ω ≈ 2.616 and w+3

2 ≈ 2.688, our result subsumes the

previously known O(n
w+3

2) time-bound for the general all-pairs LCA problem in
dags [2].

The first and second methods are respectively described in Sections 2 and 3
whereas Section 4 presents the algorithm for finding genealogical distances. Our
paper concludes with final remarks.

2 Optimal Method for Sparse Dags

First, we shall describe preprocessing for answering queries about existence of a
common ancestor for arbitrary pair of vertices in constant time.

For the input dag, we shall denote by n and m its number of vertices and
edges, respectively. Also for a vertex v in the dag, indeg(v) and outdeg(v) stand
respectively for the in-degree and out-degree of v. If outdeg(v) = 0 then v is
called a terminal vertex and if indeg(v) = 0 then v is called a source vertex.

We may assume without loss of generality that the input dag is connected
since otherwise we can decompose it into connected components and solve the

LCA Queries in Directed Acyclic Graphs 243

problem for each component separately. For technical reasons, we shall also as-
sume that every vertex is its own ancestor.

The following lemma immediately follows from the definition of a dag.

Lemma 1. If two vertices have a common ancestor then there is a source vertex
that is their common ancestor.

In the first stage of the preprocessing, for each vertex of the input dag we form a
table containing its descendants. In other words, we create the transitive closure
of the dag which obviously can be done in time O(nm). For the sake of Section
4, we describe this stage in more details below.

We initialize the tables in time O(n2) and start from the terminal vertices,
filling their tables with single vertices in time O(n). Next we iterate the following
step: remove the vertices of out-degree 0 with incident edges and fill the tables
for the new vertices v of out-degree 0 by merging the information from the tables
associated with the removed direct descendants of v, and taking into account
the set of direct descendants of v. We also add v to its table. For each vertex
v such an operation takes time O(n) × outdeg(v). Thus, for the whole graph it
takes O(nm) time.

Lemma 2. The tables of descendants for all vertices can be formed in time
O(nm).

In the second stage of the preprocessing, we determine for each vertex v
the set of vertices which have a common ancestor with v. We proceed simi-
larly as in the first stage of preprocessing starting from source vertices instead
of the terminal ones. For the source vertices s, the sets are already computed,
they are just the sets of descendants of s. Next, we iterate the following step:
remove the vertices of in-degree 0 with incident edges and fill the tables for
the new vertices v of in-degree 0 by merging the information from the ta-
bles associated with the removed direct ancestors of v. For each vertex v such
an operation takes time O(n) × indeg(v). Thus, for the whole graph it takes
O(nm) time.

By the height of a vertex v in a dag, we shall mean the length of the longest
path from a source vertex to v in the dag.

Note that the set of vertices having a common ancestor with a vertex v is the
union of the sets of vertices having common ancestors with the ancestors of v
(recall that v is also an ancestor of itself). Hence, we obtain the following lemma
by induction on the height of v.

Lemma 3. For all vertices v, the tables of vertices having a common ancestor
with v can be computed in time O(nm).

In order to answer LCA queries we need to refine the preprocessing slightly. Dur-
ing the second descending phase of the preprocessing we additionally enumerate
the vertices in their visiting order. Since an ancestor is always visited before its
descendant, we obtain the following lemma.

244 M. Kowaluk and A. Lingas

Lemma 4. A vertex of a higher number cannot be an ancestor of a vertex of a
lower number.

For all vertices v, in the table keeping vertices w having a common ancestor with
v, we keep also the maximum of the numbers assigned to the common ancestors
of v and w. To achieve this, when we merge the information from the tables of
direct ancestors of v, we pick the maximum number of a common ancestor of a
direct ancestor of v and w. Clearly, the refinement can be accomplished within
the same asymptotic time O(mn). By induction, we obtain the following lemma.

Lemma 5. For all vertices v, the tables of vertices w having a common ancestor
with v with a pointer to a lowest common ancestor of v and w can be computed
in time O(nm).

Hence, we obtain immediately the following theorem.

Theorem 1. A dag on n vertices and m edges can be preprocessed for constant-
time LCA queries in time O(nm).

If m = O(n) then the preprocessing is optimal.

Corollary 1. The all-pairs LCA problem for a dag on n vertices and m edges
can be solved in time O(n(n + m)).

3 O(n2+ 1
4−ω)-Time Method for General Dags

If an entry C[i, j] of the Boolean product of two Boolean matrices A and B is
equal to 1 then any index k such that A[i, k] and B[k, j] are equal to 1 is a
witness for C[i, j]. If k is the largest possible witness for C[i, j] then it is called
the maximum witness for C[i, j].

In [3], Galil and Margalit presented an O(nω+ε)-time method for the problem
of computing witnesses for all positive entries of the Boolean product of two n×n
Boolean matrices. Their method (too involved to describe shortly) can be viewed
as a sequence of algorithms for a generalization of the problem. The first algo-
rithm corresponds to the straightforward cubic method testing all the n witness
possibilities for each positive entry of the product. The consecutive algorithms
partition the input into blocks. Next, they use the fast algorithm for Boolean
matrix product to compute the product of the blocks pairwise, and use the re-
sulting products to partition the problem into subproblems. In the subproblems,
for a row of the first input matrix and a column of the second input matrix,
only an unique index fragment induced by the block partition and containing
a witness is considered. The subproblems are solved recursively by permutting
rows and columns and using the previous algorithms from the sequence.

Only the first two algorithms in the sequence of algorithms constructed by
their recursive method do not rely on row and column permutations. Therefore,
the method does not seem adaptable to produce the maximum witnesses without
altering its asymptotic time.

LCA Queries in Directed Acyclic Graphs 245

n
l

A r

n
l

B q

C rq
n/lBpq

B1q

A r1 A rp
C rq

1 C rq
pl

nn

n n

l

........

Fig. 2. The relationship between A′
rps, B′

pqs and C′
rqs

Our method for maximum witnesses of the Boolean product C of two n× n
Boolean matrices A and B can be viewed as a modification of the second of
the algorithms for witnesses of C in the aforementioned sequence of algorithms
from [3].

Let l be a positive integer smaller than n. Partition the matrices A and B
into l× l sub-matrices Arq, Brq, where 1 ≤ r, q ≤ n/l, such that for 1 ≤ r ≤ n/l,
the sub-matrices Arq, 1 ≤ q ≤ n/l, cover the rows (r − 1)l + 1 through rl of A
whereas for 1 ≤ q ≤ n/l, the sub-matrices Brq, 1 ≤ r ≤ n/l, cover the columns
(q − 1)l + 1 through ql of B.

For 1 ≤ r, q ≤ n/l, p = 1, ..., n/l, compute the Boolean product Cp
rq of Arp

and Bpq using the fast algorithm. The following remark is straightforward.

Remark. Suppose that the (i, j) entry of the product matrix C is positive and
(r − 1)l < i ≤ rl and (q − 1)l < j ≤ ql. Let p′ be the maximum value of p such
that the entry of Cp

rq which is the dot product of the row of Arp corresponding
to the i-th row of A and the column of Bpq corresponding to the j-th column
of B is 1. The maximum witness of the (i, j) entry of the Boolean product of A
and B belongs to the interval [(p′ − 1)l + 1, p′l].

By this remark, after computing all the products Cp
rq, 1 ≤ p, r, q ≤ n/l, we need

O(l) time per positive entry of C to find the maximum witness. Thus, the total
time taken by our method for maximum witnesses is O((n

l)3lω + n2l).
By solving the equation (n

l)3lω = n2l, we conclude that for l = n
1

4−ω our
method achieves minimum worst-case time complexity at O(n2+ 1

4−ω). Hence, we
obtain the following theorem.

Theorem 2. The maximum witnesses for all positive entries of the Boolean
product of two n× n Boolean matrices can be computed in time O(n2+ 1

4−ω).

The following obvious lemma leads to an efficient reduction of the problem of
all pairs LCA in a dag to that of determining maximum witnesses of the Boolean
product of two Boolean matrices.

Lemma 6. Let G be a dag and let G∗ be its transitive closure. For vertices u, v
in G, let w be its common ancestor of highest rank among all common ancestors

246 M. Kowaluk and A. Lingas

of u and v in the ordering resulting from a topological sort of G∗. The vertex w
is a lowest common ancestor of u and v.

Our algorithm for all pairs LCA in a dag is as follows.

Algorithm 1

1. Compute the transitive closure of the input dag G.
2. Topologically sort the vertices of G and number them by their ranks in the

resulting sorting order.
3. Form two Boolean n × n matrices A and B such that for i, k ∈ {1, ..., n}

the k-th coordinate of the i-th row of A and the i-th column of B is set to 1
if the k-th vertex is an ancestor of the i-th vertex, or k = i, otherwise these
two coordinates are set to 0.

4. Find maximum witnesses for the Boolean product C of A and B and for
each non-zero entry C[i, j] output the vertex whose number is the index of
maximum witness of C[i, j] as the lowest common ancestor of the i-th and
j-th vertices.

The correctness of the algorithm follows from Lemma 6. Step 1 can be imple-
mented in time O(nω). Steps 2 and 3 take O(n2) time. Finally, Step 4 requires
O(n2+ 1

4−ω) time by Theorem 2. Hence, we obtain our second main result.

Theorem 3. For a dag on n vertices, we can determine for each pair of ver-
tices having a common ancestor their lowest common ancestor in time
O(n2+ 1

4−ω).

4 Shortest Genealogical Distances

The authors of [2] discuss the so called pedigree graphs which are sparse dags
used to model human ancestor relations. Since each human has at most two
parents, a pedigree graph has maximum in-degree bounded by two. For the
fundamental applications of pedigree graphs in the identification of genes as-
sociated with genetic diseases the reader is referred to [4, 6]. In these appli-
cations, computing the so called shortest ancestral distance between a pair of
vertices in a pedigree graph is important [2]. The shortest ancestral distance
between two vertices u and v in a dag is defined as the length of a shortest
path between u and v which passes through a common ancestor of u and v
(observe that the common ancestor is not necessarily the lowest one 1). Bender
et al. showed that the all-pairs shortest ancestral distances can be computed in
time O(n2.575) [2]. In this section, we show that the all-pairs shortest ancestral
distances can be optimally computed for sparse dags, in particular, pedigree
graphs.

1 One can also consider the so called shortest ancestral lca distance where the common
ancestor is required to be lowest [2].

LCA Queries in Directed Acyclic Graphs 247

We can modify our first method to obtain an O(mn)-time algorithm to com-
pute the all-pairs shortest ancestral distances as follows. In the ascending phase,
for each vertex v, and for each descendent u of v, we additionally compute the
shortest directed distance between u and v. This can be easily accomplished
within the same asymptotic time O(mn). At the beginning of the descending
phase, the previously computed shortest directed distances yield the shortest
ancestral distances between sources and their descendents. While descending
the shortest ancestral distances between the parents of the current vertex v and
each other vertex u are increased by one. Next, the minimum of them and the
shortest directed distance between v and u (it can be infinite) is taken as the
shortest ancestral distance between v and u. In this way for all pairs of vertices
v and u the shortest ancestral distance is computed.

Similarly, the so modified descending phase can be also implemented in time
O(mn). We conclude with the following theorem.

Theorem 4. For a dag on n vertices and m edges, the all-pairs shortest ances-
tral distances can be computed in time O(nm).

Corollary 2. For a pedigree graph on n vertices, the all-pairs shortest ancestral
distances can be computed in time O(n2).

5 Final Remarks

The problems of finding LCA are classical and central in the area of algorithms
and data structures [2, 5, 7]. In spite of the long history of studies devoted to
LCA problems, we have succeeded to design two quite natural methods for
finding LCA in dags considerably subsuming the previously known best re-
sults [2].

The problem of finding maximum witnesses of Boolean matrix product seems
to be of interest in its own rights. At first glance it seems that the recursive
O(nω+ε)-time method of Galil and Margalit [3] could be adapted to produce the
maximum witnesses by considering the fragments containing maximum witnesses
in the subproblems without substantially altering its asymptotic time. However,
the aforementioned method may permute rows or columns in recursive steps
which may disturb the search for maximum witnesses. Thus, the problem of
whether or not our O(n2+ 1

4−ω)-time method is optimal is open.
It is also an interesting question whether or not the instances of the prob-

lem of finding maximum witnesses of Boolean matrix product occurring in our
reduction from the LCA problem in dags are computationally easier than the
general ones.

Acknowledgments

The authors are grateful to Pavel Sumazin for inspiration and to Leszek Ga̧sieniec
for some discussions.

248 M. Kowaluk and A. Lingas

References

1. N. Alon and M. Naor. Derandomization, Witnesses for Boolean Matrix Multipli-
cation and Construction of Perfect hash functions. Algorithmica 16, pp. 434-449,
1996.

2. M.A. Bender, G. Pemmasani, S. Skiena and P. Sumazin. Finding Least Common
Ancestors in Directed Acyclic Graphs. Proc. the 12th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pp. 845-853, 2001.

3. Z. Galil and O. Margalit. Witnesses for Boolean Matrix Multiplication and Shortest
Paths. Journal of Complexity, pp. 417-426, 1993.

4. R.W. Cottingham Jr., R.M. Idury, and A.A. Shäffer. Genetic linkage computations.
American Journal of Human Genetics, 53, pp. 252-263, 1993.

5. M. Nykänen and E. Ukkonen. Finding lowest common ancestors in arbitrarily di-
rected trees. Inf. Process. Lett., 50(6), pp. 307-310, 1994.

6. A.A. Shäffer, S.K. Gupta, K. Shriram, and R.W. Cottingham Jr. Avoiding recom-
putation in linkage analysis. Human Heredity, 44, pp. 225-237, 1994.

7. R.E. Tarjan. Applications of path compression on balanced trees. Journal of the
ACM 26(4), pp. 690-715, 1979.

Replacement Paths and k Simple Shortest Paths
in Unweighted Directed Graphs

Liam Roditty and Uri Zwick

School of Computer Science,
Tel Aviv University, Tel Aviv 69978, Israel

Abstract. Let G = (V, E) be a directed graph and let P be a shortest
path from s to t in G. In the replacement paths problem we are required to
find, for every edge e on P , a shortest path from s to t in G that avoids e.
We present the first non-trivial algorithm for computing replacement
paths in unweighted directed graphs (and in graphs with small integer
weights). Our algorithm is Monte-Carlo and its running time is Õ(m

√
n).

Using the improved algorithm for the replacement paths problem we get
an improved algorithm for finding the k simple shortest paths between
two given vertices.

1 Introduction

Let G = (V,E) be a graph, let s, t ∈ V be two vertices in G, and let P be a
shortest path from s to t in G. In certain scenarios, edges in the graph G may
occasionally fail, and we are thus interested in finding, for every edge e on the
path P , the shortest path from s to t in G that avoids e. This problem is refereed
to as the replacement paths problem.

The replacement paths problem for undirected graphs is a well studied prob-
lem. An O(m + n log n) time algorithm for the problem was given by Malik et
al. [13]. A similar algorithm was independently discovered, much later, by Her-
shberger and Suri [7]. Hershberger and Suri [7] claimed that their algorithm also
works for directed graphs, but this claim turned out to be false (see Hershberger
and Suri [8]). Nardelli et al. [14] gave an O(mα(m,n)) time algorithm for the
undirected version of the problem using the linear time single source shortest
paths algorithm of Thorup [18].

All the results mentioned above for the replacement paths problem work
only for undirected graphs. This situation is partially explained by an Ω(m

√
n)

lower bound for the replacement paths problem for directed graphs in the path-
comparison model of Karger et al. [10] given by Hershberger et al. [9].

The replacement paths problem in directed graphs can be trivially solved in
O(|P |(m + n log n)) = O(mn + n2 log n) time by removing each edge on P from
the graph and finding a shortest path from s to t. No faster algorithm for the
problem was previously known.

The replacement paths problem in directed graphs is strongly motivated by
the following applications:

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 249–260, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

250 L. Roditty and U. Zwick

The fastest algorithm to compute a set of k simple shortest paths in a directed
graph uses in each iteration a replacement paths algorithm. This algorithm which
was given independently by Yen [20] and Lawler [12], has a running time of
O(kn(m + n log n)). An o(mn) algorithm for the replacement paths problem
implies immediately on o(mn) algorithm for the k simple shortest paths problem.

The second motivation for studying replacement paths is the Vickrey pricing
of edges. Suppose we like to find the shortest path from s to t in a directed
graph G in which edges are owned by selfish agents. As noted by Nisan and
Ronen [15], a mechanism that offers to pay dG|e=∞(s, t) − dG|e=0(s, t) to the
owner of edge e, for any edge e on the shortest path from s to t, and zero
otherwise, forces the edge owners to reveal their true cost. This kind of pricing
is called Vickrey pricing. Computing the first quantity for every edge in the
graph is equivalent to computing the replacement paths between s and t. (For
further details see Hershberger and Suri [7] and Demetrescu et al. [4]).

We present here the first non-trivial algorithm for the replacement paths
problem in directed graphs. It improves immediately the running time of the
two applications mentioned above. Our algorithm is randomized and its running
time is Õ(m

√
n) time. This seemingly matches the lower bound of Hershberger et

al. [9]. Unfortunately, our algorithm works only for unweighted directed graphs,
or directed graphs with small integer weights, while the lower bound of [9] is for
generally weighted directed graphs.

One of the ingredients used in our algorithm for the replacement paths prob-
lem is a simple sampling technique used before to develop parallel algorithms
(Ullman and Yannakakis [19]), static algorithms (Zwick [21]) and dynamic al-
gorithms (Henzinger and King [6], Baswana et al. [1, 2] Roditty and Zwick
[17, 16]) for paths problems. This technique on its own, however, does not sup-
ply an improved algorithm for the replacement paths problems and other ideas
are needed.

Demetrescu and Thorup [3] considered the more general problem of finding,
for every pair of vertices u, v ∈ V and every edge e ∈ E, a shortest path from u
to v that avoids e. They devise a data structure of size O(n2 log n) capable of
answering each such query in O(log n) time. The preprocessing time needed for
constructing this data structure is, however, Õ(mn2). The preprocessing time can
be reduced to Õ(mn1.5) at the price of increasing the size of the data structure
to O(n2.5). (For a recent improvement, see Demetrescu et al. [4].)

We also consider two variants of the replacement paths problem. Assume
again that G = (V,E) is a directed graph and that P is a shortest path from s
to t in G. In the restricted replacement paths problem, we are required to find,
for every edge e = (u, v) on the path P , a shortest path from u to t in G that
avoids e. This corresponds to a scenario in which the failure of the edge e = (u, v)
is only detected at u (see Figure 1(b) for example). In the edge replacement
paths problem we are required to find, for every edge e = (u, v) on the path P , a
shortest path from u to v in G that avoids e, (see Figure 1(c) for example). Our
Õ(mn1/2) time algorithm for the replacement paths problem can be adapted to
solve these two versions of the problem.

Replacement Paths and k Simple Shortest Paths 251

u v

e
u v

u v

e

es

s

s

t

t

t

(a)

(b)

(c)

(i + 1)LiL(i − 1)L (i + 2)L

L L L L L L

vivi−1 vi+1 vi+2

r

Fig. 1. Three detours and the auxiliary graph used to find short detours

We next turn our attention to the k shortest paths problem. Given a graph
G = (V,E), two vertices s, t ∈ V and an integer k, we are required to find
the k shortest paths from s to t in G. Eppstein [5], gave an O(m + n log n +
k) time algorithm for the directed version of the problem. However, the paths
returned by Eppstein’s algorithm are not necessarily simple. i.e., they may visit
certain vertices more than once. In the k simple shortest paths problem, the
paths returned should all be simple. Katoh et al. [11] gave an O(k(m+n log n))
time algorithm for solving the k simple shortest paths problem for undirected
graphs. Yen [20] and Lawler [12] gave an O(kn(m+n log n)) time algorithms for
solving the problem for directed graphs. It is interesting to note that, as for the
replacement paths problem, the directed version of the problem seems to be much
harder than the undirected version. Using our Õ(m

√
n) time algorithm for the

replacement paths problem we obtain a randomized Õ(km
√
n) time algorithm

for the k simple shortest paths problem for unweighted directed graphs and for
directed graphs with small integer weights.

We also show that computing the k simple shortest paths can be reduced to
O(k) computations of a second simple shortest path between s and t, each time
in a different subgraph of G. Thus, to obtain an o(kmn) time algorithm for the
k simple shortest paths problem it is enough to obtain an o(mn) time algorithm
for the second shortest path problem.

The rest of this extended abstract is organized as follows. In the next section
we describe our replacement paths algorithm and its adaption to the different
variants of the replacement paths problem mentioned above. In Section 3 we show
that the k simple shortest paths between two given vertices can be found by at
most 2k invocations of an algorithm for finding the second shortest path between
a given pair of vertices. As the second simple shortest path can be trivially
found by solving the replacement paths problem, we obtain an Õ(km

√
n) time

algorithm for the k simple shortest paths problem for unweighted graphs. We
end in Section 4 with some concluding remarks and open problems.

2 Replacements Paths

In this section we describe an algorithm for solving the replacement paths
problem for unweighted directed graphs and directed graphs with small inte-
ger weights. Let G = (V,E) be a directed graph and let s and t be two vertices
in the graph. Let P (s, t) = 〈u0, u1, . . . , u�〉 be a shortest path from s = u0 to
t = u�. Let PE(s, t) = 〈(u0, u1), (u1, u2), . . . , (ul−1, u�)〉 be the set of edges of

252 L. Roditty and U. Zwick

this path. The objective of a replacement path algorithm is to find for every edge
e ∈ PE(s, t) a shortest path P ′(s, t) in the graph Ge = (V,E \ {e}).

We start by defining detours:

Definition 1 (Detours). Let P (s, t) be a simple path from s to t. A simple
path D(u, v) is a detour of P (s, t) if D(u, v) ∩ P (s, t) = {u, v} and u precedes v
on P (s, t).

Three detours of a shortest path from s to t are depicted in Figure 1. A
shortest path from s to t that avoids the edge (ui, ui+1) of the shortest path
P (s, t) = 〈u0, u1, . . . , u�〉 is composed of an initial portion 〈u0, u1, . . . , uj〉 of P ,
where 0 ≤ j ≤ i, a detour D(uj , uj′), where i + 1 ≤ j′ ≤ �, and then the final
portion 〈uj′ , . . . , u�〉 of P .

Let L be a parameter to be chosen later. A detour is said to be short if its
length is at most L. Otherwise, it is said to be long. (Note that we are considering
here only the length of the detour, not the total length of the resulting path
from s to t. For example, the detour in Figure 1(a) is longer than the one in
Figure 1(b), but the resulting paths may have the same length.)

We find separately the best short detours and the best long detours. The
short detours are found in Section 2.1 in Õ(mL) time. The long ones are found
in Section 2.2 in Õ(mn/L) time. Setting L =

√
n, we get that the running time

of both algorithms is Õ(m
√
n). By choosing for every edge the best short or long

detour, we obtain all the optimal replacement paths.

2.1 Finding Short Detours

We now describe an Õ(mL) time algorithm for finding the best detours of length
at most L. We can easily find the best detours that start in a given vertex
u on the shortest path P (s, t) by running the BFS algorithm from u in the
graph G − PE . However, doing so from each vertex on P may require n BFS
computation which is too time consuming. The main observation made in this
Section is that if v0, v1, . . . , vk are vertices on P (s, t) that are at a distance of
at least 2L apart from each other, then the best short detours from all these
vertices can be found by one run of Dijkstra’s algorithm on a suitably modified
graph. Thus, O(L) runs suffice to find all short detours.

More specifically, to find the best detours from the vertices u0, u2L, . . . , u2kL,
were k = + �

2L,, we consider the graph G − PE to which we add a new source
vertex r and an edge (r, u2iL) of weight iL, for every 0 ≤ i ≤ k. The weight of all
the edges of E − PE is set to 1. We denote the weight function of the auxiliary
graph with wt. Note that the weight assigned to the edge (r, u2iL) is iL, and not
2iL as might have been expected. Also, note that even though we are interested
in detours that are of length at most L, the distance between every two selected
vertices should be at least 2L. The reason to that will become clear in the proof
of Theorem 1. The resulting auxiliary graph, which we denote by GA, is depicted
in Figure 1.

We claim that by running Dijkstra’s algorithm, from r, on GA we find all the
best short detours that start in one of the selected vertices. We then run this

Replacement Paths and k Simple Shortest Paths 253

algorithm ShortDet(P, b, L)

〈u0, u1, . . . , u�〉 ← P

V ′ ← V ∪ {r}
E′ ← E \ P E

for each e ∈ E′ do wt(e)← 1

for i← 0 to �(�− b)/(2L)�
E′ ← E′ ∪ {(r, u2iL+b)}
wt(r, u2iL+b)← iL

δ′ ← Dijkstra(r, (V ′, E′, wt))

for i← 0 to �(�− b)/(2L)�
g ← 2iL + b
for j ← 1 to L

if δ′(r, ug+j) ≤ (i + 1)L then
RD[g, j]← δ′(r, ug+j)− iL

else
RD[g, j]←∞

algorithm ShortRepPath(P, L)

〈u0, u1, . . . , u�〉 ← P

for b← 0 to 2L− 1
ShortDet(P, b, L)

Q← φ

for i← 0 to �− 1

for j ← i + 1 to min{i + L, �}
Insert(Q, (i, j), RD[i, j − i] + i + �− j)

for j ← max{i− L, 0} to i− 1
Delete(Q, (j, i))

(a, b)← findmin(Q)
len← RD[a, b− a] + a + �− b
RP [i]← 〈len, a, b〉

Fig. 2. The algorithm for finding short detours and short replacement paths

algorithm 2L − 1 more times to find short detours emanating from the other
vertices of P (s, t). In the i-th run we find the short detours emanating from one
of the vertices ui, u2L+i, . . . , u2kL+i.

We let δ(u, v) denote the distance from u to v in the graph G. We let δ−(u, v)
denote the distance from u to v in the graph G−PE , i.e., the graph G with the
edges of the path P removed. (The minus sign is supposed to remind us that
the edges of P are removed from the graph.) We let δA(u, v) denote the distance
from u to v in the auxiliary graph GA. We now claim:

Theorem 1. If δA(r, u2iL+j) ≤ (i + 1)L, where 0 ≤ i ≤ k and 1 ≤ j ≤ L, then
δ−(u2iL, u2iL+j) = δA(r, u2iL+j)− iL. Otherwise, δ−(u2iL, u2iL+j) > L.

Proof. For brevity, let vi = u2iL and vij = u2iL+j . Assume at first that δA(r, vij) ≤
(i + 1)L. Consider a shortest path from r to vij in GA. Let (r, vq) be the first
edge on the path. If q < i, then we have

δA(r, vij) = qL + δ−(vq, vij) ≥ qL + 2(i− q)L + j

= (2i− q)L + j ≥ (i + 1)L + j > (i + 1)L ,

a contradiction. Note that if the distance between any vi and vi+1 was L instead
of 2L then for q < i we do have δA(r, vij) ≤ (i + 1)L.

Similarly, if q > i then we again have δA(r, vij) = qL+ δ−(vq, vij) > (i+1)L.
Thus, we must have q = i and δA(r, vij) = iL + δ−(vi, vij), as required.

254 L. Roditty and U. Zwick

On the other hand, if δ−(vi, vij) ≤ L, then clearly

δA(r, vij) ≤ wt(r, vi) + δ−(vi, vij) ≤ iL + L = (i + 1)L ,

as required. �

A description of the resulting algorithm, which we call ShortDet is given
in Figure 2. By running the algorithm with the parameter b ranging from 0 to
2L− 1 we find, for every vertex on the path, the best short detours starting at
it. This information is gathered in the table RD.

The entry RD[i, j] gives us the length of the shortest detour starting at ui

and ending at ui+j , if that length is at most L. To find the shortest path from s
to t that avoids the edge (ui, ui+1) and uses a short detour, we need to find
indices i− L ≤ a ≤ i and i < b ≤ i + L for which the expression

δ(s, ua) + δ−(ua, ub) + δ(ub, t) = a + RD[a, b− a] + (�− b)

is minimized. An algorithm, called ShortRepPath, for finding such replacement
paths is given in Figure 2. Algorithm ShortRepPath uses a priority queue Q.
When looking for the shortest replacement path for the edge (ui, ui+1), the
priority queue Q contains all pairs (a, b) such that i−L ≤ a ≤ i and i < b ≤ i+L.
The key associated with a pair (a, b) is naturally a+RD[a, b−a]+(�−b). In the
start of the iteration corresponding to the edge (ui, ui+1), we insert the pairs
(i, j), for i + 1 ≤ j ≤ i + L into Q, and remove from it the pairs (j, i), for
i−L ≤ j ≤ i. A findmin operation on Q then returns the minimal pair (a, b). It
is easy to see that the complexity of this process is only Õ(nL). Thus, the total
running time of the algorithm is Õ(mL), as required. We have thus proved:

Theorem 2. Algorithm ShortRepPath finds all the shortest replacement paths
that use short detours. Its running time is Õ(mL).

2.2 Finding Long Detours

To find long detours, i.e., detours that are of length at least L, we use the
following simple sampling lemma. (To the best of our knowledge, it was not
used before in the context of finding replacement paths).

Lemma 1. Let D1, D2, . . . , Dq ⊆ V such that |Di| ≥ L for 1 ≤ i ≤ q and |V | =
n. If R ⊆ V is a random subset obtained by selecting each vertex, independently,
with probability (c lnn)/L, for some constant c, then with probability of at least
1− q · n−c we have Di ∩R �= φ for every 1 ≤ i ≤ q.

For every pair of vertices u and v on the path P for which the shortest detour
from u to v is of length at least L, let D(u, v) be such a shortest detour. By the
lemma, if R is a random set as above, then with a probability of at least 1−n2−c

we have D(u, v)∩R �= φ, for every such pair u and v. The choice of the random
set R is the only randomization used by our algorithm.

Replacement Paths and k Simple Shortest Paths 255

Our algorithm for finding the best replacement paths that use long detours
starts by calling sample(V, (4 lnn)/L) which selects a random set R in which
each vertex v ∈ V is placed, independently, with probability (4 lnn)/L. The
expected size of R is clearly Õ(n

L). We assume, throughout the section, that
D(u, v) ∩R �= φ, whenever |D(u, v)| ≥ L.

For every sampled vertex r ∈ R, the algorithm maintains two priority queues
Qin[r] and Qout[r] containing indices of vertices on P . When looking for a
replacement path for the edge (ui, ui+1) we have Qin[r] = {0, 1, . . . , i} and
Qout[r] = {i + 1, . . . , �}. The key associated with an element j ∈ Qin[r] is
j+δ−(uj , r). The key associated with an element j ∈ Qout[r] is δ−(r, uj)+(�−j).

Recall that δ−(u, v) is the distance from u to v in G − PE . The algorithm
computes δ−(r, v) and δ−(v, r), for every r ∈ R and v ∈ V , by running two BFS’s
from r, for each r ∈ R, one in G−PE and one in the graph obtained from G−PE

by reversing all the edges. (Only one of these BFS’s is explicitly mentioned
in LongRepPath.) The total running time of computing these distances is
Õ(mn/L).

To find the shortest replacement path for the edge (ui, ui+1) that passes
through a given vertex r ∈ R, the algorithm needs to find an index 0 ≤ a ≤ i
which minimizes the expression a + δ−(ua, r), and an index i < b ≤ � which
minimizes the expression δ−(r, ub) + (� − b). The minimizing index a is found
by a findmin operation on Qin[r] and the minimizing index b is found by a
findmin operation on Qout[r].

It is not difficult to check that the total running time of the algorithm is
Õ(mn/L), as required. We have thus proved:

Theorem 3. Algorithm LongRepPath finds, with very high probability, all the
shortest replacement paths that use long detours. Its running time is
Õ(mn/L).

2.3 The Replacement Paths Algorithm and Its Variants

The algorithms ShortRepPath and LongRepPath find the best short and
long replacement paths available to bypass every edge on a given shortest path.
By passing on their output and picking the minimal path found for every edge
we obtain the solution for the replacement paths problem as promised.

There are another two natural variants of replacement paths that can be
solved by our short and long detours detection.

Let G = (V,E) be a directed graph and let P be a shortest path from s
to t in G. In the restricted replacement paths problem, we are required to find,
for every edge e = (u, v) on the path P , a shortest path from u to t in G that
avoids e. This corresponds to a scenario in which the failure of the edge e = (u, v)
is only detected at u. In the edge replacement paths problem we are required to
find, for every edge e = (u, v) on the path P , a shortest path from u to v in G
that avoids e.

To solve the above two problems the main idea of short and long detours
remains unchanged. The only change is in the set from which we choose the best

256 L. Roditty and U. Zwick

detour to be used to bypass a given edge. This set is now updated according to
the structural restrictions given by the problem definition.

For the restricted replacement paths after finding the short detours by the
algorithm ShortDet we maintain the heap subject to the following constraint:
If we currently searching for a restricted replacement path to bypass the edge
(ui, ui+1) the heap contains only detours that emanate from ui.

In a similar manner, when searching for a restricted replacement path com-
posed from a long detour to bypass the edge (ui, ui+1) we use only detours that
emanate from ui. Thus, we only need one heap for this process. A pseudo-code
of the algorithm will be given in the full version of this paper. We claim:

Theorem 4. Algorithm ResRepPath, with L =
√
n, finds, with very high

probability, all the restricted shortest replacement paths. Its running time is
Õ(m

√
n).

Using similar constraints on the set from which paths are picked we can adapt
our ideas to solve also the edge replacement paths problem.

3 The k Simple Shortest Paths Problem

The k simple shortest paths problem (also known as the k shortest loopless
paths) is a fundamental graph theoretic problem. Let G = (V,E) be a directed
graph and let s and t be two vertices of the graph. Let k be an integer. The
target is to find the k simple shortest paths from s to t. This version of the
problem is considered to be much harder than the general version in which non-
simple paths (i.e. paths that may contain a loop) are allowed to be among the
k shortest paths. The k shortest non-simple paths can be computed in time of
O(m + n log n + k) using an algorithm of Eppstein [5]. In cases that a shortest
paths tree can be computed in O(m + n), Eppstein’s algorithm has a running
time of O(m + n + k). However, the running time of the restricted problem is
much worse. The best algorithm is due to Yen [20] and Lawler [12]. It has a
running time of O(kn(m + n log n)).

In this section we show that for unweighted directed graphs (and for graphs
with small integer weights) the running time of O(kn(m + n log n)) can be sig-
nificantly improved using our new replacement paths algorithm. We obtain a
randomized algorithm with running time of O(km

√
n log n).

We also reduce the problem of computing k simple shortest paths to O(k)
computations of a second shortest path each time in a different subgraph of G.
This reduction works in weighted graphs. Both Yen [20] and Lawler [12] use O(k)
computations of replacement paths. Our reduction implies that we can focus our
efforts in improving the second shortest path algorithm, which may turn out to
be an easier problem than the replacement paths problem. We only deal in this
section with simple paths thus we refer to a simple path simply by saying a path.

The algorithm for computing k shortest paths works as follow. It maintains
a priority queue Q of paths from s to t. The key attached with each path is
its length. The algorithm preforms k iterations. The priority queue is initialized

Replacement Paths and k Simple Shortest Paths 257

s

t

t t

t

t

t

P4

P2 P1

P3

P5

P6

algorithm k-SimplePath(G(V, E), s, t, k)

P1(s, t)← Dijkstra(G(V, E), s, t)
T ← P1(s, t)
Insert(Q, (SP(G(V, E), P1(s, t)), 1))
for i← 2 to k

(Pi(s, t), j)← findmin(Q)
Make a copy of Pi(vi, t) and hang it on ui in T
Insert(Q, (SP(G(V, E \ Ed(vi)), Pi(vi, t)), i))
Insert(Q, (SP(G(V, E \ Ed(vj)), Pj(vj , t)), j))

Fig. 3. A deviations tree and our k-simple shortest paths algorithm

with a second shortest path of a shortest path from s to t. In the i-th iteration
the algorithm picks from Q the path with the minimal length and remove it.
Let Pi(s, t) = 〈s, u1, . . . u�−1, t〉 be the i-th path picked by the algorithm. This
path is added to the output as the i-th shortest path. To describe the output
structure we need the following definition:

Definition 2 (Deviation edge and Deviations tree). For k = 1 the devia-
tions tree is simply a copy of a shortest path from s to t. Suppose that the tree
already exists for i−1 paths. Let Pi(s, t) = 〈s, u1, . . . , ul〉 be the i-th shortest path
to be output. Let Pi(s, uj) be the longest subpath of Pi(s, t) that was already part
of the output and thus part of the tree. We make a copy only from Pi(uj+1, t)
and hang it on the copy of uj in the tree. We say that the edge (uj , uj+1) is the
deviation edge of Pi(s, t).

Note that by this definition a vertex may have more than one occurrence in
the deviations tree. However, there are at most k copies of each vertex in the
deviations tree, thus, the size of the tree is O(kn). An example of a deviations
tree is given in Figure 3. The deviation edges are in light color.

The main challenge is to quickly obtain the paths to be added to Q in each
iteration. Suppose we have extracted the i-th shortest path Pi(s, t) from Q.
After having Pi(s, t) in the deviations tree we need to find the new paths to be
added to Q. Let (ui, vi) be the deviation edge of Pi(s, t). In Yen’s algorithm the
path Pi(ui, t) = 〈w1, w2, . . . , wl〉, where w1 = ui and wl = t, is scanned. For
each vertex wj ∈ Pi(ui, t), the algorithm finds a shortest path P ′(wj , t) from
wj to t which does not use the edge (wj , wj+1). In the special case of w1 the
path P ′(w1, t) is obtained when all the edges emanate from the copy of w1 in
the tree are forbidden to use. Each such a path is concatenated to Pi(s, wj) and
added to Q. This is essentially a restricted replacement paths problem for the
path Pi(ui, t). Thus, we can claim the following:

Theorem 5. The algorithm of Yen combined with our restricted shortest paths
algorithm computes k simple shortest paths in Õ(km

√
n) time.

258 L. Roditty and U. Zwick

However, this process generates many paths and most of them are not needed.
Many of these paths can be ruled out without being actually computed by mak-
ing just two computations of second shortest paths in the i-th iteration.

Recall that Pi(s, t) is the i-th shortest path extracted from Q and (ui, vi) is its
deviation edge. Let Ed(vi) be the set of deviation edges emanate from Pi(vi, t).
We compute a second shortest path for the path Pi(vi, t) in the graph G(V,E \
Ed(vi)), concatenate it to Pi(s, vi) and add it to Q. This path is associated to
Pi(s, t). Note that in the first computation of a second shortest path for Pi(vi, t)
the set Ed(vi) is empty by its definition. However, we are not done yet. The
extracted path Pi(s, t) is associated to some other path Pj(s, t), where j < i.
Since we have extracted the path associated to Pj(s, t) we need to find a new
path, other than Pi(s, t), to associate to Pj(s, t). Let (uj , vj) be the deviation
edge of Pj(s, t). We compute a second shortest path for the path Pj(vj , t) in the
graph G(V,E \ Ed(vj)). By its definition the set Ed(vj) contains in this stage
the deviation edge of Pi(s, t), thus, the resulting second shortest path will be
other than Pi(s, t). We concatenate this path to Pj(s, vj) and add it to Q. The
algorithm is given in Figure 3. We assume that the deviation edge of the path
Pi(s, t) if exists is (ui, vi). For the path P1(s, t) we treat s as the head of a
deviation edge. We use the algorithm of Dijkstra to compute a shortest path
from s to t and the algorithm SP to compute a second shortest path given a
shortest path.

Next, we justify why the extracted path is only associated to one other path
or more precisely why a path cannot be added to Q as a second shortest path
of two different paths.

Lemma 2. In any stage all paths in Q are distinct.

Proof. To the purpose of the proof only we divide the paths of the graph into
disjoint sets. Each set is associated with a path which already was picked from Q.
The set Ci is associated with the path Pi(s, t). We prove that these sets exist
and any second shortest path in Q is associated to a different set. This implies
that all paths in Q are distinct.

We set C1 to be all the paths in the graph. After finding a second shortest path
for the first time we divide C1 into two sets. Let (u2, v2) be the deviation edge of
P2(s, t) then C2 is set to be all the paths from C1 that have the prefix P2(s, v2)
and C1 is set to C1 \ C2. Obviously, C1 and C2 are disjoint. Now computing a
second shortest path for P2(v2, t) and concatenating it with P2(s, v2) results in
a path from C2 and computing a second shortest path for the path P1(s, t) in
G(V,E\Ed(s)) results in a second shortest path in C1. (Note that Ed(s) contains
the edge (u2, v2).) Thus, the paths added to Q are from two disjoint sets. We
prove by induction that in general it also holds.

Suppose that right before the i-th extraction we have i− 1 disjoint sets, such
that for any j ≤ i − 1 the set Cj is associated to Pj(s, t) and a path composed
from the concatenation of Pj(s, vj) and a second shortest path of Pj(vj , t) in the
graph G(V,E \Ed(vj)) is the path in Q from Cj . We show that right before the
i+1-th extraction this invariant still holds. Let Pi(s, t) be the path picked from Q
in the i-th extraction. By the induction hypothesis we know that there is a set

Replacement Paths and k Simple Shortest Paths 259

Cj , disjoint from all the others, such that Pi(s, t) ∈ Cj and Pj(s, t) is associated
with Cj . Let (ui, vi) be the deviation edge of Pi(s, t). We divide Cj into two sets
as follow, Ci will have the paths from Cj with the prefix Pi(s, vi) and Cj is set
to Cj \Ci. The resulted sets are disjoint. Now computing a second shortest path
for Pi(vi, t) and concatenating it with Pi(s, vi) results in a path from Ci and
computing a second shortest path for the path Pj(vj , t) in G(V,E \Ed(vj)) and
concatenating it with Pj(s, vj) results in a second shortest path in Cj . In this
process the two paths added to Q are from different disjoint sets and the above
invariant still holds. �

It follows that once a path is out of Q only two second shortest path compu-
tations have to be done. We now claim the correctness of the algorithm.

Lemma 3. The algorithm computes k simple shortest paths.

Proof. The proof is by induction. For i = 1 the claim trivially holds. Suppose
that the i − 1 first paths are found by our algorithm. We prove that the i-th
path is found also. Let W be the weight of the i-th shortest path. Let Pi(s, t)
be an i-th shortest path. Let (ui, vi) be its deviation edge and let Pj(s, t) be the
path Pi(s, t) deviates from. We will show that the path Pi(s, t) or other path of
the same length must be associated to Pj(s, t).

Let (u′, v′) be the closest deviation edge to (ui, vi) on the path Pj(s, ui), if
exists, or let v′ = s otherwise. Consider the last time a second shortest path
computation was done for the path Pj(v′, t) before the i-th extraction. The
weight of the path P obtained in this computation is at most W since all the
edges of Pi(ui, t) are eligible to use. Suppose that the length of P is strictly less
than W then by the induction hypothesis the path P is extracted before the
i-th extraction. By our algorithm when P is extracted we recompute a second
shortest path for Pj(v′, t), the path that P was associated to. However, the
second shortest path computation that have added P was the last computation
done for Pj(v′, t) before the i-th extraction, a contradiction. �

The following Theorem stems from Lemma 2 and Lemma 3.

Theorem 6. The algorithm described above computes correctly the k simple
shortest paths of a directed graph by O(k) computation of second shortest paths.

4 Concluding Remarks and Open Problems

We presented a randomized O(m
√
n) time algorithm for the replacement paths

problem in unweighted graphs and in graphs with small integer weights. Many
problems are still open, however. In particular, is it possible to obtain an o(mn)
time algorithm for the replacement paths problem in weighted directed graphs?
Is it possible to obtain an o(mn) time algorithm for the second simple shortest
path in weighted directed graphs. A positive answer to one of these questions will
yield an o(kmn) time algorithm for finding the k simple shortest paths problem
in weighted directed graphs.

260 L. Roditty and U. Zwick

References

1. S. Baswana, R. Hariharan, and S. Sen. Improved decremental algorithms for tran-
sitive closure and all-pairs shortest paths. In Proc. of 34th STOC, pages 117–123,
2002.

2. S. Baswana, R. Hariharan, and S. Sen. Maintaining all-pairs approximate shortest
paths under deletion of edges. In Proc. of 14th SODA, pages 394–403, 2003.

3. C. Demetrescu and M. Thorup. Oracles for distances avoiding a link-failure. In
Proc. of 13th SODA, pages 838–843, 2002.

4. C. Demetrescu, M. Thorup, R. Alam Chaudhury, and V. Ramachandran. Oracles
for distances avoiding a link-failure.

5. D. Eppstein. Finding the k shortest paths. SIAM Journal on Computing,
28(2):652–673, 1998.

6. M. Henzinger and V. King. Fully dynamic biconnectivity and transitive closure.
In Proc. of 36th FOCS, pages 664–672, 1995.

7. J. Hershberger and S. Suri. Vickrey prices and shortest paths: what is an edge
worth? In Proc. of 42nd FOCS, pages 252–259, 2001.

8. J. Hershberger and S. Suri. Erratum to “vickrey pricing and shortest paths: What
is an edge worth?”. In Proc. of 43rd FOCS, page 809, 2002.

9. J. Hershberger, S. Suri, and A. Bhosle. On the difficulty of some shortest path
problems. In Proc. of the 20th STACS, pages 343–354, 2003.

10. D.R. Karger, D. Koller, and S.J. Phillips. Finding the hidden path: time bounds
for all-pairs shortest paths. SIAM Journal on Computing, 22:1199–1217, 1993.

11. N. Katoh, T. Ibaraki, and H. Mine. An efficient algorithm for K shortest simple
paths. Networks, 12(4):411–427, 1982.

12. E.L. Lawler. A procedure for computing the K best solutions to discrete opti-
mization problems and its application to the shortest path problem. Management
Science, 18:401–405, 1971/72.

13. K. Malik, A. K. Mittal, and S. K. Gupta. The k most vital arcs in the shortest
path problem. Operations Research Letters, 8(4):223–227, 1989.

14. E. Nardelli, G. Proietti, and P. Widmayer. A faster computation of the most vital
edge of a shortest path. Information Processing Letters, 79(2):81–85, 2001.

15. N. Nisan and A. Ronen. Algorithmic mechanism design. Games and Economic
Behavior, 35:166–196, 2001.

16. L. Roditty and U. Zwick. Dynamic approximate all-pairs shortest paths in undi-
rected graphs. In Proc. of 45th FOCS, 2004. 499-508.

17. L. Roditty and U. Zwick. On dynamic shortest paths problems. In Proc. of 12th
ESA, 2004. 580–591.

18. M. Thorup. Undirected single-source shortest paths with positive integer weights
in linear time. Journal of the ACM, 46:362–394, 1999.

19. J.D. Ullman and M. Yannakakis. High-probability parallel transitive-closure algo-
rithms. SIAM Journal on Computing, 20:100–125, 1991.

20. J.Y. Yen. Finding the K shortest loopless paths in a network. Management Science,
17:712–716, 1970/71.

21. U. Zwick. All-pairs shortest paths using bridging sets and rectangular matrix
multiplication. Journal of the ACM, 49:289–317, 2002.

Deterministic Constructions of
Approximate Distance Oracles and Spanners

Liam Roditty1, Mikkel Thorup2, and Uri Zwick1

1 School of Computer Science, Tel Aviv University, Israel
2 AT&T Research Labs, USA

Abstract. Thorup and Zwick showed that for any integer k ≥ 1, it is possible to
preprocess any positively weighted undirected graph G = (V, E), with |E| = m
and |V | = n, in Õ(kmn1/k) expected time and construct a data structure (a
(2k − 1)-approximate distance oracle) of size O(kn1+1/k) capable of return-
ing in O(k) time an approximation δ̂(u, v) of the distance δ(u, v) from u to v
in G that satisfies δ(u, v) ≤ δ̂(u, v) ≤ (2k − 1) ·δ(u, v), for any two vertices
u, v ∈ V . They also presented a much slower Õ(kmn) time deterministic algo-
rithm for constructing approximate distance oracle with the slightly larger size
of O(kn1+1/k log n). We present here a deterministic Õ(kmn1/k) time algo-
rithm for constructing oracles of size O(kn1+1/k). Our deterministic algorithm
is slower than the randomized one by only a logarithmic factor.

Using our derandomization technique we also obtain the first determinis-
tic linear time algorithm for constructing optimal spanners of weighted graphs.
We do that by derandomizing the O(km) expected time algorithm of Baswana
and Sen (ICALP’03) for constructing (2k − 1)-spanners of size O(kn1+1/k) of
weighted undirected graphs without incurring any asymptotic loss in the running
time or in the size of the spanners produced.

1 Introduction

Thorup and Zwick [16] showed that for any integer k ≥ 1, any graph G = (V,E), with
|V | = n and |E| = m, can be preprocessed in Õ(kmn1/k) expected time, producing
an approximate distance oracle of size O(kn1+1/k) capable of returning, in O(k) time,
a stretch 2k − 1 approximation of δ(u, v), for any u, v ∈ V . As discussed in [16],
the stretch-size tradeoff presented by this construction is believed to be optimal. The
approximate distance oracles of [16] improve previous results of [4] and [7]. For other
results dealing with approximate distances, see, [1],[6],[8],[10],[11] [12].

We present here two independent extensions of the result of [16]. The first extension
deals with situations in which we are only interested in approximate distances from
a specified set S ⊆ V of sources. We show that both the construction time and the
space requirements of the appropriate data structure can be reduced in this case. More
specifically, we show that if |S| = s, then the expected preprocessing time can be
reduced from Õ(mn1/k) to Õ(ms1/k) and the space required can be reduced from
O(kn1+1/k) to O(kns1/k). This is significant when s 0 n. We call the obtained data
structures source-restricted approximate distance oracles.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 261–272, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

262 L. Roditty, M. Thorup, and U. Zwick

We then move on to solve a major open problem raised in [16], namely the de-
velopment of deterministic algorithms for constructing approximate distance oracles
that are almost as efficient as the randomized ones. The deterministic construction in
[16] first computes exact APSP in Õ(mn) time, and then uses the complete distance
matrix to derandomize the randomized construction algorithm. In addition to being
much slower, the space used by the constructed stretch 2k − 1 oracles is increased to
O(kn1+1/k log n). Our new derandomization loses only a logarithmic factor in running
time and suffers no asymptotic loss in space. Thus we get a deterministic Õ(mn1/k)
time algorithm for constructing stretch 2k − 1 approximate distance oracles of size
O(kn1+1/k), solving the problem from [16]. For the source-restricted distance ora-
cles with s sources, the deterministic construction time and space is Õ(ms1/k) and
O(kns1/k), respectively.

The techniques we use to obtain the new deterministic algorithm can also be used to
derandomize the expected linear time algorithm of Baswana and Sen [5] for construct-
ing (2k − 1)-spanners of size O(kn1+1/k), retaining the linear running time and the
O(kn1+1/k) size of the spanners. Similarly, they can be used to improve the determin-
istic algorithm of Dor et al. [10] for the construction of 2-emulators (surplus 2 additive
spanners) of unweighted graphs. The size of the emulators produced is reduced by a
factor of O(

√
log n) to the optimal O(n3/2), with a similar improvement is obtained

in the running time. Furthermore, our techniques can be used to improve the the algo-
rithm of Baswana and Sen [6] for the construction of approximate distance oracles for
unweighted graphs and make it run, deterministically, in O(n2) time, which is optimal
in terms on n. (Due to lack of space we will not elaborate on this result here.)

The new deterministic algorithm uses two new ingredients that are of interest in
their own right and may find additional applications. They are both simple and im-
plementable. The first ingredient is an Õ(qm) time algorithm that given a weighted
directed graph G = (V,E), a subset U ⊆ V of sources, and an integer q, finds for
every vertex v ∈ V the set of the q vertices of U that are closest to v.

The second ingredient is a linear time deterministic algorithm for constructing close
dominating sets. For a definition of this concept, see Section 4.

The rest of this extended abstract is organized as follows. In the next Section we
present the construction of source-restricted approximate distance oracles. In Section 3
we present the algorithm for finding the nearest neighbors. In Section 4 we describe
the linear time algorithm for constructing close dominating sets. In Section 5 we then
present the main result of this paper, an efficient deterministic algorithm for construct-
ing approximate distance oracles. Due to lack of space we cannot describe here the
deterministic version of the linear time spanner construction algorithm of Baswana and
Sen [5]. This algorithm will appear in the full version of the paper.

2 Source-Restricted Approximate Distance Oracles

We present here an extension of the approximate distance oracle construction of [16].

Theorem 1. Let G = (V,E) be an undirected graph with positive weights attached to
its edges. Let k ≥ 1 be an integer, and let S ⊆ V be a specified set of sources. Then, it is

Deterministic Constructions of Approximate Distance Oracles and Spanners 263

algorithm preprok(G, S)

A0 ← S ; Ak ← φ

for i← 1 to k − 1
Ai ← sample(Ai−1, |S|−1/k)

for every v ∈ V

for i← 0 to k − 1
let δ(Ai, v)← min{ δ(w, v) | w ∈ Ai}
let pi(v) ∈ Ai be such that δ(pi(v), v) = δ(Ai, v)

δ(Ak, v)←∞
let B(v)← ∪k−1

i=0 {w ∈ Ai −Ai+1 | δ(w, v) < δ(Ai+1, v)}
let H(v)← hash(B(v))

Fig. 1. The randomized preprocessing algorithm

possible to preprocess G in Õ(km|S|1/k) expected time, and produce a data structure
of size O(kn|S|1/k), such that for any u ∈ S and v ∈ V it is possible to produce, in
O(k) time, an estimate δ̂(u, v) of the distance δ(u, v) from u to v in G that satisfies
δ(u, v) ≤ δ̂(u, v) ≤ (2k − 1)·δ(u, v).

Thorup and Zwick [16] prove Theorem 1 for the case S = V . The proof of The-
orem 1 is obtained by slightly modifying the construction of [16]. For the sake of
completeness, we give the full details. This also allows us to review the randomized
construction of [16] before presenting a deterministic version of it later in this paper.

Proof. A high level description of the preprocessing algorithm is given in Figure 1.
The algorithm starts by defining a hierarchy A0 ⊇ A1 ⊇ A2 ⊇ · · · ⊇ Ak of subsets
of S in the following way: We begin with A0 = S. For every 1 ≤ i < k, we let Ai

be random subset of Ai−1 obtained by selecting each element of Ai−1, independently,
with probability |S|−1/k. Finally, we let Ak = φ. The elements of Ai are referred to as
i-centers. A similar hierarchy is used in [16]. There, however, we have A0 = V , and Ai,
for 1 ≤ i < k, is obtained by selecting each element of Ai−1 with probability n−1/k.
Interestingly, this is the only change needed with respect to the construction of [16].

Next, the algorithm finds, for each vertex v ∈ V , and each 1 ≤ i < k, the distance
δ(Ai, v) = min{δ(w, v) | w ∈ Ai} and an i-center pi(v) ∈ Ai that is closest to v. (We
assume Ak−1 �= φ.) For every vertex v ∈ V it then defines the bunch B(v) as follows:

B(v) = ∪k−1
i=0 Bi(v) , Bi(v) = {w ∈ Ai | δ(w, v) < δ(Ai+1, v) } .

Note that Bi(v) ⊆ Ai−Ai+1 as if w ∈ Ai+1 then δ(Ai+1, v) ≤ δ(w, v). We show later
that the centers pi(v) can be found in Õ(km) time and that the bunches B(v), and the
distances δ(w, v), for every w ∈ B(v), can be found in Õ(km|S|1/k) expected time.

Finally, for every vertex v ∈ V the preprocessing algorithm constructs a hash table
H(v) of size O(|B(v)|) that stores for each w ∈ B(v) the distance δ(w, v). The hash
table is constructed in O(|B(v)|) expected time using the algorithm of Fredman et al.

264 L. Roditty, M. Thorup, and U. Zwick

[13]. (For a deterministic version, see Alon and Naor [2].) For every w ∈ V we can
then check, in O(1) time, whether w ∈ B(v) and if so obtain δ(w, v).

The total size of the data structure produced is O(kn +
∑

v∈V |B(v)|). We next
show that for every v ∈ V we have E[|B(v)|] ≤ k|S|1/k, and thus the expected size
of the whole data structure is O(kn|S|1/k).

Lemma 1. For every vertex v ∈ V we have E[|B(v)|] ≤ k|S|1/k.

Proof. We show that E[|Bi(v)|] ≤ |S|1/k, for 0 ≤ i < k. For i = k − 1 the claim
is obvious as Bk−1(v) ⊆ Ak−1, and E[|Ak−1|] = |S|1/k. Suppose, therefore, that
0 ≤ i < k − 1, and suppose that Ai was already chosen, while Ai+1 is now about to
be chosen. Let w1, w2, . . . , w� be the vertices of Ai arranged in non-decreasing order
of distance from v. If wj ∈ Ai+1, then Bi(v) ⊆ {w1, w2, . . . , wj−1}. Thus Pr[wj ∈
Bi(v)] ≤ Pr[w1, w2, . . . , wj−1 �∈ Ai+1]. As each vertex of Ai is placed in Ai+1,
independently, with probability p = |S|−1/k, we get that Pr[wj ∈ Bi(v)] ≤ (1−p)j−1

and thus E[|Bi(v)|] ≤
∑

j≥1(1− p)j−1 = p−1 = |S|1/k, as required. �

The algorithm used to answer approximate distance queries is given in Figure 2.

Lemma 2. For every u ∈ S and v ∈ V , algorithm distk(u, v) runs in O(k) time and
returns an approximate distance δ̂(u, v) satisfying δ(u, v) ≤ δ̂(u, v) ≤ (2k−1)δ(u, v).

Proof. Let Δ = δ(u, v). We begin by proving, by induction, that at the start of each
iteration of the while loop we have w ∈ Ai and δ(w, u) ≤ iΔ. This clearly holds at the
start of the first iteration, when i = 0, as w = u ∈ S = A0 and δ(w, u) = 0. (Here
is were we use the assumption that u ∈ S.) Suppose, therefore that the claim holds at
the start of some iteration, i.e., w ∈ Ai and δ(w, u) ≤ iΔ, and that the while condition,
i.e., w �∈ B(v), is satisfied. Let w′ = pi+1(v) ∈ Ai+1. As w �∈ B(v), we get, by the
definition of B(v), that δ(w′, v) = δ(Ai+1, v) ≤ δ(w, v). We therefore have

δ(w′, v) ≤ δ(w, v) ≤ δ(w, u) + δ(u, v) ≤ iΔ + Δ = (i + 1)Δ .

Thus, by incrementing i, swapping u and v and letting w ← w′ we reestablish the
invariant condition. (The algorithm performs these operations in a slightly different
order.)

In each iteration of the while loop the algorithm performs only a constant number of
operations. (To check whether w ∈ B(v) it uses the hash table H(v).) As B(v) ⊇ Ak−1

and w ∈ Ai, the algorithm performs at most k−1 iterations and hence the running time
is O(k).

When the while loop terminates, we have δ(w, u) ≤ iΔ, w ∈ B(v) and i ≤ k − 1.
The algorithm then returns the estimate δ̂(u, v) = δ(w, u) + δ(w, v) which satisfies

δ(w, u) + δ(w, v) ≤ δ(w, u) + (δ(w, u) + δ(u, v))
= 2δ(w, u) + Δ ≤ 2(k − 1)Δ + Δ ≤ (2k − 1)Δ ,

as required. �

Deterministic Constructions of Approximate Distance Oracles and Spanners 265

All that remain, therefore, is to explain how the preprocessing algorithm can be
implemented to run in Õ(km|S|1/k) time. Finding for each vertex v ∈ V and every
0 ≤ i < k the vertex pi(v) ∈ Ai closest to v is fairly easy. For every 0 ≤ i < k we
add a new source vertex si to the graph and connect it with zero weight edges to all
the vertices of Ai. By running Dijkstra’s algorithm (see [9]) we compute the distances
from si to all other vertices and construct a shortest paths tree rooted at si. The distances
thus computed are exactly δ(Ai, v), for every v ∈ V . Using the shortest paths tree it is
easy to identify for every v ∈ V a vertex pi(v) ∈ Ai for which δ(pi(v), v) = δ(Ai, v).
The whole process requires only Õ(km) time.

We next describe an Õ(km|S|1/k) algorithm for constructing the bunches B(v), for
every v ∈ V . Instead of computing the bunches directly, we compute their ‘duals’. For
every i-center w ∈ Ai −Ai+1 we define the cluster C(w) as follows:

C(w) = {v ∈ V | δ(w, v) < δ(Ai+1, v) } , for w ∈ Ai −Ai+1 .

It is easy to see that v ∈ C(w) if and only if w ∈ B(v). We now claim:

Lemma 3. If v ∈ C(w), and u is on a shortest path from w to v in G, then u ∈ C(w).

Proof. Suppose that w ∈ Ai − Ai+1. If u �∈ C(w), then δ(Ai+1, u) ≤ δ(w, u). But
then δ(Ai+1, v) ≤ δ(Ai+1, u) + δ(u, v) ≤ δ(w, u) + δ(u, v) = δ(w, v), contradicting
the assumption that v ∈ C(w). �

It follows that the cluster C(w) can be constructed using the modified version of
Dijkstra’s algorithm given in Figure 3. For the straightforward correctness proof, the
reader is referred to [16]. The running time of the algorithm, when Fibonacci heaps [14]

algorithm distk(u, v)

(Assumption: u ∈ S)

w ← u ; i← 0

while w �∈ B(v)
i← i + 1
(u, v)← (v, u)
w ← pi(u)

return δ(w, u) + δ(w, v)

Fig. 2. Answering a distance query

algorithm cluster(G, w, A)

d[w]← 0 ; C ← φ
Q← φ ; insert(Q, w, d[w])

while Q �= φ

u← extract-min(Q)
C ← C ∪ {u}
for every (u, v) ∈ E

d← d[u] + �(u, v)
if d < δ(A, v) then

if v �∈ Q then
d[v]← d ; insert(Q, v, d[v])

else if d < d[v] then
d[v]← d ; decrease-key(Q, v, d)

return C

Fig. 3. Constructing a cluster

266 L. Roditty, M. Thorup, and U. Zwick

(see also [9]) are used to implement the priority queue Q, is O(mw + nw log nw) =
O(mw +nw log n), where nw = |C(w)| and mw is the total number of edges touching
the vertices of C(w). This is O(log n) time per vertex v in C(w) and constant time per
edge touching such a vertex v. However, v ∈ C(w) ⇐⇒ w ∈ B(v) and E[|B(v)] ≤
ks1/k, so the total expected running time needed for constructing all clusters is O((m+
n log n)ks1/k), as required. The running time can be reduced to O(kms1/k) using the
techniques of Thorup [15]. This completes the proof of Theorem 1. �

3 A Deterministic Algorithm for Finding the q Nearest Centers

Let G = (V,E) be a weighted directed graph and let U ⊆ V be an arbitrary set of
sources, or centers. We start with a formal definition of the set Uq(v) of the q nearest
centers from U of a vertex v ∈ V . We assume that all edge weights are positive. We
also assume, without loss of generality, that V = {1, 2 . . . , n}.

Definition 1 (Nearest centers from U). Let G = (V,E) be a directed graph with
positive edge weights assigned to its edges. Let U ⊆ V be an arbitrary set of sources,
and let 1 ≤ q ≤ |U | be an integer. For every v ∈ V , the set Uq(v) is defined to be the
set of the q vertices of U that are closest to v. Ties are broken in favor of vertices with
smaller indices. More precisely, for every v ∈ V we have Uq(v) ⊆ U , |Uq(v)| = q
and if w1 ∈ Uq(v) while w2 �∈ Uq(v) then either δ(w1, v) < δ(w2, v) or δ(w1, v) =
δ(w2, v) and w1 < w2.

The following lemma, which is reminiscent of Lemma 1, is easily verfied.

Lemma 4. If u ∈ Uq(v) and w lies on a shortest path from u to v in G, then u ∈ Uq(w).

We now claim:

Theorem 2. Let G = (V,E) be a directed graph with positive weights assigned to its
edges. Let U ⊆ V be an arbitrary set of sources, and let 1 ≤ q ≤ |U | be an integer.
Then, the sets Uq(v), for every v ∈ V , can be computed by performing q single-source
shortest paths computations on graphs with at most O(n) vertices and O(m) edges.

Proof. We begin by finding for every vertex v ∈ V its nearest neighbor in U . This is
easily done by adding a new source vertex s to the graph, connecting it with 0 length
edges to all the vertices of U , and computing a tree of shortest paths in the resulting
graph. This gives us U1(v), for every v ∈ V .

Suppose now that we have already computed Ui−1(v), for every v ∈ V . We show
that Ui(v), for every v ∈ V can be obtained by finding a tree of shortest paths in
an auxiliary graph with O(n) vertices and O(m + n) edges. This auxiliary graph is
constructed as follows:

1. Add to G a new source vertex s and copies of all vertices of U . If u ∈ U , we let ū
denote the copy of u. Add a 0 length edges from s to ū, for every u ∈ U .

2. For every edge (v, w) ∈ E:
(a) If Ui−1(v) = Ui−1(w), keep the edge (v, w).

Deterministic Constructions of Approximate Distance Oracles and Spanners 267

(b) Otherwise, if Ui−1(v) �= Ui−1(w) and u is the first vertex in Ui−1(v) −
Ui−1(w), replace the edge (v, w) by an edge (ū, w) of length δ(u, v)+�(v, w).

The auxiliary graph thus contains n + |U |+ 1 vertices and m + |U | edges. It is not
difficult to check that u is the i-th nearest neighbor from U of all the vertices in the
subtree of ū in the tree of shortest paths from s in this auxiliary graph. The proof is
fairly straightforward and is omitted due to lack of space. �

4 A Deterministic Construction of Close Dominating Sets

Instead of dealing directly with the close dominating sets from the introduction, it is
convenient first to consider a simpler case phrased in terms of a matrix. In that context,
we will talk about early hitting sets: Let M be an n×k matrix whose elements are taken
from a finite set S of size |S| = s. We assume that the elements in each row of M are
distinct. A set A is said to be a hitting set of M if and only if every row of M contains
an element of A. A standard calculation shows that if each element of S is placed in A,
independently, with probability (c lnn)/k, for some c > 1, then with a probability of at
least 1 − n1−c the resulting set A is a hitting set of M . The expected size of A is then
(c s lnn)/k. We are interested in hitting sets of small size that hit the rows of M close
to their beginnings, at least on average.

Definition 2 (Hitting sums). Let M be an n× k matrix, let A be a set, and let P ≥ 0
be a penalty. Let hit(Mi, A) be the index of the first element of Mi, the i-th row of M ,
that belongs to A, or k + P , if no element of Mi belongs to A. Let hit(M,A) =∑n

i=1 hit(Mi, A) be the hitting sum of A with respect to M .

Note that a set A need not be a hitting set of M for the hitting sum hit(M,A) to be
defined. A penalty of P , plus the length of the row, is paid, however, for each row that is
not hit. Typically, the goal is to hit all rows avoiding all penalties. A set A with a small
hitting sum hit(M,A) is informally referred to as an early hitting set. The following
simple probabilistic lemma proves the existence of small early hitting sets.

Lemma 5. Let M be an n × k matrix whose elements are taken from a finite set S of
size |S| = s and let P ≥ 0 be a penalty. Then, for every 0 < p < 1 there exists a set
A ⊆ S for which n

p2s |A|+hit(M,A) ≤ 2n/p+(1−p)kPn. In particular, if pP ≥ 3n
and pP (1− p)k ≤ 1 than all rows are hit with |A| < 3ps and hit(M,A) < 3n/p.

Proof. Let A be a random subset of S obtained by selecting each element of S, inde-
pendently, with probability p. It is easy to see that

E[|A|] = p s ,

E[hit(Mi, A)] =
k∑

j=1

(1− p)j−1 + (1− p)kP < p−1 + (1− p)kP ,

and thus E[n
p2s |A| + hit(M,A)] ≤ 2n

p + (1 − p)kPn. This proves the existence of
the required set.

268 L. Roditty, M. Thorup, and U. Zwick

Concerning the last statement, the condition pP (1 − p)−k < 1 implies that the
right hand side is at most 3n/p. By the first condition, this corresponds to at most a
single penalty, but since we have other costs, we conclude that we pay no penalties. The
bounds on |A| and hit(M,A) follow because each term on the left hand size is non-zero
and strictly smaller than the right hand side. �

The main result of this section is a deterministic linear time algorithm for con-
structing early hitting sets that almost match the bounds of Lemma 5. Quite naturally,
the algorithm is based on the method of conditional expectations (see, e.g., Alon and
Spencer [3]). The challenge is to get a running time linear in the size of the matrix M .

Theorem 3. Let M be an n× k matrix whose elements are taken from a finite set S of
size |S| = s and let P ≥ 0 be a penalty. Let 0 < p < 1. Then, there is a deterministic
O(nk) time algorithm that finds a set A ⊆ S for which n

p2s |A|+ hit(M,A) ≤ 3n/p +
(1 − p)kPn. In particular, if pP ≥ 4n and pP (1 − p)k ≤ 1 then all rows are hit with
|A| < 3ps and hit(M,A) < 3n/p.

Proof. Let A0, A1 ⊆ S be two disjoint sets. Define

hit(M | A0, A1) = E[
n

p2s
|A|+ hit(M,A) | A1 ⊆ A ⊆ Ac

0] .

In other words, hit(M |A0, A1) is the (conditional) expectation of the random variable
n

p2s |A| + hit(M,A) where the set A is chosen in the following way: Each element of
A1 is placed in A. Each element of A0 is not placed in A. Each other element is placed
in A, independently, with probability p.

Lemma 5 states that hit(M,A) = hit(M | φ, φ) ≤ μ = 2n/p + (1− p)kPn. Our
goal it to deterministically find a set A ⊆ S such that hit(M | Ac, A) ≤ μ. Suppose that
we have already found two disjoint sets A0, A1 ⊆ S such that hit(M | A0, A1) ≤ μ
and that e ∈ S − (A0 ∪A1). We then have

hit(M | A0, A1) = p·hit(M | A0, A1 ∪ {e}) + (1− p)·hit(M | A0 ∪ {e}, A1) .

Thus, at least one of the two conditional expectations appearing above is at least μ. We
choose it and then consider another element that was not yet placed in either A0 and A1.
Continuing in this way, we get two disjoint sets A0, A1 ⊆ S such that A0 ∪ A1 = S
and hit(M | A0, A1) ≤ μ, as required. This is precisely the method of conditional
expectations.

The remaining question is the following: Given hit(M | A0, A1) and an element
e ∈ S − (A0 ∪ A1), how fast can we compute hit(M | A0, A1 ∪ {e}) and hit(M |
A0∪{e}, A1)? Let us focus on the computation of the conditional expectations hit(Mi |
A0, A1 ∪ {e}) and hit(Mi | A0 ∪ {e}, A1) corresponding to the i-th row of M .

Let ni = ni(A1) be the index of the first element in Mi that belongs to A1. If none
of the elements of Mi belongs to A1, we let ni = ∞. Let ni,j = ni,j(A0) be the
number of elements among the first j elements of Mi that do not belong to A0. (We let
ni,0 = 0.) It is easy to see that

hit(Mi | A0, A1) =
min{ni,k}∑

j=1

(1− p)ni,j−1 +

{
(1− p)ni,kP if ni = ∞

0 otherwise
.

Deterministic Constructions of Approximate Distance Oracles and Spanners 269

Maintaining the penalty term (1 − p)ni,kP is easy. To simplify the presentation we
therefore ignore this term. (In other words we assume that P = 0. The changes needed
when P > 0 are minimal.) Let

xi,j =

{
(1− p)ni,j−1 if j ≤ ni ,

0 otherwise .

With this notation, and with the assumption P = 0, we clearly have hit(Mi | A0, A1) =∑k
j=1 xi,j . We now consider the changes that should be made to the xi,j’s when an ele-

ment e is added to A0 or to A1. If e does not appear in Mi, then no changes are required.
Assume, therefore, that Mir = e, i.e., the e is the r-th element in Mi. If r > ni, then
again no changes are required. Assume, therefore, that r < ni.

If e is added to A1, then the required operations are ni ← r and xi,j ← 0, for
r < j ≤ k. If e is added to A0, then the required operations are ni,j ← ni,j − 1, for
r ≤ j ≤ k, and therefore xi,j ← xi,j/(1 − p), again for r ≤ j ≤ k. In both cases, the
new conditional expectation is the new sum

∑k
j=1 xi,j .

These operations can be implemented fairly efficiently using a data structure that
maintains an array x = [x1, x2, . . . , xq] of q real numbers under the following update
operations: init(x) – initialize the array x; scale(i, j, a) – multiply the elements in
the sub-array [xi, . . . , xj] by the constant a; sum – return the sum

∑k
i=1 xi; and

undo – undo the last update operation. (The undo operation is required for tentatively
placing new elements in A0 and then in A1.) Using standard techniques it is not difficult
to implement such a data structure that can be initialized in O(k) time and that can
support each update operation in O(log k) time. However, the description of such a
data structure is not short, and the resulting algorithm would have an over all non-linear
running time of O(nk log k). Luckily, there is a simpler to implement, and a more
efficient, solution. Let us define the following variant of hitting sums:

Definition 3 (Dyadic hitting sums). Let M be an n × k matrix, let A be a set, and
let P ≥ 0 be a penalty. Let hit(Mi, A) = 2�log2 hit(Mi,A)� be the smallest power of 2
greater or equal to the index of the first element of Mi that belongs to A, or q+P , if no
element of Mi belongs to A. Let hit(M,A) =

∑n
i=1 hit(Mi, A) be the dyadic hitting

sum of A with respect to M .

Clearly hit(M,A) ≤ hit(M,A) < 2·hit(M,A). Thus, as in the proof of Lemma 5,
we get that E[n

p2s |A|+hit(M,A)] ≤ 3n/p+(1−p)kPn. The conditional expectation

hit(M | A0, A1) is defined in the obvious analogous way. Now define

k̄ = (log2 k), n̄i = (log2 ni) , n̄i,j = ni,2j ,

x̄i,j =

{
(1− p)n̄i,j−1 if j ≤ n̄i ,

0 otherwise .
, ȳi,r = 1 +

r∑
j=1

x̄i,j2j−1

With these definitions we have hit(Mi | A0, A1) = ȳi,k̄−1.
Each update now trivially takes O(k̄) = O(log k) worst-case time, even if we im-

plement the updates naively. Furthermore, we argue that the amortized cost of each
update is only O(1)!

270 L. Roditty, M. Thorup, and U. Zwick

procedure init(i)

x̄i,1 ← 1− p
ȳi,1 ← 1 + x̄i,1

for j ← 2 to k̄ − 1
x̄i,j ← x̄2

i,j−1

ȳi,j ← ȳi,j−1 + x̄i,j ·2j−1

procedure update0(i, r)

r̄ ← �log2 r�
for j ← r̄ to k̄ − 1

x̄i,j ← x̄i,j/(1− p)
ȳi,j ← ȳi,j−1 + x̄i,j ·2j−1

return ȳi,k̄−1

procedure update1(i, r)

r̄ ← �log2 r�
for j ← r̄ + 1 to k̄ − 1

x̄i,j ← 0
ȳi,j ← yi,j−1

return ȳi,k̄−1

Fig. 4. Updating the conditional expectations

A complete description of procedures used to initialize and update the conditional
expectations is given in Figure 4. A call to init(i) initializes x̄i,j = (1 − p)2

j−1
and

ȳi,r = 1+
∑r

j=1 x̄i,j·2j−1, for 1 ≤ r ≤ k̄−1. Calls to update0(i, j) and update1(i, j),
respectively, perform the necessary updates to the i-rows of the arrays x[i, j] and y[i, j]
as a result of adding the element e = Mir to A0, or to A1, and return the new value of
hit(Mi|A0, A1). The difference between the old and the new value of hit(Mi|A0, A1)
should also be applied to the global sum hit(M | A0, A1) =

∑n
i=1 hit(Mi|A0, A1).

It is easy to implement an undo(i) procedure that undos the last update performed on
the i-th row. We simply need to record the operations made and undo them in reverse
order. To obtain hit(M,A0, A1), we simply sum hit(Mi|A0, A1) up, for 1 ≤ i ≤ n.
The correctness of the computation follows from the long discussion above.

All that remains is to analyze the complexity of the proposed algorithm. Each el-
ement e ∈ S is considered once by the algorithm. For each appearance of e = Mir

in M we need to call update0(i, r) and update1(i, r). The complexity of these calls is
O(k̄ − r̄ + 1) = O((log2 k) − (log2 r) + 1). For every 2k̄−j ≤ r ≤ 2k̄−j+1, where
1 ≤ j ≤ k̄, the cost is O(j). Thus, the total cost of handling all the elements of the i-th
row is O(k

∑
j≥1 j2−j) = O(k). The total cost is therefore O(kn), as required. The

last statement of the theorem is derived like the last statement of Lemma 5. �

Theorem 4. A close dominating set of any given size can be found in linear time.

Proof. We now consider the closest dominating set problem from the introduction,
modifying our early hitting set algorithm to solve this problem. The first change is
to let each row Mi to have an individual length ki ≤ k. The total number of elements
is then m =

∑n
i=1 ki. We also make the change that there is only a penalty P for not

hitting a full row Mi with ki = k. It is straightforward to modify the previous early
hitting set algorithm for these variable length rows. Essentially, we just replace k and k̄
by ki and k̄i, and drop the penalty for the partial rows. We then get a deterministic al-
gorithm that in O(m) time finds a hitting set A with the same properties as those stated
in Theorem 3. In particular, if pP ≥ 4n and pP (1 − p)k ≤ 1 then all full rows are hit
with |A| < 3ps and hit(M,A) < 3n/p.

We now need to transform our bipartite graph G = (U, V,E) to the matrix form.
The set S of elements that are placed in the matrix is simply the set U . The matrix
constructed has a row for each vertex v ∈ V . Ideally, the row Mv would contain the

Deterministic Constructions of Approximate Distance Oracles and Spanners 271

neighboring centers u ordered according to the edge weights �(u, v). The list should
be truncated to only contain the k = (s/h)(2 + lnn) nearest centers. The lists with k
centers are the full rows with a penalty P for not being hit. We use p = h/(3s) and
P = 12ns/h. Then pP = 4n and

pP (1− p)k < 4n exp(−(h/s)(s/h(2 + lnn)) < 4/e2 < 1.

Since the conditions are satisfied, we get a set A hitting all full rows with |A| < 3ps = h,
and hit(M,A) < 3n/p = 9ns/h. This also means that A is a close dominating set.

Our only remaining problem is that we cannot sort neighboring centers according
to distance. However, thanks to the dyadic solution, it suffices to apply a linear time se-
lection algorithm (see, e.g., [9]). First, if a vertex v has more the k neighboring centers,
we apply selection to find the k nearest centers. Next, for r decreasing from +log2 ki,
down to 0, we identify the 2r nearest centers. The total running time is linear, and this
provides a sufficient sorting for the diadic hitting sum algorithm. �

5 A Deterministic Construction of Approximate Distance Oracles

In this section we present a deterministic algorithm for constructing (source-restricted)
approximate distance oracles. The algorithm is slower than the randomized algorithm
of Theorem 1 by only a logarithmic factor. Obtaining such a deterministic algorithm is
one of the open problems mentioned in [16].

Theorem 5. Let G = (V,E) be an undirected graph with positive weights attached to
its edges. Let k ≥ 1 be an integer, and let S ⊆ V be a specified set of sources. Then,
it is possible to preprocess G, deterministically, in Õ(km|S|1/k) time, and produce a
data structure of size O(kn|S|1/k), such that for any u ∈ S and v ∈ V it is possible to
produce, in O(k) time, an estimate δ̂(u, v) of the distance δ(u, v) from u to v in G that
satisfies δ(u, v) ≤ δ̂(u, v) ≤ (2k − 1)·δ(u, v).

algorithm detprek(G, S)

A0 ← S ; Ak ← ∅
p← 1

4
|S|−1/k ; �← 3|S|1/k ln n ; P ← n2

for i← 1 to k − 1
Ni−1 ← near(G, Ai−1, �)
Create bipartite graph B from Ai−1 to V with
an edge (u, v) of length δG(u, v) if u ∈ Ni−1[v].
Ai ← domset(B, s1−i/k)

for every v ∈ V
B(v)← Ak−1

for i← 0 to k − 2
B(v)← B(v)∪{w ∈ Ni[v] | δ(w, v) < δ(Ai+1, v) }

Fig. 5. The deterministic preprocessing algorithm

272 L. Roditty, M. Thorup, and U. Zwick

Proof. The deterministic preprocessing algorithm is given in Figure 5. It is composed
of k − 1 iteration. The i-th iteration constructs the set Ai. We let s = |S| and � =
(s1/k(2 + lnn)), the iteration begins by finding for each vertex v ∈ V the set Ni[v]
of the � vertices of Ai−1 that are nearest v, using algorithm near of Section 3. The
running time of the algorithm is Õ(ms1/k). Next we create a bipartite graph B from
Ai−1 to V with an edge (u, v) of length δG(u, v) if u ∈ Ni−1[v]. Using the algorithm
of Theorem 4, which we here call domset, we now find a close dominating subset Ai

of size hi = s1−i/k = |Ai−1|/s1/k. Since each vertex have at least s1/k(2 + lnn) =
|Ai−1|/hi(2+lnn) neighboring centers, we know that Ai hits all these neighborhoods.
The result is that in the original graph G, the sum of the number of centers in from Ai−1

nearer than then nearest center in Ai is at most 9|Ai−1|/hi = O(ns1/k). It follows that
the total size of the bunches returned by the algorithm is in O(kns1/k), as required. �

References

1. D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fast estimation of diameter and short-
est paths (without matrix multiplication). SIAM Journal on Computing, 28:1167–1181, 1999.

2. N. Alon and M. Naor. Derandomization, witnesses for Boolean matrix multiplication and
construction of perfect hash functions. Algorithmica, 16:434–449, 1996.

3. N. Alon and J.H. Spencer. The probabilistic method. Wiley-Interscience, 2nd edition, 2000.
4. B. Awerbuch, B. Berger, L. Cowen, and D. Peleg. Near-linear time construction of sparse

neighborhood covers. SIAM Journal on Computing, 28:263–277, 1999.
5. S. Baswana and S. Sen. A simple linear time algorithm for computing (2k − 1)-spanner of

O(n1+1/k) size for weighted graphs. In Proc. of 30th ICALP, pages 384–296, 2003.
6. S. Baswana and S. Sen. Approximate distance oracles for unweighted graphs in O(n2 log n)

time. In Proc. of 15th SODA, pages 264–273, 2004.
7. E. Cohen. Fast algorithms for constructing t-spanners and paths with stretch t. SIAM Journal

on Computing, 28:210–236, 1999.
8. E. Cohen and U. Zwick. All-pairs small-stretch paths. Journal of Algorithms, 38:335–353,

2001.
9. T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to algorithms. The

MIT Press, 2nd edition, 2001.
10. D. Dor, S. Halperin, and U. Zwick. All pairs almost shortest paths. SIAM Journal on Com-

puting, 29:1740–1759, 2000.
11. M. Elkin. Computing almost shortest paths. In Proc. of 20th PODC, pages 53–62, 2001.
12. M.L. Elkin and D. Peleg. (1+ε, β)-Spanner constructions for general graphs. SIAM Journal

on Computing, 33(3):608–631, 2004.
13. M.L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with O(1) worst case

access time. Journal of the ACM, 31:538–544, 1984.
14. M.L. Fredman and R.E. Tarjan. Fibonacci heaps and their uses in improved network opti-

mization algorithms. Journal of the ACM, 34:596–615, 1987.
15. M. Thorup. Undirected single-source shortest paths with positive integer weights in linear

time. Journal of the ACM, 46:362–394, 1999.
16. M. Thorup and U. Zwick. Approximate distance oracles. Journal of the ACM, 52(1):1–24,

2005.

An Õ(m2n) Randomized Algorithm to Compute
a Minimum Cycle Basis of a Directed Graph

Telikepalli Kavitha�

Indian Institute of Science, Bangalore, India
kavitha@csa.iisc.ernet.in

Abstract. We consider the problem of computing a minimum cycle ba-
sis in a directed graph G. The input to this problem is a directed graph
whose arcs have positive weights. In this problem a {−1, 0, 1} incidence
vector is associated with each cycle and the vector space over Q gener-
ated by these vectors is the cycle space of G. A set of cycles is called a
cycle basis of G if it forms a basis for its cycle space. A cycle basis where
the sum of weights of the cycles is minimum is called a minimum cycle
basis of G. The current fastest algorithm for computing a minimum cycle
basis in a directed graph with m arcs and n vertices runs in Õ(mω+1n)
time (where ω < 2.376 is the exponent of matrix multiplication). If one
allows randomization, then an Õ(m3n) algorithm is known for this prob-
lem. In this paper we present a simple Õ(m2n) randomized algorithm
for this problem.

The problem of computing a minimum cycle basis in an undirected
graph has been well-studied. In this problem a {0, 1} incidence vector
is associated with each cycle and the vector space over F2 generated by
these vectors is the cycle space of the graph. The fastest known algorithm
for computing a minimum cycle basis in an undirected graph runs in
O(m2n + mn2 log n) time and our randomized algorithm for directed
graphs almost matches this running time.

1 Introduction

Let G = (V,A) be a directed graph with m arcs and n vertices. A cycle C in G
consists of forward arcs C+ and backward arcs C− such that C = C+ ∪̇C− and
reorienting all arcs in C− results in a closed path. Associated with each cycle
is a {−1, 0, 1} vector, indexed on the arc set A. This vector, also called C, is
defined as follows. For each arc a ∈ A

C(a) =

⎧⎪⎨⎪⎩
1 if a is a forward arc of C

−1 if a is a backward arc of C

0 if a /∈ C

� This research was partially supported by a “Max Planck-India Fellowship” provided
by the Max Planck Society.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 273–284, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

274 T. Kavitha

The cycle space of G is the vector space over Q that is generated by the
incidence vectors of cycles in G. When G is connected, the cycle space has
dimension d = m − n + 1. A cycle basis of G is a basis of the cycle space
of G.

The arcs of G have positive weights assigned to them. A cycle basis where
the sum of the weights of the cycles is minimum is called a minimum cycle basis
of G. In this paper we consider the problem of computing a minimum cycle basis
in a given digraph.

Background. The problem of computing a minimum cycle basis in a graph is
well-studied. Apart from its interest as a natural question, it is motivated by
its use as a preprocessing step in several algorithms. That is, a cycle basis is
used as an input for a later algorithm, and using a minimum cycle basis instead
of any arbitrary cycle basis usually reduces the amount of work that has to
be done by this later algorithm. Such algorithms include algorithms for diverse
applications like structural engineering [4], cycle analysis of electrical networks
[5], and chemical ring perception [7]. And in many cases the network graphs of
interest are directed graphs.

Undirected graphs. In an undirected graph U = (N,E), with each cycle C we
associate a {0, 1} incidence vector x, indexed on E, where xe = 1 if e is an edge
of C, xe = 0 otherwise. The vector space over F2 generated by these vectors
is called the cycle space of U . A minimum cycle basis of U is a set of linearly
independent (over F2) cycles that span the cycle space of U and whose sum of
weights is minimum.

For a directed graph G, we obtain the underlying undirected graph of G by
removing the directions from the arcs. A set of cycles C1, ..., Cd of G projects onto
an undirected cycle basis, if by removing the orientations of the arcs in the cycles,
we obtain a cycle basis for the underlying undirected graph. If C = {C1, ..., Cd}
is a set of cycles in a directed graph G that projects onto an undirected cycle
basis, then C is a cycle basis of G. But the the converse is not true. Similarly,
a minimum cycle basis of a digraph need not project onto a cycle basis of the
underlying undirected graph. Such examples are given in [13, 14]. In particular,
[14] contains an example of a directed graph, which is a generalized Petersen
graph, whose unique minimum cycle basis does not project onto a cycle basis of
the underlying undirected graph. The books by Deo [6] and Bollobás [3] have an
in-depth coverage of the subject of cycle bases.

Previous Results. Algorithms for computing a minimum cycle basis in an
undirected graph have been well-studied [2, 5, 8, 9, 11] and the current fastest
algorithm for this problem runs in O(m2n + mn2 log n) time [11], where m is
the number of edges and n is the number of vertices. The first polynomial time
algorithm for computing a minimum cycle basis in a directed graph had a running
time of Õ(m4n) [10]. Liebchen and Rizzi [14] gave an Õ(mω+1n) algorithm for
this problem, where ω < 2.376 is the exponent of matrix multiplication. This is
the current fastest deterministic algorithm known for this problem. But faster

An Õ(m2n) Randomized Algorithm 275

randomized algorithms are known. Kavitha and Mehlhorn [10] gave an Õ(m3n)
Monte Carlo algorithm for this problem.

New Results. In this paper we present a simple O(m2n log n) randomized
algorithm to compute a minimum cycle basis in a directed graph G with m
arcs and n vertices. This algorithm always returns a cycle basis and we show
that with high probability this cycle basis is a minimum cycle basis. We obtain
this algorithm through an effective use of randomization, which enables us to
work entirely over the finite field Fp for a randomly chosen prime p instead of
working over Q.

We recall here that the Õ(m3n) randomized algorithm given in [10] works by
sampling log2 m random primes independently in each iteration of the algorithm.
Then the algorithm either uses at least logm suitable primes from this sample
to compute cycles in that iteration or it quits if there is no large enough subset
of suitable primes in this sample.

In Section 2.1 we first present a deterministic algorithm, whose correctness
is simple to show. But the numbers used in this algorithm grow very large and
so this algorithm is not interesting from an implementation point of view. How-
ever, the analysis of this algorithm leads to our efficient randomized algorithm.
Section 2.2 contains our randomized algorithm and its analysis.

A key step in our algorithm is a subroutine to compute a shortest cycle whose
inner product with a given vector is non-zero modulo p. Such a subroutine was
also used in [10] and we first review that method in Section 3.1. However that
subroutine is not good enough for us since using it would make the running time
of our algorithm Õ(m4n). Here we modify Dijkstra’s algorithm for this particular
problem and improve this subroutine. Section 3.2 contains this implementation.
This leads to an O(m3 +m2n log n) randomized algorithm for computing a min-
imum cycle basis in a directed graph.

We can improve the running time even further. As mentioned earlier, the
current fastest algorithm for computing a minimum cycle basis in an undirected
graph has a running time of O(m2n+mn2 log n). This running time is achieved
through the use of fast matrix multiplication to speed up certain operations on
vectors. In Section 4 we use the same technique to get rid of the m3 term in our
running time and we thus get an O(m2n log n) algorithm.

2 An Õ(m3) Randomized Algorithm

Our algorithm is broadly based on the approach used in [5, 2, 11, 10] for com-
puting a minimum cycle basis. We are given a digraph G = (V,A), where
|V | = n and |A| = m. There is no loss of generality in assuming that the
underlying undirected graph of G is connected. Then d = m − n + 1 is the
dimension of the cycle space of G. The notation 〈v1, v2〉 denotes the standard
inner product or dot product of the vectors v1 and v2. First we will assume
that we have ordered the arcs in the arc set A so that the arcs ad+1, ..., am

form the edges of a spanning tree T of the underlying undirected graph. This

276 T. Kavitha

means that in the incidence vector representation of cycles, the first d coordi-
nates correspond to arcs outside the tree T and the last n − 1 coordinates are
the arcs of T .

Before we present our randomized algorithm, let us first consider the following
deterministic algorithm.

2.1 Deterministic-MCB

1. Initialize the vectors S1, . . . , Sd of Qm to the first d vectors e1, . . . , ed of the
standard basis of Qm.

2. For i = 1 to d do
– compute a shortest cycle Ci such that 〈Ci, Si〉 �= 0.
– for j = i + 1 to d do

update Sj as: Sj = Sj − Si
〈Ci, Sj〉
〈Ci, Si〉

It can be easily shown that the set {C1, . . . , Cd} is a minimum cycle basis.
We can also show the following lemma using induction.

Lemma 1. For 1 ≤ i ≤ d − 1 the above algorithm maintains the following
invariant: at the end of the i-th iteration the vectors Si+1, . . . , Sd are orthogonal
to the cycles C1, . . . , Ci.

Let us now understand the structure of the vectors Sj in Deterministic-MCB.
The vector Sj gets updated in each iteration till iteration j. Call the version of
Sj at the beginning of iteration i as Si

j . And Sj
j is finally used in iteration j to

compute the cycle Cj . (Let us denote the final version Sj
j by Sj itself.) Si

j has
the form (r1, r2, ..., ri−1, 0, ..., 0, 1, 0, ..., 0), where r1, ..., ri−1 are some rational
numbers and the 1 occurs in the j-th coordinate. Since Si

j is orthogonal to
C1, ..., Ci−1, we have Ck · (r1, . . . , ri−1, 0, . . . , 1, 0, . . .)T = 0 for k = 1, . . . , i− 1.

Let the incidence vector of Ck be (ck1, . . . , ckm) and let C̃k be the restriction
of this vector to its first i− 1 coordinates. Then (r1, ..., ri−1) is a solution to

C̃k · (x1, ..., xi−1)T = −ckj for k = 1, ..., i− 1. (1)

We will show that this set of equations has a unique solution. Suppose the linear
combination

i−1∑
j=1

αjC̃j = 0 (2)

and not all αj are 0. Then consider the largest t such that αt �= 0 and take the
inner product of both sides of Equation (2) with S̃t, where S̃t is the restriction
of the vector St to its first i− 1 coordinates.

Then the left hand side is
∑t

k=1 αk〈C̃k, S̃t〉 =
∑t

k=1 αk〈Ck, St〉 since S̃t has
all the non-zero entries of St for each 1 ≤ t ≤ i − 1. This is equal to αt〈Ct, St〉
since 〈Ck, St〉 = 0 for k < t. Since 〈Ct, St〉 �= 0 and the right hand side is 0 we
get αt = 0 - a contradiction. Hence each αk has to be 0 for 1 ≤ k ≤ i− 1. So the
C̃k’s are linearly independent. So we can conclude the following lemma.

An Õ(m2n) Randomized Algorithm 277

Lemma 2. For any i, the (i − 1) × (i − 1) matrix Mi whose k-th row is the
vector C̃k for 1 ≤ k ≤ i− 1 is nonsingular.
Thus Equation (1) has a unique solution, which is (r1, . . . , ri−1). By Cramer’s
rule, each rl is of the form rl = yl/ki, where ki is the determinant of Mi and yl

is the determinant of the matrix obtained by replacing the l-th column of Mi

by the vector on the right hand side of Equation (1). So multiplying Si
j with

ki gives us an integral vector N i
j = (y1, ..., yi−1, 0, ..., ki, 0, ...). Since ki is the

determinant of an (i−1)×(i−1) matrix whose entries are −1, 0, 1, it follows from
Hadamard’s inequality that |ki| ≤ (i−1)

i−1
2 . Similarly, the absolute value of each

yl is bounded from above by (i− 1)
i−1
2 . So we have ‖N i

j‖1 ≤ i(i− 1)
i−1
2 ≤ d

d+1
2

since i ≤ d. Let us denote each N j
j by Nj , respectively.

Definition 1. Call a prime p good if for each i = 1, ..., d: 〈Ci, Ni〉 �= 0(modp).
Call a prime p bad if it is not good.

Lemma 3. Let P be a set of d2 primes, each of which is at least d2. Then at
least 3/4-th of the set P is good.

Proof. For any i, 〈Ci, Si〉 �= 0 is equivalent to 〈Ci, Ni〉 �= 0 since Ni = kiSi

and ki = det(Mi) �= 0 by Lemma 2. So for each 1 ≤ i ≤ d, it holds that
〈Ci, Ni〉 �= 0. Since Ci is a {−1, 0, 1} vector we also get that |〈Ci, Ni〉| ≤ ‖Ni‖1.
So |〈Ci, Ni〉| ≤ d

d+1
2 .

Since N1 = S1 = (1, 0, . . . , 0), the number 〈C1, N1〉 is always ±1. So no prime
can divide it. For i ≥ 2, we will use 0 �= |〈Ci, Ni〉| ≤ d

d+1
2 . Since each prime in P is

at least d2, at most (d+1)/4 elements in P can be divisors of 〈Ci, Ni〉. So the num-
ber of primes in P that can divide at least one of 〈C2, N2〉, 〈C3, N3〉, . . . , 〈Cd, Nd〉
is at most (d − 1)(d + 1)/4. Hence the fraction of bad primes in P is at most
(d− 1)(d + 1)/4d2 < 1/4. &'

Now we present the algorithm Randomized-MCB. This is similar to the al-
gorithm Deterministic-MCB. But here we work over the field Fp for a randomly
chosen prime p from the set P , instead of working over Q.

2.2 Randomized-MCB

1. Compute a set P of d2 primes p0, p1, . . . where each pj ≥ d2. Choose a prime
p uniformly at random from this set.

2. Initialize the vectors X1, . . . , Xd of Fm
p to the first d vectors of the standard

basis e1, . . . , ed.
3. For i = 1 to d do

– compute a shortest cycle Bi such that 〈Bi, Xi〉 �= 0(modp).
– for j = i + 1 to d do

update Xj (over the finite field Fp) as: Xj = Xj −Xi
〈Bi, Xj〉
〈Bi, Xi〉

(An analogue of Lemma 1 shows that Xi+1, . . . , Xd are now orthogonal
to B1, . . . , Bi over Fp.)

We will now show that {B1, . . . , Bd} is always a cycle basis.

278 T. Kavitha

Lemma 4. The cycles B1, ..., Bd are linearly independent.

Proof. We know that 〈Bj , Xi〉 = 0(mod p) for all j < i. It is now easy to see that
Bi is linearly independent of B1, ..., Bi−1 over Fp. Xi is a witness of this linear
independence since 〈Bj , Xi〉 = 0(modp) for each j < i, so the inner product of
Xi with any linear combination of B1, . . . , Bi−1 has to be zero modulo p but
〈Bi, Xi〉 �= 0(modp). Hence the whole set {B1, . . . , Bd} is linearly independent
over Fp, which means that it is linearly independent over Q. &'

We will next show that the set {B1, . . . , Bd} is a minimum cycle basis with
probability at least 3/4. In the rest of this section, we will prove the following
theorem.

Theorem 1. When p is good, Randomized-MCB computes a minimum cycle
basis.

We will assume that the algorithm Deterministic-MCB breaks ties for the short-
est cycle in the same way as Randomized-MCB breaks them. That is, both the
algorithms use the same rule to determine the shorter cycle between two cycles
of equal weight. Then we can show the following.

Lemma 5. When p is good, Bi = Ci, for each 1 ≤ i ≤ d.

We will show this by induction. The vector X1 = S1 = (1, 0, . . . , 0). The inner
product of any cycle with (1, 0, ..., 0) is ±1 or 0. The inner product will be ±1
if and only if the cycle contains the arc a1. Also, looking at the inner product
modulo p does not change a 1 or a −1 to 0. So B1 is a shortest cycle that
contains the arc a1. C1 is also a shortest cycle that contains the arc a1 and so by
our assumption that both these algorithms break ties identically, we have that
B1 = C1.

Let us now assume that Bj = Cj for j ≤ i−1. Recall that Ni is a vector in Zm

of the form (y1, ..., yi−1, ki, 0, ..., 0), where (y1, ..., yi−1) is the unique solution to⎛⎜⎝ C̃1

...
C̃i−1

⎞⎟⎠x =

⎛⎜⎝ −kic1i

...
−kic(i−1)i

⎞⎟⎠ . (3)

Recall that C̃j is the incidence vector of cycle Cj restricted to its first i − 1
coordinates and ki = det(Mi), where Mi is the (i − 1) × (i − 1) matrix above
whose rows are C̃’s. Note that (y1, ..., yi−1) mod p is a solution to this set of
equations in Fp.

Xi is a vector in Fm
p of the form (t1, . . . , ti−1, 1, 0, . . .) for some t1, . . . , ti−1

in Fp and Xi is orthogonal to B1, ..., Bi−1 in Fp. Since Bj = Cj for j ≤ i − 1,
this means that Xi is orthogonal to C1, ..., Ci−1 in Fp. So in Fp, (t1, . . . , ti−1) is
a solution to ⎛⎜⎝ C̃1

...
C̃i−1

⎞⎟⎠x =

⎛⎜⎝ −c1i

...
−c(i−1)i

⎞⎟⎠ .

An Õ(m2n) Randomized Algorithm 279

So ki(t1, . . . , ti−1) mod p is a solution to Equation (3) in Fp. We would like to
prove that Equation (3) has a unique solution in Fp.

Lemma 6. If 〈Cj , Nj〉 �= 0(modp) for 1 ≤ j ≤ i− 1, then ki �= 0(modp).

Let us assume the above Lemma and complete the argument. Then we will
prove Lemma 6. Since det(Mi) = ki �= 0(modp), Equation (3) should have
a unique solution in Fp. So ki(t1, . . . , ti−1) mod p = (y1, . . . , yi−1) mod p. In
other words, ki(t1, . . . , ti−1, 1, 0, . . . , 0) mod p=(y1, . . . , yi−1, ki, 0, . . . , 0) mod p.
That is,

ki ·Xi (modp) = Ni (modp).

So Ni is just a scalar multiple of Xi when these vectors are viewed as ele-
ments of Fm

p . Hence for any cycle D, 〈D,Ni〉 �= 0(mod p) if and only if 〈D,Xi〉 �=
0(modp). Since p is a good prime, 〈Ci, Ni〉 �= 0(modp). So 〈Ci, Xi〉 �= 0(modp).
This proves that Ci is a candidate for a shortest cycle whose inner product with
Xi is non-zero modulo p. And every cycle that has non-zero inner product with
Xi modulo p is also a candidate cycle of Deterministic-MCB in its i-th iteration.
Since Ci was the shortest among all these candidate cycles for Deterministic-
MCB, we get that Ci also has to be the shortest cycle for Randomized-MCB in
its i-th iteration. That is, Bi = Ci. This proves the induction step.

Proof of Lemma 6. We know that 〈Ck, Nl〉 = 0 for k < l, so when we multiply
the (i − 1) ×m matrix whose rows are C’s with the m × (i − 1) matrix whose
columns are N ’s we get:

⎛⎜⎝ C1

...
Ci−1

⎞⎟⎠ ·
(
NT

1 . . . NT
i−1

)
=

⎛⎜⎜⎜⎜⎜⎝
〈C1, N1〉 0 0 . . . 0

∗ 〈C2, N2〉 0 . . . 0
∗ ∗ 〈C3, N3〉 . . . 0
...

...
...

...
...

∗ ∗ ∗ . . . 〈Ci−1, Ni−1〉

⎞⎟⎟⎟⎟⎟⎠
which is a lower triangular (i − 1) × (i − 1) matrix. Since each Nj has only 0’s
after its j-th coordinate, we can restrict the matrix of N ’s to its first i− 1 rows
and the matrix of C’s to its first i− 1 columns and we still have:

⎛⎜⎝ C̃1

...
C̃i−1

⎞⎟⎠ ·
(
ÑT

1 . . . ÑT
i−1

)
=

⎛⎜⎜⎜⎜⎜⎝
〈C1, N1〉 0 0 . . . 0

∗ 〈C2, N2〉 0 . . . 0
∗ ∗ 〈C3, N3〉 . . . 0
...

...
...

...
...

∗ ∗ ∗ . . . 〈Ci−1, Ni−1〉

⎞⎟⎟⎟⎟⎟⎠
where Ñj is the restriction of Nj to its first i − 1 coordinates. Now all the
matrices are square matrices. The determinant of the matrix of C̃’s is ki and the
determinant of the matrix of Ñj ’s is an integer. So ki divides the determinant
on the right hand side, which is 〈C1, N1〉 · · · 〈Ci−1, Ni−1〉. Since none of 〈Cj , Nj〉

280 T. Kavitha

is 0 modulo p for 1 ≤ j ≤ i− 1, the prime p does not divide this product. So p
cannot divide ki. Hence ki �= 0(modp). &'

This also completes the proof of Lemma 5 which says that when p is good,
Bi = Ci, for 1 ≤ i ≤ d. This immediately implies Theorem 1 since {C1, . . . , Cd}
is a minimum cycle basis. So the cycle basis computed by Randomized-MCB is
a minimum cycle basis with probability at least 3/4 (from Lemma 3).

3 Running Time of Randomized-MCB

The value of π(r), the number of primes less than r, is given by r/6 log r ≤
π(r) ≤ 8r/log r [1]. So the elements in P can be bounded by 100d2 log d. Using
sieving, we can compute the set of primes in the first 100d2 log d numbers in
O(d2 log2 d) time. So the set P can be determined in O(d2 log2 d) time.

3.1 Computing Bi

Now we consider the problem of computing a shortest cycle in G whose inner
product with Xi is non-zero modulo p. Let us first review the technique in [10]
and then we describe our improved algorithm for this problem. Using the digraph
G = (V,A) and the vector Xi, an undirected graph Ui,p can be constructed.
The graph Ui,p can be visualized as a graph with p layers. Call these layers
as layer 0, . . ., layer (p − 1). Each layer has a copy of every vertex v ∈ V . Let
vj be the copy of vertex v in layer j. The edge set of Ui,p also consists of p
copies of each arc a ∈ A. The edges corresponding to arc a = (u, v) are (uj , vk)
where k = (j + Xi(a)) modulo p for each j = 0, 1, . . . , p − 1. For example,
let a = (u, v), Xi(a) = 3 and p = 5. Then Ui,p has 5 copies of a which are
(u0, v3), (u1, v4), (u2, v0), (u3, v1), (u4, v2). Each edge (uj , vk) in Ui,p inherits the
weight of its corresponding arc (u, v) of G.

The above construction gives us a well-defined map from the vertex set of
Ui,p to the vertex set of G and from the edge set of Ui,p to the arc set of G. We
can extend this map to paths of Ui,p. Any path in Ui,p maps to a chain1 in G by
mapping the vertices and edges in Ui,p to their images in G. We say that path
(e0, . . . , er) in the graph Ui,p has repeated edges if ei and ej for some i �= j, map
to the same arc of G.

The following properties of Ui,p capture the essence of this graph.

– any (v0, v�) path in Ui,p maps to a closed chain in G.
– a (v0, v�) path in Ui,p with no repeated edges maps to a cycle in G.
– the inner product of such a cycle with Xi is � (in Fp).

The following lemma from [10] is what we need. Its proof follows easily from
the above properties.

1 a chain is an alternating sequence of vertices and arcs (x0, a1, x1, a2, . . . , ar, xr) such
that either ak = (xk−1, xk) or ak = (xk, xk−1).

An Õ(m2n) Randomized Algorithm 281

Lemma 7. Let q = minv min� �=0 shortest (v0, v�) path in the graph Ui,p. Then
q corresponds to a shortest cycle in G whose inner product with Xi is non-zero
modulo p.

So Bi can be computed by running Dijkstra’s algorithm from v0 for each v in
V and taking the minimum over v, of these shortest (v0, v�), � �= 0 paths. Since
Ui,p has pn nodes and pm edges, Dijkstra’s algorithm takes O(pm + pn log n)
time for each v0. Hence the total time taken to compute the cycle Bi is O(n ·
(pm + pn log n)).

Now we will show that we can modify Dijkstra’s algorithm for this application
so that we take O(m log n) time for each v0 instead of O(pm + pn log n) time.

3.2 Improved Implementation of Computing a Shortest
(v0, v�), � �= 0 Path

We will not build the graph Ui,p explicitly. Whenever we are at a vertex uj , we
know its neighborhood as follows. If there is an arc a between u and a vertex
w in G, then in Ui,p, wk is a neighbor of uj where k = (j + Xi(a)) mod p if
a = (u,w) (directed from u to w), and k = (j − Xi(a)) mod p if a = (w, u)
(directed from w to u).

The key observation here is that to compute min� �=0 shortest (v0, v�) path, it
is enough to look at those intermediate vertices which are the closest or second
closest of their “type” to v0. That is, if uj is a vertex in min� �=0 shortest (v0, v�)
path, then uj is closest or second closest to v0 among all of {u0, u1, ..., up−1}. So
while running Dijkstra’s algorithm to determine min� �=0 shortest (v0, v�) path,
we only explore neighborhoods of such vertices in the priority queue.

More formally, we will have dist[u] = ∞ for each vertex u in Ui,p and the
priority queue Q contains all the nodes of Ui,p, keyed by their dist values. Then
we start computing single-source shortest paths for each vertex in layer 0. Call
one such vertex as v0. This procedure runs as follows:

– set dist[v0] = 0.
– Maintain an array marked for the n vertices of G and initially marked[u] = 0

for each u ∈ V .
– Repeat

• Extract the vertex x with the smallest dist value from Q.
If x is v� for some � �= 0, then store dist[v�] and the path computed to v�

and quit the Repeat loop.
Else let x = uk.
– if marked[u] < 2, then increment marked[u] and for each neighbor w do

dist[w] = min(dist[w], dist[x] + weight(x,w))

and update predecessor of w to x if necessary.
– else do nothing.

– For each vertex whose distance was made finite in our loop, set its dist back
to ∞ and insert back to Q the deleted vertices. (so that we can now run this
procedure for another vertex w0 of layer 0)

282 T. Kavitha

Remark. There is always a (v0, v�) path for some � �= 0 in the graph Ui,p for each
v ∈ G. This is because Xi on its last n−1 coordinates (which are the arcs of the
spanning tree T) is 0 and Xi �= 0. So each layer of the graph Ui,p is connected
and there is at least one edge from layer 0 to some non-zero layer.

Running Time of the Above Algorithm. We look at neighborhoods of only
those vertices which are of the type uj such that uj is the first or second among
all the vertices in {u0, ..., up−1} to be extracted from the priority queue. For
such vertices we make the dist value of their neighbors to be finite. The total
number of vertices whose distance is ever made finite in our loop is bounded by∑

u∈G deg(uj) for all uj which are closest or second closest to v0 among the “u”
vertices. Since deg(uj) = deg(u), we get the bound of 2

∑
u deg(u) = O(m). Let

us implement the priority queue as a binary heap so that each of the operations
needed above can be implemented in O(log(pn)) = O(log n) amount of time. In
the Repeat loop we charge the cost of extracting a vertex x to x’s predecessor
in shortest-path(v0, u). So for each vertex uj which is closest or second closest
among “u” vertices to v0, we do O(deg(u) · log n) amount of work. For the other
vertices we do no work. We take O(pn) time to build the binary heap. But we
do this just once in the entire algorithm, at the beginning of our first iteration.
Thereafter, we simply reset to infinity the dist value of only those vertices which
were made finite while running our procedure for the previous vertex. Also, we
insert the deleted vertices back into the heap. This takes O(m log n) work.

In iteration i, once we compute min� �=0shortest(v0, v�) path for all v ∈ V , we
have determined Bi. This takes time O(n ·m log n) given the priority queue Q
containing all the vertices with their dist values. So the total amount of time
to compute all the cycles B1, . . . , Bd given the vectors X1, . . . , Xd is O(pn +
d(n ·m log n)) which is O(m2n log n). All we need to show now is the following
lemma. The proof will be given in the full version of the paper.

Lemma 8. In order to compute min� �=0 shortest (v0, v�) path in Ui,p, it is enough
to look at vertices which are of the form: closest or second closest of their “type”
to v0.

The Overall Running Time of Randomized-MCB. Under the assump-
tion that arithmetic on O(logm) bits takes unit time, it follows that addition,
subtraction and multiplication in Fp can be implemented in unit time since p
is O(d2 log d). However we also need to implement division efficiently since the
update step of Xj involves division. Once p is chosen, we will compute the mul-
tiplicative inverses of all elements in Z∗

p by the extended Euclid’s gcd algorithm
by solving ax = 1(modp) for each a ∈ Z∗

p. This takes time O(log p) for each
element and hence O(p log p) for all the elements. Thereafter, division in Fp gets
implemented as multiplication with the inverse of the divisor.

We need to account for the time taken to update the vectors Xi+1, ...,Xd

in iteration i. Adding a scalar multiple of Xi to a vector Xj takes Θ(i) time.
So the time taken by the update step in iteration i to update d − i vectors is
Θ(i(d− i)). So the entire time taken by the update steps of all the iterations is

An Õ(m2n) Randomized Algorithm 283

Θ(d3). So the total time taken by the algorithm Randomized-MCB is O(m3 +
m2n log n).

4 Faster Implementation

Instead of spending Θ(m3) time for the update step, using the technique in
[11] we can implement the update step in O(mω) time, where ω < 2.376 is
the exponent of matrix multiplication. This then gives us an O(m2n log n) ran-
domized algorithm for computing a minimum cycle basis. The algorithm FAST-
Randomized-MCB is described below.

– Compute a set P of d2 primes p0, p1, . . . where each pj ≥ d2. Choose a prime
p uniformly at random from this set.

– Call the procedure extend cycle basis({}, {e1, . . . , ed}, d), where e1, . . . , ed

are the first d vectors of the standard basis.

The procedure extend cycle basis takes as input a partial cycle basis, say,
{D1, ...,Di} (denoted by D), a parameter k, and k vectors vi+1, . . . , vi+k of
Fm

p which are orthogonal to {D1, ...,Di} over Fp and computes k new cycles
Di+1, ...,Di+k to extend the cycle basis. The role of vi+1, . . . , vi+k is identical
to the role played by the vectors Xi+1, Xi+2, ... at the beginning of iteration
i + 1 in the algorithm Randomized-MCB (Section 2.2). Just as the vectors Xj

got updated in Randomized-MCB, the vectors vj get updated during the course
of extend cycle basis. But the difference is that we will update many vj ’s with
respect to many cycles in one bulk update step called update. We describe below
the recursive procedure extend cycle basis. Note that all the arithmetic that we
do here is over the field Fp. (For clarity we will sometimes use the notation v�

j

to denote the version of vj that is orthogonal to the cycles D1, . . . , D�−1.)

The procedure extend cycle basis(D, {vi+1, . . . , vi+k}, k):

– if k = 1, compute a shortest cycle Di+1 such that 〈Di+1, vi+1〉 �= 0(modp).
– if k > 1, use recursion. Let t = +k/2,.

1. call extend cycle basis(D, {vi+1 . . . , vi+t}, t) to extend the current cycle
basis by t elements. That is, the cycles Di+1, . . . , Di+t are computed in
a recursive manner.

2. call update({vi+1, . . . , vi+t}, {vi+t+1, ..., vi+k}). This updates {vi+1
i+t+1, ...,

vi+1
i+k} en masse into the desired versions {vi+t+1

i+t+1 , ..., v
i+t+1
i+k } that are

orthogonal to D1, . . . , Di+t.

3. call extend cycle basis(D ∪ {Di+1, . . . , Di+t}, {vi+t+1, ..., vi+k}, k − t)
to extend the current cycle basis by k − t cycles. That is, the cycles
Di+t+1, ..., Di+k will be computed recursively.

The key subroutine update can be implemented efficiently using fast ma-
trix multiplication. Then the running time of FAST-Randomized-MCB becomes

284 T. Kavitha

O(mω + m2n log n). We can assume that G is a simple graph, so m ≤ n2. Then
mω < m2n and so the running time is O(m2n log n). The running time analysis
and the analysis that the cycle basis computed here is the same as the cycle
basis computed by the algorithm Randomized-MCB follow directly from similar
analysis given in [11]. They will be presented in the full version of the paper. We
conclude with the following theorem.

Theorem 2. A minimum cycle basis of a directed graph, with positive weights
on its arcs, can be computed with high probability in time O(m2n log n).

Acknowledgments. I am grateful to Kurt Mehlhorn for useful discussions and
his help in improving the presentation of the paper. I also wish to thank Jaikumar
Radhakrishnan for his helpful comments and the referee for bringing the example
in [14] to my attention.

References

1. T. M. Apostol. Introduction to Analytic Number Theory. Springer-Verlag, 1997.
2. F. Berger, P. Gritzmann, and S. de Vries. Minimum Cycle Bases for Network

Graphs. Algorithmica, 40(1): 51-62, 2004.
3. B. Bollobás. Modern Graph Theory, volume 184 of Graduate Texts in Mathematics,

Springer, Berlin, 1998.
4. A. C. Cassell and J. C. Henderson and K. Ramachandran. Cycle bases of minimal

measure for the structural analysis of skeletal structures by the flexibility method
Proc. Royal Society of London Series A, 350: 61-70, 1976.

5. J.C. de Pina. Applications of Shortest Path Methods. PhD thesis, University of
Amsterdam, Netherlands, 1995.

6. N. Deo. Graph Theory with Applications to Engineering and Computer Science.
Prentice-Hall Series in Automatic Computation. Prentice-Hall, Englewood Cliffs,
1982.

7. P. M. Gleiss. Short cycles: minimum cycle bases of graphs from chemistry and
biochemistry. PhD thesis, Universität Wien, 2001.

8. Alexander Golynski and Joseph D. Horton. A polynomial time algorithm to find
the minimum cycle basis of a regular matroid. In 8th Scandinavian Workshop on
Algorithm Theory, 2002.

9. J. D. Horton. A polynomial-time algorithm to find a shortest cycle basis of a graph.
SIAM Journal of Computing, 16:359–366, 1987.

10. T. Kavitha and K. Mehlhorn. A Polynomial Time Algorithm for Minimum Cycle
Basis in Directed Graphs In Proc. of STACS, LNCS 3404: 654-665, 2005.

11. T. Kavitha, K. Mehlhorn, D. Michail, and K. Paluch. A faster algorithm for
Minimum Cycle Basis of graphs. In Proc. of ICALP, LNCS 3142: 846-857, 2004.

12. Christian Liebchen. Finding Short Integral Cycle Bases for Cyclic Timetabling. In
Proc. of ESA, LNCS 2832: 715-726, 2003.

13. C. Liebchen and L. Peeters. On Cyclic Timetabling and Cycles in Graphs. Tech-
nical Report 761/2002, TU Berlin.

14. C. Liebchen and R. Rizzi. A Greedy Approach to compute a Minimum Cycle Basis
of a Directed Graph. Technical Report 2004/31, TU Berlin.

Basing Cryptographic Protocols on
Tamper-Evident Seals�

Tal Moran and Moni Naor��

Department of Computer Science and Applied Mathematics,
Weizmann Institute of Science, Rehovot, Israel

Abstract. In this paper we attempt to formally study two very intu-
itive physical models: sealed envelopes and locked boxes, often used as
illustrations for common cryptographic operations. We relax the security
properties usually required from locked boxes (such as in bit-commitment
protocols) and require only that a broken lock or torn envelope be iden-
tifiable to the original sender. Unlike the completely impregnable locked
box, this functionality may be achievable in real life, where containers
having this property are called “tamper-evident seals”. Another physical
object with this property is the “scratch-off card”, often used in lottery
tickets. We show that scratch-off cards can be used to implement bit-
commitment and coin flipping, but not oblivious transfer. Of particular
interest, we give a strongly-fair coin flipping protocol with bias bounded
by O(1/r) (where r is the number of rounds), beating the best known
bias in the standard model even with cryptographic assumptions.

1 Introduction

In this paper we consider the use of “tamper-evident seals” in cryptographic
protocols. A tamper-evident seal is a primitive based on very intuitive physical
models: the sealed envelope and the locked box. These are often used as illustra-
tions for a number of basic cryptographic primitives: For example, encryption
is often depicted as placing a message in a locked box (that cannot be opened
without a key), while bit commitment is usually illustrated as a sealed envelope.

In a bit-commitment protocol one party, Alice, commits to a bit b to Bob
in such a way that Bob cannot tell what b is. At a later time Alice can reveal
b, and Bob can verify that this is indeed the bit to which she committed. The
standard illustration used for a bit-commitment protocol is Alice putting b in a
sealed envelope, which she gives to Bob. Bob cannot see through the envelope
(so cannot learn b). When Alice reveals her bit, she lets Bob open the envelope
so he can verify that she didn’t cheat.

The problem with the above illustration is that a physical “sealed envelope”
is insufficient for bit-commitment: Bob can always tear open the envelope before

� This work was partially supported by the Minerva Foundation.
�� Incumbent of the Judith Kleeman Professorial Chair.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 285–297, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

286 T. Moran and M. Naor

Alice officially allows him to do so. Even a locked box is unlikely to suffice; many
protocols based on bit-commitment remain secure only if no adversary can ever
open the box without a key. A more modest security guarantee seems to be more
easily obtained: an adversary may be able to tear open the envelope but Alice
will be able to recognize this when she sees the envelope again.

“Real” closures with this property are commonly known as “tamper evident
seals”. These are used widely, from containers for food and medicines to high-
security government applications. Another common application that embodies
these properties is the “scratch-off card”, often used as a lottery ticket. This
is usually a printed cardboard card which has some areas coated by an opaque
layer (e.g., the possible prizes to be won are covered). The text under the opaque
coating cannot be read without scratching off the coating, but it is immediately
evident that this has been done.

In this paper we attempt to clarify what it means to use sealed envelopes in a
cryptographic protocol. In particular, we study their applicability to coin flipping
(CF), zero-knowledge protocols, bit commitment (BC) and oblivious transfer
(OT), some of the most fundamental primitives in modern cryptography.

Our Results. In this paper we show that the sealed envelopes we consider can
be used to implement standard cryptographic protocols. We construct protocols
for “weakly fair” CF (in which the result is 0, 1 or invalid) and BC.

The existence of BC immediately implies the existence of a zero-knowledge
proof system for any NP language [16]. In the full version, we also show a non-
interactive zero knowledge proof system (with a preprocessing stage) for any NP
language that can be implemented using pre-printed scratch-off cards.

A possibly practical application of our model is the “cryptographic random-
ized response technique” (CRRT), defined by Ambainis et al. [2]. “Randomized
response” is a polling technique used when some of the answers to the poll
may be stigmatizing (e.g., “do you use drugs?”). The respondent lies with some
known probability, allowing statistical analysis of the results while letting the
respondent disavow a stigmatizing response. In a CRRT, there is the additional
requirement that a malicious respondent cannot bias the results more than by
choosing a different answer. The techniques described by Ambainis et al. achieve
this, but require “heavy” cryptographic machinery (such as OT), or quantum
cryptography. In the full version of the paper we give a simple protocol for CRRT
using scratch-off cards.

One of the most interesting results is a protocol for “strongly fair” CF (where
the result for an honest player must be either 0 or 1 even if the other player quits
before finishing the protocol) with bias bounded by O(1

r), where r is the number
of rounds. In the standard model, even with cryptographic assumptions, the best
known bias for a protocol with r rounds is O(1√

r
) (due to Cleve [8]). For a large

class of protocols (including any that rely on bit-commitment or weakly fair
coin flipping as a black-box), an unpublished result of Cleve and Impagliazzo [9]
shows this is the best possible bias.

An important contribution of this paper is the formal analysis for the models
and protocols we construct. We show that the protocols are Universally Com-

Basing Cryptographic Protocols on Tamper-Evident Seals 287

posable in the sense of Canetti [7]. This allows us to use them securely as “black-
boxes” in larger constructions.

On the negative side, we show that our protocol for strongly fair CF using
scratch-off cards is optimal: it is impossible to do better than O(1

r) bias (this
follows from a careful reading of the proof in [8]; the proof appears in the full
version). We show that OT cannot be implemented using scratch-off cards with-
out additional assumptions (note that we show the impossibility of any type of
OT, not just universally composable realizations).
Seals in Different Flavors. In the full version of the paper, we consider some ad-
ditional variants of tamper-evident seals. Roughly speaking, the difference arises
from whether or not a party can distinguish their own containers from those of
the other party without opening the seal, and whether or not an honest player
can “break” the seal. Scratch-off cards correspond to the distinguishable case
in which the honest party can break the seal. We show that in a distinguish-
able “weak-lock” model, where the honest party cannot break the seal, even BC
cannot be implemented (the proof is similar to the impossibility of OT , while
in the indistinguishable case it is possible to implement both BC and OT. Due
to space constraints, this paper will concentrate solely on the “distinguishable
envelope” (scratch-off card) model. Note that in the standard model of cryptog-
raphy, where the parties exchange messages and there is no access to outside
physical resources, we do not know how to implement any of these closures.

Related Work. To the best of our knowledge, this is the first attempt at us-
ing tamper evident seals for cryptographic protocols. Ross Anderson discusses
“packaging and seals” in the context of security engineering [3], however the use
of tamper-evidence does not extend to more complex protocols. Blaze gives some
examples of the reverse side of the problem: cryptanalysis of physical security
systems using techniques from computer science [4, 5]. Using scratch-off cards
in the lottery setting can be described as a very weak form of CF, however we
do not believe this has ever been formally analyzed (or used in more complex
protocols).

On the other hand, basing cryptographic protocols on physical models is
a common practice. Perhaps the most striking example is the field of quantum
cryptography. One of the inspirations for this work was the idea of “Quantum Bit
Escrow” (QBE) [1], a primitive that is very similar to a tamper-evident seal and
that can be implemented in a quantum setting. There are, however, significant
differences between our definitions of tamper-evident seals and QBE. In particu-
lar, in QBE the adversary may “entangle” separate escrowed bits and “partially
open” commitments. Thus, while unconditionally secure bit-commitment is im-
possible in the pure quantum setting [19, 18], it is possible in ours.

Much work has been done on basing BC and OT on the physical properties
of communication channels, using the random noise in a communication channel
as the basis for security. Both BC and OT were shown to be realizable in the
Binary Symmetric Channel model [11, 10], in which random noise is added to
the channel in both directions with some known, constant, probability. Later
work shows that they can also be implemented, under certain conditions, in the

288 T. Moran and M. Naor

weaker (but more convincing) Unfair Noisy Channel model [13, 12], where the
error probability is not known exactly to the honest parties, and furthermore
can be influenced by the adversary. Our construction for 1-2 OT uses some of
the techniques and results from [13].

One of the motivations for this work was the attempt to construct crypto-
graphic protocols that are implementable by humans without the aid of comput-
ers. This property is useful, for example, in situations where computers cannot
be trusted to be running the protocol they claim, or where “transparency” to
humans is a requirement (such as in voting protocols). Many other examples
exist of using simple physical objects as a basis for cryptographic protocols that
can be performed by humans, some are even folklore: Sarah Flannery [15] re-
counts a childhood riddle that uses a doubly-locked box to transfer a diamond
between two parties, overcoming the corrupt postal system (which opens any
unlocked boxes) despite the fact that the two parties have never met (and can
only communicate through the mail). Fagin, Naor and Winkler [14] assembled
a number of solutions to the problem of comparing secret information without
revealing anything but the result of the comparison using a variety of different
physical methods. Schneier devised a cipher [21] that can be implemented by a
human using a pack of cards. In a lighter vein, Naor, Naor and Reingold [20] give
a protocol that provides a “zero knowledge proof of knowledge” of the correct
answer to the children’s puzzle “Where’s Waldo” using only a large newspa-
per and scissors. A common thread in these works is that they lack a formal
specification of the model they use, and a formal proof of security.

Organization of the Paper. In Section 2, we give a formal definition for
tamper-evident envelopes and the functionalities we attempt to realize using
them. In Section 3 we discuss the capabilities of this model, showing that OT
is impossible and giving protocols for BC and strongly-fair CF with bias 1/r.
Section 4 contains the discussion and some open problems.

2 The Model: Ideal Functionalities

Many two-party functionalities are easy to implement using a trusted third party
that follows pre-agreed rules. In proving that a two-party protocol is secure, we
often want to say that it behaves “as if it were performed using the trusted third
party”. A formalization of this idea is the “Universally Composable” model de-
fined by Canetti [7]. In the UC model, the trusted third party is called the
ideal functionality. The point of the model is that protocols that are secure in
the UC have very strong security properties, such as security under composi-
tion and security that is retained when the protocol is used as a sub-protocol
to replace an ideal functionality. This security guarantee allows us to simplify
many of our proofs, by showing separately the security of their component sub-
protocols.

Note that our impossibility results are not specific to the UC model: the
impossibility results for BC (in the full version of the paper), OT (Section 3)

Basing Cryptographic Protocols on Tamper-Evident Seals 289

and the lower bound for strongly fair CF (also in the full version) hold even for
the much weaker “standard” notions of these functionalities1.

In this section we formally define tamper-evident envelopes in terms of their
ideal functionalities. For completeness, we also give the definitions of the primi-
tives we are trying to implement (CF, BC, and OT). We restrict ourselves to the
two-party case, and to adversaries that decide at the beginning of the protocol
whether to corrupt one of the parties or neither.

Distinguishable Envelopes. This functionality models an opaque envelope
(or scratch-off card). Without opening the envelope it is impossible to determine
its contents. Any party can decide to rip open the envelope (breaking the seal),
but this will be evident to the envelope’s creator if the envelope is returned.

In succeeding sections, we assume we are given a realization of this function-
ality and attempt to construct a protocol for a “target” functionality (these are
described below)

Functionality FDE contains an internal table that consists of tuples of the
form (id, value, creator, holder, state). The table represents the state and loca-
tion of the tamper-evident envelopes, and contains one entry for each existing
envelope, indexed by the envelope’s id. We denote valueid, creatorid, holderid

and stateid the corresponding values in the table in row id (assuming the row
exists). The table is initially empty. The functionality is as follows, running with
parties P1, . . . , Pn and adversary S:

Seal (id, value). On receiving this command from party Pi, if this is the first
message with id id store the tuple (id, value, Pi, Pi, sealed) in the table (if
this is not the first message with id id, do nothing).

Send (id, Pj). On receiving this command from party Pi, the functionality
checks if an entry for envelope id appears in the table and that holderid = Pi.
If so, it outputs (Receipt, id, Pi, Pj) to Pj and S and replaces the entry in the
table with (id, valueid, creatorid, Pj , stateid). Otherwise, it does nothing.

Open id. On receiving this command from Pi, the functionality checks that an
entry for envelope id appears in the table, that holderid = Pi. If not, the
message is ignored. Otherwise, it sends (Opened, id, valueid, creatorid) to Pi

and S. It then replaces the entry in the table with
(id, valueid, creatorid, holderid,broken).

Verify id. On receiving this command from Pi, the functionality checks that
an entry for envelope id appears in the table and that holderid = Pi. If not,
the message is ignored. If so, it considers stateid. If stateid = broken it sends
(Verified, id,broken) to Pi and S. Otherwise, it sends (Verified, id, ok) to Pi

and S.

A Note about Notation. In the interests of readability, we will often refer to par-
ties “preparing”, “verifying” and “opening” envelopes, instead of specifying that

1 We do assume the “interface” supplied by the envelope primitives is the one defined
by the ideal functionality (e.g., we do not allow putting one envelope inside another).

290 T. Moran and M. Naor

they send the corresponding messages (Seal, Verify, Open) to the functionality
and wait for the appropriate response.

Weakly Fair Coin Flipping. This functionality models coin flipping in which
the result of the coin flip can be 0, 1 or ⊥. The result of the flip c should
satisfy: Pr[c = 0] ≤ 1

2 and Pr[c = 1] ≤ 1
2 . This is usually what is meant when

talking about “coin flipping” (for instance, in Blum’s protocol [6]). The ⊥ result
corresponds to the case where one of the parties deviated from (or prematurely
aborted) the protocol. Under standard cryptographic assumptions (such as the
existence of one-way functions), weakly fair coin flipping is possible. Conversely,
in the standard model the existence of weakly fair coin flipping implies one-way
functions [17].

Functionality FWCF is as follows, with parties Alice and Bob (in this defini-
tion we only allow Bob to trigger an invalid output):

Value. The sender of this command is called the initiator. The other party is
the receiver. When this command is received, the functionality chooses a
uniform value d ∈ {0, 1}. If the receiver is corrupted, the functionality then
outputs “approve d” to the receiver. In that case, the functionality ignores
all input until it receives either a Continue command or a Stop command
from the receiver. If the receiver is not corrupted, the functionality proceeds
as if he had sent a Continue command.

Stop. When this command is received from a corrupt receiver (in response
to an “approve d” message) the functionality outputs ⊥ to all parties and
halts.

Continue. When this command is received from the receiver (in response to
an “approve d” message), the functionality outputs “coin is d” to all parties
and halts.

Strongly Fair Coin Flipping with Bias p (Adapted from [7]). This func-
tionality models a coin flip between two parties with a bounded bias. If both
parties follow the protocol, they output an identical uniformly chosen bit. Even
if one party does not follow the protocol2, the other party outputs a random bit
whose bias towards 0 or 1 is at most p.

Functionality FSCF is as follows:

Value. When this command is received for the first time from any party, the
functionality chooses a value d ∈ {0, 1}. It then outputs “accept d?” to
the adversary. If the adversary responds with no, with probability p the
functionality outputs “value 1− d” to all parties and with probability 1− p
outputs “value d” to all parties. If the adversary responds with yes (or does
not respond), the functionality outputs “value d” to all parties.

2 In “not following the protocol” we include halting (failing to respond). The UC
model does not explicitly handle this behaviour, however we can treat it as a special
“halt” command that can be sent by the adversary.

Basing Cryptographic Protocols on Tamper-Evident Seals 291

Bit Commitment (Adapted from [7]). Functionality FBC :

Commit b. The issuer of this command is called the sender, the other party
is the receiver. On receiving this command the functionality records b and
outputs “committed” to the receiver. It then ignores any other commands
until it receives the Open command from the sender.

Open. On receiving this command from the sender, the functionality outputs
“opened b” to the receiver.

2.1 Intermediate Functionalities

In order to simplify the presentation, in the following sections we will present
protocols that realize functionalities that are slightly weaker than the ones we
want. We then use standard amplification techniques to construct the “full”
functionalities from their weak version. In this section we define these inter-
mediate functionalities and give the amplification lemmas we use to construct
the stronger versions of these primitives. These definitions are in the spirit
of [13].

(p, q)-Weak Bit-Commitment. This functionality models bit commitment
where a corrupt sender can cheat with probability q while a corrupt receiver can
cheat with probability p. The result of failing to cheat is asymmetric. In the case
of a corrupt receiver, an unsuccessful attempt to cheat causes the sender to be
notified, while a corrupt sender risks nothing in attempting to cheat. Note that
an (ε, ε)-WBC protocol is a regular bit-commitment protocol when ε is negligible.
Formally, functionality F(p,q)−WBC proceeds as follows:

Commit b. The issuer of this command is called the sender, the other party
is the receiver. On receiving this command the functionality records b and
outputs “committed” to the receiver. It then ignores any other commands
until it receives an Open command from the sender, an OpenFlip command
from a corrupt sender or a Break command from a corrupt receiver.

Open b. On receiving this command from the sender, the functionality checks
that the sender previously sent a Commit b command. If so, or if the sender
is corrupt and previously sent a CanEquivocate command whose response
was “Can Equivocate”, the functionality outputs “opened b” to the receiver.
Otherwise the command is ignored.

CanEquivocate On receiving this command from a corrupt sender, choose a
value r uniformly in [0, 1]. If r ≥ q send “No Equivocation” to the sender and
ignore further CanEquivocate messages. If r < q send “Can Equivocate”
to the sender.

Break On receiving this command from a corrupt receiver, choose a value r
uniformly in [0, 1]. If r ≥ p send “cheating receiver” to the sender and receiver
and then halt. Otherwise, send b to the receiver.

We can amplify any (p, q)-WBC protocol when p, q < 1, meaning that the
existence of such a protocol implies the existence of regular BC.

292 T. Moran and M. Naor

Theorem 1. Let P be a (p, q)-WBC protocol and p, q < 1. Then there exists an
(ε, ε)-WBC for any ε > 0 using O

(
log2

(
1
ε

))
invocations of P .

The proof for this theorem is straightforward, and will be given in the full version.

(p, q)-Remotely Inspectable Seal (RIS). This functionality is used in our
protocol for strongly fair CF. It is a strengthened version of a tamper-evident
seal. With a tamper-evident seal, only its holder can interact with it. Thus,
either the sender can check if it was opened, or the receiver can verify that the
sealed contents were not changed, but not both at the same time. A remotely
inspectable seal is one that can be tested “remotely” (without returning it to
the sender). Unfortunately, we cannot realize the ideal version, and therefore
relax it somewhat: we allow a corrupt receiver to learn the committed bit during
the verification process, and only then decide (assuming he did not previously
break the seal) whether or not the verification should succeed. Our definition
is actually a further relaxation3: both sender and receiver may cheat with some
probability. A corrupt sender can cause the result of the Open command to be
a uniformly random value (instead of a specific value determined in the commit
stage). The receiver will catch the sender with probability at least 1−q. A corrupt
receiver who opens the commitment before the verify stage will be caught with
probability 1− p.

Formally, the functionality maintains an internal state variable v = (vb, vs)
consisting of the committed bit vb and a “seal” flag vs. It accepts the commands:

Commit b. The issuer of this command is called the sender, the other party is
the receiver. b can be either 0, 1 or (if the sender is corrupt) ⊥. If b ∈ {0, 1}
(the sender did not try to cheat), the functionality sets v ← (b, sealed). If
b =⊥ (the sender tried to cheat) with probability q (the sender cheated
successfully) v ← (r, sealed) (where r is randomly chosen from {0, 1}) and
with probability 1 − q it sets v ← (⊥, sealed) In any case the functional-
ity concludes by outputting “committed” to the receiver, and ignoring any
subsequent Commit commands.

Open. This command is sent by the receiver. If vb ∈ {0, 1} the functionality
outputs “opened b” to the receiver. Otherwise it outputs “invalid” to the
receiver. If vs = sealed, with probability 1 − p the functionality sets vs ←
open

Verify. If vs �= sealed, the functionality outputs “invalid” to the sender. Oth-
erwise (no opening was detected), the functionality outputs “verifying value
b” to the adversary and waits for a response. If the adversary responds with
ok, the functionality outputs “sealed” to the sender, otherwise it outputs
“invalid” to the sender. After receiving this command from the sender (and
responding appropriately), the functionality ignores any subsequent Verify
commands.

3 This second relaxation is only for convenience; we can remove it using amplification
as noted in Theorem 2.

Basing Cryptographic Protocols on Tamper-Evident Seals 293

A (p, q)-Remotely Inspectable Seal can be amplified for any p < 1 and q ≤ 1:

Theorem 2. Let P be a (p, q)-RIS protocol p < 1 and q ≤ 1. Then there exists
an (ε, ε)-RIS for any ε > 0 using O

(
log2

(
1
ε

))
invocations of P

Note that the amplification works even if q = 1: this is because the adversary
doesn’t have full control over the revealed bit but can only cause it to be a
random bit. The proof of this theorem will appear in the full version.

3 Capabilities of the Distinguishable Envelope Model

Oblivious Transfer is Impossible. Let Alice be the sender and Bob the re-
ceiver. Consider Alice’s bits a0 and a1, as well as Bob’s input c, to be random
variables taken from some arbitrary distribution. Alice’s view of a protocol ex-
ecution can also be considered a random variable VA = (a0, a1, rA, N1, . . . , Nn),
consisting of Alice’s bits, random coins (rA) and the sequence of messages that
comprise the transcript as seen by Alice. In the same way we denote Bob’s view
with VB = (c, rB ,M1, . . . ,Mn), consisting of Bob’s input and random coins and
the sequence of messages seen by Bob.

The essence of oblivious transfer (whether universally composable or not) is
that Bob gains information about one of Alice’s bits, but Alice does not know
which one. We can describe the information Bob has about Alice’s bits using
Shannon entropy, a basic tool of information theory. The Shannon entropy of a
random variable X, denoted H(X) is a measure of the “uncertainty” that resides
in X. When X has finite support: H(X) = −

∑
x Pr[X = x] log Pr[X = x].

Suppose Bob’s view of a specific protocol transcript is vB . What Bob learns
about ai (i ∈ {0, 1}) can be described by the conditional entropy of ai given
Bob’s view of the protocol. We write this H(ai | VB = vB). If Bob knows ai at
the end of the protocol then H(ai | VB = vB) = 0 since there is no uncertainty
left about the value of ai given Bob’s view. If Bob has no information at all
about ai then H(ai | VB = vB) = 1, since there are two equally likely values of
ai given Bob’s view.

We show that in any protocol in the DE Model, Alice can calculate the
amount of information Bob has about each of her bits:

Theorem 3. For any protocol transcript where VA = vA and VB = vB, both
H(a0 | VB = vB) and H(a1 | VB = vB) are completely determined by vA.

In any OT protocol, Bob must have full information about ac (c is Bob’s “choice”
bit): H(ac | VB = vB) = 0, and no information at all about a1−c: H(ac | VB =
vB) = 1. The theorem states that in this case Alice can determine c, violating
the “obliviousness” requirement of the protocol.

Due to space considerations, we do not give the proof of Theorem 3 here. The
basic idea is that for any injection f and any random variable Y , the event Y = y
is identical to the event f(Y) = f(y). Therefore, for any two random variables
X and Y , it holds that H(X | Y = y) = H(X | f(Y) = f(y)). We show an

294 T. Moran and M. Naor

injection from VB to VA, rB , c. Since rB and c must be independent of (a0, a1),
we can conclude that Alice can compute H(a0 | VB = vB) and H(a1 | VB = vB)
for any transcript. A similar argument holds for Bob.

A
(
3
4
, 1

2

)
-Weak Bit Commitment Protocol. We will show a weak bit com-

mitment protocol, and apply Theorem 1 to amplify the protocol and construct
a “standard” bit commitment protocol.

To implement Commit b:

1. Bob prepares four sealed envelopes, two containing a 0 and two a 1 in random
order. Bob sends the envelopes to Alice

2. Alice opens three envelopes (chosen randomly), and verifies that they are
not all the same. Let r be the value in the remaining (sealed) envelope. Alice
sends d = b⊕ r to Bob.

To implement Open:

1. Alice sends b and the sealed envelope to Bob.
2. Bob verifies that it is sealed, then opens it. He checks that d = b⊕ r.

Intuitively, Bob can cheat only by sending three envelopes with the same bit in
the commit phase. However, Alice will catch him with probability 1

4 . Alice can
cheat by opening less than three envelopes (and guessing d). She will then be
caught in the open phase with probability at least 1

2 . A proof of security will
appear in the full version.

A Strongly Fair Coin Flipping Protocol with Bias O(1
r
). The construc-

tion uses remotely inspectable seals (defined in Sec. 2.1), which we then show
how to implement in the DE model. The idea is similar to the “standard” CF
protocol using BC: Alice commits to a random bit a. Bob sends Alice a random
bit b, after which Alice opens her commitment. The result is a⊕ b.

The reason that this is not a strongly fair CF protocol is that Alice learns
the result of the toss before Bob, and can decide to quit before opening her
commitment. Using RIS instead of BC solves this problem, because Bob can
open the commitment without Alice’s help.

Ideally, we would like to replace BC with RIS (and have Alice verify that Bob
didn’t break the seal before sending b). This seems to work; If Bob quits before
verification, or if the verification fails, Alice can use a as her bit, because Bob
had to have decided to quit before seeing a. If Bob quits after verification (and
the verification passed), Alice can use a⊕ b, since Bob sent b before learning a.
This idea fails, however. The reason is that RIS allows Bob to see the committed
bit during verification. If he doesn’t like it, he can cause the verification to fail.

We can overcome the problem with probability 1− 1
r by doing the verification

in r rounds. The trick is that Alice secretly decides on a “threshold round”: after
this round a failure in verification won’t matter. Bob doesn’t know which is the
threshold round (he can guess with probability at most 1/r). If Bob decides to
stop before the threshold round, either he did not attempt to illegally open a

Basing Cryptographic Protocols on Tamper-Evident Seals 295

commitment (in which case his decision to stop cannot depend on the result of
the coin flip), or he illegally opened all the remaining commitments (opening
less than that gives no information about the result). In this case all subsequent
verifications will fail, so he may as well have simply stopped at this round (note
that the decision to open is made before knowing the result of the coin flip).
Clearly, anything Bob does after the threshold round has no effect on the result.
Only if he chooses to illegally open commitments during the threshold round
can this have an effect on the outcome (since in this case, whether or not the
verification fails determines whether Alice outputs a or a⊕ b). The full protocol
is as follows:
1. Alice chooses r random bits a1, . . . , ar and commits to each bit using the

RIS scheme (this is done in parallel). Denote a = a1 ⊕ · · · ⊕ ar,
2. Bob chooses a random bit b. If Alice quits before finishing the commit stage,

Bob outputs b. Otherwise, he sends b to Alice.
3. If Bob quits before sending b, Alice outputs a. Otherwise, Alice chooses a

secret index j ∈ {1, . . . , r}.
4. The protocol now proceeds in r rounds. Round i has the following form:

(a) Alice verifies that Bob did not open the commitment for ai.
(b) Bob opens the commitment for ai.

5. If the verification is successful up to round j (and Bob didn’t quit up to
round j), Alice outputs a⊕ b. Otherwise, Alice outputs a.

6. Bob always outputs a ⊕ b (If Alice quits before completing the verification
rounds, Bob opens the commitments without verification).

Implementation of Remotely Inspectable Seals. We start by giving a
(1
2 , 1)-RIS protocol. We can then apply Theorem 2 to amplify it to (ε, ε)-RIS

for some negligible ε. To implement Commit b:

1. Alice sends two envelopes to Bob, each containing the bit b.

To implement Verify:

1. Alice initiates a (weakly fair) coin flip with Bob.
2. Denote the result of the coin flip r. Bob returns envelope r to Alice.
3. Alice waits for the result of the coin flip and the envelope from Bob. If the

result is ⊥, or if Bob does not return an envelope, Alice outputs “opened”.
Otherwise, Alice verifies that Bob returned the correct envelope, and that
it is still sealed. If both of these conditions are not satisfied, she outputs
“sealed”, otherwise she outputs “opened”.

To implement Open:

1. Bob randomly chooses one of the envelopes in his possession (if he already
returned one to Alice during the Verify stage then he opens the one he has
left). He outputs the contents of the envelope.

296 T. Moran and M. Naor

4 Discussion and Open Problems

The protocols we describe in this paper can be performed by unaided humans,
however they require too many “envelopes” to be practical for most uses. It
would be useful to construct protocols that can be performed with a smaller
number of envelopes or with a smaller number of rounds.

Another point worth mentioning is that the protocols we construct only re-
quire one of the parties to seal and verify envelopes. Thus, the binding property
is only used in one direction, and the tamper-evidence and hiding properties
in the other. This property is useful when we want to implement the protocols
in a setting where one of the parties may be powerful enough to open the seal
undetectably. (for instance, in the context of voting, where one of the parties
could be “the government” while the other is a private citizen)

In both the weakly and strongly fair CF protocols, only the first round re-
quires envelopes to be created, and their contents do not depend on communi-
cation with the other party. This allows the protocols to be implemented using
scratch-off cards (which must be printed in advance). In particular, the weakly
fair CF protocol can be implemented with a scratch-off card using only a small
number of areas to be scratched (this protocol is given in the full version).

In the case of BC, our protocol requires the powerful party to be the receiver.
It would be interesting to construct a BC protocol for which the powerful party
is the sender (i.e., only the sender is required to to seal and verify envelopes).

References

1. D. Aharonov, A. Ta-Shma, U. V. Vazirani, and A. C. Yao. Quantum bit escrow.
In STOC ’00, pages 705–714, 2000.

2. A. Ambainis, M. Jakobsson, and H. Lipmaa. Cryptographic randomized response
techniques. In PKC ’04, volume 2947 of LNCS, pages 425–438, 2004.

3. R. J. Anderson. Security Engineering: A Guide to Building Dependable Distributed
Systems. John Wiley & Sons, Inc., 2001.

4. M. Blaze. Cryptology and physical security: Rights amplification in master-keyed
mechanical locks. IEEE Security and Privacy, March 2003.

5. M. Blaze. Safecracking for the computer scientist. U. Penn CIS Department
Technical Report, December 2004. http://www.crypto.com/papers/safelocks.pdf.

6. M. Blum. Coin flipping over the telephone. In Proceedings of IEEE COMPCON
’82, pages 133–137, 1982.

7. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067, 2000.

8. R. Cleve. Limits on the security of coin flips when half the processors are faulty.
In STOC ’86, pages 364–369, 1986.

9. R. Cleve and R. Impagliazzo. Martingales, collective coin flipping and discrete
control processes. http://www.cpsc.ucalgary.ca/ cleve/pubs/martingales.ps, 1993.

10. C. Crépeau. Efficient cryptographic protocols based on noisy channels. In Euro-
crypt ’97, volume 1233 of LNCS, pages 306–317, 1997.

11. C. Crépeau and J. Kilian. Achieving oblivious transfer using weakened security
assumptions. In FOCS ’88, pages 42–52, 1988.

Basing Cryptographic Protocols on Tamper-Evident Seals 297

12. I. B. Damg̊ard, S. Fehr, K. Morozov, and L. Salvail. Unfair noisy channels and
oblivious transfer. In TCC ’04, volume 2951 of LNCS, pages 355–373, 2004.

13. I. B. Damg̊ard, J. Kilian, and L. Salvail. On the (im)possibility of basing oblivious
transfer and bit commitment on weakened security assumptions. In Eurocrypt ’99,
volume 1592 of LNCS, pages 56–73, 1999.

14. R. Fagin, M. Naor, and P. Winkler. Comparing information without leaking it.
Commun. ACM, 39(5):77–85, 1996.

15. S. Flannery and D. Flannery. In Code: A Mathematical Journey. Algonquin Books
of Chapel Hill, 2002.

16. O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their
validity or all languages in NP have zero-knowledge proof systems. J. of the ACM,
38(3):691–729, July 1991.

17. R. Impagliazzo and M. Luby. One-way functions are essential for complexity based
cryptography. In FOCS ’89, pages 230–235, 1989.

18. H.-K. Lo and H. F. Chau. Why quantum bit commitment and ideal quantum coin
tossing are impossible. In PhysComp ’98, pages 177–187, 1998.

19. D. Mayers. Unconditionally secure quantum bit commitment is impossible. Phys.
Rev. Lett., (78):3414–3417, 1997.

20. M. Naor, Y. Naor, and O. Reingold. Applied kid cryptography or
how to convince your children you are not cheating, Mar. 1999.
http://www.wisdom.weizmann.ac.il/ naor/PAPERS/waldo.ps.

21. B. Schneier. The solitaire encryption algorithm, 1999. http://www.schneier.com/
solitaire.html.

Hybrid Trapdoor Commitments
and Their Applications�

Dario Catalano1 and Ivan Visconti2,��

1 CNRS-Ecole Normale Supérieure,
Laboratoire d’Informatique 45 Rue d’Ulm,

75230 Paris Cedex 05 - France
dario.catalano@ens.fr

2 Dip. di Informatica ed Appl. Università di Salerno Via S. Allende n. 2,
84081 Baronissi (SA) - Italy
visconti@dia.unisa.it

Abstract. We introduce the notion of hybrid trapdoor commitment
schemes. Intuitively an hybrid trapdoor commitment scheme is a primi-
tive which can be either an unconditionally binding commitment scheme
or a trapdoor commitment scheme depending on the distribution of
commitment parameters. Moreover, such two distributions are computa-
tionally indistinguishable. Hybrid trapdoor commitments are related but
different with respect to mixed commitments (introduced by Damg̊ard
and Nielsen at Crypto 2002). In particular hybrid trapdoor commit-
ments can either be polynomially trapdoor commitments or uncondi-
tionally binding commitments, while mixed commitment can be either
trapdoor commitments or extractable commitments. In this paper we
show that strong notions (e.g., simulation sound, multi-trapdoor) of hy-
brid trapdoor commitments admit constructions based on the sole as-
sumption that one-way functions exist as well as efficient constructions
based on standard number-theoretic assumptions. To further stress the
difference between hybrid and mixed commitments, we remark here that
mixed commitments seems to require stronger theoretical assumptions
(and the known number-theoretic constructions are less efficient). The
main application of our results is that we show how to construct con-
current and simulation-sound zero-knowledge proof (in contrast to the
arguments recently presented in [1, 2, 3]) systems in the common refer-
ence string model. We crucially use hybrid commitment since we present
general constructions based on the sole assumption that one-way func-
tions exists and very efficient constructions based on number-theoretic
assumptions.

� Extended abstract. The full version of this paper can be found at
http://www.di.ens.fr/~catalano.

�� Work partially done while Ivan Visconti was a post-doctoral fellow at the
Département d’Informatique of the Ecole Normale Supérieure in Paris, France.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 298–310, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Hybrid Trapdoor Commitments and Their Applications 299

1 Introduction

Commitment schemes are arguably among the most important and useful primi-
tives in cryptography. Intuitively a commitment scheme can be seen as the digital
equivalent of a sealed envelope. If a party A wants to commit to some message m
she just puts it into the sealed envelope, so that whenever A wants to reveal the
message, she opens the envelope. Clearly, such a mechanism can be useful only
if it meets some basic requirements. First of all the digital envelope should hide
the message: no party other than A should be able to learn m from the commit-
ment (this is often referred in the literature as the hiding property). Second, the
digital envelope should be binding, meaning with this that A cannot change her
mind about m, and by checking the opening of the commitment one can verify
that the obtained value is actually the one A had in mind originally (this is of-
ten referred as the binding property). These two properties make commitments
very useful in a wide range of cryptographic applications such as zero-knowledge
protocols, multi-party computation, digital auctions and electronic commerce.

A commitment scheme is a primitive to generate and open commitments.
More precisely a commitment scheme is a two-phase interactive protocol be-
tween two probabilistic polynomial time algorithms sender and receiver. In a
first stage (called the commitment phase) sender commits to a bit b using some
appropriate function Com which takes as input b and some auxiliary value r and
produces as output a value y. The value y is sent to receiver as a commitment
on b. In the second stage (called the decommitment phase) sender “convinces”
receiver that y is actually a valid commitment on b by revealing b and the aux-
iliary input r (if receiver is not convinced, it just outputs some special string).
The requirements that we make on a commitment scheme are the following ones.
First, if both sender and receiver behave honestly, then at the end of the de-
commitment phase receiver is convinced that sender had committed to bit b
with probability 1. This is often referred as the correctness requirement. Second
a cheating receiver cannot guess b with probability significantly better than
1/2. This is the so-called hiding property. Finally, a cheating sender should be
able to open a commitment (i.e., to decommit) with both b and 1− b only with
very small (i.e., negligible) probability (this is the binding property). Each of the
last two properties (i.e., hiding and binding) can be satisfied unconditionally or
relatively to a computational assumption. In our context (i.e., where only two
parties are involved) this immediately implies that one cannot hope to build
a commitment scheme where both the hiding and the binding properties hold
unconditionally. Unconditionally binding commitment schemes have been con-
structed under the sole assumption that one-way functions exist [4] and in such
a construction an initial message of the receiver is required. It is known how to
construct non-interactive unconditionally binding commitment schemes by using
any one-way permutation [5]. Constant-round (actually 2-round) uncondition-
ally hiding commitment schemes have been constructed under the assumption
that collections of claw-free functions exist [5].

Since commitment schemes are very useful primitives they are often used as
building blocks to construct larger protocols. In this sense it is often the case

300 D. Catalano and I. Visconti

that the two basic requirements described above turn out to be insufficient. For
this reason commitment schemes with additional properties have been proposed.

A trapdoor commitment scheme (sometimes also called chameleon commit-
ment), is a commitment scheme with associated a pair of public and private
keys (the latter also called the trapdoor). Knowledge of the trapdoor allows the
sender to open the commitment in more than one way (this is often referred as
the equivocality property). On the other hand, without knowledge of the trap-
door, equivocality remains computationally infeasible. When the commitments
computed by means of a trapdoor are distributed exactly as real commitments
then the trapdoor commitment scheme is unconditionally hiding. Instead, the
equivocality property allows only computationally binding trapdoor commitment
schemes.

1.1 Our Contributions

In this paper we introduce the notion of hybrid trapdoor commitment schemes.
Informally an hybrid trapdoor commitment scheme is a general commitment
primitive that allows for two commitment parameters generation algorithms
HGen and HTGen. If the commitment parameters are obtained as the output
of HGen then the resulting scheme is an unconditionally binding commitment
scheme, while if the parameters are generated by HTGen the produced scheme is
actually a trapdoor commitment scheme. Moreover, as for mixed commitments,
no polynomially bounded adversary, taking as input only the (public) commit-
ment parameters, should be able to tell the difference between keys generated
from HGen and keys produced by HTGen.

Comparison with Mixed Commitments. Notice that the notion of hybrid
trapdoor commitment may look very similar to that of mixed commitment in-
troduced in [6]. There is a crucial difference however. Depending on the way
the parameters are generated a mixed commitment can be either an extractable
commitment or a trapdoor commitment. In our case, on the other hand, we re-
quire only that the commitment is either unconditionally binding or a trapdoor
commitment scheme. As mentioned before, mixed commitments have been intro-
duced to construct universally composable commitments and indeed Damg̊ard
and Nielsen proved that it is possible to construct a universally composable com-
mitment from a mixed commitment where the number of E-keys (over the total
number of keys) is negligible and that the number of X-keys (over the total
number of keys) is only negligibly less than 1. Interestingly, a recent result by
Damg̊ard and Groth [7] shows that universally composable commitments im-
ply key exchange and, when implemented in the shared random string model,
they imply oblivious transfer. Therefore it seems unlikely that universally com-
posable commitments (in the sense of [6]) can be implemented from one-way
functions only. In this paper, on the other hand, we show that hybrid trapdoor
commitments can be constructed from any one-way function.

Efficient Implementations. To improve on efficiency we then turn our at-
tention to specific number-theoretic constructions and in particular we propose

Hybrid Trapdoor Commitments and Their Applications 301

a very efficient implementations that relies on the Decisional Diffie-Hellmann
assumption (other constructions based on Paillier’s [8] Decisional Composite
Residuosity Assumption can be found in the full version of this paper).

Stronger Extensions. As a second major contribution of this paper, we study
some stronger extensions of hybrid trapdoor commitments. In particular we show
how to build hybrid simulation-sound trapdoor commitments (hybrid SSTC, for
short) and hybrid multi-trapdoor commitments from the sole assumption that
one-way functions exist. Note that for the case of multi-trapdoor commitments
their equivalence to one-way functions was not known. In this paper we show that
multi-trapdoor commitment schemes are actually equivalent to digital signatures
which are secure with respect to generic chosen message attack. Informally in a
generic chosen message attack the adversary can obtain signatures only on a list
of messages chosen before the public key of the signer is published. This is clearly
a weaker notion with respect to the standard one where the adversary is allowed
to choose the messages adaptively. Since SSTC’s are actually equivalent to stan-
dard secure signatures, from a practical point of view, our result further clarifies
why the known (practical) implementations of multi-trapdoor commitments are
more efficient than the corresponding implementations of SSTC.

Applications. We use the different variants of hybrid trapdoor commitments
for achieving the following applications. Using hybrid trapdoor commitments we
show how to construct 3-round concurrent zero-knowledge proof systems, in the
common reference string model, for all NP languages. We give a construction
based on the existence of any one-way function and an efficient construction
that is based on the DDH assumption. These results improves the computational
soundness achieved in a previous result by Damg̊ard [1] in the sense that ours
are actually zero-knowledge proofs rather than zero-knowledge arguments. Using
either hybrid SSTC or hybrid multi-trapdoor commitments we show how to
construct an unbounded simulation-sound zero-knowledge proof system in the
common reference string model. This improves the recent results of [3, 2] where
similar results were presented for unbounded simulation-sound zero-knowledge
arguments (rather than proofs).

Proofs vs Arguments. A proof system has the following property: any adver-
sarial prover (regardless of his computing power) has negligible probability of
making a honest verifier accept a false statement. This strong notion of sound-
ness differs from the corresponding notion of soundness of an argument system,
where security for honest verifiers holds only against polynomial-time adversar-
ial provers. The notions of argument and proof differ dramatically when zero
knowledge is considered. For example, while it is known that any NP language
has a perfect zero-knowledge argument [9], if an NP-complete language has a
perfect zero-knowledge proof then the polynomial hierarchy collapses to its sec-
ond level [10, 11]. With respect to constant-round zero knowledge, the current
state of knowledge gives us a constant-round (computational) zero-knowledge
proof for NP under the assumption that collections of claw-free functions ex-

302 D. Catalano and I. Visconti

ist [5], while constant-round zero-knowledge arguments for NP are known to
exist under the assumption that one-way functions exist [12].

As discussed above, in this paper we show that our new notion of commitment
scheme can be used to obtain some strong variants of zero-knowledge proof
systems improving the current state-of-the art in which only arguments have
been shown.

2 Definitions

We now give some basic definitions that we will use in this paper. We use the
notation {β1, . . . , βk : α} to specify the probability distribution of α after the se-
quential executions of events β1, . . . , βk. In general, we assume that an algorithm
A has access to some random (auxiliary) input even though this is not explicitly
specified. Moreover, if A is a probabilistic algorithm we denote with A(x) the
random variable describing the output of A on input x. We say that a function ν
is negligible iff for all constants c there exists n0 such that for all n > n0 it holds
that 0 < ν(n) < 1

nc . A binary relation R is polynomially bounded if it is decid-
able in polynomial time and there exists a polynomial p such that for all pairs
(x, y) ∈ R it holds that |y| ≤ p(|x|). We denote by LR = {x|∃y : (x, y) ∈ R} the
NP-language associated with R. For an NP-language L we denote by RL the
witness relation associate with L defined as x ∈ L ⇔ ∃y : (x, y) ∈ RL. We now
give definitions for several notions of commitment schemes. For readability we
will use “for all x” to mean any possible string x of length polynomial in the se-
curity parameter. We start with the standard notion of commitment scheme with
its two main variants (i.e., unconditionally binding and unconditionally hiding).
Note that all definitions will use a commitment generator function that outputs
the commitment parameters. Therefore, such commitments have a straightfor-
ward implementation in the common reference string model where a trusted third
party generates a reference string that is later received as common input by all
parties. In some cases the commitment parameters generated by the commitment
generator function will be strings with uniform distribution; in such cases the
corresponding commitments can be implemented in the shared random string
model which is a set-up assumption weaker than the common reference string
model. For the sole sake of simplicity, in the following definitions, we consider
the case in which the commitment parameters are used for computing a single
commitment. However all the definitions can be extended so that the same com-
mitment parameters can be used for any polynomial number of commitments
(and actually all our results hold in this stronger setting).

Definition 1. (Gen, Com, Ver) is a commitment scheme if:

- efficiency: Gen, Com and Ver are polynomial-time algorithms;
- completeness: for all v it holds that

Prob
(
crs← Gen(1k); (com, dec)← Com(crs, v) : Ver(crs, com, dec, v) = 1

)
= 1;

Hybrid Trapdoor Commitments and Their Applications 303

- binding: there is a negligible function ν such that for any polynomial-time
algorithm sender it holds that

Prob
(
crs← Gen(1k); (com, v0, v1, dec0, dec1) ← sender(crs) :

Ver(crs, com, dec0, v0) = Ver(crs, com, dec1, v1) = 1) ≤ ν(k);

- hiding: for all crs generated with non-zero probability by Gen(1k), for all
v0, v1 where |v0| = |v1| the probability distributions:

{(com0, dec0)← Com(crs, v0) : com0} and {(com1, dec1)← Com(crs, v1) : com1}

are computationally indistinguishable.

If the binding property holds with respect to a computationally unbounded
algorithm sender, the commitment scheme is said unconditionally binding; if
instead, the hiding property holds with respect to a computationally unbounded
algorithm receiver, the commitment scheme is said unconditionally hiding.

We now give the definition of a trapdoor commitment scheme.

Definition 2. (Gen, Com, TCom, TDec, Ver) is a trapdoor commitment scheme
(TCS, for short) if Gen(1k) outputs a pair (crs, aux), Gencrs is the related algo-
rithm that restricts the output of Gen to the first element crs, (Gencrs, Com, Ver)
is a commitment scheme and TCom and TDec are polynomial-time algorithms such
that:
- trapdoorness: for all v the probability distributions:

{(crs, aux) ← Gen(1k); (com, dec) ← Com(crs, v) : (crs, com, dec, v)} and

{(crs, aux) ← Gen(1k); (com′, auxcom′) ← TCom(crs, aux); dec′ ← TDec(auxcom′ , v′) :

(crs, com′, dec′, v′)}

are computationally indistinguishable.

The definitions of commitment and trapdoor commitment schemes presented
above can be extended by adding one more input to algorithms Com,Ver and
TCom that is, a label referred to as “tag”. In this case, algorithm Ver has an
additional constraint, it outputs 1 only if the same tag has been used as input
by algorithms Com or TCom. In particular, we will use such a tag-based definition
of commitment when we will consider the notion of simulation-sound trapdoor
commitment.

The definitions of multi-trapdoor commitment schemes and simulation-sound
trapdoor commitment schemes are deferred to the full version of this paper.
Now we are ready to introduce the notion of hybrid trapdoor commitment. As
sketched in the introduction, such a notion consider the existence of two commit-
ment generation functions whose outputs are computationally indistinguishable.
Still the properties of the two resulting commitment schemes are very different.
We start with the basic notion of hybrid trapdoor commitment scheme.

304 D. Catalano and I. Visconti

Definition 3. (HGen, HTGen, HCom, HTCom, HTDec, HVer) is an hybrid trapdoor
commitment scheme (HTCS, for short) if:

- binding: (HGen, HCom, HVer) is an unconditionally binding commitment
scheme;

- trapdoorness:(HTGen, HCom, HTCom, HTDec, HVer) is a trapdoor commitment
scheme.

- hybridness: let HTGen′ be an algorithm that restricts the output (crs, aux)
of HTGen(1k) to crs, then the following probability distribution are com-
putationally indistinguishable: {crs0 ← HGen(1k) : crs0} and {crs1 ←
HTGen′(1k) : crs1}.

The notion given above can be extended to be a tag-based commitment
scheme (as for the case of standard trapdoor commitment schemes).

We now define the notions of hybrid multi-trapdoor and hybrid simulation-
sound trapdoor commitment schemes. We stress that for the latter we focus on
tag-based commitments (obtained by adding a label - the tag - as input to the
algorithms that compute and verify commitments).

Intuitively, since multi-trapdoor and simulation-sound trapdoor commitment
schemes define families of trapdoor commitment schemes, for the hybrid variant
of such primitives, we require that each scheme in the family is an hybrid trapdoor
commitment scheme.

Definition 4. (HGen, HTGen, HSel, HTkg, HCom, HTCom, HTDec, HVer) is an hybrid
multi-trapdoor commitment scheme (HMTCS, for short) if:

- multi trapdorness: (HTGen, HSel, HTkg, HCom, HTCom, HTDec, HVer) is a
multi-trapdoor commitment scheme;

- hybridness: let HGen′(1k) (resp., HTGen′) be an algorithm that outputs pk
(resp., (pk, tk)) if and only if (crs, aux) (resp., crs′, aux′) is the output
of HGen(1k) (resp., HTGen(1k)) and pk (resp., (pk, tk)) is the output of
HSel(crs) (resp., HSel(crs′) and HTkg(aux′, HSel(crs′))); then it holds that
the following tuple of algorithms (HGen′, HTGen′, HCom, HTCom, HTDec, HVer) is
an hybrid trapdoor commitment scheme.

Definition 5. (HGen, HTGen, HCom, HTCom, HTDec, HVer) is an hybrid simulation-
sound trapdoor commitment scheme (HSSTCS, for short) if:

- simulation soundness: (HTGen, HCom, HTCom, HTDec, HVer) is a simulation-
sound trapdoor commitment scheme;

- hybridness: (HGen, HTGen, HCom, HTCom, HTDec, HVer) is an hybrid trapdoor
commitment scheme.

3 Hybrid Trapdoor Commitments: Constructions

We now show that hybrid trapdoor commitment schemes exist under standard
assumptions. In particular, for each definition, we show both a construction based

Hybrid Trapdoor Commitments and Their Applications 305

on general primitives and a practical construction based on number-theoretic
assumptions. The constructions and therefore the proofs that we give under
complexity-based assumptions are modular, thus we only briefly discuss the ef-
ficient implementations. We start with a construction for an hybrid trapdoor
commitment scheme. The main idea of the proof is the following. The algorithm
that generates the reference string uses Naor’s commitment scheme (which is
based on the existence of one-way functions) to write in the reference string a
commitment com of the string 0k. The commitment computed by the prover
is the first message a of the Σ-protocol for proving that com is a commitment
of 1k. Since this is a false statement, there exists only one challenge m and a
third message z such that (a,m, z) is an accepting transcript. Therefore a is an
unconditionally binding commitment of message m. The sender can compute a
commitment a of m by running on input m the simulator of the honest-verifier
zero knowledge property, and obtains the pair (a, z) as output. The algorithm
that generates the fake reference string, instead, computes com as a commitment
of 1k. In this case, for each valid first message a, and any possible challenge m,
it is always possible to compute z such that (a,m, z) is an accepting transcript.

Theorem 1. Under the assumption that one-way functions exist, there exists
an hybrid trapdoor commitment scheme.

Next, we – constructively – show how to construct an efficient scheme based
on the decisional Diffie-Hellman assumption. More details can be found in the
full version of this paper, here we only describe the basic idea underlying our
construction. The common reference string contains a quadruple (g, h, gr1 , hr2)
which is either a Diffie-Hellman quadruple or a random one. Consider a Σ pro-
tocol ∇ to prove equality of two discrete logarithms. We use ∇ to prove that
g1 = gr1 and h1 = hr2 have the same discrete logarithm with respect to bases
g and h, respectively. If the quadruple is a random one the instance for the
Σ-protocol is false. Consequently a commitment to a message m can be com-
puted only using the simulator of the Σ protocol for obtaining an accepting
transcript (a,m, z) where a is the commitment key and (m, z) is the decommit-
ment key. On the other hand when the quadruple in the shared random string
is a Diffie-Hellman one, then knowledge of r1 = r2 (the trapdoor) allows to send
a commitment key a that can later be opened as any possible message m. This
is because, by running the prover algorithm of the Σ-protocol on input r1 = r2

(as witness) and m (as challenge), it is always possible to find a z such that
(a,m, z) is an accepting transcript. The efficiency of this commitment scheme
directly follows from the efficiency of the considered Σ-protocol. This informal
discussion leads to the following theorem.

Theorem 2. Under the assumption that the Decisional Diffie-Hellman problem
is hard, there exists an efficient hybrid trapdoor commitment scheme.

A construction for hybrid multi-trapdoor (resp., simulation-sound trapdoor)
commitment schemes may seem, at first, much harder to achieve. After all, multi-
trapdoor commitments need more parameters (with respect to basic trapdoor

306 D. Catalano and I. Visconti

ones) and, to have an hybrid version of them, we need to make sure that these
parameters remain distributed in a way such that it should be hard to say which
of the two commitment generation algorithms was used to produce them.

Informally, we solve this problem by composing a multi-trapdoor (resp,
simulation-sound trapdoor) commitment scheme with an hybrid trapdoor com-
mitment scheme as the one described so far. The composition is made by con-
sidering the concatenation of both commitment parameters. Moreover all the op-
erations made by the committing and decommitting algorithms are performed
twice, once for each subscheme. Intuitively, using this technique, when a multi-
trapdoor (resp., simulation-sound trapdoor) commitment scheme is composed
with the hybrid trapdoor commitment scheme instantiated as a trapdoor com-
mitment scheme, the resulting scheme is still a multi-trapdoor (resp., simulation-
sound trapdoor) commitment scheme. On the other hand, if the hybrid trapdoor
commitment scheme is instantiated as an unconditionally binding commitment
scheme, then then resulting scheme is unconditionally binding. By the indistin-
guishability of the commitment parameters of the two instantiations we obtain
the desired result.

Theorem 3. Under the assumption that multi-trapdoor commitment scheme ex-
ist there exists an hybrid multi-trapdoor commitment scheme.

Note that, with the theorem above, we show how to construct hybrid multi-
trapdoor commitments from the hypothesis that multi-trapdoor commitments
exist. It is quite natural then to ask if is it possible to base the existence of multi-
trapdoor commitments on some weaker‘ assumption. Here we give a positive
answer to this question and in particular we show that multi-trapdoor commit-
ments exist if and only if secure signature against generic chosen message attack
exist. Notice that one-way functions are equivalent to secure signatures [13] in
the sense of [14], which, in turn, imply secure signature against generic chosen
message attack exist. This means that theorem 3 can be restated as follows.

Theorem 4. Under the assumption that one-way functions exist, there exists
an hybrid multi-trapdoor commitment scheme.

As for the case of hybrid trapdoor commitments we give an efficient imple-
mentation.

Theorem 5. Under the assumption that the strong RSA and DDH problems are
hard, (or under the assumption that the strong Diffie Hellman [15] and DDH
problems are hard), there exists an efficient hybrid multi-trapdoor commitment
scheme.

Similar results can be proved for the case of hybrid Simulation Sound trapdoor
commitments.

Theorem 6. Under the assumption that one-way functions exist, there exists
an hybrid simulation-sound trapdoor commitment scheme.

Hybrid Trapdoor Commitments and Their Applications 307

Theorem 7. Under the assumption that the DSA signature scheme is secure
and the DDH problem is hard, (or under the assumption that the Cramer-Shoup
signature scheme [16] is secure and the DDH problem is hard), there exists an
efficient hybrid simulation-sound trapdoor commitment scheme.

4 Hybrid Trapdoor Commitments: Applications

In this Section we describe some important applications of our primitive. In par-
ticular we show that hybrid trapdoor commitments can be used to construct
interactive protocols that achieve strong notions of zero knowledge [17]. More
precisely we improve the concurrent zero-knowledge arguments of [1] and both
the simulation-sound and the left-concurrent non-malleable zero-knowledge ar-
guments of [2, 3] by showing how to achieve zero-knowledge proofs (rather than
arguments). Therefore the security of our constructions holds even against com-
putationally unbounded provers. Moreover, our zero-knowledge proofs can be
based on the same complexity-theoretic assumptions used in [1, 2, 3]. The effi-
cient constructions also require the hardness of the DDH problem.

Concurrent Zero-Knowledge Proofs. In [1], 3-round concurrent zero-
knowledge arguments in the common reference string model are presented. More
precisely Damg̊ard [1] presents a general protocol based on the existence of one-
way functions only and an efficient implementation based on number-theoretic
assumptions. In this section we improve on this result by showing the exis-
tence of 3-round concurrent zero-knowledge proof (in contrast to argument)
systems in the common reference string model. The first construction needs
the sole assumption that one-way functions exist, while the second, more effi-
cient, construction relies on the decisional Diffie-Hellman assumption. Interest-
ingly the first construction holds in the shared random string model as well.
In our construction we consider unbounded black-box zero-knowledge proofs
with a non-rewinding simulator (which, consequently, is also concurrent zero
knowledge).

Theorem 8. If one-way functions exist, there exists a 3-round concurrent zero-
knowledge proof system in the common reference string model for any NP lan-
guage.

We remark here that, going through the details of the proof of Theorem 8 one
can easily verify that reference string used in the proof of Theorem 8 is uniformly
distributed. Thus we have the following corollary.

Corollary 1. If one-way functions exist, there exists a 3-round concurrent zero-
knowledge proof system in the shared random string model for any NP language.

Theorem 9. Given an NP-language L that admits an efficient Σ-protocol, then
under the DDH assumption there exists a 3-round concurrent zero-knowledge
proof system in the common reference string model for L.

308 D. Catalano and I. Visconti

Simulation-Sound Zero Knowledge. The notion of simulation soundness
has been used for the design of many secure cryptographic primitives (see for
instance [18]). Informally, a proof system is simulation sound if an adversary
that plays the role of verifier when the proofs are simulated for both true and
false instances, is not able to play as a prover another session of the protocol in
which he convinces an honest verifier of a false statement. In [3], MacKenzie and
Yang proposed 3-round unbounded simulation-sound zero-knowledge argument
systems in the common reference string model, in particular their arguments use
simulation-sound trapdoor commitment schemes, therefore they obtain efficient
argument systems based on the security of DSA [19] or the Cramer-Shoup [16]
signature schemes and argument systems based on the existence of one-way
functions. The multi-trapdoor commitments presented in [2] allow for more ef-
ficient constructions of unbounded simulation-sound zero-knowledge argument
systems. In this section we extend their results by showing the existence of
3-round unbounded simulation-sound zero-knowledge proof (in contrast to argu-
ment) systems in the common reference string model. We can achieve this result
either by using hybrid simulation-sound trapdoor commitments instead of non-
hybrid simulation-sound trapdoor commitments in the construction of [3] or by
using hybrid multi-trapdoor commitments instead of non-hybrid multi-trapdoor
commitments in the construction of [2]. For each of this two results we give a
first construction that needs the sole assumption that one-way functions exist.
Then we give a more efficient second construction that requires (on top of the
assumptions described for the efficient constructions of [3] and [2]) the decisional
Diffie-Hellman assumption.

Theorem 10. If one-way functions exist, there exists a 3-round unbounded
simulation-sound zero-knowledge proof system in the common reference string
model for any NP language.

Theorem 11. Given an NP-language L that admits an efficient Σ-protocol,
then under the assumption that DSA is a secure signature scheme and that the
DDH assumption hold (or that the Cramer-Shoup signature scheme is secure
and that the DDH assumption holds) there exists an efficient 3-round unbounded
simulation-sound zero-knowledge proof system in the common reference string
model for L.

We stress that the approach used to achieve simulation-sound zero-knowledge
proofs from hybrid simulation-sound trapdoor commitments (using the con-
struction of [3]) is quite general and can be used to build simulation-sound
zero-knowledge proofs from hybrid multi-trapdoor commitments (using the con-
struction of [2]). In the proof of Theorem 10 we show that, by replacing a (non-
hybrid) simulation-sound trapdoor commitment scheme with an hybrid one, an
unbounded simulation-sound zero-knowledge argument can be transformed into
an unbounded simulation-sound zero-knowledge proof. This same approach can
be used for the case of (non-hybrid) multi-trapdoor commitment schemes and
their application to unbounded simulation-sound zero-knowledge arguments [2]

Hybrid Trapdoor Commitments and Their Applications 309

(we stress that in [2] such a notion is referred to as left-concurrent non-malleable
zero-knowledge arguments).

Theorem 12. Given an NP-language L that admits an efficient Σ-protocol,
if collision-resistant hash functions exist then under the sRSA and the DDH
assumption or the sDH and the DDH assumptions there exists an efficient 3-
round unbounded simulation-sound zero-knowledge proof system in the common
reference string model for L.

Acknowledgments

The authors would like to thank Pino Persiano for many useful discussions on
zero knowledge proofs in the shared random string model.

The work described in this paper has been supported in part by the Euro-
pean Commission through the IST Programme under Contract IST-2002-507932
ECRYPT.

References

1. Damgard, I.: Efficient Concurrent Zero-Knowledge in the Auxiliary String Model.
In: Advances in Cryptology – Eurocrypt ’00. Volume 1807 of LNCS, Springer-
Verlag (2000) 418–430

2. Gennaro, R.: Multi-trapdoor Commitments and Their Applications to Proofs of
Knowledge Secure Under Concurrent Man-in-the-Middle Attacks. In: Advances in
Cryptology – Crypto ’04. Volume 3152 of LNCS, Springer-Verlag (2004) 220–236

3. MacKenzie, P., Yang, K.: On Simulation-Sound Trapdoor Commitments. In:
Advances in Cryptology – Eurocrypt ’04. Volume 3027 of LNCS, Springer-Verlag
(2004) 382–400

4. Naor, M.: Bit Commitment Using Pseudorandomness. Journal of Cryptology 4
(1991) 151–158

5. Goldreich, O., Kahan, A.: How to Construct Constant-Round Zero-Knowledge
Proof Systems for NP. Journal of Cryptology 9 (1996) 167–190

6. Damg̊ard, I., Nielsen, J.B.: Perfect Hiding and Perfect Binding Universally Com-
posable Commitment Schemes with Constant Expansion Factor. In: Advances in
Cryptology - Crypto ’02. Volume 2442 of LNCS, Springer-Verlag (2002) 581–596

7. Damg̊ard, I., Groth, J.: Non interactive and reusable non-malleable commitments.
In: 35th ACM Symposium on Theory of Computing, ACM (2003) 426–437

8. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In Stern, J., ed.: EUROCRYPT ’99, Volume 1592 of LNCS, Springer-
Verlag (1999) 223–238

9. Brassard, J., Chaum, D., Crepéau, C.: Minimum Disclosure Proofs of Knowledge.
Journal of Computer and System Science 37 (1988) 156–189

10. Fortnow, L.: The Complexity of Perfect Zero-Knowledge. In: 19th ACM Sympo-
sium on Theory of Computing (STOC ’87). (1987) 204–209

11. Boppana, R., Hastad, J., Zachos, S.: Does co-NP Have Short Interactive Proofs?
Inf. Process. Lett. 25 (1987) 127–132

310 D. Catalano and I. Visconti

12. Bellare, M., Jakobsson, M., Yung, M.: Round-optimal zero-knowledge arguments
based on any one-way function. In Fumy, W., ed.: Advances in Cryptology –
Eurocrypt ’97. Volume 1223 of LNCS, Springer-Verlag (1997) 280–305

13. Rompel, J.: One-Way Functions are Necessary and Sufficient for Digital Signa-
tures. In: 22nd ACM Symposium on Theory of Computing (STOC ’90). (1990)
12–19

14. Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against
adaptive chosen message attacks. In: SIAM J. on Computing. Volume 17-(2).
(1988) 281–308

15. Boneh, D., Boyen, X.: Short Signatures without Random Oracles. In: Advances in
Cryptology – Eurocrypt ’04. Volume 3027 of LNCS, Springer-Verlag (2004) 56–73

16. Cramer, R., Shoup, V.: Signature Schemes Based on the Strong RSA Assumption.
In: 6th ACM Conference on Computer and Communications Security (CCS ’99),
ACM (1999)

17. Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive
Proof-Systems. SIAM J. on Computing 18 (1989) 186–208

18. Sahai, A.: Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen-
Ciphertext Security. In: 40th Symposium on Foundations of Computer Science,
(FOCS ’99), IEEE Computer Society Press (1999) 543–553

19. NIST: Digital Signature Standard (DSS). FIPS PUB 186 (1998)

On Steganographic Chosen Covertext Security

Nicholas Hopper

University of Minnesota, 4-192 EECS,
200 Union St SE, Minneapolis MN 55455

hopper@cs.umn.edu

Abstract. At TCC 2005, Backes and Cachin proposed a new and very
strong notion of security for public key steganography: secrecy against
adaptive chosen covertext attack (SS-CCA); and posed the question of
whether SS-CCA security was achievable for any covertext channel. We
resolve this question in the affirmative: SS-CCA security is possible for
any channel that admits a secure stegosystem against the standard and
weaker “chosen hiddentext attack” in the standard model of compu-
tation. Our construction requires a public-key encryption scheme with
ciphertexts that remain indistinguishable from random bits under adap-
tive chosen-ciphertext attack. We show that a scheme with this property
can be constructed under the Decisional Diffie-Hellman assumption. This
encryption scheme, which modifies a scheme proposed by Kurosawa and
Desmedt, also resolves an open question posed by von Ahn and Hopper
at Eurocrypt 2004.

1 Introduction

Suppose that Alice and Bob are prisoners, and that their prison warden has
foolishly allowed them to send “harmless messages” between their cells, so long
as he may listen to everything they say. Steganography is the study of techniques
that allow Alice and Bob to hide arbitrary messages – hiddentexts – in their
apparently harmless communications (normally, covertexts) so that the warden
cannot detect the presence of these messages. The case where the prisoners
share a secret key has been studied extensively in both information-theoretically
[5] and computationally secure settings [13, 9]. Several recent papers have also
addressed the case in which one or both of the prisoners has a public key [1, 3,
17]. In this paper, we are only concerned with the bare public key scenario,
considered in [3], in which only Bob publishes a public key, and any prisoner can
send hidden information to Bob.

A recent paper by Backes and Cachin [3] considers the scenario where the
warden may also inject messages into the channel between Alice and Bob, and
observe Bob’s reaction to these messages. Roughly, [3] gives a formal model
of this scenario and defines a strong sense of security against this adversary:
a stegosystem is said to be steganographically secure against adaptive chosen
covertext attacks (SS-CCA) if, even in this case, the warden cannot tell whether
Alice’s messages contain hiddentexts. Analogously to the standard cryptographic

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 311–323, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

312 N. Hopper

notion of a chosen ciphertext attack, this seems to be the most general type of
attack possible on a system for steganography.

Backes and Cachin leave open the problem of constructing a stegosystem sat-
isfying SS-CCA, and instead address a relaxed notion of security, against adaptive
replayable chosen-covertext attacks (SS-PDR-CCA). Roughly, in this notion, the
warden is still allowed to inject messages into the channel between Alice and
Bob, except that he is now restricted from sending messages which are, in some
sense, replays of previous messages sent by Alice. Intuitively, two covertexts are
replays of each other with respect to a public key if they decode to the same
hiddentext. Backes and Cachin construct public-key stegosystems which satisfy
SS-PDR-CCA under a variety of assumptions.

While it is an important advancement to limit the adversary to replay attacks,
these attacks still constitute a serious threat against steganography. Imagine
that Alice sends Bob some message which prompts an “unusual” reaction; in a
replay attack, the warden can construct an apparently harmless covertext which
corresponds to the same hiddentext as Alice’s message, and send it to Bob.
If Bob has the same “unusual” reaction, in response to a different message, it
suggests to the warden that Alice’s covertext contained a hidden message.

In this paper, we show how the previously known schemes fail in defending
against replay attacks, and modify them to demonstrate the feasibility of the SS-
CCA security condition, for any efficiently sampleable channel. This is a stronger
assumption on the channel than in many previous works on steganography [1, 18,
9, 3], which assume only oracle access to the channel distribution. However, [14]
shows that any channel which admits a secure stegosystem at all (in the standard
model of computation) must be efficiently sampleable. Thus this construction
serves as a demonstration that the SS-CCA notion is feasible, even though our
particular construction may not always be practical to implement.

Our construction relies on the existence of public-key encryption schemes
which are pseudorandom against chosen-ciphertext attack, a nonstandard secu-
rity notion for encryption schemes. We also show that such encryption schemes
exist, without need of the random oracle assumption,1 under the Decisional Diffie-
Hellman assumption. The existence of an encryption scheme satisfying this no-
tion was an open question posed by von Ahn and Hopper [1].

Related Work. In addition to the work of Backes and Cachin [3], which we
build on, Le and Kurosawa [17] and von Ahn and Hopper [1] have both proposed
notions of security against “chosen stegotext attack.” The notion proposed in
[17] seems to be equivalent to SS-CCA; however the construction proposed there
requires that the receiver know the sender’s public key in order to decode. Sim-
ilarly, the SS-CSA notion of [1] explicitly includes the public key of the sender;
it can be thought of as an “attacker-specific” notion of security. However, the
security model of [1] is also intended to prevent forgery by the warden, which is
not a concern in the present model.

1 We note that several constructions in the random oracle model are known [4, 19].

On Steganographic Chosen Covertext Security 313

Both of these schemes require the sender to publish a public key. While this may
not be a concern for ordinary communication, it is undesirable for steganography.
This is because the aim of the sender in steganography is to avoid suspicion –
yet publishing a public key for a stegosystem may be inherently suspicious.

On the other hand, it is frequently the case, as [1] argue, that the receiver
of steganography need not avoid suspicion. This could be the case when, for
example, the receiver is a newspaper or government agency wishing to receive
whistle-blowing reports. Or when the receiver is a human-rights organization
that would like to receive reports from its volunteers in the field. Thus it is
important to have a construction which is secure in the bare public key model.

Other recent papers on foundations of steganography have focused on the
private key setting. Cachin [5] formulated a model for steganography in an
information-theoretic setting. Hopper et al [13] gave the first rigorous formulation
of steganography with computational security, and demonstrated the feasibility
of the notion with provably secure constructions. They also proposed the model
of communication which subsequent work has followed. Independently, Katzen-
beisser and Petitcolas [15] proposed a similar security condition. Dedić et al [9]
address bounds on communication rate for a generic stegosystem. Lysyanskaya
and Meyerovich [18] consider the possibility of an imperfect covertext oracle.

Anderson and Petitcolas [2] first proposed the possibility of public-key stegan-
ography and gave a heuristic construction. Craver [8] proposed a notion of public-
key steganography with heuristic security against removal of the hiddentext. von
Ahn and Hopper [1] were the first to formulate rigorous security definitions for
the public-key case and demonstrate that public-key steganography was feasible.

Notation. A function μ : N → [0, 1] is said to be negligible if for every c > 0, for
all sufficiently large n, μ(n) < 1/nc. We denote the length (in bits) of a string
or integer s by |s|. The concatenation of string s1 and string s2 will be denoted
by s1‖s2. The assignment a‖lb = c means that a is the first l bits of c and b is
the remaining |c|− l bits of c. We assume the existence of efficient, unambiguous
pairing and un-pairing operations, so (s1, s2) is not the same as s1‖s2.

We let Uk denote the uniform distribution on k bit strings. If V denotes
an event in some probability space, we denote its complement by V. If D is a
probability distribution with finite support X, we define the minimum entropy
of D, by H∞(D) = minx∈X{log2(1/PrD[x])}. For a probability distribution D,
we denote by x← D the action of drawing a sample x according to D. We denote
the statistical difference between distributions D and E , with finite support X,
by ‖D − E‖ = 1

2

∑
x∈X |PrD[x]− PrE [x]|.

2 Pseudorandomness Against Chosen-Ciphertext Attack

We will need to construct a public-key encryption scheme which satisfies a non-
standard security notion: indistinguishability from random bits under chosen-
ciphertext attack. A scheme satisfying this notion is also non-malleable [10]
and has pseudoranom ciphertexts [1]; the existence of a scheme simultaneously

314 N. Hopper

satisfying these latter notions without random oracles was an open question
posed by von Ahn and Hopper at Eurocrypt 2004 [1].

Let E be a public-key encryption scheme with message expansion function �.
We define a chosen-ciphertext attack against E as a game played by an oracle
adversary A:

1. ADSK (PK) outputs challenge message m∗ ∈ {0, 1}l∗ .
2. A is given a challenge ciphertext c∗, where either c← EPK(m∗) or c← U�(l∗).
3. A continues to query DSK subject to the restriction that A may not query

DSK(c∗). A outputs a bit.

We define A’s CCA advantage against E by

Advcca
E,A(k) =

∣∣Pr[ADSK (PK,EPK(m∗)) = 1]− Pr[ADSK (PK,U�) = 1]
∣∣ ,

where m∗ ← ADSK (PK) and (PK,SK) ← G(1k), and define the CCA inse-
curity of E by InSeccca

E (t, q, μ, l∗, k) = maxA∈A(t,q,,μ,l∗)

{
Advcca

E,A(k)
}

, where
A(t, q, μ, l∗) denotes the set of adversaries running in time t, that make q queries
of total length μ, and issue a challenge message m∗ of length l∗. Then E is
(t, q, μ, l∗, k, ε)-indistinguishable from random bits under chosen ciphertext at-
tack if InSeccca

E (t, q, μ, l∗, k) ≤ ε. E is called indistinguishable from random bits
under chosen ciphertext attack (IND$-CCA) if for every probabilistic polynomial
time (PPT) A, Advcca

A,E(k) is negligible in k.

We show a simple modification of an encryption scheme of Kurosawa and
Desmedt [16] (which itself is a modification of the original Cramer-Shoup en-
cryption scheme [7]) which satisfies IND$-CCA. The main modification to the
scheme is to use a dense encoding of the DDH subgroup and rejection sampling
to produce uniform k-bit strings.

Setup. We let pk, Qk be large primes such that p = 2Q+ 1 and 2k+1 > Q > 2k.
We let g ∈ Z∗

p have order Q, and define the maps lr : 〈g〉 → ZQ, qr : ZQ → 〈g〉
such that lr(v) = v if v ≤ Q and lr(v) = −v mod p otherwise; and qr(u) = u if u
is a quadratic residue modulo p and qr(u) = p−u otherwise. Notice that qr◦lr is
the identity map on the quadratic residues and lr◦qr is the identity map on ZQ.
We assume the Decisional Diffie Hellman (DDH) assumption: for any PPT A,
Advddh

A,g,p,Q(k) = |Prx,y←ZQ
[A(gx, gy, gxy) = 1] − Prx,y,z←ZQ

[A(gx, gy, gz) = 1]|
is negligible.

We assume the existence of a family of target collision-resistant hash functions
H : {0, 1}2k → ZQ,2 A universal family of hash functions Λ : ZQ → {0, 1}2k′

,
an IND$-CPA symmetric-key encryption scheme E,D with k′-bit keys,3 and a

2 So for any PPT A, Advtcr
A,H(k) = Prh←H [h(A(h(x))) = x : x← ZQ] is negligible.

3 So for any PPT A, Advcpa
A,E(k) = |PrK←Uk′ [A

EK (1k′
) = 1] − Pr[AU|·|(1k′

) = 1]| is
negligible.

On Steganographic Chosen Covertext Security 315

pseudorandom function family F : {0, 1}k′ × {0, 1}∗ → {0, 1}τ .4 Note that the
existence of all of these primitives is implied by the DDH assumption.

Key Generation. Choose random g1, g2 ∈ 〈g〉, and choose random x1,x2,y1,y2∈
ZQ. Compute the group elements c = gx1

1 gx2
2 , d = gy1

1 gy2
2 . Choose hash functions

H,Λ. The public key is (g1, g2, c, d,H,Λ) and the private key is (x1, x2, y1, y2).

Encryption. Given a message m ∈ {0, 1}∗, repeat the following steps:

– Choose r ← Zq.
– Compute u1 = lr(gr

1), u2 = lr(gr
2)

Until u1, u2 are both at most 2k. Then compute α = H(u1‖u2), v = crdrα,
(K,κ) = Λ(v), e = EK(m), T = Fκ(e). The ciphertext is u1‖u2‖e‖T .

Decryption. To decrypt the ciphertext u1‖u2‖e‖T , first compute α = H(u1‖u2)
and compute v = qr(u1)x1+y1αqr(u2)x2+y2α, K‖κ = Λ(v). Test whether T =
Fκ(e); if not output ⊥, otherwise output DK(e).

Theorem 1. If k ≥ 4k′, then

InSeccca
E (t, q, μ, l, k) ≤ 8InSectcr

H (t, k) + 12InSecddh
g,p,Q(t) + 4InSeccpa

E (t, 1, l, k′)

+ (16q + 4)InSecprf
F (t, q, μ, k′) + 8q(2−τ +2−k′+1) + 2−k′+4

The security proof appears in the full version and closely follows the security
proof for Kurosawa and Desmedt’s scheme given by Gennaro and Shoup [11].

3 Definitions

Channels. We follow previous work [13, 17, 1, 9] in modeling the communication
between two parties by a channel. We define a channel C as a family of probability
distributions on documents from a set D, indexed by sequences h ∈ D∗. A
channel implicitly defines an indexed distribution on sequences of � documents
— given index h, draw d1 ← Ch, d2 ← C(h,d1), . . ., d� ← C(h,d1,...,d�−1). We call
the index h the history and label this distribution on sequences by C�

h. A history
h = (d1, d2, . . . , d�) is called legal (denoted h ∈ H) if for all i, PrC(d1,...,di−1) [di] >
0. A channel is always informative if for every legal history h, H∞(C�

h) = Ω(�).
We will require that a channel be efficiently sampleable: there is an efficiently

computable algorithm channel such that channel(h,Uk) and Ch are computation-
ally indistinguishable.5 This is in contrast to the models of [13, 9, 1, 3], where the

4 So for any PPT A, Advprf
A,F (k) = |PrK←Uk′ [A

FK (1k′
) = 1] −

Prf :{0,1}∗→{0,1}τ [Af (1k′
) = 1]| is negligible.

5 Some examples of widely used channels satisfying this notion include: scientific sim-
ulations, cryptography and security protocols, computer games, financial modeling,
weather forecasts, etc.

316 N. Hopper

channel is assumed to be accessible only via a probabilistic oracle. While results
in that model are in some sense more general, we refer the reader to [14] for a
proof that in the standard model of computation, sampleability is necessary for
secure steganography.

Since it is widely believed that all natural processes can be computed in
probabilistic polynomial time [12], we do not in theory rule out steganography
for any realistic channels by requiring the channel to be sampleable. On the
other hand, it is conceivable that there are channels which we can currently
sample physically but not computationally, and thus in practice it is still an
open problem to design a stegosystem which is SS-CCA secure for such channels.

Public-Key Stegosystem. A public-key stegosystem S is a triple of proba-
bilistic algorithms:

– S.Generate (abbreviated SG) takes as input a security parameter 1k and
generates a key pair (ρ, σ) ∈ PK × SK.

– S.Encode (abbreviated SE) takes as input a public key ρ ∈ PK, a string
m ∈ {0, 1}∗ (the hiddentext), and a channel history h. SE(ρ,m, h) returns a
sequence of documents s1, s2, . . . , sl (the stegotext) from the support of Cl

h.
– S.Decode (abbreviated SD) takes as input a secret key σ ∈ SK, a sequence

of documents s1, s2, . . . , sl, and a channel history h. SD(σ, s, h) returns a
hiddentext m ∈ {0, 1}∗.

We require that a stegosystem is correct: for every polynomial p(k) there exists
a negligible ν(k) such that for every m ∈ {0, 1}p(k), legal history h, and (ρ, σ) ∈
[SG(1k)], Pr[SD(σ, SE(ρ,m, h), h) = m] ≥ 1− ν(k).

Chosen-Covertext Attack. In an adaptive chosen-covertext attack against a
public-key stegosystem S, a challenger draws a key pair (ρ, σ) ← SG(1k), and
an adversary W is given PK and allowed oracle access to SDσ. The attacker
produces a challenge hiddentext m∗ and history h∗ and is given as a response a
sequence of documents s∗ ∈ D�(|m∗|). After this, the attacker continues to query
SD with the restriction that he may not query SD(s∗). (As always, W may
depend on the channel distribution C) At the conclusion of the attack, W must
guess whether s∗ ← SE(ρ,m∗, h∗) or s∗ ← C�∗

h∗ . We define the (steganographic)
Chosen-Covertext Advantage of W against S with respect to C by

Advscca
S,C,W(k) =

∣∣∣Pr[WSDσ (PK,SE(ρ,m∗, h∗)) = 1]− Pr[WSDσ (ρ, Cl∗
h∗) = 1]

∣∣∣ ,

where (m∗, h∗) ←WSDσ (ρ) and (ρ, σ) ← SG(1k). We define the sCCA insecurity
of S with respect to C by

InSecscca
S,C (t, q, μ, l∗, k) = max

W∈W(t,q,μ,l∗)

{
Advscca

S,C,W(k)
}

,

where W(t, q, μ, l∗) denotes the class of all W running in time t which make at
most q oracle queries of μ bits and submit a challenge hiddentext of length at
most l∗.

On Steganographic Chosen Covertext Security 317

We say that S is (t, q, μ, l, k, ε) secure against chosen-covertext attack with
respect to C if InSecscca

S,C (t, q, μ, l, k) ≤ ε, and that S is secure against chosen-
covertext attack with respect to C (SS-CCA) if Advscca

S,C,W(k) is negligible for all
PPT W .

4 Previous Constructions

Both previously known constructions of (bare) public-key steganography [1, 3]
have a common structure. Let F denote a strongly universal family of hash
functions f : D → {0, 1}. Let f ← F be chosen as part of a public key, or fixed
as a “common reference string.” Then both constructions use the routine shown
in figure 1 to hide uniformly chosen bits in C.

Proposition 1. Let C be always informative and f ← F . Then for any h ∈ H,

‖(f, sample(h,U1, k))− (f, Ch)‖ ≤ 2−H∞(Ch)/2 .

The proposition is a direct consequence of the leftover hash lemma. If the
channel is always-informative, sample can operate on samples from Ck

h and in-
duce only a negligible statistical difference in its output distribution. The basic
construction of a stegosystem, HashRS, is shown in figure 2, where (G,E,D) is
a public-key cryptosystem which has pseudorandom ciphertexts.

Informally, the scheme works by transforming the hiddentext into a uniform-
looking ciphertext c = EPK(m). The ciphertext bits are then used one at a time
(or w at a time, with sampling costs and statistical difference increased by a
factor of 2w) to select covertexts that hash (via f) to the bits of the ciphertext,

Procedure sample:
Input: target c ∈ {0, 1}, history h, bound k
Let j = 0
repeat:

sample s← Ch, increment j
until f(s) = c OR (j > k)
Output: s

Fig. 1. Sampling routine

Procedure Encode:
Input: m ∈ {0, 1}l, h, PK
Draw c1 · · · c� ← E(PK,m)
for i = 1 . . . � do

set si = sample(ci, (h, s1,...,i−1), k).
Output: s1, s2, . . . , s�

Procedure Decode:
Input: s1, s2, . . . , sl, SK
for i = 1 . . . l do

set ci = f(si)
set c = c1||c2|| · · · ||cl.
Output: D(K, c)

Fig. 2. HashRS Stegosystem

318 N. Hopper

using sample. Since the ciphertext looks uniform, the covertexts thus selected will
be indistinguishable from samples from Ch. Decoding applies f to each covertext
document to recover the ciphertext c, and then decrypts this ciphertext using
SK to compute the hiddentext m = DSK(c).

The Backes-Cachin construction instantiates HashRS with a public-key en-
cryption scheme which satisfies two properties. First, it must be PDR-CCA se-
cure, as defined by Canetti et al [6]. Second, the encryption scheme should have
pseudorandom ciphertexts: given the public key it was encrypted under, a ci-
phertext should be computationally indistinguishable from a random string of
the same length. When instantiated with a public-key cryptosystem satisfying
these properties, we call the resulting stegosystem BC.

Intuitively, the SS-PDR-CCA security of the BC scheme arises from the fact
that W is disallowed from submitting covertexts that decode to the same hidden-
text. Thus an attack W against BC can easily be turned into a PDR-CCA attack
A against the underlying encryption scheme. The main technical step is in simu-
lating decryption queries: whenever W queries the decoding oracle on a covertext
s = s1, . . . , s�, the PDR-CCA attacker computes a ciphertext c = c1, . . . , c� by
setting ci = f(si). If the ciphertext c is a replay of the challenge ciphertext c∗,
then the stegotext s is also a replay, so A responds to W with ⊥. Otherwise A
queries his decryption oracle at c and returns the result to W .

This standard simulation technique also hints at a CCA attack against the
BC stegosystem. We now formally describe the attack W . On input PK, W
uniformly picks a challenge message m∗ ← Ul∗ . On receiving the challenge
covertext s∗, W computes c∗ by setting c∗i = f(s∗i). W computes a “replay”
covertext s′ ← sample((h∗, s∗), c∗, k). Finally, W queries the decryption oracle
on s′. If SDSK(s′) = m∗, W outputs 1 and otherwise W outputs 0. It is obvious
that when s∗ ∈ SE(PK,m∗, h∗), then we will have that SD(SK, s′, h∗) = m∗

except when encoding fails, since otherwise unique decryption requires that
DSK(c∗) = DSK(EPK(m∗)) = m∗. On the other hand, when s∗ ← C�

h, then m∗

and s∗ are chosen independently of each other, so Pr[DSK(c∗) = m∗] ≤ 2−l∗ .

Proposition 2. For every l∗, there exists a negligible function ν(k) such that

Advscca
W,BC(k) ≥ 1− 2−l∗ − ν(k)

Note that the “replay” covertext will be indistinguishable from a sample from
the channel, so the decoder would have no reason not to decode it and act on any
information contained in the hiddentext. Thus this attack is reasonable, in that
it could be applied in a realistic scenario, rather than being merely an artifact
of the model. Of course the adversary might further attempt to replay the exact
stegotext; this latter attack is, however, impossible to defeat.

5 Our Construction

Intuitively, the reason the attack in the previous section succeeds is that even
though the underlying ciphertext is non-malleable, there are many possible en-

On Steganographic Chosen Covertext Security 319

Procedure DEncode:
Input: bits c1, . . . , cl, history h, bound k, randomness r1, . . . rlk ∈ {0, 1}k

Let ι = 0; for i = 1 . . . l do
Let j = 0; repeat:

compute si = channel((h, s1...i−1), rι); increment j, ι
until f(si) = ci OR (j > k)

Output: s1, s2, . . . , sl

Fig. 3. Deterministic Encode

Procedure Encode:
Input: m ∈ {0, 1}�, h, PK
Choose r ← Uk

Let c = EPK(r‖m)
Let r = G(r)
Output: DEncode(c, h, k, r)

Procedure Decode:
Input: s1, . . . , sl, h, SK
Let c = f(s1)‖ · · · ‖f(sl)
Let r‖km = DSK(c).
Set r = G(r).
If s �= DEncode(c, h, k, r) return ⊥.
Output: m

Fig. 4. SCCA Stegosystem

codings of the ciphertext. This observation immediately suggests a possible im-
provement: design a sampling method such that each ciphertext corresponds
to exactly one stegotext. Indeed, the construction of [17] seems to have this
property, but this construction inherently requires a shared secret between the
encoder and the decoder. Likewise, the “attacker-specific” construction of [1]
seems to achieve a similar property, but validity of a stegotext is determined
by the sender’s public key. Our construction modifies this latter approach to
remove this dependence on the sender, and also removes the reliance on the
random oracle model from that construction.

We make use of the fact that we have an efficiently sampleable channel C,
and will make use of the “deterministic encoding” routine shown in figure 3.
This algorithm works in a similar manner to the HashRS.Encode algorithm, with
the exception that the randomness for sampling is an explicit argument. Thus
for a given sequence of lk random inputs, this routine has exactly one possible
encoding for any message c ∈ {0, 1}l. Thus if an l-bit, non-malleable, ciphertext
can determine the lk bits of sampling randomness to be used in its encoding, we
can prevent replay attacks. One way to do this is to apply a random oracle to
the randomness used in producing the ciphertext; this approach was used by [1].
We instead use a pseudorandom generator to expand an k-bit seed into an lk-bit
sequence and then include this seed in the plaintext. Proving the security of this
approach requires some additional care, because now it is conceivable that the
sampling algorithm could leak information about the plaintext.

We now formally describe our construction. We will assume that E is a public-
key IND$-CCA secure encryption scheme, and (PK,SK) ← E .G(1k). Further-
more, we assume that for any l, Pr[DSK(Ul) �=⊥] ≤ ν(k) for some negligible
ν. Thus, valid ciphertexts, which do not decrypt to ⊥, have negligible density.
For convenience, we assume that for all m, |EPK(m)| = �(|m|), for some poly-

320 N. Hopper

nomial �. We will also assume that G : {0, 1}k → {0, 1}k×lk is a pseudorandom
generator. The final scheme SCCA is shown in Figure 4.

Theorem 2. Let f ← F and let ε = maxh∈H
{

2−H∞(Ck
h)/2

}
= 2−Ω(k) . Then

InSecscca
SCCA,C(t, q, μ, l, k) ≤ InSeccca

E (t′, q, μ, l, k)+ν(k)+�(l+k)ε+InSecprg
G (t′, k),

where t′ ≤ t + O(lk).

Proof. Choose an arbitrary W ∈ W(t, q, μ, l); let (PK,SK) ← G(1k) and let
(m∗, h∗) ← WSDSK (PK). We will bound Advscca

W,SCCA,C(k) by considering the
following sequence of hybrid distributions:

– D1: C�(l+k)
h∗

– D2: DEncode(U�(l+k), h
∗, k, Uk×lk)

– D3: DEncode(U�(l+k), h
∗, k,G(Uk))

– D4: DEncode(EPK(r‖m∗), h∗, k,G(r)), where r ← Uk

Clearly D4 perfectly simulates the stegotext distribution, and likewise D1 per-
fectly simulates the covertext distribution. For convenience, we will define the
quantity Advi

W (k) =
∣∣Pr[WSD(PK,Di+1) = 1]− Pr[WSD(PK,Di) = 1]

∣∣, and
note that

Advscca
W,SCCA,C(k) =

∣∣Pr[WSD(PK,D4) = 1]− Pr[WSD(PK,D1) = 1]
∣∣

≤ Adv1
W (k) + Adv2

W (k) + Adv3
W (k).

Thus we proceed to bound Advi
W (k) for i ∈ {1, 2, 3}.

Lemma 1. Adv1
W (k) ≤ �(l + k)ε

Proof. This follows because ‖f(Ch) − U1‖ ≤ ε, and no (nonuniform) efficient
process can increase statistical distance.

Lemma 2. Adv2
W (k) ≤ InSecprg

G (t′, k)

Proof. We will construct a PRG adversary A for G such that Advprg
A,G(k) =

Adv2
W (k). A works as follows: first, A picks a key pair (PK,SK) ← G(1k)

to use in responding to the queries W makes to SD. A is given as input a
string r ∈ {0, 1}k×lk and asked to decide whether r ← Uk×lk or r ← G(Uk).
Then A can achieve advantage precisely Adv2

W (k) by emulating W , responding
to its decoding queries using SK, and responding to the challenge hiddentext
(m∗, h∗) by drawing c← U�(l+k) and giving the response s = DEncode(c, h, k, r).
If r ← Uk×lk, then s← D1, and if r ← G(Uk), then s← D2. Thus A’s advantage
in distinguishing G(Uk) and Uk×lk is exactly:

Advprg
A,G(k) = |Pr[A(G(Uk)) = 1]− Pr[A(Uk×lk) = 1]|

=
∣∣Pr[WSD(D2) = 1]− Pr[WSD(D1) = 1]

∣∣
= Adv2

W (k)

On Steganographic Chosen Covertext Security 321

Lemma 3. Adv3
W (k) ≤ InSeccca

E (t′, q,μ, k) + ν(k)

Proof. We will construct an adversary A that plays the chosen-ciphertext attack
game against E with advantage Advcca

A,E(k) ≥ Adv3
W (k).

A starts by emulating W to get a challenge hiddentext, responding to decod-
ing queries as follows: on query (s1, . . . , sl, h), A computes c = f(s1)‖ · · · ‖f(sl);
A then uses its decryption oracle to compute r‖km = DSK(c). If c �=⊥ and
s = DEncode(c, h, k,G(r)), A returns m, otherwise A returns ⊥.

When W generates challenge (m∗, h∗), A chooses r∗ ← Uk and outputs
the challenge r∗‖m∗. A is given the challenge ciphertext c∗ and returns s∗ =
DEncode(c∗, h∗, k,G(r∗)) to W .

A continues to emulate W , responding to queries as before, except that on
decoding query (s1, . . . , sl, h), A first checks whether f(s1)‖ · · · ‖f(sl) = c∗; if so,
A returns ⊥ rather than querying DSK(c∗).

In other words, A simulates running SCCA.Decode with its DSK oracle, except
that because A is playing the IND$-CCA game, he is not allowed to query DSK

on the challenge value c∗: thus a decoding query that has the same underlying
ciphertext c∗ must be dealt with specially.

Notice that when A is given an encryption of r∗‖m∗, he perfectly simulates
D4 to W , so that Pr[ADSK (PK,EPK(r∗‖m∗) = 1] = Pr[WSD(PK,D4) = 1].
This is because when c∗ = EK(r∗‖m∗) then the test s = DEncode(c, h, k,G(r))
would fail anyways. Likewise, when A is given a random string, he perfectly
simulates D3 to W , given that c∗ is not a valid ciphertext. Let us denote the
event that c∗ is a valid ciphertext by V, and the event that a sample from D3

encodes a valid ciphertext by U; notice that by construction Pr[U] = Pr[V]. We
then have that

Pr[AD(PK,U�)=1] = Pr[AD(PK,U�)=1|V] Pr[V]+Pr[AD(PK,U�)=1|V] Pr[V]

≤ Pr[WSD(PK,D3) = 1|U] Pr[U] + Pr[V]

≤ Pr[WSD(PK,D3) = 1] + Pr[V]

≤ Pr[WSD(PK,D3) = 1] + ν(k) ,

since Pr[V] ≤ ν(k) by assumption on E . Combining the cases, we find that

Advcca
A,E(k) = Pr[ADSK (PK,EPK(r∗‖m∗) = 1]− Pr[ADSK (PK,U�) = 1]

= Pr[WSD(PK,D4) = 1]− Pr[ADSK (PK,U�) = 1]

≥ Pr[WSD(PK,D4) = 1]− Pr[WSD(PK,D3) = 1]− ν(k)

= Adv3
W (k)− ν(k)

Remark. As described, the stegosystem SCCA requires the decoder to know the
algorithm channel used by the encoder to sample from C. This can be avoided by
changing the encoder to append a canonical encoding of this algorithm to the
hiddentext before encrypting; the decoder then recovers this algorithm before
running the final DEncode check. Since the length of the algorithm is constant,
the security bounds for the resulting scheme are essentially unchanged.

322 N. Hopper

6 Conclusion and Open Problems

We have argued for the importance of a SS-CCA-secure stegosystem in the bare
public key model, and given the first construction which meets this criterion.
This resolves an open question posed by Backes and Cachin [3]. Furthermore, our
construction relies on a public-key cryptosystem which is pseudorandom against
chosen-ciphertext attack in the standard model. The existence of a cryptosystem
satisfying this notion was an open problem posed by von Ahn and Hopper [1].
Because replay attacks are a realistic possibility, this represents an important
advance over previous work.

One interesting direction for future work is to investigate the relationship
between efficiently sampleable channels and the probabilistic channel oracle no-
tion of earlier work. Designing a SS-CCA stegosystem in this setting seems to
be a challenging problem. Another important notion of security against active
attacks is robustness — the property that an attacker is unable to “remove” the
hiddentext from a message. Hopper et al [13] define a weak notion of robustness
and give a robust construction in the private key case. To our knowledge, there is
no provably secure construction satisfying this definition in the public-key case.
It is interesting to note that SS-CCA and robustness are inherently contradic-
tory, since robustness requires that a replay attack is possible. Thus it is also
an interesting question whether some notion of robustness with decoding oracles
can be achieved, even in the private key case.

References

1. L. von Ahn and N. Hopper. Public-Key Steganography. In: Advances in Cryptology
– Proceedings of Eurocrypt ’04, 2004.

2. R. J. Anderson and F. A. P. Petitcolas. On The Limits of Steganography. IEEE
Journal of Selected Areas in Communications, 16(4), pages 474-481, 1998.

3. M. Backes and C. Cachin. Public-Key Steganography with Active Attacks. In:
Proc. Second Theory of Cryptography Conference (TCC), 2005.

4. M. Bellare and P. Rogaway. Random Oracles are Practical. In: Proc. First ACM
Conference on Computer and Communications Security (CCS 1993), 1993.

5. C. Cachin. An Information-theoretic model of steganography. In: Information
Hiding, 2nd International Workshop, pages 306-318, 1998.

6. R. Canetti, H. Krawczyk, and J. Nielsen. Relaxing chosen-ciphertext security. In:
Advances in Cryptology – CRYPTO 2003, 2003.

7. R. Cramer and V. Shoup. A practical public-key cryptosystem provably secure
against adaptive chosen ciphertext attack. Advances in Cryptology: CRYPTO 98,
Springer LNCS 1462, pages 13-27, 1998.

8. S. Craver. On Public-key Steganography in the Presence of an Active Warden.
Proceedings of Second International Information Hiding Workshop, Springer LNCS
1525, pages 355-368, 1998.

9. N. Dedić, G. Itkis, L. Reyzin and S. Russell. Upper and lower bounds on black-box
steganography. In: Proc. Second Theory of Cryptography Conference (TCC), 2005.

10. D. Dolev and C. Dwork and M. Naor. Nonmalleable Cryptography. SIAM J.
Computing, 30(2), pages 391–437, 2000.

On Steganographic Chosen Covertext Security 323

11. R. Gennarro and V. Shoup. A Note on an Encryption Scheme of Kurosawa and
Desmedt. IACR e-print archive report 2004/194, 2004.

12. O. Goldreich. Foundations of Cryptography: volume 1 – Basic Tools. Cambridge
University Press, 2001.

13. N. J. Hopper, J. Langford, and L. Von Ahn. Provably Secure Steganography. In:
Advances in Cryptology – CRYPTO 2002, Springer LNCS 2442, pages 77-92, 2002.

14. N.J. Hopper. Toward a theory of steganography. Ph.D. The-
sis, Carnegie Mellon University, July 2004. Available online:
http://reports-archive.adm.cs.cmu.edu/anon/2004/abstracts/04-157.html

15. S. Katzenbeisser and F. A. P. Petitcolas. Defining Security in Steganographic
Systems. In: Proceedings of the SPIE vol. 4675, Security and Watermarking of
Multimedia Contents IV, pp. 50-56, 2002.

16. K. Kurosawa and Y. Desmedt. A New Paradigm of Hybrid Encryption Scheme.
In: Advances in Cryptology – Proceedings of CRYPTO ’04, 2004.

17. T. V. Le and K. Kurosawa. Efficient public key steganography secure against
adaptive chosen stegotext attacks. IACR e-print archive report 2003/244, 2003.

18. A. Lysyanskaya and M. Meyerovich. Steganography with imperfect sampling. At:
CRYPTO 2004 Rump Session, August 2004.

19. B. Möller. A Public-Key Encryption Scheme with Pseudorandom Ciphertexts. In:
Computer Security – ESORICS 2004, 2004.

Classification of Boolean Functions of 6
Variables or Less with Respect to Some

Cryptographic Properties�

An Braeken1, Yuri Borissov2, Svetla Nikova1, and Bart Preneel1

1 Department Electrical Engineering - ESAT/SCD/COSIC,
Katholieke Universiteit Leuven, Kasteelpark Arenberg 10,

B-3001 Leuven, Belgium
{an.braeken, svetla.nikova, bart.preneel}@esat.kuleuven.ac.be

2 Institute of Mathematics and Informatics,
Bulgarian Academy of Sciences,

8 G.Bonchev, 1113 Sofia, Bulgaria
yborisov@moi.math.bas.bg

Abstract. This paper presents an efficient approach to the classifica-
tion of the affine equivalence classes of cosets of the first order Reed-
Muller code with respect to cryptographic properties such as correlation-
immunity, resiliency and propagation characteristics. First, we apply
the method to completely classify with this respect all the 48 classes
into which the general affine group AGL(2, 5) partitions the cosets of
RM(1, 5). Second, after distinguishing the 34 affine equivalence classes
of cosets of RM(1, 6) in RM(3, 6) we perform the same classification for
these classes.

1 Introduction

Many constructions of Boolean functions with properties relevant to cryptogra-
phy are recursive. The efficiency of the constructions relies heavily on the use of
appropriate functions of small dimensions. Another important method for con-
struction is the random and heuristic search approach. As equivalence classes
are used to provide restricted input of such optimization algorithms, it is very
important to identify which equivalence classes obtain functions with desired
properties.

In this paper, we present an efficient approach (based on some group-
theoretical considerations) for the classification of affine equivalence classes of
cosets of the first order Reed-Muller code with respect to cryptographic prop-
erties such as correlation-immunity, resiliency, propagation characteristics and

� The work described in this paper has been supported in part by the European Com-
mission through the IST Programme under Contract IST-2002-507932 ECRYPT and
by Concerted Research Action GOA Ambiorix 2005/11 of the Flemish Government.
An Braeken is research assistent of the FWO.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 324–334, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Classification of Boolean Functions of 6 Variables 325

their combinations. We apply this method to perform a complete classification of
all the 48 orbits of affine equivalent cosets of RM(1, 5) (classified by Berlekamp
and Welch [1] according to weight distributions), with respect to the above men-
tioned cryptographic properties. Partial results for this case on the existence
and their number have already been mentioned in [3, 13, 14, 16]. In this paper,
we study this problem into more detail and show in which classes these functions
appear and how to enumerate them. The method also allows us, if necessary, to
generate all the Boolean functions of 5 variables that possess good cryptographic
properties. Our approach can also be extended for Boolean functions of higher
dimension. As an illustration we apply it to the cubic functions of 6 variables
using a proper classification of the cosets of RM(1, 6) in RM(3, 6).

The paper is organized as follows. In Sect. 2, we present some general back-
ground on Boolean functions. In Sect. 3, we describe our approach which will
be used in Sect. 4 for a complete classification of the affine equivalence classes
of the Boolean functions of 5 variables. In Sect. 5, we first show how to derive
the RM(3, 6)/RM(1, 6) equivalence classes together with their sizes. Using this
information we classify them according to the most important cryptographic
properties.

2 Background on Boolean Functions

A Boolean function f is a mapping from Fn
2 into F2. It can be represented by

a truth table, which is a vector of length 2n consisting of its function values
(f(0), . . . , f(1)). Another way of representing a Boolean function is by means of
its algebraic normal form (ANF):

f(x) =
⊕

(a1,...,an)∈Fn
2

h(a1, . . . , an)xa1
1 . . . xan

n ,

where f and h are functions on Fn
2 . The algebraic degree of f , denoted by deg(f),

is defined as the highest number of variables in the term xa1
1 . . . xan

n in the ANF
of f .

Two Boolean functions f1 and f2 on Fn
2 are called equivalent if and only if

f1(x) = f2(xA⊕ a)⊕ xB
t ⊕ b, ∀x ∈ Fn

2 , (1)

where A is a nonsingular binary n × n-matrix, b is a binary constant, and a,B
are n-dimensional binary vectors. If B, b are zero, the functions f1 and f2 are
said to be affine equivalent. A property is called affine invariant if it is invariant
under affine equivalence.

The study of properties of Boolean functions is related to the study of Reed-
Muller codes. The codewords of the r-th order Reed-Muller code of length 2n,
denoted by RM(r, n), are the truth tables of Boolean functions with degree less
or equal to r. The number of codewords is equal to 2

∑ r
i=0 (n

i) and the minimum
number of positions in which any two codewords u, v differ (denoted by d(u, v))

326 A. Braeken et al.

is 2n−r. The Hamming weight of a vector v is denoted by wt(v) and equals the
number of non-zero positions, i.e. wt(v) = d(v, 0).

In 1972, Berlekamp and Welch classified all 226 cosets of RM(1, 5) into 48
equivalence classes under the action of the general affine group AGL(2, 5) [1].
Moreover for each equivalence class the weight distribution and the number of
cosets in that class has been determined.

Before describing the cryptographic properties that are investigated in this
paper, we first mention two important tools in the study of Boolean functions f
on Fn

2 . The Walsh transform of f is a real-valued function over Fn
2 that can be

defined as

Wf (ω) =
∑

x∈Fn
2

(−1)f(x)⊕x·ω = 2n − 2wt(f ⊕ x · ω) , (2)

where x · ω = xωt = x1ω1 ⊕ x2ω2 ⊕ · · · ⊕ xnωn is the dot product of x and
ω. The nonlinearity Nf of the function f is defined as the minimum distance
between f and any affine function which can be expressed as Nf = 2n−1 −
1
2 maxω∈Fn

2
|Wf (ω)|.

The autocorrelation function of f is a real-valued function over Fn
2 that can

be defined as

rf (ω) =
∑

x∈Fn
2

(−1)f(x)⊕f(x⊕ω). (3)

For two equivalent functions f1 and f2 such that f1(x) = f2(xA⊕a)⊕xB
t⊕b,

it holds that [15]:

Wf1(w) = (−1)aA−1wt+aA−1B
t
+bWf2(((w ⊕B)(A−1)t) (4)

rf1(w) = (−1)wB
t

rf2(wA) . (5)

A Boolean function is said to be correlation-immune of order t, denoted by
CI(t), if the output of the function is statistically independent of the combination
of any t of its inputs. If the function is also balanced (equal number of zeros and
ones in the truth table), then it is said to be resilient of order t, denoted by
R(t). These definitions of correlation-immunity and resiliency can be expressed
by spectral characterization as given by Xiao and Massey [8].

Definition 1. [8] A function f(x) is CI(t) if and only if its Walsh transform
Wf satisfies Wf (ω) = 0, for 1 ≤ wt(ω) ≤ t. If also Wf (0) = 0, the function is
called t-resilient.

A Boolean function is said to satisfy the propagation characteristics of degree
p, denoted by PC(p) if the function f(x)⊕f(x⊕ω) is balanced for 1 ≤ wt(ω) ≤ p.
If the function f(x)⊕f(x⊕ω) is also t-resilient, the function f is called a PC(p)
function of order t. Or, by using the autocorrelation and Walsh spectrum, the
definition can also be expressed as follows:

Classification of Boolean Functions of 6 Variables 327

Definition 2. [14] A function f(x) is PC(p) if and only if its autocorrelation
transform rf satisfies rf (ω) = 0, for 1 ≤ wt(ω) ≤ p. If also Wf(x)⊕f(x⊕w)(a) = 0
for all a with 0 ≤ wt(a) ≤ t, the function f is said to satisfy PC(p) of order t.

If rf (ω) = ±2n, the vector ω is called a linear structure of the function f . It is
easy to prove that the set of linear structures forms a linear space [6].

We now present some known results which will be used in the rest of the
paper. First of all, we start with mentioning several trade-offs between the above
described properties of a Boolean function.

Theorem 1. (Siegenthaler’s Inequality [17]) If a function f on Fn
2 is CI(t),

then deg(f) ≤ n− t. If f is t-resilient and t ≤ n− 2, then deg(f) ≤ n− t− 1.

Theorem 2. [14] If a function f on Fn
2 satisfies PC(p) of order t with 0 ≤ t <

n− 2, then deg(f) ≤ n− t− 1 for all p. If t = n− 2 then the degree of f is equal
to 2.

Theorem 3. [20] If a function f on Fn
2 is t-resilient and satisfies PC(p), then

p + t ≤ n− 1. If p + t = n− 1, then p = n− 1, n is odd and t = 0.

Another important result is the following divisibility theorem proven by Carlet
and Sarkar [4].

Theorem 4. If a coset of the RM(1, n) with representative Boolean function f
of degree d contains CI(t) (resp. t-resilient) functions, then the weights of the
functions in f + RM(1, n) are divisible by

2t++n−t−1
d , (resp. 2t+1++n−t−2

d ,) . (6)

From this Theorem together with Dickson’s theorem on the canonical representa-
tions of quadratic Boolean functions [11], we derive a classification of correlation-
immune (resp. resilient) quadratic functions in any dimension.

Proposition 1. If the coset of RM(1, n) with representative x1x2⊕x3x4⊕· · ·⊕
x2h−1x2h ⊕ ε where ε is an affine function of x2h+1 through xn and h ≤

⌊
n
2

⌋
given by Dickson’s theorem contains CI(t) (resp. t-resilient) functions then

h ≤ n− t−
⌊
n− t− 1

2

⌋
− 1 (resp. h ≤ n− t−

⌊
n−t−2

2

⌋
− 2).

Proof. The weight of the function equals (depending on the parameter h) [11]:

weight 2n−1 − 2n−h−1 2n−1 2n−1 − 2n−h−1

number 22h 2n+1 − 22h+1 22h

The statement of the proposition follows from the divisibility theorem of Carlet
and Sarkar applied on the weights. &'

Remark 1. Using Proposition 1 together with the bound h ≤
⌊

n
2

⌋
, we obtain

that the order of resiliency for quadratic functions is less or equal to
⌈

n
2

⌉
− 1,

which was also stated in [18].

328 A. Braeken et al.

3 General Outline of Our Method

In this section we describe our main approach for the classification of equivalence
classes (also called orbits) of cosets of the first order Reed-Muller code RM(1, n)
with respect to cryptographic properties such as correlation-immunity, resiliency,
propagation characteristics and their combinations. For the sake of simplicity we
shall refer to such a property as a C-property. For a given function f we denote by
ZCf the set of vectors which are mapped to zero by the transform corresponding
to the considered C-property (e.g. Walsh transform for correlation-immunity and
resiliency, autocorrelation for propagation characteristics) and call it a zero-set
of f with respect to this C-property. We also refer to any set of n linearly
independent vectors in Fn

2 as a basis.
Our method employs the idea behind the “change of basis” construction as

previously used by Maitra and Pasalic [12], and Clark et al. [5].
Let R be a representative coset of a given orbit O under the action of the

general affine group AGL(2, n). R is partitioned into subsets consisting of affine
equivalent functions. Denote by T the family of these subsets. Let us fix one
T ∈ T and a function f ∈ T .

From equations (4) and (5) and the definition of the corresponding C-property,
it follows that for any function with this property, affine equivalent to f , a ba-
sis in ZCf with certain properties exists. Conversely, for any proper basis in
ZCf and a constant from Fn

2 we can apply an invertible affine transformation
to f (derived by the basis and the constant) such that its image f̃ possess the
C-property. Therefore the number Nf of functions affine equivalent to f and
satisfying a certain C-property can be determined by counting bases in ZCf .
Moreover it can be seen that this number does not depend on the specific choice
of f from T , since for two different functions f1 and f2 from T there exists one-
to-one correspondence between the sets of their proper bases in the zero-sets. It
is important to note that in case of Walsh transform we use the fact that vector
B defined in previous section is 0.

In the following theorem we prove the formula that gives the number NC of
functions with C-property in the orbit O.

Theorem 5. Let R be a representative coset of a given orbit O under the action
of the general affine group AGL(2, n). Then the number NC of functions with
C-property in this orbit can be computed by the formula:

NC = KO
∑
f∈R

Bf , (7)

where Bf is the number of proper bases in ZCf and KO = n!|O|
|GL(2,n)| .

Proof. We will find the number of functions with C-property in the orbit O by
counting bases in zero-sets ZCf . But this way we count each function |S(f)| =
Sf times, where S(f) is the stabilizer subgroup of function f in AGL(2, n).
Therefore taking into account considerations preceding the theorem, the number

Classification of Boolean Functions of 6 Variables 329

NT of functions equivalent to the functions from T and satisfying the C-property
is equal to

NT = Nf =
2nn!Bf

Sf
, (8)

where Bf is the number of proper bases in ZCf . The factor n! appears since
any arrangement of a given basis represents different function. Let |O| be the
number of cosets in the orbit O. Then substituting Sf = |AGL(2,n)|

|O||T | in (8) we get

NT =
2nn!|O|Bf |T |
|AGL(2, n)| = KOBf |T | , (9)

where KO = n!|O|
|GL(2,n)| and GL(2, n) is the general linear group.

Therefore the number of all functions with C-property belonging to the orbit
O is: ∑

T∈T
NT = KO

∑
T∈T

Bf |T | = KO
∑
f∈R

Bf . (10)

&'
In order to avoid difficulties when determining affine equivalent functions in

R we prefer to use the last expression of (10). Thus, to compute the number NC

of functions with C-property in the orbit O we shall apply the following formula

NC = KO
∑
f∈R

Bf . (11)

4 Boolean Functions of Less Than 5 Variables

For the study of functions in n variables with n ≤ 4, we refer to [3] and [14]. In [3,
Sect. 4.2], a formula is derived for the number of (n− 3)-resilient functions and
the number of balanced quadratic functions of n variables. In [14, Table 1], the
number of quadratic functions that satisfy PC(l) of order k with k + l ≤ n are
determined for n ≤ 7. Consequently, taking into account the trade-offs mentioned
in Sect. 2, to cover all classes only the class with representative x1x2x3 ⊕ x1x4

with n = 4 should be considered in relation with its propagation characteristics.
It can be easily computed by exhaustive search that its size is 26 880 and that
it contains 2 816 PC(1) functions.

We now count the number of functions satisfying correlation-immunity, re-
siliency, propagation characteristics and their combinations in each of the 48
affine equivalence classes of RM(1, 5) by using the method explained in Sect. 3.
Note that only the cosets with even weight need to be considered. Numerical
results can be found in tables 1 through 5. In the tables, the functions are rep-
resented by means of an abbreviated notation (only the digits of the variables)
and the sum should be considered modulo 2. We refer to the extended version
of the paper concerning details about the computation.

330 A. Braeken et al.

Table 1. The Number of functions satisfying 1-CI, 1-Resilient, 1-PC, 1-PC with
resiliency properties

Representative NCI(1) NR(1) NPC(1) NPC(1)∩BalNPC(1)∩CI(1)NPC(1)∩R(1)

2345 512 0 0 0 0 0
2345+12 28 160 0 163 840 71 680 0 0
2345+23 1 790 0 0 0 0 0

2345+23+45 14 336 0 0 0 0 0
2345+12+34 1 146 880 0 0 0 0 0
2345+123 6 400 0 0 0 0 0

2345+123+12 76 800 0 0 0 0 0
2345+123+24 17 280 0 645 120 201 600 0 0
2345+123+14 385 400 0 737 280 253 440 640 0
2345+123+45 102 400 0 1 904 640 714 240 0 0

2345+123+12+34 230 400 0 0 0 0 0
2345+123+14+35 122 880 0 11 550 720 2 887 680 0 0
2345+123+12+45 7 680 0 0 0 0 0
2345+123+24+35 0 0 3 440 640 430 080 0 0
2345+123+145 138 240 0 276 480 77 760 0 0

2345+123+145+45 27 648 0 0 0 0 0
2345+123+145+24+45 414 720 0 1 966 080 614 400 4 160 0
2345+123+145+35+24 6 144 0 2 654 208 497 664 384 0

123 16 640 11 520 0 0 0
123+45 0 0 1 310 720 0 0 0
123+14 216 000 133 984 94 720 65 120 10 560 5 280

123+14+25 69 120 24 960 1 582 080 791 040 19 200 0
123+145 0 0 0 0 0 0

123+145+23 1 029 120537 600 0 0 0 0
123+145+24 0 0 0 0 0 0

123+145+23+24+35 233 472 96 960 0 0 0 0

12 4 840 4 120 2 560 2 240 1 120 840
12+34 896 0 46 592 23 296 896 0

Table 2. The Number of 2-CI functions

Representative NCI(2) NCI(2)∩PC(1)

123+145+23+24+35 384 0
12 640 120

Table 3. The Number of functions satisfying PC(1) of order 1 and 2

Representative NPC(1) of ord 1 NPC(1) of ord 2

123+45 5 120 0
123+14 30 720 0

12 2 240 960
12+34 13 952 704

Classification of Boolean Functions of 6 Variables 331

Table 4. The Number of functions satisfying PC(2)

Representative NPC(2) NPC(2)∩Bal NPC(2)∩CI(1) NPC(2) of ord 1 NPC(2) of ord 2

2345+123+145+35+24 12 288 2 304 384 0 0
123+14+25 199 680 99 840 3 840 0 0

12+34 28 672 23 296 896 1 792 64

Table 5. The Number of functions satisfying PC(3) and PC(4)

Representative NPC(3) NPC(4) NPC(3)∩Bal NPC(4)∩Bal NPC(3) of ord 1 NPC(4) of ord 1

12+34 10 752 1 792 5 376 896 1 792 64

5 Boolean Functions of 6 Variables and Degree 3

In this section first we show how to find the 34 affine equivalence classes of
RM(3, 6)/RM(1, 6), together with the orders of their size. Then we count in
each class the number of resilient and PC functions.

5.1 Classification of RM(3, 6)/RM(1, 6)

Table 1 in [9] presents the number of affine equivalence classes of RM(s, 6) in
RM(r, 6) with −1 ≤ s < r ≤ 6. In RM(3, 6)/RM(1, 6) there are 34 equivalence
classes. In order to classify the affine equivalence classes in RM(3, 6)/RM(1, 6),
we use the 6 representatives fi⊕RM(2, 6) for 1 ≤ i ≤ 6 of the equivalence classes
of RM(3, 6)/RM(2, 6) as given in [10]: f1 = 0, f2 = 123, f3 = 123 + 245, f4 =
123 + 456, f5 = 123 + 245 + 346, f6 = 123 + 145 + 246 + 356 + 456. For each
representative, we run through all functions consisting only of quadratic terms
and distinguish the affine inequivalent cosets of RM(1, 6) by using the frequency
distribution of absolute values of the Walsh and autocorrelation distribution as
affine invariants. These indicators suffice to distinguish all 34 affine equivalence
classes.

In order to employ the approach described in Sect. 3 we also need to know
the sizes of these orbits. They were computed during the classification phase
by multiplying the final results by the sizes of the corresponding orbits in
RM(3, 6)/RM(2, 6) given in [10]. To check these results in the cases of f2, f4

and f6 we obtained linear systems for unknown sizes by taking into account
the weight distributions of the cosets of RM(1, 6) and the weight distribution
of the corresponding representative of RM(3, 6)/RM(2, 6) to which these cosets
belong. Of course if f1 = 0 one can use also [11, Theorem 1 and Theorem 2,
p.436]. The results obtained in these two ways coincide. We refer to Table 6 for
the sizes of the orbits.

Remark 2. The 150 357 affine equivalence classes were classified for the first
time by Maiorana [7]. They also are mentioned on the webpage maintained by

332 A. Braeken et al.

Table 6. The number of resilient and PC functions in the classes of RM(3, 6)/RM(1, 6)

Representative NR(1) NR(2) NPC(1)(×128) NPC(2)(×128) Number of Cosets

f1 12 51 800 14 840 121 0 651
14+23 569 696 0 13 440 4 900 18 228

16+25+34 0 0 13 888 13 888 13 888

f2 0 532 480 44 800 0 0 1 395× 8
14 19 914 720 826 560 17 240 0 1 395× 392

24+15 49 257 600 268 800 1 249 440 52 080 1 395× 2 352
16+25+34 0 0 1 874 880 1 874 880 1 395× 1 344

45 0 0 929 280 0 1 395× 3 584
123+16+45 0 0 18 744 320 1 881 600 1 395× 25 088

f3 0 0 0 0 0 54 684× 32
13 416 604 160 5 174 400 0 0 54 684× 320
14 0 0 0 0 54 684× 480
16 0 0 21 396 480 0 54 684× 7 680
26 0 0 33 152 0 54 684× 32

26+13 264 627 040 1 411 200 4 659 200 47 040 54 684× 320
26+14 0 0 14 058 240 1 411 200 54 684× 480

13+15+26+34 0 0 10 499 328 10 499 328 54 684× 192
34+16 0 0 0 0 54 684× 23 040

34+13+15 1 89807·1010 82 897 920 1 250 304 0 54 684× 192

f4 0 0 0 0 0 357 120× 64
14 0 0 2 486 400 0 357 120× 3 136

15+24 0 0 572 315 · 1010 0 357 120× 64
34+25+16 0 0 505 258 · 1010 1 290 240 357 120× 64

f5 0 0 0 0 0 468 720× 448
12+13 0 0 3 609 586 0 468 720× 18

15 0 0 60 211 200 0 468 720× 14 336
12+13+25 3 287 027 200 8 601 600 0 0 468 720× 2 222

14+25 0 0 75 018 240 0 468 720× 1 344
35+26+25+12 0 0 6 719 569 920 6 719 569 920 468 720× 14 336

25+15+16 0 0 1 434 240 0 468 720× 64

f6 0 0 0 1 326 080 0 166 656× 3 584
12+13 0 0 7 956 480 0 166 656× 21 504

23+15+14 0 0 37 079 040 0 166 656× 7 680

Fuller: http://www.isrc.qut.edu.au/people/fuller/ together with the de-
gree, nonlinearity, maximum value in autocorrelation spectrum and truth tables
of Boolean functions of dimension 6. Here we describe another approach for find-
ing the 34 affine equivalence classes of functions of degree 3. One reason for this
is that our method requires the sizes of the orbits, which are not given by Fuller.

5.2 Cryptographic Properties

In order to count the number of functions that satisfy certain cryptographic
properties, the same approach as used for n = 5 is applied on these 34 classes of
RM(3, 6)/RM(1, 6). In Table 6, we present the classes together with the numbers

Classification of Boolean Functions of 6 Variables 333

of functions in these classes that satisfy t-resiliency with t ≤ 2 and propagation
characteristics of degree less or equal to 2. The last columns represents the sizes
of the orbits.

By the Siegenthaler’s inequality, 3-resilient functions should have degree less
or equal to 2. Only the class with representative x1x2 contains 3-resilient func-
tions and there are in total 1 120 3-resilient functions of dimension 6 (see also [3]).

For functions satisfying PC of higher degree, we have the following results.
Besides the bent functions which are PC(6), only the class with representative
x1x4⊕x2x3 contains PC(3) functions with a total of 128×420, as also computed
in [14].

6 Conclusions

In this paper, we present a complete classification of the set of Boolean functions
of 5 variables with respect to the most important cryptographic properties. Our
method can also be applied to Boolean functions of dimension 6. As an example,
we compute the 34 affine equivalence classes of RM(3, 6)/RM(1, 6) and deter-
mine the number of resilient and PC functions belonging to each class. Moreover,
we show a practical way to find the affine equivalence classes of Boolean func-
tions. This method can be extended to dimension 7.

References

1. E. Berlekamp, L. Welch, Weight Distribution of the Cosets of the (32, 6) Reed-
Muller Code, IEEE Transactions on Information Theory, Vol. 18, pp. 203-207,
1972.

2. E. Brier, P. Langevin, Classification of Boolean Cubic Forms of Nine Variables,
2003 IEEE Information Theory Workshop (ITW 2003), IEEE Press, pp. 179-182,
2003.

3. P. Camion, C. Carlet, P. Charpin, N. Sendrier, On Correlation-Immune Functions,
Crypto 1991, LNCS 576, Springer-Verlag, pp. 86-100, 1992.

4. C. Carlet, P. Sarkar, Spectral Domain Analysis of Correlation Immune and Re-
silient Boolean Functions, Finite Fields and Applications, Vol. 8 (1), pp. 120-130,
2002.

5. J. Clark, J.L. Jacob, S. Stepney, S. Maitra, W. Millan, Evolving Boolean Functions
Satisfying Multiple Criteria, Indocrypt 2002, LNCS 2551, Springer-Verlag, pp. 246-
259, 2002.

6. J. H. Evertse, Linear Structures in Block Ciphers, Eurocrypt 87, LNCS 304,
Springer-Verlag, pp. 249266.

7. J. Maiorana, A Classification of the Cosets of the Reed-Muller Code
R(1, 6),Mathematics of Computation, vol. 57, No. 195, July 1991, pp. 403-414.

8. X. Guo-Zhen, J. Massey, A Spectral Characterization of Correlation-Immune Com-
bining Functions, IEEE Transactions on Information Theory, Vol. 34 (3), pp. 569-
571, 1988.

9. X. -D. Hou, AGL(m, 2) Acting on RM(r, m)/RM(s, m), Journal of Algebra,
Vol. 171, pp. 921-938, 1995.

334 A. Braeken et al.

10. X. -D. Hou, GL(m, 2) Acting on R(r, m)/R(r − 1, m), Discrete Mathematics,
Vol. 149, pp. 99-122, 1996.

11. F. J. MacWilliams, N. J. A. Sloane, The Theory of Error- Correcting Codes, North-
Holland Publishing Company, 1977.

12. S. Maitra, E. Pasalic, Further Constructions of Resilient Boolean Functions with
Very High Nonlinearity, IEEE Transactions on Information Theory, Vol. 48 (7),
pp. 1825-1834, 2002.

13. E. Pasalic, T. Johansson, S. Maitra, P. Sarkar, New Constructions of Resilient and
Correlation Immune Boolean Functions Achieving Upper Bounds on Nonlinearity,
Workshop on Coding and Cryptography 2001, pp. 425-435, 2001.

14. B. Preneel, W. Van Leekwijck, L. Van Linden, R. Govaerts, J. Vandewalle, Propa-
gation Characteristics of Boolean Functions, Eurocrypt 1990, LNCS 473, Springer-
Verlag, pp. 161-173, 1990.

15. B. Preneel, Analysis and design of cryptographic hash functions, PhD. Thesis,
Katholieke Universiteit Leuven, 1993.

16. P. Stanica, S.H. Sung, Boolean Functions with Five Controllable Cryptographic
Properties, Designs, Codes and Cryptography, Vol. 31, pp. 147-157, 2004.

17. T. Siegenthaler, Correlation-Immunity of Non-linear Combining Functions for
Cryptographic Applications, IEEE Transactions on Information Theory, Vol. 30
(5), pp. 776-780, 1984.

18. Y. Tarannikov, P. Korolev, A. Botev, Autocorrelation Coefficients and Correla-
tion Immunity of Boolean Functions, Asiacrypt 2001, LNCS 2248, Springer-Verlag,
pp. 460-479, 2001.

19. Y. Zheng, X. M. Zhang, GAC - the Criterion for Global Avalanche Characteristics
of Cryptographic Functions, Journal for Universal Computer Science, Vol. 1 (5),
pp. 316-333, 1995.

20. Y. Zheng, X. M. Zhang, On Relationship Among Avalanche, Nonlinearity, and
Propagation Criteria, Asiacrypt 2000, LNCS 1976, Springer-Verlag, pp. 470-483,
2000.

Label-Guided Graph Exploration
by a Finite Automaton

Reuven Cohen1,�, Pierre Fraigniaud2,��, David Ilcinkas2,��,
Amos Korman1, and David Peleg1

1 Dept. of Computer Science, Weizmann Institute, Israel
{r.cohen, amos.korman, david.peleg}@weizmann.ac.il

2 CNRS, LRI, Université Paris-Sud, France
{pierre, ilcinkas}@lri.fr

Abstract. A finite automaton, simply referred to as a robot, has to ex-
plore a graph, i.e., visit all the nodes of the graph. The robot has no a
priori knowledge of the topology of the graph or of its size. It is known
that, for any k-state robot, there exists a (k+1)-node graph of maximum
degree 3 that the robot cannot explore. This paper considers the effects
of allowing the system designer to add short labels to the graph nodes in
a preprocessing stage, and using these labels to guide the exploration by
the robot. We describe an exploration algorithm that given appropriate
2-bit labels (in fact, only 3-valued labels) allows a robot to explore all
graphs. Furthermore, we describe a suitable labeling algorithm for gen-
erating the required labels, in linear time. We also show how to modify
our labeling scheme so that a robot can explore all graphs of bounded
degree, given appropriate 1-bit labels. In other words, although there
is no robot able to explore all graphs of maximum degree 3, there is a
robot R, and a way to color in black or white the nodes of any bounded-
degree graph G, so that R can explore the colored graph G. Finally, we
give impossibility results regarding graph exploration by a robot with no
internal memory (i.e., a single state automaton).

1 Introduction

Let R be a finite automaton, simply referred to in this context as a robot, moving
in an unknown graph G = (V,E). The robot has no a priori information about
the topology of G and its size. To allow the robot R, visiting a node u, to
distinguish between its edges, the d = deg(u) edges incident to u are associated
to d distinct port numbers in {0, . . . , d − 1}, in a one-to-one manner. The port
numbering is given as part of the input graph, and the robot has no a priori
information about it. For convenience of terminology, we henceforth refer to

� Supported by the Pacific Theaters Foundation.
�� Supported by the project “PairAPair” of the ACI Masses de Données, the project

“Fragile” of the ACI Sécurité et Informatique, and by the project “Grand Large” of
INRIA.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 335–346, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

336 R. Cohen et al.

“the edge incident to port number l at node u” simply as “edge l of u”. (Clearly,
if this edge connects u to v, then it may also be referred to as “edge l′ of v” for
the appropriate l′.) The robot has a transition function f , and a finite number of
states. If R enters a node of degree d through port i in state s, then it switches
to state s′ and exits the node through port i′, where (s′, i′) = f(s, i, d). The
objective of the robot is to explore the graph, i.e., to visit all its nodes.

The first known algorithm designed for graph exploration was introduced
by Shannon [8]. Since then, several papers have been dedicated to the feasi-
bility of graph exploration by a finite automaton. Rabin [6] conjectured that
no finite automaton with a finite number of pebbles can explore all graphs (a
pebble is a marker that can be dropped at and removed from nodes). The first
step towards a formal proof of Rabin’s conjecture is generally attributed to Bu-
dach [2], for a robot without pebbles. Blum and Kozen [1] improved Budach’s
result by proving that a robot with three pebbles cannot perform exploration of
all graphs. Kozen [5] proved that a robot with four pebbles cannot explore all
graphs. Finally, Rollik [7] gave a complete proof of Rabin’s conjecture, showing
that no robot with a finite number of pebbles can explore all graphs. The re-
sult holds even when restricted to planar 3-regular graphs. Without pebbles, it
was proved [4] that a robot needs Θ(D logΔ) bits of memory for exploring all
graphs of diameter D and maximum degree Δ. On the other hand, if the class of
input graphs is restricted to trees, then exploration is possible even by a robot
with no memory (i.e., zero states), simply by DFS using the transition function
f(i, d) = i + 1 mod d (see, e.g., [3]).

The ability of dropping and removing pebbles at nodes can be viewed alter-
natively as the ability of the robot to dynamically label the nodes. If the robot
is given k pebbles, then, at any time of the exploration,

∑
u∈V |lu| ≤ k where lu

is the label of node u and |lu| denotes the size of the label in unary. This paper
considers the effects of allowing the system designer to assign labels to the nodes
in a preprocessing stage, and using these labels to guide the exploration by the
robot. The transition function f is augmented to utilize labels as follows. If R in
state s enters a node of degree d, labeled by l, through port i, then it switches
to state s′ and exits the node through port i′, where

(s′, i′) = f(s, i, d, l).

This model can be considered stronger than Rabin’s pebble model since labels
are given in a preprocessing stage, but it can also be considered weaker since,
once assigned to nodes, the labels cannot be modified.

In this paper, we consider settings where it is expected that the graph will be
visited by many exploring robots, and consequently, the system designer would
like to preprocess the graph by leaving (preferably small) road-signs, or labels,
that will aid the robots in their exploration task. As possible scenarios one may
consider a network system where finite automata are used for traversing the
system and distributing information in a sequential manner.

More formally, we address the design of exploration labeling schemes. Such
schemes consist of a pair (L,R) such that, given any graph G with any port

Label-Guided Graph Exploration by a Finite Automaton 337

Table 1. Summary of main results

Label size Robot’s memory Time
(#bits) (#bits) (#edge-traversals)

2 O(1) O(m)

1 O(log Δ) O(ΔO(1)m)

numbering, the algorithm L labels the nodes of G, and the robot R explores G
with the help of the labeling produced by L. In particular, we are interested in
exploration labeling schemes for which: (1) the preprocessing time required to
label the nodes is polynomial, (2) the labels are short, and (3) the exploration
is completed after a small number of edge-traversals.

As a consequence of Rollik’s result, any exploration labeling scheme must use
at least two different labels. Our main result states that just three labels (e.g.,
three colors) are sufficient for enabling a robot to explore all graphs. Moreover,
we show that our labeling scheme gives to the robot the power to stop once
exploration is completed, although, in the general setting of graph exploration,
the robot is not required to stop once the exploration has been completed, i.e.,
once all nodes have been visited. In fact, we show that exploration is completed
in time O(m), i.e., after O(m) edge traversals, in any m-edge graph.

For the class of bounded degree graphs, we design an exploration scheme
using even smaller labels. More precisely, we show that just two labels (i.e.,
1-bit labels) are sufficient for enabling a robot to explore all bounded degree
graphs. The robot is however required to have a memory of size O(logΔ) to
explore all graphs of maximum degree Δ. The completion time O(ΔO(1)m) of
the exploration is larger than the one of our previous 2-bit labeling scheme,
nevertheless it remains polynomial.

All these results are summarized in Table 1. The two mentioned labeling
schemes require polynomial preprocessing time.

We also prove several impossibility results for 1-state robots, i.e., robots that
are oblivious. The behavior of 1-state robots depends solely on the input port
number, and on the degree and label of the current node. In particular, we prove
that for any d > 4 and for any 1-state robot using at most +log d, − 2 colors,
there exists a simple graph of maximum degree d that cannot be explored by
the robot. This lower bound on the number of colors needed for exploration can
be increased exponentially to d/2− 1 by allowing loops.

2 A 2-Bit Exploration-Labeling Scheme

In this section, we describe an exploration-labeling scheme using only 2-bit (ac-
tually, 3-valued) labels. More precisely, we prove the following.

Theorem 1. There exists a robot with the property that for any graph G, it is
possible to color the nodes of G with three colors (or alternatively, assign each
node a 2-bit label) so that using the labeling, the robot can explore the entire

338 R. Cohen et al.

graph G, starting from any given node and terminating after identifying that the
entire graph has been traversed. Moreover, the total number of edge-traversals by
the robot is ≤ 20m.

To prove Theorem 1, we first describe the labeling scheme L and then the
exploration algorithm. The node labeling is in fact very simple; it uses three
labels, called colors, and denoted white, black, and red. Let D be the diameter
of the graph.

Labeling L. Pick an arbitrary node r. Node r is called the root of the labeling
L. Nodes at distance d from r, 0 ≤ d ≤ D, are labeled white if d mod 3 = 0,
black if d mod 3 = 1, and red if d mod 3 = 2.

The neighbor set N (u) of each node u can be partitioned into three disjoint
sets: (1) the set pred(u) of neighbors closer to r than u; (2) the set succ(u)
of neighbors farther from r than u; (3) the set sibling(u) of neighbors at the
same distance from r as u. We also identify the following two special subsets of
neighbors:

– parent(u) is the node v ∈ pred(u) such that the edge {u, v} has the smallest
port number at u among all edges leading to a node in pred(u).

– child(u) is the set of nodes v ∈ succ(u) such that parent(v) = u.

For the root, set parent(r) = ∅. The exploration algorithm is partially based
on the following observations.

1. For the root r, child(r) = succ(r) = N (r).
2. For every node u with label L(u), and for every neighbor v ∈ N (u), the label
L(v) uniquely determines whether v belongs to pred(u), succ(u) or sibling(u).

3. Once at node u, a robot can identify parent(u) by visiting its neighbors
successively, starting with the neighbor connected to port 0, then port 1,
and so on. Indeed, by observation 2, the nodes in pred(u) can be identified
by their label. The order in which the robot visits the neighbors ensures that
parent(u) is the first visited node in pred(u).

Remark. The difficulty of graph exploration by a robot with a finite memory is
that the robot entering some node u by port p, and aiming at exiting u by the
same port p after having performed some local exploration around u, has not
enough memory to store the value of p.

Exploration algorithm. Our exploration algorithm uses a procedure called
Check Edge. This procedure is specified as follows. When Check Edge(j) is ini-
tiated at some node u, the robot starts visiting the neighbors of u one by one,
and eventually returns to u reporting one of three possible outcomes: “child”,
“parent”, or “false”. These values have the following interpretation:

(i) if “child” is returned, then edge j at u leads to a child of u;
(ii) if “parent” is returned, then edge j at u leads to the parent of u;

Label-Guided Graph Exploration by a Finite Automaton 339

(iii) if “false” is returned, then edge j at u leads to a node in N (u)\(parent(u)∪
child(u)).

The implementation of Procedure Check Edge will be described later. Mean-
while, let us describe how the algorithm makes use of this procedure to perform
exploration.

Assume that the robot R is initially at the root r of the 3-coloring L of the
nodes. R leaves r by port number 0, in state down. Note that, by the above
observations, the node at the other endpoint of edge 0 of r is a child of r.

Assume that R enters a node u via port number i, in state down. Assume u
is of degree d; all arithmetic operations in the following description are modulo
d. R aims at identifying a child of u if one exists, or to backtrack along edge
i of u if none exists. To do so it executes Procedure Check Edge(j) for every
port number j = i+1, i+2, . . . until the procedure eventually returns “child” or
“parent” for some port number j. R then sets its state to down in the former
case and up in the latter, and leaves u by port j.

Assume that R enters a node u via port number i, in state up. Assume u
is of degree d; all arithmetic operations in the following description are modulo
d. R aims at identifying a child of u with port number j ∈ {i + 1, . . . , p − 1}
if one exists (where p is the port number of the edge leading to parent(u)), or
to carry on moving up to the parent of u if there is no such child. To do so,
R executes Procedure Check Edge(j) for every port number j = i + 1, i + 2, . . .
until the procedure eventually returns “child” or “parent” for some port number
j. R then sets its state to down in the former case and up in the latter, and
leaves u by port j.

If the robot does not start from the root r of the labeling L, then it first goes
to r by using Procedure Check Edge to identify the parent of every intermediate
node, and by identifying r as the only node with pred(r) = ∅.

Moreover, the robot can stop after the exploration has been completed. More
precisely, this can be done by introducing a slight modification of the robot
behavior when it enters a node u of degree d via port number d in state up. In
this case, R first check whether u has a parent. If yes, then it acts as previously
stated (R does not need to store d since d is the node degree). If not, the robot
terminates the exploration.

Procedure Check Edge. We now describe the actions of the robot R when
Procedure Check Edge(j) is initiated at a node u. The objective of R is to set
the value of the variable edge to one of {parent, child, false}. We denote by v
the other endpoint of the edge e with port number j at u. First, R moves to
v in state “check edge”, carrying with it the color of node u. Let i be the port
number of edge e at v. There are three cases to be considered.

(a) v ∈ sibling(u): Then R backtracks through port i and reports “edge =
false”.

(b) v ∈ pred(u): Then R aims at checking whether v is the parent of u, that is,
whether u is a child of v. For that purpose, R moves back to u, and proceeds

340 R. Cohen et al.

as follows:R successively visits edges j−1, j−2, . . . of u until either the other
endpoint of the edge belongs to pred(u), or all edges j − 1, j − 2, . . . , 0 have
been visited.R then sets “edge=false” in the former case and “edge=parent”
in the latter. At this point, let k be the port number at u of the last edge
visited by R. Then R successively visit edge k + 1, k + 2, · · · until the other
endpoint belongs to pred(u). Then it moves back to u and reports the value
of edge.

(c) v ∈ succ(u): Then R aims at checking whether u is the parent of v. For that
purpose, R proceeds in a way similar to Case (b), i.e., it successively visits
edges i− 1, i− 2, . . . of v until either the other endpoint of the edge belongs
to pred(v), or all edges i − 1, i − 2, . . . , 0 have been visited. R then sets its
variable edge to “false” in the former case and to “child” in the latter. At
this point of the exploration, let k denotes the port number of the last edge
incident to v that R visited. Then R successively visits edges k+1, k+2, . . .
until the other endpoint w of the edge belongs to pred(v). Then it moves to
w, and reports the value of edge.

This completes the description of our exploration procedure.

Proof of Theorem 1. Clearly, labeling all nodes by L can be done in time linear
in m, the number of edges of the graph. Obviously, two bits are enough to encode
the label of each node. More specifically, using two bits for a color that is present
on at most one third of the nodes, and one bit for the two other colors, we obtain
a labeling with average label size 4/3. It remains to prove the correctness of the
exploration algorithm.

It is easy to check that if Procedure Check Edge satisfies its specifications,
then the robot R essentially performs a DFS traversal of the graph using edges
{u, v} where u = parent(v) or u ∈ child(v). Thus, we focus on the correctness
of Procedure Check Edge(j) initiated at node u. Let v be other endpoint of the
edge e with port number j at u, and let i be the port number of edge e at v. We
check separately the three cases considered in the description of the procedure.
By the previous observations, comparing the color of the current node with the
color of u allows R to distinguish between these cases.

If v ∈ sibling(u), then v is neither a parent nor a child of u, and thus reporting
“false” is correct. Indeed, R then backtracks to u via port i, as specified in
Case (a).

If v ∈ pred(u), then v = parent(u) iff for every neighbor wk connected to u by
an edge with port number k ∈ {j−1, j−2, . . . , 0}, wk /∈ pred(u). The robot does
check this property in Case (b) of the description, by returning to u, and visiting
all the wk’s. Hence, Procedure Check Edge performs correctly in this case.

Finally, if v ∈ succ(u), then v = child(u) iff for every neighbor zl connected
to v by an edge with port number l ∈ {i − 1, i − 2, . . . , 0}, zl /∈ pred(v). In
case (c), the robot does check this property by visiting all the zl’s. At this point,
it remains for R to return to u (obviously, the port number leading from v to
u cannot be stored in the robot memory since it has only a constant number of
states). Let k be the port number of the last edge incident to v that R visited

Label-Guided Graph Exploration by a Finite Automaton 341

before setting its variable edge to “false” or “child”. We have 0 ≤ k ≤ i − 1,
zl /∈ pred(v) for all l ∈ {k + 1, . . . , i − 1}, and u ∈ pred(v). Thus u is identified
as the first neighbor that is met when visiting all v’s neighbors by successively
traversing edges k + 1, k + 2, . . . of v. This is precisely what R does according
to the description of the procedure in Case (c). Hence, Procedure Check Edge
performs correctly in this case.

Hence Procedure Check Edge performs correctly in all cases and so does
the global exploration algorithm. It remains to compute the number of edge
traversals performed by the robot during the exploration (including the several
calls to Check Edge).

We use again the same notations as in the description and the proof of Pro-
cedure Check Edge. Let us consider the Procedure Check Edge(j) initiated at
node u. Let v be other endpoint of the edge e with port number j at u, and let
i be the port number of edge e at v. First observe that during the execution of
the Procedure Check Edge only edges incident to u and v are traversed. More
precisely:

Case (a): v ∈ sibling(u). Then edge e = {u, v} is traversed twice and no other
edges are traversed during this execution of Procedure Check Edge.

Case (b): v ∈ pred(u). Then R traverses only edges incident to u. Let k be
the greatest port number of the edges leading to a node in pred(u) and
satisfying k < j. If it does not exist, set k = 0. R explores twice each edge
j, j − 1, . . . , k + 1 of u, then twice edge k, and finally again twice edges
k + 1, . . . , j − 1, j. To summarize, edge k of u is explored twice, and edges
k + 1, . . . , j − 1, j of u are explored four times.

Case (c): v ∈ succ(u). Then R traverses only edges incident to v. Let k be
the greatest port number of the edges leading to a node in pred(v) and
satisfying k < i. If it does not exist, set k = 0. R explores once edge j of u,
twice each edge i − 1, i − 2, . . . , k + 1 of v, twice edge k, twice again edges
k+1, . . . , i−2, i−1, and finally once edge i of v (i.e., j of u). To summarize,
edge i of u and edge k of v are explored twice and edges k+1, . . . , i−2, i−1
of v are explored four times.

We bound now the number of times each edge e of the graph is traversed.
Edge e = {u, v} is labeled i at u and j at v. Let us consider different cases:

(1) e = {u, v} with v = parent(u). The edge e is in the spanning tree, and
thus is explored twice outside any execution of the Procedure Check Edge.
During Procedure Check Edge(j) at v, edge e is explored twice. e is also
explored four times during Check Edge(i) at u, except if i = 0 where e is
only explored twice during Check Edge(i) at u. If there exists an edge {u′, u}
labeled i′ at u and i′′ at u′ such that i′ < i and u′ ∈ pred(u), then edge e is
explored twice during Procedure Check Edge(i′) at u and twice again during
Procedure Check Edge(i′′) at u′. If there exists an edge {v′, v} labeled j′ at
v and j′′ at v′ such that j′ < j and v′ ∈ pred(v), then edge e is explored four
times during Procedure Check Edge(j′) at v and four times again during

342 R. Cohen et al.

Procedure Check Edge(j′′) at v′. To summarize, edge e is explored at most
20 times during a DFS.

(2) e = {u, v} with v ∈ pred(u) but v �= parent(u). During Procedure
Check Edge(j) at v, edge e is explored twice. e is also explored four times
during Check Edge(i) at u. If there exists an edge {u′, u} labeled i′ at u and
i′′ at u′ such that i′ < i and u′ ∈ pred(u), then edge e is explored twice
during Procedure Check Edge(i′) at u and twice again during Procedure
Check Edge(i′′) at u′. If there exists an edge {v′, v} labeled j′ at v and j′′ at
v′ such that j′ < j and v′ ∈ pred(v), then edge e is explored four times dur-
ing Procedure Check Edge(j′) at v and four times again during Procedure
Check Edge(j′′) at v′. To summarize, edge e is explored at most 18 times
during a DFS.

(3) e = {u, v} with v ∈ sibling(u). During Procedure Check Edge(j) at v, edge
e is explored twice. e is also explored twice during Check Edge(i) at u. If
there exists an edge {u′, u} labeled i′ at u and i′′ at u′ such that i′ <
i and u′ ∈ pred(u), then edge e is explored four times during Procedure
Check Edge(i′) at u and four times again during Procedure Check Edge(i′′)
at u′. If there exists an edge {v′, v} labeled j′ at v and j′′ at v′ such that
j′ < j and v′ ∈ pred(v), then edge e is explored four times during Procedure
Check Edge(j′) at v and four times again during Procedure Check Edge(j′′)
at v′. To summarize, edge e is explored at most 20 times during a DFS.

Therefore, our exploration algorithm completes exploration in time ≤ 20|E|
where |E| is the number of edges in the graph G. &'

3 A 1-Bit Exploration-Labeling Scheme for Bounded
Degree Graphs

In this section, we describe an exploration labeling scheme using only 1-bit labels.
This scheme requires a robot with O(logΔ) bits of memory for the exploration
of graphs of maximum degree Δ. More precisely, we prove the following.

Theorem 2. There exists a robot with the property that for any graph G of de-
gree bounded by a constant Δ, it is possible to color the nodes of G with two
colors (or alternatively, assign each node a 1-bit label) so that using the labeling,
the robot can explore the entire graph G, starting from any given node and ter-
minating after identifying that the entire graph has been traversed. The robot has
O(logΔ) bits of memory, and the total number of edge-traversals by the robot is
O(Δ(O(1)m).

To prove Theorem 2, we first describe a 1-bit labeling scheme L′ for G =
(V,E), i.e., a coloring of each node in black or white. Then, we will show how
to perform exploration using L′.

Labeling L′. As for L, pick an arbitrary node r ∈ V , called the root. Nodes at
distance d from r are labeled as a function of d mod 8. Partition the nodes into
eight classes by letting

Label-Guided Graph Exploration by a Finite Automaton 343

Ci = {u ∈ V | distG(r, u) mod 8 = i}

for 0 ≤ i ≤ 7. Node u is colored white if u ∈ C0 ∪ C2 ∪ C3 ∪ C4, and black
otherwise. Let

C̃1 = {u | distG(r, u) = 1}

Ĉ = {r} ∪ {u ∈ C2 | distG(r, u) = 2 and N (u) = C̃1}.

Lemma 1. There is a local search procedure enabling a robot of O(logΔ) bits
of memory to decide whether a node u belongs to Ĉ and to C̃1, and to identify
the class Ci of every node u /∈ Ĉ.

Proof. Let B (resp., W) be the set of black (resp., white) nodes which have all
their neighbors black (resp., white). One can easily check that the class C1 and
the classes C3, . . . , C7 can be redefined as follows:

– u ∈ C6 ⇔ u ∈ B and there is a node in W at distance ≤ 3 from u;
– u ∈ C7 ⇔ u /∈ C6, u has a neighbor in C6, and there is no node in W at

distance ≤ 2 from u;
– u ∈ C1 ⇔ u is black, u has no neighbor in B, and u has a white neighbor v

that has no neighbor in W.
– u ∈ C5 ⇔ u is black, and u /∈ C1 ∪ C6 ∪ C7;
– u ∈ C3 ⇔ u ∈W, and there is a node in C1 at distance ≤ 2 from u;
– u ∈ C4 ⇔ u has a neighbor in W, and there is no node in C1 at distance
≤ 2 from u.

Based on the above characterizations, the classes C1 and C3, . . . , C7 can be
easily identified by a robot of O(logΔ) bits, via performing a local search. More-
over, the sets C̃1 and Ĉ can also be characterized as follows:

– u ∈ C̃1 ⇔ u ∈ C1 and u has no node in C7 at distance ≤ 2;
– u ∈ Ĉ ⇔ N(u) ⊆ C̃1 and every node v at distance ≤ 2 from u satisfies
|N(v) ∩ C̃1| ≤ |N(u)|.

Using this we can deduce:

– u ∈ C0 \ Ĉ ⇔ u /∈ (∪7
i=3Ci) ∪ C1 and u has a neighbor in C7;

– u ∈ C2 \ Ĉ ⇔ u /∈ Ĉ, has a neighbor in C1, but has no neighbor in C7.

It follows that a robot of O(logΔ) bits can identify the class of every node except
for nodes in Ĉ. &'

Proof of Theorem 2. The exploration algorithm for L′ follows the same strategy
as the exploration algorithm for L. Indeed, for u ∈ Ci, we have

pred(u) = N (u) ∩ Ci−1 (mod 8)

succ(u) = N (u) ∩ Ci+1 (mod 8)

sibling(u) = N (u) ∩ Ci

344 R. Cohen et al.

Therefore, due to Lemma 1, all instructions of the exploration algorithm using
labeling L can be executed using labeling L′, but for the cases not captured in
Lemma 1, i.e., Ĉ.

To solve the problem of identifying the root, we notice that each of the nodes
in Ĉ can be used as a root, and all the others can be considered as leaves in C2.
Thus, when leaving the root, the robot should memorize the port P by which
it should return to the root. When the robot arrives at a node u ∈ C̃1 through
a tree edge and is in the up state, it leaves immediately through port P and
deletes the contents of P , then it goes down through the next unexplored port
if one is left. When the robot is in a node u ∈ C̃1 and in the down state, it will
skip the port P .

If the exploration begins at the root, then the above is sufficient. To handle
explorations beginning at an arbitrary node, it is necessary to identify the root.
Since every node in Ĉ can be used as a root, it suffices to find one node of Ĉ by
going up and then start the exploration from it as described above. &'

4 Impossibility Results

Theorem 3. For any d > 4, and for any 1-state robot using at most d/2 − 1
colors, there exists a graph (with loops) with maximum degree d and at most d+1
vertices that cannot be explored by the robot.

Proof. Fix d > 4, and assume for contradiction that there exists a 1-state
robot exploring all graphs of degree d colored with at most d/2 − 1 colors.
Recall that when a 1-state robot enters a node v by port i, it will leave v
by port j where j is depending only on i, d and the color c of v. Thus for
fixed d, each color corresponds to a mapping from entry ports to exit ports,
namely, a function from {0, 1, · · · , d− 1} to {0, 1, · · · , d− 1}. Partition the func-
tions corresponding to the colors of nodes of degree d into surjective functions
f1, f2, · · · , ft and non-surjective functions g1, g2, · · · , gr. We have 0 < t + r ≤
d/2 − 1. Let ci be the color corresponding to fi, and ct+i be the color cor-
responding to gi. For each gi, choose pi to be some port number not in the
range of gi. Let p0 ∈ {0, 1, · · · , d − 1} \ {p1, p2, · · · , pr} (it is possible because
d− r ≥ 1).

We will construct a family {G0, G1, · · · , Gt} of graphs such that, for every
k ∈ {0, 1, · · · , t}:

1. Gk has exactly one degree-d vertex v (possibly with loops);
2. the other vertices of Gk are degree-1 neighbors of v;
3. all edges are either loops incident to v, or edges leading from v to some

degree-1 node;
4. edges labeled p1, p2, · · · , pr at v (if any, i.e., if r > 0) are not loops (and thus

lead to degree-1 nodes);
5. the edge labeled p0 leads to some degree-1 node, denoted by u0;

Label-Guided Graph Exploration by a Finite Automaton 345

6. there exists a set Xk ⊆ {0, 1, · · · , d− 1} such that {p0, p1, · · · , pr} ⊆ Xk and
d−|Xk| > 2(t−k), and for which, in Gk, edges with port number not in Xk

lead to degree-1 vertices.

We will prove the following property for any k = 0, · · · , t:

Property Pk. In Gk, if the color of v is in {c1, · · · , ck}, then the robot, starting
at u0 ∈ V (Gk), cannot explore Gk. More precisely any vertex attached to v by
a port �∈ X is not visited by the robot.

We prove Pk by induction on k. Let G0 be the star composed of one degree-d
vertex v and d leaf vertices. Let X0 = {p0, p1, p2, · · · , pr}. Recall that t + r ≤
d/2 − 1. Thus, t ≤ d/2 − 1 and hence 2t + r + 1 ≤ d − 1. Therefore, we have
d− |X0| = d− (r + 1) > 2t. P0 is trivially true.

Let k > 0, and let Gk−1 and Xk−1 be respectively a graph and a set satisfying
the induction property for k − 1. Assume first that v is colored by color ck

and that the robot starts its traversal at u0. If the robot never visits vertices
attached to v by ports not in Xk−1 then the graph Gk−1 and the set Xk−1

satisfy Pk. I.e., Gk = Gk−1 and Xk = Xk−1. Otherwise, let p be the first port
not in Xk−1 that is visited by the robot at v, when starting at u0. For a port
i ∈ {0, 1, · · · , d − 1}, set twin(i) = j if there exists a port j and a loop labeled
by i and j in Gk−1; Set twin(i) = i otherwise. Define a sequence of ports (il)l≥1

as follows. Let i1 be the port in Xk−1 such that fk(i1) = p. For all l ≥ 2, let il
be the port such that fk(il) = twin(il−1). This sequence is well defined because
fk is surjective.

Observe that there exists some l such that il /∈ Xk−1. Indeed, suppose, for
the purpose of contradiction, that il ∈ Xk−1 for all l. Since Xk−1 is finite, there
exists some il = il+m for m ≥ 1. Let il be the first port repeated twice in this
process. If l > 1, then we have fk(il) = twin(il−1) and fk(il+m) = twin(il+m−1).
Therefore twin(il−1) = twin(il+m−1), yielding il−1 = il+m−1 by bijectivity of fk,
which contradicts the minimality of l. If l = 1, then we have i1 = i1+m, therefore
im = p, contradicting ij ∈ Xk−1 for all j.

From the above, let h be the smallest index such that ih /∈ X. Let q = ih. If
q = p, then set Gk = Gk−1 and Xk = Xk−1 ∪ {p}. If q �= p, then connect ports
p and q to create a loop, denote the new graph Gk and let Xk = Xk−1 ∪ {p, q}.

In Gk, if v is colored by color ck, then by the choice of p, starting at u0, the
robot enters and exits v through ports in Xk−1 until it eventually exits v through
port p. After that, the robot goes back to v by port q. Port q was chosen so that
it causes the robot to continue entering v on ports ih−1, ih−2, · · · i1, after which
the robot exits v through port p, locking the robot in a cycle. Since the ports
of v occurring in this cycle are all from Xk, the robot does not visit any of the
ports outside Xk, as claimed. By induction, we have d−|Xk−1| > 2(t− (k− 1)).
By the construction of Xk from Xk−1, we have |Xk| ≤ |Xk−1| + 2. Therefore
d− |Xk| > 2(t− k), which completes the correctness of Gk and Xk.

If the color of v in Gk is in {c1, · · · , ck−1} then the robot is doomed to fail
in exploring Gk. Indeed since starting at u0 in Gk−1 the robot does not traverse
any of the vertices corresponding to ports not in Xk−1, then in Gk too, the robot
does not traverse any of the vertices corresponding to ports not in Xk ⊇ Xk−1,

346 R. Cohen et al.

and thus fails to explore Gk because d − |Xk| ≥ 1. This completes the proof of
Pk and thus the induction.

In particular, Gt is not explored by the robot if the node v is colored with
a color in c1, c2, · · · , ct. If v is colored ct+i with 1 ≤ i ≤ r, then assume that
the robot starts the traversal at vertex u0. Since the edge labeled pi leads to a
degree-1 vertex in Gt, this vertex will never be visited by the robot, by definition
of pi. Therefore the graph Gt cannot be explored by the robot. &'

The theorem above makes use of graphs with loops. For graphs without loops
we have the following theorem.

Theorem 4. For any d > 4 and for any 1-state robot using at most +log d, − 2
colors, there exists a graph of maximum degree d, without loops, that cannot be
explored by the robot.

5 Further Investigations

It was known that there is no 0-bit exploration-labeling scheme, even for bounded
degree graphs. We proved that there is a 2-bit exploration-labeling scheme for ar-
bitrary graphs, and that there is a 1-bit exploration-labeling scheme for bounded
degree graphs. It remains open whether or not there exists a 1-bit exploration-
labeling scheme for arbitrary graphs.

References

1. M. Blum and D. Kozen. On the power of the compass (or, why mazes are easier
to search than graphs). In 19th Symposium on Foundations of Computer Science
(FOCS), pages 132-142, 1978.

2. L. Budach. Automata and labyrinths. Math. Nachrichten, pages 195-282, 1978.
3. K. Diks, P. Fraigniaud, E. Kranakis, and A. Pelc. Tree Exploration with Little

Memory. In 13th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA), pages
588-597, 2002.

4. P. Fraigniaud, D. Ilcinkas, A. Pelc, G. Peer and D. Peleg. Graph Exploration by
a Finite Automaton. In Proc. 29th Int. Symp. on Mathematical Foundations of
Computer Science (MFCS), LNCS 3153, 451-462, 2004.

5. D. Kozen. Automata and planar graphs. In Fund. Computat. Theory (FCT), 243-
254, 1979. Fundamentals of Computation Theory (FCT), pages 243-254, 1979.

6. M.O. Rabin, Maze threading automata. Seminar talk presented at the University
of California at Berkeley, October 1967.

7. H.A. Rollik. Automaten in planaren Graphen. Acta Informatica 13:287-298, 1980
(also in LNCS 67, pages 266-275, 1979).

8. C. E. Shannon. Presentation of a maze-solving machine. In 8th Conf. of the Josiah
Macy Jr. Found. (Cybernetics), pages 173-180, 1951.

On the Wake-Up Problem in Radio Networks

Bogdan S. Chlebus1,�, Leszek G ↪asieniec2,
Dariusz R. Kowalski2,3,��, and Tomasz Radzik4

1 Department of Computer Science and Eng.,
UCDHSC, Denver, CO 80217, USA
2 Department of Computer Science,

University of Liverpool, Liverpool L69 7ZF, UK
3 Instytut Informatyki, Uniwersytet Warszawski,

Banacha 2, Warszawa, Poland
4 Department of Computer Science,

King’s College London, London WC2R 2LS, UK

Abstract. Radio networks model wireless communication when pro-
cessing units communicate using one wave frequency. This is captured by
the property that multiple messages arriving simultaneously to a node
interfere with one another and none of them can be read reliably. We
present improved solutions to the problem of waking up such a network.
This requires activating all nodes in a scenario when some nodes start to
be active spontaneously, while every sleeping node needs to be awaken
by receiving successfully a message from a neighbor. Our contributions
concern the existence and efficient construction of universal radio syn-
chronizers, which are combinatorial structures introduced in [6] as build-
ing blocks of efficient wake-up algorithms. First we show by counting
that there are (n, g)-universal synchronizers for g(k) = O(k log k log n).
Next we show an explicit construction of (n, g)-universal-synchronizers
for g(k) = O(k2 polylog n). By way of applications, we obtain an existen-
tial wake-up algorithm which works in time O(n log2 n) and an explicitly
instantiated algorithm that works in time O(n Δ polylog n), where n is
the number of nodes and Δ is the maximum in-degree in the network.
Algorithms for leader-election and synchronization can be developed on
top of wake-up ones, as shown in [7], such that they work in time slower
by a factor of O(log n) than the underlying wake-up ones.

1 Introduction

Radio networks model mobile wireless communication when processing units
communicate using one wave frequency. We consider networks that are syn-
chronous in the sense that there is a global time measured in rounds and local

� The work of this author is supported by the NSF Grant 0310503.
�� Part of this work was done while the author was a postdoctoral fellow in Max-Planck-

Institut für Informatik, Saarbrücken, Germany. The work of this author is supported
by the KBN Grant 4T11C04425.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 347–359, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

348 B.S. Chlebus et al.

clocks at nodes are ticking at the same rate. Communication has the property
that multiple messages arriving at the same round to a node interfere with one
another and none can be reliably received. Radio networks are given as directed
graphs with edges representing direct-transmission ranges among nodes. A mes-
sage is said to be heard by a receiving node when it can be read correctly. Radio
networks are characterized by the following properties:

(i) A node can transmit at most one message at a round.
(ii) All the out-neighbors of a transmitting node receive the message in the

same round when it was transmitted.
(iii) A recipient of a transmission can hear it only when the message was the

only one received at the round.

Distributed communication protocols may have nodes categorized into active
and passive. The former know that the protocol is being performed and execute it
according to the code, while the latter need to be activated to join the execution.
A passive node becomes automatically active after hearing a message. In the
wake-up problem, some node may become spontaneously active at independent
rounds and each of them wants to activate the whole network. Observe that
wake-up is a generalization of the broadcast problem, in which exactly one node
is activated spontaneously with the goal to wake up the whole network.

A multi-hop radio network is modeled as a directed strongly-connected graph
G = (V,E), with n = |V | nodes. We simply assume V = [1..n] = [n]. Size n is
the only network parameter included in codes of protocols we consider. Let D
be the maximum directed distance between a pair of nodes, measured in terms
of lengths of directed paths, and Δ the maximum in-degree of a node.

The rounds when nodes wake up spontaneously are represented as a function
ω : V → N , where N is the set of natural numbers. This means that node v
wakes up spontaneously at time ω(v) = ωv, unless it was already awaken by
hearing a message sent by its active neighbor. Function ω is often referred to as
a shift function, because it defines shifts of local time at nodes when they wake
up spontaneously.

An active node v executes a sequence of transmissions given by some schedule,
which is a binary sequence Rv repeated cyclically. An occurrence of 0 means a
pause and an occurrence of 1 a transmission. The positions in Rv correspond to
consecutive rounds after wake-up, according to the local clock of v. A collection
of schedules good for waking up a radio network is called a radio synchronizer.
Next we recall precise definitions of such synchronizers.

Let n and m be positive integers. Let R = {Rv}1≤v≤n be an n ×m binary
array. There are n rows and m columns in the array. Each sequence Rv =
Rv(1)Rv(2) . . .Rv(m) of length m is a row in the array. The number m is called
the length of R; it is often given as a function of the number n of rows.

Consider a shift function ω for R. We always assume that 0 ≤ ωv < m for
1 ≤ v ≤ n. A row v is ω-active at position t, or just active if ω is understood, if
ωv < t ≤ ωv + m. Shift function ω can be applied to array R by shifting row v
to the right by ωv columns and padding the empty entries with occurrences
of 0. The resulting array Rω has at most 2m − 1 columns. We often refer to

On the Wake-Up Problem in Radio Networks 349

the columns of Rω as positions. To simplify the exposition, we may assume that
array Rω has exactly 2m−1 positions and if position t satisfies either 1 ≤ t ≤ ωv

or ωv + m + 1 ≤ t ≤ 2m− 1, then Rω[v, t] = 0.
If L is a set of rows of R, then let Lω denote the sub-array of Rω restricted to

rows in L. Given a set L of rows, a position t is successful for L, if there is exactly
one occurrence of 1 at position t of all rows of Lω. For a shift function ω and
such a set L of rows, define ωL = minv∈L ωv. We assume throughout that ωL = 0
in a context when rows of L correspond to nodes that wake up spontaneously;
this makes positions correspond to rounds counted from the moment when the
first in-neighbor of a node became active.

Radio synchronizers:
Array R is an (n, k)-synchronizer of length m, where 1 ≤ k ≤ n, if for
any shift function ω and any set L of at most k rows, there is a successful
position for L.

Let g : N × N → N be a non-decreasing function called the delay function in
the context of universal synchronizers.

Universal radio synchronizers:
Array R is a (n, g)-universal synchronizer if, for any shift function ω and
any set L of rows, with the property that ωL = minv∈L ωv = 0, there is
a successful position for L between positions 1 and g(n, |L|).

Notice that the length of a (n, g)-universal synchronizer can always be assumed
to be equal to g(n, n). Universal radio synchronizers were defined to capture the
following quantitative requirement on a wake-up protocol: if the active nodes
transmit according to a (n, g)-universal synchronizer, then a node with k in-
neighbors always becomes active within g(n, k) rounds from the time when its
first in-neighbor becomes awake. Radio synchronizers were defined by Chrobak,
G ↪asieniec and Kowalski [7] in their solution to the problems of wake-up, leader
election and synchronization of local clocks in multi-hop networks. The notion of
radio synchronizers was already implicitly used by G ↪asieniec, Pelc and Peleg [11]
in their algorithms for waking up a multiple-access channel. Universal radio
synchronizers were defined by Chlebus and Kowalski [6] as a strengthening of
radio synchronizers with the goal to improve the time of wake-up.

A family of combinatorial structures or instantiations of an algorithm para-
metrized by size n is said to be explicit, if the n-th object can be obtained in
time polynomial in n.

Our results. We show the existence and present explicit constructions of im-
proved universal radio synchronizers. This is translated into a better performance
of known protocols in multi-hop radio networks, that solve problems such as
wake-up, leader election and synchronization of local clocks. The contributions
are summarized as follows.
I. We show the existence of (n, g)-universal-synchronizers where g(n, k) is of

order O(k log k log n). The best previously known universal radio synchro-
nizers were shown by Chlebus and Kowalski [6] to exist for g(n, k) of order
O(k min{k,

√
n} log n).

350 B.S. Chlebus et al.

II. We construct explicit (n, g)-universal-synchronizers with g(n, k) of order
O(k2 polylog n). This is the first explicit construction of universal synchro-
nizers. This generalizes previously known related design of explicit (n, k)-
synchronizers of length O(k2 polylog n) given in [6].

III. Using our new universal synchronizers, we show how to instantiate proto-
cols for wake-up, leader election and local-clocks synchronizations presented
in [6, 7] to significantly improve their performance. The resulting existential
wake-up solution works in time O(min{n,DΔ} logΔ log n) and the explicit
solution works in time O(min{n,DΔ}Δpolylog n). Ours is the first explicit
sub-quadratic wake-up solution for Δ = o(n/polylog n). The best previously
known existential wake-up protocol has running time O(n3/2 log n); it was
developed in [6]. The best previously known quasi-explicit wake-up proto-
col for networks of diameter D operates in time O(Dn1+ε), for an arbitrary
ε > 0; it can be constructed in a quasi-polynomial time 2polylog n following
the construction given by Indyk [12]. The leader election and synchroniza-
tion protocols have time performance slower than wake-up by an additional
factor of O(log n).

Previous work. Wake-up protocols were first considered for the multiple-access
channel by G ↪asieniec, Pelc and Peleg [11]. Such networks are also called single-
hop radio networks and are modeled by complete directed graphs. Randomized
wake-up protocols for the multiple-access channel were also studied by Jurdz-
iński and Stachowiak [13], and explicit wake-up protocols were given by In-
dyk [12]. The general wake-up problem for multi-hop networks was first studied
by Chrobak, G ↪asieniec and Kowalski [7]. They introduced the notion of radio
synchronizer and also developed leader-election and synchronization protocols.
The fastest known wake-up protocol was given by Chlebus and Kowalski [6],
who introduced the notion of universal radio synchronizers. G ↪asieniec, Pelc
and Peleg [11] showed that there are (n, n)-synchronizers of length O(n log2 n).
Chrobak, G ↪asieniec and Kowalski [7] showed that there are (n, k)-synchronizers
of length O(k2 log n). Chlebus and Kowalski [6] showed that for each n there is an
(n, g)-universal synchronizer with delay g(n, k) upper bounded by the function
O(k min{k,

√
n} log n). A construction of (n, n)-synchronizers of length O(n1+ε),

for any constant ε > 0, in a quasi-polynomial time O(2polylog n) was given by
Indyk [12]. Chlebus and Kowalski [6] described explicit (n, k)-synchronizers of
length O(k2 polylog n). Prior to this work, there was no known non-trivial ex-
plicit construction of universal synchronizers.

Clementi, Monti and Silvestri [8] showed that (n, k)-selective-families, as de-
fined in Chlebus et al. [5], have to be of a size Ω(k log(n/k)). Radio synchronizers
have the properties of selective families; more precisely, they have the properties
of radio synchronizers for the special case where all rows are active at position 1.
It follows that (n, k)-synchronizers have to be of length Ω(k log(n/k)). Indyk [12]
gave an explicit construction of (n, k)-selectors of length O(k polylog n); such se-
lectors are more general structures than selective families.

Related work. The model of radio communication was introduced by Chlamtac
and Kutten [3]. Chlamtac and Weinstein [4] gave a centralized explicit broad-

On the Wake-Up Problem in Radio Networks 351

cast protocol working in time O(D log2(n/D)). Clementi et. al [9] developed an
explicit protocol for the same problem working in time O(D logΔ log(n/D)).
Regarding distributed sub-quadratic broadcast, the first such a randomized pro-
tocol was given by Bar-Yehuda, Goldreich, and Itai [2], and the first deterministic
one by Chlebus et al. [5]. The fastest known distributed deterministic existential
broadcast protocol for directed networks works in time O(n log2 D); it was given
by Czumaj and Rytter [10].

Document structure. The rest of the document is structured as follows. In
Section 2 we show by the probabilistic method that short universal synchronizers
exist. A polynomial-time construction of short universal synchronizers is given in
Section 3. In Section 4 we present applications of universal synchronizers to the
problems of wake-up, leader election and synchronization of local clocks in multi-
hop radio networks. We conclude in Section 5. Proofs of statements labelled as
Lemmas have been omitted.

2 Short Universal Synchronizers by Counting

In this section we show the existence of (n, g)-universal-synchronizers with a
slowly growing delay function g. To avoid rounding, we assume that n is a power
of 2. Otherwise prove the existence of (n′, g)-universal-synchronizer, where n′ =
2�log n�, and remove the last n′−n rows to obtain an (n, g)-universal-synchronizer.
The notation log x denotes the logarithm of x to the base 2. We often write g(k)
for g(n, k) when n is understood.

Specification of random universal synchronizers. Now we determine the
length m and the delay function g of a (n, g)-universal-synchronizer. Let c ≥ 4
be a constant to be determined later.

Define m(�) = c2�� log n, for every 1 ≤ � ≤ log n. Let m =
∑

�≤log n m(�).
Define g(n, k) =

∑
�≤�log k� m(�) for k > 1, and g(1) = m(1). Note that g(n, k) =

O(k log k log n).
Given a column j, for 1 ≤ j ≤ m, there is a unique positive integer κ satisfying

the inequalities
∑

�<κ m(�) < j ≤
∑

�≤κ m(�). This number κ is denoted by κj .
Consider a random n×m arrayR = [Rv(j)], where the binary-valued random

variables Rv(j) are all independent, for 1 ≤ v ≤ n and 1 ≤ j ≤ m. Random
variable Rv(j) is defined to be equal to 1 with probability 1/(κj2κj).

Theorem 1. The array R is an (n, g)-universal-synchronizer, for g(n, k) =
O(k log k log n), with the probability of at least 1 − 1/n, for a sufficiently large
constant c ≥ 4.

The remaining part of this section is devoted to a proof of Theorem 1. Let
us fix n, which allows to write g(k) for g(n, k). For a position t, let Aω(t) be
the set of rows ω-active at t; we write A(t) when ω is clear from context. Let
us partition shift functions into n classes such that ω belongs to the i-th class
if i is the smallest positive integer for which the number of ω-active rows at
position g(i) is at most i; this is equivalent for i to be the smallest number such

352 B.S. Chlebus et al.

that the inequality |Aω(g(i))| ≤ i holds. These classes are well defined because
all rows are active at position m by the assumption that ωv < m, for 1 ≤ v ≤ n,
and because m = g(n). For a shift function ω in the i-th class, we need to show
that the universal synchronizer under consideration has the property that there
is a successful position by the position g(i). Therefore it is sufficient to consider
only a partial function defined by the values of ω at rows v such that ωv < g(i).
This partial function is denoted as ω|g(i).

Consider shift functions in the 1-st class. There is only one row v active on
positions [1..2c log n], by the definition of this class. The probability that all these
positions are unsuccessful is at most 2−2c log n ≤ e−c log n. There are at most n
possible rows v, hence the probability that there is a shift function in the 1-st
class, where all positions t ≤ g(1) are unsuccessful, is at most eln n · e−c log n ≤
e−2 ln n = n−2, for c ≥ 3.

Consider next the general case of shift functions in the k-th class, for 1 < k ≤
n. By the definition, number k is the smallest positive integer such that there
are at most k active rows at position g(k). Let us fix an ω in this class, and let
K = Kω be the set of rows that are ω-active at position g(k), that is, set K
denotes A(g(k)) = Aω(g(k)).

For row v ∈ K and position t ≤ g(k), let pv(t) denote the probability that
there is 1 in row v at position t, which means Rv(t−ωv) = 1, with pv(t) = 0 for
every t ≤ ωv. Let μK(t) denote

∑
v∈K pv(t). We call a position t ≤ g(k) balanced

if the inequalities 1/(4κt) ≤ μK(t) ≤ 4 hold. Let κ denote κg(k). Notice that
m(κ) = g(k)− g(k/2).

Lemma 1. There are at least m(κ)/2 balanced positions between position g(k/2)+
1 and position g(k).

Consider a balanced position t ≤ g(k). The probability that t is successful is∑
v∈K

pv(t) ·
∏

w∈K,w �=v

(1− pw(t)) ≥ μK(t) · 4−μK(t) ≥ 1
4κ

4−4 =
1

45κ
,

since pv(t) ≤ 1/2 for every v ∈ K. Hence, by Lemma 1, the probability that all
balanced positions are unsuccessful is at most(

1− 1
45κ

)m(κ)/2

≤ e−(2c/46)2κ log n ≤ e−(2c/46)k log n .

The above considerations were for a fixed shift function ω from the k-th class. We
do not need to know how ω precisely behaves for rows that are shifted by more
than g(k). The set K is uniquely defined by ω|g(k), and the above probabilistic
analysis is based on ω|g(k). Such a partial function is determined by its domain
of k elements and an assignment of values in the range from 0 to g(k) − 1 to
them. It follows that there are at most

(
n
k

)
· (g(k))k ≤ ek ln(ne/k)+k ln g(k) different

partial functions ω|g(k) such that ω is in the k-th class.
The probability that there exists a shift function ω from the k-th class such

that there is no successful position t ≤ g(k) in R is at most

ek ln(ne/k)+k ln g(k) · e−(2c/46)k log n ≤ e−2k ln n ,

On the Wake-Up Problem in Radio Networks 353

for a sufficiently large constant c ≥ 4, since ln g(k) = O(log n). Summing up all
the probabilities for all classes, the probability of the event that there is a shift
function in some k-th class such that there is no successful position t ≤ g(k)
in R is at most

∑n
k=1 e

−2k ln n ≤ 1/n, for n > 1. This completes the proof of
Theorem 1.

3 Explicit Constructions

In this section we show how to construct (n, g)-universal-synchronizer with delay
g(n, k) = O(k2 polylog n) in time polynomial in n. We recall the construction
from [6], and then modify it to obtain synchronizers satisfying certain proper-
ties stronger than synchronization, to be used in the construction of universal
synchronizers. It is enough to construct universal synchronizers for values of n
being powers of 3 to guarantee the same overall asymptotic behavior. We want
to construct a universal synchronizer in two steps. First is a concatenation of
(n, 3x)-synchronizers of length m(3x), for x = 1, 2, . . . , log3 n, as constructed
in [6], denoted by Q. Second is replacing each occurrence of 0 in the obtained
structure by a sequence of zeroes of a specific length m∗ = polylog n, and each
occurrence of 1 in row v by the corresponding sequence Sv taken from a suitable
synchronizer S of length m∗.

3.1 Explicit Synchronizers

We first present (n, k)-synchronizers denoted F(n, k), of length f(k) that is of
order O(k2 polylog n), based on the construction from [6]. Then we modify this
construction and argue that the obtained synchronizers satisfy a stronger con-
dition than the one in the definition of synchronizers.
Construction of (n, k)-synchronizers F(n, k). We briefly recall the construc-
tion from [6]. Assume that number n is sufficiently large and that k divides n.
Let P be a set of k different primes between k log n and 3k log n. Set P is well
defined by the Chebyshev Theorem, as given in [1]. Let p be in set P. Denote
by πp a binary sequence of length 3k2 log n and such that πp(j) = 1, when both
p divides j and 0 < j ≤ 3k2 log n, and let πp(j) = 0 otherwise. Let σ denote
a sequence of zeroes of length 3k2 log n. Number d is a positive integer, to be
determined later, depending on numbers k and n and on applications. Let h be a
function from [n]× [d] to P. For v ∈ [n], define schedule Sv to be a concatenation
of schedules of the form 〈πh(v,1), σ, πh(v,2), σ, . . . , πh(v,d), σ, σ2d〉, where σ2d

denotes a sequence of zeros of length 6dk2 log n.
Selective functions:
Function h : [n]× [d] → P is said to be (n, k, d)-selective when for every
set W ⊆ [n] of a size at most k, there is a number p in P such that set
h−1(p) ∩ (W × [d]) is a singleton.

Lemma 2 ([6]). If function h is (n, k, d)-selective, then set S = {Sv}v∈V of
schedules is an (n, k)-synchronizer of length f(n, k) = O(dk2 log n).

354 B.S. Chlebus et al.

The construction of Indyk [12] gives an explicit (n, k, d)-selective function for
d = polylog n. It relies on a polynomial-time construction of (n, k′, d′, 1/2− ε)-
dispersers developed by Ta-Shma, Umans and Zuckerman [16], for d′ = O(polylog
n) and for a constant 0 < ε < 1/2. Using this explicit selective function and
Lemma 2, the following fact can be shown:

Lemma 3 ([6]). A family {F(n, k)}n≥k of (n, k)-synchronizers of length which
is O(k2polylog n) can be constructed in time polynomial in n.

Construction of (n, k)-synchronizers F∗(n, k). We use the general scheme
of construction from [6] and modify it to obtain the construction of (n, k)-
synchronizers satisfying the following property M(k). We often write f(k) for
f(n, k) when n is understood.

Property M(k):
We say that an (n, k)-synchronizer of length f(n, k) satisfies property
M(k) if for every set K of at most k rows shifted by at most 3f(n, k)−1
positions and such that at least one row is shifted by at least f(n, k)
and at most 2f(n, k) − 1 positions, there is a successful position in the
interval [f(n, k) + 1..3f(n, k)].

The main idea is that if we take function h satisfying a certain stronger property,
then the obtained structure is also (n, k)-synchronizer, of a somewhat larger
length, but it satisfies property M(k). We need the following property to be
satisfied by function h.

Strongly selective functions:
We say that function h : [n] × [d] → P is (n, k, d)-strongly-selective if
for every set W ⊆ [n] of a size at most k and every w ∈ W , there are
numbers p in P and d′ ∈ [d] such that {(w, d′)} = h−1(p) ∩ (W × [d]).

Note that if h is (n, k, d)-strongly-selective, then it is also (n, k, d)-selective.

Lemma 4. If function h is (n, k, d)-strongly-selective, then set S = {Sv}v∈V

of schedules is an (n, k)-synchronizer of length f(n, k) = O(dk2 log n) and it
satisfies property M(k).

On the other hand, (n, k, d)-strongly-selective functions can be explicitly
constructed for d = O(k log2 n), relying on a construction by Kautz and Sin-
gleton [14]. Define F∗(n, k) to be the structure with (n, k, d)-strongly-selective
function h, as constructed explicitly in [14]. Combine an explicit construction of
(n, k, d)-strongly-selective functions with d = O(k log2 n) [14] and Lemma 4 to
obtain:

Theorem 2. A family {F∗(n, k)}n≥k of (n, k)-synchronizers of length f(n, k) =
O(k3 polylog n) and satisfying property M(k) can be constructed in time poly-
nomial in n.

On the Wake-Up Problem in Radio Networks 355

3.2 Explicit Universal Synchronizers

Let F(n, k) be the synchronizer, defined in Section 3.1, of the corresponding
length O(dk2 log n), for some d being polylog n. Let S = F∗(n, 27d log2 n) be the
explicit (n, 27d log2 n)-synchronizer of some length m∗ which satisfies property
M(27d log2 n), as described in Section 3.1.

To obtain universal synchronizer Rv, we proceed in two steps:

First step: Concatenate rows of synchronizers F(n, k), for k = 3i, from
i = 0 through i = log3 n,

Denote by Q the obtained structure.
Second step: Replace each occurrence of 0 in row Qv by the sequence of

m∗ zeros, and each occurrence of 1 in row Qv by the sequence Sv.

Structure Q is like a universal radio synchronizer but with a notion of a “success-
ful position” replaced with the weaker notion of an “almost successful position,”
meant to be a position where 1 occurs at least once but at most O(polylog n)
times. The reason why structure Q can only guarantee the existence of “almost
successful positions” is that the log n concatenated synchronizers interfere with
one another when the rows are arbitrarily shifted. Structure S guarantees a
successful position in any set of O(polylog n) rows. Therefore the operation of
expanding each 1 in Q with structure S turns each “almost successful position”
into a sequence of consecutive positions with at least one of them being success-
ful. A complete proof, that structure R is indeed a universal synchronizer, needs
to account properly for the possibility that rows of R are shifted in such a way
that the copies of structure S in different rows are not aligned.

Theorem 3. R is an explicit (n, g)-universal-synchronizer with g(n, k) of order
O(k2 polylog n).

In the remaining part of this section we prove Theorem 3. Let us fix n,
which allows to write f(k), g(k) and g′(k) rather than f(n, k), g(n, k) and
g′(n, k), respectively. Define function g(n, k) = g(k) = f(3x) · m∗, where x =
min{3�log3 k�, n/3}. Observe that estimate g(k) = O(k2 polylog n) holds, since
f(3x) is of orderO(x2 polylog n) by Lemma 3, function 27d log2 n of n is polylog n
and hence m∗ = polylog n by Theorem 2.

We first analyze structure Q. Consider a shift function ω′ on Q, and let
g′(k) = f(3x). Let k be the first positive integer such that there are at most k
active rows at position g′(k). Recall that A(t) stands for the set of active rows
at position t. By the definition of universal synchronizers and how function g′ is
specified, we obtain that |A(g′(k))| = k. Let K denote set A(g′(k)).

By the definition of k we also have that |A(g′(k/3))| > k/3. Let L de-
note A(g′(k/3)). By the definition of Q, all rows from L have their components
taken from an (n, x)-synchronizer of length f(x) ≤ g′(k).

Lemma 5. There is a prime number p ∈ [x log n, 3x log n] for which there is
exactly one row v such that Rv contains sequence πp in its prefix by position g′(k).

356 B.S. Chlebus et al.

Fix a prime number p, let t∗ be the first position of sub-sequence πp of Qv

and t∗ be the last such a position, all as existing by Lemma 5. For every row
w �= v in K, array Qw[t∗..t∗] contains at most d log3 x different sub-sequences πq,
for primes q ≤ 3x log n, all these sequences different from πp.

(p, q)-Crowded positions:
Position 1 < t ≤ g′(k) is (p, q)-crowded if one of the following holds:
(a) 1 occurs at position t in both sequences πp and πq,
(b) 1 occurs at position t in πp and at position t− 1 in πq,
(c) 1 occurs at position t in πq and at position t− 1 in πp.

Lemma 6. Any sequence πq, for a prime q ≤ 3 · 3x log n and q �= p, contributes
at most nine (p, q)-crowded positions, if shifted arbitrarily.

It follows from Lemma 6 that there are at most

9 · k · log3 x · 3d log n ≤ k · (27d log2 n− 1)

(p, q)-crowded positions, for some primes q �= p, while there are at least k occur-
rences of 1 in sequence πp in row v. For some position t, there is 1 at position t
in row v, and at most 27d log2 n− 1 occurrences of 1 in other rows at positions
t− 1, t, t + 1 in total. Call such t a candidate position.

Now consider the whole structure R, by position g(k) = g′(k)m∗, together
with the shift function ω. Let ω′ be the corresponding shift functions for the
underlying structureQ, determined by ω′

v = (ωv

m∗
). It follows that in structureQ,

with such a shift function ω′, there is a candidate position t′. Denote by K ′ ⊆ K
all rows v ∈ K such that there is a 1 in row v at positions t′ − 1, t′, t′ + 1. The
inequality |K ′| ≤ 27d log2 n holds by the definition of t′. It follows that there is
a sequence Sv of length m∗ contained in row v in structure R between positions
(t′ − 1)m∗ + 1 and (t′ + 1)m∗, and at most 27d log2 n − 1 sequences Sw, for
different w �= v, which intersect interval of positions [(t′ − 2)m∗ + 1, (t′ + 1)m∗].
There is a successful position in row w in the interval [(t′−1)m∗ +1, (t′ +1)m∗],
by property M(27d log2 n) of (n, 27d log2 n)-synchronizer S. This completes the
proof of Theorem 3.

4 Applications

We show that the problems of wake-up, leader election and synchronization
can all be solved in deterministic time O(npolylog n) by relying on universal
synchronizers shown to exist, and in time O(nΔ polylog n) by construction of
explicit universal synchronizers.

When developing leader-election and synchronization algorithms, one usually
assumes that unique names are from some polynomial range, while the differ-
ence between the maximum and minimum-value names is O(n). To simplify the
exposition, we assume that there are n nodes with unique names in an interval
[1..O(n)]. Recall that D denotes the diameter of the directed network, and Δ is
its maximum in-degree.

On the Wake-Up Problem in Radio Networks 357

For the sake of completeness, we recall briefly the wake-up protocol based on
universal synchronizers, as proposed in [6]. It operates as follows. Take a (n, g)-
universal synchronizer S, where rows correspond to nodes. Each node v starts
executing its sequence Sv ∈ S immediately when it becomes active. This means
that it performs a transmission in the i-th round exactly when the i-th bit in Sv

is a 1. We refer to this protocol as CK.
We develop a general estimate on the complexity of the wake-up protocol CK,

which we call β, that depends on parameters of the network and the delay
function of the universal synchronizer that is a part of its code. For numbers
n,D,Δ and a delay function g of a (n, g)-universal synchronizer, let β(n,D,Δ, g)
denote the supremum of the function

∑D
i=1 g(xi), where integers 0 ≤ xi ≤ Δ,

for 1 ≤ i ≤ D, satisfy an additional constraint
∑D

i=1 xi ≤ n.

Lemma 7. Protocol CK based on (n, g)-universal-synchronizer wakes up a radio
network of n nodes with parameters D and Δ in β(n,D,Δ, g) rounds.

Corollary 1. Protocol CK can be instantiated such that it solves the wake-up
problem in O(min{n,DΔ} logΔ log n) rounds.

Corollary 2. Protocol CK can be explicitly instantiated such that it solves the
wake-up problem within time bound O(min{n,DΔ}Δpolylog n).

The estimate given in Corollary 1 is within a logarithmic factor away from
Ω(min{n logD,DΔ log(n/Δ)}), which is a lower bound on broadcasting given
in [8] that holds also for wake-up. A general protocol for leader election and
synchronizing local clocks was given by Chrobak, G ↪asieniec and Kowalski [7], we
call it CGK. The protocol is built on top of a wake-up one.

Corollary 3. Protocol CGK, based on suitably instantiated CK, can solve leader
election and synchronization of local clocks in O(min{n,DΔ} logΔ log2 n) rounds.

Corollary 4. Protocol CGK, based on an explicitly instantiated CK, can solve
leader election and synchronization of local clocks in O(min{n,DΔ}Δpolylog n)
rounds.

5 Conclusion

We obtain an existential distributed wake-up protocol for multi-hop ad-hoc radio
networks working in time O(n log2 n) and an explicitly instantiated distributed
protocol that works in time O(nΔ polylog n). Developing explicit sub-quadratic
wake-up of radio networks remains an open problem.

On the technical level, our results concern universal synchronizers. We show
the existence of (n, g)-universal synchronizers for g(k) of order O(k log k log n).
The best known lower bound is Ω(k log(n/k)), which is derived form a lower
bound on selective families given in [8]. Selective families are apparently weaker
structures than universal synchronizers. Improving these upper and/or lower

358 B.S. Chlebus et al.

bounds for universal synchronizers, in terms of function g, remains open. In
particular, the following is an open problem: is there an explicit construction of
(n, g)-universal-synchronizer for g(k) = O(k polylog n)?

If we have only an upper bound N on the size of the network and node labels
are from the interval [1..N], then we may use a (N, g)-universal synchronizer.
Lemma 7 holds true, since its proof relies on the property that nodes are uniquely
assigned to rows of the universal synchronizer. For this case we have g(k) =
k log k logN , and so the corresponding modification on the estimates of β, and
consequently on all the following results, is that we have expressions logN and
polylog N instead of logn and polylog n, respectively.

It is a natural question to ask what is the inherent difference in time per-
formance between broadcast and wake-up protocols. It turns out that such a
difference is within a factor of O(log n). The answer has already been known for
randomized protocols, by the results in [7] for wake-up and [10, 15] for broad-
cast. This paper settles this for deterministic existential protocols, by obtaining
a time O(n log2 n) wake-up, as efficient, in terms of n, as the broadcast in [10].

References

1. E. Bach, and J. Shallit,“Algorithmic Number Theory,”Vol. I, 1996, The MIT Press,
Cambridge, Massachusetts.

2. R. Bar-Yehuda, O. Goldreich, and A. Itai, On the time complexity of broadcast
in radio networks: an exponential gap between determinism and randomization,
Journal of Computer and System Sciences, 45 (1992) 104 - 126.

3. I. Chlamtac, and S. Kutten, On broadcasting in radio networks - problem analysis
and protocol design, IEEE Transactions on Communications, 33 (1985) 1240 -
1246.

4. I. Chlamtac, and O. Weinstein, The wave expansion approach to broadcasting in
multihop radio networks, IEEE Transactions on Communications, 39 (1991) 426 -
433.

5. B.S. Chlebus, L. G ↪asieniec, A. Gibbons, A. Pelc, and W. Rytter, Deterministic
broadcasting in unknown radio networks, Distributed Computing, 15 (2002) 27 -
38.

6. B.S. Chlebus, and D.R. Kowalski, A better wake-up in radio networks, in Pro-
ceedings, 23rd ACM Symposium on Principles of Distributed Computing (PODC),
2004, pp. 266 - 274.

7. M. Chrobak, L. G ↪asieniec, and D.R. Kowalski, The wake-up problem in multi-hop
radio networks, in Proceedings, 15th ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), 2004, pp. 985 - 993.

8. A.E.F. Clementi, A. Monti, and R. Silvestri, Distributed broadcast in radio net-
works of unknown topology, Theoretical Computer Science 302 (2003) 337 - 364.

9. A.E.F. Clementi, P. Crescenzi, A. Monti, P. Penna, and R. Silvestri, On com-
puting ad-hoc selective families, in Proceedings, 5th International Workshop on
Randomization and Approximation Techniques in Computer Science (RANDOM-
APPROX), 2001, pp. 211 - 222.

10. A. Czumaj, and W. Rytter, Broadcasting algorithms in radio networks with un-
known topology, in Proceedings, 44th IEEE Symposium on Foundations of Com-
puter Science (FOCS), 2003, pp. 492 - 501.

On the Wake-Up Problem in Radio Networks 359

11. L. G ↪asieniec, A. Pelc, and D. Peleg, The wakeup problem in synchronous broadcast
systems, SIAM Journal on Discrete Mathematics, 14 (2001) 207 - 222.

12. P. Indyk, Explicit constructions of selectors and related combinatorial structures,
with applications, in Proceedings, 13th ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), 2002, pp. 697 - 704.

13. T. Jurdziński, and G. Stachowiak, Probabilistic algorithms for the wakeup problem
in single-hop radio networks, in Proceedings, 13th International Symposium on
Algorithms and Computation (ISAAC), 2002, LNCS 2518, pp. 535 - 549.

14. W.H. Kautz, and R.R.C. Singleton, Nonrandom binary superimposed codes, IEEE
Transactions on Information Theory, 10 (1964) 363 - 377.

15. D.R. Kowalski, and A. Pelc, Deterministic broadcasting time in radio networks of
unknown topology, in Proceedings, 22nd ACM Symposium on Principles of Dis-
tributed Computing (PODC), 2003, pp. 73 - 82.

16. A. Ta-Shma, C. Umans, and D. Zuckerman, Loss-less condensers, unbalanced ex-
panders, and extractors, in Proceedings, 33rd ACM Symposium on Theory of Com-
puting (STOC), 2001, pp. 143 - 152.

Distance Constrained Labelings of Graphs of
Bounded Treewidth�

Jǐŕı Fiala1, Petr A. Golovach2, and Jan Kratochv́ıl1

1 Inst. for Theoretical Computer Science�� and Dept. of Applied Mathematics,
Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic

{fiala, honza}@kam.mff.cuni.cz
2 Matematicheskii Fakultet, Syktyvkar State University, Syktyvkar, Russia

golovach@ssu.komi.com

Abstract. We prove that the L(2,1)-labeling problem is NP-complete
for graphs of treewidth two, thus adding a natural and well studied prob-
lem to the short list of problems whose computational complexity sep-
arates treewidth one from treewidth two. We prove similar results for
other variants of the distance constrained graph labeling problem.

1 Introduction

The notion of distance constrained graph labeling attracted a lot of attention
in the past years both for its motivation by the practical frequency assignment
problem, and for its interesting graph theoretic properties. The task of assigning
frequencies to transmitters to avoid undesired interference of signals is modeled
in several ways. The so called channel assignment problem assumes that a min-
imum allowed difference of channels is given for every two transmitters. Thus
the input of this problem is a weighted graph whose vertices correspond to the
transmitters, and the task is to assign nonnegative integers (channels) to the
vertices so that for every edge, the difference of the assigned channels is at least
the weight of the edge, and so that the largest channel used is minimized.

Another approach, and this one we follow in the present paper, is the distance
constrained graph labeling. Here it is assumed that the distance of transmitters
can be modeled by a graph, and that the distance of the transmitters influences
possible interference in such a way that the closer two transmitters are, the
farther apart their frequencies must be. Formally, an assignment of nonnegative
integers to the vertices of a graph G is an L(p1, . . . , pk)-labeling if for every two
vertices at distance at most i ≤ k, the difference of the integers (labels) assigned
to them is at least pi. Here k ≥ 1 is the depth to which the distance constraints
are applied, and integers p1 ≥ p2 ≥ . . . ≥ pk are parameters of the problem.

� Research supported in part by project KONTAKT 525 — DIMACS-DIMATIA-
Rényi Cooperation in Discrete Mathematics.

�� Supported by the Ministry of Education of the Czech Republic as project
1M0021620808.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 360–372, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Distance Constrained Labelings of Graphs of Bounded Treewidth 361

Again, the goal is to minimize the maximum label used. The most studied of the
distance constrained labelings is the case k = 2, p1 = 2, p2 = 1, i.e., the L(2, 1)-
labeling. In this case adjacent vertices must be assigned labels that differ by at
least 2, while nonadjacent vertices with a common neighbor must be assigned
distinct labels. The maximum label used is called the span of the labeling. The
minimum span of an L(2, 1)-labeling of a graph G will be denoted by L(2,1)(G).

The notion of L(2, 1)-labeling was in fact first proposed by Roberts [21] and
many nontrivial results were presented in a pioneer paper of Griggs and Yeh [15].
Let us mention their conjecture that L(2,1)(G) ≤ Δ2(G) (where Δ(G) stands for
the maximum vertex degree in G). This conjecture has been verified for various
graph classes, but it is still open for general graphs (with L(2,1)(G) ≤ Δ(G)2 +
Δ(G) − 1 being the current record [16]). From the computational complexity
point of view, Griggs and Yeh proved that determining L(2,1)(G) is an NP-hard
problem, and this result was later strengthened by Fiala et al. [7] by showing
that deciding L(2,1)(G) ≤ k is NP-complete for every fixed k ≥ 4. Griggs and
Yeh also conjectured that it is NP-complete to compute the L(2,1) number of a
tree, but this was somewhat surprisingly disproved by a dynamic programming
polynomial time algorithm of Chang and Kuo [4].

The common expectation says that problems solvable in polynomial time
for trees should also be polynomially solvable for graphs of bounded treewidth,
though sometimes the extension to bounded treewidth is not straightforward (cf.
e.g., the case of chromatic index [2]). (We informally recall that the treewidth
is a graph invariant that describes how far is the graph from being a tree. For a
formal definition the reader is referred to a survey [3] or to one of the original
papers [1] introducing this invariant in terms of so called partial k-trees. For our
purposes we only need the fact that graphs of treewidth at most two are exactly
the graphs that do not contain a subdvision of K4 as a subgraph, and connected
graphs of treewidth one are exactly trees.) Only very few exceptions to this rule
of thumb are known, and in fact very few problems are known to be hard for
graphs of bounded treewidth. An example is, e.g., the Minimum Bandwidth
problem (which is NP-hard already for trees [12]) or the closely related Channel
Assignment problem which has been recently shown NP-complete for graphs of
treewidth three [19]. The natural question of the complexity of L(2, 1)-labelings
for graphs of bounded treewidth has been posed many times and remained open
since 1996. The main result of our paper settles it by showing that determining
the L(2,1) number of graphs of treewidth two is NP-hard.

Before we formulate the result formally, we specify precisely what problem we
deal with. The decision problem whether a given graph admits an L(2, 1)-labeling
of fixed span can be described in Monadic Second Order Logic (MSOL), and
therefore is solvable in linear time for any class of graphs of bounded treewidth
by a generic algorithm of Courcelle [5]. Thus we naturally assume that the span
is a part of the input, and we consider the following problem.

L(2, 1)-labeling
Input: An integer λ and a graph G.
Question: Is L(2,1)(G) ≤ λ?

362 J. Fiala, P.A. Golovach, and J. Kratochv́ıl

Theorem 1. The L(2,1)-labeling problem is NP-complete for graphs of tree-
width at most two.

So far we have only discussed the model in which interference of the fre-
quencies (or channels) decreases linearly with their increasing difference. It is,
however, plausible to consider also such models in which frequencies far apart
may interfere (e.g., if one is a multiple of the other one). This means more com-
plicated metrics in the frequency space. A concrete step in this direction is the
cyclic metric introduced by van den Heuvel et al. [24]. In this metric, the graph
of the channel space is the cycle of length λ. Similarly to the linear case, we talk
about C(2, 1)-labelings and denote by C(2,1)(G) the minimum span of a C(2, 1)-
labeling of G (note that in the cyclic metric, the span is the number of available
channels, not the difference between the largest and smallest one). For general
graphs, deciding if C(2,1)(G) ≤ λ is NP-complete for every fixed λ ≥ 6 [9]. For
λ part of the input and graphs of bounded treewidth, we fully characterize the
complexity of the C(2,1)-labeling problem (which, given a graph G and an
integer λ as input, asks if C(2,1)(G) ≤ λ):

Proposition 1. ([18, 17]) Let T be a tree with at least one edge, and p ≥
q nonnegative integers. Then C(p,q)(T) = qΔ(T) + 2p − q where Δ(T) is the
maximum degree of a vertex in T .

Theorem 2. The C(2,1)-labeling problem is NP-complete for graphs of tree-
width at most two.

This theorem will be proven in the full version of the paper.
Fiala and Kratochv́ıl [9] defined the notion of H(2, 1)-labeling as the utmost

generalization in the case when the metric of the channel space can be described
by a graph H, and showed that H(2, 1)-labelings of a graph G are exactly locally
injective homomorphisms from G into the complement of H. The complexity
of the H(2,1)-labeling problem for some parameter graphs H then follows
from [8], but the complete characterization is not even in sight. On the other
hand, if G has bounded treewidth, the H(2,1)-labeling problem is solvable in
polynomial time since for a fixed graph H, the existence of an H(2, 1)-labeling
of G can be expressed in MSOL.

It remains to study the case when both G and H are part of the input and we
refer to it as the (2,1)-Labeling problem. Observe that the L(2,1)-labeling
problem is the restriction of (2,1)-Labeling to inputs such that H is a path.
Hence it follows from Theorem 1 that (2,1)-labeling is NP-complete for graphs
of treewidth two. However, in this most general setting, we are able to prove di-
chotomy even with respect to pathwidth (for definition of pathwidth see [22, 23,
3], just recall that connected graphs of pathwidth one are exactly caterpillars):

Theorem 3. For a tree T with m vertices and an arbitrary graph H with n
vertices, one can decide in time O(n3m2) whether T allows an H(2, 1)-labeling.

Theorem 4. The (2,1)-labeling problem is NP-complete for graphs G of path-
width at most two (the graph H may be arbitrary).

Distance Constrained Labelings of Graphs of Bounded Treewidth 363

The paper is organized as follows. In Section 2 we review technical definitions
and notation and prove an auxiliary result on systems of distant representatives
for symmetric sets. The main result, Theorem 1, is proved in Section 3. The
technical proofs for the case of cyclic metric are omitted due to space restrictions.
Theorems 3 and 4 are proved in Section 4. The last section contains concluding
remarks and open questions.

2 Preliminaries

All graphs considered are finite and simple, i.e., with a finite vertex set and
without loops or multiple edges. For a vertex u, the symbol N(u) denotes the
open neighborhood of u, i.e., the set of all vertices adjacent to u, and we denote
by deg u = |N(u)| the degree of u.

A graph is called series-parallel if it can built from isolated edges with end-
vertices called South and North poles by a sequence of series and parallel com-
positions (the former identifies the North pole of one component with the South
pole of the other one, the latter unifies the North poles of the components into
a common North pole, and likewise the South poles). It is well known that a
graph has treewidth at most two if and only if all its 2-connected subgraphs are
series-parallel.

The labels are always nonnegative integers, with 0 being the smallest label
used. We use the notation [x, y] = {x, x + 1, . . . , y − 1, y} to denote intervals
of consecutive integers. We say that a set S of integers is symmetric within an
interval [x, y] if S ⊆ [x, y] and for every i ∈ [x, y], i ∈ S if and only if y+x−i ∈ S.

A system of distinct representatives for a set system S1, S2, . . . , Sn is a sys-
tem of distinct elements si ∈ Si, i = 1, 2, . . . , n. The theory of SDR’s is well
developed, the necessary and sufficient condition for their existence is given by
the well known Hall theorem, and an SDR can be found in polynomial time (e.g.,
by a bipartite matching algorithm). If the ground set

⋃n
i=1 Si is equipped with a

metric function, we can further impose conditions on the distance of the chosen
representatives. We refer the reader to [11, 14] for a survey on the computational
complexity of finding systems of distant representatives for sets in metric spaces
and their applications in various graph labeling problems. Now we will use a
special variant of this problem as an auxiliary tool:

SRL (Special representatives in the linear metric)
Input: An integer n and a collection of sets of integers S1, S2, . . . , Sm symmetric

within the interval [2, λ− 2], where λ = 4n + 5.
Question: Does there exist a collection of distinct integers

s1, s2, . . . , sm, t1, t2, . . . , tn, u1, u2, . . . , un such that
– si ∈ Si for every i = 1, . . . ,m,
– ti ∈ {2i, λ− 2i− 1} for every i = 1, . . . , n,
– ui ∈ {2i + 1, λ− 2i} for every i = 1, . . . , n,
– |ti − ui| ≥ 2 for every i = 1, 2, . . . , n?

364 J. Fiala, P.A. Golovach, and J. Kratochv́ıl

Lemma 1. The problem SRL is NP-complete.

Proof. The proof is provided by a reduction from the following special variant
of the 3-SAT problem (known NP-complete, cf. e.g. [6]).

2-3-SAT
Input: A Boolean formula Φ in conjunctive normal form, whose each clause

consists of 2 or 3 literals and whose every variable has at most 2 positive
and at most 2 negative occurrences.

Question: Is Φ satisfiable?

Let Φ have n variables x1, . . . , xn and m clauses C1, . . . , Cm. The number of
variables n will be the n for the input of SRL. Recall that λ = 4n+5. For every
j = 1, 2, . . . ,m the set Sj is constructed from the clause Cj as follows

Sj =
⋃

i:xi∈Cj

{2i, λ− 2i} ∪
⋃

i:¬xi∈Cj

{2i + 1, λ− 2i− 1}.

Thus every set Sj has 4 or 6 elements and is symmetric within [0, λ].
Assume that Φ allows a satisfying assignment. If a variable xi is assigned the

value true, we set ti = 2i − 1, ui = λ − 2i − 1. Analogously for xi negatively
valued, we let ti = 2i, ui = λ− 2i. For each clause Cj we choose one satisfying
literal. If Cj is satisfied by the literal xi for some i = 1, 2, . . . , n, we let sj = 2i,
if xi is the first occurrence of xi in Φ, and sj = λ− 2i for the second occurrence
of xi in Φ. In the case Cj is satisfied by ¬xi we choose sj = 2i + 1 for the first
occurrence of ¬xi and sj = λ−2i−1 otherwise. Straightforwardly, the collection
s1, . . . , un satisfies all four properties from the definition of the SRL problem.

For the opposite direction suppose that s1, . . . , un is a valid solution for the
SRL problem. The crucial observation is that for every i = 1, 2, . . . , n, there are
only two possible choices for the values of ti and ui so that |ti−ui| ≥ 2 . Namely,
either ti = 2i and ui = λ − 2i or alternatively ti = 2i + 1 and ui = λ − 2i − 1.
In the first case we assign xi = false, and in the second one xi = true.

Then for each j = 1, . . . ,m, the value of uj indicates the satisfying literal for
the clause Cj : If uj = 2i or λ − 2i, then Cj is satisfied by the true assignment
to the variable xi. Alternatively, if uj = 2i + 1 or λ− 2i− i then the literal ¬xi

satisfies Cj as the variable xi is assigned false.
Since the size of the family S1, S2, . . . , Sm is polynomial in the size of Φ,

2-3-SAT ∝ SRL as claimed.

3 L(2, 1)-Labeling of Graphs of Treewidth Two

This entire section is devoted to the proof of Theorem 1. We will utilize Lemma 1
and reduce from the SRL problem. Suppose we are given integers n and λ =
4n+5, and m subsets S1, . . . , Sm of [2, λ−2] which are all symmetric within this
interval (we may further assume that all of them have size at most 6, but this is
not important for our proof). Our aim is to construct a graph G′ of treewidth
two such that L(2,1)(G′) ≤ λ if and only if the given instance of SRL is feasible.
The construction of G′ is achieved in several steps.

Distance Constrained Labelings of Graphs of Bounded Treewidth 365

3.1 Reduction to List Labeling

Construct the graph G on vertices VG = (v0, v
s
1, . . . , v

s
m, vt

1, . . . , v
t
n, v

u
1 , . . . , v

u
n)

where v0 is adjacent to all other vertices, and futhermore (vt
i , v

u
i) ∈ EG for all

i = 1, . . . , n. (See Fig. 1.) To each vertex of x ∈ VG we assign a set of admissible
labels as follows

. . .

vt
nvt

2vt
1 vu

1 vu
2 vu

n

vs
1 vs

mvs
2

. . .

v0

Fig. 1. The graph G

– T (v0) = {0, λ}
– T (vs

i) = Si for all i = 1, . . . ,m
– T (vt

i) = {2i, λ− 2i− 1} for all i = 1, . . . , n
– T (vu

i) = {2i + 1, λ− 2i} for all i = 1, . . . , n

and we call an L(2, 1)-labeling c admissible if c(x) ∈ T (x) for every x ∈ VG. In
any admissible L(2, 1)-labeling, any pair of vertices must get distinct labels since
G has diameter two. Moreover, as the vertices vt

i and vu
i are adjacent, they must

be assigned labels that are at least two apart.
Hence c(vs

i) = si, c(vt
i) = ti, and c(vu

i) = ui is a one-to-one correspondence
between admissible L(2, 1)-labelings of G and systems of special representatives
for S1, . . . , Sm (the choice of c(v0) = 0 or λ does not interfere with the labels of
the remaining vertices). The graph G has clearly treewidth two. We will further
design a collection of gadgets that will force the desired lists on the vertices of
the graph G.

3.2 Labels of Neighbors of Vertices of Large Degrees

The following simple observation will be used repeatedly in our arguments.
Let v be a vertex whose two neighbors w and w′ have degree λ − 1, and let
c be an L(2, 1)-labeling of span λ. Denote S = c(N(w) \ {v}) the set of la-
bels used on the neighbors of w other than v. Since w and w′ have the max-
imum possible degree, they are assigned labels 0 and λ, and hence c(v) ∈
[2, λ− 2] \ S.

366 J. Fiala, P.A. Golovach, and J. Kratochv́ıl

3.3 The Crucial Gadget

For every i ∈ [1, λ−1
2], we construct the graph Hi with nonadjacent vertices zi, z

′
i

of degree one inductively as follows.

1) H0 is the cycle of length four and z0, z
′
0 are two nonadjacent vertices (of

degree two).
2) To construct Hi+1, we take the graph Hi and

– insert the edge (zi, z
′
i),

– insert two new vertices zi+1, z
′
i+1 and edges (zi, zi+1), (z′i, z

′
i+1),

– insert λ− 5 new common neighbors of zi and z′i.

(See Fig. 2 for an example.) Then Hi is a series-parallel graph whose number
of vertices is polynomial in i and n (precisely, |VHi

| = i(λ − 3) + 4). It has the
following crucial property.

...

z′2z′1z′0

z0 z1 z2 zi−1 zi

z′iz′i−1

Fig. 2. Construction of the graph Hi

Lemma 2. For every i ≥ 1, in any L(2, 1)-labeling of Hi of span λ, the vertices
zi−1, zi, z

′
i−1, z

′
i are assigned (in this order) labels i − 1, λ − i, λ − i + 1, i or

λ− i + 1, i, i− 1, λ− i.

Proof. We prove the statement by induction on i. Let c be an L(2, 1)-labeling
of Hi of span λ.

1) For i = 1, observe that since z0 and z′0 have degree λ − 1, they must be
assigned labels 0 and λ, or vice versa. Their λ−3 common neighbors are assigned
distinct labels forming the interval [2, λ−2] and hence {c(z1), c(z′1)} = {1, λ−1}.

2) By induction hypothesis, {c(zi−1), c(z′i−1)} = {i− 1, λ− i+ 1} and {c(zi),
c(z′i)} = {i, λ− i}. These two vertices have further λ−5 common neighbors that
could be assigned only the labels forming the set [0, i−2]∪[i+2, λ−i−2]∪[λ−i+
2, λ]. It is therefore easy to conclude that the two triples (c(zi−1), c(z′i), c(zi+1))
and (c(z′i−1), c(zi), c(z′i+1)) could be only the two consecutive triples (i−1, i, i+1)
and (λ− i + 1, λ− i, λ− i− 1).

3.4 Forcing T (v0)

Add λ − 1 − 2n − m = 2n + 4 − m new neighbors to the vertex v0. (We may
assume 2n+4−m ≥ 0 since the SRL problem trivially has no system of distinct
representatives if 2n + m > 2λ − 1.) Then v0 has degree λ − 1 and it can be
assigned only labels 0 or λ by any L(2, 1)-labeling of span λ.

Distance Constrained Labelings of Graphs of Bounded Treewidth 367

3.5 Forcing T (vs
i)

For each vertex i ∈ [1,m], insert a new vertex xi and make it adjacent to vs
i .

Further for each pair of labels l and λ− l in the set [2, λ− 2] \ Si, insert a new
copy of the graph Hl and make xi adjacent to the vertices zl and z′l of this new
copy. Finally, add further new neighbors to the vertex xi so that it has degree
λ− 1 (see Fig. 3). It follows from the observation in 3.2 and Lemma 2 that the
vertex vs

i is now allowed to be assigned only a label from the set Si as required.

graphs Hl for 2 ≤ l ≤ λ−1
2

, l �∈ Si

xivs
i

...

v0

..
.

..
.

Fig. 3. Forcing list Si on the vertex vs
i

3.6 Forcing T (vt
i) and T (vu

i)

For each i ∈ [1, n], insert vertices yi, y
′
i adjacent to vt

i and vu
i , respectively.

Further take a copy of the graph H2i+1, remove one common neighbor of z2i

and z′2i and make yi adjacent to z2i, z2i+1 and y′i to z′2i, z
′
2i+1 of this copy. For

each label l ∈ [2, λ−1
2] \ {2i, 2i + 1}, insert two new copies of the graph Hl (the

second copy is denoted by H∗
l) and connect both vertices zl, z

∗
l to yi and both

z′l, z
∗
l
′ to y′i. Finally, add three new neighbors to each vertex yi, y

′
i so that both

have degree λ− 1 (see Fig. 4).
Suppose c is an L(2, 1)-labeling of span λ. Since both yi, y

′
i have degree λ− 1

and are at distance 2 from v0 of the same degree, they are both assigned the same
label, either 0 or λ. It also follows that in the copy H2i+1 the vertices z2i, z

′
2i

H2i+1
y′

ivu
i

v0

...

..
.

vt
i yi

z2i+1

z′2i+1

graphs Hl, H
∗
l for 2 ≤ l ≤ λ−1

2
, l �= 2i, 2i + 1

z2i

z′2i

Fig. 4. Forcing lists {2i, λ− 2i− 1} and {2i + 1, λ− 2i} on the vertices vt
i , v

u
i

368 J. Fiala, P.A. Golovach, and J. Kratochv́ıl

behave as stated in Lemma 2, even if we removed one common neighbor (whose
role was taken over by yi and y′i). Now according to observation in 3.2, the vertex
vt

i can be assigned only labels from {2i, 2i+1, λ−2i−1, λ−2i}\{c(z2i), c(z2i+1)}
and similarly for c(vu

i) ∈ {2i, 2i + 1, λ− 2i− 1, λ− 2i} \ {c(z′2i), c(z
′
2i+1)}. Since

by Lemma 2 either {c(z2i), c(z2i+1)} = {λ − 2i, 2i + 1} or {2i, λ − 2i − 1}, and
respectively, {c(z′2i), c(z

′
2i+1)} = {2i, λ − 2i − 1} or {λ − 2i, 2i + 1}, we get the

desired admissible sets for both vt
i and vu

i (note here that the entire construction
is symmetric with respect to vertices vt

i and vu
i).

By the above discussion, any L(2, 1)-labeling of the resulting graph G′ forces
every vertex x of its subgraph G to be assigned labels from the list T (x). During
the construction of G′ the distances between the original vertices of G were not
changed, and hence any L(2, 1)-labeling of G′ restricted to G is an admissible
L(2, 1)-labeling for the lists T (x), x ∈ VG.

The proof of the opposite implication (i.e., that any admissible L(2, 1)-labeling
of G can be extended to an L(2, 1)-labeling of G′) follows from the construction
of all the gadgets and is straightforward.

Finally, observe that the size of G′ is polynomial in the size of G (more
precisely |G′| = O(|G|4), and also that all gadgets were constructed so that G′

maintains treewidth two. This concludes the proof of Theorem 1.

4 (2, 1)-Labelings of Graphs of Bounded Treewidth

Given graphs G and H, an H(2, 1)-labeling of G is a mapping f : VG −→ VH

such that adjacent vertices of G are mapped onto distinct nonadjacent vertices of
H (i.e., distance of the target vertices is at least 2, measured in the target graph
H) and vertices with a common neighbor in G are mapped onto distinct vertices
of H (i.e., the distance of the target vertices is at least 1) [9]. This definition
generalizes both the L(2, 1)-labelings (when H is a path whose length equals the
span of the labeling) and the C(2, 1)-labelings (when H is a cycle whose length
again equals the span). The computational complexity of this problem for fixed
parameter graphs H was studied and many particular results were proven in [8].
The case when the span is also part of the input corresponds to the following
decision problem:

(2, 1)-labeling
Input: Graphs G and H.
Question: Does G allow an H(2, 1)-labeling?

Of course this problem is NP-complete for graphs G of treewidth two, since
both L(2,1)-labeling and C(2,1)-labeling are its special cases. In this sec-
tion we give a subtler separation of bounded width classes, namely in terms of
pathwidth. Graphs of pathwidth one are caterpillars (trees obtained by pending
any number of leaves to vertices of a path), and so the claim that (2, 1)-labeling
is solvable in polynomial time for graphs G of pathwidth one (and arbitrary H)
follows from our Theorem 3.

Distance Constrained Labelings of Graphs of Bounded Treewidth 369

Proof (of Theorem 3). The following algorithm is a straightforward extension of
the algorithm for L(2, 1)-labeling of trees of [4].

Given a tree T with m vertices, choose a leaf r ∈ VT and regard it as a root
of T . For every edge (u, v) ∈ ET such that u is a child of v, denote by Tu,v the
subtree of T rooted in v and containing u and all its descendants. For every such
edge and for every pair of vertices x, y ∈ VH , we introduce a Boolean variable
φ(u, v, x, y) which is true if and only if Tu,v allows an H(2, 1)-labeling f such
that f(u) = x and f(v) = y. Then T allows an H(2, 1)-labeling if and only if
φ(u, r, x, y) = true for some vertices x, y ∈ VH (and u being the only child of the
root r). The function φ can be computed by the following dynamic programming
algorithm:

1. Set the initial values φ(u, v, x, y) = false for all edges (u, v) ∈ ET and vertices
x, y ∈ VH .

2. If u is a leaf of T adjacent to its parent v, then set φ(u, v, x, y) = true for all
distinct nonadjacent vertices x, y ∈ VH .

3. Suppose that φ is already calculated for all edges of Tu,v except (u, v). De-
note by v1, v2, . . . , vk the children of u. For all pairs of distinct nonadjacent
vertices x, y ∈ VH , construct the set system {M1,M2, . . . ,Mk}, where

Mi = {z : z ∈ VH , z �= y and φ(vi, u, z, x) = true}

and set φ(u, v, x, y) = true if the set system {M1,M2, . . . ,Mk} has a system
of distinct representatives.

For the time analysis note that the recursive step requires, for each pair x, y ∈
VH , time O(nk) to construct the set system and time O(k ·nk) for deciding if it
has an SDR (e.g., by using the augmenting paths algorithm for a bipartite graph
with at most nk edges and with k vertices in one bipartition class). Altogether
the recursive step requires time O(n3k2). If we denote by ku the number of
children of a nonleaf vertex u ∈ VT , we have

∑
u∈VT

ku = m− 1 (the number of
edges of T), and hence the total running time is majorized by O(

∑
u∈VT

n3k2
u) =

O(n3
∑

u∈VT
k2

u) = O(n3(
∑

u∈VT
ku)2) = O(n3m2).

A 2-path is a graph constructed from a triangle (say Δ0) by consecutive
augmentation of triangles so that each Δi shares one edge with the previously
augmented Δi−1, while the third vertex of Δi is a vertex newly added in this
step. A graph has pathwidth at most two if and only if it is a subgraph of a
2-path. In particular, a fan of triangles obtained from a path by adding a vertex
adjacent to all vertices of the path, has pathwidth two.

Proof (of Theorem 4). We reduce from Hamiltonian Path which is well known
to be NP-complete [13]. Given a graph H ′ with n vertices, let H be the disjoint
union of the complement of H ′ and an isolated vertex x. Let G be obtained
from a path of length n − 1 on vertices v1, v2, . . . , vn by adding a vertex w,

370 J. Fiala, P.A. Golovach, and J. Kratochv́ıl

which is adjacent to all vi’s. Then every H(2, 1)-labeling f of G is an injec-
tive mapping from VG to VH (since G has diameter two), and f is necessarily
bijective (since |VG| = |VH |). Without loss of generality f(w) = x, and hence
f(v1), f(v2), . . . , f(vn) is a Hamiltonian path in H ′, since (vi, vi+1) ∈ EG implies
that (f(vi), f(vi+1)) �∈ EH . The opposite implication is straightforward.

5 Concluding Remarks

1. We have fully characterized the computational complexity of (2,1)-distance
constrained graph labelings in the case of linear and cyclic metrics in the chan-
nel space, with respect to the treewidth of the input graphs. Our results prove
polynomial/NP-completeness dichotomy separating treewidth one from treewidth
two, which is a rare phenomenon and has so far been known only for very few
problems (namely the Cutwidth or Minimum Linear Arrangement which
is polynomial for trees [25] while NP-hardness for graphs of treewidth two fol-
lows from [20]). With distance constrained labelings we have added a natural
and important problem to this short list.

2. Let us remark that our main result is independent on the NP-completeness
of the Channel Assignment problem, though both problems are related by
the motivation in frequency assignment. The Channel Assignment is known
NP-complete for graphs of treewidth three, but its complexity for treewidth two
graphs is still open. The core of the NP-hardness of the two problems lies in
different aspects of the problems and one does not straightforwardly follow from
the other. On one hand, L(2,1)-labeling relays to Channel Assignment
by considering the second (distance) power of the input graph and assigning
weights 2 to the original edges and 1 to the new ones. However, the graph
constructed in this way will not have bounded treewidth. On the other hand,
L(2,1)-labeling involves only weights 2 and 1, while the NP-hardness of the
Channel Assignment problem is based on large weights, the problem is not
strongly NP-complete for graphs of bounded treewidth (it can be solved by
dynamic programming algorithm in polynomial time if the weights are considered
in unary encoding).

3. In the general (2,1)-labeling problem, when both graphs come as parts
of the input, we prove tight dichotomy with respect to pathwidth of the input
(transmitters) graph. For both special metrics, L(2, 1) and C(2, 1), the complex-
ity for graphs of bounded pathwidth is open.

4. To keep the paper well focused, we have stated most of the results for the
simplest case of distance constraints (2,1). However, most of them can be ex-
tended to (p, q)- or at least (p, 1)-labelings, see e.g. Proposition 1. It is known that
L(p, 1)-labeling is polynomial for trees for every p (even the list and prelabeled
versions), but when q does not divide p, the complexity of L(p, q)-labeling for
trees is open for all q > 1 (the list and prelabeled versions are known to be
NP-complete [10]). To the contrary, C(p, q)-labeling is polynomial for trees

Distance Constrained Labelings of Graphs of Bounded Treewidth 371

for all p, q as is shown by Proposition 1. Extension of our Theorem 3 to gen-
eral (p, 1)-labeling of trees is trivial, since that follows by replacing H by its
p-th distance power. An analog of Theorem 4 for general (p, q)-labelings can be
proved by a more technical reduction.

References

1. Arnborg, S., and Proskurowski, A. Characterization and recognition of partial
k-trees Congr. Numerantium 47 (1985) 69-75.

2. Bodlaender H. Polynomial algorithms for Graph Isomorphism and Chromatic
Index on partial k-trees J. Algorithms 11 (1990) 631-643.

3. Bodlaender H. A tourist guide through treewidth Acta Cybern. 11 (1993) 1-21.

4. Chang, G. J., and Kuo, D. The L(2, 1)-labeling problem on graphs. SIAM
Journal of Discrete Mathematics 9, 2 (May 1996), 309–316.

5. Courcelle, B. The monadic second-order logic of graphs. I: Recognizable sets of
finite graphs. Inf. Comput. 85, 1 (1990), 12–75.

6. Fellows, M.R.; Kratochv́ıl, J.; Middendorf, M.; Pfeiffer, F. The com-
plexity of induced minors and related problems Algorithmica 13 (1995) 266-282.

7. Fiala, J., Kloks, T., and Kratochv́ıl, J. Fixed-parameter complexity of λ-
labelings Discrete Applied Math. 113 (2001), 59-72.

8. Fiala, J., and Kratochv́ıl, J. Complexity of partial covers of graphs In: Algo-
rithms and Computation (P.Eades and T.Takaoka, eds.), Proceedings ISAAC 2001,
Christchurch, December 2001, Lecture Notes in Computer Science 2223, Springer
Verlag, Berlin Heidelberg 2001, pp. 537-549

9. Fiala, J., and Kratochv́ıl, J. Partial covers of graphs Discussiones Mathemat-
icae Graph Theory 22 (2002) 89-99.

10. Fiala, J., Kratochv́ıl, J., and Proskurowski, A. Distance constrained label-
ings of precolored trees. In Theoretical Computer Science, 7th ICTCS ’01, Torino
(2001), no. 2202 in Lecture Notes in Computer Science, Springer Verlag, pp. 285–
292.

11. Fiala, J., Kratochv́ıl, J., and Proskurowski, A. Systems of distant repre-
sentatives. Discrete Applied Mathematics 145, 2 (2005), 306–316.

12. Garey, M., Graham, R., Johnson, D., and Knuth, D. Complexity results for
bandwidth minimization. SIAM J. Appl. Math. 34 (1978), 477–495.

13. Garey, M. R., and Johnson, D. S. Computers and Intractability. W. H. Freeman
and Co., New York, 1979.

14. Golovach, P. A. Systems of pairs of q-distant representatives and graph colorings.
Zap. nau. sem. POMI 293 (2002), 5–25. in Russian.

15. Griggs, J. R., and Yeh, R. K. Labelling graphs with a condition at distance 2.
SIAM Journal of Discrete Mathematics 5, 4 (Nov 1992), 586–595.

16. Král, D., and Skrekovski, R. A theorem about the channel assignment problem
SIAM J. Discrete Math. 16, No.3 (2003) 426-437.

17. Leese, R. A., and Noble, S. D. Cyclic labellings with constraints at two dis-
tances. Electr. J. Comb. 11, 1 (2004).

18. Liu, D., and Zhu, X. Circular Distance Two Labelings and Circular Chromatic
Numbers. Ars Combin. 69, 4 (2003), 177–183.

19. McDiarmid, C., and Reed, B. Channel assignment on graphs of bounded tree-
width. Discrete Math. 273 , 1-3 (2003), 183–192.

372 J. Fiala, P.A. Golovach, and J. Kratochv́ıl

20. Monien, B., and Sudborough, I. H. Min Cut is NP-Complete for Edge Weigthed
Trees Theor. Comput. Sci. 58, No.1-3, (1988) 209-229.

21. Roberts, F.S. private communication to J. Griggs.
22. Robertson, N., and Seymour, P. Graph minors. I. Excluding a forest. J. Comb.

Theory, Ser. B 35 (1983), 39–61.
23. Proskurowski, A. Separating subgraphs in k-trees: cables and caterpillars. Dis-

crete Math. 49 (1984), 275–285.
24. van den Heuvel, J., Leese, R. A., and Shepherd, M. A. Graph labeling and

radio channel assignment. Journal of Graph Theory 29, 4 (1998), 263–283.
25. Yannakakis, M. A polynomial algoritm for the min-cut linear arrangements of

trees J. ACM 32 (1985) 950-988.

Optimal Branch-Decomposition of Planar
Graphs in O(n3) Time

Qian-Ping Gu1 and Hisao Tamaki2

1 School of Computing Science,
Simon Fraser University, Burnaby BC Canada V5A 1S6

qgu@cs.sfu.ca
2 School of Science and Technology, Meiji University,

Kawasaki, 214-8571 Japan
tamaki@cs.meiji.ac.jp

Abstract. We give an O(n3) time algorithm for constructing a
minimum-width branch-decomposition of a given planar graph with n
vertices. This is achieved through a refinement to the previously best
known algorithm of Seymour and Thomas, which runs in O(n4) time.

1 Introduction

Let G be a graph. (Unless otherwise stated, all graphs in this paper are undi-
rected). A branch-decomposition of G is a tree T such that the set of leaves of T
is E(G) and each internal node of T has degree 3. For each edge {p, q} of T , let
LT (p, q) ⊆ E(G) denote the set of leaves of T reachable in T from p without pass-
ing q. The width of edge {p, q} in T with respect to G is the number of vertices
of G incident with both an edge in LT (p, q) and an edge in LT (q, p). The width
of T with respect to G is the maximum width of all the edges of T . Finally, the
branchwidth of G is the minimum width of all the branch-decompositions of G.

Branchwidth is introduced by Robertson and Seymour [8] in relation to the
more celebrated notion of treewidth [6, 7]. They show that the branchwidth and
treewidth of a graph G are very closely related, not only structurally but also in
values: β(G) ≤ ω(G) + 1 ≤ +(3/2)β(G),, where β(G) denotes the branchwidth
and ω(G) the treewidth of G. A graph of small branchwidth or treewidth admits
efficient dynamic programming algorithms for a vast class of problems [2, 3]
and therefore the problem of deciding the width and that of constructing the
associated decomposition are of extreme importance. When the width of the
graph is bounded by a constant, both of these tasks can be performed in linear
time [4]. However, deciding whether the width of a given graph exceeds k is NP-
complete if k is part of the input, both for treewidth [1] and for branchwidth [9].
Thus the tractability of treewidth and branchwidth are quite similar on general
graphs. The situation is different on planar graphs: while no polynomial time
algorithm is known for deciding the treewidth of a given planar graph, Seymour
and Thomas [9] give a polynomial time decision algorithm for the branchwidth
of planar graphs. Given a planar graph G with n vertices and a positive integer

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 373–384, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

374 Q.-P. Gu and H. Tamaki

k, their algorithm takes O(n2) time to decide whether G has a branchwidth not
exceeding k. Through the relationship above between the two width values, this
also gives a 1.5-approximation of the treewidth of planar graphs. Based on this
result, Demaine et al. [5] develop approximation algorithms for the treewidth
and branchwidth of graphs more general than planar graphs. For some other
classes of graphs for which the treewidth can be computed in polynomial time,
see Bodlaender’s survey [3].

The decision algorithm of Seymour and Thomas for planar graphs works
with a certain type of obstructions to the branch-decomposition and returns a
positive answer when it detects the absence of such obstructions. Unfortunately,
the evidence of the absence of obstructions that the algorithm constructs does not
seem to provide a direct clue to the structure of a branch-decomposition within
the specified width. Nonetheless, using the decision procedure as a subroutine,
they give, in the same paper, an algorithm for constructing a minimum-width
branch-decomposition of a given planar graph. This algorithm calls the decision
procedure O(n2) times and runs in O(n4) time. We improve the running time
to O(n3) in this paper.

Theorem 1. Given a planar graph G with n vertices, a minimum-width branch-
decomposition of G can be constructed in O(n3) time.

We achieve this improvement within the framework of Seymour and Thomas
through a non-trivial refinement that reduces the number of times the decision
procedure is called to O(n).

The rest of this paper is organized as follows. Section 2 gives basic material
and summarizes the approach of Seymour and Thomas. Section 3 proves a key
lemma that enables our savings in the use of the expensive decision procedure.
Section 4 describes our refinement to the algorithm based on this lemma and
proves that the number of calls to the decision procedure is O(n) during the
execution of the algorithm with this refinement. Section 5 sketches a rather
straightforward analysis that the rest of the computation takes O(n3) time.

2 Preliminaries

In this paper, graphs are simple, i.e., without parallel edges or self-loops, unless
they are explicitly referred to as multigraphs. We have already used some of the
following standard graph notation. For a multigraph G, we denote by V (G) the
set of vertices of G and by E(G) the set of edges of G. For each X ⊆ V (G),
we denote by δG(X) the set of edges incident with a vertex in X and a vertex
in V (G) \ X. For disjoint U, V ⊆ V (G), we denote by EG(U, V) the edge set
δG(U) ∩ δG(V). We use symbols ⊃ and ⊂ for proper set inclusion.

Both the branchwidth and branch-decomposition algorithms of Seymour and
Thomas for planar graphs use a reduction to the carvingwidth/-decomposition of
a related multigraph.

A carving-decomposition of a multigraph G is a tree T such that the set of
leaves of T is V (G) (not E(G) as in branch-decomposition) and the degree of

Optimal Branch-Decomposition of Planar Graphs in O(n3) Time 375

each internal node of T is 3. The width of T with respect to G is defined to be the
maximum of δG(L′

T (p, q)) over all edges {p, q} of T , where L′
T (p, q) ⊆ V (G) is

the set of leaves of T reachable in T from p without passing q. The carvingwidth
of G is the minimum width of all the carving-decompositions of G.

Let G be a planar graph with a fixed embedding. The medial graph [9] M(G)
of G is the planar dual of the graph of incidences between the vertex set and
the face set of G. Note that M(G) in general is a multigraph but the number of
edges of M(G) is linear in the number of vertices of G. Seymour and Thomas
[9] show that the carvingwidth of M(G) is exactly twice the branchwidth of G.
Moreover, an optimal carving-decomposition of M(G) can be translated into an
optimal branch-decomposition of G in linear time. The algorithms of Seymour
and Thomas mentioned in the introduction indeed work on carvingwidth and
decompositions. Similarly, Theorem 1 is an immediate corollary to the following
theorem, which we prove in the sequel.

Theorem 2. Given a planar multigraph G with n vertices and O(n) edges, a
minimum-width carving-decomposition of G can be constructed in O(n3) time.

This is an improvement over the O(n4) result of Seymour and Thomas. We
must remark, however, that their result for carving-decompositions is more gen-
eral: it allows positive integer weights on edges and defines the width as the
sum of these edge weights. Although this generalization does not seem to be
relevant for our present application, namely the branch-decomposition, it does
make a difference for another application of carving-decompositions, namely
call routing. See [9] for details. Our algorithm runs for this general problem
in O(min{n4,Wn2}) time, where W is the total weight of the edges.

In the rest of this paper, G will always denote the planar multigraph that is
the input to our algorithm, n the number of vertices of G, and k the carvingwidth
of G. We also assume that G has at least 2 vertices and the number of edges of
G is O(n).

For the purpose of our prospective refinement, it turns out convenient to
describe the carving decomposition algorithm of Seymour and Thomas [9] in a
slightly different language.

We begin with viewing carving-decompositions as rooted binary trees. Let
σ(V) denote the set of all singleton subsets of a finite set V . A binary merging
in V is defined inductively as follows.

1. σ(V) is a binary merging in V .
2. If M is a binary merging in V and X, Y are two distinct maximal subsets

of V in M, then M∪ {X ∪ Y } is a binary merging in V .

We say that a binary merging in V is full if V belongs to it. Each full binary
mergingM in V (G) represents a carving decomposition TM of G as follows. The
node set of TM isM\{V (G)} and TM has an edge between X,Y ∈M\{V (G)}
if and only if X is a maximal proper subset of Y in M, Y is a maximal proper
subset of X in M, or X ∪ Y = V (G). We may view M as representing a rooted
version of tree TM, where the root is placed in the middle of the edge of the

376 Q.-P. Gu and H. Tamaki

last type above. We define the width of a binary merging M in V (G) to be
the maximum of |δG(X)| over all X ∈ M. When M is full, this definition of
width coincides with the width of the carving decomposition TM. We say that
a binary merging M′ extends a binary merging M if M′ ⊇ M. Let M be a
binary merging in V (G) with width k. We say that maximal elements X,Y of
M are mergeable in M if there is a full binary merging of width k that extends
M∪{X∪Y }. We say disjoint subsets X,Y of V (G) are adjacent if EG(X,Y) �= ∅.

We formulate the carving-decomposition algorithm of Seymour and Thomas
in terms of binary mergings as follows. The algorithm grows a binary merging
starting from σ(V (G)) towards a full one, keeping the invariant that the binary
merging maintained is extendable to a full binary merging of width k. We assume
that the input multigraph G is connected: if not, we can work on each connected
component and trivially combine the results.

Algorithm ST
Input: A connected planar multigraph G with n vertices and O(n) edges.
Output: A carving-decomposition in V (G) of minimum width
(1) Decide the carvingwidth k of G.
(2) Set M0 = σ(V (G)), the set of all singleton subsets of V (G). Set i = 1.
(3) Repeat the following while i < n.
(3.1) Scan adjacent pairs {X,Y } of maximal elements of Mi−1, testing if X and
Y are mergeable, until a mergeable pair {X,Y } is found, and set Xi = X ∪ Y .
(3.2) Set Mi = Mi−1 ∪ {Xi} and set i to i + 1.
(4) Return the carving-decomposition represented by Mn−1.

The correctness proof of this algorithm consists in showing, by induction on
i, that each Mi is a well-defined binary merging in V (G) and is extendable to
a full binary merging of width k. The base case is trivial and the induction step
is a straightforward consequence of the following lemma.

Lemma 1. Let M be a binary merging in V (G) that is extendable to a full
binary merging of the optimal width k. Then there are adjacent maximal elements
X and Y of M that are mergeable.

Proof. The following proof sketch is a translation of the original argument by
Seymour and Thomas into our language. Let GM denote the multigraph whose
vertex set is the set of maximal elements of M and the edge set is E(G), with
each pair of vertices X and Y of this multigraph connected by all the edges
in EG(X,Y). Since M is extendable to a full binary merging of width k, the
carvingwidth of GM is k or smaller. Seymour and Thomas [9] show that every
connected planar multigraph H of carvingwidth k has a bond-carving of width k,
where a bond-carving of H is a carving-decomposition T of H such that for every
edge {p, q} of T , the subgraph of H induced by L′

T (p, q) ⊆ V (H) is connected.
Let T be a bond-carving of GM with width k or smaller. Then, T contains an
internal node p0 adjacent to two distinct leaves X,Y ∈ V (GM). Since T is a
bond-carving, X and Y must be adjacent in GM. Let M′ = M∪{X ∪ Y }. We
may convert T into a carving-decomposition T ′ of GM′ by replacing p0, together

Optimal Branch-Decomposition of Planar Graphs in O(n3) Time 377

with the two incident leaves X and Y , by a leaf X ∪ Y . Clearly the width of
T ′ is k or smaller. Following the structure of T ′, we may extend M′ into a full
binary merging of width k. Therefore, the adjacent pair X and Y are mergeable
in M. &'

To test if X and Y are mergeable in M, we call the O(n2) time procedure
of Seymour and Thomas to decide if GM′ has carving width not exceeding k,
where M′ = M∪ {X ∪ Y }. We remark that their decision algorithm works for
planar multigraphs, where the running time is quadratic in the number of edges.
We call this mergeability test an expensive test. Since O(n2) expensive tests are
performed during the execution of algorithm ST and the time for this task is
clearly dominating, algorithm ST runs in O(n4) time.

3 Barrier Lemma

In this section, we prove a key lemma, called the barrier lemma, which enables
our savings in the use of expensive tests.

Lemma 2. Let M be a binary merging in V (G) and X,Y distinct maximal
elements of M. Suppose that X = X ′∪Z and Y = Y ′∪W where X ′, Y ′, Z,W ∈
M and that EG(Z,W) = ∅. If X and Y are mergeable in M and |δG(X ′∪Y ′)| ≤
k then X ′ and Y ′ are mergeable in M\ {X,Y }.

Proof. Let M′ =M\{X,Y } and M∗ a full binary merging in V (G) with width
k that extends M∪ {X ∪ Y }, which exists because X and Y are mergeable in
M. Let M1 = M′ ∪ {X ′ ∪ Y ′, X ′ ∪ Y ′ ∪ Z} ∪ (M∗ \ M) and M2 = M′ ∪
{X ′ ∪ Y ′, X ′ ∪ Y ′ ∪W} ∪ (M∗ \M). Then, both M1 and M2 are full binary
mergings in V (G) that extend M′ ∪ {X ′ ∪ Y ′}. See Figure 1. Therefore, in
order to show that X ′ and Y ′ are mergeable in M′, it suffices to show that
either M1 or M2 has width k. Since M1 \ M∗ = {X ′ ∪ Y ′, X ′ ∪ Y ′ ∪ Z},
M2 \M∗ = {X ′ ∪Y ′, X ′ ∪Y ′ ∪W}, and |δG(X ′ ∪Y ′)| ≤ k by assumption, it in
turn suffices to show that either |δG(X ′∪Y ′∪Z)| ≤ k or |δG(X ′∪Y ′∪W)| ≤ k.
Let A = X ′ ∪ Y ′ and B = V (G) \ (X ∪ Y). We have

δG(A ∪ Z) = EG(A,B) ∪ EG(Z,B) ∪ EG(A,W),

since EG(Z,W) = ∅ by assumption, and hence

|δG(A ∪ Z)| = |EG(A,B)|+ |EG(Z,B)|+ |EG(A,W)|,

since the edge sets in the right hand side are disjoint. Similarly, we have

|δG(A ∪W)| = |EG(A,B)|+ |EG(W,B)|+ |EG(A,Z)|
|δG(A)| = |EG(A,B)|+ |EG(A,Z)|+ |EG(A,W)|
|δG(B)| = |EG(A,B)|+ |EG(Z,B)|+ |EG(W,B)|.

378 Q.-P. Gu and H. Tamaki

X’ Y’Z W

’

X Y

Z
X’ Y’

W

A

1

B

(b)(a)

*

Fig. 1. Binary mergings in Lemma 2: (a) M,M′,M∗ and (b)M1

Therefore, we have

|δG(A ∪ Z)|+ |δG(A ∪W)|
= 2|EG(A,B)|+ |EG(Z,B)|+ |EG(W,B)|+ |EG(A,Z)|+ |EG(A,W)|
= |δG(A)|+ |δG(B)|.

Moreover, |δG(A)| ≤ k is one of the assumptions in the lemma and we also have
|δG(B)| = |δG(X ∪ Y)| ≤ k since X and Y are mergeable in M. Therefore, we
have

|δG(A ∪ Z)|+ |δG(A ∪W)| ≤ 2k

and hence either |δG(A ∪ Z)| ≤ k or |δG(A ∪W)| ≤ k as desired. &'

Let M be a binary merging in V (G). A sequence X0 ⊃ X1 ⊃ . . . ⊃ Xm of
elements of M is called a chain in M if each Xi for 1 ≤ i ≤ m is a maximal
proper subset of Xi−1 in M . If we denote by C the chain above, then X0 is
called the top of C, denoted by 3C, and Xm is called the bottom of C, denoted
by ⊥C. A chain C is called a barrier if |δG(3C \ ⊥C)| > k.

Lemma 3. (Barrier lemma) Let M be a binary merging in V (G) with width
k or smaller and X, Y two maximal elements of M. Suppose there is a binary
merging M′ ⊆ M and maximal elements X ′ and Y ′ of M′ with X ′ ⊆ X and
Y ′ ⊆ Y such that the following conditions hold.

1. X and Y are mergeable in M;
2. |δ(X ′ ∪ Y ′)| ≤ k;
3. EG(X \X ′, Y \ Y ′) = ∅;
4. there is no barrier B in M with 3B = X and ⊥B ⊇ X ′ ;
5. there is no barrier B in M with 3B = Y and ⊥B ⊇ Y ′ ;

Then, X ′ and Y ′ are mergeable in M′.

Proof. Let Z = X \X ′ and W = Y \ Y ′. Let X0 ⊃ X1 ⊃ . . . ⊃ Xh be the chain
in M with top X0 = X and bottom Xh = X ′. Similarly, let Y0 ⊃ Y1 ⊃ . . . ⊃ Yj

be the chain in M with top Y0 = Y and bottom Yj = Y ′. Let M1 be the binary
merging in V (G) obtained from M by removing Xi for 0 ≤ i < h and Yi for

Optimal Branch-Decomposition of Planar Graphs in O(n3) Time 379

X \X1 2

X’ Y’
Y’X’X Y

2

X Y

(a) (b)

WZ

X \X0 1 X \X0 1

X \X1 2

Fig. 2. Binary mergings in Lemma 3: (a) M is transformed into (b) M2

0 ≤ i < j. Then, M1 extends M′, Xi \ Xi+1 is a maximal element of M1 for
0 ≤ i < h, and Yi \ Yi+1 is a maximal element of M1 for 0 ≤ i < j. We extend
M1 into M2 with X and Y as maximal elements, in which the two maximial
subsets of X are X ′ and Z, and the two maximal subsets of Y are Y ′ and W ,
as follows. First, we successively extend M1 by adding X0 \Xi for i = 2, . . . , h,
creating a chain with bottom X0 \X1 and top X0 \Xh = Z. Similarly, we add
a chain with bottom Y0 \ Y1 and top W . Finally, we add X and Y and call the
result M2. See Figure 2. We have δG(X0 \ Xi) ≤ k for i = 2, . . . , h, since if
δG(X0 \ Xi) > k then the chain in M with top X0 and bottom Xi would be
a barrier contradicting our assumption. Similarly, we have δG(Y0 \ Yi) ≤ k for
i = 2, . . . , j. Since these are the only elements in M2 \M, the width of M2 does
not exceed k. Since the set of maximal elements of M2 is equal to that of M,
the assumption that X and Y are mergeable in M implies that they are also
mergeable in M2.

Thus, we have X ′, Y ′, Z,W ∈M2, X = X ′∪Z and Y = Y ′∪W are maximal
in M2, and X and Y are mergeable in M2. Moreover, by assumptions, we have
EG(Z,W) = ∅ and |δG(X ′ ∪ Y ′)| ≤ k. Therefore we may apply Lemma 2 to
conclude that X ′ and Y ′ are mergeable in M2 \ {X,Y }. Since M2 \ {X,Y }
extends M′, X ′ and Y ′ are mergeable in M′. &'

4 Saving Expensive Tests

In this section, Mi, 0 ≤ i ≤ n − 1, denotes the sequence of binary mergings in
V (G) as constructed by the execution of Algorithm ST. We assume Algorithm
ST is executed with the method of mergeability testing described in this section.
Even though the description of our testing method involves Mi, the definitions

380 Q.-P. Gu and H. Tamaki

are not circular, as the action taken by our method at the ith iteration step of
algorithm ST depends only on Mi−1.

The following notation is used in the description of our testing method. We
denote by P i the set of all unordered pairs on which the expensive test is per-
formed since the start of the algorithm execution and prior to the addition of
the element Xi. We denote by Qi the set of pairs in P i on which the test result
was negative, i.e., “unmergeable”.

Let X,Y be disjoint elements of Mn−1 such that EG(X,Y) �= ∅. We denote
by μY (X) the minimal subset X ′ of X such that EG(X,Y) = EG(X ′, Y). We
also denote by Q(X,Y) the set of distinct unordered pairs {X ′, Y ′} ∈ Qn−1 with
X ⊇ X ′ ⊇ μY (X) and Y ⊇ Y ′ ⊇ μX(Y). Note that μY (X) and Q(X,Y) can be
determined from Mi and Qi where i is the smallest index with X,Y ∈Mi and
therefore these sets are accessible by the algorithm when testing the mergeability
of X and Y . Note also that the pairs in Q(X,Y) are totally ordered by the
element-wise set inclusion.

Parsimonious mergeability test
Input: maximal elements X and Y of Mi−1.
Reports: if X and Y are mergeable in Mi−1.
(1) If |δ(X ∪ Y)| > k then report “NO”.
(2) Otherwise, if Q(X,Y) = ∅ then do the expensive test and report the result.
(3) Otherwise, let {X ′, Y ′} be the maximal pair in Q(X,Y). If there is no barrier
B with 3B = X and ⊥B ⊇ X ′ or 3B = Y and ⊥B ⊇ Y ′, then report “NO”.
Otherwise, do the expensive test and report the result.

Lemma 4. The testing procedure above reports a correct answer.

Proof. We need only to show that, whenever the procedure skips the expensive
test and reports “NO”, X and Y are not mergeable. This is trivially the case,
when the test returns in step (1). Consider the case where the procedure skips
the expensive test in step (3). Let {X ′, Y ′} be as defined in the procedure and
set Z = X \ X ′ and W = Y \ Y ′. The definition of Q(X,Y) implies that
EG(Z,W) = ∅. Therefore, we may apply the barrier lemma with M = Mi−1

and M′ being Mj with the smallest j that contains X ′ and Y ′ and conclude
that X,Y are not mergeable in Mi−1. &'

In the remainder of this section, we concentrate on showing that, with this
parsimonious mergeability testing, O(n) expensive tests are performed during
the execution of Algorithm ST.

We start with some properties of barriers. Let C be a chain in a binary
merging M in V (G). We define three disjoint edge sets:

pass(C) = EG(⊥C, V (G) \ 3C)
in(C) = EG(⊥C,3C \ ⊥C)

out(C) = EG(3C \ ⊥C, V (G) \ 3C).

Optimal Branch-Decomposition of Planar Graphs in O(n3) Time 381

Proposition 1. Assuming that the width of binary merging M does not exceed
k, |pass(B)| < | in(B)| for every barrier B in M.

Proof. Since the width of M does not exceed k, we have |δG(3B)| ≤ k. Since
δG(3B) = pass(B)∪out(B) and these two sets are disjoint, we have |pass(B)|+
| out(B)| ≤ k. Since B is a barrier and hence | in(B)|+ | out(B)| > k, it follows
that |pass(B)| < | in(B)|. &'

We say that a chain C is rich if | in(C)| ≥ k/4.

Proposition 2. Let B be a barrier in a binary merging in V (G) of width k or
smaller. If either |δG(3B)| ≤ 3k/4 or |δG(⊥B)| ≥ k/2 then B is rich.

Proof. If |δG(3B)| ≤ 3k/4 then | out(B)| ≤ 3k/4 and hence | in(B)| > k/4 since
B is a barrier. If |δG(⊥B)| ≥ k/2 then, since δG(⊥B) = in(B) ∪ pass(B), it
follows from the proposition above that | in(B)| ≥ k/4. &'

The following proposition is an immediate consequence of the above.

Proposition 3. Let B1 and B2 be two barriers with ⊥B1 ⊇ 3B2. If neither B1

nor B2 is rich, then the chain C with 3C = ⊥B1 and ⊥C = 3B2 is rich.

Recall that Mn−1 denotes the full binary merging constructed by the algo-
rithm, Pn−1 the set of unordered pairs from Mn−1 on which the expensive test
is performed. Also recall related notation μX(Y) and Q(X,Y).

Call a disjoint pair {X,Y } with X,Y ∈ Mn−1 relevant if EG(X,Y) is
nonempty and there is some i < n such that both X and Y are maximal in
Mi. Clearly, all pairs in Pn−1 are relevant. We call a pair {X,Y } from Mn−1

essential if it is relevant and μY (X) = X and μX(Y) = Y . We first note that
there are at most O(n) essential pairs from Mn−1. To see this, consider sub-
sets of E(G) of the form EG(X,Y) for an essential {X,Y } from Mn−1. Since
those subsets are formed through successive binary merging, starting from sin-
gleton subsets, the number of such subsets is at most 2|E(G)|. Since EG(X,Y) =
EG(μY (X), μX(Y)), by definition of μY (X) and μX(Y), the number of such edge
subsets is exactly the number of essential pairs from Mn−1.

We are ready to bound the number of expensive tests. The conditions of
the testing algorithm implies that exactly one expensive test is applied to each
pair X,Y ∈ Pn−1. Therefore, it suffices to show that |Pn−1| = O(n). Let P ′ =
{{X,Y } ∈ Pn−1 | |Q(X,Y)| ≤ 2}. Then, the cardinality of P ′ is at most three
times the number of essential pairs from Mn−1 and therefore is O(n). To bound
the cardinality of Pn−1 \P ′, we need the following lemma. Recall that the pairs
in Q(X,Y) are totally ordered by element-wise set inclusion and note that, for
{X,Y } ∈ Pn−1 \ P ′, we have |Q(X,Y)| ≥ 3.

Lemma 5. Let (X,Y) ∈ Pn−1 \ P ′ and let {X1, Y1}, {X2, Y2}, and {X3, Y3}
be the first, second, and third maximal elements of Q(X,Y) respectively, with
X1 ⊇ X2 ⊇ X3 and Y1 ⊇ Y2 ⊇ Y3. Then, there exists a rich chain C with either
X ⊇ 3C and ⊥C ⊇ X3 or Y ⊇ 3C and ⊥C ⊇ Y3 .

382 Q.-P. Gu and H. Tamaki

Proof. The rule of our testing method demands that, in order for all the pairs
{X2, Y2}, {X1, Y1}, and {X,Y } to be included in Pn−1, there must be a barrier
Bi with either Xi ⊇ 3Bi and ⊥Bi ⊇ Xi+1 or Yi ⊇ 3Bi and ⊥Bi ⊇ Yi+1 for
0 ≤ i ≤ 2, where we set X0 = X and Y0 = Y . We may assume without loss of
generality that for at least two values of i we have Xi ⊇ 3Bi and ⊥Bi ⊇ Xi+1.
If either of these two barriers are rich, then we are done. Otherwise, we obtain
a desired rich chain between these two barriers applying Proposition 3. &'

We say that a chain C is minimal rich, if it is rich and no proper subchain
of C is rich. Let R∗ denote the set of all minimal rich chains in Mn−1. We say
that a chain C supports a chain C ′ if 3C ⊃ ⊥C ′ ⊇ ⊥C. We say that a subset R
of R∗ supports R∗ if for each C ∈ R∗ there is some chain in R that supports C.
We choose an arbitrary minimal subset of R∗ that supports R∗ and call it R̂.

Let G denote the directed version of G with directed edges (u, v) and (v, u)
for each undirected edge {u, v} of G. For a chain C, we define in(C) = {(u, v) ∈
E(G) | u ∈ ⊥C, v ∈ 3C \ ⊥C}. The directed edges in in(C) and undirected
edges in in(C) are in a natural one-to-one correspondence.

Proposition 4. For each directed edge e of G, there are at most two chains
C ∈ R̂ such that e ∈ in(C).

Proof. Suppose to the contrary that some (u, v) ∈ E(G) belongs to in(C) for
three distinct chains C1, C2, C3 in R̂. Since ⊥Ci contains u for i = 1, 2, 3, all
these chains are subchains of the chain in Mn−1 with top V (G) and bottom
{u}. Without loss of generality, we assume 3C1 ⊃ 3C2 ⊃ 3C3. Note here that
the tops of these chains are mutually distinct, due to the minimality of these
chains with respect to richness. Let X be the minimal element of Mn−1 that
contains both u and v. Then, we must have 3Ci ⊇ X ⊃ ⊥Ci for i = 1, 2, 3.
Therefore, we have

3C1 ⊃ 3C2 ⊃ 3C3 ⊃ ⊥C1 ⊃ ⊥C2 ⊃ ⊥C3

Let C be an arbitrary chain in R∗ supported by C2. We have 3C2 ⊃ ⊥C ⊇ ⊥C2

by the definition of supporting. If ⊥C ⊇ ⊥C1 then C1 supports C, since 3C1 ⊃
3C2 ⊃ ⊥C. Otherwise, i.e., if ⊥C1 ⊃ ⊥C, we have 3C3 ⊃ ⊥C and C3 supports
C, since ⊥C ⊇ ⊥C2 ⊃ ⊥C3. Therefore, R̂ \ {C2} supports R∗, contradicting the
minimality of R̂. &'

Corollary 1. |R̂| ≤ 16|E(G)|/k.

Proof. Each chain C ∈ R̂ is rich and hence |in(C)| ≥ k/4. Each of 2|E(G)|
edges of G belongs to in(C) for at most two chains of R̂ and hence |R̂| · k

4 ≤∑
C∈R̂ |in(C)| ≤ 4|E(G)|, from which the inequality of the corollary follows. &'

For each C ∈ R̂, we define a subset PC of Pn−1 \P ′ as follows. Let {X,Y } ∈
Pn−1 \ P ′ and {X3, Y3} the third maximal pair in Q(X,Y) with X ⊇ X3 and
Y ⊇ Y3. Then, we put {X,Y } in PC if and only if either X ⊇ 3C ⊇ X3 or Y ⊇
3C ⊇ Y3. Lemma 5 and the definition of R̂ imply that Pn−1 \ P ′ ⊆

⋃
C∈R̂ PC .

Optimal Branch-Decomposition of Planar Graphs in O(n3) Time 383

We now bound the cardinality of each PC . The definition of Q(X,Y) implies
that EG(X,Y) = EG(X3, Y) and hence that for each W such that X ⊇W ⊇ X3,
EG(X,Y) is a subset of δG(W). The same holds for each W such that Y ⊇W ⊇
Y3. Therefore, for pair {X,Y } to be in PC , EG(X,Y) must contain some edge
in δG(3C).

Let e = {u, v} be an arbitrary edge in δG(3C) with u ∈ 3C and v ∈
V (G) \ 3C. We want to know how many pairs X, Y with e ∈ EG(X,Y) can be
in PC . Let {Xi, Yi}, 1 ≤ i ≤ a, be the list of all pairs {X,Y } in Pn−1 such that
e ∈ EG(X,Y). Assume without loss of generality that these pairs are ordered
so that X1 ⊇ X2 ⊇ . . . ⊇ Xa ⊇ {u} and Y1 ⊇ Y2 ⊇ . . . ⊇ Ya ⊇ {v}. Suppose
{Xi, Yi} ∈ PC for some 1 ≤ i ≤ a. Then, it must be that |Q(Xi, Yi)| ≥ 3
and the first, second and third maximal elements of Q(Xi, Yi) are {Xi+1, Yi+1},
{Xi+2, Yi+2} and {Xi+3, Yi+3}. Note that the expensive test on all of these three
pairs must have failed, since if any of these pairs had been merged then the pair
{Xi, Yi} would not appear later in the process. From the definition of PC , we
must have Xi ⊇ 3C ⊃ Xi+3 or Yi ⊇ 3C ⊃ Yi+3. The latter condition, however,
cannot hold because u �∈ Yi. For a fixed C, at most three values of i can satisfy
this condition. Therefore, for each C and each e ∈ δG(3C), there are at most 3
pairs {X,Y } ∈ PC with e ∈ EG(X,Y). As |δG(3C)| ≤ k, we have |PC | ≤ 3k.

Combining this with Corollary 1, we have |Pn−1 \ P ′| ≤
∑

C∈R̂ |PC | ≤
48|E(G)| and therefore |Pn−1| = O(n).

5 Total Running Time

In this section, we show that the total running time of Algorithm ST is O(n3),
when the parsimonious mergeability test described in the previous section is
used. We need only elementary data structures and the analysis is straightfor-
ward.

We represent the binary merging Mi constructed by the algorithm naturally
by a binary forest. With each node of this forest we associate a member X of
Mi, in the form of a sorted list, and the edge set δG(X) also in the form a
sorted list. As the merging of two members of Mi can be done in O(n) time in
this representation, the total time for maintaining this binary forest is O(n2). In
addition, we maintain a graph Gi for each 0 ≤ i ≤ n − 1, where the vertices of
Gi are the maximal elements of Mi and X,Y ∈ V (Gi) are adjacent in Gi if and
only if EG(X,Y) �= ∅. We maintain Gi in the standard edge list representation.
Moreover, with each edge e of Gi, 0 < i ≤ n− 1, we associate the corresponding
edge(s) in Gi−1: if the endvertices X and Y of e are both in V (Gi−1), then
this association is to the edge between X and Y in Gi−1; otherwise, i.e., if
X = X1 ∪X2 with X1, X2 ∈ V (Gi−1), say, then this association is to the edge
between X1 and Y , if present, and to the edge between X2 and Y , if present. The
representation of Gi can be constructed in O(n) time, so the total maintenance
cost of this part is O(n2). The set Q, the set of unordered pairs {X,Y } on which
the expensive test is performed with a negative result, is represented by marking
the corresponding edge of Gi.

384 Q.-P. Gu and H. Tamaki

We now bound the cost of mergeability testing. We have already proved
that the number of expensive tests is O(n) and therefore the total running time
for expensive tests is O(n3). Since the mergeability testing is performed O(n2)
times, it suffices to show that other parts of the testing takes O(n) time for each
tested pair. The time for the degree test in step (1) is trivially O(n). The set
Q(X,Y) in step (2) can be constructed as follows. We start from the edge e
between X and Y in the current Gi and trace back its origin in Gi−1, Gi−2,
This tracing stops when we reach G0 or encounter an edge between an essential
pair. Using the marks of the edges in the traced sequence, we construct Q(X,Y)
in O(n) time. The maximal pair {X ′, Y ′} ∈ Q(X,Y) is the first element of
Q(X,Y) found in this process. Finally, the barrier computation can be done in
O(n) time as follows. Let X1 ⊃ X2 ⊃ . . . ⊃ Xh be the chain with top X1 = X
and bottom Xh = X ′. For j = 2, . . . , h, we successively construct the edge set
δG(X1 \Xj). Noting that δG(X1 \Xj) for 2 ≤ j ≤ h is the symmetric difference
between δG(X1 \Xj−1) and δG(Xj−1 \Xj), we represent the sets in this process
with a single membership bit for each edge of G and a single counter for the
cardinality of the set: when we process δG(Xj−1 \ Xj), we flip the bit of each
edge in this set and count up or down according to the result of this flip. Since
the set δG(Xj−1 \Xj) for each j is available in the data structure and each edge
enters the constructed set at most once and exits at most once, the total time
for the construction is O(n). If any of these constructed edge sets has cardinality
greater than k, then we have detected a barrier.

This concludes the analysis of the running time and we have proved
Theorem 2.

References

1. S. Arnborg, D.G. Corneil, and A. Proskurowski, Complexity of finding embeddings
in a k-tree, SIAM Journal on Algebraic and Discrete Methods, 8: 277-284, 1987

2. S. Arnborg, J. Lagergren, and D. Seese, Easy problems for tree-decomposable
graphs, Journal of Algorithms, 12: 308-340, 1991

3. H.L. Bodlaender, A tourist guide through treewidth, Acta Cybernetica, 11: 1-21,
1993.

4. H.L. Bodlaender, A Linear-Time Algorithm for Finding Tree-Decompositions of
Small Treewidth, SIAM Journal on Computing, 25: 1305-1317, 1996.

5. E.D. Demaine, M.T. Hajiaghayi, N. Nishimura, P. Ragde, and D.M. Thilikos, Ap-
proximation algorithms for classes of graphs excluding single-crossing graphs as
minors, Journal of Computer and System Sciences, 69-2: 166-195, 2004.

6. N. Robertson and P.D. Seymour, Graph minors I. Excluding a forest, Journal of
Combinatorial Theory, Series B, 35: 39-61, 1983

7. N. Robertson and P.D. Seymour, Graph minors. II. Algorithmic aspects of tree-
width, Journal of Algorithms, 7: 309-322, 1986

8. N. Robertson and P.D. Seymour, Graph minors. X. Obstructions to tree-
decomposition, Journal of Combinatorial Theory, Series B, 52: 153-190, 1991

9. P.D. Seymour and R. Thomas, Call Routing and the Ratcatcher. Combinatorica,
14(2), 217-241, 1994

NFAs With and Without ε-Transitions�

Juraj Hromkovič1 and Georg Schnitger2

1 Department of Computer Science, ETH Zürich,
ETH Zentrum, RZ F2, CH-8092 Zürich, Switzerland

2 Institut für Informatik, Johann Wolfgang Goethe-Universität,
Robert Mayer Straße 11–15, 60054 Frankfurt am Main, Germany

Abstract. The construction of an ε-free nondeterministic finite automa-
ton (NFA) from a given NFA is a basic step in the development of com-
pilers and computer systems. The standard conversion may increase the
number of transitions quadratically and its optimality with respect to
the number of transitions is a long standing open problem. We show
that there exist regular languages Ln that can be recognized by NFAs
with O(n log2 n) transitions, but ε-free NFAs need Ω(n2) transitions to
accept Ln. Hence the standard conversion cannot be improved signifi-
cantly. However Ln requires an alphabet of size n, but we also construct
regular languages Kn over {0, 1} with NFAs of size O(n log2 n), whereas

ε-free NFAs require size n · 2c·
√

log2 n for every c < 1/2.

1 Introduction

One of the central tasks on the border between formal language theory and
complexity theory is to describe infinite objects such as languages by finite for-
malisms such as automata, grammars, expressions etc., and to investigate the
descriptional complexity and capabilities of these formalisms. Formalisms like
expressions and finite automata have proven to be very useful in building com-
pilers, and techniques converting one formalism into the other are used as basic
tools in the design of computer systems [Tho68] such as UNIX (see [HMU01],
p. 123). A typical application in lexicographical analysis starts with a regular
expression that has to be converted into an ε-free nondeterministic finite au-
tomaton. Here, the descriptional complexity of an expression is its length and
the descriptional complexity of a nondeterministic finite automaton (NFA) is
the number of its transitions (edges).

Surprisingly ε-free NFA are capable of simulating regular expressions of length
n with at most O(n(log2 n)2) transitions [HSW97] and hence in this case the loss
of ε-transitions does only weakly deteriorate the conciseness of ε-free NFAs. In
[Lif03] a lower bound of Ω(n(log2 n)2/ log2 log2 n) is shown and as a consequence
the upper bound of [HSW97] is almost tight.

In contrast to translating regular expressions into ε-free NFAs, no subqua-
dratic transformation from NFAs into ε-free NFAs is known. Since any regular

� Supported in part by SNF grant 200021-107327/1 and DFG grant SCHN 503/2-2.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 385–396, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

386 J. Hromkovič and G. Schnitger

expression of length n can be recognized by unrestricted NFAs with O(n) tran-
sitions, ε-free NFAs of size at least Ω(n(log2 n)2/ log2 log2 n) are required for
given NFAs of size n. We considerably improve this lower bound and show an
almost quadratic increase in size.

Theorem 1. Sequences {Ln}∞n=1, {Kn}∞n=1 of regular languages exist such that

(i) Ln is defined over the alphabet {0, 1}n, Kn is defined over the alphabet
{0, 1},

(ii) Ln and Kn can be accepted by NFAs with O(n · 2n) transitions,
(iii) every ε-free NFA accepting Ln has at least Ω(22n) transitions and
(iv) every ε-free NFA accepting Kn has at least Ω(2n+c

√
n) transitions for every

constant c < 1/2.

Hence, for m = 2n, Ln and Kn can be accepted by NFAs with O(m log2 m)
transitions, but every ε-freeNFA forLn has at leastΩ(m2) transitions, whereasKn

requires ε-free NFAs of size O(m · 2c·
√

log2 m) for every c < 1/2. Thus ε-free NFAs
for Ln require almost quadratically more transitions than unrestricted NFAs for
Ln and the obvious transformation from NFAs to ε-free NFAs cannot be improved
considerably. The provable gap for binary alphabets is smaller, but still a far larger
than poly-logarithmic gap is required. Moreover, for a large class of NFAs, we show
in Lemma 4 that the lower bound of Theorem 1 (iv) is almost optimal.

We use methods from communication complexity. However communication
arguments can be applied to ε-free NFAs and NFAs alike and hence we have to
carefully mix communication arguments with graph-theoretical arguments.

The rest of this paper is organized as follows. In Section 2 we describe the
languages Ln which are hard for ε-free NFAs. Lower bounds for large and small
alphabets are presented in Sections 3 and 4 respectively. Conclusions and open
problems are stated in Section 5.

2 Hard Languages for ε-Free NFAs

Our goal is to construct a sequence {Ln}∞n=1 of regular languages that is con-
siderably harder for ε-free NFAs than for NFAs. Since the basic component of
our construction of Ln is the Hadamard matrix Hn, we start by describing
its properties. Hn is a 1/-1 matrix with 2n rows and columns. Hn is defined
recursively by setting H0[1, 1] = 1 and

Hn+1 =
[
Hn Hn

Hn −Hn

]
.

An inductive argument shows that the columns of Hn are pairwise orthogonal,
and that every column (resp. row) of Hn, except for the first which consists of
1’s only, has the same number of 1’s and -1’s.

Hn has the following crucial property: If a submatrix of Hn with row set X
and column set Y covers only 1-entries, then

|X| · |Y | ≤ 2n. (1)

NFAs With and Without ε-Transitions 387

To show this fact replace any 1 (resp.−1) by a 0 (resp. 1) and call the resulting
matrix Hn. Another inductive argument verifies that Hn is the matrix of inner
products modulo two: we may label rows and columns by vectors u, v ∈ ZZn

2

such that Hn[u, v] = 〈u, v〉 mod 2. If the sets X,Y ⊆ ZZn
2 define a 0-chromatic

submatrix of Hn, then we may close X and Y under addition to obtain vector
spaces X and Y (with X ⊆ X and Y ⊆ Y) which still define a 0-chromatic
submatrix. Thus X and Y are orthogonal vector spaces and dim(X)+ dim(Y) ≤
n follows. Hence |X| · |Y | ≤ 2n.

The language Ln is defined over the alphabet Σn = {0, 1}n and we set

Ln = {ε} ∪Σn ∪
⋃
k≥2

Ln,k, where (2)

Ln,k = {u1 · · ·uk ∈ Σk
n | Hn[ui, ui+1] = 1 for all i < k}. (3)

Thus a sequence of letters of length n belongs to Ln iff the inner product of any
two successive letters of the sequence is zero. (Observe that all words of length
at most one belong to Ln.)

Proposition 1. There is an NFA which accepts Ln with O(n · 2n) transitions.

Proof Sketch. One can construct a bounded degree switching network Gn of
depth n that contains a path between one of the 2n sources labelled by symbols
from Σn to one of the 2n sinks labelled by symbols from Σn if and only if the
inner product between the corresponding labels is zero. We obtain an NFA for
Ln, if we replace sources by “source transitions” of the same label, utilize all
other transitions as ε-transitions and redirect edges, previously directed into a
sink, into the starting point of the corresponding source transition instead. &'

3 Large Alphabets

We first sketch the argument verifying that every ε-free NFA for Ln has at
least Ω(22n) transitions (edges). We state without proof that Ln,k (see (3)) has
surprisingly small ε-free NFA’s for small values of k and, as a consequence, our
argument has to concentrate on Ln,k for large values of k.

Lemma 1. Ln,k is recognizable by ε-free NFA’s of size at most O(k · 22n−n
k).

Let An be an NFA without ε-transitions which recognizes Ln and let k be
an arbitrary integer. We first observe that An implicitly also recognizes Ln,k: we
unravel the transition diagram of An into a layered directed acyclic graph Fn,k

with k + 1 layers. Layer Vi (for 0 ≤ i ≤ k) consists of all vertices (x, i) such that
x is a vertex of the transition diagram of An and x is endpoint of a path of An

which starts in q0 and traverses i edges. Observe that layer V0 consists only of
the starting state q0. We insert an edge ((x, i), (y, i + 1)) with label a ∈ {0, 1}n

into Fn,k iff (x, y) is an edge of An with label a.
Next we remove all vertices of Fn,k which are not traversed by an accepting

path starting in q0 and ending in a vertex of the last layer Vk. Finally we replace

388 J. Hromkovič and G. Schnitger

all vertices of Vk by the new vertex qf and insert an edge from (u, k− 1) ∈ Vk−1

to qf with label a, provided there was an a-transition from (u, k − 1) to an
accepting vertex of Vk. Let Fn,k be the resulting labelled graph.

Proposition 2. (a) Fn,k is a layered acyclic graph with k + 1 layers.
(b) Fn,k has a path q0

∗→ qf with label sequence (u1, . . . , uk) iff u1 · · ·uk ∈ Ln.
(c) For any i, the number of edges between vertices in Vi and Vi+1 is bounded

by the number of edges of the transition diagram of An.

Our goal is to show that there are successive layers Vi and Vi+1 such that
the number of edges between Vi and Vi+1 has to be large, provided the total
number k+1 of layers is sufficiently large. We utilize that the Hadamard matrix
Hn has only monochromatic submatrices of size at most 2n (see (1)). To apply
this property we show that any inner vertex x of Fn,k (i.e., any vertex different
from q0 and qf) defines a monochromatic submatrix of Hn spanned by the rows
with labels in S(x) (resp. columns with labels in T (x)), where S(x) and T (x)
are the sets of incoming and leaving labels of v respectively. As a consequence
of (1) we obtain |S(x)| × |T (x)| ≤ 2n, whereas in total at least 22n−1 pairs of
labels, namely all pairs (u, v) with Hn[u, v] = 1, have to be supported. Hence,
if the sets S(x) and T (x) are all of identical size s respectively t, then s · t ≤ 2n

and
∑

x∈V1
|S(x)| · |T (x)| =

∑
x∈V1

s · t ≥ 22n−1 holds. Thus V1 has to consist
of at least 2n−1 vertices and it is optimal to choose s = t = 2n/2. Thus at least
23n/2 transitions are required.

We apply this procedure to vertices of the second layer by considering paths
of length three starting in q0. However this time we select for any label v a label
u(v) such that the pair u(v)v is supported by the least number of paths of length
two originating in q0. Thus when considering all label sequences u(v)vw we have
in effect decreased the “fanin multiplicity” of label v for vertices of the second
layer and this reduction can only be compensated for by increasing the “fanout
multiplicity” of labels w for vertices of the second layer. (The construction in
Lemma 1 also explicitly increases fanout multiplicity by copying edges.) We
repeat this procedure n times to verify the required large number of transitions.

3.1 The Details

We start with the “submatrix property” of vertices and associate with an inner
vertex x the set fanin(x) (resp. fanout(x)) of labels of incoming (resp. leaving)
edges. In both sets we disregard multiple copies of the same label and hence we
also introduce the multisets fanin∗(x) and fanout∗(x), where all labels of edges
entering resp. leaving x are collected according to their true multiplicity.

We say that (u, v) ∈ {0, 1}n × {0, 1}n is a Hadamard pair, if Hn[u, v] =
1. Since any edge of Fn,k is traversed by an “accepting path” of Fn,k, every
pair (u, v) ∈ fanin(x) × fanout(x) is a Hadamard pair: we obtain an accepting
path traversing both the incoming and outgoing edge by splicing together two
accepting paths traversing the incoming edge and the outgoing edge respectively.

Thus the submatrix fanin(x) × fanout(x) is a 1-chromatic submatrix of Hn

and we say that the entries in fanin(x)× fanout(x) are covered by x. Therefore,

NFAs With and Without ε-Transitions 389

as a consequence of (1), we have

|fanin(x)| · |fanout(x)| ≤ 2n. (4)

Observe that all ones of Hn are covered by submatrices and, since at least one
half of all entries of a row of Hn are 1-entries, we obtain∑

x∈Vi

|fanin(x) ∩K| · |fanout(x)| ≥ |K| · 2n−1 (5)

for an arbitrary subset K of labels. We say that vertex x ∈ V1 covers the 1-entry
(u, v) of Hn with multiplicity mx(u, v) = a · b, if u occurs in fanin∗(x) with
multiplicity a and v occurs in fanout∗(x) with multiplicity b. Finally we say that
(u, v) is covered with multiplicity m(u, v) =

∑
x∈V1

mx(u, v).
For a given set K ⊆ {0, 1}n of labels we define Ln,k(K) as the subset of

Ln consisting of all words of length k beginning with a letter in K. Finally let
Fn,k(K) be the subgraph of Fn,k obtained by removing all edges between q0

and V1 with label outside of K. We say that a graph G recognizes Ln,k(K), if
G is a layered directed acyclic graph with k + 1 layers V0, . . . , Vk. Moreover V0

and Vk consist of exactly one state each and exactly the words from Ln,k(K)
appear as label sequences of paths starting in V0 and ending in Vk. Observe that
Proposition 2 implies that Fn,k(K) recognizes Ln,k(K).

Assume that graph G recognizes Ln,k(K). We show that G has many edges
incident with vertices in V1, provided many 1-entries have to be covered often.

Lemma 2. Let K ⊆ {0, 1}n be an arbitrary subset of at least 2n−1 labels. As-
sume that the graph G recognizes Ln,k(K) and that∑

x∈V1

| fanin∗(x)| = a1 · 2n and
∑
x∈V1

| fanout∗(x)| = a2 · 2n

holds for layer V1 of G. If at least |K| · 2n−2 1-entries from K × {0, 1}n are
covered with multiplicity at least b, then a1 · a2 ≥ b · 2n−8.

Proof. We say that vertex x ∈ V1 is large, if |fanin∗(x)| ≥ 24 · a1, and small
otherwise. Since

∑
x∈V1

| fanin∗(x)| = a1 · 2n, there are at most 2n−4 large
vertices. But according to (4) the submatrix fanin(x) × fanout(x) of a vertex
x ∈ V1 covers at most 2n 1-entries and hence fanin∗(x)× fanout∗(x) also covers
at most 2n 1-entries, since no new 1-entries are introduced. Therefore at most
2n−4 · 2n = 22n−4 1-entries of Hn are covered by large vertices.

By assumption at least |K| · 2n−2 ≥ 22n−3 1-entries from K × {0, 1}n are
covered with multiplicity at least b. But then at least 22n−3 − 22n−4 = 22n−4

1-entries from K × {0, 1}n have to be covered with multiplicity at least b by
small vertices only. We have

b · 22n−4 ≤
∑

x∈V1,x small

| fanin∗(x)| · |fanout∗(x)|

≤
∑
x∈V1

24 · a1 · |fanout∗(x)| = 24 · a1 · a2 · 2n

390 J. Hromkovič and G. Schnitger

and the claim follows. &'

Observe as a first consequence of Lemma 2 that at least
√

b/28 · 23n/2 edges
incident with vertices in V1 are required, if the vertices of V1 cover at least
one fourth of all ones of Hn at least b times. This follows for K = {0, 1}n, since
max{a1 ·2n, a2 ·2n}, with a1 ·a2 ≥ b·2n−8 is minimized for a1 = a2 =

√
b/28 ·2n/2.

Thus at least Ω(23n/2) edges are required to recognize Ln,2({0, 1}n). We improve
this bound for Ln,k(K) by repeatedly searching for inputs with low multiplicity.

Lemma 3. Let K ⊆ {0, 1}n be an arbitrary subset of at least 2n−1 labels. As-
sume that the graph G recognizes Ln,k(K) and that∑

x∈V1

| fanin∗(x)| = a1 · 2n and
∑
x∈V1

| fanout∗(x)| = a2 · 2n

holds for layer V1 of G. Then there is a subset K ′ ⊆ {0, 1}n of size 2n−1 and
a graph G′ which accepts exactly all words in Ln,k−1(K ′). G′ results from G by
removing the first layer of G and introducing at most 29 · a1 · a2 new edges from
the starting state to the new first layer.

Proof. We first observe that less than |K|·2n−2 pairs from K×{0, 1}n are covered
with multiplicity at least b = a1 · a2/2n−9, since otherwise we get a1 · a2/2n−8 ≥
b = a1 · a2/2n−9 with Lemma 2.

For every label v select a label u = u(v) such that the multiplicity m(u, v)
is minimal among all labels u with Hn[u, v] = 1. Observe that m(u(v), v) ≥ b
holds for less than 2n−2 labels v ∈ {0, 1}n, since m(u(v), v) ≥ b implies that the
|K| pairs K×{v} are covered with multiplicity at least b. Thus we find a set K ′

of more than 2n − 2n−2 ≥ 2n−1 labels v with m(u(v), v) ≤ b.
We say that edge e belongs to label v, if e leaves a vertex of layer V1 and e is

traversed by an accepting path for some input with prefix u(v)v. We say that e
belongs to K ′ iff e belongs to a label of K ′. A label v ∈ K ′ appears on at most b
accepting paths with prefix u(v)v and hence at most b · |K ′| edges belong to K ′.

In order to construct G′ from G we remove all vertices of layer V1 and insert
an edge (q0, x) (with label v ∈ K ′) from q0 to a vertex x ∈ V2 iff there is an
accepting path from q0 to x with prefix u(v)v. The number of layers decreases
from k+1 to k after insertion of at most b · |K ′| ≤ b ·2n edges. The new graph G′

recognizes Ln,k−1(K ′). We are done, since b ·2n = a1a2/2n−9 ·2n = 29 ·a1a2. &'

We can now conclude the argument. Let us assume that Fn,k has ai ·2n edges
ending in a vertex of Vi. We apply Lemma 3 and obtain a graph F

(1)
n,k as well as

a subset K1 of at least 2n−1 labels such that F
(1)
n,k accepts Ln,k−1(K1). We set

a
(0)
1 = a1 and a

(i)
1 =

29 · a(i−1)
1 · ai+1

2n

and instead of a
(0)
1 · 2n edges between layers V0 and V1 we now have at most

29 ·a(0)
1 ·a2 = a

(1)
1 ·2n edges between layer zero and the new layer one. We repeat

NFAs With and Without ε-Transitions 391

this procedure i times and obtain a graph F
(i)
n,k as well as a set Ki of 2n−1 labels

such that F
(i)
n,k recognizes Ln,k−i(Ki) with at most 29·a(i−1)

1 ·ai+1

2n · 2n = a
(i)
1 · 2n

edges between layer zero and the new layer one. Hence we obtain

a
(k−2)
1 =

29 · a(k−3)
1 · ak−1

2n
= · · · = 29(k−2) · a1 · · · ak−1

2(k−2)·n .

We apply Lemma 2 to G = F
(k−1)
n,k (with b = 1) and obtain

29(k−2) · a1 · · · ak

2(k−2)·n = a
(k−2)
1 · ak ≥ 2n−8.

Thus a1 · · · ak ≥ 2(k−1)·n/(28 · 29(k−2)) ≥ 2(k−1)·n/29(k−1) and we have to solve
the optimization problem

minimize max{a1 · 2n, . . . , ak · 2n} subject to a1 · · · ak ≥ 2(k−1)·n/29(k−1).

The optimal solution is obtained for a1 = · · · = ak and hence we obtain

max{a1 · 2n, . . . , ak · 2n} ≥ 2n+ k−1
k ·n/29(k−1)/k ≥ 22n−n

k /29.

Theorem 1 follows, if we set k = n. Observe that we have also shown that the
construction in Lemma 1 is almost optimal. &'

4 Small Alphabets

We apply our approach for large alphabets to small aphabets and first show
an upper bound. In Section 4.1 we investigate a family of languages over {0, 1}
which is hard for ε-free NFAs. The argument concludes in Section 4.2.

The regular language Ln,2 can be recognized by an NFA whose transition
diagram consists of a layered acyclic graph with 2n sources, 2n sinks and O(n)
layers. Sources and sinks have to be expanded into edges labelled by letters from
the alphabet {0, 1}n. What happens, if we work with the binary alphabet instead
and expand sources and sinks into 0-1 labelled paths of length n? We call the
corresponding class of NFAs “n-bipartite” NFAs.

Definition 1. An NFA N is called n-bipartite iff its transition diagram G is a
layered acyclic graph with 2n sources and 2n sinks. Each source (resp. sink) is
starting point (resp. endpoint) of its own 0-1 labelled path of length n; the paths
are node-disjoint. The endpoints of source paths and the starting points of sink
paths are connected by n layers of 2n vertices each. (The endpoints of source
paths define layer one and the starting points of sink paths define layer n.) All
edges between two layers are ε-transitions. The 2n sources are the only initial
states and the 2n sinks are the only accepting states.

The advantage of ε-transition decreases for the binary alphabet in comparison
to large alphabets as the following observation shows.

392 J. Hromkovič and G. Schnitger

Lemma 4. If N is an n-bipartite NFA whose transition diagram has bounded
fan-out, then there is an equivalent ε-free NFA with at most 2O(

√
n) · 2n transi-

tions. (Observe that N has at most O(n · 2n) transitions.)

We omit the proof due to space limitations. Observe that we do not obtain
asymptotically larger bounds, if arbitrary sequences of n-bit strings, as in the
language Ln, have to be accepted: it suffices to provide transitions from a sink
path back to the corresponding source path.

4.1 A Family of Hard Languages

We now introduce languages which turn out to be hard for ε-free NFAs.

Definition 2. Let f : {0, 1}n → {0, 1}n be given. Then we define

Ln(f) = {u1u2 | u1, u2 ∈ {0, 1}n, Hn[f(u1), f(u2)] = 1}

as a language over the binary alphabet.

Observe that Ln(f) can be recognized by an NFA with at most O(n · 2n) tran-
sitions, if we proceed as in the proof of Proposition 1. Our goal is to show that
Ln(f) requires ε-free NFAs with 2n+Ω(

√
n) transitions, provided f is chosen at

random. We fix a function f and investigate an ε-free NFA An(f) for Ln(f). We
unravel the transition diagram of An(f) to obtain a layered acyclic graph Fn(f)
such that Fn(f) has 2n + 1 layers and O(n · t(f)) transitions, where t(f) is the
number of transitions of An(f). Moreover Fn(f) has a path with label sequence
u1u2 ∈ {0, 1}2n iff u1u2 ∈ Ln(f) and all edges of Fn(f) are traversed by paths
of length 2n.

Let Vi be the set of vertices of Fn(f) in layer i. For a vertex u ∈
⋃n

i=0 Vi we
define fanin′(u) as the set of label sequences of paths starting in the source of
Fn(f) and ending in u. The set fanout′(u) consists of all label sequences of paths
starting in u and ending in a vertex of Vn. We now make the crucial observation
that, for f chosen at random, fanin′(u) can only be large, if fanout′(u) is small.

Proposition 3. For sufficiently large n there is a function f such that

(a) |f−1(y)| ≤ 2 ·
√
n for all y ∈ {0, 1}n.

(b) For any l ≤ n, any w ∈ {0, 1}l and any subspace V of ZZn
2 with dim(V) ≥ l,

|f({0, 1}n−lw) ∩ V | ≤ 2n · |V |
2l

.

(c) |fanin′(u)| ≤ 7 ·n or |fanout′(u)| ≤ 5 ·n for any vertex u ∈
⋃n

i=0 Vi, provided
Fn(f) has at most 22n vertices.

Proof. It suffices to show that any property (a), (b) or (c) does not hold with
probability at most 1

4 , provided n is sufficiently large.

NFAs With and Without ε-Transitions 393

(a) We interpret a function f as the result of 2n independent random trials
x fixing the value f(x). For any x, y ∈ {0, 1}n we have f(x) = y with proba-
bility 2−n and hence the expected size of f−1(y) is one. We apply the Chernoff
inequality and obtain

prob[|f−1(y)| > 1 + β] ≤ e−β2/3.

Hence size 2 ·
√
n is exceeded with probability bounded by e−(2

√
n−1)2/3 ≤ 2−n−2

for large n and, with probability at most 1
4 , |f−1(y)| ≥ 2 ·

√
n for some y.

(b) We fix l and w ∈ {0, 1}l and again interpret f , restricted to Suffix(w) =
{0, 1}n−lw, as the result of 2n−l random trials. f(y) ∈ V happens with proba-
bility p = |V |

2n and hence the expected size of f(Suffix(w)) ∩ V is 2n−l · p = |V |
2l .

We again apply the Chernoff inequality and obtain

prob[|f(Suffix(w)) ∩ V | > (1 + β) · |V |
2l

] ≤ e−β2·|V |/(3·2l) ≤ e−β2/3.

There are at most n ·2n ways to fix l and w and there are at most 2n2
subspaces

V . We set β = 2 ·n−1 and property (b) fails with probability at most n ·2n+n2 ·
e−(2n−1)2/3 < 1/4 for sufficiently large n.

(c) Assume that |fanin′(u)| = s and |fanout′(u)| = t. Hence s·t label sequences
xiyj (1 ≤ i ≤ s, 1 ≤ j ≤ t) have paths travelling through u and ending in
vertices of Vn. The f -values of those label sequences, which end in the same
vertex of Vn, induce a space of dimension at most n− 1. Thus there are vectors
z1, . . . , zt ∈ {0, 1}n with the restriction 〈f(xiyj), zj〉 = 0. We fix xi, yj , zj for all
i, j and the s · t restrictions hold with probability at most 2−s·t.

There are at most 2n·s · 22n·t = 2n(s+2t) ways to fix the s · t vectors. But
2n(s+2t) < 2s·t−2n/4, provided s ≥ 7 ·n and t ≥ 5 ·n. (If s ≥ 2t, then n ·(s+2t) ≤
n · 2s ≤ s · t− 2n− 2. If s < 2t, then n · (s + 2t) < n · 4t ≤ s · t− 2n− 2.) Thus
some vertex u with too large fanin′ and fanout′ sets exists with probability at
most 1

4 . &'

4.2 The Lower Bound

We fix a function f as guaranteed by Proposition 3 and have to show that the
ε-free NFA Fn(f) is large. Let l = c ·

√
n), where c < 1/2 is arbitrary, and define

the set
X = {u | u ∈ Vn−l and |fanin′(u)| ≥ 2

√
n}

of high fanin vertices. We say that string s ∈ {0, 1}2n hits vertex u of Fn(f) iff
there is an accepting path with label sequence s which traverses u. If sufficiently
many strings hit vertices in X, then we show in Lemma 5 that Vn−l has to
contain many high fanin vertices and we are done. Thus we may assume that
only “low fanin” vertices in Vn−l “count”. But then Lemma 6 shows that the
fanin′ sets increase only gradually in size between layers Vn−l and Vn, if we
disregard a few “exceptional” vertices. Since the situation is similar for “high
fanout” vertices in Vn+l, the argument concludes with Lemma 7, which shows

394 J. Hromkovič and G. Schnitger

that the overall fanin or the overall fanout of vertices in Vn has to be large. We
begin by showing that X has to be large, if X is hit by many strings.

Lemma 5. Let α > 0 be arbitrary. If at least α · 22n strings hit vertices in X,
then |X| ≥ α · 2n+l

10n2 .

Proof. Remember l = c ·
√
n. For w ∈ {0, 1}l let X(w) be the set of vertices

in X which are hit by at least 2
√

n strings from {0, 1}n−l · w · {0, 1}n. We pick
an arbitrary vertex u ∈ X(w) which is hit by t strings α1wβ1, . . . , αtwβt. We
define Vu(w) as the vector space spanned by f(α1w), . . . , f(αtw) and observe
that Vu(w) has dimension at least

√
n ≥ l. Hence we may apply Proposition

3(b) and obtain that t ≤ |f({0, 1}n−lw) ∩ Vu(w)| ≤ 2n · |Vu(w)|
2l .

But then vertex u hits at most 2n · |Vu(w)|
2l · 2n

|Vu(w)| = 2n · 2n−l strings from
{0, 1}n−l · w · {0, 1}n, since all n-bit suffices belong to the orthogonal space
Vu(w)⊥. If x(w) is the number of strings from {0, 1}n−l · w · {0, 1}n hitting X,
then X(w) has to consist of at least x(w)

2n·2n−l vertices. We observe as a consequence
of Proposition 3(c) that a vertex u ∈ X satisfies |fanout′(u)| ≤ 5n and hence u
appears in at most 5n sets X(w). But

∑
w x(w) ≥ α · 22n by assumption and

therefore

|X| ≥
∑
w

|Xw|
5n

≥
∑
w

1
5n
· x(w)
2n · 2n−l

≥
∑
w

xw

10n2 · 2n−l
≥ α

22n

10n2 · 2n−l
= α

2n+l

10n2
.

The claim follows. &'

The same result holds if we consider vertices u of depth n + c ·
√
n. In par-

ticular, if l = c ·
√
n, then define fanin′′(u) (resp. fanout′′(u)) as the set of all

l-bit (resp. n − l-bit) label sequences of paths from a vertex in Vn to u (resp.
of paths from u to the sink of Fn(f)). We consider the set X ′ = {u | u ∈
Vn+l and |fanout′′(u)| ≥ 2

√
n} and obtain |X ′| ≥ α· 2n+l

10n2 , provided at least α·22n

strings hit vertices in X ′. Since our goal is to show that ε-free NFAs have size
2n+Ω(l), we only have to deal with the situation that vertices in X as well as X ′

are hit by too few strings.
We remove X and X ′ and observe that only accepting paths for a set S of at

most 2α · 22n different label sequences are lost. But now all vertices u ∈ Vn−c·
√

n

and v ∈ Vn+c·
√

n have small fanin (i.e., |fanin′(u)| ≤ 2
√

n) and small fanout (i.e.,
|fanout′(v)| ≤ 2

√
n) respectively. If Fn(f) has few edges, then we show next that

fanins increase only gradually in the intermediate c ·
√
n layers. The situation

for fanouts is analogous. Let t0 = n− c ·
√
n, t1 = n + c ·

√
n and set α = 1/16.

Lemma 6. Remove X and X ′. If |fanin′(u)| ≤ 2
√

n for all u ∈ Vt0 and
|fanout′′(u)| ≤ 2

√
n for all u ∈ Vt1 and if Fn(f) has at most 2n+

√
n/(320 · n2)

edges, then there is a subset V ∗
n ⊆ Vn of vertices v with |fanin′(v)|, |fanout′′(v)| ≤

2
√

n+c·n which is hit by at least 22n/4 strings.

Proof. For t0 ≤ t < n let et be the number of edges between vertices in Vt and
Vt+1. For the parameter β to be fixed later, we call a vertex u ∈ Vt+1 fat, if it

NFAs With and Without ε-Transitions 395

receives more than β · et/2n edges and if |fanin′(u)| > 7n. Observe that there is
a total of at most c

√
n · 2n

β fat vertices in Vt for t0 ≤ t < n.
We claim that not too many strings hit fat vertices u. To see why, we first

observe |fanout′(u)| ≤ 5n. Hence there are at most 5n vector spaces V1 ×
V ⊥

1 , . . . , V5n × V ⊥
5n such that (f(x), f(y)) belongs to one of the spaces for any

string xy that hits u. Thus, with Proposition 3(a) at most 5n · (2
√
n)2 · 2n =

20n2 ·2n strings hit u and at most (c
√
n · 2n

β) · (20n2 ·2n) = 20c ·n2.5 · 22n

β strings
hit fat vertices. Set β = 320c · n2.5.

We remove all fat vertices and destroy accepting paths for at most 22n/16
strings. An inductive argument shows that |fanin′(u)| ≤ 2

√
n ·Πt−1

τ=t0(βeτ/2n) for
all vertices u ∈ Vt for t0 ≤ t < n. Hence, since e =

∑t
τ=t0

eτ ≤ 2n+
√

n/(320 · n2)
by assumption, all fanin′ sets have size bounded by

2
√

n · (β · e

c
√
n · 2n

)c·
√

n = 2
√

n · (320 · n2 · e
2n

)c·
√

n ≤ 2
√

n · 2c·n.

We repeat this procedure, but now utilize the fanout restrictions. We remove (a
new set of) fat vertices and lose additionally 22n−4 strings. Counting also the
strings lost by removing X ∪X ′ and observing α = 1/16, we have lost at most
2α22n + 2 · 22n−4 = 22n−2 strings and at least 22n−2 strings are still “alive”. &'

Hence, if Fn(f) is not too large, then one half of all strings hit vertices in Vn

with small fanin and small fanout. However we now show that the overall fanin
or the overall fanout of V ∗

n has to be large.

Lemma 7. Remove X and X ′. Then∑
v∈V ∗

n

|fanin′(v)| ≥ 23n/2/(16
√
n) or

∑
v∈V ∗

n

|fanout′′(v)| ≥ 23n/2/(16
√
n).

Proof. Remove all vertices in X and X ′. According to Lemma 6 the vertices
v ∈ V ∗

n define a cover of at least one half of all ones of Hn, if we associate the
submatrix fanin′(v)× fanout′′(v) with v. We observe, with Proposition 3(a) and
inequality (1), that vertex v is hit by at most (2

√
n)2 · 2n = 4n · 2n different

strings u1u2 ∈ Ln(f). Assume that the claim is false and we obtain

∑
v∈V ∗

n

|fanin′(v)|,
∑

v∈V ∗
n

|fanout′′(v)| ≤ 23n/2

16
√
n

as well as (6)

|fanin′(v)| · |fanout′′(v)| ≤ 4n · 2n. (7)

When maximizing
∑

v∈V ∗
n
|fanin′(v)| · |fanout′′(v)| subject to restrictions (6) and

(7), it is optimal to choose |fanin′(v)| = |fanout′′(v)| =
√

4n · 2n for all v ∈ V ∗
n .

But then |V ∗
n | ≤ 23n/2

16
√

n
· 1√

4n·2n
and hence

∑
v∈V ∗

n
|fanin′(v)| · |fanout′′(v)| ≤

23n/2

16
√

n
√

4n2n
· (4n2n) = 22n−3, but H has at least 22n−2 1-entries. &'

396 J. Hromkovič and G. Schnitger

Proof of Theorem 1 (iv). If X or X ′ is hit by sufficiently many strings, then,
according to Lemma 5, Fn(f) consists of at least α · 2n+l

10n2 = Ω(2n+l

n2) vertices,
where l = c ·

√
n. Otherwise we have to differentiate two cases. Firstly Fn(f)

has at least 2n+
√

n/(320 · n2) = Ω(2n+
√

n/n2) edges. Secondly Fn(f) has fewer
edges and we may apply Lemma 6: we obtain a subset V ∗

n ⊆ Vn of vertices with
individual fanin and fanout bounded by 2

√
n+c·n such that V ∗

n is hit by at least
22n/4 edges. But then Lemma 7 requires an overall fanin or an overall fanout of
at least Ω(23n/2/

√
n) and hence Ω(23n/2/(

√
n · 2

√
n+c·n)) = Ω(2(3/2−c)n/(

√
n ·

2
√

n)) vertices are required. For any constant c < 1/2 the graph Fn(f) has
size at least Ω(2n+c·

√
n/n2) and we may drop the factor 1/n2 by increasing c

slightly. &'

5 Conclusions and Open Problems

We have shown an almost quadratic gap between the descriptional complexity
of NFAs and ε-free NFAs. Our approach is based on communication complexity:
“inner” vertices of an NFA recognizing {xy | x, y ∈ {0, 1}n, (x, y) ∈ L} define a
cover of the communication matrix of L. Additional graph-theoretic arguments
are required for large as well as for small alphabets to obtain a separation of
NFA and ε-free NFA.

Whereas Theorem 1 shows for large alphabets that the obvious transforma-
tion from NFAs to ε-free NFAs cannot be improved significantly, considerable
improvements for small alphabets are not ruled out. Observe however that im-
provements of our lower bound require new ideas, since our analysis of “bipartite
NFAs” is close to optimal according to Lemma 4.

Acknowledgement. Thanks to an anonymous referee for pointing out a mistake
in an earlier version.

References

[HMU01] J.E. Hopcroft, R. Motwani, J.D. Ullman, ”Introduction to Automata Theory,
Languages and Computation”, Addison-Wesley, 2001.

[HSW97] J. Hromkovič, S. Seibert, and T. Wilke, Translating regular expression into
small ε-free nondeterministic automata, Journal of Computer and System
Sciences, 62 (4), pp. 565-588, 2001.

[KN97] E. Kushilevitz and N. Nisan, Communication Complexity, Cambridge Uni-
versity Press, 1997.

[Lif03] Y. Lifshits, A lower bound on the size of ε-free NFA corresponding to a
regular expression, Inf. Process. Lett. 85(6), pp. 293-299, 2003.

[Tho68] K. Thompson, Regular expression search, Comm. ACM 11, pp. 419-422,
1968.

On the Equivalence of Z-Automata

Marie-Pierre Béal1, Sylvain Lombardy2, and Jacques Sakarovitch3

1 Institut Gaspard-Monge, Université Marne-la-Vallée
2 LIAFA, Université Paris 7

3 LTCI, CNRS / Ecole Nationale Supérieure des Télécommunications. (UMR 5141)
beal@univ-mlv.fr, lombardy@liafa.jussieu.fr, sakarovitch@enst.fr

Abstract. We prove that two automata with multiplicity in Z are equiv-
alent, i.e. define the same rational series, if and only if there is a sequence
of Z-coverings, co-Z-coverings, and circulations of −1, which transforms
one automaton into the other. Moreover, the construction of these trans-
formations is effective.

This is obtained by combining two results: the first one relates cov-
erings to conjugacy of automata, and is modeled after a theorem from
symbolic dynamics; the second one is an adaptation of Schützenberger’s
reduction algorithm of representations in a field to representations in an
Euclidean domain (and thus in Z).

1 Introduction

Equivalence of Z-automata is decidable with polynomial (cubic) complexity. This
is not a new result: it is more than forty years old. We investigate it again in
order to give more structural information on two equivalent Z-automata. A first
and simple example should make clear what we mean by that before we state
the precise results we are aiming at.

An Example. Let us consider the two Z-automata A1 and B1 of Figure 1. They
are equivalent.1 This can be proved by checking that series |||A1||| and |||B1||| have
the same coefficients on every word of {a, b}∗ up to length 8 — which would
be the algorithm derived from the Equality Theorem — or by verifying that the
reduced representation of the series |||A1||| − |||B1||| has dimension 0.

We aim here at the construction of the two Z-automata C1 and D1 of Figure 2.
They are equivalent as one is obtained from the other by multiplying by −1 the
coefficients of both the incoming and outgoing transitions around the state 1.
The automata C1 and A1 are equivalent as A1 is obtained from C1 by merging the
states 1 and 3 on one hand, the states 2 and 4 on the other hand, as these merged
states have the same incoming transitions and as the outgoing transitions are
added. The automata D1 and B1 are equivalent as B1 is obtained from D1 by

1 This equivalence expresses a “shuffle identity”: (ab)∗ � (−ab)∗ = (−4a2b2)∗ that
was mentioned to us by M. Waldschmidt (personnal communication).

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 397–409, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

398 M.-P. Béal, S. Lombardy, and J. Sakarovitch

A

B

13

24

a

−2a

b

2bA1

A

B

12

34

−a

b

−a

b
a

b
a

b B1

Fig. 1. Two equivalent Z-automata

A

B

1

2

3

4

a

−b −a

b
a

b

ab
−ab

b

−a

C1

A

B

1

2

3

4

−a

b a

b
a

b

ab
−ab

b

−a

D1

Fig. 2. Two other equivalent Z-automata

merging the states 1 and 2 on one hand, the states 3 and 4 on the other hand,
as these merged states have the same outgoing transitions and as the incoming
transitions are added.

Equivalence of A1 and B1 boils down to the obvious three equivalences: A1

and C1, C1 and D1, and D1 and B1. The general case will not be that simple,
but will nevertheless follow the same scheme.

The General Framework and Our Results. Finite automata with multi-
plicity in Z — with multiplicity in Q or in a commutative field F as well —
were introduced as soon as 1961 by M.P. Schützenberger in a paper entitled:
On the definition of a family of automata [17]. At that time, the emphasis was
put on the investigation of new models of computation that allow the defini-
tion of new families of languages inside or outside Chomsky’s hierarchy. The
Z-automata define one of the latter by way of the support of the series they
realize. But Schützenberger’s seminal paper also generalizes the theory of ratio-
nal formal power series from one variable to several non commuting variables.
Among other things, the existence of reduced F-automata that realize a given F-
rational series, and the similarity between two equivalent reduced F-automata is
shown there. An algorithm is given — more or less explicitely — that computes
a reduced F-automaton. The decidability of the equivalence of Z-automata is a
direct consequence of the latter.

In [6] Eilenberg stated the Equality Theorem but disregarded the notion of
reduced representation although the complexity of the corresponding equivalence
algorithms blows up from polynomial to exponential without the latter. In other
books on automata with multiplicity ([15, 10]) the equivalence of Z-automata is
reduced to the one of rational series over one variable. Schützenberger’s reduction

On the Equivalence of Z-Automata 399

algorithm was made explicit in [5]2 and above all in [3]. The generalization to
skew fields of coefficients is straightforward (as was noted for instance in [8]). The
importance of the decidablity of the equivalence of automata with multiplicity
in a (sub-semiring of a) skew field appears clearly with its role in the proof of
the decidability of the equivalence of deterministic k-tape transducers [9].

Our contribution to this now well-established chapter of automata theory
is based on two notions: covering and conjugacy of automata and develops in
two directions: the generalization and reinterpretation of the Finite Equivalence
Theorem of symbolic dynamics for Z-automata on one hand and of the reduc-
tion algorithm for automata with multiplicity in an Euclidean domain on the
other hand. The two results are combined in our last theorem (Theorem 4) that
expresses the equivalence of two Z-automata as a sequence of six coverings and
a conjugacy of a special kind, all effectively computable.

Coverings, Conjugacy and the Conjugacy Theorems. A finite automa-
ton A over an alphabet A with multiplicity in a semiring K, or K-automaton for
short, can be written in a compact way as A = 〈I, E, T 〉 where E is a square
matrix of finite dimension Q whose entries are linear combinations of letters
(with coefficients in K) and where I and T are two vectors — respectively row
vector and column vector — with entries in K as well. We can view each en-
try Ep,q as the label of a unique arc which goes from state p to state q in the
graph whose set of vertices is Q (if Ep,q = 0K, we consider that there is no arc
from p and q).

The behaviour of A, denoted |||A|||, is the series such that the coefficient of a
word w is the coefficient of w in I ·E|w| ·T . It is part of Kleene-Schützenberger
Theorem that every K-rational series is the behaviour of a K-automaton of the
form we have just defined. For missing definitions, we refer to [6, 3, 14].

K-coverings and co-K-coverings are generalizations of morphisms of classical
(Boolean) automata to K-automata; the precise definition will be given and dis-
cussed in Section 2 but typically a K-covering is the map that sends the above
automaton D1 onto B1 and a co-K-covering is the map that sends C1 onto A1.
The second notion, the conjugacy of (K-)automata, comes from symbolic dy-
namics (we follow [12]) and can be described as follow.

Definition 1. An automaton A = 〈I, E, T 〉 is conjugate to an automaton B =
〈J, F, U〉 if there exists a matrix X with entries in K such that

I X = J, EX = XF, and T = XU.

The matrix X is the transfer matrix of the conjugacy and we write A X=⇒ B .

Obviously two conjugate automata are equivalent (i.e. have the same be-
haviour). Remark that in spite of the idea conveyed by the terminology, the
conjugacy relation3 is not an equivalence but a preorder relation. Suppose that

2 If a paper written in French is not considered to be cryptic.
3 A conjugacy of automata was called a backward elementary equivalence in [2]. The

transfer matrix X is called a simulation from A to B in [4].

400 M.-P. Béal, S. Lombardy, and J. Sakarovitch

A X=⇒ B holds; if B Y=⇒ C then A XY=⇒ C , but if C Y=⇒ B then A is not neces-
sarily conjugate to C, we write A X=⇒ B Y⇐= C and we refer to this situation as
“a chain of two (convergent) conjugacies”.

We shall see that K-coverings are realized by conjugacy with special transfer
matrices. The following theorems express a kind of converse. (A matrix is non
degenerate if it contains no zero row nor zero column.)

Theorem 1. Let A and B be two Z-automata. We have A X=⇒ B with a non-
negative and nondegenerate transfer matrix X if and only if there exists a Z-
automaton C that is a co-Z-covering of A and a Z-covering of B.

One of the reasons that make Theorem 1 interesting in our opinion is the
relationship it bears with the Finite Equivalence Theorem of symbolic dynamics
and we develop this point at Section 2.3. In order to state the results under the
most general form in the sequel, let us write H for a ring that is either Z or a
division ring4. By the following, we free ourselves from the two hypotheses on
the transfer matrix (we call circulation matrix a diagonal invertible matrix).

Theorem 2. Let A and B be two H-automata. We have A X=⇒ B if and only
if there exists two H-automata C and D and a circulation matrix D such that C
is a co-H-covering of A, D and a H-covering of B and C D=⇒ D .

This theorem describes precisely the situation in our
first example: A1 is conjugate to B1 with the transfer
matrix X1 shown opposite.

X1 =

⎛⎜⎜⎝
1 0 0 0
0 −1 1 0
0 1 1 0
0 0 0 1

⎞⎟⎟⎠
Equivalence, Conjugacy and the Reduction Theorems. Our second con-
tribution consists in establishing a kind of converse to the equivalence of conju-
gate K-automata in two important cases: skew fields and Euclidean domains5.

Theorem 3. Let L be a skew field, or an Euclidean domain. If A and B are
two equivalent L-automata, then there exist two L-automata C and D and three
L-matrices X, Y and Z such that:

A X=⇒ C Y⇐= D Z=⇒ B. (1)

The alternative hypotheses correspond indeed to two different results, and
two distinct proofs.

If L is a skew field, the proof is based on Schützenberger’s algorithm that
computes a reduced representation (i.e. an automaton with a minimal number
of states) for a given L-rational series. This algorithm may be interpreted as
the effective computation of the transfer matrices of a chain of two (divergent

4 i.e. a skew field. In Section 2.2, we take even more general hypotheses.
5 An Euclidean domain is a principal commutative ring with no divisors of zero and

where the gcd of any two elements is effectively computable.

On the Equivalence of Z-Automata 401

R′′ R′ RC C′ C′′DA BC D
Fig. 3. The decomposition of the equivalence between H-automata

or convergent) conjugacies. As the same algorithm implies that two minimal L-
automata are similar6, Equation 1 holds, with the supplementary condition that
the L-automata C and D are minimal.

In the case where L is an Euclidean domain (Z for instance), we prove that
the above reduction algorithm can be transformed in such a way that it still com-
putes a reduced L-representation. As far as we know, this is the first reduction
algorithm for automata with multiplicity in such rings. Another step of proof is
then necessary to establish Theorem 3 in this case, for minimal automata are
not necessarily conjugate anymore.

Combining Theorem 2 and Theorem 3 together with some further properties
of coverings yields the final result of this paper, illustrated in Figure 3 [as we
shall see below, coverings and co-coverings are special cases of conjugacy, which
we represent with simple arrows, solid for coverings, dashed for co-coverings; a
dotted simple arrow represents conjugacy with a circulation matrix].

Theorem 4. Two H-automata A and B are equivalent if and only if there exist
two H-automata C and D such that there is a sequence of three H-coverings and
co-H-coverings from C onto A on one hand and from D onto B on the other
hand, and a conjugacy by a circulation matrix between C and D.

2 The Conjugacy Theorems

The two main ingredients in Theorem 2 are the notion of coverings and the
property of equisubtractivity in a semiring, which albeit simple will be crucial
for the proof.

2.1 K-Coverings and Co-K-coverings

The standard notion of morphisms of automata is not well-suited to automata
with multiplicity in that it does not capture some similarities between these
automata that we would like to be able to describe. Hence the definitions we take
now. For the rest of the section, A = 〈I, E, T 〉 is a K-automaton of dimension Q.

An equivalence ϕ on Q or, which is the same, a surjective map ϕ : Q→ R is
Out-licit (understood, with respect to A) if for any two equivalent states p and p′

modulo ϕ the sum of the labels of the transitions that go from p to all the states
of a whole class modulo ϕ is equal to the sum of the labels of the transitions that
go from p′ to the same states and if any two entries of T indexed by equivalent
states modulo ϕ are equal.7 We denote by [q]ϕ the class of q modulo ϕ.

6 i.e. conjugate with a transfer matrix which is invertible.
7 This definition bears some resemblance with the one of block-stochastic matrix, as

given in [10, Ex. 4.5]

402 M.-P. Béal, S. Lombardy, and J. Sakarovitch

Definition 2 ([14]). A surjective map ϕ : Q→ R is Out-licit with respect to A
if the following holds:

∀p, p′, q ∈ Q p ≡ p′ mod ϕ =⇒

⎧⎨⎩ (i)
∑

r∈[q]ϕ

Ep,r =
∑

s∈[q]ϕ

Ep′,s

(ii) Tp = Tp′

(2)

If ϕ : Q → R is Out-licit, the K-quotient of A by ϕ is the automaton B =
〈J, F, U〉 of dimension R, defined by the following:

∀(r, s) ∈ R2, ∀p ∈ ϕ−1(r),

Js =
∑

q∈ϕ−1(s)

Iq, Fr,s =
∑

q∈ϕ−1(s)

Ep,q, Ur = Tp. (3)

The automaton B is called a K-quotient of A and, conversely, A is called a
K-covering of B. We write also ϕ : A → B and call it, by way of metonymy, a
K-covering from A onto B.8

If ϕ : Q→ R is a map, the above condition and construction may be elegantly
described by means of the Q×R-matrix Hϕ naturally associated with ϕ: its (q, r)
entry is 1 if ϕ(q) = r, 0 otherwise. Since ϕ is a map, each row of Hϕ contains
exactly one 1 and since ϕ is surjective, each column of Hϕ contains at least
one 1. We call Hϕ the amalgamation matrix9 associated with ϕ. The following
expresses that a quotient is a conjugate.

Proposition 1. There is a K-covering ϕ from A onto B if and only if there
exists an amalgamation matrix X such that A X=⇒ B (and in this case X = Hϕ).

The notion of K-quotient is lateralized in that it refers not to the transi-
tions of the automaton but to the outgoing transitions from the states of the
automaton. Somehow, it is the price we pay for extending the notion of mor-
phism of automata. Therefore the dual notions of In-licit map, co-K-quotient
and co-K-covering are defined in a natural way and we have:

Proposition 2. There is a co-K-covering ψ from A onto B if and only if there

exists an amalgamation matrix X such that A
tX=⇒ B (and in this case X = Hψ).

It follows that every K-automaton is equivalent to any of its K-quotients or
co-K-quotients. Clearly, if ϕ : Q → R and ψ : R → S are surjective maps,
then Hϕψ = HϕHψ. Hence K-coverings (resp. co-K-coverings) are closed under
composition.

8 Definition 2 has probably been stated independently a number of times. We relied
on [14] where both the definition and its matrix expression are given. It was used in
full generality in [13]. If K = B, the Boolean semiring, a B-quotient is a simulation
in the sense of [1].

9 This is the terminology proposed in [12, Def. 8.2.4].

On the Equivalence of Z-Automata 403

2.2 Decomposition of Conjugacy

The proof of Theorem 2 involves indeed two properties.
We call equisubtractive a semiring is in which for all p, q, r and s such that

p+q = r+s there exist x, y, z and t such that p = x+y , q = z+ t , r = x+z
and s = y + t . The semiring N and all rings are equisubtractive, and if K is
equisubtractive, then so are K〈A∗〉 and K〈〈A∗〉〉.

We say that a semiring has property (P) if every element is a sum of units.
The ring Z and all fields have property (P). In any semiring with (P), every
matrix X can be written as X = CDR where C is an amalgamation, R a
co-amalgamation and D a circulation matrix. In Z, the dimension of D will be
the sum of the absolute value of the entries of X.

Theorem 2 indeed holds for equisubtractive semiring K with (P). Its proof
will be sketched with the following example.

Example 2. Let A2 = 〈I2, E2, T2〉 and B2 = 〈J2, F2, U2〉
be the two Z-automata defined by:

I2 =
(
1 1 0

)
, E2 =

⎛⎝b 2a + b a
b a + b a
0 a 0

⎞⎠ , T2 =

⎛⎝ 0
−1
1

⎞⎠ ,

and

J2 =
(
2 −1

)
, F2 =

(
2a + 2b −a− b

a −a

)
, U2 =

(
0
1

)
.

One can check that A2
X2=⇒ B2, with X2 =

⎛⎝1 0
1 −1
0 1

⎞⎠ .

1

2

3

−1

b

a + b

a

2a + b

b
a a

1 22 −1

2a + 2b
−a

−a− b

a

It then comes, X2 = C2D2R2 with

C2 =

⎛⎝1 0 0 0
0 1 1 0
0 0 0 1

⎞⎠ , D2 =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

⎞⎟⎟⎠ , and R2 =

⎛⎜⎜⎝
1 0
1 0
0 1
0 1

⎞⎟⎟⎠ .

The proof of Theorem 2 amounts then to computing C2 = 〈K2, G2, V2〉 and
D2 = 〈L2,H2,W2〉 such that:

A2
C2=⇒ C2

D2=⇒ D2
R2=⇒ B2 .

We set K2 = I2C2 , L2 = K2D2 , W2 = R2U2 , V2 = D2W2 and we are
left with the computation of G2D2 = D2H2 , a 4 × 4 matrix. This matrix
is composed of sub-matrices and the sum of the entries on every column and
every row of each of these sub-matrices is given by the products E2C2D2

and D2R2F2 . The sub-matrix decomposition and the “constraints” of our ex-
ample are shown at Figure 4. The fact that B2 is conjugate to A2 ensures that

404 M.-P. Béal, S. Lombardy, and J. Sakarovitch

The dots figure the coefficients
of the matrix, the cartouches fig-
ure their sums.

• • • •

• • • •

• • • •

• • • •

b

2a + b
−2a− b

a

0 a −a 0

a

−a

2a + 2b

2a + 2b

−a

a

−a− b

−a− b

a + b

b

−a− b

a

Fig. 4. Computation of G2 D2 = D2 H2 in Theorem 2

these constraints are consistent and the equisubtractivity of Z allows to compute
a solution:

G2 =

⎛⎜⎜⎝
b 2a + b 2a + b a
b 2a + b a + b 0
0 −a 0 a
0 a a 0

⎞⎟⎟⎠ , H2 =

⎛⎜⎜⎝
b 2a + b −2a− b a
b 2a + b −a− b 0
0 a 0 −a
0 a −a 0

⎞⎟⎟⎠ .

This completes Example 2, and with it the proof of Theorem 2.
Finally, we note that if X is a non negative and non degenerate matrix, D is

the identity matrix and Theorem 1 follows.

2.3 The Link with Symbolic Dynamics

We claim that Theorem 1 is a generalization of (a part of) the Finite Equivalence
Theorem, a standard result in symbolic dynamics (cf. [12, Theorem 8.3.7]).

Theorem 5 (FET). Two irreducible sofic shifts are finitely equivalent if and
only if they have the same entropy.

This requires some definitions to be understood. Symbolic dynamics deals
with sets of bi-infinite words, i.e. subsets of AZ, closed under the shift operation
and called shifts. A sofic shift X is the set of labels of bi-infinite paths in a finite
labelled graph G and is irreducible if such G can be chosen to be a strongly
connected graph. The set of finite factors of words in a shift X is denoted F (X),
the entropy of X is defined by: h(X) = limn→∞

1
n log2 Card (F (X) ∩An) and is

an effectively computable “dynamic invariant” of a sofic shift. A shift X is of
finite type if it is defined by the condition that F (X) does not contain a finite
set of words (i.e. A∗ \ F (X) is a finitely generated ideal).

Let X ⊆ AZ and W ⊆ CZ be two sofic shifts. A map Φ : W → X is called a k-
block map if there exist a map Φ : Ck → A and two nonnegative integers m (for
memory) and a (for anticipation) with k = m + 1 + a such that Φ((cn)n∈Z) =
(an)n∈Z iff Φ(cn−m . . . cn . . . cn+a) = an for every n ∈ Z. A block map is a

On the Equivalence of Z-Automata 405

k-block map for some positive integer k. A block map10 is finite-to-one if the
cardinal of Φ−1(x) is bounded (independently of x).

Two sofic shifts X and Y are finitely equivalent if is there is a shift of finite
type W together with finite-to-one and onto block maps such that Φ : W → X
and Ψ : W → Y. All terms used in the FET are now defined. The connection
with Theorem 1 requires one more definition, and a double encoding.

An edge shift X is a sofic shift with an underlying graph G whose edges all
have distinct labels. It is thus completely described by the adjacency matrix X
of G, a matrix with entries in N.

Standard techniques in symbolic dynamics reduce the FET to the case of edge
shifts X and Y whose adjacency matrices are denoted by X and Y respectively.
The proof of sufficiency of the entropy condition relies then on two steps. The
first step, known as Furstenberg’s lemma, shows that, when X and Y have equal
entropy, there is a nonnegative and nonnull matrix F such that XF = F Y . The
second step constructs the adjacency matrix W of an edge shift W, together with
finite-to-one and onto block maps Φ : W → X and Ψ : W → Y.

Now, the edge shifts X and Y may be seen as N-automata over a one letter al-
phabet. Theorem 1 then applies to these two automata and yields an automaton
that corresponds to the edge shift W, the covering and co-covering correspond-
ing to block maps Φ and Ψ . The computation of the matrix G in the proof of
Theorem 2 corresponds to the original construction for the second step of the
proof of the FET, known as “filling in the tableau” (see [12, Example 8.3.11]).

3 The Reduction Theorems

A K-automaton A = 〈I, E, T 〉 can be seen as a triple (I, μ, T), where μ is the
morphism from A∗ into Kn×n such that E =

∑
a∈A μ(a)a . A K-representation,

or a K-automaton, is minimal if it has a minimal dimension, or a minimal number
of states, among all K-representations, or all K-automata, that realize the same
series.

3.1 Reduction in a Skew Field

The computation of a minimal representation by Schützenberger’s reduction
algorithm [17, 3] has two symmetrical steps: a left reduction and a right reduction;
it may be described within the framework of conjugacy of automata.

The left reduction of A = (I, μ, T) consists in computing a matrix X whose
rows form a basis of the vector space11 〈〈〈I μ(A∗) 〉〉〉. The matrix X uniquely defines

10 Note that for Φ : W → X being a (k-)block map does not depend on W and X
whereas the property of being finite-to-one does, and this is the reason why we
consider that the definition of Φ depend on W and X.

11 Modules over a skew field are called vector spaces (cf. [11]). As F is non commutative,
one should distinguish between left and right vector spaces. I μ(S) is the set of vectors
I μ(w) for w ∈ S; 〈〈〈U 〉〉〉 is the vector space generated by the set U of vectors.

406 M.-P. Béal, S. Lombardy, and J. Sakarovitch

the automaton B such that B X=⇒ A ; the dimension of B is equal to the one
of 〈〈〈I μ(A∗) 〉〉〉. Likewise, the right reduction of A consists in computing a matrix Y
whose columns form a basis of the (right) vector space 〈〈〈μ(A∗)T 〉〉〉 and Y uniquely
defines the automaton C such that A Y=⇒ C ; the dimension of C is equal to the
one of 〈〈〈μ(A∗)T 〉〉〉. The following property is the basis of the reduction algorithm:

Proposition 3. Let F be a skew field. A left reduction followed by a right re-
duction applied to a F-automaton A yields an equivalent minimal automaton.

The computation of a left or right reduction (i.e the computation of bases of
the appropriate subspaces) is made effective, via the completion basis theorem
by the following lemma.

Lemma 1. Let (I, μ, T) be a F-representation and P a finite subset of A∗ which
contains the empty word 1A∗ . If, for every a in A and every w in P , I μ(wa) be-
longs to 〈〈〈I μ(P) 〉〉〉 then 〈〈〈I μ(P) 〉〉〉 = 〈〈〈I μ(A∗) 〉〉〉 (and the symmetric for 〈〈〈μ(P)T 〉〉〉).

The algorithm of left reduction consists in finding such a finite set P by
considering words of A∗ in the lexicographic order; P is prefix-closed and the set
I μ(P) is a basis of 〈〈〈I μ(A∗) 〉〉〉. Likewise, the algorithm of right reduction yields
a suffix-closed set of words. The reduction algorithm applied to two equivalent
F-automata (using the same order) yields the same minimal automaton and
conversely we have the following.

Lemma 2 ([7]). If F is a skew field, two minimal equivalent F-automata are
similar, i.e. conjugate with an invertible transfer matrix.

If A and B are two equivalent F-automata, then there exist two reduced

automata R and R′ such that A X⇐= Y=⇒ R , and symmetrically B X′
=⇒ Y ′

⇐= R′ .

By Lemma 2, R Z=⇒ R′ . Hence, A X⇐=Y ZY ′
=⇒ X′

⇐= B , which proves Theorem 3.

3.2 Reduction in an Euclidean Domain

We now deal with automata with multiplicity in an Euclidean domain K instead
of in a skew field F. (In particular, Z is an Euclidean domain.) There is a dimen-
sion theory for the free modules12 over K just as the one for the vector spaces
over F — that is any two bases of a K-module have the same cardinal. On the
other hand the completion basis theorem does not hold anymore in K-modules.
We present here a reduction algorithm that overcomes this difficulty.

In fact the proof of Proposition 3 and Lemma 1 readily extends for Euclidean
domain but does not yields an effective procedure anymore. The problem arises
from the fact that two K-modules can be strictly contained one in the other
and still have the same dimension. Nevertheless, the following result implies the
existence of an effective procedure for the reduction algorithm.

12 All the modules we consider here are free and we just call them modules.

On the Equivalence of Z-Automata 407

Proposition 4. Let (I, μ, T) be a K-representation. There exists a finite subset
P of A∗ such that 〈〈〈I μ(P) 〉〉〉 = 〈〈〈I μ(A∗) 〉〉〉.

In contrast with the case where the multiplicity is taken in a field, we have no
a priori bound (given the dimension of (I, μ, T)) on the number of elements in the
set P and the basis of 〈〈〈Iμ(P) 〉〉〉 is not found in the set of vectors {Iμ(w) | w ∈ P}
but in the set of the linear combinations of them.

Example 3. Let A3 = 〈I3, μ3, T3〉 be the Z-automaton defined by:

I3 =
(
3 4

)
, μ3(a) =

(
−1 4
1 −3

)
, μ3(b) =

(
−4 3
3 −2

)
, T3 =

(
1
1

)
.

Here 〈〈〈Iμ(A∗) 〉〉〉 is Z2 and a finite set P such that 〈〈〈Iμ(P) 〉〉〉 = Z2 is for in-
stance {ε, a, ab}. Neither {ε, a} nor {ε, b} — that are the only prefix-closed sets
of cardinal 2 — corresponds to a basis.

The reduction algorithm yields then directly a chain of four conjugacies be-
tween two equivalent K-automata. Lemma 2 does not hold anymore and reducing
the length of the chain from four to three requires a new result from which The-
orem 3 then follows easily.

Proposition 5. Let K be an Euclidean domain. If A and B are equivalent K-
automata, with B right reduced, then there are a K-automaton C and matrices
X and Y such that: A X⇐= C Y=⇒ B .

4 Final Result

We first establish a number of properties for coverings that can be seen as “back-
ward Church-Rosser properties”, that is properties that allow to complete a
commutative diagram when the lower part of it is known.

Proposition 6. Let K be an equisubtractive semiring and let A, B and C be
three K-automata.

(a) If A and B are K-coverings of C (resp. co-K-coverings of C), there exists a
K-automaton D which is a K-covering (resp. a co-K-covering) of both A and B.

(b) If A is a K-covering of C and B is a co-K-covering of C, there exists a
K-automaton D which is both a co-K-covering of A and a K-covering of B.

Lemma 3. Let D be a circulation, C a co-amalgamation and R an amalga-
mation matrix such that DC and RD are defined. Then there exist circulation
matrices D′ and D′′ such that DC = CD′ and RD = D′′R .

The proof of Theorem 4 now boils down to the diagram of Figure 5. Given
equivalent H-automata A and B, Theorem 3 yields the bottom line of the di-
agram whereas Theorem 2 allows to build the diagrams 1, 2 and 3; Proposi-
tion 5 (a) gives 4 and 5, Lemma 3 6, 7 and 8; Proposition 5 (b) gives 9 and
Lemma 3 again completes the full diagram with 10 and 11.

408 M.-P. Béal, S. Lombardy, and J. Sakarovitch

X Y Z

R2 R3

R4

R4 R5

R5

R6

R6

R1C1 C2 C3

C4

C5

C5

C6

C6

D1 D2 D3

D4 D6 D5

D7 D8

1 2 3

4 5

6 7 8

9

10 11

A B
Fig. 5. Proof of Theorem 4

5 The Way for Further Developments

The gap that still remains between the above results and those formely known
raise a number of questions. Let A and B be two equivalent Z-automata. We
know that they are not always conjugate one to the other and it is decidable (cf.
[16]) in polynomial time (resp. in exponential time) if A is conjugate to B with
a transfer matrix in Z (resp. with a transfer matrix in N). Theorem 2 states the
existence of a chain of three conjugacies between A and B.

One then may ask whether three conjugacies are necessary (in general), and,
if yes, whether it is decidable when two conjugacies suffice.

If moreover A and B are (equivalent) N-automata, one may ask also whether
the chain of conjugacies could be always realized with transfer matrices in N
and, if not, whether it is decidable when this property holds.

By means of techniques different from the ones presented here, it can be
shown that in both cases the stronger property holds: the answer to the first
question is no and two conjugacies always suffice, the answer to the second
question is yes and two equivalent N-automata are joined by a chain of four
conjugacies with transfer matrices in N. This is the object of on-going work of
the authors and will be presented in a forthcoming publication.13

Acknowledgements. The authors are grateful to a careful referee whose re-
marks helped them to make the definitions more precise and the presentation
hopefully clearer and to Prof. W. Kuich who pointed to several references.

References

1. Arnold, A. Finite Transitions Systems. Prentice-Hall, 1994.
2. Béal, M.-P., and Perrin, D. On the generating sequences of regular languages

on k symbols. J. ACM 50 (2003), 955–980.

13 The above questions were quoted as open problems in the paper that was submitted
to ICALP and reviewed by the PC. But since then, we have made progress and are
able to answer them. They are thus not open problems anymore, and on the other
hand we could not include the answers as results since they have not been refereed.

On the Equivalence of Z-Automata 409

3. Berstel, J., and Reutenauer, Ch. Rational Series and their Languages.
Springer, 1988.

4. Bloom, S., and Esik, Z. Iteration Theories. Springer, 1993.
5. Cardon, A., and Crochemore, M. Détermination de la représentation standard

d’une série reconnaissable. RAIRO Inform. Théor. 14 (1980), 371–379.
6. Eilenberg, S. Automata, Languages, and Machines. Vol. A. Academic Press,

1974.
7. Fliess, M. Matrices de Hankel. J. Math. Pures Appl. (9) 53 (1974), 197–222.
8. Flouret, M., and Laugerotte, E. Noncommutative minimization algorithms.

Inform. Process. Lett. 64 (1997), 123–126.
9. Harju, T., and Karhumäki, J. The equivalence problem of multitape finite

automata. Theoret. Comput. Sci. 78 (1991), 347–355.
10. Kuich, W., and Salomaa, A. Semirings, Automata, Languages. Springer, 1986.
11. Lang, S. Algebra. Addison Wesley, 1965.
12. Lind, D., and Marcus, B. An Introduction to Symbolic Dynamics and Coding.

Cambridge University Press, 1995.
13. Lombardy, S. and Sakarovitch, J. Derivatives of rational expressions with

multiplicity. Theoret. Comput. Sci. 332 (2005), 141–177.
14. Sakarovitch, J., Eléments de théorie des automates, Vuibert, 2003. English

translation, Cambridge Universit Press, to appear.
15. Salomaa, A., and Soittola, M. Automata-theoretic Aspects of Formal Power

Series. Springer, 1978.
16. Schrijver, A. Theory of Linear and Integer Programming. Wiley, 1986.
17. Schützenberger, M. P. On the definition of a family of automata. Information

and Control 4 (1961), 245–270.

A Tight Linear Bound on the Neighborhood of
Inverse Cellular Automata

Eugen Czeizler1 and Jarkko Kari2,�

1 Department of Mathematics, FIN-20014 University of Turku,
Finland, and Turku Centre for Computer Science,

FIN-20520 Turku, Finland
eugenc@cs.utu.fi

2 Department of Mathematics, FIN-20014 University of Turku,
Finland, and Department of Computer Science,
University of Iowa, Iowa City, IA 52242, USA

jjkari@cs.uiowa.edu

Abstract. Reversible cellular automata (RCA) are models of massively
parallel computation that preserve information. They consist of an array
of identical finite state machines that change their states synchronously
according to a local update rule. By selecting the update rule properly
the system has been made information preserving, which means that any
computation process can be traced back step-by-step using an inverse au-
tomaton. We investigate the maximum range in the array that a cell may
need to see in order to determine its previous state. We provide a tight
upper bound on this inverse neighborhood size in the one-dimensional
case: we prove that in a RCA with n states the inverse neighborhood is
not wider than n − 1, when the neighborhood in the forward direction
consists of two consecutive cells. Examples are known where range n− 1
is needed, so the bound is tight. If the forward neighborhood consists of
m consecutive cells then the same technique provides the upper bound
nm−1 − 1 for the inverse direction.

1 Introduction

Cellular automata (CA) are discrete dynamical systems consisting of a grid of
identical finite state machines whose states are updated synchronously at dis-
crete time steps according to a local update rule. Cellular automata possess
several fundamental properties of the physical world: they are massively par-
allel, homogeneous and all interactions are local. It is therefore not surprising
that physical and biological systems have been successfully simulated using cel-
lular automata models. The physical nature of cellular automata may have even
greater importance when applied in the opposite direction, that is, when using
the physics to simulate cellular automata. Many cellular automata are computa-
tionally universal — including some extremely simple ones, as reported recently

� Research supported by the Academy of Finland grant 54102.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 410–420, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Tight Linear Bound on the Neighborhood of Inverse Cellular Automata 411

by S. Wolfram [12] — so the most powerful massively parallel computers in the
future may be implementations of cellular automata based on some physical
phenomena of microscopic scale. Energy efficiency of such an implementation
requires that the simulated universal CA obeys the rules of physics, including
reversibility and conservation laws. Non-reversibility always implies energy dis-
sipation, usually in the form of heat.

A cellular automaton is called reversible if there is another cellular automaton
— the inverse CA — that computes the inverse function. The inverse CA retraces
the computation steps back in time. There are simple reversible cellular automata
that are computationally universal [5]. Universality is even possible in the one-
dimensional space [7], that is, when the cells are organized along a line. Reversible
CA have been popular topics of study since the early years of CA research, and
many interesting facts have been discovered.

It is well known that injectivity and reversibility of CA are equivalent con-
cepts: if a CA function has an inverse (i.e. it is one-to-one) then this inverse is
always a CA function [2, 9]. This means that in order to backtrack the computa-
tion, each cell only needs to know the states of a finite number of its neighbors.
The question this article investigates is the extent of the neighborhood that
may be needed. In two- and higher dimensional cellular automata this inverse
neighborhood can be extremely large: there is namely no algorithm to deter-
mine if a given CA is reversible, which means that the extent of the inverse
neighborhood cannot be bounded by any computable function of the number
of states [4]. In the one-dimensional case the reversibility question is decidable,
and a trivial quadratic upper bound O(n2) exists [1], where n is the number
of states and the neighborhood in the forward direction has been fixed to two
consecutive cells.

We improve this bound to linear n− 1 where n is the number of states. This
bound is tight as examples of one-dimensional reversible CA are known whose
inverse neighborhoods reach this bound [3]. If the neighborhood in the forward
direction consists of m consecutive cells rather than two cells, then the same
argument provides an upper bound nm−1−1 for the inverse neighborhood. This
is not known to be tight: [3] only provides examples of cellular automata with
2n states whose inverse neighborhoods reach this size.

2 Definitions and Basic Properties

In this section we present precise definitions and some basic properties of re-
versible cellular automata, and Welch sets and indices. Our proofs are based on
elementary linear algebra, so we also recall some linear algebra concepts.

2.1 Cellular Automata

Formally, a one-dimensional cellular automaton, CA for short, is a 3-tuple system

A = (S,N, f),

412 E. Czeizler and J. Kari

where S = {1, 2, . . . , n} is a finite state set, N is a neighborhood vector

N = (x1, . . . , xm) ∈ Zm

of m distinct integers, and f is a mapping from Sm to S representing the local
update rule of the CA. The cells are laid on an infinite line and are indexed by
Z, the set of integers. The neighbors of a cell situated on position x ∈ Z are all
the cells on positions x + xi, i = 1, . . . ,m. The local update rule f determines
the future state of a cell according to the states of its neighbors.

A configuration c of a CA A is a mapping

c : Z → S

which specifies the states of all the cells. We are denoting by C the set of all
configurations. The global transition function

G : C → C

describes the evolution of the CA and is obtained by a simultaneous application
of the local update rule f on all cells:

G(c)(x) = f(c(x + x1), . . . , c(x + xm)),

for all x ∈ Z. It is common to identify a cellular automaton with its global
transition function G, and talk about cellular automaton function G or, when
there is no risk of confusion, simply cellular automaton G.

If the neighborhood vector is (−r, . . . , r) then the CA is called radius-r au-
tomaton. The special case r = 1 is the nearest neighbor neighborhood. In this
work we mainly consider CA whose neighborhood is even smaller and consists
of just two consecutive integers. If N = (0, 1) we say that we have a radius-1

2
CA. Figure 1 shows the trellis whose rows are consecutive configurations of a
radius-1

2 cellular automaton, and the rows are shifted to make the neighborhood
look symmetric. Note that any CA can be viewed as a radius- 1

2 CA over a larger
state set if we divide the configurations into sufficiently long blocks and use the
blocks as ”super cells”. The partitioning may shift in time, but the computation
is essentially the same.

Two CA are called equivalent if their global functions are identical. The
following facts are easy to see: If two cellular automata are equivalent then
there is a third equivalent CA whose neighborhood is the intersection of the
neighborhoods of the first two CA. Hence, each CA function G has a minimal
neighborhood, that is, a neighborhood that is contained in the neighborhoods of
all CA that specify G. We call it the neighborhood of G. The interval from the
smallest to the largest element of the minimal neighborhood is the neighborhood
range for G. It is the smallest contiguous segment that can be used as the
neighborhood to specify G.

A CA A with global function G is called reversible, for short RCA, if there
exists another CA, called the inverse automaton of A, whose global transition
function is G−1, the inverse of G. The minimal neighborhood of G−1 is called the

A Tight Linear Bound on the Neighborhood of Inverse Cellular Automata 413

time

Fig. 1. Dependencies in a radius- 1
2

cellular automaton

inverse neighborhood of A or G. Each cell can uniquely determine its previous
state by looking only at the states contained in the inverse neighborhood.

A CA A is called injective (surjective, bijective) if its global transition rule
G : C → C is an injective (surjective, bijective, respectively) function. It has been
known since the early 60’s that injective cellular automata are automatically also
surjective [6, 8], while the converse is not necessarily true. It is also known that
all bijective CA are reversible [2, 9]. We have

Property 1 ([2, 6, 8, 9]). In cellular automata, reversibility, bijectivity and in-
jectivity are equivalent. They imply surjectivity.

2.2 Welch Sets and Indices

From now on we consider radius-1
2 RCA only. We frequently need to apply the

CA on partial configuration where we only know the states on some contiguous
interval. Since the exact location of the interval on the line is irrelevant, we
specify such configurations as finite or infinite words. For the state set S we
denote by S∗ the set of all words over alphabet S, by Sk the set of words of
length k, by Sω the set of one-way infinite words that are infinite to the right,
and by ωS the set of words that are infinite to the left. CA A = (S, (0, 1), f)
specifies the functions G : S∗ −→ S∗, G : Sω −→ Sω and G : ωS −→ ωS (all
denoted by the same symbol G) defined by

– G(a1a2 . . . ak) = b1b2 . . . bk−1 where each bi = f(ai, ai+1),
– G(a1a2 . . .) = b1b2 . . . where each bi = f(ai, ai+1),
– G(. . . a2a1) = . . . b2b1 where each bi = f(ai+1, ai).

For each w ∈ Sω we set

L(w) = {a ∈ S | G(au) = w for some u ∈ Sω }

and call it the left Welch set of w. It contains all the states that were possible one
time step earlier at the leftmost cell that affects w, see Figure 2. Analogously,
for any w ∈ ωS we define the right Welch set as

R(w) = {a ∈ S | G(ua) = w for some u ∈ ωS }.

414 E. Czeizler and J. Kari

L(w)

w

Fig. 2. The left Welch set L(w) of the infinite word w consists of all possible states in
the indicated cell

These sets were introduced already in [2], and have since been reinvented inde-
pendently by many authors. The Welch sets have the following nice properties [2]:

Property 2. Let A = (S, (0, 1), f) be reversible and let n = |S| be the number
of states. Then for every w ∈ Sω and v ∈ ωS we have

|L(w)| · |R(v)| = n.

Consequently, the cardinalities |L(w)| and |R(v)| are independent of the choice
of w and v.

We denote by nL the size of left Welch sets and by nR the size of the right Welch
sets, and call them the left and the right Welch index. Then nL · nR = n.

The following result is another useful property of the Welch sets [2]:

Property 3. Let A = (S, (0, 1), f) be reversible. Then for every w ∈ Sω and
v ∈ ωS we have

|L(w) ∩R(v)| = 1,

i.e. the intersection of any left Welch set with any right Welch set is a singleton.

The following proposition relates the Welch sets to the minimal inverse neigh-
borhood of the CA:

Proposition 1. Let A = (S, (0, 1), f) be reversible. Then the inverse neighbor-
hood of G is included in the interval

{−r, . . . , l − 1}

if and only if

– L(uw) = L(uv) for all u ∈ Sl and w, v ∈ Sω, and
– R(wu) = R(vu) for all u ∈ Sr and w, v ∈ ωS.

Proof. First, notice that even though the given interval does not at first appear
symmetric, it in fact contains l positions to the right of the cell and r positions
to the left of the cell, if the cells are shifted to the right as in Figure 1.

(=⇒) Suppose that {−r, . . . , l − 1} contains the inverse neighborhood of G and
let u ∈ Sl and w, v ∈ Sω be arbitrary. Let us prove that L(uw) ⊆ L(uv). Then
by symmetry we have L(uw) = L(uv).

A Tight Linear Bound on the Neighborhood of Inverse Cellular Automata 415

α’
αβ a

w
vγ u

Fig. 3. Configurations γuw and γuv agree in all the positions up to l − 1

If a ∈ L(uw) then there exists some α ∈ Sω such that G(aα) = uw. Pick an
arbitrary β ∈ ωS and let γ = G(βa). Then G(βaα) = γuw, where letter a and
the first letter of u are in the position 0 of the cellular array. Consider then the
configuration γuv, where the first letter of u is still in position 0, see Figure 3.
It agrees with γuw in positions up to l − 1. By applying the inverse cellular
automata to γuv we must therefore get state a in position 0, which means that
a ∈ L(uv).

Analogously we get the claim concerning the right Welch sets.

(⇐=) Suppose l and r are such that for all v ∈ Sl and α1, α2 ∈ Sω we have
L(vα1) = L(vα2), and that for all u ∈ Sr and β1, β2 ∈ ωS we have R(β1u) =
R(β2u). Then the inverse function G−1 is computed by the cellular automaton
that uses the neighborhood (−r, . . . , l − 1) and has the local update rule

g(uv) = R(βu) ∩ L(vα)

for u ∈ Sr, v ∈ Sl and all α ∈ Sω and β ∈ ωS. The above intersection always
contains a unique element, due to Property 3.

2.3 Vector Interpretation of Sets

In our proofs we take advantage of dimension arguments on vector spaces. Any
subset X of the state set S = {1, 2, . . . , n} is interpreted as the 0-1 vector #X in
Rn whose i’th coordinate is 1 if i ∈ X and 0 if i �∈ X. The single element sets
{a} then correspond to the unit coordinate vectors of Rn and they form a basis
of the vector space Rn. Notice that for any X,Y ⊆ S the inner product #X · #Y is
the cardinality of their intersection X ∩ Y . The vectors #L and #R corresponding
to left and right Welch sets L and R will be called left and right Welch vectors,
respectively.

Let us denote by Θ the null space {(0, 0, . . . 0)} and by I the one-dimensional
space generated by vector (1, 1, . . . , 1). For any U ⊆ Rn the subspace of Rn

generated by U is denoted as 〈U〉.
Let A = (S, (0, 1), f) be reversible. For any c ∈ S we define a linear function

hc : Rn −→ Rn as follows. For every b ∈ S we have hc(#b) = #H where#b is the basis
vector corresponding to b and H = {a | f(a, b) = c}. This uniquely specifies the
linear function hc. Vector #X, corresponding to a set X ⊆ S of states, is mapped
according to hc(#X) =

∑
b∈X hc(#b). Note that hc(#X) is not always a 0-1 vector, so

it does not necessarily represent a set. However, the next proposition states that
if L is a left Welch set then hc(#L) is a 0-1 vector representing a left Welch set:

416 E. Czeizler and J. Kari

Proposition 2. Let A = (S, (0, 1), f) be reversible, and let c ∈ S be arbitrary.
For every w ∈ Sω we have hc(#L(w)) = #L(cw).

Proof. It is enough to show that (i) for every a ∈ L(cw) there is a unique
b ∈ L(w) such that f(a, b) = c, and (ii) for any a �∈ L(cw) there is no b ∈ L(w)
such that f(a, b) = c. Parts (i) and (ii) imply then that the vector hc(#L(w)) has
1 and 0 in coordinates i for all i ∈ L(cw) and i �∈ L(cw), respectively.

Claim (ii) is trivial, as if there would exist b ∈ L(w) such that f(a, b) = c
then G(abα) = cw where α ∈ Sω is such that G(bα) = w. This contradicts the
assumption a �∈ L(cw).

Consider then claim (i). Since a ∈ L(cw) there is some bα ∈ Sω such that
G(abα) = cw. This b satisfies the condition in (i). If b′ ∈ L(w) is another state
with the property f(a, b′) = c then G(ab′β) = cw for some β ∈ Sω. But then
G(γabα) = G(γab′β) for any γ ∈ ωS which, by injectivity, implies that b = b′.

Analogously, let us define linear functions gc(#a) = #H where H = {b | f(a, b) =
c}. They naturally have the similar property concerning the right Welch sets:

Proposition 3. Let A = (S, (0, 1), f) be reversible, and let c ∈ S be arbitrary.
For every w ∈ ωS we have gc(#R(w)) = #R(wc).

3 The Inverse Neighborhood Range

In this section we prove that the size of the inverse neighborhood range of a
radius-1

2 RCA A = (S, (0, 1), f) is less than or equal to n − 1, where n is the
number of states. We do this by creating two decreasing chains of linear subspaces
of Rn based on the Welch sets. The first elements of the chains are the subspaces

L0 = 〈#L(w)− #L(v) | w, v ∈ Sω〉, and
R0 = 〈#R(w)− #R(v) | w, v ∈ ωS〉,

that is, the spaces generated by the differences between any two left Welch
vectors and any two right Welch vectors, respectively. The goal is to prove the
following theorem:

Theorem 1. Let A = (S, (0, 1), f) be reversible, and let L0 and R0 be the sub-
spaces defined above. Then the inverse neighborhood range of G contains at most
dimL0 + dimR0 elements. More precisely, the inverse neighborhood of G is in-
cluded in the interval

{−dimR0, . . . ,dimL0 − 1}.

Proof. For every k = 0, 1, 2, . . . define the following subspaces of Rn:

Lk = 〈#L(uw)− #L(uv) | u ∈ Sk, w, v ∈ Sω〉, and
Rk = 〈#R(wu)− #R(vu) | u ∈ Sk, w, v ∈ ωS〉.

We make the following observations:

A Tight Linear Bound on the Neighborhood of Inverse Cellular Automata 417

– There is l such that Ll = Θ, the null space,
– Lk+1 ⊆ Lk for every k = 0, 1, 2, . . ., and
– if Lk+1 = Lk then Lj = Lk for every j ≥ k.

To prove the first fact, choose l and r such that the inverse neighborhood of G
is included in the interval {−r, . . . , l− 1}. According to Proposition 1, L(uw) =
L(uv) for every u ∈ Sl and w, v ∈ Sω. But then all generators of Ll are zero
vectors, hence Ll = Θ.

The second fact is trivial since all the generators of Lk+1 are among the
generators of Lk.

For the third fact, notice that #L(cuw) − #L(cuv) = hc(#L(uw) − #L(uv)). This
means that, for every k = 0, 1, 2, . . ., the generators of Lk+1 are obtained from
the generators of Lk by applying the homomorphisms hc with all c ∈ S. Conse-
quently,

Lk+1 = 〈hc(#X) | c ∈ S, #X is a generator of Lk 〉
= 〈hc(#X) | c ∈ S, #X ∈ Lk〉.

In other words, Lk+1 is determined by Lk. It follows that if Lk+1 = Lk then
Lk+2 = Lk+1, and therefore Lj = Lk for all j ≥ k.

Our three facts imply that

L0 � L1 � L2 � . . . � Ll = Θ

for some l. Since the dimension of the subspaces decreases at every step, we must
have l ≤ dimL0.

The analogous reasoning can be done on the right Welch sets. We conclude
that there are numbers l ≤ dimL0 and r ≤ dimR0 such that Ll = Rr = Θ.
Then l has the property that L(uw) = L(uv) for every u ∈ Sl and w, v ∈ Sω,
and r has the property that L(wu) = L(vu) for every u ∈ Sr and w, v ∈
ωS. According to Proposition 1, the inverse neighborhood of G is included
in the interval {−r, . . . , l − 1} and hence also in the interval {−dimR0, . . . ,
dimL0 − 1}.

Upper bounds on the dimensions of the spaces L0 and R0 provide nice limits
on the inverse neighborhood:

Corollary 1. Let A = (S, (0, 1), f) be reversible. Then dimL0 +dimR0 ≤ n−1
where n is the number of states. Hence the inverse neighborhood range of G has
at most size n− 1

Proof. This follows from the facts that vector spaces L0 and R0 are orthogonal
to each other and also to the one-dimensional space I generated by the vector
(1, 1, . . . , 1). Let #L1− #L2 and #R1− #R2 be two arbitrary generators of L0 and R0,
respectively. Their inner product is

(#L1− #L2) · (#R1− #R2) = #L1 · #R1− #L1 · #R2− #L2 · #R1 + #L2 · #R2 = 1− 1− 1 + 1 = 0,

418 E. Czeizler and J. Kari

where we have used Property 3 of the Welch sets. So spaces L0 and R0 are
orthogonal to each other. With (1, 1, . . . , 1) we get the inner product

(#L1 − #L2) · (1, 1, . . . , 1) = nL − nL = 0,

where nL is the left Welch index. Here we used Property 2 of the Welch sets.
Analogously R0 is seen orthogonal to I.

Now we can reason as follows: Since the three spaces are orthogonal, we have

dimL0 + dimR0 + dim I = dim(L0 ⊕R0 ⊕ I) ≤ dim Rn = n,

so
dimL0 + dimR0 ≤ n− 1.

We can also use our theorem to bound the inverse neighborhood from either side
separately:

Corollary 2. Let A = (S, (0, 1), f) be reversible, and let nL and nR be its left
and right Welch indices, respectively. Then dimL0 ≤ n−nL and dimR0 ≤ n−nR

where n is the number of states. Hence the inverse neighborhood of G is contained
in the interval

{nR − n, . . . , n− nL − 1}.

Proof. Consider the left Welch vectors #L(u), u ∈ Sω. Each is a 0-1 vector with
nL ones. Every state belongs to some left Welch set, so each position has one
in some of the vectors. Out of all this vectors, we can extract a set of linearly
independent ones as follows. First, extract an arbitrarily vector. Then, for any
state a ∈ S such that the corresponding position is zero in all the vectors already
selected, extract a left Welch vector having one in position a, and add it to the
set of linearly independent vectors. Repeat the process until each position is
covered by at least one selected vector. It is clear that the extracted vectors are
linearly independent, and since each vector covers nL positions there are at least
n

nL
vectors selected. Since n

nL
= nR, it follows easily that there are at least nR

linearly independent left Welch vectors.
Next we use the following well known property: if #v1, #v2, . . . , #vk are k lin-

early independent vectors, then #v2 − #v1, #v3 − #v1, . . . , #vk − #v1 are k − 1 linearly
independent vectors. We apply this to the nR linearly independent left Welch
vectors and obtain the result that the generators of L0 contain at least nR − 1
linearly independent vectors, so dimL0 ≥ nR − 1. On the other hand we know
by Corollary 1 that dimL0 + dimR0 ≤ n− 1, so

dimR0 ≤ (n− 1)− dimL0 ≤ (n− 1)− (nR − 1) = n− nR.

Analogously we can prove that dimL0 ≤ n− nL.

A Tight Linear Bound on the Neighborhood of Inverse Cellular Automata 419

The previous corollaries were proved in [3] in the special case that one of
the Welch indices is 1. This constraint simplifies the proofs very much. The
techniques used in [3] were quite different. Examples were also provided in [3]
of reversible CA with n states and Welch index 1 whose inverse neighborhood
reached the size n− 1. Hence the bound of Corollary 1 is tight. We do not know
if there are such examples for other values of the Welch indices, and also we do
not know if the bounds in Corollary 2 are tight.

4 Larger Neighborhoods

So far we have been concerned with radius-1
2 cellular automata. With larger

forward neighborhoods larger inverse neighborhoods are possible. The notions
of the Welch sets and indices can be generalized to such settings. Let m be the
size of the neighborhood range in the forward direction, that is, m consecutive
positions can be used as the forward neighborhood. Then the elements of the
Welch sets are words of length m− 1 over alphabet S, and the Welch indices nL

and nR satisfy the relation nL ·nR = nm−1. By a straightforward generalization
of the proofs in the previous section we obtain the following results:

Theorem 2. Let A = (S, (0, . . . ,m − 1), f) be a reversible CA with n states
and forward neighborhood range m. Then the inverse range has size at most
nm−1 − 1. Moreover, the size of the left inverse neighborhood is less than or
equal to nm−1 − nR while the size of the right inverse neighborhood is less than
or equal to nm−1 − nL, where nL and nR are the left and right Welch indices.

The bound in Theorem 2 is not known to be tight. The best known examples
are automata with 2n states whose inverse neighborhood have range nm−1 [3].

5 Final Remarks

We have shown that the inverse neighborhood of a one-dimensional reversible
cellular automaton of size n is at most n−1 when the neighborhood in the forward
direction consists of only two consecutive cells. We have also generalized this
result for the case when the forward neighborhood is wider, i.e., if it contains
m consecutive cells, then the size of the inverse neighborhood is bounded by
nm−1 − 1. The proof uses several properties of the Welch sets, as well as some
algebraic results concerning dimension of vector spaces.

The present paper gives rise to several open problems. E.g., we do not know if
the generalized bound nm−1−1 for the size of the inverse neighborhood is tight.
This is indeed the case if m = 2: see [3] for an example of a reversible cellular
automaton with left and right Welch indexes equal to 1 and n respectively, and
with inverse neighborhood size equal to n − 1. Also, for any nL, nR ∈ N, it
remains open to find examples of reversible cellular automata with left and right
Welch indexes equal to nL and nR respectively, such that the size of the inverse
neighborhood is maximal, i.e., equal to n− 1 = nL · nR − 1.

420 E. Czeizler and J. Kari

There are quadratic time algorithms in the literature testing for surjectivity
and injectivity of a given cellular automaton, see [1] and [10]. Although it is
improbable that a linear algorithm exists, some improvements may be possible.
For example, Lemma 3 from [1] can now be improved from quadratic to linear,
although the time complexity of the injectivity algorithm, based on that result,
does not change.

References

1. S. Amoroso and Y. Patt, Decision Procedures for Surjectivity and Injectivity of
Parallel Maps for Tessellation Structures, Journal of Computer and System Sci-
ences 6 (1972) 448–464.

2. G. Hedlund, Endomorphisms and automorphisms of shift dynamical systems,
Mathematical Systems Theory 3 (1969) 320–375.

3. J. Kari, On the Inverse Neighborhood of Reversible Cellular Automata, in: Linden-
mayer Systems, Impact in Theoretical Computer Science, Computer Graphics and
Developmental Biology, G. Rosenberg, A. Salomaa, eds., 477–495, Springer-Verlag,
Berlin-Heidenberg, 1989.

4. J. Kari, Reversibility and surjectivity problems of cellular automata, Journal of
Computer and System Sciences 48 (1994) 149–182.

5. N. Margolus, Physics-like models of computation, Physica D 10 (1984) 81–95.
6. E.F. Moore, Machine Models of Self-reproduction, Proceedings of the Symposium

in Applied Mathematics 14 (1962) 17–33.
7. K. Morita and M. Harao, Computation Universality of one-dimensional reversible

(injective) cellular automata, IEICE Transactions E72 (1989) 758–762.
8. J. Myhill, The Converse to Moore’s Garden-of-Eden Theorem, Proceedings of the

American Mathematical Society 14 (1963) 685–686.
9. D. Richardson, Tessellations with Local Transformations, Journal of Computer and

System Sciences 6 (1972) 373–388.
10. K. Sutner, De Bruijn graphs and linear cellular automata, Complex Systems 5

(1991) 19–31.
11. T. Toffoli and N. Margolus, Invertible cellular automata: a review, Physica D 45

(1990) 229–253.
12. S. Wolfram, A New Kind of Science, Wolfram Media, 2002.

Groupoids That Recognize Only
Regular Languages

(Extended Abstract)

Martin Beaudry1, François Lemieux2, and Denis Thérien3

1 Département de mathématiques et d’informatique,
Université de Sherbrooke, Sherbrooke (Qc) Canada, J1K 2R1

beaudry@dmi.usherb.ca
2 Département d’informatique et de mathématique,

Université du Québec à Chicoutimi, Chicoutimi (Qc) Canada, G7H 2B1
flemieux@uqac.ca

3 School of Computer Science, McGill University,
3480 rue University, Montréal (Qc) Canada, H3A 2A7

denis@cs.mcgill.ca

1 Introduction

Finite semigroups, i.e. finites sets equipped with a binary associative operation,
have played a role in theoretical computer science for fifty years. They were first
observed to be closely related to finite automata, hence, by the famous theorem
of Kleene, to regular languages. It was later understood that this association is
very deep and the theory of pseudo-varieties of Schützenberger and Eilenberg
[5] became the accepted framework in which to discuss computations realized by
finite-state machines. It is today fair to say that semigroups and automata are
so tightly intertwined that it makes little sense to study one without the other.

In recent years, the usage of semigroups in the theory of computation has
increased substantially; for example, it has proved useful in the study of shallow
boolean circuits [1]. Word problems in finite semigroups provide instances of
complete problems for the well-known circuit class NC1, i.e. circuits of logarith-
mic depth constructed with binary gates; moreover, several interesting subclasses
of NC1 can also be characterized by word problems, by restricting appropriately
the semigroups under consideration. Recently [12], new separation results have
been proved within the realm of constant-depth circuits, largely based on an
algebraic point of view. Other areas of theory of computation where semigroups
have proved to be interesting include communication complexity [16] and com-
putational learning theory [6].

When the axiom of associativity is dropped, we obtain algebraic structures
known as groupoids. These also play a role in formal languages and there is an
analog to Kleene’s theorem relating groupoids to push-down automata and to
context-free languages [10]. On the computational complexity side, these struc-
tures are now known to be of interest as well. Non-associativity can be seen as
an algebraic form of non-determinism that has been used, for example, as an
important ingredient in the separation of the monotone NC hierarchy [9]. On

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 421–433, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

422 M. Beaudry, F. Lemieux, and D. Thérien

the other hand, word problems over groupoids provide instances of complete
problems for the circuit class SAC1, i.e. circuits of logarithmic depth and poly-
nomial size constructed with binary AND gates and unbounded OR gates, and
also for interesting subclasses like L and NL.

It is clear that groupoids have been much less studied than semigroups and
moreover much of what has been done is of little help to understand computa-
tions. It seems important to develop a deeper knowledge of these algebras, in
a form that is useful in theory of computation. The apparent absence of struc-
ture in the non-associative world should not be seen as an absolute barrier to
comprehension. Meaningful results can be obtained; for example, the fact that
loops (i.e. groupoids with an identity that obey the cancellation law) recognize
exactly the regular open languages [3] provide a surprising link to the topology
of the free monoid.

In this paper, we directly address what appears to us to be the most basic ques-
tion. What differentiates a “weak” groupoid from a “powerful” one in a computing
power perspective? For example, when can it be guaranteed that a groupoid recog-
nizes only regular languages? We provide an algebraic sufficient condition on the
groupoid for this property to hold. We also show that any regular language can be
recognized by a groupoid that satisfies this condition. Finally, we concentrate on
loops, which form a proper subclass of this family and have been studied at greater
length. We show that the syntactic monoid of any regular open languages has in-
teresting connection with the loops that recognize it. We introduce the notion of
the derived monoid of a loop and establish the computational significance of this
concept. All these results provide further evidence that non-associative structures
can be analyzed in a way that sheds light on computational issues.

2 Preliminaries

A groupoid is a set closed under a binary operation. A semigroup S is a groupoid
that satisfies the associative law: (xy)z = x(yz) for all x, y, z ∈ S. A monoid is
a semigroup in which there exists an identity element, i.e. an element e ∈ S
such that ex = x = xe for all x ∈ S. A group is a semigroup G that satisfies
the cancellation laws, i.e. for all a, b ∈ G the equations ax = b and ya = b
have exactly one solution. Observe that in the finite case, satisfaction of the
cancellation and associative laws guarantees the presence of an identity. The
free semigroup over an alphabet A is the set of all non empty words over A
where the operation is the concatenation. It is denoted A+. The free monoid
A∗ is obtained by adjoining an identity (the empty word) to A+. We say that a
semigroup S divides a semigroup T (written S ≺ T) if S is a morphic image of a
subsemigroup of T . All groupoids considered in this paper are finite, except for
the free semigroup and the free monoid.

An important key to understand the structure of semigroups has been devel-
oped by Green in 1951 and consists of four equivalence relations denoted R,L,H
and J . Let S be a semigroup and let S1 be the smallest monoid that contains
S. The Green relations are defined as follows:

Groupoids That Recognize Only Regular Languages 423

1. aRb iff aS1 = bS1

2. aLb iff S1a = S1b
3. aHb iff aRb and aLb
4. aJ b iff S1aS1 = S1bS1

The relation J is the coarsest among the four. Each J -class (i.e. each equiv-
alent class of the relation J) can be visualized as a two-dimensional array where
each row is an R-class, each column is an L-class and each cell is an H-class.

An element x ∈ S is an idempotent if xx = x. Idempotents play a fundamen-
tal role in semigroup theory. A J -class that contains an idempotent is said to
be regular. Any regular J -class has the property that each row and each column
contains at least one idempotent. An H-class that contains an idempotent forms
a subsemigroup which is a maximal group in S. A necessary and sufficient con-
dition for a J -class to be a subsemigroup is that each of its H-classes contains
an idempotent. We define DS to be the class of all semigroups for which each
regular J -class is a subsemigroup.

Some other classes of semigroups have to be mentioned here. A semigroup
that contains no nontrivial group is said to be aperiodic. A semigroup is aperi-
odic if and only if each of its regular H-classes is trivial (i.e contains only one
element). The class of aperiodic semigroups contained in DS is denoted DA. A
semigroup is called orthodox if the set of its idempotents forms a subsemigroup.
The class DO consists of those semigroups in DS for which each regular J -class
is orthodox. A semigroup is J -trivial if each of its J -classes is trivial. We define
similarly R-trivial semigroups. We denote with J and R the classes of J -trivial
and R-trivial semigroups, respectively. Finally, the class J1 contains all commu-
tative semigroups in which all elements are idempotent. From these definitions
we have the inclusions:

J1 ⊂ J ⊂ R ⊂ DA ⊂ DO ⊂ DS

Every semigroup S can be seen as a language recognizer in the following way.
Given a finite alphabet A and a language L ⊆ A+ we say that L is recognized
by S if there exists a subset F ⊆ S and a morphism h : A+ → S such that
L = {w ∈ A+ | h(w) ∈ F}. A variant of Kleene’s theorem asserts that a subset
of A+ is regular iff it can be recognized by a finite semigroup. The theorem also
holds in the case of monoids recognizing subsets of A∗.

One fascinating aspect of this theory is the strong correspondence that exists
between subclasses of regular languages satisfying certain combinatorial proper-
ties and subclasses of semigroups satisfying some algebraic properties. A classical
example is the result of Schützenberger [13] stating that a language is recognized
by a finite aperiodic monoid if and only if it is star-free.

The following more complex example is of particular interest for our work.
Let C be a class of semigroups. The polynomial closure of C (denoted Pol(C))
is the set of languages which are finite unions of languages of the form K =
L0a1L1 · · · anLn, where each ai is a letter and each Li is a language recognized
by some semigroup in C. We say that the product defining K is unambiguous if
every word w in K can have at most one factorization w = w0a1w1 · · · anwn with

424 M. Beaudry, F. Lemieux, and D. Thérien

wi in Li. The subset of Pol(C) obtained by restricting to unambiguous products
is denoted UPol(C). Let J1∨G be the class of all semigroups that divides a direct
product of a semigroup in J1 and a group. Then, a theorem of Schützenberger
[14] states that a language is recognized by a semigroup in DO if and only if it
is in UPol(J1 ∨G).

Associativity is not essential in the previous definition of recognition and it
has been known for a long time [10, 7] that every groupoid can be seen as a
pushdown automaton. Let us formalize this idea. Let G be a groupoid, P(G) its
power set, and let G+ denotes the free semigroup generated by the set of elements
in G. Observe that evaluating a word in G+ to an element in G depends on the
evaluation tree since G is in general non-associative. We define the function
eval : G+ → P(G) by requesting that for each w ∈ G+, eval(w) is equal to the
set of elements that can be obtained by evaluating w with all possible evaluation
trees. Given an alphabet A and a language L ⊆ A+, we say that a groupoid G
recognizes L if there exist a subset F ⊆ G and a length-preserving morphism
h : A+ → G+ such that L = {w ∈ A+ | eval(h(w)) ∩ F �= ∅}. The analog of
Kleene’s theorem now states that a language is recognized by a finite groupoid
if and only if it is context-free.

The structure of the groupoid being used as a recognizeer must necessarily
determine the combinatorial properties of the languages being recognized. One
would hope that this relationship can be made explicit for interesting cases. One
positive example of this happening has to do with quasigroups. A quasigroup is a
groupoid that satisfies the cancellation law. A quasigroup with identity is called
a loop. In [3], it is proved that a language is recognized by a finite quasigroup
(or loop) if and only if it is in Pol(G), where G is the class of all finite groups.

Loops and quasigroups are “weak” in the sense that they can only recognize
regular languages. It is natural to ask what are the groupoids with this property.
Our first result gives a sufficient condition for a groupoid to be “weak”.

Let G be a groupoid. With any element a ∈ G we define the mapping R(a) :
G→ G called the right multiplication by a which is defined by xR(a) = xa and
the mapping L : G → G called the left multiplication by a which is defined by
xL(a) = ax. The multiplication semigroup1 of G (denoted M(G)) is the closure
under composition of all left and right multiplications. When G is a quasigroup
then M(G) is a group called the multiplication group of G.

Theorem 1. Let G be a groupoid such that M(G) ∈ DO. Then, G recognizes
only regular languages.

Two particular cases of this theorem were already known : when M(G) be-
longs to DA (see [2]) and when G is a quasigroup (see [4]). We conjecture that
this result is optimal in the sense that for any pseudovariety V not contained
in DO, there exists a groupoid whose multiplication semigroup is in V that can
recognize a non-regular language.

1 This terminology is standard in loop theory. A similar notion exists in universal
algebra where this is called translation semigroup.

Groupoids That Recognize Only Regular Languages 425

Now, what regular languages can be recognized by groupoids with multipli-
cation semigroup in DO? The answer is given by our second result.

Theorem 2. Any regular language is recognized by a groupoid whose multipli-
cation semigroup is in R (which is a proper subclass of DO).

In this context where “simple” groupoids are used to recognize “complicated”
regular languages, it is not so clear what is the relation between the combinatorial
structure of the language and the algebraic structure of the groupoid. As an
example, consider the language PARITY over the alphabet {0, 1} that contains
all words with an even number of 1. Any semigroup that recognizes this language
must contain the cyclic group of order two. However, PARITY can be recognized
by a groupoid of four elements (00 = 0, 01 = 10 = 1, 11 = 22 = 2, all other
products gives 3) and neither this groupoid nor its multiplication semigroup
contains any group. Our third result states that this situation does not arise
with loops.

Recall that the syntactic congruence of a language L ⊆ A∗ is defined by
x ∼L y whenever uxv ∈ L⇔ uyv ∈ L for all u, v ∈ A∗. The syntactic monoid of
L is the quotient monoid M(L) = A∗/ ∼L. It can be shown that M(L) divides
any monoid that recognizes L.

Theorem 3. Let L ∈ A∗ be recognized by a loop B and let M(L) be its syntactic
monoid. Then, any group that divides M(L) also divides B.

The proof of the previous theorem relies upon an algebraic tool which is
introduced in this paper. For any groupoid G we define a congruence over G+

by defining x ∼ y if and only if eval(sxt) = eval(syt), for all s, t ∈ G∗. The
derived monoid of G is the quotient monoid D(G) = G∗/ ∼. It is easy to see
that D(G) is finite if and only if G recognizes only regular languages.

In the case of a loop B, we show that any language recognized by B is also
recognized by D(B). Moreover, a group divides B if and only if it divides D(B).
We show that there exists a relational morphism τ : D(B) →M(B) such that
D1(B) = τ−1(1) is a J -trivial submonoid of D(B). Finally, denoting the wreath
product by ◦, we prove the following noticeable identity:

Theorem 4. D(B) ≺ D1(B) ◦M(B)

Theorems 1 to 4 are proved in Sections 3 to 6, respectively. Conclusion and
open problems are given in Section 7.

3 Recognizing Only Regular Languages

Theorem 1 is proved in this section. Let G be a groupoid, F ⊆ G and L = {w ∈
G+ | eval(w) ∩ F �= ∅}. Define KF = {W ∈M(G)+ | 1W ∈ F}.

Proposition 1. If KF ∈ Pol(J1 ∨G) then L is regular.

426 M. Beaudry, F. Lemieux, and D. Thérien

Proof. Let w ∈ G+ be any word and consider some fixed evaluation tree of w.
Each node n has a value v(n) ∈ G that is the value of the subtree rooted at n.
We associate to any path from a node n to a leaf a a word p(n, a) ∈ M(G)+

as follows. If n is a leaf then p(a, a) = R(v(a)). Otherwise, let nl and nr be,
respectively, the left and right children of n. Then, p(n, a)) = p(nl, a)R(v(nr))
if nl lies on the path, otherwise p(n, a) = p(nr, a)L(v(nl)) A simple inductive
argument shows that v(n) = 1p(n, a). In particular, for any leaf a we have
v(r) = 1p(r, a), where r is the root of the evaluation tree.

Let an angle along a path be a pair of consecutive edges with exactly one
right edge and one left edge. In [2], it is shown that L is recognized by a PDA
whose stack never needs to be higher than the maximal number of angles along
any path in the tree. We will show that any evaluation tree is equivalent to a
tree whose maximal number of angles is bounded by a constant. This will prove
that L is regular.

Each angle along a path from a leaf a to the root r corresponds in p(r, a) to
two consecutive elements of the form R(x)L(y) or L(x)R(y). Let p(r, a) contains
a factor of the form L(a)R(b1) · · ·R(bi)L(c1) · · ·L(cj)R(d) and replace this factor
with L(a)L(c1) · · ·L(cj)R(b1) · · ·R(bi)R(d). This keeps intact the ordering of the
leaves and corresponds to a transformation of the evaluation tree that reduces
the number of angles along the path from a to r without increasing that number
on the other paths. However, nothing guarantees that the two trees evaluate to
the same element.

In order to solve this problem, assume w ∈ L. Thus, 1p(r, a) ∈ F and p(r, a) =
x0a1x1 · · · anxn where ai ∈ M(G) and xi ∈ Li which is recognized by some
semigroup M ∈ J1 ∨G. Without loss of generality we can suppose that M is
the same for all 0 ≤ i ≤ n and that |M | = t. If p(r, a) contains more than
3nt angles then there must exists 0 ≤ c ≤ n such that xc contains more than
3t angles. Let xc = u0B1u1B2u2 · · ·Btut be a factorization such that each Bm

has the form L(a)R(b1) · · ·R(bi)L(c1) · · ·L(cj)R(d). For each such Bm, define
B′

m = L(a)L(c1) · · ·L(cj)R(b1) · · ·R(bi)R(d). For each 0 ≤ i ≤ t define yi =
u0B

′
1u1 · · ·B′

iuiBi+1ui+1 · · ·Btut.
Let ϕ : M(G) → M be the syntactic morphism of Lc. By the pigeon

hole principle, there is 0 ≤ i < j ≤ t such that ϕ(yi) = ϕ(yj). This implies
that ϕ(Bi+1ui+1 · · ·Bjuj) = ϕ(B′

i+1ui+1 · · ·B′
juj) since M ∈ J1 ∨ G. Hence,

ϕ(xc) = ϕ(u0B1u1 · · ·BiuiB
′
i+1ui+1 · · ·B′

jujBj+1uj+1 · · ·Btut). This shows that
if an evaluation tree contains a path with more than 3tn angles then we can find
an equivalent tree that contains less angles along that path and no more angles
along the other paths. Hence, if w ∈ L, there exists an evaluation tree with no
more than 3tn angles along any path. We conclude that L is regular.

Theorem 1 is a simple corollary of the above proposition since, as it was
mentioned in the preliminaries, monoids in DO recognize only languages in
UPol(J1 ∨G) which is a subclass of Pol(J1 ∨G).

Groupoids That Recognize Only Regular Languages 427

4 Recognizing all Regular Languages

In this section we prove that any regular language is recognized by a finite
groupoid whose multiplication semigroup is in R. Let M be a finite monoid and
{a1, a2, . . . , ak} an enumeration of the elements of M . Let S0 be the empty set
and for 1 ≤ i ≤ k let Si = {a1, . . . , ai}. We write v < w to mean that v is a
strict non empty prefix of w. We define the following language:

D(ai, aj , t) = {w ∈M+ | aiw = aj and v < w ⇒ aiv �∈ St}

We only have to show that Theorem 2 applies for languages of the form
D(ai, aj , 0) = {w ∈M+ | aiw = aj} which can be defined using the well known
recurrence:

D(ai, aj , t) = D(ai, aj , t + 1) ∪D(ai, at, t + 1)D(at, at, t + 1)∗D(at, aj , t + 1)

if 0 ≤ t < k and
D(ai, aj , k) = {b ∈M | aib = aj}

We define a groupoid G on the set {0} ∪ {[ai, aj , t] | 1 ≤ i, j ≤ k, 0 ≤ t ≤ k}
with [ai, aj , s][aj , al, t] = [ai, al, j − 1] if s ≥ j − 1 and t ≥ j (these inequalities
are crucial for the proof). In all other cases the product is defined to be 0. The
absorbing element of G is R(0) = L(0). Observe also that a necessary condition to
evaluate w = [ai1 , aj1 , t1] · · · [ain

, ajn
, tn] to a non zero element is that ajs

= ais+1

for all 1 ≤ s < n. Moreover, if ti = k for all i then there exists a way to evaluate
w to [ai1 , ajn

,m] where m = min {i2, . . . , in}−1. It is a simple exercise to prove:

Lemma 1. The only idempotents in M(G) are R(0) and the elements of the
form R([aj , aj , k]), where 0 ≤ j ≤ k. Moreover, if W ∈M(G)+ can be evaluated
to a nonzero element, then it contains at most 2k occurrences of non idempotent
elements. Furthermore, two occurences of the same idempotent must be adjacent.

Let P(G) be the power groupoid of G and let H ⊆ P(G) be the subgroupoid
generated by the sets Ub = {[ai, aib, k] | 1 ≤ i ≤ k} for all b ∈M . It is easy to see
that, for any 1 ≤ i, j ≤ k, D(ai, aj , 0) is recognized by H using the morphism
which maps each b ∈ M to the element Ub of H. We want to show that the
multiplication semigroup of H belongs to R.

There is an embedding from M(H) to P(M(G)). As in the next lemma, it
will sometime be useful to see M(H) as a subsemigroup of P(M(G)). Due to
lack of space, the proof of the following lemma is omitted.

Lemma 2. X ∈ M(H) is an idempotent if and only if for all A ∈ X there
exists an idempotent E ∈ X such that A = AE.

Lemma 3. M(H) is aperiodic.

Proof. Let S be an element in M(H). We must show that there exists m > 0
such that Sm = Sm+1. By Lemma 1, for large m there exists a position i such

428 M. Beaudry, F. Lemieux, and D. Thérien

that all elements X1X2 · · ·Xm+1 ∈ Sm+1 which evaluate to a nonzero element
are such that Xi is an idempotent that occurs at least twice in X. Thus, we
have X = X1 · · ·Xi−1Xi+1 · · ·Xm+1 ∈ Sm. This show that Sm+1 ⊆ Sm. For the
other direction, let Sm be an idempotent. By Lemma 2, for all A ∈ Sm there
exists an idempotent E ∈ Sm such that A = AE. Now, if E = R([a, a, k]) ∈ Sm

then E ∈ S as well. Hence, A = AE ∈ Sm+1 and Sm ⊆ Sm+1.

Lemma 4. Let X,Y ∈ M(H) be two idempotents. Then, X and Y are J -
equivalent if and only if they contain the same idempotents in M(G). Moreover,
if X and Y are J -equivalent idempotents then they are L-equivalent.

Proof. Let X,Y ∈M(H) be two J -equivalent idempotents. Let U, V ∈M(H1)
be such that UXV = Y . Then, for each R([a, a, k]) ∈ Y , there exist u ∈ U ,
v ∈ V and x ∈ X such that uxv = R([a, a, k]) and this is only possible if
x = R([a, a, k]). This shows that R([a, a, k]) ∈ X if and only if R([a, a, k]) ∈ Y .

Suppose now that X and Y are idempotents in M(H) containing the same
idempotents in M(G). By Lemma 2 there exists an idempotent e ∈ Y such
that y = ye. By the definition of H, there is at most one x ∈ X such that
yx �= 0. Since e also belongs to X then we have Y X = Y . Similarly, we show
that X = XY proving that X and Y are L-equivalent.

Proposition 2. M(H) belongs to R.

Proof. The proof of Lemma 4 shows that the product of two J -equivalent idem-
potents is an idempotent in the same L-class. Hence, each regular J -class con-
tains only one L-class. Moreover, by lemma 3, M(H) is aperiodic. We conclude
that M(H) is R-trivial since it satisfies the equation (xy)ωx = (xy)ω.

5 Groups in Loops

This section is devoted to the proof of Theorem 3 which makes extensive use of
the derived monoid of a loop defined earlier. It is easy to see that any language
L recognized by a loop B is also recognized by D(B) = B+/ ∼. We denote by
[w] the element of D(B) that contains w ∈ B+. Before proving Theorem 3, we
give some simple properties of the derived monoid. Let B be a loop with identity
e. The set of elements [w] ∈ D(B) such that e ∈ eval(w) forms a submonoid of
D(B) that we denote D1(B).

Lemma 5. If [w] is an idempotent of D(B) then [w] ∈ D1(B) and eval(w) is a
subloop of B.

Proof. By the cancellation law, there exists k > 0 such that e ∈ eval(ak) for
all a ∈ B. In particular we have e ∈ eval(wk) for all w ∈ B+. Since [w] is an
idempotent then [wk] = [w]k = [w], and so, e ∈ eval(w)k = eval(w).

Groupoids That Recognize Only Regular Languages 429

Lemma 6. D1(B) is J -trivial.

Proof. Let X,Y ∈ D1(B) such that XJY . Hence, there exists A,B ∈ D1(B)
such that AXB = Y . This means that for all s, t ∈ B∗ we have eval(sAXBt) =
eval(sY t). Since both eval(A) and eval(B) contain the identity, then we must
have eval(sXt) ⊆ eval(sY t). Similarly, we show that eval(sY t) ⊆ eval(sXt) for
all s, t ∈ B∗. This proves that X = Y .

Proposition 3. If H is a group that divides B, then H divides D(B).

Proof. We first show that if H is a loop that divides B then D(H) divides
D(B). Let K be a subloop of B and let ψ : K → H be a morphism. Let
ϕ : D(K) → D(H) be the morphism defined by ϕ([w]) = [ψ(w)]. Ideed, we have
that ϕ([u][v]) = ϕ([uv]) = [ψ(uv)] = [ψ(u)ψ(v)] = [ψ(u)][ψ(v)] = ϕ([u])ϕ([v]),
proving that ϕ is a morphism. The conclusion follows from the observation that
D(K) ≺ D(B) and that if H is a group then D(H) = H.

The converse of this proposition needs a few lemmas. Let H = {[w1], . . . [wn]}
be a subgroup of D(B) where [w1] is the identity.

Lemma 7. For all [u], [v] ∈ H we have that |eval(u)| = |eval(v)|.

Proof. Since H is a group, there exists [w] ∈ H such that [u][w] = [v]. Hence,
eval(uw) = eval(v) and by the cancellation law |eval(u)| ≤ |eval(v)|. Similarly,
we show that |eval(u)| ≥ |eval(v)|.

Lemma 8. For all i, j, either eval(wi) = eval(wj) or eval(wi) ∩ eval(wj) = ∅.

Proof. Let a ∈ eval(wi) ∩ eval(wj). Since [w1] is the identity, then eval(wi) =
eval(w1)eval(wi) = eval(w1)a = eval(w1)eval(wj) = eval(wj), where the first and
the last equality are given by Lemma 7.

Lemma 9. For all 1 ≤ i ≤ n, the set Ni = {[u] ∈ H : eval(u) = eval(wi)} is a
singleton.

Proof. We first show that for all i, j, we have |Ni| = |Nj |. Let [ui] ∈ Ni and
[uj] ∈ Nj . There exists Nk and [uk] ∈ Nk such that [ui][uk] = [uj]. It follows
from Lemma 7 that eval(ui)eval(uk) = eval(uj). This shows that NiNk ⊆ Nj

and that |Ni| ≤ |Nj |. Similarly, we show that |Nj | ≤ |Ni|. We conclude that
|Ni| = |Nj |. Now, let N1 contains the identity [w1] ∈ H. Then, N1 is a group
that is a submonoid of D1(B), and since D1(B) is J-trivial then N1 must be
trivial.

We are now ready to prove the converse of Proposition 3.

Proposition 4. If H be a group that divides D(B), then H divides B.

430 M. Beaudry, F. Lemieux, and D. Thérien

Proof. It is known (see [5] Chap.3, prop. 4.5) that if a group G divides D(B)
then there exists a group H which is a submonoid of D(B) and such that G
divides H. Hence, we only have to consider the case where H is a group which
is a submonoid of D(B).

From the previous lemma, if H = {[w1], [w2], . . . , [wn]} is a group that is a
submonoid of D(B) then eval(wi) ∩ eval(wj) �= ∅ implies that i = j. In other
words, eval(w1), eval(w2), . . . , eval(wn) is a partition of D = {g ∈ B : ∃[w] ∈ H
s.t. g ∈ eval(w)} which is a subloop of B. Moreover, eval(w1) is a normal subloop
of D, and D/eval(w1) is a group isomorphic to H.

Proof of Theorem 3: If L is recognized by B then it is also recognized by
D(B). This means that M(L) divides D(B). Hence, any group that divides M(L)
also divides B by the previous proposition.

6 Other Properties of the Derived Monoid

This section is devoted to the proof of Theorem 4. We first show the existence of
a relational morphism from the derived monoid D(B) to the multiplication group
M(B). Recall that a relational morphism between two monoids N and M is a
relation τ : M → N satisfying: (1) 1 ∈ τ(1); (2) τ(s) �= ∅; (3) τ(s)τ(t) ⊆ τ(st),
for all s, t ∈M .

Proposition 5. Let B be a loop, M(B) its multiplication group, and R(1) =
L(1) the identity of M(B). There exists a relational morphism τ : D(B) →
M(B) such that D1(B) = τ−1(R(1))

Proof. We actually only need the subgroup MR(B) ⊆ M(B) that is generated
by the right multiplications of B. Given S ⊆MR(B) and a ∈ B let aS = {aW :
W ∈ S} ⊆ B. Given a word v ∈ B+ let R(v) = {R(a) : a ∈ eval(v)}. We first
define the relational morphism η : B∗ → MR(B) as follows: η(ε) = {R(1)},
η(a) = {R(a)} for all a ∈ G, and η(w) =

⋃
w=uv η(u)R(v), where u ∈ B∗, v ∈

B+. It should be clear that eval(w) = 1η(w) for all w ∈ B+.
To prove that η is a relational morphism we need to show that η(u)η(v) ⊆

η(uv) for all u, v ∈ B+. We proceed by induction on the length of v. If v =
a ∈ B then η(u)η(a) = η(u)R(a) ⊆ η(ua). Suppose now that v contains more
than one letters and let X ∈ η(v). Then, there exist v1 ∈ B∗, v2 ∈ B+ such
that v = v1v2 and such that X ∈ η(v1)R(v2). By the induction hypothesis
we have η(u)η(v1) ⊆ η(uv1). Putting everything together we have: η(u)X ⊆
η(u)η(v1)R(v2) ⊆ η(uv1)R(v2) ⊆ η(uv1v2) = η(uv). Let h : B∗ → D(B) be the
natural morphism. Then, τ = ηh−1 is a relational morphism with the desired
property.

To prove Theorem 4 we need some classical result from category theory. A
multigraph C is a set of objets Obj(C) and, for each pair a1, a2 ∈ Obj(C), a set
of arrows denoted C(a1, a2). A category C is a multigraph with an associative
composition rule that assign to every consecutive pair of arrows s : a1 → a2

Groupoids That Recognize Only Regular Languages 431

and t : a2 → a3 an arrow st : a1 → a3. Moreover, for each a ∈ Obj(C) there
is a unique identity arrow 1a : a → a satisfying 1at = t and s1a = s for all
s ∈ C(a′, a) and t ∈ C(a, a′′) such that a′, a′′ ∈ Obj(C).

Given a category C, a subcategory S is a sub-multigraph of C which is a
category under the composition rule of C. If S ⊆ Obj(C) then C(S) denote the
full subcategory whose set of objects is S. In particular, for each a ∈ Obj(C),
the subcategory C(a) forms a monoid called the local monoid of C at a.

Let C and D be categories. A relational morphism τ : C → D is an ob-
ject function τ1 : Obj(C) → Obj(D) and, for each a, b ∈ Obj(C), a relation
τ2 : C(a, b) → D(τ1(a), τ1(b)) such that for each pair of arrows s, t we have
ϕ2(s)ϕ2(t) ⊆ ϕ2(st). Also, for all a ∈ Obj(C) we have 1ϕ1(a) ∈ ϕ2(1a). Moreover,
if τ2 : C(a, b) → D(τ1(a), τ1(b)) is injective (i.e. s �= t implies τ2(s) ∩ τ2(t) = ∅),
then τ is called a division.

A category C divides a category D (denoted C ≺ D) if there exists a division
C → D. If moreover D ≺ C then we say that C is equivalent to D and we write
C ∼ D.

Let a, b ∈ Obj(C). We say a is a retract of b if there exists arrows s ∈ C(a, b)
and t ∈ C(b, a) such that st = 1a. The following three results are from [17]:

Lemma 10 (Tilson). Let C be a category, and let S ⊆ Obj(C). If every object
of C is a retract of some object in S, then C ∼ C(S).

Let τ : S → T be a relational morphism of monoids. The derived category
Dτ of τ is the category whose objects set is Obj(Dτ) = τ(S) and Dτ (t, tt′) =
{[t, (s, t′), tt′] : s ∈ τ−1(t)}. The composition rule is given by

[t, (s, t′), tt′][tt′, (s′, t′′), tt′t′′] = [t, (ss′, t′t′′), tt′t′′]

Lemma 11 (Tilson). Let τ : S → T be a relational morphism of monoids.
Then, Dτ (1) = τ−1(1).

Theorem 5 (Derived Category Theorem). Let τ : S → T be a relational
morphism of monoids, and let M be a monoid satisfying Dτ ≺ M . Then, S ≺
M ◦ T .

Proof of Theorem 4: Let τ : D(B) → M(B) be the relational morphism
defined in Proposition 5. By Lemma 11 we have that Dτ (1) is equivalent to
τ−1(1) = D1(B). Now, let a ∈ Obj(Dτ) and consider the arrows s = [1, (1, a), a]
and t = [a, (1, a−1), 1]. Then, we have st = [1, (1, a), a][a, (1, a−1), 1] = [1, (1, 1), 1]
= 11 which is the identity arrow of the object 1. Hence, every object is a retract
of 1 and, by Lemma 10, Dτ is equivalent to Dτ (1) ∼ D1(B). The conclusion
follows from the Derived Category Theorem.

7 Conclusion

In this work we have investigated groupoids that can recognize only regular
languages. We prove that if the multiplication semigroup of a groupoid G belongs

432 M. Beaudry, F. Lemieux, and D. Thérien

to DO then G can only recognize regular languages. On the other hand, it is
known from [2] that if the multiplication semigroup belongs to any pseudovariety
which is not contained in DS, then G can recognize a language that is not regular.
The case of DS is more obscure and its investigation is complicated by the fact
that it is difficult to build non-trivial examples of groupoids whose multiplication
semigroup is in DS but not in DO.

Groupoids who recognize only regular languages could be called “weak” since
their Word Problems is always in NC1. However, there exist groupoids with this
property that can recognize non-regular languages. For example, a groupoid that
recognizes the non-regular language MAJORITY (set of words over {0, 1} that
contain a majority of 1) is given in [9]. Moreover, all the Word Problems of this
groupoid belong to TC0 a class that lies inside NC1. Knowledge of algebraic
conditions that would force the Word problem of a groupoid to be in TC0 could
be very useful for the important question of whether the inclusion TC0 ⊆ NC1

is strict or not.
Generally, given a groupoid G and a set F ⊆ G, it is undecidable to determine

if the set {w ∈ G+ | eval(w) ∩ F �= ∅} is regular. However, it is not clear if it is
decidable to determine if a groupoid recognizes only regular languages. This is
equivalent to the question of deciding if the derived semigroup of a groupoid is
finite or not. An important related question is to decide whether a groupoid has
its word problem in NC1 or not. Again, this could have interesting consequences
on the study of small complexity classes.

Ackowledgment

This work has received support from FQRNT (Québec) and CRSNG (Canada).

References

1. D. Barrington and D. Thérien, “Finite Monoids and the Fine Structure of NC1”,
JACM 354(1988)941–952

2. M. Beaudry, ”Languages recognized by finite aperiodic groupoids”, TCS
209(1998)299–317

3. M. Beaudry, F. Lemieux and D. Thérien, Finite loops recognize exactly the regular
open languages, Proc. 24th ICALP, LNCS 1256 (1997), 110-120.

4. H. Caussinus and F. Lemieux, The complexity of computing over quasigroups, Proc.
14th annual FST&TCS, 1994, pp.36-47.

5. S. Eilenberg, Automata, Languages and Machines, vol. B, Academic Press (1976)

6. R. Gavaldà and D. Thérien, Learning expressions over monoids, Proc. 18th Intl.
Symposium on Theoretical Aspects of Computer Science (STACS’01). Springer-
Verlag Lecture Notes in Computer Science 2010 (2001), 283–293.

7. F. Gécseg and M. Steinby, Tree Automata, Akadémiai Kiadó, Budapest, 1984.

8. S.C. Kleene, Representations of events in nerve nets and finite automata, Automata
Studies, C.E. Shannon (ed.), vol. 3-41, Princeton, N.J. (1956) Priceton University
Press.

Groupoids That Recognize Only Regular Languages 433

9. F. Lemieux, Finite groupoids and their applications to computational complexity,
Ph.D. Thesis, McGill University, May 1996.

10. J. Mezei and J.B. Wright, Algebraic automata and context-free sets, Inform. and
Contr. 11 (1967) 3–29.

11. J.-E. Pin, Varieties of Formal Languages, Plenum Press, New York, 1986.
12. M. Koucky, P. Pudlak and D. Therien, Bounded-depth circuits: separating wires

from gates, accepted in the 37th ACM Symposium on Theory of Computing (STOC
2005).

13. M.-P. Schützenberger On finite monoids having only trivial subgroups, Information
and Control 8 (1965) 190–194.

14. M.-P. Schützenberger Sur le produit de concaténation non ambigu, Semigroup Fo-
rum 13 (1976) 45–75.

15. I. Simon Piecewise Testable Events, Proc. 2nd GI Conf., LNCS 33 Springer Verlag,
(1975) 214–222.

16. P. Tesson and D. Thérien, Complete Classifications for the Communication Com-
plexity of Regular Languages, Proceedings of the 20th International Symposium on
Theoretical Aspects of Computer Science, (2003)

17. B. Tilson, Categories as algebra: an essential ingredient in the theory of monoid,
J. Pure and Applied Algebra 48 (1987) 83–198.

Append-Only Signatures�

Eike Kiltz��, Anton Mityagin� � �, Saurabh Panjwani†, and Barath Raghavan‡

Department of Computer Science and Engineering,
University of California, San Diego, USA

{ekiltz, amityagin, panjwani, barath}@cs.ucsd.edu

Abstract. We present a new primitive – Append-only Signatures (AOS)
– with the property that any party given an AOS signature Sig[M1]
on message M1 can compute Sig[M1‖M2] for any message M2, where
M1‖M2 is the concatenation of M1 and M2. We define the security
of AOS, present concrete AOS schemes, and prove their security un-
der standard assumptions. In addition, we find that despite its simple
definition, AOS is equivalent to Hierarchical Identity-based Signatures
(HIBS) through efficient and security-preserving reductions. Finally, we
show direct applications of AOS to problems in network security. Our
investigations indicate that AOS is both useful in practical applications
and worthy of further study as a cryptographic primitive.

Keywords: Algebraic Signatures, Append-only Signatures, Hierarchical
Identity-based Signatures.

1 Introduction

In many real-world applications, users and programs alike require notions of
delegation to model the flow of information. It is often required that delegation
from one party to another enables the delegatee to “append” to the information
it received but to do nothing more. For example, in wide-area Internet routing,
each network passes a routing path advertisement to its neighboring networks,
which then append to it information about themselves and forward the updated
advertisement to their neighbors. For security, the route advertisements must
be authenticated; intermediate networks must be incapable of modifying routes
except according to the protocol (that is, by appending their names to already-
received advertisements). Likewise, in the context of secure resource delegation
for distributed systems, users need to delegate their share of resources to other
users, who may then re-delegate to other users by including their own resources in

� Any opinions, findings, and conclusions or recommendations expressed in this ma-
terial are those of the authors and do not necessarily reflect the views of the NSF.

�� Supported in by a DAAD postdoc fellowship.
� � � Supported in part by NSF grants ANR-0129617 and CCR-0208842.

† Supported in part by NSF grant 0313241.
‡ Supported by a NSF Graduate Research Fellowship.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 434–445, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Append-Only Signatures 435

the pool. In many of these applications, it is desirable that delegation is possible
without parties having to share any cryptographic keys and that the authenticity
of any information received through a series of delegations is verifiable based only
on the identity of the first party in the chain.

To directly address these needs, we present a new cryptographic primitive
called Append-Only Signatures (AOS). An AOS scheme enables the extension
of signed messages and update of the corresponding signatures, without requiring
possession of the signing key. That is, any party given an AOS signature Sig[M1]
on message M1 can compute Sig[M1‖M2] for any message M2, where M1‖M2

is the concatenation of M1 and M2. The verifier of the final signature needs
the initial signer’s public key but does not need to know the public keys or any
other information from intermediate signers except the message data appended.
Clearly, such a scheme cannot be secure according to the standard notion of
security for signatures. Instead, we define an AOS scheme to be secure if it is
infeasible to forge signatures of messages that are not obtained by extending
already-signed messages. A formal definition appears in Section 2.

In Section 3 we present several provably secure AOS schemes, offering differ-
ent tradeoffs of flexibility and efficiency. Our first construction shows a generic
approach to building AOS schemes from any standard digital signature scheme
using certificate chains. The construction works as follows: The secret and public
keys for the AOS scheme are obtained by running the key generator for SIG.
For any message M = M1‖M2‖ · · · ‖Mn, each Mi being a symbol in some prede-
termined message space, the AOS signature of M is defined as a sequence of n
public keys pk1, pk2, · · · , pkn (generated using the key generator for SIG) and a
sequence of n certificates binding the message symbols to these public keys. The
ith certificate in the chain binds the message symbol Mi to the corresponding
public key pki and is signed using the secret key, ski−1, corresponding to pki−1.
The secret key, sk0, of the AOS scheme signs the first certificate in the chain
while the secret key skn (corresponding to the last public key), is revealed as
part of the AOS signature and is used for appending new symbols to M . We
observe that if the message space is small enough, we can make use of “weaker”,
and more efficient, signature schemes without compromising the security of the
resulting AOS scheme. Using aggregation techniques of [2, 10] one can reduce
the length of the signature by a factor of two.

We also present a more efficient construction of AOS for applications in which
the message space is constant size and the total number of append operations
performed is also constant. This construction is based on a seemingly stronger
assumption (than that of the existence of signature schemes) and makes use of
pseudorandom generators and collision-resistant hash functions (CRHFs).

Relation to Hierarchical Identity-Based Signatures. Identity-Based
Signature (IBS) schemes, due to Shamir [14], are signature schemes in which
the identity of the signer (for example, her email address) plays the role of his
public key. Such schemes assume the existence of a trusted authority that holds
a master public-private key pair that is used to assign secret keys to users based

436 E. Kiltz et al.

on their identities. Anyone can verify signatures on messages signed by a user
knowing only the master public key and the identity of that user. Hierarchical
IBS (HIBS) schemes, proposed by Gentry and Silverberg [4], are identity-based
signature schemes in which users are arranged in a hierarchy and a user at any
level in this hierarchy can delegate secret keys to her descendants based on their
identities and her own secret key. To verify the signature created by any user, one
needs to know only the identity of the user (and her position in the hierarchy)
and the public key of the root user.

HIBS can be implemented using certificate chains (as suggested in [4]) and
the resulting construction bears a strong resemblance to the certificate-based
construction of AOS we give in this paper. Upon closer examination, we find
that the similarity between the two constructions is not accidental: it is an
artifact of the close relationship between the two primitives themselves—AOS
and HIBS are, in fact, tightly equivalent. This means that (a) there exist generic
transformations from any HIBS scheme into a corresponding AOS scheme and,
likewise, from any AOS scheme into a corresponding HIBS scheme; and (b)
these transformations are extremely efficient (the derived scheme is as efficient
as the scheme being derived from) and highly security-preserving (an adversary
attacking the derived scheme can be transformed into an adversary attacking the
original one, losing only a constant factor in efficiency and query complexity).
Section 4 gives details.

A benefit of this equivalence is that it considerably simplifies the notion of
HIBS and makes security analysis for HIBS schemes less onerous: AOS is simpler
than HIBS, and, for any HIBS scheme, it is typically easy to find an equivalent
AOS scheme whose security properties carry over to the corresponding HIBS
scheme. For example, our security proof for certificate-based AOS translates to
a security proof for certificate-based HIBS (originally proposed in [4]). Although
this construction of HIBS was known prior to our work, it was never analyzed
in the literature, and, to the best of our knowledge, we give the first proof of
security for it. Furthermore, our construction of AOS based on pseudorandom
generators and CRHFs yields a novel approach to designing HIBS and can be
useful for some restricted scenarios (for example, in a constant-depth hierarchy
wherein each user signs messages from a constant-size message space). We re-
mark that both these constructions yield HIBS schemes in the standard model
and neither involves the use of computationally intensive bilinear maps (this is
in contrast with some recent results on HIBS [3]).

Application to Secure Routing. In Section 5 we discuss an important real-
life application of AOS in internet routing security.

Related Work. Append-only signatures belong to a general class of primitives
called algebraic signatures. Informally, an algebraic signature scheme allows the
creation of signatures on a message M using the signatures on some known
messages, M1,M2, . . . ,Mn, and the public key, provided M can be obtained
from the known messages using some prespecified set of (n-ary) operations, say
O = {f1, f2, · · · , fm}. That is, given the signatures, sig[M1], . . . , sig[Mn] and

Append-Only Signatures 437

the public key, it is easy to compute sig[fi(M1, . . . ,Mn)] for any fi ∈ O. In
our setting, each fi has arity 1 and appends some fixed message symbol Mi to
an input message M . Security for algebraic signatures is defined in a manner
similar to our approach to security of AOS (that is, it should be hard to forge
signatures of messages that cannot be obtained by applying the operations in
O to already-signed messages). Examples of algebraic signatures studied in the
literature include transitive signatures by Micali and Rivest [12], homomorphic
signatures by Johnson, Molnar, Song and Wagner [7], and graph-based algebraic
signatures by Hevia and Micciancio [5].

Although no obvious relation exists between our primitive and any of the
previously studied algebraic signature primitives, we do note that some of the
techniques we use in our constructions parallel prior techniques. For example, our
construction of AOS schemes using CRHFs can be viewed as a special instance
of graph-based algebraic signature schemes studied in [5] (although the set of
update operations considered there are different from the append operation that
we consider).

2 Append-Only Signatures

Informally, append-only signatures (AOS) are signatures that enable the pub-
lic extension of existing signatures. That is, any party given an AOS signature
Sig on a message (M1, . . . ,Mn) can compute an AOS signature on any message
(M1, . . . ,Mn,Mn+1). (As in the introduction, one could represent the message
(M1, . . . ,Mn) as the string M1|| . . . ||Mn which better captures the idea of ap-
pending. However, since we want to differentiate between the message “A”‖“B”
and the message symbol “AB”, we prefer to think of messages as n-tuples. That
is, in our example, we have the two different tuples (A,B) and (AB)). Besides
the append operation, AOS is the same as ordinary signatures. That is, given
only an AOS signature on the message (M1, . . . ,Mn) it should be infeasible to
forge an AOS signature on any message not having (M1, . . . ,Mn) as a prefix.

Let AOS.MSpace be any set of symbols (for example, {0, 1} or {0, 1}∗). A mes-
sage of length n is an n tuple of symbols written as M [1..n] = (M1,M2, . . . ,Mn).
The special case of n = 0 is the empty message, denoted ε. We use the symbol
$ to denote the prefix relation over the messages. An append-only signature
(AOS) scheme with respect to the message space AOS.MSpace is a collection of
three polynomial-time algorithms: a setup algorithm (AOS.Setup), an append
algorithm (AOS.Append), and a verify algorithm (AOS.Vfy), defined as follows:

– AOS.Setup takes the security parameter as input and outputs a pair of keys:
the public key AOS.pk and the secret key Sig[ε], which is the signature on
the empty message ε.

– AOS.Append takes the public key AOS.pk, a signature on a message M [1..n−
1] = (M1, . . .Mn−1), of length n− 1, and a symbol Mn ∈ AOS.MSpace and
produces a signature on the message M [1..n] = (M1, . . . ,Mn).

– AOS.Vfy takes the public key AOS.pk, a message M [1..n], and a signature
sig, and returns either true or false.

438 E. Kiltz et al.

All algorithms can be randomized. Additionally, the scheme should have the
property that for any pair (AOS.pk,Sig[ε]) and any message M [1..n], the sig-
nature sig obtained by iteratively appending M1, . . . ,Mn to Sig[ε] should be
accepted by AOS.Vfy. Appendig the symbols one-by-one should be the only way
of generating a signatures on the message M [1..n]. This fact ensures history in-
dependence of AOS: that is, no party, given an AOS signature, can tell whether
the signature was created by the owner of the secret key or whether it passed
through multiple parties that appended symbols at every step. History indepen-
dence is a useful property to have in most applications, as already highlighted
in previous work on algebraic signatures [7].

Definition 1. Let AOS = (AOS.Setup,AOS.Append,AOS.Vfy) be an AOS
scheme, let k be the security parameter, and let A be an adversary. We con-
sider the experiment:

Experiment Expaos-uf-cma
AOS,A (k)

MSGSet ← ∅ ; (AOS.pk, Sig[ε])
$← AOS.Setup(1k)

(M [1..n], sig)
$← AAOSSign(·)(AOS.pk)

if AOS.Vfy(AOS.pk, M [1..n], sig) = true

and ∀J [1..j] �M [1..n] : J [1..j] �∈ MSGSet
then return 1 else return 0

Oracle AOSSign(M [1..n])

Add M [1..n] to MSGSet
return Extract(M [1..n])

Oracle Extract(M [1..i]) // defined recursively

if i = 0 then return Sig[ε]
else if Sig[M [1..i]] = defined

then return Sig[M [1..i]]

else Sig[M [1..i]]
$← AOS.Append(AOS.pk, M [1..i− 1],Extract(M [1..i− 1]), Mi)

return Sig[M [1..i]]

The aos-uf-cma-advantage of an adversary A in breaking the security of the
scheme AOS is defined as Advaos-uf-cma

AOS ,A (k) = Pr[Expaos-uf-cma
AOS ,A (k) = 1] , and

AOS is said to be unforgeable under chosen message attacks (aos-uf-cma se-
cure) if the above advantage is a negligible function in k for all polynomial-time
adversaries A.

Note that A is given access to the oracle AOSSign(·), not to the oracle
Extract(·) (the latter is used internally by AOSSign(·) to create intermediate
signatures).

3 Efficient AOS Constructions

We briefly sketch our constructions for AOS in this section. More details (in-
cluding proofs of all theorems) can be found in [9].

Certificate-Based Append-Only Signatures. We present an efficient con-
struction of a provably-secure AOS scheme based on a public-key signature
scheme. Let SGN = (SGN.G, SGN.S, SGN.V) be a signature scheme with a space
of public keys SGN.PKSpace and message space SGN.MSpace = AOS.MSpace×

Append-Only Signatures 439

SGN.PKSpace. That is, messages to be signed by SGN are tuples of the form
(M,pk), where M ∈ AOS.MSpace and pk ∈ SGN.PKSpace. An AOS signa-
ture Sig of M [1..n] is a tuple (pk1, sig1, . . . , pkn, sign, skn), where for 1 ≤
i ≤ n, (pk i, sk i) are random public/secret key pairs of the public-key signature
scheme SGN and sig i is a signature on the tuple (Mi, pk i) under the secret key
ski−1. The signature sig0 is signed with the secret key sk0, which is the signa-
ture of ε (the master secret key). Our AOS scheme AOS1 with message space
AOS.MSpace is specified as follows:

– AOS.Setup(1k): Run SGN.G(1k) to generate a pair (pk0, sk0) and returns it
as AOS public/secret key pair.

– AOS.Append(AOS.pk, Sig[M [1..n]],Mn+1): Parse Sig as (pk1, sig1, . . . , pkn,
sign, skn). Run SGN.G(1k) to generate a pair (skn+1, pkn+1). Compute
sign+1 ← SGN.Sskn

(Mn+1, pkn+1). Return (pk1, sig1, . . . , pkn+1, sign+1,
skn+1).

– AOS.Vfy(AOS.pk,M [1..n], Sig): Parse Sig as (pk1, sig1, . . . , pkn, sign, skn).
Set pk0 to be the master public key AOS.pk. For i = 1..n − 1 verify that
SGN.V(pki−1, sig i, (Mi, pki)) = true. If any of the verifications fail, return
false. If all the verifications succeed, verify that (skn, pkn) is a valid secret
key/public key pair (by signing and veryfing a signature on a random message
under skn).

Theorem 2. The AOS scheme AOS1 is aos-uf-cma secure assuming that the
public-key signature scheme SGN is unforgeable under choosen message attacks.

Shorter Signatures via Aggregation. An aggregate signature scheme,
ASGN = (ASGN.G,ASGN.S,ASGN.AGG,ASGN.V), allows the aggregation of n
signatures on n distinct messages from n distinct users into a single signature.
Its verification algorithm, ASGN.V(n, ·), takes an aggregated signature, n mes-
sages, and n public keys and verifies that the n users signed the n messages.
When using the certificate-based construction of AOS from Section 3, we can
use sequential signature aggregation to shrink the size of the signature (without
significantly decreasing security or efficiency). To be more precise, the length
of an AOS signature of a message of length n can be condensed to one signa-
ture of ASGN , n public keys of ASGN , and one secret key of ASGN . We note
that there are two known signature aggregation techniques. The first scheme,
given in [2], is based on bilinear maps. The second scheme (only supporting se-
quential aggregation) is from [10] and can be based on homomorphic trapdoor
permutations (such as RSA). Both aggregation schemes are in the random oracle
model.

AOS via Hash Trees. If the number of symbols in the alphabet AOS.MSpace
is small, AOS can be efficiently implemented using hash trees [11]. This ap-
proach suffers from dramatic complexity blowup as the size of the message
space increases, but uses only secret-key primitives and provides good secu-
rity guarantees. We believe that this construction is useful in computationally

440 E. Kiltz et al.

constrained applications. Here we show how to construct an AOS scheme AOS2
with message space AOS.MSpace = {0, 1} and message length restricted to d.
The construction uses a pseudorandom generator G : {0, 1}k → {0, 1}2k and a
collision-resistant hash function H : {0, 1}k × {0, 1}k → {0, 1}k . We denote by
Gi : {0, 1}k → {0, 1}k the i-th k -bit component of G for i ∈ {0, 1}.

Consider the graph T depicted in the left part of Figure 1, whose nodes are
denoted as shown on the figure (the upper part (UT) in round brackets and the
lower part (LT) in square brackets). In general, the graph T has d levels in both
upper and lower parts. For any node u = 〈v1, . . . , vj〉 from the upper part of the
graph, we define the complement of u, denoted Comp(u), to be the minimal set
of nodes in LT − {ε̃} such that every path from ε to ε̃ passes through exactly
one node from {u} ∪Comp(u). An example of a complement set is given on the
right half of Figure 1.

ε

〈0〉 〈1〉

〈0, 0〉 〈0, 1〉〈1, 0〉 〈1, 1〉

[0, 0] [0, 1]
[1, 0] [1, 1]

[0] [1]

ε̃

ε

〈0, 1〉

[0, 0]

[1]

ε̃

Fig. 1. Structure of the hash-tree construction for d = 2. The diagram on the left
depicts the hash tree. The diagram on the right highlights the node u = 〈0, 1〉 (shown
in black) and the set of its complements, Comp(u) (shown in gray)

In AOS2, a message M = (M1, . . . ,Mn) is assosiated with a node u =
〈M1, . . . ,Mn〉 from the upper part of the graph. Each node u is assosiated with
a k-bit value key(u), which is called the“key” of the message. The setup algo-
rithm assigns these values in a top-down manner, starting from the root node ε.
Initially, the root key key(ε) is chosen at random from {0, 1}k . Keys of all the
other nodes in the upper part of T are obtain by repeated application of G: keys
of left and right children of a node u are G0(key(u)) and G1(key(u)), respec-
tively. Keys of the nodes on the highest lower level are obtained by applying G0

to their parents’ keys; keys of the other nodes in the lower part are obtained by
applying H to their parents’ keys. The setup algorithm outputs key(ε̃) as the
public key and key(ε) as the secret key of AOS.

The signature of a node u consists of the keys in the set {u}∪Comp(u). Note
that given a signature of u, one can compute the keys of all the descendants

Append-Only Signatures 441

of u including the last node ε̃. Verification of a signature is done by computing
the keys of all the descendants of u and comparing the obtained key(ε̃) with
the public key. The append algorithm, given a signature of u = 〈M1, . . . ,Mn〉
and a bit Mn+1, computes the key of u′ = 〈M1, . . . ,Mn+1〉 (which is a child of
u) and the keys of all the nodes in Comp(u′) (which are descendants of u and
Comp(u)). It returns these keys as a signature on (M1, . . . ,Mn+1).

Theorem 3. If G(·) is a secure pseudorandom generator, G0(·), G1(·), are se-
cure one-way functions and H(·, ·), G0(·), and G1(·) are all collision-resistant
hash functions, then AOS2 is aos-uf-cma secure.

AOS via One-Time Signatures. We observe that we can combine the ideas
of the certificate-based AOS and the hash-tree AOS to gain a more efficient
append-only signature scheme when the message space is small. Assume the
message space AOS.MSpace consists of m elements, where m is a constant. Then
we can use our certificate-based construction AOS1 instantiated with an m-
time signature scheme. m-time signatures can be efficiently constructed using
hash-trees (see [5, 13] for the definition and efficient constructions of one-time
and m-time signatures). In addition, the security proof of AOS1 guarantees un-
forgeability if SGN is at least an |AOS.MSpace|-time signature scheme.

Compact AOS. In the full version of the paper [9] we show how to use a
recent technique of Boneh, Boyen and Goh [1] to get an AOS scheme in which
the signature size is proportional to the square root of the length of the
message.

4 Relations Between HIBS and AOS

In this section, we show that the concepts of AOS and Hierarchical Identity-
based Signatures (HIBS) are in fact equivalent.

We start with a formal defintion of HIBS. Let HIBS.IDSpace be any set of
identities (typically {0, 1}∗). A hierarchical identity of length n is an n-tuple
of identities from HIBS.IDSpace, written as I[1..n] = (I1, I2, . . . , In). The root
identity is denoted as I[1..0] or ε. Again we use the symbol $ to denote the
prefix relation over the set of hierarchical identities.

A HIBS scheme over identity space HIBS.IDSpace is made up of four (possibly
randomized) algorithms: a setup algorithm HIBS.Setup, a key delegation algo-
rithm HIBS.KeyDel, a signing algorithm HIBS.Sign and a verification algorithm
HIBS.Vfy.

Definition 4. Given a HIBS scheme HIBS = (HIBS.Setup, HIBS.KeyDel,
HIBS.Sign, HIBS.Vfy), security parameter k and adversary A consider the fol-
lowing experiment:

442 E. Kiltz et al.

Experiment Exphibs-uf-cma
HIBS,A (k)

IDSet ← ∅
(HIBS.pk, HIBS.SK[ε])← HIBS.Setup(1k)
(I[1..n],M , sig)

← ACorrupt(·),Sign(·,·)(HIBS.pk)
if HIBS.Vfy(I[1..n],M , sig) = true

and ∀ j ≤ n I[1..j] �∈ IDSet
and (I[1..n],M) �∈ MSGSet

then return 1 else return 0

Oracle Corrupt(I[1..n])

IDSet ← IDSet ∪ {I[1..n]}
return Extract(I[1..n])

Oracle Sign(I[1..n],M)

MSGSet ← MSGSet ∪ {(I[1..n],M)}
sk ← Extract(I[1..n])
return HIBS.Sign(sk, I[1..n],M)

Oracle Extract(I[1..i]) // defined recursively

if i = 0 return HIBS.SK[ε]
else if HIBS.SK[I[1..i]] = defined

then return HIBS.SK[I[1..i]]
else sk ← HIBS.KeyDel(HIBS.pk, I[1..i− 1],Extract(I[1..i− 1]), Ii)

return sk

The hibs-uf-cma-advantage of an adversary A in breaking the security of the
scheme HIBS is defined as Advhibs-uf-cma

HIBS ,A (k) = Pr[Exphibs-uf-cma
HIBS ,A (k) = 1], and

HIBS is said to be existentially unforgeable under chosen message attacks (hibs-
uf-cma secure) if the above advantage is a negligible function in k for all poly-
nomial time adversaries A.

Constructing AOS from HIBS. We set AOS.MSpace = HIBS.IDSpace and
associate an AOS message (M1, . . . , Mn) of length n with the hierarchical iden-
tity I[1..n] = (M1, . . . ,Mn) of depth n. We then define the signature of this
message as the secret key HIBS.SK[I[1..n]] of I[1..n]. Given the above anal-
ogy between signatures of messages and secret keys of hierarchical identities,
we construct an AOS scheme given a HIBS scheme as follows. Appending to
a given signature in AOS is done using key delegation in HIBS . The verifica-
tion of an AOS signature HIBS.SK[I[1..n]] is done by signing a random message
M ∈ HIBS.MSpace under the secret key HIBS.SK[I[1..n]] and verifying that the
resulting signature is valid. A formal construction is given in the full version [9].

Theorem 5. If the HIBS scheme HIBS = (HIBS.Setup, HIBS.KeyDel, HIBS.Sign,
HIBS.Vfy) is hibs-uf-cma secure, then the above AOS scheme is aos-uf-cma
secure.

Constructing HIBS from AOS. A naive approach to building a HIBS scheme
from an AOS scheme would be as follows: for any hierarchical identity I[1..n],
define HIBS.SK[[]I[1..n]] as the AOS signature on I[1..n] and the HIBS signature
created with HIBS.SK[[]I[1..n]] on message M as the AOS signature formed by
appending M to HIBS.SK[[]I[1..n]]. However, it can be shown that such a scheme
is insecure. Our tweak is to insert a unique identifier to separate identities and
messages. Let AOS = (AOS.Setup,AOS.Append,AOS.Vfy) be an AOS scheme
with message space AOS.MSpace. Let HIBS.IDSpace and HIBS.MSpace be sub-
sets of AOS.MSpace such that there is some symbol Δ from the AOS message
space which is not a valid identity for the HIBS scheme (Δ can still be in the

Append-Only Signatures 443

HIBS message space). Then we can construct a HIBS scheme with identity space
HIBS.IDSpace and message space HIBS.MSpace as follows:

Construction 6. HIBS = (HIBS.Setup,HIBS.KeyDel,HIBS.Sign,HIBS.Vfy):

– HIBS.Setup(1k): Run the AOS.Setup(1k) to generate a pair (AOS.pk, Sig[ε]);
output it as the master public/private key pair for HIBS .

– HIBS.KeyDel(HIBS.pk,HIBS.SK[I[1..n]], In+1): The delegation algorithm in-
terprets HIBS.SK[I[1..n]] as an AOS signature of I[1..n]. It appends to the
signature a symbol In+1 and outputs the resulting signature as the secret
key of I[1..n + 1].

– HIBS.Sign(HIBS.pk,HIBS.SK[In],M): The signing algorithm for HIBS inter-
prets HIBS.SK[I[1..n]] as an AOS signature of I[1..n]. It appends a symbol Δ
to HIBS.SK[I[1..n]] and then appends the message M to the resulting AOS
signature to get the final signature sig.

– HIBS.Vfy(HIBS.pk, I[1..n],M , sig): The verification algorithm for HIBS ver-
ifies if sig is a valid AOS signature of (I1, . . . , In,Δ,M).

The following theorem is proven in the version [9]:

Theorem 7. If the AOS scheme AOS = (AOS.Setup,AOS.Append,AOS.Vfy) is
aos-uf-cma secure, then the HIBS scheme HIBS from Construction 6 is hibs-uf-
cma secure.

5 Applications

An important application of AOS is in the construction of secure routing pro-
tocols for the Internet. The Border Gateway Protocol (BGP), which is the pri-
mary routing protocol used today in the Internet, has some well-known security
weaknesses which require cryptographic solutions. While there have been many
proposals for securing BGP in the past [8, 6], each must develop its own crypto-
graphic constructions due to the lack of any primitive designed specifically for
this application. In the discussion below, we briefly describe Internet routing and
explain how our primitive is useful for ensuring important security requirements
in BGP.

The Internet is composed of various autonomous systems (ASes), each having
control over some portion of the IP address space. BGP is the protocol used to
spread information about the routes to all IP addresses in this network of ASes.
Initially, all ASes advertise the IP addresses they own to their neighboring ASes.
Upon receipt of such advertisements, each neighbor records this information, ap-
pends itself to the advertized route and sends the new information further down.
The process repeats with the next AS in the chain and eventually, all ASes learn
a route to the originating AS (In case an AS receives two or more routes to the
same IP address, it selects one of them based on some local policy). Authenticity
of route announcements is essential for ensuring the correct behaviour of BGP
for otherwise, malicious ASes can play havoc with the Internet traffic. For exam-
ple, if an AS truncates the route in some advertisement or modifies it selectively,

444 E. Kiltz et al.

it could convince its neighbors to forward all their traffic to it, which it could
then modify or drop at will (incidents of this nature have indeed occured in the
recent past [6]).

Append-only Signatures are a useful tool in addressing this problem. Suppose
that an AS R0 wishes to announce routes for some IP prefix it owns. It first gener-
ates an AOS public-private key pair, distributes the public key AOS.pk through-
out the network (this can be done through a PKI as in [8, 6]) and to every neigh-
boring AS Ri1 , sends the usual BGP information along with the AOS signature
AOS.Append(AOS.pk,Sig[ε], Ri1). In order to continue the advertisement process,
Ri1 sends to each of its own neighbors Ri2 a BGP announcement containing the
route (R0, Ri1) and the signature AOS.Append(AOS.pk, Sig[Ri1], Ri2). In other
words, R0 appends the label of its neighbor Ri1 into the AOS signature chain
and Ri1 further appends the label of Ri2 into it. The advertisement process con-
tinues in this manner until all ASes in the network receive information about a
route to R0. Each recipient can verify the validity of the announced route using
the public key AOS.pk. If the AOS scheme is secure, then all that a malicious
AS can do now is to append one of its neighbors into the AOS signature chain
(since each Ri can check that the AS it receives a route from was the last to be
appended before Ri). In practice, the number of path advertisements received by
an AS from any given source AS is extremely small: as observed in real routing
data [6], the odds that an AS receives more than 15 path advertisements com-
ing from the same source are about 1 in a 1000. This enables us to use m-time
signature schemes (with m = 15) for an efficient AOS with reasonable security
guarantee. For more details and other applications of AOS, see [9].

6 Final Remarks and Open Problems

Finalization of AOS Signature. A property of append-only signature
schemes which might be needed by some applications is the ability to “final-
ize” the signature, that is, to modify the signature of a message in a way that
prohibits any further appending. The general solution to this problem is to use
a special symbol Θ (from the message space) to denote the end of the message.
When one wants to finalize the signature of some message, he should append Θ
to the signature. Messages that contain symbol Θ in the middle of the message
(not as the last symbol) are therefore considered to be invalid.

Restricted AOS. In AOS, anyone can append and verify signatures. In certain
scenarios, however, one may want to restrict the ability to append messages to a
limited group of users. Still, anyone should be able to verify the signatures. We
call this extension of AOS Restricted Append-Only Signatures (RAOS). Using a
symmetric encryption scheme we show in the full version [9] how to modify a
given AOS scheme to get an RAOS scheme.

Shorter AOS signatures. Given that wide-area routing protocols propagate
a large number of messages, compact signatures are desirable. Thus we raise an

Append-Only Signatures 445

open problem of whether it is possible to build an AOS scheme with constant
signature length (in both message length and maximal message length). This
problem is equivalent to building a HIBS scheme where secret keys of the users
have constant length (in the depth of the given user in the hierarchy and in the
maximal depth of the hierarchy).

Acknowledgments

We thank Mihir Bellare (for suggesting an improvement to the proof of Theo-
rem 2) and Daniele Micciancio (for useful insight about the definition of AOS).
Thanks also to the anonymous reviewers for helpful comments.

References

1. D. Boneh, X. Boyen and E.-J. Goh. Hierarchical identity based encryption with
constant size ciphertext. In Proceedings of EUROCRYPT 2005, LNCS, 2005.

2. Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and
verifiably encrypted signatures from bilinear maps. In Proceedings of EURO-
CRYPT 2003, volume 2656 of LNCS, pages 416–432, 2003.

3. S. S. M. Chow, L. C. K. Hui, S. M. Yiu, and K. P. Chow. Secure hierarchical
identity based signature and its application. In Proceedings of ICICS 2004, pages
480–494, 2004.

4. Craig Gentry and Alice Silverberg. Hierarchical id-based cryptography. In Pro-
ceedings of ASIACRYPT 2002, volume 2501 of LNCS, pages 548–566, 2002.

5. Alejandro Hevia and Daniele Micciancio. The provable security of graph-based
one-time signatures and extensions to algebraic signature schemes. In Proceedings
of ASIACRYPT 2002, volume 2501 of LNCS, pages 379 – 396, 2002.

6. Yih-Chun Hu, Adrian Perrig, and Marvin Sirbu. SPV: secure path vector routing
for securing BGP. In Proceedings of the ACM SIGCOMM , pages 179–192, 2004.

7. Robert Johnson, David Molnar, Dawn Xiaodong Song, and David Wagner. Ho-
momorphic signature schemes. In Proceedings of CT-RSA 2002, volume 2271 of
LNCS, pages 244–262, 2002.

8. Stephen Kent, Charles Lynn, and Karen Seo. Secure border gateway protocol
(S-BGP). In IEEE Journal on Selected Areas in Communications, 18(4):582–592,
2000.

9. Eike Kiltz, Anton Mityagin, Saurabh Panjwani and Barath Raghavan. Append-
Only Signatures. Full version. http://eprint.iacr.org/2005/124

10. Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and Hovav Shacham. Sequen-
tial aggregate signatures from trapdoor permutations. In Proceedings of EURO-
CRYPT 2004, volume 3027 of LNCS, pages 74–90, 2004.

11. Ralph C. Merkle. A digital signature based on a conventional encryption function.
In Proceedings of CRYPTO’87, volume 293 of LNCS, pages 369–378, 1988.

12. Silvio Micali and Ronald L. Rivest. Transitive signature schemes. In Proceedings
of CT-RSA 2002, volume 2271 of LNCS, pages 236–243, 2002.

13. Leonid Reyzin and Natan Reyzin. Better than biba: Short one-time signatures with
fast signing and verifying. In Proceedings of 7th Australasian Conference ACSIP,
2002.

14. Adi Shamir. Identity-based cryptosystems and signature schemes. In Proceedings
of CRYPTO’84, volume 196 of LNCS, pages 47–53, 1985.

Hierarchical Group Signatures

Mårten Trolin and Douglas Wikström

Royal Institute of Technology (KTH),
Nada, SE-100 44 Stockholm, Sweden
{marten, dog}@nada.kth.se

Abstract. We introduce the notion of hierarchical group signatures.
This is a proper generalization of group signatures, which allows multi-
ple group managers organized in a tree with the signers as leaves. When
opening a signature a group manager only learns to which of its subtrees,
if any, the signer belongs.

We provide definitions for the new notion and construct a scheme
that is provably secure given the existence of a family of trapdoor per-
mutations. We also present a construction which is relatively practical,
and prove its security in the random oracle model under the strong RSA
assumption and the DDH assumption.

1 Introduction

Consider the notion of group signatures introduced by Chaum and van Heyst
[13]. A group member can compute a signature that reveals nothing about the
signer’s identity except that he is a member of the group. On the other hand the
group manager can always reveal the identity of the signer.

An application for group signatures is anonymous credit cards. The card-
holder wishes to preserve his privacy when he pays a merchant for goods, i.e.,
he is interested in unlinkability of payments. The bank must obviously be able
to extract the identity of a cardholder from a payment or at least an identifier
for an account, to be able to debit the account. To avoid fraud, the bank, the
merchant, and the cardholder all require that a cardholder cannot pay for goods
without holding a valid card. To solve the problem using group signatures we
let the bank be the group manager and the cardholders be signers. A cardholder
signs a transaction and hands it to the merchant. The merchant then hands
the signed transaction to the bank, which debits the cardholder and credits the
merchant. Since signatures are unlinkable, the merchant learns nothing about
the cardholder’s identity. The bank on the other hand can always extract the
cardholder’s identity from a valid signature and debit the correct account.

The above scenario is somewhat simplified since normally there are many
banks that issue cards of the same brand which are processed through the same
payment network. The payment network normally works as an administrator and
routes transactions to several independent banks. Thus, the merchant hands a
payment to the payment network which hands the payment to the issuing bank.
We could apply group signatures here as well by making the payment network act

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 446–458, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Hierarchical Group Signatures 447

as the group manager. The network would then send the extracted identity to the
issuing bank. Another option is to set up several independent group signatures
schemes, one for each issuer. In the first approach, the payment network learns
the identity of the customer, and in the second approach the merchant learns
which bank issued the customer’s card. A better solution would reveal nothing
except what is absolutely necessary to each party. The merchant needs to be
convinced that the credit card is valid, the payment network must be able to
route the payment to the correct card issuer, and the issuer must be able to
determine the identity of the cardholder.

In this extended abstract we introduce and investigate the notion of hier-
archical group signatures. These can be employed to solve the above problem.
When using a hierarchical group signature scheme there is not one single group
manager. Instead there are several group managers organized in a tree, i.e., each
group manager either manages a group of signers or a group of group man-
agers. In the original notion the group manager can always identify the signer
of a message, but nobody else can distinguish between signatures by different
signers. The corresponding property for hierarchical group signatures is more
complicated. When opening a signature from a signer in its subtree, a group
manager learns to which of the subtrees directly below it the signer belongs. Sig-
natures from other signers are indistinguishable. Hence a group manager on the
level directly above the signers can identify its signers, whereas group managers
higher in the hierarchy only learns to which subtree the signer belongs.

When we use hierarchical group signatures to construct anonymous credit
cards for the more realistic setting we let the payment network be the root
manager that manages a set of group managers, i.e., the issuing banks, and we
let the cardholders be signers. The credit card application also demonstrates
what kind of responsibility model is likely to be used with a hierarchical group
signature scheme. With a valid signature on a transaction, the merchant has a
valid demand on the payment network. If the payment network has a signature
that can be shown to belong to a certain bank, the network has a valid demand
on that bank. Thus, it is in the network’s interest to open the signatures it
receives from merchants, and it is in the issuing banks’ interest to open the
signatures they receive from the network.

1.1 Previous Work

The concept of group signatures was first introduced by Chaum and van Heyst
[13] in 1991. This and the group signature schemes that followed [14, 7] all have
the property that the complexity of the scheme grows with the number of par-
ticipants. In [11] Camenisch and Stadler presented a system where the key does
not grow with the number of participants. This system, however, relies on a
non-standard number-theoretic assumption. The assumption was actually found
to be incorrect and modified in [2]. An efficient system whose security rests on
the strong RSA assumption and the Diffie-Hellman decision assumption was pre-
sented by Camenisch and Michels in 1998 [10]. This system was improved in [1].
The currently most efficient scheme that is secure under standard assumptions

448 M. Trolin and D. Wikström

is [8]. More efficient schemes do exist [6, 9], but they are based on bilinear maps
and thus relies on less well-studied assumptions for security.

A related notion is traceable signatures introduced by Kiayias et al. [19],
where signatures belonging to a member can be opened, or traced, in a dis-
tributed way without revealing the group secret.

Bellare et al. [4] give a definitional framework for group signatures for static
groups, i.e., when the set of members cannot be changed after the initial setup.
The paper also contains a scheme based on general methods in this setting.
Kiayias and Yung [20] define security for dynamic groups and prove that a
modification of [1] is secure under these definitions. Independently, Bellare et al.
[5] extend the definitions of [4] in a similar way to handle dynamic groups, and
present a scheme that is secure under general assumptions.

In [2] the concepts of multi-group signatures and subgroup signatures are de-
scribed, and in [21] a system for hierarchicalmulti-groups is given. Itmay be worth-
while to consider the differences between these concepts and hierarchical signa-
tures introduced here. Subgroup signatures make it possible for an arbitrary num-
ber i of signers to produce a joint signature which can be verified to stem from
i distinct group members. Multi-group signature schemes allow a signer who is a
member of two groups toproduce a signature that showsmembership of either both
groups or just one of them. In hierarchical multi-groups a signer who is a member
of a supergroup with subgroups can produce a signature that reveals membership
either of the supergroup or of a subgroup of his choice. However, the opening pro-
cedure is not hierarchical, i.e., there are no group managers for the subgroups.

1.2 Notation

Throughout the text, κ denotes a security parameter. A function f : N → [0, 1] is
said to be negligible if for each c > 0 there exists a κ0 ∈ N such that f(κ) < κ−c

for κ0 < κ ∈ N. We write ∅ to denote both the empty set and the empty string. If
T is a tree we denote by L(T) its set of leaves and by V(T) the set of all vertices.
We write Gq for the unique subgroup of order q of Z∗

p for a prime p = 2q + 1. In
the ElGamal cryptosystem a secret key is a randomly generated x ∈ Zq and the
public key is y = gx. To encrypt message m ∈ Gq, r ∈ Zq is chosen randomly
and the cryptotext is given by (u, v) = Ey(m, r) = (gr, yrm). To decrypt a
cryptotext Dx(u, v) = u−xv = m is computed. We denote by N = PQ an RSA
module for two strong primes P and Q, and let QRN be the subgroup of squares
in Z∗

N with generators g and h. The adversaries in this paper are modeled as
polynomial time Turing machines with non-uniform auxiliary advice string. We
denote the set of such adversaries by PPT∗.

2 Hierarchical Group Signatures

In this section we discuss the notion of hierarchical group signatures. We begin by
describing the parties of a hierarchical group signature system. Then we proceed
by giving formal definitions.

Hierarchical Group Signatures 449

Mρ

Mβ1

Sα1 Sα2

Mβ2

Sα3 Sα4 Sα5 Sα6

Mβ3

Sα7 Sα8 Sα9

Fig. 1. A tree of group managers and signers, where ρ = {β1, β2, β3}, β1 = {α1, α2},
β2 = {α3, α4, α5, α6}, and β3 = {α7, α8, α9}

There are two types of parties: signers denoted Sα for α in some index set I,
and group managers denoted Mα for indices α described below. The parties form
a tree T , where the signers are leaves and the group managers are inner nodes.
The indices of the group managers are formed as follows. If a group manager
manages a set of signers β ⊂ I we denote it by Mβ. This corresponds to Mβ

having Sα for α ∈ β as children. If a group manager Mγ manages a set of group
managers {Mβ1, . . . , Mβl

} we denote it by Mγ where γ = {β1, . . . , βl}. This
corresponds to Mγ having Mβi for i = 1, . . . , l as children. Let Mρ denote the
root group manager. We define the root group manager to be at depth 0 and
assume that all leaves in the tree are at the same depth δ. Figure 1 illustrates a
tree of parties.

Note that standard group signatures correspond to having a single group
manager M{1,...,l} that manages all signers S1, . . . , Sl.

2.1 Definition of Security

Bellare et al. [4] give a definition of a group signature scheme, but more impor-
tantly they argue that two properties of group signatures, full anonymity and
full traceability, imply any reasonable security requirements one can expect from
a group signature scheme. We follow their definitional approach closely.

Definition 1 (Hierarchical Group Signature). A hierarchical group signa-
ture scheme HGS = (HKg, HSig, HVf, HOpen) consists of four polynomial-time
algorithms

1. The randomized key generation algorithm HKg takes as input (1κ, T), where
T is a tree of size polynomially bounded in the security parameter κ with
all leaves at the same depth, and outputs a pair of maps hpk, hsk : V(T) →
{0, 1}∗. For each node (or leaf) α, hpk(α) is the public key and hsk(α) is
the secret key.

2. The randomized signature algorithm HSig takes as input a message m, a tree
T , a public key hpk, and a secret signing key hsk(α), and returns a signature
of m.

3. The deterministic signature verification algorithm HVf takes as input a tree
T , a public key hpk, a message m and a candidate signature σ of m and
returns either 1 or 0.

450 M. Trolin and D. Wikström

Fig. 2. Nodes in black represent group managers able to distinguish between signatures
by Sα(0) and Sα(1) , the two marked leaves

4. The deterministic opening algorithm HOpen takes as input a tree T , a public
key hpk, a secret opening key hsk(β), a message m, and a candidate signature
σ. It outputs an index α ∈ β or ⊥.

We need to define what we mean by security for a hierarchical group signature
scheme. We begin with anonymity. Consider Figure 2, where two signers Sα(0)

and Sα(1) are marked. Assume that it is known that a message has been signed
by one of them. Then any group manager on the path leading from Sα(0) or Sα(1)

to their first common ancestor can determine which of them signed the message.
In the figure those group managers are marked with black. In the definition of
anonymity we capture the property that unless the adversary corrupts one of
these group managers, it cannot determine whether Sα(0) or Sα(1) signed the
message, even if the adversary is given the private keys of all signers and is
allowed to select α(0), α(1) and the message itself.

We define Experiment 1 to formalize these ideas. Throughout the experiment
the adversary has access to an HOpen(T, hpk, hsk(·), ·, ·) oracle. At the start of
the experiment the adversary is given the public keys of all parties and the private
keys of all signers. Then it can adaptively ask for the private keys of the group
managers. At some point it outputs the indices α(0) and α(1) of two leaves and a
message m. The HSig(·, T, hpk, hsk(·)) oracle computes the signature of m using
the private key hsk(α(b)) and hands it to the adversary. The adversary finally
outputs a guess d of the value of b. If the scheme is anonymous the probability
that b = d should be negligibly close to 1/2 when b is a randomly chosen bit.
The labels corrupt, choose and guess below distinguish between the phases of the
experiment.

Experiment 1 (Hierarchical Anonymity, Expanon−b
HGS,A(κ, T)).

(hpk, hsk) ← HKg(1κ, T); sstate ← (hpk, hsk(L(T))); C ← ∅; α ← ∅;
Do

C ← C ∪ {α}
(sstate, α) ← AHOpen(T,hpk,hsk(·),·,·)(corrupt, sstate, hsk(α))

While (α ∈ V(T) \ C)
(sstate, α

(0), α(1), m) ← AHOpen(T,hpk,hsk(·),·,·)(choose, sstate)
σ ← HSig(m, T, hpk, hsk(α(b)))
d ← AHOpen(T,hpk,hsk(·),·,·)(guess, sstate, σ)

Hierarchical Group Signatures 451

Let B be the set of nodes on the paths from α(0) and α(1) up to their first
common ancestor αt excluding α(0) and α(1) but including αt, i.e., the set of
nodes α

(0)
l , α

(1)
l , l = t, . . . , δ − 1, such that

α(0) ∈ α
(0)
δ−1 ∈ α

(0)
δ−2 ∈ . . . ∈ α

(0)
t+1 ∈ αt 4 α

(1)
t+1 4 . . . 4 α

(1)
δ−2 4 α

(1)
δ−1 4 α(1) .

If B ∩ C �= ∅ or if A asked its HOpen(T, hpk, hsk(·), ·, ·) oracle a question (α(0)
l ,

m, σ) or (α(1)
l , m, σ) return 0. Otherwise return d.

Consider the above experiment with a depth one tree T and root ρ. In that
case we may assume that hsk(ρ) is never handed to the adversary, since the
adversary fails in that case anyway. Similarly the HOpen(T, hpk, hsk(·), ·, ·) oracle
reduces to the Open oracle in [4]. Thus, our experiment reduces to the experiment
for full anonymity given in [4] where the adversary gets the secret keys of all
signers, but only the public key of the group manager.

Next we consider how the notion of full traceability can be defined in our
setting. Full traceability as defined in [4] is similar to security against chosen
message attacks (CMA-security) as defined by Goldwasser, Micali and Rivest
[18] for signatures. The only essential difference is that the group manager must
always be able to open a signature and identify the signer. In our setting this
amounts to the following. Given a signature deemed valid by the HVf algorithm,
the root should always be able to identify the child directly below it of which the
signer is a descendent. The child should have the same ability for the subtree of
which it is a root and so on until the child itself is a signer.

Again we define an experiment consisting of two phases. The adversary is
given the secret keys of all group managers. Then the adversary adaptively
chooses a set of signers to corrupt. Then in a second phase the adversary out-
puts a message and a signature. If the output amounts to a signature deemed
valid by HVf and the signer cannot be traced, or if the signature is traced to a
non-corrupted signer, the adversary has succeeded and the experiment outputs
1. Otherwise it outputs 0. Thus, the distribution of the experiment should be
negligibly close to 0 for all adversaries if the scheme is secure.

Experiment 2 (Hierarchical Traceability, Exptrace
HGS,A(κ, T)).

(hpk, hsk) ← HKg(1κ, T); sstate ← (hpk, hsk(V(T)\L(T)); C ← ∅; α ← ∅;
Do

C ← C ∪ {α}
(sstate, α) ← AHSig(·,T,hpk,hsk(·))(corrupt, sstate, hsk(α))

While (α ∈ V(T) \ C)
(m, σ) ← AHSig(·,T,hpk,hsk(·))(guess, sstate)

If HVf(T, hpk, m, σ) = 0 return 0. Define α0 = ρ and αl = HOpen(T , hpk,
hsk(αl−1), m, σ) for l = 1, . . . , δ. If αl = ⊥ for some 0 < l ≤ δ return 1.
If αδ �∈ C and the HSig(·, T, hpk, hsk(·)) oracle did not get a question (m, αδ)
return 1. Otherwise return 0.

452 M. Trolin and D. Wikström

Consider the experiment above with a depth one tree. This corresponds to giving
the adversary the secret key of the group manager, and letting it adaptively
choose additional signing keys. This is precisely the setting of [4].

The advantage of the adversary is defined in the natural way by setting
Advanon

HGS,A(κ, T) = |Pr[Expanon−0
HGS,A(κ, T) = 1] − Pr[Expanon−1

HGS,A(κ, T) = 1]| and
Advtrace

HGS,A(κ, T) = Exptrace
HGS,A(κ, T).

Definition 2 (Security of Hierarchical Group Signatures). A hierarchical
group signature scheme HGS = (HKg, HSig, HVf, HOpen) is secure if for all trees
T of polynomial size in κ with all leaves at the same depth, and all A ∈ PPT∗,
Advtrace

HGS,A(κ, T) + Advanon
HGS,A(κ, T) is negligible.

3 Our Constructions

We construct two hierarchical group signature schemes, one under general as-
sumptions, and one under standard assumptions in the random oracle model.
Both require a trusted key generator at the start of the protocol. The two con-
structions are different, but based on similar ideas. In this extended abstract
we only give the main ideas behind our constructions. Detailed descriptions and
proofs of our claims are given in the full paper [26].

3.1 Our Approach

All known group signatures are based on the idea that the signer encrypts a
secret of some sort using the group manager’s public key, and then proves that
the resulting cryptotext is on this special form. The security of the cryptosystem
used implies anonymity, since no adversary can distinguish cryptotexts of two
distinct messages if they are encrypted using the same public key. We generalize
this approach.

First we consider the problem of forwarding partial information on the iden-
tity of the signer to group managers without leaking information. Each group
manager Mβ is given a secret key skβ and a public key pkβ of a cryptosys-
tem. We also give each signer Sα a public key pkα that is used to identify the
signer. Each signer is associated in the natural way with the path α0, α1, . . . , αδ

from the root ρ = α0 to the leaf α = αδ in the tree T of group managers and
signers. To compute a signature, the signer computes as part of the signature a
chain

(C0, C1, . . . , Cδ−1) =
(
Epkα0

(pkα1
), Epkα1

(pkα2
), . . . , Epkαδ−1

(pkαδ
)
)

.

Note that each cryptotext Cl in the list encrypts the public key pkαl+1
used to

form the following cryptotext. The particular structure of the chain and the fact
that all leaves are on the same depth in the tree ensures that a group manager
Mβ on depth l can try to open a signature by decrypting Cl, i.e., it computes
pk = Dskβ

(Cl). If αl = β, then pk = pkαl+1
. Thus, if Mβ manages signers, it

Hierarchical Group Signatures 453

learns the identity of the signer Sα, and if it manages other group managers it
learns the identity of the group manager below it in the tree which (perhaps
indirectly) manages the signer Sα.

Now suppose that αl �= β, so pk �= pkαl+1
. What does Mβ , or indeed any

outsider, learn about the identity of the signer Sα? It clearly does not learn
anything from a cryptotext Cl about the encrypted cleartext, as long as the
cryptosystem is semantically secure. However, if the cryptotext Cl+1 some-
how indicates which public key was used to form it, Mβ , or any outsider, can
simply look at Cl+1 and recover the cleartext of Cl. This means that it can
look at the chain of cryptotexts and extract information on the identity of
the signer. We conclude that using the approach above, we need a cryptosys-
tem which not only hides the cleartext, but also hides the public key used to
form the cryptotext. Such a cryptosystem is called an anonymous cryptosys-
tem [3].

Next we consider the problem of ensuring hierarchical traceability. This prob-
lem consists of two parts. We must ensure chosen message security to avoid that
an illegitimate signer is able compute a valid signature at all. However, the more
difficult problem is to ensure that the signer Sα not only formed (C0, . . . , Cδ−1)
as described above for some public keys pkα0

, . . . , pkαδ
, but also that the public

keys used correspond to the unique path α0, α1, . . . , αδ from the root ρ = α0

to the leaf α = αδ corresponding to the signer Sα. This is the main obstacle to
construct an efficient hierarchical group signature scheme.

3.2 A Construction Under General Assumptions

We sketch the construction under general assumptions. To achieve hierarchi-
cal anonymity we employ the cryptosystem of Goldwasser and Micali [17] and
prove that this cryptosystem is anonymous. To achieve traceability we use the
group signature scheme of Bellare et al. [4] and a non-interactive adaptive zero-
knowledge unbounded simulation sound proof (NIZK) as defined and constructed
for any language in NP in Feige, Lapidot and Shamir [16], Sahai [23], and De
Santis [24]. Both constructions are provably secure under the existence of a trap-
door permutation family.

The signer proves using the NIZK that the chain of cryptotexts is formed
correctly, and the group signature scheme ensures that only legitimate signers
can form a signature, without losing anonymity. The group signature also allows
us to use a semantically secure cryptosystem for the chain (cf. [4, 8]), since any
query to the HOpen oracle obviously can be answered correctly by the simulator
if we know the full identity of the signer, i.e., we use a variant of the double-
cryptotext trick of Naor and Yung [22]. The following theorem is proved in the
full version [26].

Theorem 1. If there exists a family of trapdoor permutations, then there exists
a secure hierarchical group signature scheme.

454 M. Trolin and D. Wikström

3.3 A Construction Under the DDH Assumption and the Strong
RSA Assumption

To achieve hierarchical anonymity in the practical construction we employ the
ElGamal cryptosystem, which is semantically secure under the DDH assumption.
It is easy to see that ElGamal is also anonymous, as long as a fixed group is
used for each security parameter. Thus, each group manager Mβ holds a secret
key xβ and a public key yβ = gxβ , and the chain of cryptotexts is on the form

((u0, v0), . . . , (uδ−1, vδ−1)) = (Eyα0
(yα1), . . . , Eyαδ−1

(yαδ
)) .

To achieve chosen message security we employ the Fiat-Shamir heuristic to
turn an identification scheme into a signature scheme. The secret key of a signer
Sα is a Cramer-Shoup [15] signature σα = Sigcs(yα1 , . . . , yαδ−1) of the public
keys corresponding to the path α0, α1, . . . , αδ from the root ρ = α0 to the leaf
α = αδ. The Cramer-Shoup scheme is provably secure under the strong RSA
assumption.

To form a signature of a message m the signer first computes a commitment
C(σα) of the signature σα. Then it computes an honest verifier zero-knowledge
public coin proof π(m) that the cryptotexts ((u0, v0), . . . , (uδ−1, vδ−1)) form a
chain and that C(σα) hides a signature of the list (yα1 , . . . , yαδ−1) of public keys
used to form the chain of cryptotexts. The proof is given in the random oracle
model and the message m to be signed is given as a prefix to every query to the
random oracle. Thus, the complete signature is given by

(Eyα0
(yα1), . . . , Eyαδ−1

(yαδ
), C(σα), π(m)) .

Intuitively, this means that if a signer Sα can produce a valid signature, we
can by rewinding extract a signature of the list of public keys corresponding to
the path from the root to the signer. Thus, a signature can only be formed if the
signer is legitimate and if it has formed the chain correctly. Denote the hierar-
chical group signature scheme sketched above by HGS. We prove the following
theorem in the full version [26].

Theorem 2. The hierarchical signature scheme HGS is secure under the DDH
assumption and the strong RSA assumption in the random oracle model.

Efficiency Analysis. The complexity of the protocol is largely determined by
the proof sketched in the next subsection. This protocol has soundness 1 −
O(δ2−κ′

), where κ′ is a secondary security parameter. Using standard computa-
tional tricks we estimate the complexity of the protocol to correspond to roughly
κ′(δ + 3) general exponentiations modulo a κ-bit integer. If we set δ = 3 and
κ′ = 160 this corresponds to less than 1000 general exponentiations. The size of
a signature is about 1 Mb. The full version [26] contains a more detailed analysis.

Construction of the Proof of Knowledge. The main obstacle to find an
efficient hierarchical group signature scheme following our approach is how to

Hierarchical Group Signatures 455

prove efficiently that C(σα) is a commitment of a signature σα of the list of pub-
lic keys (yα1 , . . . , yαδ−1) used to form the chain ((u0, v0), . . . , (uδ−1, vδ−1)). We
construct a reasonably practical honest verifier zero-knowledge public coin proof
for this relation by carefully selecting and combining a variety of cryptographic
primitives and techniques. Due to the complexity of this protocol we can only
sketch the main ideas of this protocol in this extended abstract. Details are given
in the full version [26].

Let q0, . . . , q3 be primes such that qi = 2qi+1 + 1 for i = 0, 1, 2. A list of
such primes is called a Cunningham chain and exists under mild assumptions
on the distribution of primes. There is a subgroup Gqi+1 ⊂ Z∗

qi
of order qi+1 for

i = 0, 1, 2. Denote by gi and yi fixed and independently chosen generators of Gqi

for i = 1, 2, 3, i.e., loggi
yi is not known to any party in the protocol. Thus, we

can form a commitment of a value yα ∈ Gq3 in three ways, as

(yt′′′
3 gs′′′

3 , ys′′′
3 yα) , (yt′′

2 gs′′
2 , ys′′

2 gyα

2) , and (yt′
1 gs′

1 , ys′
1 g

gyα
2

1) ,

where t′′′, s′′′ ∈ Zq3 , t′′, s′′ ∈ Zq2 , and t′, s′ ∈ Zq1 are randomly chosen. By
extending the ideas of Stadler [25] we can give a reasonably practical cut-and-
choose proof that the elements hidden in two such commitments are identical.

Recall that the collision-free Chaum-Heijst-Pfitzmann [12] hash function is
defined by HCHP : Zδ

q2
→ Gq2 , HCHP : (z1, . . . , zδ) �→

∏δ
l=1 hzl

l , where the bases
h1, . . . , hδ ∈ Gq2 are randomly chosen, i.e., no party knows a non-trivial repre-
sentation of 1 ∈ Gq2 in these elements.

We employ ElGamal over Gq3 . This means that the public keys yα1 , . . . , yαδ

belong to Gq3 . Although it is not trivial, the reader should not find it too hard to
imagine that Stadler-techniques can be used to prove that the public keys used
for encryption are identical to values hidden in a list of commitments formed as

((μ0, ν0), . . . , (μδ−1, νδ−1)) = ((yt′′0
2 g

s′′
0

2 , y
s′′
0

2 h
yα1
1), . . . , (y

t′′δ−1
2 g

s′′
δ−1

2 , y
s′′

δ−1
2 h

yαδ

δ)) .

The importance of this is that if we take the product of the commitments we
get a commitment of HCHP(yα1 , . . . , yαδ

), i.e.,(δ−1∏
i=0

μi,

δ−1∏
i=0

νi

)
=

(
yt′′
2 gs′′

2 , ys′′
2

δ∏
i=1

h
yαi

i

)
, (1)

for some t′′, s′′ ∈ Zq2 . Thus, at this point we have devised a way for the signer
to verifiably commit to the hash value of the keys it used to form the chain of
cryptotexts. This is a key step in the construction.

Recall that the signer commits to a Cramer-Shoup signature σα of the list
of public keys it uses to form the chain of cryptotexts. This signature scheme
uses an RSA-modulus N and elements from the subgroup QRN of squares in
Z∗

N , and it is parameterized by two collision-free hash functions. The first hash
function is used to compute a message digest of the message to be signed, i.e.,

456 M. Trolin and D. Wikström

the list (yα1 , . . . , yαδ
) of public keys. Above we have sketched how the signer

can verifiably form a commitment of the HCHP hash value of this message, so
it is only natural that we let this be the first of the two hash functions in the
signature scheme. However, in the signature scheme the message digest lives in
the exponent of an element in QRN in the signature scheme. To move the hash
value up in the exponent and to change group from Gq1 to QRN , the signer
forms two commitments(

yt′
1 gs′

1 , ys′
1 g

HCHP(yα1 ,...,yαδ
)

1

)
and htgHCHP(yα1 ,...,yαδ

) .

Then it gives a cut-and-choose proof that the exponent in the left commitment
equals the value committed to in the product (1). It also proves that the ex-
ponents in the two commitments are equal. Thus, at this point the signer has
proved that it holds a commitment over QRN of the hash value of the public
keys it used to form the chain of cryptotexts.

The second hash function used in the Cramer-Shoup signature scheme is
applied to a single element in QRN . Since HCHP is not collision-free on such
inputs, we use the Shamir hash function HSh

(g,N) : Z → QRN , x �→ gx mod N
instead. Using similar techniques as explained above the signer evaluates the
hash function and moves the result into the exponent, by two Stadler-like cut-
and-choose proofs.

Given the two hash values in the exponents of two commitments, standard
techniques can be used to prove that the commitment C(σα) is a commitment of
the Cramer-Shoup signature σα of the list of public keys used to form the chain
of cryptotexts.

4 Conclusion

We have introduced and formalized the notion of hierarchical group signatures
and given two constructions. The first is provably secure under general assump-
tions, whereas the second is provably secure under the DDH assumption and
the strong RSA assumption in the random oracle model. The latter is practical,
i.e., it can be implemented and run on modern workstations, bit it is still slow.
Both require a trusted key generator. Thus, an interesting open problem is to
eliminate these deficiencies.

Acknowledgments

We thank Johan H̊astad for excellent advice. We also thank Torsten Ekedahl for
explaining the heuristic view on the existence of Cunningham chains. We thank
Ronald Cramer for providing us with references. We had valuable discussions on
anonymity of cryptosystems with Gustav Hast.

Hierarchical Group Signatures 457

References

1. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably
secure coalition-resistant group signature scheme. In CRYPTO 2000, volume 1880
of LNCS, 2000.

2. G. Ateniese and G. Tsudik. Some open issues and directions in group signatures.
In Financial Cryptography ’99, volume 1648 of LNCS, 1999.

3. M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval. Key-privacy in public-key
encryption. In ASIACRYPT 2001, volume 2248 of LNCS, 2001.

4. M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures:
Formal definitions, simplified requirements, and a construction based on general
assumptions. In EUROCRYPT 2003, volume 2656 of LNCS, 2003.

5. M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The case of
dynamic groups. In RSA-CT 2005, volume 3376 of LNCS, 2005.

6. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In CRYPTO 2004,
volume 3152 of LNCS, 2004.

7. J. Camenisch. Efficient and generalized group signatures. In EUROCRYPT’97,
volume 1233 of LNCS, 1997.

8. J. Camenisch and J. Groth. Group signatures: Better efficiency and new theoretical
aspects. In SCN 2004, volume 3352 of LNCS, 2005.

9. J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials
from bilinear maps. In CRYPTO 2004, volume 3152 of LNCS, 2004.

10. J. Camenisch and M. Michels. A group signature scheme with improved effiency.
In ASIACRYPT’98, volume 1514 of LNCS, 1999.

11. J. Camenisch and M. Stadler. Efficient group signature schemes for large groups.
In CRYPTO’97, volume 1294 of LNCS, 1997.

12. D. Chaum, E. van Heijst, and B. Pfitzmann. Cryptographically strong undeniable
signatures, unconditionally secure for the signer. In CRYPTO’91, volume 576 of
LNCS, 1991.

13. D. Chaum and E. van Heyst. Group signatures. In EUROCRYPT’91, volume 547
of LNCS, 1991.

14. L. Chen and T.P. Pedersen. New group signature schemes. In EUROCRYPT’94,
volume 950 of LNCS, 1994.

15. R. Cramer and V. Shoup. Signature schemes based on the strong RSA assumption.
In 6th CCS, 1999.

16. U. Feige, D. Lapidot, and A. Shamir. Multiple non-interactive zero-knowledge
proofs under general assumptions. SIAM Journal of Computing, 29(1), 1999.

17. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and
System Sciences, 28(2), 1984.

18. S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal of Computing, 17(2), 1988.

19. A. Kiayias, Y. Tsiounis, and M. Yung. Traceable signatures. In EUROCRYPT
2004, volume 3027 of LNCS, 2004.

20. A. Kiayias and M. Yung. Group signatures: Provable security, efficient construc-
tions and anonymity from trapdoor-holders. Cryptology ePrint Archive, Report
2004/076, 2004. http://eprint.iacr.org/2004/076.

21. S. Kim, S. Park, and D. Won. Group signatures for hierarchical multigroups. In
ISW’97, volume 1396 of LNCS, 1998.

22. M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In 22nd STOC, 1990.

458 M. Trolin and D. Wikström

23. A. Sahai. Non-malleable non-interactive zero-knowledge and adaptive chosen-
ciphertext security. In 40th FOCS, 1999.

24. A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Robust
non-interactive zero knowledge. In CRYPTO 2001, volume 2139 of LNCS, 2001.

25. M. Stadler. Publicly verifiable secret sharing. In EUROCRYPT’96, volume 1070
of LNCS, 1996.

26. M. Trolin and D. Wikström. Hierarchical group signatures. Cryptology ePrint
Archive, Report 2004/076, 2004. http://eprint.iacr.org/2004/311.

Designated Verifier Signature Schemes:
Attacks, New Security Notions and a New Construction

Helger Lipmaa1, Guilin Wang2, and Feng Bao2

1 Cybernetica AS and University of Tartu, Estonia
2 Institute for Infocomm Research (I2R), Singapore

Abstract. We show that the signer can abuse the disavowal protocol in the
Jakobsson-Sako-Impagliazzo designated-verifier signature scheme. In addition,
we identify a new security property—non-delegatability—that is essential
for designated-verifier signatures, and show that several previously proposed
designated-verifier schemes are delegatable. We give a rigorous formalisation
of the security for designated-verifier signature schemes, and propose a new
and efficient designated-verifier signature scheme that is provably unforgeable
under a tight reduction to the Decisional Diffie-Hellman problem in the
non-programmable random oracle model, and non-delegatable under a loose
reduction in the programmable random oracle model. As a direct corollary,
we also get a new efficient conventional signature scheme that is provably
unforgeable under a tight reduction to the Decisional Diffie-Hellman problem in
the non-programmable random oracle plus common reference string model.

Keywords: Designated verifier signature scheme, non-delegatability, non-
programmable random oracle model, signature scheme.

1 Introduction

In 1996, Jakobsson, Sako and Impagliazzo introduced the concept of designated-verifier
signature (DVS) schemes [JSI96]. A DVS scheme makes it possible for a prover Signy
to convince a designated verifier Desmond that she has signed a statement so that
Desmond cannot transfer the signature to a third party Trevor. This is achieved since
Desmond himself can efficiently simulate signatures that are indistinguishable from
Signy’s signatures. Moreover, in a disavowable DVS scheme, Signy can prove to Trevor
that a simulated signature was not created by Desmond, while she can not disavow her
own signatures. This is possible only when Signy’s and Desmond’s signatures are com-
putationally but not perfectly indistinguishable.

We point out weaknesses in the designated-verifier signature schemes of [JSI96,
SKM03, SBWP03, SWP04, LV04]. Of these schemes, the JSI scheme from [JSI96] is
the only disavowable DVS scheme. However, we show that in the JSI scheme, a ma-
licious Signy can generate signatures exactly from the same distribution as Desmond
and thus the JSI scheme is perfectly non-transferable and thus also not disavowable.
Our attack against the DVS schemes from [SKM03, SBWP03, SWP04, LV04] is not an
attack according to the definitions of the designated verifier signatures in these papers,

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 459–471, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

460 H. Lipmaa, G. Wang, and F. Bao

although it is an attack according to the original informal definition of [JSI96]: namely,
we show that Signy can delegate her signing ability—with respect to a fixed designated
verifier Desmond—to a third party Trevor, without revealing her secret key or making
it possible for Trevor to sign with respect to other designated verifiers. This delegation
property, while desirable in some settings (e.g., proxy DVS schemes), is extremely un-
desirable in many other settings and must therefore be considered as a serious weakness
of a DVS scheme.

By pointing out the described flaws in these designated verifier signature scheme,
we arrive to a stronger security notion for DVS that includes two novel requirements: (a)
most importantly, non-delegatability: there exists an efficient knowledge extractor that
can extract either Signy’s secret key or Desmond’s secret key, when given oracle access
to an adversary who can create valid signatures with a high probability (this property
is not shared by the DVS schemes from [SKM03, SBWP03, SWP04, LV04]), and (b)
secure disavowability: if the DVS scheme has a disavowal protocol, it must be the case
that Signy cannot disavow signatures, given by herself (this property is not shared by
the DVS scheme from [JSI96]).

Non-delegatability of a DVS means that a valid designated-verifier signature con-
stitutes a proof of knowledge of either Signy’s or Desmond’s secret key. Now, for con-
ventional signatures, ability to sign is conceptually equal to the knowledge of the secret
key. Therefore, a valid signature does not be a proof of knowledge. Now, as it is known
from [KW03], one can construct conventional signature schemes whose unforgeability
is proven by giving a tight reduction to an underlying cryptographic problem; this is
achieved by specially avoiding the use of proofs of knowledge. However, in the case of
a DVS scheme, we can also avoid proofs of knowledge in the proof of unforgeability,
but not in the proof of non-delegatability. Therefore, even if we have a proof that a DVS
scheme is unforgeable (w.r.t. any verifier), we cannot directly derive from that that this
scheme is also non-delegatable. Therefore, in some sense, a (non-delegatable) DVS is
a more “complex” notion than a conventional signature scheme.

It is not difficult to show that the DVS scheme from [JSI96] is secure—more
precisely, unforgeable, non-delegatable, computationally non-transferable and securely
disavowable—after a trivial fix of just adding some additional variables under the used
hash value, by following the usual proof of knowledge methodology. We do not present
these proofs in this paper: while it is straightforward to prove these results, the corre-
sponding proofs do not really give an insight to the just pointed out difference between
unforgeability and non-delegatability.

Instead, we propose a new DVS scheme, DVS-KW, based on the provably secure
signature scheme of Katz and Wang [KW03], where the signer presents a designated-
verifier proof that his public key is a Decisional Diffie-Hellman (DDH) tuple. We prove
that DVS-KW is unforgeable by providing a tight reduction to the underlying cryp-
tographic problem (DDH) in the non-programmable random oracle (NPRO) model.
The NPRO model is is known to be strictly weaker than the random oracle (RO)
model [Nie02] and thus the unforgeability of DVS-KW in the NPRO model is interest-
ing by itself, especially since the unforgeability proof of the original Katz-Wang signa-
ture scheme relies heavily on the programmability of the random oracle. We also prove
non-delegatability of DVS-KW, though this proof is in the programmable random ora-

Designated Verifier Signature Schemes 461

cle model and has a larger security degradation due to the involved proof-of-knowledge
property. More precisely, we show that if some forger can create valid signatures with
probability ε > κ where κ is the knowledge error, then there exists a knowledge extrac-
tor that extracts one of the two secret keys in time, dominated by 56/κ oracle queries
to the forger.

DVS-KW can be seen as a proof of concept, showing how to design DVS schemes
that have a tight reduction in the unforgeability proof and are still non-delegatable.
Moreover, DVS-KW is more efficient than the JSI scheme from [JSI96], and DVS-KW
does not allow the signer to disavow simulated signatures; the latter property makes
DVS-KW attractive in many applications. (Recall also that we broke the disavowability
of the JSI scheme.) At this moment, the most efficient secure disavowable designated-
verifier signature scheme seems to be the corrected JSI DVS scheme, while the most
efficient secure designated-verifier signature scheme seems to be the DVS-KW scheme.

We also show the existence of an efficient conventional signature scheme that is
unforgeable under a tight reduction to the Decisional Diffie-Hellman problem in the
NPRO+CRS (common reference string) model. In this model, all parties will addition-
ally have access to the common reference string that corresponds to Desmond’s public
key in DVS-KW. The importance of this result is that signature schemes, secure in
the plain model, are considerably slower than this scheme and/or are secure under in-
compatible and often less studied assumptions. Therefore, if one wants to avoid the
programmable random oracle model—where one can construct very efficient signature
schemes—one might want to use the new scheme.

2 Preliminaries

Let Gq be a finite, cyclic group of prime order q in which the group operation is rep-
resented multiplicatively; furthermore, let g be a generator of G. The most common
setting is as follows: let p, q be two large primes such that q|(p − 1), then Gq a mul-
tiplicative subgroup of Z∗

p of order q, and g a generator of Gq. Other settings (e.g.,
using elliptic curves) are possible. A distinguishing algorithm A is said to (τ, ε)-break
DDH (Decisional Diffie-Hellman) in group Gq if A runs in time at most τ and further-
more Advddh

G (A) := |Pr[x, y, z ←r Zq : A(g, gx, gy, gz) = 1] − Pr[x, y ←r Zq :
A(g, gx, gy, gxy) = 1]| ≥ ε, where the probability is taken over the choice of random
variables and the coin tosses of A. We say that G is a (τ, ε)-DDH group if no algorithm
(τ, ε)-breaks DDH in G.

A designated-verifier signature scheme [JSI96] is a tuple of probabilistic algorithms
(Gen,Sign,Simul,Vrfy) over a message spaceM, such that: (a) The key-generation al-
gorithm Gen outputs a public key pk and a secret key sk; (b) The signing algorithm Sign
takes as input signer’s secret key skS , designated verifier’s public key pkD and a mes-
sage m ∈M and returns signature σ; (c) The simulation algorithm Simul takes as input
signer’s public key pkS , designated verifier’s secret key skD and a message m ∈ M
and returns signature σ; (d) Verification algorithm Vrfy takes as input signer’s public
key pkS , designated verifier’s public key pkD, a message m ∈ M, and a signature σ
and returns accept or reject. In some of the existing designated verifier schemes, the
verification algorithm must have access to the designated verifier’s secret key skD. We

462 H. Lipmaa, G. Wang, and F. Bao

call such a designated-verifier signature scheme privately verifiable. We make the stan-
dard correctness requirement: for all (skS , pkS) and (skD, pkD) output by Gen and for
all m ∈ M we have VrfypkS ,pkD

(SignskS ,pkD
(m)) = VrfypkS ,pkD

(SignskD,pkS
(m)) =

accept. We say that a signature σ is valid if VrfypkS ,pkD
(σ) = accept.

3 Previous DVS Schemes and Their Security

Jakobsson-Sako-Impagliazzo Disavowable DVS Scheme [JSI96]. Let p, q and Gq

be as described in Sect. 2. Assume that Signy and Desmond have the Diffie-Hellman
key pairs (xS , yS = gxS mod p) and (xD, yD = gxD mod p), respectively. As-
sume that Hq is a random oracle mapping to Zq. (Note: If m /∈ Zp then m must be
hashed by using a full-domain hash, modelled by a random oracle. We will ignore this
issue throughout this paper.) In SignskS ,pkD

(m), Signy sets s ← mxS mod p, selects
three random numbers w, t, r ←r Zq, and computes G ← gr mod p, M ← mr

mod p, h ← Hq(gwyt
D mod p,G,M) and z ← r + (h + w)xS mod q. Then,

Signy sends the signature σ := (s, P), where P = (w, t,G,M, z), to the desig-
nated verifier, Desmond. In SimulskD,pkS

(m, s), by selecting three random numbers
z, α, β ←r Zq, Desmond creates P = (w, t,G,M, z), for any message m and any
s ← Gq , as follows: (G,M) ← (gzy−β

S mod p,mzs−β mod p), h ← Hq(gα

mod p,G,M), w ← β−h mod q, t← (α−w)x−1
D mod q. He sets σ ← (s, P). In

VrfypkS ,pkD
(m; s, w, t,G,M, z), the verifier computes h← Hq(gwyt

D mod p,G,M)

and checks whether G = gzy
−(h+w)
S mod p and M = mzs−(h+w) mod p. The JSI

scheme can be made more communication-efficient by transferring h (instead of G and
M) to Desmond. Then the verifier must check that h = Hq(gwyt

D mod p, gz ·y−(h+w)
S

mod p,mz · s−(h+w) mod p). This version is security-wise equivalent to the original
scheme but somewhat more efficient.

Our Attack: First, a honest Signy generates valid signatures only for s = mxS while
Desmond can generate valid signatures for any s ∈ Z∗

p. That is, knowing xS , a honest
Signy generates valid designated-verifier proof P only for s = mxS , while knowing
xD, Desmond generates valid designated-verifier proofs P for any s ∈ Z∗

p. Thus it
suffices to have a disavowal where Signy proves in non-interactive zero-knowledge that
s �= mxS . Next, we show that Signy can also compute valid signatures for any s̄ ∈ Z∗

p,
therefore, Signy can create signatures from the same distribution as Desmond and thus,
the JSI scheme is perfectly non-transferable. This means that there exists no disavowal
protocol for the JSI scheme at all.

Here is how Signy does it. Signy computes a signature (s̄;w, t,G, M̄ , z) for a mes-
sage m, with s̄ �= mxS , as follows. She selects four random numbers w, t, r, r̄ ←r Zq

and then sets c ← gwyt
D mod p, G ← gr mod p, M̄ ← mr̄ mod p, h ←

Hq(c,G, M̄), z ← r + (h + w)xS mod q and s̄ ← mxS · m(r−r̄)/(h+w) mod q

mod p. After that, Signy sends the message-signature pair (m, s̄) with σ̄ = (s̄, P =
(w, t,G, M̄ , z)), to Desmond. Clearly, VrfypkS ,pkD

(m, σ̄) = accept so Desmond will
believe that s̄ is Signy’s signature for message m. In later disputes, however, Signy can
convince a third party (e.g., a judge) that s̄ was simulated by Desmond, by using a stan-

Designated Verifier Signature Schemes 463

dard disavowal protocol to show that logg yS �= logm s̄. This attack does not result in a
signature forgery, it just shows that the JSI scheme is not disavowable.

There are two intuitive countermeasures to avoid this attack. First, Signy provides
an additional proof of knowledge that logm M = logg G. However, this increases the
signature length. Second, include s (together with pkS and pkD) to the input of the hash
function. This turns out to be is sufficient, related discussion can be found in Sect. 6.

Saeednia-Kremer-Markowitch Privately Verifiable DVS Scheme [SKM03]. Let p,
q and Gq be as defined in Sect. 2. In the SKM scheme, Signy and Desmond have the
Diffie-Hellman key pairs (xS , yS = gxS mod p) and (xD, yD = gxD mod p), re-
spectively. Assume that Hq(·) is a random oracle mapping to Zq. In SignskS ,V KD

(m),
Signy selects two random numbers k ←r Zq, t ←r Z∗

q , and then computes the signa-
ture σ = (h, d, t) by setting c ← yk

D mod p, h ← Hq(m, c) and d ← kt−1 − h · xS

mod q. In SimulskD,pkS
(m), Desmond picks two random numbers d̄←r Zq, r̄ ←r Z∗

q ,

and then computes σ = (h, d, t) as follows: for c← gd̄yr̄
S mod p, set h← Hq(m, c),

d← h · d̄ · r̄−1 mod q and t← r̄ · (xD · h)−1 mod q. In VrfypkS ,skD
(m;h, d, t), the

verifier accepts iff h = Hq(m, (gdyh
S)txD mod p).

Our attack: We show that the knowledge of ySD := gxS ·xD mod p is sufficient to
generate both a valid signature and to verify it, and therefore, this scheme is delegat-
able (both in the sense of signing and verifying). On the one hand, given ySD, one can
verify whether a message-signature pair (m,h, d, t) is valid for the designated verifier
Desmond by checking whether h = Hq(m, (yd

Dyh
SD)t mod p). On the other hand,

given ySD, anybody can produce a valid designated-verifier signature σ = (h, d, t)
for any message m by selecting two random numbers d̄ ←r Zq, r̄ ←r Z∗

q , and then

setting c ← yd̄
Dyr̄

SD mod p, h ← Hq(m, c), d ← h · d̄ · r̄−1 mod q and t ← r̄h−1

mod q. The resulting signature σ = (h, d, t) is accepted by the verifier, since (gdyh
S)txD

mod p = (gh·d̄·r̄−1
yh

S)r̄·h−1xD = yd̄
Dyr̄

SD mod p = c. In particular, this means that
this scheme is perfectly non-transferable. (The authors of [SKM03] get the same result
by a complicated analysis of probability theory.) It might again seem that one can rem-
edy this situation by including t under the hash. However, in the simulation, Desmond
needs to choose t after fixing h, and therefore this fix does not work.

Steinfeld-Wang-Pieprzyk DVS. Assume again that p, q and Gq are as defined in
Sect. 2. At least the first privately-verifiable DVS scheme, SchUDVS1, from [SWP04] is
also delegatable. Recall that there, a designated-verifier signature of message m is equal
to (r, u,K), for r ← Hq(m,u), and the verifier accepts only when K = (u · yr

S)xD

mod p. But if Signy publishes ySD ← yxS

D , anybody can produce valid signatures by
setting u ← gk mod p and K ← yk

D · yr
SD mod p for random k ←r Zq. Thus, also

this scheme is delegatable.

Steinfeld-Bull-Wang-Pieprzyk and Laguillaumie-Vergnaud DVS. The SBWP
designated-verifier signature scheme from [SBWP03] is based on a group pair (G1,G2)
with bilinear pairing 〈·, ·〉 from G2

1 , with ordG1 = q, to G2. (See [SBWP03] for more
details.) Let m be the message to be signed, HG1—a random oracle with outputs from
G1, and let g be a generator of G1. Assume that Signy’s key-pair is (xS , yS = gxS)

464 H. Lipmaa, G. Wang, and F. Bao

and that Desmond’s key-pair is (xD, yD = gxD) for randomly chosen xS , xD ← Zq.
Signy’s designated-verifier signature on a message m is σ ← 〈HG1(m)xS , yD〉.
Desmond simulates the signature by setting σ ← 〈HG1(m)xD , yS〉. The signature
is verified by checking that σ = 〈HG1(m)xD , yS〉. Again, if the value of ySD =
gxSxD mod q is compromised, any entity who gets to know ySD can also produce a
valid σ by computing σ ← 〈HG1(m), ySD〉. Therefore, this scheme is also delegatable.
The Laguillaumie-Vernaud [LV04] DVS scheme is delegatable for the same reason.

4 DVS Security Definitions

In the original paper [JSI96], a designated-verifier signature was required to convince
the designated verifier Desmond that the signer Signy has signed the message, in a way
that Desmond is able to simulate signature that is indistinguishable from the real signa-
tures, even by a verifier who has access to the designated verifier’s private key. A more
formal definition was given in say [SBWP03]. We will first repeat formal definitions
of unforgeability and non-transferability and then give a definition of the new notion,
non-delegatability.

A designated-verifier signature scheme must satisfy at least the next two condi-
tions: (a) Unforgeability: signatures are verifiable by the designated verifier Desmond
who rejects it when the signature was not signed by himself or Signy, and (b)
Non-transferability: given a message-signature pair (m,σ), that is accepted by the
designated-verifier, and without access to the secret key of the signer, it is computa-
tionally infeasible to determine whether the message was signed by the signer, or the
signature was simulated by the designated verifier.

In the following, Ω denotes the space from which the random oracle H is selected;
definition without a random oracle is analogous. Depending on the situation, we will
have either Ω = Ωnpro to be the set of all non-programmable random oracles [Nie02]
or Ω = Ωro to be the set of all random oracles with proper input and output domains.

Let Δ = (Gen,Sign,Simul,Vrfy) be a designated-verifier signature scheme with
the message spaceM. We say that Δ is perfectly non-transferable if SignskS ,pkD

(m) =
SimulskD,pkS

(m) as distributions for every (pkS , skS) ← Gen, (pkD, skD) ← Gen,
Hq ← Ω and m ←M. Analogously, one can define statistically non-transferable and
computationally non-transferable schemes. An adversial forging algorithm F is said to
(τ, qh, qs, ε)-forge Δ if F runs in time at most τ , makes at most qh hash queries and in
total at most qs signing and simulation queries, and furthermore

Advforge
Δ (F) := Pr

⎡⎢⎣ (pkS , skS) ← Gen; (pkD, skD) ← Gen;H ← Ω;

(m,σ) ← FSignskS ,pkD
(·),SimulskD,pkS

(·),H(·)(pkS , pkD) :
σ �∈ Σ(m) ∧ VrfypkS ,pkD

(m,σ) �= reject

⎤⎥⎦ ≥ ε ,

where Σ(m) is the set of signatures received either from SignskS ,pkD
(m) or from

SimulskD,pkS
(m). A designated-verifier signature scheme is (τ, qh, qs, ε)-unforgeable

if no forger can (τ, qh, qs, ε)-forge it. In the case a DVS scheme is only computation-
ally non-transferable, it is important that Σ(m) also includes signatures received from

Designated Verifier Signature Schemes 465

SimulskD,pkS
(m). If a scheme is perfectly non-transferable then an access to the Simul

oracle will not help the forger.

Delegatability. The definition of unforgeability does not cover the case when the
signer, without disclosing her secret key skS , delegates her signing rights (w.r.t. to
a concrete designated verifier Desmond) to F by disclosing some side information
ySD := fS(skS , pkD), that helps the latter to produce valid signatures. Analogously,
the designated verifier might delegate his signature simulating capability by disclos-
ing some—potentially different—side information y′SD := fD(skD, pkS). This implies
that when Desmond sees a valid signature σ that is not generated by himself, he can
only conclude that σ is generated by somebody who knows either ySD or y′SD. In some
scenarios, Signy may reveal or be forced to reveal the value of ySD to a third party
Trevor so that Trevor can generate valid Signy’s signatures for Desmond. Such a dele-
gation is essentially different from the situation where Signy reveals her secret key xS

to Trevor, since knowledge of ySD allows Trevor to sign messages designated only to
Desmond, and not to anybody else. Therefore, Signy might be more willing to give out
the value ySD than her secret key skS . This is not an issue in the case of conventional
signature schemes where non-delegatability follows from unforgeability.

We will next give a longer explanation why delegatability is bad. First of all, in the
original definition of designated-verifier proofs [JSI96], it was said that a proof of the
truth of some statement Φ is a designated-verifier proof if it is a proof that either Φ is
true or the signer knows Desmond’s secret key. This intuitive requirement is clearly not
satisfied by delegatable DVS schemes, where a signer proves that either Φ is true or she
knows ySD or she knows y′SD.

Moreover, delegatability is undesirable in many applications of the designated-
verifier signature scheme. We will give two examples. First, in an hypothetical e-voting
protocol where voters sign messages by using a designated-verifier signature scheme
(with the tallier being the designated verifier Desmond), knowing that this information
can only be used to vote in this concrete election, a voter Signy could be motivated to
give a copy of ySD to the coercer for a moderate sum of money. On the other hand, since
Signy might use skS in many other applications, she might not be willing to send skS

to the coercer for any imaginable “moderate” amount of money. Second, assume that
Signy is a subscriber to an e-library, maintained by Desmond, and that she identifies
herself by using a designated-verifier signature scheme so that Desmond could not sell
Signy’s access history to third parties. If the DVS scheme is delegatable, Signy could
however send ySD to a non-subscriber who could then also start enjoying Desmond’s
service. Since ySD is used only in this application, Signy could be happily willing to do
that. On the other hand, if the DVS were not delegatable, Signy would have to reveal
her secret key. Finally, it may happen that Signy and Desmond also participate in some
other protocols where ySD or y′SD is revealed legitimately and thus the attacker can
gain access to either of these values. Note also that a DVS scheme with delegatability
is somewhat similar to the proxy signatures, except that in the case of proxy signatures,
(a) the verifier can distinguish between messages, signed by Signy and a proxy, and (b)
the signatures are universally verifiable.

The preceding discussion motivates the next definition. It basically says that a non-
delegatable DVS scheme is a non-interactive system of proofs of knowledge of either

466 H. Lipmaa, G. Wang, and F. Bao

skS or skD. Here, Fm denotes F with m as its input, and oracle calls are counted
as one step. More precisely, let κ ∈ [0, 1] be the knowledge error. We say that Δ is
(τ, κ)-non-delegatable if there exists a black-box knowledge extractor K that, for every
algorithm F and for every valid signature σ, satisfies the following condition: For every
(pkS , skS) ← Gen, (pkD, skD) ← Gen and message m, if F produces a valid signature
on m with probability ε > κ then, on input m and on access to the oracle Fm, K
produces either skS or skD in expected time τ

ε−κ (without counting the time to make
the oracle queries). (Here, F’s probability is taken over the choice of her random coins
and over the choice of Hq ← Ω.)

5 New DVS Scheme with Tight Reduction to DDH in NPRO

Let p, q and Gq be as defined in Sect. 2. Let g1, g2 ∈ Gq be two elements such
that nobody knows the mutual discrete logarithms of g1 and g2. Following the ideas
from [KW03], in the next DVS-KW DVS scheme, we let Signy to prove Desmond that
(g1, g2, y1S , y2S) is a Decisional Diffie-Hellman tuple, where xi ←r Zq is i’s private
key and pki := (g1, g2, y1i, y2i) is i’s public key with y1i = gxi

1 and y2i = gxi
2 . This

proof is made designated-verifier by using the same trick as in the JSI scheme [JSI96],
and non-interactive by using a non-programmable random oracle [Nie02] Hq with out-
puts from Zq. In particular, the random oracle Hq can be chosen at the same stage
as other system parameters, g1 and g2. This is an interesting result by itself since
in [KW03], Hq had to be a programmable random oracle for their security proof to
go through. The description of the full DVS-KW scheme follows:

SignskS ,pkD
(m): Signy generates random r, w, t ← Zq, and sets a1 ← gr

1 mod p,
a2 ← gr

2 mod p, c ← gw
1 yt

1D mod p, h ← Hq(pkS , pkD, a1, a2, c,m) and z ←
r + (h + w)xS mod q. She outputs the signature σ ← (w, t, h, z).

SimulskD,pkS
(m): By selecting three random numbers z, α, β ←r Zq, Desmond

creates σ = (w, t, h, z) for any message m as follows: (a1, a2) ← (gz
1y

−β
1S

mod p, gz
2y

−β
2S mod p), h ← Hq(pkS , pkD, a1, a2, g

α
1 mod p,m), w ← β − h

mod q, t← (α− w)x−1
D mod q.

VrfypkS ,pkD
(m;w, t, h, z): The verifier checks whether h = Hq(pkS , pkD, gz

1y
−(h+w)
1S

mod p, gz
2y

−(h+w)
2S mod p, gw

1 yt
1D mod p,m).

Security: First, clearly this scheme is correct and perfectly non-transferable. Second,
we can prove the next result that is a generalisation of a proof from [KW03]:

Theorem 1. Let G be a (τ ′, ε′)-DDH group with |G| = q such that exponentiation in
G takes time texp. Then the above designated-verifier signature scheme is (τ, qh, qs, ε)-
unforgeable in the non-programmable random oracle model, where τ ≤ τ ′ − (3.2qs +
5.6)texp and ε ≥ ε′ + qsqhq

−2 + q−1 + qhq
−2.

Proof. Assume that we have an algorithm F , running in time at most τ and making at
most qh hash queries and in total at most qs signing and simulation queries, which forges

Designated Verifier Signature Schemes 467

a new message/signature or a new message/simulated signature pair with probability at
least ε. We use F to construct an algorithmA running in time τ ′ which solves the DDH
problem with probability ε′. The stated result follows.

Algorithm A is given as input a tuple (g1, g2, y1D, y2D); its goal is to determine
whether this represents a “random tuple” or a “DDH tuple”. To this end, it sets pkD =
(g1, g2, y1D, y2D), sets Signy’s public key pkS to be equal to a random DDH tuple
pkS = (g1, g2, y1S = gxS

1 , y2S = gxS
2) for which she chooses the corresponding secret

key xS ← Zq, and runs F on input (pkS , pkD). Algorithm A simulates the signing
oracle and the random oracle for F as follows:

Hash queries. In response to a query Hq(pkS , pkD, a1, a2, c,m), algorithm A re-
sponds with h← Hq(pkS , pkD, a1, a2, c,m). Additionally, if this query was not made
before, A stores the tuple (pkS , pkD, a1, a2, c,m).

Signing and simulation queries. If F asks either for a signature or a simulation
on message m, then A attempts to sign pkS . That is, A chooses random r, w, t ← Zq,
sets a1 ← gr

1 mod p, a2 ← gr
2 mod p and c← gw

1 yt
1D mod p. If Hq had previously

been queried on input Hq(pkS , pkD, a1, a2, c,m) then A aborts (with output 0); oth-
erwise, A sets h ← Hq(pkS , pkD, a1, a2, c,m) and outputs the signature (w, t, h, z),
where z ← r + (h + w)xS mod q.

At some point, F outputs its forgery (m̄, σ̄ = (w̄, t̄, h̄, z̄)), where we assume
that σ̄ was not previously the response to a query SignskS

(m̄) or SimulskD
(m̄). Set

ā1 ← gz̄
1y

−(h̄+w̄)
1S mod p, ā2 ← gz̄

2y
−(h̄+w̄)
2S mod p, c̄ ← gw̄

1 yt̄
1D mod p. Now, if

Hq(pkS , pkD, ā1, ā2, c̄, m̄) = h̄ (i.e., Vrfypk(m̄, σ̄) = 1), then A outputs 1; otherwise,
A outputs 0.

We now analyse the probability that A outputs 1. If (g1, g2, y1D, y2D) is a Diffie-
Hellman tuple, then A provides a perfect simulation for F except for the possibility
of an abort. An abort can occur during A’s simulation of any of the signing queries;
in the simulation of any particular signing query, it is not hard to see that the proba-
bility of abort is at most qh/q

2. Thus the overall probability that A aborts is at most
qsqh/q

2. This means that A outputs a forgery (and hence A outputs 1) with proba-
bility at least ε − qsqh/q

2. On the other hand, if (g1, g2, y1D, y2D) is a random tu-
ple then with probability 1 − q−1 it is not a Diffie-Hellman tuple. In this case, for
any query Hq(pkS , pkD, a1, a2, c,m) made by F there is at most q possible values of
(w, t, z) such that the verification succeeds. Thus, F outputs a forgery (and hence A
outputs 1) with probability at most q−1 + qhq

−2. Putting everything together, we see
that Advddh

G (A) ≥ ε − qsqhq
−2 − q−1 − qhq

−2 = ε′. The running time of A includes
the running time of F and is otherwise dominated by two exponentiations and one
multi-exponentiation that are performed for each query to the signing oracle plus those
done in generating Signy’s key and verifying the output of F . Assuming as in [KW03]
that a two-exponent multi-exponentiation takes time 1.2texp gives the result of the
theorem. &'

On NPRO Versus RO Model. The non-programmable random oracle model is known
to be strictly weaker than the random oracle model [Nie02]. This is not surprising look-
ing at the corresponding security proofs, e.g., at the security proof in [KW03] and at
the proof of Thm. 1. In the former, the adversary does not know the secret key, and
therefore is forced to program the random oracle to be able to answer successfully to

468 H. Lipmaa, G. Wang, and F. Bao

the signature queries. In the latter, the adversary knows Signy’s secret key, and knowing
this, can answer successfully to the signature and simulation queries without a need to
program the random oracle. A conceptual difference between the two models is that
proofs in the RO model work for the “best case” (showing that for every forger, there
exists a function Hq such that the signature scheme is unforgeable), while proofs in
the NPRO model work for the “average case” (showing that the signature scheme is
unforgeable for a randomly chosen function Hq ← Ωnpro, independent of the forger).
Given such arguments, we think that unforgeability in the NPRO model is an important
property of DVS-KW.

Conventional Signature Scheme with Tight Reduction to DDH in the NPRO+CRS
Model. From DVS-KW, one can build a conventional signature scheme with the same
properties (tight reduction to the DDH problem in the non-programmable random or-
acle model) if one additionally assumes the common reference string (CRS) model.
More precisely, in this case, the CRS is equal to a pair (y1D, y2D), drawn randomly
from the set {(gxD

1 , gxD
2) : xD ∈ Zq}. It is assumed that nobody will use the corre-

sponding secret key to simulate a DVS; in our case, this is easily achieved since CRS
can be a random DDH tuple. On the other hand, for the proof to go through, A is al-
lowed to generate the CRS herself. This scheme is about twice less efficient than the
Katz-Wang scheme, but its security does not rely on programmable random oracles.
On the other hand, this scheme is more efficient than the currently known signature
schemes that are unforgeable in the plain model, and/or has a more standard underlying
assumption.

Non-delegatability of DVS-KW. Next, we will give a proof of the non-delegatability
of DVS-KW. Because of the structure of our proof, we expect that an arbitrary DVS
scheme would have a similar time bound in its security proof.

Theorem 2. Assume that for some m ∈ M, F can produce valid signatures in time
τ and with probability ε. Then DVS-KW is (56τ/ε, 1

q)-non-delegatable in the pro-
grammable random oracle model.

Proof. Assume that ε > κ = 1/q. We must show there exists a knowledge extractor K
that on input σ and on black-box oracle access to F can produce either skS or skD in
expected time τ ′ ≤ 56τ/ε and with probability 1.

Let Fm be a forger with input m. Consider two executions of Fm by K on the
same random input of Fm. In both cases, K executes Fm step-by-step, except that
K returns different random values (h versus h′) as the answer to the hash query
Hq(pkS , pkD, a1, a2, c,m). Since (a1, a2, c) are under the hash, their values must be
equal in both runs. If both signatures are valid, one must have z − (h + w)xS ≡
z′−(h′+w′)xS mod q and w+txD ≡ w′+t′xD mod q, where (w, t, h, z) is the first
signature and (w′, t′, h′, z′), h �= h′, is the second signature. Now we have two cases. If
w �≡ w′ mod q then one can find xD ← (w−w′)/(t′− t) mod q. If w ≡ w′ mod q
then h+w �≡ h′ +w′ mod q and thus one can find xS ← (z− z′)/(h−h′ +w−w′)
mod q. Now, assume Rewind is an algorithm that, given an oracle access toFm, in time
τR, for some τR, produces two different valid signatures (w, t, h, z) and (w′, t′, h′, z′)
on m, such that h �= h′ but (a1, a2, c) = (a′1, a

′
2, c

′). Then one can compute either xS

Designated Verifier Signature Schemes 469

or xD with probability 1. Thus, given that algorithm Rewind runs in expected time 56/ε
(counting every access to Fm as one step), we have proven the theorem.

Next, let us describe the algorithm Rewind. We are given a forger Fm who returns a
signature (w, t, h, z) that may or may not be correct. We are given that the probability
of a correct answer taken over Fm coins and the choice of h is at least ε. We want to
find correct answers to two different h-values for a given (a1, a2, c,m) as efficiently as
possible. The idea is to run the prover, and use rewinding to try to make him answer
two different challenges correctly. But to run him, we need to supply random coins.
Although we know that the average success probability is ε, we do not know that Fm

is equally successful with any random input. To get a better view of this, let H be a
matrix with a row for each possible set of random coins for Fm, and one column for
each possible challenge value. Write 1 in an entry if Fm answers correctly with the
corresponding random choices and challenge, and 0 otherwise. Using Fm as black-
box, we can probe any entry we want in H , and our goal can be rephrased to: find two
1’s in the same row. What we know is that ε equals the fraction of 1-entries in H . Now,
Rewind uses an algorithm from [DF02] to find such 1 entries in time 56/ε. &'

6 On Disavowability

In a few proposed designated-verifier signature schemes [JSI96], given a pair (m,σ),
Signy and Desmond cannot prove to a third party, even when they join their forces,
which one of them generated σ. In some other schemes—that we call disavow-
able—Signy can prove that (a) she signed messages that she really signed, and
(b) she has not signed signatures, simulated by Desmond. This is achieved by de-
composing the signature σ of a message m in two non-empty parts, s (“undeni-
able signature”) and P (“designated-verifier proof”), where for every message m
and for every possibly incorrect s̄, the designated verifier can produce a simu-
lated proof P̄ such that the distribution of (s̄, P̄) is computationally indistinguish-
able from the distribution of the real signature (s, P). Therefore, in this case, Simul
takes an additional argument s̄, and one requires also the existence of four addi-
tional protocols, Confirm, ConfirmVrfy, Disavowal and DisavowalVrfy. To model our
attack on the JSI scheme we must also define “secure disavowability”. The idea
behind such definition is to prove that if VrfypkS ,pkD

(m, s) = accept and on in-
put (m, s), an oracle machine F can, with high probability, produce a δ such that
DisavowalVrfypkS ,pkD

(m;σ, δ) = success then there exists a knowledge extractor that
can use F to recover skD.

The JSI scheme [JSI96] was claimed to be disavowable—although, as shown earlier
in this paper, it is not—while most of the subsequent DVS schemes provide perfect
non-transferability and thus are not disavowable. (If a DVS scheme is perfectly non-
transferable then there is no trapdoor information that Signy might use to prove that a
message was or was not signed by her. Thus, to make it able for Signy to disavow a
signature, a DVS scheme must be computationally but not perfectly non-transferable.)
However, even in [JSI96], disavowability was not seen as a feature of the DVS schemes
and disavowability was never formally defined; their scheme, being based on Chaum’s
undeniable signature, just happens to have this property.

470 H. Lipmaa, G. Wang, and F. Bao

Corrected JSI Scheme: JSI+. As mentioned before, the original JSI scheme, is secure
including pkS , pkD and s = mxS under the hash. Since we want this scheme to be
disavowable, SimulskD,pkS

also gets an additional input s ∈ Zp. Clearly, JSI+ is com-
putationally but not perfectly non-transferable. Unforgeability, non-delegatability and
secure disavowability of this scheme can be proven by using standard cryptographic
tools, although most probably either in the RO model or with looser reductions. One
of the reasons is that since DVS-KW is perfectly non-transferable, in its unforgeability
proof A could answer signing and simulation queries in the same manner. Therefore, it
was sufficient for A to know only one of skS and skD to simulate both kind of queries
without using a programmable random oracle. It is not a priori clear how to achieve the
same in the case of JSI+.

Further Work and Acknowledgments. We feel that this paper raises interesting ques-
tions about the relationship between different non-standard security models; it is an
interesting open question to study the necessity of these models in any concrete case.
We would like to thank anonymous referees for useful comments. The first author was
partially supported by the Estonian Science Foundation.

References

[DF02] Ivan Damgård and Eiichiro Fujisaki. An Integer Commitment Scheme Based on
Groups with Hidden Order. In Yuliang Zheng, editor, Advances on Cryptology —
ASIACRYPT 2002, volume 2501 of Lecture Notes in Computer Science, pages 125–
142, Queenstown, New Zealand, December 1–5, 2002. Springer-Verlag.

[JSI96] Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. Designated Verifier
Proofs and Their Applications. In Ueli Maurer, editor, Advances in Cryptology
— EUROCRYPT ’96, volume 1070 of Lecture Notes in Computer Science, pages
143–154, Saragossa, Spain, May 12–16, 1996. Springer-Verlag.

[KW03] Jonathan Katz and Nan Wang. Efficiency Improvements for Signature Schemes
with Tight Security Reductions. In 10th ACM Conference on Computer and Com-
munications Security, pages 155–164, Washington, D.C., USA, October 27–31,
2003. ACM Press.

[LV04] Fabien Laguillaumie and Damien Vergnaud. Designated Verifier Signatures:
Anonymity and Efficient Construction from Any Bilinear Map. In Carlo Blundo
and Stelvio Cimato, editors, Security in Communication Networks, 4th Interna-
tional Conference, SCN 2004, volume 3352 of Lecture Notes in Computer Science,
pages 105–119, Amalfi, Italy, September 8–10, 2004. Springer Verlag.

[Nie02] Jesper Buus Nielsen. Separating Random Oracle Proofs from Complexity Theoretic
Proofs: The Non-committing Encryption Case. In Moti Yung, editor, Advances in
Cryptology — CRYPTO 2002, 22nd Annual International Cryptology Conference,
volume 2442 of Lecture Notes in Computer Science, pages 111–126, Santa Barbara,
USA, August 18–22, 2002. Springer-Verlag.

[SBWP03] Ron Steinfeld, Laurence Bull, Huaxiong Wang, and Josef Pieprzyk. Universal
Designated-Verifier Signatures. In Chi Sung Laih, editor, Advances on Cryptology
— ASIACRYPT 2003, volume 2894 of Lecture Notes in Computer Science, pages
523–542, Taipei, Taiwan, November 30–December 4, 2003. Springer-Verlag.

Designated Verifier Signature Schemes 471

[SKM03] Shahrokh Saeednia, Steve Kremer, and Olivier Markowitch. An Efficient Strong
Designated Verifier Signature Scheme. In Jong In Lim and Dong Hoon Lee, edi-
tors, Information Security and Cryptology - ICISC 2003, volume 2971 of Lecture
Notes in Computer Science, pages 40–54, Seoul, Korea, November 27–28, 2003.
Springer-Verlag.

[SWP04] Ron Steinfeld, Huaxiong Wang, and Josef Pieprzyk. Efficient Extension of Stan-
dard Schnorr/RSA Signatures into Universal Designated-Verifier Signatures. In
Feng Bao, Robert H. Deng, and Jianying Zhou, editors, Public Key Cryptography
2004, volume 2947 of Lecture Notes in Computer Science, pages 86–100, Singa-
pore, March 1–4, 2004. Springer-Verlag.

Single-Key AIL-MACs from Any FIL-MAC

Ueli Maurer and Johan Sjödin

Department of Computer Science,
Swiss Federal Institute of Technology (ETH), Zurich,

CH-8092 Zurich, Switzerland
{maurer, sjoedin}@inf.ethz.ch

Abstract. We investigate a general paradigm for constructing arbitrary-
input-length (AIL) MACs from fixed-input-length (FIL) MACs, define
the waste as the relevant efficiency parameter of such constructions, and
give a simple and general security proof technique applicable to very
general constructions. We propose concrete, essentially optimal construc-
tions for practical use, Chain-Shift (CS) and Chain-Rotate (CR), and
prove their security. They are superior to the best previously known
construction, the NI-construction proposed by An and Bellare: Only one
rather than two secret keys are required, the efficiency is improved, and
the message space is truly AIL, i.e., there is no upper bound on the
message length. The generality of our proof technique is also illustrated
by giving a simple security proof of the NI-construction and several im-
provements thereof.

Keywords: Message authentication code (MAC), arbitrary-input-length
(AIL), variable-input-length (VIL), fixed-input-length (FIL).

1 Introduction

1.1 Message Authentication Codes (MACs)

Authenticity is a fundamental security requirement for data transmissions. A
well-known technique for authenticating messages is to use a so-called message
authentication code (MAC), an important symmetric-key cryptographic primi-
tive with widespread use in many practical applications. A MAC is a function
family H := {hk : M → T }k∈K, where M is the message space, T the tag
space, and K the key space. Two communicating parties who share a secret key
k can authenticate a message m, sent over an insecure channel, by computing a
tag τ = hk(m), which is sent together with the message. The message need not
be encrypted. The receiver accepts the message if and only if the received pair
(m′, τ ′) satisfies τ ′ = hk(m′). We refer to hk as an instantiation of H.

The message space is an important parameter of a MAC scheme. In most
applications one needs to authenticate messages of potentially arbitrary-input-
length (AIL), i.e., M = {0, 1}∗. Many proposed MACs are not AIL-MACs since
there is an upper bound on the message length, i.e., the message space is the set
M = {0, 1}≤N of all bit strings of length at most N . We refer to such MACs

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 472–484, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Single-Key AIL-MACs from Any FIL-MAC 473

as having variable-input-length (VIL). The constant N is typically large enough
to be of little practical concern. A MAC which has M = {0, 1}L for a constant
L is referred to as having fixed-input-length (FIL). In this paper we address the
problem of constructing (VIL- and) AIL-MACs from any FIL-MAC.

1.2 Previous Work

Constructing VIL- or AIL-primitives from FIL-primitives have been addressed
in many papers. A well-known example is the Merkle-Damg̊ard [5, 7] iteration
method for constructing AIL collision-resistant functions from FIL collision-
resistant functions. The question of constructing VIL- or AIL- pseudo random
functions (PRFs) based on any FIL-PRF has received substantial attention, see
for example the CBC-MAC [4, 6, 10] and the XOR-MAC [3] (which are PRFs
and thus trivially also MACs). Other examples of AIL-MAC constructions are
the hash function-based MACs like NMAC and HMAC [2].

A central goal in cryptography is to prove the security of cryptographic
schemes under as weak assumptions as possible. In the context of construct-
ing VIL- or AIL-MACs, a natural assumption (much weaker than the PRF as-
sumption) is that the underlying FIL-primitive is a secure FIL-MAC. In 1997
Naor and Reingold [8] constructed a FIL-PRF from any FIL-MAC, but with
high cost. While this FIL-PRF could in principle be used in some well-known
construction of an AIL-MAC from any FIL-PRF (e.g. the CBC-MAC), it would
be impractical. Their question whether a FIL-PRF can be obtained from any
FIL-MAC at low cost is still open to date. In 1999 the problem of construct-
ing VIL-MACs from FIL-MACs was proposed and investigated by An and Bel-
lare [1]. They showed that the CBC-MAC is insecure under this weaker as-
sumption for the FIL-primitive. They also presented the nested iterated (NI)
construction, the first practical construction of a VIL-MAC based on any FIL-
MAC (see Fig. 3). As we will see, the NI-construction leaves room for improve-
ments.

1.3 MAC Constructions and Important Design Criteria

Throughout this paper, let G := {gk : {0, 1}L → {0, 1}�}k∈{0,1}κ denote a FIL-
MAC, with compression b := L− � > 0. We consider a general type of construc-
tion C·, which uses G to construct a MAC CG := {Cgk : M→ {0, 1}�}k∈{0,1}κ ,
where M is either AIL (i.e., {0, 1}∗) or VIL (i.e., {0, 1}≤N). The instantiation
Cgk is constructed by invoking gk several times in a black-box manner. To be
more precise, let us describe the computation of the tag τ = Cgk(m) for an n-bit
message m. In a pre-processing step m is encoded into a bit string m′ of length
(denoted by) λ(n), for instance by padding m and appending information about
its length. The processing step is best described with a buffer initialized with
m′, where each call to gk fetches (and deletes) some L bits and writes back the
�-bit result to the buffer. This reduces the number of bits in the buffer (by b bits)
with each call to gk. As soon as the number of bits is less than L, the content
of the buffer is returned as the tag τ . To obtain an �-bit output, an appropriate

474 U. Maurer and J. Sjödin

encoding is used such that λ(n) = t(n) · b + � for some t(n). Note that t(n) is
exactly the number of calls to gk required to compute τ , and that τ is the last
output of gk. The function t(·) is referred to as the application function of C·. A
particular construction can thus be described by the encoding function mapping
m to m′ and by the scheme by which the L-bit blocks are fetched.

In a more general variant of such a construction, several (say 2) instantiations
gk1 and gk2 of G can be used to build an instantiation Cgk1 ,gk2 of the MAC
CG,G := {Cgk1 ,gk2 : M → {0, 1}�}k1,k2∈{0,1}κ (with key space ({0, 1}κ)2). The
only difference in the computation of the tag, described above, is that for each
L-bit block that is fetched, the instantiation to be invoked needs to be specified.
For such schemes ti(n) (with i ∈ {1, 2}) denotes the number of calls needed to
gki

in order to compute the tag of an n-bit message, and t(n) := t1(n) + t2(n).
Note that the key space of CG,G is twice the size of the key space of CG. We

refer to C· as a single-key construction and to C·,· as a 2-key construction. We
now discuss the main design criteria for the constructions:

Number of Keys: We will propose single-key constructions (like C·) for practical
use and see that there is essentially no reason for considering multiple-key
constructions (like C·,·).

Efficiency: The efficiency can be measured in the number of applications t(n)
of the FIL-MAC, or equivalently in terms of the waste w(n) := λ(n)− n =
t(n) ·b+�−n, i.e., the amount by which pre-processing expands the message.

Type of Processing: It is desirable that a message can be processed on-line, i.e.,
as the message bits arrive, without knowing the message length in advance.
Moreover, it is desirable that the computation of the tag τ can be paral-
lelized, i.e., sped up by a factor of roughly c (over the construction using one
processor) when c processors are available.

Message Space: As we will see, it turns out that no bound on the message
length is necessary, and therefore our focus is on AIL-MAC constructions.

1.4 Contributions of This Paper

The purpose of this paper is to investigate systematically a natural and general
paradigm for constructing (VIL- or) AIL-MACs from FIL-MACs, a problem
introduced by An and Bellare [1]. Our proof technique, applicable to a very
general type of construction, turns out to be insightful for constructing (VIL-
and) AIL-MACs from FIL-MACs. We propose concrete, essentially optimal AIL-
MAC constructions for practical use, Chain-Shift (CS) and Chain-Rotate (CR)
(see Fig. 1 and Fig. 2), and prove their security. They use a single key, have
constant waste, allow for on-line and parallel processing of the messages, and
their security reduction is essentially tight.

The only previously known (practical) VIL-MAC construction, the NI-
construction (see Fig. 3), uses two keys, has an upper bound of 2b on the message
length, and is not optimal in terms of the number of applications to the FIL-MAC
(especially not for short messages). In Sect. 4.2 we give a simple security proof
(using our proof technique) and several improvements of the NI-construction.

Single-Key AIL-MACs from Any FIL-MAC 475

2 Preliminaries

2.1 Notation and Definitions

Let {0, 1}L denote the set of all bit strings of length L, {0, 1}≤N the set of all bit
strings of length at most N , {0, 1}∗ the set of all bit strings, and [n] := {1, . . . , n}
(with [0] := ∅). If M is a set, #M denotes its cardinality. For x, y ∈ {0, 1}∗,
let |x| denote the length of x (in bits), x‖y the concatenation of x and y, 〈n〉b
a b-bit encoding of a positive integer n ≤ 2b, x[i] the ith bit of x, and x[i, j] :=
x[i]‖x[i + 1]‖ · · · ‖x[j] for 1 ≤ i < j ≤ |x|. Furthermore, let RR(·) denote the
operator on bit strings that rotates the input by one position to the right, i.e.,
RR(x) := x[L]‖x[1, L− 1]. For a sequence S of elements, |S| denotes its length,
and Si the sequence of the first i ≤ |S| elements of S. An encoding σ : {0, 1}∗ →
{0, 1}∗ is called prefix-free if there are no three strings x, x′, y ∈ {0, 1}∗ such
that x �= x′, |y| ≥ 1, and σ(x)‖y = σ(x′). A suffix-free encoding is an encoding
which becomes prefix-free if the bit-order of the output is reversed. A non-trivial
collision for a function f is a pair x �= x′ of inputs for which f(x) = f(x′). If E
denotes an event, Ē denotes the complementary event.

2.2 Security Definition for MACs

A forger F for a MAC H := {hk : M → T }k∈K has oracle access to hk(·)
(for which k is chosen uniformly at random from K) and can thus learn the tag
values for some adaptively chosen messages m1,m2, It then returns a forgery
(m, τ), i.e., a message m together with a tag τ . The forger F is considered
successful if hk(m) = τ . The only constraint on m is that it must be new,
i.e., different from all previous messages m1,m2, We refer to a forger F
of this kind as a (ṫ, q, μ, ε)-forger, where ṫ, q, and μ are upper bounds on the
running time, the number of messages (or oracle queries), respectively the total
length (in bits) of the oracle queries including the forgery message m, and ε is a
lower bound on the success probability. Informally, a MAC is considered secure
against existential forgery under an adaptive chosen-message attack, if there is
no (ṫ, q, μ, ε)-forger, even for very high values of ṫ, q, and μ, and a very small
value of ε. A forger for a FIL-MAC will be denoted simply as a (ṫ, q, ε)-forger,
since the parameter μ is determined by q and the message-input-length L, i.e.,
μ = (q + 1)L.

To prove the security of a MAC based on a FIL-MAC one shows that the
existence of a (ṫ, q, μ, ε)-forger F for the MAC implies the existence of a (ṫ′, q′, ε′)-
forger F ′ for the FIL-MAC, where ṫ′, q′, and ε′ are functions of ṫ, q, μ, and ε.
In all our security proofs F is called only once by F ′. Therefore, the running
time of F ′ is essentially that of F , i.e., ṫ′ ≈ ṫ, with some small overhead that is
obvious from the construction of F ′. We will therefore not bother to explicitly
compute the running time of forgers, as this complicates the analysis unneces-
sarily without providing more insight. Therefore we drop the time parameter ṫ
in the sequel.

476 U. Maurer and J. Sjödin

3 Single-Key AIL-MACs Based on Any FIL-MAC

3.1 FIL-MAC Forgers Based on an AIL-MAC Forger (Single Key)

Let F be a (q, μ, ε)-forger for a MAC CG, i.e., if k is chosen uniformly at random
from {0, 1}κ, and F is allowed at most q oracle queries to Cgk of total length
at most μ (including the length of the forgery message), then F returns a valid
forgery (m, τ) with probability at least ε. We refer to F ◦ Cgk as the process
in which F ’s queries to Cgk are computed and returned to F , and where F ’s
forgery (m, τ) is verified by computing Cgk(m). Let us consider the random
variables occurring at the interface to gk (in the process F ◦Cgk). Let zi denote
the ith input to gk and let yi := gk(zi). The sequences Z := (z1, z2, . . .) and
Y := (y1, y2, . . .) are thus naturally defined. Note that as soon as the key k and
the random coins of F are fixed, all values in Z and Y are determined, and
also whether F is successful or not. Let E denote the event that F is successful.
Without loss of generality we assume that F ’s forgery message m is distinct from
F ’s oracle queries. Thus E occurs if and only if Cgk(m) = τ .

A FIL-MAC forger F ′ for G simulates F ◦Cgk with the help of F and its oracle
access to gk. At some query zi to gk it stops the simulation and returns a forgery
(z′, τ ′) for gk (without making any other oracle queries to gk). Such a forger is
characterized by the moment it stops (i.e., i) and the way it produces its forgery.
We refer to this as the strategy s of F ′ and let F ′

s denote the corresponding forger.
The most simple strategy is the näıve strategy sna. F ′

sna
stops the simulation

of F ◦ Cgk at the very last query z to gk (i.e., z is the last entry in Z). Then it
returns (z, τ) as a forgery, where τ is the forgery tag of F ’s forgery (m, τ) for
Cgk . F ′

sna
is successful if the following two conditions hold. First, E occurs, i.e.,

Cgk(m) = τ (and thus gk(z) = τ by definition of C·), and second z is new, i.e.,
z is only the last entry in Z. Let Enew denote the event that z is new. Thus F ′

sna

is successful whenever E ∧ Enew occurs.
Imagine that there is a set S of strategies, such that whenever Ēnew occurs

there exists at least one strategy s ∈ S for which F ′
s is successful. We refer

to such a set S as complete for the construction. Obviously, the set S ∪ {sna}
has the property that whenever E occurs, there is at least one strategy s ∈
S ∪ {sna} for which F ′

s is successful. Thus an overall strategy of F ′ is to pick its
strategy uniformly at random from S ∪ {sna}. Its success probability is at least
the probability that E occurs divided by #S + 1, since the choice of strategy
is independent of E . As F ′’s number of oracle queries is |Z|, which is a random
variable, it is convenient to introduce the following function.

Definition 1. The expansion function e of a construction C· is defined as

e(q̃, μ̃) := max

{
q̃∑

i=1

t(ni) : n1, . . . , nq̃ ∈ N0, n1 + · · ·+ nq̃ ≤ μ̃

}
,

where t(·) is the application function of C·.

It follows that |Z| ≤ e(q + 1, μ), since there are at most q + 1 queries of total
length at most μ to Cgk in F ◦ Cgk . In general #S is a function of e(q + 1, μ).

Single-Key AIL-MACs from Any FIL-MAC 477

Proposition 1. The existence of a complete set S for a construction C· and a
(q, μ, ε)-forger F for CG implies the existence of a (q′, ε′)-forger F ′ for G, where
q′ = e(q + 1, μ) and ε′ = ε

#S+1 .

Proof. F ′ picks its strategy s uniformly at random from S∪{sna}. Let E ′ denote
the event that F ′ is successful, and let E and Enew be defined as above.

Pr [E ′]︸ ︷︷ ︸
=: ε′

≥ Pr [E ′ | E ∧ Enew]︸ ︷︷ ︸
≥ 1/(#S+1)

·Pr [E ∧ Enew]+Pr
[
E ′ | Ēnew

]
︸ ︷︷ ︸
≥ 1/(#S+1)

· Pr
[
Ēnew

]
︸ ︷︷ ︸

≥Pr[E∧Ēnew]

≥ Pr [E]
#S + 1︸ ︷︷ ︸

= ε/(#S+1)

&'
3.2 Deterministic Strategies

An important class of strategies for F ′ are the deterministic strategies. A deter-
ministic strategy s is characterized by a pair (i, f), where i ∈ [e(q + 1, μ)] is an
index and f a function mapping (Zi,Yi−1) to some value ŷi ∈ {0, 1}� (which
can be seen as a prediction of yi). To be more precise, the corresponding forger
F ′

s stops (the simulation of F ◦Cgk) at query zi and returns (zi, ŷi) as a forgery.1

The forger is successful if ŷi = yi and if zi is new, i.e., not contained in the
sequence Zi−1. Next follow three particular sets of strategies, which will be used
in the sequel:

– Let si,y (with y ∈ {0, 1}�) denote the strategy of stopping at query zi and
returning (zi, y) as a forgery. Note that whenever the event occurs that gk

outputs y, i.e., when y is an entry in Y, then there is at least one strategy
s ∈ Sy := {si,y|i ∈ [e(q + 1, μ)]} for which F ′

s is successful. We have

#Sy = e(q + 1, μ). (1)

– Let scoll,i,j (with i > j) denote the strategy of stopping at query zi and
returning (zi, yj) as a forgery. Note that whenever a non-trivial collision for
gk occurs, i.e., α, β ∈ [|Z|] satisfying zα �= zβ and yα = yβ , then there is at
least one strategy s ∈ Scoll := {scoll,i,j |i, j ∈ [e(q + 1, μ)], i > j)} for which
F ′

s is successful. The cardinality of Scoll is

#Scoll = e(q + 1, μ)2/2− e(q + 1, μ)/2. (2)

– Let scoll2,i,j,a,left (with a ∈ {0, 1} and i > j) denote the strategy of stopping
at input zi and returning (zi, a‖yj [1, �−1]) as a forgery, and let scoll2,i,j,a,right

denote the strategy of stopping at input zi and returning (zi, yj [2, �]‖a) as
a forgery. Note that whenever the event occurs that there are α, β ∈ [|Z|]
satisfying zα �= zβ and gk(zα)[2, �] = gk(zβ)[1, �− 1], then there is a strategy
s ∈ Scoll2 := {scoll2,i,j,a,d|i, j ∈ [e(q+1, μ)], i > j, a ∈ {0, 1}, d ∈ {left, right}}
for which F ′

s is successful. The cardinality of Scoll2 is

#Scoll2 = 2 · e(q + 1, μ)2 − 2 · e(q + 1, μ). (3)

1 If i > |Z| the forger aborts.

478 U. Maurer and J. Sjödin

3.3 The Chain-Shift (CS) Construction

The CS-construction uses any FIL-MAC G := {gk : {0, 1}b+� → {0, 1}�}k∈{0,1}κ

with compression b ≥ �, to construct an AIL-MAC CSG := {CSgk : {0, 1}∗ →
{0, 1}�}k∈{0,1}κ . For a message m ∈ {0, 1}∗ of length n := |m|, the tag τ =
CSgk(m) is computed according to the following recursion (as depicted in Fig. 1).
Parse m into a sequence of b-bit blocks m1, . . . ,mt−1 and a (b− �)-bit block mt,
such that m1‖ · · · ‖mt = m‖10ν for some ν ∈ {0, . . . , b− 1}:

y0 := 0�, yi := gk (yi−1‖mi) for i ∈ [t− 1], and τ := gk(1�‖yt−1‖mt).

The waste w(n) = t(n) · b + �− n = ((n + 1 + �)/b) · b + �− n ≤ L + � is upper
bounded by a constant, and on-line processing is possible.

m1 mt−1 mt

gkgk gk τ0� · · ·
1�

Fig. 1. The Chain-Shift (CS) construction

Theorem 1.2 A (q, μ, ε)-forger F for CSG implies a (q′, ε′)-forger F ′ for G,
where q′ =

⌊
μ
b

⌋
+ 2(q + 1) and ε′ = ε

q′2/2+3q′/2+1 .

Proof. We apply Proposition 1 and show that S := Scoll ∪ S0� ∪ S1� is complete
for CS· by proving that whenever the last entry z in Z is not new, then there is
a non-trivial collision in gk, or an output from gk that equals 0� or 1�.

Assume that z is not new. Let z̃1, . . . , z̃t denote the sequence of queries to gk

resulting from the last query mβ to CSgk . Note that mβ is the forgery message
of F and thus new. Since z̃t = z is not new, z̃t must have been an earlier query
to gk, resulting from some query mα (with α ≤ β) to CSgk . Let z̃′1, . . . , z̃

′
t′ denote

the sequence of queries to gk in the computation of CSgk(mα). There are three
cases to distinguish, depending on the index i ∈ [t′] for which z̃t = z̃′i.

At the end of the chain (z̃t = z̃′t′): First, we note that this can not be the case
if α = β, since in that case z̃′t′ is not an earlier occurring query. Thus we
have (the non-trivial collision) mα �= mβ satisfying CSgk(mα) = CSgk(mβ).
Without loss of generality assume that t′ ≥ t. Now, either there exist an index
j ∈ [t − 1] such that z̃t−j �= z̃′t′−j and z̃t−j+1 = z̃′t′−j+1, i.e., a non-trivial
collision in gk occurs (since z̃t−j+1 = z̃′t′−j+1 implies gk(z̃t−j) = gk(z̃′t′−j))
or z̃′t′−t+1 = z̃1 = 0�‖v for some v ∈ {0, 1}b, which implies gk(z̃′t′−t) = 0�

(with t′ − t ≥ 1 since mα �= mβ).

2 An and Bellare point out in [1] that the security loss of roughly (μ/b)2 is unavoid-
able for iterative constructions of this nature. It is shown using birthday attacks
illustrated by Preneel and Van Oorschot [11].

Single-Key AIL-MACs from Any FIL-MAC 479

In the middle of the chain (z̃t = z̃′i with 1 < i < t′): We have 1�‖v = z̃t = z̃′i =
gk(z̃′i−1)‖v, for some v ∈ {0, 1}b. Thus gk outputs 1�.

At the beginning of the chain (z̃t = z̃′1 and t′ > 1): This case is obviously
impossible, since z̃t = 1�‖v �= 0�‖v′ = z̃′1 for any v, v′ ∈ {0, 1}b.

By definition of e(q + 1, μ), there is a sequence n1, . . . , nq+1 ∈ N0 such that:

e(q + 1, μ) =
q+1∑
i=1

t(ni) ≤
⌊
μ + (q + 1)L

b

⌋
≤

⌊μ
b

+ 2(q + 1)
⌋

=: q′.

Thus #S+1 ≤ (q′2/2− q′/2)+ q′ + q′ +1 ≤ q′2/2+3q′/2+1 by (1) and (2). &'

Improving the Waste for Short Messages. We improve the efficiency of
the CS-construction for n := |m| < rb, where r ∈ N0 is a design parameter. This
is relevant (see for example [9]). The computation of the tag τ is redefined for
messages m of length shorter than rb as follows. Parse m into a sequence of b-bit
blocks m1, . . . ,mt such that m1‖ . . . ‖mt = m‖10ν where ν ∈ {0, . . . , b− 1}:

y0 := 〈t〉�, yi := gk(yi−1‖mi) for i ∈ [t], and τ := yt.

Now, t(n) = ((n + 1)/b) if n < rb (and t(n) = ((n + 1 + �)/b) if n ≥ rb). The
proof that Scoll∪S0�∪S1�∪(∪r

i=1S〈i〉�
) is complete for the construction is omitted.

The only modification of Theorem 2 is thus that ε′ = ε
q′2/2+(3/2+r)q′+1 , i.e., the

reduction is essentially as tight (as for r = 0) for reasonable r’s.

Parallelizing the CS-Construction. We modify the CS-construction to allow
c ≥ 1 processors to compute the tag in parallel, achieving a speed up by a factor
of roughly c for long messages. The tag τ of an n-bit message m is computed
according to the following recursion:

1. If c ≤ ((n + 1)/b) then set c′ := c, and else set c′ := ((n + 1)/b).
2. Parse m into m1‖ · · · ‖mc′t = m‖10ν , where m1, . . . ,mc′t are b-bit blocks

and ν ∈ {0, . . . , c′b− 1}. Set mi,j := mi+(j−1)c′ for i ∈ [c′] and j ∈ [t].
3. Set yi,0 := 0�, and compute yi,j := gk(yi,j−1‖mi,j) for i ∈ [c′] and j ∈ [t].
4. Return τ := CSgk(y1,t‖ · · · ‖yc′,t).3

3 The construction can be further parallelized by replacing step 4 as follows. For
simplicity assume b = � (the generalization to b ≥ � is straight forward). Apply gk to
every pair of adjacent blocks in (y1,t, · · · , yc′,t), resulting in a new sequence of �c′/2�
blocks, and repeat this until a single block y is obtained. Then set τ := gk(1�‖y).

By setting c :=∞ this construction is fully parallelized (FP) (here meaning that
the computation time is in Θ(log(n)) when arbitrary many processors are available)
with w(n) ∈ Θ(n). From a theoretical viewpoint it would be interesting to see
whether FP single-key AIL-MAC constructions with w(n) ∈ Θ(1) exists. There are
FP single-key AIL-MAC constructions with w(n) ∈ Θ(log(n)) and FP 2-key AIL-
MAC constructions with w(n) ∈ Θ(1).

480 U. Maurer and J. Sjödin

The waste remains constant and the on-line property is preserved. We omit
the proof that S = Scoll ∪ S0� ∪ S1� is complete for the construction, as it is
similar to the proof that S is complete for the CS-construction.

3.4 The Chain-Rotate (CR) Construction

The purpose of presenting this single-key AIL-MAC construction is twofold.
First, it shows that constant waste and on-line processing is possible (even) with
compression b < �. Second, it demonstrates the generality of our proof technique.

The CR-construction transforms any FIL-MAC G := {gk : {0, 1}b+� →
{0, 1}�}k∈{0,1}κ into an AIL-MAC CSG := {CSgk : {0, 1}∗ → {0, 1}�}k∈{0,1}κ .
The tag τ = CRgk(m) of an n-bit message m is computed as follows (see Fig. 2).
Parse m into a sequence of b-bit blocks m1, . . . ,mt such that m1‖ · · · ‖mt =
m‖10ν with ν ∈ {0, . . . , b− 1}. If t > 1, set y0 := 0� and else set y0 := 1�:

yi := gk(yi−1‖mi) for i ∈ [t− 1] and τ := gk(RR(yt−1‖mt)).

The waste is w(n) = ((n+1)/b)·b+�−n ≤ L, and on-line processing is possible.

m1 mt−1 mt[1, b− 1] m1[1, b− 1]

gkgk gk gkτ τ0� 1�· · ·
mt[b] m1[b]

|m| ≥ b |m| < b

Fig. 2. The Chain-Rotate (CR) construction

Theorem 2. A (q, μ, ε)-forger F for CRG implies a (q′, ε′)-forger F ′ for G,
where q′ =

⌊
μ
b

⌋
+ q + 1 and ε′ = ε

5q′2/2+3q′/2+1 .

Proof (Sketch). We apply Proposition 1. With a case study similar to that for the
CS· (here omitted), one shows that S := Scoll∪Scoll2∪S0� ∪S1� ∪S0�−11∪S01�−1

is complete for CR·. There exist n1, . . . , nq+1 ∈ N0 such that:

e(q + 1, μ) =
q+1∑
i=1

t(ni) ≤
q+1∑

i

⌈
ni + 1

b

⌉
≤

⌊
q+1∑
i=1

ni + b

b

⌋
≤

⌊μ
b

⌋
+ q + 1 =: q′.

As a consequence, #S + 1 ≤ 5q′2/2 + 3q′/2 + 1 by (1), (2), and (3). &'

Parallelizing the CR-Construction. The CR-construction can be parallelized
in a similar way as the CS-construction. Just replace CS by CR in step 4
of the corresponding paragraph of Sect. 3.3. As for the CR-construction the
set S := Scoll ∪ Scoll2 ∪ S0� ∪ S1� ∪ S0�−11 ∪ S01�−1 is complete for the
construction.

Single-Key AIL-MACs from Any FIL-MAC 481

4 Comparison with the NI-Construction and Variations

The security analysis described in Sect. 3.1 can be generalized to multiple-key
constructions. Motivated by the NI-construction (see Fig. 3), we consider con-
structions C·,· (using two instantiations gk1 and gk2 of G to construct an in-
stantiation Cgk1 ,gk2 of the MAC CG,G), where one of the instantiations (say gk2

without loss of generality) is invoked at the end of the computation. We prove
the security of the NI-construction and give several improvements thereof.

4.1 FIL-MAC Forgers Based on an AIL-MAC Forger (2 Keys)

Let F denote a (q, μ, ε)-forger for the MAC CG,G. As before let F ◦ Cgk1 ,gk2

denote the process in which for each query m̃ issued by F , the corresponding
tag Cgk1 ,gk2 (m̃) is computed and returned to F , and once F returns a forgery
(m, τ), the forgery is verified by computing Cgk1 ,gk2 (m). Let Zi := (zi

1, z
i
2, . . .)

and Yi := (yi
1, y

i
2, . . .) be the sequence of inputs respectively outputs occurring

at the interface to instantiation gki
(for i ∈ {1, 2}).

The FIL-MAC forger F ′ simulates F ◦ Cgk1 ,gk2 by letting its own oracle
simulate one of the instantiations gki

(say the instantiation under attack) and
by choosing a random key for the other, but stops the simulation at some query
zi

j to its oracle and returns a forgery (without making any further query to any
FIL-MAC instantiation). This is equivalent to first instantiating gk1 and gk2 (by
choosing the keys k1, k2 uniformly at random) and then letting F ′ specify which
instantiation to attack, i.e., consider as its own oracle, after which the key to
the other instantiation is revealed to F ′. We adopt this view. Any such forger
is characterized by its strategy, i.e., which instantiation it attacks (i.e., i), the
moment it stops (i.e., j), and the way it produces its forgery.

Let sna denote the näıve strategy described in Sect. 3.1, with the only mod-
ification that the second instantiation, gk2 is put under attack (recall that the
tag τ is an output of gk2). F

′
sna

stops at the very last query z to gk2 and returns
(z, τ) as a forgery. Of course F ′ is successful if the following two conditions hold.
First, E occurs, i.e., Cgk1 ,gk2 (m) = τ (and thus gk2(z) = τ),4 and second Enew

holds, i.e., z is new for gk2 or equivalently z is only the last entry in Z2.
Imagine as before, that a complete set of strategies S exists, i.e., a set for

which whenever Ēnew occurs, there exists a strategy s ∈ S for which F ′
s is suc-

cessful. Then an overall strategy of F ′ is to pick its strategy uniformly at random
from S ∪ {sna}. Its success probability is at least the probability that E occurs
(i.e., ε) divided by the number #S + 1 of strategies, since the choice of strat-
egy is independent of the event E . Since F ′’s number of queries to its oracle is
upper bounded by max{|Z1|, |Z2|}, which is a random variable, it is convenient
to introduce the expansion function for each instantiation, i.e., for i ∈ {1, 2},
let ei(q̃, μ̃) := max{

∑q̃
j=1 ti(nj) : n1, . . . , nq̃ ∈ N0, n1 + · · · + nq̃ ≤ μ̃}. Thus

|Zi| ≤ ei(q + 1, μ). Proposition 1 generalizes as follows.

4 We assume w.l.o.g. that F ’s forgery message m is distinct from its oracle queries.

482 U. Maurer and J. Sjödin

Proposition 2. The existence of a complete set S for a construction C·,· and
a (q, μ, ε)-forger F for CG,G implies a (q′, ε′)-forger F ′ for G, where q′ =
max(e1(q + 1, μ), e2(q + 1, μ)) and ε′ = ε

#S+1 .

A deterministic strategy s is now characterized by a triple of values (i, j, f),
where i denotes the instantiation to attack, zi

j the moment to stop, and f a
function mapping (Zi

j ,Y
i
j−1) to some value ŷi

j ∈ {0, 1}�. The pair (zi
j , ŷ

i
j) is

the forgery of F ′
s. The sets of deterministic strategies introduced in Sect. 3.2

is naturally defined for each instantiation. Let Si
y, Si

coll, and Si
coll2 denote the

corresponding sets for the ith instantiation.

4.2 The NI-Construction

The NI-construction [1] transforms any FIL-MAC G into a VIL-MAC NIG,G :=
{NIgk1 ,gk2 : {0, 1}≤2b → {0, 1}�}k1,k2∈{0,1}κ . For a message m ∈ {0, 1}≤2b

of
length n := |m|, the tag τ = NIgk1 ,gk2 (m) is computed according to the following
recursion (as illustrated in Fig. 3). Break m into t − 1 = (n/b) blocks {mi}t−1

i=1

of length b, where mt−1 is padded with zeroes if necessary, and set mt := 〈n〉b:

y0 := 0�, yi := gk1(yi−1‖mi) for i ∈ [t− 1], and τ := gk2(yt−1‖mt). (4)

The waste is w(n) = t(n) · b + � − n = (n
b + 1) · b + � − n ≤ L + b, and on-line

processing is possible. Note that the message space is VIL, due to mt := 〈n〉b.

m1 mt−1 〈|m|〉b

gk1gk1 gk2 τ0� · · ·

Fig. 3. The nested iterated (NI) construction

Theorem 3. A (q, μ, ε)-forger F for NIG,G implies a (q′, ε′)-forger F ′ for G,
where q′ =

⌊
μ
b

⌋
+ q + 1 and ε′ = ε

q′2/2−q′/2+1 .

Proof. We show that S1
coll is complete for NI·,· by proving that whenever the last

entry z in Z2 is not new, then a non-trivial collision in gk1 occurs. Let mβ denote
the forgery message of F . Since z is not new, there is a query mα (issued by F
and different from mβ) with same input to gk2 . Thus we have |mα| = |mβ |, and
(the non-trivial collision) mα �= mβ satisfying NIgk1 ,gk2 (mα) = NIgk1 ,gk2 (mβ).
Since mα �= mβ , all corresponding intermediate values in the computation chains
can not be the same. As a consequence a non-trivial collision in gk1 occurs.

By definition of e1(q + 1, μ), there is a sequence n1, . . . , nq+1 ∈ N0 such that:

e2(q + 1, μ) ≤ e1(q + 1, μ) =
q+1∑
i=1

t1(ni) ≤
⌊

q+1∑
i=1

ni + b− 1
b

⌋
≤

⌊μ
b

+ q + 1
⌋

=: q′.

Thus #S1
coll +1 ≤ q′2/2− q′/2+1 by (2). Proposition 2 concludes the proof. &'

Single-Key AIL-MACs from Any FIL-MAC 483

Improvements on the NI-Construction

1. By replacing y0 := 0� with a message block, the waste decreases by � bits,
the security reduction is slightly tighter, and the on-line property is of course
preserved. The security proof is identical to that of the NI-construction.

2. The block mt := 〈n〉b, encoding the message length, is superfluous. It can be
replaced by a message block with appropriate padding. This decreases the
waste of the construction, improves the tightness of the reduction, lifts the
message space to AIL, and preserves the on-line property. To be more precise
the message m is parsed into a sequence of b-bit blocks m1, . . . ,mt such that
m1‖ . . . ‖mt = m‖10ν with ν ∈ {0, . . . , b−1} and processed according to (4).
It is straight forward to see that S1

coll ∪S1
0� is complete for the construction.

3. If the block encoding the message length is used as the first block instead
of the last or if any other prefix-free encoding of the message into blocks is
used, the two keys can actually be replaced by a single key. By choosing an
appropriate prefix-free encoding (for example the one on page 126 in [6]) the
message space can be lifted to AIL, at the cost of having w(n) ∈ Θ(log(n)).
We conjecture that linear waste, i.e., w(n) ∈ Θ(n) is needed for the on-line
property. It is easy to verify that Scoll∪S0� is complete for the construction.

5 Conclusions

A general paradigm for constructing VIL- and AIL-MACs from any FIL-MAC
was presented. The design goals were minimal key-length, optimal waste, as well
as suitability for on-line and parallel processing of the messages. Our single-key
AIL-MAC constructions, CS and CR, have constant waste, allow for on-line and
parallel processing of the message, and have essentially tight security reductions.

References

1. J. H. An and M. Bellare. Constructing VIL-MACs from FIL-MACs: Message au-
thentication under weakened assumptions. In Advances of Cryptology — CRYPTO
’99, volume 1666 of LNCS, pages 252–269. Springer-Verlag, 1999.

2. M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message
authentication. In Advances of Cryptology — CRYPTO ’96, volume 1109 of LNCS,
pages 1–15. Springer-Verlag, 1996.

3. M. Bellare, J. Guérin, and P. Rogaway. XOR MACs: New methods for message
authentication using finite pseudorandom functions. In Advances of Cryptology —
CRYPTO ’95, volume 963 of LNCS, pages 15–28. Springer-Verlag, 1995.

4. M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block chain-
ing message authentication code. In Journal of Computer and System Sciences,
61(3):362–399, 2000.

5. I. Damg̊ard. A design principle for hash functions. In Advances in Cryptology —
CRYPTO ’89, volume 435 of Lecture Notes in Computer Science, pages 416–427.
Springer-Verlag, 1990.

484 U. Maurer and J. Sjödin

6. U. Maurer. Indistinguishability of random systems. In Advances of Cryptology —
EUROCRYPT ’02, volume 2332 of LNCS, pages 110–132. Springer-Verlag, 2002.

7. R. Merkle. A certified digital signature. In Advances in Cryptology — CRYPTO
’89, volume 435 of LNCS, pages 218–232. Springer-Verlag, 1990.

8. M. Naor and O. Reingold. From unpredictability to indistinguishability: A sim-
ple construction of pseudo-random functions from MACs (extended abstract). In
Advances in Cryptology — CRYPTO ’98, volume 1462 of LNCS, pages 267–282.
Springer-Verlag, 1998.

9. S. Patel. An efficient MAC for short messages. In Selected Areas in Cryptography,
volume 2595 of LNCS, pages 352–368. Springer-Verlag, 2003.

10. E. Petrank and C. Rackoff. CBC MAC for real-time data sources. In Journal of
Cryptology, 13(3):315–338, 2000.

11. B. Preneel and P. C. van Oorschot, MDx-MAC and building fast MACs from hash
functions. In Advances in Cryptology — CRYPTO ’95, volume 953 of LNCS, pages
1–14. Springer-Verlag, 1995.

The Efficiency and Fairness of a Fixed Budget
Resource Allocation Game

Li Zhang

Hewlett-Packard Labs, 1501 Page Mill Road,
Palo Alto, CA 94304, USA

l.zhang@hp.com

Abstract. We study the resource allocation game in which price antic-
ipating players compete for multiple divisible resources. In the scheme,
each player submits a bid to a resource and receives a share of the re-
source according to the proportion of his bid to the total bids. Unlike
the previous study (e.g. [5]), we consider the case when the players have
budget constraints, i.e. each player’s total bids is fixed. We show that
there always exists a Nash equilibrium when the players’ utility func-
tions are strongly competitive. We study the efficiency and fairness at
the Nash equilibrium. We show the tight efficiency bound of Θ(1/

√
m)

for the m player balanced game. For the special cases when there is only
one resource or when there are two players with linear utility functions,
the efficiency is 3/4. We extend the classical notion of envy-freeness to
measure fairness. We show that despite a possibly large utility gap, any
Nash equilibrium is 0.828-approximately envy-free in this game.

1 Introduction

We study the performance of a mechanism for allocating multiple divisible re-
sources to strategic and selfish players. We consider the price anticipating allo-
cation scheme in which each player submits a bid to a resource and receives a
fraction of his bid to the total bids submitted to that resource. Compared to,
for example, auction based schemes [4, 19, 14], such commodity based scheme is
simple to implement and is highly responsive to the player’s need. It has been im-
plemented for allocating computing resources in several distributed systems [2, 9]

and analyzed in [10, 5, 3]. One important constraint we consider in this paper is
that each player has a budget constraint, i.e. a player’s total bids is fixed. As
we explain later, the natural condition on the budget adds difficulty for apply-
ing the existing technique. We also consider general utility functions instead of
restricting to network game as considered in [17, 5].

Similar to the previous work, we analyze the scheme as a noncooperative game
and focus on the game’s Nash equilibrium, the stable state at which no player has
incentive to change his behavior. We first answer the question about the existence
of Nash equilibrium in such a game. It is easy to construct an example to show
that even when the utility functions satisfy the standard assumptions, there
may still not exist an equilibrium. We show that an additional requirement of

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 485–496, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

486 L. Zhang

strong competitiveness can guarantee the existence of Nash equilibria. Informally,
the players are strongly competitive if for each resource, there are at least two
players who always desire it. However, unlike some similar game without budget
constraint, the Nash equilibria are no longer unique.

For the performance at the Nash equilibrium, we first consider the efficiency,
or price of anarchy according to [13], of the Nash equilibrium, defined as the
ratio of the social welfare at the worst equilibrium to the social optimum. We
show that with the budget constraint, the efficiency can be unfortunately low,
at Θ(1/

√
m) for m players. For the two special cases when there is only one

resource and when there are only two players with linear utility functions, we
show the tight efficiency bound of 3/4. Interestingly, in both cases, the efficiency
is 3/4 although the proofs are completely different. In particular, the bound of
3/4 in one resource case is a property of concave functions, which is probably
interesting in its own right.

Another important criterion for evaluating a mechanism is its fairness. How-
ever, unlike the common agreement on the importance of efficiency metric, there
are multiple definitions on fairness, such as max-min fairness [8] and proportional
fairness [6, 7]. In this paper, we evaluate the fairness by extending the notion of
envy-freeness commonly used in the study of fair division [18, 1]. An allocation is
called envy-free if no one feels someone else gets a share more than he does. We
extend this notion to approximately envy-free. Roughly speaking, an allocation
is called c-approximately envy-free if everyone feels he gets at least c times of
others share. We are able to show that if the players have the same budget, then
any allocation at the Nash equilibrium is 2

√
2− 2 ≈ 0.828 approximately envy-

free. This shows that while the utility gap between two players at an equilibrium
might be big, the gap is bounded by a constant if we evaluate the player’s utility
from any single player’s view.

In the previous work, there is usually no constraint on the budget so one
can bid as much as one can as long as the marginal profit gain is positive. Such
assumption about infinite supply of money is not realistic in practice. It is often
the case that the player receives a limited endowment. The fixed budget can also
be a result of multi-stage decision process in which the fund is reserved to cope
the future need. The budget constraint has been considered in [10] with only
empirical results.

The budget constraint, however, adds difficulty to analyzing those games. One
typical technique used in analyzing Nash equilibria is to relate the equilibrium
condition to the optimality condition of some potential function [16, 12, 11] or
some convex program [17, 5]. Intuitively, such connection is established by that at
a Nash equilibrium, the marginal profit for each player on each resource is equally
0 and is therefore equivalent to the first order condition at the solution of some
optimization problem. However, this is no longer true with budget constraint as
the Lagrangian multiplier condition only stipulates that each player has equal
margin on the resources he bids on but those margins may vary from player to
player. Actually, there may exist multiple Nash equilibria when adding budget
constraints, which is different from its counterpart without budget constraint.

The Efficiency and Fairness of a Fixed Budget Resource Allocation Game 487

2 Definitions

Price Anticipating Allocation Scheme. Suppose that there are m players (or
users) and n resources (or machines) where each resource is continuously divis-
ible. An allocation scheme ω = (r1, . . . , rm), where ri = (ri1, · · · , rin) with rij

representing player i’s share of resource j, satisfies that for any 1 ≤ i ≤ m and
1 ≤ j ≤ n, rij ≥ 0 and

∑m
i=1 rij ≤ 1. Let Ω denote the set of all the allocation

schemes.
Each player i has a finite budget Xi > 0. Let X =

∑
i Xi be the total budget.

In the price anticipating allocation mechanism, the resources are allocated as
follows: a player submits a bid to each resource under the constraint that the
total bids sum to the player’s budget. Let xij denote the bid of player i on
resource j, where xij ≥ 0 and

∑n
j=1 xij = Xi. The bidding vector of player i is

xi = (xi1, . . . , xin). Let Yj =
∑m

i=1 xij be the total bids on resource j. Then, the
fraction of player i gets from resource j is rij = xij

Yj
if Yj > 0 and 0 otherwise.

Utility function. The player’s utility Ui(ri1, · · · , rin) : [0, 1]n → R is a func-
tion of the fraction of each resource assigned to the player. We assume common
properties about the utility functions: for each i, Ui is non-negative, differen-
tiable, non-decreasing, and concave. One special family is linear utility function:
Ui(ri1, · · · , rin) = wi1ri1 + · · · + winrin for wij ≥ 0. For linear utility functions,
we also call wij the weight of resource j to the player i. We sometimes abuse the
notation and let Ui(x1, . . . ,xm) denote the utility of player i under the bidding
vectors xi for player i. Note that while Ui(r) is differentiable and concave, Ui(x)
may not — in fact, it is not even continuous at the points where xij = 0 for
some j and for all 1 ≤ i ≤ m.

Let Uij denote the partial derivative of Ui with respect to the j-th variable1.
We say a resource j is non-satiated to player i if for any r, Uij(r) > 0. Denote
by Γj the set of players to whom the resource j is non-satiated. For example, for
linear utility function, Γj = {i |wij > 0}. A game is called strongly competitive
if for any j , |Γj | > 1. For linear utility functions, a game is strongly competitive
if for any j, there exist i �= k such that wij , wkj > 0.

Nash equilibrium. The bidding vectors x1, . . . ,xm is a Nash equilibrium if for any
1 ≤ i ≤ m and for any legitimate bidding vector x′

i, Ui(x1, . . . ,xi, . . . ,xm) ≥
Ui(x1, . . . ,x′

i, . . . ,xm). At a Nash equilibrium, each player’s bidding vector is
the best response to the other’s biddings. It represents a stable state at which
no player has incentive to change his strategy. Denote by Ω0 the set of all the
allocation schemes at the Nash equilibria.

For an allocation scheme ω ∈ Ω, denote by U(ω) =
∑

i Ui(ri) the social
welfare under ω. Let U∗ = maxω∈Ω U(ω) denote the maximal social welfare.
The efficiency at ω is defined as π(ω) = U(ω)

U∗ . When Ω0 �= ∅, the efficiency
of a game Q is defined to be π(Q) = minω∈Ω0 π(ω). While the definition of

1 At the boundary, the derivative is understood as from one side.

488 L. Zhang

efficiency is standard, there are multiple ways to define fairness. We extend the
concept of envy-freeness [18] and measure the fairness of an allocation scheme ω

by ρ(ω) = mini�=j
Ui(ri)
Ui(rj) . When ρ(ω) ≥ 1, the scheme is known as an envy-free

allocation scheme. We call a game c-approximately envy-free if for any ω ∈ Ω0,
ρ(ω) ≥ c. This shall be contrasted to the definition of utility gap mini�=j

Ui(ri)
Uj(rj) .

3 The Existence of Nash Equilibrium

The differentiability and concavity alone are not sufficient to guarantee the ex-
istence of the Nash equilibrium. This can be shown by a simple example of two
players and two resources. For example, let U1(r1, r2) = r1 and U2(r1, r2) =
r1 + r2. Then player 1 should never bid on resource 2 because it has no value
to him. Now, player 2 has to put a positive bid on resource 2 in order to claim
the resource, but there is no lower limit, resulting the non-existence of the Nash
equilibrium.2 Clearly, this happens whenever there is a resource that is “wanted”
by exactly one player, or when the game is not strongly competitive. As we shall
show, this is the only case when the Nash equilibrium may not exist.

We use Rosen’s theorem, a generalization of Nash’s theorem, for proving the
existence of Nash equilibrium. According to [15], a concave game is a game in
which each player’s strategy domain is a compact convex set, and each user’s
utility function is a concave function for any fixed choice of the other player’s
strategies. In [15], it is shown that

Theorem 1 (Rosen [15]). An equilibrium exists for any concave game.

Our game is almost a concave game except at the domain boundary where
there is some j, xij = 0 for all 1 ≤ i ≤ m. As noted before, the utility function
is discontinuous at those points. This discontinuity causes the problem in the
above example and prevents us from applying Rosen’s theorem. To overcome
this difficulty, by a similar technique used in [5], we perturb the game to fix the
discontinuity and then argue that the limiting point is a Nash equilibrium of
the original game, with the help of the additional assumption that the game is
strongly competitive.

Now consider a perturbed game Qε in which each player’s payoff function
is Uε

i (x) = Ui

(
xi1

ε+Y1
, · · · , xin

ε+Yn

)
. It is easily verified that Uε

i is differentiable,
concave, and non-decreasing in xij ’s, for 1 ≤ j ≤ n. The domain of player
i’s strategy is the set Ωi = {(xi1, . . . , xin) |

∑n
j=1 xij = Xi , xij ≥ 0}, which

is clearly a compact convex set. Therefore, by Rosen’s theorem, there exists a
Nash equilibrium of game Qε. Let ωε = (xε

ij) be any equilibrium of Qε. Now
let ε → 0. Since the strategy space is compact, there exist an infinite sequence
that converge to a limiting point. Suppose the limiting point is ω, i.e. there is a
sequence εk → 0 and ωεk → ω. Clearly, ω is a legitimate strategy. We shall show
that ω is a Nash equilibrium of the original game Q = Q0.

2 In fact, there does not even exist mixed strategy Nash equilibrium in this case.

The Efficiency and Fairness of a Fixed Budget Resource Allocation Game 489

Let us consider only those ε’s in the converging sequence. In what follows, a
constant means a number that is solely determined by the system parameters,
m, n, Ui’s, and is independent of ε. Let Y ε

j =
∑m

i=1 xε
ij , and zε

ij = Y ε
j − xε

ij .

Then, ∂Uε
i

∂xε
ij

(ωε) = Uij

(
xε

ij

ε+Y ε
j

)
ε+zε

ij

(ε+Y ε
j

)2 .
By definition, the bidding vectors x1, . . . ,xm is a Nash equilibrium if and

only if each player’s strategy is the best response to the group’s bids. Since Ui

is differentiable and concave, and Ωi is convex, the optimality condition is that
there exists λε

i > 0 such that

∂Uε
i

∂xε
ij

{
= λε

i if xε
ij > 0, and

< λε
i if xε

ij = 0. (1)

It is easy to see, from our condition on Ui and by the compactness of the
domain, that

Lemma 1. Let r = (r1, · · · , rn). For any ε > 0, there exists a constant C > 0,
such that Uij(r) < C for any rj ≥ ε; and for any 1 ≤ i ≤ m, there exists a
constant Di > 0 such that for i ∈ Γj, Uij(r) > Di.

For an n-tuple (r1, r2, . . . , rn), let (r−j ; s) denote the n-tuple where rj is
replaced by s. In addition, let 0 and 1 denote the n-tuple with all 0’s and all
1’s, respectively. For ε > 0 and δ < 1, set Cε = max(maxi,j Uij(0−j ; ε), 1) and
D = mini Di. Clearly, Cε1 ≥ Cε2 for ε1 < ε2.

We first upper bound the marginal profit of ωε.

Lemma 2. There exists a constant M1 > 0 such that for sufficiently small ε,
λε

i < M1 for any 1 ≤ i ≤ m.

Proof. At the equilibrium, the player i has to bid at least Xi

n on some resource,
say k. By optimality condition (1), λε

i = Uε
ik(ri1, · · · , rin) ε+zε

ik

(ε+Y ε
k

)2 .

For any given xε
ik, ε+zε

ik

(ε+Y ε
k

)2 = ε+zε
ik

(ε+zε
ik

+xε
ik

)2 achieves maximum when ε + zε
ik =

xε
ik. Thus, when ε < X,

λε
i ≤ Uε

ik(ri1, · · · , rin)
1

4xε
ik

≤ Uε
ik(r−k;

Xi

n(ε + X)
)

n

4Xi

≤ Uε
ik(r−k;

Xi

2nX
)

n

4Xi
≤ Cdi/2n

n

4Xi
.

Let dmin = mini
Xi

X > 0. Set M1 = Cdmin/2n
n

4dminX . By Lemma 1, we have
that λε

i ≤M1. �

We then lower bound the total bids on each resource.

Lemma 3. For a strongly competitive game, there exists a constant c0 > 0 such
that for sufficiently small ε and for any j, Y ε

j ≥ c0.

Proof. We first consider the case when there is some player k ∈ Γj not bidding
on resource j, i.e. xε

kj = 0. Then, λk = Ukj(rk)
ε+Y ε

j −xε
kj

(ε+Y ε
j

)2 = Ukj(rk)
ε+Y ε

j
.

490 L. Zhang

Since λk ≤ M1, we have that Y ε
j >

Ukj(rk)
M1

− ε > D
M1
− ε. Thus, if we set

c0 = D
4M1

, when ε < c0, we have that Y ε
j > c0.

For the other case, we assume that for all k ∈ Γj , xε
kj > 0. Then,

λk = Ukj(rk)
ε + Y ε

j − xε
kj

(ε + Y ε
j)2

≥ D
ε + Y ε

j − xε
kj

(ε + Y ε
j)2

.

Let � = |Γj |. Then � ≥ 2 by the assumption that the game is strongly
competitive. Thus∑

k∈Γj

λk ≥ D
∑
k∈Γj

ε + Y ε
j − xε

kj

(ε + Y ε
j)2

= D
�ε + �Y ε

j −
∑

k∈Γj
xε

kj

(ε + Y ε
j)2

≥ D
�ε + (�− 1)Y ε

j

(ε + Y ε
j)2

≥ D(�− 1)
1

ε + Y ε
j

.

By that λk < M1, we have that D(� − 1) 1
ε+Y ε

j
< �M1. Thus Y ε

j > D(� −
1)/(�M1)− ε ≥ D/(2M1)− ε. Again, Y ε

j > c0 if ε < c0. �

We are now ready for the main lemma.

Lemma 4. If the game is strongly competitive, then for any δ > 0, when ε is
sufficiently small, ∣∣∣∣∂Ui(x)

∂xij
(ω)− ∂Uε

i (x)
∂xij

(ωε)
∣∣∣∣ ≤ δ .

Proof. Clearly, ∂Ui(x)
∂xij

(ω) = Ui(rij)
zij

Y 2
j

and ∂Uε
i (x)

∂xij
(ωε) = Ui(rε

ij)
zε

ij

(ε+Y ε
j

)2 .
The lemma follows immediately by zε

ij → zij and Y ε
j → Yj , and that Y ε

j ≥ c0,
for some constant c0 > 0. �

Thus, we have the following theorem.

Theorem 2. ω is a Nash equilibrium if Q is strongly competitive.

Proof. (By contradiction) Suppose it were not true, then the optimality condi-
tion (1) is violated for some player i. There are two possibilities.

1. There are j, k, where j �= k, such that xij , xik > 0 and ∂Ui

∂xij
�= ∂Ui

∂xik
. By

Lemma 4, we know that for sufficiently small ε, the following holds: xε
ij >

0, xε
ik > 0, and ∂Uε

i

∂xij
(ωε) �= ∂Uε

i

∂xik
(ωε). This contradicts with that ωε is a Nash

equilibrium of Qε. Now, we assume that λi = ∂Ui

∂xij
(ω) for any xij > 0.

2. There is j where xij = 0 and ∂Ui

∂xij
(ω) > λi. By the same reasoning, we again

derive contradiction.

Hence, ω is a Nash equilibrium of Q. �

We remark that there may exist multiple Nash equilibria. For example, con-
sider the case with two players and two resources where X1 = X2 = 1, and
U1 = αr1 +(1−α)r2, U2 = (1−α)r1 +αr2 for 0 < α < 1. As shown in [3], there
exist three Nash equilibria whenever α > (2

√
2 + 2)/4 ≈ 0.854,.

The Efficiency and Fairness of a Fixed Budget Resource Allocation Game 491

4 Efficiency

In this section, we study the efficiency of Nash equilibria. If we allow arbitrary
utility function and budget, the efficiency at Nash equilibria can be unboundedly
low, for example, when there are players with high budget but very low utility.
Therefore, we assume that the players’ utilities are related with their budgets
by requiring that Ui(0) = 0 and Xi/Ui(1) = δ for some constant δ and for
1 ≤ i ≤ n. In other words, we assume that each player’s utility is proportional to
their budget if they can own the whole system. We refer to such game a balanced
game. We first show asymptotic bounds for the general case and then present
tight bounds for two special cases.

For large number of players, the efficiency can be unfortunately low, in the
order of 1√

m
for m players, as shown in the following theorem. Let vi = Ui(1)

and v =
∑

i vi.

Theorem 3. For an m-player balanced game Q, π(Q) ≥ max(v
mU∗ ,

U∗
2v) ≥ 1√

2m
,

and the bound is asymptotically tight as there exists an equilibrium w such that
π(ω) = O(1√

m
).

Proof. We first construct an upper bound. Consider a system with m = n2 + n
players and n resources. In addition, each player has a linear utility function. Of
m players, there are n2 who have the same weights on all the resources, i.e. 1/n
on each resource (recall the definition of weight in Section 2). The other n players
have weight 1 on each different resource and 0 on all the other resources. Clearly
U∗ = n. It is easy to verify the following allocation is an equilibrium: the first n2

players evenly distribute their bids among all the resources, the other n player
put all the bid on their respective favorite resource. At this equilibrium, the total
bids on each resource is n+1. Each of the first n2 players receives 1

n
1/n
n+1 = 1

n2(n+1)

on each resource, summing up to a total utility of n3 · 1
n2(n+1) < 1. The other

n players each receives 1
n+1 on their favorite resource, summing up to a total

utility of n · 1
n+1 < 1. Therefore, the total utility of the equilibrium is < 2, while

the social optimum is n = Θ(
√
m).

Now we show the lower bound. Let X =
∑

i Xi = δv. First, we show that each
player i gets at least Xi

X vi. For any existing allocations, a player can distribute his
bid proportional to the amount of total bids already allocated to the resources.
Let yj denote the total bids of the players other than i on resource j. We can
then assign xij = yjXi

Y , where Y =
∑

j yj = X −Xi. Under such scheme, player
i’s share of resource j is rij = xij

xij+yj
= Xi/(Xi + Y) = Xi/X. Thus the utility

of the player i is at least Ui(Xi/X,Xi/X, . . . ,Xi/X) ≥ Ui(1)Xi/X = Xivi/X
by concavity of Ui. Therefore, U ≥

∑
i Xivi/X =

∑
i v

2
i /v ≥ v/m by Cauchy-

Schwarz inequality. Thus, U/U∗ ≥ v/(mU∗).
Now we show that U ≥ (U∗)2/(2v). Let r∗ij denote player i’s share of resource

j at the social optimum, and U∗ =
∑

i Ui(r∗i1, . . . , r
∗
in). Let Yj =

∑
i xij , the

total bids on resource j at the Nash equilibrium. Let Bi =
∑

j r
∗
ijYj and zij =

492 L. Zhang

r∗ijYjXi/Bi. Clearly,
∑

j zij = Xi. Consider the bidding where player i submits

bid zij to resource j. Then rij = zij

Yj−xij+zij
≥ zij

Yj+zij
= r∗

ijXi

Bi+Xir∗
ij
≥ r∗

ijXi

Xi+Bi
.

Since at the equilibrium, player i’s strategy is the best response to the group.
We have that Ui(x) ≥ Ui(z) ≥ Ui(r∗ijXi/(Xi + Bi)) ≥ Xi

Xi+Bi
Ui(r∗ij). There-

fore, U =
∑m

i=1 Ui ≥
∑m

i=1 Ui(r∗ij)
Xi

Xi+Bi
. Further,

∑
i Bi =

∑
i

∑
j r

∗
ijYj =∑

j Yj

∑
i r

∗
ij =

∑
j Yj = X.

Let Wi = Ui(r∗ij). We now minimize
∑m

i=1
WiXi

Xi+Bi
under the constraints that∑m

i=1 Bi = X, and Bi ≥ 0. Let ζ = mini

√
XiWi∑

j

√
XjWj

X. We relax the above

constraints to that
∑m

i=1 Bi = X, and Bi ≥ −Xi + ζ.
The domain remains a convex set and the minimization function is a con-

vex function on the domain. By Lagrangian multiplier method, the minimum is
achieved when setting Bi = 2X

√
XiWi∑m

j=1

√
XjWj

−Xi > −Xi + ζ. Thus

U ≥
m∑

i=1

√
XiWi

∑m
j=1

√
XjWj

2X
=

(
∑m

i=1

√
XiWi)2

2X
.

Since Xi = δvi ≥ δWi, we have that U ≥ δ(
∑m

i=1
Wi)

2

2X = (U∗)2

2v . Hence,
U/U∗ ≥ U∗

2v . Combining with U/U∗ ≥ v/(mU∗), we have that U/U∗ ≥ 1/
√

2m
as max(v/(mU∗), U∗/2v) is minimized when U∗ = v

√
2/m. �

In the following, we show tight bounds for two special cases.

One resource. In this case, the Nash equilibrium is the trivial one: everyone bids
all of his budget on the resource, and player i receives the fraction of Xi/X =
vi/v. Recall that vi = Ui(1), v =

∑
i vi, and Xi/vi = δ. At the equilibrium,

U =
∑

i Ui(vi/v). On the other hand, U∗ = maxri

∑
i Ui(ri), where ri ≥ 0

and
∑

i ri = 1. Surprisingly, the efficiency is at least 3/4 under such a “dumb”
allocation scheme.

Theorem 4. Let U1, · · · , Um : [0, 1] → IR be non-negative, non-decreasing con-
cave functions with Ui(1) = vi. Let v =

∑
i vi. Then for any ri ≥ 0 that satisfy∑

i ri = 1,
∑m

i=1 Ui(vi/v) ≥ 3/4 ·
∑m

i=1 Ui(ri).

Proof. Write ai = Ui(ri). Let fi be the piecewise linear function with fi(0) =
0, fi(ri) = ai, and fi(1) = 1. Clearly, f(ri) = Ui(ri). Further Ui(x) ≥ f(x)
for x ∈ [0, 1] by concavity. Write si = vi/v. Thus, it suffices to show that∑m

i=1 fi(si) ≥ 3/4 ·
∑m

i=1 ai.
If ri ≤ si, then fi(si) = ai + vi−ai

1−ri
(si − ri), and when ri > si, fi(si) = siai

ri
.

Let ri ≤ si for 1 ≤ i ≤ k and ri > si for k < i ≤ m. Then,∑
i

fi(si) =
k∑

i=1

(
ai +

vi − ai

1− ri
(si − ri)

)
+

m∑
i=k+1

aisi

ri

=
m∑

i=1

ai +
k∑

i=1

vi − ai

1− ri
(si − ri) +

m∑
i=k+1

(
aisi

ri
− ai) .

The Efficiency and Fairness of a Fixed Budget Resource Allocation Game 493

Let Δ = (
∑k

i=1
vi−ai

1−ri
(si − ri) +

∑m
i=k+1(

aisi

ri
− ai))/

∑
i ai. We observe that

Δ is minimized when ai = vi for all 1 ≤ i ≤ m: it is when the denominator is
maximized, and every individual term in the numerator is minimized. Thus, Δ
is at least

m∑
i=k+1

(visi/ri − vi)/v =
m∑

i=k+1

(v2
i /(vri)− vi)/v . (2)

Write w =
∑m

i=k+1 vi. (2) is minimized when ri = vi

w , and the minimum value

is w2/v−w
v ≥ −1/4. Thus,

∑
i fi(si)/

∑
i ai = 1 + Δ ≥ 3/4. �

The bound of 3/4 is tight even when m = 2 by setting U1(x) = 1 and
U2(x) = x. As a special case, when vi = 1 for all i, we have that for any m non-
negative, non-decreasing concave functions fi(x) with fi(1) = 1,

∑
i fi(1/m) ≥

3/4
∑

i fi(ri), for any ri ≥ 0 and
∑

i ri = 1,

Two player, linear utility function. In this case, we can obtain again the same
efficiency of 3/4, but curiously with completely different proof.3 The proof is by
reducing the problem further to when there are only two resources. The details
will appear in the full version of the paper.

Theorem 5. For any two player, two resource game with linear utility func-
tions, π(Q) ≥ 3/4, and the bound is tight in the worst case.

5 Fairness

It is important for a resource allocation scheme to be “fair”. There are many
standards to evaluate fairness [18, 1]. In one definition, one may consider whether
any player gets a more than average share. According to Theorem 3, each player
i’s utility is at least Ui(1)/m, or in other words, each player gets at least 1/m-th
of the maximum utility he can possibly get from the system. Thus, in this sense
the scheme is fair.

Another possibility is to compare the utility between two players. We can
easily construct an example so that one player has utility 1/m while some player
has 1. Or Ui(xi) ≤ Uj(xj)/m. In this standard, the scheme is highly unfair as it
creates large utility gap.

Here, we consider fairness by extending the notion of envy-freeness [18], a
concept central in the economical study of fair division. Different from the utility
gap measure, envy-freeness, as defined in Section 2, measures how much each
player likes (or envies) other’s share compared to his own. For a meaningful
discussion, we assume that all the players have the same budget, or Xi = 1 for

3 The constant 3/4 also appears in [17] in analyzing the efficiency of selfish routing
and in [5] when there is no budget constraint. The bound is tight in all the four
cases, but all those proofs do not have apparent connection. We do not know if it is
just a coincidence or there is a deeper connection.

494 L. Zhang

all the i’s. Unlike the efficiency analysis, we do not require Ui(1) proportional to
the player’s budget. In general, an equilibrium allocation is not envy-free. But
it is not very far from being envy free according to the following theorem.

Theorem 6. When Xi = 1 for all the i’s, any Nash equilibrium is at least c-
approximately envy-free for c = 2

√
2−2 ≈ 0.828. The bound is tight in the worst

case.

Proof. Suppose that at the Nash equilibrium ω, x1, . . . , xn are the allocation of
bids of a player A, and y1, . . . , yn are the total bids by the other players. Let
ri = xi/(xi + yi). We need to show that for all z1, . . . , zn with 0 ≤ zi ≤ yi and∑

i zi = 1, we have that Ui(r) ≥ c · Ui

(
z1

x1+y1 , . . . ,
zn

xn+yn

)
.

First, we show that we can assume A has a linear utility function. Other-
wise, we consider the linear utility function U(s1, . . . , sn) =

∑
i U

′
i(r1, . . . , rn)si.

Because ∂U
∂xi

(r) = U ′
i(r)

yi

(xi+yi)2
= ∂U

∂xi
(r), the bids x1, . . . , xn is still A’s best re-

sponse to the group bids y1, . . . , yn under the utility function U . In addition, the
change of A’s utility function does not affect the other players. Hence, ω remains
a Nash equilibrium of the changed utility function. In addition, by concavity of
U , we have that

U(s) ≤ U(r) +
∑

i

U ′
i(r1, . . . , rn)(si − ri) = U(r) + U(s)− U(r) . (3)

Thus, if U(r) ≥ c · U(s), then

U(r) = U(r) + (U(r)− U(r)) ≥ c · U(s) + (U(r)− U(r))
≥ c(U(s)− U(r) + U(r)) + (U(r)− U(r))
= c · U(s) + (1− c)(U(r)− U(r)) ≥ c · U(s) .

Therefore, without loss of generality, we assume that A has linear utility
function U(s) = w1s1 + · · · + wnsn, and UA = U(r). Let λi be the margin on
the resources i for A. By optimality condition, for any i, j, λi ≥ λj if xi > 0
and the equality holds when xj > 0. The price pi of the resources wi

xi+yi
on each

resource. We first note that

λi

pi
=

wiyi/(xi + yi)2

wi/(xi + yi)
=

yi

xi + yi
≤ 1 . (4)

Now suppose that z = (z1, · · · , zn) maximizes V =
∑

i pizi subject to that
0 ≤ zi ≤ yi, and

∑
i zi = 1. We now show that UA ≥ (2

√
2 − 2)V . Intuitively,

the proof is done by comparing the utility of A on each resource under two
allocations. When xi > zi, we collect the “residual” utility to compensate those
i’s where xi < zi. Formally, consider bij for 1 ≤ i, j ≤ n that satisfy

bii = min(xi, zi) ,
∑

j

bij = xi ,
∑

i

bij = zj , bij ≥ 0 .

The Efficiency and Fairness of a Fixed Budget Resource Allocation Game 495

Since
∑

i xi =
∑

i zi, there always exist bij ’s satisfying the above condition.

UA =
∑

i

pixi =
∑

i

(pi

∑
j

bij) =
∑

i

(pibii +
∑
i�=j

pibij)

≥
∑

i

(pibii +
∑
i�=j

λibij) ,by (4).

≥
∑

i

(pibii +
∑
i�=j

λjbij) , since bij > 0 implies xi > 0.

=
∑

j

(
∑
i�=j

λjbij + pjbjj) =
∑

j

(λj

∑
i�=j

bij + pjbjj) .

Let uj = λj

∑
i�=j bij + pjbjj , and vj = pjzj . We distinguish two cases.

– When zj ≤ xj , then bjj = zj and for all i �= j, bij = 0. Thus, uj = pjzj = vj .
– When zj > xj , then bjj = zj and

∑
i�=j bij = zj−xj . Thus uj = pjxj+λj(zj−

xj). Therefore, cj = uj/(pjzj) ≥ (xj+(zj−xj)
yj

xj+yj
)/zj = x2

j

zj(xj+yj) +
yj

xj+yj
.

Clearly, cj is minimized when zj is maximized, i.e zj = yj , and the minimum

value is: x2
j

yj(xj+yj) + yj

xj+yj
= x2

j+y2
j

yj(xj+yj) . Now, fix yj , cj is minimized when

xj = (
√

2− 1)yj and the minimum value is 2
√

2− 2.

In both cases, uj ≥ (2
√

2 − 2)vj . Thus,
∑

i ui ≥ (2
√

2 − 2)
∑

i pizi. Hence,
the scheme is c-approximately envy-free for c = 2

√
2− 2 ≈ 0.828.

For the upper bound, consider the case with s + 2 players and 2 resources.
Let α = 2/(s + 1). Suppose that the utility functions are U1 = αr1 + (1− α)r2,
U2 = r1, and for 3 ≤ i ≤ s+2, Ui = r2. Clearly, at the equilibrium, player 2 bids
(1, 0), and the player 3 to s + 2 bid (0, 1). By equalizing the margin on the two
resources, we derive that the bids of player 1 are 2β−α

α(1+β) and 2α+αβ−2β
α(1+β) , where

β = α√
(1−α)(2−α)

. When s → +∞, i.e. α → 0, the bids of player 1 approaches

(
√

2− 1, 2−
√

2), and U1(x1)/U1(x2) → 2
√

2− 2. �

6 Conclusion

In this paper, we study the existence and performance of Nash equilibrium of
a price anticipating resource allocation game. We consider general utility func-
tions with the budget constraint. We show the existence of Nash equilibrium for
strongly competitive game and the bounds for efficiency and fairness of such a
game. It would be interesting to design efficient algorithms to achieve the equi-
librium and to study the specific utility functions that arise from practice, e.g.
those discussed in [3].

Acknowledgments. The author would like to thank Kevin Lai, Lars Rasmus-
son, Michal Feldman, Fang Wu, and Bernardo Huberman for their many helpful
discussions. The author would also like to thank the anonymous reviewers for
their useful comments.

496 L. Zhang

References

1. S. J. Brams and A. D. Taylor. Fair Division: From Cake-cutting to Dispute Reso-
lution. Cambridge University Press, 1996.

2. B. N. Chun and D. E. Culler. Market-based proportional resource sharing for clus-
ters. Technical Report CSD-1092, University of California at Berkeley, Computer
Science Division, January 2000.

3. M. Feldman, K. Lai, and L. Zhang. A price-anticipating resource allocation mech-
anism for distributed shared clusters. In Proceedings of ACM Conference on Elec-
tronic Commerce, 2005.

4. D. Ferguson, Y. Yemimi, and C. Nikolaou. Microeconomic algorithms for load
balancing in distributed computer systems. In International Conference on Dis-
tributed Computer Systems, pages 491–499, 1988.

5. R. Johari and J. N. Tsitsiklis. Efficiency loss in a network resource allocation game.
Mathematics of Operations Research, 2004.

6. F. P. Kelly. Charging and rate control for elastic traffic. European Transactions
on Telecommunications, 8:33–37, 1997.

7. F. P. Kelly and A. Maulloo. Rate control in communication networks: Shadow
prices, proportional fairness and stability. Operational Res. Soc., 49:237–252, 1998.

8. Y. Korilis and A. Lazar. Why is flow control hard: optimality, fairness, partial and
delayed information. In Proceedings of 2nd ORSA Telecommunications Conference,
1992.

9. K. Lai, L. Rasmusson, S. Sorkin, L. Zhang, and B. A. Huberman. Ty-
coon: a distributed market-based resource allocation system. Manuscript,
http://www.hpl.hp.com/research/idl/papers/tycoon, 2004.

10. R. T. Maheswaran and T. Basar. Nash equilibrium and decentralized negotiation
in acutioning divisible resources. Group Decision and Negotiation, 12:361–395,
2003.

11. I. Milchtaich. Congestion games with player-specific payoff functions. Games and
Economic Behavior, 13:111–124, 1996.

12. D. Monderer and L. S. Sharpley. Potential games. Games and Economic Behavior,
14:124–143, 1996.

13. C. Papadimitriou. Algorithms, games, and the Internet. In Proceedings of 33rd
Annual ACM Symposium on Theory of Computing, pages 749–753, 2001.

14. O. Regev and N. Nisan. The POPCORN market – an online market for compu-
tational resources. In Proceedings of 1st International Conference on Information
and Computation Economies, pages 148–157, 1998.

15. J. B. Rosen. Existence and uniqueness of equilibrium points for concave N-person
games. Econometrica, 33(3):520–534, 1965.

16. R. W. Rosenthal. A class of games possessing pure-strategy Nash equilibria. In-
ternational Journal of Game Theory, 2:65–67, 1973.

17. T. Roughgarden and E. Tardos. How bad is selfish routing? Jounral of the ACM,
49(2):236–259, 2002.

18. H. R. Varian. Equity, envy, and efficiency. Journal of Economic Theory, 9:63–91,
1974.

19. C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart, and W. S. Stornetta.
Spawn: A distributed computational economy. Software Engineering, 18(2):103–
117, 1992.

Braess’s Paradox, Fibonacci Numbers,
and Exponential Inapproximability

Henry Lin1,�, Tim Roughgarden2,��, Éva Tardos3,� � �, and Asher Walkover4

1 UC Berkeley, Computer Science Division,
Soda Hall, Berkeley, CA 94720

henrylin@cs.berkeley.edu
2 Department of Computer Science, Stanford University,

462 Gates Building, Stanford, CA 94305
tim@cs.stanford.edu

3 Cornell University, Department of Computer Science,
Upson Hall, Ithaca, NY 14853
eva@cs.cornell.edu

4 Google Inc., Mountain View, CA
walkover@gmail.com

Abstract. We give the first analyses in multicommodity networks of both the
worst-case severity of Braess’s Paradox and the price of anarchy of selfish rout-
ing with respect to the maximum latency. Our first main result is a construction of
an infinite family of two-commodity networks, related to the Fibonacci numbers,
in which both of these quantities grow exponentially with the size of the net-
work. This construction has wide implications, and demonstrates that numerous
existing analyses of selfish routing in single-commodity networks have no ana-
logues in multicommodity networks, even in those with only two commodities.
This dichotomy between single- and two-commodity networks is arguably quite
unexpected, given the negligible dependence on the number of commodities of
previous work on selfish routing.

Our second main result is an exponential upper bound on the worst-possible
severity of Braess’s Paradox and on the price of anarchy for the maximum latency,
which essentially matches the lower bound when the number of commodities is
constant.

Finally, we use our family of two-commodity networks to exhibit a natu-
ral network design problem with intrinsically exponential (in)approximability:
while there is a polynomial-time algorithm with an exponential approximation
ratio, subexponential approximation is unachievable in polynomial time (assum-
ing P �= NP).

� Supported by a UC Berkeley Research Fellowship.
�� Supported in part by ONR grant N00014-04-1-0725 and DARPA grant W911NF-04-9-0001.

� � � Supported in part by NSF grant CCR-032553, NSF grant 0311333, and ONR grant N00014-
98-1-0589.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 497–512, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

498 H. Lin et al.

1 Introduction

Selfish Routing and the Price of Anarchy. A recent trend in theoretical computer sci-
ence is to analyze the extent to which equilibria in a noncooperative game approximate
a social optimum. The most popular measure is the price of anarchy [15] (also called
the coordination ratio [13]), defined as the worst-case ratio between the objective func-
tion value of a Nash equilibrium of a game and that of an optimal solution. The price of
anarchy is thus defined relative to a game and to an objective function.

In this paper, we will study one of the most popular models for price of anarchy
analyses, the so-called selfish routing model. Selfish routing is a mathematical model
of how noncooperative agents route traffic in a network with congestion. Formally, the
game takes place in a directed multicommodity flow network, where each edge pos-
sesses a continuous, nondecreasing latency function that models how the performance
of an edge degrades as it becomes increasingly congested. The traffic in the network
is assumed to comprise a large number of independent network users, so that each
individual has negligible impact on the experience of others. Under this assumption,
equilibria—flows at Nash equilibrium—are naturally defined as the multicommodity
flows in which all traffic travels only on minimum-latency paths.

As in most noncooperative games, flows at Nash equilibrium are inefficient, in the
sense that they need not optimize natural objective functions. One such objective func-
tion, the average latency incurred by traffic, has been extensively studied. Beginning
with Roughgarden and Tardos [21] and continuing with studies of ever-increasing gen-
erality [4, 6, 16, 18, 22], exact worst-case bounds on the price of anarchy with respect to
the average latency have been established under a wide variety of different assumptions.

The Maximum Latency Objective. As in many combinatorial optimization problems,
permitting an objective function to average the cost of different users can be problematic
from a fairness perspective. Specifically, to attain or approximate a flow that minimizes
the average latency, some users may need to be sacrificed to very costly paths, in order
to reduce the congestion encountered by others. This unfairness inherent in the average
latency measure motivates modifying the objective function to be more attuned to those
users on the most costly paths. Arguably, the most obvious way to accomplish this is to
aspire toward minimizing the maximum latency incurred by any user.

Compared to the average latency objective, considerably less is known about the
price of anarchy relative to the maximum latency. The first paper on the topic is by
Weitz [25], whose results we will review below. Most relevant for us is a paper by
Roughgarden [19], where only the special case of single-commodity networks, net-
works in which all traffic shares the same source and destination, were considered. The
main result of [19] states that, if latency functions are allowed to be arbitrary continu-
ous, nondecreasing functions, then the (worst-case) price of anarchy with respect to the
maximum latency objective in single-commodity networks with at most n vertices is
precisely n− 1.

Roughgarden [19] also made two conjectures about this price of anarchy in mul-
ticommodity networks. The weak conjecture of [19] asserts that in multicommodity
networks, this price of anarchy can be bounded by a function of the number of vertices,
edges, and commodities in the network. As a point of contrast, simple examples show

Braess’s Paradox, Fibonacci Numbers, and Exponential Inapproximability 499

that no such bound is possible for the price of anarchy relative to the average latency,
unless additional structure is imposed on the network latency functions [21]. The strong
conjecture of [19] states that the price of anarchy with respect to the maximum latency
remains n − 1 in multicommodity networks. This conjecture was motivated in part by
the provable equivalence of single-commodity and multicommodity networks for the
price of anarchy relative to the average latency [6, 18].

Braess’s Paradox. Braess’s Paradox is the following counterintuitive fact: adding ad-
ditional edges to a network with selfish routing can make all of the traffic worse off.
First discovered in 1968 [3], Braess’s Paradox has since motivated a vast number of
follow-up papers; see [17] for a survey. Almost all existing work on the paradox con-
fines attention to close variations on or analogues of Braess’s original example in a
four-node network. Only recently have larger, more severe versions of Braess’s Para-
dox been discovered. Specifically, Roughgarden [17] defined an infinite family of net-
works, beginning with Braess’s original example, that shows that adding edges to a
single-commodity network with n vertices can increase the latency experienced by all
of the traffic (and hence the maximum latency) by a factor of +n/2,. It was also shown
in [19] that no greater increase is possible in single-commodity networks, but the proof
of this crucially used the combinatorial structure of flows at Nash equilibrium in such
networks. Once again the story was left incomplete: are the networks of [17] the worst
examples possible, or are more severe versions of Braess’s Paradox lurking in the richer
landscape of multicommodity networks?

Our Results. In this paper, we establish nearly matching upper and lower bounds on
both the price of anarchy with respect to the maximum latency and on the worst-possible
severity of Braess’s Paradox in multicommodity networks. Our results resolve both of
the conjectures in [19]—one in the affirmative, one in the negative—and also give the
first demonstration that Braess’s Paradox is provably more severe in multicommodity
networks than in single-commodity ones. Specifically, our two main results are the fol-
lowing.

– We give a parameterized construction, based on the Fibonacci numbers, that shows
that adding one edge to a two-commodity network with n vertices can increase the
latency of all traffic by a 2Ω(n) factor.

– We prove that the price of anarchy with respect to the maximum latency in networks
with k commodities, n vertices, and m edges is 2O(min{kn,m log n}).

The construction used to prove the first result has wide implications. In particular, for
all existing approximation-type analyses of selfish routing that were only known to
hold for single-commodity networks [14, 17, 19], this construction rules out any rea-
sonable extension to multicommodity networks, even those with only two commodities.
For example, removing one edge from a single-commodity network can only decrease
the maximum (or average) latency of a Nash flow by a factor of 2 [14], while our
construction shows that a single edge removal can cause an exponential improvement
in the average and the maximum latency (even with only two commodities). This di-
chotomy between single- and two-commodity networks is somewhat unexpected, given

500 H. Lin et al.

the negligible role that the number of commodities has played in previous work in this
area [6, 18, 21].

The first result easily implies a lower bound of 2Ω(n) on the price of anarchy for
the maximum latency in multicommodity networks, as an optimal flow has the option
of ignoring edges that are causing Braess’s Paradox. By the same reasoning, the second
result implies that adding any number of edges to a network with k commodities, n ver-
tices, and m edges can only increase the maximum latency by a 2O(min{kn,m log n}) fac-
tor. Our upper and lower bounds on both the price of anarchy and on the worst-possible
severity of Braess’s Paradox are thus essentially tight for networks with a constant num-
ber of commodities.

Finally, we consider the following network design problem, motivated by the goal
of detecting and avoiding Braess’s Paradox: given a network, find the subnetwork with
the smallest maximum latency. Using our family of two-commodity networks and ideas
from the gap reductions of [17] that apply to the single-commodity version of the prob-
lem, we prove that there is no polynomial-time algorithm for this network design prob-
lem with subexponential approximation ratio (assuming P �= NP). Since our upper
bound on the price of anarchy trivially implies that an exponential performance guaran-
tee is achievable, this network design problem is a rare example of a natural optimiza-
tion problem with intrinsically exponential approximability.

Further Related Work. There have been numerous price of anarchy analyses in the
past few years. Study of the original load-balancing model of Koutsoupias and Pa-
padimitriou [13] continues unabated; see [7, 10] for surveys. A survey of the selfish
routing model studied here, including results on the price of anarchy, can be found
in [20]. Other noncooperative games have also been studied recently from a price of an-
archy perspective, including facility location games [8, 24], network design games [1,
9], and resource allocation games [12].

As noted above, Weitz [25] was the first to study the price of anarchy of selfish rout-
ing under the maximum latency objective. Weitz [25] noted that, for single-commodity
networks and classes of restricted latency functions, the price of anarchy for the max-
imum latency is no more than that for the average latency objective. For example, a
theorem of Roughgarden and Tardos [21] bounding the price of anarchy with respect to
the average latency objective then implies that the price of anarchy for the maximum
latency in single-commodity networks with linear latency functions is at most 4/3, and
a matching lower bound is furnished by the original form of Braess’s Paradox [3, 25].
However, upper bounds on the price of anarchy with respect to the maximum latency
objective do not imply upper bounds on the price of anarchy with respect to the average
latency objective: for example, the price of anarchy for the maximum latency objective
is at most n − 1 in single-commodity networks with arbitrary latency functions [19],
while the price of anarchy for the average latency can be arbitrarily large even in two-
node, two-link networks [21].

Weitz [25] also gave a family of networks that shows that this price of anarchy is
Ω(n) for multicommodity networks with n vertices and linear latency functions. Con-
currently with Roughgarden [19], Correa, Schulz, and Stier Moses [5] studied the max-
imum latency objective from several different perspectives. The results of [5] mostly
concern the computational complexity of computing an optimal solution and the extent

Braess’s Paradox, Fibonacci Numbers, and Exponential Inapproximability 501

to which multiple objective functions can be simultaneously optimized, and are disjoint
from those in [19] and in the present work.

2 Preliminaries

The Model. We now describe our model of selfish routing, following Roughgarden and
Tardos [21]. We will study a multicommodity flow network, described by a directed
graph G = (V,E) and k source-destination vertex pairs (s1, t1), . . . , (sk, tk). We de-
note by ri the amount of traffic that wishes to travel from the source si to the destination
ti—the traffic rate. The graph G can contain parallel edges, but we can exclude self-
loops. We will denote the si-ti paths of G by Pi. We assume that Pi is non-empty for
all i, and define P = ∪k

i=1Pi.
A flow is a nonnegative vector indexed by P . By fe we mean the amount∑

P∈P : e∈P fP of flow that traverses edge e. With respect to a network G and a vector
r of traffic rates, a flow is feasible if

∑
P∈Pi

fP = ri for all commodities i.
We assume that the network G suffers from congestion effects, and to model this we

give edge e a nonnegative, continuous, nondecreasing latency function �e that describes
the time needed to traverse the edge as a function of the edge congestion fe. Given a
flow f , the latency �P of a path P is the sum of the latencies of the edges in the path:
�P (f) =

∑
e∈P �e(fe). We will call a triple of the form (G, r, �) an instance.

Our objective function is the maximum latency incurred by a flow, defined formally
by M(f) = maxP∈P : fP >0 �P (f). With respect to an instance (G, r, �), a flow that
minimizes M(·) over all feasible flows will be called optimal. Since the feasible flows
of an instance form a compact subset of Euclidean space and M(·) is a continuous
function, every instance admits an optimal flow.

Flows at Nash Equilibrium. We next define the flows that we expect to arise from self-
ish routing. Assuming that all network users have negligible size and want to minimize
the latency experienced, we expect all users to travel on paths with minimum-possible
latency. We formalize this in the next definition.

Definition 1. A flow f feasible for (G, r, �) is at Nash equilibrium, or is a Nash flow, if
for every i ∈ {1, 2, . . . , k} and two paths P1, P2 ∈ Pi with fP1 > 0,

�P1(f) ≤ �P2(f).

Happily, Nash flows always exist, and all Nash flows of an instance have equal
maximum latency.

Proposition 1. Let (G, r, �) be an instance.

(a) There is at least one Nash flow for (G, r, �).
(b) If f, f̃ are Nash flows for (G, r, �), then M(f) = M(f̃).

Proposition 1 is classical; for example, it follows from arguments of Beckmann,
and Winsten [2].

Definition 1 implies that in a Nash flow, all of the traffic of a given commodity expe-
riences a common latency. We will sometimes use the notation Li(G, r, �) to denote the

McGuire,

502 H. Lin et al.

common latency of the ith commodity’s traffic in a Nash flow for (G, r, �); analogously
to Proposition 1(b), this is well defined (i.e., independent of the particular Nash flow).

We will also benefit from the following alternative definition of a Nash flow, which
was first noted by Smith [23]. It is an easy consequence of Definition 1.

Proposition 2. A flow f feasible for (G, r, �) is at Nash equilibrium if and only if∑
e∈E

�e(fe)fe ≤
∑
e∈E

�e(fe)f̃e (1)

for every flow f̃ that is feasible for (G, r, �).

The Price of Anarchy. We now formalize what we mean by the price of anarchy. As
noted in the introduction, it is the ratio of the objective function values of a flow at Nash
equilibrium and an optimal flow. If (G, r, �) is an instance, then the price of anarchy of
(G, r, �), denoted ρ(G, r, �), is the ratio M(f)/M(f∗), where f is a Nash flow and f∗

is an optimal flow. Proposition 1 ensures that the price of anarchy of an instance is well
defined provided M(f∗) > 0. If M(f∗) = 0, then f∗ is also a flow at Nash equilibrium
and we define the price of anarchy of the instance to be 1.

Finally, the price of anarchy ρ(I) of a collection I of instances is defined in the
obvious way:

ρ(I) = sup
(G,r,�)∈I

ρ(G, r, �).

3 Braess’s Paradox in Multicommodity Networks

In this section, we prove that Braess’s Paradox can be much more severe in multicom-
modity networks than in single-commodity networks. In fact, there will be a “phase
transition” of sorts: the worst-case severity of Braess’s Paradox is polynomial in single-
commodity instances, but exponential in two-commodity instances. The family of in-
stances that we construct in this section will also serve as a starting point for our inap-
proximability results in Section 5.

We will begin this section by formally stating the properties of our construction in
Theorem 3 below. Prior to detailing this construction and proving Theorem 3, we will
discuss its many consequences for multicommodity networks.

Our family of two-commodity instances is closely related to the Fibonacci num-
bers. Recall that for a nonnegative integer p, the pth Fibonacci number Fp is defined
as follows: F0 = 0, F1 = 1, and Fp = Fp−2 + Fp−1 for p ≥ 2. It is well known that
Fp ≈ c · φp as p→∞, where c ≈ 0.4472 and φ ≈ 1.618 is the golden ratio.

We can now state the main result of this section.

Theorem 3. There is an infinite family {(Gp, rp, �p)}∞p=1 of instances with the follow-
ing properties:

(a) (Gp, rp, �p) has two commodities and O(p) vertices and edges as p→∞;
(b) for p odd, L1(Gp, rp, �p) = Fp−1 + 1 and L2(Gp, rp, �p) = Fp;

Braess’s Paradox, Fibonacci Numbers, and Exponential Inapproximability 503

(c) for p even, L1(Gp, rp, �p) = Fp + 1 and L2(Gp, rp, �p) = Fp−1;
(d) for all p, there is a subgraph Hp of Gp with one less edge than Gp that satisfies

L1(Hp, rp, �p) = 1 and L2(Hp, rp, �p) = 0.

Theorem 3 has a number of implications. We begin by noting two immediate corol-
laries of the theorem.

Corollary 1. Adding a single edge to an n-vertex two-commodity instance can increase
the latency of all traffic by a 2Ω(n) factor as n→∞.

Corollary 2. If In is the set of instances with at most n vertices, then ρ(In) = 2Ω(n)

as n→∞.

Furthermore, Corollary 1 trivially implies that for every k ≥ 2, adding a single edge
to an n-vertex k-commodity instance can increase the latency of all traffic by a 2Ω(n)

factor as n→∞.
Theorem 3 and Corollaries 1 and 2 show that a number of previously established

properties of single-commodity instances do not carry over to multicommodity net-
works. In particular, the following statements are known to hold in single-commodity
instances.

(1) Adding one edge to a single-commodity instance can only increase the maximum
or average latency of a Nash flow by a factor of 2 [14].

(2) Adding any number of edges to an n-vertex single-commodity instance can only
increase the maximum or average latency of a Nash flow by a factor of +n/2, [17].

(3) The price of anarchy with respect to maximum latency in an n-vertex single-
commodity instance is at most n− 1 [19].

Theorem 3 and Corollaries 1 and 2 demonstrate that all of these statements utterly fail
to extend to multicommodity networks, even to those with only two commodities. This
dichotomy stands in contrast to other work on selfish routing, such as bounds on the
price of anarchy with respect to the average latency objective function, where there
is provably no separation between single-commodity and multicommodity instances
[18, 6].

We now give the construction of the family of instances claimed in Theorem 3.
We begin by defining the graph Gp for p ≥ 1, see Figure 1. We will describe the
construction only for p odd; the construction for even p is similar. We begin with two
paths, which we will call P1 and P2. The (p + 3)-vertex path P2, drawn vertically in
Figure 1, is s2 → w0 → w1 → · · · → wp → t2. The (p + 4)-vertex path P1, drawn
horizontally in Figure 1, is s1 → a → w1 → v1 → · · · → vp → t1. We also add the
following edges between the two paths:

– (a,wi) for all positive even i;
– (vi, wi) for all positive even i;
– (s2, vi) for all odd i at most p− 2;
– (wi, vi) for all odd i.

504 H. Lin et al.

a w1 v1 v2 v3 v4 v5

w2

w3

w4

w5

w6

w0

S2

S1

t2

t1
v6 v7

w7

e3 e5

e2

e
4

e6

e1
e

0

Fig. 1. Construction of the instance (Gp, rp, �p) when p = 7. Dotted edge (s1, w0) is the “extra
edge”. Edges with non-constant latency functions are labelled

Finally, we complete Gp by adding what we will call an extra edge, defined as the edge
(s1, w0).

For all p, the traffic rate vector rp will be rp
1 = rp

2 = 1. To complete the construction,
we therefore need only describe the edge latency functions. All edges will either possess
a constant latency function, or a latency function that approximates a step function.
We next introduce notation for the latter function type. For a positive integer i and a
positive real number δ, f i

δ will denote a continuous, nondecreasing function satisfying
f i

δ(x) = 0 for x ≤ 1 and f i
δ(x) = Fi for x ≥ 1 + δ. (The function f i

δ can be defined
arbitrarily on (1, 1 + δ), provided it is continuous and nondecreasing.)

For i ∈ {0, 1, . . . , p − 1}, we define the edge ei to be (wi, wi+1) if i is even and
(vi, vi+1) if i is odd. (See Figure 1.) We now define the latency functions �p for Gp

as follows, where δ is sufficiently small (to be chosen later): for each i > 0, edge
ei receives the latency function �p(x) = f i

δ(x), edge e0 receives the latency function
�p(x) = f1

δ (x), edge (s1, a) receives the latency function �p(x) = 1, and all other
edges receive the latency function �p(x) = 0.

With the construction in hand, we now turn toward proving Theorem 3 for odd p
(the arguments for even p are similar). Part (a) is obvious. Part (d) is easy to see: if Hp

is obtained from Gp by removing the extra edge (s1, w0) and f is the flow that routes
one unit of traffic on both P1 and P2, then f is at Nash equilibrium for (Gp, rp, �p),
showing that L1(Hp, rp, �p) = 1 and L2(Hp, rp, �p) = 0. (See Figure 2.)

To finish the proof of Theorem 3 (for p odd), we need only prove part (b). We will
accomplish this via a sequence of lemmas, the first of which requires some further
definitions. First, we will say that a flow f , feasible for (Gp, rp, �p), floods the instance
if fei

≥ 1 + δ for all i ∈ {0, 1, . . . , p − 1}. Thus if f floods (Gp, rp, �p), all edge
latencies are at their maximum, as in Figure 3. Second, we introduce notation for some
of the paths of Gp. For i even, Qi will denote the unique s1-t1 path which traverses
edge ei before any odd labelled edges, and includes no other edge of P2. For i odd,

Braess’s Paradox, Fibonacci Numbers, and Exponential Inapproximability 505

1 a
0

w1 v1 v2 0
v3 v4 v5

0

w2

w3

w4

w5

w6

w0

S2

0

S1

0

t2

t10
v6 v7

w7

0

Fig. 2. Nash flow in (Hp, rp, �p), with p = 7, where Hp is Gp with the extra edge (s1, w0)
removed. Solid edges carry flow, dotted edges do not. Edge latencies are with respect to the Nash
flow. Unlabelled edges have zero latency

a w1 v1 v2 v3 v4 v5

w2

w3

w4

w5

w6

w0

S2

S1

t2

t1
v6 v7

w7

2 5

1

3

8

1
1

1

Fig. 3. Nash flow in (Gp, rp, �p), with p = 7. Solid edges carry flow, dotted edges do not. Edge
latencies are with respect to the Nash flow. Unlabelled edges have zero latency

Qi will denote the unique s2-t2 path which traverses edge ei before any even labelled
edges, and includes no other edge of P1. We will call the paths Q0, . . . , Qp−1, together
with the “axis-aligned” paths P1 and P2, the short paths. The next lemma justifies this
terminology, at least for flows that flood the instance (Gp, rp, �p).

506 H. Lin et al.

Lemma 1. If f floods (Gp, rp, �p) with p odd, then:

(a) �P (f) ≥ Fp−1 + 1 for every s1-t1 path P , and equality holds for short paths;
(b) �P (f) ≥ Fp for every s2-t2 path P , and equality holds for short paths.

We will only prove part (b) of Lemma 1, as the proof of part (a) is similar. In the
proof, we will use the following lemma about Fibonacci numbers, which is easy to
verify.

Lemma 2. Let j and p be odd positive integers with j < p, and I the even numbers
between j and p. Then, Fj +

∑
i∈I Fi = Fp.

We now prove Lemma 1.

Proof of Lemma 1: Let P be an s2-t2 path. Let j be the largest odd number such that
ej ∈ P , or 0 if there is no such number. We only need to prove the case where j > 0,
since the j = 0 and j = 1 cases are the same. If j > 0, then P contains ej and also
ei for all even i between j and p. Since f floods (Gp, rp, �p), Lemma 2 implies that
�P (f) ≥ Fp. Moreover, this inequality holds with equality for short paths. �

Our final lemma states that routing flow on short paths suffices to flood the instance
(Gp, rp, �p). For the statement of the lemma, recall that the parameter δ controls how
rapidly the non-constant latency functions of (Gp, rp, �p) increase as the amount of flow
on the edge exceeds one.

Lemma 3. For all p odd and δ sufficiently small, there is flow f , with fP > 0 only for
short paths P , that floods (Gp, rp, �p).

Proof. Define the flow f as follows. First, for i = 0, 1, . . . , p − 1, route 2−(i+1) units
of flow (of the appropriate commodity) on the short path Qi. This routes strictly less
than one unit of flow of each commodity. The remaining flow is then routed on the short
paths P1 and P2.

To complete the proof, we need to show that f floods (Gp, rp, �p)—that fei
≥

1 + δ for all p ∈ {0, 1, . . . , p − 1} provided δ is sufficiently small. We will prove this
inequality only for i odd; the argument for even i is similar.

The second commodity uses edge ei only in the short path Qi, on which it routes
2−(i+1) units of flow. The first commodity uses edge ei in all of its flow paths except
for the short paths Qj for j even and greater than i. The total amount of flow on ei is
thus at least

2−(i+1) + 1−
∑
j≥0

2−(i+2+2j) = 1 + 2−(i+1) − 4
3
· 2−(i+2) > 1 + 2−(i+3).

Thus, provided δ ≤ 2−(p+3), f floods (Gp, rp, �p), and the proof is complete.

Theorem 3(b) now follows immediately from Definition 1, Lemma 1, and Lemma 3.

Braess’s Paradox, Fibonacci Numbers, and Exponential Inapproximability 507

4 Upper Bounds on the Price of Anarchy

We now turn toward proving upper bounds on the price of anarchy and, as a conse-
quence, on the worst-possible severity of Braess’s Paradox. We will aim for an upper
bound that matches the lower bound of Theorem 3, and will largely succeed in this goal.

We begin by proving a very weak bound on the price of anarchy, a bound that de-
pends on parameters other than the size of the network. While not interesting in its own
right, this bound will play a crucial role in later proofs in this section.

Lemma 4. Let f be a Nash flow and f∗ a feasible flow for an instance (G, r, �), where
G has m edges. For every edge e of G with fe > f∗

e ,

�e(fe) ≤
m

∑
i ri

fe − f∗
e

·max
e

�e(f∗
e). (2)

Proof of Lemma 4: Let F ⊆ E denote the edges e of G for which fe > f∗
e . Using

inequality (1) in Proposition 2 and the fact that �e(f∗
e) ≤M(f∗) whenever f∗

e > 0, we
can derive the following crude bound:∑

e∈F

�e(fe)(fe − f∗
e) ≤

∑
e∈E\F

�e(fe)(f∗
e − fe)

≤
(
max

e
�e(f∗

e)
) ∑

e∈E\F

(f∗
e − fe)

≤ max
e

�e(f∗
e) ·m ·

∑
i

ri.

The lemma now follows easily. �

We next use Lemma 4 as a bootstrap for deriving upper bounds on the price of anar-
chy that depend only on the size of the network. We will accomplish this as follows. For
an arbitrary instance, we will set up a linear program, with edge latencies as variables,
that maximizes the price of anarchy among instances that are “basically equivalent” to
the given instance. We will define our notion of equivalence so that Lemma 4 ensures
that the linear program has a bounded maximum, and will then analyze the vertices of
the feasible region of the linear program to derive the following bound.

Theorem 4. If (G, r, �) is an instance with n vertices and m edges, then

ρ(G, r, �) = 2O(m log n).

Before implementing the proof approach outlined above, we state a proposition that
bounds the maximum size of the optimal value of a linear program with a constraint
matrix with entries in {−1, 0, 1}.

Proposition 5. Let A be an m×n matrix with entries in {0,±1} and at most α non-zero
entries in each row. Let b be a real-valued m-vector, and let the linear program maxxi

subject to Ax ≤ b have a finite maximum. Then, this maximum is at most nαn‖b‖∞,
where ‖b‖∞ denotes maxj |bj |.

508 H. Lin et al.

Proposition 5 can be proved with Cramer’s rule and a simple bound on the determi-
nant. We omit further details.

Proof of Theorem 4: Let (G, r, �) be an instance with n vertices and m edges. Let
f and f∗ be Nash and optimal flows for (G, r, �), respectively. We aim to show that
ρ(G, r, �) = 2O(m log n).

We begin by performing some preprocessing on the instance (G, r, �). First, if fe =
f∗

e = 0 for some edge e, then that edge can be removed from the instance without
affecting its ρ-value. We can therefore assume that f∗

e > 0 or fe > 0 for every edge
e. Second, we can assume that �e(0) = 0 whenever f∗

e = 0. To see why, note that
replacing the latency function �e(x) of such an edge by the function equal to (e.g.)
min{x/fe, 1} · �e(x) leaves the Nash flow unaffected while only decreasing the maxi-
mum latency of f∗ and hence increasing the ρ-value of the instance. Combining these
two assumptions, we can assume without loss of generality �e(f∗

e) ≤M(f∗) for every
edge e of G.

We now set up a linear program that attempts to further transform the latency func-
tions to make the ρ-value of the given instance as large as possible. In the linear pro-
gram, the flow amounts {fe} and {f∗

e }, as well as the latencies {�e(f∗
e)} with respect

to f∗, will be held fixed. There will be a nonnegative variable �̂e(fe) representing the
latency of edge e with respect to the flow f . So that the new latency functions are
nondecreasing, we impose the following linear constraints, which we call monotonicity
constraints:

– For all edges e with fe = f∗
e , �̂e(fe) = �e(f∗

e).
– For all edges e with fe < f∗

e , �̂e(fe) ≤ �e(f∗
e).

– For all edges e with fe > f∗
e , �̂e(fe) ≥ �e(f∗

e).

Additionally, we will insist that the (fixed) flow f be at Nash equilibrium with respect
to the (variable) latencies {�̂e(fe)}. There are several ways that this requirement can be
encoded with linear constraints. For this proof, we will be content with the following
naive approach: for every commodity i, and every pair of paths P, P̃ ∈ Pi for which
f

(i)
e > 0 for all e ∈ P , we insist that

∑
e∈P �̂e(fe) ≤

∑
e∈P̃ �̂e(fe) in our linear

program. Since this linear program has a small number of variables, we will not be
hampered by its potentially massive number of constraints.

By construction, our constraints ensure the following: for every feasible solution
{�̂(fe)}, there is an instance (G, r, �̂) with continuous, nondecreasing latency functions
�̂, so that these latency functions interpolate their two prescribed values and f is a Nash
flow for (G, r, �̂). Consider the objective function max �̂e(fe) for an edge e. Our key
claim is that the resulting linear program is not unbounded. For edges e with fe ≤ f∗

e ,
the claim is obvious from the constraints. For edges e with fe > f∗

e , the claim follows
from Lemma 4 and the fact that all parameters on the right-hand side of the bound (2)
are fixed in the linear program.

Since the maximum of the above linear program is bounded, we can apply Propo-
sition 5. In our linear program, there are a total of m variables, of which each con-
straint contains at most 2n. The right-hand side of each constraint is either a 0 or a
term of the form �e(f∗

e). By our preprocessing step, �e(f∗
e) ≤ M(f∗) for all edges

e. Hence, Proposition 5 implies that the maximum of the linear program is at most

Braess’s Paradox, Fibonacci Numbers, and Exponential Inapproximability 509

mnO(m) · M(f∗). Hence, returning to the original instance (G, r, �), we must have
�e(fe) ≤ mnO(m) ·M(f∗) for all edges e. Since a flow path of f can contain only n
edges, we can conclude that ρ(G, r, �) ≤ nmnO(m) = 2O(m log n). �

When the number of commodities is small (e.g., a constant), we can improve the
bound to 2O(kn) using a different way to encode the constraint that f must be at Nash
equilibrium with respect to {�̂e(fe)}.

Theorem 6. If (G, r, �) is an instance with n vertices and k commodities, then

ρ(G, r, �) = 2O(kn).

Proof. To prove our bound, we start with the linear program described in Theorem 4.
We leave the objective and monotonicity constraints the same, but replace the con-
straints that ensure f is a Nash equilibrium for {�̂e(fe)}. To ensure the latencies {�̂e(fe)}
define a Nash equilibrium for f , we introduce an auxiliary variable d̂i(v) for each com-
modity i and for every vertex v ∈ V reachable from that commodity’s source si, which
will represent the length of the shortest path from si to v, with respect to the latencies
{�̂e(fe)}. Now, we define the following constraints:

– d̂i(si) = 0, for all commodities i.

– d̂i(u) + �̂e(fe) = d̂i(v), for all edges e = (u, v) and commodities i with f
(i)
e > 0.

– d̂i(u) + �̂e(fe) ≤ d̂i(v), for all edges e = (u, v) and commodities i.

To complete the proof, we need to show:

(a) A set of latencies {�̂e(fe)} is feasible for our linear program if and only if it defines
a Nash equilibrium for f .

(b) The latency variables can be removed, yielding a linear program with kn variables,
that can be bounded by 2O(kn).

To prove the forward direction of (a), it is easy to see that with our constraints, for
every commodity i, each path P ∈ Pi, with f

(i)
e > 0 for all e ∈ P , must have length

precisely equal to d̂i(ti). Furthermore, no path in P ∈ Pi may have length strictly less
than d̂i(ti). Therefore, for every commodity i and every P, P̃ ∈ Pi, with f

(i)
e > 0 for all

e ∈ P ,
∑

e∈P �̂e(fe) ≤
∑

e∈P̃ �̂e(fe), and our latencies define a Nash equilibrium for

f . To prove the other direction of (a), note that for any set of latencies �̂e(fe) defining
a Nash equilibrium for f , we can define d̂i(v) to be the length of the shortest path from
si to v, and we have a feasible solution for our linear program.

With (a) proven, we know that the maximum value of our linear program is pre-
cisely the maximum edge length that occurs in any Nash equilibrium for flow f . As
before, note that Lemma 4 implies our linear program is bounded, and we can apply
Proposition 5 to bound the maximum value of the linear program.

Before applying Proposition 5 however, we first eliminate the latency variables,
which allows us to prove a better bound. Note that for any edge e = (u, v) with f i

e > 0
for some commodity i, d̂i(u) + �̂e(fe) = d̂i(v), so we can replace any occurrence

510 H. Lin et al.

of �̂e(fe) in our linear program with d̂i(v) − d̂i(u). Furthermore, for any other edges,
fe = 0, and it must be the case that �̂e(fe) ≤ M(f∗). For these edges, an optimal
solution must assign some value xe ≤ M(f∗) to the latencies �̂e(fe), and thus for
these edges, we can substitute the �̂e(fe) variable with the constant xe value used in
the optimal solution. With these substitutions, we have not changed the optimal value
of our linear program, and we are only left with O(kn) variables. Moreover, there are
still a constant number of variables per constraint, and each entry of b is still bounded
by M(f∗). Therefore, applying Proposition 5 bounds the price of anarchy by 2O(kn).

Corollary 2 shows that Theorem 6 is essentially tight for a constant number of com-
modities.

5 Exponential Inapproximability for Network Design

In this section, we will show that a network design problem that is naturally motivated
by Braess’s Paradox has intrinsically exponential approximability. The problem, which
we call MULTICOMMODITY NETWORK DESIGN (MCND), is as follows.

Given a (multicommodity) instance (G, r, �), find a subgraph H of G that mini-
mizes M(H, r, �).

By M(H, r, �), we mean the maximum latency of a Nash flow for (H, r, �) (well defined
by Proposition 1). MCND is tantamount to detecting and avoiding Braess’s Paradox. For
single-commodity instances, this problem was studied in [17].

The trivial algorithm is defined as the algorithm that always returns the entire graph
G—the algorithm that always punts on trying to detect Braess’s Paradox. The follow-
ing was proved in [17]: the trivial algorithm is an +n/2,-approximation algorithm for
the special case of single-commodity instances; and for every ε > 0, no (+n/2, − ε)-
approximation algorithm exists (assuming P �= NP). Here, we will succeed in proving
analogues of these results for multicommodity networks, where the best-possible ap-
proximation ratio is inherently exponential.

First, we note that since Theorems 4 and 6 imply limits on the largest possible
increase in the maximum latency due to Braess’s Paradox, they also translate to an
upper bound on the trivial algorithm.

Proposition 7. The trivial algorithm is a 2O(min{kn,m log n})-approximation algorithm
for MCND.

Much more interesting is the next result, which states that there is no polynomial-
time algorithm with subexponential approximation ratio (assuming P �= NP).

Theorem 8. Assuming P �= NP , there is no 2o(n)-approximation algorithm for MCND.

The proof of Theorem 8 combines ideas from the gap reductions of [17] for the
single-commodity version of MCND with the family of two-commodity instances de-
scribed in Section 3. Because of space constraints, we will content ourselves here with
a high-level overview of the proof.

Braess’s Paradox, Fibonacci Numbers, and Exponential Inapproximability 511

Recall that in an instance of the NP-complete problem PARTITION, we are given
q positive integers {a1, a2, . . . , aq} and seek a subset S ⊆ {1, 2, . . . , q} such that∑

j∈S aj = 1
2

∑q
j=1 aj [11–SP12]. The idea of the reduction is to start with an in-

stance (Gp, rp, �p) of the form described in Section 3, and to replace the extra edge
(s1, w0) with a collection of parallel edges representing an instance I = {a1, . . . , ap}
of PARTITION. We will give these edges latency functions that simulate “capacities”,
with an edge representing an integer aj of I receiving capacity proportional to aj . The
proof then break down into three parts. First, if too many of these parallel edges are
removed from the network, there will be insufficient remaining capacity to send flow
cheaply. To implement this, we must also augment the latency functions of the edges
e0, . . . , ep−1 of Section 3 to have effective capacities. Second, if too few of the parallel
edges are removed, the excess of capacity results in a bad flow at Nash equilibrium
similar to that of Figure 3. Finally, these two cases can be avoided if and only if I is
a “yes” instance of PARTITION, in which case removing the appropriate collection of
parallel edges results in a network that admits a good Nash equilibrium similar to that
of Figure 2.

References

1. E. Anshelevich, A. Dasgupta, É. Tardos, and T. Wexler. Near-optimal network design with
selfish agents. In Proceedings of the 35th Annual ACM Symposium on the Theory of Com-
puting (STOC), pages 511–520, 2003.

2. M. Beckmann, C. B. McGuire, and C. B. Winsten. Studies in the Economics of Transporta-
tion. Yale University Press, 1956.

3. D. Braess. Über ein Paradoxon aus der Verkehrsplanung. Unternehmensforschung, 12:258–
268, 1968.

4. C. K. Chau and K. M. Sim. The price of anarchy for non-atomic congestion games with
symmetric cost maps and elastic demands. Operations Research Letters, 31(5):327–335,
2003.

5. J. R. Correa, A. S. Schulz, and N. E. Stier Moses. Computational complexity, fairness, and
the price of anarchy of the maximum latency problem. In Proceedings of the 10th Conference
on Integer Programming and Combinatorial Optimization (IPCO), volume 3064 of Lecture
Notes in Computer Science, pages 59–73, 2004.

6. J. R. Correa, A. S. Schulz, and N. E. Stier Moses. Selfish routing in capacitated networks.
Mathematics of Operations Research, 29(4):961–976, 2004.

7. A. Czumaj. Selfish routing on the Internet. In J. Leung, editor, Handbook of Scheduling:
Algorithms, Models, and Performance Analysis, chapter 42. CRC Press, 2004.

8. N. Devanur, N. Garg, R. Khandekar, V. Pandit, and A. Saberi. Price of anarchy, locality gap,
and a network service provider game. Unpublished manuscript, 2003.

9. A. Fabrikant, A. Luthra, E. Maneva, C. H. Papadimitriou, and S. J. Shenker. On a network
creation game. In Proceedings of the 22nd ACM Symposium on Principles of Distributed
Computing (PODC), pages 347–351, 2003.

10. R. Feldmann, M. Gairing, T. Lücking, B. Monien, and M. Rode. Selfish routing in non-
cooperative networks: A survey. In Proceedings of the Conference on Mathematical Foun-
dations of Computer Science (MFCS), volume 2747 of Lecture Notes in Computer Science,
pages 21–45, 2003.

11. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman, 1979.

512 H. Lin et al.

12. R. Johari and J. N. Tsitsiklis. Efficiency loss in a network resource allocation game. Mathe-
matics of Operations Research, 29(3):407–435, 2004.

13. E. Koutsoupias and C. H. Papadimitriou. Worst-case equilibria. In Proceedings of the 16th
Annual Symposium on Theoretical Aspects of Computer Science (STACS), pages 404–413,
1999.

14. H. Lin, T. Roughgarden, and É. Tardos. A stronger bound on braess’s paradox. In Pro-
ceedings of the 15th Annual Symposium on Discrete Algorithms (SODA), pages 333–334,
2004.

15. C. H. Papadimitriou. Algorithms, games, and the Internet. In Proceedings of the 33rd Annual
ACM Symposium on the Theory of Computing (STOC), pages 749–753, 2001.

16. G. Perakis. The price of anarchy when costs are non-separable and asymmetric. In Pro-
ceedings of the 10th Conference on Integer Programming and Combinatorial Optimization
(IPCO), volume 3064 of Lecture Notes in Computer Science, pages 46–58, 2004.

17. T. Roughgarden. Designing networks for selfish users is hard. In Proceedings of the 42nd
Annual Symposium on Foundations of Computer Science, pages 472–481, 2001.

18. T. Roughgarden. The price of anarchy is independent of the network topology. Journal of
Computer and System Sciences, 67(2):341–364, 2003.

19. T. Roughgarden. The maximum latency of selfish routing. In Proceedings of the 15th Annual
Symposium on Discrete Algorithms (SODA), pages 973–974, 2004.

20. T. Roughgarden. Selfish Routing and the Price of Anarchy. MIT Press, 2005.
21. T. Roughgarden and É. Tardos. How bad is selfish routing? Journal of the ACM, 49(2):236–

259, 2002.
22. T. Roughgarden and É. Tardos. Bounding the inefficiency of equilibria in nonatomic con-

gestion games. Games and Economic Behavior, 47(2):389–403, 2004.
23. M. J. Smith. The existence, uniqueness and stability of traffic equilibria. Transportation

Research, 13B:295–304, 1979.
24. A. Vetta. Nash equilibria in competitive societies, with applications to facility location,

traffic routing and auctions. In Proceedings of the 43rd Annual Symposium on Foundations
of Computer Science (FOCS), pages 416–425, 2002.

25. D. Weitz. The price of anarchy. Unpublished manuscript, 2001.

Weighted Automata and Weighted Logics�

Manfred Droste1 and Paul Gastin2

1 Institut für Informatik, Universität Leipzig,
Augustusplatz 10-11, D-04109 Leipzig, Germany

droste@informatik.uni-leipzig.de
2 LSV, CNRS UMR 8643 & ENS de Cachan 61,

Av. du Président Wilson, F-94235 Cachan Cedex, France
Paul.Gastin@lsv.ens-cachan.fr

Abstract. Weighted automata are used to describe quantitative
properties in various areas such as probabilistic systems, image compres-
sion, speech-to-text processing. The behaviour of such an automaton is
a mapping, called a formal power series, assigning to each word a weight
in some semiring. We generalize Büchi’s and Elgot’s fundamental the-
orems to this quantitative setting. We introduce a weighted version of
MSO logic and prove that, for commutative semirings, the behaviours
of weighted automata are precisely the formal power series definable
with our weighted logic. We also consider weighted first-order logic and
show that aperiodic series coincide with the first-order definable ones,
if the semiring is locally finite, commutative and has some aperiodicity
property.

1 Introduction

Büchi’s and Elgot’s fundamental theorems [3, 9] established the coincidence of
regular languages with languages definable in monadic second-order logic. At
the same time, Schützenberger [22] investigated finite automata with weights
and characterized their behaviours as rational formal power series. Both of these
results have inspired a wealth of extensions and further research, cf. [24, 21, 15, 2]
for surveys and monographs, and also led to recent practical applications, e.g. in
verification of finite-state programs (model checking, [17, 1, 16]), in digital image
compression [5, 11, 13, 12] and in speech-to-text processing [19, 20, 4].

It is the goal of this paper to introduce a logic with weights and to show that
the behaviours of weighted finite automata are precisely the series definable in
our weighted monadic second-order logic. This can be viewed as a quantitative
version of Büchi’s and Elgot’s classical (qualitative) results.

The syntax of our weighted logics incorporates weights taken from a semiring
K, just as done for weighted automata in order to model a variety of applications
and situations. The semantics of a weighted logic formula will be a formal power

� Work partly supported by the DAAD-PROCOPE project Temporal and Quantita-
tive Analysis of Distributed Systems.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 513–525, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

514 M. Droste and P. Gastin

series with values in K. We restrict negation to atomic formulas since in
general there is no natural complement operation in the semiring that would
allow us to define the semantics of negation elementwise. In comparison to
classical MSO-logic, this is not a restriction, since we include disjunction, con-
junction, existential and universal quantifications in our syntax. Thus, we obtain
the classical MSO-logics by letting K = , the 2-element Boolean algebra.

Even for the semiring of natural numbers or the tropical semiring it turns
out that neither universal first-order nor universal second-order quantification of
formulas preserve recognizability. Therefore, for the syntax of restricted MSO-
logic we exclude universal second-order quantification, and we permit univer-
sal first-order quantification only for formulas whose semantics takes finitely
many values in K. Moreover, if we allow existential set quantifications only to
occur at the beginning of a fomula, we arrive at restricted existential MSO-
logic.

Now we give a summary of our results. First we show for any commu-
tative semiring K that the behaviours of weighted automata with values in
K are precisely the series definable by sentences of our restricted MSO-logic,
or, equivalently, of our restricted existential MSO-logic. Second, if the semi-
ring K is locally finite, we obtain that the semantics of all sentences of our
full weighted MSO-logic are representable by weighted automata. Locally
finite semirings were investigated in [6]; they form a large class of semirings
including e.g. all finite semirings, the max-min-semiring employed for
capacity problems of networks, and all Boolean algebras. Thus we obtain Büchi’s
and Elgot’s theorems as a particular consequence. Moreover, if the semiring
K is a field or locally finite and is given in some effective way, then the
constructions in our proofs yield effective conversions of sentences of our weighted
logics to weighted automata, and viceversa, and we obtain also decision
procedures.

Finally, we investigate weighted first-order logic. As is well-known, the first-
order definable languages are precisely the starfree languages which in turn
coincide with the the aperiodic ones [23, 18]. Aperiodic and starfree formal power
series were introduced and investigated in [6]. Easy examples show that even if
the semiring K is finite, series definable in our weighted first-order logic need
not be aperiodic. However, we obtain that the aperiodic series coincide with
the first-order definable ones, if the semiring is locally finite, commutative and
both addition and multiplication satisfy a certain aperiodicity property. Such
semirings include again all Boolean algebras, but also quite different ones like
the truncated max-plus semiring.

We believe that the present paper opens a new research road. Obviously, one
could try to extend our results to other structures such as trees or traces. One
could also try to define weighted temporal logics and study not only
expressiveness but also decidability and complexity of natural problems such
as quantitative model checking.

Full proofs are available in the technical report [7].

Weighted Automata and Weighted Logics 515

2 Weighted Automata

We give basic definitions and properties of semirings, formal power series and
weighted automata. For background, we refer the reader to [2, 15, 21].

A semiring is a structure (K,+, ·, 0, 1) where (K,+, 0) is a commutative
monoid, (K, ·, 1) is a monoid, multiplication distributes over addition, and 0·x =
x · 0 = 0 for each x ∈ K. If the multiplication is commutative, we say that
K is commutative. If the addition is idempotent, then the semiring is called
idempotent. Important examples include

– the natural numbers (,+, ·, 0, 1) with the usual addition and multiplication,
– the Boolean semiring = ({0, 1},∨,∧, 0, 1),
– the tropical semiring Trop = (∪{∞},min,+,∞, 0) (also known as min-

plus semiring), with min and + extended to ∪{∞} in the natural way,
– the arctical semiring Arc = (∪{−∞},max,+,−∞, 0),
– the semiring ([0, 1],max, ·, 0, 1) which can be used to compute probabilities,
– the semiring of languages (P(A∗),∪,∩, ∅, A∗).

If K is a semiring and n ∈ , then Kn×n comprises all (n×n)-matrices over K.
With usual matrix multiplication (Kn×n, ·) is a monoid.

A formal power series is a mapping S : A∗ → K. It is usual to write (S,w)
for S(w). The set Supp(S) := {w ∈ A∗ | (S,w) �= 0} is called the support of S,
and Im(S) = {(S,w) | w ∈ A∗} is the image of S. The set of all formal power
series over K and A is denoted by K〈〈A∗〉〉. Now let S, T ∈ K〈〈A∗〉〉. The sum
S + T and the Hadamard product S - T are both defined pointwise:

(S + T,w) := (S,w) + (T,w) and (S - T,w) := (S,w) · (T,w) (w ∈ A∗).

For L ⊆ A∗, we define the characteristic series L : A∗ → K by (L, w) = 1
if w ∈ L, and (L, w) = 0 otherwise.

Now we turn to weighted automata. We fix a semiring K and an alphabet A.
A weighted finite automaton over K and A is a quadruple A = (Q,λ, μ, γ) where
Q is a finite set of states, μ : A → KQ×Q is the transition weight function and
λ, γ : Q→ K are weight functions for entering and leaving a state, respectively.
Here μ(a) is a (Q×Q)-matrix whose (p, q)-entry μ(a)p,q ∈ K indicates the weight
of the transition p

a−→ q. Then μ extends uniquely to a monoid homomorphism
(also denoted by μ) from A∗ into (KQ×Q, ·).

The weight of a path P : q0
a1−→ q1 −→ . . . −→ qn−1

an−→ qn in A is the
product weight(P) := λ(q0) · μ(a1)q0,q1 · · ·μ(an)qn−1,qn

· γ(qn). This path has
label a1 . . . an. The weight of a word w = a1 . . . an ∈ A∗ in A, denoted (|| A ||, w),
is the sum of weight(P) over all paths P with label w. One can check that
(|| A ||, w) = λ · μ(w) · γ with usual matrix multiplication, considering λ as a
row vector and γ as a column vector. If w = ε, we have (|| A ||, ε) = λ · γ.
This defines a formal power series || A || : A∗ → K called the behavior of A. A
formal power series S ∈ K〈〈A∗〉〉 is called recognizable, if there exists a weighted
finite automaton A such that S = || A ||. Then we also call A or (λ, μ, γ) a
representation of S. We let Krec〈〈A∗〉〉 be the collection of all recognizable formal
power series over K and A.

516 M. Droste and P. Gastin

Now let h : A∗ → B∗ be a homomorphism. If T ∈ K〈〈B∗〉〉, then h−1(T) :=
T ◦ h ∈ K〈〈A∗〉〉. That is, (h−1(T), w) = (T, h(w)) for each w ∈ A∗. We say that
h is non-erasing, if h(a) �= ε for any a ∈ A. In this case, for S ∈ K〈〈A∗〉〉, define
h(S) : B∗ → K by (h(S), v) :=

∑
w∈h−1(v)(S,w) (v ∈ B∗), noting that the sum

is finite since h is non-erasing. Recognizability is preserved by inverse morphisms
and non-erasing morphisms [8, 2].

We say S : A∗ → K is a recognizable step function, if S =
∑n

i=1 ki · Li
for

some n ∈ , ki ∈ K and recognizable languages Li ⊆ A∗ (i = 1, . . . , n). As is
well-known, any recognizable step function is a recognizable power series.

3 Weighted Logics

In this section, we introduce our weighted logics and study its first properties.
We fix a semiring K and an alphabet A. For each a ∈ A, Pa denotes a unary
predicate symbol. The syntax of formulas of the weighted MSO-logic is given by

ϕ ::= k | Pa(x) | ¬Pa(x) | x ≤ y | ¬(x ≤ y) | x ∈ X | ¬(x ∈ X)
| ϕ ∨ ψ | ϕ ∧ ψ | ∃x.ϕ | ∃X.ϕ | ∀x.ϕ | ∀X.ϕ

where k ∈ K and a ∈ A. We denote by MSO(K,A) the collection of all such
weighted MSO-formulas ϕ.

Now we turn to the definition of the semantics of formulas ϕ ∈ MSO(K,A).
We let Free(ϕ) be the set of all free variables of ϕ. Let w = a1 . . . an ∈ A∗ with
ai ∈ A. We also write w(i) = ai (1 ≤ i ≤ n). The length of w is |w| = n.

Let V be a finite set of first-order and second-order variables. A (V, w)-
assignment σ is a function mapping first-order variables in V to elements of
{1, . . . , |w|} and second-order variables in V to subsets of {1, . . . , |w|}. If x is
a first-order variable and i ∈ {1, . . . , |w|} then σ[x → i] is the (V ∪ {x}, w)-
assignment which assigns x to i and acts like σ on all other variables. Similarly,
σ[X → I] is defined for I ⊆ {1, . . . , |w|}.

As usual, a pair (w, σ) where σ is a (V, w)-assignment will be encoded using
an extended alphabet AV = A × {0, 1}V . More precisely, we will write a word
over AV as a pair (w, σ) where w is the projection over A and σ is the projection
over {0, 1}V . Now, σ represents a valid assignment over V if for each first-order
variable x ∈ V, the x-row of σ contains exactly one 1. In this case, we identify
σ with the (V, w)-assignment such that for each first-order variable x ∈ V, σ(x)
is the position of the 1 on the x-row, and for each second-order variable X ∈ V,
σ(X) is the set of positions carrying a 1 on the X-row. Clearly, the language
NV = {(w, σ) ∈ A∗

V | σ is a valid V-assignment} is recognizable. We simply
write Aϕ = AFree(ϕ) and Nϕ = NFree(ϕ).

Definition 3.1. Let ϕ ∈ MSO(K,A) and V be a finite set of variables contain-
ing Free(ϕ). The semantics of ϕ is a formal power series [[ϕ]]V ∈ K〈〈A∗

V〉〉. Let
(w, σ) ∈ A∗

V . If σ is not a valid V-assignment, then we put [[ϕ]]V(w, σ) = 0.
Otherwise, we define [[ϕ]]V(w, σ) ∈ K inductively as follows:

Weighted Automata and Weighted Logics 517

[[k]]V(w, σ) = k [[Pa(x)]]V(w, σ) =

{
1 if w(σ(x)) = a

0 otherwise

[[x ≤ y]]V(w, σ) =

{
1 if σ(x) ≤ σ(y)
0 otherwise

[[x ∈ X]]V(w, σ) =

{
1 if σ(x) ∈ σ(X)
0 otherwise

[[¬ϕ]]V(w, σ) =

{
1 if [[ϕ]]V(w, σ) = 0
0 if [[ϕ]]V(w, σ) = 1

if ϕ is of the form Pa(x), (x ≤ y)
or (x ∈ X).

[[ϕ ∨ ψ]]V(w, σ) = [[ϕ]]V(w, σ) + [[ψ]]V(w, σ)
[[ϕ ∧ ψ]]V(w, σ) = [[ϕ]]V(w, σ) · [[ψ]]V(w, σ)

[[∃x.ϕ]]V(w, σ) =
∑

1≤i≤|w|
[[ϕ]]V∪{x}(w, σ[x→ i])

[[∃X.ϕ]]V(w, σ) =
∑

I⊆{1,...,|w|}
[[ϕ]]V∪{X}(w, σ[X → I])

[[∀x.ϕ]]V(w, σ) =
∏

1≤i≤|w|
[[ϕ]]V∪{x}(w, σ[x→ i])

[[∀X.ϕ]]V(w, σ) =
∏

I⊆{1,...,|w|}
[[ϕ]]V∪{X}(w, σ[X → I])

where we fix some order on the power set of {1, . . . , |w|} so that the last product
is defined even if K is not commutative. We simply write [[ϕ]] for [[ϕ]]Free(ϕ).

Note that if ϕ is a sentence, i.e. has no free variables, then [[ϕ]] ∈ K〈〈A∗〉〉.
We give several examples of possible interpretations for weighted formulas:

I. Let K = (,+, ·, 0, 1) and assume ϕ does not contain constants k ∈ .
We may interpret [[ϕ]](w, σ) as the number of proofs we have that (w, σ)
satisfies formula ϕ. Indeed, for atomic formulas the number of proofs is
clearly 0 or 1, depending on whether ϕ holds for (w, σ) or not. Now if e.g.
[[ϕ]](w, σ) = m and [[ψ]](w, σ) = n, the number of proofs that (w, σ) satisfies
ϕ∨ψ should be m+n (since any proof suffices), and for ϕ∧ψ it should be
m · n (since we may pair the proofs of ϕ and ψ arbitrarily). Similarly, the
semantics of the existential and universal quantifiers can be interpreted.

II. The formula ∃x.Pa(x) counts how often a occurs in the word. Here how
often depends on the semiring: e.g. Boolean semiring, natural numbers,
integers modulo 3, . . .

III. Consider the probability semiring K = ([0, 1],max, ·, 0, 1) and the alphabet
A = {a1, . . . , an}. Assume that each letter ai has a reliability ki. Then,
the series assigning to a word its reliability can be given by the first-order
formula ∀x.

∨
1≤i≤n(Pai

(x) ∧ ki).
IV. Let K be an arbitrary Boolean algebra (B,∨,∧, , 0, 1). In this case, sums

correspond to suprema, and products to infima. Here we can define the
semantics of ¬ϕ for an arbitrary formula ϕ by [[¬ϕ]](w, σ) := [[ϕ]](w, σ).
Then clearly [[ϕ ∧ ψ]] = [[¬(¬ϕ ∨ ¬ψ)]], [[∀x.ϕ]] = [[¬(∃x.¬ϕ)]] and [[∀X.ϕ]] =

518 M. Droste and P. Gastin

[[¬(∃X.¬ϕ)]]. This may be interpreted as a multi-valued logics. In particu-
lar, if K = , the 2-valued Boolean algebra, our semantics coincides with
the usual semantics of unweighted MSO-formulas, identifying characteristic
series with their supports.

Let K be a semiring and A an alphabet. Observe that if ϕ ∈ MSO(K,A),
we have defined a semantics [[ϕ]]V for each finite set of variables V containing
Free(ϕ). Now we show that these semantics’ are consistent with each other.

Proposition 3.2. Let ϕ ∈ MSO(K,A) and V a finite set of variables containing
Free(ϕ). Then [[ϕ]]V(w, σ) = [[ϕ]](w, σ|Free(ϕ)) for each (w, σ) ∈ A∗

V such that σ is
a valid V-assignment. In particular, [[ϕ]] is recognizable iff [[ϕ]]V is recognizable.

Proof (sketch). The first claim can be shown by induction on ϕ. For the final
claim, let [[ϕ]] be recognizable, and consider the projection π : AV → Aϕ. For
(w, σ) ∈ A∗

V , we have π(w, σ) = (w, σ|Free(ϕ)). Hence, [[ϕ]]V = π−1([[ϕ]])- NV is
recognizable by standard preservation results, cf. [2]. The converse can be shown
similarly. &'

Now let Z ⊆ MSO(K,A). A series S : A∗ → K is called Z-definable, if
there is a sentence ϕ ∈ Z such that S = [[ϕ]]. The main goal of this paper is
the comparison of Z-definable with recognizable series, for suitable fragments Z
of MSO(K,A). Crucial for this will be closure properties of recognizable series
under the constructs of our weighted logic. However, first we will show that
Krec〈〈A∗〉〉 is in general not closed under universal quantification.

Example 3.3. Let K = (,+, ·, 0, 1). Then [[∀x.2]](w) = 2|w| and [[∀y∀x.2]](w) =
(2|w|)|w| = 2|w|2 . Clearly, the series [[∀x.2]] is recognizable by the weighted au-
tomaton (Q,λ, μ, γ) with Q = {1}, λ1 = γ1 = 1 and μ1,1(a) = 2 for all
a ∈ A. However, [[∀y∀x.2]] is not recognizable. Suppose there was an automaton
A′ = (Q′, λ′, μ′, γ′) with behavior [[∀y∀x.2]]. Let M = max{|λ′

p|, |γ′
p|, |μ′(a)p,q| |

p, q ∈ Q′, a ∈ A}. Then (|| A′ ||, w) ≤ |Q′||w|+1 · M |w|+2 for any w ∈ A∗, a
contradiction with (|| A′ ||, w) = 2|w|2 .

A similar argument applies also for the tropical and the arctical semirings.
Observe that in all these cases, [[∀x.2]] has infinite image.

Example 3.4. Let K = (,+, ·, 0, 1). Then [[∀X.2]](w) = 22|w|
for any w ∈ A∗,

and as above [[∀X.2]] is not recognizable due to its growth. Again, this coun-
terexample also works for the tropical and the arctical semirings.

The examples show that unrestricted universal quantification is too strong to
preserve recognizability. This motivates the following definition. We will call a
formula ϕ ∈ MSO(K,A) restricted, if it contains no universal set quantification
of the form ∀X.ψ, and whenever ϕ contains a universal first-order quantification
∀x.ψ, then [[ψ]] is a recognizable step function. We let RMSO(K,A) comprise all
restricted formulas of MSO(K,A). Furthermore, let REMSO(K,A) contain all
restricted existential MSO-formulas ϕ, i.e. ϕ is of the form ϕ = ∃X1, . . . , Xn.ψ
with ψ ∈ RMSO(K,A) containing no set quantification.

Weighted Automata and Weighted Logics 519

We let Krmso〈〈A∗〉〉 (resp. Kremso〈〈A∗〉〉) contain all series S ∈ K〈〈A∗〉〉 which
are definable by some sentence in RMSO(K,A) (resp. in REMSO(K,A)). The
main result of this paper is the following theorem. It will be proved in sections 4
and 5.

Theorem 3.5. Let K be a commutative semiring and A an alphabet. Then

Krec〈〈A∗〉〉 = Krmso〈〈A∗〉〉 = Kremso〈〈A∗〉〉.

4 Definable Series Are Recognizable

In all of this section, let K be a semiring and A an alphabet. We wish to show
that if K is commutative, then all RMSO-definable series [[ϕ]] over K and A are
recognizable. We proceed by induction over the structure of RMSO-formulas.

Lemma 4.1. Let ϕ,ψ ∈ MSO(K,A).

(a) If ϕ is atomic or the negation of an atomic formula, then [[ϕ]] is recognizable.
(b) If [[ϕ]] and [[ψ]] are recognizable, then [[ϕ ∨ ψ]] is recognizable. If in addition

K is commutative, then [[ϕ ∧ ψ]] is also recognizable.
(c) If [[ϕ]] is recognizable, then [[∃x.ϕ]] and [[∃X.ϕ]] are recognizable series.

Proof (sketch). (a) Automata with behavior [[ϕ]] can easily be given explicitly.
(b) Let V = Free(ϕ)∪Free(ψ). By definition, we have [[ϕ∨ψ]] = [[ϕ]]V + [[ψ]]V

and [[ϕ ∧ ψ]] = [[ϕ]]V - [[ψ]]V . Hence the result follows from Proposition 3.2 and
since sum and Hadamard product preserve recognizability of series [8, 2].

(c) Let V = Free(∃X.ϕ) and consider the projection π : A∗
V∪{X} → A∗

V . We
can show that [[∃X.ϕ]](w, σ) = π([[ϕ]]V∪{X})(w, σ). Now, [[ϕ]]V∪{X} is recognizable
by Proposition 3.2 and since non-erasing projections preserve recognizability we
get [[∃X.ϕ]] recognizable. The case ∃x.ϕ can be dealt with similarly. &'

The most interesting and new case here arises from universal quantification.

Lemma 4.2. Let K be commutative and ϕ ∈ MSO(K,A) such that [[ϕ]] is a
recognizable step function. Then [[∀x.ϕ]] is recognizable.

Proof. Let W = Free(ϕ) and V = Free(∀x.ϕ) = W \ {x}. We may write [[ϕ]] =∑
j=1,...,n kj · Lj

with n ∈ , kj ∈ K and recognizable languages Lj ⊆ A∗
W

(j = 1, . . . , n) forming a partition of A∗
W .

First, we assume that x ∈ W. Let Ã = A × {1, . . . , n}. A word in (ÃV)∗

will be written (w, ν, σ) where (w, σ) ∈ A∗
V and ν ∈ {1, . . . , n}∗ is interpreted

as a mapping from {1, . . . , |w|} to {1, . . . , n}. Let L̃ be the set of (w, ν, σ) ∈
(ÃV)∗ such that for all i ∈ {1, . . . , |w|} and j ∈ {1, . . . , n} we have ν(i) =
j implies (w, σ[x → i]) ∈ Lj . Observe that for each (w, σ) ∈ A∗

V there is a
unique ν such that (w, ν, σ) ∈ L̃ since the Lj form a partition of A∗

W .
It can be shown that L̃ is a recognizable word language. Hence there is a

deterministic automaton Ã, with state set Q, say, recognizing L̃. Now we obtain

520 M. Droste and P. Gastin

a weighted automaton A with the same state set by adding weights to the
transitions of Ã as follows: If (p, (a, j, s), q) is a transition in Ã with p, q ∈ Q,
(a, s) ∈ AV and 1 ≤ j ≤ n, we let this transition in A have weight kj , i.e.
μA(a, j, s)p,q = kj . All triples which are not transitions in Ã get weight 0. Also,
the initial state of Ã gets initial weight 1 in A, all non-initial states of Ã get
initial weight 0, and similarly for the final states and final weights.

Clearly, since Ã is deterministic and accepts L̃, the weight of (w, ν, σ) ∈ L̃

in A is
∏

1≤j≤n k
|ν−1(j)|
j , and the weight of (w, ν, σ) ∈ Ã∗ \ L̃ in A is 0. Now

let h : (ÃV)∗ → A∗
V be the projection mapping (w, ν, σ) to (w, σ). Then for any

(w, σ) ∈ A∗
V and the unique ν such that (w, ν, σ) ∈ L̃ we obtain

h(|| A ||)(w, σ) =
∑

ρ

|| A ||(w, ρ, σ) = || A ||(w, ν, σ) =
∏

1≤j≤n

k
|ν−1(j)|
j .

Now we have

[[∀x.ϕ]](w, σ) =
∏

1≤i≤|w|
[[ϕ]](w, σ[x→ i]) =

∏
1≤j≤n

k
|ν−1(j)|
j

where the last equality holds due to the form of ϕ. Hence [[∀x.ϕ]] = h(|| A ||)
which is recognizable [8, 2].

Now assume that x /∈ W, so that V = W. Let ϕ′ = ϕ ∧ (x ≤ x). So [[ϕ′]] is
recognizable by Lemma 4.1, and clearly [[ϕ]]V∪{x} = [[ϕ′]]V∪{x}. Thus [[∀x.ϕ]]V =
[[∀x.ϕ′]]V which is recognizable by what we showed above. &'

Now the following result is immediate by Lemmata 4.1 and 4.2.

Theorem 4.3. Let K be a commutative semiring, A an alphabet and ϕ ∈
RMSO(K,A). Then [[ϕ]] ∈ Krec〈〈A∗〉〉 is recognizable.

Next we turn to decidability questions. Employing decidability results from
the theory of formal power series and our previous constructions, we can show:

Proposition 4.4. Let K be a computable field, and let ϕ ∈ MSO(K,A). It is
decidable whether ϕ is restricted, and in this case one can effectively compute a
weighted automaton Aϕ for [[ϕ]].

Corollary 4.5. Let K be a computable field, and let ϕ,ψ ∈ RMSO(K,A). Then
it is decidable whether [[ϕ]] = [[ψ]]. It is also decidable whether [[ϕ]] and [[ψ]] differ
only for finitely many words.

Proof. By Proposition 4.4, the series [[ϕ]], [[ψ]] and hence also [[ϕ]]− [[ψ]] = [[ϕ]] +
(−1) · [[ψ]] are effectively recognizable. By [2–Propositions VI.1.1, VI.1.2], it is
decidable whether such a series equals 0, or whether its support is finite. &'

Weighted Automata and Weighted Logics 521

5 Recognizable Series Are Definable

In all of this section let K be a semiring and A an alphabet. We wish to show
that if K is commutative, then all recognizable series are REMSO-definable.
For this, the concept of an unambiguous MSO-formula will be useful. The class
of unambiguous formulas in MSO(K,A) is defined inductively as follows: All
atomic formulas of the form Pa(x), x ≤ y or (x ∈ X), and their negations
are unambiguous. If ϕ,ψ are unambiguous, then ϕ ∧ ψ, ∀x.ϕ and ∀X.ϕ are also
unambiguous. If ϕ,ψ are unambiguous and Supp([[ϕ]])∩Supp([[ψ]]) = ∅, then ϕ∨ψ
is unambiguous. Let ϕ be unambiguous and V = Free(ϕ). If for any (w, σ) ∈ A∗

V
there is at most one element i ∈ {1, . . . , |w|} such that [[ϕ]]V∪{x}(w, σ[x→ i]) �= 0,
then ∃x.ϕ is unambiguous. If for any (w, σ) ∈ A∗

V there is at most one subset I ⊆
{1, . . . , |w|} such that [[ϕ]]V∪{X}(w, σ[X → I]) �= 0, then ∃X.ϕ is unambiguous.

Proposition 5.1. Let ϕ ∈ MSO(K,A) be unambiguous. We may also regard ϕ
as a classical MSO-formula defining the language L(ϕ) ⊆ A∗

ϕ. Then, [[ϕ]] = L(ϕ)

is a recognizable step function.

Next we show that, conversely, classical MSO-formulas can be transformed
into unambiguous formulas.

Lemma 5.2. For each classical MSO-formula ϕ not containing set quantifica-
tions (but possibly including atomic formulas of the form (x ∈ X)) we can ef-
fectively construct two unambiguous MSO(K,A)-formula ϕ+ and ϕ− such that
[[ϕ+]] = L(ϕ) and [[ϕ−]] = L(¬ϕ).

Proof (sketch). We may assume (using also conjunction and universal quantifi-
cation in our syntax or as abbreviations) that in ϕ negations are applied only
to atomic formulas. Now we proceed by induction, giving only the formulas for
some cases: (ϕ∨ψ)− = ϕ− ∧ψ−, (ϕ∨ψ)+ = ϕ+ ∨ (ϕ− ∧ψ+), (∃x.ϕ)− = ∀x.ϕ−

and (∃x.ϕ)+ = ∃x.(ϕ+(x) ∧ ∀y.((x ≤ y) ∨ (¬(x ≤ y) ∧ ϕ−(y)))). &'

Theorem 5.3. Let K be commutative. Then Krec〈〈A∗〉〉 ⊆ Kremso〈〈A∗〉〉.

Proof (sketch). Let A = (Q,λ, μ, γ) be a weighted automaton over A. For each
triple (p, a, q) ∈ Q × A × Q choose a set variable Xp,a,q, and let V = {Xp,a,q |
p, q ∈ Q, a ∈ A}. We choose an enumeration X1, . . . , Xm of V with m = |Q|2 ·|A|.
In the formulas below we use classical macros such as partition(X1, . . . , Xm),
(y = x + 1), min(y) and max(y). Define the unambiguous formula

ψ(X1, . . . , Xm) := partition(X1, . . . , Xm)+ ∧
∧

p,a,q

∀x.((x ∈ Xp,a,q) → Pa(x))+

∧ ∀x∀y.
(
(y = x + 1) →

∨
p,q,r∈Q,a,b∈A

(x ∈ Xp,a,q) ∧ (y ∈ Xq,b,r)
)+

.

Let w = a1 . . . an ∈ A+. One can show that there is a bijection between the set
of paths in A over w and the set of (w,V)-assignments σ satisfying ψ. Consider
now the formula ϕ(X1, . . . , Xm) defined by

522 M. Droste and P. Gastin

ψ(X1, . . . , Xm) ∧
(∧

p,a,q

∀x.
(
¬(x ∈ Xp,a,q) ∨ ((x ∈ Xp,a,q) ∧ μ(a)p,q)

))
∧

∃y.
(
min(y) ∧

∨
p,a,q

(y ∈ Xp,a,q) ∧ λp

)
∧ ∃z.

(
max(z) ∧

∨
p,a,q

(z ∈ Xp,a,q) ∧ γq

)
.

Let ρ be a path in A over w and let σρ be the associated (w,V)-assignment. We
can show that [[ϕ]]V(w, σρ) = weight(ρ). Let ξ = ∃X1 · · · ∃Xm.ϕ(X1, . . . , Xm).
For w ∈ A+ we can show that ([[ξ]], w) = (|| A ||, w). Let ζ = (λ·γ)∧∀x.¬(x ≤ x).
Then, || A || = [[ζ ∨ ξ]] ∈ Kremso〈〈A∗〉〉. &'

Now Theorem 3.5 is immediate by Theorems 4.3 and 5.3.
Observe that the proof of Theorem 5.3 is constructive, i.e. given a weighted

automaton A, we effectively obtain an REMSO(K,A)-sentence ϕ with [[ϕ]] =
‖A‖. Using this, from the theory of formal power series (cf. [21, 15, 2]) we
immediately obtain undecidablilty results for the semantics of weighted MSO-
sentences. For instance, it is undecidable whether a given REMSO-sentence ϕ
over , the field of rational numbers, and an alphabet A, satisfies Supp([[ϕ]]) =
A∗. Also, by a result of Krob [14], the equality of given recognizable series
over the tropical semiring is undecidable. Hence, the equality of two given
REMSO(Trop, A)-sentences is also undecidable.

6 Locally Finite Semirings

In section 3 we gave examples of semirings K showing that the results of The-
orem 3.5 and 4.3 in general do not hold for arbitrary MSO(K,A)-sentences.
In contrast, here we wish to show that for a large class of semirings K, all
MSO(K,A)-formulas have a recognizable semantics.

A semiring K is called locally finite, if each finitely generated subsemiring of
K is finite. For example, any Boolean algebra (B,∨,∧, 0, 1) is locally finite. The
max-min semiring max,min = (+ ∪{∞},max,min, 0,∞) of positive reals, used
in operations research for maximum capacity problems of networks, is locally
finite. In fact, more generally, any distributive lattice (L,∨,∧, 0, 1) with smallest
element 0 and largest element 1 is a locally finite semiring, cf. [6] for further
basic properties. Examples of infinite but locally finite fields are provided by the
algebraic closures of the finite fields Z/pZ for any prime p. We can show (see [7]):

Theorem 6.1. Let K be a locally finite commutative semiring and A an alpha-
bet. Then Krec〈〈A∗〉〉 = Kmso〈〈A∗〉〉.

Again, given an MSO(K,A)-formula ϕ, we can effectively construct a weighted
automaton A over K and Aϕ such that ‖A‖ = [[ϕ]]. As a consequence of
this and of corresponding decidability results given in the full version of [6] for
recognizable series over locally finite semirings, we immediately obtain:

Corollary 6.2. Let K be a locally finite commutative semiring and A an al-
phabet. It is decidable whether two given MSO(K,A)-formulas ϕ and ψ satisfy
[[ϕ]] = [[ψ]]; whether a given MSO(K,A)-formula ϕ satisfies Supp([[ϕ]]) = A∗

ϕ.

Weighted Automata and Weighted Logics 523

7 Weighted First-Order Logic

In this section, we investigate weighted first-order logic and the relationship to
aperiodic series. Most of our results will require additional assumptions on the
semiring K.

Let K be a semiring and A an alphabet. A formula ϕ ∈ MSO(K,A) is called
a (weighted) first-order formula, if ϕ does not contain any set variable. We let
FO(K,A) contain all first-order formulas and RFO(K,A) all restricted first-order
formulas over K and A. The collections of series definable by these formulas are
denoted Kfo〈〈A∗〉〉 and Krfo〈〈A∗〉〉, respectively.

As is well-known, the first-order definable languages are precisely the starfree
languages which in turn coincide with the the aperiodic ones [23, 18]. Aperiodic
and starfree formal power series were introduced and investigated in [6]. Recall
that a monoid M is said to be aperiodic, if there exists some m ≥ 0 such that
xm = xm+1 for all x ∈ M . We call a monoid M weakly aperiodic, if for each
x ∈ M there exists m ≥ 0 such that xm = xm+1. Clearly, a finite monoid is
aperiodic iff it is weakly aperiodic.

A series S : A∗ → K is called aperiodic, if there exists a representation S =
(Q,λ, μ, γ) with μ(A∗) aperiodic. Observe that then there exists some m ≥ 0 such
that for all w ∈ A∗ we have μ(wm) = μ(wm+1) and hence (S,wm) = (S,wm+1).
The collection of all aperiodic series over K and A will be denoted Kaper〈〈A∗〉〉.

Now we turn to the relationship between aperiodic and FO-definable series.
First we show that even if K is finite and commutative, in general we do not
have Kaper〈〈A∗〉〉 = Kfo〈〈A∗〉〉.

Example 7.1. Let K = /2 , the field with two elements, and S = [[∃x.1]]. Then
S(w) = |w| mod 2 for any w ∈ A∗. Hence S is not aperiodic since otherwise we
would obtain some m ≥ 1 such that S(am) = S(am+1) (a ∈ A), a contradiction.
Note that here the monoid (K, ·) is idempotent, and (K,+) is not aperiodic.

Example 7.2. Let K be the tropical semiring and T = [[∀x.1]]. Then T (w) = |w|
for all w ∈ A∗, so T is not aperiodic. Note that (∪{−∞},max) is idempotent,
but (∪{−∞},+) is not weakly aperiodic.

These examples indicate that in order to achieve the inclusion Kfo〈〈A∗〉〉 ⊆
Kaper〈〈A∗〉〉, we need some aperiodicity assumption both for (K,+) and (K, ·).

We call a semiring K weakly bi-aperiodic, if both (K,+) and (K, ·) are weakly
aperiodic. If K is also commutative, then in particular K is locally finite. Clearly,
any idempotent monoid is weakly aperiodic. Thus the weakly bi-aperiodic semi-
rings include all semirings in which both addition and multiplication are idem-
potent, and this class of semirings properly contains (cf. [10]) the class of all
distributive lattices (L,∨,∧, 0, 1) with smallest element 0 and greatest element
1. There are further examples:

Example 7.3. Let 0 < d ∈ . We let d
max be the real max−plus semiring

truncated at d, i.e. d
max = ([0, d]∪{−∞},max,+d,−∞, 0) with x+d y := x+ y

524 M. Droste and P. Gastin

if x + y ≤ d, and x +d y := d if x + y ≥ d. This semiring is weakly bi-aperiodic,
and (d

max,+d) is weakly aperiodic but not aperiodic.

We can show (see [7]):

Theorem 7.4. Let K be a commutative weakly bi-aperiodic semiring, and A an
alphabet. Then Kaper〈〈A∗〉〉 = Kfo〈〈A∗〉〉 = Krfo〈〈A∗〉〉.

References

1. A. Arnold. Finite Transition Systems. International Series in Computer Science.
Prentice Hall, 1994.

2. J. Berstel and Ch. Reutenauer. Rational Series and Their Languages, volume 12
of EATCS Monographs in Theoretical Computer Science. Springer Verlag, 1988.

3. J.R. Büchi. Weak second-order arithmetic and finite automata. Z. Math. Logik
Grundlagen Math., 6:66–92, 1960.

4. A.L. Buchsbaum, R. Giancarlo, and J.R. Westbrook. On the determinization of
weighted finite automata. SIAM Journal on Computing, 30(5):1502–1531, 2000.

5. K. Culik and J. Kari. Image compression using weighted finite automata. Computer
and Graphics, 17:305–313, 1993.

6. M. Droste and P. Gastin. On aperiodic and star-free formal power series in partially
commuting variables. In Proccedings of FPSAC’00, pages 158–169. Springer, 2000.
Full version available as a Research Report, LSV, ENS de Cachan, France, 2005.

7. M. Droste and P. Gastin. Weighted automata and weighted logics. Research Report
LSV-05-02, ENS de Cachan, France, 2005. 23 pages.

8. S. Eilenberg. Automata, Languages and Machines, volume A. Academic Press,
New York, 1974.

9. C.C. Elgot. Decision problems of finite automata design and related arithmetics.
Trans. Amer. Math. Soc., 98:21–52, 1961.

10. S. Golan. Semirings and their Applications. Kluwer Academic Publisher, 1999.
11. U. Hafner. Low Bit-Rate Image and Video Coding with Weighted Finite Automata.

PhD thesis, Universität Würzburg, Germany, 1999.
12. Z. Jiang, B. Litow, and O. de Vel. Similarity enrichment in image compression

through weighted finite automata. In COCOON’00, number 1858 in Lecture Notes
in Computer Science, pages 447–456. Springer Verlag, 2000.

13. F. Katritzke. Refinements of data compression using weighted finite automata.
PhD thesis, Universität Siegen, Germany, 2001.

14. D. Krob. The equality problem for rational series with multiplicities in the trop-
ical semiring is undecidable. International Journal of Algebra and Computation,
4(3):405–425, 1994.

15. W. Kuich and A. Salomaa. Semirings, Automata, Languages, volume 6 of EATCS
Monographs in Theoretical Computer Science. Springer Verlag, 1986.

16. R.P. Kurshan. Computer-Aided Verification of Coordinating Processes. Princeton
Series in Computer Science. Princeton University Press, 1994.

17. K. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
18. R. McNaughton and S. Papert. Counter-free automata. MIT Press, Cambridge,

1971.
19. M. Mohri. Finite-state transducers in language and speech processing. Computa-

tional Linguistics, 23:269–311, 1997.

Weighted Automata and Weighted Logics 525

20. M. Mohri, F. Pereira, and M. Riley. The design principles of a weighted finite-state
transducer library. Theoretical Computer Science, 231:17–32, 2000.

21. A. Salomaa and M. Soittola. Automata-Theoretic Aspects of Formal Power Series.
Texts and Monographs in Computer Science. Springer Verlag, 1978.

22. M.P. Schützenberger. On the definition of a family of automata. Information and
Control, 4:245–270, 1961.

23. M.P. Schützenberger. On finite monoids having only trivial subgroups. Information
and Control, 8:190–194, 1965.

24. W. Thomas. Languages, automata and logic. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Languages, Vol. 3, pages 389–485. Springer Verlag,
1997.

Restricted Two-Variable FO+MOD Sentences,
Circuits and Communication Complexity

Pascal Tesson1,� and Denis Thérien2,��

1 Département d’Informatique et de Génie Logiciel, Université Laval
pascal.tesson@ift.ulaval.ca

2 School of Computer Science, McGill University
denis@cs.mcgill.ca

Abstract. We obtain a logical characterization of an important class of
regular languages, denoted DO, and of its most important subclasses in
terms of two-variable sentences with ordinary and modular quantifiers
but in which all modular quantifiers lie outside the scope of ordinary
quantifiers. The result stems from a new decomposition of the variety of
monoids DO in terms of iterated block products.

This decomposition and the ensuing logical characterization allows
us to shed new light on recent results on regular languages which are
recognized by bounded-depth circuits with a linear number of wires and
regular languages with small communication complexity.

1 Introduction

Descriptive complexity uses logical sentences to define languages. For instance,
one can view the sentence

∃x∃y∃z(x < y < z ∧Qax ∧Qby ∧Qcz)

as defining the set of words in which there are positions x, y, z with x < y < z
holding the letters a, b and c respectively, i.e. the set Σ∗aΣ∗bΣ∗cΣ∗. A large
amount of research has sought to understand the expressive power of such sen-
tences. In particular, the celebrated result of McNaughton and Papert [6] shows
that languages definable by a first-order sentence which, as the one above, use
only the order predicate < are exactly the star-free regular languages. By a re-
sult of Schützenberger, these are also the regular languages recognizable by an
aperiodic (or group-free) monoid and we can thus decide whether a language
is FO definable. Kamp [4] further showed that these FO sentences could be
restricted to use only three variables (provided that they can be reused). Much
later, Thérien and Wilke characterized languages definable by FO formulas us-
ing only two variables (FO2) [16] as languages recognized by monoids in DA.

� Part of this research took place while the author was at the University of Tübingen,
supported by the von Humboldt Foundation.

�� Research supported in part by NSERC, FQRNT and the von Humboldt Foundation.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 526–538, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Restricted Two-Variable FO+MOD Sentences 527

When FO is augmented with modular quantifiers (checking whether a property
holds for i (mod p) of the positions in the string), all languages recognizable by
solvable monoids can further be described. In this case too, three variables suf-
fice to obtain full expressivity. The power of FO+MOD two-variable sentences
was studied in [11, 12] and the results depended crucially on showing that every
such sentence was equivalent to one where no ordinary quantifier occurs within
the scope of a modular quantifier. In this paper, we handle the other extreme
case, that is sentences in which no modular quantifier lies in the scope of an
ordinary quantifier. This restriction is meaningful since we show that these are
provably less expressive than general two-variable sentences and can provide a
logical characterization for important subclasses of regular languages.

The key to our new results is a decomposition of the variety of monoids
DO (precise definitions will be given in Section 2) in terms of weakly-iterated
block products, an idea put forward in [12]. That result is interesting in its own
right but our motivation comes from two recent results in complexity theory. We
show that a regular language is definable by a two-variable sentence in which
no modular quantifier lies in the scope of another quantifier iff it is recognized
by a monoid in the class DO ∩ Ab. This happens to be precisely the class of
regular languages that can be recognized by ACC0-circuits with a linear num-
ber of wires [5] and by O(log n)-cost communication protocols [15]. In contrast,
languages defined by a two-variable sentence without this restriction can be com-
puted by ACC0-circuits using a linear number of gates and we believe that they
are the only regular languages with this property. The logical characterization of
languages recognized by monoids in DO∩Ab sheds new light on the circuit com-
plexity and communication complexity upper bounds, highlighting the interplay
between logic, algebra, complexity and formal languages in this context.

In Section 2, we introduce the algebraic tools needed for our discussion.
In Section 3, we decompose subvarieties of DO using weakly iterated block-
products and use this to obtain a logical characterization of the corresponding
regular languages in Section 4. Finally, we discuss the applications of these re-
sults to circuit complexity and communication complexity in Section 5.

2 Finite Monoids and Regular Languages

We sketch here the algebraic background needed for our discussion. For a more
thorough overview of algebraic automata theory, we refer the reader to e.g. [7].
A monoid M is a set with a binary associative operation (which we denote
multiplicatively) and a distinguished identity element 1M . For an alphabet Σ,
the set of finite words Σ∗ forms a monoid under concatenation and with identity
element ε. For a finite monoid M and language K ⊆ Σ∗, we say that K is
recognized by M if there exists a homomorphism h : Σ∗ → M and a subset
T ⊆ M such that K = h−1(T). A simple variant of Kleene’s Theorem states
that a language is regular iff it can be recognized by some finite monoid. In fact,
all monoids considered in this paper, with the exception of the free monoid Σ∗,
will be finite. It is useful to point out that if K and K ′ are recognized by M and

528 P. Tesson and D. Thérien

M ′ respectively then K’s complement is recognized by M and both K ∪K ′ and
K ∩K ′ are recognized by M ×M ′.

A class of finite monoids is a variety if it is closed under direct product,
homomorphic images and submonoids. In particular, we will deal with the variety
of solvable groups Gsol, p-groups Gp, Abelian groups Ab, Abelian p-groups
Abp, aperiodic or group-free monoids A, semilattices SL, i.e. monoids satisfying
x2 = x and xy = yx, and the variety DO of monoids M which satisfy the
identity (xy)ω(yx)ω(xy)ω = (xy)ω for all x, y ∈ M . In fact, ω can be chosen as
the smallest integer such that x2ω = xω for all x ∈M .

Furthermore, for any variety of groups H, we denote as H the variety of
monoids whose subgroups all lie in H. For any variety V of monoids, we will
denote as L(V) the class of languages that can be recognized by a monoid of V.
These varieties of languages are fairly robust and in particular are closed under
Boolean operations. We focus on varieties of the form DO∩H and we give here
a description of the corresponding regular languages.

We say that words x, y ∈ Σ∗ are M -equivalent if h(x) = h(y) for any ho-
momorphism h : Σ∗ → M . Let α(x) ⊆ Σ be the set of letters occurring in x.
For a ∈ α(x), the a-left decomposition of x is the factorization x = x0ax1 with
a �∈ α(x0). The a-right decomposition is defined symmetrically. For a finite group
G we define the congruence ∼G

n,k on Σ∗ with |Σ| = n by induction on n + k.
First, x ∼G

n,0 y iff x, y are G-equivalent. Next, we let x ∼G
n,k y iff:

1. x ∼G
n,k−1 y;

2. α(x) = α(y);
3. For any a ∈ α(x) = α(y), if x = x0ax1 and y = y0ay1 are the a-left decom-

positions of x and y then x0 ∼G
n−1,k y0 and x1 ∼G

n,k−1 y1;
4. For any a ∈ α(x) = α(y), if x = x0ax1 and y = y0ay1 are the a-right

decompositions of x and y then x0 ∼G
n,k−1 y0 and x1 ∼G

n−1,k y1.

This equivalence relation is well-defined since |α(x0)| < |α(x)| in (3) and
|α(x1)| < |α(x)| in (4). These congruences allow us to describe languages in
L(DO ∩H) and this will be crucial in the proof of Theorem 3.

Theorem 1 ([15]). Let K be a language in Σ∗ with |Σ| = n. Then K is in
L(DO ∩H) iff K is the union of ∼G

n,k-classes for some k ∈ N and G ∈ H.

The following simple fact will also prove useful for Theorem 3 and Lemma 4:

Lemma 1 (e.g. [7]). A language K ∈ Σ∗ can be recognized by a semilatice iff
it is in the Boolean algebra generated by the languages Σ∗aΣ∗. Furthermore, u, v
are M -equivalent for any semilattice M iff α(u) = α(v).

Let M and N be finite monoids. As in [11] we denote the operation of M as
+ and its identity element as 0 to distinguish it from the operation of N . A left-
action of N on M is a function mapping pairs (n,m) ∈ N ×M to nm ∈M and
satisfying n(m1 +m2) = nm1 +nm2, n1(n2m) = (n1n2)m, n0 = 0 and 1m = m.
Right actions are defined symmetrically. If we have both a right and a left-
action of N on M that further satisfy n1(mn2) = (n1m)n2, we can construct the

Restricted Two-Variable FO+MOD Sentences 529

bilateral semidirect product M ∗∗N which we define as the monoid with elements
in M×N and multiplication defined as (m1, n1)(m2n2) = (m1n2 +n1m2, n1n2).
This operation is associative and (0, 1) acts as an identity for it.

For varieties V,W, we denote V�W the variety generated by all semidirect
products M ∗ ∗N with M ∈ V, N ∈ W. For varieties U,V,W we always
have (U�V)�W ⊆ U�(V�W) but the containment is strict in general. Block-
product decompositions of varieties traditionally use the stronger bracketing
but [11] showed the relevance of the weak bracketing, particularly in relation to
two-variable logical sentences.

The languages recognized by V�W can be conveniently described in terms of
languages recognized by V and W. For a monoid N ∈W, an N -transduction τ
is a function determined by two homomorphisms hl, hr : Σ∗ → N and mapping
words in Σ∗ to words in (N ×Σ ×N)∗. For a word w = w1 . . . wn ∈ Σ∗ we set
τ(w) = τ(w1)τ(w2) . . . τ(wn) with τ(wi) = (hl(w1 . . . wi−1), wi, hr(wi+1 . . . wn)).
For a language K ⊆ (N ×Σ ×N)∗, let τ−1(K) = {w ∈ Σ∗ : τ(w) ∈ K}.

Theorem 2. [9, 7] A regular language lies in L(V�W) iff it is the Boolean
combination of languages in L(W) and languages τ−1(K) for some K ∈ V and
N -transduction τ with N ∈W.

A pointed word is a pair (w, p) consisting of a word w ∈ Σ∗ and a pointer p
with 1 ≤ p ≤ |w|. A pointed language K̇ is a set of such structures and, as in [17],
we extend the notion of monoid recognizability to these languages: K̇ is recog-
nized by M if there are homomorphisms hl, hr : Σ∗ →M and a set of triples T ⊆
(M ×Σ ×M) such that K̇ = {(w, p) : (hl(w1 . . . wp−1), wp, hr(wp+1 . . . w|w|)) ∈
T}. For a variety V we will denote as P (V) the set of pointed languages recog-
nized by a monoid in V. Abusing our terminology, it will be convenient to think
of ordinary words in Σ∗ as pointed words with p = 0 and thus view L(V) as a
subset of P (V).

3 A Weak Block Product Decomposition of DO

In this section, we characterize each variety DO ∩H for a variety of groups H
using weakly iterated block products. The idea is similar to that of [11] but we
also need the combinatorial description of the corresponding regular languages.

Theorem 3. Let H be a variety of finite groups, and VH be the smallest variety
such that H ⊆ VH and VH�SL ⊆ VH, then VH = DO ∩H.

Proof. Clearly, DO ∩H contains H and we also need to show that it is closed
under block product with SL. First, we claim that DO�SL = DO. Let M ∈ DO
and N ∈ SL. As we did earlier, we denote the multiplication of M additively
(even though M is not necessarily commutative). Since M ∈ DO there exists an
integer k such that k(v + w) + k(w + v) + k(v + w) = k(v + w) and (2k)v = kv
for all v, w ∈ M and we prove that any bilateral semidirect product M ∗ ∗N
satisfies the identity (xy)2k(yx)2k(xy)2k = (xy)2k.

530 P. Tesson and D. Thérien

Let x = (m1, n1) and y = (m2, n2) be arbitrary elements of M ∗ ∗N . By
definition of the bilateral semidirect product, we have xy = (m1n2+n1m2, n1n2)
and so (xy)2k = (z, (n1n2)2k) where

z = m1n2(n1n2)2k−1 + n1m2(n1n2)2k−1 + . . . + (n1n2)2k−1n1m2

Since N is commutative and idempotent (n2 = n), this is simply:

z = m1(n1n2) + n1m2(n1n2) + . . . + (n1n2)m2

= m1(n1n2) + n1m2(n1n2) + (2k − 1) [(n1n2)m1(n1n2) + (n1n2)m2(n1n2)]
+(n1n2)m2n1 + (n1n2)m2

By the same argument (xy)2k(yx)2k(xy)2k is the pair (z′, n1n2) with

z′ = m1(n1n2) + n1m2(n1n2) + (2k − 1) [(n1n2)m1(n1n2) + (n1n2)m2(n1n2)]
+(2k)[(n1n2)m2(n1n2) + (n1n2)m1(n1n2)]
+(2k − 1) [(n1n2)m1(n1n2) + (n1n2)m2(n1n2)] + (n1n2)m2n1 + (n1n2)m2.

If we let v = (n1n2)m1(n1n2) and w = (n1n2)m2(n1n2), then the middle part
of the product is simply (2k−1)(v+w)+2k(w+v)+(2k−1)(v+w) and since M
satisfies k(v+w)+k(w+v)+k(v+w) = k(v+w) and (2k)v = kv, this sum is equal
to (k−1)(v+w)+k(v+w)+(k−1)(v+w) = (3k−2)(v+w) = (2k−2)(v+w).
This gives

z′ = m1(n1n2) + n1m2(n1n2) + (2k − 2)[(n1n2)m1(n1n2)
+(n1n2)m2(n1n2)] + (n1n2)m2n1 + (n1n2)m2

= z

and so (xy)2k(yx)2k(xy)2k = (xy)2k as claimed.
Furthermore, folklore results show that if the variety W is aperiodic (i.e.

contains no non-trivial groups), then for any variety V the groups lying in V�W
are exactly those in V. In particular, SL is aperiodic so (DO ∩H)�SL ⊆ H
and by the first part of our argument (DO ∩H)�SL ⊆ DO ∩H.

Let V0 = H and Vi+1 = Vi�SL: to complete our proof we now show
that DO ∩H is contained in any variety containing H and closed under block
product with SL. We do so by proving that any monoid of DO∩H lies in some
Vi. We use the family ∼H of congruences for DO ∩H and show that for each
alphabet Σ with |Σ| = n, any k ≥ 0, any group G and any word w ∈ Σ∗, the
language L

(w)
n,k = {v ∈ Σ∗ : v ∼G

n,k w} is recognized by some M in Vn+k. We
argue by induction on n + k: if n = 0 the claim is trivial. If k = 0 then Lw

is the set of words that are G-equivalent to w and this can be recognized by a
direct product of t copies of G where t is the number of homomorphisms from
Σ∗ to G.

Suppose n, k > 0: to check if v ∼G
n,k w, we need to first verify that α(v) =

α(w) and, as stated in Lemma 1, this can be done using some monoid in SL.
Now, let w = wlawr and v = vlavr be the a-left-decompositions of w and v.

Restricted Two-Variable FO+MOD Sentences 531

We claim that there is an SL-transduction τ and a language K ′ ∈ L(Vn+k−1)
such that τ−1(K ′) is the set of words v such that vl ∼G

n−1,k wl. Consider the
two-element monoid U1 = {0, 1} in SL with multiplication given by 0 · x =
x · 0 = 0 and 1 · x = x · 1 = x. Let hl = hr : Σ∗ → U1 be the homomorphism
mapping a to 0 and every other letter to the identity 1. Thus, hl(v) = 0 iff
a ∈ α(v) and the transduction τ defined by hl and hr maps v to the sequence
of triples

(1, v1, 0) . . . (1, vi, 0)(0, vi+1, 0) . . . (0, vj , 0)(0, vj+1, 1) . . . (0, vn, 1)

where vi and vj are the first and last occurrence of a in v (if any such occur-
rence exists). We are trying to check if vl ∼G

n−1,k wl and we know by induction

that the language L
(wl)
n−1,k is in L(Vn+k−1), i.e. there exists M ∈ Vn+k−1, a

homomorphism h : Σ∗ → M and a subset T ⊆ M with L
(wl)
n,k−1 = h−1(T).

Let h′ : (U1 × Σ × U1)∗ → M be the homomorphism which maps triples

(t, b, t′) ∈ (U1 ×Σ × U1) to h′(t, b, t′) =

{
h(b) if t = 1 and b �= a;
1M otherwise.

One can verify that for any v ∈ Σ∗ with the a-left decomposition vlavr we
now get h′(τ(v)) = h′(τ(vl)) = h(vl) because all the triples of τ(v) beyond that
prefix are mapped to 1M . Let K ′ = h′−1(T): we have K ′ ∈ L(Vn+k−1) and
τ−1(K ′) = {v ∈ Σ∗ : vl ∈ L

(wl)
n−1,k} as we had required.

Similarly, we can recognize words such that wr ∼G
n,k−1 vr with the help of

a U1-transduction. We argue symmetrically about the right-decompositions and
conclude that L

(w)
n,k ∈ L(Vn+k).

4 An Application to Two-Variable Sentences

We refer the reader to e.g. [9] for a thorough overview of logical descriptions
of regular languages and their relation to algebraic automata theory and cir-
cuit complexity. As we suggested in our introduction, we view finite words over
the finite alphabet Σ as logical structures. We construct logical formulas using
the order predicate <, the “content” predicates {Qa|a ∈ Σ}, constants t (true)
and f (false), Boolean connectives, a set of variables {x1, . . . , xn}, existential
and universal quantifiers as well as modular quantifiers ∃i mod mx. The atomic
formulas are either t, f , xi < xj or Qaxi. A word structure over alphabet Σ
and variable set V ⊆ {x1, . . . , xn} is a pair (w,p) consisting of a word w ∈ Σ∗

and a set of pointers p = (pi1 , . . . , pik
) with 1 ≤ pi ≤ |w| which associate each

variable xij
∈ V with a position pij

in the string. A simple extension of a word
structure (w,p) over Σ,V is a word structure (w,p′) over Σ, (V ∪{xik+1}) such
that xik+1 �∈ V and pij

= p′ij
for 1 ≤ j ≤ k. We can now formally define the

semantics of our formulas in a natural way. If w = w1 . . . wt is a word, we have

532 P. Tesson and D. Thérien

(w,p) |= Qaxi if wpi
= a;

(w,p) |= xi < xj if pi < pj ;
(w,p) |= ∃x(φ(xk)) if there exists an extension (w,p′) of (w,p) such

that (w,p′) |= φ(xk);
(w,p) |= ∃i mod mxk(φ(xk)) if there exists i modulo m extensions (w,p′) of

(w,p) such that (w,p′) |= φ(xk);

We omit for space the obvious definition of the semantics of the Boolean con-
nectives and of the universal quantifiers.

If φ is a sentence, i.e. a formula with no free variable, we denote as Lφ ⊆ Σ∗

the language Lφ = {w : (w, ∅) |= φ}. Similarly, it will be useful for our purposes
to consider the special case of formulas with a single free variable. Such a formula
naturally defines a set of word structures (w, p) with 1 ≤ p ≤ |w|, i.e. a pointed
language. For any formula φ having a single free variable and Φ a class of such
formulas, we will denote as Pφ the pointed language Pφ = {(w, p) : (w, p) |= φ}
and P (Φ) the class of all Pφ with φ ∈ Φ.

We will denote as FO, MOD, MODp, FO + MOD and FO + MODp the
class of respectively first-order sentences (no modular quantifier), modular sen-
tences (no existential or universal quantifier), modular sentences with only mod
p quantifiers and so on. The expressive power of such sentences has been in-
vestigated thoroughly and all existing results are algebraic in nature: languages
definable by sentences of the fragment Γ are exactly those in L(VΓ) for some
appropriate variety VΓ. (see [10] for elements of a meta-explanation). In partic-
ular, we have L(FO) = L(A) [6, 8], L(MOD) = L(Gsol), L(MODp) = L(Gp),
L(FO + MOD) = L(Gsol) [13].

While it is natural to construct logical sentences using a new variable for each
quantifier, one can just as well write sentences that reuse variables. For instance,
we gave earlier a three-variable sentence defining the language Σ∗aΣ∗bΣ∗cΣ∗. It
is also definable by the two-variable sentence ∃x(Qax∧∃y(Qby∧x < y∧∃x(Qcx∧
y < x))). The semantics of the sentence are perfectly unambiguous (see [12] for
a formal discussion). We denote FOk, FO + MODk and so on the class of
sentences using only k variables. Surprisingly, three variables suffice to describe
any language in L(FO + MOD) [4, 3, 12]. If only one variable is allowed, it is
easy to show that our expressive power is dramatically reduced and, for instance,
that L(FO1) = L(SL) and L(MOD1) = L(Ab). The expressiveness of FO2

or FO + MOD2 is trickier to understand [16, 12] but also admits algebraic
characterizations. In order to study FO + MOD2, [12] show that every such
sentence can be rewritten so that no existential or universal quantifier appears
in the scope of a modular quantifier. We will show that this is not just an artefact
of the proof: at the other end of the spectrum, two-variable sentences in which
no modular quantifier appears in the scope of an ordinary quantifier are provably
less expressive than general FO + MOD2 sentences.

Definition 1. Let Σ be an alphabet and Φ = {φ1, . . . φk} be a set formulas over
Σ with one free variable, say x, and a single bound variable y (possibly bound

Restricted Two-Variable FO+MOD Sentences 533

by more than one quantifier). A recycling Φ-substitution σ over Σ is a function
mapping two-variable sentences over the alphabet 2Φ (the power set of Φ) to two-
variable sentences over Σ as follows: each occurrence of the predicate QSx with
S ⊆ Φ is replaced by the conjunction

∧
φi∈S φi and each occurrence of QSy is

replaced by the similar formula in which the roles of x and y are interchanged.

Note that recycling substitutions preserve the two-variable property. If Γ is
a class of two-variable sentences and Λ is a class of formulas with one bound and
at most one free variable we will denote by Γ ◦Λ the class of sentences which are
Boolean combinations of sentences in Λ and of sentences obtained by applying
to a sentence ψ of Γ a recycling substitution in which all formulas in Φ lie in Λ.

Lemma 2. Let σ be a substitution and for any w = w1 . . . wn in Σ∗ let σ−1(w)
be the word u1 . . . un over the alphabet 2Φ with ui = {φj : (w, i) |= φj}. Then
w |= σ(ψ) iff σ−1(w) |= ψ.

The proof is omitted but is straightforward. The function mapping w to
σ−1(w) is of course quite similar to the notion of transduction which we in-
troduced in Section 2 and we now prove an equivalent of the “block prod-
uct/substitution principle” of [17] which formalizes the idea:

Lemma 3. Let Γ be a class of FO + MOD2 sentences and Λ a class of FO +
MOD2 formulas with one free variable. If V,W are monoid varieties such that
L(Γ) = L(V) and P (Λ) = P (W), then L(Γ ◦ Λ) = L(V�W).

Proof. Since L(V�W) is closed under Boolean combinations, the left-to-right
containment follows if we show that for any ψ ∈ Γ and any Λ-substitution σ
we have L(σ(ψ)) ∈ L(V�W). Let w be some word in Σ∗ and Φ = {φ1, . . . φk}
be the formulas used by σ. Since P (W) = P (Λ), the pointed languages Pφj

:
{(w, i) : (w, i) |= φj} can be recognized by monoids M1, . . . ,Mk in W and
M = M1 × . . . × Mk recognizes any Boolean combination of them. We can
therefore construct an M -transduction τ such that τ(wi) completely determines
the set {φj : (w, i) |= φj}. Since we assume that L(ψ) is recognized by a monoid
N in V, we get that L(σ(ψ)) = τ−1(K) for some K ⊆ (M × Σ ×M)∗ also
recognized by N . Hence, L(σ(ψ)) ∈ L(V�W).

For the right-to-left containment, we need to show that any language of
L(V�W) can be described by a sentence of Γ ◦ Λ and we proceed similarly.
If τ is an M -transduction for some M ∈ W then for any triple (m1, a,m2) ∈
M × Σ ×M , the pointed language T(m1,a,m2) = {(w, i) : τ(wi) = (m1, a,m2)}
is in P (W) and is thus definable by some formula φ(m1,a,m2) in P (Λ). Any lan-
guage K ⊆ (M ×Σ ×M)∗ in L(V) is definable by some sentence ψK ∈ Γ . Now
the set of words such that τ(w) ∈ K is defined by the sentence obtained from
ψK by a recycling substitution using the formulas1 φ(m1,a,m2).

Let FF1 be the class of FO formulas with one free and one quantified variable.

1 Note that at any position i, exactly one of the φ(m1,a,m2) is true and we can thus
identify the domain of σ−1(wi) with the set M ×Σ ×M .

534 P. Tesson and D. Thérien

Lemma 4. P (FF1) = P (SL).

Proof (sketch). Each FF1 formula can be rewritten as a Boolean combination
of formulas of the form ∃y((x ∗ y) ∧Qay with ∗ ∈ {<,>,=}. By Lemma 1, the
pointed language defined by such a formula is recognized by some M ∈ SL since
we are simply asking whether the letter a occurs somewhere before x (if ∗ is
>), at x (if ∗ is =) or after x (if ∗ is <). Conversely, if a pointed language K
is recognized by some M ∈ SL then by Lemma 1 membership of (w, p) in K
depends on the letter wp and on the set of letters occurring before and after the
pointer. Thus, K can be defined by an FF1 formula.

Theorem 4. Let Σ be a finite alphabet. A language L ⊆ Σ∗ is
(1) definable by a FO+MOD2 sentence in which no modular quantifier appears
in the scope of an ordinary quantifier iff M(L) ∈ DO ∩Gsol;
(2) definable by a FO+MOD2 sentence in which no modular quantifier appears
in the scope of another quantifier iff M(L) ∈ DO ∩Ab;
(3) definable by a FO + MOD2 sentence in which all modular quantifiers have
prime moduli and no Modp-quantifier appears in the scope of an ordinary quan-
tifier or of a Modq quantifier for p, q distinct primes iff M(L) ∈ DO ∩Gnil;

Proof. The proofs are applications of Lemma 3. By [11], we have L(MOD2) =
L(Gsol). Let Dk be the class FO+MOD2 sentences in which no modular quanti-
fier appears in the scope of an ordinary quantifier and in which the nesting depth
of ordinary quantifiers is k. To complete our argument, it suffices to note that sen-
tences in Dk are exactly those which can be obtained from MOD2 sentences by
applying successively k FF1 substitutions. By applying the block-product substi-
tution principle and Lemma 4 we get that L(Dk) = L((. . . (Gsol�SL) . . .�SL))
(where the product has length k) and by Theorem 3 the union of the varieties
on the right is exactly DO ∩Gsol.

To obtain, the second and third parts of our theorem we simply need to recall
that L(MOD1) = L(Ab) and that L(Gnil) is the class of languages definable
by MOD2 sentences satisfying the restriction given in (3) [11, 13].

The regular language K = (b∗ab∗a)∗bΣ∗ is defined by the sentence ∃x(Qbx∧
∃0 mod 2y(x < y ∧ Qax)). We claim that K cannot be recognized by some M
in DO and, thus defined by a FO + MOD2 sentence in which the modular
quantifiers lie outside the scope of the ordinary quantifiers. Indeed, let h be the
recognizing morphism and consider x = h(ab) and y = h(a): we have for some
ω that h[(aba)ω(baa)ω(aba)ω] = h[(aba)ω] in M but this is impossible since
(aba)ω(baa)ω(aba)ω is in K while (aba)ω is not.

The variety DO is decidable since it is defined by a simple identity and it is
also easy to decide whether the subgroups of such a monoid lie in Ab,Gp,Gnil

or Gsol. Moreover the proof of Theorem 4 actually shows a tight correspondence
between the depth of ordinary quantifiers in the FO + MOD2 formulas with
the depth of the product (. . . (H�SL)�SL) . . .�SL and each of these varieties
is also decidable, as long as H is. The argument requires machinery beyond the
scope of this paper but the key ideas can be found in [17].

Restricted Two-Variable FO+MOD Sentences 535

5 A New Perspective on Communication Complexity
and Circuit Complexity Upper Bounds

Our decomposition of DO ∩ Ab in terms of block products and the ensuing
logical characterization of the corresponding languages allow us to shed new
light on two complexity problems recently resolved in [5, 15].

In [5], one considers Boolean circuits of bounded depth. A circuit Cn is an
acyclic digraph: the nodes of in-degree 0 are input nodes labeled with a Boolean
variable xi with 1 ≤ i ≤ n or a Boolean constant, the other nodes are labeled by
one of the Boolean functions {∧,∨,Modm}. We also assume that there is a single
output node, i.e. a node of out-degree 0. A circuit Cn with n inputs computes
a function Cn : {0, 1}n → {0, 1} in the obvious way (note that the output of a
Modm gate is 1 if the sum of its inputs is 0 modulo m). The depth of Cn is the
longest path from an input to the output node. The wire-size and the gate-size of
Cn are, respectively, the number of edges and nodes in the graph. By extension
a family of circuits C = (Cn)n≥0 computes a function C : {0, 1}∗ → {0, 1} (i.e.
defines a language of {0, 1}∗) and we then think of the depth and size of C as
a function of n. The class of languages which can be recognized by such circuits
in polynomial-size and bounded-depth is denoted ACC0.

To process a non-Boolean input w ∈ Σ∗ with such circuits we can for instance
require that the circuit be given a simple Boolean encoding of each letter wi.
In [5], it was shown that the regular languages definable by an ACC0 circuit using
only a linear number of wires are exactly those recognized by monoids in DO∩
Ab. The result relies on a communication complexity result: suppose Alice and
Bob are given a word w = w1w2 . . . w2n where Alice knows only the odd-indexed
wi and Bob only the even-indexed ones. What is then the minimal number
of bits that Alice and Bob need to exchange in the worst case to determine
whether w lies in some regular language L? If L is recognized by some M in
DO ∩ Ab this can be done with O(log n) bits of communication but requires
Θ(n) bits otherwise [15]. It is interesting to note that the circuit complexity and
communication complexity upper bounds follow simply from the block-product
decomposition of this variety:

Theorem 5. If every K ∈ L(V) has a circuit with a linear number of wires then
so does any K ′ ∈ L(V�SL). Similarly, if each K ∈ L(V) has communication
complexity O(log n) then so does any K ′ ∈ L(V�SL).

Proof (sketch). Bilardi and Preparata show in [2] that there exists a linear-size
circuit computing Prefix-Suffix-OR i.e. a circuit with n Boolean inputs x1, . . . , xn

and 2n outputs p1, . . . , pn, s1, . . . , sn with pi =
∨i−1

j=1 xj and si =
∨n

j=i+1 xj .
It suffices to show that for any language K recognized by a monoid of V

and any M -transduction τ with M ∈ SL, the language τ−1(K) has a linear size
circuit. By Lemma 1, the value of τ(wi) is determined entirely by the letter wi

and the sets α(w1 . . . wi−1) and α(wi+1 . . . wn) of letters occurring in the prefix
and suffix around wi. By using |Σ| copies of the Prefix-Suffix-OR circuit, we can
therefore build a circuit with a linear number of wires which on input w1 . . . wn

536 P. Tesson and D. Thérien

produces n blocks of k = log(|M |2 · |Σ|) outputs such that the ith block encodes
the value of τ(wi). These values can now simply be fed into a circuit recognizing
K which, by assumption, uses only a linear number of wires.

For the communication complexity problem, Alice and Bob begin by exchang-
ing the location of the first and last occurrence of a letter that they have access
to. This requires O(log n) bits of communication and this information is enough
for each player to privately compute τ(wi) for any wi he has access to.

In fact, the result in [2] is more general: for a regular language L, there exists a
circuit which computes Prefix-Suffix-L iff L is piecewise-testable, i.e. recognized
by a monoid in the variety J. This well known variety contains SL and is in fact
the largest variety of aperiodics satisfying the equality DO�V = DO [1].

Corollary 1. Every language in L(DO∩Ab) can be defined by a linear-wire-size
family of ACC0 circuits and has two-party communication complexity O(log n).

Proof. For any K ∈ L(Ab), membership of w ∈ K depends solely on the number
|w|a of occurrences of each letter a in w modulo some integer m [7]. Computing
|w|a modulo m, can clearly be done with a single Modm gates with n input
wires and by a communication protocol of cost 2 log |m|. Thus, any K in L(Ab)
has linear-wire-size circuits and communication complexity O(1). Our statement
then follows from Theorem 5 and the decomposition result of Theorem 3.

We should note that the same idea can be used to show that for every lan-
guage L recognized by M ∈ DO ∩Gnil there exists k such that the k-party
communication complexity of L is O(1) (see [14] for a discussion of the multi-
party communication model).

Alternatively, one can view the linear-wire-size circuits for DO∩Ab as evalu-
ating a two-variable formula with no modular quantifier nested in another quan-
tifier. First the circuit evaluates the most deeply nested subformulas with one
free variable, say x. These are FF1 formulas and thus Boolean combinations of
formulas such as φ(x) = ∃y(x < y ∧Qay) and the Prefix-Suffix-OR construction
allows us to simultaneously compute the value of φ(x) for each value of x using
only O(n) wires. These results are used in the next step to compute, for all po-
sitions y the value of formulas such as ψ(y) = ∃x(x < y ∧ φ(x)). At the output
level, we evaluate the value of a modular quantifier ∃i mod mxχ(x). It suffices to
feed the n values of χ(x) obtained in the previous step into a Modm gate.

In general, recognizing a language definable by an FO + MOD2 sentence
in which modular quantifiers are allowed in the scope of other quantifiers will
require an ACC0 circuit with a super-linear number of wires. However, these
languages can still be recognized using only O(n) gates. The strategy to build
such a circuit is similar: we are given, at some stage in our circuit the values
for each x of a formula φ(x) and want to compute for each y the value of a
formula of the form ψ(y) = ∃i mod mx(x < y ∧ φ(x)). For each y, this can of
course be computed by a single Modm gate in which we feed the results of
φ(x) for each x < y. The sub-circuit computing all values ψ(y) from the values
φ(x) will use only n gates but Ω(n2) wires. In fact, we conjecture that the

Restricted Two-Variable FO+MOD Sentences 537

regular languages recognized by an ACC0 circuit with a linear number of gates
are exactly those definable in FO + MOD2 and that, among these, the fine
line between linear-gate-size and linear-wire-size is thus captured exactly by the
ability to pull modular quantifiers out of the scope of any other quantifier.

It is also very natural to try and characterize regular languages which can
be computed by linear-gate-size restricted ACC0 circuits where we allow only
Modm gates (i.e. CC0 circuits), or only ∧,∨ gates (i.e. AC0 circuits). We believe
that these regular languages are exactly those in MOD2 and FO2 respectively.
In particular, we conjecture that every regular language recognized by an AC0

circuit with a linear number of gates can also be recognized by an AC0 circuit
with a linear number of wires. Resolving this question for CC0 circuits amounts
to proving a lower bound of ω(n) for the number of gates in CC0 circuits com-
puting the AND of n bits or the word problem of a non-solvable group. To the
best of our knowledge, the state-of-the-art lower bound state that CC0 circuits
for AND requires Ω(n) non-input gates, a world away from the suspected Ω(cn).
As a first step, it would an interesting start to establish an ω(n) lower bound
for the number of wires in such circuits.

References

1. J. Almeida and P. Weil. Profinite categories and semidirect products. J. Pure and
Applied Algebra, 123:1–50, 1998.

2. G. Bilardi and F. Preparata. Characterization of associative operations with prefix
circuits of constant depth and linear size. SIAM J. Comput., 19(2):246–255, 1990.

3. N. Immerman and D. Kozen. Definability with a bounded number of bound vari-
ables. Information and Computation, 83(2):121–13, 1989.

4. J. A. W. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, Uni-
versity of California, Berkeley, 1968.

5. M. Koucký, P. Pudlák, and D. Thérien. Bounded-depth circuits: separating wires
from gates. In Symposium on Theory of Computing (STOC’05), 2005.

6. R. McNaughton and S. Papert. Counter-Free Automata. MIT Press, Cambridge,
Mass., 1971.

7. J.-E. Pin. Syntactic semigroups. In G. R. et A. Salomaa, editor, Handbook of
language theory, volume 1, chapter 10, pages 679–746. Springer Verlag, 1997.

8. M. P. Schützenberger. On finite monoids having only trivial subgroups. Informa-
tion and Control, 8(2):190–194, Apr. 1965.

9. H. Straubing. Finite Automata, Formal Logic and Circuit Complexity. Boston:
Birkhauser, 1994.

10. H. Straubing. On the logical description of regular languages. In Proc. of the 5th
Latin American Theoretical Informatics Conf. (LATIN ’02), 2002.

11. H. Straubing and D. Thérien. Weakly iterated block products of finite monoids. In
Proc. of the 5th Latin American Theoretical Informatics Conf. (LATIN ’02), 2002.

12. H. Straubing and D. Thérien. Regular languages defined by generalized first-
order formulas with a bounded number of bound variables. Theory of Computing
Systems, 36(1):29–69, 2003.

13. H. Straubing, D. Thérien, and W. Thomas. Regular languages defined by general-
ized quantifiers. Information and Computation, 118:289–301, 1995.

538 P. Tesson and D. Thérien

14. P. Tesson. Computational Complexity Questions Related to Finite Monoids and
Semigroups. PhD thesis, McGill University, 2003.

15. P. Tesson and D. Thérien. Complete classifications for the communication com-
plexity of regular languages. Theory of Comput. Syst., 2004. To appear.

16. D. Thérien and T. Wilke. Over words, two variables are as powerful as one quan-
tifier alternation. In Proc. 30th ACM Symposium on the Theory of Computing,
pages 256–263, 1998.

17. D. Thérien and T. Wilke. Nesting until and since in linear temporal logic. Theory
Comput. Syst., 37(1):111–131, 2004.

Suitable Curves for Genus-4 HCC over Prime
Fields: Point Counting Formulae for

Hyperelliptic Curves of Type y2 = x2k+1 + ax

Mitsuhiro Haneda1, Mitsuru Kawazoe2, and Tetsuya Takahashi2

1 Sharp Corporation
2 Faculty of Liberal Arts and Sciences,

Osaka Prefecture University,
1-1 Gakuen-cho Sakai Osaka 599-8531 Japan
{kawazoe, takahasi}@las.osakafu-u.ac.jp

Abstract. Computing the order of the Jacobian group of a hyperelliptic
curve over a finite field is very important to construct a hyperelliptic
curve cryptosystem (HCC), because to construct secure HCC, we need
Jacobian groups of order in the form l · c where l is a prime greater
than about 2160 and c is a very small integer. But even in the case of
genus two, known algorithms to compute the order of a Jacobian group
for a general curve need a very long running time over a large prime
field. In this article, we give explicit formulae of the order of Jacobian
groups for hyperelliptic curves over a finite prime field of type y2 =
x2k+1 + ax, which allows us to search suitable curves for HCC. By using
these formulae, we can find many suitable curves for genus-4 HCC and
show some examples.

1 Introduction

Let C be a hyperelliptic curve of genus g over Fq, JC the Jacobian variety of
C and JC(Fq) the Jacobian group of C which is the set of Fq-rational points
of JC . Then JC(Fq) is a finite abelian group and we can construct a public-
key-cryptosystem by using DLP on it. This cryptosystem is called “hyperelliptic
curve cryptosystem (HCC)”. In particular, HCC obtained by using a hyperel-
liptic curve of genus g is called “genus-g HCC”. To construct secure HCC, the
order of JC(Fq) is required to be in the form l · c where l is a prime greater than
about 2160 and c is a very small integer. We call a hyperelliptic curve “suitable
for HCC”if its Jacobian group has such a suitable order. The advantage of HCC
to an elliptic curve cryptosystem (ECC) is that we can construct a cryptosystem
at the same security level as an elliptic one by using a smaller defining field. More
precisely, we need a 160-bit field to construct a secure ECC, but for a genus-g
HCC with g ≥ 2, we only need about (160/g)-bit field. This comes from the fact
that the order of the Jacobian group of a hyperelliptic curve defined over an
N -bit field is about (Ng)-bit. The merit of using higher genus HCC is its short

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 539–550, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

540 M. Haneda, M. Kawazoe, and T. Takahashi

operand size; less than 64-bit for genus ≥ 3; its implementation on 64-bit CPUs
does not need multi-precision arithmetic and it can encrypt very fast (cf. [12]).

Due to Gaudry [8], there is a variant of the index calculus attack which can
solve the discrete logarithm problem in the Jacobian of hyperelliptic curves. As
a result of it, it is recommended that the genus should be taken less than five to
construct a secure HCC. In AsiaCrypt2003, Thériault [23] improved Gaudry’s
algorithm and recently Gaudry-Thomé [11] and Nagao [21] independently im-
proved Thériault’s result. The running time of their algorithms is asymptotically
better than the original index calculus and the Rho method for curves of genus
≥ 3. In particular Gaudry-Thomé showed by computer experiments on the genus
3 case that even for rather small sizes, their method is better than Pollard Rho
algorithm and a genus-3 HCC should have a key size about 12 % larger than an
elliptic curve cryptosystem for an equivalent security. This implies that a genus-3
HCC on a field of less than 64-bit may be insecure in comparison with 160-bit
ECC in the near future. For genus-4 HCC, we also need a larger key size and
hence a larger field, but it still has its advantage that it can be implemented on
64bit CPU because it has enough margins to enlarge a field size under 64bit. So
the search for suitable curves for genus-4 HCC is still important.

As in the case of ECC, to get a fast algorithm for adding points on the
Jacobian group and to give an efficient way to produce a suitable curve for HCC
are very important to construct HCC. For the first problem, we have already
got many good results. See [10][16][17] for genus two, [15] for genus three and
[22] for genus four. For the second problem, we need to calculate the order of
the Jacobian group. However, for HCC over prime fields, there are few results
in this direction even for the genus two case (cf. [9]) and there is no efficient
algorithm for the case of genus greater than two.

There is a known algorithm to construct a curve with complex multiplication
(CM) whose Jacobian group has a 160-bit prime factor. But this algorithm is
efficient only for genus two at this moment. For genus three, only a few examples
of suitable curves are constructed by this method [24]. For a special curve of type
y2 + y = xn over a prime field Fp, Buhler-Koblitz [2] obtained a point counting
algorithm.

If the Jacobian of a curve is obtained as a reduction mod p of an abelian
variety of CM type over Q, the calculation of the order of the Jacobian group
is much easier. For such curves, the problem is reduced to finding an element of
norm p in a CM field. Note that such an element is defined up to a root of unity.

In this article, we study characteristic polynomials of curves defined by y2 =
x2k+1+ax, a ∈ Fp and give explicit formulae giving the order of Jacobian groups
of those curves. The Jacobian of such curve is obtained as a reduction mod p
of an abelian variety of CM type over Q. Our tactics for calculating the order
of the Jacobian group of the curve C : y2 = x2k+1 + ax is to calculate |C(Fpr)|
for r = 1, 2, . . . , g directly. Since the curve C is obtained as a quotient of a
Fermat curve, |C(Fpr)| is expressed by Jacobi sums over Fpr . But the explicit
calculation of Jacobi sums over Fpr for r ≥ 2 and large p is not easy. In this
article, we prove Theorem 1; it reduces the calculation of |C(Fpr)| to Jacobi sums

Suitable Curves for Genus-4 HCC over Prime Fields 541

over Fp. And as a result of it, we can determine the characteristic polynomial of
the p-th power Frobenius endomorphism without ambiguity over unit elements.
Moreover, we can give a necessary condition for such curves to be suitable for
HCC. By using our formulae, we show that the case k = 4 produces suitable
curves for genus-4 HCC when p ≡ 1 (mod 16) and give some examples of such
curves. We can obtain explicit formulae for the case k = 2 and 3. But for the
case k = 3, the genus three case, it is shown that the Jacobian splits over the
base field and hence cannot produce suitable curves. So we omit the formulae
for that case. For the case k = 2, we should note that it was already appeared
in [7] and explicit formulae are given but under some condition on a. Combining
our formula and the result in [7], we have a complete result for k = 2.

Our result gives a family of hyperelliptic curves with closed formula for the
order of the Jacobian and a necessary condition on the parameter to be suitable
for genus 4-HCC.

2 The Characteristic Polynomial and the Order of the
Jacobian Group

Let p be an odd prime, Fq a finite field of order q = pr and C a hyperelliptic
curve of genus g defined over Fq. Then the defining equation of C is given as
y2 = f(x) where f(x) is a polynomial in Fq[x] of degree 2g + 1.

Let JC be the Jacobian variety of a hyperelliptic curve C. We denote the
group of Fq-rational points on JC by JC(Fq) and call it the Jacobian group
of C. Let χq(t) be the characteristic polynomial of the q-th power Frobenius
endomorphism of C. We call χq(t) for C the characteristic polynomial of C and
denote it by χ(t) for the convenience. Then, it is well-known that the order
|JC(Fq)| is given by

|JC(Fq)| = χ(1). (1)

Due to Mumford [19], every point on JC(Fq) can be represented by a pair
〈u(x), v(x)〉 where u(x) and v(x) are polynomials in Fq[x] with deg v(x) <
deg u(x) ≤ g such that u(x) divides f(x) − v(x)2. The identity element of the
addition law is represented by 〈1, 0〉. By using this representation of points on
JC(Fq), we obtain an algorithm for adding two points on JC(Fq). This algorithm
was firstly given by Cantor [3] in general and has been improved for genus 2, 3
and 4 by many people [10][16][17][22].

In the following, for a generator g of F×
p , we denote Indg a = k when a = gk,

k = 0, 1, . . . , p− 1.

3 Jacobstahl Sum and the Key Theorem

For two characters ψ, ψ′ of F×
pr , the Jacobi sum Jr(ψ,ψ′) is defined by

Jr(ψ,ψ′) =
∑

t∈Fpr

ψ(t)ψ′(1− t).

542 M. Haneda, M. Kawazoe, and T. Takahashi

For the convenience we use the notation Kr(ψ) = ψ(4)Jr(ψ,ψ). When r = 1, we
drop the subscript Jr and Kr. For properties of Jacobi sums, see [1].

Let � be a positive integer and p a prime such that p ≡ 1 (mod 2�). Let ψ2

be a character of order 2 on a finite field Fpr . For an element a in Fp,

φ�,r(a) :=
∑

x∈Fpr

ψ2(x�+1 + ax)

is called a “Jacobstahl sum”. It is easy to see that for a hyperelliptic curve
defined by an equation y2 = x�+1 + ax over Fp,

|C(Fpr)| = pr + 1 + φ�,r(a) (2)

where |C(Fpr)| denotes the number of rational points of C over Fpr .
The following properties of φ�,r enables us to reduce the calculation of φ�,r(a)

to the case pr ≡ 1 (mod 2�).

Lemma 1. (1) For d = (�, pr − 1), φ�,r(a) = φd,r(a).
(2) If pr − 1 ≡ � (mod 2�), then φ�,r(a) = 0.

Then we have the following theorem. This is the key theorem in our results.

Theorem 1. Let p be a prime such that p ≡ 1 (mod 2�) for some positive
integer �. For a ∈ Fp,

φ�,r(a) = (−1)r−1ψ̂(−1)ψ̂�+1(a)
�−1∑
j=0

ψ̂2j(a)K(ψ2j+1)r

where ψ̂ is a character of F×
pr of order 2� and ψ = ψ̂ ◦NFpr /Fp

.

Proof. Since ψ̂� = ψ2,

φ�,r(a) =
∑

x∈Fpr

ψ̂�(x)ψ̂�(x� + a) =
∑

x∈Fpr

ψ̂(x�)ψ̂�(x� + a).

By the equality
�−1∑
j=0

ψ̂2j(x) =

{
0 ψ̂2(x) �= 1
� ψ̂2(x) = 1

and the fact each fiber of the map x �→ x� has � elements, we have

φ�,r(a) =
∑

x∈Fpr

ψ̂(x)ψ̂�(x + a)
�−1∑
j=0

ψ̂2j(x).

Suitable Curves for Genus-4 HCC over Prime Fields 543

By the change of variable x→ −x and x→ −ax,

φ�,r(a) = ψ̂(−1)ψ̂1+�(a)
∑

x∈Fpr

ψ̂(x)ψ̂�(1− x)
�−1∑
j=0

ψ̂2j(ax)

= ψ̂(−1)ψ̂1+�(a)
�−1∑
j=0

ψ̂2j(a)
∑

x∈Fpr

ψ̂2j+1(x)ψ̂�(1− x)

= ψ̂(−1)ψ̂1+�(a)
�−1∑
j=0

ψ̂2j(a)Jr(ψ̂2j+1, ψ̂�).

Since Jr(ψ̂2j+1, ψ̂�) = ψ̂2j+1(4)Jr(ψ̂2j+1, ψ̂2j+1) = Kr(ψ̂2j+1), we get the for-
mula

φ�,r(a) = ψ̂(−1)ψ̂1+�(a)
�−1∑
j=0

ψ̂2j(a)Kr(ψ̂2j+1).

It follows from the Hasse-Davenport relation (cf. [1–Theorem 11.5.2]) that for
any integer m, Kr(ψ̂m) = (−1)r−1K1(ψm)r. Hence our Theorem. &'

Remark 1. Theorem 1 is a new result. Combining this theorem with the following
well-known fact, we get the formula of χ(t) for the curve C : y2 = x2k+1 + ax.

Theorem 2. Let C be a hyperelliptic curve of genus g over Fp. Assume χ(t)
for C is decomposed as χ(t) =

∏2g
i=1(t−αi). Then |C(Fpr)| = pr + 1−

∑2g
i=1 αr

i .

4 Explicit Formula for y2 = x5 + ax

Let p be an odd prime and C a hyperelliptic curve defined by an equation
y2 = x5 + ax over Fp. In [7], the explicit formulae of the order of JC(Fp) are

given for all cases except for the only one case p ≡ 1 (mod 8) with
(
a

p

)
= −1.

Here we show the explicit formula for the remaining case.

Theorem 3. Let p be a prime such that p ≡ 1 (mod 8) and C a hyperelliptic
curve defined by an equation y2 = x5 + ax over Fp. Put f = (p − 1)/8. Write
p as p = c2 + 2d2 where c ≡ 1 (mod 4) and 2d ≡ −(af + a3f)c (mod p). Then
the characteristic polynomial of p-th power Frobenius map for C is given by the
following formula: χ(t) = t4 +(−1)f4dt3 +8d2t2 +(−1)f4dpt+p2. In particular,
|JC(Fp)| = 1 + (−1)f4d + 8d2 + (−1)f4dp + p2.

Proof. This follows from Theorem 1, Theorem 2 and the formula for K(ψ).
(See [1]). &'

This formula provides us a faster algorithm to compute the order of the Jacobian
than in [7].

544 M. Haneda, M. Kawazoe, and T. Takahashi

Remark 2. All formulae for χ(t) in this paper are obtained in the same way. Since
we have not enough space, we describe the proof only for Theorem 4 which is
the most important result of this article and omit the proofs for other formulae.

5 Remark on y2 = x7 + ax

Unfortunately the Jacobian of a hyperelliptic curve of type y2 = x7 + ax splits
over Fp splits over Fp, because for k ≡ 0 (mod 3), one has a degree 3 covering
from y2 = x2k+1 + ax to Y 2 = X2k/3+1 + aX, given by (x, y) �→ (x3, xy).
Therefore the characteristic polynomial is reducible over Z and this curve is not
suitable for HCC.

6 Explicit Formula for y2 = x9 + ax

Let p be an odd prime and C a hyperelliptic curve defined by an equation
y2 = x9 + ax over Fp.

6.1 The Case of p ≡ 1 (mod 16)

Let p be a prime such that p ≡ 1 (mod 16). We fix a generator g of F×
p . Put

f = (p− 1)/16 and α = g(p−1)/16. Then there exist integers x, u, v, w such that

p = x2 + 2(u2 + v2 + w2), 2xv = u2 − 2uw − w2, x ≡ 1 (mod 8),

x + u(α + α7) + v(α2 − α6) + w(α3 + α5) ≡ 0 (mod p),

2v2 − x2 ≡ −(u2 + 2uw − w2)(α2 − α6) (mod p).

(3)

It is known that the above x, u, v, w are uniquely determined.
Let χ(t) = t8 − s1t

7 + s2t
6 − s3t

5 + s4t
4 − s3pt

3 + s2p
2t2 − s1p

3t + p4 be the
characteristic polynomial of C. Then by using the above notation, we have the
following theorems.

Theorem 4. s1, s2, s3 and s4 are given by the following tables.

Indg a (mod 16) s1

1, 7 (−1)f8w
9, 15 (−1)f+18w
3, 5 (−1)f+18u

11, 13 (−1)f8u
2, 14 (−1)f+18v
6, 10 (−1)f8v

8 (−1)f+18x
0 (−1)f8x

4, 12 0

Indg a (mod 16) s2

1, 7, 9, 15 32w2 + 16xv
3, 5, 11, 13 32u2 − 16xv
2, 6, 10, 14 32v2

0, 8 4p + 24x2 − 16v2

4, 12 −4p + 8x2 + 16v2

Suitable Curves for Genus-4 HCC over Prime Fields 545

Indg a (mod 16) s3

1, 7 (−1)f+18(pu− 4(u3 + w3 + u2w − 3uw2))
9, 15 (−1)f8(pu− 4(u3 + w3 + u2w − 3uw2))
3, 5 (−1)f+18(pw + 4(u3 − w3 + 3u2w + uw2))

11, 13 (−1)f8(pw + 4(u3 − w3 + 3u2w + uw2))
2, 14 (−1)f+1(8pv + 64v3 − 32x2v)
6, 10 (−1)f (8pv + 64v3 − 32x2v)

8 (−1)f+1(24px + 32x3 − 64xv2)
0 (−1)f (24px + 32x3 − 64xv2)

4, 12 0

Indg a (mod 16) s4

1, 7, 9, 15 32u4 + 32w4 + 64u2w2 − 64puw + 128u3w − 128uw3

3, 5, 11, 13 32u4 + 32w4 + 64u2w2 + 64puw + 128u3w − 128uw3

2, 6, 10, 14 2p2 + 16x4 + 64v4 − 16px2 − 64x2v2 + 32pv2

0, 8 6p2 + 16x4 + 64v4 + 48px2 − 64x2v2 − 32pv2

4, 12 6p2 + 16x4 + 64v4 − 16px2 − 64x2v2 − 32pv2

Proof. Here we show the outline of the proof. Let x, u, v, w be integers which
satisfy the condition (3). Then for the character ψ which maps α to e2πi/16,

K(ψ) = −x + v
√

2 + iu

√
2−

√
2− iw

√
2 +

√
2.

From this result, similar descriptions for K(ψ2j+1) can be easily obtained. Hence
by using equations (1), (2) and Theorem 2, we have the theorem. &'

Corollary 1. If a1/8 ∈ Fp, the characteristic polynomial of C is given by

χ(t) =
(
t4 − s1t

3/2 + (s2/2− s2
1/8)t2 − s1pt/2 + p2

)2
.

In particular, if a1/8 ∈ Fp, it is not suitable for HCC.

We look at the case when a1/8 �∈ Fp. Since
(
−1
p

)
= 1, if a is square,

then there is an element b ∈ Fp such that b2 = −a. Then x9 + ax factors into
x(x4 + b)(x4 − b) and we have that |JC(Fp)| is divided by at least 4. Moreover
if a1/4 ∈ Fp, |JC(Fp)| is divided by at least 16.

If a is not a square, it is possible to obtain a Jacobian group whose order is
in the form 2l where l is prime.

6.2 The Case of p ≡ 7 (mod 16)

Let p be a prime such that p ≡ 7 (mod 16). Then there exist integers x, u, v, w
such that

p = x2 + 2(u2 + v2 + w2), 2xv = u2 − 2uw − w2,

x ≡ 1 (mod 8), u ≡ v ≡ w ≡ 1 (mod 2).
(4)

546 M. Haneda, M. Kawazoe, and T. Takahashi

Let χ(t) = t8 − s1t
7 + s2t

6 − s3t
5 + s4t

4 − s3pt
3 + s2p

2t2 − s1p
3t + p4 be the

characteristic polynomial of C. Then, for a fixed generator g of F×
p , we have the

following theorem.

Theorem 5. The characteristic polynomial of C is determined by the following
formula. (1) s1 = s3 = 0, (2) s2 = (−1)Indg a(4p − 8x2 − 16v2), (3) s4 =
6p2 + 16x4 + 64v4 − 16px2 − 64x2v2 − 32pv2.

Remark 3. There is some ambiguity with respect to u, w and the sign of v. But
it does not affect to determine the characteristic polynomial of C.

Corollary 2. If a is square, the characteristic polynomial of C is given by

χ(t) = 5(t4+4xt3+δt2+4xpt+p2)(t4−4xt3+δt2−4xpt+p2), δ = 2p+4x2−8v2.

In particular, if a is square, it is not suitable for HCC.

We look at the case when a is not a square. From Theorem 5, we have that
|JC(Fp)| is divided by at least 27.

6.3 The Case of p �≡ 1, 7 (mod 16)

Theorem 6. If p ≡ 3, 11 (mod 16), then the characteristic polynomial of C is
given by χ(t) = (t4 + (−1)Indg ap2)2.

Theorem 7. Assume that p ≡ 5, 13 (mod 16). Then the characteristic poly-
nomial of C is given by the following formula. (1) If Indg a �≡ 0 (mod 2), then
χ(t) = t8+p4, (2) if Indg a ≡ 0 (mod 4), then χ(t) = (t4+p2)2, (3) if Indg a ≡ 2
(mod 4), then χ(t) = (t2 − p)2(t2 + p)2.

Theorem 8. Assume that p ≡ 9 (mod 16). Then the characteristic polynomial
of C is given by the following formula. (1) If Indg a �≡ 0 (mod 2), then χ(t) =
t8 + p4, (2) if Indg a ≡ 2 (mod 4), then χ(t) = (t4 + p2)2, (3) if Indg a ≡ 4
(mod 8), then χ(t) = (t2− p)4, (4) if Indg a ≡ 0 (mod 8), then χ(t) = (t2 + p)4.

Theorem 9. If p ≡ 15 (mod 16), then the characteristic polynomial of C is
given by χ(t) = (t2 + p)4.

In particular, for p �≡ 1, 7 (mod 16), C is a supersingular curve which is not
recommended to use for HCC.

6.4 Which Parameter Is Suitable for HCC?

From the above results, all the cases which can produce suitable curves for HCC
are the followings: (1) p ≡ 1 (mod 16) with a not a square, (2) p ≡ 1 (mod 16)
with a square but a1/4 �∈ Fp, (3) p ≡ 1 (mod 16) with a1/4 ∈ Fp but a1/8 �∈ Fp,
(4) p ≡ 7 (mod 16) with a not a square. In each case, the best possible order is
in the form (1) 2l, (2) 4l, (3) 24l and (4) 27l where l is a prime.

Now we consider splitting of the Jacobian over extension fields. Let χ(t) be
the characteristic polynomial of a hyperelliptic curve C over Fp. In the following,

Suitable Curves for Genus-4 HCC over Prime Fields 547

we denote by χpr (t) the characteristic polynomial of the pr-th power Frobenius
endomorphism of C as a curve over Fpr .

Proposition 1. Let χ(t) = t8−s1t
7+s2t

6−s3t
5+s4t

4−s3pt
3+s2p

2t2−s1p
3t+p4

be the characteristic polynomial of a hyperelliptic curve C of genus four over Fp.
If χ(t) is irreducible over Q, then the followings hold: (1) χp2(t) is a product
of two polynomials of degree four if and only if s1 = s3 = 0, (2) χp4(t) is a
product of four polynomials of degree two if and only if χp2(t) is a product of
two polynomials of degree four.

Proof. Let γ be a root of χ(t). We have only to show that if [Q(γ2) : Q] = 4,
s1 = s3 = 0. Since γγ̄ = p, we can show (γ2 + γ̄2)2 ∈ Q under the assumption
[Q(γ2) : Q] = 4. This implies s1 = s3 = 0. &'

By Proposition 1 and Theorem 4, we have that in the case p ≡ 1 (mod 16) with
a not a square, χp2(t) is irreducible and therefore its DLP cannot be reduced to
DLP of HCC of genus two over Fp2 nor of ECC over Fp4 .

7 Examples of Suitable Curves for Genus-4 HCC

In this section, we describe how to search suitable curves for genus-4 HCC of
type y2 = x9 + ax and show the result of search. Based on the argument in 6.4,
we only treat the case of p ≡ 1 (mod 16).

7.1 LLL Algorithm

Let p be a prime such that p ≡ 1 (mod 16). We describe the algorithm to deter-
mine |JC(Fp)|. For a given p, if we obtain x, u, v and w in (3), we can determine
the order of JC(Fp) and check its suitability. So the main part of the algorithm is
determining x, u, v, w in (3). To determine x, u, v, w, we use the LLL algorithm.

Let αi, i = 1, 2, . . . , 7 be positive integers such that 0 ≤ αi < p and αi ≡
g(p−1)i/16 (mod p). Let ζ ∈ C be a primitive 16th root of unity and P a prime
ideal over (p) in the integer ring OK of K = Q(ζ + ζ7). A Z-basis {b0, b1, b2, b3}
of P is given by

b0 = p, b1 = ζ + ζ7 − α1 − α7,

b2 = ζ2 − ζ6 − α2 + α6, b3 = ζ3 + ζ5 − α3 − α5.
(5)

For this basis, any entry of the Gram matrix with respect to an inner product
〈u, v〉 = TrK/Q(uv̄) is an integer. Put c1 = −α1 − α7, c2 = −α2 + α6, c3 =
−α3−α5. Then each entry of the Gram matrix is given as follows: 〈b0, b0〉 = 4p2,
〈b0, bi〉 = 4pci (1 ≤ i ≤ 3), 〈bi, bj〉 = 4cicj (1 ≤ i �= j ≤ 3), 〈bi, bi〉 =
8 + 4c2i (1 ≤ i ≤ 3). Then the LLL algorithm for the Gram matrix works and
we can determine x, u, v and w in (3) by using the following algorithm. (For the
details on the LLL algorithm, see [4] for example.)

548 M. Haneda, M. Kawazoe, and T. Takahashi

Algorithm1

Input p: a prime (p ≡ 1 (mod 16))
Output x, u, v, w satisfying (3)

(Step 1-5: Finding β ∈ OK , NK/Q(β) = p.)
Step 1 g ← a generator of F×

p .
Step 2 b = (b0, b1, b2, b3) ← a Z-basis (5) of OK .
Step 3 G← the Gram matrix for b.
Step 4 H = (hij) ← a transformation matrix obtained by the LLL algorithm

for G.
Step 5 β ←

∑3
i=0 bih0i

Step 6 Determine x, u, v, w by βτ(β) = x + u(ζ + ζ7) + v(ζ2 − ζ6) + w(ζ3 + ζ5)
and (3) where τ is an automorphism of Q(ζ + ζ7) given by ζ �→ ζ3.

Step 7 Return x, u, v, w.

This algorithm can be easily implemented and we can compute |JC(Fp)| of
C defined by y2 = x9 + ax in a very short time, e.g. only 0.01 seconds over
41bit fields.

7.2 Examples of Suitable Curves

We can obtain many suitable curves for HCC by varying p and a.

Table 1. Search results

search range (r, s) the number of primes2s.t. time[sec]
for r < p < s |JC(Fp)| = 2·(prime)

(241, 241 + 106) 714 267.054
(260, 260 + 106) 349 293.421

Here we show some examples of suitable curves for HCC obtained by our
algorithm.

Table 2. An Example of a suitable curve for genus-4 HCC over 41-bit fields

y2 = x9 + 29x, p = 1759218504481(41-bit)
s1 4722688
s2 14617568463136
s3 29894897984637227312
s4 46358542553945186095112704

|JC(Fp)| 2·4789034620376653463540859489797855263219497047089(162-bit)

1 This algorithm does not always give β with NK/Q(β) = p theoretically. But the
vector produced by this algorithm had norm p in all experiments we tried.

2 Here we count the number of primes p such that |JC(Fp)| = 2·(prime) for at least
one a.

Suitable Curves for Genus-4 HCC over Prime Fields 549

Table 3. An Example of a suitable curve for genus-4 HCC over 60-bit fields

y2 = x9 + 1953125x, p = 1152921504606851137(61-bit)
s1 564124384
s2 1345970607051288832
s3 −749185980839542708811633632
s4 80166212866222609539893111807958016

|JC(Fp)| 2·8834235319569458676272278733923238248994105786494304997302
48324828139649(239-bit)

All computation were done on a system with Pentium 4 1.6GHz.

7.3 Notes on Security

All examples in Table 2 are not weak against Frey-Rück attack[6]. To see this,
one can easily check that a large prime factor of |JC(Fp)| does not divide pr− 1,
r = 1, 2, . . . , 43+log2 p,.

From the result of Duursma, Gaudry and Morain [5], an automorphism of
large order can be exploited to accelerate the Pollard’s rho algorithm. If there is
an automorphism of order m, we can get a speed up of

√
m. The order of any

automorphism of y2 = x9 + ax is at most 16. So the Pollard’s rho algorithm for
these curves can be improved only by a factor 4.

As we saw in 6.4, JC in Table 2 and 3 cannot split over Fp2 and Fp4 . So
examples in Table 2 cannot be reduced to genus-2 HCC of about 80-bit and
ECC of about 160-bit. And an example in Table 3 cannot be reduced to genus-2
HCC of about 120-bit and ECC of about 240-bit.

8 Conclusions

We gave explicit formulae of the order of Jacobian groups for hyperelliptic curves
of type y2 = x2k+1 + ax over a finite prime field and gave a necessary condi-
tion that the curves are suitable for genus-4 HCC. By using these formulae,
we searched suitable curves for HCC among the above curves and found many
suitable curves for genus-4 HCC.

References

1. B. C. Berndt, R. J. Evans and K. S. Williams, Gauss and Jacobi Sums, Canadian
Mathematical Society Series of Monographs and Advanced Texts 21, A Wiley-
Interscience Publication, 1998,

2. J. Buhler and N. Koblitz, Lattice Basis Reduction, Jacobi Sums and Hyperelliptic
Cryptosystems, Bull. Austral. Math. Soc. 58 (1998), pp. 147–154,

3. D. G. Cantor, Computing in the Jacobian of hyperelliptic curve, Math. Comp. 48
(1987), pp. 95–101,

4. H. Cohen, A Course in Computational Algebraic Number Theory, Graduate Texts
in Mathematics 138, Springer, 1996,

550 M. Haneda, M. Kawazoe, and T. Takahashi

5. I. Duursma, P. Gaudry and F. Morain, Speeding up the Discrete Log Computation
on Curves with Automorphisms, Advances in Cryptology – ASIA CRYPT ’99,
Springer-Verlag LNCS 1716, 1999, pp. 103–121,

6. G. Frey and H.-G. Rück, A Remark Concerning m-divisibility and the Discrete
Logarithm in the Divisor Class Group of Curves, Math. Comp. 62, No.206 (1994)
pp. 865–874,

7. E. Furukawa, M. Kawazoe and T. Takahashi, Counting Points for Hyperelliptic
Curves of type y2 = x5 + ax over Finite Prime Fields, Selected Areas in Cryptog-
raphy(SAC2003), Springer LNCS 3006, pp. 26–41,

8. P. Gaudry, An algorithm for solving the discrete logarithm problem on hyperelliptic
curves, EUROCRYPT 2000, Springer LNCS 1807, 2000, pp. 19–34,

9. P. Gaudry and E. Schost, Construction of Secure Random Curves of Genus 2 over
Prime Fields, EUROCRYPT 2004, Springer LNCS 3027, 2004, pp. 239–256,

10. P. Gaudry and R. Harley, Counting Points on Hyperelliptic Curves over Finite
Fields, ANTS-IV, Springer LNCS 1838, 2000, pp. 297–312.

11. P. Gaudry, N. Thériault and E. Thomé, A Double Large Prime Variation for Small
Genus Hyperelliptic Index Calculus, Cryptology ePrint Archive, Report 2004/153,
2004, http://eprint.iacr.org/

12. M. Gonda,K. Matsuo, K. Aoki, J. Chao and S. Tsujii, Improvements of addi-
tion algorithm on genus 3 hyperelliptic curves and their implementations, Proc. of
SCIS2004, IEICE Japan, January 2004, pp. 995-1000,

13. R. H. Hudson and K. S. Williams, Binomial Coefficients and Jacobi Sums, Trans.
Amer. Math. Soc. 281 (1984), pp. 431–505,

14. N. Koblitz, Algebraic Aspects of Cryptography, Algorithms and Computation in
Mathematics Vol. 3, Springer-Verlag, 1998,

15. J. Kuroki, M. Gonda, K. Matsuo, J. Chao and S. Tsujii, Fast Genus Three Hyper-
elliptic Curve Cryptosystems, Proc. of SCIS2002, IEICE Japan, January 2002, pp.
503–507,

16. T. Lange, Efficient Arithmetic on Genus 2 Hyperelliptic Curves over Finite
Fields via Explicit Formulae, Cryptology ePrint Archive, Report 2002/121, 2002,
http://eprint.iacr.org/,

17. K. Matsuo, J. Chao and S. Tsujii, Fast Genus Two Hyperelliptic Curve Cryptosys-
tem, ISEC2001-31, IEICE, 2001,

18. K. Matsuo, J. Chao and S. Tsujii, An improved baby step giant step algorithm for
point counting of hyperelliptic curves over finite fields, ANTS-V, Springer-Verlag
LNCS 2369, 2002, pp. 461–474,

19. D. Mumford, Tata Lectures on Theta II, Progress in Mathematics 43, Birkhäuser,
1984,

20. K. Nagao, Improving Group Law Algorithms for Jacobians of Hyperelliptic Curves,
In W. Bosma ed., ANTS IV, Springer-Verlag LNCS 1838, pp. 439–448,

21. K. Nagao, Improvement of Thériault Algorithm of Index Calculus for Jacobian of
Hyperelliptic Curves of Small Genus, Cryptology ePrint Archive, Report 2004/161,
2004, http://eprint.iacr.org/,

22. J. Pelzl, T. Wollinger and C. Paar, Low Cost Security: Explicit Formulae for Genus
4 Hyperelliptic Curves, Selected Areas in Cryptography (SAC2003), Springer-
Verlag LNCS 3006, pp. 1–16,

23. N. Thériault, Index Calculus Attack for Hyperelliptic Curves of Small Genus, in
Advances in Cryptology – AsiaCrypt 2003, Lecture Notes in Computer Science
2894 (2003), Springer, pp. 75–92,

24. A. Weng, Hyperelliptic CM-curves of genus 3, Journal of the Ramanujan Mathe-
matical Society 16, No. 4, 2001, pp.339-372.

Solvability of a System of Bivariate Polynomial
Equations over a Finite Field

(Extended Abstract)

Neeraj Kayal

Indian Institute of Technology, Kanpur
and

National University of Singapore

Abstract. We investigate the complexity of the following polynomial
solvability problem: Given a finite field Fq and a set of polynomials

f1(x, y), f2(x, y), · · · , fn(x, y), g(x, y) ∈ Fq[x, y]

determine the Fq-solvability of the system

f1(x, y) = f2(x, y) = · · · = fn(x, y) = 0 and g(x, y) �= 0

We give a deterministic polynomial-time algorithm for this problem.

1 Motivation

The need to find solutions of polynomial congruences and to count their number
over various fields has appeared in many important works in the history of
number theory, algebra and geometry. For example, Fermat’s Last Theorem
asserts that for any integer n ≥ 3 the following bivariate system has no solution
over the field Q of rational numbers.

xn + yn = 1 and xy �= 0

The general algorithmic problem of the decidability of solvability of such systems
over Q remains a major open problem in algorithmic number theory. Here we
examine the computational complexity of determining the existence of a solution
to a system of bivariate polynomial equations over a given finite field Fq. For a
general polynomial system in n variables, the problem is known to be efficiently
solvable when the system is linear and is NP-complete otherwise, even when the
field is as small as 2 and the degree of each polynomial is bounded by 2.

Our focus is on deterministic algorithms for the problem of solvability of a
system of bivariate polynomials over a given finite field Fq. Huang and Wong,
[HW99] give a randomized polynomial time algorithm for this problem when the
field is a prime field. We give a deterministic polynomial-time algorithm for this
problem over any given finite field Fq. The techniques used herein also give an
efficient deterministic approximation algorithm for the closely related problem
of counting the number of solutions to a given bivariate system.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 551–562, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

552 N. Kayal

Problem - Existence of solution to a general bivariate system
Input. A finite field Fq, polynomials f1(x, y), f2(x, y), · · · , fm(x, y) ∈ Fq[x, y]

and a polynomial g(x, y) ∈ Fq[x, y].
Question. Does there exist a point (a, b) ∈ Fq × Fq such that

fi(a, b) = 0 for all 1 ≤ i ≤ m

and g(a, b) �= 0

We give an efficient deterministic algorithm for this problem. As an applica-
tion of this result, we immediately get an efficient deterministic algorithm for rec-
ognizing permutation functions, wherein a rational function f(x) = g(x)

h(x) ∈ Fq(x)
is said to be a permutation function if the corresponding map f : Fq �→ Fq defined
by a �→ f(a) is total and bijective. Permutation functions have found numer-
ous applications, including cryptography [LM83]. Indeed, the RSA cryptosystem
[RSA78] is one such application. A survey of permutation functions and their
applications can be found in the articles by Lidl and Mullen [LM88], [LM93].
Ma and Gathen showed that this problem is in ZPP, and had posed as an open
problem the deterministic complexity of recognizing permutation functions :

“Besides the problem PRIMES of recognizing prime numbers, it
seems to be the only natural decision problem in ZPP unknown to be
in P.” - [MG94]

For polynomials, Lenstra [Len05] showed that this problem is in P by using a
classification of permutation polynomials, this classification itself being based on
the classification of finite simple groups. The problem of recognizing permutation
functions can be easily seen to reduce to the bivariate system solvability problem
above by noting that a rational function f(x) = g(x)

h(x) ∈ Fq(x) is a permutation
function if and only if the system

h(x)(g(x)h(y)− h(x)g(y)) = 0 , x− y �= 0

has no solution over Fq. Thus our deterministic algorithm for bivariate systems
immediately gives a deterministic test for permutation functions. Moreover, the
proof of correctness of our algorithm is completely elementary.

Determining the existence of solutions to polynomial equations and finding
these solutions is closely related to the problem of polynomial factorization. In
spite of a lot of effort by several researchers, an efficient deterministic algorithm
for the general polynomial factorization problem remains elusive. In the first part
of this paper we examine the problem of deterministically factoring bivariate
polynomials over a given finite field Fq. We devise an algorithm that partially
factors a given bivariate polynomial. We will later on describe precisely what
the output of this partial factorization algorithm looks like. This algorithm is
itself of independent interest. We then apply this factoring algorithm to solve
the problem of existence of solution to systems of equations as mentioned above.

Solvability of a System of Bivariate Polynomial Equations 553

2 Some Definitions and Notation

2.1 Resultant and Discriminant

For two bivariate polynomials f(x, y) and g(x, y) in Fq[x, y]we will denote by
Resultantx(f(x, y), g(x, y)) ∈ Fq[y] the resultant of the two polynomials with
respect to the variable x. We will denote by Δx(f(x, y)) ∈ Fq[y] the discriminant
of the polynomial f(x, y) with respect to the variable x.

2.2 Nice Bivariate Polynomials

Definition 1. A bivariate polynomial f(x, y) ∈ Fq[x, y] of total degree n is nice
if f(x, 0) is squarefree and of degree n.

Note that the coefficient of xi of a nice polynomial f(x, y) as a polynomial in
y has degree no more than n − i, in particular the leading coefficient of f(x, y)
with respect to x is in Fq.

Also observe that a nice polynomial f(x, y) ∈ Fq[x, y] remains nice over any
extension field K of Fq and that any factor of a nice polynomial is also a nice
polynomial. We will see that the problem of general bivariate factoring can be
reduced to factoring a nice bivariate polynomial.

2.3 Absolutely Irreducible Polynomial

Definition 2. A bivariate polynomial h(x, y) ∈ F[x, y] is said to be absolutely
irreducible if it is irreducible over F and remains irreducible over the algebraic
closure F̄ of F.

For example (y2−x3) ∈ F7[x, y] is absolutely irreducible whereas (y2 +x2) ∈
F7[x, y] is irreducible over F7 but factors into (y +

√
−1x)(y −

√
−1x) over the

extension F72 = F7(
√
−1) and hence is not absolutely irreducible over F7. The

importance of absolutely irreducible polynomials stems from a classic theorem of
Weil which states that every non-singular absolutely irreducible curve of degree
d over a finite field Fq has a lot of (at least q − d2√q) Fq-rationals points. This
has been generalized by Bach [Bac93] to all absolutely ireducible curves.

By the degree of a bivariate polynomial h(x, y) ∈ F[x, y] we will mean the
total degree of h(x, y). Moreover h(x, y) has a unique factorization over the
algebraic closure F̄ of F. Now collect all the elements of F̄ that occur as the
coefficient of some term xiyj in some irreducible factor of h(x, y) over F̄. Since
this is a finite set, all these coefficients lie in some finite extension K of F.
We will call the smallest such extension field K the splitting field of h(x, y).
We will denote by dimF(h(x, y)) the dimension of the splitting field of h(x, y)
over F.

Definition 3. We will call a polynomial h(x, y) ∈ Fq[x, y] a (n, d)-uniform poly-
nomial over Fq if all its Fq-irreducible factors have the same degree n and the
same dimension d over Fq.

554 N. Kayal

Our first goal is to extend the distinct degree factorization algorithm of Gao,
Kaltofen and Lauder [GKL04] to split a given polynomial h(x, y) ∈ Fq[x, y] into
a product of uniform polynomials.

Theorem 1. [Uniform factoring] There exists a deterministic algorithm that on
input a polynomial h(x, y) ∈ Fq[x, y] outputs

< (h1(x, y), n1, d1), (h2(x, y), n2, d2), · · · (hk(x, y), nk, dk) >

such that
h(x, y) = h1(x, y)h2(x, y) · · ·hk(x, y)

where each hi(x, y) is a (ni, di)-uniform polynomial over Fq

Moreover the algorithm runs in time poly(deg(h) log q).

Note that the output of the algorithm of Theorem 1 is a refinement of the
distinct degree factorization of h(x, y) over Fq. It also tells us about the irre-
ducibility and the absolute irreducibility of h(x, y) over Fq. In the next section
we prove some preliminary lemmas needed for the algorithm in Theorem 1.

3 Splitting of Nice Fq-Irreducible Polynomials in
Extensions of Fq

Let K be a field extension of the finite field Fq. Let φ ∈ GalK/Fq
be an automor-

phism of K. We extend φ to K[x, y] as follows

Definition 4. Let φ ∈ GalK/Fq
be an automorphism of K. Define the map φ :

K[x, y] �→ K[x, y] as
φ(f(x, y)) =

∑
1≤k,l≤n

φ(akl)xkyl

where f(x, y) =
∑

1≤k,l≤n

aklx
kyl

Observe that the map φ : K[x, y] �→ K[x, y] is an automorphism of the ring
K[x, y] that fixes the subring Fq[x, y]. In particular,

– φ(f(x, y) + g(x, y)) = φ(f(x, y)) + φ(g(x, y))
– φ(f(x, y)g(x, y)) = φ(f(x, y))φ(g(x, y))

We now define an equivalence relation on K[x, y] induced by such automor-
phisms of K[x, y].

Definition 5. Let f(x, y) ∈ K[x, y] be any bivariate polynomial. Then φ(f(x, y))
for any φ ∈ GalK/Fq

is said to be a conjugate of f(x, y) over Fq. When the
underlying field Fq is clear from context, we will simply say that φ(f(x, y)) is a
conjugate of f(x, y).

Solvability of a System of Bivariate Polynomial Equations 555

Observe that conjugacy is an equivalence relation on K[x, y]. Now consider
a nice Fq-irreducible polynomial h(x, y) ∈ Fq[x, y]. Let K ⊇ Fq be a finite field
extension of Fq[x, y]. How does h(x, y) factor over K? We claim that all the
K-irreducible factors of h(x, y) in K are in fact conjugates of each other. In
particular, all the K-irreducible factors of h(x, y) are of equal degree.

Claim 2. Let h(x, y) ∈ Fq[x, y] be a nice irreducible polynomial of total degree
n. Let K be any finite field extension of Fq. If f1(x, y) ∈ K[x, y] and f2(x, y) ∈
K[x, y] are any two factors of h(x, y) that are irreducible over the extension field
K, then f1(x, y) and f2(x, y) are conjugates over the base field Fq.

Proof. For a polynomial f(x, y) ∈ K[x, y], define Hf ≤ GalK/Fq
to be the sub-

group of GalK/Fq
consisting of automorphisms in GalK/Fq

that fix f(x, y). Since
the galois groups of finite extensions of finite fields are cyclic groups, Hf must
be a normal subgroup of GalK/Fq

.
Let f(x, y) ∈ K[x, y] be a factor of h(x, y) which is irreducible over K. Let

the set of distinct cosets of Hf in GalK/Fq
be

GalK/Fq
/Hf = {Hfφ1,Hfφ2, · · ·Hfφt}

Then φ1(f(x, y)), φ2(f(x, y)), · · ·φt(f(x, y)) are all the distinct conjugates of
f(x, y). We claim that the unique factorization of h(x, y) into irreducible poly-
nomials over K is simply the product of all these distinct conjugates of f(x, y).
That is,

h(x, y) =
∏

Hf φ∈GalK/Fq /Hf

φ(f(x, y)) (1)

Let φ be any automorphism in GalK/Fq
. Now

f(x, y)|h(x, y) ⇒ ∃g(x, y) ∈ K[x, y] such that h(x, y) = f(x, y)g(x, y)

Applying φ to both sides, φ(h(x, y)) = φ(f(x, y))φ(g(x, y))

or, h(x, y) = φ(f(x, y))φ(g(x, y))

⇒ φ(f(x, y))|h(x, y)

By the same reasoning φ(f(x, y)) ∈ K[x, y] is irreducible over K for if any
g(x, y) ∈ K[x, y], deg(g(x, y)) < deg(φ(f(x, y)) = deg(f(x, y)) divides φ(f(x, y))
then φ−1(g(x, y)) divides f(x, y), contradicting the irreducibility of f(x, y) over
K. Thus any conjugate of f(x, y) is also an irreducible factor of h(x, y). Moreover,
f(x, y) being irreducible over K, is coprime to all conjugates distinct from itself.
Thus the rhs of equation (1) divides h(x, y). Moreover the rhs of equation (1)
is fixed by all the automorphisms in GalK/Fq

. Since finite extensions of finite
fields are normal extensions, so any polynomial in K[x, y] that is fixed by all
the automorphisms in GalK/Fq

is in fact a polynomial in Fq[x, y]. Hence the
rhs of equation (1) is in fact a polynomial in Fq[x, y] that divides h(x, y). By
the irreducibility of h(x, y) over Fq, we deduce that equation (1) is indeed the
unique factorization of h(x, y). Thus all the irreducible factors of h(x, y) over K
are precisely all the distinct conjugates of f(x, y).

556 N. Kayal

Now consider an irreducible polynomial h(x, y) ∈ Fq[x, y] that factors in the
algebraic closure of Fq. What is the splitting field of h(x, y)? Can we put a
bound on the dimension of the splitting field over Fq? Assuming that h(x, y) is
a nice polynomial, the following proposition shows that if t(x) is an irreducible
factor of h(x, 0), then the splitting field of h(x, y) is a subfield of the finite field
Fq[z]/〈t(z)〉. In particular, if h(x, 0) has a root α ∈ Fq, then h(x, y) must be
absolutely irreducible.

Proposition 3. Let h(x, y) ∈ Fq[x, y] be a nice irreducible polynomial of total
degree n. Let dimFq

(h(x, y)) = d. Also let t(z) ∈ Fq[z] be an irreducible factor
of h(z, 0). Then d|deg(t(z)) and h(x, y) breaks into absolutely irreducible factors
over K := Fq[z]/〈t(z)〉, each irreducible factor over K being of degree m = n

d .

Proof. Let f(x, y) ∈ K[x, y] be an irreducible factor of h(x, y) in K[x, y]. Suppose
if possible that f(x, y) is not absolutely irreducible but breaks further over some
finite extension L ⊃ K.

Let Hf be as in claim 2. By claim 2

h(x, y) =
∏

Hf φ∈G/Hf

φ(f(x, y)) (2)

Let α ∈ K be a root of the polynomial t(z). Now

(x− α) | (h(x, 0) =
∏

Hf φ∈G/Hf

φ(f(x, 0)))

⇒ ∃φ ∈ GalK/Fq
such that (x− α)|φ(f(x, 0))

⇒ (x− β)|f(x, 0) where β = φ−1(α)

Note that β = φ−1(α) ∈ K is also a root of the polynomial t(z).
By claim 2 the irreducible factors of f(x, y) over L are all conjugates. Let

f1(x, y) be an irreducible factor of f(x, y) over L such that (x − β) divides
f1(x, 0). Let ψ ∈ GalL/K be such that ψ(f1(x, y)) is another irreducible (over L)
factor of f(x, y) distinct from f1(x, y). Now since (x− β)|f1(x, 0), we must also
have (x−ψ(β)) = (x− β)|ψ(f1(x, 0)). This implies that (x− β)2 divides f(x, 0)
which is a contradiction since h(x, 0) and hence f(x, 0) are squarefree.

Thus the irreducible factors of h(x, y) over K are absolutely irreducible. Hence
there exists a subfield F ⊆ K which is the splitting field of h(x, y). Therefore
d = [F : Fq] divides deg(t(z)) = [K : Fq] = [K : F][F : Fq].

By the definition of the splitting field of h(x, y), the coefficients occuring in
f(x, y) lie in the field F and do not all lie in some proper subfield of F. Hence F
is precisely the subfield of K which is fixed by every automorphism in Hf . So

d = [F : Fq] = ord(GalK/Fq
/Hf)

Further ord(GalK/Fq
/Hf) is the number of distinct absolutely irreducible

factors of h(x, y). Since all the irreducible factors of h(x, y) are of the same
degree, say m, we have

m.ord(GalK/Fq
/Hf) = deg(h(x, y))

Solvability of a System of Bivariate Polynomial Equations 557

⇒ m.d = n

⇒ m =
n

d

In summary, if h(x, y) ∈ Fq[x, y] is a nice polynomial that is Fq-irreducible
and t1(z), t2(z) ∈ Fq[z] are any two Fq-irreducile factors of h(z, 0), then the
degree of an irreducible factor of h(x, y) over K1 := Fq[z]/〈t1(z)〉 is the same as
the degree of an irreducible factor of h(x, y) over K2 := Fq[z]/〈t2(z)〉. Moreover,
this degree is m = n

d , where the dimension d of h(x, y) was defined indepently
of the choice of any factor of h(z, 0). This observation will be the key to our
uniform-factoring algorithm.

4 Algorithm for Uniform Factoring

Given a polynomial f(x, y) ∈ Fq[x, y], the first step of our algorithm is to invoke
the algorithm in [GKL04] on f(x, y) thereby obtaining a distinct-degree factor-
ization of f(x, y). So now we can assume that the input to our algorithm is a
nice bivariate polynomial h(x, y) ∈ Fq[x, y] and an integer n, such that each Fq

irreducible factor of h(x, y) has the same degree n.
If we could construct an irreducible polynomial t(z) ∈ Fq[z] of degree n

in deterministic polynomial time, we could simply invoke the distinct-degree
factorization algorithm on h(x, y) over the field Fq[z]/〈t(z)〉 and obtain all the
distinct dimension factors as well. No deterministic algorithm is currently known
for constructing irreducible polynomials. Fortunately we can get around this
problem by working over the ring R

def
:= Fq[z]/〈h(z, 0)〉.

Our algorithm from this point onwards is the similar to that in [GKL04] but
with one key difference - we work over the ring R whereas [GKL04] work over
the Berlekamp subalgebra of R. The proof of correctness is also similar and we
omit the details due to lack of space.

5 Solvability of a Bivariate Polynomial System

Recall the problem we started with - given a set of polynomials f1, f2, · · · , fm, g ∈
Fq[x, y] does there exist a point (a, b) ∈ Fq × Fq such that

f1(a, b) = f2(a, b) = · · · = fm(a, b) = 0 , g(a, b) �= 0 ?

5.1 Overview of the Algorithm

In this section we apply the uniform factoring algorithm devised above to the
problem of determining the solvability of a bivariate polynomial system. We
now give an overview of the algorithm. If the size of the field q is very small
(< d5m), we can determine the solvability in O(d10m) time by simplying
trying all possible values of x and y. Henceforth we shall assume that q > d5.

558 N. Kayal

There is an initial preprocessing stage, the effect of which is to make all the
given polynomials nice and separable with respect to x. For now assume that all
the input polynomials are nice. Our algorithm is recursive and we now consider
two special base cases of this recursion.

Special case: m ≥ 2 and Resultantx(f1, f2) �= 0. Suppose that m ≥ 2 and
consider f1(x, y), f2(x, y) ∈ Fq[x, y]. Further suppose that

ρ(y)
def
:= Resultantx(f1, f2) �= 0

In this case for any point (a, b) ∈ Fq × Fq satisfying f1(a, b) = f2(a, b) = 0, it
must be the case that b is a root of ρ(y). We will say that y is algebraic over Fq

and in this case we can devise a deterministic polynomial-time algorithm that
not only determines the existence of a solution to the given system but also
determines the exact number of distinct solutions to the system.

Special case: m = 1. Here we are looking for Fq solutions to the system

f1(x, y) = 0 and g(x, y) �= 0

By removing those factors from f1(x, y) that are common to both f1(x, y) and
g(x, y), we can assume that Resultantx(f1, g) �= 0.

We use the uniform bivariate factoring algorithm devised above to deter-
mine whether f1(x, y) has an absolutely irreducible factor or not. Suppose that
f1(x, y) does indeed have an absolutely factor l(x, y) ∈ Fq[x, y]. Then Weil’s
theorem [Bac93] assures us of the existence of a large (about q) number of Fq-
solutions to the equation l(x, y) = 0 and hence to the equation f1(x, y) = 0.
Moreover, Bezout’s theorem assures us that only a few (≤ d2) of these solutions
to f1(x, y) = 0 are common to g(x, y) = 0. So if f1(x, y) does have an absolutely
irreducible factor and if the size of the field q is large enough (≥ d5) then the
existence of a solution to the above system is guaranteed.

Otherwise none of the Fq-irreducible factors of f1(x, y) are absolutely irre-
ducible and hence by lemma 3 it follows that every Fq-point (a, b) on the curve

f1(x, y) = 0 is a repeated point. In particular (a, b) is also a zero of f2(x, y)
def
:=

∂f1
∂x . The preprocessing stage assures us that Δx(f1) = Resultantx(f1, f2) �= 0.
This boils our problem down to the first special case.

General case. We now return to the general problem where m ≥ 2 and
Resultantx(f1, f2) = 0. Compute l(x, y) = gcdx(f1, f2) which must be non-
trivial since the resultant is zero. Then we can express the given polynomials f1

and f2 as

f1(x, y) = l(x, y)f11(x, y) , f2(x, y) = l(x, y)f21(x, y)

where Resultantx(f11, f21) �= 0. Thus the given system has a Fq-solution if and
only if either the system

f11 = f21 = f3 = f4 = · · · = fm = 0 , g �= 0

Solvability of a System of Bivariate Polynomial Equations 559

or the system
l = f3 = f4 = · · · = fm = 0 , g �= 0

has a Fq-solution. The first system is the first special case considered above. The
Fq-solvability of the second system is determined recursively. Thus if the time
taken by the algorithm is denoted by T (m, d, q) then

T (m, d, q) = T (m− 1, d, q) + poly(md log q)

Or, T (m, d, q) = T (1, d, q) + poly(md log q)

Or, T (m, d, q) = poly(md log q)

5.2 Handling the Case m ≥ 2 and Resultantx(f1, f2) �= 0

In this section, we present the details of how to deterministically determine the
solvability of a bivariate system of this form. Compute

ρ(y)
def
:= gcd(yq − y,Resultantx(f1, f2)) �= 0

which has degree at most d2. Suppose that (a, b) ∈ Fq × Fq is a solution to the
system f1(x, y) = f2(x, y) = 0. This implies that

Resultantx(f1(x, b), f2(x, b)) = 0

(Note that the converse is not true since f1(x, b) and f2(x, b) may share a common
root which does not lie in Fq but in some finite extension of Fq). Thus b is an
Fq-root of Resultantx(f1, f2) and hence must be a root of ρ(y). Let the roots of
ρ(y) be b1, b2, · · · , bl ∈ Fq. Then the given system has a solution if and only if
there exists a b ∈ {b1, b2, · · · , bl} such that

g(x, b) �= 0 (mod h(x))

where
h(x)

def
:= gcd(f1(x, b), f2(x, b), · · · , fm(x, y), xq − x)

We can check for the existence of such a b without needing to actually factor
ρ(y) by working over the ring R

def
:= Fq[y]/〈ρ(y)〉. We simply view f1, f2, · · · , fm, g

as univariate polynomials in the variable x over the ring R and compute h(x) ∈
R[x], h(x)

def
:= gcdx(f1(x), f2(x), · · · , fm(x), xq − x). (This gcd can be computed

by the standard Euclidean algorithm applied over the ring R with just one minor
modification - if the leading coefficient α ∈ R of a divisor polynomial b(x) ∈ R[x]
is not a unit of R, then the zero-divisorness of α allows us to factor the ring R
into a direct sum of rings R1 and R2. Having obtained this factorization, we can
carry out the division in each of these rings R1 and R2 and combine the result
using chinese remaindering to get the result in the original ring R). Then the
given system has an Fq-solution if and only if

g(x) �= 0 (mod h(x)) (over R)

560 N. Kayal

5.3 Preprocessing

The job of the preprocessing stage is to make the given polynomials nice with
respect to x.

Preprocessing: Input and Output specifications
Input. A finite field Fq of characteristic p, a set of bivariate polynomials

f1(x, y), f2(x, y), · · · , fm(x, y), fm+1(x, y) ∈ Fq[x, y]

of total degree at most d. Further q ≥ 2d2m.
Output. Polynomials f̂1(x, y), f̂2(x, y), · · · , f̂m(x, y), ĥ(x, y) ∈ Fq[x, y] of total

degree at most d2 such that each fi(x, y) is a nice and separable polynomial
with respect to x. Moreover the number of solutions to the system

f1(x, y) = f2(x, y) = · · · = fm(x, y) = 0 , fm+1(x, y) �= 0

is the same as the number of solutions to the system

f̂1(x, y) = f̂2(x, y) = · · · = f̂m(x, y) = 0 , f̂m+1(x, y) �= 0

In the first part of the preprocessing stage we make each of the given poly-
nomials square-free by replacing each polynomial by its radical and then doing
a substitution of the following form:

f̂i(x, y) = fi(x, y + ax)

Suppose that fi(x, y) has total degree di then note that the coefficient of xdi

in f̂i is a polynomial ti in a of degree at most di. Thus we need to chose an
a ∈ Fq such that

t(a)
def
:=

∏
1≤i≤m+1

ti(a) �= 0

t(a) is a polynomial of degree at most dm and thus we can certainly find such
an a in deterministic polynomial time. Thus in what follows we will assume that
each fi(x, y) is squarefree and monic in x.

Making the polynomials separable with respect to x requires a litle more
work. Let l

def
:= +logp d,. The main idea is that if fi(x, y) is not separable with

respect to x (i.e. Δx(f(x, y)) = 0) then we can deterministically compute a
factorization of fi(x, y) of the form

fi(x, y) =
∏

0≤k≤l

fik(xpk

, y)

where each fik(x, y) is a polynomial in xpk

but not a polynomial xpk+1
.

For a polynomial f(x, y) =
∑

i,j aijx
iyj ∈ Fq[x, y] let us define f (p)(x, y) to be

the polynomial f (p)(x, y)
def
:=

∑
i,j aijx

iyj . Note that for any point (a, b) ∈ Fq×Fq,

f(a, b) = 0 ⇔ f (p)(ap, bp) = 0

Solvability of a System of Bivariate Polynomial Equations 561

That is, the set of zeroes of f(x, y) is exactly the same as the set of zeroes of the
polynomial f (p)(xp, yp).

Corresponding to every input polynomial

fi(x, y) =
∏

0≤k≤l

fik(xpk

, y)

we output the polynomial

f̂i(x, y)
def
:=

∏
0≤k≤l

f
(pl−k)
ik (x, ypl−k

)

It can be shown that the number of Fq-solutions to this new system is the same
as the number of Fq-solutions to the original system. We omit the proof due to
lack of space.

6 Conclusion

A very general problem in algorithmic number theory is the following: let

f1, f2, · · · , fm ∈ Fq[x1, x2, · · · , xn]

be a collection of m dense polynomials in n variables over the finite field Fq. Let
Q1, Q2, · · · , Qn be some sequence of quantifiers, i.e. each quantifier is either ” ∃”
or ” ∀ ”. What is the computational complexity of determining the truth value
of the following statement:

Q1x1 ∈ Fq · · ·Qnxn ∈ Fq f1 = f2 = · · · = fm = 0

when the number n of variables is bounded? (For unbounded number of variables,
the problem is PSPACE-complete and bounding the number of alternations
between ” ∃” and ” ∀ ”, we get the different levels of the polynomial hierarchy).

Generalizing the techniques of this paper quite a bit further, it has recently
been shown by the author that the existential version of this problem in which
all the quantifiers are existential can be solved deterministically in time polyno-
mial in the size of the input. Beyond this, we do not know an efficient solution
for even the Π2-version of this problem with 2 variables -

Open Question. Is there a random polynomial time algorithm for determining
the truth of the statement

∀x ∈ Fq ∃y ∈ Fq f(x, y) = 0 ?

Acknowledgements

The author is grateful to Alan Lauder, Manindra Agrawal and Nitin Saxena
for giving many helpful comments on an earlier version of this paper that im-
proved the presentation. The author also wishes to thank Igor Shparlinski and

562 N. Kayal

Hendrik Lenstra for pointing out the existence of a classification of permutation
polynomials and the derived algorithm for recognizing permutation functions in
deterministic polynomial time.

References

[GKL04] Shuhong Gao, Erich Kaltofen and Alan Lauder. Deterministic distinc-degree
factorization of polnomials over finite fields. Journal of Symbolic Computing,
Volume 38, Number 6, 2004. pages 1461-70.

[HW99] Ming-Deh Huang and Yiu-Chung Wong. Solvability of systems of polynomial
congruences modulo a large prime. Computational Complexity Volume 8,
Number 3, 1999. pages 227-257.

[LM88] R. Lidl and G. L. Mullen. When does a polynomial over a finite field permute
the elements of the field? American Mathematical Monthly 95, 1988. 243-
246.

[LM93] R. Lidl and G. L. Mullen. When does a polynomial over a finite field permute
the elements of the field?, II American Mathematical Monthly 100, 1993.
71-74.

[LM83] Rudolf Lidl and Winfried B. Muller. Permutation Polynomials in RSA cryp-
tosystems. In D. Chaum, editor, Proceedings CRYPTO 83. pages 293-301.

[MG94] Keju Ma and Joachim Von Zur Gathen. The computational complexity
of recognizing permutation functions. Computational Complexity, Volume
5, Number 1, 1995. pages 76-97.

[Len05] Hendrik Lenstra. Private Communication, 2005.
[RSA78] Ronald L. Rivest, Adi Shamir and Leonard M. Adleman. A method for

obtaining digital signatures and public-key cryptosystems. Communications
of the ACM, 21(2), 1978. pages 120-126.

[Bac93] E. Bach. Weil bounds for singular curves. Applicable Algebra in Engineering,
Communication and Computing 7, 1996. pages 289-298.

Cache-Oblivious Planar Shortest Paths

Hema Jampala� and Norbert Zeh�

Faculty of Computer Science, Dalhousie University,
6050 University Ave, Halifax, NS B3H 1W5, Canada

{jampala, nzeh}@cs.dal.ca

Abstract. We present an efficient cache-oblivious implementation of
the shortest-path algorithm for planar graphs by Klein et al., and prove
that it incurs no more than O

(
N

B1/2−ε + N
B

log N
)

block transfers on a
graph with N vertices. This is the first cache-oblivious algorithm for this
problem that incurs o(N) block transfers.

1 Introduction

The single-source shortest-path (SSSP) problem is a fundamental combinatorial
optimization problem with numerous applications. Let G = (V,E) be a directed
graph with vertex set V and edge set E; let s ∈ V be a distinguished vertex,
called the source vertex ; and let ω : E → R+ be an assignment of non-negative
real weights to the edges of G. The SSSP-problem is to find, for every vertex
v ∈ V , the distance d(v) from s to v, that is, the weight of a minimum-weight
(shortest) path from s to v. This problem is well-studied in the RAM-model.
The classical algorithm for this problem is Dijkstra’s algorithm [15], which has
seen many improvements (e.g.,[19, 21, 22, 23]). In particular, on planar graphs,
much progress has been made: Frederickson [17] proposes an algorithm that
takes O(N

√
logN) time, pioneering the idea to use separator decompositions

to speed up shortest-path computations. Klein et al. [19] present a non-trivial
refinement of Frederickson’s approach that uses a hierarchy of nested separator
decompositions to solve SSSP in planar directed graphs in linear time.

More recently, the SSSP-problem has been studied in memory hierarchy mod-
els, which take the varying access times of different levels of cache, main memory,
and disk into account. Such algorithms can be cache-aware or cache-oblivious.
The former require knowledge of the parameters of the different levels of mem-
ory and often explicitly transfer data between the different levels; the latter are
oblivious of these parameters, but help the default paging algorithm by laying
out the data appropriately and accessing it in a local fashion.

The most widely used model for the design of cache-aware algorithms is
the I/O-model of Aggarwal and Vitter [1]. This model assumes a memory hi-
erarchy consisting of two levels: the lower level has size M ; data is transferred

� Research supported by the Natural Sciences and Engineering Research Council of
Canada and by the Canadian Foundation for Innovation.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 563–575, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

564 H. Jampala and N. Zeh

between the two levels in blocks of B consecutive data items. The complexity
of an algorithm is the number of blocks transferred (I/Os). Algorithms that
perform a small number of I/Os are usually referred to as I/O-efficient algo-
rithms. The strength of the I/O-model is its simplicity, while it still adequately
models the situation when the I/Os between two levels of the memory hier-
archy dominate the running time of the algorithm, which is often the case in
large-scale applications. Complexities that arise often in I/O-efficient algorithms
are the sorting bound, sort(N) = Θ

(
N
B logM/B

N
B

)
I/Os [1, 18], the permuta-

tion bound, perm(N) = Θ(min(N, sort(N))) I/Os [1], and the scanning bound,
scan(N) = Θ(N/B) I/Os.

Solving interesting problems using cache-aware algorithms for multi-level hi-
erarchies is cumbersome, because it is necessary to tune the algorithms to the
sizes and block sizes of all levels of memory. Cache-oblivious algorithms provide
an elegant solution to this problem. They are designed to be I/O-efficient without
knowing M or B; that is, they are formulated in the RAM-model and analyzed in
the I/O-model, assuming that the memory transfers are performed by an optimal
offline paging algorithm. Since the analysis holds for any block and memory sizes,
it holds for all levels of a multi-level memory hierarchy (see [18] for details). Thus,
the cache-oblivious model elegantly combines the simplicity of the I/O-model
with a coverage of the entire memory hierarchy. The bounds for sorting and
scanning are the same as in the I/O-model [9, 18], whereas perm(N) = sort(N)
in the cache-oblivious model [11]. Since any internal-memory algorithm is by defi-
nition cache-oblivious, but usually incurs a substantial number of block transfers,
we refer to an algorithm as cache-oblivious in this paper if it is cache-oblivious
in the sense of the definition and incurs o(T (N)) block transfers, where T (N) is
the computation time of the best internal-memory algorithm.

Previous work on graph algorithms for memory hierarchies has focused main-
ly on I/O-efficient algorithms, motivated by a number of large-scale applications
that have to deal with massive graphs, such as geographic information systems,
web modelling, and data mining of phone call databases. The obtained results
include a large number of algorithms for planar graphs, such as O(sort(N))-
I/O algorithms for computing connected components [13], minimum spanning
trees [13], and strongly connected components [8]; breadth-first search (BFS) [3]
and undirected depth-first search (DFS) [5]; single-source shortest paths [3]; and
topological sorting [6, 7]. Directed planar DFS is studied in [8], and an optimal
O(N2/B)-I/O all-pairs shortest path algorithm is presented in [4].

Recently, a number of cache-oblivious graph algorithms have been obtained
for general graphs, including algorithms for computing connected components
and minimum spanning trees [2], directed breadth-first search and depth-first
search [2], undirected breadth-first search [12], and undirected shortest paths
[12, 14]. All these algorithms are obtained from I/O-efficient algorithms for these
problems by designing cache-oblivious data structures that can replace the cache-
aware ones in these algorithms. This strategy does not seem to work for most
of the specialized algorithms for planar graphs, mentioned above: Their depen-
dence on B is not hidden in data structures; and many of them exploit that

Cache-Oblivious Planar Shortest Paths 565

computation in internal memory is free in the I/O-model, by performing Ω(BN)
computation in main memory. In a multi-level hierarchy, this extra computation
may incur block transfers at lower cache levels, thereby leading to an excessive
number of block transfers. The internal-memory computation can often be re-
duced. For example, for shortest paths, it can be reduced to O(n · polylog(B)),
using results from [16]; but these algorithms are not easily made cache-oblivious.
Nevertheless, a number of cache-oblivious algorithms for planar graphs exist. Us-
ing cache-oblivious data structures from [2, 10], the I/O-efficient algorithms for
connectivity, biconnectivity, and minimum spanning trees [13], and for topolog-
ically sorting planar directed acyclic graphs [7] can be made cache-oblivious,
without asymptotically increasing their complexities.

2 New Result

We make the first progress towards solving the SSSP-problem cache-obliviously
in planar graphs, by analyzing the number of block transfers incurred by a cache-
efficient implementation of the algorithm of [19]. We assume that a suitable
multi-level separator decomposition of the graph is given. We consider finding
such a decomposition the central open problem in the design of cache-oblivious
algorithms for planar graphs, because separators also have played a central role
in the design of I/O-efficient algorithms for planar graphs. In Sec. 7, we suggest
one approach that may lead to a cache-oblivious algorithm for this problem. Our
result is summarized in the following theorem.

Theorem 1. The SSSP-problem in a planar directed graph G with N vertices
and non-negative edge weights can be solved using a cache-oblivious algorithm
that incurs O

(
N

B1/2−ε + N
B logN

)
block transfers, for any constant ε > 0, provided

that a suitable multi-level separator decomposition of G is given.

In this paper, we assume that every vertex in G has in-degree at most 2 and
out-degree at most 2. A simple transformation described, for instance, in [20]
achieves this. The discussion of the algorithm is divided into several sections.
In Sec. 3, we discuss the necessary terminology regarding graph separators. We
outline the linear-time SSSP-algorithm of [19] in Sec. 4. We show in Sec. 5 how
to implement this algorithm in a cache-efficient manner. The analysis of the
algorithm is provided in Sec. 6. Open problems are discussed in Sec. 7.

3 Separator Decompositions

The algorithm of [19], as many other SSSP-algorithms for planar graphs, uses a
separator decomposition to organize its computation. Next we define the required
partition and discuss its representation.

Definition. For a planar graph G = (V,E) and an integer parameter r > 0, an
r-partition of G is a pair (S, {G1, G2, . . . , Gh}) with the following properties:

566 H. Jampala and N. Zeh

(i) S is a subset of V of size O(N/
√
r). (ii) The graphs G1, G2, . . . , Gh are edge-

disjoint subgraphs of G whose union is G and such that any two such graphs
Gi and Gj share only vertices in S. (iii) Every graph Gi, 1 ≤ i ≤ h, contains
at most r edges and at most

√
r vertices from S. We call the vertices in S

separator vertices. The set of vertices in S that are contained in a graph Gi are
the boundary of Gi.

Given a vector r = (r0, r2, . . . , rk), a recursive r-partition P of G consists
of a sequence of partitions of G, (P0,P1, . . . ,Pk), with the following properties:
(i) Each Pi is an ri-partition of G. (ii) For two consecutive partitions Pi =
(Si, {G1, G2, . . . , Gs}) and Pi+1 = (Si+1, {G′

1, G
′
2, . . . , G

′
t}), Si ⊃ Si+1 and, for

every graph Gj in Pi, there exists a graph G′
� in Pi+1 such that Gj ⊆ G′

�.
In this paper, a recursive r-partition will always satisfy r0 = 1 and rk = |E|;

that is, the lowest level of the partition splits G into its edges, and the highest
level consists of the entire graph.

Representation. A recursive r-partition P can be represented quite naturally by
a rooted tree. The root of the tree is the single subgraph in Pk, which is G. For
a node corresponding to a graph R in Pi, i > 0, its children represent the graphs
in Pi−1 that are subgraphs of R. The leaves represent the edges of G. We call
this tree the partition tree of P. The subgraphs of G corresponding to the nodes
in this tree are referred to as regions. The edges of G, which correspond to the
leaves of the tree, are atomic regions, as they cannot be split any further. The
level of a region R is the index i such that R is a graph in Pi. We define ancestry
of regions to be the ancestry of the corresponding nodes in the partition tree.

4 Outline of the Algorithm

The algorithm of [19] is a variant of Dijkstra’s algorithm, implemented using a
hierarchy of priority queues associated with the regions of a recursive r-partition
of G (see Alg. 1). The entries in the priority queue Q(R) of region R are the
children of R; the priority of such a child R′ is the minimum tentative distance
of the source vertices of all unrelaxed edges in R′. Initially, the priorities of
the regions containing out-edges of s are 0 and those of the rest are +∞. The
algorithm chooses the child with minimal priority from Q(G) and recurses on
this child. If the child is non-atomic, it repeats this process; otherwise it relaxes
the edge (u, v) in this region and updates the priorities of all regions containing
the out-edges of v. Procedure Shortest-Paths is called on G until all edges are
relaxed, that is, the priority of G itself is +∞.

If every invocation of this procedure on a non-atomic region were to return
after the first recursive call it makes on one of its children, this algorithm would
be Dijkstra’s algorithm. However, the procedure returns from a recursive call
on a level-i region R only after all edges in the region have been relaxed or αi

recursive calls have been made on children of R, for a suitable parameter αi.
By keeping the algorithm focused on a region for some time, once a recursive

call has been made on this region, Klein et al. limit the number of priority queue

Cache-Oblivious Planar Shortest Paths 567

Shortest-Paths(R)
1 � R is the region on which the current invocation operates.
2 j ← level(R)
3 if j = 0
4 then Relax the edge (u, v) in R, that is, set d(v) = min(d(v), d(u) + ω(u, v)).
5 if this changes the distance of v from s
6 then Change the priority of every out-edge (v, w) of v to d(v).
7 Change the priority of every ancestor of (v, w) whose priority is

greater than d(v) to d(v).
8 Change the priority of (u, v) to ∞.
9 else i← 0

10 while the minimum entry in Q(R) is not ∞ and i < αj

11 do R′ ← Delete-Min(Q(R))
12 Shortest-Paths(R′)
13 Let the priority of R′ in Q(R) be the minimum priority in Q(R′).
14 i← i + 1

Algorithm 1. Outline of the shortest-path algorithm. This procedure is called repeat-
edly with the whole graph G as the argument until all edges are relaxed

operations on large priority queues (that is, priority queues attached to regions
at higher levels) and obtain a linear time bound for their algorithm. The other
advantage this approach has is that it avoids “jumping around randomly”; that
is, once the algorithm focuses on a subgraph that fits into cache, it stays focused
on this subgraph for a while. The computation inside the subgraph does not incur
any block transfers after the whole subgraph has been loaded into the cache. To
take full advantage of this, however, the algorithm has to be implemented using
cache-oblivious data structures, and the parameters in the algorithm have to be
chosen differently, which increases the amount of computation to O(N logN).
In Sec. 7, we argue that, while a reduction of the log-factor may be possible, it
cannot be eliminated entirely.

5 Cache-Oblivious Implementation

In [19], Algorithm 1 is used more or less verbatim to obtain a linear running
time. The updates of the priorities of all relevant regions in Lines 6 and 7 are
performed using a so-called GlobalUpdate operation. This operation traverses
the path from region (v, w) to the lowest common ancestor of regions (u, v)
and (v, w) in the partition tree and performs the updates described in Lines
6 and 7.

A cache-efficient algorithm cannot use this strategy because the updates of
atomic regions alone would require Θ(N) block transfers in the worst case. But
we can exploit that the recursive calls in the algorithm correspond to a traversal
of the partition tree: The correct priority of a region R has to be known only

568 H. Jampala and N. Zeh

by the time the traversal visits its parent R′ because only then this information
is required to extract the correct child to be visited from Q(R′). In order to
reach R′, we have to traverse the path from the current region (u, v) to R′.
Thus, if the relaxation of edge (u, v) affects the priority of R, we can carry this
update along the path from (u, v) to R′ and apply it to Q(R′) immediately before
the next Delete-Min operation is to be performed on Q(R′). The details are as
follows:

Every invocation I on a region R collects all updates on atomic regions out-
side of R that are triggered by descendants of I and passes them to its parent
invocation I ′ when it returns. Let R′ be the region of I ′. Then I ′ inspects the
updates received from I. Every update on an atomic region outside of R′ is
scheduled to be passed to the parent of I ′. Updates on atomic regions inside
R′ are scheduled to be sent to the appropriate children of R′ when the next
invocations on these children are made. When an invocation on R′ makes a
recursive call on one of these children, R′′, the updates scheduled to be sent
to R′′ are applied to Q(R′′) and then scheduled to be sent to the appropri-
ate children of R′′, based on which child contains the edge affected by each
update.

Line 5 presents a similar problem, with a similar solution: We cannot afford
to access vertex v to test whether the relaxation of edge (u, v) decreases d(v). To
avoid this, we store d(v) with both in-edges (u1, v) and (u2, v) of v. When one
in-edge, say (u1, v), decreases the distance, it informs the other in-edge, (u2, v),
by sending an Update-Target message to (u2, v). Again, the correct distance of
v has to be known to region (u2, v) only when the next invocation on this region
is made; that is, Update-Target messages can be delivered in the same fashion
as Update messages for the out-edges of v.

We implement this strategy using the following data structures: We use a
stack S to collect and pass updates to ancestors of the current region. We as-
sociate a cache-oblivious buffered repository tree (BRT) B(R) [2] with every
region, which we use to collect all updates to be sent from R to its children.
The tree B(R) serves yet another purpose: Since the updates to be performed
on Q(R) are in fact updates on atomic regions, and it is too costly to identify
the child of R affected by every update, we store atomic regions in Q(R). When
retrieving the minimum entry (u, v) from Q(R), we have to (1) determine the
child R′ of R that contains edge (u, v), in order to make a recursive call on
R′, and (2) remove all edges in R′ from Q(R), in order to effectively set the
priority of R′ to +∞. Using the BRT, we can achieve both: Assume that the
leaves of the partition tree are numbered left to right and that every internal
node has been labelled with the interval of numbers of its descendant leaves.
(This can be achieved in a preprocessing step.) We associate with every leaf of
a BRT B(R), which corresponds to a region R′, the interval associated with
R′ and with every internal node the union of the intervals of its children. This
is sufficient to decide, for every update on an atomic region, to which leaf in
the BRT it should be sent and to use any atomic region contained in a child
R′ as the key for an Extract operation that identifies R′ and retrieves all up-

Cache-Oblivious Planar Shortest Paths 569

CO-Shortest-Paths(R, U)
1 � R is the region on which the current invocation operates; U is an array of Update

operations provided by the parent invocation.
2 j ← level(R)
3 if j = 0
4 then Update d(u) and d(v) using the minimum priorities of the Update and

Update-Target operations in U , respectively.
5 Relax the edge (u, v) in R, that is, set d(v) = min(d(v), d(u) + ω(u, v)).
6 if Line 5 changes the distance of v from s
7 then Insert an Update((v, w), d(v)) operation into S, for every out-

edge (v, w) of v; mark this operation as inserted by region R.
8 Insert an Update-Target((u′, v), d(v)) operation into S, where

(u′, v) is the other in-edge of v; mark this operation as inserted
by region R.

9 Change the priority of (u, v) to ∞ and return region (u, v) with
priority ∞, for insertion into the parent’s priority queue.

10 else Perform the updates in U on Q(R) and insert them into B(R).
11 i← 0
12 while the minimum entry in Q(R) is not ∞ and i < αj

13 do (u, v)← Delete-Min(Q(R))
14 Identify the child R′ of R that contains edge (u, v) and extract all

updates on descendants of R′ from B(R).
15 Store these updates in an array U ′ and delete all regions affected

by these updates from Q(R).
16 CO-Shortest-Paths(R′, U ′); let (x, y) be the edge returned by this

recursive call, and let p be its priority.
17 Insert edge (x, y) into Q(R), with priority p, and into B(R).
18 Extract all updates from S that have been inserted by R′. Re-insert

the updates on edges outside of R and mark them as inserted by
R. Apply all other updates to Q(R) and insert them into B(R).

19 i← i + 1
20 Return the minimum-priority entry in Q(R) for insertion into the parent’s

priority queue.

Algorithm 2. Cache-oblivious implementation of the shortest-path algorithm

dates on descendants of R′. Once the updates on R′ are retrieved, they can be
deleted from Q(R). The details of the cache-oblivious implementation are shown
in Alg. 2.

From our discussion, it follows that the modifications do not change the
sequence of edge relaxations performed by the algorithm. Hence, the algorithm
remains correct. We summarize this in the following lemma:

Lemma 1. Procedure CO-Shortest-Paths terminates with the label d(v) of every
vertex v set to its distance from s in G.

570 H. Jampala and N. Zeh

6 Analysis

In this section, we analyze the number of block transfers incurred by the al-
gorithm. One of the keys to minimizing the number of block transfers is an
appropriate layout of the data structures in memory. We describe this layout in
Sec. 6.1. We also describe the paging strategy we use in our analysis; the optimal
paging strategy cannot do worse than ours. In Sec. 6.2, we show that our paging
strategy incurs at most the number of block transfers stated in Thm. 1.

6.1 Memory Layout and Space Bound

The partition, including the associated data structures, is laid out in memory
as follows: We number the nodes of the partition tree in a depth-first manner.
For every node representing a region R of size r, we allocate space for Q(R),
B(R), and a buffer space H(R) of size 3a1/2ar1−1/2a, for some constant 1 <
a ≤ 2 defined in Sec. 6.2, which holds the buffers associated with the nodes in
B(R). If we refer to every region by its number, we arrange these structures in
the order Q(1), B(1),H(1), Q(2), B(2),H(2), The space for stack S succeeds
these data structures and buffer spaces for the regions in the partition.

The space allocated for every data structure is fixed, that is, the memory
layout is static. Preallocating space for the BRT’s and priority queues is easy
because we can bound their sizes by O(r1/a) and O(r1−1/2a), respectively. For
the BRT, excluding buffers, this follows because we will show in Sec. 6.2 that the
number of children of R is O(r1−1/a), and B(R) contains one leaf per child. For
the priority queue, we observe that an edge (atomic region) stored in Q(R) is
either incident to a boundary vertex of a child of R or it is the value returned by
the last recursive call to a child of R. The number of entries of the first type is
bounded by the number of edges incident to boundary vertices of children of R,
which is O(r1−1/2a). For entries of the second type, we observe that each such
entry is removed before the next recursive call to the child that inserted the entry.
Hence, there can be at most one such entry per child of R in Q(R), that is, at most
O(r1−1/a) = O(r1−1/2a) entries. In order to bound the buffer space required by
the BRT, we exploit that, similar to Q(R), B(R) cannot store updates on more
than O(r1−1/2a) atomic regions, which allows us to use a variant of the BRT
with limited buffer space. This variant is discussed in the next paragraph.

Another way to look at the above space bound is that every level uses space
proportional to the number of boundary vertices at the next lower level. Since
the number of boundary vertices at level 0 is O(N), and the number of boundary
vertices per level decreases by at least a constant factor as we proceed towards
the root (see Sec. 6.2), we obtain the following lemma:

Lemma 2. The layout of the partition tree, including priority queues, BRT’s,
and buffer spaces associated with its nodes, uses linear space.

A BRT with Limited Buffer Space. In order to limit the buffer space for every
BRT, we exploit that, if there is more than one update pending on an atomic

Cache-Oblivious Planar Shortest Paths 571

region, it suffices to perform the update with minimum priority. We partition
the buffer space for the BRT of R into three regions of size t = a1/2ar1−1/2a,
called the sorted, unsorted, and root buffer space. The root buffer space holds
the root buffer. The unsorted buffer space holds buffers for all non-root nodes
as in [2]. The sorted buffer space stores additional buffers, one per leaf, whose
entries are sorted by the atomic regions they affect. As will become clear from
the following discussion, the sorted buffer space can never overflow. As long as
neither the root buffer nor the unsorted buffer space overflows, we operate on
the BRT as described in [2], except that an Extract operation needs to read out
an additional leaf buffer in the sorted buffer space.

When either the root buffer or the unsorted buffer space overflows, we sort
the contents of these buffer spaces and then merge them with the contents of the
sorted buffer space. If there are duplicate entries in the resulting list, we keep
only the one with minimum priority. Hence, the resulting list has size at most t
and completely fits into the sorted buffer space.

The cost of all BRT operations, excluding the cost of compacting the buffers
when the root buffer or unsorted buffer space overflows, remains O

(
log N

B

)
for

Insert operations andO(logN+K/B) for Extract operations. Next we argue that
the cost of buffer compaction is O

(
log t
B

)
amortized per element, if t ≥ B: The

cost of sorting the contents of the unsorted and root buffer space is O(sort(t′)),
where t′ is the number of elements in these two buffer spaces. The rest of the
compaction takes two scans of O(t) data, which requires O(t/B) block transfers.
This is O

(
log t
B

)
amortized per element if we can prove that t′ ≥ t/ log t. To do

so, observe that every element, as it is propagated down the tree, requires us to
allocate one memory cell at each level in the BRT, log t in total. Hence, it takes
t′ ≥ t/ log t elements to make the unsorted or root buffer space overflow.

A Paging Strategy. We permanently keep the top two blocks of S in cache. For
every invocation on a region of size at most B, we load the part of the data
structure into memory that corresponds to the region and its descendants. We
call such an invocation small. The same argument that establishes the linear
space bound in Lem. 2 implies that the size of this portion of the data structure
is O(B); and it is stored consecutively in memory. Hence, such an invocation
costs O(1) block transfers, and the descendant invocations do not incur any
further block transfers, except for stack operations. For any invocation on a
region of size greater than B, we load the first block of Q(R) and the last block
of the root buffer of B(R) into cache. Thus, excluding the cost of priority queue,
BRT, and stack operations, each such invocation costs O(1) I/Os. We call such
an invocation large.

6.2 Counting Block Transfers

It remains to analyze the number of block transfers performed by our paging al-
gorithm. We start by choosing suitable region sizes r1, r2, . . . , rk and parameters
α1, α2, . . . , αk. In order to obtain the complexity stated in Thm. 1, we choose

rj = aj · 2aj/(a−1) and αj = 2aj−1/2,

572 H. Jampala and N. Zeh

where a = 1/(1− ε) > 1. The height of the recursive partition is the minimum k
such that rk ≥ 3N ; thus, the height of the partition is no more than loga((a −
1) log 3N) = O(log logN). We can divide the block transfers incurred by the
algorithm into 4 groups, depending on which part of the algorithm triggers them:

T1(N): The cost of loading buffer blocks for large invocations and complete
data structures for small invocations. We call these block transfers invocation
swaps.

T2(N): The cost of priority queue operations and Insert operations on BRT’s.
T3(N): The cost of Extract operations on BRT’s.
T4(N): The cost of stack operations.

We prove that T1(N) = O
(

N
B1/2−ε

)
, T2(N) = O

(
N
B logN

)
, T3(N) = O

(
N

B1/2−ε +
N
B log logN

)
, and T4(N) = O

(
N
B log logN

)
. Summing these four terms, we ob-

tain the following lemma:

Lemma 3. Algorithm 2 incurs O
(

N
B1/2−ε + N

B logN
)

block transfers.

Next we sketch how to derive the above bounds for T1(N) through T4(N).
Details will be provided in the full paper.

Invocation Swaps. It suffices to count the number of invocations whose parent
regions have size at least B because each such invocation incurs O(1) block
transfers, and these are the only invocations that incur block transfers. Klein
et al. [19] classify invocations as truncated or non-truncated. The former is an
invocation that returns because all edges in the region have been relaxed. The
latter returns because αj recursive calls on children of the current region have
been made. We denote the number of truncated level-j invocations by S′

j and the
total number of level-j invocations by Sj . Using a non-trivial charging scheme,
Klein et al. prove that the number of truncated level-j invocations is

S′
j ≤

∑
i≥j

O(βij ·N/
√
ri), 1

where βij =
∏i

k=j+1 αk. Each non-truncated invocation at level j gives rise to
αj invocations at level j− 1. Hence, the total number of invocations at level j is

Sj ≤
Sj−1

αj
+ S′

j .

Note that all level-0 invocations are truncated, that is, S0 = S′
0. Using our choice

of parameters αi, we have βij = 2ai/(2(a−1))

2aj /(2(a−1)) . Substituting this in the expressions
for S′

j and Sj , we obtain that S′
j = O(N/

√
rj) and Sj = O((j + 1)aj/2N/

√
rj).

Since the rj increase doubly exponentially, we have
∑

i≥j Si = O(Sj). Hence,

1 They prove S′
j ≤

∑
i≥j O(βij ·Nf(ri)/ri), where f(ri) is a bound on the boundary

size of every level-i region. We use optimal planar separators; hence, f(ri) = O(
√

ri).

Cache-Oblivious Planar Shortest Paths 573

it suffices to argue that, for the maximum j0 such that rj0 ≤ B, we obtain
Sj0 = O

(
N

B1/2−ε

)
. For this j0, we have rj0+1 = aj0+1 · 2aj0+1/(a−1) > B, that

is, rj0 ≥ (rj0+1/a)1/a = Ω(B1/a). On the other hand, we have j0 ≤ loga((a −
1) logB) = O(log logB) because rj0 ≤ B. Hence, T1(N) = O(

∑
i≥j0

Si) =

O
(

N
√

log B log log B
B1/2a

)
= O

(
N

B1/2−ε

)
.

Priority Queue Operations and Insertions into BRT’s. The cost of a priority
queue operation or an Insert operation on a BRT of a level-j region is O

(log rj

B

)
.

The number of priority queue operations is bounded by the number of insertions
into the BRT. Hence, it suffices to bound the cost of the latter.

Every insertion into a BRT is the result of the relaxation of an edge (u, v).
Such a relaxation triggers updates of the priorities of both out-edges of v and
their ancestors and an Update-Target operation on the other in-edge of v. We
argue about the cost of updates on the out-edges; the cost of the Update-Target
operations can be bounded in a similar manner. In the worst case, the lowest
common ancestor of edge (u, v) and an out-edge (v, w) of v is the root. Then the
update of (v, w) traverses all levels in the partition and triggers one insertion
at every level. Hence, the cost per level-0 invocation is at most

∑
j≥0O

(log rj

B

)
,

which is O
(

log rk

B

)
= O

(
log N

B

)
because the graph sizes rj increase doubly expo-

nentially. Hence, the total cost of priority queue operations and BRT insertions
is T2(N) = O

(
S0
B logN

)
= O

(
N
B logN

)
.

Extractions from BRT’s. Every Extract operation on the BRT of a level-j re-
gion costs O(log ri +K/B) block transfers, where K is the number of extracted
elements. Every extracted element must have been inserted before, and we have
argued that every level-0 invocation triggers at most three insertions per level.
The number of extract operations at level j equals the number of invocations at
level j−1. Hence, T3(N) = O(

∑
i>j0

Si−1 log ri)+O
(

S0
B log logN

)
. Using similar

arguments as the ones we used to bound the cost of invocation swaps, this sim-
plifies to T3(N) = O(Sj0 logBa) +O

(
N
B log logN

)
= O

(
N

B1/2−ε + N
B log logN

)
.

Stack Operations. Every update incurs at most a constant number of stack
operations at every level. Hence, the cost of all stack operations is T4(N) =
O
(

S0
B log logN

)
= O

(
N
B log logN

)
.

7 Open Problems

The most interesting open questions are the following: (1) Can the required
separator decomposition be computed cache-obliviously? (2) Can theO

(
N

B1/2−ε

)
-

term in the complexity of the algorithm be reduced to o(N/B1/2)? (3) Can the
O
(

N
B logN

)
-term be reduced toO(N/B) (the equivalent of the linear time bound

obtained in [19]).
To answer question (1), we believe that the contraction-based separator al-

gorithm of [20] can be extended to compute the desired partition: At every

574 H. Jampala and N. Zeh

contraction level, use the (by a constant factor suboptimal) separator produced
at the previous level to compute a BFS-tree of the current level. Then use this
BFS-tree to obtain an optimal separator for the current level (which is constant-
factor suboptimal for the next level), and iterate.

The answer to question (2) may be yes, but not using purely separator-based
ideas because these algorithms trade-off the number of times a region is loaded
into cache against a certain amount of wasteful computation in each region.
While the I/O-model can ignore the latter, a cache-oblivious algorithm cannot
and must therefore balance this trade-off, which is what our choice of parameters
in the algorithm of [19] achieves. The answer to question (3) is most definitely
no because this would violate the Ω(perm(N)) lower bound for shortest paths
[13], which is Ω(sort(N)) in the cache-oblivious model.

References

1. A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related
problems. Comm. ACM, pp. 1116–1127, 1988.

2. L. Arge, M. A. Bender, E. Demaine, B. Holland-Minkley, and J. I. Munro. Cache-
oblivious priority queue and graph algorithm applications. Proc. 34th STOC, pp.
268–276, 2002.

3. L. Arge, G. S. Brodal, and L. Toma. On external-memory MST, SSSP and multi-
way planar graph separation. J. Alg., 53:186–206, 2004.

4. L. Arge, U. Meyer, and L. Toma. External memory algorithms for diameter and
all-pairs shortest-paths on sparse graphs. Proc. 31st ICALP, LNCS 3142, pp. 146–
157. Springer-Verlag, 2004.

5. L. Arge, U. Meyer, L. Toma, and N. Zeh. On external-memory planar depth first
search. J. Graph Alg. and Appl., 7(2):105–129, 2003.

6. L. Arge and L. Toma. Simplified external memory algorithms for planar DAGs.
Proc. 9th SWAT, LNCS 3111, pp. 493–503. Springer-Verlag, 2004.

7. L. Arge, L. Toma, and N. Zeh. I/O-efficient algorithms for planar digraphs. Proc.
15th SPAA, pp. 85–93. 2003.

8. L. Arge and N. Zeh. I/O-efficient strong connectivity and depth-first search for
directed planar graphs. Proc. 44th FOCS, pp. 261–270, 2003.

9. G. S. Brodal and R. Fagerberg. Cache oblivious distribution sweeping. Proc. 29th
ICALP, LNCS 2380, pp. 426–438. Springer-Verlag, 2002.

10. G. S. Brodal and R. Fagerberg. Funnel heap—a cache oblivious priority queue.
Proc. 13th ISAAC, LNCS 2518, pp. 219–228. Springer-Verlag, 2002.

11. G. S. Brodal and R. Fagerberg. On the limits of cache-obliviousness. Proc. 35th
STOC, pp. 307–315, 2003.

12. G. S. Brodal, R. Fagerberg, U. Meyer, and N. Zeh. Cache-oblivious data structures
and algorithms for undirected breadth-first search and shortest paths. Proc. 9th
SWAT, LNCS 3111, pp. 480–492. Springer-Verlag, 2004.

13. Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Vengroff, and J. S.
Vitter. External-memory graph algorithms. Proc. 6th SODA, pp. 139–149, 1995.

14. R. A. Chowdhury and V. Ramachandran. Cache-oblivious shortest paths in graphs
using buffer heap. Proc. 16th SPAA, pp. 245–254, 2004.

15. E. W. Dijkstra. A note on two problems in connection with graphs. Num. Math.,
1:269–271, 1959.

Cache-Oblivious Planar Shortest Paths 575

16. J. Fakcharoenphol and S. Rao. Planar graphs, negative weight edges, shortest
paths, near linear time. Proc. 42nd FOCS, pp. 232–241, 2001.

17. G. N. Frederickson. Fast algorithms for shortest paths in planar graphs, with
applications. SIAM J. Comp., 16:1004–1022, 1987.

18. M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious
algorithms. Proc. 40th FOCS, pp. 285–297, 1999.

19. P. Klein, S. Rao, M. Rauch, and S. Subramanian. Faster shortest path algorithms
for planar graphs. J. Comp. Sys. Sci., 55:3–23, 1997.

20. A. Maheshwari and N. Zeh. I/O-optimal algorithms for planar graphs using sepa-
rators. Proc. 13th SODA, pp. 372–381, 2002.

21. S. Pettie and V. Ramachandran. Computing shortest paths with comparisons and
additions. Proc. 13th SODA, pp. 267–276, 2002.

22. M. Thorup. Undirected single source shortest paths with positive integer weights
in linear time. J. ACM, 46:362–394, 1999.

23. M. Thorup. Floats, integers, and single source shortest paths. J. Alg., 35:189–201,
2000.

Cache-Aware and Cache-Oblivious
Adaptive Sorting

Gerth Stølting Brodal1,�, Rolf Fagerberg2,��, and Gabriel Moruz1

1 BRICS� � �, Department of Computer Science,
University of Aarhus, IT Parken,

Åbogade 34, DK-8200 Århus N, Denmark
{gerth, gabi}@daimi.au.dk

2 Department of Mathematics and Computer Science,
University of Southern Denmark,

Campusvej 55, DK-5230 Odense M, Denmark
rolf@imada.sdu.dk

Abstract. Two new adaptive sorting algorithms are introduced which
perform an optimal number of comparisons with respect to the number of
inversions in the input. The first algorithm is based on a new linear time
reduction to (non-adaptive) sorting. The second algorithm is based on
a new division protocol for the GenericSort algorithm by Estivill-Castro
and Wood. From both algorithms we derive I/O-optimal cache-aware
and cache-oblivious adaptive sorting algorithms. These are the first I/O-
optimal adaptive sorting algorithms.

1 Introduction

1.1 Adaptive Sorting

A well known fact concerning sorting is that optimal sorting algorithms perform
Θ(n log n) comparisons [9–Section 9.1]. However, in practice there are many
cases where the input sequences are already nearly sorted, i.e. have low disorder
according to some measure [16, 19]. In such cases one can hope for a sorting
algorithm to be faster.

In order to quantify the disorder of input sequences, several measures of pre-
sortedness have been proposed, e.g. see [11, 16, 18]. One of the most commonly
considered measures is Inv , the number of inversions in the input, defined by
Inv(X) = |{(i, j) | i < j ∧ xi > xj}| for a sequence X = (x1, . . . , xN). Other
examples of measures include: Runs, the number of boundaries between ascend-
ing subsequences; Max , the largest difference between the ranks of an element

� Supported by the Carlsberg Foundation (contract number ANS-0257/20) and the
Danish Natural Science Foundation (SNF).

�� Partially supported by the Danish Natural Science Foundation (SNF).
� � � Basic Research in Computer Science, www.brics.dk, funded by the Danish National

Research Foundation.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 576–588, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Cache-Aware and Cache-Oblivious Adaptive Sorting 577

in the input and the sorted sequence; Dis, the largest distance determined by
an inversion. A sorting algorithm is denoted adaptive if the time complexity is
a function dependent on the size as well as the presortedness of the input se-
quence [19]. For an overview concerning adaptive sorting, see e.g. the survey by
Estivill-Castro and Wood [13].

Manilla [18] introduced the concept of optimality of an adaptive sorting al-
gorithm in the comparison model. An adaptive sorting algorithm S is optimal
with respect to some measure of presortedness D, if for some constant c > 0 and
for all inputs X, the time complexity TA(X) satisfies

TA(X) ≤ c ·max(N, log |below(X,D)|) ,

where below(X,D) is the number of permutations of the input sequence Y for
which D(Y) ≤ D(X) and log x denotes log2 x. By the usual information theoretic
lower bound, this is asymptotically the best possible. In particular, an adaptive
sorting algorithm that is optimal with respect to the measure Inv performs
Θ(N(1 + log(1 + Inv/N))) comparisons [15].

1.2 The I/O Model and the Cache-Oblivious Model

Traditionally, the RAM model has been used in the design and analysis of algo-
rithms. It consists of a CPU and an infinite memory, where all memory accesses
are assumed to take equal time. However, this model is not always adequate
in practice, due to the memory hierarchy found on modern computers. Mod-
ern computers have several memory levels, each level having smaller size and
access time than the next one. Typically, a desktop computer contains CPU
registers, L1, L2, and L3 caches, main memory and hard-disk. The access time
increases from one cycle for registers and level 1 cache to around 10, 100 and
10,000,000 cycles for level 2 cache, main memory and disk, respectively. There-
fore, the I/Os of the disk often become a bottleneck with respect to the running
time of a given algorithm, and the number of I/Os, not CPU cycles, should be
minimized.

Several models have been proposed to capture the effect of memory hierar-
chies. The most successful of these is the I/O model, introduced by Aggarwal
and Vitter [1]. It models a simple two-level memory hierarchy consisting of a fast
memory of size M and a slow infinite memory. The data transfers between the
slow and fast memory are performed in blocks of size B of consecutive data. The
I/O complexity of an algorithm is the number of transfers it performs between
the slow and the fast memories. A comprehensive list of I/O efficient algorithms
for different problems have been proposed, e.g. see the surveys by Vitter [21]
and Arge [2]. Among the fundamental results concerning the I/O model is that
sorting a sequence of size N requires Θ(N

B log M
B

N
B) I/Os [1].

The I/O model assumes that the size M of the fast memory and the block
size B are known, which does not always hold in practice. Moreover, as the
modern computers have multiple memory levels with different sizes and block
sizes, different parameters are required at the different memory levels. Frigo et

578 G.S. Brodal, R. Fagerberg, and G. Moruz

al. [14] proposed the cache-oblivious model, which is similar to the I/O model,
but assumes no knowledge about M and B. In short, a cache-oblivious algorithm
is an algorithm described in the RAM model, but analyzed in the I/O model with
an analysis valid for any values of M and B. The power of this model is that
if a cache-oblivious algorithm performs well on a two-level memory hierarchy
with arbitrary parameters, it performs well between all the consecutive levels of
a multi-level memory hierarchy.

Many problems have been addressed in the cache-oblivious model (see the
surveys by Arge et al. [3], Brodal [6], and Demaine [10]). Among these there
are several optimal cache-oblivious sorting algorithms. Frigo et al. [14] gave
two optimal cache-oblivious algorithms for sorting: Funnelsort and a variant
of Distributionsort. Brodal and Fagerberg [7] introduced a simplified version
of Funnelsort, Lazy Funnelsort. The I/O complexity of all these sorting algo-
rithms is O(N

B log M
B

N
B). All these algorithms require a tall cache assumption,

i.e. M = Ω(B1+ε) for a constant ε > 0. In [8] it is shown that a tall cache-
assumption is required for all optimal cache-oblivious sorting algorithms.

1.3 Results and Outline of Paper

In Section 2 we apply the lower bound technique from [4] to obtain lower bounds
on the number of I/Os for comparison based sorting algorithms that are adaptive
with respect to different measures of presortedness.

In Section 3 we present a linear time reduction from adaptive sorting to
general (non-adaptive) sorting, directly implying comparison optimal and I/O-
optimal cache-aware and cache-oblivious algorithms with respect to measure Inv .

In Section 4 we describe a cache-aware generic sorting algorithm, cache-
aware GenericSort based on GenericSort, introduced in [12], and characterize
its I/O adaptiveness. Section 5 introduces a cache-oblivious version of Generic-
Sort.

In Section 6 we introduce a new greedy division protocol for GenericSort,
interesting in its own right due to its simplicity. We prove that the resulting
algorithm, GreedySort, is comparison optimal with respect to measure Inv . We
show that using our division protocol we obtain both cache-aware and cache-
oblivious algorithms that are optimal with respect to Inv .

In the remainder of this paper, sorted means sorted in increasing order.

2 I/O Lower Bounds

In this section we show lower bounds on the number of I/Os performed by
comparison based sorting algorithms that are adaptive with respect to several
measures of presortedness.

Theorem 1. A comparison based sorting algorithm performs Ω(N
B (1+log M

B
(1+

Inv
N))) I/Os for sorting input sequences of size N and Inv inversions, assuming
M = Ω(B2).

Cache-Aware and Cache-Oblivious Adaptive Sorting 579

Measure of I/Os Comparisons [13]
presortedness

Dis Ω
(

N
B

(
1 + log M

B
(1 + Dis)

))
Ω(N(1 + log(1 + Dis)))

Exc Ω
(

N
B

(
1 + Exc log M

B
(1 + Exc)

))
Ω(N + Exc log(1 + Exc))

Enc Ω
(

N
B

(
1 + log M

B
(1 + Enc)

))
Ω(N(1 + log(1 + Enc)))

Inv Ω
(

N
B

(
1 + log M

B

(
1 + Inv

N

)))
Ω

(
N

(
1 + log

(
1 + Inv

N

)))
Max Ω

(
N
B

(
1 + log M

B
(1 + Max)

))
Ω(N(1 + log(1 + Max)))

Osc Ω
(

N
B

(
1 + log M

B

(
1 + Osc

N

)))
Ω

(
N

(
1 + log

(
1 + Osc

N

)))
Reg Ω

(
N
B

(
1 + log M

B
(1 + Reg)

))
Ω(N(1 + log(1 + Reg)))

Rem Ω
(

N
B

(
1 + Rem log M

B
(1 + Rem)

))
Ω(N + Rem log(1 + Rem))

Runs Ω
(

N
B

(
1 + log M

B
(1 + Runs)

))
Ω(N(1 + log(1 + Runs)))

SMS Ω
(

N
B

(
1 + log M

B
(1 + SMS)

))
Ω(N(1 + log(1 + SMS)))

SUS Ω
(

N
B

(
1 + log M

B
(1 + SUS)

))
Ω(N(1 + log(1 + SUS)))

Fig. 1. Lower bounds on the number of I/Os and the number of comparisons

Proof. Consider an adaptive sorting algorithm A and some input sequence X
of size N . Let TA(X) and I/OA(X) denote the number of comparisons and the
number of I/Os performed by a comparison based sorting algorithm A for sorting
an input sequence X respectively.

Recall that below(X, Inv) denotes the set of all permutations Y for the input
sequence with Inv(Y) ≤ Inv(X). Consider the decision tree of A (see e.g. [9–
Section 9.1]) restricted to the inputs in below(X, Inv). The tree has at least
|below(X, Inv)| leaves and therefore A performs at least log |below(X,D)| com-
parisons in the worst case. Therefore, for any sequence X, there is a sequence
Y ∈ below(X, Inv), such that log |below(X, Inv)| ≤ TA(Y).

Using the decision tree translation by Arge et al. [4–Theorem 1] we get:

log(|below(X, Inv)|) ≤ N logB+ max
Y ∈below(X,Inv)

I/OA(Y)
(
B log

(
M

B

)
+ 3B

)
.

Since log(|below(X, Inv)|) = Ω(N(1 + log(1 + Inv
N))) [15], we obtain that

maxY ∈below(X,Inv) I/OA(Y) = Ω(N
B (1+ log M

B
(1+ Inv

N))), given M = Ω(B2). &'

Using a similar technique we obtain lower bounds on the number of I/Os for
other measures of presortedness, assuming that M = Ω(B2). Figure 1 lists these
lower bounds. For definitions of the different measures, refer to [13].

580 G.S. Brodal, R. Fagerberg, and G. Moruz

3 GroupSort

In this section we describe a reduction to derive Inv adaptive sorting algorithms
from non-adaptive sorting algorithms. The reduction is cache-oblivious and re-
quires O(N) comparisons and O(N/B) I/Os.

The basic idea is to distribute the input sequence into a sequence of buckets
S1, . . . , Sk each of size at most 32(Inv/N)2, where the elements in bucket Si

are all smaller than or equal to the elements in Si+1. Each Si is then sorted in-
dependently by a non-adaptive cache-oblivious sorting algorithm [7, 14]. During
the construction of the buckets S1, . . . , Sk some elements might fail to get in-
serted into an Si and are instead inserted into a fail set F . It will be guaranteed
that at most half of the elements are inserted into F . The fail set F is sorted
recursively and merged with the sequence of sorted buckets.

The Si buckets are constructed by scanning the input left-to-right by in-
serting an element x into the rightmost bucket Sk if k = 1 or x ≥ min(Sk)
and otherwise inserting x in F . During the construction we generate increasing
bucket capacities βj = 2 · 4j , which will be used for αj = N/(2 · 2j) insertions
into F . If during construction |Sk| > βj , the bucket Sk is split into two buck-
ets Sk and Sk+1 by computing its median using the cache-oblivious selection
algorithm from [5] and distributing its elements relatively to the median. This
ensures |Si| ≤ βj for 1 ≤ i ≤ k. We maintain the invariant |Sk| ≥ βj/2 if there
are at least two buckets by repeatedly concatenating the two last buckets after
an increment of i. Since βj−1 = βj/4, this ensures βj/2 ≤ |Sk| ≤ 3

4βj after this
concatenation process. If only one bucket remains, then |Sk| ≤ 3

4βj .
The pseudo-code of the reduction is given in Figure 2. We assume that

S1, . . . , Sk are stored consecutively in an array by storing the start index and
the minimum element from each bucket on a separate stack, i.e. the concate-
nation of Sk−1 and Sk can be done implicitly in O(1) time. The fail set F is
stored as a list of subsets F1, . . . , Fj , where Fi stores the elements inserted into
F while the bucket size is βi. Similarly F1, . . . , Fj are stored consecutively in an
array.

Theorem 2. GroupSort is cache-oblivious and is comparison optimal and I/O-
optimal with respect to Inv, assuming M = Ω(B2).

Proof. Consider the last bucket capacity βj and fail set size αj . Each element x
inserted into the fail set Fj induces in the input sequence at least βj/2 inversions,
since |Sk| ≥ βj/2 when x is inserted into Fj and all elements in Sk appeared
before x in the input and are larger than x.

For i = (log Inv
N)+1, we have αi · βi

2 = N
2·2i · 2·4

i

2 ≥ Inv , i.e. Fi is guaranteed to
be able to store all failed elements. This immediately leads to j ≤ (log Inv

N)+1,
and βj = 2·4j ≤ 32

(
Inv
N

)2
. The fail set F has size at most

∑j
i=1 αi =

∑j
i=1 N/(2·

2i) ≤ N/2.
Taking into account that the total size of the fail sets is at most N/2, the

number of comparisons performed by GroupSort is given by the following recur-
rence:

Cache-Aware and Cache-Oblivious Adaptive Sorting 581

procedure GroupSort(X)
Input: Sequence X = (x1, . . . , xN)
Output: Sequence X sorted
begin

S1 = (x1); F1 = (); β1 = 8; α1 = N/4; j = 1; k = 1;
for i = 2 to N

if k = 1 or xi ≥ min(Sk)
append(Sk, xi);
if |Sk| > βj

(Sk, Sk+1) = split(Sk); k = k + 1;
else

append(Fj , xi);
if |Fj | > αj

βj+1 = βj · 4; αj+1 = αj/2; j = j + 1;
while k > 1 and |Sk| < βj/2

Sk−1 = concat(Sk−1, Sk); k = k − 1;
S = concat(sort(S1), sort(S2), . . . , sort(Sk));
F = concat(F1, F2, . . . , Fj);
GroupSort(F);
X = merge(S, F);

end

Fig. 2. Linear time reduction to non-adaptive sorting

T (N) = T

(
N

2

)
+

k∑
i=1

TSort(|Si|) + O(N) ,

where the O(N) term accounts for the bucket splittings and the final merge of S
and F . The O(N) term for splitting buckets follows from that when a bucket with
βj elements is split then at least βj/4 elements in a bucket have been inserted
since the most recent bucket splitting or increase in bucket capacity, and we can
charge the splitting of the bucket to these recent βj/4 elements.

Since TSort(N) = O(N logN) and each |Si| ≤ βj = O((Inv
N)2) the number of

comparisons performed by GroupSort is:

T (N) = T

(
N

2

)
+ O

(
N

(
1 + log

(
1 +

(
Inv
N

)2
)))

.

Since F is a subsequence of the input, Inv for the recursive call is at most Inv
for the input. As

∑∞
i=0

N
2i log Inv

N/2i = N log Inv
N

∑∞
i=0

1
2i + N

∑∞
i=0

i
2i , it follows

that GroupSort performs T (N) = O
(
N

(
1 + log

(
1 + Inv

N

)))
comparisons, which

is optimal.
The cache-oblivious selection algorithm from [5] performs O(N/B) I/Os and

the cache-oblivious sorting algorithms [7, 14] perform O(N
B log M

B

N
B) I/Os for

M = Ω(B2). Since GroupSort otherwise does sequential access to the input and
data structures, we get that GroupSort is cache-oblivious and the number of
I/Os performed is given by the recurrence:

582 G.S. Brodal, R. Fagerberg, and G. Moruz

I/O(N) = I/O

(
N

2

)
+ O

(
N

B

(
1 + log M

B

(
1 +

(
Inv
N

)2

· 1
B

)))
.

It follows that GroupSort performs O(N
B (1 + log M

B
(1 + Inv

N))) I/Os provided
M = Ω(B2), which by Theorem 1 is I/O-optimal. &'

Pagh et al. [20] gave a related reduction for adaptive sorting on the RAM
model. Their reduction assumes that a parameter q is provided such that the
number of inversions is at most qN . A valid q is found by selecting increas-
ing values for q such that the running time doubles for each iteration. In the
cache oblivious setting the doubling approach fails, since the first q value should
depend on the unknown parameter M . We circumvent this limitation of the
doubling technique by selecting the increasing βj values internally in the
reduction.

4 Cache-Aware GenericSort

Estivill-Castro and Wood [12] introduced a generic sorting algorithm, Generic-
Sort, as a framework for adaptive sorting algorithms. It is a generalization of
Mergesort, and is described using a generic division protocol, i.e. an algorithm
for splitting an input sequence into two or more subsequences. The algorithm
works as follows: consider an input sequence X; if X is sorted then the algorithm
returns; if X is “small”, then X is sorted using some alternate non-adaptive sort-
ing algorithm; otherwise, X is divided according to the division protocol and the
resulting subsequences are recursively sorted and merged.

In this section we modify GenericSort to achieve a generic I/O-adaptive
sorting algorithm. Consider an input sequence X = (x1, . . . , xN) and some
division protocol DP such that DP splits the input in s ≥ 2 subsequences
of roughly equal sizes in a single scan, visiting each element of the input ex-
actly once. To avoid testing whether X is sorted before applying the division
protocol, we derive a new division protocol DP ′ by modifying DP to iden-
tify the longest sorted prefix of X: we scan the input sequence until we find
some i such that xi < xi−1. Denote S = (x1, . . . , xi−1) and X ′ = (xi, . . . , xN).
We apply DP to X ′, recursively sort the resulting s subsequences, and fi-
nally merge them with S. The adaptive bounds for GenericSort proved in [12–
Theorem 3.1] are not affected by these modifications, and we have the following
theorem.

Theorem 3. Let D be a measure of presortedness, d and s constants, 0 < d < 2,
and DP a division protocol that splits some input sequence of size N into s
subsequences of size at most (N

s) each using O(N) comparisons.

– the modified GenericSort performs O(N logN) comparisons in the worst
case;

Cache-Aware and Cache-Oblivious Adaptive Sorting 583

– if for all sequences X, the division of a suffix of X into X1, . . . , Xs by DP
satisfies that

∑s
j=1D(Xj) ≤ d+ s

2, · D(X), then the modified GenericSort
performs O (N (1 + log(1 +D(X)))) comparisons.

We now describe a cache-aware version of the modified GenericSort provided
that the division protocol DP works in a single scan of the input. Let T be the
recursion tree of GenericSort using the new division protocol DP ′. We obtain a
new tree T ′ by contracting T top-down such that every node in T ′ corresponds
to a subtree of height O(logs(M/B)) in T and each node in T ′ has a fanout of
at most m, where m = Θ(M/B). There are O(m) sorted prefixes for every node
in T ′. In cache-aware GenericSort, for each node of T ′ we scan its input sequence
and distribute the elements accordingly to one of the O(m) output sequences.
Each output sequence is a linked list of blocks of size Θ(B). If the size of the input
sequence is at most M , then we sort it in internal memory, hence performing
O(N/B) I/Os. Theorem 4 gives a characterization of the adaptiveness of cache-
aware GenericSort in the I/O model. It is an I/O version of Theorem 3.

Theorem 4. Let D be a measure of presortedness, d and s constants, 0 < d < 2
and s ≤ M

2B , and DP a division protocol that splits some input sequence of size N

into s subsequences of size at most (N
s) each using O(N

B) I/Os. If DP performs
the splitting in one scan visiting each element of the input exactly once, then:

– cache-aware GenericSort performs O(N
B log M

B

N
B) I/Os in the worst case;

– if for all sequences X, the division of a suffix of X into X1, . . . , Xs by DP
satisfies that

∑s
j=1D(Xj) ≤ d+ s

2, · D(X), then cache-aware GenericSort

performs O
(

N
B

(
1 + log M

B
(1 +D(X))

))
I/Os.

Proof. We analyze the I/Os performed at the nodes of T ′ separately for the
nodes having input sizes less than or equal to M and greater than M .

At a node with input X and |X| > M , O(m + |X|/B) = O(|X|/B) I/Os are
performed to read the input and to write to the at most m − 1 sorted output
prefixes and m sequences to be recursively sorted. If we charge O(1/B) I/Os per
element in the input this will pay for the I/Os required at the node.

At a node with input X and |X| ≤ M , O(1 + |X|/B) I/Os are performed.
These I/Os can be charged to the parent node, since at the parent we will already
charge O(1 + |X|/B) I/Os to write the output X.

By Theorem 3 we have that the sum of the depths in T reached by the
elements in the input X is bounded by O(N(1 + log(1 + D(X)))). Since each
node in T ′ spans Θ(log M

B) levels from T , we get that cache-aware GenericSort
performs O(N

B +N(1+log(1+D(X)))/(B log M
B)) = O(N

B (1+log M
B

(1+D(X))))
I/Os, where the N/B term counts for the I/Os at the root of T ′. &'

The power of cache-aware GenericSort lies in its generality, meaning that us-
ing different division protocols we obtain sorting algorithms that are I/O adap-
tive with respect to different measures of presortedness. For example, using the

584 G.S. Brodal, R. Fagerberg, and G. Moruz

straight division protocol, we achieve I/O optimality with respect to Runs. Us-
ing the odd-even division protocol, we obtain an algorithm that is I/O optimal
with respect to Dis and Max . Furthermore, the different division protocols can
be combined as shown in [13] in order to achieve I/O optimality with respect to
more measures of presortedness.

5 Cache-Oblivious GenericSort

We give a cache-oblivious algorithm that achieves the same adaptive bounds as
the cache-aware GenericSort introduced in Section 4. It works only for division
protocols that split the input into two unsorted subsequences. It is based on a
modification of the k-merger used in FunnelSort [7, 14].

A k-merger is a binary tree stored using the recursive van Emde Boas layout.
The edges contain buffers of variable sizes and the nodes are binary mergers. The
tree and the buffer sizes are recursively defined: consider an output sequence of
size k3 and h the height of the tree. We split the tree at level h

2 yielding k
1
2 + 1

subtrees, each of size O(k
1
2). The buffers at this level have sizes k

3
2 . See [7] for

further details.
Consider DP division protocol that scans the input a single time and DP ′ the

modified DP as introduced in Section 4. Each node of the k-merger corresponds
to a node in the recursion tree of GenericSort using DP ′ as the division protocol.
Therefore, each node has a fanout of three and becomes a ternary merger. The
resulting unsorted sequences are pushed in the buffers to the children, while the
sorted prefix is stored as a list of memory chunks of size O(N

2
3) for an input

buffer of size N .
Our algorithm uses a single N

1
3 -merger. It fills the buffers in a top-down

fashion and then merges the resulted sorted subsequences in a bottom-up man-
ner. The N

1
3 output buffers at the leaves of the k-merger are sorted using a

non-adaptive I/O-optimal cache oblivious sorting algorithm [7, 14].

Lemma 1. The N
1
3 -merger and the sorted subsequences use O(N) space.

Proof. Consider the N
1
3 -merger and an input sequence of size N . The total

size of the inner buffers is O(N
2
3) [14]. The memory chunks storing the sorted

subsequences use O(N) space because there are N
1
3 nodes in the merger and the

size of a single memory chunk is O(N
2
3). Adding the input sequence, we conclude

that the N
1
3 -merger and the sorted subsequences take O(N) space together. &'

Lemma 2. Cache-oblivious GenericSort and cache-aware GenericSort have the
same comparison and I/O complexity, for division protocols that split the input
into two subsequences.

Proof. Consider � = 1
3 logN the height of the N

1
3 -merger of the cache-oblivious

GenericSort.

Cache-Aware and Cache-Oblivious Adaptive Sorting 585

We first prove that cache-aware and cache-oblivious GenericSort have the
same comparison complexity. For some element xi let di be its depth in the
recursion tree of the GenericSort using DP ′ as a division protocol. If di ≤ � then
xi reaches the same level in the recursion tree of cache-oblivious GenericSort,
because the two algorithms have the same recursion trees at the top � levels. If
di > � then the number of comparisons performed by cache-oblivious GenericSort
for xi is O(logN) = O(di) because di > l = Ω(logN).

We analyze the number of I/Os used by cache-aware and cache-oblivious
GenericSort. Consider an element xi that reaches level di in the recursion tree
of cache-aware GenericSort.

If di < � then xi is placed in a sorted prefix at a node in the N
1
3 -merger. In this

case, cache-oblivious GenericSort spends linear I/Os when the size of the input
reaches O(M) because the N

1
3 -merger together with the sorted subsequences

take linear space by Lemma 1. Taking into account that the height of the N
1
3 -

merger is O(log(M/B)) due to the tall cache assumption, it follows that O(1 +
di/(log(M/B))) I/Os are performed by cache-oblivious GenericSort for getting
xi to its sorted subsequence.

If di > � then xi reaches an output buffer of the N
1
3 -merger, where it is sorted

using an optimal cache-oblivious sorting algorithm. In this case the number of
I/Os performed for the sorting involving xi is still O(1/B + di/(B log(M/B))),
because both the N

1
3 -merger and the optimal sorting algorithms require O(1/B+

di/(B log(M/B))) I/Os for the sorting involving xi, since di = Θ(logN).
We obtain that the number of I/Os performed by cache-oblivious GenericSort

is O

(
N
B +

∑n

i=1
di

B log(M/B)

)
. Cache-aware GenericSort performs O

(
N
B +

∑n

i=1
di

B log M
B

)
I/Os too because the fanout of the nodes in the recursion tree is O(log M

B). We
conclude that cache-aware GenericSort and cache-oblivious GenericSort have the
same I/O complexity. &'

6 GreedySort

We introduce GreedySort, a sorting algorithm based on GenericSort using a new
division protocol, GreedySplit. The protocol is inspired by a variant of the Kim-
Cook division protocol, which was introduced and analyzed in [17]. Our division
protocol achieves the same adaptive performance with respect to Inv , but is sim-
pler and moreover facilitates cache-aware and cache-oblivious versions. It may be
viewed as being of a greedy type, hence the name. We first describe GreedySort
and its division protocol and then prove that it is optimal with respect to Inv .
GreedySplit partitions the input sequence X into three subsequences S, Y , and
Z, where S is sorted and Y and Z have balanced sizes, i.e. |Z| ≤ |Y | ≤ |Z|+ 1.
In one scan it builds an ascending subsequence S of the input in a greedy fashion
and at the same time distributes the remaining elements in two subsequences,
Y and Z, using an odd-even approach.

586 G.S. Brodal, R. Fagerberg, and G. Moruz

Lemma 3. GreedySplit splits an input sequence X in the three subsequences S,
Y and Z, where S is sorted and Inv(X) ≥ 5

4 · (Inv(Y) + Inv(Z)).

Proof. Let X = (x1, . . . xN). By construction S is sorted. Consider an inversion
in Y , yi > yj , i < j and i1 and j1 the indices in X of yi and yj respectively.
Due to the odd-even construction of Y and Z, there exists an xk ∈ Z such that
in the original sequence X we have i1 < k < j1.

We prove that there is one inversion between xk and at least one of xi1 and
xj1 , for any i1 < k < j1. Indeed, if xi1 > xk, we get an inversion between xi1 and
xk. If xi1 ≤ xk, we get an inversion between xj1 and xk, because we assume that
yi > yj which yields xi1 > xj1 . Let zi, . . . , zj−1 be all the elements from Z which
appear between yi and yj in the original sequence. We know that there exists at
least an inversion between z�i+j�/2 and yi or yj . The inversion (yi, z�(i+j)/2�) can
be counted for two different pairs in Y , (yi, yi+2�(j−i)/2�) and (yi, yi+1+2�(j−i)/2�).
Similarly, the inversion (z�(i+j)/2�,j) can be counted for two different pairs in Y .
Taking into account that the inversions involving elements of Y and elements of
Z appear in X, but neither in Y nor Z, we have that Inv(X) ≥ Inv(Y)+Inv(Z)+
Inv(Y)/2. In a similar manner we obtain Inv(X) ≥ Inv(Y)+Inv(Z)+Inv(Z)/2.
Summing the two equations we obtain Inv(X) ≥ 5

4 (Inv(Y) + Inv(Z)). &'

Theorem 5. GreedySort performs O(N(1 + log(1 + Inv(X)/N))) comparisons
to sort a sequence X of size N , i.e. it is comparison optimal with respect to Inv.

Proof. Similar to [17], we first prove the claimed bound for the upper levels of
recursion where the total number of inversions is greater than N/4 and then
prove that the total number of comparisons for the remaining levels is linear.
Let Inv i(X) denote the total number of inversions in the subsequences at the
ith level of recursion. By Lemma 3, Inv i(X) ≤

(
4
5

)i Inv(X).

We want to find the first level � of the recursion for which
(

4
5

)� Inv(X) ≤ N
4 ,

which yields � =
⌈

log(4Inv(X)/N)
log(5/4)

⌉
.

At each level of recursion GreedySort performs O(N) comparisons. Therefore
at the first � levels of recursion the total number of comparisons performed is
O(� · N) = O(N(1 + log(1 + Inv(X)/N)))). We now prove that the remaining
levels perform a linear number of comparisons.

Let |(X, i)| denote the total size of Y s and Zs at the ith level of recur-
sion. As each element in Y and Z is obtained as a result of an inversion in
the sequence X, we have |(X, i)| ≤ Inv i−1(X). Using Lemma 3 we obtain:
|(X, � + i)| ≤ Inv �+i−1(X) ≤

(
4
5

)i−1 ·
(

4
5

)� · Inv(X) ≤
(

4
5

)i−1 N
4 . Taking into

account that the sum of the |(X, � + i)|s is O(N) and that at each level � + i we
perform a linear number of comparisons with respect to |(X, � + i)|, it follows
that the total number of comparisons performed at the lower levels of the recur-
sion tree is O(N). We conclude that GreedySort performs O(N(1+log(1+ Inv

N)))
comparisons. &'

We derive both cache-aware and cache-oblivious algorithms by using our
greedy division protocol in both the cache-aware and the cache-oblivious

Cache-Aware and Cache-Oblivious Adaptive Sorting 587

GenericSort frameworks described in Sections 4 and 5. In both cases the division
protocol considered does not identify the longest prefix of the input, but simply
apply the greedy division protocol. We prove that these new algorithms, cache-
aware GreedySort and cache-oblivious GreedySort achieve the I/O-optimality
with respect to Inv under the tall cache assumption M = Ω(B2).

Theorem 6. Cache-aware GreedySort and cache-oblivious GreedySort are I/O-
optimal with respect to Inv, provided that M = Ω(B2).

Proof. From Theorem 5 the average number of levels of recursion for an element
is O(1 + log(1 + Inv/N)). In Theorem 4 each element is charged O(1

B) I/Os
for every Θ(log M

B) levels. This implies that cache-aware GreedySort performs
Θ(N

B (1+log M
B

(1+ Inv
N))) I/Os, which is optimal by Theorem 1. Similar observa-

tions apply to cache-oblivious GreedySort based on the proof of Lemma 2. &'

References

1. A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related
problems. Communications of the ACM, 31(9):1116–1127, 1988.

2. L. Arge. External memory data structures. In J. Abello, P. M. Pardalos, and
M. G. C. Resende, editors, Handbook of Massive Data Sets.

3. L. Arge, G. S. Brodal, and R. Fagerberg. Cache-oblivious data structures. In
D. Mehta and S. Sahni, editors, Handbook of Data Structures and Applications,
page 27. CRC Press, 2004.

4. L. Arge, M. Knudsen, and K. Larsen. A general lower bound on the I/O-complexity
of comparison-based algorithms. In Proc. of Workshop on Algorithms and Data
Structures, 1993.

5. M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan. Time bounds
for selection. J. Comput. Syst. Sci., 7:448–461, 1973.

6. G. S. Brodal. Cache-oblivious algorithms and data structures. In Proc. 9th Scan-
dinavian Workshop on Algorithm Theory, Lecture Notes in Computer Science.
Springer Verlag, Berlin, 2004.

7. G. S. Brodal and R. Fagerberg. Cache oblivious distribution sweeping. In Proc.
29th International Colloquium on Automata, Languages, and Programming, pages
426–438. Springer Verlag, Berlin, 2002.

8. G. S. Brodal and R. Fagerberg. On the limits of cache-obliviousness. In Proc. 35th
Annual ACM Symposium on Theory of Computing, pages 307–315, 2003.

9. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms, 2nd Edition. MIT Press, 2001.

10. E. Demaine. Cache-oblivious algorithms and data structures. Lecture Notes from
the EEF Summer School on Massive Data Sets, 2002.

11. V. Estivill-Castro and D. Wood. A new measure of presortedness. Information
and Computation, 83(1):111–119, 1989.

12. V. Estivill-Castro and D. Wood. Practical adaptive sorting. In Advances in Com-
puting and Information - Proc. of the International Conference on Computing and
Information, pages 47–54. Springer-Verlag, 1991.

13. V. Estivill-Castro and D. Wood. A survey of adaptive sorting algorithms. ACM
Computing Surverys, 24(4):441–475, 1992.

588 G.S. Brodal, R. Fagerberg, and G. Moruz

14. M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache oblivious
algorithms. In 40th Ann. IEEE Symp. on Foundations of Computer Science, pages
285–298, 1999.

15. L. J. Guibas, E. M. McCreight, M. F. Plass, and J. R. Roberts. A new representa-
tion of linear lists. In Proc. 9th Ann. ACM Symp. on Theory of Computing, pages
49–60, 1977.

16. D. E. Knuth. The Art of Computer Programming. Vol 3, Sorting and searching.
Addison-Wesley, 1973.

17. C. Levcopoulos and O. Petersson. Splitsort – an adaptive sorting algorithm. In-
formation Processing Letters, 39(1):205–211, 1991.

18. H. Manilla. Measures of presortedness and optimal sorting algorithms. IEEE
Trans. Comput., 34:318–325, 1985.

19. K. Mehlhorn. Data structures and algorithms. Vol. 1, Sorting and searching.
Springer, 1984.

20. A. Pagh, R. Pagh, and M. Thorup. On adaptive integer sorting. In Proc. 12th
Annual European Symposium on Algorithms, volume 3221, pages 556–567. 2004.

21. J. S. Vitter. External memory algorithms and data structures: Dealing with mas-
sive data. ACM Computing Surveys, 33(2):209–271, 2001.

Simulated Annealing Beats Metropolis in
Combinatorial Optimization

Ingo Wegener�

FB Informatik, LS2, Univ. Dortmund, Germany
ingo.wegener@uni-dortmund.de

Abstract. The Metropolis algorithm is simulated annealing with a fixed
temperature. Surprisingly enough, many problems cannot be solved more
efficiently by simulated annealing than by the Metropolis algorithm with
the best temperature. The problem of finding a natural example (arti-
ficial examples are known) where simulated annealing outperforms the
Metropolis algorithm for all temperatures has been discussed by Jerrum
and Sinclair (1996) as “an outstanding open problem.” This problem
is solved here. The examples are instances of the well-known minimum
spanning tree problem. Moreover, it is investigated which instances of the
minimum spanning tree problem can be solved efficiently by simulated
annealing. This is motivated by the aim to develop further methods to
analyze the simulated annealing process.

1 Introduction

Simple randomized search heuristics like randomized local search (RLS), the
Metropolis algorithm (MA), simulated annealing (SA), evolutionary algorithms
(EA), and genetic algorithms (GA) find many applications. One cannot hope
that they outperform sophisticated problem-specific algorithms for well-studied
problems. They are easy to implement and good alternatives if one does not
know efficient problem-specific algorithms and if one shies away from developing
a clever algorithm. They are the tool of choice in black-box optimization where
the problem instance is hidden from the algorithm. And they are useful as parts
of hybrid algorithms combining general search principles with problem-specific
modules.

Hence, it is interesting to understand the working principles behind these
heuristics. The aim is to analyze the expected optimization time and the success
probability within a given time bound of heuristics applied to specific problems.
Up to now there are not many of such results. One reason is that the heuristics
are not designed to support their analysis (in contrast to many problem-specific

� Supported in part by the Deutsche Forschungsgemeinschaft (DFG) as part of the
Collaborative Research Center “Computational Intelligence” (SFB 531) and by
the German-Israeli Foundation (GIF) in the project “Robustness Aspects of Al-
gorithms”.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 589–601, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

590 I. Wegener

algorithms). To simplify the problem many authors have first investigated quite
artificial problems hoping to develop methods which can be used in many other
situations.

Here, we are interested in simulated annealing and the Metropolis algorithm
(which can be defined as SA with a fixed temperature). Both algorithms are
defined in Section 2. It is an obvious question how to use the freedom to choose a
cooling schedule for SA and whether this option is essential. Little is known about
this leading Jerrum and Sinclair (1996, page 516) to the following statement: “It
remains an outstanding open problem to exhibit a natural example in which
simulated annealing with any non-trivial cooling schedule provably outperforms
the Metropolis algorithm at a carefully chosen fixed value of α.” In their paper,
α is the temperature. The notion of a “natural example” is vague, but the known
examples are obviously artificial. Sorkin (1991) has proven the considered effect
for a so-called fractal energy landscape. The chaotic behavior of this function
asks for different temperatures in different phases of the search. The artificial
example due to Droste, Jansen, and Wegener (2001) allows a simpler analysis.

Jerrum and Sorkin (1998) have analyzed the Metropolis algorithm for the
graph bisection problem. They focus the interest on problems from combinato-
rial optimization: “Unfortunately no combinatorial optimization problem that
has been subjected to rigorous theoretical analysis has been exhibited this phe-
nomenon: those problems that can be solved efficiently by simulated annealing
can be solved just as effectively by ‘annealing’ at a single carefully selected tem-
perature. A rigorous demonstration that annealing is provably beneficial for some
natural optimization problems would rate as a significant theoretical advance.”

Our problem of choice is the minimum spanning tree problem (MSTP) which
is contained in all textbooks on combinatorial optimization and should be ac-
cepted as “natural optimization problem.” It should be obvious that SA cannot
beat MA for each problem instance. E. g., for graphs where all edge weights equal
1 the frozen MA (at temperature 0) cannot be beaten by SA. In Section 3, we
describe the notion of efficiency for randomized search heuristics and, in Section
4, we describe simple instances of the MSTP where SA outperforms MA. The
underlying graphs will be so-called connected triangles (CT), see Figure 1.

. . .

Fig. 1. Graphs called connected triangles.

The idea is to produce examples as simple as possible. This allows proofs
which can be taught in introductory courses on randomized search heuristics.
Afterwards, we try to understand which instances of the MSTP can be solved
efficiently by SA and MA, only by SA, or by none of them. Weights w1, . . . , wm

are called (1 + ε)-separated if wi > wj implies wi ≥ (1 + ε) · wj . For each
ε(m) = o(1) there are graphs with (1 + ε(m))-separated weights such that SA

Simulated Annealing Beats Metropolis in Combinatorial Optimization 591

cannot attack them efficiently (Section 5). For each constant ε > 0, SA can
attack all graphs with (1 + ε)-separated weights efficiently (Section 6). These
results imply that SA outperforms MA on a much larger class of graphs than
the connected triangles discussed in Section 4. We finish with some conclusions.

It should be obvious that we do not hope that SA or MA beats the well-known
algorithms due to Kruskal and to Prim. Again we like to transfer a statement
of Jerrum and Sorkin (1998) from minimum bisections to minimum spanning
trees (MSTs): “Our main contribution is not, then, to provide a particularly
effective algorithm for the minimum bisection problem . . . , but to analyze the
performance of a popular heuristic applied to a reasonably realistic problem in
combinatorial optimization.”

2 Metropolis Algorithm, Simulated Annealing, and
Minimum Spanning Trees

An instance of the MSTP consists of an undirected graph G = (V,E) with n
vertices and m edges and a weight w(e) for each edge e. Weights are positive
integers. The problem is to find an edge set E′ connecting all vertices with
minimal total weight. The edges are numbered and edge sets are described as
characteristic vectors, i. e., x ∈ {0, 1}m describes the set of edges ei where xi = 1.
This formalization is well-suited for MA and SA.

We describe the Metropolis algorithm with temperature T for minimization
problems on {0, 1}m. The first search point x is chosen in some way discussed
later. Each round of an infinite loop consists of local change and selection.

Local change: Let x be the current search point. Choose i ∈ {1, . . . ,m} uni-
formly at random and flip xi, i. e., let x′ = (x′1, . . . , x

′
m) where x′j = xj , if

j �= i, and x′i = 1− xi.
Selection of the new current search point with respect to a fitness function f :

if f(x′) ≤ f(x): select x′,
if f(x′) > f(x): select x′ with probability exp{−(f(x′)−f(x))/T}, otherwise
select x.

We have to discuss some details in order to ensure that our results are not based
on too special choices. Randomized search heuristics do not produce a certificate
that a search point is optimal. Therefore, the algorithm contains an infinite loop,
but the run time is defined as the number of rounds until an optimal search point
is produced. A round cannot be performed in time O(1) but quite efficiently and
people have agreed to count the number of rounds.

We choose 1m as starting point. This is similar to the choice 0m for the max-
imum matching problem (Sasaki and Hajek (1988)) and the maximum clique
problem (Jerrum (1992)). The starting points are the worst legal solutions. This
choice of the starting point implies that we cannot apply the lower bound tech-
nique for MA due to Sasaki (1991) which ensures only the existence of some bad
starting point. It would be an alternative to start with a search point chosen
uniformly at random. For many graphs, we then choose a non-legal solution (an

592 I. Wegener

unconnected graph) and the fitness function has to contain hints directing the
search to legal search points. It is not difficult to obtain similar results in this
situation. However, most papers on MA and SA only work on legal search points.

We have chosen the fitness function f where f(x) = ∞ for search points x
describing unconnected graphs and where f(x) is the total weight of all chosen
edges if x describes a connected graph. Unconnected graphs are never accepted as
current search points. This again is in accordance with Sasaki and Hajek (1988)
and Jerrum (1992). All search points are legal solutions in the graph bisection
problem and therefore Jerrum and Sorkin (1993, 1998) start with randomly
chosen search points.

We follow Sasaki and Hajek (1988) and Jerrum (1992) in allowing only 1-bit
neighborhoods. Neumann and Wegener (2004) have analyzed RLS with 1-bit
and 2-bit flips (RLS equals the frozen MA at temperature T = 0) and a simple
EA for the MSTP. These algorithms do not select new search points which are
worse than the old one. Hence, their search strategy is completely different from
the strategy applied by MA and SA that have to accept sometimes worsenings
to find the optimum. Flips of two bits allow to include an edge into a tree
and to exclude simultaneously an edge of the newly created cycle. RLS and the
simple EA find an MST in an expected number of O(m2(logm + logwmax))
steps, where wmax denotes the maximal weight. Note that we are not looking
for a “best” algorithm for the MSTP. The main idea of an elitist EA is to reject
worsenings and to escape from local optima by non-local steps. The main idea
of MA and SA is to work with very local steps and to escape from local optima
by accepting worsenings. The situation here is similar to the case of maximum
matchings where also flips of 2 bits are helpful to shorten augmenting paths,
compare Sasaki and Hajek (1988) who analyze SA with 1-bit flips only and Giel
and Wegener (2003) who analyze RLS with 1-bit and 2-bit flips and a simple
EA.

Finally, we introduce SA based on a cooling schedule T (t). The initial tem-
perature T (1) may depend on m and the largest possible weight wmax. The
temperature T (t) applied by the selection operator in step t equals αt−1 · T (1),
where α < 1 is a constant which may depend on m and an upper bound on
wmax. This cooling schedule does not include any knowledge about the problem
instance. We use a kind of “continuous cooling”, other possibilities are longer
phases with a constant temperature or dynamic cooling schedules that depend
on the success rate (where a step is called successful if x′ is selected) or the rate
of f -improving steps.

3 Efficiency Measures

There are many well-known convergence results on MA and SA. We want to
distinguish “efficient behavior” from non-efficient one. The first idea is to define
efficiency as expected polynomial time. We think that this is not a good choice.
There may be a small probability of missing a good event for temperatures in
some interval [T1, T2]. For temperatures smaller than T1 it may be very unlikely

Simulated Annealing Beats Metropolis in Combinatorial Optimization 593

that the good event happens. This may cause a superpolynomial or even expo-
nential expected run time although the run time is polynomially bounded with
overwhelming probability.

Definition 1. Let A be a randomized search heuristic (RSH) running for a
polynomial number of p(m) rounds and let s(m) be the success probability, i. e.,
the probability that A finds an optimal search point within this phase. A is called

– successful, if s(m) ≥ 1/q(m) for some polynomial q(m),
– highly successful, if s(m) ≥ 1− 1/q(m) for some polynomial q(m), and
– successful with overwhelming probability, if s(m) = 1 − e−Ω(mε) for some
ε > 0.

One can be satisfied with successful RSHs, since then multistart variants not
depending on p and q are successful with overwhelming probability and have
an expected polynomial run time. An RSH is called unsuccessful if, for each
polynomial p, the success probability within p(m) steps is o(m−k) for each con-
stant k. This implies a superpolynomial expected optimization time. Moreover,
multistart variants do not help.

4 Simulated Annealing Beats Metropolis on Some
Simple Graphs

Our plan is to present simple graphs where SA beats MA for each temperature.
The graphs should allow proofs as simple as possible. The idea behind the chosen
graphs is the following. The problem to compute an MST on graphs with many
two-connected components is separable, i. e., an MST consists of MSTs on the
two-connected components. We investigate graphs where each two-connected
component can be handled easily by MA with a well-chosen temperature, but
different components need different temperatures. To keep the analysis easy the
components have constant size. This implies that, for high temperatures, each
component can be optimized, but the solutions are not stable. They are destroyed
from time to time and then reconstructed. Therefore, it is unlikely that all the
components are optimized simultaneously. SA can handle these graphs efficiently.

As announced, we investigate connected triangles (CT), see Figure 1, with
m = 6n edges. The number of triangles equals 2n and the number of vertices
equals 4n+ 1. The weight profile (w1, w2, w3) of a triangle is simply the ordered
vector of the three edge weights. We investigate CTs with n triangles with weight
profile (1, 1,m) and n triangles with weight profile (m2,m2,m3). The unique
MST consists of all edges of weight 1 or m2.

Theorem 1. The probability that the Metropolis algorithm applied to CTs with
n triangles with weight profile (1, 1,m)and n triangles with weight profile (m2,m2,
m3) computes the MST within ecm steps (c a positive constant which is small
enough) is bounded above by e−Ω(m), i. e., MA is unsuccessful on these instances.

594 I. Wegener

Proof. We distinguish the cases of high temperature (T ≥ m) and low temper-
ature (T < m).

The low temperature case is easy. We do not care about the triangles with
weight profile (1, 1,m). For each other triangle, MA accepts the exclusion of
the first flipping edge. By Chernoff bounds, with probability 1 − 2−Ω(m), we
obtain Ω(m) triangles where the first spanning tree contains the heavy edge. In
order to obtain the MST it is necessary to include the missing edge of weight
m2. If this edge is chosen to flip, the probability of selecting the new search
point equals e−m

2/T ≤ e−m. Hence, the success probability within em/2 steps
is e−Ω(m).

In the high temperature case, we do not care about the heavy triangles. For
the light triangles, we distinguish between complete triangles (the search point
chooses all three edges), optimal triangles (the two weight-1 edges are chosen),
and bad triangles. The status of each triangle starts with “complete” and follows
a Markov chain with the following transition probabilities:

complete optimal bad
complete 1− 3/m 1/m 2/m
optimal 1

m · e−m/T 1− 1
m · e−m/T 0

bad 1
m · e−1/T 0 1− 1

m · e−1/T

Let Xt be the number of optimal triangles after time step t, i. e., X0 = 0. We
are waiting for the first point of time t when Xt = n. Obviously, |Xt+1−Xt| ≤ 1.
Moreover,

Prob(Xt+1 = a+ 1 | Xt = a) ≤ n− a

m

since it is necessary to flip the heaviest edge in one of the at most n−a complete
triangles, and

Prob(Xt+1 = a− 1 | Xt = a) =
a

m
· e−m/T ≥ a

3m

since T ≥ m and since it is necessary to flip the heaviest edge in one of the
optimal triangles and to accept the new search point. Since we are interested
in lower bounds, we use the upper bound for the probability of increasing a
and the lower bound for the probability of decreasing a. Ignoring steps not
changing a, we obtain the following transition probabilities for the new Markov
chain Yt:

Prob(Yt+1 = a− 1|Yt = a) =
a/(3m)

a/(3m) + (n− a)/m
=

a

3n− 2a
.

There has to be a phase where the Y -value increases from (10/11)n to n without
reaching (9/11)n. In such a phase the probability of decreasing steps is bounded
below by (9/11)n

3n−(18/11)n = 3
5 . Applying results on the gambler’s ruin problem, the

Simulated Annealing Beats Metropolis in Combinatorial Optimization 595

probability that one phase starting at a = (10/11)n and finishing at a = (9/11)n
or a = n stops at a = n is bounded above by

((3/2)n/11 − 1)/((3/2)2n/11 − 1) = e−Ω(m)

since the probability of decreasing steps is at least by a factor of 3/2 larger than
the probability of increasing steps. Hence, the probability of finding the MST
within ecm steps, c > 0 small enough, is bounded by e−Ω(m). ��

Theorem 2. Let p be a polynomial and let the cooling schedule be described by
T (1) = m3 and α = 1−1/(cm) for some constant c > 0. If c is large enough, the
probability that simulated annealing applied to CTs with n (1, 1,m)-triangles and
n (m2,m2,m3)-triangles computes the MST within 3cm lnm steps is bounded
below by 1− 1/p(m).

Proof. We only investigate the search until the temperature drops below 1. This
phase has a length of at most 3cm lnm steps and contains two subphases where
the temperature is in the interval [m2,m5/2] or in the interval [1,m1/2]. The
length of each subphase is at least (c/4)m lnm.

If T ≤ m5/2, the probability of including an edge of weight m3 is bounded
above by e−m

1/2
. Each run where such an event happens is considered as unsuc-

cessful. If T ∈ [m2,m5/2] and an (m2,m2,m3)-triangle is optimal, this triangle
remains optimal unless the event considered above happens. Applying Chernoff
bounds to each edge and choosing c large enough, the probability of not flipping
edges of each triangle at least c′′ logm times is bounded by m−k, c′′ > 0 and k
arbitrary constants. This is a second source of bad behavior. Now, we investigate
one (m2,m2,m3)-triangle and the steps flipping one of its edges. For each com-
plete or bad triangle, there is a chance that it turns into optimal within the next
two steps concerning this triangle. This happens if the right two edges flip in
the right order (probability 1/9) and the inclusion of the edge with weight m2 is
accepted (probability e−m

2/T ≥ e−1). The probability of not having a good pair
among the at least (c′′/2) logm step pairs, can be made much smaller than m−k

by choosing c′′ large enough. Altogether, the probability that the first subphase
does not finish with MSTs on all (m2,m2,m3)-triangles can be made smaller
than 1/(3p(m)).

The same calculations for T ∈ [1,m1/2] and the (1, 1,m)-triangles show
that the probability that the second subphase does not finish with MSTs on
all (1, 1,m)-triangles can be made smaller than 1/(3p(m)). Finally, the proba-
bility that an (m2,m2,m3)-triangle has turned from optimal into non-optimal
after the first subphase is smaller than 1/(3p(m)). This proves the theorem. ��

We have proved that SA is highly successful for the considered graph instances.
It is easy to choose a cooling schedule such that SA is even successful with
overwhelming probability, e. g., T (1) = m3 and α = 1 − 1/m2. See Neumann
and Wegener (2004) to compare SA with simple evolutionary algorithms.

596 I. Wegener

This section contains the result announced in the title of the paper. In the
remaining sections, we investigate which graphs can be handled efficiently by
MA and SA, only by SA, or by none of them.

5 Connected Triangles with the Same Weight Profile

It is interesting to understand how much different weights have to differ such
that MA or SA are able to construct efficiently an MST. For this reason, we
investigate graphs consisting of connected triangles in more detail. In this section,
we consider the case of n CTs with the same weight profile (w,w, (1+ ε(m)) ·w)
where ε(m) > 0. We distinguish the cases where ε(m) is bounded below by a
positive constant ε and the case where ε(m) = o(1).

Theorem 3. If ε(m) ≥ ε > 0, MA with an appropriate temperature finds the
MST on CTs with n (w,w, (1 + ε(m)) ·w)-triangles in expected polynomial time
and is successful with overwhelming probability.

Proof. A good temperature has to fulfil two properties:

– It has to be low enough to distinguish w-edges effectively from (1 + ε) · w-
edges.

– It has to be high enough to allow the inclusion of a w-edge in expected
polynomial time.

We choose γ := 3/ε and T := w/(γ ·lnm). The probability to accept the inclusion
of a w-edge equals e−w/T = m−γ while the corresponding probability for a
((1 + ε(m)) · w)-edge equals m−γ·(1+ε(m)) ≤ m−γ−3. We analyze the success
probability of a phase of lengthmγ+2 starting with an arbitrary connected graph.
The event to accept the inclusion of a heavy edge is considered as an unsuccessful
phase. The probability of this event is bounded above by 1/m. Following the
lines of the proof of Theorem 2 we have for each triangle with overwhelming
probability Ω(mγ+1) steps flipping an edge of this triangle which we partition
into Ω(mγ+1) pairs of consecutive steps. The probability that a complete or bad
triangle is turned within such two steps into an optimal one is Ω(m−γ). Hence,
with overwhelming probability, all triangles turn into optimal during this phase
and with probability at least 1− 1/m none of them is turned into non-optimal.
Hence, the expected number of phases isO(1) and the probability that a sequence
of m phases is unsuccessful is exponentially small. ��

It is obvious how to tune the parameters in order to get improved run times.
We omit such calculations which do not need new ideas. SA finds the MST
in polynomial time with a probability exponentially close to 1 if it starts with
T (1) := w/(γ · lnm) and has a cooling schedule that cools down the temperature
sufficiently slow. This follows in the same way as Theorem 3.

Theorem 4. If ε(m) = o(1), MA and SA are unsuccessful on CTs with
n (w,w, (1 + ε(m)) · w)-triangles.

Simulated Annealing Beats Metropolis in Combinatorial Optimization 597

Proof. First, we investigate MA. The search starts with n complete triangles
and each one has a probability of 2/3 to be turned into a bad one before it is
turned into an optimal one. With overwhelming probability, at least n/2 bad
triangles are created where the missing w-edge has to be included in order to be
able to turn it into an optimal triangle. The probability of including a w-edge
within a polynomial number of p(m) steps is bounded above by p(m) · e−w/T .
This is bounded below by Ω(m−k) only if e−w/T = Ω(m−γ) for some constant
γ > 0. Hence, we can assume that T ≥ w/(γ · lnm) for some constant γ > 0.

Let p∗(T) be the probability of accepting the inclusion of a w-edge and p∗∗(T)
the corresponding probability for a ((1 + ε(m)) ·w)-edge. Since T ≥ w/(γ · lnm)
and ε(m) = o(1),

p∗(T)/p∗∗(T) = e−w/T · e(1+ε(m))·w/T

= eε(m)·w/T

≤ eε(m)·γ·lnm

= mε(m)·γ .

Choosing m large enough, this gets smaller than any mδ, δ > 0. It will turn out
that this advantage of w-edges against ((1 + ε(m)) · w)-edges is too small. The
stochastic process behind MA can be described by the parameters b (number
of bad triangles) and c (number of complete triangles). We use the potential
function 2b+ c which starts with the value n and has the value 0 for the MST.
The value of the potential function changes in the following way:

– It increases by 1 if a complete triangle turns into a bad one or an optimal
one turns into a complete one. The probability of the first event equals
2c/m, since we have to flip one of the two light edges of one of the complete
triangles. The probability of the second event equals p∗∗(T) · (n− b− c)/m
since we have to flip the heavy edge in one of the n− b− c optimal triangles
and to accept this flip.

– It decreases by 1 if a complete triangle turns into an optimal one (probability
c/m) or a bad triangle turns into a complete one (probability p∗(T) · b/m).

– It remains unchanged, otherwise.

Since we are interested in lower bounds on the optimization time, we can
ignore all non-accepted steps, i. e., all steps not changing the potential. If b ≤
n1/2 and m is large enough, the probability that an accepted step increases the
potential is at least 3/5. This claim is equivalent to

2c/m+ p∗∗(T) · (n− b− c)/m
2c/m+ p∗∗(T) · (n− b− c)/m+ c/m+ p∗(T) · b/m ≥ 3

5

which is equivalent to

2c+ p∗∗(T) · (n− b− c) ≥ 9
5
c+

3
5
· p∗∗(T) · (n− b− c) +

3
5
p∗(T) · b

and
1
5
c+

2
5
p∗∗(T) · (n− b− c) ≥ 3

5
· p∗(T) · b.

598 I. Wegener

This is obviously true if c ≥ 3 · b. Otherwise, n− b− c ≥ n− 4b ≥ n− 4n1/2 and
it is sufficient to show that

2 · p∗∗(T) · (n− 4n1/2) ≥ 3 · p∗(T) · n1/2

or
p∗(T)/p∗∗(T) ≤ 2

3
(n1/2 − 4).

We have shown that this holds for large enough m, since n = Ω(m). The claim
for MA follows now from results on the gambler’s ruin problem. The probability
to start with a potential of n1/2/2 and to reach the value 0 before the value n1/2

is exponentially small. Finally, we investigate a polynomial number of p(m) steps
of SA. Let d be chosen such that p(m) ≤ md. We claim that it is unlikely that the
potential drops below n1/2/4 within md steps. With overwhelming probability,
we produce a bad triangle. Therefore, it is necessary to accept the inclusion
of a w-edge. Hence, as seen above, only steps where the temperature is at least
w/(γ ·lnm) for some appropriate constant γ > 0 have to be considered. However,
the analysis of MA treats all these temperatures in the same way. The probability
to start with a potential of n1/2/2 and to reach the value n1/2/4 before (3/4)n1/2

is still exponentially small. ��

The proof also shows that SA with an arbitrary cooling schedule is unsuc-
cessful in the considered situation.

6 Simulated Annealing Is Successful for (1+ε)-Separated
Weights

We have seen in Theorem 4 that MA and even SA are unsuccessful on certain
graphs if we allow that different weights may differ by a factor of 1+ε(m) where
ε(m) is an arbitrary function such that ε(m) = o(1). Here, we prove that SA is
highly successful on all graphs if the different weights differ at least by a factor
of 1 + ε for some constant ε > 0.

Before proving this result, we repeat some well-known facts about MSTs. Let
E1, . . . , Er be the partition of the edge set E such that all edges in Ei have the
same weight Wi and W1 > · · · > Wr. Let ci, 1 ≤ i ≤ r + 1, be the number of
connected components of Gi := (V,Ei ∪ · · · ∪ Er). Each MST contains exactly
ai := ci+1 − ci Ei-edges such that the chosen edges from Ei ∪ · · · ∪ Er span
the connected components of Gi. A set E∗i of ai Ei-edges is called optimal if
G∗i := (V,E∗i ∪ Ei+1 ∪ · · · ∪ Er) has the same connected components as Gi. An
MST contains exactly the edges of optimal sets E∗1 , . . . , E

∗
r . The set E∗i is not

necessarily uniquely defined. The idea of the proof is the following. There is some
point of time ti, 1 ≤ i ≤ r + 1, such that, with large probability, the following
holds. After step ti, no inclusion of an edge from E1∪ · · ·∪Ei is accepted and at
step ti the current search point has chosen among all Ej-edges, 1 ≤ j ≤ i−1, an
optimal subset E∗j . This implies that after step ti no edges from E1∪· · ·∪Ei−1 are
included (the first property) or excluded (this would destroy the connectedness

Simulated Annealing Beats Metropolis in Combinatorial Optimization 599

of the graph described by the search point). Moreover, no edges from Ei are
included and we hope to exclude enough Ei-edges until step ti+1 such that then
the search point chooses an optimal set E∗i of Ei-edges. Note that after time
step ti the set of chosen Ei-edges is always a superset of an optimal set E∗i since,
otherwise, the considered graph would be unconnected. Finally, the properties
imply that at step tr+1 the search point describes an MST.

Theorem 5. Let the weights of the edges be bounded by 2m and (1+ε)-separated
for some constant ε > 0, i. e., wi > wj implies wi ≥ (1 + ε) · wj. SA with an
appropriate cooling schedule is highly successful when searching for an MST on
such graphs.

Proof. Let T (1) := 2m, γ := 8/ε, α be the cooling factor such that it takes mγ+7

steps to decrease the temperature from T to T/(1 + ε/2), and β be defined by
(1 + ε/2)β = 2. Then we set tr+1 := 2βmγ+8. Until step tr+1, the temperature
has dropped (far) below 1/m. Our claim is that, with a probability of 1−O(1/m),
the search point at step tr+1 describes an MST.

To follow the proof strategy discussed above let ti, 1 ≤ i ≤ r, be the ear-
liest point of time when T (ti) ≤ Wi/((1 + ε) · γ · lnm). The probability of
accepting the inclusion of an edge of weight Wi after step ti is bounded above
by m−γ−8. During the next mγ+7 steps, with overwhelming probability, there
are O(mγ+6) steps flipping a specified edge and the probability to accept this
edge at least once is O(1/m2). Afterwards, the temperature has dropped by
a factor of 1/(1 + ε/2). The probability to accept this edge is then bounded
by m−γ−12 and the probability to accept the edge during the next mγ+7 steps
is O(1/m5). This argumentation can be continued implying that the proba-
bility to accept the inclusion of the considered edge after step ti is O(1/m2).
Hence, with probability 1 − O(1/m), it holds that, for all i, edges of weight
Wi are not included after step ti. In the following, we assume that this event
holds.

We assume that at step ti the search point chooses optimal sets E∗1 , . . . , E
∗
i−1

and a superset E′i of an optimal set E∗i . This is obviously true for i = 1. We
analyze the steps ti, . . . , ti +mγ+7 − 1. The probability to accept an edge with
weight w ≤Wi+1 in one step is bounded below by m−γ−4 during this phase. By
our assumption, we do not include edges of weight w ≥Wi. Let bi := |E′i|− |E∗i |
at step ti. As long as |E′i| > |E∗i | there are at least |E′i| − |E∗i | candidate Ei-
edges whose exclusion is possible. The exclusion of such an edge is only ac-
cepted if this edge lies on a cycle. Either the edge lies on a cycle or there is
a missing edge of weight w ≤ Wi+1 whose inclusion creates a cycle contain-
ing the considered Ei-edge. If no cycle with an Ei-edge exists, the probability
of creating such a cycle in the next step is at least m−γ−5. If a cycle with an
Ei-edge exists, the probability to destroy the cycle by excluding an Ei-edge is
at least 1/m (there may be more than one Ei-edge on the cycle). Let us as-
sume that we do not exclude bi Ei-edges within the considered mγ+7 steps.
Let s be the number of steps in this phase where a cycle with an Ei-edge exists.

600 I. Wegener

If s ≥ m3/2, then the probability of less than bi ≤ m steps excluding an Ei-
edge on the cycle is exponentially small. If s < m3/2, then the probability that
among the at least mγ+7 −m3/2 steps without a cycle with Ei-edges there are
less than m3/2 steps creating such a cycle is exponentially small. Hence, with
overwhelming probability, enough Ei-edges are excluded and the claim holds for
step ti+1.

Altogether, with a probability of 1 − O(1/m), SA has found an MST after
O(mγ+8) steps. ��

It is easy to see that we can generalize the result to weights up to 2p(m) for
a polynomial p. The run time increases by a factor of O(p(m)/m). It is possible
to tune the parameters to obtain better run times. However, the purpose of
Theorem 4 and Theorem 5 was to identify the border (with respect to quotients
of different weights) between cases where SA is highly successful and cases where
SA can be unsuccessful. With respect to these aims we have obtained optimal
results. It is easy to generalize our results to prove that SA is always highly
successful if one is interested in (1 + ε)-optimal spanning trees. It remains an
open problem to find other sufficient conditions implying that MA or SA is
successful or unsuccessful on the MSTP.

7 Conclusions

The paper contributes to the theory of randomized search heuristics, in particu-
lar, the Metropolis algorithm and simulated annealing. The problem to present
a natural example from combinatorial optimization where simulated annealing
beats the Metropolis algorithm is solved by investigating the problem of com-
puting minimum spanning trees. Moreover, the minimal factor between different
weights to guarantee that simulated annealing finds minimum spanning trees
efficiently is determined.

References

1. Droste, S., Jansen,T., and Wegener, I. (2001). Dynamic parameter control in simple
evolutionary algorithms. FOGA’2000. Foundations of Genetic Algorithms 6 (Eds.
Martin,W.N. and Spears,W.M.), 275–294. Morgan Kaufmann.

2. Giel, O. and Wegener, I. (2003). Evolutionary algorithms and the maximum match-
ing problem. Proc. of 20th Symp. on Theoretical Aspects of Computer Science
(STACS), LNCS 2607, 415–426.

3. Jerrum,M. (1992). Large cliques elude the Metropolis process. Random Structures
and Algorithms 3, 347–359.

4. Jerrum,M. and Sinclair, A. (1996). The Markov chain Monte Carlo method. An
approach to approximate counting and integration. Ch. 12 of Hochbaum, D. (Ed.).
Approximation Algorithms for NP-hard Problems, 482–522. PWS Publishing Com-
pany.

5. Jerrum,M. and Sorkin, G.B. (1993). Simulated annealing for graph bisection.
Proc. of 37th Symp. Foundations of Computer Science (FOCS), 94–103.

Simulated Annealing Beats Metropolis in Combinatorial Optimization 601

6. Jerrum,M. and Sorkin,G.B. (1998). The Metropolis algorithm for graph bisection.
Discrete Applied Mathematics 82, 155–175.

7. Neumann, F. and Wegener, I. (2004). Randomized local search, evolutionary algo-
rithms, and the minimum spanning tree problem. Proc. of Genetic and Evolution-
ary Computation. GECCO 2004. LNCS 3102, 713–724.

8. Sasaki,G. (1991). The effect of the density of states on the Metropolis algorithm.
Information Processing Letters 37, 159–163.

9. Sasaki,G. and Hajek, B. (1988). The time complexity of maximum matching by
simulated annealing. Journal of the ACM 35, 387–403.

10. Sorkin, G.B. (1991). Efficient simulated annealing on fractal energy landscapes.
Algorithmica 6, 367–418.

Online Interval Coloring and Variants

Leah Epstein1,� and Meital Levy2

1 Department of Mathematics, University of Haifa, 31905 Haifa, Israel
lea@math.haifa.ac.il

2 School of Computer Science, Tel-Aviv University, Israel
levymeit@post.tau.ac.il

Abstract. We study interval coloring problems and present new upper and lower
bounds for several variants. We are interested in four problems, online coloring
of intervals with and without bandwidth and a new problem called lazy online
coloring again with and without bandwidth. We consider both general interval
graphs and unit interval graphs. Specifically, we establish the difference between
the two main problems which are interval coloring with and without bandwidth.
We present the first non-trivial lower bound of 3.2609 for the problem with band-
width. This improves the lower bound of 3 that follows from the tight results for
interval coloring without bandwidth presented in [9].

1 Introduction

We study online interval coloring problems. In the basic problem intervals are presented
one by one and the online algorithm must assign each interval a color before the next
interval arrives where two intersecting intervals can not be colored by the same color.
We are also interested in the case where every interval has an associated bandwidth in
[0,1], this problem was first introduced by Adamy and Erlebach [1]. A set of intervals
can be assigned the same color c, if for any point p, on the real line, the sum of the
bandwidths of intervals colored c and containing p, does not exceed 1. We refer to a
coloring satisfying the above condition as a proper coloring.

As mentioned in [1], the interval coloring problem with bandwidth arises in many
applications. Most of the applications come from networks field.

Consider a network with a line topology that consists of links, where each link has
channels of constant capacity. This can be either an all-optical WDM (wavelength-
division multiplexing) network or an optical network supporting SDM (space-division
multiplexing). A connection request is from one network node a to another node b has a
bandwidth associated with it. The set of requests assigned to a channel must not exceed
the capacity of the channel on any of the links on the path [a, b]. The goal is to minimize
the number of channels (colors) used. A connection request from a to b corresponds to
an interval [a, b] with the respective bandwidth requirement and the goal is to minimize
the number of required channels to serve all requests.

Another network related application is that if the requests have constant duration c,
and we have to serve all requests as fast as possible. With respect to our online interval

� Research supported by Israel Science Foundation (grant no. 250/01).

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 602–613, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Online Interval Coloring and Variants 603

coloring problem with bandwidth, the colors correspond to time slots, and the total
number of colors corresponds to the schedule length.

The last example comes from scheduling, a requested job has a duration and re-
source requirement during its execution. Jobs (intervals) arrive online and must be as-
signed to a machine (color) immediately. All the machines have the same capabilities
and the objective is to minimize the number of machines used.

The unweighted problem is equivalent to coloring an interval graph, where each in-
terval corresponds to a node and an edge between two nodes appears if the correspond-
ing intervals intersect. Interval graphs are perfect, therefore the chromatic number of the
graph is the maximum clique size [6], which represents a point where the most intervals
intersect. It can be elaborated for the bandwidth case, if we refer to the maximum clique
size as the maximum weighted clique. Each node has the weight of the related interval
,i.e., its bandwidth, and the clique size is the sum of weights of the clique.

We study online coloring problems in terms of competitive analysis. Thus we com-
pare an online algorithm to an optimal offline algorithm OPT that knows the complete
sequence of intervals in advance. In this paper, we make use of two types of competitive
ratios. The absolute competitive ratio and the asymptotic competitive ratio.

LetB(σ) (orB, if the sequence σ is clear from the context), be the cost of algorithm
B on the request sequence σ. An algorithm A is R-competitive (with respect to the
absolute competitive ratio) if for every sequence σ, A(σ) ≤ R·OPT (σ). The absolute
competitive ratio of an algorithm is the infimum value of R such that the algorithm is
R-competitive.

The asymptotic competitive ratio for an online algorithm A is defined to be

R∞A = limsup
n→∞

sup
σ

{
A(σ)

OPT (σ)

∣∣∣∣∣OPT (σ) = n

}
.

Most results in this paper hold for both definitions of competitive ratio. We mention the
cases where a result holds for only one definition.

Coloring interval graphs has been intensively studied, Kierstead and Trotter [9] con-
structed an online algorithm which uses at most 3ω−2 colors where ω is the maximum
clique size of the interval graph. They also presented a matching lower bound of 3ω−2
on the number of colors in a coloring of an arbitrary online algorithm. As mentioned
above, the chromatic number of interval graphs equals to the size of a maximum clique.
This means that the optimal offline algorithm can color every interval graph with ω
colors.

Much research has been done analyzing the performance of the simple First Fit
algorithm. An upper bound of 40 on the competitive ratio was proven in [7], and later
on an upper bound of 25.72 was presented by Kierstead and Qin [8]. In a recent study
[11], a competitive ratio of 10 was proved. Chrobak and Slusarek [3] show a lower
bound close to 4.5 on the competitive ratio of First Fit.

Coloring intervals with bandwidth was first posed in 2003 in [1], they presented an
online algorithm with a competitive ratio of 195. In [10] Narayanaswamy presented a
new algorithm with a competitive ratio of 10.

Motivated by The Maximum Resource Bin Packing Problem [2], we introduce a
new problem called Lazy Interval Coloring. As opposed to the regular interval coloring

604 L. Epstein and M. Levy

problem, we seek to use as many colors as possible. If all bandwidths are 1, a new color
may be used for an interval, only if it intersects intervals with all the previously used col-
ors. We also consider the bandwidth case, where intervals have bandwidth in [0,1]. For
both problems, a newly presented interval must be colored by a used color if a proper
coloring can be achieved. An application for this problem can be any of the applica-
tions mentioned before, where using additional colors (channels/time slots/machines)
can improve the quality of service. The scheduler (who assigns colors) has the purpose
of using as many colors as possible. However, to avoid the usage of too many colors,
the instructions of a scheduler (given by the boss, who pays for the equipment) are not
to use a new color unless it is absolutely necessary.

Our Results: We show that introducing bandwidth to interval coloring makes the prob-
lem harder. We present the first non-trivial lower bound of 3.2609, which improves the
lower bound of 3 for interval coloring without bandwidth. Recall that for the problem
without bandwidth, the bound 3 is tight. We also show that bandwidth makes lazy in-
terval coloring a much harder problem.

In this work we consider resource augmentation for the problem of interval coloring
with and without bandwidth. We show that there exists an online algorithm that when
uses twice as much resource for each color, can perform as good as the optimal offline
algorithm. We also present a matching lower bound.

For the bandwidth case we study two interesting cases. In the first case, the online
algorithm may use twice as much capacity for each color as the offline algorithm, for
which we present an online algorithm that uses at most 3 times the number of colors that
the optimal offline algorithm uses. In the seconds case, we present an online algorithm
that uses at most as many colors as OPT in the worst case, where each color has a
capacity of 4.

Another interesting variant is to restrict the class of intervals, so all intervals are of
the same length. This type of graph is called “Unit Interval Graph”. For the interval col-
oring problem we show that First Fit uses at most 2ω− 1 colors and that the analysis is
tight. We also show a lower bound of 3

2 on the competitive ratio of any online algorithm.
For interval coloring with bandwidth for unit interval graphs, we present several

algorithms, the best algorithm has 3 1
2 competitive ratio. We also present a lower bound

of 2. For the asymptotic competitive ratio, the bounds become 3.17778 and 1.831.
For lazy interval coloring, we prove that for general instances any online algorithm

performs arbitrarily bad. However if all intervals have the same length we present upper
and lower bounds of 2. When introducing bandwidth to the lazy interval coloring prob-
lem, we show that any online algorithm is arbitrarily bad compared to the maximum
weighted clique (even for unit interval graphs). We summarize our results and previous
results in the following table.

Remark: All omitted proofs can be found in the full version of the paper.

2 Preliminaries

A weighted interval graph G, is a graph where each node corresponds to an interval.
The weight of the node is the bandwidth of the interval related to it. If two intervals

Online Interval Coloring and Variants 605

Table 1. Results obtained in this paper and previous work. For each case, a single entry means
that the results hold for both asymptotic and absolute competitive ratios. If two entries exist, the
first one is the asymptotic competitive ratio and the second one stands for the absolute competitive
ratio

Interval Graph Unit Interval Graph
LB UB LB UB

Interval Coloring 3 [9] 3 [9] 3
2

2
Interval Coloring with Bandwidth 3.2609 10 [10] 1.831 2 3.17778 3.5
Lazy Interval Coloring ∞ 2 2
Lazy Interval Coloring with Bandwidth ∞ ∞

intersect, there is an edge between their related nodes in G. Recall that we denote the
optimal coloring of the offline algorithm by OPT .

Let ω(G) denote the size of the maximum cardinality clique in G (ω for short), i.e.,
ignoring the weights. Let ω∗(G) (ω∗ for short) denote the largest weighted clique in G.
A weighted clique is the sum of the weights of the vertices in a clique. Note that for the
interval coloring problem with bandwidth we have OPT ≥
ω∗�

Below we give a generalized presentation of the algorithm of Kierstead and Trot-
ter [9]. We use specific cases of the generalized algorithm for the variant of resource
augmentation in the next sections. We present the algorithm using notations similar to
these of [10].

Let σ = v1, . . . , vn be the list of vertices of G, in the order of arrival. Algorithm
KTl,b is defined for inputs σ such that, b(vi) ∈ (0, b]. The algorithm partitions the
intervals (i.e. the vertices of G) into sets Am (for integer values of m, such that m ≥
1). We use Cm to denote the set of colors dedicated to Am. Every set Am is colored
using First Fit, independently of other sets. Therefore the colors have the property Cx∩
Cy = ∅ for x �= y. A critical point, q, in interval vi ∈ Am(vi), is a point where
ω∗(Gm(vi)−1(vi) ∪ {vi}) > (m(vi) − 1) · l. Since vi ∈ Am(vi), there is at least one
such point for every interval in Am(vi).

Algorithm 1. KTl,b

On a new interval vi:

1: For every integer m ≥ 1, let Vm(vi) and Em(vi)be the following subsets of V (G) and
E(G) respectively.
Vm(vi) = {vj ∈ V (G) : j < i, m(vj) ≤ m};
Em(vi) = {(u, v) ∈ E(G) : u, v ∈ Vm(vi)};
Gm(vi) ∪ {vi} = G(Vm(vi) ∪ vi, Em(vi) ∪ {(u, vi) ∈ E(G) : u ∈ Vm(vi)})
ω∗

i (H) = The maximum weighted clique in graph H containing interval vi

2: Let Gm(vi) = G(Vm(vi), Em(vi))
3: m(vi) = the smallest m such that ω∗

i (Gm(vi) ∪ {vi}) ≤ m · l.
4: Am(vi) ⇐ Am(vi) ∪ {vi}
5: Color vi considering only the intervals of Am(vi) using First Fit on colors of Cm(vi).

606 L. Epstein and M. Levy

Lemma 1. Given an interval vi, let m = m(vi). For the set Am and every critical
point q ∈ vi, the total bandwidth at q of intervals in Am does not exceed b + l.

Lemma 2. For every m, ω∗(Am) ≤ 2(b + l).

Proof. Proof by contradiction, assume that there is a weighted clique of more than
2(b + l) in Am obtained at point pj . By the previous lemma, this point is not a critical
point of any interval in Am. For every interval vi ∈ Am, where pj ∈ vi, there is a
critical point either to the right of pj or the left of pj or both. Denote the closest critical
point (of any interval of Am which contains pj) to the left of pj , ql and the closest
critical point to the right of pj , qr. Since there is at least one critical point for every vi,
either ql ∈ vi or qr ∈ vi or both for every vi ∈ Am (since the critical point of vi cannot
be in the interval (ql, qr). But this means that either ql or qr have a total bandwidth of
more than b+ l. By Lemma 1, this is not possible. Note that either ql or qr or both must
exist. If one of qr or ql does not exist, we get the contradiction at the point that exists.

Lemma 3. If all intervals have the same bandwidth, b, and l is divisible by b, for every
m, ω∗(Am) ≤ 2l.

Lemma 4. (i) The largest value of m ever used in KTl,b is
ω∗
l �

(ii) The coloring of KTl,b is at most
ω∗
l �(maxm FF (Cm)), where FF (Cm) denotes

the coloring of the First Fit algorithm on the set Cm of intervals that were presented
online.

Proof. (i): For a maximum weighted clique of ω∗ and for every interval vi ∈ σ,
ω∗(G�ω∗

l �
(vi) ∪ {vi}) ≤ ω∗ ≤
ω∗

l � · l (ii): By (i) the largest value of m is at most

ω∗
l �. For each m, Am is colored by First Fit using the related colors of Cm (last step

of the algorithm).

2.1 Variants of Interval Coloring

Resource Augmentation in Interval Coloring: In the resource augmentation approach,
the online algorithm is given more resources than the offline algorithm. Interval color-
ing is a natural problem to consider with resource augmentation. In this case, in the
online coloring, the total bandwidth of intersecting intervals with the same color can
exceed 1. The allowed maximum bandwidth of the intersecting intervals in the online
coloring will be denoted by B. For the analysis we use the concept of competitive ratio.

Equal length intervals in Interval Coloring: If the intervals must be of equal length,
the associated graph is called a unit interval graph. Recognition of unit interval graphs
has been studied in [13, 4, 12]. It was also studied in the context of interval selection in
[5]. For simplicity, we use intervals of length 1 in some of the proofs of this paper.

3 Interval Coloring

3.1 Resource Augmentation

In [9] Kierstead and Trotter give a lower and upper bound of 3. The main goal when
resource augmentation is allowed, is to find a value of B for which there exists an

Online Interval Coloring and Variants 607

algorithm with a competitive ratio 1. We argue that for B = 2, the online algorithm
presented in [9] uses max{1, OPT − 1} colors. We also present a matching lower
bound of max{1, OPT − 1} on the number of colors used by any online algorithm.

Theorem 1. An adaptation of the algorithm of Kierstead and Trotter [9] can be used
for interval coloring with B = 2, and uses at most max{1, OPT − 1} colors.

Proof. Algorithm: KT1,1 without bandwidth is exactly the the algorithm of Kierstead
and Trotter.

According to Lemma 3 every set Am has a maximum bandwidth of at most 2. Since
B = 2, First Fit can color each Am by a unique color. Moreover, by the definition of
sets A1 and A2, the total bandwidth of intervals in A1 ∪ A2 does not exceed 2. We use
the same color for m = 1, 2, and one color for each other value of m. By Lemma 4, we
get a coloring which uses
ω∗� − 1 ≤ OPT − 1 colors, if OPT ≥ 1 and otherwise it
uses a single color.

We prove that the above bound cannot be improved. Clearly if OPT = 1 the algo-
rithm also uses at least one color, therefore we need to show a lower bound of OPT−1.
The lower bound construction holds only for the absolute competitive ratio.

Theorem 2. There exists an infinite sequence of values of α, such that there exists an
input for which OPT = α and any online algorithm for interval coloring with B = 2,
uses at least OPT − 1 colors.

3.2 Unit Interval Graphs

In the following 2 theorems, we show that First Fit uses at most 2ω − 1 colors for unit
interval graphs and that the analysis is tight.

Theorem 3. First Fit uses at most 2ω − 1 colors for coloring unit interval graphs.

Proof. In this version, since all the intervals are of equal length, if the maximum clique
equals to ω, then there is no interval that intersects with more than 2ω − 2 different
intervals. Assume by contradiction that there exists an interval I = [x, x + 1] that
does intersect with more than 2ω − 2 different intervals. Since all intervals are of unit
length, every interval that intersects I , must contain either the point x or x+1 (or both).
Therefore either the point x or the point x + 1 is contained in more than ω− 1 intervals
not including interval I . This contradicts the fact that the maximum clique size does not
exceeds ω. Therefore First Fit uses at most 2ω − 1 colors.

Theorem 4. There exist unit interval graphs on which First Fit uses exactly 2ω − 1
colors.

Proof. We show a family of instances, where k is the size of largest clique on which
First Fit uses exactly 2k − 1 colors to color it. We define the sequence of intervals in
phases.

Phase i (1 ≤ i ≤ 2k − 1) contains 2k − i intervals that receive the same color by
First Fit. The largest clique size after phase i is � i

2� + 1. The intervals of phase i are

608 L. Epstein and M. Levy

[i − 1 + 2−i+1 + 2j, i − 1 + 2−i+1 + 2j + 1], for 0 ≤ j < 2k − i. All intervals have
length 1, and all consecutive intervals of one phase have fixed distances of 1 between
them.
We prove the following claims.
1.The largest clique after phase 2
 + 1 is of size
 + 1, and in ranges of the form
(2j, 2j + 2−2
), the total requested bandwidth is at most
.
2. All intervals of phase i receive the color i.

Proof of 1: We prove the claim by induction. After phase 1 (
 = 0), the largest clique is
clearly of size 1 (the intervals are non-intersecting). The ranges (2j, 2j + 1) are empty
since the intervals of phase 1 start at odd points. Assume now that the claim holds for

 = s− 1 and prove for
 = s. Phases 2s and 2s + 1 introduce two sets of intervals. To
show the first part of the claim we need to show that the overlap between the intervals
does not overlap with areas where the largest clique is s. Non overlapping parts of new
intervals may increase the size of the largest clique by 1. By definition, the overlap
interval between intervals of these two phases are intervals of the form [2j +2−2s, 2j +
21−2s]. Using the inductive hypothesis, intervals of the form (2j, 2j + 22−2s) have
bandwidth request of size s− 1 only, and therefore the largest clique in these intervals
after phase 2s + 1 does not exceed s + 1. To prove the second part of the claim, the
interval (2j, 2j + 2−2s) is not a part of the overlap between phases 2s and 2s + 1,
therefore its bandwidth request increases by at most 1, and becomes at most s.

Proof of 2: We prove that an interval of phase i intersects with intervals of all smaller
colors. If i is odd, then its left endpoint intersects with all intervals of even colors, and
its right endpoint with all intervals of odd colors. If i is even, its left endpoint intersects
with intervals of all odd colors, and its right endpoint with even colors. This can be
easily verified by the intervals definitions.

Theorem 5. Any online algorithm for unit interval graphs has a competitive ratio of at
least 3

2

4 Online Coloring of Intervals with Bandwidth

Interval coloring with bandwidth was recently studied by [1] and [10]. Adamy and
Erlebach [1] gave a 195-competitive ratio algorithm and Narayanaswamy [10] gave
a 10-competitive ratio. However, is this case really harder? In the theorem below we
answer that question affirmatively. We give a lower bound which is strictly higher than
the upper bound for the problem of interval coloring without bandwidth presented in
[9]. To prove the lower bound we adapt the lower bound on classical interval coloring
given in [9]. In that paper a lower bound of of 3ω − 2 colors is shown, for inputs
where OPT = ω. Since interval graphs are perfect, these are exactly inputs where the
largest clique has size ω. Note that two intervals whose width is strictly larger than 1

2
cannot have the same color. Therefore the same lower bound can be applied not only
for intervals of width 1, but for intervals of arbitrary widths in (1

2 , 1]. In this case, let q
be the largest number of intersecting intervals of width in (1

2 , 1], then we immediately

Online Interval Coloring and Variants 609

get a lower bound of 3q − 2. Finally, we make another adaptation to the lower bound,
namely, we make use of the following lemma.

Lemma 5. The lower bound 3q − 2 on the number of colors holds even if q is given in
advance.

With this, we are ready to prove our main theorem of this section.

Theorem 6. Any deterministic online algorithm for interval coloring with bandwidth
has competitive ratio of at least 3.2609

Proof. Let α be a constant rational number fixed later and let t be an integer such that
αt is integer (there are infinitely many such values of t). Let ε = 1

2αt+1 . The first phase
of requests is a large number T = N !(2αt+1) of identical requests (for a large enough
integer N), all of bandwidth ε. The requests are for a long enough interval. All future
requests will be given within this interval, and therefore they all intersect the initial
requests. The sequence either stops here (and has OPT = N !) or continues with a
second phase which contains requests which are all of bandwidth 1− k

2αt+1 = 1− kε,
for some t ≤ k ≤ αt.

Furthermore, these requests all have bandwidth larger than 1
2 , therefore if they are

packed independently from the first phase, they are treated as requests of width 1.
Adding the first phase means that colors that were used for at least k + 1 intervals,
cannot be used again in the second phase, and other colors can be used again. Intervals
of the second phase are introduced as in Lemma 5 so that the optimal number to color
them is ω, and the number of colors used in this phase is 3ω. If the bandwidth of these
intervals is 1 − kε, then we use ω = T

k , so that an optimal coloring uses ω colors, and
each color is used for k intervals of the first phase. We denote by Xi (1 ≤ i ≤ αt)
the number of colors used in the first phase for exactly i intervals. The algorithm has
no reason to color less than t intervals with one color, since a color used for t inter-
vals can always be used again, therefore Xi = 0 for i < t. If a color is used for more
than αt intervals, it will not be used again, so we can assume that in such a case, the
color is used for 1

ε intervals. We denote by Y the number of colors that are used for

this maximum number of intervals. We have T = Y (2αt + 1) +
αt∑
i=t

i · Xi. If there is

no second phase, OPT = Tε and ALG = Y +
2αt∑
i=1

Xi. Otherwise, we compute the

number of colors used by the algorithm for a specific choice of t ≤ k ≤ αt. We get

ALG = Y +
αt∑

i=k+1

Xi + 3T
k = Y +

αt∑
i=k+1

Xi + 3 ·OPT .

Let C be the competitive ratio of ALG. We have Y +
αt∑

i=1

Xi ≤ C ·Tε and for every

t ≤ k ≤ αt, Y +
j∑

i=k+1

Xi ≤ (C − 3)T
k . We multiply the first inequality by t, the

last inequality (i.e., the second inequality for k = αt) by αt + 1, and all other inequal-
ities by 1 (i.e., the second inequality for all other values of k). We sum them and get
T =

∑αt
i=t iXi + (2αt + 1)Y ≤ C · T t

2αt+1 + (C − 3)
∑αt

i=t
T

2αt+1 + (C − 3)T .

Letting t tend to infinity, we have
∑αt

i=t
T

2αt+1 → lnα. We get C ≥ 3 lnα+4
1
2α +lnα+1

.

610 L. Epstein and M. Levy

Solving in Maple, we see that for an appropriate choice of α this gives a lower bound
of 3.2609.

4.1 Resource Augmentation

In this section we consider two interesting possible values of B. For B = 4 we pro-
vide an online algorithm that can color with OPT − 3 colors. For B = 2 we provide
an online algorithm that uses 3OPT − 2 colors. The lower bound on the competitive
ratio for B = 2 is at least 1 as was shown for the case of interval coloring without
bandwidth.

Proposition 1. An adaptation of the algorithm of Kierstead and Trotter [9] can be used
for interval coloring with B = 4, and uses at most max{1, OPT − 3} colors.

Proof. We use Algorithm: KT1,1 with bandwidth. According to Lemma 2 every Am

has a maximum bandwidth of at most 4. By Lemma 4 the coloring of KT1,1 with
bandwidth, is ω∗ · 1 = ω∗. Since B = 4, First Fit can color each Am by a unique color.
Moreover, by the definition of sets A1, . . . , A4 bandwidth of intervals in A1∪A2∪A3∪
A4 does not exceed 4. We use the same color for m = 1, 2, 3, 4, and one color for each
other value of m. By Lemma 4, we get a coloring which uses
ω∗� − 3 ≤ OPT − 3
colors. If m ≤ 4 we get a coloring using a single color.

Proposition 2. There exists an online algorithm for interval coloring with bandwidth
with B = 2, that uses at most 3OPT-1 colors.

4.2 Unit Interval Graphs

For this version we present three algorithms.

1. First Fit.
2. 2-First Fit. Perform an online partition of the intervals into two subsequences ac-
cording to the bandwidth of the intervals. One subsequence for intervals with bandwidth
b such that b ≤ 1

2 and the other for intervals with bandwidth b such that b > 1
2 . Apply

First Fit on each subsequence separately with disjoint sets of colors.
3. Odd-Even bin packing. Scale the real line into integers and assume all intervals
are of unit length .

Perform an online partition of the intervals into two subsequences called evens and
odds. Each interval intersects an integer point. If an interval is exactly between two in-
tegers, assign it to the left integer point, and otherwise there is a unique integer point. If
the integer point is an even number assign the interval into the evens subsequence, oth-
erwise assign it to the odds subsequence. Apply the best online bin packing algorithm
known separately for the odds subsequence and for the evens subsequence using two
disjoint sets of colors. Each class of intervals that was assigned to an integer point is
handled as an instance of a bin packing problem.

In the following we show that algorithms First Fit, 2-First Fit and Odd-Even bin
packing have an absolute competitive ratios of at most the values 8, 6, 3.5 respectively.

Online Interval Coloring and Variants 611

Intensive research has been done analyzing the performance of the simple First Fit
algorithm for the problem of interval coloring. Adamy and Erlebach [1] argue that First
Fit is arbitrarily bad when introducing bandwidth. In the following theorem we show
that on unit interval graph the competitive ratio of first fit is constant.

Theorem 7. (i) Algorithm First Fit has a competitive ratio of 8 for unit interval graphs
with bandwidth. (ii) Algorithm First Fit has a competitive ratio of 4 for unit interval
graphs with bandwidth if each interval has a bandwidth of at most 1

2 .

Proposition 3. Algorithm 2-First Fit uses at most 6ω colors.

Proof. 2-First Fit uses different sets of colors for intervals of bandwidth in (0, 1
2] and in

(1
2 , 1]. By Theorem 7 part (ii) First Fit on intervals with bandwidth of at most 1

2 has a
competitive ratio of 4. By Theorem 3 First Fit for intervals with bandwidth that exceeds
1
2 , the competitive ratio is 2. Combining these competitive ratios we get a competitive
ratio of at most 6.

Proposition 4. (i) Algorithm Odd Even bin packing has an absolute competitive ratio
of 3.5 for coloring unit interval graphs with bandwidth, using First Fit as the online bin
packing algorithm. (ii) The asymptotic competitive ratio of the algorithm Odd Even bin
packing is at most 3.17778 using the algorithm Harmonic++ of Seiden [14].

Proof. We claim that the odds subsequence can be split into different classes, such that
an interval intersects all intervals within its class, but no other intervals. Each class is
represented by an odd number and it contains all the intervals that were assigned to
that odd integer by the algorithm. Same argument holds for the evens subsequence.
Note that, since all intervals of the same class intersect, each class can be viewed as an
instance to the online bin packing problem. For the first part we use the fact that First
Fit for bin packing has competitive ratio of at most 1.75 with respect to the absolute
measure [15]. Since we use it with two sets of colors, we get a competitive ratio of at
most 3.5. For the second part we use the Harmonic++ algorithm of Seiden [14] and
therefore get 3.17778.

Theorem 8. Any online algorithm for unit interval graph with bandwidth has an ab-
solute competitive ratio of at least 2. Any online algorithm for unit interval graph with
bandwidth has an asymptotic competitive ratio of at least 1.831.

Proof. We prove the lower bound of 2, the proof of the lower bound 1.831 is omitted.
We introduce two identical intervals I1 = I2 = [1, 2] and have bandwidth 1

3 . If they
are assigned distinct colors then already ALG = 2 and OPT = 1, and we are done.
Otherwise all future intervals have bandwidth 2

3 and intersect with the previous inter-
vals. This means that no future interval has the same color as the first two. Two further
intervals are first given, I3 = [15 , 6

5] and I4 = [95 , 14
5]. If they receive distinct colors,

we introduce the interval I5 = [1, 2] which gets a fourth color. It is possible to color
using two colors only, coloring I1, I3, I4 with one color and I2, I5 with a second color.
If they receive the same color, we introduce two intervals I6 = [35 , 8

5], I7 = [75 , 12
5],

which must receive two new colors. The total number of colors used is again 4, while
it is possible to color using only two colors, one color for I1, I3, I7, and a second color
for I2, I4, I6.

612 L. Epstein and M. Levy

5 Lazy Online Interval Coloring

Motivated by The Maximum Resource Bin Packing Problem, we introduce a new prob-
lem called Lazy Online Interval Coloring. In this problem the objective is to use as
many colors as possible. A newly presented interval can be colored by a new color only
if it intersects intervals with all the previously used colors.

Theorem 9. Any online algorithm for the problem Lazy Online Interval Coloring is
arbitrarily bad.

5.1 Unit Interval Graphs

Proposition 5. Any online algorithm for the Lazy Online Interval Coloring with equal
length intervals uses at least OPT+1

2 colors.

Proof. In this version, since all the intervals are of equal length, if the maximum size
clique equals to ω, then there is no interval that intersects with more than 2ω−2 different
intervals (see proof of Theorem 3). Therefore OPT can only use as much as 2ω − 1
colors. Since any online coloring uses at least ω we get a coloring of at least OPT+1

2
colors.

Theorem 10. There is an upper bound of OPT+1
2 on the coloring of any online algo-

rithm for the Lazy Online Interval Coloring problem on unit interval graphs.

5.2 Lazy Online Coloring of Intervals with Bandwidth

In this case we show that no algorithm is competitive even on unit interval graphs.

Theorem 11. Any online algorithm for lazy online coloring of intervals with bandwidth
and equal length intervals is arbitrarily bad.

Proof. For an integer D > 0, we show that the competitive ratio is at least D. We
break up the construction of the sequence of intervals into 2D − 1 phases. In the initial
phase (phase 0) we provide two identical intervals of bandwidth 1 which are requests
for [0, 1]. These are colored by two colors by any online algorithm. We denote these
colors by 1 and 2. For the next phases, it suffices to show that for every phase i, we
increase the number of colors used by OPT from i + 1 to i + 2 while the number of
colors used by the online algorithm remains two.
Phase i: In the first step we present intersecting intervals of bandwidth δ = 1

2D . The
amount of intervals never exceeds 2D so the total requested bandwidth is at most 2. The
online algorithm can only color these intervals with colors 1 and 2. These intervals are
presented such that all intervals colored by 1 by the online algorithm are slightly shifted
to the left with respect to all intervals that are colored 2. Moreover all the intervals
presented here intersect. We present exactly 2i + 1 intervals in the following way.

Let I1 = [a, a + 1] be the rightmost interval colored by 1 and let I2 = [d, d + 1]
be the leftmost interval colored by 2. If there is no interval colored 1 we say that I1 is
empty and If there is no interval colored 2 we say that I2 is empty. For 0 < ε << 1

12D
a new interval, I , is presented as follows.

Online Interval Coloring and Variants 613

1. If both I1 and I2 are empty (presentation of the first interval) then I = [5i− 1, 5i].
2. If only I1 is empty, I = [d− ε, d + 1− ε]
3. If only I2 is empty, I = [a− 1 + ε, a + ε]
4. If I1 and I2 are not empty then, I = [d+a

2 , d+a
2 + 1] , this is an interval of length 1,

located halfway between I1 and I2 and intersecting all previously presented intervals of
this step.

After 2i+1 intervals there are at least i+1 intervals with the same color. In the next
step, an interval of bandwidth 1 that intersects these i + 1 intervals of the same color
and does not intersect any other interval is presented. The online algorithm has to color
this interval by the second color and therefore does not increase the number of colors.
An offline algorithm can color the i + 1 intervals with i + 1 colors it used before. The
next interval can be colored by a new color i + 2 since it intersects intervals that are
colored with i + 1 distinct colors.

Acknowledgment. We would like to thank an anonymous referee for pointing out an
error in an earlier version of this paper.

References

1. U. Adamy and T. Erlebach. Online coloring of intervals with bandwidth. In Proc. of te
First International Workshop on Approximation and Online Algorithms (WAOA2003), pages
1–12, 2003.

2. J. Boyar, L. Epstein, L. M. Favrholdt, J. S. Kohrt, K. S. Larsen, M. M. Pedersen, and
S. Wøhlk. The maximum resource bin packing problem. manuscript.

3. M. Chrobak and M. Ślusarek. On some packing problems relating to dynamical storage
allocation. RAIRO Journal on Information Theory and Applications, 22:487–499, 1988.

4. D. G. Corneil, H .Kim, S. Natarajan, S. Olariu, and A P. Sprague. Simple linear time recog-
nition of unit interval graphs. Information Processing Letters, 55(2):99–104, 1995.

5. T. Erlebach and F. C. R. Spieksma. Interval selection: applications, algorithms, and lower
bounds. J. Algorithms, 46(1):27–53, 2003.

6. T. R. Jensen and B. Toft. Graph coloring problems. Wiley, 1995.
7. H. A. Kierstead. The linearity of first-fit coloring of interval graphs. SIAM Journal on

Discrete Mathematics, 1(4):526–530, 1988.
8. H. A. Kierstead and J. Qin. Coloring interval graphs with First-Fit. SIAM Journal on Discrete

Mathematics, 8:47–57, 1995.
9. H. A. Kierstead and W. T. Trotter. An extremal problem in recursive combinatorics. Con-

gressus Numerantium, 33:143–153, 1981.
10. N. S. Narayanaswamy. Dynamic storage allocation and online colouring interval graphs. In

Proc of the 10th Annual International Conference on Computing and Combinatorics (CO-
COON2004), pages 329–338, 2004.

11. S. Pemmaraju, R. Raman, and K. Varadarajan. Buffer minimization using max-coloring. In
Proc. of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2004),
pages 562–571, 2004.

12. I. Rabinovitch. The scott-suppes theorem on semiorders. J. Math. Psych., 15:209–212, 1977.
13. D. Scott and P. Suppes. Foundational aspects of theories of measurement. J. Symbolic Logic,

23:113–128, 1958.
14. S. S. Seiden. On the online bin packing problem. Journal of the ACM, 49(5):640–671, 2002.
15. D. Simchi-Levi. New worst-case results for the bin-packing problem. Naval Res. Logist.,

41(4):579–585, 1994.

Dynamic Bin Packing of Unit Fractions Items

Wun-Tat Chan1,�, Tak-Wah Lam1, and Prudence W.H. Wong2,��

1 Department of Computer Science,
University of Hong Kong, Hong Kong
{wtchan, twlam}@cs.hku.hk

2 Department of Computer Science,
University of Liverpool, UK

pwong@csc.liv.ac.uk

Abstract. This paper studies the dynamic bin packing problem, in
which items arrive and depart at arbitrary time. We want to pack a se-
quence of unit fractions items (i.e., items with sizes 1/w for some integer
w ≥ 1) into unit-size bins such that the maximum number of bins used
over all time is minimized. Tight and almost-tight performance bounds
are found for the family of any-fit algorithms, including first-fit, best-fit,
and worst-fit. We show that the competitive ratio of best-fit and worst-
fit is 3, which is tight, and the competitive ratio of first-fit lies between
2.45 and 2.4985. We also show that no on-line algorithm is better than
2.428-competitive. This result improves the lower bound of dynamic bin
packing problem even for general items.

1 Introduction

Bin packing problem has been studied since the early 70’s and different variants
of the problem continue to attract researchers attentions (see the survey [6, 9,
10]). In the classical bin packing problem, we want to pack a sequence of items
each with size in the range (0, 1] into unit-size bins using the minimum number
of bins. One of the generalizations of the problem is known as the dynamic bin
packing problem [8], in which items arrive and depart at arbitrary time. The
objective is to minimize the maximum number of bins used over all time. In this
paper, we study dynamic bin packing of unit fractions items. A unit fraction item
has size of the form 1/w for some integer w ≥ 1. We analyze the performance
of the family of any-fit algorithms, which includes first-fit, best-fit and worst-fit,
and provide tight and almost-tight performance bounds. Our lower bound on
dynamic bin packing of unit fractions items even improves the lower bound of
Coffman et al. [8] on dynamic bin packing of general items.

There is a long history of results for the classical bin packing problem and its
variants [6, 9, 10]. Most of the previous works considered the “static” bin packing

� This research was supported in part by Hong Kong RGC Grant HKU-5172/03E.
�� This research was supported in part by Nuffield Foundation Grant NAL/01004/G.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 614–626, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Dynamic Bin Packing of Unit Fractions Items 615

where items will not depart. In this model, the off-line bin packing problem is
NP-hard [11]. In the on-line setting, each item must be assigned to a bin, without
knowledge of the subsequent items. Moreover, no migration of items are allowed,
i.e., items are not allowed to move from one bin to another. The performance is
measured in terms of competitive ratio (see [3] for a survey). The current best
upper bound is due to Seiden [14], who proved that the algorithm Harmonic++
has a competitive ratio at most 1.588891. The current best lower bound is due to
van Vliet [15] who showed that no on-line algorithm can achieve a competitive
ratio less than 1.54014.

In many real applications, item sizes are often not arbitrary real numbers in
(0, 1]. Bar-Noy et al. [2] initiated the study of the unit fractions bin packing prob-
lem (UFBP), a restricted version of the classical bin packing problem in which all
sizes are of the form 1/w for some integer w ≥ 2. In the on-line setting, they gave
an on-line algorithm with a competitive ratio 1+O(1/

√
H), where H denotes the

sum of sizes of all items. Note that this algorithm is asymptotically optimal. Bin
packing with other restricted form of item sizes includes divisible item sizes [7]
(where each possible item size can be divided by the next smaller item size) and
discrete item sizes [5] (where possible item sizes are {1/k, 2/k, · · · , j/k} for some
1 ≤ j ≤ k).

Dynamic bin packing is a generalization of the classical bin packing problem
introduced by Coffman et al. [8]. The problem assumes that items may depart
at arbitrary time, and the objective is to minimize the maximum number of bins
used over all time. It was shown in their paper that the on-line algorithm first-fit
has a competitive ratio lies between 2.75 and 2.897, and no on-line algorithm can
achieve a competitive ratio better than 2.5. Note that these results assume a very
general optimal off-line algorithm, which can re-pack the items. Coffman et al.
also gave an improved lower bound of 2.388 when the off-line algorithm is not
allowed to re-pack the items. Ivkovic and Lloyd [12] studied an even more general
problem called the fully dynamic bin packing problem, where migration of items
are allowed, and gave a 1.25-competitive on-line algorithm for this problem.

This paper studies the problem of dynamic bin packing of unit fractions
items, the main contribution are several very close upper and lower bounds (see
Table 1). We show that any-fit algorithms, which include first-fit, best-fit and
worst-fit are 3-competitive. We further show that the performance of best-fit and
worst-fit are indeed tight, i.e., they cannot be better than 3-competitive. On the
other hand, we show that first-fit has a better performance, its competitive ratio
lies between 2.45 and 2.4985. In addition, we prove that no on-line algorithm
can be better than 2.428-competitive. This result improves the lower bound of
2.388 of Coffman et al. [8] on dynamic bin packing for general items.

There is a problem related to UFBP, called the windows scheduling prob-
lem (WS) [1, 2, 4], as pointed out by Bar-Noy et al. [2]. Similar to UFBP, the
input of WS is a sequence of items, each with a window represented by an inte-

1 Seiden [14] pointed out that the previous best algorithm Harmonic+1 by Richey [13]
has competitive ratio at least 1.59217 rather than the claimed 1.58872.

616 W.-T. Chan, T.-W. Lam, and P.W.H. Wong

Table 1. Summary of results

Algorithms Upper bounds Lower bounds

First-fit 2.4985 2.45

Best-fit 3 3

Worst-fit 3 3

Any-fit 3 2.428

Any on-line algorithms – 2.428

ger. Each item represents a piece of information to be broadcast to all clients. It
is assumed that all items are of the same length, which takes the same amount
of time to broadcast. The objective of WS is to use the minimum number of
broadcast channels to broadcast each item periodically such that the duration
between two consecutive broadcasts of the same item must not exceed the win-
dow of that item. By letting the bins as broadcast channels and the reciprocal
of item sizes as windows, UFBP can be considered as a special case of WS, and
hence the lower bound result on UFBP applies to WS. (Note that the upper
bound on UFBP does not carry over to WS.) Chan and Wong [4] considered
the dynamic version of WS, in which items may also depart. They gave a 5-
competitive algorithm and showed that no on-line algorithm can be better than
2-competitive. The lower bound of dynamic bin packing of unit fractions item
in this paper improves the lower bound for the dynamic version of WS to 2.428.

The rest of the paper is organized as follows. Section 2 gives some definitions.
Section 3 analyzes the performance of the family of any-fit algorithms. This
includes upper and lower bounds for first-fit (Sections 3.1 and 3.2, respectively),
and upper and lower bounds for best-fit and worst-fit (Section 3.3). Finally,
Section 4 gives a lower bound for any on-line algorithm.

2 Preliminaries

In this section, we give a precise definition of the dynamic unit fractions bin
packing problem and the necessary notations for further discussion. We are to
pack a sequence of items into bins of unit-capacity. Items arrive and depart at
arbitrary time. We denote the i-th item by mi and its arrival time by ai. Each
item mi comes with a size si which is a reciprocal of an integer, i.e., si = 1/wi

for some integer wi ≥ 1. When item mi arrives at ai, it must be assigned to a
bin immediately. At any time, the load of a bin is the total size of items that
are currently assigned to that bin and have not yet departed, and this load must
be at most 1 because of unit-capacity. Migration is not allowed in the sense
that once an item is assigned to a bin, it cannot be moved to another bin. The
objective is to minimize the maximum number of bins used over all time.

As with previous work, we measure the performance of an on-line algorithm
in terms of a competitive ratio. Given a sequence σ of items and an on-line bin
packing algorithm A, let A(σ, t) denote the number of bins used by A at time t.

Dynamic Bin Packing of Unit Fractions Items 617

We say that A is c-competitive if there exists a constant k such that for any
input sequence σ, we have maxtA(σ, t) ≤ c · maxtO(σ, t) + k, where O is the
optimal off-line algorithm.

In this paper, we consider several on-line algorithms: any-fit, first-fit, best-
fit, and worst-fit. When an item arrives, all these algorithms pack the item into
an occupied bin as long as there exists such a bin that can accommodate the
item; a new bin is only used when no occupied bins can accommodate the item.
The algorithms differ in the rule used to choose the occupied bin for the newly
arrived item. To describe the rules of these algorithms, we first define a way to
label the occupied bins at a specific time.

At any time t, suppose that there are n occupied bins. For any bin X
among these n bins, let f(x) ≤ t be the latest time X turns from empty
to non-empty. At time t, we label these n non-empty bins using integers
1, 2, . . . , n such that the label of bin X is less than that of bin Y if
f(X) ≤ f(Y). Notice that the labels of bins change over time.

When a new item mi arrives, if there is any occupied bin with load no more
than 1−1/wi, the algorithms assign mi to one of these bins as follows:

Any-fit (AF) assigns mi to any of these bins arbitrarily.
First-fit (FF) assigns mi to the one with the smallest label at ai.
Best-fit (BF) assigns mi to the heaviest load one; ties are broken arbitrarily.
Worst-fit (WF) assigns mi to the lightest load one; ties are broken arbitrarily.

3 Performance of the Family of Any-Fit Algorithms

In this section we analyze the performance of any-fit algorithms. In Sections 3.1
and 3.2, we give an upper bound of 2.4985 and a lower bound of 2.45 for the
competitive ratio of FF. Then in Section 3.3, we show that both BF and WF
cannot be better than 3-competitive and then give the matching upper bounds.

3.1 Upper Bound for First-Fit

Before we analyze the upper bound of FF, let us have some definitions. Consider
any positive integers x and y. Suppose that we pack a bin using items of sizes
1, 1/2, . . . , 1/x only. We want to define the notion of the minimum load that such
a bin must have in order that an additional item of size 1/y cannot be packed
into the bin. We define a function α(x, y) to capture this notion. Formally,

α(x, y) = min
1≤j≤x & nj≥0

{n1 + n2/2 + . . .nx/x | n1 + n2/2 + . . .nx/x > 1− 1/y}.

For example, when x = 4 and y = 3, we have α(4, 3) = 3/4 and correspondingly
n1 = 0, n2 = 1, n3 = 0 and n4 = 1.

With respect to a particular input σ,we define a sequence of integer pairs (bi, ri)
as follows. Let b1 denote the maximum number of bins used by FF over all time.

618 W.-T. Chan, T.-W. Lam, and P.W.H. Wong

Suppose the smallest item that FF ever packs into a bin with label b1 is of
size 1/r1. We define bi and ri for i ≥ 2 as follows. Let bi < bi−1 be the largest
integer such that FF ever packs an item of size smaller than 1/ri−1 into a bin
with label bi. The size of the smallest item that FF ever packs into a bin with
label bi is denoted 1/ri. Let k be the largest value of i that bi and ri can be
defined. Notice that b1 > b2 > . . . > bk and r1 < r2 < . . . < rk.

Now we are ready for the analysis. Consider the time instance tk when FF
packs an item X of size 1/rk into a bin B with label bk. Since k is the largest
index of bi that can be defined, no item with size smaller than 1/rk has ever been
packed into any bin, in particular the bins with label from 1 to bk − 1. Together
with the fact that FF packs X into B but not bins with labels 1 to bk − 1, we
can conclude that at time tk, each of the bins with labels from 1 to bk − 1 must
have a load at least α(rk, rk). Including item X, the total load of all bins at tk
is at least 1/rk + (bk − 1) · α(rk, rk). Let

k = 1/rk + (bk − 1) · α(rk, rk).

Next, for any integer 1 ≤ i ≤ k−1, consider the time instance ti when FF packs
an item Xi of size 1/ri into a bin with label bi. By the definition of bi and ri,
we can use a similar argument as before to show that: (1) each of the bins with
labels from 1 to bk must have load at least α(rk, ri); (2) for any integer p with
k > p ≥ i+1, each of the bins with labels from bp+1 + 1 to bp must have load at
least α(rp, ri); and (3) each of the bins with labels from bi+1 + 1 to bi − 1 must
have load at least α(ri, ri). Including item Xi, the total load of all bins at time ti
is at least 1/ri+(bi−bi+1−1)·α(ri, ri)+

∑k−1
p=i+1(bp−bp+1)·α(rp, ri)+bk ·α(rk, ri).

For 1 ≤ i ≤ k − 1, let

i = 1/ri +(bi− bi+1− 1) ·α(ri, ri)+
∑k−1

p=i+1(bp− bp+1) ·α(rp, ri)+ bk ·α(rk, ri).

Let
 = max1≤i≤k
i. The number of bins used by the optimal off-line algorithm
is at least
. On the other hand, the maximum number of bins used by FF is b1.
Below we show that b1 < 2.4985
+ 1.337, which implies the following theorem.

Theorem 1. First-fit is 2.4985-competitive.

To prove Theorem 1, we assume k ≥ 5. The case for k < 5 can be proved
similarly and will be given in the full paper. Depending on the values of ri’s,
we consider the following six sub-cases: Case 1: r1 ≥ 2; Case i, for 2 ≤ i ≤ 5:
r1 = 1, r2 = 2, · · ·, ri−1 = i− 1, and ri ≥ i + 1; and Case 6: r1 = 1, r2 = 2, · · ·,
r5 = 5. We analyze the relationship between b1 and
 case by case in each of the
following lemmas.

Lemma 1. If r1 ≥ 2, then b1 < 2
+ 1.

Proof. Since α(x, y) > 1−1/y for any integers x and y, we have
1 > 1/r1 +
(b1−b2−1)(1−1/r1)+

∑k−1
p=2(bj−bj+1)(1−1/r1)+bk(1−1/r1) = 1/r1+(b1−1)(1−

1/r1). By simple arithmetic, we have b1 <
1r1/(r1−1)+(r1−2)/(r1−1) < 2
+1;
the latter inequality holds because r1 ≥ 2 and
1 ≤
.

Dynamic Bin Packing of Unit Fractions Items 619

Lemma 2. If r1 = 1 and r2 ≥ 3, then b1 < 2.4445
+ 1.

Proof. Notice that for any integer x, α(x, 1) is the minimum value in the form
of n1 + n2/2 + n3/3 + . . .+ nx/x that is greater than 0; therefore, α(x, 1) must
be equal to 1/x. Then, we have
1 = 1/1 + (b1 − b2 − 1) · α(1, 1) +

∑k−1
p=2(bp −

bp+1) · α(rp, 1) + bk · α(rk, 1) > (b1 − b2) + (b2 − b3)/r2.
Next, by the definition that α(x, y) ≥ 1 − 1/y for any integers x and y, we

have
2 = 1/r2+(b2−b3−1)·α(r2, r2)+
∑k−1

p=3(bp−bp+1)·α(rp, r2)+bk ·α(rk, r2) >
(b2 − 1)(1 − 1/r2). Similarly, we have
3 > (b3 − 1)(1 − 1/r3). By solving the
three inequalities, we have b1 < 22
/9 + 1 < 2.4445
+ 1.

Lemma 3. If r1 = 1, r2 = 2, and r3 ≥ 4, then b1 < 2.4792
+ 1.25.

Proof. Recall that α(x, 1) > 1/x for any integer x. We have
1 > (b1 − b2) +
(b2− b3)/2+(b3− b4)/r3. By the fact that α(2, 2) = 1 and α(x, 2) > 1/2 for any
integer x, we have
2 = 1/2+(b2− b3− 1) ·α(2, 2)+

∑k−1
p=3(bp− bp+1) ·α(rp, 2)+

bk ·α(rk, 2) > (b2− b3−1)+ b3/2. We can also prove that
3 > (b3−1)(1−1/r3)
and
4 > (b4 − 1)(1 − 1/r4). By solving the four inequalities, we have b1 <
119
/48 + 5/4 < 2.4792
+ 1.25, and the lemma follows.

Lemma 4. If r1 = 1, r2 = 2, r3 = 3, and r4 ≥ 5, then b1 < 2.4942
+ 1.3167.

Proof. Using the same approach, we have

1 > (b1 − b2) + (b2 − b3)/2 + (b3 − b4)/3 + (b4 − b5)/r4,

2 > (b2 − b3 − 1) + (b3 − b4)(2/3) + b4/2, {∵ α(3, 2) = 2/3}

3 > ((b3 − b4 − 1)(5/6) + 2b4/3, {∵ α(3, 3) = 5/6}

4 > (b4 − 1)(1− 1/r4), and

5 > (b5 − 1)(1− 1/r5).

By solving the five inequalities, we have b1 < 2993
/1200 + 79/60 < 2.4942
 +
1.3167, and the lemma follows.

Lemma 5. If ri = i for all 1 ≤ i ≤ 4, and r5 ≥ 6, then b1 < 2.49345
+ 1.3325.

Proof. Using the same approach, we have

1 > (b1 − b2) + (b2 − b3)/2 + (b3 − b4)/3 + (b4 − b5)/4 + (b5 −b6)/r5,

2 > (b2 − b3 − 1) + (b3 − b4)(2/3) + (b4 − b5)(7/12) + b5/2, {∵ α(4, 2) = 7/12}

3 > (b3 − b4 − 1)(5/6) + (b4 − b5)(3/4) + 2b5/3, {∵ α(4, 3) = 3/4}

4 > ((b4 − b5 − 1)(5/6) + b5(3/4), {∵ α(4, 4) = 5/6}

5 > (b5 − 1)(1− 1/r5), and

6 > (b6 − 1)(1− 1/r6).

Solving these inequalities, we have b1 < 2.4935
+1.3325, and the lemma follows.

Lemma 6. If ri = i for all 1 ≤ i ≤ 5, then b1 < 2.4985
+ 1.337.

The proof of Lemma 6 uses a similar approach as in Lemmas 1 to 5, and the
details will be given in the full paper. By Lemmas 1 to 6, Theorem 1 follows.

In fact, we conjecture that the worst case happens when ri = i for all 1 ≤
i ≤ k. In that case, the computed competitive ratio is approaching 2.48.

620 W.-T. Chan, T.-W. Lam, and P.W.H. Wong

3.2 Lower Bound for First-Fit

In this section we give a lower bound for FF by constructing an adversary se-
quence of items such that the maximum number of bins used by FF is at least
2.45 times that used by the optimal off-line algorithm. For any positive integers x
and y, define β(x, y) to be the minimum number of items of size 1/x in a bin
such that an additional item of size 1/y cannot be packed into the bin. Formally,

β(x, y) = min
z∈Z+

{z | z/x > 1− 1/y},

i.e., β(x, y) = 1 + x−
x/y�. For example, if x = 4 and y = 3, then β(x, y) = 3.
Let n be an integer and let D = n!. The adversary sequence consists of n

stages. In each stage, some items released in the previous stage depart and a
number of new items of the same size are released. The choices of which items
to depart depend on how FF packs the items in previous stages. In Stage 1, Dn
items of size 1/n are released. FF packs all Dn items into D bins, and each bin
is fully packed.

For subsequent stages, i.e., Stage i, for 2 ≤ i ≤ n, the adversary targets to
maintain an invariant on how FF packs the items: At the beginning of Stage i,

– each occupied bin contains only items of the same size; and
– a bin that contains items of size 1/x contains β(x, n− i + 2) items.

The invariant holds at the beginning of Stage 2 because each occupied bin con-
tains β(n, n) = n items of size 1/n. Stage i consists of two steps.

1. For each occupied bin, if it contains items of size 1/x, we arbitrarily choose
β(x, n− i + 2)− β(x, n− i + 1) items and let them depart, in other words,
there are β(x, n−i+1) items remained. Let Di be the sum of item size for all
the departed items. We will prove later that Di is an integer (see Lemma 7).

2. Next, Di(n−i+1) items of size 1/(n−i+1) are released. Since each bin with
item of size 1/x contains β(x, n − i + 1) items, none of the newly released
items can be packed into any occupied bin. Therefore, FF will use Di empty
bins to pack all these items, each bin contains n−i+1 = β(n−i+1, n−i+1)
items. Thus, the invariant also holds at the beginning of Stage i + 1.

Define D1 = D, which is the number of empty bins used in Stage 1. From the
above discussion, we can see that the number of empty bins required for items
of size 1/(n− i+1) in Stage i is Di. Then, at the beginning of Stage i, there will
be Dj bins each with items of size 1/(n− j + 1) for all 1 ≤ j ≤ i− 1. Therefore,
the sum of the size of all departed items in Stage i satisfies:

Di =
i−1∑
j=1

{
Dj(β(n− j + 1, n− i + 2)− β(n− j + 1, n− i + 1))

n− j + 1

}
.

Lemma 7. Di is an integer multiple of (n− i + 1) for 1 ≤ i ≤ n.

Dynamic Bin Packing of Unit Fractions Items 621

Proof. We prove by induction a stronger claim that Di is an integer multiple
of (n − i + 1)! for 1 ≤ i ≤ n. It is clear that D1 = D is an integer multiple of
n!. Suppose Di is an integer multiple of (n − i + 1)! for 1 ≤ i ≤ k. We have
Dk+1 =

∑k
j=1(Dj/(n − j + 1))(β(n − j + 1, n − k + 1) − β(n − j + 1, n − k)).

Since the function β gives an integer output and Dj/(n − j + 1) is an integer
multiple of (n− j)!, the summation gives an integer multiple of (n− k)!, which
completes the induction.

The following lemmas give the performance of FF on the adversary sequence.

Lemma 8. There exists some integer n such that the maximum number of bins
used by FF is at least 2.45D.

Proof. After Stage n, FF uses
∑n

i=1Di bins. We carry out the analysis on the
value of

∑n
i=1Di by actually computing the value of

∑n
i=1Di with different

values of n. We find that the increase in n generally leads to an increase in∑n
i=1Di, though not monotonically. By letting n = 21421, and computing the

values of Di, we have
∑n

i=1Di > 2.45D.

Lemma 9. The optimal off-line algorithm uses at most D bins at any time.

Proof. We give an algorithm O to pack the items in the adversary such that O
uses at most D bins over all time. In this proof permanent items refer to the
items remain after Stage n and temporary items refer to the items depart in
Stage n or before.

The algorithm O runs as follows. In each stage, when there are new items
released, O packs the new items using the minimum number of empty bins such
that a bin contains only permanent items, or temporary items that will depart
in the same stage. We claim that O uses exactly D bins after each stage. In the
initial stage, O packs the D = n! permanent items into (n − 1)! bins and the
(n − 1)n! temporary items to another (n − 1)(n − 1)! bins. Totally, there are
n! = D occupied bins.

We prove that in each subsequent Stage i, for 2 ≤ i ≤ n, the departed items
produce Di empty bin and O uses the Di empty bins to pack the Di(n− i + 1)
items of size 1/(n− i+1) released. First, the number of empty bins produced in
Stage i equals

∑i−1
j=1�Dj(β(n−j+1, n−i+2)−β(n−j+1, n−i+1))/(n−j+1)�,

which is equal to Di because by Lemma 7, the term Dj/(n− j +1) is an integer.
Second, among the Di(n− i + 1) items of size 1/(n− i + 1) released in Stage i,
the total size of those items that will depart in Stage p, for i + 1 ≤ p ≤ n, is
Di(β(n − j + 1, n − p + 2) − β(n − j + 1, n − p + 1))/(n − i + 1), which is an
integer because by Lemma 7, Di/(n− i+1) is an integer. Thus, we show that O
can use Di empty bins to pack all Di(n − i + 1) items of size 1/(n − i + 1). In
other words, O, and thus the optimal off-line algorithm, uses at most D bins at
any time, and the lemma follows.

By Lemmas 8 and 9, the following theorem holds.

Theorem 2. FF is at least 2.45-competitive.

622 W.-T. Chan, T.-W. Lam, and P.W.H. Wong

3.3 Performance of Other Any-Fit Algorithms

We show that BF and WF have a worse performance than FF, precisely, we show
that BF and WF cannot be better than 3-competitive. On the other hand, we
give the matching upper bounds. We prove in the Appendix that AF, including
BF and WF, is 3-competitive.

Theorem 3. Any-fit is 3-competitive.

We give an adversary for WF as follows. Let k be an arbitrarily large integer
constant and let w = 2k. The sequence contains 5k items, m1,m2, . . . , m5k, with
mi arriving at time i. There are three different sizes of the items: (1) si = 1/2
for i = 1, 3, . . . , 4k − 1; (2) si = 1/w for i = 2, 4, . . . , 4k; and (3) si = 1 for
i = 4k + 1, 4k + 2, . . . , 5k. All items of size 1/2 depart at time 4k while items
of size 1/w and 1 never depart. In the Appendix we show that the maximum
number of bins used by WF is at least 3k and by the optimal off-line algorithm is
at most k+1. For any 0 < ε ≤ 3/2, setting k = 3/ε−1 results in the competitive
ratio 3k/(k + 1) > (3− ε). Hence, we have the following theorem.

Theorem 4. Worst-fit is no better than 3-competitive.

Next, we give an adversary for BF. Let k be an arbitrarily large integer con-
stant and let w = 2k. The adversary sequence consists of 2k stages, each lasts
for 4 time units. Precisely, Stage i spans from time 4i + 1 to 4i + 4. There are
three different sizes of items: 1/w, 1/2 and 1, all items of size 1/2 will depart
at some time while items of size 1/w and 1 never depart. Before Stage 0, two
items are released, one with size 1/2, and the other with size 1/w. The stages
proceed as follows. Stage i, for 0 ≤ i ≤ 2k − 2: At time 4i + 1, i items of
size 1/2 are released. At time 4i + 2, one more item of size 1/2 is released. At
time 4i + 3, all items of size 1/2 released before time 4i + 2 depart, including
those released at time 4i + 1 and the one released in Stage i− 1. At time 4i + 4,
a single item with size 1/w is released. Stage 2k − 1: At time 4(2k − 1) + 3,
the item with size 1/2 released in Stage (2k− 2) departs. At time 4(2k− 1) + 4,
k items of size 1 are released. In the Appendix, we show that the maximum
number of bins used by BF is at least 3k and that by the optimal off-line al-
gorithm is at most k + 1. For any 0 < ε ≤ 3/2, setting k = 3/ε − 1 results
in the competitive ratio 3k/(k + 1) > (3 − ε). Hence, we have the following
theorem.

Theorem 5. Best-fit is no better than 3-competitive.

4 General Lower Bound

We give an adversary sequence of items such that the maximum number of bins
used by any on-line algorithm is at least 2.428 times that used by the optimal
off-line algorithm. First, we need the following notion. For any positive integers x
and y, define λ(x, y) to be the maximum number of items of size 1/x that can
be packed into a bin containing an item of size 1/y. Formally,

Dynamic Bin Packing of Unit Fractions Items 623

λ(x, y) = max
z∈Z+

{z | z/x ≤ 1− 1/y},

i.e., λ(x, y) = x−
x/y�. For example, if x = 4 and y = 3, then λ(x, y) = 2.
Consider any on-line algorithm A. Let n be an integer and let F = n!(n−1)!.

The adversary sequence consists of n stages and has the following properties: In
each stage, some items released in the previous stage depart and a number of
items of the same size are released. The arrival of items in the adversary sequence
ensures that at the end of each stage, A has to use some additional bins to pack
the items released in that stage. We are going to define a sequence of numbers Fi

for 1 ≤ i ≤ n, which is related the number of additional bins required in Stage i.
In Stage 1, Fn items of size 1/n are released. The algorithm A uses at least F

bins to pack the Fn items. If A uses more than F bins, all items in bins other
than the first F bins depart. We define F1 to be F .

In each of the subsequent stages, i.e., Stage i, for 2 ≤ i ≤ n, there are three
steps. (1) For each occupied bin, all its items except the smallest one depart.
(2) Let Ri be the total size of the items remained. (We will prove later, in the
proof of Lemma 11, that Ri is indeed an integer.) The adversary then releases
(F − Ri)(n − i + 1) items of size 1/(n − i + 1). At this point, the total size
of all items not yet departed, including those released in previous stages, is F .
(3) Define

Fi = F −
i−1∑
j=1

Fj

(
1

n− j + 1
+
λ(n− j + 1, n− i + 1)

n− i + 1

)
.

If A uses more than Fi additional bins in Stage i, all items packed into the
additional bins other than the first Fi additional bins depart. Roughly speak-
ing, Fi is the minimum number of additional bins required in Stage i; the term
λ(n− j + 1, n− i + 1) reflects the maximum number of items released in Stage i
that can be packed into an occupied bin which was an additional bin in Stage j.
We will prove this formally in Lemma 11. We first prove a property of Fi.

Lemma 10. Fi is an integer multiple of (n− i + 1)!(n− i)! for 1 ≤ i ≤ h.

Proof. We prove the lemma by induction. It is clear that F1 = F is an integer
multiple of n!(n−1)!. Suppose Fi is an integer multiple of (n−i+1)!(n−i)! for 1 ≤
i ≤ k. We have Fk+1 = F−

∑k
j=1 Fj(1/(n−j+1)+λ(n−j+1, n−i+1)/(n−k)).

Since the function λ gives an integer output and Fj/((n − j + 1)(n − k)) is an
integer multiple of (n− k)!(n− k− 1)! as k ≥ j, the summation gives an integer
multiple of (n− k)!(n− k − 1)!, which completes the induction.

Lemma 11. For 1 ≤ i ≤ n, A uses no less than Fi additional bins in Stage i.

Proof. In Stage 1, it is clear that A uses at least F1 = F additional bins. We
show by induction that in Step (2) of Stage i for 2 ≤ i ≤ n, A also uses at least
Fi additional bins. Assume that it is true for i = k. Before Step (2) of Stage k+1,
A already has Fj bins containing a single item of size 1/(n−j +1) for 1 ≤ j ≤ k.
Therefore, Rk+1 =

∑k
j=1 Fj/(n− j + 1). We can see that Rk+1 is an integer as

624 W.-T. Chan, T.-W. Lam, and P.W.H. Wong

Fj is an integer multiple of (n − j + 1)!(n − j)!. The number of items of size
1/(n − k) released is (F − Rk+1)(n − k) = (F −

∑k
j=1 Fj/(n − j + 1))(n − k).

The number of items that can be packed into the occupied bins is equal to∑k
j=1 Fj · λ(n − j + 1, n − k). Therefore, the number of additional bins needed

in Stage k + 1 is at least

F −
k∑

j=1

Fj

n− j + 1
−

k∑
j=1

Fj · λ(n− j + 1, n− k)
n− k

= F −
k∑

j=1

Fj

(
1

n− j + 1
+
λ(n− j + 1, n− k)

n− k

)
= Fk+1.

This induction is completed.

Lemma 12. There exists some integer n such that the maximum number of bins
used by A is at least 2.428F .

Proof. After Stage n,A uses
∑n

i=1 Fi bins. We carry out the analysis on the value
of

∑n
i=1 Fi by actually computing the value of

∑n
i=1 Fi with different values of

n. We find that the increase in n results an increase in
∑n

i=1 Fi monotonically.
In particular, by letting n = 12794, and computing the values of Fi, we have∑n

i=1 Fi > 2.428F .

Theorem 6. Any on-line algorithm is at least 2.428-competitive.

Proof. Similar to Lemma 9, we can show that the optimal off-line algorithm uses
at most F bins. Together with Lemma 12, the theorem follows.

References

1. A. Bar-Noy and R. E. Ladner. Windows scheduling problems for broadcast systems.
SIAM J. Comput., 32(4):1091–1113, 2003.

2. A. Bar-Noy, R. E. Ladner, and T. Tamir. Windows scheduling as a restricted
version of bin packing. In J. I. Munro, editor, SODA, pages 224–233. SIAM, 2004.

3. A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cam-
bridge University Press, 1998.

4. W.-T. Chan and P. W. H. Wong. On-line windows scheduling of temporary items.
In R. Fleischer and G. Trippen, editors, ISAAC, volume 3341 of Lecture Notes in
Computer Science, pages 259–270. Springer, 2004.

5. E. G. Coffman, Jr., C. Courcoubetis, M. R. Garey, D. S. Johnson, P. W. Shor,
R. R. Weber, and M. Yannakakis. Bin packing with discrete item sizes, Part I:
Perfect packing theorems and the average case behavior of optimal packings. SIAM
J. Discrete Math., 13:38–402, 2000.

6. E. G. Coffman, Jr., G. Galambos, S. Martello, and D. Vigo. Bin pakcing ap-
proximation algorithms: Combinatorial analysis. In Handbook of Combinatorial
Optimization. Kluwer Academic Publishers, 1998.

7. E. G. Coffman, Jr., M. Garey, and D. Johnson. Bin packing with divisible item
sizes. Journal of Complexity, 3:405–428, 1987.

Dynamic Bin Packing of Unit Fractions Items 625

8. E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Dynamic bin packing. SIAM
J. Comput., 12(2):227–258, 1983.

9. E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Bin packing approximation
algorithms: A survey. In D. S. Hochbaum, editor, Approximation Algorithms for
NP-Hard Problems, pages 46–93. PWS, 1996.

10. J. Csirik and G. J. Woeginger. On-line packing and covering problems. In A. Fiat
and G. J. Woeginger, editors, On-line Algorithms—The State of the Art, volume
1442 of Lecture Notes in Computer Science, pages 147–177. Springer, 1996.

11. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, San Francisco, 1979.

12. Z. Ivkovic and E. L. Lloyd. Fully dynamic algorithms for bin packing: Being
(mostly) myopic helps. SIAM J. Comput., 28(2):574–611, 1998.

13. M. B. Richey. Improved bounds for harmonic-based bin packing algorithms. Dis-
crete Applied Mathematics, 34:203–227, 1991.

14. S. S. Seiden. On the online bin packing problem. J. ACM, 49(5):640–671, 2002.
15. A. van Vliet. An improved lower bound for on-line bin packing algorithms. Inf.

Process. Lett., 43(5):277–284, 1992.

Appendix

Proof of Theorem 3: Consider any input seqeunce σ. Suppose AF uses at most
n bins. The proof is based on two notions. (1) Let t1 be a time instance such
that AF uses n occupied bins, and n1 be the number of occupied bins with item
of size 1 at time t1. Notice that the optimal off-line algorithm uses at least n1

occupied bins at time t1. (2) Let n2 be the largest integer such that AF packs
an item m of size 1/2 or less into an empty bin with label n2 and suppose this
happens at t2. At time t2, all bins with labels smaller than n2 have load greater
than 1/2; otherwise, AF can pack m to one of these bins. In that case, the optimal
off-line algorithm uses at least
n2/2� bins at time t2. By the definition of n2,
at time t1, every bin with label greater than n2 contains an item of size greater
than 1/2, i.e., 1. Hence, we have n ≤ n1 + n2. On the other hand, the optimal
off-line algorithm uses at least max{n1,
n2/2�} bins. By simple arithmetic, we
have n ≤ 3max{n1,
n2/2�} (the worst case happens when n1 =
n2/2�).

Proof of Theorem 4: We first describe how WF packs the 5k items in the
adversary. WF packs the item m2j−1 of size 1/2 and m2j of size 1/w to the same
bin with label j, for 1 ≤ j ≤ 2k. After all items of size 1/2 depart, there are 2k
occupied bins; k more bins are needed for the items of size 1. Therefore, WF
uses 3k bins.

On the other hand, the optimal off-line algorithm can use a single bin to pack
all the items of size 1/w and k bins to pack the items of size 1/2. This packing
uses k + 1 bins. After all the items of size 1/2 depart, the k bins can be used to
pack the items of size 1. Thus, the optimal off-line algorithm uses at most k + 1
bins, and the competitive ratio of WF is at least 3k/(k+1). For any 0 < ε ≤ 3/2,
picking k to be 3/ε− 1 implies that WF is no better than (3− ε)-competitive.

Proof of Theorem 5: We first describe how BF packs the items in the adver-
sary. We claim that for 1 ≤ i ≤ 2k−1, at the beginning of Stage i, BF uses i+1

626 W.-T. Chan, T.-W. Lam, and P.W.H. Wong

bins, one of them has load 1/2 + 1/w, and the other i bins each has load 1/w.
The base case for Stage 1 can be verified easily. Suppose the claim is true for
some i ≥ 1. Consider what happens in Stage i. At time 4i + 1, BF packs each of
the i new items into the i bins with load 1/w. All the i + 1 occupied bins now
have load 1/2 + 1/w. The item of size 1/2 released at time 4i + 2 must then be
packed into a new bin. After the departure of items of size 1/2 at time 4i + 3,
we are left with a bin with load 1/2 and i + 1 bins each with load 1/w. When
the item of size 1/w is released at time 4i + 4, BF packs it into the bin with
load 1/2. Then, at the beginning of Stage i+1, BF uses i+ 2 bins where i+1 of
them have load 1/w and one has load 1/2 + 1/w, and the claim follows. Finally,
in Stage 2k − 1, BF needs k more bins, and thus uses at least 2k + k = 3k bins.

On the other hand, the optimal off-line algorithm can reserve a single bin for
the 2k items of size 1/w. At any time, there are at most 2k items of size 1/2 which
can be packed into k bins. In the final stage, all these items depart and the k
bins can be used for the items of size 1. Hence, the optimal off-line algorithm
uses at most k + 1 bins, and the competitive ratio of BF is at least 3k/(k + 1).
For any 0 < ε ≤ 3/2, picking k to be 3/ε − 1 implies that BF is no better than
(3− ε)-competitive.

Reordering Buffer Management
for Non-uniform Cost Models�

Matthias Englert and Matthias Westermann

Department of Computer Science,
RWTH Aachen, D-52056 Aachen, Germany
{englert, marsu}@cs.rwth-aachen.de

Abstract. A sequence of objects which are characterized by their color
has to be processed. Their processing order influences how efficiently they
can be processed: Each color change between two consecutive objects
produces non-uniform cost. A reordering buffer which is a random access
buffer with storage capacity for k objects can be used to rearrange this
sequence in such a way that the total cost are minimized. This concept
is useful for many applications in computer science and economics.

We show that a reordering buffer reduces the cost of each sequence
by a factor of at most 2k − 1. This result even holds for cost functions
modeled by arbitrary metric spaces. In addition, a matching lower bound
is presented. From this bound follows that each strategy that does not
increase the cost of a sequence is at least (2k − 1)-competitive.

As main result, we present the deterministic Maximum Adjusted
Penalty (MAP) strategy which is O(log k)-competitive. Previous strate-
gies only achieve a competitive ratio of k in the non-uniform model. For
the upper bound on MAP, we introduce a basic proof technique. We
believe that this technique can be interesting for other problems.

1 Introduction

Frequently, a number of tasks has to be processed and their processing order
influences how efficiently they can be processed. Hence, a reordering buffer can
be expedient to influence the processing order. This concept is useful for many
applications in computer science and economics. In the following and in Sect.
1.2 we give some examples.

In computer graphics, a rendering system displays a 3D scene which is com-
posed of primitives. In current rendering systems a significant factor for the
performance are the state changes performed by the graphics hardware. A state
change occurs when two consecutively rendered primitives differ in their attribute
values, e.g., in their texture or shader program. These state changes slow down
a rendering system. Note that the duration of a state change is non-uniform
and heavily depends on the attribute values of the primitive causing this state
change, e.g., textures and shader programs vary significantly in size which has

� Supported by the DFG grant WE 2842/1.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 627–638, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

628 M. Englert and M. Westermann

a great impact on the state change. To reduce the cost of the state changes, a
reordering buffer can be included between application and graphics hardware.
This reordering buffer, which is a random access buffer with limited memory
capacity, can be used to rearrange the incoming sequence of primitives online in
such a way that the cost of the state changes are minimized.

Hard disks consist of one or more rotating platters. A read/write head is
positioned above the rotating surface of each platter. The position of a head
determines which cylinder can be accessed. The latency of an access is mainly
induced by the movement of the head to the respective cylinder. The latencies are
the dominating factor for the performance of a hard disk. This can be modeled
by a non-uniform metric, e.g., the line metric: Accesses are categorized according
to their destination cylinder, and the cost are defined as the distance between
start and destination cylinder. A reordering buffer can be used to rearrange the
incoming sequence of accesses online in such a way that latencies are minimized.
This problem is known as disk scheduling (see, e.g., [1]).

File servers are high-capacity storage devices which each computer in a net-
work can access to retrieve files. A file on a server is denoted as open, if it is
ready to be accessed. Otherwise, it is denoted as closed. By technical reasons,
the number of open files on a server is limited. The overhead induced by the
opening and closing processes is a significant factor for the performance of a file
server. Note that the cost of an opening or closing process is non-uniform and
depends on the characteristics of the involved file. This overhead can be mini-
mized by preceding a file server with a reordering buffer. If several open files are
allowed, this scenario is a generalization of the rendering scenario. In addition to
the possibility to choose a file that has to be opened next, there is the possibility
to choose a file that has to be closed in the case that the maximum number of
files is open. This scenario is equivalent to the classical paging problem (see, e.g.,
[2]) if the reordering buffer has storage capacity for only one file.

1.1 The Model

An input sequence σ = σ1σ2 · · · of objects which are only characterized by a
specific attribute has to be processed. To simplify matters, we suppose that
the objects are characterized by their color, and, for each object σi, let c(σi)
denote the color of σi. A reordering buffer which is a random access buffer with
storage capacity for k objects can be used to rearrange the input sequence in
the following way.

The current input object σi, i.e., the first object of σ that is not handled
yet, can be stored in the reordering buffer, or objects currently stored in the
reordering buffer can be removed. These removed objects result in an output
sequence σπ−1 = σπ−1(1)σπ−1(2) · · · which is a partial permutation of σ. Let the
current output object denote the object that was last assigned to the output
sequence. We suppose that the reordering buffer is initially empty and, after
processing the whole input sequence, the buffer is empty again.

For each color c, we are given weight bc. Cost bc are produced for each color
change to color c, i.e., for two consecutive objects σπ−1(i) and σπ−1(i+1) of the

Reordering Buffer Management for Non-uniform Cost Models 629

output sequence, we define the cost function d(σπ−1(i),σπ−1(i+1)) = bc(σπ−1(i+1))
,

if c(σπ−1(i)) �= c(σπ−1(i+1)), and d(σπ−1(i),σπ−1(i+1)) = 0, otherwise. Then, the
goal is to minimize the cost CA(σ) =

∑
i d(σπ−1(i),σπ−1(i+1)) of a management

strategy A. Note that this models the presented application examples well except
disk scheduling (see also Sect. 1.3).

The notion of an online strategy is intended to formalize the realistic scenario,
where the strategy does not have knowledge about the whole input sequence in
advance. The online strategy has to serve the input sequence σ one after the
other, i.e., a new object is not issued before there is a free slot in the reordering
buffer. Online strategies are typically evaluated in a competitive analysis. In this
kind of analysis the cost of the online strategy are compared with the cost of an
optimal offline strategy. For a given sequence σ, let Cop(σ) denote the minimum
cost produced by an optimal offline strategy. An online strategy is denoted as
α-competitive if it produces cost at most α · Cop(σ) + κ, for each sequence σ,
where κ is a term that does not depend on σ. The value α is also called the
competitive ratio of the online strategy.

W.l.o.g., we only consider lazy strategies, i.e., strategies that fulfill the fol-
lowing two properties:

– If an object with the same color as the current output object is stored in the
reordering buffer, a lazy strategy does not make a color change.

– If the current input object can be stored in the reordering buffer, a lazy
strategy does not remove an object from the reordering buffer.

Note that every (in particular every optimal offline) strategy can be transformed
into a lazy strategy without increasing the cost.

1.2 Previous Work

Web caching with request reordering extends the classic paging model by allow-
ing reordering of requests under the constraint that a request is delayed by no
longer than a predetermined number of time steps (see, e.g., [3, 4]). Albers [3]
presents a deterministic strategy that achieves an optimal competitive ratio of
k+1, where k denotes the storage capacity of the cache. Feder et al. [4] introduce
a randomized strategy that achieves an asymptotically optimal competitive ratio
of Θ(log k).

The uniform case of our problem is studied in, e.g., [5, 6]. In the uniform
model, for each color c, weight bc = 1, i.e., just the number of color changes
is considered. Räcke, Sohler and Westermann [5] show that several standard
strategies are unsuitable for a reordering buffer, i.e., the competitive ratio of
the First In First Out and Least Recently Used strategy is Ω(

√
k) and the

competitive ratio of the Most Common First strategy is Ω(k), where k denotes
the buffer size. Further, the deterministic Bounded Waste strategy is presented
and it is proven that this strategy achieves a competitive ratio of O(log2 k) in the
uniform model. Kohrt and Pruhs [6] present a polynomial-time offline algorithm
that achieves a constant approximation ratio. However, their goal is to maximize
the number of saved color changes. Note that a constant approximation of the

630 M. Englert and M. Westermann

minimal number of color changes in the output sequence is preferable, if it is
possible to save a large number of color changes.

Krokowski et al. [7] examine the previously mentioned rendering application
in an uniform version, i.e., just the number of state changes is considered. They
use a small reordering buffer to rearrange the incoming sequence of primitives
online in such a way that the number of state changes is minimized. Due to its
simple structure and its low memory requirements this method can easily be
implemented in software or even hardware. In their experimental evaluation this
method typically reduces the number of state changes by an order of magnitude
and the rendering time by roughly 30%. Note that the studied strategies do not
consider the individual cost of a state change. A conclusion is that there is a
lack of efficient strategies that consider these individual cost.

In the painting shop of a car plant, a sequence of cars bodies traverses the
final layer painting where each car body is painted with its own top coat. If
two consecutive cars have to be painted in different colors then a color change
is required which causes set-up cost. In addition to the color change cost, fur-
ther important non-uniform cost arise, e.g., the individual accessing times of the
parking slots for the car bodies. These costs can be minimized by preceding the
final layer painting with a reordering buffer. In several practical work, heuristic
strategies for reordering buffers are evaluated by simulation (see, e.g., [8]). Ef-
ficient strategies for reordering buffer are considered to be a major problem of
operating a paint shop.

1.3 Results and Further Work

In Sect. 2, the possible gain of a reordering buffer is investigated. We show
that a reordering buffer of size k reduces the cost of each sequence by a factor
of at most 2k − 1. This result holds for online and offline strategies and even
for cost functions modeled by arbitrary metric spaces, i.e., the cost function
d(σπ−1(i),σπ−1(i+1)) can be any positive and symmetric function obeying the
triangle inequality. In addition, a matching lower bound is presented. From this
basic upper bound follows immediately that each strategy that does not increase
the cost of an input sequence is at least (2k − 1)-competitive. In particular,
the simple online strategy that does no reordering at all is already (2k − 1)-
competitive. This shows the poor performance of some strategies. For example,
Yeh et al. [9] give a lower bound of 2k − 1 on the competitive ratio of the disk
scheduling strategies Shortest Seek Time First and Look in the line metric model.

In Sect. 3, we show a lower bound of k on the competitive ratio of the Bounded
Waste (BW) strategy in our model, where k denotes the size of the reordering
buffer. The BW strategy is introduced by Räcke, Sohler and Westermann [5] for
the uniform case of our problem: For each color c, weight bc = 1, i.e., just the
number of color changes is considered. Note that this lower bound even holds
for the case that BW takes the non-uniform cost into account, i.e., BW is aware
of the individual cost bc, for each color c. In Sect. 4, the deterministic Maximum
Adjusted Penalty (MAP) strategy is presented. We show that the MAP strategy
is O(log k)-competitive, where k denotes the size of the reordering buffer. Note

Reordering Buffer Management for Non-uniform Cost Models 631

that, although MAP is equivalent to BW in the uniform case of our model, our
analysis provides a better result. Currently, we only know a trivial lower bound
of 5/3 on the competitive ratio of any deterministic strategy.

For the upper bound on MAP we introduce the following basic proof tech-
nique: First, it is shown that MAP with buffer size k is 4-competitive against
an optimal offline strategy with buffer size k/4. Finally, it is proven that an
optimal offline strategy with buffer size k/4 is O(log k)-competitive against an
optimal offline strategy with buffer size k. We believe that this technique can be
interesting for other problems.

Our non-uniform scenario can be modeled by the following star-like metric
space: d(x, y) = (bx + by)/2, if x �= y, and d(x, y) = 0, otherwise. Above, we
conclude that there is a lack of efficient strategies for the disk scheduling problem,
i.e., the line metric space. We consider to transfer this technique from star-like
to line metric spaces.

2 Basic Upper Bound

In this section, we show that a reordering buffer of size k reduces the cost of each
sequence by a factor of at most 2k − 1. This result holds for online and offline
strategies and even for cost functions modeled by arbitrary metric spaces. Note
that this result is tight. Fix the two colors c1 and c2 with weights bc1 = bc2 = 1.
The input sequence σ = (c1c2)k of length 2k can obviously be reordered to
σπ−1 = ck

1ck
2 with a reordering buffer of size k. The cost of σ is C(σ) = 2k − 1,

and the cost of σπ−1 is C(σπ−1) = 1. Hence, C(σ) = (2k − 1) · C(σπ−1) ≥
(2k − 1) · Cop(σ), where Cop(σ) denotes the cost of an optimal offline strategy
using a reordering buffer of size k.

Theorem 1. For every metric space (M, d), and every input sequence σ =
σ1 · · ·σl, with σi ∈M ,

C(σ) ≤ (2k − 1) · Cop(σ) ,

where C(σ) denotes the cost of σ, and Cop(σ) denotes the cost of an optimal
offline strategy using a reordering buffer of size k.

Proof. Fix an input sequence σ = σ1 · · ·σl. Let σπ−1 = σπ−1(1) · · ·σπ−1(l) denote
the output sequence of an optimal offline strategy using a reordering buffer of
size k. We define a subsequence Isr = σπ−1(r) · · ·σπ−1(s), if r ≤ s, and Isr =
σπ−1(s) · · ·σπ−1(r), otherwise. Let C(Isr) denote the cost of this subsequence, i.e.,
C(Isr) =

∑max{r,s}−1
j=min{r,s} d(σπ−1(j),σπ−1(j+1)).

Due to the triangle inequality, d(σi,σi+1) ≤ C(Iπ(i+1)
π(i)). Thus,

C(σ) =
l−1∑
i=1

d(σi,σi+1) ≤
l−1∑
i=1

C(Iπ(i+1)
π(i)) .

Fix two consecutive objects σπ−1(j) and σπ−1(j+1) of σπ−1 . We show that
these objects do only occur in at most 2k − 1 of the subsequences above. If

632 M. Englert and M. Westermann

σπ−1(j) and σπ−1(j+1) are part of a subsequence Iπ(i+1)
π(i) , one of the following two

cases is true:

1. π(i) ≤ j and π(i + 1) ≥ j + 1
2. π(i + 1) ≤ j and π(i) ≥ j + 1

In case (1), σi is one of the first j objects and σi+1 is not under the first j objects
of σπ−1 . In case (2), it is the other way around.

Obviously, the following observation can be made.

Observation 2. For each input sequence σ = σ1 · · ·σl, the output sequence of a
reordering buffer of size k is a permutation σπ−1 = σπ−1(1) · · ·σπ−1(l) of σ, with
π−1(i) < i + k, for each i. In addition, each such permutation can be generated
using a reordering buffer of size k.

The observation shows that only one of the first i + k − 1 objects of σ can
be placed at the i-th position of σπ−1 . Thus, we conclude for case (1) that
i ≤ j + k − 1. In the same way, we conclude for case (2) the even stronger
inequality i + 1 ≤ j + k − 1.

In the following, we consider case (1). The above conclusions provide that
σi+1 must be one of the first j + k objects of σ. But, σi+1 is not one of the first
j objects of σπ−1 . Recall that the observation shows that the first j objects of
σπ−1 have to be under the first j +k−1 objects of σ. Hence, at most k objects of
the first j + k objects of σ cannot be under the first j objects of σπ−1 . It follows
that case (1) is true for at most k different subsequences. Obviously, case (2)
can be addressed analogously. It follows that case (2) is true for at most k − 1
different subsequences.

Hence,

C(σ) ≤
l−1∑
i=1

C(Iπ(i+1)
π(i)) ≤ (2k − 1)

l−1∑
i=1

d(σπ−1(i),σπ−1(i+1)) = (2k − 1) · Cop(σ) ,

since at most 2k − 1 subsequences are containing the two objects σπ−1(i) and
σπ−1(i+1). ��

3 Lower Bound for the BW Strategy

The Bounded Waste (BW) strategy is introduced in [5] for the uniform case of
our model: For each color c, weight bc = 1, i.e., just the number of color changes
is considered. BW chooses one color as the active color, and continues to remove
objects of this active color from the reordering buffer until all objects in the buffer
have a color different from the active color. Then a new active color has to be
chosen. For this purpose, a counter Pc, which is initially set to zero, is assigned to
each color c. At each color change, the counter of each color c is increased by the
number of objects of color c currently stored in the buffer. Then a color c′ with
maximal counter Pc′ is chosen as the new active color and Pc′ is reset to zero.

Reordering Buffer Management for Non-uniform Cost Models 633

The following theorem shows a lower bound of k, where k denotes the size
of the reordering buffer, on the competitive ratio of BW in our non-uniform
model. Note that this lower bound even holds for the case that BW takes the
non-uniform weights of the colors into account.

Theorem 3. The competitive ratio of BW is at least k, where k denotes the size
of the reordering buffer.

Proof. Fix one expensive color x with weight bx = 1, and several inexpensive col-
ors c1, . . . cl with weights bc1 = · · · = bcl

= ε. The input sequence σ = σ1 · · ·σl
with l = k·(k+1) is defined as follows: σi is of color x, if i is divisible by (k+1), and
of color ci, otherwise. Obviously, it is possible to produce an output sequence σop

π−1

with cost C(σop
π−1) = 1+(k2−1) · ε by aggregating objects of the expensive color.

Each pair of objects in σ has different colors, except the pairs where both
objects have the color x. However, BW will never hold two objects of color x in
the reordering buffer at the same time. Assume this statement holds until some
step i in which an object of color x arrives. If each pair of objects in the buffer of
BW has different colors, the values of the counters are exclusively based on the
number of steps the corresponding objects are stored in the buffer. The object
of color x is after k − 1 steps the oldest object in the buffer. Hence, this object
is removed from the buffer in the next step, i.e., one step before the next object
of color x arrives.

The cost of the produced output sequence σon
π−1 is C(σon

π−1) = C(σ) = k+k2 ·ε.
Since the input sequence σ can be iterated and ε can be chosen arbitrarily small,
this yields a lower bound of k on the competitive ratio. Of course, BW could
take the non-uniform weights of the colors into account, i.e., the counter Pc

is increased by the number of objects of color c currently stored in the buffer
times the weight of color c. However, this proof does not dependent on this
decision. ��

4 The MAP Strategy

In this section, we present the Maximal Adjusted Penalty (MAP) strategy. We
show that the MAP strategy is O(log k)-competitive, where k denotes the size
of the reordering buffer.

MAP chooses one color as the active color, and removes at each time step
one object of this active color from the reordering buffer until all objects in the
buffer have a color different from the active color. Then a new active color has
to be chosen. For this purpose, a penalty counter Pc, which is initially set to
zero, is assigned to each color c. MAP chooses a color c as the new active color
with Pc − k · bc ≥ Pc′ − k · bc′ , for each color c′. The counters are updated after
a new active color is chosen. Suppose a step in which a color change from color
x to color y occurs. Let nc denote the number of objects of color c stored in the
buffer at the beginning of this step. Then each counter Pc is increased by nc · by
and counter Px is reset to zero.

634 M. Englert and M. Westermann

The MAP strategy does not need to know the weights of all colors in advance.
It is sufficient to provide the weight bc when the first object of color c arrives.
In addition, a counter Pc can be deleted if no objects of color c are stored in the
buffer. Hence, each step can be performed in time O(k), since at most k counters
are active at the same time.

Theorem 4. The MAP strategy is O(log k)-competitive, where k denotes the
size of the reordering buffer.

Proof. The proof consists of two parts.

1. First, we prove that MAP with buffer size k is 4-competitive against an
optimal offline strategy with buffer size h = k/4.

2. Finally, we show that an optimal offline strategy with buffer size h is O(log k)-
competitive against an optimal offline strategy with buffer size k.

Together, this yields the theorem.

Part 1. Fix an input sequence σ and a lazy optimal offline strategy OPT. MAP
has a reordering buffer of size k and OPT has a reordering buffer of size h. We
exclude the last k color changes of MAP. Hence, it can be assumed that there
are k objects in the buffer of MAP at any time. Under this assumption we show
that MAP is 4-competitive against OPT. This yields part 1, since the last k
color changes of MAP produce at most cost k ·maxcolor c{bc}.

Color changes of MAP and OPT are denoted as online and offline color
changes, respectively. An online (offline) c-interval starts with an online (offline)
color change from color c to a different color and ends right before the next online
(offline) color change from c to a different color (the first online (offline) c-interval
starts with the first step). Each object of color c falls into exactly one online and
one offline c-interval, and it enters and leaves the buffer of the respective strategy
in the same c-interval. Also each step i falls into exactly one online and one offline
c-interval, and these intervals are denoted as active at step i.

Now, we introduce counters to which k-times the cost of each online color
change is assigned. For each color c, and each online c-interval I, the two counters
won,I

c and ŵon,I
c are introduced. won,I

c (i) and ŵon,I
c (i) denote the value of won,I

c

and ŵon,I
c at the beginning of step i, respectively. The counters are initially set

to zero, and they are monotonously increasing. A counter is denoted as active
at step i, if the according online c-interval I is active at step i. Otherwise, the
counter is denoted as inactive. For simplicity, we just write won

c (i) and ŵon
c (i) to

denote the active counters for color c at the beginning of step i. Inactive counters
do not change their value.

Fix a step i. In the following, we describe how k-times the cost of an online
color change is distributed among the counters. Let non

c (i) denote the number
of objects with color c in the buffer of MAP at the beginning of step i. For
simplicity, we just write non

c , if the step is fixed. Note that
∑

color c non
c = k.

Suppose there is an online color change to color c′ in step i. Then k · bc′ has to
be assigned to the counters. For each color c, won

c is increased by non
c · bc′ . In

total, we assign
∑

color c non
c · bc′ = k · bc′ to active counters.

Reordering Buffer Management for Non-uniform Cost Models 635

But we prevent a counter won
c from becoming larger than k·bc. This restriction

might cause that nothing or only a part of the value non
c · bc′ is really assigned to

won
c . The remaining part, i.e, the part that would lead to a counter won

c larger
than k · bc, is assigned to ŵon

c′ instead. Note that won
c equals the Pc counter in

MAP, as long as Pc ≤ k · bc. Otherwise, won
c remains on the value k · bc, but

Pc is further increased. Note in addition that, for each color c′ and each online
c′-interval I, the counter ŵon,I

c′ is increased in at most one step.
Since we have assigned k-times the produced cost to counters, we can express

the cost of MAP Con = (1/k) ·
∑

color c

∑
on. c-int. I(W

on,I
c +Ŵ on,I

c), where W on,I
c

and Ŵ on,I
c denote the final, i.e., maximum, value of the counters won,I

c and ŵon,I
c ,

respectively.
In addition, for each color c and each online c-interval I, the counter wop,I

c

is introduced. wop,I
c (i) denotes the value of wop,I

c at the beginning of step i.
The counters are initially set to zero, and they are monotonously increasing. A
counter is denoted as active at step i, if the according online c-interval I is active
at step i. Otherwise, the counter is denoted as inactive. For simplicity, we just
write wop

c (i) to denote the active counter for color c at the beginning of step i.
Inactive counters do not change their value.

Fix a step i. Let nop
c (i) denote the number of objects with color c in the

buffer of OPT at the beginning of step i. For simplicity, we just write nop
c , if the

step is fixed. Note that
∑

color c nop
c = h. Suppose there is an online color change

to color c′ in step i. For each color c, wop
c is increased by nop

c · bc′ . In total, we
assign

∑
color c nop

c · bc′ = h · bc′ to active counters.
Hence, we yield a new possibility to express the cost of MAP Con = (1/h) ·∑

color c

∑
on. c-int. I W op,I

c , where W op,I
c denotes the final, i.e., maximum, value

of the counter wop,I
c .

For each color c, we show the following main inequality

4k · Cop
c +

∑
on. c-int. I

(4W op,I
c − (W on,I

c + Ŵ on,I
c)) ≥

∑
on. c-int. I

(W on,I
c + Ŵ on,I

c) ,

where Cop
c denotes the total cost produced by offline color changes to color c.

Summing up over all colors, we yield 4k · Cop + 4h · Con − k · Con ≥ k · Con.
Hence, 4Cop ≥ Con. This yields part 1.

We distinguish between two kinds of online c-intervals. An online c-interval I
is denoted as problematic, if 4W op,I

c < 2(W on,I
c +Ŵ on,I

c). Otherwise, I is denoted
as non-problematic. Now, we show the following inequality

4k · Cop
c ≥ 2

∑
prob. c-int. I

(W on,I
c + Ŵ on,I

c) .

Obviously, the main inequality can be concluded with the help of the above
inequality.

The following lemma provides an upper bound on W on,I
c and Ŵ on,I

c . Then,
an upper bound on the number of problematic c-intervals is shown. These two
results together complete part 1 of the proof.

636 M. Englert and M. Westermann

Lemma 5. For each color c and each online c-interval I,

Ŵ on,I
c ≤ W on,I

c ≤ k · bc .

Proof. Due to the cost assignment for won,I
c , W on,I

c ≤ k·bc. Suppose that Ŵ on,I
c >

0. Recall that ŵon,I
c is increased in at most one step. We consider the step i in

which ŵon,I
c is increased due to the online color change to color c in the online

c-interval I. In this step, for each color c′, Pc − k · bc ≥ Pc′ − k · bc′ .
Now, we distinguish the following two cases.

– Suppose that W on,I
c = k · bc.

The color change in step i produces cost bc. Hence, k · bc is assigned to the
counters in this step. Even if the whole value k · bc is assigned to ŵon,I

c ,
Ŵ on,I

c ≤ k · bc = W on,I
c , since ŵon,I

c is increased in at most one step.
– Suppose that W on,I

c < k · bc.
In this case, Pc = won

c (i) in step i. In fact, for each color c′, Pc′ = won
c′ (i)

at the beginning of step i, since won
c′ (i) < k · bc′ . If, for some color c′ �= c,

won
c′ (i) = k ·bc′ , MAP would have chosen color c′ as new active color in step i.

Of course, for a color c′ �= c, the active counter won
c′ can reach its limit k · bc′

in this step. won
c′ exceeds its limit by xc′ = max{0, won

c′ (i)+non
c′ (i) ·bc−k ·bc′}.

Due to MAP, won
c′ (i)− k · bc′ ≤ won

c (i)− k · bc. Hence, xc′ ≤ max{0, won
c (i) +

non
c′ (i) · bc − k · bc}.

Let V denote the set of all colors c′ with xc′ > 0. If V = ∅, Ŵ on,I
c = 0.

Otherwise,

Ŵ on,I
c =

∑
c′∈V

xc′ ≤ |V | · (won
c (i)− k · bc) +

∑
c′∈V

non
c′ (i) · bc

≤ won
c (i)− k · bc +

∑
c′∈V

non
c′ (i) · bc ≤ won

c (i) ≤W on,I
c ,

since won
c (i)− k · bc < 0.

This finishes the proof of the lemma. ��

The beginning of an offline c-interval I, before the offline color change to
color c occurs, is denoted as increasing phase, since the number of objects of
color c in the offline buffer is monotonously increasing. The remaining part of I,
after the offline color change to color c, is denoted as decreasing phase, since the
number of objects of color c in the offline buffer is monotonously decreasing.

Lemma 6. At most one problematic online c-interval starts in an offline c-
interval.

Proof. Fix a problematic online c-interval I. From Lem. 5 follows 4W op,I
c <

4W on,I
c . Hence, there exists at least one step i in I with nop

c (i) < non
c (i). Let I ′

denote the offline c-interval in which I starts.
Suppose I starts in the increasing phase of I ′. Let start(I) denote the first

step of interval I. Then nop
c (start(I)) ≥ 0 = non

c (start(I)). Hence, no step i with

Reordering Buffer Management for Non-uniform Cost Models 637

nop
c (i) < non

c (i) can exist in this increasing phase, since every arriving object of
color c is stored in the offline buffer and no objects of color c are removed from
the offline buffer.

Consider the decreasing phase of I ′. If non
c is decreased, then nop

c is decreased
by the same amount. Hence, if there exists a step i with nop

c (i) < non
c (i) in

the decreasing phase of I ′, the offline c-interval I ′ ends before the end of the
problematic online c-interval I. ��

The total number of offline c-intervals is Cop
c /bc. We can exclude the first

offline c-interval, if c is the color of the first object in the output sequence of
OPT, since the total produced cost by MAP in the only problematic interval
starting in this offline c-interval can be bounded by a term independent of σ.
Note that we exclude, for only one color c, an offline c-interval. From the lemma
above it follows that the total number of problematic online c-intervals is at most
Cop

c /bc. Then

2
∑

prob. c-int. I

(W on,I
c + Ŵ on,I

c) ≤ 2
∑

prob. c-int. I

k · bc + k · bc

≤ 4k · bc · Cop
c /bc = 4k · Cop

c .

This completes part 1 of the proof.

Part 2. It remains to show, that an optimal offline strategy with buffer size
h = k/4 is O(log k)-competitive against an optimal offline strategy with buffer
size k. Fix an input sequence σ. For each step i, let nh

c (i) denote the number
of objects of color c in the buffer of size h and let nk

c (i) denote the number of
objects of color c in the buffer of size k.

Fix a lazy optimal offline strategy LARGE for the reordering buffer of size
k. The offline strategy SMALL for the reordering buffer of size h chooses a new
active color c, with nh

c (i) ≥ nk
c (i)/4. Note that there exists always such a color,

since
∑

color c nh
c (i) =

∑
color c nk

c (i)/4.
Large (small) c-intervals are defined for LARGE (SMALL) according to the

definition of online and offline c-intervals. The definitions of increasing and de-
creasing phases apply to large c-intervals, too. Note that the total number of
large (small) c-intervals is order of the total number of color changes to color c
of LARGE (SMALL).

For every color c, we show that there are at most O(log k) small c-intervals
in one large c-interval. Then, Ch

c ≤ O(log k) · Ck
c , where Ch

c (Ck
c) denotes the

cost of LARGE (SMALL) for color c. This yields part 2 of the proof.
Fix a color c. In the following, we only consider small c-intervals that are

completely contained in a large c-interval. In addition, we exclude a small c-
interval, if LARGE performs a color change to color c during this interval. Hence,
in total at most two small c-intervals are excluded for every large c-interval. The
remaining small c-intervals are completely contained either in an increasing or
in a decreasing phase of a large c-interval.

The following lemma shows that there are at most O(log k) small c-intervals
in a large c-interval, since the buffer size of LARGE is k.

638 M. Englert and M. Westermann

Lemma 7. Let start(I) and end(I) denote the first and last step of a small
c-interval I, respectively.

– In an increasing phase: nk
c (end(I)) ≥ (5/4)nk

c (start(I)).
– In a decreasing phase: nk

c (start(I)) ≥ (5/4)nk
c (end(I)).

Proof. We only prove the inequality for the increasing phase. The inequality for
the decreasing phase can be addressed analogously. Fix a small c-interval I. Let
i be the step in I at which SMALL performs a color change to color c. Due to
SMALL, nh

c (i) ≥ nk
c (i)/4.

At least nh
c (i) objects of color c arrive in I. Since I lies in an increasing phase,

these objects are not removed from the buffer of LARGE during I. At the end
of I, the nk

c (start(I)) objects of color c stored in the buffer of LARGE before
I, are still there, and at least nh

c (i) ≥ nk
c (i)/4 ≥ nk

c (start(I))/4 new objects of
color c are added. Hence, at least (5/4)nk

c (start(I)) objects of color c are stored
in the buffer of LARGE at the end of I. ��

This completes part 2 of the proof. ��

References

1. Teorey, T., Pinkerton, T.: A comparative analysis of disk scheduling policies. Com-
munications of the ACM 15 (1972) 177–184

2. Fiat, A., Karp., R.M., Luby, M., McGeoch, L.A., Sleator, D.D., Young, N.E.: Com-
petitive paging algorithms. Journal of Algorithms 12 (1991) 685–699

3. Albers, S.: New results on web caching with request reordering. In: Proceedings
of the 16th ACM Symposium on Parallel Algorithms and Architectures (SPAA).
(2004) 84–92

4. Feder, T., Motwani, R., Panigrahy, R., Seiden, S., van Stee, R., Zhu, A.: Combining
request scheduling with web caching. Theoretical Compuer Science 324 (2004)
201–218

5. Räcke, H., Sohler, C., Westermann, M.: Online scheduling for sorting buffers. In:
Proceedings of the 10th European Symposium on Algorithms (ESA). (2002) 820–832

6. Kohrt, J., Pruhs, K.: A constant approximation algorithm for sorting buffers.
In: Proceedings of the 6th Latin American Symposium on Theoretical Informat-
ics (LATIN). (2004) 193–202

7. Krokowski, J., Räcke, H., Sohler, C., Westermann, M.: Reducing state changes with
a pipeline buffer. In: Proceedings of the 9th International Fall Workshop Vision,
Modeling, and Visualization (VMV). (2004) 217–224

8. Gutenschwager, K., Spieckermann, S., Voss, S.: A sequential ordering problem in
automotive paint shops. International Journal of Production Research 42 (2004)
1865–1878

9. Yeh, T., Kuo, C., Lei, C., Yen, H.: Competitive analysis of on-line disk scheduling.
Theory of Computing Systems 31 (1998) 491–506

Combining Intruder Theories�

Yannick Chevalier and Michaël Rusinowitch

1 IRIT Université Paul Sabatier, France
ychevali@irit.fr

2 LORIA-INRIA-Lorraine, France
rusi@loria.fr

Abstract. Most of the decision procedures for symbolic analysis of pro-
tocols are limited to a fixed set of algebraic operators associated with a
fixed intruder theory. Examples of such sets of operators comprise XOR,
multiplication/exponentiation, abstract encryption/decryption. In this
paper we give an algorithm for combining decision procedures for ar-
bitrary intruder theories with disjoint sets of operators, provided that
solvability of ordered intruder constraints, a slight generalization of in-
truder constraints, can be decided in each theory. This is the case for
most of the intruder theories for which a decision procedure has been
given. In particular our result allows us to decide trace-based security
properties of protocols that employ any combination of the above men-
tioned operators with a bounded number of sessions.

1 Introduction

Recently many procedures have been proposed to decide insecurity of crypto-
graphic protocols in the Dolev-Yao model w.r.t. a finite number of protocol
sessions [2, 5, 18]. Among the different approaches the symbolic ones [16, 10, 4]
are based on reducing the problem to constraint solving in a term algebra. This
reduction has proved to be quite effective on standard benchmarks and also was
able to discover new flaws on several protocols [4].

However while most formal analysis of security protocols abstracts from low-
level properties, i.e., certain algebraic properties of encryption, such as the mul-
tiplicative properties of RSA or the properties induced by chaining methods for
block ciphers, many real attacks and protocol weaknesses rely on these proper-
ties. For attacks exploiting the XOR properties in the context of mobile commu-
nications see [7]. Also the specification of Just Fast Keying protocol (an alterna-
tive to IKE) in [1] employs a set constructor that is idempotent and commutative
and a Diffie-Hellman exponentiation operator with the property (gy)z = (gz)y.

In this paper we present a general procedure for deciding security of protocols
in presence of algebraic properties. This procedure relies on the combination of
constraint solving algorithm for disjoint intruder theories, provided that solvabil-
ity of ordered intruder constraints, a slight generalization of intruder constraints,

� Supported by IST-2001-39252 AVISPA, ACI SATIN, ACI-Jeune Chercheur JC9005.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 639–651, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

640 Y. Chevalier and M. Rusinowitch

can be decided in each theory. Such combination algorithm already exists for
solving E-unification problems [19, 3]. We have extended it in order to solve
intruder constraints on disjoint signatures. This extension is non trivial since in-
truder deduction rules allow one to build contexts above terms and therefore add
some second-order features to the standard first-order E-unification problem.

Our approach is more modular than the previous ones and it allows us to de-
cide interesting intruder theories that could not be considered before by reducing
them to simpler and independent theories. For instance it allows one to combine
the exponentiation with abelian group theory of [17] with the Xor theory of [8].

Related works. Recently several protocol decision procedures have been designed
for handling algebraic properties in the Dolev-Yao model [15, 6, 11, 8]. These
works have been concerned by fixed equational theories corresponding to a fixed
intruder power. A couple of works only have tried to derive generic decidability
results for class of intruder theories. For instance, in [12] Delaune and Jacque-
mard consider the class of public collapsing theories. These theories have to be
presented by rewrite systems where the right-hand side of every rule is a ground
term or a variable, which is a strong restriction.

2 Motivation

Combination of algebraic operators. We consider in this section the Need-
ham–Schroeder Public-Key protocol. This well-known protocol is described in
the Alice and Bob notation by the following sequence of messages, where the
comma denotes a pairing of messages and {M}Ka denotes the encryption by
the public key Ka of A.

A → B : {Na, A}Kb

B → A : {Na,Nb}Ka

A → B : {Nb}Kb

Assume now that the encryption algorithm follows El-Gamal encryption scheme.
The public key of A is defined by three publicly-available parameters: a modulus
pa, a base ga and the proper public key (ga)a mod pa. The private key of A is
a. Denoting expp the exponentiation modulo p, and with new nonces k1, k2 and
k3 we can rewrite the protocol as:

A → B : exppb
(gb, k1), (Na, A)⊕ exppb

(exppb
(gb, b), k1)

B → A : exppa
(ga, k2), (Na,Nb)⊕ exppa

(exppa
(ga, a), k2)

A → B : exppb
(gb, k3), (Nb)⊕ exppb

(exppb
(gb, b), k3)

In this simple example we would like to model the group properties of the
Exclusive-or (⊕), the associativity of exponential ((xy)z = xy×z), the group
properties of the exponents. Several works have already been achieved toward
taking into account these algebraic properties for detecting attacks on a bounded
number of sessions. However none of these works handles the analysis of proto-
cols combining several algebraic operators like the example above. The algorithm

Combining Intruder Theories 641

given in this paper will permit to decide the trace-based security properties of
such protocols.

Examples of intruder theories. A convenient way to specify intruder theo-
ries in the context of cryptographic protocols is by giving a set L of deduction
rules describing how the intruder can construct new messages from the ones she
already knows and a set of equational laws E verified by the functions employed
in messages. We give here two examples of intruder theories. Some other theories
are given in [9].

Abelian group theory. This intruder may treat messages as elements of an
abelian group. We assume here there is only one such group and that the com-
position law is · × ·, the inverse law is i(·) and the neutral element is denoted 1.

L×

⎧⎨⎩ → 1
x → i(x)

x, y → x× y
E×

⎧⎪⎪⎨⎪⎪⎩
(x× y)× z = x× (y × z)

x× y = y × x
1× x = x

x× i(x) = 1

Dolev Yao with explicit destructors. The intruder is given with a pairing opera-
tor and projections to retrieve the components of a pair. There are symmetric
encryption (se(,)) and decryption (sd(,)) operators. For conciseness we omit
the public-key encryption specification.

LDY

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x, y → 〈x, y〉

x → π1(x)
x → π2(x)

x, y → se(x, y)
x, y → sd(x, y)

EDY

⎧⎨⎩ π1(〈x, y〉) = x
π2(〈x, y〉) = y

sd(se(x, y), y) = x

3 Terms and Subterms

We consider an infinite set of free constants C and an infinite set of variables X .
For all signatures G (i.e. a set of function symbols with arities), we denote by
T(G) (resp. T(G,X)) the set of terms over G ∪C (resp. G ∪C∪X). The former is
called the set of ground terms over G, while the latter is simply called the set of
terms over G. Variables are denoted by x, y, v, terms are denoted by s, t, u, and
finite sets of terms are written E,F, ..., and decorations thereof, respectively.

A constant is either a free constant or a function symbol of arity 0. Given a
term t we denote by Var(t) the set of variables occurring in t and by Cons(t) the
set of constants occurring in t. We denote by Atoms(t) the set Var(t) ∪ Cons(t).
We denote by A the set of all constants and variables. A substitution σ is an
involutive mapping from X to T(G,X) such that Supp(σ) = {x |σ(x) �= x}, the
support of σ, is a finite set. The application of a substitution σ to a term t (resp.
a set of terms E) is denoted tσ (resp. Eσ) and is equal to the term t (resp. E)
where all variables x have been replaced by the term xσ. A substitution σ is
ground w.r.t. G if the image of Supp(σ) is included in T(G).

642 Y. Chevalier and M. Rusinowitch

In this paper, we consider 2 disjoint signatures F1 and F2, and 2 consistent
equational theories E1 and E2 on F1 and F2, resp. We denote by F the union
of the signatures F1 and F2, E the union of the theories E1 and E2. A term t in
T(F1,X) (resp. in T(F2,X)) is called a pure 1-term (resp. a pure 2-term).

The syntactic subterms of a term t are defined recursively as follows and
denoted Subsyn(t). If t is a variable or a constant then Subsyn(t) = {t}. If t =
f(t1, . . . , tn) then Subsyn(t) = {t} ∪

⋃n
i=1 Subsyn(ti). The positions in a term t

are defined recursively as usual (i.e. as sequences of integers), ε being the empty
sequence. We denote by t|p the syntactic subterm of t at position p. We denote
by t[p ← s] the term obtained by replacing in t the syntactic subterm t|p by
s. We denote by Sign(·) the function that associates to each term t �∈ C ∪ X
the signature (F1, or F2) of its symbol at position ε. For t ∈ C ∪ X we define
Sign(t) = ⊥, with ⊥ a new symbol. The term s is alien to u if Sign(s) �= Sign(u).
Factors. We define the set of factors of a term t, and denote Factors(t), the set of
maximal syntactic subterms of t that are either alien to t or atoms and different
from t. In particular Factors(t) = ∅ for t ∈ A.
Subterms. We now define the notion of subterm values. Given a term t, the
set of its subterm values is denoted by Sub(t) and is defined recursively by:
Sub(t) = {t} ∪

⋃
u∈Factors(t) Sub(u). For a set of terms E, Sub(E) is defined as

the union of the subterms values of the elements of E.
As an example consider F1 = {⊕, 0} and F2 = {f} where f has arity 1. Then

Sub(a⊕ (b⊕ 0)) = {a ⊕ (b ⊕ 0), a, b, 0}. On the other hand Sub(f(b⊕ c)) =
{f(b ⊕ c), b ⊕ c, b, c}. This shows the difference with the notion of syntactic
subterms. In the rest of this paper and unless otherwise indicated, the notion of
subterm will refer to subterm values.

Congruences and ordered rewriting. We shall introduce the notion of ordered
rewriting [13], which is a useful technique that has been utilized (e.g. [3]) for
proving the correctness of combination of unification algorithms.

Let < be a simplification ordering on T(G) 1 assumed to be total on T(G) and
such that the minimum for < is a constant cmin ∈ C. Given a possibly infinite
set of equations O on the signature T(G) we define the ordered rewriting relation
→O by s →O s′ iff there exists a position p in s, an equation l = r in O and a
substitution τ such that s = s[p ← lτ], s′ = s[p ← rτ], and lτ > rτ .

It has been shown (see [13]) that by applying the unfailing completion pro-
cedure [14] to a set of equations H we can derive a (possibly infinite) set of
equations O such that:

1. the congruence relations =O and =H are equal on T(F).
2. →O is convergent (i.e. terminating and confluent) on T(F).

We shall say that O is an o-completion of H. The relation →O being convergent
on ground terms we can define (t)↓O as the unique normal form of the ground
term t for →O. Given a ground substitution σ we denote by (σ)↓O the substi-
tution with the same support such that for all variables x ∈ Supp(σ) we have

1 By definition < satisfies for all s, t, u ∈ T(G) s < t[s] and s < u implies t[s] < t[u].

Combining Intruder Theories 643

x(σ)↓O = (xσ)↓O. A substitution σ is normal if σ = (σ)↓O. We will denote by
R an o-completion of E = E1 ∪ E2. We denote by Cspe the set containing the
constants in F and cmin.

4 Protocols, Intruders and Constraint Systems

Security of a given protocol is assessed with respect to a class of environments in
which the protocol is executed. Dolev and Yao have described the environment
not in terms of possible attacks on the protocol but by the deduction an intruder
attacking a protocol execution is able to perform.

In Subsection 4.1 we define an extension of Dolev-Yao model to arbitrary
operators for modeling the possible deductions of the intruder. In Subsection 4.2
we define the protocol semantics for an execution within an hostile environment
controlled by the intruder and in Subsection 4.3 we describe how we represent
this execution by a constraint system.

4.1 Intruder Systems

We shall model messages as ground terms and intruders deduction rules as
rewrite rules on sets of messages representing the knowledge of an intruder.
An intruder derives new messages from a given (finite) set of messages by ap-
plying intruder rules. Since we assume some equational axioms H are verified by
functions symbols in the signature, all these derivations have to be considered
modulo the equational congruence =H generated by these axioms.

An intruder deduction rule in our setting is specified by a term t in some
signature G. Given values for the variables of t the intruder is able to generate
the corresponding instance of t.

Definition 1. An intruder system I is given by a triple 〈G, T,H〉 where G is a
signature, T ⊆ T(G,X) and H is a set of axioms between terms in T(G,X). To
each t ∈ T we associate a deduction rule Lt : Var(t) → t and Lt,g denotes the
set of ground instances of the rule Lt:

Lt,g = {l→ r | ∃σ, ground substitution on G s.t. l = Var(t)σ and r =H tσ}

The set of rules LI is defined as the union of the sets Lt,g for all t ∈ T .

Each rule l → r in LI defines an intruder deduction relation →l→r between
finite sets of terms. Given two finite sets of terms E and F we define E →l→r F
if and only if l ⊆ E and F = E ∪ {r}. We denote →I the union of the relations
→l→r for all l → r in LI and by →∗

I the transitive closure of →I . We simply
denote by → the relation →I when there is no ambiguity about I.

For instance we can define I× = 〈{×, i, 1}, {x× y, i(x), 1}, E×〉 and we have
a, b, c →I× a, b, c, c× a by applying the rule c, a→ c× a ∈ Lx×y,g.

A derivation D of length n, n ≥ 0, is a sequence of steps of the form E0 →I
E0 ∪{t1} →I · · · →I En with finite sets of ground terms E0, . . .En, and ground

644 Y. Chevalier and M. Rusinowitch

terms t1, . . . , tn, such that Ei = Ei−1 ∪ {ti} for every i ∈ {1, . . . , n}. The term
tn is called the goal of the derivation. We define E

I
to be equal to the set

{t | ∃F s.t. E →∗
I F and t ∈ F} i.e. the set of terms that can be derived from E.

If there is no ambiguity on the deduction system I we write E instead of E
I
.

Let O be an o-completion of H. We will assume from now that all the deduc-
tion rules generate terms that are normalized by→O and the goal and the initial
set are in normal form for →O. It can be shown [9] that this is not restrictive
for our main decidability result.

Given a set of terms T ⊆ T(G,X) we define the set of terms 〈T 〉 to be the
minimal set such that T ⊆ 〈T 〉 and for all t ∈ 〈T 〉 and for all substitutions σ
with image included in 〈T 〉, we have tσ ∈ 〈T 〉. Hence terms in 〈T 〉 are built by
composing terms in T iteratively. We can prove easily that the intruder systems
I = 〈G, T,H〉 and J = 〈G, 〈T 〉 ,H〉 define the same sets of derivable terms, i.e.
for all E we have E

I
= E

J
.

We want to consider the union of the 2 intruder systems I1 = 〈F1, T1, E1〉 and
I2 = 〈F2, T2, E2〉. In particular we are interested in the derivations obtained by
using→I1 ∪ →I2 . It can be noticed that 〈T1 ∪ T2〉 = 〈〈T1〉 ∪ 〈T2〉〉. Hence by the
remarks above the derivable terms using 〈T1 ∪ T2〉 or 〈T1〉 ∪ 〈T2〉 are the same.
For technical reason it will be more convenient to use 〈T1〉 ∪ 〈T2〉 for defining
the union of 2 intruder systems:

Definition 2. The union of the two intruder systems 〈F1, T1, E1〉 , 〈F2, T2, E2〉
is the intruder system U = 〈F , 〈T1〉 ∪ 〈T2〉 , E〉 .

A derivation E0 →U E0 ∪ {t1} →U · · · →U En of intruder system U is well-
formed if for all i ∈ {1, . . . , n} we have ti ∈ Sub(E0 ∪ {tn}); in other words
every message generated by an intermediate step either occurs in the goal or in
the initial set of messages. In the following lemma the derivations refer to the
intruder system U = 〈F , 〈T1〉 ∪ 〈T2〉 , E〉 . For the proof see [9]:

Lemma 1. A derivation of minimal length starting from E of goal t is well-
formed.

4.2 Protocol Analysis

In this subsection we describe how protocols are modelled. In the following we
only model a single session of the protocol since it is well-known how to reduce
several sessions to this case. Our semantics follows the one by [12].

In Dolev-Yao model the intruder has complete control over the communica-
tion medium. We model this by considering the intruder is the network. Messages
sent by honest agents are sent directly to the intruder and messages received by
the honest agents are always sent by the intruder. From the intruder side a fi-
nite execution of a protocol is the interleaving of a finite sequence of messages
she has to send and a finite sequence of messages she receives (and add to her
knowledge).

We also assume that the interaction of the intruder with one agent is an
atomic step. The intruder sends a message m to an honest agent, this agent

Combining Intruder Theories 645

tests the validity of this message and responds to it. Alternatively an agent may
initiate an execution and in this case we assume it reacts to a dummy message
cmin sent by the intruder.

A step is a triplet (recv(x); send(s);cond(e)) where x ∈ X , s ∈ T(G,X)
and e is a set of equations between terms of T(G,X). The meaning of a step is
that upon receiving message x, the honest agent checks the equations in e and
sends the message s. An execution of a protocol is a finite sequence of steps.

Example 1. Consider the following toy protocol where K is a symmetric key
initially known by A only:

A → B : {M ⊕B}K
B → A : B
A → B : K
B → A : M

Assuming the algebraic properties of ⊕, symmetric encryption se(,) and sym-
metric decryption sd(,) we model this protocol as:

recv(v1); send(se(M ⊕B,K));cond(v1 = cmin)
recv(v2); send(B);cond(∅)
recv(v3); send(K);cond(v3 = B)
recv(v4); send(sd(v2, v4)⊕B);cond(v2 = se(x, v4,))
recv(v5); send(cmin);cond(v5 = M)

Note that in our setting we can model that at some step i the message must
match the pattern ti by adding an equation vi

?= ti as a condition for this step.
In order to define whether an execution of a protocol is feasible we must first

define when a substitution σ satisfies a set of equations S.

Definition 3. (Unification systems) Let H be a set of axioms on T(G,X). An
H-Unification system S is a finite set of equations in T(G,X)denoted by (ti

?=
ui)i∈{1,...,n}. It is satisfied by a ground substitution σ, and we note σ |= S, if for
all i ∈ {1, . . . , n} tiσ =H uiσ.

Let I=〈G, T,H〉 be an intruder system. A configuration is a couple 〈P,N〉
where P is a finite sequence of steps and N is a set of ground terms (the knowl-
edge of the intruder). From the configuration 〈(recv(x); send(s);cond(e)) ·
P,N〉 a transition to (P ′,N ′) is possible iff there exists a ground substitution σ
such that xσ ∈ N , σ |= e, N ′ = N ∪ {sσ} and P ′ = Pσ. Trace based-security
properties like secrecy can be reduced to the Execution feasibility problem:

Execution feasibility

Input: an initial configuration 〈P,N0〉
Output: SAT iff there exists a reachable configuration 〈∅,M〉

646 Y. Chevalier and M. Rusinowitch

4.3 Constraints Systems

We express the execution feasibility of a protocol by a constraint problem C.

Definition 4. (Constraint systems) Let I = 〈G, T,H〉 be an intruder system.
An I-Constraint system C is denoted: ((Ei 	 vi)i∈{1,...,n},S) and it is defined
by a sequence of couples (Ei, vi)i∈{1,...,n} with vi ∈ X and Ei ⊆ T(G,X) for
i ∈ {1, . . . , n} and Ei−1 ⊆ Ei for i ∈ {2, . . . , n} and by an H-unification system
S. It is deterministic iff for all i ∈ {1, . . . , n}, Var(Ei) ⊆ {v1, . . . , vi−1}

An I-Constraint system C is satisfied by a ground substitution σ if for all
i ∈ {1, . . . , n} we have viσ ∈ Eiσ and if σ |= S. We denote that a ground
substitution σ satisfies a constraint system C by σ |=I C.

Constraint systems are denoted by C and decorations thereof. Note that if a
substitution σ is a solution of a constraint system C, by definition of constraints
and of unification systems the substitution (σ)↓O is also a solution of C (where O
is an o-completion of H). In the context of cryptographic protocols the inclusion
Ei−1 ⊆ Ei means that the knowledge of an intruder does not decrease as the
protocol progresses: after receiving a message an honest agent will respond to
it. This response can be added to the knowledge of an intruder who listens all
communications.
The condition defining the deterministic constraint systems expresses that a
message to be sent at some step i should be built from previously received
messages recorded in the variables vj for j < i and from the initial knowledge.

Example 2. We model the protocol of Example 1 by the following constraint
system. First we gather all conditions in a unification system S

S =
{
v1

?= cmin , v3
?= B , v2

?= se(x, v4) , v5
?= M

}
The protocol execution for intruder I with initial knowledge {cmin} is then
expressed by the constraint system:

C = ((cmin 	 v1,
cmin, se(M ⊕B,K) 	 v2,
cmin, se(M ⊕B,K),B 	 v3,
cmin, se(M ⊕B,K),B,K 	 v4),
cmin, se(M ⊕B,K),B,K, sd(v2, v4)⊕B 	 v5,S)

The deterministic condition imposes to write the last message sd(v2, v4) instead
of x though both are equivalent with respect to satisfiability.

The decision problems we are interested in are the satisfiability and the or-
dered satisfiability of intruder constraint systems.

Satisfiability

Input: an I-constraint system C
Output: Sat iff there exists a substitution σ such that: σ |=I C.

Combining Intruder Theories 647

In order to be able to combine solutions of constraints in component theories
to get a solution for the full theory these solutions have to satisfy some order-
ing constraints too. Intuitively, this is to avoid introducing cycle when building
a global solution. With respect to this use we can always assume cmin is the
minimum of ≺ in the following definition:

Ordered Satisfiability

Input: an I-constraint system C, X the set of all variables and C the
set of all free constants occurring in C and a linear ordering ≺
on X ∪ C.

Output: Sat iff there exists a substitution σ such that:{
σ |=I C
∀x ∈ X and ∀c ∈ C, x ≺ c implies c /∈ Subsyn(xσ)

The main result of this paper is the following modularity result:

Theorem 1. If the ordered satisfiability problem is decidable for two intruders
〈F1, T1, E1〉 and 〈F2, T2, E2〉 for disjoint signatures F1 and F2 then the satisfia-
bility problem is decidable for deterministic constraint systems for the intruder
U = 〈F , 〈T1〉 ∪ 〈T2〉 , E〉.

This result is obtained as a direct consequence of the next section where we
give an algorithm for solving U-constraints using algorithms for solving ordered
satisfiability for intruders 〈F1, T1, E1〉 and 〈F2, T2, E2〉.

5 Combination of Decision Procedures

We introduce Algorithm 1 for solving satisfiability of constraint systems for the
union U of two intruders systems I1 = 〈F1, T1, E1〉 and I2 = 〈F2, T2, E2〉 with
disjoint signatures F1 and F2. The completeness of Algorithm 1 is sketched be-
low, and the proofs (for completeness and soundness) are fully detailed in [9].
Let us explain this algorithm:

Step 2 The algorithm input is a U-Constraint system (D,S). An equational sys-
tem S is homogeneous if for all u ?= v ∈ S, u and v are both pure 1-terms or
both pure 2-terms. It is well-known that equational systems can be transformed
into equivalent (w.r.t. satisfiability) homogeneous systems. Thus we can assume
that S is homogeneous without loss of generality.
Step 3 abstracts every subterm t of C by a new variable ψ(t). A choice of ψ such
that ψ(t) = ψ(t′) will lead to solutions that identify t and t′.
Step 4 assign non-deterministically a signature to the root symbol of the sub-
terms of C instantiated by a solution. The choice th(ψ(t)) = 0 corresponds to
the situation where t gets equal to a free constant.
Steps 5–8 choose and order non-deterministically the intermediate subterms in
derivations that witness that the solution satisfies the constraints in D.
Step 9 defines a constraint problem C′ collecting the previous choices on sub-
terms identification, subterms signatures and derivation structures.

648 Y. Chevalier and M. Rusinowitch

Step 10 splits the problem S ′ in two pure subproblems.
Step 11 splits non-deterministically the problem D′, that is we select for each
E 	 v in D′ an intruder system to solve it.
Step 12 guesses an ordering on variables: this ordering will preclude the value of
a variable from being a subterm of the value of a smaller variable. This is used
to avoid cycles in the construction of the solution.
Step 13 solves independently the 2 pure subproblems obtained at steps 10–11.
In Ci the variables q with th(q) �= i will be considered as constants.

Algorithm 1 . Combination Algorithm
1: SolveU (C)
2: Let C = ((Ei 	 vi)i∈{1,...,n},S) with S homogeneous.
3: Choose ψ an application from Sub(C) to X \Var(C) and let Q = ψ(Sub(C))
4: Choose a theory th(q) ∈ {0, 1, 2} for all q ∈ Q
5: for i = 1 to n do
6: Choose Qi ⊆ Q
7: Choose a linear ordering over the elements of Qi say (qi,1, . . . , qi,ki)
8: end for
9: Let C′ = (D′,S ′) where{

S ′ = S ∪
{

z
?
= ψ(z) | z ∈ Sub(C)

}
D′ = Δ1, . . . , Δi, . . . Δn

and Δi = (Ki, Q
<j
i 	 qi,j)j∈{1,...,ki}, (Ki, Qi 	 ψ(vi)) with{

Ki = ψ(Ei) ∪
⋃i−1

j=1 Qj

Q<j
i = qi,1, qi,2, . . . , qi,j−1

10: Split S ′ into S1,S2 such that S ′ = S1 ∪ S2 and:⎧⎨⎩S1 =
{

z
?
= z′ ∈ S ′ | z, z′are pure 1-terms

}
S2 =

{
z

?
= z′ ∈ S ′ | z, z′are pure 2-terms

}
11: Split non-deterministically D′ into D1,D2

12: Choose a linear ordering ≺ over Q.
13: Solve Ci = (Di,Si) for intruder Ii with linear ordering ≺ for i ∈ {1, 2}
14: if both are satisfied then
15: Output: Satisfied
16: end if

We assume Cspe ⊆ Sub(C). Recall that R is the rewrite system associated to
E = E1 ∪ E2. We say a normal substitution σ is bound if for all variables x with
xσ �= x and for all t ∈ Sub(xσ) there exists u ∈ Sub(C) such that (uσ)↓R = t. A
key proposition is:

Proposition 1. If C is a satisfiable constraint system there exists a bound sub-
stitution σ such that σ |= C. Moreover Sub((Sub(C)σ)↓R) = (Sub(C)σ)↓R.

Combining Intruder Theories 649

5.1 Completeness of the Algorithm

Proposition 2. If C is satisfiable then there exists C1 and C2 satisfiable at
Step 13 of the algorithm.

Proof. First let us prove that the 11 first steps of the algorithm preserve satis-
fiability. Assume C is satisfiable. By Proposition 1 there exists a normal bound
substitution σ which satisfies C. Define ψ to be a function from Sub(C) to a set
of variables Q such that ψ(t) = ψ(t′) if and only if (tσ)↓R = (t′σ)↓R. Thus by
Proposition 1 there exists a bijection φ from Q to Sub((Sub(C)σ)↓R). We let
th(q) = i if Sign(φ(q)) = Fi and th(q) = 0 if Sign(φ(q)) = ⊥. By the construc-
tion of S ′ and the choice of ψ we can extend σ on Q by qσ = (ψ−1(q)σ)↓R for
all q ∈ Q.

For each i ∈ {1, . . . , n} by Lemma 1 we can consider a well-formed derivation
Di starting from Fi = (Eiσ)↓R and of goal gi = viσ:

Di : Fi →U Fi∪{ri,1} →U · · · →U Fi∪{ri,1, . . . , ri,ki
} →U Fi∪{ri,1, . . . , ri,ki

, gi}
We have Sub(Fi, gi) ⊆ Sub((Sub(Cσ))↓R). Since the derivation is well-formed

we have {ri,1, . . . , ri,ki
} ⊆ Sub(Fi, gi). By Proposition 1, Sub((Sub(Cσ))↓R) =

(Sub(C)σ)↓R. Thus the function φ−1 is defined for each ri,j . Let qi,j = φ−1(ri,j)
and Qi be the sequence of the qi,j .

The algorithm will non-deterministically produce a C′ corresponding to these
choices and satisfied by σ (extended over Q by ψ(t)σ = (tσ)↓R) by construction.
Since S is satisfiable, following the lines of F. Baader and K. Schulz [3] permits
to prove that S1 and S2 are satisfiable with a linear constant restriction ≺ chosen
such that q ≺ q′ implies q′σ is not a subterm of qσ.

We choose the sequence of constraints in D1 (resp. D2) to be the subsequence
of constraints F	q from D′ such that the corresponding transition in the solution
was performed by a rule in Lu,g with Sign(u) = F1 (resp. F2). By construction
these two systems are satisfiable.

From the soundness and completeness of Algorithm 1 we can derive our
main result on the combination of two intruders. It can be easily generalized to
n intruders over disjoint signatures F1, . . . ,Fn.

The main drawback of the combination algorithm that we have presented
here is that it requires the solvability of general constraints from sub-theories.
However the decision procedures which already exist for fixed intruder theo-
ries are limited to deterministic constraint systems. Fortunately we have been
able to show ([9]) that our combination algorithm can be adapted so that it
suffices to decide the solvability of deterministic constraints systems in sub-
theories.

6 Conclusion

We have proposed an algorithm for combining decision procedures for intruder
constraints on disjoint signatures. This algorithm allows for a modular treat-

650 Y. Chevalier and M. Rusinowitch

ment of algebraic operators in protocol analysis and we believe that it will con-
tribute to a better understanding of complexity issues in the domain. Since con-
straint satisfiability is required only from the intruder sub-theories the approach
should permit one to handle more complex protocols than with alternative tech-
niques.

References

1. M. Abadi, B. Blanchet, and C. Fournet. Just Fast Keying in the Pi Calculus. In
David Schmidt, editor, Proceedings of ESOP’04, volume 2986 of Lecture Notes on
Computer Science, pages 340–354, Barcelona, Spain, 2004. Springer Verlag.

2. R. Amadio, D. Lugiez, and V. Vanackère. On the symbolic reduction of processes
with cryptographic functions. Theor. Comput. Sci., 290(1):695–740, 2003.

3. F. Baader and K. U. Schulz. Unification in the union of disjoint equational theories.
combining decision procedures. J. Symb. Comput., 21(2):211–243, 1996.

4. D. Basin, S. Mödersheim, and L. Viganò. An On-The-Fly Model-Checker for
Security Protocol Analysis. In Einar Snekkenes and Dieter Gollmann, editors,
Proceedings of ESORICS’03, LNCS 2808, pages 253–270. Springer-Verlag, 2003.

5. M. Boreale. Symbolic trace analysis of cryptographic protocols. In Proceedings of
the 28th ICALP’01, LNCS 2076, pages 667–681. Springer-Verlag, Berlin, 2001.

6. M. Boreale and M. Buscemi. Symbolic analysis of crypto-protocols based on mod-
ular exponentiation. In Proceedings of MFCS 2003, volume 2747 of Lecture Notes
in Computer Science. Springer, 2003.

7. N. Borisov, I. Goldberg, and D. Wagner. Intercepting mobile communications: the
insecurity of 802.11. In Proceedings of MOBICOM 2001, pages 180–189, 2001.

8. Y. Chevalier, R. Kuesters, M. Rusinowitch, and M. Turuani. An NP Decision Pro-
cedure for Protocol Insecurity with XOR. In Proceedings of the Logic In Computer
Science Conference, LICS’03, June 2003.

9. Y. Chevalier and M. Rusinowitch. Combining intruder theories. Technical report,
INRIA, 2005. http://www.inria.fr/rrrt/rr-5495.html.

10. Y. Chevalier and L. Vigneron. A Tool for Lazy Verification of Security Protocols.
In Proceedings of the Automated Software Engineering Conference (ASE’01). IEEE
Computer Society Press, 2001.

11. H. Comon-Lundh and V. Shmatikov. Intruder Deductions, Constraint Solving and
Insecurity Decision in Presence of Exclusive or. In Proceedings of the Logic In
Computer Science Conference, LICS’03, pages 271–280, 2003.

12. S. Delaune and F. Jacquemard. A decision procedure for the verification of security
protocols with explicit destructors. In Proceedings of the 11th ACM Conference on
Computer and Communications Security (CCS’04), pages 278–287, Washington,
D.C., USA, October 2004. ACM Press.

13. N. Dershowitz and J-P. Jouannaud. Rewrite systems. In Handbook of Theoretical
Computer Science, Volume B, pages 243–320. Elsevier, 1990.

14. J. Hsiang and M. Rusinowitch. On word problems in equational theories. In
ICALP, volume 267 of Lecture Notes in Computer Science, pages 54–71. Springer,
1987.

15. C. Meadows and P. Narendran. A unification algorithm for the group Diffie-
Hellman protocol. In Workshop on Issues in the Theory of Security (in conjunction
with POPL’02), Portland, Oregon, USA, January 14-15, 2002.

Combining Intruder Theories 651

16. J. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographic
protocol analysis. In ACM Conference on Computer and Communications Security,
pages 166–175, 2001.

17. J. Millen and V. Shmatikov. Symbolic protocol analysis with an abelian group
operator or Diffie-Hellman exponentiation. Journal of Computer Security, 2005.

18. M. Rusinowitch and M. Turuani. Protocol insecurity with finite number of sessions
is NP-complete. In Proceedings of CSFW 2001. IEEE, 2001.

19. M. Schmidt-Schauß. Unification in a combination of arbitrary disjoint equational
theories. J. Symb. Comput., 8(1/2):51–99, 1989.

Computationally Sound Implementations of Equational
Theories Against Passive Adversaries

Mathieu Baudet1, Véronique Cortier2, and Steve Kremer1

1 LSV/ CNRS UMR 8643 & INRIA Futurs projet SECSI & ENS Cachan, France
{baudet, kremer}@lsv.ens-cachan.fr

2 Loria/CNRS UMR 7503 & INRIA Lorraine projet Cassis, France
cortier@loria.fr

Abstract. In this paper we study the link between formal and cryptographic
models for security protocols in the presence of a passive adversary. In contrast
to other works, we do not consider a fixed set of primitives but aim at results for
an arbitrary equational theory. We define a framework for comparing a crypto-
graphic implementation and its idealization w.r.t. various security notions. In par-
ticular, we concentrate on the computational soundness of static equivalence, a
standard tool in cryptographic pi calculi. We present a soundness criterion, which
for many theories is not only sufficient but also necessary. Finally, we establish
new soundness results for the exclusive OR and a theory of ciphers and lists.

1 Introduction

Today’s ubiquity of computer networks increases the need for theoretic foundations for
cryptographic protocols. For more than twenty years now, two communities separately
developed two families of models. Both views have been very useful in increasing the
understanding and quality of security protocol design. On the one hand formal or logical
models have been developed, based on the seminal work of Dolev and Yao [9]. These
models view cryptographic operations in a rather abstract and idealized way. On the
other hand cryptographic or computational models [10] are closer to implementations:
cryptographic operations are modeled as algorithms manipulating bit-strings. Those
models cover a large class of attacks, namely all those implementable by a probabilistic
polynomial-time Turing machine.

The advantage of formal models is that security proofs are generally simpler and
suitable for automatic procedures, even for complex protocols. Unfortunately, the high
degree of abstraction and the limited adversary power raise serious questions regarding
the security offered by such proofs. Potentially, justifying symbolic proofs with respect
to standard computational models has tremendous benefits: protocols can be analyzed
using automated tools and still benefit from the security guarantees of the computational
model.

Recently, a significant research effort has been directed at linking these two ap-
proaches. In their seminal work [3], Abadi and Rogaway prove the computational sound-
ness of formal (symmetric) encryption in the case a passive attacker. Since then, many
results [5, 11, 12] have been obtained. Notably, Backes et al. [5] prove the soundness of

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 652–663, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Computationally Sound Implementations of Equational Theories 653

a rich language including digital signatures, public-key and symmetric key encryption
in the presence of an active attacker. Laud [11] presents an automated procedure for
computationally sound proofs of confidentiality in the case of an active attacker and
symmetric encryption when the number of sessions is bounded.

Each of these results considers a fixed set of primitives, e.g. symmetric or public-key
encryption. In this paper, we aim at presenting general results for arbitrary equational
theories, such as encryption, but also less studied ones, e.g. groups or exclusive OR. We
concentrate on static equivalence, a now standard notion originating from the applied
pi calculus [2]. Intuitively, static equivalence asks whether an attacker can distinguish
between two tuples of terms, by exhibiting an equation which holds on one tuple but
not on the other. This provides an elegant means to express security properties against
passive attackers. Moreover there exist exact [1] and approximate [8] algorithms to
decide static equivalence for a large family of equational theories.

Our first contribution is a general framework for comparing formal and computa-
tional models in the presence of a passive attacker. We define the notions of soundness
and faithfulness of a cryptographic implementation w.r.t. equality, static equivalence
and deducibility. Soundness holds when each formal proof has a computational inter-
pretation. Faithfulness is the converse, i.e. the formal model does not provide false
attacks.

Our second contribution is a sufficient criterion for soundness w.r.t static equiva-
lence: intuitively the usual computational semantics of terms has to be indistinguishable
to an idealized one. We also provide a general definition of patterns for arbitrary equa-
tional theories that encompasses the notion usually defined for symmetric and public
encryption. Those patterns allow us to characterize a large class of theories for which
our soundness criterion is necessary.

Our third contribution consists in applying our framework to obtain two novel sound-
ness results. The first theory deals with the exclusive OR. Interestingly, our proof re-
flects the unconditional security (in the information-theoretic sense) of the One-Time
Pad encryption scheme. Second we consider a theory of symmetric encryption and lists.
In some sense, the result is similar to the one of Abadi and Rogaway [3]. However,
we consider deterministic, length-preserving, symmetric encryption schemes a.k.a. ci-
phers. To the best of our knowledge, this is the first result on such schemes, whose
specificity is that decryption always succeeds.

Outline of the paper. In the next section, we introduce our abstract and concrete mod-
els together with the notions of indistinguishability. We then define the notions of
soundness and faithfulness and illustrate some consequences of soundness w.r.t. static
equivalence on groups. In Section 4, we define the ideal semantics of abstract terms,
present our soundness criterion and also show that for a large family of interesting
equational theories, the soundness criterion is a necessary condition. As an illustration
(Section 5), we prove the soundness for the theories modeling exclusive OR, as well
as ciphers and lists. We then conclude and give directions for future work. Note that,
due to lack of space most proofs have been omitted; those can be found in the extended
version [7].

654 M. Baudet, V. Cortier, and S. Kremer

2 Modeling Cryptographic Primitives with Abstract Algebras

In this section we introduce some notations and set our abstract and concrete models.

2.1 Abstract Algebras

Our abstract models—which we call abstract algebras—consist of term algebras de-
fined on a first-order signature with sorts and equipped with equational theories.

Specifically a signature (S,F) is made of a set of sorts S = {s, s1 . . .} and a set of
symbols F = {f, f1 . . .} together with arities of the form ar(f) = s1 × . . .× sk → s,
k ≥ 0. Symbols that take k = 0 arguments are called constants; their arity is simply
written s. We fix an infinite set of namesN = {a, b . . .} and an infinite set of variables
X = {x, y . . .}. We assume that names and variables are given with sorts. The set of
terms of sort s is defined inductively by

T ::= term of sort s
| x variable x of sort s
| a name a of sort s
| f(T1, . . . , Tk) application of symbol f ∈ F

where for the last case, we further require that Ti is a term of some sort si and ar(f) =
s1× . . .×sk → s. As usual, we write var(T) and names(T) for the set of variables and
names occurring in T respectively. A term is ground or closed iff it has no variables.

Substitutions are written σ = {x1 = T1, . . . , xn = Tn} with domain dom(σ) =
{x1, . . . , xn}. We only consider well-sorted substitutions, that is, substitutions σ =
{x1 = T1, . . . , xn = Tn} for which xi and Ti have the same sort. σ is closed iff all of
the Ti are closed. We extend the notation names(.) from terms to substitutions in the
obvious way. The application of a substitution σ to a term T is written σ(T) = Tσ.

Symbols in F are intended to model cryptographic primitives, whereas names inN
are used to model nonces i.e. concretely random numbers. The abstract semantics of
symbols is described by an equational theory E, that is an equivalence relation (also
written =E) which is stable by application of contexts and well-sorted substitutions
of variables. We further require that E is stable under substitution of names. All the
equational theories that we consider in this paper satisfy these properties. For instance,
symmetric and deterministic encryption is modeled by the theory Eenc generated by the
classical equation Eenc = {dec(enc(x, y), y) = x}.

2.2 Frames, Deducibility and Static Equivalence

Following [2, 1], a frame is an expression ϕ = νã.σ where ã is a set of bound (or
restricted) names and σ is a well-sorted substitution. Intuitively, frames represent se-
quences of messages learned by an attacker during the execution of a protocol.

For simplicity we only consider frames νã.σ which restrict every name occurring
in σ, that is ã = names(σ). In other words, names a must be disclosed explicitly by
adding a mapping xa = a to the substitution. Thus we tend to assimilate frames and
their underlying substitutions.

Computationally Sound Implementations of Equational Theories 655

A term T is deducible from a closed frame ϕ, written ϕ �E T iff there exists a
term M with var(M) ⊆ dom(ϕ) and names(M) ∩ names(ϕ) = ∅ such that Mϕ =E

T . Consider for instance the theory Eenc and the frame ϕ1 = νk1, k2, k3, k4. {x1 =
enc(k1, k2), x2 = enc(k4, k3), x3 = k3}: the name k4 is deducible from ϕ1 since
dec(x2, x3)ϕ1 =Eenc k4 but neither k1 nor k2 are deducible.

Deducibility is not always sufficient to account for the knowledge of an attacker.
E.g. it lacks partial information on secrets. This is why the notion of static equivalence
is used. Two closed frames ϕ1 and ϕ2 are statically equivalent, written ϕ1 ≈E ϕ2, iff (i)
dom(ϕ1) = dom(ϕ2), (ii) for all terms M,N with variables included in dom(ϕi) and
using no names occurring in ϕ1 or ϕ2, Mϕ1 =E Nϕ1 is equivalent to Mϕ2 =E Nϕ2.

For instance, the two frames νk. {x = enc(0, k)} and νk. {x = enc(1, k)} are stat-
ically equivalent with respect to Eenc, whereas the two frames νk. {x = enc(0, k), y =
k} and νk, k′.{x = enc(0, k′), y = k} are not.

2.3 Concrete Semantics

We now give terms and frames a concrete semantics, parameterized by an implemen-
tation of the primitives. Provided a set of sorts S and a set of symbols F as above, a
(S,F)-computational algebra A consists of

– a non-empty set of bit-strings [[s]]A ⊆ {0, 1}∗ for each sort s ∈ S;
– a computable function fA : [[s1]]A × . . . × [[sk]]A → [[s]]A for each f ∈ F with

ar(f) = s1 × . . .× sk → s;
– a computable congruence =A,s for each sort s, in order to check the equality of

elements in [[s]]A (the same element may be represented by different bit-strings); by
congruence, we mean a reflexive, symmetric, transitive relation such that e1 =A,s1

e′1, . . . , ek =A,sk
e′k ⇒ fA(e1, . . . , ek) =A,s fA(e′1, . . . , e

′
k) (in the remaining we

often omit s and write =A for =A,s);
– an effective procedure to draw random elements from [[s]]A; we denote such a draw-

ing by x
R←− [[s]]A; the drawing may not follow a uniform distribution, but no =A,s-

equivalence class should have probability 0.

Assume a fixed (S,F)-computational algebra A. We associate to each closed frame

ϕ = {x1 = T1, . . . , xn = Tn} a distribution ψ = [[ϕ]]A, of which the drawings ψ̂
R←− ψ

are computed as follows:

1. for each name a of sort s appearing in T1, . . . , Tn, draw a value â
R←− [[s]]A;

2. for each xi (1 ≤ i ≤ n) of sort si, compute T̂i ∈ [[si]]A recursively on the structure

of terms: ̂f(T ′1, . . . , T ′m) = fA(T̂ ′1, . . . , T̂ ′m);
3. return the value ψ̂ = {x1 = T̂1, . . . , xn = T̂n}.

Such values φ = {x1 = e1, . . . , xn = en} with ei ∈ [[si]]A are called concrete
frames. We extend the notation [[.]]A to (sets of) closed terms in the obvious way. We
also generalize the notation to terms or frames with variables, by specifying the concrete
values for all of them: [[.]]A,{x1=e1,...,xn=en}. Notice that when a term or a frame con-
tains no names, the translation is deterministic; in this case, we use the same notation
to denote the distribution and its unique value.

656 M. Baudet, V. Cortier, and S. Kremer

(Families of) distributions over concrete frames benefit from the usual notion of
cryptographic indistinguishability. Let us note η ≥ 0 the complexity parameter. In-
tuitively, two families (ψη) and (ψ′η) of distributions over concrete frames are indis-
tinguishable, written (ψη) ≈ (ψ′η), iff no probabilistic polynomial-time adversary A
can guess whether he is given a sample from ψη or ψ′η with a probability significantly
greater than 1

2 . Rigorously, we ask the advantage of A,

AdvIND(A, η,ψη,ψ
′
η) = P[ψ̂ R←− ψη;A(η, ψ̂) = 1]− P[ψ̂ R←− ψ′η;A(η, ψ̂) = 1]

to be a negligible function of η, that is, to remain eventually smaller than any η−n

(n > 0) for sufficiently large η.

3 Relating Abstract and Computational Algebras

In the previous section we have defined abstract and computational algebras. We now
relate formal notions such as equality, (non-)deducibility and static equivalence to their
computational counterparts, i.e. equality, one-wayness and indistinguishability.

3.1 Soundness and Faithfulness

We introduce the notions of sound, resp. faithful, computational algebras with respect
to the formal relations studied here: equality, static equivalence and deducibility. In the
remaining of the paper we only consider families of computational algebras (Aη) such
that each required operation on algebras is feasible by a (uniform) polynomial-time
algorithm in the complexity parameter η. We also require that for every sort s, either
there exists no name of sort s, or the probability of collision of two random elements in

[[s]]Aη
, P[e1, e2

R←− [[s]]Aη
; e1 =Aη

e2], is negligible.
Specifically a family of computational algebras (Aη) is

– =E-sound iff for every closed terms T1, T2 of the same sort, T1 =E T2 implies that

P[e1, e2
R←− [[T1, T2]]Aη

; e1 �=Aη
e2] is negligible;

– =E-faithful iff for every closed terms T1, T2 of the same sort, T1 �=E T2 implies

that P[e1, e2
R←− [[T1, T2]]Aη

; e1 =Aη
e2] is negligible;

– ≈E-sound iff for every closed frames ϕ1,ϕ2 with the same domain, ϕ1 ≈E ϕ2

implies that ([[ϕ1]]Aη
) ≈ ([[ϕ2]]Aη

);
– ≈E-faithful iff for every closed frames ϕ1,ϕ2 of the same domain, ϕ1 �≈E ϕ2

implies that there exists a polynomial-time adversaryA for distinguishing concrete
frames, such that 1−AdvIND(A, η, [[ϕ1]]Aη

, [[ϕ2]]Aη
) is negligible;

– ��E-sound iff for every closed ϕ and T , ϕ ��E T implies that for each polynomial-

time adversary A, P[φ, e
R←− [[ϕ, T]]Aη

;A(φ) =Aη
e] is negligible;

– ��E-faithful iff for every closed ϕ and T , ϕ �E T implies that there exists a

polynomial-time adversary A such that 1 − P[φ, e
R←− [[ϕ, T]]Aη

;A(φ) =Aη
e] is

negligible.

Computationally Sound Implementations of Equational Theories 657

Sometimes, it is possible to prove stronger notions of soundness that hold without
restriction on the computational power of adversaries. In particular, (Aη) is uncondi-
tionally =E-sound iff for every closed terms T1, T2 of the same sort, T1 =E T2 implies

that P[e1, e2
R←− [[T1, T2]]Aη

; e1 =Aη
e2] = 1; unconditionally ≈E-sound iff for every

closed frames ϕ1,ϕ2 with the same domain, ϕ1 ≈E ϕ2 implies ([[ϕ1]]Aη
) = ([[ϕ2]]Aη

);
unconditionally ��E-sound iff for every closed ϕ and T s.t. ϕ ��E T , the distributions

for ϕ and T are independent: for all φ0, e0, P[φ, e
R←− [[ϕ, T]]Aη

;φ = φ0 and e = e0] =

P[φ R←− [[ϕ]]Aη
;φ = φ0]× P[e R←− [[T]]Aη

; e = e0].
Generally, (unconditional) =E-soundness is given by construction. Indeed true for-

mal equations correspond to the expected behavior of primitives and should hold in
the concrete world with overwhelming probability. The other criteria are however more
difficult to fulfill. Therefore it is often interesting to restrict frames to well-formed ones
in order to achieve soundness or faithfulness: for instance Abadi and Rogaway [3] do
forbid encryption cycles (c.f. Section 5.2).

It is worth noting that the notions introduced above are not independent.

Proposition 1. Let (Aη) be a =E-sound family of computational algebras. Then (Aη)
is ��E-faithful. If moreover (Aη) is =E-faithful, then it is also ≈E-faithful.

For many interesting theories, we have that ≈E-soundness implies all the other notions
of soundness and faithfulness. As an illustration, let us consider an arbitrary theory
which includes keyed hash functions.

Proposition 2. Let (Aη) be a family of ≈E-sound computational algebras. Assume
that free binary symbols hs : s × Key → Hash are available for every sort s, and the
sorts Hash and Key have infinitely many names. Then (Aη) is =E-faithful and ��E-
sound. Besides, if the implementations for the hs are collision-resistant, then (Aη) is
=E-sound, ≈E-faithful and ��E-faithful.

3.2 ≈E-Soundness Implies Classical Assumptions on Groups

Inspired by the work of Rivest on pseudo-freeness [14], we now study some conse-
quences of ≈E-soundness on groups. Let EG be the equational theory modeling a free
group G with exponents taken over a free commutative ring A. Assume a ≈EG

-sound
family of computational algebras (Aη). Then the static equivalence νg, a, b.{x1 =
g, x2 = ga, x3 = gb, x4 = ga·b} ≈EG

νg, a, b, c.{x1 = g, x2 = ga, x3 = gb, x4 = gc}
implies the hardness of the decisional Diffie-Hellman problem for this implementation.

In a similar way we prove that ≈EG
-soundness implies the hardness of RSA. More

details can be found in [7].

4 A Sufficient (and Often Necessary) Criterion for ≈E-Soundness

We now present useful results for proving≈E-soundness properties in general. Notably,
we provide a sufficient criterion for≈E-soundness in Section 4.1 and prove it necessary
under additional assumptions in Section 4.2.

658 M. Baudet, V. Cortier, and S. Kremer

4.1 Ideal Semantics and ≈E-Soundness Criterion

Given an implementation of the primitives, what we called the concrete semantics maps
every closed frame ϕ to a distribution [[ϕ]]Aη

in the expected way. We now define the
ideal semantics of a ϕ, intuitively as the uniform distribution over sequences of bit-
strings (in the appropriate space) that pass all the formal tests verified by ϕ.

Given a closed frame ϕ, let us write eqE(ϕ) for the set of tests that are true in ϕ:
eqE(ϕ) = {(M,N) | var(M) ∪ var(N) ⊆ dom(φ), (names(M) ∪ names(N)) ∩
names(ϕ) = ∅ and Mϕ =E Nϕ}. Notice that ϕ ≈E ϕ′ iff eqE(ϕ) = eqE(ϕ′).

We say that (Aη) has uniform distributions iff for every η and every sort s, [[s]]Aη
is

a finite set, =Aη,s is the usual equality and, the distribution associated to s by Aη is the
uniform one over [[s]]Aη

.

Definition 1 (Ideal semantics). Let (Aη) be an unconditionally =E-sound family of
computational algebras, having uniform distributions. Let ϕ = {x1 = t1, . . . , xn =
tn} be a closed frame and si the sort of xi. The ideal semantics [[ϕ]]idealAη

of ϕ is the
uniform distribution over the finite (non-empty) set of concrete frames:{

{x1 = e1, . . . , xn = en} | (e1, . . . , en) ∈ [[s1]]Aη
× · · · × [[sn]]Aη

and

∀(M,N) ∈ eqE(ϕ) · [[M]]Aη,{x1=e1,...,xn=en} = [[N]]Aη,{x1=e1,...,xn=en}
}

For instance, let ϕ = νn1, n2.{x1 = n1, x2 = n2} with n1 and n2 of sort s. Then
eqE(ϕ) ⊆ {(M,N) | M =E N} implies that [[ϕ]]idealAη

is simply the uniform distribu-
tion over [[s]]Aη

× [[s]]Aη
. A more general definition of the ideal semantics, which does

not restrict (Aη) to uniform distributions is given in [7].
We can now state our ≈E-soundness criterion: intuitively, the two semantics, con-

crete and ideal, should be indistinguishable.

Theorem 1 (≈E-soundness criterion). Let (Aη) be an unconditionally =E-sound
family of computational algebras. Assume that for every closed frame ϕ it holds that
([[ϕ]]Aη

) ≈ ([[ϕ]]idealAη
). Then (Aη) is ≈E-sound.

4.2 Patterns Revisited

Patterns have been introduced by Abadi and Rogaway [3] and used in subsequent
work [12, 6] as a way to define computationally sound formal equivalences. Typically
frames are mapped to patterns by replacing non-decipherable terms by boxes �. Two
frames are then equivalent iff they yield the same pattern (up to renaming of names). For
example, the pattern associated to the frame ϕ1 = {x1 = enc(enc(k4, k3), k1), x2 =
enc(k1, k2), x3 = k2} is {x1 = enc(�, k1), x2 = enc(k1, k2), x3 = k2}.

In this section we propose a general, novel definition of patterns and study some of
their properties. We then use these properties to prove that our soundness criterion is
necessary in many cases.

Definition 2. A closed frame ϕ is a pattern if each of its subterms is deducible from ϕ.

Equivalently a pattern is a closed frame of the form ϕ = {x1 = C1[a1, . . . , am], . . . ,
xn = Cn[a1, . . . , am]} where the C1 . . . Cn are closed (not necessarily linear) contexts

Computationally Sound Implementations of Equational Theories 659

and the a1 . . . am are distinct deducible names: ϕ �E ai. For example, ϕ1 as defined
above is not a pattern, while ϕ2 = {x1 = enc(n1, k1), x2 = enc(k1, k2), x3 = k2} is.

The following proposition finitely characterizes the equations verified by a pattern.

Proposition 3. Let ϕ = {x1 = C1[a1, . . . , am], . . . , xn = Cn[a1, . . . , am]} be a pat-
tern, using the notations above. For each ai, let ζai

be a term such that var(ζai
) ⊆

{x1, . . . , xn}, names(ζai
) ∩ names(ϕ) = ∅ and ζai

ϕ =E ai. Then every equation
which holds in ϕ is a logical consequence (in the first-order theory of equality) of E
and the equations xj = Cj [ζa1 , . . . , ζam

].

Interestingly the concrete and the ideal semantics of patterns often coincide.

Proposition 4. Let (Aη) be an unconditionally =E-sound family of computational al-
gebras, having uniform distributions. Let ϕ be a pattern. The concrete and the ideal
semantics of ϕ yield the same family of distributions: for all η, [[ϕ]]Aη

= [[ϕ]]idealAη
.

The idea of the proof is that, using the finite characterization of eqE(ϕ) (Proposition 3),
one can draw a bijection between the drawing of nonces and the eligible values for the
ideal semantics.

A theory E admits patterns iff for every closed frame ϕ, there exists a (not neces-
sarily unique) pattern ϕ such that ϕ ≈E ϕ. In practice many theories useful in cryptog-
raphy satisfy this property, e.g. the theories considered in Section 5. Note that we have
proved en passant that ≈E is decidable for equational theories that admit patterns and
for which =E is decidable, provided the construction of patterns is effective. Indeed,
given two frames ϕ1 and ϕ2, we associate to each of them one of its statically equiva-
lent pattern ϕ1 and ϕ2, respectively. It is then straightforward to check whether ϕ1 and
ϕ2 are equivalent using the finite characterization of eqE(ϕi) by Proposition 3.

The following theorem states that our soundness criterion is actually very tight:
whenever a theory admits patterns, our criterion is a necessary condition.

Theorem 2. Assume that the theory E admits patterns. Let (Aη) be a family of com-
putational algebras, such that (Aη) has uniform distributions, is≈E- and uncondition-
ally =E-sound. Then the soundness criterion of Theorem 1 is satisfied: for every closed
frame ϕ, ([[ϕ]]Aη

) ≈ ([[ϕ]]idealAη
).

5 Examples

We now apply the framework of Sections 3 and 4 to establish two novel ≈E-soundness
results, concerning the theory of exclusive OR and that of ciphers and lists.

5.1 Exclusive OR

We study the soundness and faithfulness problems for the usual theory and implemen-
tation of the exclusive OR (XOR).

The formal model consists of a single sort Data , an infinite number of names, the
infix symbol ⊕ : Data × Data → Data and two constants 0, 1 : Data . Terms are
equipped with the equational theory E⊕ generated by:

660 M. Baudet, V. Cortier, and S. Kremer

x⊕ y = y ⊕ x
(x⊕ y)⊕ z = x⊕ (y ⊕ z)

x⊕ x = 0
x⊕ 0 = x

As an implementation, we define the computational algebras Aη , η ≥ 0: the con-
crete domain [[Data]]Aη

is {0, 1}η equipped with the uniform distribution; ⊕ is inter-
preted by the usual XOR function over {0, 1}η , [[0]]Aη

= 0η, [[1]]Aη
= 1η .

In this setting, statically equivalent frames enjoy an algebraic characterization. In-
deed, let ϕ and ϕ′ be two frames with names(ϕ) ∪ names(ϕ′) ⊆ {a1, . . . , an} and
dom(ϕ) = dom(ϕ′) = {x1, . . . , xm}. We associate to ϕ a (m + 1) × (n + 1)-matrix
α = (αi,j) over the two element field F2: the 0-th row of α is (1, 0 . . . 0) and for
1 ≤ i ≤ m, 1 ≤ j ≤ n (resp. j = 0) αi,j is the number of occurrences of aj (resp. of 1)
in ϕ(xi), taken modulo 2. In the same way, a matrix α′ is associated to ϕ′. Using clas-
sical manipulations on matrices, it is easy to show that ϕ ≈E⊕ ϕ′ iff the two associated
matrices α and α′ have the same image, that is α(F2

n+1) = α′(F2
n+1).

This characterization is the key point of our main result for the theory of XOR.

Theorem 3. The usual implementation of the XOR theory is unconditionally =E⊕-,
≈E⊕- and ��E⊕-sound. It is also =E⊕-, ≈E⊕- and ��E⊕ -faithful.

This result is comparable to the work of Bana [6], who shows the unconditional sound-
ness of the One-Time Pad encryption in a setting similar to that of Abadi and Rog-
away [3]. In some sense our result is more precise as we model the XOR symbol itself
and not a particular use of it.

5.2 Symmetric, Deterministic, Length-Preserving Encryption and Lists

We now detail the example of symmetric, deterministic and length-preserving encryp-
tion schemes. Such schemes, also known as ciphers [13], are widely used in practice,
the most famous examples being DES and AES .

Our formal model consists of a set of sorts S = {Data,List0,List1 . . .Listn . . .},
an infinite number of names for every sort Data and Listn, n �= 0, and the symbols:

encn, decn : Listn ×Data → Listn encryption, decryption
consn : Data × Listn → Listn+1 list constructor
headn : Listn+1 → Data head of a list
tailn : Listn+1 → Listn tail of a list

nil : List0 0, 1 : Data empty list, constants

We consider the equational theory Esym generated by (for every n ≥ 0)

decn(encn(x, y), y) = x
encn(decn(x, y), y) = x
headn(consn(x, y)) = x
tailn(consn(x, y)) = y

consn(headn(x), tailn(x)) = x
enc0(nil, x) = nil
dec0(nil, x) = nil

When oriented from left to right, the equations Esym form an (infinite) convergent
rewriting system, written R. The equations encn(decn(x, y), y) = x are characteristic
of length-preserving encryption schemes. Indeed, encryption and decryption functions
under each key then form a pair of mutually inverse bijections. The concrete meaning of
sorts and symbols is given by the computational algebras Aη, η > 0, defined as follows:

Computationally Sound Implementations of Equational Theories 661

– the carrier sets are [[Data]]Aη
= {0, 1}η and [[Listn]]Aη

= {0, 1}nη equipped with
the uniform distribution and the usual equality relation;

– encn, decn are implemented by a cipher for data of size nη and keys of size η (we
discuss the required cryptographic assumptions later);

– [[nil]]Aη
is the empty bit-string, [[consn]]Aη

is the usual concatenation,[[0]]Aη
= 0η,

[[1]]Aη
= 1η , [[headn]]Aη

returns the η first digits of bit-strings (of size (n + 1)η)
whereas [[tailn]]Aη

returns the last nη digits.

Obviously, the above implementation is unconditionally =Esym -sound. Before study-
ing the ≈Esym -soundness, we need to characterize statically equivalent frames. Specifi-
cally we show that this theory admits patterns, in the sense of Section 3.

Proposition 5. Let ϕ be a closed frame. There exists a pattern ϕ such that ϕ ≈Esym ϕ.

Proof (outline). We associate a pattern to any frame ϕ by the following procedure:

1. normalize ϕ using the rulesR (the result is still denoted ϕ);
2. while ϕ is not a pattern, repeat: find any subterm T of the form T = encn(U, V),

T = decn(U, V), T = headn(V) or, T = tailn(V), with ϕ ��Esym V and replace T
everywhere in ϕ by a fresh name a of the appropriate sort.

We prove in [7] that this procedure always terminates on a pattern statically equivalent
to the initial frame.

We now study the ≈Esym -soundness problem under realistic cryptographic assump-
tions. Classical assumptions on ciphers include the notions of super pseudo-random per-
mutation (SPRP) and several notions of indistinguishability (IND-Pi-Cj, i, j = 0, 1, 2).
In particular, IND-P1-C1 denotes the indistinguishability against lunchtime chosen-
plaintext and chosen-ciphertext attacks. These notions and the relations between them
have been studied notably in [13].

Initially, the SPRP and IND-P1-C1 assumptions apply to (block) ciphers specialized
to plaintexts of a given size. Interestingly, this is not sufficient to imply≈Esym -soundness
for frames which contain plaintexts of heterogeneous sizes, encrypted under the same
key. Thus we introduce a strengthened version of IND-P1-C1, applying to a collection
of ciphers (Eη,n,Dη,n), where η is the complexity parameter and n ≥ 0 is the number
of blocks of size η contained in plaintexts and ciphertexts.

We define the ω-IND-P1-C1 assumption by considering the following experiment
Gη involving a 2-stage adversary A = (A1,A2):

– first a key k is randomly chosen from {0, 1}η;
– (Stage 1) A1 is given access to the encryption oracles Eη,n(·, k) and the decryption

oracles Dη,n(·, k); it outputs two plaintexts m0,m1 ∈ {0, 1}n0η for some n0, and
possibly some data d;

– (Stage 2) a random bit b ∈ {0, 1} is drawn; A2 receives the data d, the challenge
ciphertext c = Eη,n0(mb, k) and outputs a bit b′;

– A is successful in Gη iff b = b′ and it has never submitted m0 or m1 to an encryption
oracle, nor c to a decryption oracle.

662 M. Baudet, V. Cortier, and S. Kremer

Define the advantage of A as: Advω-IND-P1-C1
A (η) = 2 × P [A is successful in Gη] − 1.

The ω-IND-P1-C1 assumption holds for (Eη,n,Dη,n) iff the advantage of any proba-
bilistic polynomial-time adversary is negligible. It holds for the inverse of the encryp-
tion scheme, iff it holds for the collection of ciphers (Dη,n, Eη,n).

As in previous work [3, 12, 4, 11], we restrict frames to those with only atomic keys
and no encryption cycles. Specifically a closed frame ϕ has only atomic keys if for all
subterms encn(u, v) and decn(u, v) of ϕ, v is a name. Given two (atomic) keys k1 and
k2, we say that k1 encrypts k2 in ϕ, written k1 >ϕ k2, iff there exists a subterm U of ϕ
of the form U = encn(T, k1) or U = decn(T, k1) such that k2 appears in T not used as
a key, i.e. k2 appears in T at a position which is not the right-hand argument of a encn′

or a decn′ . An encryption cycle is a tuple k1 . . . km such that k1 >ϕ . . . >ϕ km >ϕ k1.
The effect of the condition “not used as a key” is to allow considering more terms as

free of encryption cycles, for instance encn(encn(a, k), k). This improvement is already
suggested in [3].

We now state our ≈Esym -soundness theorem. A closed frame is well-formed iff its
R-normal form has only atomic keys, contains no encryption cycles and uses no head
and tail symbols.

Theorem 4 (≈Esym -soundness). Let ϕ1 and ϕ2 be two well-formed frames of the same
domain. Assume that the concrete implementations for the encryption and its inverse
satisfy both the ω-IND-P1-C1 assumption. If ϕ1 ≈Esym ϕ2 then ([[ϕ1]]Aη

) ≈ ([[ϕ2]]Aη
).

Note on the cryptographic assumptions. Cryptographic assumptions of Theorem 4 may
appear strong compared to existing work on passive adversaries [3, 12]. Nevertheless if
ϕ1 and ϕ2 contain no decryption symbols, our proofs are easily adapted to work when
the encryption scheme is ω-IND-P1-C0 only, where ω-IND-P1-C0 is defined similarly
to ω-IND-P1-C1 except that the adversary has no access to the decryption oracle.

Also, it is possible to recover the classical assumptions IND-P1-C1 by modeling the
ECB mode (Electronic Code Book). Let us add two symbols enc : Data × Data →
Data and dec : Data×Data → Data , and define the symbols encn and decn (formally
and concretely) recursively by

encn+1(x, y) = consn(enc(headn(x), y), encn(tailn(x), y)) and

decn+1(x, y) = consn(dec(headn(x), y), decn(tailn(x), y)).

Define well-formed frames as those of which the normal forms contain no encryp-
tion cycles. The ≈Esym -soundness property holds for well-formed frames as soon as the
implementations for enc and dec are both IND-P1-C1, or equivalently [13] enc is SPRP.

6 Conclusion and Future Work

In this paper we developed a general framework for relating formal and computational
models of security protocols in the presence of a passive attacker. These are the first
results on abstract models allowing arbitrary equational theories. We define the sound-
ness and faithfulness of cryptographic implementations w.r.t. abstract models. We also
provide a soundness criterion which for a large number of theories—those that admit a

Computationally Sound Implementations of Equational Theories 663

general notion of patterns—is not only sufficient but also necessary. Finally, we provide
new soundness results for the exclusive OR and a theory of ciphers and lists.

As future work, we foresee to study the soundness of other theories. An interesting
case would be the combination of the two theories considered in this paper: in a theory
combining XOR, ciphers and lists, one can precisely model the Cipher Block Chain-
ing (CBC) mode, which is commonly used with block ciphers such as DES or AES.
Another ambitious extension is to consider the case of an active attacker.

Acknowledgments. This work has been partially supported by the ACI-SI Rossignol,
the ACI JC 9005 and the RNTL project PROUVÉ 03V358 and 03V360.

References

1. M. Abadi and V. Cortier. Deciding knowledge in security protocols under equational the-
ories. In Proc. 31st International Colloquium on Automata, Languages and Programming
(ICALP’04), volume 3142 of LNCS, pages 46–58, 2004.

2. M. Abadi and C. Fournet. Mobile values, new names, and secure communications. In Proc.
28th Annual ACM Symposium on Principles of Programming Languages (POPL’01), pages
104–115, 2001.

3. M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational
soundness of formal encryption). In Proc. 1st IFIP International Conference on Theoret-
ical Computer Science (IFIP–TCS’00), volume 1872 of LNCS, pages 3–22, 2000.

4. M. Backes and B. Pfitzmann. Symmetric encryption in a simulatable Dolev-Yao style cryp-
tographic library. In Proc. 17th IEEE Computer Science Foundations Workshop (CSFW’04),
pages 204–218, 2004.

5. M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library with nested
operations. In Proc. 10th ACM Conference on Computer and Communications Security
(CCS’03), 2003.

6. G. Bana. Soundness and Completeness of Formal Logics of Symmetric Encryption. PhD
thesis, University of Pennsylvania, 2004.

7. M. Baudet, V. Cortier, and S. Kremer. Computationally sound implementations of equational
theories against passive adversaries. Research Report 2005/074, Cryptology ePrint Archive,
Mar. 2005. 28 pages.

8. B. Blanchet. Automatic proof of strong secrecy for security protocols. In Proc. 25th IEEE
Symposium on Security and Privacy (SSP’04), pages 86–100, 2004.

9. D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transactions on
Information Theory, IT-29(12):198–208, 1983.

10. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System
Sciences, 28:270–299, 1984.

11. P. Laud. Symmetric encryption in automatic analyses for confidentiality against active ad-
versaries. In Proc. IEEE Symposium on Security and Privacy (SSP’04), pages 71–85, 2004.

12. D. Micciancio and B. Warinschi. Completeness theorems for the Abadi-Rogaway logic of
encrypted expressions. Journal of Computer Security, 12(1):99–129, 2004.

13. D.H. Phan and D. Pointcheval. About the security of ciphers (semantic security and pseudo-
random permutations). In Proc. Selected Areas in Cryptography (SAC’04), volume 3357 of
LNCS, pages 185–200, 2004.

14. R.L. Rivest. On the notion of pseudo-free groups. In Proc. 1st Theory of Cryptography
Conference (TCC’04), volume 2951 of LNCS, pages 505–521, 2004.

Password-Based Encryption Analyzed

Martı́n Abadi1 and Bogdan Warinschi2

1 Computer Science Department, University of California, Santa Cruz
2 Computer Science Department, Stanford University

Abstract. The use of passwords in security protocols is particularly delicate be-
cause of the possibility of off-line guessing attacks. We study password-based
protocols in the context of a recent line of research that aims to justify symbolic
models in terms of more concrete, computational ones. We offer two models for
reasoning about the concurrent use of symmetric, asymmetric, and password-
based encryption in protocol messages. In each of the models we define a notion
of equivalence between messages and also characterize when passwords are used
securely in a message or in a set of messages. Our new definition for the com-
putational security of password-based encryption may be of independent interest.
The main results of this paper are two soundness theorems. We show that un-
der certain (standard) assumptions about the computational implementation of
the cryptographic primitives, symbolic equivalence implies computational equiv-
alence. More importantly, we prove that symbolically secure uses of passwords
are also computationally secure.

1 Introduction

Passwords and other weak secrets sometimes serve as cryptographic keys in security
protocols and elsewhere (e.g., [5, 14, 16, 21]). The use of weak secrets is particularly
delicate because of the possibility of off-line guessing attacks. In such an attack, data
that depends on a weak secret is used in checking guesses of the values of the weak
secret. Consider, for example, a protocol where two parties exchange the encryption c
of some fixed message, say Ok, under a shared password pwd . If pwd is picked from
a relatively small dictionary, then an attacker that obtains a transcript of the protocol
execution can mount the following off-line attack. It decrypts the ciphertext c with the
passwords in the dictionary, one by one, until the result of the decryption is the text Ok.
The password used for this last decryption is likely to be pwd . Guessing attacks such as
this one are passive, in the sense that they do not require interaction with the protocol
participants, so they are hard to detect. A guessing attack may however be carried out
after an active attack, relying on the messages exchanged in the course of the active
attack.

Early research on the design and analysis of protocols based on weak secrets fo-
cused on techniques for defending against guessing attacks (e.g. [13]). These techniques
basically aim to ensure that plaintexts encrypted under passwords do not contain redun-
dancy that can later be used to verify a password guess. While this is a helpful guide-
line, its informal application need not guarantee security. As experience demonstrates
(e.g., [23]), conjecturing the security of a protocol, or arguing it only heuristically, is

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 664–676, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Password-Based Encryption Analyzed 665

not sufficient. Instead, and this is the goal pursued by recent research on the subject,
the security of protocols should be rigorously analyzed. Models for carrying out such
analyzes have been designed using two different, yet related approaches.

The first approach, known as the symbolic or formal methods approach, adopts an
abstract view of executions. Messages are modeled as elements of a term algebra con-
structed with symbolic operations that represent various cryptographic primitives. Par-
ties operate on terms using a limited number of inference rules, sometimes generically
known as the Dolev-Yao rules. The rules reflect a common understanding of the secu-
rity of cryptographic primitives. For example, they say that the message encrypted in
a ciphertext can be recovered only if the appropriate decryption key is known. Quite
often, proofs that rely on these rules can be mechanized. Work done on symbolic mod-
els for password-based protocol has concentrated on extending the Dolev-Yao rules to
guessing attacks [7–9, 18]. Typical formalisms enrich standard symbolic models with
an operation that represents encryption under passwords, and they offer a careful ac-
count of when a password guess can be verified from a given set of terms (presumably
a transcript of a protocol execution). The resulting decision procedure has been auto-
mated [7, 8, 18]; a corresponding decision problem has been shown NP-complete [9].
Unfortunately, as remarked by authors of prior work [18], it is quite difficult to deter-
mine if a set of formal criteria for the existence of guessing attacks is exhaustive. Hence,
the possibility remains that a formal analysis would miss some attacks, and unsoundly
conclude that a protocol is secure when in fact it is not.

The second approach, known as the computational approach, uses a concrete (bit
level) representation, for protocol executions. The attacker is modeled as a powerful,
arbitrary probabilistic polynomial-time Turing machine. Although proofs with this ap-
proach tend to be lengthy, difficult, and tedious, it is generally accepted that it provides
strong guarantees. For the case of password-based protocols, work with the computa-
tional approach seems to have focused almost exclusively on the important use of pass-
words for authenticated key exchange. This work includes designing models and giving
provably secure constructions [4, 6, 10, 11, 15]. Surprisingly, the security of password-
based encryption as a stand-alone primitive has not been addressed.

A recent line of research aims to justify the abstractions made by symbolic methods
with respect to computational models (e.g., [1, 2, 17, 20, 22]) via soundness theorems.
These theorems typically state that, under certain assumptions on the implementation of
cryptographic primitives, symbolic security proofs imply security in the computational
model. The applications of soundness theorems are quite appealing: simple reasoning
techniques and automatic tools, specific to the symbolic setting, can be used to carry
out proofs that guarantee strong, computational security.

This paper is a first exploration on the subject of computationally sound symbolic
analysis for protocols based on passwords. We concentrate on off-line guessing attacks,
because they are the main original concern in the analysis of those protocols and be-
cause they appear mostly orthogonal to the standard active attacks. Our framework is an
extension of the framework introduced by Abadi and Rogaway [1] to asymmetric and
password-based encryption. That framework focuses, as an initial step, on passive at-
tacks; in that respect, it is a good match for our purposes, since off-line guessing attacks
are passive by definition (even if they may occur in conjunction with active attacks).

666 M. Abadi and B. Warinschi

We introduce a language of expressions whose elements are abstract representations
of the messages sent during protocol executions. The cryptographic primitives that we
consider are symmetric encryption, asymmetric encryption, and encryption that uses
passwords as keys. To these expressions we attach two different semantics. The first is
symbolic; it is based on an extension of the classical Dolev-Yao inference rules to in-
clude password-based encryption. The second is computational; it is based on concrete
implementations of the encryption operations. In current protocols, password-based
encryption typically serves for achieving authenticity rather than secrecy properties,
despite the use of the term “encryption” (which we preserve for historical reasons).
Accordingly, our semantics do not require that the encryption of a plaintext under a
password ensure the secrecy of the plaintext. Further, we give symbolic and computa-
tional definitions for expression equivalence (when two expressions convey the same
information to an adversary) and for secure use of passwords (which expressions do not
leak passwords despite guessing attacks). The main results of our paper are soundness
theorems that link the two models. We prove that if two expressions are equivalent sym-
bolically then they are equivalent computationally. We also prove that if an expression
hides a password symbolically then it hides the password computationally.

In Section 2 we give the syntax of the language of expressions. As a counterpart, we
introduce a computational setting in Section 4. We define expression equivalence and
password hiding, symbolically and computationally, in Sections 3 and 5, respectively.
In Section 6 we give our main results; as an example, we show an application to the
EKE protocol [5]. We conclude in Section 7. Because of space constraints, we leave
many details and proofs to a longer version of this paper.

2 Syntax

In this section we define the language of expressions Exp. We consider messages con-
structed from bits and cryptographic keys by using pairing, symmetric and asymmetric
encryption, as well as encryption that employs passwords as keys. In what follows,
Bool is the set of bits {0, 1}. Keys is the set of cryptographic keys; it is the union of the
disjoint sets SKeys, EKeys, DKeys, and Passwd which contain symbols for symmetric
keys, asymmetric encryption keys, asymmetric decryption keys, and passwords, respec-
tively. We write EncKeys for SKeys∪ EKeys∪Passwd, the set of keys that can be used
for encryption; and write (·)−1 : SKeys∪ EKeys → SKeys∪DKeys for a bijection that
maps an encryption key to the associated decryption key. We usually follow the con-
vention that Ks

1 ,Ks
2 , . . . represent symmetric keys, Ke

1 ,Ke
2 , . . . asymmetric encryption

keys, and Kd
1 ,Kd

2 , . . . the corresponding asymmetric decryption keys. In this paper we
concentrate on the simple setting where expressions use a single password symbol for
encryption, so the set Passwd contains a single element W. This setting is sufficient for
analyzing multiple concurrent runs of the execution of a protocol between principals
that share a password; with some complications, our approach extends to the general
case where multiple passwords are used simultaneously.

The set Exp of formal expressions is defined by the grammar:

Exp ::= Bool | Passwd | EKeys | DKeys | SKeys | (Exp,Exp) | {Exp}EncKeys

Password-Based Encryption Analyzed 667

For example, expression {Ks}W , {(0, 0)}Ks represents the encryption of symmetric
key Ks under the password W paired with the encryption of (0, 0) under key Ks. The
expression {Ke}Ke , {Ks}Ke , {0}Ks represents the encryption of public keyKe under
itself, paired with the encryption of symmetric key Ks under Ke and the encryption
of the bit 0 under Ks. As we do here, we omit parenthesis when there is no risk of
ambiguity or when ambiguity is harmless.

An important subset of Exp is that of acyclic expressions. Acyclicity was intro-
duced in previous work [1] for expressions that use only symmetric encryption. Here
we generalize this notion to deal also with asymmetric encryption. Given an expression
E ∈ Exp we build the following directed graph. The nodes of the graph are pairs of
encryption and decryption keys (K,K−1) ∈ SKeys × SKeys ∪ EKeys × DKeys for
which at least one of the components appears in E. We add an edge between nodes
(K1,K

−1
1) and (K2,K

−1
2), and say that K1 encrypts K2, if there exists E′ ∈ Exp

such that {E′}K1 occurs in E and K−1
2 occurs in E′. We say that an expression

E ∈ Exp is acyclic if its associated graph is acyclic. For example, the two expres-
sions {Ke

1}Ke
1

and ({Ke
1}Ks

1
, {Ks

1}Ke
1
) are acyclic, and the three expressions {Ks

1}Ks
1
,

({Ks
1}Ks

2
, {Ks

2}Ks
1
), and ({Kd

1}Ks
1
, {Ks

1}Ke
1
) are not.

3 A Symbolic Model for Expressions

In this section we introduce a symbolic semantics for expressions in Exp. Intuitively, the
semantics of an expression is a pattern that represents the information that an adversary
learns by observing the expression. With this interpretation, we give an equivalence
relation on the set of expressions that identifies expressions that convey the same infor-
mation to the adversary (extending [1]). Furthermore, we use the symbolic semantics to
give a characterization of expressions that do not leak a password.

Symbolic semantics and expression equivalence. The inference rules that an adversary
can use for deriving new information are formalized by the entailment relation M � N ,
which is the least relation that satisfies:

1. M � 0 and M � 1,
2. M �M ,
3. if M � N1 and M � N2 then M � (N1,N2),
4. if M � (N1,N2) then M � N1 and M � N2,
5. if M � N and M � K then M � {N}K , for K ∈ EncKeys,
6. if M � {N}K and M � K−1 then M � N , for K ∈ SKeys ∪ EKeys,
7. if M � {N}W then M � N , for W ∈ Passwd.

Most of the rules are self-explanatory: for example, they allow an adversary to pair
messages that it knows (rule (3)), recover the components of a pair (rule (4)), and com-
pute the encryption of a message M under a certain key K, provided the adversary can
compute both M and K (rule (5)). Rule (6) is the standard rule of Dolev-Yao deduction
systems: an adversary can decrypt a ciphertext if it has the right decryption key. For
instance, we have: Kd

1 , {W}Ke
1
� W and {{Ks

1}Ks
2
, {Kd

1}Ks
1
}Ks

2
, {W}Ke

1
,Ks

2 � W.

668 M. Abadi and B. Warinschi

Rule (7) shows that our definitions make a pessimistic (but perhaps realistic!) assump-
tion about the secrecy of plaintexts encrypted under a password. For instance, we have
Kd

1 , {{0,Ks
2}Ke

1
}W � Ks

2 . As indicated in the introduction, this assumption is com-
patible with current uses of passwords for authentication. However, none of the rules
allows the recovery of W by simply observing encryptions of messages under W .

Patterns are elements of the language Pat obtained by extending the language Exp
with symbols that represent undecryptable (symmetric and asymmetric) ciphertexts. We
let Undec = {�s,�a}. The set of patterns is defined by the grammar:

Pat ::= Exp | Undec | (Pat,Pat) | {Pat}EncKeys

The pattern p(M, T) represents what an adversary can see in an expression M ∈ Exp
using for decryption the keys in T ⊆ Keys. It is defined inductively by:

p(M, T) = M for M ∈ Bool ∪ Keys

p((M,N), T) = (p(M, T), p(N, T))
p({M}W , T) = {p(M, T)}W

p({M}Ks , T) =
{
{p(M, T)}Ks if Ks ∈ T
�s otherwise

p({M}Ke , T) =
{
{p(M, T)}Ke if Kd ∈ T
�a otherwise

We let recoverable(M) = {K ∈ Keys | M � K} be the set of keys that can
be recovered from an expression M . The pattern associated to M is the pattern com-
puted from M given the set of keys recoverable from M , that is: pattern(M) =
p(M, recoverable(M)). For instance, in the case of the expression {Ks

1}W , {Ke
1}W ,

{{Ks
2}Ks

1
}Ks

3
, {0}Ke

1
,Ks

2 , {{Kd
1}Ks

3
, 0}Ks

1
, the recoverable keys areKs

1 ,Ke
1 , andKs

2 ,
and the pattern is {Ks

1}W , {Ke
1}W ,�s,�a,Ks

2 , {�s, 0}Ks
1
.

We use patterns for defining equivalence of expressions: two expressions are equiv-
alent if they have the same pattern. Much as in previous work, this equivalence relation
can be a little too restrictive, so we relax it by using key renaming functions. A key
renaming function is a bijection on the set Keys that preserves the types of keys: it
maps passwords to passwords, asymmetric encryption (decryption) keys to asymmetric
encryption (respectively decryption) keys, and symmetric keys to symmetric keys.

Definition 1. M ≡ N if and only if pattern(M) = pattern(N), and M ∼= N if and
only if there exists a key renaming σ such that M ≡ Nσ.

For example, we have {0}Ks
1
∼= {1}Ks

2
and {0}Ke

1
∼= {1}Ke

2
. These equivalences

reflect the standard assumption that symmetric and asymmetric encryption hide plain-
texts. We also have {0}Ks �∼= {0}Ke : symmetric and asymmetric ciphertexts can in
principle be distinguished. Coming to passwords, we have {0}W ∼= {0}W and {0}W �∼=
{1}W : password-based encryptions of different known plaintexts are inequivalent. On
the other hand, we have {Ks

1}W ∼= {Ks
2}W : encryptions of random keys with a

password cannot be distinguished. Finally, in contrast, we have ({Ks
1}W , {0}Ks

1
) �∼=

({Ks
2}W , {1}Ks

2
): if keys encrypted with a password are used elsewhere, then the two

resulting expressions may not be equivalent anymore.

Password-Based Encryption Analyzed 669

Secure use of passwords, symbolically. Next we identify a set of expressions in which
a password is used securely, that is, the password is not subject to a guessing attack.
Our definition is in two steps. First we introduce patterns with variables. Then we say
that an expression uses passwords securely if its pattern can be obtained from a pattern
with variables by instantiating the variables in a certain appropriate way.

Let Var = {x1, x2, . . .} be a set of variables. The set Pat[Var] of patterns with
variables from Var is defined by the grammar:

Pat[Var] ::= Bool | EKeys | DKeys | SKeys | Undec | (Pat[Var],Pat[Var]) |
{Pat}EKeys | {Pat}SKeys | {Var}Passwd

Informally, in a pattern with variables, a password may appear only as an encryption
key, and only be used for encrypting variables. For example, ({x1}W , {({x2}W , 0)}Ks)
is in Pat[Var], but (W, {x1}W) and {W}Ks are not. Intuitively, the variables mark
places in an expression where we can place concrete subexpressions.

For security, we should ensure that these subexpressions do not offer redundancy
that could permit a guessing attack. The subexpressions that we consider benign (in this
sense) are ciphertexts and keys that do not themselves appear elsewhere in the pattern.
More precisely, an instantiation of a pattern with variables into a pattern is appropriate
if variables are mapped to one of the symbols �s or �a or to (symmetric or asymmetric)
encryption keys that do not appear elsewhere in the pattern. For example, the pattern
with variables {x1}W , {({x2}W , 0)}Ks ,Ks has occurrences of Ks, so it cannot be in-
stantiated to {Ks}W , {({�s}W , 0)}Ks ,Ks. On the other hand, it can be instantiated
to {�a}W , {({Ke}W , 0)}Ks ,Ks and to {Ke}W , {({�s}W , 0)}Ks ,Ks via the appro-
priate instantiations [x1 !→ �a, x2 !→ Ke] and [x1 !→ Ke, x2 !→ �s]. Hence, we
define:

Definition 2. Let p ∈ Pat[Var]. A mapping σ : Var → Pat is appropriate for p if for
all x ∈ Var it holds that σ(x) ∈ SKeys ∪ EKeys ∪ {�s,�a} and, if σ(x) is a key
K ∈ SKeys ∪ EKeys, then neither K nor K−1 occur in p.

Definition 3. An expression E ∈ Exp hides passwords symbolically if there exist p ∈
Pat[Var] and a mapping σ : Var → Pat appropriate for p such that pattern(E) = pσ.

For example, the expression {{(0, 1)}Ke}W , {({Ke}W , 0)}Ks ,Ks hides passwords
symbolically: its pattern is {�a}W , {({Ke}W , 0)}Ks ,Ks which, as noted above, can
be obtained from a pattern with variables via an appropriate instantiation. On the other
hand, neither {0}W nor {(Ks

1 ,Ks
2)}W hide passwords symbolically. The former is

subject to the attack we sketched in the introduction. The same attack may apply to
the latter if any kind of fixed delimiters are used to implement pairing. This possibility
cannot be ruled out a priori, and is in fact quite reasonable, so we chose to consider this
expression insecure. Further, ({Ks}W , {0}Ks) does not hide passwords symbolically
either. Although W encrypts the symmetric key Ks (potentially a random string), and
therefore the same attack does not seem to apply, the key Ks is also used for encrypting
a fixed plaintext, which allows a simple guessing attack: an adversary decrypts the first
part with a possible password, then uses the result for decrypting the second part in
order to check the password guess. It might appear that the same attack does not apply to

670 M. Abadi and B. Warinschi

{Ks
1}W , {Ks

2}Ks
1
, since here the key Ks

1 is used for encrypting another symmetric key.
We consider this expression insecure because the symmetric encryption scheme may
well provide a mechanism for ensuring that decryptions succeed only if the appropriate
key is used, as in the case of authenticated encryption (e.g. [3]), thus offering an indirect
way to check a password guess.

Our definitions are at the same level of abstraction as those found in the literature on
formal analysis of guessing attacks. However, those tend to be, at least superficially, in
a somewhat different style. They also model (symmetric and asymmetric) deterministic
encryption, while we focus on probabilistic (symmetric and asymmetric) encryption,
because this is the standard kind of encryption used in modern cryptography. We expect
that a secure expression in the sense defined in this paper is also secure against the
symbolic guessing attacks captured by previous work.

4 Computational Security of Encryption Schemes

A password-based encryption scheme Πp is given by a pair of polynomial-time algo-
rithms (Ep,Dp) for encryption and decryption, respectively. The scheme is used for
encrypting messages in a set Plaintext(Πp) ⊆ {0, 1}∗ under passwords from a dic-
tionary D ⊆ {0, 1}∗. The messages may be chosen according to a probability distri-
bution, part of a distribution ensemble (a parameterized family of distributions). Thus,
for generality, we partition the set of plaintexts and the set of passwords according
to a security parameter: Plaintext(Πp) = ∪ηPlaintext(Πp)η and D = ∪ηDη . Fur-
thermore, we require that dictionaries can be sampled efficiently: each dictionary D
comes with a probabilistic polynomial-time algorithm that, for security parameter η,
returns a sample w from Dη; we write this w

R←Dη . For each η, the encryption func-
tion takes as input a password pwd ∈ Dη and a plaintext m ∈ Plaintext(Πp)η and
returns an encryption Ep(pwd ,m) of m under pwd . The decryption function Dp takes
as input a password pwd and a ciphertext c and returns the decryption Dp(pwd , c) of
c using pwd . For any security parameter η, any m ∈ Plaintextη, and pwd ∈ Dη, the
equality m = Dp(pwd , Ep(pwd ,m)) must hold.

Before this work, it appears that the security of password-based encryption had not
been defined from a computational perspective. We aim to fill this gap. Our definition
captures the idea that, given the encryptions of one or more plaintexts under a password,
it should be hard to recover the password—and, as suggested in the introduction, our
definition does not capture any possible, additional authenticity or secrecy properties.
A common assumption is that passwords are selected from a relatively small dictionary
that is likely to be known to an adversary; the attack sketched in the introduction indi-
cates that, unless the plaintexts are selected from a distribution with sufficient entropy,
there is no hope for the password to be secure. Therefore, in our definition, the plaintexts
are chosen according to distributions. Moreover, the distributions are parameterized by
a security parameter; we require that it be hard to recover the password asymptotically.

For instance, let us consider a protocol where two parties have exchanged a session
key k (for a security parameter η), without authentication, and wish to use a shared pass-
word pwd for authenticating k. For this purpose, one party might encrypt a predefined
message, say Ok, under k, with a symmetric encryption algorithm Es, then encrypt it

Password-Based Encryption Analyzed 671

further under pwd , and transmit the result Ep(pwd , Es(k,Ok)). The other party would
first decrypt the message that it receives using pwd and then k. It would accept k as
valid only if the result of this last decryption is Ok. Ideally, Es(k,Ok) should not ex-
pose redundancy, so that it can be safely encrypted under pwd . The security of pwd
can be guaranteed only for large values of η: for small values, an adversary that sees
Ep(pwd , Es(k,Ok)) can check a password guess pwd ′ by decrypting with pwd ′ and
then breaking the inner encryption—a feasible task for small values of η.

The following definition of security uses an adversary A that has access to an en-
cryption oracle Ep(pwd ,Dist). At each query to the oracle, the oracle samples a string
d according to distribution Dist and returns Ep(pwd , d), the encryption of d under pwd .
Intuitively, the definition says that A cannot tell which of w0 and w1 (two possible val-
ues of pwd) is used for creating encryptions of plaintexts selected according to Dist .

Definition 4. A dictionary D0 is a subdictionary of D if D0
η ⊆ Dη for all η. A dic-

tionary D0 is a singleton dictionary if |D0
η| = 1 for all η. Let Πp = (Ep,Dp) be a

password-based encryption scheme. We say that Πp securely encrypts distribution en-
semble Dist = (Distη)η using passwords from dictionary D, if for any probabilistic
polynomial-time adversary A, and any singleton subdictionaries D0 and D1 of D,

AdvΠp,Dist,A(η) def= Pr
[
w0

R←D0
η, w1

R←D1
η : AE

p(w1,Distη)(η, w0, w1) = 1
]
−

Pr
[
w0

R←D0
η, w1

R←D1
η : AE

p(w0,Distη)(η, w0, w1) = 1
]

is negligible (as a function of the security parameter η).

(Recall that a function is negligible if it is smaller than the inverse of any polynomial
for all sufficiently large inputs.)

In defining the syntax of password-based encryption, we do not require that the en-
cryption function be randomized. Interestingly, randomization and security appear to
be somewhat in conflict for password-based encryption. In order to explain this obser-
vation, let us write Ep(pwd ,m, r) for the encryption of m under password pwd with
random coins r. Consider an adversary A with access to an encryption oracle as in the
definition above, but now with the (reasonable) capability of obtaining several encryp-
tions of the same plaintext using different random coins. When A queries the encryp-
tion oracle twice, it obtains ciphertexts c0 = Ep(wb,m, r0) and c1 = Ep(wb,m, r1) for
some b ∈ {0, 1}, some plaintext m, and some fresh random coins r0 and r1. Suppose
that b = 0, without loss of generality. When A decrypts c0 and c1 with w0, it obtains
m twice. For b to remain secret, it also must be the case that Dp(w1, Ep(w0,m, r0)) =
Dp(w1, Ep(w0,m, r1)). In this sense, the use of the random coins is trivial.

In addition to password-based encryption schemes, we rely on symmetric and asym-
metric encryption schemes. As usual, a symmetric or asymmetric encryption scheme
consists of algorithms (K, E ,D) for key generation, encryption, and decryption. We
require that these satisfy a variant of the standard notion of semantic security [12],
called type-0 security. This notion was previously introduced for the case of symmet-
ric encryption [1] and extends to the case of asymmetric encryption. We leave precise
definitions and constructions for a longer version of this paper.

672 M. Abadi and B. Warinschi

An encryption suite is a triple Π = (Πa,Πs,Πp) with an asymmetric encryp-
tion scheme Πa, a symmetric encryption scheme Πs, and a password-based encryption
scheme Πp. We say that an encryption suite is secure if it provides type-0 secure asym-
metric and symmetric encryption schemes, and its password-based encryption scheme
securely encrypts keys and ciphertexts:

Definition 5. An encryption suite Π = (Πa,Πs,Πp) is secure if Πa = (Ka, Ea,Da)
and Πs = (Ks, Es,Ds) are type-0 secure encryption schemes and Πp securely en-
crypts distribution ensembles sym key, sym ciphertext, asym key, and asym ciphertext
defined by the algorithms below:

sym key(η)
(k, k)

R←Ks(η)
As a sample
return k

sym ciphertext(η)
(k, k)

R←Ks(η)
As a sample
return Es(k,0)

asym key(η)
(pk, sk)

R←Ka(η)
As a sample
return pk

asym ciphertext(η)
(pk, sk)

R←Ka(η)
As a sample
return Ea(pk,0)

5 A Computational Model for Expressions

In this section we give a computational interpretation to expressions in the form of en-
sembles of probability distributions, and give computational definitions for expression
equivalence and password hiding.

For an encryption suite Π and a dictionary D = ∪ηDη , we associate with each ex-
pression M ∈ Exp a distribution [[M]]Π[η],D on strings of bits, and thereby an ensemble
[[M]]Π,D. The definition is inductive:

– Each key symbol K that occurs in M is mapped to a string τ(K), via the key gen-
eration algorithms of Πs and Πa for symmetric and asymmetric keys, respectively,
and by selecting at random from Dη for passwords.

– The formal bits 0 and 1 are mapped to standard string representations for them.
– The image of a pair (M,N) is obtained by concatenating the images of M and N .

– The image of a formal encryption {M}K is obtained by calculating Et(K)
τ(K)(x),

where x is the image of M and t(K) ∈ {a, s, p} selects the type of encryption.

Definition 6. Two ensembles D0 and D1 are indistinguishable (D0 ≈ D1) if for any
probabilistic polynomial-time algorithm A,

Advdist
D0,D1,A(η) = Pr

[
x

R←D0
η : A(x, η) = 1

]
− Pr

[
x

R←D1
η : A(x, η) = 1

]
is negligible (as a function of the security parameter η).

Definition 7. The expressions E0, E1 ∈ Exp are computationally equivalent if their
associated distribution ensembles are indistinguishable, that is, [[E0]]Π,D ≈ [[E1]]Π,D.

Definition 8. Let Π be an arbitrary encryption suite and let D be a dictionary. An ex-
pression E ∈ Exp hides passwords in D computationally if for all singleton dictionaries
D0 and D1, subdictionaries of D, it holds that [[E]]Π,D0 ≈ [[E]]Π,D1 .

Password-Based Encryption Analyzed 673

In this definition, intuitively, an adversary is given two singleton dictionaries and a
sample from the distribution associated with the expression E. This sample is created by
using one of the two singleton dictionaries, and the goal of the adversary is to determine
which. The expression hides passwords computationally if the adversary has only a
negligible chance of success.

6 Soundness Theorems

Our soundness theorems link the symbolic definitions for expression equivalence and
secure use of passwords to their computational counterparts. The theorem on expres-
sion equivalence can be regarded as an extension of the main theorem of Abadi and
Rogaway [1] to the richer language of expressions of this paper.

Theorem 1 (Soundness for expression equivalence). Let Π be a secure encryption
suite and let D be a dictionary. For any two acyclic expressions E0, E1 ∈ Exp we have
that E0

∼= E1 implies [[E0]]Π,D ≈ [[E1]]Π,D.

Our main theorem says that, under certain hypotheses, if the use of passwords is
secure symbolically, then it is also secure computationally.

Theorem 2 (Soundness of password hiding). Let Π be a secure encryption suite and
let D be a dictionary. For any acyclic expression E ∈ Exp if E hides passwords sym-
bolically then E hides passwords in D computationally.

A question that we do not investigate in this paper is under what conditions the
converses of Theorems 1 and 2 hold. However, it seems quite likely that the techniques
and the assumptions for proving completeness of symbolic equivalence for the case of
symmetric encryption (e.g. [19]) extend to the setting of this paper.

As an example, we show how to apply our results in the case of the influential
Encrypted Key Exchange (EKE) protocol [5]. In the language Exp, the flows of the
protocol between parties A and B that share a password W are as follows.

1. A generates an asymmetric key pair (Ke
1 ,Kd

1) and sends {Ke
1}W to B.

2. B decrypts this message using W . Then B generates a symmetric key Ks
1 and

sends {{Ks
1}Ke

1
}W to A.

3. At this point the parties share the key Ks
1 , and check if the protocol was executed

as expected: A generates a symmetric key Ks
A and sends {Ks

A}Ks
1

to B.
4. Upon receiving this message, B obtains Ks

A, generates a new symmetric key Ks
B ,

and sends {(Ks
A,Ks

B)}Ks
1

to A. (In the original protocol, Ks
A and Ks

B are random
nonces; for simplicity we model these nonces as random symmetric keys.)

5. A decrypts this message and checks that the first component of the resulting pair is
Ks

A. If so, it obtains Ks
B , sends {Ks

B}Ks
1

to B, and terminates successfully.
6. Finally, B decrypts this last message, verifies that it contains the key Ks

B it previ-
ously sent to A, and if so, it terminates successfully.

A transcript of the execution of the protocol is given by the expression:

E = {Ke
1}W , {{Ks

1}Ke
1
}W , {Ks

A}Ks
1
, {(Ks

A,Ks
B)}Ks

1
, {Ks

B}Ks
1

674 M. Abadi and B. Warinschi

Since pattern(E) = {Ke
1}W , {�a}W ,�s,�s,�s is the instantiation of a pattern in

Pat[Var] with an appropriate mapping, by definition, E hides the password symboli-
cally. It follows from Theorem 2 that E also hides the password computationally. Infor-
mally, this means that for any probabilistic polynomial-time adversary, the probability
that the adversary can determine correctly which of two passwords w0 and w1 was
used in a given protocol execution is negligible. Once we have Theorem 2, the proof
of this fact via the formal definitions is much simpler than a computational proof from
scratch.

7 Conclusions

In this paper we investigate the use of password-based encryption schemes in protocols
from the perspective of a recent line of research aimed at bridging the gap between the
symbolic and computational views of cryptography. We give symbolic and computa-
tional interpretations to the elements of a language of formal expressions built using
symmetric, asymmetric, and password-based encryption. We then prove that symbolic
accounts of expression equivalence and password hiding imply strong, computational
formulations of the same properties. We base our results on a new computational secu-
rity definition for password-based encryption, which may be of independent interest.

Off-line guessing attacks, as typically considered in the literature, are inherently
passive: an adversary, with some data about a protocol execution, analyzes the data
in an attempt to obtain information about the password in use. Our definitions and
theorems focus strictly on the data analysis, and do not consider how the data is ob-
tained. Thus, we neither address nor exclude the possibility that the adversary may
play a role in protocol executions, perhaps mounting standard active attacks, and ob-
taining data from interactions with other participants. For protocols that do not rely on
passwords, research on the relations between symbolic and computational models has
recently dealt with active attacks (e.g., [2, 20]). In further work, it may be worthwhile
to integrate the results of that research with the present analysis of password-based
encryption.

Acknowledgements. We thank Bruno Blanchet, Cédric Fournet, and Phil Rogaway
for helpful discussions on password-based protocols, and thank Mathieu Baudet and
Nathan Whitehead for suggesting improvements to the presentation of this paper. This
research was partly carried out while the second author was at the University of Cali-
fornia at Santa Cruz, and it was partly supported by the National Science Foundation
under Grants CCR-0204162, CCR-0208800, and ITR-0430594.

References

1. M. Abadi and P. Rogaway. Reconciling two views of cryptography (The computational
soundness of formal encryption). Journal of Cryptology, 15(2):103–127, 2002.

2. M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library with nested
operations. In Proceedings of the 10th ACM Conference on Computer and Communications
Security, pages 220–330, 2003.

Password-Based Encryption Analyzed 675

3. M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions and
analysis of the generic composition paradigm. In Advances in Cryptology — ASIACRYPT
2000, volume 1976 of LNCS, pages 531–545. Springer-Verlag, 2000.

4. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure against
dictionary attacks. In Advances in Cryptology – EUROCRYPT 2000, volume 1807 of LNCS,
pages 139–155. Springer-Verlag, 2000.

5. S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-based protocols secure
against dictionary attacks. In Proceedings of the 1992 IEEE Symposium on Security and
Privacy, pages 72–84, 1992.

6. V. Boyko, P. MacKenzie, and S. Patel. Provably secure password-authenticated key exchange
using Diffie-Hellman. In Advances in Cryptology – EUROCRYPT 2000, volume 1807 of
LNCS, pages 156–171. Springer-Verlag, 2000.

7. R. Corin, J. M. Doumen, and S. Etalle. Analysing password protocol security against off-line
dictionary attacks. Technical report TR-CTIT-03-52, Centre for Telematics and Information
Technology, Univ. of Twente, The Netherlands, 2003.

8. R. Corin, S. Malladi, J. Alves-Foss, and S. Etalle. Guess what? Here is a new tool that
finds some new guessing attacks (extended abstract). In IFIP WG 1.7 and ACM SIGPLAN
Workshop on Issues in the Theory of Security (WITS), pages 62–71, 2003.

9. S. Delaune and F. Jacquemard. A theory of dictionary attacks and its complexity. In Proc.of
the 17th IEEE Computer Security Foundations Workshop (CSFW 2004), pages 2–15, 2004.

10. R. Gennaro and Y. Lindell. A framework for password-based authenticated key exchange.
In Advances in Cryptology – EUROCRYPT 2003, volume 2656 of LNCS, pages 524–543.
Springer-Verlag, 2003.

11. O. Goldreich and Y. Lindell. Session key generation using human passwords only. In Ad-
vances in Cryptology – CRYPTO 2001, volume 2139 of LNCS, pages 403–432. Springer-
Verlag, 2001.

12. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System
Sciences, 28:270–299, 1984.

13. L. Gong. Verifiable-text attacks in cryptographic protocols. In INFOCOM ’90, pages 686–
693, 1990.

14. L. Gong, T. M. A. Lomas, R. M. Needham, and J. H. Saltzer. Protecting poorly cho-
sen secrets from guessing attacks. IEEE Journal on Selected Areas in Communications,
11(5):648–656, 1993.

15. J. Katz, R. Ostrovsky, and M. Yung. Practical password-authenticated key exchange prov-
ably secure under standard assumptions. In Advances in Cryptology – EUROCRYPT 2001,
volume 2045 of LNCS, pages 475–494. Springer-Verlag, 2001.

16. J. Kohl and C. Neuman. RFC 1510: The Kerberos network authentication service (V5). Web
page at ftp://ftp.isi.edu/in-notes/rfc1510.txt, 1993.

17. P. Laud. Symmetric encryption in automatic analyses for confidentiality against active ad-
versaries. In Proc. of 2004 IEEE Symposium on Security and Privacy, pages 71–85, 2004.

18. G. Lowe. Analysing protocols subject to guessing attacks. Journal of Computer Security,
12(1):83–98, 2004.

19. D. Micciancio and B. Warinschi. Completeness theorems for the Abadi-Rogaway logic of
encrypted expressions. Journal of Computer Security, 12(1):99–129, 2004.

20. D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence of active
adversaries. In Theory of Cryptography Conference (TCC 2004), volume 2951 of LNCS,
pages 133–151. Springer-Verlag, 2004.

676 M. Abadi and B. Warinschi

21. G. Miklau and D. Suciu. Controlling access to published data using cryptography. In Pro-
ceedings of 29th International Conference on Very Large Data Bases – VLDB 2003, pages
898–909. Morgan Kaufmann Publishers, 2003.

22. J. Mitchell, A. Ramanathan, A. Scedrov, and V. Teague. A probabilistic polynomial-time
calculus for analysis of cryptographic protocols. Electronic Notes in Theoretical Computer
Science, 45, 2001.

23. S. Patel. Number theoretic attacks on secure password schemes. In Proc. of the IEEE
Symposium on Research in Security and Privacy, pages 236–247, 1997.

On the Cover Time of Random Geometric
Graphs

Chen Avin and Gunes Ercal

Computer Science Department,
University of California, Los Angeles,
Los Angeles, CA 90095-1596, USA
{avin, ercal}@cs.ucla.edu

Abstract. The cover time of graphs has much relevance to algorithmic
applications and has been extensively investigated. Recently, with the
advent of ad-hoc and sensor networks, an interesting class of random
graphs, namely random geometric graphs, has gained new relevance and
its properties have been the subject of much study. A random geometric
graph G(n, r) is obtained by placing n points uniformly at random on the
unit square and connecting two points iff their Euclidean distance is at
most r. The phase transition behavior with respect to the radius r of such
graphs has been of special interest. We show that there exists a critical
radius ropt such that for any r ≥ ropt G(n, r) has optimal cover time of
Θ(n log n) with high probability, and, importantly, ropt = Θ(rcon) where
rcon denotes the critical radius guaranteeing asymptotic connectivity.
Moreover, since a disconnected graph has infinite cover time, there is a
phase transition and the corresponding threshold width is O(rcon). We
are able to draw our results by giving a tight bound on the electrical
resistance of G(n, r) via the power of certain constructed flows.

1 Introduction

The cover time CG of a graph G is the expected time taken by a simple random
walk on G to visit all nodes in G. This property has much relevance to algorithmic
applications [1, 2, 3, 4, 5], and methods of bounding the cover time of graphs have
been thoroughly investigated [6, 7, 8, 9, 10, 11]. Several bounds on the cover times
of particular classes of graphs have been obtained with many positive results
[8, 9, 12, 13, 14].

A random geometric graph (RGG) is a graph G(n, r) resulting from placing
n points uniformly at random on the unit square1 and connecting two points
iff their Euclidean distance is at most r. While these graphs have traditionally
been studied in relation to subjects such as statistical physics and hypothesis
testing [15], random geometric graphs have gained new relevance with the ad-
vent of ad-hoc and sensor networks [16, 17] as they are a model of such networks.

1 We focus on the 2-dimensional, see section 6 for discussion.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 677–689, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

678 C. Avin and G. Ercal

Sensor networks have strict energy and memory constraints and in many cases
are subject to high dynamics, created by failures, mobility and other factors.
Thus, purely deterministic algorithms have disadvantages for such networks as
they need to maintain data structures and have expensive recovery mechanism.
Recently, questions regarding the random walk properties of such networks have
been of interest especially due to the locality, simplicity, low-overhead and ro-
bustness to failures of the process [18, 19, 20]. In particular random walk tech-
niques have been proposed for gossiping in random geometric graphs [1], for
information collection and query answering [21, 5] and even for routing [22, 23].

In ad-hoc and sensor networks, interference grows with increased communi-
cation radius. So, for a desirable property P of random geometric graphs, one
wants to find a tight upper bound on the smallest radius rP , that will guarantee
that P holds with high probability. The radius rP is called critical radius if P
exhibits a sharp threshold, the difference between the smallest radius for which
the property holds with high probability and the radius for which the property
holds with very low probability goes to zero as n → ∞. The critical radius for
connectivity, rcon, has been of special interest, and it has been shown that if
πr2 ≥ πr2

con = log n+γn

n then G(n, r) is connected with probability going to one
as n → +∞ iff γn → +∞ [24, 25].

In this paper we study the existence of a critical radius ropt that will guarantee
with high probability that G(n, r) with r ≥ ropt has optimal cover-time. That is
cover time of Θ(n log n) [26], the same order as the complete graph. We show that
such a threshold does exist, and, surprisingly, occurs at a radius ropt = Θ(rcon).

1.1 Discussion of Our Results and Techniques

Our main result can be formalized as follows:

Theorem 1 (Cover Time of RGG). For c > 1, if r2 ≥ c8 log n
n , then w.h.p.2

G(n, r) has cover time Θ(n log n). If r2 ≤ log n
πn , then G(n, r) has infinite cover

time with positive probability (bounded away from zero).

The main contribution of this paper is in giving new tight theoretical bounds
on the cover time and sharp threshold width associated with cover time for
random geometric graphs. Our results improve upon bounds on the cover time
obtained through bounding the mixing-time and spectral gap of random geo-
metric graphs [27, 20, 19], as cover time can be bounded by the spectral gap [9].
In particular, the spectral gap method only guarantees optimal cover time of
G(n, r) for r = Θ(1).

Aside from that, our results also have important implications for applications.
Corollaries to our results are that both the partial cover time [5], which is the
expected time taken by a random walk to visit a constant fraction of the nodes,
and the blanket time [28], which is the expected time taken by a random walk

2 Event En occurs with high probability if probability P (En) is such that
limn→∞ P (En) = 1.

On the Cover Time of Random Geometric Graphs 679

to visit all nodes with frequencies according to the stationary distribution, are
optimal for random geometric graphs. This demonstrates both the efficiency and
quality of random walk approaches and certain token-management schemes for
some ad-hoc and sensor networks [29, 1, 5].

In a recent related work Goel et al. [30] have proved that any monotonic
property of random geometric graphs has a sharp threshold and have bounded
the threshold width. While for general graphs optimality of cover time is not
a monotonic property (see full version [31]), it follows from our result that op-
timality of cover time is monotonic for G(n, r) and has a threshold width of
O(rcon).

The method that we used to derive our result is by bounding the electrical
resistance of G(n, r), which bounds the cover time by the following result of
Chandra et al. [8]: for any graph with n nodes and m edges, where R is the the
electrical resistance of the graph:

mR ≤ cover time ≤ O(mR log n) (1)

In turn, we bound the resistance R of G(n, r) by bounding the power of a unit
flow as permitted by Thomson’s Principle which we formalize later. For any pair
of points u and v, we construct a flow c in such a manner that the power of the
flow satisfies P (c) = O(n

m) = O(1
δavg

) where δavg denotes the average degree of
a node in G(n, r). Since R ≤ P (c) the above flow together with (1) establish to
be sufficient for G(n, r) to have optimal cover time.

To construct a flow from u to v, we partition the nodes into contour layers
based on distance from u and expanding outward until the midpoint between u
and v, then from the midpoint line onward contracting towards v in a mirror
fashion. The idea of using contour layers that expand with distance from a point
is similar to the layering ideas used by Chandra et al. [8] for meshes and originally
by Doyle and Snell [32] for infinite grids. Layers in our case can be visualized
as slices of an isosceles right triangle along the hypotenuse that connects u and
v. The flow can thus be thought of as moving through consecutive layers, with
the total flow on the edges connecting consecutive layers being 1. Just as the
variance of a probability function is minimized for the uniform distribution, we
minimize the power by allocating flow almost uniformly along the set of edges
used between layer l and layer l + 1.

The construction of the above flow is based on ”nice” properties of random
geometric graphs, such as the uniformity of nodes distribution and the regularity
of node degree. We formalize this ”niceness” using the notion of a geo-dense
graph: a geometric graph (random or deterministic) with close to uniform node
density across the unit square. In geo-dense graphs there are no large areas that
fail to contain a sufficient number of nodes. To construct the flow we define bins
as equal size areas that partition the unit square. These bins are used as the
building blocks of our layered flow: nodes in neighboring bins are in the same
clique, and only edges between neighboring bins contribute to the flow. Finally,
We show that random geometric graphs are in fact geo-dense for radius on the
order of Θ(rcon). Note however that geo-dense graphs are not necessary dense

680 C. Avin and G. Ercal

graphs in the graph theoretic meaning, i.e have Θ(n2) edges. For example RGG
are geo-dense even with Θ(n log n) edges.

1.2 Related Work

There is a vast body of literature on cover times and on geometric graphs, and
to attempt to summarize all of the relevant work would not do it justice. We
have already mentioned some of the related results previously, however, here we
would like to highlight the related literature that has been most influential to
our result, namely that of Chandra et al. [8] and Doyle and Snell [32].

The work of Doyle and Snell [32] is a seminal work regarding the connection
between random walks and electrical resistance. In particular, they proved that
while the infinite 2-dimensional grid has infinite resistance, for any d ≥ 3 the
resistance of the d-dimensional grid is bounded from above, and these results
were established to be sufficient in re-proving Pólya’s beautiful result that a
random walk on the infinite 2-dimensional grid is recurrent whereas a random
walk on the infinite d-dimensional grid for any d ≥ 3 is transient. In obtaining
this result, essentially thors bounded the power of a unit current flow from the
origin out to infinity and found that the power diverges for the 2-dimensional
case and converges for every dimension greater than two. The authors used a
layering argument, namely partitioning nodes into disjoint contour layers based
on their distance from the origin, and the rate of growth of consecutive layers can
be seen as the crucial factor yielding the difference between the properties of the
different dimensions. Later, Chandra et al. [8] proved the tight relation between
commute time and resistance, and used that relationship to extend Doyle and
Snell’s result by bounding the cover time of the finite d-dimensional mesh by
computing the power and resistance via an expanding contour layers argument.
Together with the tight lower bound of Zuckerman [10], they showed that the 2-
dimensional torus has cover time of Θ(n log2 n), and for d ≥ 3 the d-dimensional
torus has an optimal cover time of Θ(n log n).

While this paper deals with random geometric graphs there are striking
similarities between G(n, r) and a more familiar family of random graphs, the
Bernoulli graphs B(n, p) in which each edge is chosen independently with proba-
bility p [33]. For example, for critical probability pcon = πr2

con = log n+γn

n , B(n, p)
is connected with probability going to one as n → +∞ iff γn → +∞, and both
classes of graphs have sharp thresholds for monotone properties [33]. Regard-
ing cover time, Jonasson [12] and Cooper and Frieze [14] gave tight bounds
on the cover time and an interesting aspect of our result is that we add an-
other similarity and both classes of graphs have optimal cover time around the
same threshold for connectivity. Yet, despite the similarities between G(n, r) and
B(n, p), Bernoulli graphs are not appropriate models for connectivity in wireless
networks since edges are introduced independent of the distance between nodes.
In wireless networks the event of edges existing between i and j and between j
and k is not independent of the event of an edge existing between k and i. There
are other notable differences between G(n, r) and B(n, p) as well. For example,
the proof techniques for the above results for G(n, r) are very different than the

On the Cover Time of Random Geometric Graphs 681

proof techniques for the respective results for B(n, p). Interestingly, whereas the
proof of [14] for optimality of cover time in Bernoulli graphs of Θ(log n) average
degree depends on the property that Bernoulli graphs do not have small cliques
(and, in particular that small cycles are sufficiently far apart), in the case of ran-
dom geometric graphs the existence of many small cliques uniformly distributed
over the unit square like bins is essential in our analysis.

Another recent result with a bin-based analysis technique for random geo-
metric graphs is that of Muthukrishnan and Pandurangan [34]. However, as their
technique uses large overlapping bins where the overlap is explicitly stated to be
essential and there is no direct utilization of cliques.

2 Bounding the Cover Time via Resistance

For a graph G = (V,E) with |V | = n, |E| = m, the electrical network E(G) is
obtained by replacing each edge e ∈ E with a 1 Ohm resistor, and this is the
network we analyze when we speak of the resistance properties of G. For u, v ∈ V
let Ruv be the effective resistance between u and v: the voltage induced between
u and v by passing a current flow of one ampere between them. Let R be the
electrical resistance of G: the maximum effective resistance between any pair of
nodes [32].

Let Huv be the hitting time, the expected time for a random walk starting at
u to arrive to v for the first time, and let Cuv be the commute time, the expected
time for a random walk starting at u to first arrive at v and then return to u.
Chandra et al. [8] proved the following equality for the commute time Cuv in
terms of the effective resistance Ruv:

Theorem 2. For any two vertices u and v in G the commute time Cuv = 2mRuv

Using this direct relation between resistance and random walks and Matthews’
theorem [6] they introduced the bound of (1) on the cover time for G.

Let Hmax be the maximum hitting time over all pairs of nodes in G. Since
Huv ≤ Cuv it follows that Hmax ≤ maxu,v∈V Cuv = 2mR. In [5] it has been
shown that the partial cover time can be bounded by Hmax, so combining:

partial cover time ≤ O(mR) (2)

Thus, by bounding the resistance R we may obtain tight bounds on the cover
time CG through (1) and on the partial cover time through (2).

A powerful method used to bound resistance is by bounding the power of a
current flow in the network. The following definitions and propositions from the
literature [8, 32, 35] help to formalize this method.

Definition 1 (Power of a flow). Given an electrical network (V,E, ρ), with
resistance ρ(e) for each edge e, a flow c from a source u to a sink v is a function
from V × V to R, having the property that c(x, y) = 0 unless {x, y} ∈ E, and
c is anti-symmetric, i.e., c(x, y) = −c(y, x). The net flow out of a node will be
denoted c(x) =

∑
y∈V c(x, y) and c(x) = 0 if x �= u, v. The flow along an edge e

682 C. Avin and G. Ercal

is c(e) = |c(u, v)|. The power P (c) in a flow is P (c) =
∑

e∈E ρ(e)c
2(e). A flow

is a current flow if it satisfies Kirchoff’s voltage law, i.e., for any directed cycle
x0, x1, . . . , xk−1, x0,

∑k−1
i=0 c(xi, xi+1 mod k) · ρ(xi, xi+1 mod k) = 0.

Proposition 1. [Thomson Principle [32, 35]] For any electrical network (V,E, ρ)
and flow c with only one source u, one sink v, and c(u) = −c(v) = 1 (i.e a unit
flow), we have Ruv ≤ P (c), with equality when the flow is a current flow.

Finally,

Proposition 2. [Rayleigh’s Short/Cut Principle [32]] Resistance is never raised
by lowering the resistance on an edge, e.g. by ”shorting” two nodes together, and
is never lowered by raising the resistance on an edge, e.g. by ”cutting” it.

3 The Cover Time and Resistance of Geometric Graphs

Before proving Theorem 1 about random geometric graphs we are going to prove
a more general Theorem about geometric graphs. A geometric graph is a graph
G(n, r) = (V,E) with n = |V | such that the nodes of V are embedded into the
unit square with the property that e = (u, v) ∈ E if and only if d(u, v) ≤ r
(where d(u, v) is the Euclidean distance between points u and v). We say that a
geometric graph (either random or deterministic) is geo-dense if every square
bin of area at least A = r2/8 (in the unit square) has Θ(nA) = Θ(nr2) nodes.

Theorem 3. A geometric graph G(n, r) that is geo-dense and has r = Θ(log n
n)

has optimal cover time of Θ(n log n), optimal partial cover time of Θ(n), and
optimal blanket time of Θ(n log n).

Let G(n, r) be a geometric graph that is geo-dense. We will prove Theorem 3
using the bound on the cover time from Eq. (1) and by bounding the resistance
between any two points u, v in G(n, r). Let V be the set of nodes of G(n, r) and
δ(v) denote the degree (i.e number of neighbors) of v ∈ V

Claim 1. ∀v ∈ V δ(v) = Θ(nr2)

Proof. First note that the geo-dense property guarantees that if we divide the
unit square into square bins of size r√

2
× r√

2
each, then the number of nodes in

every bin will be Θ(nr2). Since, for every bin, the set of nodes in the bin forms a
clique, and every node v ∈ V is in some bin, we have that δ(v) = Ω(nr2),∀v ∈ V .
Similarly, when we divide the area into bins of size r × r every node may be
connected to the nodes of at most nine bins (that is its own bin and the bordering
bins), and we have that δ(v) = Θ(nr2),∀v ∈ V . ��

Thus, since we showed that m = |E| = Θ(n2r2), if the resistance R of G(n, r)
is O(n

m) = O(1
nr2) then we are done.

On the Cover Time of Random Geometric Graphs 683

A3

A2

A1

B1

B2

B3

l l+1u v

cc1 2

m

1 2 ...0

Sl

midpoint d(u,v)

r

r
8

A

B

i

i

(A) (B)

Fig. 1. T (u, v) and the flow c between u and v in G(n, r))

Theorem 4. The resistance Ruv between u, v ∈ V is Θ(1
nr2 + log(d(u,v)/r)

n2r4).

Proof. The proof of the upper bound will be by bounding the power of a unit
flow c that we construct between u and v.

Let T (u, v) be an isosceles right triangle such that the line (u, v) is the hy-
potenuse. It is clear that such a triangle which lies inside the unit square must
exist. We divide our flow c into two disjoint flows c1 and c2 where c1 carries a unit
flow from u up to the line perpendicular to the midpoint of d(u, v) in increasing
layer size, and c2 forwards the flow in decreasing layer size up to v which is the
only sink. By symmetry we can talk only about c1 since the construction of c2

mirrors that of c1 and P (c) = P (c1+c2) = 2P (c1) since the flows are disjoint. To
construct the flow in c1 we divide the line (u,midpoint(u, v)) into d(u, v)

√
2/r

segments of size r/
√

8, and number them from 0 to d(u, v)
√

2/r − 1 (see Fig 1
(A))3. Let Sl be the largest rectangle of width r/

√
8 included in the intersection

of the area perpendicular to the lth segment and T (u, v). Sl will define the lth

layer in our flow. Note that the area of Sl is lr2/8 and contains l squares of area
r2/8, each of them containing Θ(nr2) nodes by the geo-dense property.

Let Vl ⊆ V be the set of nodes in layer l. V0 = u, and for l > 0 a node v
is in layer l if and only if it is located inside Sl. It follows that |Vl| = Θ(nr2l).
Edges in our flow are only among edges e = (x, y) s.t. x ∈ Vl and y ∈ Vl+1,
and all other edges have zero flow. In particular, the set of edges El that carries
flow from layer l to layer l + 1 in c1 is defined as follows: for the case l = 0, E0

contains all the edges from u to nodes in V1, noting that |E0| = |V1| = Θ(nr2)
since u ∪ V1 is a clique (i.e the maximum d(u, x), x ∈ V1 is r). This allows us
to make the flow uniform such that each node in V1 has incoming flow of 1/|V1|
and for each edge e ∈ E0, c1(e) = 1/|E0|. For l > 0 (see again Fig. 1 (A)) we
divide Sl into l equal squares A1, A2, . . .Al each of size r2/8. Let VAi

be the
set of nodes contained in the area Ai. We then divide Sl+1 into l equal sized
rectangles B1,B2 . . . Bl and define VBi

similarly, with Bi touching Ai for each i.

3 Assume for simplicity the expression divides nicely, if not, the proof holds by adding
one more segment that will end at the midpoint and overlap with the previous
segment.

684 C. Avin and G. Ercal

Now let El = {(x, y)|x ∈ VAi
and y ∈ VBi

}. Note again that since, for each i,
the maximum d(x, y) between nodes in Ai and nodes in Bi is r (see Fig. 1 (B)),
VAi

∪ VBi
is a clique (as the worst case distance occurs between the first two

layers). So, the number of edges crossing from Ai to Bi is |VAi
||VBi

| = Θ(n2r4)
by geo-dense property. The clique construction allows us to easily maintain the
uniformity of the flow such that into each node in VBi

the total flow is 1/l|VBi
|,

and each edge carries a flow of Θ(1/n2r4l) = Θ(1/El). All other edges have no
flow. Now we compute the power of c:

Ruv ≤
∑
e∈c

c(e)2 =
∑
e∈c1

c1(e)2 +
∑
e∈c2

c2(e)2 =

= 2

√
2d(u,v)/r∑
l=0

∑
e∈El

c1(e)2 = 2
1
|E0|

+ 2

√
2d(u,v)/r∑
l=1

1
|El|

= 2O(
1

nr2
) + 2O(

1
n2r4

)

√
2d(u,v)/r∑
l=1

1
l

= O(
1

nr2
+

log(d(u, v)/r)
n2r4

)

To prove the lower bound we again follow in the spirit of [32] and use the
”Short/Cut” Principle. We partition the graph into �d(u, v)/r� + 1 partitions
by drawing �d(u, v)/r� squares perpendicular to the line (u, v), where the first
partition P0 is only u itself and the lth partition Pl is the area of the lth square
excluding the (l − 1)th square area. The last partition contains all the nodes
outside the last square including v (see Fig 2 (A)). We are shorting all vertices
in the same partition (see Fig. 2 (B), and following the reasoning of the upper
bound, let ml be the number of edges between partition l and l+1. m0 is Θ(nr2)
and for l > 0, ml = Θ(n2r4l), so

Ruv ≥
�d(u,v)/r�∑

l=0

1
ml

= Ω(
1

nr2
) +

�d(u,v)/r�∑
l=1

Ω(
1

n2r4l
)

= Ω(
1

nr2
+

log(d(u, v)/r)
n2r4

) ��

Corollary 1. The resistance R of G(n, r) is Θ(1
nr2 + log(

√
2/r)

n2r4).

This follows directly from the fact that max d(u, v) ≤
√

2. Now we can prove
Theorem 3.

Proof (of Theorem 3). Remember that m = Θ(n2r2), so all we need is R =
O(n/m) = O(1/nr2) and then the cover time bound will follow by (1), the

On the Cover Time of Random Geometric Graphs 685

v

u r

(A) (B)

Fig. 2. Lower bound for Ruv on the G(n, r)

partial cover time bound will follow from (2), and the blanket time will follow
from [28] and the log n order difference between the cover time and maximum
hitting time. In order to have R = Θ(1

nr2) we want that log(
√

2/r)
n2r4 = O(1

nr2),
which means log(1/r)

nr2 ≤ α for some constant α. Taking r2 = c log n
n , for a constant

β, we get log(n/β log n)
β2 log n = 1

2β −
log(β log n)

2β log n ≤ 1
2β . ��

4 Cover Time and Resistance of G(n, r)

After Proving Theorem 3, in order to prove Theorem 1 all we need to show is that
for c > 1, r2 = c8logn

n is sufficient to guarantee with high probability that G(n, r)
is geo-dense. Note however that the second part of the theorem follows directly
from [25] since if G(n, r) is disconnected with positive probability bounded away
from zero when r2 ≤ log n

πn , then it has infinite cover time with at least the same
probability.

To prove the geo-dense property for G(n, r) we utilize the following lemma
which seems to be folklore [28] although we include a proof in the full version
since we have not found a reference including a proof of the minimum condition.

Lemma 2 (Balls in Bins). For a constant c > 1, if one throws n ≥ cB logB
balls uniformly at random into B bins, then w.h.p both the minimum and the
maximum number of balls in any bin is Θ(n

B).

And, the following lemma easily follows from the Balls in Bins Lemma:

Lemma 3 (Node Density). For constants c > 1 and a ≥ 1, if r2 = ca log n
n

then w.h.p any area of size r2/a in G(n, r) has Θ(c log n) nodes.

Proof. Let an area of r2/a be a bin. If we divide the unit square into such equal
size bins we have B = n

c log n bins. For the result to follow we check that Lemma
2 holds by showing that n ≥ c′B logB for some constant c′ > 1 :

686 C. Avin and G. Ercal

B logB =
n

c log n
log(

n

c log n
)

=
n

c log n
(log(n)− log(c log n))

=
n

c
− (

n

c log n
)(log(c log n))

≤ n/c ��

Now combining the results of Lemmas (2) and (3) we can prove Theorem 1

Proof (of Theorem 1). Clearly from Lemma 3 for c > 1, r2 = c8 log n
n satisfies the

geo-dense property w.h.p, and since r2 is also Θ(log n
n) the result follows from

Theorem 3. ��

Corollary 2. For c > 1, if r2 ≥ c8 log n
n , then w.h.p G(n, r) has optimal partial

cover time Θ(n) and optimal blanket time Θ(n log n).

5 Deterministic Geometric Graphs

As an example of other applications of our results consider the following: for an
integer k, let the k-fuzz [32] of a graph G be the graph Gk obtained from G by
adding an edge xy if x is at most k hops away from y in G. In particular, let
G1(n) denote the 2-dimensional grid of n nodes, and let Gk(n) be the k-fuzz of
G1(n). It is known that the cover time of G1(n) is Θ(n log2 n). and so we ask
what is the minimum k s.t. Gk has an optimal cover time of Θ(n log n). Using
the results of Theorem 4 and the lower bound method of Zuckerman [10] we can
prove the following (see [31]):

Theorem 5. For any constant k, the cover time of Gk(n) is Θ(k−2n log2 n).

Corollary 3. Gk(n) has Cover Time of Θ(n log n) if k = γn and limn→∞
log n

γ2
n

≤
c for some constant c.

This means that if each node is neighbor with his Ω(log n) closest neighbors, the
cover time of the 2-dimensional grid becomes optimal.

6 Conclusions

We have shown that for a two dimensional random geometric graph G(n, r), if the
radius ropt is chosen just on the order of guaranteeing asymptotic connectivity
then G(n, r) has optimal cover time of Θ(n log n) for any r ≥ ropt. We present a
similar proof for 1-dimensional random geometric graphs in [31]. We find that the
critical radius guaranteeing optimal cover time is ropt = Ω(1√

n
) for such graphs,

whereas the critical radius guaranteeing asymptotic connectivity is rcon = log n
n .

So, unlike the 2-dimensional case, we have ropt = ω(rcon).

On the Cover Time of Random Geometric Graphs 687

Our proof techniques can be generalized to the d-dimensional random geo-
metric graph Gd(n, r), yielding that for any given dimension d, ropt = Θ(rcon)
with correspondingly optimal cover time. However, both grow exponentially with
d which seems to be a consequence of a separation between average degree and
minimum degree for higher dimensions rather than just an artifact of our method.
Nevertheless, the case of dimension d = 2 is considered to be the hardest one
[36]. This can intuitively be seen from the mesh results. The case for d = 1 (i.e
the cycle) is easy to analyze. For d > 2 the cover time of the d-dimensional mesh
is optimal [8], and we can show that for any k the cover time of the k-fuzz is also
optimal. On the other hand, as we showed earlier, the cover time of the k−fuzz
in 2 dimensions (i.e. Gk(n)) for constant k is not optimal making this the most
interesting case.

Acknowledgment. The authors would like to thank Shailesh Vaya and Eli
Gafni for helpful discussions and David Dayan-Rosenman and the anonymous
reviewers for their comments and corrections. The first author acknowledges par-
tial support from ONR (MURI) grant #N00014-00-1-0617 and from the Depart-
ment of Communication System Engineering at Ben-Gurion University, Israel.

References

1. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate informa-
tion. In: Proc. of the 44th Annual IEEE Symposium on Foundations of Computer
Science. (2003) 482–491

2. Gkantsidis, C., Mihail, M., Saberi, A.: Random walks in peer-to-peer networks. In:
in Proc. 23 Annual Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM). (2004)

3. Wagner, I.A., Lindenbaum, M., Bruckstein, A.M.: Robotic exploration, brownian
motion and electrical resistance. Lecture Notes in Computer Science 1518 (1998)
116–130

4. Jerrum, M., Sinclair, A.: The markov chain monte carlo method: an approach to
approximate counting and integration. In: Approximations for NP-hard Problems,
Dorit Hochbaum ed. PWS Publishing, Boston, MA (1997) 482–520

5. Avin, C., Brito, C.: Efficient and robust query processing in dynamic environments
using random walk techniques. In: Proc. of the third international symposium on
Information processing in sensor networks. (2004) 277–286

6. Matthews, P.: Covering problems for Brownian motion on spheres. Ann. Probab.
16 (1988) 189–199

7. Aldous, D.J.: Lower bounds for covering times for reversible Markov chains and
random walks on graphs. J. Theoret. Probab. 2 (1989) 91–100

8. Chandra, A.K., Raghavan, P., Ruzzo, W.L., Smolensky, R.: The electrical resis-
tance of a graph captures its commute and cover times. In: Proc. of the 21st annual
ACM symposium on Theory of computing. (1989) 574–586

9. Broder, A., Karlin, A.: Bounds on the cover time. J. Theoret. Probab. 2 (1989)
101–120

10. Zuckerman, D.: A technique for lower bounding the cover time. In: Proc. of the
twenty-second annual ACM symposium on Theory of computing. (1990) 254–259

688 C. Avin and G. Ercal

11. Aleliunas, R., Karp, R.M., Lipton, R.J., Lovász, L., Rackoff, C.: Random walks,
universal traversal sequences, and the complexity of maze problems. In: 20th
Annual Symposium on Foundations of Computer Science (San Juan, Puerto Rico,
1979). IEEE, New York (1979) 218–223

12. Jonasson, J.: On the cover time for random walks on random graphs. Comb.
Probab. Comput. 7 (1998) 265–279

13. Jonasson, J., Schramm, O.: On the cover time of planar graphs. Electronic Com-
munications in Probability 5 (2000) 85–90

14. Cooper, C., Frieze, A.: The cover time of sparse random graphs. In: Proc. of the
fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA-03).
(2003) 140–147

15. Penrose, M.D.: Random Geometric Graphs. Volume 5 of Oxford Studies in Prob-
ability. Oxford University Press (2003)

16. Estrin, D., Govindan, R., Heidemann, J., Kumar, S.: Next century challenges:
Scalable coordination in sensor networks. In: Proc. of the ACM/IEEE International
Conference on Mobile Computing and Networking. (1999) 263–270

17. Pottie, G.J., Kaiser, W.J.: Wireless integrated network sensors. Communications
of the ACM 43 (2000) 51–58

18. Goel, A., Rai, S., Krishnamachari, B.: Monotone properties have sharp thresh-
olds in random geometric graphs. STOC slides (2004) http://www.stanford.edu/
sanat/slides/thresholdsstoc.pdf.

19. Avin, C., Ercal, G.: Bounds on the mixing time and partial cover of ad-hoc and
sensor networks. In: Proceedings of the 2nd European Workshop on Wireless Sensor
Networks (EWSN 2005). (2005) 1–12

20. Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Gossip and mixing times
of random walks on random graphs. Unpublished. http://www.stanford.edu/
boyd/reports/gossip gnr.pdf (2004)

21. Sadagopan, N., Krishnamachari, B., Helmy, A.: Active query forwarding in sensor
networks (acquire). To appear Elsevier journal on Ad Hoc Networks (2003)

22. Braginsky, D., Estrin, D.: Rumor routing algorthim for sensor networks. In: Proc.
of the 1st ACM Int. workshop on Wireless sensor networks and applications. (2002)
22–31

23. Servetto, S.D., Barrenechea, G.: Constrained random walks on random graphs:
routing algorithms for large scale wireless sensor networks. In: Proc. of the 1st Int.
workshop on Wireless sensor networks and applications. (2002) 12–21

24. Penrose, M.D.: The longest edge of the random minimal spanning tree. The Annals
of Applied Probability 7 (1997) 340–361

25. Gupta, P., Kumar, P.R.: Critical power for asymptotic connectivity in wireless net-
works. In Stochastic Analysis, Control, Optimization and Applications: A Volume
in Honor of W. H. Fleming (1998) 547–566

26. Feige, U.: A tight lower bound on the cover time for random walks on graphs.
Random Structures and Algorithms 6 (1995) 433–438

27. Rai, S.: The spectrum of a random geometric graph is concentrated.
http://arxiv.org/PS cache/math/pdf/0408/0408103.pdf (2004)

28. Winkler, P., Zuckerman, D.: Multiple cover time. Random Structures and Algo-
rithms 9 (1996) 403–411

29. Dolev, S., Schiller, E., Welch, J.: Random walk for self-stabilizing group commu-
nication in ad-hoc networks. In: Proc. of the 21st IEEE Symposium on Reliable
Distributed Systems (SRDS’02), IEEE Computer Society (2002) 70

On the Cover Time of Random Geometric Graphs 689

30. Goel, A., Rai, S., Krishnamachari, B.: Sharp thresholds for monotone properties
in random geometric graphs. In: Proc. of the thirty-sixth annual ACM symposium
on Theory of computing. (2004) 580–586

31. Avin, C., Ercal, G.: On the cover time of random geometric graphs.
Technical Report 040050, UCLA (2004) ftp://ftp.cs.ucla.edu/tech-report/2004-
reports/040050.pdf.

32. Doyle, P.G., Snell, J.L.: Random Walks and Electric Networks. Volume 22. The
Mathematical Association of America (1984)

33. Bollobás, B.: Random Graphs. Academic Press, Orlando, FL (1985)
34. Muthukrishnan, S., Pandurangan, G.: The bin-covering technique for thresholding

random geometric graph properties. In: Proc. of the ACM-SIAM Symposium on
Discrete Algorithms, to appear. (2005)

35. Synge, J.L.: The fundamental theorem of electrical networks. Quarterly of Applied
Math. (1951) 113–127

36. Aldous, D., Fill, J.: Reversible markov chains and random walks on graphs. Un-
published. http://stat-www.berkeley.edu/users/aldous/RWG/ book.html (1997)

On the Existence of Hamiltonian Cycles in
Random Intersection Graphs

Charilaos Efthymiou1 and Paul G. Spirakis1,2,�

1 Computer Engineering and Informatics Department, Patras University, Greece
euthimio@ceid.upatras.gr

2 Research Academic Computer Technology Institute (R.A.C.T.I.), Greece
spirakis@cti.gr

Abstract. Random Intersection Graphs is a new class of random graphs
introduced in [5], in which each of n vertices randomly and independently
chooses some elements from a universal set, of cardinality m. Each el-
ement is chosen with probability p. Two vertices are joined by an edge
iff their chosen element sets intersect. Given n, m so that m = nα, for
any real α different than one, we establish here, for the first time, tight
lower bounds p0(n, m), on the value of p, as a function of n and m, above
which the graph Gn,m,p is almost certainly Hamiltonian, i.e. it contains a
Hamilton Cycle almost certainly. Our bounds are tight in the sense that
when p is asymptotically smaller than p0(n, m) then Gn,m,p almost surely
has a vertex of degree less than 2. Our proof involves new, nontrivial,
coupling techniques that allow us to circumvent the edge dependencies
in the random intersection model. Interestingly, Hamiltonicity appears
well below the general thresholds, of [4], at which Gn,m,p looks like a
usual random graph. Thus our bounds are much stronger than the triv-
ial bounds implied by those thresholds.

Our results strongly support the existence of a threshold for Hamil-
tonicity in Gn,m,p.

1 Introduction

E. Marczewski in [8] proved that every graph can be represented by a list of
sets where each vertex corresponds to a set and the edges to non-empty inter-
sections of sets. Consider that each vertex chooses randomly the members of its
corresponding set from a universal set, each independently of the others. The
probability space that is created is the space of random intersection graphs,
Gn,m,p, where n is the number of vertices, m the cardinality of a universal set
of elements and p the probability that each vertex chooses each of the elements
from the universal set. The random intersection graph model was first intro-
duced by M. Karońsky, E. Scheinerman and K. Singer-Cohen in [5]. A rigorous
definition of the model of random intersection graphs follows:

� This work has been partially supported by the IST/FET Programme of the European
Union under contract number 6FP 001907 (DELIS).

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 690–701, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On the Existence of Hamiltonian Cycles in Random Intersection Graphs 691

Definition 1. Let n, m be positive integers, 0 ≤ p ≤ 1. The random intersec-
tion graph Gn,m,p is a probability space over the set of graphs on the vertex set
{1, . . . , n} where each vertex is assigned a random subset from a fixed set of m
elements. An edge arises between two vertices when their sets have at least a
common element. Each random subset assigned to a vertex is determined by

Pr [vertex i chooses element j] = p

with these events mutually independent.

In this work, we find an asymptotically tight lower bound for the probability
p of the random intersection graph model Gn,m,p so that the graph will be
Hamiltonian almost surely. By “almost surely” we mean with probability tending
to 1 as n →∞.

Definition 2. Consider an undirected graph G(V,E) where V is the set of ver-
tices and E the set of edges. This graph contains a hamiltonian cycle if there is
a simple cycle that contains each vertex in V .

The derivation of the lower bound for p is made in two steps. First, we
establish a stochastic order relations between the random intersection graph
model Gn,m,p and the random graph model Gn,p̂. In particular, we find a function
p̂, of the probability p, such that if Gn,p̂ has an increasing property 1, say A, with
probability P , then w.h.p. Gn,m,p, has the same property, A, with probability
at least P . Then, we calculate the value p, so that no vertex in Gn,m,p has
degree less than 2, w.h.p.. Finally, because of the stochastic order relation we
have established, we conclude that when all degrees in Gn,m,p are greater than
2, w.h.p. the graph is Hamitlonian a.s. Note that p will be a function of n,m.

As mentioned in [12], when we study the properties of Gn,m,p for large n there
are two “parameters” to adjust m, p. When m is very small compared to n, the
model is not particularly interesting and when m is exceedingly large (compared
to n) the behavior of Gn,m,p is essentially the same as the Erdös-Rényi model
of random graphs (see [4]). If we take m = �nα�, for fixed real α > 0, then
there is some deviation from the standard models, while allowing for a natural
progression from sparse to dense graphs.

The probability for an edge e to arise in Gn,m,p is Pr [e] = 1− (1− p2)m. We
will assume mp2 → 0 i.e. Pr [e] → 0 as n →∞ (we have a sparse graph).

1.1 Previous Work

The model of random intersection graphs Gn,m,p was first introduced by M.
Karońsky, E. Scheinerman and K. Singer-Cohen in [5] where they explored the
evolution of random intersection graphs by studying the thresholds for the ap-
pearance and disappearance of small induced subgraphs. Also, J. A. Fill, E. R.

1 A graph property A is increasing iff given that A holds for a graph G(V, E) then A
holds for any G(V, E′): E′ ⊇ E.

692 C. Efthymiou and P.G. Spirakis

Scheinerman and K. Singer Cohen in [4] proved an equivalence theorem relating
the evolution of Gn,m,p and Gn,p, in particular they proved that when m = nα

where α > 6, the total variation distance between the graph random variables
has limit 0. S. Nikoletseas, C. Raptopoulos and P. Spirakis in [10] studied the
existence and the efficient algorithmic construction of close to optimal indepen-
dent sets in random intersection graphs. No previous work is known to us for
the existence of hamiltonian cycles in Gn,m,p.

There is a vast literature regarding the existence and the discovery of Hamil-
tonian cycles in random graphs Gn,p and random regular graphs Gn,r (n nodes
with degree r each). The best result, known to us, for the existence of Hamil-
tonian cycles in random graphs, Gn,p, first proved by Komlós, Szeméredy in [6]
and Korshunov [7], is stated in the following theorem (from [2]) .

Theorem 1. (Komlós, Szeméredy, Korshunov) Let ω(n) →∞, p = (1/n)(log n+
log log n + ω(n)). Then almost every Gn,p is Hamiltonian.

1.2 Our Results and Techniques

The main practical difference between random intersection graphs Gn,m,p and
the random graphs Gn,p is that in the first model, randomness is located on the
vertices while in Gn,p on the edges. Note, also, that in Gn,m,p the existence of
an edge affects the probability of existence of its adjacent edges. In this paper,
we approximate the set of edges of an instance of Gn,m,p with the set of edges
of a Gn,p̂ such that the second set of edges is a subset of the first one. This
approximation is achieved by using weak coupling, i.e. we consider a discreet step
process that creates, uniformly, an instance of Gn,m,p and Gn,p̂ simultaneously.
In each step of this process it is decided which vertices choose a specific element
from the universal set of elements. The choice or not of an element by some
vertex depends on the degree of this vertex in the instance of Gn,p′ , for a suitable
p′, that is created during that step. Each non-isolated vertex is considered to
have chosen the corresponding element (coupling). The dependence between the
degrees of the vertices of Gn,p′ is dealt either by using Poisson approximation
for the number of non-isolated vertices in Gn,p′ or by setting the degrees of each
vertex independently from the others, which under some conditions (see [9]),
satisfied in our case, leads to the creation of an instance of Gn,p′ in a uniform
manner. We finally get a Gn,m,p by forming cliques between the vertices that
chose the same elements or we get a Gn,p̂ by taking the union of all the instances
of Gn,p′ that are created in each step.

Having established the stochastic order relation between the random graph
models Gn,m,p and Gn,p̂ we show that the moment the vertices of degree less
than 2 disappear in Gn,m,p is, asymptotically, the moment that the Gn,p̂ becomes
hamiltonian, thus the Gn,m,p also becomes hamiltonian. We use Theorem 1 to
argue when a random graph Gn,p is hamiltonian almost surely. The following
theorem is the main result of our paper.

On the Existence of Hamiltonian Cycles in Random Intersection Graphs 693

Theorem 9. Let m = �nα�, and C1,C2 be sufficiently large constants. If

p ≥ C1
log n

m for 0 < α < 1 or

p ≥ C2

√
log n
nm for α > 1

then almost all Gn,m,p are Hamiltonian. Our bounds are asymptotically tight.

In fact, all our results, conditioned on the Hamiltonicity threshold of Gn,p, hold
with probability at least 1− n−c, for some fixed c > 0.

2 On the Existence of Degree Less Than 2

If graph G is hamiltonian, then all its vertices must have degree greater than
one. In this section we calculate bounds on the probability p for the existence
(or not) of vertices with degree less than 2. To prove this, we use the first and
second moment methods (see [1]).

Theorem 2. Let Gn,m,p be a random intersection graph. When α > 1 and

p = C
√

log n
nm , if C < 1 then w.h.p. there is at least a vertex with degree less

than 2, if C > 1 then w.h.p. the vertices with degree less than 2 disappear. When
α ≤ 1 and p = C log n

m , if 1 − α < C < 2 − α then w.h.p there is at least a
vertex with degree less than 2 and if C > 2 − α vertices with degree less than 2
disappear.

Proof. Let p0 and p1 be the probability for a vertex to have degree 0 or 1
respectively and pi,j

l,k = Pr [deg(i) = l|deg(j) = k] for i, j ∈ {1, . . . , n}, in an
instance of Gn,m,p. Let Xi, i = 1, . . . , n be indicator random variables such that

Xi =
{

1 if vertex i has degree less than two
0 otherwise

It holds that Pr [Xi = 1] = (p0 + p1) where p0 =
(
1− p + p(1− p)(n−1)

)m
and

p1 = nmp2(1−ε)
(
1− p + p(1− p)(n−2)

)m
(see full paper [3] for the derivations).

Let also X =
∑n

i=1 Xi. From the Chebyshev inequality it holds

Pr [X = 0] ≤ r =
Δ

E2[X]

where the quantity Δ is defined as follows

Δ =
∑
i∼j

Pr [XiXj]

The symbol i ∼ j stands for “for all i, j such that i �= j”. Towards calculating
Δ first note that

Pr [XiXj] = p0

(
pi,j
0,0 + pi,j

0,1

)
+ p1

(
pi,j
0,1 + pi,j

1,1

)

694 C. Efthymiou and P.G. Spirakis

The calculations and asymptotic bounds regarding pi,j
k,l can be found in [3]. Fi-

nally we get that Δ ≤ n2(p0 + p1)2(1 + nmp2)e−mp(1−e−np)+mnp3
and conse-

quently
r ≤ (1 + nmp2)e−mp(1−e−np)+mnp3

By linearity of expectation we get

E[X] = nE[Xi] = n(p1 + p0)

" n(1 + nmp2)e−nmp2
(1− ε)

If nmp2 = C log n then E[X] = O(log n
nC−1) and r ≤ O(log n

nC). Taking C < 1 we
have E[X] → ∞ and r → 0 which, by the Second momend method, leads to
conclusion that w.h.p. there are vertices of degree less than 2. On the other hand,
if C > 1 then E[X] → 0, and by the first moment method, w.h.p. there are no
vertices with degree less than 2.

In the case where α ≤ 1 matters are similar, but now we must have np →∞.
The derivations of the result can be found in the full version of the paper, [3]. #

3 Weak Coupling

Let I(n,m, p) be the following process, that creates an instance of Gn,m,p: There
are n vertices and m elements. In step i each vertex chooses element li with
probability p and independently from the others. Form a clique with the vertices
that chose li. Repeat the above step for i = 1, . . . , m. The union of all cliques is
the Gn,m,p.

We use coupling to establish a stochastic order relation between Gn,m,p and
Gn,p̂. Coupling is made by using different processes, but similar to I(n,m, p).
After each step of the processes the result can be interpreted either as a choice
of an element from a set of vertices, as in I, or as the choice of some edges, each
independently of the others. In our case we use two processes, the C1(n,m, p)
and C2(n,m, p).

Definition 3. Process C1(n,m, p). The process C1(n,m, p) consists of m steps.
Choose a value p′ from the Normal distribution with mean p̄ = p/(n − 1) and
variance p̄q̄/(2N) truncated to the unit interval (0, 1), where q̄ = 1 − p̄ and
N =

(
n
2

)
. There are n vertices and in step i, vertex j chooses a random integer

dj which is binomially distributed, i.e. as in B(n − 1, p′). If in step i, dj > 0
then vertex j is considered to have choosen element li.

Under conditions, which we will analyze in detail, the vector d = (d1, . . . , dn),
formed in step i, is w.h.p. a degree sequence of a random graph Gn,p/(n−1). We
choose an instance of Gn,p/(n−1) uniformly among those that have degree se-
quence d. The union of the graphs Gn,p/(n−1) that are created in each step is
an instance of Gn,p̂, where p̂ = 1 − (1 − p/(n − 1))m (see subsection 3.1). The

On the Existence of Hamiltonian Cycles in Random Intersection Graphs 695

union of cliques between vertices that chose the same elements is an instance of
Gn,m,p(1−ε), where ε is a non-negative constant.

Definition 4. Process C2(n,m, p) The process C2(n,m, p) consists of m steps.
There are n vertices. In step i: (a) with probability 1 − (1 − p)n−1, form an
instance, H, of Gn,p/(n−1) among the n vertices. If degH(j) > 0 for vertex j
then vertex j is considered to have chosen element li. (b) Else, choose uniformly
one vertex from the set of vertices. With probability np(1 − ε), where ε < np is
a positive real, this vertex chooses element li, otherwise it does not.

Under conditions, which we will see in detail, the choice of the elements from
the vertices can be considered independent for each vertex. The union of cliques
between vertices that chose the same elements is an instance of Gn,m,p(1−ε),
where ε non-negative constant. The union of the graphs Gn,p/(n−1) that are
created during C2(n,m, p), is an instance of Gn,p̂, where p̂ = E[1− (1− p/(n−
1))m∗

] and m∗ is a random variable following the Binomial distribution B(n, 1−
(1− p)n−1) that indicates the number of Gn,p/(n−1) instances that were created
during C2(n,m, p) (see subsection 3.2).

Corollary 1. After the execution of either C1(n,m, p) or C2(n,m, p) the in-
stance of Gn,p̂ is a subgraph of Gn,m,p(1−ε).

3.1 Analysis of C1(n, m, p)

We present, here some results from the work of McKay and Wormald in [9] that
will be useful to understand C1(n,m, p).

Consider a random vector d ∈ In, where In = {0, 1, . . . , n−1}n and d has com-
ponents d1, . . . , dn. Define m(d) =

∑n
i=1 di and En = {d ∈ In | m(d) is even}.

We also have d̄ = m(d)/n, λ = d̄/(n− 1) and γ2 = (n− 1)−2
∑n

i=1(di − d̄)2. We
create d according to the following models:

Weighted Even Sum binomial models, Ep and E ′p Model Ep has domain
En, each component di is independently distributed according to binomial dis-
tribution, B(n-1,p), with the restriction that m(d) is even. The model E ′p is
constructed from Ep by weighting each d ∈ En with weight depending on m(d),
such that 1

2m has distribution B(N, p), where N =
(
n
2

)
.

Integrated model Ip Model Ip has domain En. To generate a vector d in this
model we first choose a value p′ from the normal distribution with mean p and
variance pq/(2N), where q = 1 − p, truncated to the unit interval (0, 1). Then
we generate a variant of model Ep′

Graph model Dp Model Dp has domain En. A variant d in this model is the
degree sequence of a random graph with n vertices and each edge is selected
with probability p.

Theorem 3. (McKay-Wormald) If ω(n) log n/n2 ≤ pq ≤ o(n−1/2) then there
is a set-valued function RP (n) ⊆ En and a real function δ(n) → 0 such that the
following condition is satisfied

696 C. Efthymiou and P.G. Spirakis

1. For each d ∈ Rp(n) there is a number δd such that |δd| ≤ δ(n) and

PDp
(d) = PE′

p
(d)exp

{
1
4
− γ2

2

4λ2(1− λ)2
+ δd

}
2. In each of the models Ep and Dp, we have Pr [Rp(n)] = 1− n−ω(n)

Theorem 4. (McKay-Wormald) If ω(n) · log n/n2 ≤ pq ≤ o(n−1/2) then
γ2 = λ(1− λ)(1 + o(1)) with probability 1− nω(n) for both E ′p and Dp models.

Theorem 5. (McKay-Wormald) If pqN →∞ and y = o((pqN)(1/6)), then

PIp
(d) = PE′

p
(d)

(
1 + O

(
1 + |y|3√

pqN

))
uniformly over all d ∈ En such that |12m− pN | ≤ y

√
pqN

Corollary 2. If ω(n) log n/n2 ≤ pq ≤ o(n−1/2), where q = 1 − p, we can ap-
proximate the model Dp by the model Ip. More particularly, for fixed reals ε > 0
and ε′ and sufficiently large n, for the random vector d we have that w.h.p.

P rDp
(d) = P rIp

(d)(1 + ε′) where |ε′| ≤ ε

Proof. See full version of this paper [3]. #
The next theorem shows that C1(n,m, p) generates either a Gn,m,p(1−ε), with

ε a non-negative constant, or a Gn,p̂, under some conditions regarding p.

Theorem 6. If ω(n) log n/n2 ≤ p̄q̄ ≤ o(n−1/2), where p̄ = p/(n− 1), q̄ = 1− p̄
for sufficiently large n, the execution of process C1(n,m, p) results in either an in-
stance of a random intersection graph Gn,m,p(1−ε), where ε is small non-negative
number, or an instance of random graph Gn,p̂ where p̂ = 1− (1− p/(n− 1))m.

Proof. For p̄ = p/(n− 1), q̄ = 1− p̄ and N =
(
n
2

)
, if p̄q̄N = ω(n) log n, then, by

Corollary 2, in step i of the process C1(n,m, p) the vector d is w.h.p. the degree
sequence of a random graph Gn,p/(n−1). We choose one graph uniformly among
those that have degree sequence d. Taking the union of all Gn,p/(n−1) created in
each step, we have a random graph Gn,p̂ where p̂ = 1− (1− p/(n− 1))m.

After each step of C1(n,m, p), an instance of Gn,p/(n−1) is created w.h.p. and
each non-isolated vertex, in step i is considered to have chosen element li. This
happens with probability 1−(1−p/(n−1))n−1. By the fact that (n−1)p/(n−1) =
p→ 0 and using the binomial expansion of (1− p/(n− 1))(n−1) it holds:

Pr [vertex i is non isolated in Gn,p̄] = p(1− ε)

where 0 ≤ ε ≤ p. Note that ε → 0 as n → ∞, thus given a fixed value for ε we
can find a sufficiently large n0 such that Pr [vertex i is non isolated in Gn,p̄] ≥
p(1−ε) when n ≥ n0. But this probability is the probability for a vertex to choose
element li in step i of C1(n,m, p). The choice of each element li is independent
for each vertex because each vertex’s degree is set independently from the others’
(we used model Ip to create the instance of the degree sequence). #

On the Existence of Hamiltonian Cycles in Random Intersection Graphs 697

3.2 Analysis of C2

The process C2(n,m, p) consists of m steps. There are n vertices. In step i: (a)
with probability 1− (1− p)n−1, form a instance, H, of Gn,p/(n−1) among the n
vertices. If degH(j) > 0 for vertex j then vertex j is considered to have chosen
element li. (b) Else, choose uniformly one vertex from the set of vertices. With
probability np(1−ε), where ε < np is a positive real, this vertex chooses element
li, otherwise it does not.

Someone could object saying that in random intersection graphs each vertex
should choose each element independently of the others. In C2(n,m, p), this con-
dition is violated, because the event that a vertex has degree greater than zero
affects also other vertices’ degrees. However, we will show that this dependence
is weak for some range of probability p, and its effects weakens as n gets large.

We approximate the distribution of the number of non-isolated vertices in
each step of C2(n,m, p) by the Poisson distribution. To show that the approx-
imation is precise we use the Stein-Chen Method to bound the error in the
approximation. The following theorem states the Stein-Chen Method (see [11]).

Theorem 7. (Stein-Chen Method) Let Xi, i = 1, . . . , n be random indicator
variables such that

Xi =
{

1 with probability λi

0 with probability 1− λi

and W =
∑n

i=1 Xi. Also, let Vi be any random variable that is distributed as the
conditional distribution of

∑
j �=i Xj given that Xi = 1, i = 1, . . . , n. That is, for

each i, Vi is such that

Pr [Vi = k] = Pr

⎡⎣∑
j �=i

Xj = k|Xi = 1

⎤⎦ , for all k

Setting λ =
n∑

i=1

λi, for any set A of nonnegative integers we have

∣∣∣∣∣Pr [W ∈ A]−
∑
i∈A

e−λλi/i!

∣∣∣∣∣ ≤ min(1, 1/λ)
n∑

i−1

λi · E[|W − Vi|]

Lemma 1. Let Gn,p be a random graph and W be random variable that indicates
the number of non-isolated vertices in that graph. If n2p→ 0 then the distribution
of the random variable W can be approximated by a Poisson distribution with
mean λ = n

(
1− (1− p)n−1

)
, more specifically∣∣Pr [W = i]− e−λλi/i!

∣∣ ≤ n2p

Proof. Let Gn,p be a random graph and X1, . . . , Xn be indicator random vari-
ables such that:

Xi =
{

1 if vertex i is non-isolated in Gn,p

0 otherwise

698 C. Efthymiou and P.G. Spirakis

Let W =
∑n

i=1 Xi, W is a random variable that counts the non-isolated
vertices in Gn,p. We show that W is Poisson distributed with mean λ =
n
(
1− (1− p)n−1

)
.

For the proof we use the Stein-Chen Method (Theorem 7). First calculate
E[|Vi−W |], Vi is a random variable that counts the non-isolated vertices in Gn,p

given that vertex i is non-isolated, vertex i is not counted by Vi. To simplify the
calculations, we will use coupling.

Coupling. Let G1
n,p and G2

n,p be two random graphs. In G1, all edges but these
that are adjacent to vertex i, are selected with probability p, independently of
each other. Each edge that is selected in G1 is also selected in G2 . Then, for the
graph G2 set the degree of vertex i according to binomial distribution, B(n−1, p)
but with the restriction that the degree should be greater than zero. In G1, the
vertex i chooses the same edges as in G2, with probability 1 − (1 − p)(n−1)

otherwise it remains isolated.
W is the number of non-isolated vertices in G1 while the number of non-

isolated vertices in G2 is 1+Vi. If vertex i is non-isolated in G1 then W = Vi +1,
otherwise Vi ≥W . We have

E[|W −Vi|] = Pr [degG1(i) > 0]+E[Vi−W |degG1(i) = 0]Pr [degG1(i) = 0] (1)

In the full version of this paper [3] we calculate E[Vi −W |degG1(i) = 0] and we
get

E[Vi −W |degG1(i) = 0] ≤ 1
1− (n− 1)p

We also have that

Pr [degG1(i) > 0] = 1− (1− p)(n−1) ≤ np (2)

Finally, by equation 1, E[|Vi −W |] ≤ np + 1
1−np .

From Theorem 7 we get∣∣Pr [W = i]− e−λλi/i!
∣∣ = min(1, 1/λ)

n∑
i=1

λiE[|W − Vi|]

Because of equation 2 and the assumption that n2p → 0 as n → ∞, for suffi-
ciently large n, we have that min(1, 1/λ) = 1 Thus:∣∣Pr [W = i]− e−λλi/i!

∣∣ ≤ n2p(np + 1
1−np)

= n2p(1 + o(1)) → 0 as n →∞ #

It is well known that the binomial distribution, B(n, p), under some range of
p, can be approximated by the Poisson distribution with mean λ = np. This is
stated in detail by the following lemma.

Lemma 2. Let Q be a random variable which is binomially distributed, B(n, p).
If np → 0 as n → ∞ the distribution of the random variable Q can be approxi-
mated by a Poisson distribution with mean λ = np∣∣Pr [Q = i]− e−λλi/i!

∣∣ ≤ np2

On the Existence of Hamiltonian Cycles in Random Intersection Graphs 699

Proof. See full version of paper [3]. #

From lemmas 1 and 2 we can deduce that the non isolated vertices in a Gn,p

(under conditions that we study in the following corollary), can be regarded,
(with a negligible error) as independent. The following Corollary states it in
detail.

Corollary 3. Let W be the number of non-isolated vertices in an instance of
Gn,p and Q be a random variable that is binomially distributed, B(n, 1 − (1 −
p)(n−1)). If n2p → 0 as n →∞ then for sufficiently large n

|Pr [W = i]−Pr [Q = i] | ≤ n2p + n3p2(1− ε) → 0

where ε is a fixed real positive and i ∈ {0, . . . , n}.

Proof. See full version of paper [3] #

Theorem 8. If n2p → 0 as n → ∞, for sufficiently large n, the execution of
the process C2(n,m, p) results in either an instance of a random intersection
graph Gn,m,p(1−ε), where ε is a small number, or an instance of random graph
Gn,p̂ where p̂ = E[1 − (1 − p/(n − 1))m∗

]. m∗ is a random variable binomially
distributed as in B(m, 1− (1− p)n−1).

Proof. The case of Gn,p̂ is easily shown. In each step of C2(n,m, p) an instance
of Gn,p/(n−1) is created with probability 1− (1− p)n−1. So, after the m-th step
of the process the probability of an edge to be created, i.e. p̂, is the probability
of the edge to be created during, at least, one step of the process. Let m∗ be
the number of instances of Gn,p/n−1 that are created during C2(n,m, p) then,
conditioning on m∗, we get

p̂ =
m∑

i=0

Pr [m∗ = i] (1− (1− p

n− 1
)i)

= E[1− (1− p

n− 1
)m∗

]

On the other hand, if an instance of Gn,p/(n−1) is created, from Corollary 3,
we see that the number of non-isolated vertices in this step tend to be distributed
as if each was chosen independently from the others. The probability for a vertex
i to be non-isolated, in Gn,p/(n−1), is Pr [degree(i) > 0] = 1− (1− p

n−1)(n−1)

Using the binomial expansion of (1− p/n)n and the fact that p → 0, we get

Pr [degree(i) > 0] = p(1− ε) where 0 ≤ ε ≤ p

For fixed ε we can find n0 such that Pr [degree(i) > 0] ≥ p(1− ε) if n ≥ n0.
The probability for a vertex j to choose element li is thus

Pr [j chooses li] = 1
nnp(1− ε)(1− p)(n−1) +

(
1− (1− p)n−1

)
p(1− ε)

= p(1− ε)

Considering the above we indeed form an instance of Gn,m,p(1−ε). #

700 C. Efthymiou and P.G. Spirakis

4 The Emergence of a Hamiltonian Cycle

In this section, we show that almost every random intersection graph Gn,m,p

becomes hamiltonian, asymptotically, at the moment that every vertex in the
graph acquires degree greater than 1. To prove this we use the stochastic order
relations we established in Section 3.

Case 0 < α < 1. By Theorem 2, if p = C log n
m , for C > 2− α, an instance of

Gn,m,p has every vertex with degree greater than one w.h.p.. Also, note that for
this p, p

n−1 satisfies the conditions of C1(n,m, p). Thus, using process C1(n,m, p),
where p = C ′ log n

m and C ′(1 − ε) > 2 − α we create an instance of Gn,m,p(1−ε)
and an instance of Gn,p̂, where p̂ = 1− [1− p/(n− 1)]m or

p̂ = 1− (1− p/(n− 1))m = mp
n (1− ε′)

= (1− ε′)C ′ log n
n

where 0 ≤ ε′ ≤ mp
n . The second equality is derived from the fact that mp

n → 0
and the binomial expansion of (1−p/(n−1))m. Note that ε′ → 0 as n →∞. We
can fix ε′ and take sufficiently large n so as p̂ ≥ mp

n (1− ε′). Substituting p we get
p̂ = K log n

n , for sufficiently large C ′, we get K > 1. By Theorem 1 and Corollary
1 the instances of Gn,p̂ and Gn,m,p(1−ε) are almost surely Hamiltonian.

Case α > 1. By Theorem 2, if p = C
√

log n
nm , for C > 1 an instance of

Gn,m,p has every vertex with degree greater than one w.h.p.. We also note that
in this case p/(n − 1) satisfies the conditions of C2(n,m, p). Thus using the

process C2(n,m, p) where p = C ′
√

log n
nm and C ′(1 − ε) > 1 we can create either

Gn,m,p(1−ε) or Gn,p̂, where p̂ = E[1− (1− p/(n− 1))m∗
].

The random variable m∗, indicates the number of instances of Gn,p/(n−1)

that are created during C2(n,m, p). In the full version of paper [3] we find that
p̂ = mp2(1−ε′). Substituting p we get p̂ = K log n

n , for sufficiently large C ′, we get
K > 1. By Theorem 1 and Corollary 1 the instances of Gn,p̂ and Gn,m,p(1−ε) are
almost surely Hamiltonian. In view of Theorem 2 our bounds are asymptotically
tight. Thus, we have proved our main result:

Theorem 9. Let m = �nα�, C1 and C2 be sufficiently large positive constants. If

p ≥ C1
log n

m for 0 < α < 1

p ≥ C2

√
log n
nm for α > 1

then almost all Gn,m,p is Hamiltonian. Our bounds are asymptotically tight.

Note: The probability of the events that Theorem 9 implies, is at least, that of
Theorem 1 multiplied by the probability of the similarity between the models Dp

and Ip. This, in fact, gives stronger probability bounds than simple convergence
to certainty as n grows.

On the Existence of Hamiltonian Cycles in Random Intersection Graphs 701

References

1. N. Alon and J. H. Spencer The Probabilistic Method, Second Edition, John Wiley
& Sons, Inc, 2000.

2. B. Bollobas, Random Graphs, Academic Press. Inc., New York, 1985.
3. C. Efthymiou, P.G. Spirakis On the Existence of Hamiltonian Cycles in Random

Intersection Graphs (full version), R.A.C.T.I. Technical Report TR2005/04/02,
http://www.cti.gr. Also, DELIS Technical Report, http://delis.upb.de/
docs/?subproject=2.

4. J. A. Fill, E. R. Scheinerman and K. B. Singer-CohenRandom intersection graphs
when m = ω(n): an equivalence theorem relating the evolution of the G(n, m, p)
and G(n, p) models, Random Structures and Algorithms 16, 156-176, (2000).

5. M. Karoński, E. R. Scheinerman and K. Singer-CohenOn Random Intersection
Graphs: The Subgraph Problem Combinatorics, Probability and Computing, 8 131-
159, 1999.

6. J. Komlós, and Szemerédi, Limit Distributions for the existence of Hamilton cycles
in a random graph, Discrete Math. 43, 55-63, 1983.

7. A. D. Korshunov Solution of a problem of P. Erdös and A. Rényi on Hamilton
Cycles in non-oriented graphs, Metody Diskr. Anal. Teoriy Upr. Syst. Sb. Trubov
Novosibrirsk 31, 17-56, 1977.

8. E. Marczewski, Sur deux propriétés des classes d’ensemble, Fun. Math. 33, 303-307
(1945).

9. B. D. McKay and N. C. Wormald, The degree sequence of a random graph. I. The
models, Random Structures and Algorithms 11 (1997), 97-117

10. S. Nikoletseas, C. Raptopoulos and P. Spirakis The existence and Efficient con-
struction of Large Independent Sets in General Random Intersection Graphs, in
the Proc. of the 31st International Colloquium on Automata, Languages and Pro-
gramming, Lecture Notes in Computer Science Vol. 3142 (Springer Verlag) pp
1029-1040, 2004.

11. S. M. Ross, Stochastic Processes, 2nd Edition. John Wiley and Sons, Inc., 1995.
12. K. Singer, Random Intersection Graphs, Ph.D. thesis, The Johns Hopkins Univer-

sity, 1995.

Optimal Cover Time for a Graph-Based Coupon
Collector Process

Nedialko B. Dimitrov� and C. Greg Plaxton��

University of Texas at Austin,
1 University Station C0500,
Austin, Texas 78712–0233

{ned, plaxton}@cs.utexas.edu

Abstract. In this paper we study the following covering process defined over
an arbitrary directed graph. Each node is initially uncovered and is assigned a
random integer rank drawn from a suitable range. The process then proceeds in
rounds. In each round, a uniformly random node is selected and its lowest-ranked
uncovered outgoing neighbor, if any, is covered. We prove that if each node has
in-degree Θ(d) and out-degree O(d), then with high probability, every node is
covered within O(n+ n log n

d
) rounds, matching a lower bound due to Alon. Alon

has also shown that, for a certain class of d-regular expander graphs, the upper
bound holds no matter what method is used to choose the uncovered neighbor. In
contrast, we show that for arbitrary d-regular graphs, the method used to choose
the uncovered neighbor can affect the cover time by more than a constant factor.

1 Introduction

One of the most commonly discussed stochastic processes in computer science is the
so-called coupon collector process [7]. In that process, there are n distinct coupons and
we proceed in rounds, collecting one uniformly random coupon (with replacement) in
each round. Are O(n) rounds sufficient to collect all of the coupons? Put differently, is
picking coupons with replacement as efficient, to within a constant factor, as picking
them without replacement? No, it is a well-known fact that with high probability the
number of rounds required to collect all of the coupons is Θ(n log n).

This shortcoming has motivated Adler et al. [1] and Alon [2] to study a similar
graph-based covering process. The nodes of the graph nodes represent the coupons and
covering a node represents collecting a coupon. In each round, a uniformly random node
w is selected. If an uncovered neighbor ofw exists, choose one such uncovered neighbor
and cover it. We refer to this process as process CC.

Process CC can use a variety of different covering methods to decide which uncovered
neighbor to cover. If our ultimate goal is to minimize cover time, certainly the most
powerful covering method available is an offline method with knowledge of the entire

� Supported by an MCD Fellowship from the University of Texas at Austin.
�� Supported by NSF Grants CCR–0310970 and ANI–0326001. Also affiliated with Akamai

Technologies, Inc., Cambridge, MA 02142.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 702–716, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Optimal Cover Time for a Graph-Based Coupon Collector Process 703

sequence of node selections and with infinite computing power. We refer to this powerful
cover time minimizing version of process CC as process MIN. To achieve ourO(n) goal,
it is natural to consider log n-regular graphs since the work of Alon implies process MIN
has an expected cover time of Ω(n+ n log n

d) rounds on d-regular graphs [2].

1.1 Logarithmic-Degree Graphs

Another natural version of process CC — in which the covering method chooses a
uniformly random uncovered neighbor, if any — was studied by Adler et al. [1] and by
Alon [2]. We refer to this version of process CC as process UNI. Alon shows that for
logarithmic-degree Ramanujan expander graphs, process UNI completes in O(n) time,
matching the lower bound for process MIN.

Adler et al. show that for the hypercube, which has a weak expansion property but
is not an expander, process UNI takes O(n) time, also matching the lower bound for
process MIN [1]. They also show that for arbitrary logarithmic-degree graphs, process
UNI completes in O(n log log n) time. Furthermore, Adler et al. present an application
of process UNI to load balancing in a hypercubic distributed hash table (DHT).

A process that is intuitively similar to process UNI is one where we initially as-
sign a rank to each node using a uniformly random permutation of the nodes, and the
covering method covers the minimum-rank uncovered neighbor, if any. We refer to this
permutation-based version of process CC as process P-RANK. In this paper, we show
that process P-RANK completes in O(n) time on arbitrary logarithmic-degree graphs.

In fact, we analyze a more general and local version of process CC in which each
node initially chooses a uniformly random rank in a suitable range, and the covering
method covers the minimum-rank uncovered neighbor of the selected node. (We assume
that the nodes are numbered from 1 to n, and that ties in rank are broken in favor of the
lower-numbered node.) We refer to this random rank version of process CC as process
R-RANK. We show that the more general and local process R-RANK completes inO(n)
time on arbitrary logarithmic-degree graphs.

1.2 Results for General Graphs

Alon shows that process MIN on any d-regular graph has expected cover time at least
n − n

d + n
d ln(nd) [2]. Alon also shows that process UNI completes in time n + (1 +

o(1))n lnn
d for random nearly d-regular graphs. Alon further shows that on any (n, d,λ)-

expander graph the expected cover time of process UNI is at mostn+n(λ
d)2(lnn+1). In

particular, this implies that on Ramanujan graphs process UNI completes in (1+o(1))n
time, matching the lower bound for process MIN.

If our goal is to maximize cover time, certainly the most powerful covering method
available is an offline adversary with knowledge of the entire sequence of node selections
and with infinite computing power. We refer to this powerful cover time maximizing
version of process CC as process MAX. Alon notes that the upper bounds for expanders
hold even if after every round an adversary “is allowed to shift the uncovered nodes to
any place he wishes, keeping their number.” In particular, this shows that on Ramanujan
graphs, the cover time for process MAX matches the cover time for process MIN, up to
constant factors. In effect, the covering method does not matter for this class of graphs.

704 N.B. Dimitrov and C.G. Plaxton

Another previously studied variant of process CC favors covering the selected node.
In this variant, we check — immediately after selecting a uniformly random node —
if the selected node is uncovered. If it is, we cover it and move to the next selection.
Only otherwise do we consider the neighbors of the selected node. We refer to the
selection-biased variants of processes UNI, P-RANK, and R-RANKas UNI′, P-RANK′,
and R-RANK′, respecively.

Adler et al. show that for all d-regular graphs, processes UNI and UNI′ finish in
O(n + n(logn)(log d)/d) time[1]. They also show that for random d-regular graphs
onlyO(n+ n log n

d) steps are needed. Furthermore, they exhibit an application of process
UNI′ to load balancing in DHTs.

All of the results matching Alon’s lower bound for process MIN presented prior to
this work have used some expansion properties of the underlying graph. In contrast, our
proof techniques do not require the underlying graph to have any particular structure.
Thus, we show the following general result: for directed graphs, with self-loops but no
parallel edges, where each node has in-degree at least δin and at most Δin, and out-
degree at most Δout, both process R-RANK and process R-RANK′ cover all nodes in
O(nmax(ΔinΔout/δ

2
in, (logn)/δin)) rounds with high probability. This result matches

Alon’s lower bound for δin = Δin = Δout = Θ(d), and is thus optimal under these
conditions.

Furthermore, Alon’s results for Ramanujan graphs raise the question whether there
is any separation between the cover times for process MAX and process MIN. In other
words, are there any graphs for which the choice of covering method matters? We define
a weakly adversarial process, process A-RANK, that is similar to process P-RANK. In
process A-RANK, instead of picking a uniformly random permutation, an adversary
is initally allowed to fix the permutation used to assign ranks to the nodes. We then
proceed as in process P-RANK. In addition, we define the selection-biased variant of
process A-RANK as process A-RANK′. We establish that there exists a logarithmic-
degree graph on which process A-RANK and process A-RANK′ each take ω(n) rounds
to complete. This implies that in general there is separation between the cover times of
process MIN and process MAX. In other words, the covering method does matter. Due
to space limitations, the proofs of our ω(n) lower bounds for processes A-RANKand
A-RANK′ are omitted from this paper; these proofs may be found in [4].

1.3 Proof Outline

The proof of our theorem is inspired by the delay sequence argument used by Ranade
for the analysis of a certain packet routing problem on the butterfly [8] (see also [6]).
In a delay sequence argument, we identify certain combinatorial structures that exist
whenever the random process lasts for a long time. Then, we show that the probability
any of these structures exist is small. This in turn implies an upper bound on the running
time of the random process.

There are significant differences between our proof and that of Ranade. For example,
in our problem, the connection between the running time and the length of a delay
sequence is not clear-cut, while in the butterfly routing problem analyzed by Ranade,
the length of the delay sequence is equal to the running time. But let us begin by giving
the notion of a delay sequence in our problem.

Optimal Cover Time for a Graph-Based Coupon Collector Process 705

Consider the node that was covered last, say w1. Why wasn’t w1 covered earlier? It
was not covered earlier because at the last opportunity to cover w1 — that is, the last
selection in w1’s neighborhood — we covered some other node, w2, instead. In such a
case we consider w1 to be delayed by w2. Similarly, w2 may be delayed by some node
w3, et cetera, until finally we reach a node wk that is not delayed, i.e., wk is covered at
the first opportunity. The sequence of nodes w1, . . . , wk corresponds to our notion of a
delay sequence.

In analyzing process R-RANK, we find it useful to first analyze a much simpler
process, process SELECT, in which we repeatedly select a uniformly random node,
never covering anything. After establishing several lemmas for the simpler process, we
proceed to analyzing process R-RANK. This is the bulk of the proof, and includes a
technical lemma to work around the difficulties in linking cover time to delay sequence
length. Finally, we reduce process R-RANK′ to process R-RANK to show that the same
bounds hold.

Due to space limitations, we omit our analysis of process R-RANK′ from the present
paper. In [4], we analyze process R-RANK′ via a reduction from process R-RANK; in
addition, we establish the existence of a logarithmic-degree graph on which processes A-
RANKand A-RANK′ each take ω(n) rounds to complete, establishing that the covering
method does matter.

The rest of this paper is structured as follows. In Section 2, we present a number of
useful definitions and lemmas related to standard probability distributions. In Section 3,
we analyze process SELECT. In Section 4, we analyze process R-RANK using the
results in Section 3.

2 Preliminaries

We use the term �-sequence to refer to a sequence of length �. For any �-sequence σ of
elements of a given type, and any element x of the same type, we let σ : x denote the
(� + 1)-sequence obtained by appending element x to σ.

For any nonnegative integer n and probability p, we use the notationX ∼ Bin (n, p)
to denote that the random variableX has a binomial distribution withn trials and success
probabilityp. Similarly, we writeX ∼ Geo (p) to indicate that the random variableX has
a geometric distribution with success probability p, and we write X ∼ NegBin (r, p) to
indicate that the random variableX has a negative binomial distribution with r successes
and success probability p. Due to space limitations, we include proofs for only two of the
lemmas stated in this section. The other lemmas follow from simple arguments involving
independence of random variables or tail bounds for the binomial distribution [4].

Lemma 1. Let p denote an arbitrary probability, let � denote an arbitrary nonnegative
integer, and let X ∼ NegBin (�, p). For any integer j such that 1 ≤ j ≤ �, let pj denote
an arbitrary probability such that pj ≥ p, let Yj ∼ Geo (pj), and let Y =

∑
1≤j≤� Yj .

Then for any nonnegative integer i, Pr(X ≥ i) ≥ Pr(Y ≥ i).

Proof. Note that if pj = p for all j, then the random variables X and Y have the same
distribution. Furthermore, increasing any of the pj’s can only decrease Y . ��

706 N.B. Dimitrov and C.G. Plaxton

Lemma 2. For any nonnegative integers r and n, and any probability p, we have
Pr(X < r) = Pr(Y > n), where X ∼ Bin (n, p) and Y ∼ NegBin (r, p).

Proof. The random variables X and Y can be seen as different views of the same
experiment where we successively flip coins with probability of success p. With Y ,
we ask “How many flips are required for r successes?” With X , we ask “How many
successes are in the first n flips?” In this experiment, the event of seeing less than r
successes in the first n flips (X < r) corresponds to the event that we have to wait more
than n flips for the first r successes (Y > n). This gives the result. ��

Lemma 3. For any integer r ≥ 2, Pr (X ≥ 2E[X]) = Pr (X ≥ 2r/p) ≤ exp(−r/8),
where X ∼ NegBin (r, p).

Proof. Let j =
⌊

2r
p

⌋
− 1 and let Y ∼ Bin (j, p). By Lemma 2, we know that Pr(X ≥

2r
p) ≤ Pr(X ≥

⌊
2r
p

⌋
) = Pr(X >

⌊
2r
p

⌋
− 1) = Pr(Y < r) = Pr(Y ≤ r − 1).

Pr
(
Y ≤ jp

2

)
= Pr

(
Y ≤ r − (η + 1)

p

2

)
= Pr (Y ≤ r − 1)

where 2r
p =

⌊
2r
p

⌋
+ η and the last equality holds because 0 < (η + 1)p2 < 1.

Recall the Chernoff bounds in the form Pr(Y ≤ (1 − λ)jp) ≤ exp(−λ2jp/2) for
0 < λ < 1 (see [3, 5]).

We apply this bound with λ = 1
2 to get

Pr (Y ≤ r − 1) = Pr (Y ≤ jp/2)
≤ exp (−jp/8)

≤ exp
(
−2r + (η + 1)p

8

)
≤ exp (−r/8)

where η is as previously defined and the last inequality holds because r ≥ 2. ��

Lemma 4. Let p be an arbitrary probability and let X be the sum of n independent
Bernoulli variables X1, . . . , Xn, where Xj has success probability pj ≥ p. Then
Pr (X ≤ np/2) ≤ exp(−np/12).

Proof. The result follows from Chernoff bounds (see, e.g., [3, 5]). ��

Lemma 5. Suppose we repeatedly throw balls independently and uniformly at random
into n bins, and let the random variable X denote the number of throws required for
every bin to receive at least n balls. ThenX isO(n2) with high probability, that is, with
failure probability that is an arbitrary inverse polynomial in n.

Proof. The result follows from Lemma 4. ��

Optimal Cover Time for a Graph-Based Coupon Collector Process 707

3 Process SELECT

Throughout the remainder of the paper, we fix an arbitrary directed graph G = (V,E)
where |V | = n > 0. We say that an event holds “with high probability” if the probability
that it fails to occur is upper bounded by an arbitrary inverse polynomial in n. We let
δin, Δin, and Δout denote the minimum in-degree, maximum in-degree, and maximum
out-degree of any node, respectively. For ease of exposition, we assume throughout the
paper that δin > 0. The edge set E is allowed to contain loops but not parallel edges.
For any node v, we define Γin(v) as {w | (w, v) ∈ E}. For any sequence of edges
σ = (u1, v1), . . . , (u�, v�), we define the two sequences of nodes src(σ) = u1, . . . ,u�

and dst(σ) = v1, . . . , v�.
In this section, we analyze a simple stochastic process, process SELECT, defined as

follows. Initially, we fix a positive integer r and independently assign each node in V a
uniformly random integer rank between 1 and r. Process SELECT then proceeds in an
infinite number of rounds, indexed from 1. In each round, one node is selected uniformly
at random, with replacement. The following definitions are central to our analysis of this
process.

A node sequence is said to be rank-sorted if the associated sequence of node ranks
is nondecreasing.

For any node sequence σ, we inductively define a nonnegative integer duration(σ)
and a node sequence select(σ) as follows. If σ is empty, then duration(σ) is 0 and
select(σ) is empty. Otherwise, σ is of the form τ : v for some shorter node sequence τ
and node v. Let i denote the the least i such that i > duration(τ) and the node selected
in round i belongs to Γin(v). Let u denote the node selected in round i. Then we define
duration(σ) as i, and select(σ) as select(τ) : u.

Lemma 6. For any �-sequence of distinct nodes σ, Pr(σ is rank-sorted) =
(
�+r−1

�

)
r−�.

Proof. There are
(
�+r−1

�

)
ways that ranks can be assigned to the � distinct nodes so that

the resulting �-sequence is rank-sorted. The result follows since each such assignment
occurs with probability r−�. ��

Lemma 7. For any �-sequence of nodes σ = v1, . . . , v� and any nonnegative integer i,
we have
Pr(duration(σ) = i) ≤ Pr(X ≥ i), where X ∼ NegBin

(
�, δinn

)
.

Proof. We proceed by proving that

Pr(duration(σ) = i) = Pr

(
�∑

k=1

Yk = i

)

where Yk ∼ Geo
(
dk

n

)
and dk denotes the in-degree of vk. The desired bound then

follows by Lemma 1.
We prove the foregoing claim by induction on �. If � = 0, the claim holds since

duration(σ) =
∑�

k=1 Yk = 0.

708 N.B. Dimitrov and C.G. Plaxton

For � > 0, we let τ denote the node sequence v1, . . . , v�−1 and assume inductively
that

Pr(duration(τ) = i) = Pr

(
�−1∑
k=1

Yk = i

)
.

Thus,

Pr(duration(σ) = i) =
i−1∑
j=0

Pr(duration(τ) = j) · Pr(duration(σ)− duration(τ)

= i− j | duration(τ) = j)

=
i−1∑
j=0

Pr(duration(τ) = j) · Pr(duration(σ)− duration(τ)

= i− j)

=
i−1∑
j=0

Pr(duration(τ) = j) · Pr(Y� = i− j)

=
i−1∑
j=0

Pr

(
�−1∑
k=1

Yk = j

)
· Pr(Y� = i− j)

= Pr

(
�−1∑
k=1

Yk = i

)
.

The second equality holds because each selection is independent of previous selections.
The third equality holds because the waiting time to obtain a selection in Γin(v�) is
distributed as Y�. ��

Lemma 8. For any �-sequence of edges σ, Pr(select(dst(σ)) = src(σ)) ≤ δ−�
in .

Proof. We proceed by induction on �. For � = 0, Pr(select(dst(σ)) = src(σ)) = 1 =
δ0in since we have assumed that δin > 0.

For � > 0, σ can be written in the form τ : (u, v), where we inductively assume that
the claim of the lemma holds for τ . Let A denote the event that the first node selected in
Γin(v) after round duration(dst(τ)) is u. We have

Pr(select(dst(σ))=src(σ)) = Pr(select(dst(τ))=src(τ)) · Pr(A | select(dst(τ))=src(τ))

= Pr(select(dst(τ)) = src(τ)) · Pr(A)

≤ δ−�
in .

The second step follows from the independence of the events A and select(dst(σ′)) =
src(σ′). (These two events are independent since each selection is independent of previ-
ous selections.) The third step follows from the induction hypothesis and the observation
that Pr(A) is equal 1/Γin(v), which is at most 1/δin. ��

Optimal Cover Time for a Graph-Based Coupon Collector Process 709

Lemma 9. For any �-sequence of edges σ and nonnegative integer i, the events A =
“dst(σ) is rank-sorted”, B = “duration(dst(σ)) = i”, and C = “select(dst(σ)) =
src(σ)” are mutually independent.

Proof. Note that event A depends only on the rank assignments, while events B and C
depend only on the selections. Thus event A is independent of events B and C. Below
we argue that events B and C are independent.

Let σ = (u1, v1), . . . , (u�, v�) and let σj denote the length-j prefix of σ, 0 ≤ j ≤ �.
Define a selection to be j-special, 1 ≤ j ≤ �, if it is the first selection after round
duration(σj−1) in Γin(vj). A selection is special if it is j-special for some j. Note that
event B depends only on the timing of the special events; in particular, B occurs if and
only if the �-special selection occurs in round i. Suppose we run process SELECT, but
at each step, instead of revealing the selected node, we reveal only whether the selection
is special. This information is sufficient to determine the unique i for which B occurs,
but does not bias the distribution of select(dst(σ)). Since event C only depends on
select(dst(σ)), it is independent of B. ��

Lemma 10. Let σ be an �-sequence of edges so that the nodes of dst(σ) are distinct,
let X ∼ NegBin

(
�, δinn

)
, let i be a nonnegative integer, and let events A, B, and C be

defined as in the statement of Lemma 9. Then Pr(A ∩ B ∩ C) ≤
(
�+r−1

�

)
· Pr(X ≥

i) · (rδin)−�.

Proof. By Lemma 6, Pr(A) ≤
(
�+r−1

�

)
r−�. By Lemma 7, Pr(B) ≤ Pr(X ≥ i). By

Lemma 8, Pr(C) ≤ δ−�
in . The claim then follows by Lemma 9. ��

4 Process R-RANK

In the section we analyze an augmented version of process SELECT, referred to as
Process R-RANK, in which we maintain a notion of a “covered subset” of the nodes.
Initially, all of the nodes are uncovered. Process R-RANK then proceeds in rounds in
exactly the same manner as process SELECT, except that in any given round, if one or
more outgoing neighbors of the selected node are uncovered, we cover the uncovered
outgoing neighbor with minimum rank. (As indicated in Section 1, ties are broken
according to some arbitrary numbering of the nodes.)

Note that process R-RANK simply augments process SELECT by also covering
nodes; rank assignment and selections are performed in exactly the same manner in
the two processes. Thus all of the definitions and lemmas presented in Section 3 are
applicable to process R-RANK. The following additional definitions are useful for our
analysis of process R-RANK.

The cover time of process R-RANK is defined as the number of rounds required to
cover all of the nodes.

We inductively define the notion of a linked sequence of edges. For � equal to 0 or
1, any �-sequence of edges is linked. For � > 1, an �-sequence of edges of the form
σ : (u, v) : (u′, v′) is linked if the (� − 1)-sequence σ : (u, v) is linked and (u, v′)
belongs to E.

710 N.B. Dimitrov and C.G. Plaxton

For any node v, we define parent(v) as follows. Let i denote the round in which
node v is covered. If i is the first round in which some node in Γin(v) is selected, then
parent(v) is defined to be nil. Otherwise, parent(v) is the node covered in the first
round prior to round i in which the selected node belongs to Γin(v).

We inductively define the notion of a chronological sequence of nodes as follows.
Any �-sequence of nodes with � ≤ 1 is chronological. An �-sequence of nodes of the
form σ : v : v′ is chronological if σ : v is chronological and node v is covered before
node v′.

We inductively define the notion of an active node sequence as follows. The empty
node sequence is active. A singleton node sequence consisting of the node v is active
if parent(v) = nil. An �-sequence of nodes of the form σ : v : v′ is active if σ : v is
active and parent(v′) = v.

We call an �-sequence of edges σ active if dst(σ) is active and select(dst(σ)) =
src(σ).

We call an �-sequence of edges σ i-active if it is active and either � = i = 0 or � > 0,
σ is of the form σ : (u, v), and v is the node covered in round i.

Lemma 11. For any nonnegative integer �, there are at most nΔ�
outΔ

�−1
in linked �-

sequences of edges.

Proof. We proceed by induction on �, treating � = 0 and � = 1 as the base cases. For
� = 0, the empty sequence is the only linked 0-sequence, and the claim holds since
n/Δin ≥ 1. (Note that Δin is at most n since we do not allow parallel edges.) For � = 1,
the number of linked 1-sequences is at most |E| ≤ nΔout.

Now let � be greater than 1 and inductively assume that the number of linked (�−1)-
sequences of edges is at most nΔ�−1

out Δ�−2
in . Recall that any linked �-sequence of edges

is of the form σ : (u, v) : (u′, v′) where the (� − 1)-sequence of edges σ : (u, v) is
linked and (u, v′) belongs to E. Observe that for any linked (�− 1)-sequence of edges
σ : (u, v), there are at most Δout nodes v′ such that (u, v′) belongs to E, and for each
such choice of v′, there are at most Δin nodes u′ such that (u′, v′) belongs toE. Thus the
number of linked �-sequences is at most ΔoutΔin times the number of linked (� − 1)-
sequences, and the desired bound follows from the induction hypothesis. ��
Lemma 12. Suppose we run two instances of process R-RANK in parallel using the
same random ranks and the same sequence of random selections, but in the second
instance, we allow an arbitrary subset of the covered nodes to be uncovered after each
round. Then the cover time of the first instance is at most the cover time of the second
instance.

Proof. By a straightforward induction on the number of rounds, at all times, the set
of covered nodes in the first instance contains the set of covered nodes in the second
instance. The claim of the lemma follows. ��
Lemma 13. For any rank assignment, the expected cover time of process R-RANK is
O(n2).

Proof. It follows from Lemma 5 that the cover time isO(n2) with high probability since
in that time each vertex is selected at least n times, implying that all of its neighbors are
covered.

Optimal Cover Time for a Graph-Based Coupon Collector Process 711

We can then consider a modified version of process R-RANK in which the infinite
sequence of rounds is partitioned into epochs of O(n2) rounds, and where at the end of
each epoch, if the nodes are not all covered, all nodes are uncovered before proceeding to
the next epoch. Since each epoch covers all the nodes with high probability, the expected
cover time of this modified version of process R-RANK is O(n2). By Lemma 12, for
any rank assignment, the expected cover time of process R-RANK is O(n2). ��

Lemma 14. Assume that v is the node covered in round i and let u be the node selected
in round i. Then there is an i-active edge sequence σ terminating in edge (u, v) and such
that duration(dst(σ)) = i.

Proof. Observe that u belongs to Γin(v). Furthermore, if parent(v) = nil, then the
singleton node sequence v is active with duration(v) = i. Thus the singleton edge
sequence σ = (u, v) is i-active with duration(dst(σ)) = i.

We prove the claim by induction on i. For i = 1, we have parent(v) = nil and so
the claim follows by the observations of the previous paragraph.

For i > 1, if parent(v) = nil, the claim once again follows from the foregoing
observations. Otherwise, parent(v) = v′ where v′ is the node covered in round j with
j < i. Let u′ denote the node selected in round j. Since j < i, we can inductively assume
that there is a j-active edge sequence, call it τ , terminating in edge (u′, v′) and such
that duration(dst(τ)) = j. Since τ is active, the node sequence dst(τ) is active and
select(dst(τ)) = src(τ). Let σ = τ : (u, v). Thus src(σ) = src(τ) : u and dst(σ) =
dst(τ) : v. Since parent(v) = v′ and dst(τ) is an active node sequence terminating in
node v′, dst(σ) is active. Since duration(dst(τ)) = j, select(dst(τ)) = src(τ), u was
selected in round i, and i is the least integer greater that j such that the node selected in
round i belongs to Γin(v), we have duration(dst(σ)) = i and select(dst(σ)) = src(σ).
Since dst(σ) is active and select(dst(σ)) = src(σ), σ is active. Since σ is active and v
is the node covered in round i, σ is i-active. Thus the edge sequence σ satisfies all of the
requirements of the lemma. ��

Lemma 15. Any active node sequence is rank-sorted, chronological, and consists of
distinct nodes.

Proof. Note that any chronological node sequence consists of distinct nodes. Thus, in
what follows, it is sufficient to prove that any active node sequence is rank-sorted and
chronological.

We proceed by induction on the length of the sequence. For the base case, note that
any node sequence of length 0 or 1 is rank-sorted and chronological. For the induction
step, consider an active node sequence σ of the form τ : v : v′. Since σ is active, τ : v is
active and parent(v′) = v. Since τ : v is active, the induction hypothesis implies that it
is also rank-sorted and chronological. Since parent(v′) = v, rank(v) ≤ rank(v′) and
v is covered before v′. Hence σ is rank-sorted and chronological. ��

Lemma 16. For any nonempty active edge sequence σ, if the last edge in σ is (u, v),
then v is the node covered in round duration(dst(σ)) and node u is selected in the same
round.

712 N.B. Dimitrov and C.G. Plaxton

Proof. We prove the claim by induction on the length of the active edge sequence σ.
If σ consists of a single edge (u, v), then by the definition of an active edge sequence,

the singleton node sequence dst(σ) is active and select(dst(σ)) = src(σ). Since dst(σ)
is active, parent(v) = nil, that is, v is the node covered in the first round in which a node
in Γin(v) is selected, which is round duration(dst(σ)). Since select(dst(σ)) = src(σ),
node u is selected in the same round.

Now assume that σ is an active edge sequence of the form τ : (u, v), where τ is
of the form τ ′ : (u′, v′). Since σ is active, the node sequence dst(σ) is active and
select(dst(σ)) = src(σ). It follows that dst(τ) is active and select(dst(τ)) = src(τ),
that is, τ is also active. Since τ is active and shorter than σ, we can inductively assume
that v′ is the node covered in round duration(dst(τ)) and node u′ is selected in the
same round. Since dst(σ) is active, parent(v) = v′, that is, v is the node covered
in the first round after round duration(dst(τ)) in which a node in Γin(v) is selected.
Applying the definition of duration(dst(σ)), we conclude that v is the node covered in
round duration(dst(σ)). Since select(dst(σ)) = src(σ), node u is selected in the same
round. ��

Lemma 17. If σ is an active sequence of edges, then σ is linked.

Proof. We proceed by induction on the length of σ. If the length of σ is 0 or 1, then σ
is linked by definition.

Now assume that σ is an edge sequence of the form τ : (u, v), where τ is of the form
τ ′ : (u′, v′) and σ is active. Since σ is active, dst(σ) is active. Since dst(σ) is active,
dst(τ) is also active. Since dst(τ) is active and τ is shorter than σ, we can inductively
assume that τ is linked. Therefore, in order to establish that σ is linked, it is sufficient
to prove that (u′, v) is an edge. Since dst(σ) is active, parent(v) = v′. Hence, letting i
denote the round in which node v is covered, we find that v′ is the node covered in the
first round prior to round i in which the selected node belongs to Γin(v). By Lemma 16,
v′ is covered in a round in which node u′ is selected. Thus u′ belongs to Γin(v), that is,
(u′, v) is an edge, as required. ��

Lemma 18. If an edge sequence σ is i-active, then duration(dst(σ)) = i.

Proof. If σ is empty, then the claim holds since i = 0 and duration(dst(σ)) = 0.
Otherwise, σ is of the form τ : (u, v), and by the definition of an i-active edge se-
quence, v is the node covered in round i. By Lemma 16, v is the node covered in round
duration(dst(σ)), so duration(dst(σ)) = i. ��

Lemma 19. For any �-sequence of edges σ, and any nonnegative integer i, the prob-
ability that σ is i-active is at most

(
�+r−1

�

)
· Pr(X ≥ i) · (rδin)−�, where X ∼

NegBin
(
�, δinn

)
.

Proof. If the nodes in dst(σ) are not all distinct, then Pr(σ is i-active) = 0 by Lemma 15
and the claimed inequality holds since the right-hand side is nonnegative.

Now assume that dst(σ) consists of distinct nodes, and let events A, B, and C be as
defined in the statement of Lemma 9. Below we prove that if σ is i-active, then events
A, B, and C all occur. The claimed inequality then follows by Lemma 10.

Optimal Cover Time for a Graph-Based Coupon Collector Process 713

Assume that σ is i-active. Thus event B occurs by Lemma 18. Furthermore, σ
is active, so dst(σ) is active and event C occurs by the definition of an active edge
sequence. Since dst(σ) is active, event A occurs by Lemma 15. ��

Lemma 20. For any nonnegative integers i and �, the probability that some �-sequence
of edges is i-active is at most

nΔ�
outΔ

�−1
in

(
� + r − 1

�

)
Pr(X ≥ i)

(rδin)�

where X ∼ NegBin
(
�, δinn

)
.

Proof. By Lemma 17, if an edge sequence σ is not linked, then Pr(σ is i-active) = 0. A
union bound then implies that the probability some �-sequence of edges is i-active is at
most the number of linked �-sequences of edges multiplied by the maximum probability
that any particular �-sequence is i-active. The desired inequality then follows by Lemmas
11 and 19. ��

Lemma 21. For nonnegative integers i, �, and r such that i ≥ 64nmax
(ΔoutΔin/δ

2
in, (lnn)/δin) and r ≥ min(
2e2ΔoutΔin/δin�, �), we have

Δ�
outΔ

�−1
in

(
� + r − 1

�

)
Pr(X ≥ i)

(rδin)�
≤ exp(−iδin/(32n))

where X ∼ NegBin
(
�, δinn

)
.

Proof. First, we show that the LHS of the claimed inequality is a nonincreasing function
of r.

It is sufficient to prove that the expression
(
�+r−1

�

)
r−� is a nonincreasing function

of r. Fix � and let f(r) denote the preceding expression. Note that

f(r + 1)
f(r)

=
r + �

r

(
r

r + 1

)�

=
(

1 +
�

r

)(
1 +

1
r

)−�

≤ 1,

where the last inequality holds since the binomial theorem implies (1 + 1
r)� ≥ 1 + �

r .
Since we have established that the LHS of the claimed inequality is a nonincreasing

function of r, we can assume in what follows that r = min(
2e2ΔoutΔin/δin�, �).
Let us rewrite the LHS of the claimed inequality as λ · Pr(X ≥ i), where

λ = Δ�
outΔ

�−1
in

(
� + r − 1

�

)
(rδin)−�

≤ Δ�
outΔ

�
in

(
e(� + r − 1)

�rδin

)�

≤
(
eΔoutΔin(� + r)

�rδin

)�

. (1)

714 N.B. Dimitrov and C.G. Plaxton

We begin by establishing two useful upper bounds on λ, namely, Equations (2) and (4)
below.

If r =
2e2ΔoutΔin/δin�, then since since r = min(
2e2ΔoutΔin/δin�, �), we have
r ≤ �. Substituting the value of r into Equation (1), we find that

λ ≤
(
e(� + r)

2e2�

)�

≤
(

2e�
2e2�

)�

≤ e−�. (2)

If r = �, then Equation (1) implies

λ ≤
(

2eΔoutΔin

�δin

)�

. (3)

Let h(�) denote the natural logarithm of the RHS of Equation (3), that is, h(�) =
� ln(2eΔoutΔin/(�δin)). Using elementary calculus, it is straightforward to prove that
the derivative of h(�) with respect to � is positive for � < 2ΔoutΔin/δin, is 0 when
� = 2ΔoutΔin/δin, and is negative for � > 2ΔoutΔin/δin. It follows that h(�) ≤
h(2ΔoutΔin/δin) = 2ΔoutΔin/δin. Since ln is monotonic, the RHS of Equation (3) is
also maximized when � = 2ΔoutΔin/δin. Combining this result with Equation (2), we
find that for any r

λ ≤ exp(2ΔoutΔin/δin). (4)

(Note that exp(2ΔoutΔin/δin) ≥ 1 and Equation (2) implies λ ≤ 1 when r =

2e2ΔoutΔin/δin�.)

We are now ready to proceed with the proof of the lemma. We consider the two cases
� >
iδin/(2n)� and � ≤
iδin/(2n)� separately.

If � >
iδin/(2n)�, then � > 2ecmax(ΔoutΔin/δin, lnn) where c = 16/e > e.
Thus � >
2e2ΔoutΔin/δin� and so r =
2e2ΔoutΔin/δin�. It follows from Equa-
tion (2) that λ ≤ e−� ≤ exp(−iδin/(2n)) ≤ exp(−iδin/(64n)), and hence the claim
holds since Pr(X ≥ i) ≤ 1.

Now assume that � ≤
iδin/(2n)�. Let Y ∼ NegBin
(⌊

iδin
2n

⌋
, δinn
)

and Z ∼
NegBin

(⌊
iδin
2n

⌋
− �, δinn

)
. By the definition of the negative binomial distribution,Pr(Y ≥

i) = Pr(X+Z ≥ i). And, sinceZ is nonnegative, Pr(X+Z ≥ i) ≥ Pr(X ≥ i). Thus

Pr(X ≥ i) ≤ Pr(Y ≥ i). (5)

Since E[Y] ≤ i
2 and �iδin/(2n)� ≥ �32 max(ΔoutΔin/δin, lnn)� > 2, Lemma 3

implies Pr(Y ≥ i) ≤ Pr(Y ≥ 2E[Y]) ≤ exp
(−iδin

16n + 1
8

)
. The claim follows since

Optimal Cover Time for a Graph-Based Coupon Collector Process 715

λ · Pr(X ≥ i) ≤ exp
(

2ΔoutΔin

δin

)
· Pr(Y ≥ i)

≤ exp
(
−iδin
16n

+
1
8

+
2ΔoutΔin

δin

)
≤ exp

(
−iδin
32n

+
1
8

)
≤ exp

(
−iδin
64n

)
.

(The first step follows from Equations (4) and (5). For the third step and fourth steps,
note that the assumption i ≥ 64nmax(ΔoutΔin/δ

2
in, (lnn)/δin) implies iδin/(32n) ≥

2ΔoutΔin/δin and iδin/(64n) ≥ 1/8, respectively.) ��

Lemma 22. If r ≥ min(
2e2ΔoutΔin/δin�, n), then every active edge sequence is,
with high probability, O(nmax(ΔoutΔin/δ

2
in, (logn)/δin))-active.

Proof. Let c denote an arbitrary positive real greater than or equal to 1, and let i denote
the positive integer
64cnmax(ΔoutΔin/δ

2
in, (lnn)/δin))�.

For any nonnegative integer j, let pj denotes the probability that there is a j-active
edge sequence. Any j-active edge sequence σ is active, so the associated node sequence
dst(σ) is active. It follows from Lemma 15 that any j-active sequence has length at
most n. In other words, � ≤ n for any j-active �-sequence of edges. Furthermore, if
j > 0 then the length of a j-active sequence is nonzero. Since any j-active �-sequence
of edges satisfies � ≤ n, the condition r = min(
2e2ΔoutΔin/δin�, n) allows us to
apply Lemmas 20 and 21. Applying these two lemmas, together with a union bound, we
obtain pj ≤ n2 exp(−jδin/(64n)) for j > i.

Let p denote the probability that there is a j-active edge sequence for some j ≥ i.
By a union bound, p ≤

∑
j≥i pj . Using the upper bound on pj derived in the preceding

paragraph, we find that p is upper bounded by an infinite geometric sum with initial term
n2 exp(−iδin/(64n)) and ratio exp(−δin/(64n)). Thus

p = O((n3/δin) exp(−iδin/(64n)))
= O(n3 exp(−cmax(ΔoutΔin/δin, log n)))
= O(n3−c).

By setting c to a sufficiently large positive constant, we can drive p below any desired
inverse polynomial threshold. The claim of the lemma follows. ��

Lemma 23. If r ≥ min(
2e2ΔoutΔin/δin�, n), then the cover time of process R-RANK
is, with high probability, O(nmax(ΔoutΔin/δ

2
in, (logn)/δin)). The same asymptotic

bound holds for the expected cover time.

Proof. The high probability claim is immediate from Lemmas 14 and 22. The bound on
the expected cover time then follows by Lemma 13. ��

Theorem 1. If both Δin and Δout are O(δin), then there is an r in O(δin) such that
the cover time of process R-RANK is O(n + n log n

δin
) with high probability. The same

asymptotic bound holds for the expected cover time.

716 N.B. Dimitrov and C.G. Plaxton

Proof. Immediate from Lemma 23. ��

The result of Theorem 1 matches the lower bound proved by Alon for process MIN
and is thus optimal [2].

Note that as r tends to infinity, the behavior of process R-RANK converges to that
of process P-RANK. Thus, the bounds of Theorem 1 also hold for process P-RANK.

References

1. M. Adler, E. Halperin, R. Karp, and V. Vazirani. A stochastic process on the hypercube with
applications to peer-to-peer networks. In Proceedings of the 35th Annual ACM Symposium on
Theory of Computing, pages 575–584, 2003.

2. N. Alon. Problems and results in extremal combinatorics, II. Manuscript, 2004.
3. N. Alon and J. H. Spencer. The Probabilistic Method. Wiley, New York, NY, 1991.
4. Nedialko B. Dimitrov and C. Greg Plaxton. Optimal cover time for a graph-based coupon

collector process. Technical Report TR–05–01, Department of Computer Science, University
of Texas at Austin, January 2005.

5. Stasys Jukna. Extremal Combinatorics, pages 224–225. Springer, 2001.
6. F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, and

Hypercubes, pages 547–556. Morgan-Kaufmann, San Mateo, CA, 1991.
7. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, Cam-

bridge, UK, 1995.
8. A. G. Ranade. How to emulate shared memory. Journal of Computer and System Sciences,

42:307–326, 1991.

Stability and Similarity of Link Analysis Ranking
Algorithms �

Debora Donato1, Stefano Leonardi2, and Panayiotis Tsaparas3

1 Universita di Roma,“La Sapienza”,
donato@dis.uniroma1.it

2 Universita di Roma,“La Sapienza”,
leon@dis.uniroma1.it

3 University of Helsinki,
tsaparas@cs.helsinki.fi

Abstract. Recently, there has been a surge of research activity in the area of
Link Analysis Ranking, where hyperlink structures are used to determine the rel-
ative authority of Web pages. One of the seminal works in this area is that of
Kleinberg [15], who proposed the HITS algorithm. In this paper, we undertake
a theoretical analysis of the properties of the HITS algorithm on a broad class
of random graphs. Working within the framework of Borodin et al. [7], we prove
that on this class (a) the HITS algorithm is stable with high probability, and (b) the
HITS algorithm is similar to the INDEGREE heuristic that assigns to each node
weight proportional to the number of incoming links. We demonstrate that our
results go through for the case that the expected in-degrees of the graph follow
a power-law distribution, a situation observed in the actual Web graph [9]. We
also study experimentally the similarity between HITS and INDEGREE, and we
investigate the general conditions under which the two algorithms are similar.

1 Introduction

In the past years there has been increasing research interest in the analysis of the Web
graph for the purpose of improving the performance of search engines. The seminal
works of Kleinberg [15] and Brin and Page [8] introduced the area of Link Analysis
Ranking, where hyperlink structures are used to rank the results of search queries. Their
work was followed by a plethora of modifications, generalizations and improvements
(see [7] and references within). As a result, today there exists a wide range of Link
Analysis Ranking (LAR) algorithms, many of which are variations of each other.

The multitude of LAR algorithms creates the need for a formal framework for as-
sessing and comparing their properties. Borodin et al., introduced such a theoretical
framework in [7]. In this framework an LAR algorithm is defined as a function from
a class of graphs of size n to an n-dimensional real vector that assigns an authority
weight to each node in the graph. The nodes are ranked in decreasing order of their

� Partially supported by the EU under contract 001907 (DELIS) and 33555 (COSIN), and by the
Italian MIUR under contract ALGO-NEXT.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 717–729, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

718 D. Donato, S. Leonardi, and P. Tsaparas

weights. Borodin et al. [7] define various properties of LAR algorithms. In this work
we focus on stability and similarity. Stability considers the effect of small changes in
the graph to the output of an LAR algorithm. Similarity studies how close the outputs
of two algorithms are on the same graph.

Borodin et al. [7] considered the question of stability and similarity over an unre-
stricted class of graphs. They studied a variety of algorithms, and they proved that no
pair of these algorithms is similar, and almost all algorithms are unstable. It appears
that the class of all possible graphs is too broad to allow for positive results. This raises
naturally the question whether it is possible to prove positive results if we restrict our-
selves to a smaller class of graphs. Since the explosion of the Web, various stochastic
models have been proposed for the Web graph [4, 5, 16, 3]. The model we consider,
which was proposed by Azar et al. [4], is the following: assume that every node i in the
graph comes with two parameters ai and hi which take values in [0, 1]. For some node
i, the value hi can be thought of as the probability of node i to be a good hub, while
the value ai is the probability of the node i to be a good authority. We then generate an
edge from i to j with probability proportional to hiaj . We will refer to this model as the
product model, and the corresponding class of graphs as the class of product graphs.
The product graph model generalizes the traditional random graph model of Erdös and
Rèny [13] to include graphs where the expected degrees follow specific distributions.
This is of particular interest since it is well known [16, 9] that the in-degrees of the
nodes in the Web graph follow a power law distribution.

Our contribution. In this paper we study the behavior of the HITS algorithm, proposed
by Kleinberg [15], on the class of product graphs. The study of HITS on product graphs
was initiated by Azar et al. [4] who showed that under some assumptions the HITS
algorithm returns weights that are very close to the authority parameters. We formalize
the findings of Azar et al. [4] in the framework of Borodin et al. [7]. We extend the
definitions of stability and similarity for classes of random graphs, and we demonstrate
the link between stability and similarity. We then prove that, with high probability, un-
der some restrictive assumptions, the HITS algorithm is stable on the class of product
graphs, and similar to the INDEGREE heuristic that ranks pages according to their in-
degree. This similarity result is the main contribution of the paper. The implication of
the result is that on product graphs, with high probability, the HITS algorithm reduces
to simple in-degree count. We show that our assumptions are general enough to capture
graphs where the expected degrees follow a power law distribution as the one observed
on the real Web. We also analyze the correlation between INDEGREE and HITS on a
large sample of the Web graph. The experimental analysis reveals that similarity be-
tween HITS and INDEGREE can also be observed on the real Web. We conclude with a
discussion on the conditions that guarantee similarity of HITS and INDEGREE for the
class of all possible graphs.

2 Related Work

Link Analysis Ranking Algorithms: Let P be a collection of n Web pages that need
to be ranked. This collection may be the whole Web, or a query dependent subset of the
Web. We construct the underlying hyperlink graph G = (P, E) by creating a node for

Stability and Similarity of Link Analysis Ranking Algorithms 719

each Web page in the collection, and a directed edge for each hyperlink between two
pages. The input to a LAR algorithm is the n× n adjacency matrix W of the graph G.
The output of the algorithm is an n-dimensional authority weight vector w, where wi,
the i-th coordinate of w, is the authority weight of node i.

We now describe the two LAR algorithms we consider in this paper: the INDEGREE

algorithm, and the HITS algorithm. The INDEGREE algorithm is the simple heuristic
that assigns to each node weight equal to the number of incoming links in the graph G.
The HITS algorithm was proposed by Kleinberg [15] in the seminal paper that intro-
duced the hubs and authorities paradigm. In this framework, every page can be thought
of as having a hub and an authority weight. Let h and a denote the n-dimensional hub
and authority weight vectors. Kleinberg proposed an iterative algorithm, termed HITS,
for computing the vectors h and a; the algorithm is essentially a power method com-
putation of the principle eigenvectors of the matrices WWT and WT W respectively.
These are the principal singular vectors of the matrix W . The HITS algorithm returns
the vector a, the right singular vector of matrix W .

Independently from Kleinberg, Brin and Page developed the celebrated PAGERANK

algorithm [8], which outputs the stationary distribution of a random walk on the Web
graph. The works of Kleinberg [15] and Brin and Page [8] were followed by numerous
modifications and extensions (see [7] and references within). Of particular interest is
the SALSA algorithm by Lempel and Moran [18], which performs a random walk that
alternates between hubs and authorities.

Theoretical study of LAR algorithms: Borodin et al. [7], in the paper that introduced
the theoretical framework for the analysis of LAR algorithms, considered various al-
gorithms, including HITS, SALSA, INDEGREE, and variants of HITS defined in their
paper. They proved that, on the class of all possible graphs, no pair of algorithms is
similar, and only the INDEGREE algorithm is stable. They also defined the notion of
rank stability and rank similarity, where they considered the ordinal rankings induced
by the weight vectors. The same results carry over in this case. Their work was ex-
tended by Lempel and Moran [19], and Lee and Borodin [17]. The stability of HITS

and PAGERANK has also been studied elsewhere [22, 6].

The product graph model: Product graphs (also known as random graphs with given
expected degrees) were first considered as a model for the Web graph by Azar et al. [4].
The undirected case, where the hi = ai and the edges are undirected, has been studied
extensively [20, 10, 11, 12]. The focus of these works is on the case where the parame-
ters follow a power law distribution, as it is the case with most real-life networks.

3 The Theoretical Framework

In this section we review the definitions of Borodin et al. [7], and we extend them for
classes of random graphs. Let Gn denote the set of all possible graphs of size n. The
size of a graph is the number of nodes in the graph. Let Gn ⊆ Gn denote a collection
of graphs in Gn. Following the work of Borodin et al. [7], we define a link analysis
algorithmA as a functionA : Gn → Rn that maps a graph G ∈ Gn to an n-dimensional
real vector. The vector A(G) is the authority weight vector produced by the algorithm

720 D. Donato, S. Leonardi, and P. Tsaparas

A on graph G. The weight vector A(G) is normalized under some chosen norm L, that
is, the algorithm maps the graphs in Gn onto the unit L-sphere. Typically, the weights
are normalized under some Lp norm. The Lp norm of a vector w is defined as ‖w‖p =
(
∑n

i=1 |wi|p)1/p.

Distance measures: In order to compare the behavior of different algorithms, or the
behavior of the same algorithm on different graphs, Borodin et al. [7] defined vari-
ous distance measures between authority weight vectors. The distance functions we
consider are defined using the Lq norm. The dq distance between two weight vectors
w1,w2 is defined as follows.

dq(w1,w2) = min
γ1,γ2≥1

‖γ1w1 − γ2w2‖q

The constants γ1 and γ2 serve the purpose of alleviating differences due to different
normalization factors. When using distance dq we will assume that the vectors are nor-
malized in the Lq norm. In this paper we consider mainly the d2 distance measure. We
can prove that the d2(a, b) = ‖a − b‖, and thus the d2 distance is a metric. The proof
appears in the full version of the paper.

Similarity: Borodin et al. [7] give the following general definition of similarity for
any distance function d and any normalization norm L. In the following we define
Mn(d,L) = sup‖w1‖=‖w2‖=1 d(w1,w2) to be the maximum distance between any
two n-dimensional vectors with unit norm L = || · ||.

Definition 1. Algorithms A1 and A2 are (L, d)-similar on the class Gn if as n →∞

max
G∈Gn

d (A1(G),A2(G)) = o (Mn(d,L))

Consider now the case that the class Gn is a class of random graphs, generated according
to some random process. That is, we define a probability space 〈Gn,P〉, where P is a
probability distribution over the class Gn. We extend the definition of similarity on the
class Gn as follows.

Definition 2. Algorithms A1 and A2 are (L, d)-similar with high probability on the
class of random graphs Gn if for a graph G drawn from Gn, as n →∞

d (A1(G),A2(G)) = o (Mn(d,L))

with probability 1− o(1).

We note that when we consider (Lq, dq)-similarity we have that Mn(dq,Lq) =
Θ(1). Furthermore, if the distance function d is a metric, or a near metric1, then the
transitivity property holds. It is easy to show that if algorithms A1 and A2 are similar

1 A near metric [14] is a distance function that is reflexive, and symmetric, and there exists a
constant c independent of n, such that for all k > 0, and all vectors u,w1,w2, . . . ,wk, v,
d(u, v) ≤ c(d(u,w1) + d(w1,w2) + · · ·+ d(wk, v)).

Stability and Similarity of Link Analysis Ranking Algorithms 721

(with high probability), and algorithms A2 and A3 are similar (with high probability),
then algorithms A1 and A3 are also similar (with high probability).

Stability: Let Gn be a class of graphs, and let G = (P, E) and G′ = (P, E′) be two
graphs in Gn. The link distance d
 between graphs G and G′ is defined as d
 (G,G′) =
|(E ∪ E′) \ (E ∩ E′)| That is, d
(G,G′) is the minimum number of links that we need
to add and/or remove so as to change one graph into the other.

Given a class of graphs Gn, let Ck(G) = {G′ ∈ Gn : d
(G,G′) ≤ k} denote the set
of all graphs that have link distance at most k from graph G. Borodin et al. [7] give the
following generic definition of stability.

Definition 3. An algorithm A is (L, d)-stable on the class of graphs Gn if for every
fixed positive integer k, we have as n →∞

max
G∈Gn

max
G′∈Ck(G)

d(A(G),A(G′)) = o (Mn(d,L))

Given a class of random graphs Gn we define stability with high probability as
follows.

Definition 4. An algorithm A is (L, d)-stable with high probability on the class of
random graphs Gn if for every fixed positive integer k, for a graph G drawn from Gn

we have as n →∞

max
G′∈Ck(G)

d(A(G),A(G′)) = o (Mn(d,L))

with probability 1− o(1).

Stability and Similarity: The following lemma shows the connection between stability
and similarity. The lemma is a generalization of a lemma by Borodin et al. [7]. The proof
appears in the full version of the paper.

Lemma 1. Let d be a metric or near metric distance function, L a norm, and Gn a
class of random graphs. If algorithm A1 is (L, d)-stable with high probability on the
class Gn, and algorithm A2 is (L, d)-similar to A1 with high probability on the class
Gn, then A2 is (L, d)-stable with high probability on the class Gn.

4 Stability and Similarity on the Class of Product Graphs

The class of product graphs Gp
n(h,a) (or, for brevity, Gp

n) is defined with two parameters
h and a, which are two n-dimensional real vectors, with hi and ai taking values in [0, 1].
These can be thought of as the latent hub and authority vectors. A link is generated from
node i to node j with probability hiaj .

Let G ∈ Gp
n, and let W be the adjacency matrix of the graph G. The matrix W can

be written as W = haT +R, where R is a random matrix, such that

R[i, j] =
{
−hiaj with probability 1− hiaj

1− hiaj with probability hiaj

722 D. Donato, S. Leonardi, and P. Tsaparas

We refer to matrix R as the rounding matrix, that rounds the entries of M to 0 or
1. We can think of the matrix W as a perturbation of the matrix M = haT by the
rounding matrixR. The matrixM is a rank-one matrix. If we run HITS on the matrixM
(assuming a small modification of the algorithm so that it runs on weighted graphs), the
algorithm will reconstruct the latent vectors a and h, which are the singular vectors of
matrixM . Note also that if we run the INDEGREE algorithm on the matrixM (assuming
again that we take the weighted in-degrees), the algorithm will also output the latent
vector a. So, on rank-one matrices the two algorithms are identical. The question is
how the addition of the rounding matrix R affects the output of the two algorithms. We
will show that it has only a small effect, and the two algorithms remain similar.

More formally, let LATENT denote the (imaginary) LAR algorithm which, for any
graph G in the class Gp

n(h,a), outputs the vector a. We will show that both HITS

and INDEGREE are similar to LATENT with high probability. This implies that the two
algorithms are similar with high probability. Furthermore, we will show that it also
implies the stability of the HITS algorithm.

4.1 Mathematical Tools

We now introduce some mathematical tools that we will use for the remaining of this
section.

Perturbation Theory: Perturbation theory studies how adding a perturbation matrix
E to a matrix M affects the eigenvalues and eigenvectors of M . Let G and G′ be two
graphs, and let W and W ′ denote the respective adjacency matrices. The matrix W ′

can be written as W ′ = W + E, where E is a matrix with entries in {−1, 0, 1}. The
entry E[i, j] is 1 if we add a link from i to j, and −1 if we remove a link from i to j.
Therefore, we can think of the matrix W ′ as a perturbation of the matrix W by a matrix
E. Note that if we assume that only a constant number of links is added and removed,
then both the Frobenius and the L2 norms of E are bounded by a constant.

We now introduce an important lemma that we will use in the following. The proof
of the lemma appears in the full version of the paper.

Lemma 2. Let W be a matrix, and let W + E be a perturbation of the matrix. Let u
and v denote the left and right principal singular vectors of the matrix W , and u′ and
v′ the principal singular vectors of the perturbed matrix. Let σ1,σ2 denote the first and
second singular values of the matrix W . If σ1−σ2 = ω(‖E‖2), then ‖u′−u‖2 = o(1)
and ‖v′ − v‖2 = o(1).

Norms of random matrices: We also make use of the following theorem for concen-
tration bounds on the L2 norm of random symmetric matrices. We state the theorem as
it appears in [1].

Theorem 1. Given an m × n matrix A and any ε > 0, let Â be any random matrix
such that for all i, j: E[Âij] = Aij , V ar(Âij) ≤ σ2, and |Âij −Aij | ≤ K, where

K =
(

4ε
4 + 3ε

)3
σ
√

m + n

log3(m + n)

Stability and Similarity of Link Analysis Ranking Algorithms 723

For any α > 0, and m + n ≥ 20, with probability at least 1− (m + n)−α
2
,

‖Â−A‖2 < (2 + α + ε)σ
√

m + n

Chernoff bounds: We will make use of standard Chernoff bounds. The following the-
orem can be found in the textbook of Motwani and Raghavan [21].

Theorem 2. Let X1, X2, . . . , Xn be independent Poisson trials such that, for 1 ≤ i ≤
n, Pr[Xi = 1] = pi, where 0 ≤ pi ≤ 1. Let X =

∑n
i=1 Xi,μ = E[X] =

∑n
i=1 pi.

Then, for 0 < δ ≤ 1, we have that

Pr[X < (1− δ)μ] < exp(−μδ2/2) (1)

Pr[X > (1 + δ)μ] < exp(−μδ2/4) (2)

4.2 Conditions for the Stability of HITS

We first provide general conditions for the stability of the HITS algorithm. Let Gσn de-
note the class of graphs with adjacency matrix W that satisfies σ1(W)−σ2(W) = ω(1).
The proof of the following theorem follows directly from Lemma 2, and the fact that
the perturbation matrix E has L2 norm bounded by a constant.

Theorem 3. The HITS algorithm is (L2, d2)-stable on the class of graphs Gσn .

Theorem 3 provides a sufficient condition for the stability of HITS on general graphs
and it will be useful when considering stability on the class of product graphs. The class
Gσn is actually a subset of the class defined by the result of Ng et al. [22]. Translating
their result in the framework of Borodin et al. [7], they prove that the HITS algorithm
is stable on the class of graphs with σ1(W)2 − σ2(W)2 = ω(

√
d), where d is the

maximum out-degree.

4.3 Similarity of HITS and LATENT

We now turn our attention to product graphs, and we prove that HITS and LATENT are
similar on this class. A result of similar spirit is shown in the work of Azar et al. [4].
We make the following assumption for the vectors a and h.

Assumption 1. For the class Gp
n(h,a), the latent vectors a and h satisfy ‖a‖2‖h‖2 =

ω(
√

n).

As we show below, Assumption 1 places a direct lower bound on the principal singular
value of the matrix M = haT . Also, let A =

∑n
i=1 ai, denote the sum of the authority

values, and let H =
∑n

j=1 hj the sum of the hub values. Since the values are positive,
we have A = ‖a‖1 and H = ‖h‖1. The product HA is equal to expected number of
edges in the graph. We have that HA ≥ ‖a‖2‖h‖2, thus, from Assumption 1, HA =
ω(
√

n). This implies that the graph is not too sparse.

Lemma 3. The algorithms HITS and LATENT are (L2, d2)-similar with high probabil-
ity on the class Gp

n, subject to Assumption 1.

724 D. Donato, S. Leonardi, and P. Tsaparas

Proof. The singular vectors of the matrix M are the L2 unit vectors a2 = a/‖a‖2 and
h2 = h/‖h‖2. The matrix M can be expressed as M = hT

2 ‖h‖2‖a‖2a2. Therefore,
the principal singular value of M is σ1 = ‖h‖2‖a‖2 = ω(

√
n). Since M is rank-one,

σi = 0, for all i = 2, 3, . . . , n. Therefore, for matrixM we have that σ1−σ2 = ω(
√

n).
Matrix R is a random matrix, where each entry is a independent random variable

with mean 0, and maximum value and variance bounded by 1. Using Theorem 1, we
observe that K = 1, and σ = 1. Setting ε = 1 and α = 1, we get that P r[‖R‖2 ≤
8
√

n] ≥ 1− o (1/n), thus ‖R‖2 = O(
√

n) with high probability.
Therefore,we have that σ1 − σ2 = ω(‖R‖2) with probability 1− o(1). If w2 is the

right singular vector of matrix W normalized in the L2 norm, then, using Lemma 2, we
have that ‖w2 − a2‖2 = o(1) with probability 1− o(1). ��

Assumption 1 guarantees also the stability of HITS on Gp
n. The proof follows from

the fact that if G ∈ Gp
n, then G ∈ Gσn , with high probability.

Theorem 4. The HITS algorithm is (L2, d2)-stable with high probability on the class
of graphs Gp

n, subject to Assumption 1.

4.4 Similarity of INDEGREE and LATENT

We now consider the (Lq, dq)-similarity of INDEGREE and LATENT, for all 1 ≤ q <
∞. Again, let A =

∑n
i=1 ai, and let H =

∑n
j=1 hj . Also, let d denote the vector of the

INDEGREE algorithm before any normalization is applied. That is, di is the in-degree
of node i. For some node i, we have that

di =
n∑

j=1

W [j, i] =
n∑

j=1

M [j, i] +
n∑

j=1

R[j, i]

We have that
∑n

j=1M [j, i] = Hai. Furthermore, let ri =
∑n

j=1R[j, i], and let r =
[r1, . . . , rn]T . Vector d can be expressed as d = Ha + r.

We first prove the following auxiliary lemma.

Lemma 4. For every q ∈ [1,∞), if H‖a‖q = ω(n1/q lnn), then ‖r‖q = o(H‖a‖q)
with high probability.

Proof. For the following we will use ‖ · ‖ to denote the Lq norm, for some q ∈ [1,∞).
We will prove that ‖r‖ = o(H‖a‖) with probability at least 1−1/n. We have assumed
that H‖a‖ = ω(n1/q lnn), so it is sufficient to show that ‖r‖ = O(n1/q lnn), or
equivalently that for all 1 ≤ i ≤ n, |ri| = O(lnn) with probability at least 1 − 1/n2.
Note that ri = di −Hai, so essentially we need to bound the deviation of di from its
expectation.

We partition the nodes into two sets S and B. Set S contains all nodes such that
Hai = O(lnn), that is, nodes with “small” expected in-degree, and set B contains all
nodes such that Hai = ω(lnn), that is, node with “big” expected in-degree.

Consider a node i ∈ S. We have that Hai ≤ c lnn, for some constant c. Using
Theorem 2, Equation 2, we set δ = k lnn/(Hai), where k is a constant such that
k ≥

√
8c, and we get that P r[di − Hai ≥ k lnn] ≤ exp(−2 ln n). Therefore, for all

Stability and Similarity of Link Analysis Ranking Algorithms 725

nodes in S we have that |ri| = O(ln n) with probability at least 1− 1/n2. This implies
that
∑

i∈S |ri|q = O(n lnq n) = o(Hq‖a‖q), with probability 1− 1/n.
Consider now a node i ∈ B. We have thatHai = ω(lnn), thus,Hai = (ln n)/s(n),

where s(n) is a function such that s(n) = o(1). Using Theorem 2, we set δ = k
√

s(n),
where k is a constant such that k ≥

√
8, and we get that P r[|di − Hai| ≥ δHai] ≤

exp(−2 ln n). Therefore, for the nodes in B, we have that |ri| = o(Hai) with proba-
bility at least 1− 1/n2. Thus,

∑
i∈B |ri|q = o(Hq‖a‖q), with probability 1− 1/n.

Putting everything together we have that ‖r‖q =
∑

i∈S |ri|q +
∑

i∈B |ri|q =
o(Hq‖a‖q), with probability 1 − 2/n. Therefore, ‖r‖ = o(H‖a‖) with probability
1− 2/n. This concludes our proof. ��

We are now ready to prove the similarity of INDEGREE and LATENT. The following
lemma follows from Lemma 4. The details of the proof appears in the full version of
the paper.

Lemma 5. For every q ∈ [1,∞), the INDEGREE and LATENT algorithms are (Lq, dq)-
similar with high probability on the class Gp

n, when the latent vectors a and h satisfy
H‖a‖q = ω(n1/q lnn).

We now make the following assumption for vectors a and h.

Assumption 2. For the class Gp
n(h,a), the latent vectors a and h satisfy H‖a‖2 =

ω(
√

n lnn).

Assumption 2 implies that the expected number of edges in the graph satisfies HA =
ω(
√

n lnn). Note that we can satisfy Assumption 2 by requiring HA = ω(n ln n), that
is, the graph is dense enough. We can satisfy both Assumption 1 and 2 by requiring that
σ1(M) = ‖h‖2‖a‖2 = ω(

√
n lnn).

The INDEGREE and LATENT algorithms are (L2, d2)-similar subject to Assump-
tion 2. The following theorem follows from the transitivity property of similarity.

Theorem 5. The HITS and INDEGREE algorithms are (L2, d2)-similar with high prob-
ability on the class Gp

n, subject to Assumptions 1 and 2.

4.5 Power Law Graphs

A discrete random variable X follows a power law distribution with parameter α, if
P r[X = x] ∝ x−α. Closely related to the power-law distribution is the Zipfian dis-
tribution, also known as Zipf’s law [24]. Zipf’s law states that the r-th largest value of
the random variable X is proportional to r−β . It can be proved [2] that if X follows
a Zipfian distribution with exponent β, then it also follows a power law distribution
with parameter α = 1 + 1/β. We will now prove that Assumptions 1 and 2 are general
enough to include graphs with expected in-degrees that follow Zipf’s law with parame-
ter β < 1.

Without loss of generality we assume that a1 ≥ a2 ≥ · · · ≥ an. For some constant
c ≤ 1 the i-th authority value is defined as ai = ci−β , for β < 1. This implies a power
law distribution on the expected in-degrees with exponent α > 2. This is typical for
most real-life graphs. The exponent of the in-degree distribution for the Web graph is

726 D. Donato, S. Leonardi, and P. Tsaparas

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000 100000 1e+06

N
u
m
b
e
r

o
f

N
o
d
e
s

Indegree

Indegree Distribution

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000 1e+06 1e+07

N
u
m
b
e
r

o
f

N
o
d
e
s

Authority Values

HITS Authority Distribution

(a) INDEGREE (b) HITS

Fig. 1. INDEGREE and HITS distributions on the Web graph

2.1 [9]. For the hub values we assume that hi = Θ(1), for all 1 ≤ i ≤ n. Therefore,
we have that H = Θ(n), and ‖h‖2 = Θ(

√
n). Furthermore, it is easy to show that for

β < 1, ‖a‖22 =
∑n

i=1
c

i2β = ω(1).
Therefore, ‖a‖2‖h‖2 = ω(

√
n), and H‖a‖2 = ω(n), thus satisfying Assump-

tions 1 and 2. Therefore, we can conclude that HITS and INDEGREE are similar with
high probability when the expected degrees follow a power law distribution. Note that
on this graph we have that the expected number of edges is HA = ω(n ln n).

5 Experimental Analysis

In this section we study experimentally the similarity of HITS and INDEGREE on a large
sample of the Web. We analyze a sample of 136M vertices and about 1,2 billion edges of
the Web graph collected in 2001 by the WebBase project2 at Stanford. Figures 1(a) and
1(b) show the distributions of the INDEGREE and HITS authority values. The in-degree
distribution, as it is well known, follows a power law distribution. The HITS authority
weights also follow a “fat” power law distribution in the central part of the plot. Table 1
summarizes our findings on the relationship between INDEGREE and HITS. Since we
only have a single graph and not a sequence of graphs, the distance measures are not
very informative, so we also compute the correlation coefficient between the two weight
vectors. We observe a strong correlation between the authority weights of HITS and the
in-degrees, while almost no correlation between the hub weights and the out-degrees.

Table 1. Similarity between HITS and INDEGREE

authority/in-degree hub/out-degree
d2 distance 0.36 1.23
correlation coefficient 0.93 0.005

2 http://www-diglib.stanford.edu/∼testbed/doc2/WebBase/

Stability and Similarity of Link Analysis Ranking Algorithms 727

Similar trends are observed for the d2 distance, where the distance between hub weights
and out-degrees is much larger than that between authority weights and in-degrees.
These results suggest that although the Web, as expected, is not a product graph, the
HITS authority weights can be well approximated by the in-degrees.

6 Similarity of HITS and INDEGREE

In this section we study the general conditions under which the HITS and INDEGREE

algorithms are similar. Consider a graph G ∈ Gn and the corresponding adjacency
matrix W . Let σ1 ≥ σ2 ≥ . . . ≥ σn be the singular values of W , and let a1, . . . ,an

and h1, . . . ,hn denote the right (authority) and left (hub) singular vectors respectively.
All vectors are unit vectors in the L2 norm. The HITS algorithm outputs the vector
a = a1. Let w denote the output of the INDEGREE algorithm (normalized in L2).
Also, let Hi =

∑n
j=1 hi(j) be the sum of the entries of the i-th hub vector. We can

prove the following proposition. The proof appears in the full version of the paper.

Proposition 1. For a graph G ∈ Gn, the d2 distance between HITS and INDEGREE is

d2(a,w) =

√(
σ2H2

σ1H1

)2

+ · · ·+
(
σnHn

σ1H1

)2

(3)

We now study the conditions under which d2(a,w) = o(1). Since the values of h1

are positive, we have that H1 = ‖h1‖1, and 1 ≤ H1 ≤
√

n. For every i > 1, we have
that |Hi| ≤ ‖hi‖1 and |Hi| ≤

√
n. The following conditions guarantee the similarity

of HITS and INDEGREE: (a) σ2/σ1 = o(1/
√

n), and there exists a constant k such that
σk+1/σ1 = o(1/n); (b) H1 = Θ(

√
n), and σ2/σ1 = o(1), and there exists a constant

k such that σk+1/σ1 = o(1/n); (c) H1 = Θ(
√

n), and σ2/σ1 = o(1/
√

n).
Assume now that |Hi|/(σ1H1) = o(1), for all i ≥ 2. One possible way to obtain

this bound is to assume that σ1 = ω(
√

n), or that H1 = Θ(
√

n) and σ1 = ω(1).
Then, we can obtain the following characterization of the distance between HITS and

INDEGREE. From Equation (3) we have that d2(a,w) = o
(√

σ2
2 + · · ·+ σ2

n

)
. Let

W1 = σ1h1a
T
1 denote the rank-one approximation of W . The matrix R = W −W1 is

called the residual matrix, and it has singular values σ2, . . . ,σn. We have that

d2(a,w) = o (‖W −W1‖F) and d2(a,w) = o

(√
‖W‖2F − ‖W‖22

)
(4)

Equation (4) says that the similarity of HITS and INDEGREE algorithms depends on
the Frobenius norm of the residual matrix. Furthermore, the similarity of the HITS

and INDEGREE algorithms depends on the difference between the Frobenius and the
spectral (L2) norm of matrix W . The L2 norm measures the strength of the strongest
linear trend in the matrix, while the Frobenius norm captures the sum of the strengths
of all linear trends in the matrix [1]. The similarity of the HITS and INDEGREE algo-
rithms depends upon the contribution of the strongest linear trend to the sum of linear
trends.

728 D. Donato, S. Leonardi, and P. Tsaparas

7 Conclusions

In this paper we studied the behavior of the HITS algorithm on the class of product
graphs. We proved that under some assumptions the HITS algorithm is stable, and it
is similar to the INDEGREE algorithm. Our assumptions include graphs with expected
degrees that follow a power law distribution.

Our work opens a number of interesting directions for future work. First, it would be
interesting to determine a necessary condition for the stability of the HITS algorithm.
Also, it would be interesting to study the stability and similarity of other LAR algo-
rithms on product graphs, such as the PAGERANK and the SALSA algorithms. Finally,
it would be interesting to study other classes of random graphs [5, 16].

References

1. D. Achlioptas and F. McSherry. Fast computation of low rank matrix approximations. In
ACM Symposium on Theory of Computing (STOC), 2001.

2. L. A. Adamic and B. A. Huberman. Zipf’s law and the internet. Glottometrics, 3:143–150,
2002.

3. W. Aiello, F. R. K. Chung, and L. Lu. Random evolution in massive graphs. In IEEE
Symposium on Foundations of Computer Science, pages 510–519, 2001.

4. Y. Azar, A. Fiat, A. Karlin, F. McSherry, and J. Saia. Spectral analysis of data. In Proceedings
of the 33rd Symposium on Theory of Computing (STOC 2001), Greece, 2001.

5. A.-L. Barabasi and R. Albert. Emergence of scaling in random networks. Science, 286:509–
512, 1999.

6. M. Bianchini, M. Gori, and F. Scarselli. Pagerank: A circuital analysis. In Proceedings of
the Eleventh International World Wide Web (WWW) Conference, 2002.

7. A. Borodin, G. O. Roberts, J. S. Rosenthal, and P. Tsaparas. Link Analysis Ranking: Algo-
rithms, Theory, and Experiments. ACM Transactions on Internet Technology, 05(1), 2005.

8. S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search engine. In
Proceedings of the 7th International World Wide Web Conference, Brisbane, Australia, 1998.

9. A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomikns, and
W. Wiener. Graph structure in the Web. In Proceedings of WWW9, 2000.

10. F. Chung and L. Lu. Connected components in random graphs with given degree sequences.
Annals of Combinatorics, 6:125–145, 2002.

11. F. Chung and L. Lu. The average distances in random graphs with given expected degrees.
Internet Mathematics, 1:91–114, 2003.

12. F. Chung, L. Lu, and V. Vu. Eigenvalues of random power law graphs. Annals of Combina-
torics, 7:21–33, 2003.

13. P. Erdös and A. Rènyi. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad.
Sci., 5:17–61, 1960.

14. R. Fagin, R. Kumar, and D. Sivakumar. Comparing top k lists. In Proceedings of the ACM-
SIAM Symposium on Discrete Algorithms (SODA), 2003.

15. J. Kleinberg. Authoritative sources in a hyperlinked environment. In Proceedings of the
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 668–677, 1998.

16. R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins, and E. Upfal. Stochastic
models for the web graph. In Proceedings of the 41st Annual Symposium on Foundations of
Computer Science, 2000.

Stability and Similarity of Link Analysis Ranking Algorithms 729

17. H. C. Lee and A. Borodin. Perturbation of the hyperlinked environment. In Proceedings of
the Ninth International Computing and Combinatorics Conference, 2003.

18. R. Lempel and S. Moran. The stochastic approach for link-structure analysis (SALSA) and
the TKC effect. In Proceedings of the 9th International World Wide Web Conference, 2000.

19. R. Lempel and S. Moran. Rank stability and rank similarity of link-based web ranking
algorithms in authority connected graphs. In Second Workshop on Algorithms and Models
for the Web-Graph (WAW 2003), 2003.

20. M. Mihail and C. H. Papadimitriou. On the eigenvalue power law. In Proceedings of the 6th
International Workshop on Randomization and Approximation Techniques, 2002.

21. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, Cam-
bridge, England, June 1995.

22. A. Y. Ng, A. X. Zheng, and M. I. Jordan. Link analysis, eigenvectors, and stability. In
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), 2001.

23. G. W. Stewart and J. Sun. Matrix Perturbation Theory. Academic Press, 1990.
24. G. K. Zipf. Human Behavior and the principle of least effort. Addison-Wesley, 1949.

Up-to Techniques for Weak Bisimulation

Damien Pous

ENS Lyon

Abstract. Up-to techniques have been introduced to enhance the bisim-
ulation proof method for establishing bisimilarity results. While up-to
techniques for strong bisimilarity are well understood, in the weak case
they come as a collection of unrelated results, and lack a unified presen-
tation. We propose a uniform and modular theory of up-to techniques
for weak bisimulation that captures existing proof technology and in-
troduces new techniques. Some proofs rely on non trivial – and new –
commutation results based on termination guarantees.

Introduction

Bisimilarity is a widely used behavioural equivalence in concurrency theory.
It can be seen as the finest extensional equivalence that enjoys a natural for-
mulation and nice mathematical properties. Bisimilarity can be defined as the
greatest bisimulation. Given a labelled transition system (LTS), allowing one to
write transitions between states of the form P →α P ′ (meaning that a state P
can perform an action α and evolve to P ′), we say that a relation R between
states is a bisimulation whenever the leftmost diagram below holds: if P and Q
are related by R and P →α P ′, there is Q′ such that Q →α Q′ and R relates P ′

and Q′, and symmetrically for the transitions of Q.

P
α

R Q
α

P ′ R Q′

P
α

R Q
α

P ′ F(R) Q′

P
α

R Q
α

P ′ S Q′

P
α

R Q
α

P ′ R Q′

Bisimulation is the most popular technique to establish bisimilarity results:
to prove that P and Q are bisimilar (written P ∼ Q), exhibit a bisimulation
R such that P R Q. Up-to techniques for bisimulation have been introduced to
alleviate the task of bisimulation proofs, by working with smaller relations. The
proof scheme is shown on the second diagram above: a correct up-to technique
is given by a function F from relations to relations such that if we prove that R
‘evolves to’ F(R), then we know that R ⊆∼. The advantage is that R need not
be a bisimulation (and can be ‘much smaller’ than a bisimulation). The notion
of evolution of relations (depicted on the third diagram, where R evolves to S
— its informal meaning is made precise below) serves as the basis of [8], where a
general theory of up-to techniques for bisimulation is presented. The correspond-
ing framework gives a unified and modular view of known up-to techniques, that
can be combined together to yield powerful proof techniques for bisimilarity.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 730–741, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Up-to Techniques for Weak Bisimulation 731

Up to now, we have implicitly been referring to strong bisimulation. When
analysing nontrivial systems, however, one is often interested in the weak ver-
sion, where a special action, called τ , is isolated, and the game of bisimulation is
redefined by abstracting over τ transitions (τ is treated as a silent action, while
other actions are visible). In the weak version of the bisimulation game, as shown
on the rightmost diagram above, Q responds to P →α P ′ by performing an
α
transition: this means that Q can do zero or several silent steps before and after
the transition along α, or even not move at all in the case where α = τ (and sym-
metrically when Q offers a challenge). One might then want to follow the same
path as above: redefine the evolution of relations, and look for some functions F
that yield correct up-to proof techniques for weak bisimilarity (written ≈). An
important motivation for doing so is that in general, weak bisimulation proofs
tend to be much larger than strong bisimulation proofs, so that having up-to
techniques for the weak case is at least as important as in the strong case.

Unfortunately, in the weak case, irregularities appear, the paradigmatic ex-
ample being given by the unsoundness of the ‘weak bisimulation up to weak
bisimilarity’ proof technique. We recall the counterexample, from [9]. We sup-
pose that the reader is familiar with CCS, and define R � {(τ.a, 0)}. Let us
show that R is a weak bisimulation up to ≈, i.e., that R evolves to ≈R≈ (we
use juxtaposition to denote relation composition). The right process, 0, cannot
move. The only move the left process can do is a τ transition to a, to which the
right process answers by no move, and we get the pair (a, 0). Now since we are
reasoning up to ≈, and since a ≈ τ.a, we are allowed to replace this pair with
(τ.a, 0), and we are back in R. Nevertheless, we obviously cannot conclude that
τ.a and 0 are bisimilar processes.

Novel and useful proof techniques have been introduced to circumvent this dif-
ficulty [9, 3], notably based on the expansion preorder [1], that allows one to avoid
situations where one can ‘undo a τ transition’ as in the example above. However,
as we have experienced in a recent study [4], in some cases reasoning up to ex-
pansion is not possible. The intuitive reason can be formulated as follows: when
a process P expands a process Q, P has to be more efficient (in terms of internal
computations, represented by silent transitions) than Q at every step. Typically,
expansion is a well suited relation to get rid of intermediate computation steps
that do not affect the behaviour of the system. However, it is common (in par-
ticular, it is the case in [4]) that along such transitions, an increased efficiency is
achieved at the cost of some initial computation. Because of its ‘very controlled’
nature, expansion fails in handling this kind of pre-calculation techniques.

In the present work, we develop a theory of up-to techniques for weak bisim-
ulation that enjoys nice properties in terms of generality and modularity, and
we introduce new useful proof techniques for weak bisimilarity that can be used
in that framework.

We start by adapting the work of [7] to the weak case, yielding the notion of
monotonic function over relations. We explore the class of monotonic functions,
and argue that it is too restrictive. We are thus led to relax the notion of mono-
tonicity, and introduce weakly monotonic functions, for which up-to techniques

732 D. Pous

can be applied only to reason about visible actions (those that cannot be undone
by ≈). We then show under which conditions monotonic and weakly monotonic
functions can be combined together to obtain sound proof techniques. The re-
sulting framework gives a unified and modular account of existing technology for
weak bisimulation proofs. Beyond that, we validate some proof principles, such
as ‘up to bisimilarity and transitivity on visible actions’, that to our knowledge
had not been proposed before.

We then attack the question of finding alternatives to the expansion relation
to handle τ transitions in weak bisimulation proofs. We propose an up to con-
trolled bisimulation technique. The notion of controlled bisimulation intuitively
captures the idea of avoiding ‘going back in time’ in bisimulation proofs. We in-
troduce relaxed expansion, a co-inductively defined relation that is a controlled
bisimulation and is coarser than expansion. We also propose two new proof prin-
ciples for which the control on τ steps exploits a different kind of argument, based
on termination guarantees. The corresponding correctness proofs are best for-
mulated as rewriting results, that are technically difficult and may be of interest
per se; we therefore describe them in that setting in a dedicated section. All our
results have been formally checked using the Coq proof assistant [7]. For the lack
of space, most are omitted in this extended abstract. They can be found in [5].

Outline of the paper. In Sect. 1, we introduce some necessary background and
show where the approach of [8] breaks when adapted to the weak case. We de-
velop our theory of up-to techniques for weak bisimulation in Sect. 2, introducing
monotonic and weakly monotonic functions. In Sect. 3 we introduce controlled
simulations and present new up-to techniques based on this notion. The correct-
ness of some of these techniques is supported by the proofs given in Sect. 4, which
are formulated in the setting of commutation results. We give final remarks in
Sect. 5.

1 The Problem of “Weak Bisimulation Up to”

1.1 Labelled Transition Systems, Relations, Evolution

We consider a labelled transition system (LTS) (P,L,→), with domain P, labels
or actions in L and transition relation →⊆ P × L × P. The elements of P are
called processes and are denoted by P,Q. We distinguish a silent action, τ ∈ L.
We let α, β (resp. a, b) range over actions, in L (resp. visible actions, in L\{τ}).
We write P →α Q when (P, α,Q) ∈ → (so that P →a Q stands for a transition of
P along a visible action a).

We let R,S,B, E range over binary relations (simply called relations in the
sequel) on processes, and denote respectively by R+,R=,R� the transitive, re-
flexive, transitive and reflexive closure of the relation R. P R Q stands for
(P,Q)∈R. The composition of two relations R and S, written RS, is defined
by RS � {(P,Q) s.t. P R T and T S Q for some process T}. We will also need
the inverse of a relation: R−1 � {(P,Q) s.t. Q R P}. I will denote the identity
relation. We say that R contains S (alternatively, that S is contained in R),

Up-to Techniques for Weak Bisimulation 733

written S ⊆ R, if P S Q implies P R Q. A relation R terminates if there is no
infinite sequence P1,P2 . . . such that ∀i,Pi R Pi+1.

Definition 1.1 (weak transitions). The weak transition relation, written
α ,
is defined as the reflexive transitive closure of →τ when α = τ , and the composi-
tion
τ →a
τ for α = a ∈ L\{τ}.
Definition 1.2 (evolution). Let α be an action and R,S two relations. We
say that R α-evolves to S, if whenever P R Q, P →α P ′ implies Q
α Q′ and
P ′ S Q′ for some Q′. Given two relations R and S, we say that:

– R evolves to S, denoted by R � S, if R α-evolves to S for all α ∈ L,
– R evolves silently to S, denoted by R �τ S, if R τ -evolves to S,
– R evolves visibly to S, denoted by R �v S, if R a-evolves to S for all

a ∈ L\{τ}.

Our notion of evolution is the ‘asymmetric’ version of progression in [8]: R
progresses to S in the sense of [8] iff R evolves to S and R−1 evolves to S−1.

In the following, we build a theory of up-to techniques to reason about sim-
ulations. This leads to simpler developments, and we show at the end of each
section how to use the results to obtain proof techniques for bisimulation.

In the definition below, and in the remainder of the paper, we implicitly refer
to weak relations. There are several equivalent definitions of bisimilarity. The
following directly gives the standard way to prove a bisimilarity result between
two processes P and Q: exhibit a bisimulation R containing the pair (P,Q).

Definition 1.3 (simulation, bisimulation, expansion). Let R be a relation,
R is a simulation (resp. silent simulation) if R � R (resp. R �τ R).
R is a bisimulation if R and R−1 are simulations. Two processes P and Q are
bisimilar, written P ≈ Q, if P R Q for some bisimulation R.

Expansion, denoted by �, is the largest relation such that �−1 is a simulation,
and, whenever P � Q,

1. P →τ P ′ implies Q→τ Q′ and P ′ � Q′ for some Q′, or P ′ � Q;
2. P →a P ′ implies Q→a Q′ and P ′ � Q′ for some Q′.

1.2 The Difficulty in the Weak Case

We now adapt the theory of up-to techniques of [8] to the weak case, and show
where the difficulties arise. We let F ,G range over functions from relations to
relations. We say that F contains G, written G ⊆ F , if G(R) ⊆ F(R) for any
relation R. Given a relation S, we define identity (U), constant-to-S (S̃), S-left-
chaining (S•) and S-right-chaining (•S) as follows:

U(R) � R S̃(R) � S S• (R) � SR •S(R) � RS
We define four constructors, i.e., functions from functions to functions: com-

position (◦), union (∪), iteration (∗) and chaining (�), as follows:

(F ◦ G)(R) � F(G(R))
(F ∪ G)(R) � F(R) ∪ G(R)
(F�G)(R) � F(R)G(R)

(F0)(R) � R
(Fn+1)(R) � Fn(R) ∪ F(Fn(R))

(F∗)(R) �
⋃

n≥0 Fn(R)

734 D. Pous

Definition 1.4 (monotonicity). A function F is monotonic if R ⊆ S entails
F(R) ⊆ F(S) and the following conditions hold:

(1)
{
R �τ S
R ⊆ S ⇒ F(R) �τ F(S) (2)

{
R � S
R ⊆ S ⇒ F(R) �v F(S)

This slightly strengthens the notion of respectfulness found in [8], in which the
two kinds of transitions are treated uniformly. While the results of this section
would hold using respectful functions, we will need this separation between silent
and visible actions in Sect. 2.2.

Proposition 1.5 (correctness of monotonic functions). Let F be a mono-
tonic function. If R� F(R), then F∗(R) is a simulation.

This proposition ensures that a monotonic function provides a sound up-to
technique: whenever we can prove that R evolves to F(R), then R is contained
in F∗(R), which is a simulation. We now exhibit some monotonic functions, and
show how to combine them to obtain more powerful techniques.

Lemma 1.6. Let S be a simulation, U , S̃, •S and �• are monotonic functions.

In the sequel, we will say that a constructor respects a predicate P over
functions, if, given arguments that satisfy P, it returns a function satisfying P.

Lemma 1.7. Constructors ◦, ∪ and ∗ respect monotonicity.

We can now apply our framework to reason about bisimulation relations, and
revisit a result from [9]. We show that the proof becomes elementary.

Theorem 1.8. If R �� R=≈ and R−1 �� (R−1)=≈, then R ⊆ ≈.

Proof. Using the previous results, F(R) � � R=≈ is monotonic, and F∗(R)
and F∗(R−1) are simulations. Then ≈F∗(R) and F∗(R−1)≈ are simulations.
We check that (≈F∗(R))−1 = F∗(R−1)≈, so that R ⊆≈F∗(R) ⊆ ≈. ��

The transitivity problem. The ≈-left-chaining function is not monotonic. As a
consequence, the chaining constructor does not respect monotonicity in general.
Indeed, when trying to prove the monotonicity of ≈•, we lack some hypotheses
about silent transitions to close the corresponding diagram.

2 A Smooth Theory for the Weak Case

2.1 A Weaker Notion of Monotonicity

When looking at the counterexample given in the Introduction, we can observe
that the problem is related to silent transitions: unlike visible transitions, they
can be cancelled by ≈. We now exploit this observation to relax the definition
of monotonicity, which leads to a smoother theory, where reasoning up to weak
bisimilarity is allowed, but on visible actions only.

Up-to Techniques for Weak Bisimulation 735

Definition 2.1 (weak monotonicity). A function F is weakly monotonic if
R ⊆ S entails F(R) ⊆ F(S) and the following conditions hold:

(1) R�τ R ⇒ F(R) �τ F(R) (2)
{
R�τ R, R�v S
S �τ S, R ⊆ S ⇒ F(R) �v F(S)

The main difference w.r.t. Definition 1.4 is in clause (1): instead of respecting
silent evolutions, a weakly monotonic function has to respect silent simulations.
On the visible side (2), we suppose that R and S are silent simulations. The
immediate consequence of these modifications appears in the following result:
the up-to function may only be used on visible evolutions, and the candidate
relation R has to be a silent simulation.

Proposition 2.2 (correctness of weakly monotonic functions). Let F be
weakly monotonic. If R �τ R, and R �v F(R), then F∗(R) is a simulation.

Now we study the class of weakly monotonic functions: the following lemma
ensures that the functions given by Lemma 1.6 can be used in the setting of
weakly monotonic functions. Furthermore, weakly monotonic functions can be
composed using the most important constructors:

Lemma 2.3. Any monotonic function is weakly monotonic. Composition (◦),
union (∪), iteration (∗) and chaining (�) respect weak monotonicity.

The closure under the chaining constructor naturally suggests the use of interest-
ing up-to techniques, and in particular up to transitivity, given by F(R) = R�,
and up to weak bisimilarity, using F(R) = ≈R ≈.

2.2 Combining Monotonicity and Weak Monotonicity

In introducing weakly monotonic functions, we have restricted the use of up-
to techniques to visible steps. We show how to develop further this approach
by combining a monotonic function and a weakly monotonic function so as to
employ constrained up-to techniques on silent steps, and full-fledged up-to tech-
niques on visible steps.

Proposition 2.4 (unified up-to technique). Let F be monotonic and G be
weakly monotonic, and suppose further that F ⊆ G.

If R �τ F(R) and R �v G(R), then (G∗)∗(R) is a simulation.

In this result, we have to iterate G twice for technical reasons (see [5] for
details). The following theorem is the counterpart of Theorem 1.8 in the richer
setting we have introduced:

Theorem 2.5. If
{
R�τ � R=≈
R�v (R∪≈)� and

{
R−1 �τ � R−1=≈
R−1 �v (R−1 ∪≈)� then R ⊆≈.

We thus have a modular theory of up-to techniques for weak bisimulation that
follows the approach for the strong case in [8]. Technically, the main improvement
over previous works is the ability to exploit weaker hypotheses when reasoning
about visible steps: for instance, up to transitivity (R �v R�) and up to weak
bisimilarity (R �v ≈R≈) techniques entail valid proof methods.

736 D. Pous

3 Beyond Expansion

3.1 Controlled Relations

In this section, we enrich our framework with the possibility to use alternatives
to � (which is the best we can do using Theorem 2.5) to handle τ transitions
in bisimulation proofs. We define a class of relations that are controlled w.r.t.
silent transitions, meaning that they prevent silent steps from being cancelled
in an up-to bisimulation game.

The left-chaining functions associated to such relations are not weakly mono-
tonic, and we thus have to depart from the theory we have developed so far.
Roughly, a controlled relation is defined as a relation that induces a correct
proof technique when used as a left-chaining up-to technique. The following
technical definition introduces a uniform way to plug a non weakly monotonic
left-chaining function into our setting.

Definition 3.1 (controlled relation). We says that B is a controlled relation
if the following holds for all relations R, S:

(1) R �τ B�R ⇒ B�R �τ B�R (2)
{
R �τ B�R
R�v S, S �τ S ⇒ B�R�v B�S .

Remark 3.2. Note that a controlled relation need not be a simulation. However,
by taking R = S = I, we see that if B is controlled, then B� is a simulation.
Also, the union of two controlled relations is not necessarily a controlled relation.
Thus, this does not a priori induce a notion of controlled bisimilarity.

We say that B is a controlled bisimulation if it is a controlled relation con-
tained in bisimilarity.

We now show how controlled relations can be used in simulation proofs.

Definition 3.3 (transparency). Given a relation B and a function F , F is
B-transparent if F(B�R) ⊆ B�F(R) for any relation R.
F is transparent if it is B-transparent for any relation B.

Proposition 3.4 (up to controlled relation). Let F and G be two func-
tions, and B a relation such that: B is a controlled relation, F is monotonic and
B-transparent, G is weakly monotonic. Suppose moreover that G contains F and
B�•. If R�τ B�F(R) and R�v G(R), then (G∗)∗(R) is a simulation.

Lemma 3.5. The identity and all S-right-chaining functions are transparent.
If B ⊆ S then the constant-to-S function is B-transparent.

The composition, union and iteration constructors respect B-transparency.

In practise, we will work with S = ≈ and require that B ⊆ ≈, so that
condition B ⊆ S will be satisfied.

Also notice that �•, the expansion-left-chaining function, is not transparent
in general. This hence prevents us from encompassing the up to expansion proof
technique in the statement of the following theorem.

Up-to Techniques for Weak Bisimulation 737

Theorem 3.6. Let B be a controlled bisimulation.

If
{
R �τ B�R=≈
R �v (R∪ ≈)� and

{
R−1 �τ B�R−1=≈
R−1 �v (R−1 ∪ ≈)� then R ⊆ ≈.

This theorem is the counterpart of Theorem 2.5 using a controlled bisimula-
tion instead of �. A refined version of this result, in which two distinct controlled
bisimulations are used for the silent evolutions of R and R−1, also holds. This
can be useful in particular because the class of controlled bisimulations is not
closed under union, as explained in Remark 3.2.

The remainder of the section is devoted to the construction of controlled
relations.

3.2 Relaxed Expansion

Definition 3.7 (relaxed expansion). A relation E is a relaxed expansion if
whenever P E Q,

1. P →τ P ′ implies Q→τ Q′ and P ′ E Q′ for some Q′ or P ′ E Q,
2. P →a P ′ implies Q→a
τ Q′ and P ′ E Q′ for some Q′.

Relaxed expansion, denoted by �, is the union of all relaxed expansions E such
that E−1 is a simulation.

When P � Q and P →a P ′, Q has to do immediately a transition along a,
but then can do as many silent transitions as necessary. The intuition behind
the definition of relaxed expansion is that, using this possibility, Q can do some
‘preliminary internal computation’ in order to be able to remain faster than P
until the next visible action.

Lemma 3.8. � is a relaxed expansion, and we have: � � � � ≈.

Proof. The first point and the inclusions are straightforward. We illustrate the
strictness of the inclusions using CCS processes: a.b � a.τ.b holds but not a.b �
a.τ.b, and a ≈ τ.a holds but not a � τ.a. ��

Theorem 3.9. A relaxed expansion is a controlled relation. � is a controlled
bisimulation.
In general, � is not a congruence: for instance, in CCS, a.b � a.τ.b holds but not
a | a.b � a | a.τ.b. We remark that � is very close to almost weak bisimilarity,
defined in [9]; the definition of � only fits better to our setting.

3.3 Introducing Termination Guarantees

We now show how to obtain controlled relations using termination guarantees.
The theorems below follow from general results about commuting diagrams,
presented in Sect. 4. Their proofs are thus deferred to that section.

Theorem 3.10. Let B be a relation such that B � B+ and B terminates. Then
B is a controlled relation.

738 D. Pous

Theorem 3.11. Let B be a relation such that B � B� and B+→τ + terminates.
Then B is a controlled relation.

Unlike �, where the control on silent moves is fixed by the co-inductive def-
inition of the relation, in these two results we start with a relation that roughly
respects the – too permissive – weak bisimulation game, and constrain it a pos-
teriori, in such a way that it cannot cancel silent steps indefinitely. For example,
the erroneous up-to relation B = {(a, τ.a)} is rejected because B evolves to
I = B0, and B+→τ + = {(a, a)} obviously does not terminate.

There are processes that are not related by �, but by a relation satisfying
the conditions of the previous theorems: consider (a | (νb)b, τ.a) or (a + a, τ.a).

Like for controlled relations, there is no direct way to define the greatest
relation satisfying the requirements in Theorems 3.10 and 3.11, the main reason
being that the union of terminating relations does not terminate in general. Also
remark that the termination of B+→τ + does not entail the termination of B or
→τ . Theorem 3.11 can thus be applied to systems exhibiting infinite chains of τ
transitions (e.g., π or CCS with replication).

We can use the up-to techniques we have defined previously to show the evo-
lution condition in the above theorems (B � B+ or B � B�). However one has
to be careful, because the simulation relation obtained with these techniques is
F∗(B). Depending on F , this relation may be reflexive, which discards Theo-
rem 3.10, or just quite complex, so that proving the termination of F∗(B) or
F∗(B)+→τ + may be delicate.

4 Results About Commuting Diagrams

In this section, we work in the more general setting of diagrams, commonly
found in rewriting theory. In addition to R,S we let →, ↪→ and
 range over
relations. As before, →+ (resp.
) is the transitive (resp. reflexive transitive)
closure of →. We shall say that four relations (R,→,S, ↪→) form a diagram,
denoted (R,→) ((S, ↪→), if whenever P R Q and P → P ′, there is Q′ such
that P ′ S Q′ and Q ↪→ Q′ (in our proofs, we shall sometimes adopt the usual
graphical notation for diagrams). We say that two relations R and → commute
if (R,→) ((R,→). Notice that a relation R is a simulation iff R commutes
with
α for all α ∈ L.

4.1 A First Termination Argument

Lemma 4.1. Let B, → be two relations such that B terminates.
If (B,→) ((B+,
), then B+ and
 commute.

Remark 4.2. The commutation hypothesis (B,→) ((B+,
) cannot be weak-
ened to (B,→) ((B�,
), or to “whenever P B Q and P → P ′, P ′ = Q or there
is Q′ such that P ′ B+ Q′ and Q
 Q′”. Indeed, if we define

B � { (2, 3), (3, 4), (1, 0) }
→ � { (3, 2), (2, 1), (1, 0) } 0 1

B
2

B
3 B 4

Up-to Techniques for Weak Bisimulation 739

B terminates and satisfies the two alternative hypotheses; 2 B� 4 and 2→ 1, but
there is no i s.t. 4
 i and 1 B� i.

A similar result: “if B terminates and (B,→) ((B+,
), then B� and

commute” is given in [10–Exercise 1.3.2]. However we are interested in show-
ing the stronger result below, in which diagrams can be composed with other
relations (this is necessary to obtain controlled simulations).

Lemma 4.3. Let B,→, ↪→ be three relations such that B terminates.
If (B,→) ((B+,
) and (B, ↪→) ((B+,
↪→), then B+ and
↪→ commute.

Proof. By induction over the well-founded relation B−1 with the predicate φ(P ′):
“For all P,Q such that P
↪→ P ′ and P B+ Q, there is Q′ such that Q
↪→ Q′

and P ′ B+ Q′”. ��

Proposition 4.4. Let B,→, ↪→,R,S,
 be six relations such that B terminates.

If
{

(B,→) ((B+,
)
(B, ↪→) ((B+,
↪→) and

{
(R,→) ((B�R,
)
(R, ↪→) ((B�S,

)

then (B�R,
↪→) ((B�S,

).

We can now give the first deferred proof from the previous section:

Proof (of Theorem 3.10).

1. Suppose R �τ B�R, we apply Proposition 4.4, taking →τ for →, and the
identity relation for ↪→,
, and S.

2. Suppose furthermore R �v S and S �τ S. Lemma 4.1 ensures that B+ is
a silent simulation. We close the diagram marked with a (*) below with a
simple induction.

a

B
(H) a

τ

B+

(Lem. 4.1) τ

B+

a

R
(H) a

τ

S
(∗) τ

S
We then apply Proposition 4.4, using →τ for →, →a
τ for ↪→ and
. ��

4.2 A Generalisation of Newman’s Lemma

Lemma 4.5. Let B,→,R be three relations such that B+→+ terminates.
If (B,→) ((B�,
) and (R,→) ((B�R,
), then B�R and
 commute.

Proof. It suffices to prove (B�R,→) ((B�R,
): the commutation result then
follows by a simple induction. We use an induction over the well-founded order
induced by the termination of B+→+, with the predicate φ(P): “For all P ′,Q
such that P → P ′ and P B�R Q, there is Q′ such that Q
 Q′ and P ′ B�R Q′”
(IH1). Then we do a second induction on the derivation of P B�R Q (IH2).
From the first hypothesis, we get Pn such that the leftmost diagram below holds
(we show the interesting case where P0 →+ Pn). We use the internal induction

740 D. Pous

to obtain Q1 in the central diagram; this is possible since any process P ′′ such
that P0 B+→+ P ′′ satisfies P B+→+ P ′′: the external induction hypothesis
is preserved. Finally, using a third induction on the derivation P1
 Pn, we
close the diagram by applying n− 1 times the external induction hypothesis (all
processes between P1 and Pn satisfy P B+→+Pi).

P B P0 B�R Q

(H) P1

P ′ B� Pn

P B P0 B�R
(IH2)

Q

P1 B�R Q1

P ′ B� Pn

P B P0 B�R Q

P1 B�R
(IH1)

n−1

Q1

P ′ B� Pn B�R Q′

��

By taking R = I in this lemma, we obtain the following corollary:

Corollary 4.6. Let B,→ be two relations such that B+→+ terminates.
If (B,→) ((B�,
), then B� and
 commute.

By taking B =→, we get Newman’s lemma: “Local confluence and termi-
nation entail confluence”. A different generalisation of this confluence lemma
to commutation can be found in [2–Lemma 4.26]. However, the latter result
is weaker than ours since it requires the termination of B∪ →, and thus the
termination of both B and →.

Remark 4.7 (up-to techniques and commuting diagrams). The previous corollary
admits a direct and elegant proof using the decreasing diagram techniques of
van Oostrom et al. [2–Theorem 4.25]. The details of this proof are given in [5].
However, results like Lemma 4.5 and Proposition 4.8 cannot be proved within
the setting of [2], because they express properties beyond ‘pure commutation’.

Fournet [3] and others have been using results from [2] to validate up-to
techniques for barbed equivalences. This is not directly comparable to the present
work, since in that setting, commutation results apply directly (visible actions
are not taken into account). Moreover, these works do not exploit results based
on termination guarantees on the relations between processes.

Proposition 4.8. Let B,→,R, ↪→,S,
 be six relations s.t. B+→+ terminates.

If
{

(B,→) ((B�,
)
(B, ↪→) ((B�,
↪→) and

{
(R,→) ((B�R,
)
(R, ↪→) ((B�S,

)

then (B�R,
↪→) ((B�S,

).

Like in the proof of Theorem 3.10, we use Proposition 4.8 and Corollary 4.6
to establish Theorem 3.11.

5 Concluding Remarks

Applications of our proof techniques. We have analysed two example systems
where existing methods do not really help in establishing bisimilarity results,
while the techniques we have presented are applicable, and indeed simplify

Up-to Techniques for Weak Bisimulation 741

the proofs. One of these examples comes from the work reported in [4] (which
presents a direct bisimilarity proof). For lack of space, we do not present these
here; the interested reader can refer to the long version of this paper [5]. More
experience on case studies has to be developed in order to have a better un-
derstanding of how our techniques can be best combined, and how to tune the
distinction between visible and internal computation steps.

A theorem prover formalisation of our results.All results in this paper have been
formally checked in the Coq proof assistant [7], and the descriptions of the proofs
we give actually closely follow the proof scripts (available from [6]). This is of
particular interest for the proofs in Sect. 4, which require non trivial and error-
prone reasoning, especially when reasoning about nested inductions.

Results about decreasing diagrams. Due to the presence of labelled transitions,
results about decreasing diagrams from [2] are not applicable directly in our
setting. We plan to study how the theory of [2] can be adapted to keep track
of visible actions. This could be a way to provide an abstract approach for the
definition of ‘up to transitivity’ techniques based on termination guarantees.

Acknowledgements. We would like to thank Davide Sangiorgi for his com-
ments and suggestions, and Daniel Hirschkoff for helpful discussions and a great
help during the redaction process.

References

1. S. Arun-Kumar and M. Hennessy. An efficiency preorder for processes. Acta
Informatica, 29(9):737–760, 1992.

2. M. Bezem, J. W. Klop, and V. van Oostrom. Diagram techniques for confluence.
Information and Computation, 141(2):172–204, 1998.

3. C. Fournet. The Join-Calculus: a Calculus for Distributed Mobile Programming.
PhD thesis, Ecole Polytechnique, 1998.

4. D. Hirschkoff, D. Pous, and D. Sangiorgi. An Efficient Abstract Machine for Safe
Ambients. Technical Report 2004–63, LIP – ENS Lyon, 2004. An extended abstract
appeared in the proceedings of COORDINATION’05.

5. D. Pous. Up-to Techniques for Weak Bisimulation. Technical Report 2005–16,
LIP – ENS Lyon, 2005.

6. D. Pous. Web appendix of this paper, 2005.
Available at http://perso.ens-lyon.fr/damien.pous/upto.

7. INRIA projet Logical. The Coq proof assistant. http://coq.inria.fr/.
8. D. Sangiorgi. On the Bisimulation Proof Method. Mathematical Structures in

Computer Science, 8:447–479, 1998.
9. D. Sangiorgi and R. Milner. The problem of “Weak Bisimulation up to”. In Proc.

CONCUR ’92, volume 630 of Lecture Notes in Computer Science, pages 32–46.
Springer Verlag, 1992.

10. TeReSe. Term Rewriting Systems. Cambridge University Press, 2003.

Petri Algebras

Eric Badouel1, Jules Chenou2, and Goulven Guillou3

1 INRIA, IRISA, Campus Universitaire de Beaulieu,
F35042 Rennes Cedex, France

ebadouel@irisa.fr
2 Faculté des Sciences, Université de Douala,

B.P. 24157 Douala, Cameroon
chenouj@yahoo.fr

3 Université de Bretagne Occidentale, E3883,
B.P.817, 29285 Brest Cedex, France
goulven.guillou@univ-brest.fr

Abstract. The firing rule of Petri nets relies on a residuation operation
for the commutative monoid of natural numbers. We identify a class of
residuated commutative monoids, called Petri algebras, for which one
can mimic the token game of Petri nets to define the behaviour of gen-
eralized Petri net whose flow relation and place contents are valued in
such algebraic structures. We show that Petri algebras coincide with the
positive cones of lattice-ordered commutative groups and constitute the
subvariety of the (duals of) residuated lattices generated by the commu-
tative monoid of natural numbers. We introduce a class of nets, termed
lexicographic Petri nets, that are associated with the positive cones of
the lexicographic powers of the additive group of real numbers. This class
of nets is universal in the sense that any net associated with some Petri
algebras can be simulated by a lexicographic Petri net. All the classical
decidable properties of Petri nets however are undecidable on the class
of lexicographic Petri nets. Finally we turn our attention to bounded
nets associated with Petri algebras and show that their dynamics can be
reformulated in term of MV-algebras.

1 Introduction

The Petri net model is a graphical and mathematical modeling tool that, since
its introduction in the early sixties, have come to play a pre-eminent role in
the formal study of concurrent discrete-event dynamic systems. A Petri net
(P, T, P re, Post) consists of a finite set P of places, a finite set T of tran-
sitions (disjoint from P), and flow relations P re, Post : P × T → N. Places
can contain some tokens representing the resources available in this place for
the current configuration. A configuration of a Petri net is given as a vector
M : P → N, called marking, indicating the number of tokens available in each
place. Tokens are consumed and produced by the firing of transitions according
to the so-called token game

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 742–754, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Petri Algebras 743

M [t〉M ′ ⇔ (∀p ∈ P) M(p) * P re(p, t) ∧M ′(p) = (M(p)−P re(p, t))+Post(p, t)

The token game of Petri net says that in order for a transition t to fire in mark-
ing M it should be the case that each place contains enough resources as it is
expressed by the condition M(p) * P re(p, t) where , is the usual order relation
on N. Then the firing of transition t proceeds in two stages : a consumption of
resources (P re(p, t) tokens are removed from place p) followed by a production
of resources (Post(p, t) tokens are added to place p). The notation M [t〉M ′ ex-
presses the fact that transition t is allowed to fire in marking M and that firing t
in marking M produces the new marking M ′. Numerous techniques, supported
and automated by software tools, can be used to verify that some required prop-
erties are met for systems specified using Petri nets. For instance reachability,
coverability, place-boundedness, deadlock and liveness can be decided on the
class of Petri nets [13].

Numerous extensions of this basic model of Petri nets have been introduced
over the years. Some of them are high level nets that allow for more compact
representations but do not increase the expressive power of Petri nets: these
high level nets can be unfolded into equivalent, even though in general much
larger, Petri nets. Some extensions however change more dramatically the se-
mantics of the original model. For instance timing constraints may be added,
as in timed Petri nets or stochastic Petri nets for the purpose of enabling per-
formance analysis. With continuous Petri nets the discrete state transition rule
is replaced by a notion of trajectory using a continuum of intermediate states.
In Fuzzy Petri nets one has a possibilistic measure of the firing of a transition
in the given marking thus enabling to deal with incertainty. Our purpose in
this paper is to put forward an axiomatisation of the token game of Petri nets.
More precisely we identify a class of commutative residuated monoids, called
Petri algebras, for which one can mimic the token game of Petri nets to define
the behaviour of generalized Petri nets whose flow relations and place contents
are valued in such algebraic structures. The sum and its associated residuation
capture respectively how resources within places are produced and consumed
through the firing of a transition. The class of usual Petri nets is associated
with the commutative monoid of natural numbers. We show that Petri alge-
bras coincide with the positive cones of lattice-ordered commutative groups and
constitute the subvariety of the (duals of) residuated lattices generated by the
commutative monoid of natural numbers. The basic Petri net model is thus as-
sociated with the generator of the variety of Petri algebras which shows that
these extended nets share all algebraic properties of Petri nets, in particular
they have the same equational and inequational theory. We however exhibit a
Petri algebra whose corresponding class of nets is strictly more expressive than
the class of Petri nets, i.e. their class of marking graphs is strictly larger. More
precisely, we introduce a class of nets, termed lexicographic Petri nets, that
are associated with the positive cones of the lexicographic powers of the addi-
tive group of real numbers. This class of nets is proved to be universal in the
sense that any net associated with some Petri algebra can be simulated by a
lexicographic Petri net. All the classical decidable properties of Petri nets how-

744 E. Badouel, J. Chenou, and G. Guillou

ever (termination, covering, boundedness, structural boundedness, accessibility,
deadlock, liveness ...) are proved to be undecidable on the class of lexicographic
Petri nets. Finally we turn our attention to bounded nets associated with Petri
algebras and show that their dynamics can be reformulated in term of MV-
algebras.

2 An Axiomatisation of the Token Game

In order to obtain an axiomatisation of the token game of Petri nets we rep-
resent the marking of a net as a map M : P →

⊔
p∈P Ap that associates with

each place p ∈ P the local value of the current configuration M(p) ∈ Ap in
this place. Content of places are resources that are consumed and produced
according to the token game. Thus we assume that each place p ∈ P is asso-
ciated with a commutative divisibility monoid Ap = (Ap,⊕, 0), i.e. a monoid
such that

the relation a * b ⇔ ∃c · a = b⊕ c is an order relation (1)

The constant 0 represents the absence of resource and the binary operator ⊕
the accumulation of resources in places. Immediate consequences of condition
(1) are the following:

a⊕ b * a, b
0 , a
a⊕ b = 0 ⇒ a = b = 0

Moreover we need to have a residuation operation - such that a- b represents
the residual resource obtained by substracting b from a when b , a. Thus the
following should hold true:

b , a ⇒ a = (a- b)⊕ b (2)

Usual Petri nets corresponds to the situation where, for every place p, Ap =
(N,+, 0) is the commutative monoid of natural numbers with the truncated dif-
ference n -m = max (0;n−m) as residuation. This operation is characterized
by the universal property that for every natural numbers n, m and p

n+m * p ⇔ n * p-m

Up to the reversal of the order relation, it is a commutative residuated monoid
i.e. a commutative monoid (A,⊕, 0) with an order relation ≤ and a residuation
operation - which is a right adjoint to the addition, in the sense that

a⊕ b ≤ c ⇔ a ≤ c- b (3)

It follows immediately from this definition that a commutative monoid is resid-
uated if and only if its addition is order preserving in each argument and the
inequation a ⊕ b ≤ c has a largest solution for a (namely c - b). In particu-
lar the residual is uniquely determined by the addition and the order relation.

Petri Algebras 745

When the monoid is a divisibility monoid the order relation itself is defined in
terms of the addition and thus the whole structure is characterized by its monoid
reduct.

Proposition 1. Let (A,⊕, 0,,) be a commutative monoid where the neutral
element is also the least element for the order relation, we assume that this
monoid is co-residuated in the sense that there exists a residuation operation -
such that

a⊕ b * c ⇔ a * c- b (4)

then the following conditions are equivalent
(i) It is a divisibility monoid: a * b ⇔ ∃c · a = b ⊕ c
(ii) It is an upper semi-lattice with: a � b = (a- b)⊕ b
(iii) b , a ⇒ a = (a- b)⊕ b

Definition 2. A Petri pre-structure is a commutative monoid equipped with a
residuation operation (M,⊕, 0,-) satisfying the conditions (1) and (4).

The firing of a transition proceeds in two stages: a consumption of resources
in the input places followed by a production of resources in the output places.
More precisely, the transition relation M [t〉M ′ stating that transition t can fire
in marking M and leads, when it is fired, to the new marking M ′ is given by:

M [t〉M ′ ⇔ ∀p ∈ P M(p) * P re(p, t) ∧ M ′(p) = (M(p)-P re(p, t))⊕Post(p, t)

A net is called homogeneous if all the algebras Ap are identical. We will
stick to homogeneous nets until Section 3 where it will be noticed that the
”multi-sorted” case adds in fact no extra generality. By the way we also re-
strict our attention in this paper to commutative algebras. With non commu-
tative monoids it would be possible [1] for example to take fifo nets [11] into
account.

For any non empty sequence of transitions u = a0 . . . an−1 ∈ T+we let
M [u〉M ′ state the existence of markings M = M0, M1, . . ., Mn = M ′ such
that Mi [ai〉Mi+1 for every 0 ≤ i< n. Moreover we set M [ε〉M where ε ∈ E∗

is the empty sequence and M an arbitrary marking. We use M [u〉 (respectively
[u〉M ′) as a shorthand for ∃M ′ M [u〉M ′ (resp. ∃M M [u〉M ′). If a, b ∈ T are
transitions in a (n usual) Petri net we have the following equivalences (using the
vectorial notations P (t) = (P (p, t) ; p ∈ P) ∈ NP for P ∈ {P re, Post})

M [ab〉 ⇔ M * P re(a) and (M − P re(a)) + Post(a) * P re(b)
⇔ M * max (P re(a); P re(a) + (P re(b)− Post(a)))
⇔ M * P re(a) + max (0; P re(b)− Post(a))
⇔ M * P re(a)⊕ (P re(b)- Post(a))

This suggests to let P re(uv) = P re(u)⊕(P re(v)-Post(u)) for any sequences
u, v ∈ T ∗ and symmetrically Post(uv) = (Post(u)-P re(v))⊕Post(v). For these
definitions to make sense however, it remains to show that they do not depend

746 E. Badouel, J. Chenou, and G. Guillou

upon the specific chosen decomposition w = uv ; otherwise stated, the product
defined on A × A by (x, y) ⊗ (x′, y′) = (x ⊕ (x′ - y), (y - x′) ⊕ y′) should be
associative.

Theorem 3. For any Petri pre-structure, the following conditions are equivalent:
(i) Operation ⊗ is associative,
(ii) the identity (b⊕ c)- a = (b- (a- c))⊕ (c- a) holds,
(iii) the monoid is cancellable: a⊕ b = a⊕ c ⇒ b = c, and
(iv) the identity (a⊕ b)- b = a holds.

Definition 4. A Petri algebra is a Petri pre-structure with a cancellable monoid
reduct.

Corollary 5. Petri algebras satisfy the following equivalence

a * b⊕ c ⇔ a * b and a- b * c (5)

Identity (ii) of Theorem 3 is an internalization of (5) using the axiomatization
of the order relation: a , b⇔ a- b = 0.

Let us consider a net over a Petri algebra A, then we can inductively define the
applications P re, Post : P ×T ∗ → A by letting ϕ(p,u) = (P re(p,u),Post(p,u))
where ϕ(p,−) : T ∗ → A × A is the unique monoid morphism such that the
images ϕ(p, t) = (P re(p, t),Post(p, t)) of the generators t ∈ T be given by the
flow relations of the net. Then the following holds:

P re(p, ε) = Post(p, ε) = 0
P re(p,uv) = P re(p,u)⊕ (P re(p, v)- Post(p,u))
Post(p,uv) = (Post(p,u)- P re(p, v))⊕ Post(p, v)

Theorem 6. The generalized transition relation M [u〉M ′ stating the existence
of a sequence u of transitions leading from M to M ′ is given by any of the three
following equivalent conditions

1. ∀p ∈ P M(p) * P re(p,u) and M ′(p) = (M(p)- P re(p,u))⊕ Post(p,u)
2. ∀p ∈ P M ′(p) * Post(p,u) and M(p) = (M ′(p)- Post(p,u))⊕ P re(p,u)
3. ∀p ∈ P M(p) * P re(p,u) ; M ′(p) * Post(p,u) and M(p) - P re(p,u) =

M ′(p)- Post(p,u)

We have so far identified the set of conditions that should be fulfilled by
Petri algebras so that we can play the token game and the resulting firing rule
is associative. To sum up, these structures are duals of commutative residuated
lattices whose joins and meets are given by the formulas a � b = a - (a - b)
and a � b = b ⊕ (a - b) . Moreover this lattice is integral in the sense that the
neutral element for the sum is also the least element of the lattice. Finally the
underlying monoid is cancellable and this condition is equivalent to the identity
(a⊕ b)- b = a.

Using [3, 9] we can conclude that Petri algebras coincide with the (duals
of) integral, cancellative and commutative GMV-algebras. These algebras form
a sub-variety of the variety of residuated lattices and the following result is a
direct consequence of [10–Theorem 5.6 and corollaries].

Petri Algebras 747

Theorem 7. Petri algebras coincide with the positive cones of lattice-ordered
abelian groups. Moreover lattice-ordered abelian groups constitute the subvari-
ety of lattice-ordered groups generated by the group Z of integer, and their pos-
itive cones (i.e. Petri algebras) is the subvariety of residuated lattices gener-
ated by N.

3 Lexicographic Petri Nets

We define a (generalized) Petri net as a structure N = (P, T, P re, Post, M0)
where P is a finite set of places with a Petri algebraAp associated with each place
p ∈ P , T is a finite set of transitions disjoint from P and P re, Post : P × T →⊔

p∈P Ap, the flow relations, are such that ∀p ∈ P ∀t ∈ T P re(p, t), Post(p, t) ∈
Ap. A marking is a map M : P →

⊔
p∈P Ap that associates with each place p ∈ P

the local value of the current configuration M(p) ∈ Ap in this place. M0 is some
fixed marking, called the initial marking. The transition relation M [t〉M ′ stating
that transition t can fire in marking M and leads, when it is fired, to the new
marking M ′ is given by:

M [t〉M ′ ⇔ ∀p ∈ P M(p) * P re(p, t) ∧ M ′(p) = (M(p)-P re(p, t))⊕Post(p, t)

This relation can be extended inductively to sequences u ∈ T ∗ of transitions by
letting M [ε〉M for every marking M and M [t · u〉M ′ if and only if there exists
some marking M ′′ such that M [t〉M ′′ and M ′′ [u〉M ′ for every t ∈ T and u ∈ T ∗.
The set of reachable markings is Reach(N) = {M | ∃u ∈ T ∗ M0 [u〉M}, and the
marking graph of a generalized net N = (P, T, P re, Post, M0) is the labelled
graph ΓN = (V,Λ, v0) whose set of vertices is given by the set V = Reach(N)
of reachable markings with v0 = M0 and whose set of arcs Λ ⊆ V × T × V is
the restriction of the transition relation to the set of reachable markings: Λ =
{(M, t,M ′) | M, M ′ ∈ V ∧ M [t〉M ′}. Two generalized Petri nets are termed
equivalent when they have isomorphic marking graphs.

We immediately see that a place p whose type Ap is a sub-algebra of a product
of Petri algebras (Ap ⊆ A1 × · · · × An) can be replaced by n places p1, . . . , pn
with respective types A1, . . . , An without changing the marking graph (at least
up to isomorphism). A classical result of universal algebra says that any algebra
of a variety is a sub-direct product of sub-directly irreducible algebras. Thus
we can assume without loss of generality that all algebras Ap are sub-directly
irreducible algebras in the variety of Petri algebras. Now any M(p) belongs to the
sub-algebra of Ap generated by the set {M0(p)} ∪

⋃
t∈T {P re(p, t), Post(p, t)}.

Thus:

Theorem 8. Every generalized Petri net is equivalent to a generalized Petri
net all of whose types are sub-directly irreducible and finitely generated Petri
algebras.

Let Irr (V) denote the set of sub-directly irreducible algebras of a variety V ,
then if V is a subvariety of W one has Irr(W) ∩ V = Irr(V); using the fact

748 E. Badouel, J. Chenou, and G. Guillou

that the sub-directly irreducible commutative GMV-algebras are chains (totally
ordered sets) we deduce that

Proposition 9. sub-directly irreducible Petri algebras are chains.

An algebra is sub-directly irreducible if and only if it admits a least non trivial
congruence [4]. Now we know [5, 6] that the congruences of Petri algebras are
in bijective correspondance with their convex sub-monoids. On the one hand we
can associate each congruence θ of a Petri algebra A with the class of the neutral
element which is a convex sub-monoid Mθ = [0]θ of A. Conversely we associate
each such monoid M to the congruence θM = {(a, b) ∈ A2 | b - a, a - b ∈ M}.
The correspondances θ �→ Mθ and M �→ θM are inverses to each other and
they establish an isomorphism between the lattice of congruences of A and the
lattice of the convex sub-monoids of A. Moreover for every a ∈ A, the principal
congruence generated by the equation a = 0 corresponds to the convex sub-
monoid generated by a. A Petri algebra is then sub-directly irreducible if and
only if it admits a least non trivial convex sub-monoid. Let us assume that A is
a totally ordered Petri algebra. Let

M(x) = {y ∈ A | ∃k ∈ N · y , k · x = x⊕ · · · ⊕ x︸ ︷︷ ︸
k times

}

denote the principal convex sub-monoid generated by x ∈ A. M(x) is non-trivial
if and only if x �= 0. Now if x is some element of a convex sub-monoid M of A
one necessarily has M(x) ⊆ M ; thus a minimal convex sub-monoid is principal
and is generated by any of its non null elements. Since A is totally ordered and
x ≤ y ⇒ M(x) ⊆ M(y) we deduce that A admits at most one minimal non
trivial sub-monoid. M(x) is minimal if and only if y / x ⇒ y = 0 where
relation / is given by y / x ⇔ ∀k ∈ N · k · y � x. Otherwise stated y / x
if and only if y � x and M(y) is strictly included in M(x). Therefore A has
no non trivial minimal sub-monoid if and only if for every x ∈ A \ {0} one can
find some y ∈ A \ {0} such that y / x . Under that condition one can form an
infinite strictly decreasing chain thus proving that the order relation / is not
well-founded. Conversely if this order is well-founded then any non empty subset
of A, and thus in particular A \ {0} if A is not trivial, admits a least element for
this order which shows the existence of a minimal non trivial sub-monoid. We
thus have established the following:

Theorem 10. A Petri algebra is sub-directly irreducible if and only if it is a
chain and the order relation y / x ⇔ ∀k ∈ N · k · y � x is well-founded.

The lexicographic product G◦H of two ordered groups G and H is the product
group G ×H equipped with the lexicographic order relation:

(x, y) ≤G◦H (x′, y′) ⇔ x <G x′ or (x = x′ and y ≤H y′)

If G and H are simply ordered abelian groups then the same holds for their
lexicographic product. This product is associative and we can define inductively

Petri Algebras 749

Ln (G) = (Gn)+ for every simply ordered abelian group G and integer n ∈ N by
letting G0 = {0} be the trivial group and Gn+1 = Gn ◦G, and where G+ denote
the positive cone of group G. The group Gn naturally embedds into Gm when
n ≤ m ; the projective limit of this sequence of embeddings is the group Gω

whose elements are the infinite sequences of elements in G, with componentwise
composition and the lexicographic order relation defined as follows: u ≤lex v ⇔
u <lex v or u = v where u <lex v ⇔ ∃n ∈ N ∀m ≤ n um = vm and un <G

vn. The inductive limit, or ”union”
⋃

n<ω Gn, is the subgroup of Gω consisting
of the sequences u of finite support (supp(u) = sup {k ∈ N | uk �= 0} < ω) with
Gn identified with the subgroup of u ∈ Gω such that supp(u) ≤ n.

Definition 11. The set Lex (G) of lexicographic Petri nets based on a totally
ordered abelian group G is the set of (homogeneous) generalized Petri net of type
(Gω)+. Lex (G, n) ⊆ Lex (G) is the set of n-dimensional lexicographic Petri nets
with type Ln (G) = (Gn)+ ⊆ (Gω)+, i.e. all flow arc inscriptions and initial place
contents, and hence all place contents in every accessible marking, are elements
in (Gn)+.

If K and L are subclasses of generalized Petri nets we let K � L when every net in
K is equivalent to some net in L. This is a pre-order relation, we let ≈ denote its
associated equivalence relation and 	 the corresponding strict relation: K 	 L
when every net in K is equivalent to some net in L but there exists some net
in L not equivalent to any net in K. Notice that Lex(G, n) � Lex(H,m) when
G ⊆ H and n ≤ m ; and that Lex(Z, 1) is the class of Petri nets.

Lemma 12. Any finitely generated sub-directly irreducible Petri algebra A is
isomorphic to a sub-algebra of the positive cone of some finite power of the
additive group of real numbers: A ⊆ (Rn)+.

By Theorem 8 we deduce the following result.

Theorem 13. Every generalized Petri net is equivalent to some lexicographic
Petri net, more precisely : GenP etri ≈ Lex (R)

We provide an example showing that Lex(Z, 1) 	 Lex(Z, 2), i.e. that lexico-
graphic Petri nets based on the group of integers of dimension 2 are already
strictly more expressive than the class of Petri nets. Let us consider the net
of type L2 = (Z ◦ Z)+ = {(n,m) | (n = 0 and m ≥ 0) or (n > 0 and m ∈ Z)}.

(1,0)
a b

(0,1)
(1,0)

From the initial marking (1, 0) transition a can fire once (1, 0) [a〉 (0, 0) and tran-
sition b can fire an infinite number of time leading to the infinite firing sequence
(1, 0) [b〉 (1,−1) [b〉 (1,−2) . . . [b〉 (1,−n) . . . and there are no other transitions in

750 E. Badouel, J. Chenou, and G. Guillou

the marking graph of the net. Suppose there exists some Petri net with an
isomorphic marking graph. Since transition b can fire an infinite number of time,
and

M0 [bn〉Mn ⇒ ∀p ∈ P Mn(p) = M0(p)− n× (P re(p, b)− Post(p, b))

we deduce that for every place p it is the case that Post(p, b) * P re(p, b) and
thus Mn(p) * M0(p) . By monotony of the firing rule, any transition that can
fire in the initial marking M0 can also fire in any of the markings Mn obtained
by firing b. Transition a is in contradiction with this property. Thus

Proposition 14. P etri = Lex(Z, 1) 	 GenP etri

It can also be shown that Lex(Z, n) 	 Lex(Z,m) 	 Lex(Z) for n < m < ω, and
Lex(Z, n) ≈ Lex(Q, n) 	 Lex(R, n).

It appears to be difficult to obtain strict extensions of the class of Petri nets
that preserve all of its decidable properties. Many of these extensions, like the
class of Petri nets with inhibitor arcs, are indeed Turing-powerful. We recall
that an inhibitor arc from a place p to a transition t (one such arc is depicted
in Fig. 1) is intended to inhibit the firing of transition t as long as place p is not
empty.

Theorem 15. Lexicographic Petri nets are a strict extension of the class of
Petri nets with inhibitor arcs. Thus Reachability, Coverability, Place-boundedness,
Boundedness, Deadlock and Liveness are undecidable for the class of lexico-
graphic Petri nets.

The translation of a Petri net with inhibitor arcs N into an equivalent lexico-
graphic Petri net N , illustrated in Fig. 1, consists in splitting every place p with

p
m

t t

p
(0,m)

p’
(1,−m)

(0,y)

(1,0)

(1,−y)

y

t

p
m

p’
(1,−m)

t

p
(0,m)

yx
(0,y)

(0,x)

(0,max(0,y−x))

(0,max(0,x−y))

Fig. 1. A translation from Petri nets with inhibitor arcs into lexicographic Petri nets

Petri Algebras 751

initial marking m ∈ N of the original net into two places denoted p and p′ with
initial markings (0,m) ∈ (Z ◦ Z)+ and (1,−m) ∈ (Z ◦ Z)+respectively.

4 Bounded Nets

A net is bounded if we can find an upper bound on the possible values of places
in any accessible marking. Let us start our study on the algebraization of the
dynamic of bounded nets by the following observation.

Proposition 16. Any non trivial commutative Petri algebra is an unbounded
lattice.

However we can enforce boundedness by modifying the rule of the token game.
Let us consider first the case of the usual Petri nets: assume that each place
p ∈ P is associated with a capacity kp ∈ N and that we want to ensure that the
value of a place p of a Petri net be bounded from above by its capacity kp. For
that purpose we modify the firing rule as follows (where all computations are
performed in Z)

M [t〉M ′ ⇔ ∀p ∈ P

{
M(p) * P re(p, t) ∧ (M(p)−P re(p, t))+Post(p, t),kp
M ′(p) = (M(p)− P re(p, t)) + Post(p, t)

this rule can be reformulated as:

M [t〉M ′ ⇔ ∀p ∈ P

{
P re(p, t) , M(p) , (kp + P re(p, t))− Post(p, t)
M ′(p) = (M(p)− P re(p, t)) + Post(p, t)

Petri algebras are the positive cones G+ of lattice-ordered abelian groups G =
(G,+, 0,�,�). It is an algebra with the following operations: the sum (restriction
of the group operation x ⊕ y = x + y), and the truncated difference (x - y =
(x− y) � 0).

Let k * 0 be some element of this positive cone; we suppose that it is a
strong unit in the sense that ∀g ∈ G ∃n ∈ N · n · k * g. We can by modifying
the firing rule ensure that the values of places stay within the interval I =
[0, k] = {g ∈ G | 0 , g , k}. This interval with induced order is a bounded
lattice that can be equipped with the following operations: the truncated sum (
x� y = (x+ y)� k), the truncated difference (x- y = (x− y) � 0), the product
(x • y = ((x+ y)− k) � 0), the implication (x → y = ((y + k)− x) � k), and the
negation (¬x = (x → 0) = k - x).

Such a structure is called an MV-algebra. MV-algebras are generalizations
of boolean algebras used in the algebraic analysis of Lukasiewicz infinite-valued
propositional logic and this class of algebras admits several equivalent definitions
[7, 12]. We then state that the firing relation of a so-called bounded net associated
with some MV-algebras is given by:

M [t〉M ′ ⇔ ∀p ∈ P

{
P re(p, t) , M(p) , Post(p, t) → P re(p, t)
M ′(p) = (M(p)- P re(p, t)) � Post(p, t)

752 E. Badouel, J. Chenou, and G. Guillou

The boolean algebra 2 = {0, 1} is an MV-algebra where x � y = x � y and
x • y = x � y. Let P be the set of places of a net and B = 2P = ℘(P) the corre-
sponding product structure, the preceding firing rule can be reformulated as:

M [a〉M ′ ⇔ M ⊇ Pre(a) ∧ M ∩ Post(a) ⊆ Pre(a) ∧ M ′ = (M \ Pre(a))∪ Post(a)

which is the usual firing rule of 1-safe nets. If we replace the boolean algebra
2 = {0, 1} by the interval [0, 1] of the additive group of real numbers, i.e. with
x � y = min(1, x+ y) and x • y = max(0, x + y − 1) then we obtain the firing
rule of some kind of 1-safe ”fuzzy” nets :

M [a〉M ′ ⇔ ∀p ∈ P

{
P re(a, p) , M(p) , P re(a, p) + 1− Post(a, p)
M ′(p) = min(1,M(p) + Post(a, p)− P re(a, p))

Mundici [12] proved that MV-algebras coincide with [0, k] intervals of abelian
lattice-ordered groups where k is a strong unit. More precisely if G = (G,+, 0)
is an abelian lattice-ordered group with strong unit k then Γ (G, k) =
(A,�, 0, •, k,¬) where A = [0, k] = {x ∈ G | 0 , x , k}, x � y = (x + y) � k,
x • y = ((x + y) − k) � 0, and ¬x = k − x is an MV-algebra such that the
restriction of the order relation of the group on the unit interval [0, k] coin-
cides with the order relation of the MV-algebra: x , y ⇔ x - y = 0 (where
x-y = x•¬y = (x− y)�0). Moreover Γ extends into an equivalence between the
respective categories, i.e. it induces a bijective correspondence between isomor-
phism classes of abelian lattice-ordered groups with strong unit and isomorphism
classes of MV-algebras. Now we have seen that Petri algebras corresponds bijec-
tively, up to isomorphism, to the positive cones of abelian lattice-ordered groups,
we thus have a Petri algebra canonically associated with each MV-algebra. The
following result shows that, by using complementary places, we can simulate a
bounded Petri net by a generalized Petri net defined on the associated Petri
algebra.

Theorem 17. Any bounded net can be simulated by a generalized Petri net.

The translation of a bounded net N into an equivalent generalized Petri net
N , illustrated in Fig. (2), consists in splitting every place p with initial marking
m ∈ Ap of the bounded net into two places denoted p and p′ with initial markings
m ∈ (Gp)

+ and kp−m ∈ (Gp)
+respectively where (Gp, kp) is the lattice-ordered

abelian group with strong unit associated with the MV-algebra Ap " Γ (Gp, kp).

t

m
p

t

xy

x y

m

yx
y

x

p
m

p’

Fig. 2. Translation from bounded nets to generalized Petri nets

Petri Algebras 753

5 Conclusion

In this paper we have put forward an axiomatization of the token game of Petri
nets by identifying a class of commutative residuated monoids, called Petri alge-
bras, for which one can generalize the rule of token game of Petri nets to define
the behaviour of generalized Petri net whose flow relation and place contents are
valued in such algebras. In this way we have put the basis for a uniform presen-
tation of various families of Petri nets by recasting them as particular instances
of a generic class of Petri nets parametric in algebraic structures representing
some concrete notion of resources. We thus have followed the line of research
best illustrated in [8], a special issue of Advances in Petri nets, dedicated to the
development of uniform approaches to Petri nets. However the present approach,
centered on the notion of resources, is probably too concrete to be of practical
interest in many situations. For instance even though one can describe continu-
ous Petri nets in this framework the obtained semantics is too much extensional.
We see two directions that can be used in order to derived more abstract rep-
resentations for the behaviour of these generic nets. First, one can abstract of
the flow arc inscriptions. Such an inscription takes its value in some algebra of
abstract properties. A precondition then appears as a guard stating that some
property has to be satisfied by the resources contained in the corresponding place
and a postcondition is interpreted as adding resources to enforce some property.
Second, one can abstract on the firing relation itself by giving the measure in
some adequate semiring of the ”firability” of a transition in some marking.

Acknowledgement. The first author thanks Nikolaos Galatos for fruitful dis-
cussions on totally ordered commutative GMV algebras. The second author was
supported by a grant from the University of Douala, Cameroon.

References

1. E. Badouel, J. Chenou. Nets Enriched over Closed Monoidal Structures. In Proc.
ICATPN’03, Eindhoven, Lecture Notes in Computer Science vol. 2679 (2003), 64-
81.

2. E. Badouel, J. Chenou, G. Guillou. Petri Algebras. Inria Research Report 5355,
November 2004. http://www.inria.fr/rrrt/rr-5355.html

3. P. Bahls, J. Cole, N. Galatos, P. Jipsen, C. Tsinakis. Cancellative residuated lat-
tices. Algebra Universalis 12:42 (2003), 1-24.

4. G. Birkhoff. Lattice Theory. Third edition, AMS Colloquium Publications, vol.
XXV (American Mathematical Society, Providence, 1967).

5. K. Blount. On the structure of residuated lattices. Ph. D. Thesis, Dept. of Math-
ematics, (Vanderbilt University, Nashville, Tennessee, 1999).

6. K. Blount, C. Tsinakis. The structure of Residuated Lattices, International Journal
of Algebra and Computation (to appear).

7. R. Cignoli, I. D’Ottaviano, D. Mundici. Algebraic foundations of many-valued
reasoning. Trends in Logic-studia Logica Library 7. (Kluwer Academic Publishers,
Dordrecht, 2000).

754 E. Badouel, J. Chenou, and G. Guillou

8. H. Ehrig, G. Juhas, J. Padberg, G. Rozenberg (Eds.). Unifying Petri Nets. Ad-
vances in Petri Nets. Volume 2128 of Lecture Notes in Computer Science (2001).

9. N. Galatos. Varieties of Residuated Lattices. Ph. D. Thesis, Dept. of Mathematics,
(Vanderbilt University, Nashville, Tennessee, 2003).

10. P. Jipsen, C. Tsinakis. A survey of Residuated Lattices. In Ordered Algebraic Struc-
tures, J. Martinez, editor (Kluwer Academic Publishers, Dordrecht, 2002), 19-56.

11. G. Memmi, A. Finkel. An introduction to fifo nets - monogeneous nets: a subclass
of fifo nets. Theoretical Computer Science 35 (1985), 191-214.

12. D. Mundici. Interpretation of AF C*-algebras in Lukasiewicz sentential calculus.
Journal of Functional Analysis 65:1 (1986), 15-63.

13. T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the
IEEE, Vol. 77, No. 4 (1989), 541-580.

A Finite Basis for Failure Semantics

Wan Fokkink1,2 and Sumit Nain3

1 Vrije Universiteit Amsterdam,
Department of Theoretical Computer Science,

De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
2 CWI, Department of Software Engineering,

PO Box 94079, 1090 GB Amsterdam, The Netherlands
wanf@cs.vu.nl

3 BRICS, Department of Computer Science, Aalborg University,
Fr. Bajersvej 7E, 9220 Aalborg Ø, Denmark

nain@cs.aau.dk

Abstract. We present a finite ω-complete axiomatization for the pro-
cess algebra BCCSP modulo failure semantics, in case of a finite alpha-
bet. This solves an open question by Groote [12].

1 Introduction

Labeled transition systems model processes by explicitly describing their states
and their transitions from state to state, together with the actions that produce
these transitions. Several notions of behavioral equivalence have been proposed,
with the aim to identify those states of labeled transition systems that afford
the same observations.

Van Glabbeek [10, 11] presented the linear time - branching time spectrum of
behavioral equivalences for finitely branching, concrete, sequential processes. In
this paper we focus on failure semantics [6, 7], which distinguishes a process by its
“failure pairs”, which consist of a finite (partial) trace together with a set of ac-
tions that cannot be executed at the ultimate state of this trace. Other semantics
in the spectrum are based on (bi)simulation and on (decorated) traces. Figure 1
depicts the linear time - branching time spectrum, where a directed edge from one
equivalence to another means that the source of the edge is finer than the target.

Van Glabbeek [10, 11] studied the semantics in his spectrum in the setting
of the process algebra BCCSP, which contains only basic process algebraic op-
erators from CCS and CSP, but is sufficiently powerful to express all finite syn-
chronization trees. Van Glabbeek gave (sound and complete) axiomatizations for
semantics in the spectrum, meaning that two closed BCCSP terms (i.e., terms
that do not contain variables) can be equated if and only if they are equivalent.

An axiomatization E is ω-complete when an equation can be derived from E
if (and only if) all its closed instantiations can be derived from E. In theorem
proving applications, it is convenient if an axiomatization has this property,
because it means that proofs by (structural) induction can be avoided in favor

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 755–765, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

756 W. Fokkink and S. Nain

completed traces

traces

possible worlds

failure pairs

bisimulation

2-nested simulation

ready simulation

possible futures

ready pairsfailure tracessimulation

ready traces

Fig. 1. The linear time - branching time spectrum

of purely equational reasoning; see [16]. In [14] it was argued that ω-completeness
is desirable for the partial evaluation of programs.

Notable examples of ω-incomplete axiomatizations in the literature are the
λKβη-calculus (see [27]) and the equational theory of CCS [20]. Therefore laws
such as commutativity of parallelism, which are valid in the initial model but
which cannot be derived, are often added to the latter equational theory. For
such extended equational theories, ω-completeness results were presented in the
setting of CCS [22] and ACP [8]. Another negative result, for basic process
algebra with the binary Kleene star, was reported in [2]: semantics no coarser
than completed trace equivalence and no finer than ready simulation equivalence
have no finite (sound and complete) axiomatization, so by default no finite ω-
complete axiomatization.

A number of positive and negative results regarding finite ω-complete ax-
iomatizations for BCCSP occur in the literature. Moller [22] proved that the fi-
nite axiomatization for BCCSP modulo bisimulation equivalence is ω-complete.
Groote [12] presented a similar result for completed trace equivalence, for trace
equivalence (in case of an alphabet with more than one element), and for readi-
ness, failure and failure trace equivalence (in case of an infinite alphabet). Blom,
Fokkink and Nain [4] proved that in case of an infinite alphabet, BCCSP modulo
ready trace equivalence does not have a finite (sound and complete) axiomati-
zation. Aceto, Fokkink and Ingólfsdóttir [3] proved a similar negative result

A Finite Basis for Failure Semantics 757

for 2-nested simulation equivalence, independent of the cardinality of the al-
phabet.1 Fokkink and Nain [9] showed that in case of a finite alphabet with
more than one element, BCCSP modulo any semantics no coarser than readi-
ness equivalence and no finer than possible worlds equivalence does not have a
finite ω-complete axiomatization.

A basis of an equational theory is a set of axioms from which all equations
in the theory can be derived. The existence of a finite basis for an equational
theory is a classic topic of study in universal algebra (see, e.g., [19]), dating back
to Lyndon [17]. Murskĭı [24] proved that “almost all” finite algebras (namely all
quasi-primal ones) are finitely based, while in [23] he presented an example of a
three-element algebra that has no finite basis. Henkin [15] showed that the alge-
bra of naturals with addition and multiplication is finitely based, while Gurevic̆
[13] showed that after adding exponentiation the algebra is no longer finitely
based. McKenzie [18] settled Tarski’s Finite Basis Problem in the negative, by
showing that the general question whether a finite algebra is finitely based is
undecidable.

In this paper we present a finite ω-complete axiomatization for BCCSP mod-
ulo failure semantics. This provides a positive answer to an open question from
[12]. The axiomatization consists of the standard axioms A1-4 for bisimulation,
two standard axioms F1-2 for failure semantics, and a new axiom F3 that re-
quires a finite alphabet. The latter axiom was obtained by considering cover
equations, which aim to obtain a full coverage of the equational theory for (in
this case) failure semantics. The central idea is that it is sufficient to only con-
sider equations of the form at+u ≈ u and x+u ≈ u (where a denotes an action,
x a variable, and t,u BCCSP terms). We classified the sound equations of this
form, which we call cover equations. Now one can proceed in two ways. Either
one can determine an infinite family of cover equations that obstructs a finite
basis; this approach we took in [9] to prove the absence of a finite basis for a
range of process semantics. Or one can determine a finite basis among the cover
equations; this approach is followed in the current paper. We only present A1-4
and F1-3 together with a proof that this axiomatization is ω-complete, as the full
classification of cover equations is quite involved and not needed for the proof.

We also present a proof that A1-4 together with F1-2 are ω-complete in case
of an infinite alphabet. This proof is considerably simpler than the proof in [12],
and moreover it is a sub-proof of the proof that A1-4 together with F1-3 are
ω-complete in case of a finite alphabet. Last but not least, our axioms F1-2 are
simplifications with respect to the axioms for failure equivalence as presented in
[11, 12].

Groote [12] also asked whether in case of a finite alphabet, BCCSP modulo
failure trace semantics has a finite ω-complete axiomatization. This question
remains open.

1 In case of an infinite alphabet, occurrences of action names in axioms should be inter-
preted as variables, as else most of the axiomatizations mentioned in this paragraph
would be infinite.

758 W. Fokkink and S. Nain

2 Preliminaries

Syntax of BCCSP. BCCSP(A) is a basic process algebra for expressing finite
process behavior. Its syntax consists of closed (process) terms p, q that are con-
structed from a constant 0, a binary operator + called alternative composition,
and unary prefix operators a , where a ranges over a nonempty set A of actions,
called the alphabet (with typical elements a, b, c). Open terms t,u can moreover
contain variables from a countably infinite set V (with typical elements x, y, z).
A (closed) substitution maps variables in V to (closed) terms. For every term t
and substitution σ, the term σ(t) is obtained by replacing every occurrence of a
variable x in t by σ(x).

Transition rules. Intuitively, closed terms represent finite process behaviors,
where 0 does not exhibit any behavior, p + q is the nondeterministic choice
between the behaviors of p and q, and ap executes action a to transform into
p. This intuition is captured, in the style of Plotkin [26], by the transition rules
below, which give rise to A-labeled transitions between closed terms.

ax
a→ x

x
a→ x′

x + y
a→ x′

y
a→ y′

x + y
a→ y′

The depth of a term t, denoted by depth(t), is the maximal number of transitions
in sequence that t can exhibit. It is defined by: depth(0) = 0, depth(x) = 0,
depth(t + u) = max{depth(t), depth(u)}, and depth(at) = depth(t) + 1.

For a closed term p, I(p) denotes the set of actions a for which there exists
a transition p

a→ p′.

Definition 1. A pair (a1 · · · ak,B) with B ⊆ A and k ≥ 0 is a failure pair of
p0 if p0

a1→ p1 · · ·
ak→ pk with I(pk)∩B = ∅. Two closed terms p and q are failure

equivalent, denoted by p ∼F q, if they have exactly the same failure pairs.

Failure equivalence is a congruence for BCCSP(A), meaning that p1 ∼F q1 and
p2 ∼F q2 implies ap1 ∼F aq1 for a ∈ A and p1 + p2 ∼F q1 + q2. This follows from
the fact that the transition rules above are in the failure format from [5].

Axiomatization. An (equational) axiomatization E for BCCSP(A) is a collection
of equations t ≈ u. We write E � t ≈ u if this equation can be derived from
the equations in E using the standard rules of equational logic, and E � F
if E � t ≈ u for all t ≈ u ∈ F . An axiomatization E is sound modulo an
equivalence ∼ on closed terms if (E � p ≈ q) ⇒ p ∼ q, and it is complete modulo
∼ if p ∼ q ⇒ (E � p ≈ q), for all closed terms p and q. An axiomatization E
is ω-complete if for each equation t ≈ u with E � σ(t) ≈ σ(u) for all closed
substitutions σ, we have E � t ≈ u.

The core axioms A1-4 below from [20] are sound and complete for BCCSP(A)
modulo bisimulation equivalence [25], which is the finest semantics in the linear
time - branching time spectrum (see Figure 1).

A Finite Basis for Failure Semantics 759

A1 x + y ≈ y + x
A2 (x + y) + z ≈ x + (y + z)
A3 x + x ≈ x
A4 x + 0 ≈ x

In the remainder of this paper, process terms are considered modulo A1-4.
We use summation

∑k
i=1 ti or

∑
i∈{1,...,k} ti, with k ≥ 0, to denote t1+· · ·+tk,

where the empty sum denotes 0. Each process term is of the form
∑k

i=1 aiti +∑

j=1 xj . The aiti and xj are called the summands of this process term.
As binding convention, alternative composition and summation bind weaker

than prefixing.

3 A Finite Basis for Failure Semantics

3.1 Cover Equations

The central idea is that for bisimulation semantics, and thus for all process
semantics in the linear time - branching time spectrum, axiom A3 is sound. So
if an equation t ≈ u is sound, then u + t ≈ t and t + u ≈ u are sound too; and
from the last two equations one can derive t ≈ u, using axiom A1. Hence, by A2
and A4, it is sufficient to only consider sound equations of the form at + u ≈ u
and x +u ≈ u. We call these the cover equations. We present three lemmas that
limit the form that cover equations can have.

Lemma 1. If t ≈ u is sound modulo ∼F, then t and u have the same variable
summands.

Proof. Let x ∈ V be a summand of t. We define σ(x) = adepth(u)+10 for some
a ∈ A, and σ(y) = 0 for y �= x. Then (adepth(u)+1, A) is a failure trace of σ(t),
so it must be a failure trace of σ(u). This implies that x is a summand of u. �

Remark 1. Lemma 1 fails for trace equivalence. Namely, let A = {a}. Then
x+ax ≈ ax is sound modulo trace equivalence. Lemma 1 does hold for completed
trace equivalence.

Lemma 2. If at+u+bv ≈ u+bv with a �= b is sound modulo ∼F, then at+u ≈ u
is sound modulo ∼F.

Proof. Since at+u+ bv ≈ u+ bv is sound modulo ∼F and a �= b, for each closed
substitution σ:

– I(σ(at + u)) = I(σ(u)), and
– each failure pair (ab1 · · · bk,B) of aσ(t) is a failure pair of σ(u).

So at + u ≈ u is sound modulo ∼F. �

Lemma 3. If t + x ≈ u + x is sound modulo ∼F, and x is not a summand of
t + u, then t ≈ u is sound modulo ∼F.

760 W. Fokkink and S. Nain

Proof. Suppose that t ≈ u is not sound modulo ∼F; we prove that then t + x ≈
u+ x is not sound modulo ∼F.

σ(t) �∼F σ(u) for some closed substitution σ. Without loss of generality we
can assume that some failure pair (b1 · · · bk,B0) of σ(t) is not a failure pair of
σ(u). The (fixed) set B0 will play a crucial role in the construction below. We
distinguish two cases.

1. k = 0.
Then I(σ(t)) �= I(σ(u)). Let σ′(x) = 0 and σ′(y) = σ(y) for y �= x. Since x
is not a summand of t+u, I(σ′(t+x)) = I(σ(t)) and I(σ′(u+x)) = I(σ(u)).
Then I(σ′(t + x)) �= I(σ′(u+ x)), and so σ′(t + x) �∼F σ

′(u+ x).
2. k > 0.

We define a substitution σ′ such that σ′(y) = σ(y) for y �= x, and σ′(x) has
the same failure pairs (c1 · · · c
,B0) as σ(x) for
 < k, while it does not have
failure pairs (c1 · · · ck,B0). We obtain σ′(x) from σ(x) by replacing subterms
ap at depth k − 1 by 0 if a �∈ B0, or by aa0 if a ∈ B0. That is,

σ′(x) = chopk−1(σ(x))

where
chopm(0) = 0
chopm(p + q) = chopm(p) + chopm(q)

chop0(ap) =
{

0 if a �∈ B0

aa0 if a ∈ B0

chopm+1(ap) = a chopm(p)

We prove the two desired properties concerning the failure pairs of chopm(p),
for m ≥ 0 and closed terms p. Let c1, . . . , cm+1 range over A.

I For
 ≤ m, p and chopm(p) have the same failure pairs (c1 · · · c
,B0).
We use induction on
. Base case: Since the summands of chop0(p) are
aa0 with a ∈ I(p)∩B0, I(p)∩B0 = ∅ if and only if I(chop0(p))∩B0 = ∅.
Inductive case: Let
 + 1 ≤ m. By induction, for closed terms q, q and
chopm−1(q) have the same failure pairs (c2 · · · c
+1,B0). Since m > 0,
the transitions of chopm(p) are chopm(p) c1→ chopm−1(p′) for p

c1→ p′.
Hence p and chopm(p) have the same failure pairs (c1 · · · c
+1,B0).

II chopm(p) does not have failure pairs (c1 · · · cm+1,B0).
We use induction on m. Base case: Since the summands of chop0(p) are
aa0 with a ∈ I(p) ∩ B0, chop0(p) does not have a failure pair (c1,B0).
Inductive case: By induction, for closed terms q, chopm(q) does not have
failure pairs (c2 · · · cm+2,B0). Since the transitions of chopm+1(p) are
chopm+1(p) c1→ chopm(p′) for p

c1→ p′, it follows that chopm+1(p) does
not have failure pairs (c1 · · · cm+2,B0).

We proceed to relate the failure pairs of σ(t0) and σ′(t0), for terms t0.
III For
 < k, σ(t0) and σ′(t0) have the same failure pairs (c1 · · · c
,B0).

We apply induction on
. Base case: Clearly, σ(x) ∩ B0 = ∅ if and only
if σ′(x) ∩ B0 = ∅, and moreover σ(y) = σ′(y) for y �= x. This implies
that I(σ(t0)) ∩B0 = ∅ if and only if I(σ′(t0)) ∩B0 = ∅. Inductive case:

A Finite Basis for Failure Semantics 761

Let
 + 1 < k. We prove for each summand of t0 that applying σ or
σ′ gives rise to the same failure pairs (c1 · · · c
+1,B0). By property I,
σ(x) and σ′(x) have the same failure pairs (c1 · · · c
+1,B0). Moreover,
σ(y) = σ′(y) for y �= x. Furthermore, by induction, for each summand
c1t1 of t0, σ(t1) and σ′(t1) have the same failure pairs (c2 · · · c
+1,B0);
so σ(c1t1) and σ′(c1t1) have the same failure pairs (c1 · · · c
+1,B0).

IV If t0 does not have the summand x, then σ(t0) and σ′(t0) have the same
failure pairs (c1 · · · ck,B0).
We prove for each summand of t0 that applying σ or σ′ gives rise to the
same failure pairs (c1 · · · ck,B0). σ(y) = σ′(y) for y �= x. Furthermore,
by property III, for each summand c1t1 of t0, σ(t1) and σ′(t1) have the
same failure pairs (c2 · · · ck,B0); so σ(c1t1) and σ′(c1t1) have the same
failure pairs (c1 · · · ck,B0).

Recall that (b1 · · · bk,B0) is a failure pair of σ(t) and not of σ(u). Since x
is not a summand of t + u, by property IV, (b1 · · · bk,B0) is a failure pair
of σ′(t) and not of σ′(u). Since k > 0, (b1 · · · bk,B0) is a failure pair of
σ′(t + x). By property II, σ′(x) = chopk−1(σ(x)) does not have the failure
pair (b1 · · · bk,B0), so (b1 · · · bk,B0) is not a failure pair of σ′(u+ x). Hence
σ′(t + x) �∼F σ

′(u+ x).

We conclude that t + x ≈ u+ x is not sound modulo ∼F. �

Remark 2. The condition in Lemma 3 that x is not a summand of t + u is
essential. For instance, x + x ≈ 0 + x is sound modulo ∼F, but x ≈ 0 is not.

Remark 3. There exist equivalences in between bisimulation and partial traces
that are a congruence for BCCSP(A), but for which Lemma 2 and/or Lemma 3
fail. So these lemmas have to be proved for each equivalence in the linear time
- branching time spectrum individually.

3.2 ω-Complete Axiomatizations for Failure Semantics

We present two axioms for failure semantics.2

F1 a(x + y) + ax + a(y + z) ≈ ax + a(y + z)
F2 a(x + by) + a(x + by + bz) ≈ a(x + by + bz)

It is not hard to see that F1 and F2 are sound for BCCSP(A) modulo ∼F.

Theorem 1. [10] A1-4+F1-2 is complete for BCCSP(A) modulo ∼F.

Theorem 2. [12] If |A| = ∞, then A1-4+F1-2 is ω-complete.

In case of a finite alphabet, A1-4+F1-2 is not ω-complete. Let A = {a1, . . . , an}
for some n > 0. Then the following axiom is sound for BCCSP(A) modulo ∼F.

2 Van Glabbeek [11] and Groote [12] presented a somewhat more complicated version
of F2. In [11] it takes the form a(bx + u) + a(by + v) ≈ a(bx + by + u) + a(by + v).

762 W. Fokkink and S. Nain

F3n a(x +
∑n

i=1 aizi) + a(x + y +
∑n

i=1 aizi) ≈ a(x + y +
∑n

i=1 aizi)

F3n cannot be derived from A1-4+F1-2. This follows from the fact that A1-
4+F1-2 are sound for BCCSP(A) modulo ∼F in case of an infinite alphabet,
while F3n is not.

Theorem 3. If A = {a1, . . . , an}, then A1-4+F1-2+F3n is ω-complete.

The main aim of this paper is to present a proof of Theorem 3. Furthermore,
although Theorems 1 and 2 have already been proved in earlier papers, we pro-
vide new proofs here. First of all, since axiom F2 is presented in a simpler form
here than in [11, 12], strictly speaking Theorems 1 and 2 have not been proved in
[10, 12], but are immediate corollaries from results in those papers and the fact
that the earlier axiom a(bx + u) + a(by+ v) ≈ a(bx + by+ u) + a(by+ v) can be
derived from A1-4+F1-2. More important, Theorems 1 and 2 follow immediately
from our proof of Theorem 3. So we obtain the new proofs for free, and moreover
they are considerably simpler than the old proofs. In particular, the new proofs
are fully equational, and more direct than the old proofs, which involve term
rewriting and normal forms.

By abuse of notation, we let a finite set X ⊂ V denote the term
∑

x∈X x.
From now on, X,Y (possibly subscripted) denote finite subsets of V .

Proof. We derive all equations t ≈ u that are sound modulo ∼F, by induction
on max{depth(t), depth(u)}. Clearly u+ t ≈ t and t + u ≈ u are sound too; and
from the last two equations one can derive t ≈ u. So it suffices to derive all sound
equations of the form at + u ≈ u and x + u ≈ u. In view of Lemma 1, soundness
of x + u ≈ u implies that x is a summand of u, so that x + u ≈ u follows
from A3. So it suffices to derive all sound equations of the form at + u ≈ u. In
view of Lemmas 2 and 3, we can take u to be of the form

∑
j∈J auj . (Note that

the equations to-be-proved, which are thus obtained from the original equation
t ≈ u, involve terms with a depth ≤ max{depth(t), depth(u)}; so the induction
order is respected.)

Hence, to prove Theorems 1, 2 and 3, it suffices to prove that each equation
at +

∑
j∈J auj ≈

∑
j∈J auj that is sound modulo ∼F can be derived from A1-

4+F1-2 in case of an infinite alphabet, and from A1-4+F1-2+F3n in case of a
finite alphabet with n elements. Consider such a sound equation modulo ∼F:

a(X +
∑
i∈I

biti) +
∑
j∈J

a(Yj +
∑

k∈Kj

ckuk) ≈
∑
j∈J

a(Yj +
∑

k∈Kj

ckuk) (1)

As said before, we apply induction on the depth of the terms in the equation. In
the base case of the induction, I = ∅ and Kj = ∅ for j ∈ J .

The main idea of the proof will be to restrict the syntactic form that the
summands in equation (1) can have, by exploiting the fact that it is sound
modulo ∼F. Thus the application of a suitable closed substitution can provide
information on syntactic relations between the summands.

Suppose, towards a contradiction, that X �⊆ ∪j∈JYj . Let x ∈ X\(∪j∈JYj).
Let σ be a closed substitution with σ(x) = a
0 where
 is greater than the depth

A Finite Basis for Failure Semantics 763

of the terms in (1), and σ(y) = 0 for all y �= x. Then clearly (a
+1, A) is a failure
pair of σ(a(X +

∑
i∈I biti)), but not of σ(

∑
j∈J a(Yj +

∑
k∈Kj

ckuk)) for j ∈ J ,
contradicting the soundness of (1). Hence X ⊆ ∪j∈JYj .

Suppose, towards a contradiction, that {bi | i ∈ I} �⊆ ∪j∈J{ck | k ∈ Kj}.
Let b ∈ {bi | i ∈ I}\ ∪j∈J {ck | k ∈ Kj}. Let σ be the closed substitution with
σ(y) = 0 for all y ∈ V . Then clearly (ab, ∅) is a failure pair of σ(a(X+

∑
i∈I biti)),

but not of σ(a(Yj +
∑

k∈Kj
ckuk)) for j ∈ J , contradicting the soundness of (1).

Hence {bi | i ∈ I} ⊆ ∪j∈J{ck | k ∈ Kj}.
Since (1) is sound, clearly

X +
∑
i∈I

biti +
∑
j∈J

(Yj +
∑

k∈Kj

ckuk) ≈
∑
j∈J

(Yj +
∑

k∈Kj

ckuk) (2)

is also sound modulo ∼F. Let Lj = {k ∈ Kj | ck ∈ {bi | i ∈ I}}. By Lemmas 2
and 3, (2) implies that∑

i∈I
biti +

∑
j∈J

∑
k∈Lj

ckuk ≈
∑
j∈J

∑
k∈Lj

ckuk (3)

is sound modulo ∼F. Hence, by induction on depth (or, in the base case, because
I = ∅ and Lj = ∅ for j ∈ J), it can be derived from A1-4, F1-2 and, in case of a
finite alphabet with n elements, F3n.

We consider two cases.

1. {bi | i ∈ I} �= A.
Suppose, towards a contradiction, that for all j ∈ J , either Yj �⊆ X or
{ck | k ∈ Kj} �⊆ {bi | i ∈ I}. Let c ∈ A\{bi | i ∈ I}. Let σ be the closed
substitution with σ(x) = 0 for x ∈ X and σ(y) = c for y �∈ X. Then
clearly (a,A\{bi | i ∈ I}) is a failure pair of σ(a(X +

∑
i∈I biti)), but not of

σ(a(Yj +
∑

k∈Kj
ckuk)) for j ∈ J , contradicting the soundness of (1). Hence

there is a j0 ∈ J such that Yj0 ⊆ X and {ck | k ∈ Kj0} ⊆ {bi | i ∈ I}.
We start with the term

∑
j∈J a(Yj +

∑
k∈Kj

ckuk). Since Yj0 ⊆ X ⊆ ∪j∈JYj

and Kj0 = Lj0 , we can use F1 to convert the summand a(Yj0 +
∑

k∈Kj0
ckuk)

into a(X +
∑

j∈J
∑

k∈Lj
ckuk). By (3) we convert this into a(X +

∑
i∈I biti +∑

j∈J
∑

k∈Lj
ckuk). Finally, since ck ∈ {bi | i ∈ I} for k ∈ Lj and j ∈ J , we

can use F2 to convert this into a(X +
∑

i∈I biti). Thus we have derived (1).
2. {bi | i ∈ I} = A. Note that in this case A is finite.

We start with the term
∑

j∈J a(Yj +
∑

k∈Kj
ckuk). Using F1 we can create

the summand a(
∑

j∈J Yj +
∑

j∈J
∑

k∈Kj
ckuk). Note that Kj = Lj for j ∈ J ,

because {bi | i ∈ I} = A. So we can use (3) to convert this summand into
a(
∑

j∈J Yj +
∑

i∈I biti +
∑

j∈J
∑

k∈Kj
ckuk). Finally, since X ⊆ ∪j∈JYj and

{bi | i ∈ I} = A, we can use F3|A| to convert this into a(X +
∑

i∈I biti).
Thus we have derived (1).

We note that in case of an infinite alphabet, the axioms F3n were not used in
the derivation of (1). �

764 W. Fokkink and S. Nain

References

1. L. Aceto, W.J. Fokkink, R.J. van Glabbeek, and A. Ingólfsdóttir. Axiomatizing
prefix iteration with silent steps. Information Computation, 127(1):26–40, 1996.

2. L. Aceto, W.J. Fokkink, and A. Ingólfsdóttir. A menagerie of non-finitely based
process semantics over BPA∗: From ready simulation to completed traces. Mathe-
matical Structures in Computer Science, 8(3):193–230, 1998.

3. L. Aceto, W.J. Fokkink, and A. Ingólfsdóttir. 2-nested simulation is not finitely
equationally axiomatizable. In Proceedings 18th Symposium on Theoretical Aspects
of Computer Science (STACS’01), Dresden, LNCS 2010, pp. 39–50. Springer, 2001.

4. S.C.C. Blom, W.J. Fokkink, and S. Nain. On the axiomatizability of ready traces,
ready simulation and failure traces. In Proceedings 30th Colloquium on Automata,
Languages and Programming (ICALP’03), Eindhoven, LNCS. Springer, 2003. To
appear.

5. B. Bloom, W.J. Fokkink, and R.J. van Glabbeek. Precongruence formats for dec-
orated trace semantics. ACM Transactions on Computational Logic, 5(1):26–78,
2004.

6. S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communicating se-
quential processes. Journal of the ACM, 31(3):560–599, 1984.

7. R. De Nicola and M.C.B. Hennessy. Testing equivalences for processes. Theoretical
Computer Science, 34(1/2):83–133, 1984.

8. W.J. Fokkink and S.P. Luttik. An ω-complete equational specification of interleav-
ing. In Proceedings 27th Colloquium on Automata, Languages and Programming
(ICALP’00), Geneva, LNCS 1853, pp. 729–743. Springer, 2000.

9. W.J. Fokkink and S. Nain. On finite alphabets and infinite bases: from ready
pairs to possible worlds. In Proceedings 7th Conference on Foundations of Software
Science and Computation Structures (FOSSACS’04), Barcelona, LNCS 2987, pp.
182-194. Springer, 2004.

10. R.J. van Glabbeek. The linear time – branching time spectrum. In Proceedings 1st
Conference on Concurrency Theory (CONCUR’90), Amsterdam, LNCS 458, pp.
278–297. Springer 1990

11. R.J. van Glabbeek. The linear time – branching time spectrum I. The semantics of
concrete, sequential processes. In J.A. Bergstra, A. Ponse, and S.A. Smolka, eds,
Handbook of Process Algebra, pp. 3–99. Elsevier, 2001.

12. J.F. Groote. A new strategy for proving ω-completeness with applications in
process algebra. In Proceedings 1st Conference on Concurrency Theory (CON-
CUR’90), Amsterdam, LNCS 458, pp. 314–331. Springer, 1990.

13. R. Gurevic̆. Equational theory of positive natural numbers with exponentiation is
not finitely axiomatizable. Annals of Pure and Applied Logic, 49:1–30, 1990.

14. J. Heering. Partial evaluation and ω-completeness of algebraic specifications. The-
oretical Computer Science, 43:149–167, 1986.

15. L. Henkin. The logic of equality. American Mathematical Monthly, 84(8):597–612,
1977.

16. A. Lazrek, P. Lescanne, and J.-J. Thiel. Tools for proving inductive equalities, rel-
ative completeness, and ω-completeness. Information and Computation, 84(1):47–
70, 1990.

17. R.C. Lyndon. Identities in two-valued calculi. Transactions of the American Math-
ematical Society, 71:457–465, 1951.

18. R.N. McKenzie. Tarski’s finite basis problem is undecidable. International Journal
of Algebra and Computation, 6(1):49–104, 1996.

A Finite Basis for Failure Semantics 765

19. R.N. McKenzie, G. McNulty, and W. Taylor. Algebras, Varieties, Lattices.
Wadsworth & Brooks/Cole, 1987.

20. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
21. R. Milner. A complete axiomatisation for observational congruence of finite-state

behaviours. Information and Computation, 81(2):227–247, 1989.
22. F. Moller. Axioms for Concurrency. PhD thesis, University of Edinburgh, 1989.
23. V.L. Murskĭı. The existence in the three-valued logic of a closed class with a finite

basis having no finite complete system of identities. Doklady Akademii Nauk SSSR,
163:815–818, 1965. In Russian.

24. V.L. Murskĭı. The existence of a finite basis of identities, and other properties of
“almost all” finite algebras. Problemy Kibernetiki, 30:43–56, 1975. In Russian.

25. D.M.R. Park. Concurrency and automata on infinite sequences. In Proceedings 5th
GI (Gesellschaft für Informatik) Conference, Karlsruhe, LNCS 104, pp. 167–183.
Springer, 1981.

26. G.D. Plotkin. A structural approach to operational semantics. Report DAIMI FN-
19, Aarhus University, 1981.

27. G.D. Plotkin. The λ-calculus is ω-incomplete. Journal of Symbolic Logic, 39:313–
317, 1974.

Spatial Logics for Bigraphs�

Giovanni Conforti1,3, Damiano Macedonio2,3, and Vladimiro Sassone3

1 Università di Pisa
2 Università Ca’ Foscari di Venezia

3 University of Sussex

Abstract. Bigraphs are emerging as an interesting model for concurrent calculi,
like CCS, pi-calculus, and Petri nets. Bigraphs are built orthogonally on two
structures: a hierarchical place graph for locations and a link (hyper-)graph for
connections. With the aim of describing bigraphical structures, we introduce a
general framework for logics whose terms represent arrows in monoidal cate-
gories. We then instantiate the framework to bigraphical structures and obtain a
logic that is a natural composition of a place graph logic and a link graph logic.
We explore the concepts of separation and sharing in these logics and we prove
that they generalise some known spatial logics for trees, graphs and tree contexts.

1 Introduction

To describe and reason about structured, distributed, dynamic resources is one of the
main goals of global computing research. Recently, many spatial logics, in different
contexts, have been studied to fulfill this goal. The term ‘spatial,’ as opposed to ‘tem-
poral,’ refers to the use of modal operators inspecting the structure of the terms in the
considered model. Spatial logics are usually equipped with a separation/composition
binary operator that splits a term into two parts, in order to ‘talk’ about them separately.
Looking closely, we observe that the notion of separation is interpreted differently in
different logics. In ‘separation’ logics [18], it is used to reason about dynamic update
of heap-like structures, and it is strong in that it forces names of resources in sepa-
rated components to be disjoint. As a consequence, term composition is usually par-
tially defined. In static spatial logics (e.g., for, trees [2], graphs [4] or trees with hidden
names [5]), the separation/composition does not require any constraint on terms, and
names are usually shared between separated parts. Similarly in dynamic spatial logics
(for, e.g., ambients [6] or π-calculus [1]), where the separation is intended only for lo-
cation in space. Context tree logic, introduced in [3], integrates the first approach above
with a spatial logic for trees. The result is a logic able to express properties of tree-
shaped structures (and contexts) with pointers, and it is used as an assertion language
for Hoare-style program specifications in a tree memory model.

� Research partially supported by the EU projects: IHP ‘Marie Curie DisCo’ HPMT-CT-2001-
00290, FET-GC ‘MIKADO’ IST-2001-32222, and FET-GC ‘MyThS’ IST-2001-32617.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 766–778, 2005.
©Springer-Verlag Berlin Heidelberg 2005

Spatial Logics for Bigraphs 767

Bigraphs [12, 14] are an emerging model for structures in global computing, which
can be instantiated to model several well-known examples, including CCS [17], π-
calculus [12], and Petri nets [16]. Bigraphs consist essentially of two graphs sharing
the same nodes. The first graph, the place graph, is tree structured and expresses a hier-
archical relationship on nodes (viz. locality in space and nesting of locations). The sec-
ond graph, the link graph, is an hyper-graph and expresses a generic “many-to-many”
relationship among nodes (e.g. data link, sharing of a channel). The two structures are
orthogonal, so links between nodes can cross locality boundaries. Thus, bigraphs make
clear the difference between structural separation (i.e., separation in the place graph)
and name separation (i.e., separation on the link graph).

In this paper we introduce a spatial logic for bigraphs as a natural composition
of a place graph logic (for tree contexts) and a link graph logic (for name linkings).
The main point is that a resource has a spatial structure as well as a link structure
associated to it. Suppose for instance to be describing a tree-shaped distribution of
resources in locations. We may use formulae like PC(A) and PCx(A) to describe a
resource in an unnamed location, respectively location x, of ‘type’ PC (e.g. a com-
puter) whose contents satisfy A. We can then write PC(T) ⊗ PC(T) to characterise
terms with two unnamed PC resources whose contents satisfy the tautological formula
(i.e., with anything inside). Using named locations, as e.g. in PCa(T) ⊗ PCb(T), we
are able to express name separation, i.e., that names a and b are different. Further-
more, using link expressions we can force name-sharing between resources with for-
mulae like:

PCa(inc ⊗ T)
c⊗ PCb(outc ⊗ T)

This describes two PC with different names, a and b, sharing a link on a distinct name
c, which models, e.g., a communication channel. Name c is used as input (in) for the
first PC and as an output (out) for the second PC. No other names are shared and c
cannot be used elsewhere inside the PCs.

A bigraphical structure is, in general, a context with several holes and open links
that can be filled by composition. This means that the logic can describe contexts for
resources at no additional cost. We can then express formulae like PCa(T ⊗ HD(id1))
that describes a modular computer PC, where id1 represents a ‘pluggable’ hole in the
hard disc HD. Contextual resources have many important applications. In particular,
the contextual nature of bigraphs is useful to specify reaction rules, but it can also
be used as a general mechanism to describe contexts of bigraphical data structures
(cf. [8, 10]).

As bigraphs are establishing themselves as a truly general (meta)model of global
systems, our bigraph logic, BiLog, aims at achieving the same generality as a description
language: as bigraphs specialise to particular models, we expect BiLog to specialise to
powerful logics on these. In this sense, the contribution of this paper is to propose BiLog
as a unifying language for the description of global resources. We will explore this path
in future work, fortified by the positive preliminary results obtained for semistructured
data [8] and CCS [9].

768 G. Conforti, D. Macedonio, and V. Sassone

2 An Informal Introduction to Bigraphs

Bigraphs formalise distributed systems by focusing on two of their main characteristics:
locality and interconnections. A bigraph consists of a set of nodes, which may be nested
in a hierarchical tree structure (the so-called place graph), and have ports that may be
connected to each other (and to names) by links (the so-called link graph). Place graphs
express locality, i.e., the physical arrangement of the nodes. Link graphs are hyper-
graphs and formalise connections among nodes. The orthogonality of the two structures
dictates that nestings impose no constrain upon interconnections.

The bigraph G of Fig. 1 represents a system where people and things interact. We
imagine two offices with employees logged on PCs. Every entity is represented by a
node, shown with bold outlines, and every node is associated with a control (either PC,
U, R1, R2). Controls represent kinds of nodes, and have fixed arities that determine
their number of ports. Control PC marks nodes representing computers, and its arity
is 3: in clockwise order, these ports represent a keyboard interacting with an employee
U, a LAN to an other PC and open to the outside network, and a plug connecting the
computer to the electrical mains of office R. Employees U may communicate with each
other via the upper port in the picture. The nesting of nodes (place graph) is shown by
the inclusion of nodes into each other; the connections (link graph) are drawn like lines.

At the top level of the nesting structure sit the regions. In Fig. 1 there is one sole
region (the dotted box). Inside nodes there may be ‘context’ holes, drawn as shaded
boxes, which are uniquely identified by ordinals. In figure the hole marked by 1 repre-
sents the possibility for another user U to get into office R1 and sit in front of a PC. The
hole marked by 2 represents the possibility to plug a subsystem inside office R2.

Place graphs can be seen as arrows over a symmetric monoidal category whose
objects are finite ordinals. We write P : m → n to indicate a place graph P with m holes
and n regions. In Fig. 1, the place graph of G is of type 2 → 1. Given place graphs
P1, P2, their composition P1 ◦ P2 is defined only if the holes of P1 are as many as the
regions of P2, and amounts to filling holes with regions, according to the number each
carries. The tensor product P1 ⊗ P2 is not commutative, as it ‘renumbers’ regions and
holes ‘from left to right’.

Link graphs are arrows of a partial monoidal category whose objects are (finite)
sets Λ of names, that we assume to be denumerable. A link graph is an arrow X → Y ,

Fig. 1. A bigraph G : 〈2, {x, y, z, v,w}〉 → 〈1, {x, y}〉

Spatial Logics for Bigraphs 769

Fig. 2. Bigraphical composition, H ≡ G ◦ (F1 ⊗ F2)

with X,Y ⊆ Λ. The set X represents the inner names (drawn at the bottom of the bi-
graph) and Y represents the set of outer names (drawn on the top). The link graph
connects ports to names or to edges, in any finite number. A link to a name is open,
i.e., it may be connected to other nodes as an effect of composition. A link to an edge
(represented in Fig. 1 by a line between nodes) is closed, as it cannot be further con-
nected to ports. Thus, edges are private, or hidden, connections. The composition of
link graphs W ◦ W′ corresponds to linking the inner names of W with the correspond-
ing outer names of W ′ and forgetting about their identities. As a consequence, the outer
names of W ′ (resp. inner names of W) are not necessarily inner (resp. outer) names of
W ◦ W ′, and the link graphs can perform substitution and renaming. The tensor product
of link graphs is defined in the obvious way only if their inner (resp. outer) names are
disjoint.

Combining ordinals with names we obtain interfaces, i.e., pairs 〈m, X〉 where m is
an ordinal and X is a set of names. Combining the notion of place graph and link graphs
on the same nodes we obtain the notion of bigraphs, i.e., arrows G : 〈m, X〉 → 〈n,Y〉.

Fig. 2 represents a more complex situation. At the top left-hand side is the system of
Fig. 1, At the bottom left-hand side F1 represents a user U ready to interact with a PC or
with some other users, F2 represents a user logged on its laptop, ready to communicate
with other users. The system with F1 and F2 represents the tensor product F = F1 ⊗ F2.
The right-hand side of Fig. 2 represents the composition G ◦ F. The idea is to insert F
into the context G. The operation is partially defined, since it requires the inner names
and the number of holes of G to match the outer names and the number of regions of F,
respectively. Shared names create the new links between the two structures.

3 BiLog: Syntax and Semantics

As place and link graphs are arrows of a (partial) monoidal category, we first introduce
a logic having monoidal categories as models and then we adapt it to model the orthog-
onal structures of place and link graphs. Each of these is expressive enough to model
and generalise (e.g. by means of contexts) well-known spatial logics. Finally we apply
the logic to model the whole structure of abstract bigraphs.

770 G. Conforti, D. Macedonio, and V. Sassone

Table 1. BiLog(M,⊗, ε, Θ,≡, τ)

Ω ::= idI | . . . a constant formula for every Ω s.t. τ(Ω)
A, B ::= F false A ⇒ B implication

id identity Ω Constant for a simple term
A ⊗ B tensor product A ◦ B composition
A� B left comp. adjunct A� B right comp. adjunct
A ⊗− B left prod. adjunct A −⊗ B right prod. adjunct

G |= F def
= never

G |= A ⇒ B def
= G |= A implies G |= B

G |= Ω def
= G ≡ Ω

G |= id def
= ∃I.G ≡ idI

G |= A ⊗ B def
= ∃G1,G2.G ≡ G1 ⊗ G2 and G1 |= A and G2 |= B

G |= A ◦ B def
= ∃G1,G2.G ≡ G1 ◦ G2 and τ(G1) and G1 |= A and G2 |= B

G |= A� B def
= ∀G′.G′ |= A and τ(G′) and (G′ ◦ G)↓ implies G′ ◦ G |= B

G |= A� B def
= τ(G) implies ∀G′.G′ |= A and (G ◦ G′)↓ implies G ◦ G′ |= B

G |= A ⊗− B def
= ∀G′.G′ |= A and (G′ ⊗ G)↓ implies G′ ⊗ G |= B

G |= A −⊗ B def
= ∀G′.G′ |= A and (G ⊗ G′)↓ implies G ⊗ G′ |= B

The models are categories built on a (possibly partial) monoid (M,⊗, ε), whose ele-
ments are dubbed interfaces and denoted by I, J. The elements of a BiLog model are ar-
rows on the corresponding (partial) monoid. Given a set of term constructors Θ, ranged
over byΩ, the arrows are defined by the term language G ::= G ⊗ G′ | G ◦ G′ | Ω. Each
Ω in Θ has a type Ω : I → J. For each interface I, we assume a distinguished construct
idI : I → I. The types of constructors, together with the obvious rules [9] determine the
type of each term. Terms of type ε → J are called ground.

We consider terms up to a structural congruence ≡, which subsumes the axioms of
monoidal categories [9]. Later on, the congruence will be refined to model specialised
structures, such as place graphs or bigraphs. All axioms are required to hold only when
both sides are well typed. Throughout the paper, when using = or ≡ we imply that both
sides are defined and we write (G)↓ to say that G is defined.

BiLog internalises the term constructors in the style of the ambient logic [6]. Con-
structors are represented in the logic as constant formulae, while tensor product and
composition are expressed by connectives. We thus have two binary spatial operators.
This contrasts with other spatial logics, which have only one: ambient-like logics, with
parallel composition A | B, Separation Logic [18], with separating conjunction A ∗ B,
and Context Tree Logic [3], with application K(P). Our logic is parameterised on a
transparency predicate τ, reflecting that not every term can be directly observed in the
logic: some are opaque and do not allow inspection of their contents. We will see that
when all terms are observable (i.e. τ(G) for all G), logical equivalence corresponds to
≡. Otherwise, it can be less discriminating. We assume that idI and ground terms are
always transparent, and τ preserves ≡, hence ⊗ and ◦, in particular.

The logic BiLog(M,⊗, ε, Θ,≡, τ) is formally defined in Table 1 and the meaning
of formulae is given in terms of a satisfaction relation. It features a logical constant

Spatial Logics for Bigraphs 771

Ω for each transparent construct Ω. The satisfaction of logical constants is simply the
congruence to the corresponding constructor. The horizontal decomposition formula
A ⊗ B is satisfied by a term that can be decomposed as the tensor product of terms
satisfying A and B respectively. The degree of separation enforced by ⊗ between terms
plays a fundamental role in the various fragments of the logic (notably link graph and
place graph). The vertical decomposition formula A ◦ B is satisfied by terms that can be
seen as the composition of terms satisfying A and B. We shall see that both connectives
correspond in some cases to well known spatial connectives. We define the left and right
adjuncts for composition and tensor to express extensional properties. The left adjunct
A � B expresses the property of a term to satisfy B whenever inserted in a context
satisfying A. Similarly, the right adjunct A � B expresses the property of a context to
satisfy B whenever filled with a term satisfying A. A similar description for ⊗− and −⊗,
the adjoints of ⊗. Observe that these collapse if the tensor is commutative in the model.

Derived Operators and Logical Properties. In Table 2 we outline some interesting
operators that can be derived in BiLog. The operators constraining the interfaces are
self-explanatory. The ‘dual’ operators have the following semantics: A � B is satis-
fied by terms G such that for every possible decomposition G1 ⊗ G2 either G1 |= A
or G2 |= B. For instance, A � A describes terms where A is true in (at least) one
part of each ⊗-decomposition. Similarly, the composition A • B expresses structural
properties universally quantified on every ◦-decomposition. Both these connectives are
useful to specify security properties or types. The adjuncts work as usual. The for-
mulae A∃⊗, A∀⊗, A∃◦, and A∀◦ correspond to quantifications on the horizontal/vertical
structure of terms. The equality between interfaces I = J is easily derivable using ⊗
and ⊗−.

We can extend the idea of sublocation (�) defined in [7] to our terms. The inductive
definition of � specifies that G � G, and G′ � G if either G ≡ G1 ⊗ G2, with G′ � G1

(and symmetrically G′ � G2) or G ≡ G1 ◦ G2, with τ(G1) and G′ � G2. Exploiting
this relation between ground terms, we define a somewhere modality. Intuitively, we say
that a term satisfies ◊A whenever one of its sublocations satisfies A. Quite surprisingly,◊A is expressible in the logic, as described in [9].

The lemma below states that the relation |= is well defined w.r.t. the congruence and
that the interfaces for transparent terms can be observed.

Lemma 3.1 (Type and Congruence preservation).
For every couple of term G,G′, it holds: G |= A and G ≡ G′ implies G′ |= A.
For every term G, it holds: G |= AI→J if and only if G : I → J, G |= A, and τ(G).

BiLog induces a logical equivalence =L on terms in the usual sense, that is G1 =L G2

if G1 |= A implies G2 |= A and vice versa, for every formula A.

Theorem 3.2 (Logical equivalence and congruence). If the transparency predicate is
always true, then for every term G,G′, it holds: G =L G′ if and only if G ≡ G′.

Place Graph Logic (PGL). Place graphs are essentially ordered lists of regions hosting
unordered labelled trees with holes. The labels of the trees correspond to controls K
belonging to the fixed signature K . We consider the monoid (ω,+, 0) of finite ordinals

772 G. Conforti, D. Macedonio, and V. Sassone

Table 2. Derived Operators

T, ∧, ∨,⇔, ⇐, ¬ Classical operators
AI

def
= A ◦ idI Constraining the source to be I

A→J
def
= idJ ◦ A Constraining the target to be J

AI→J
def
= (AI)→J Constraining the type to be I → J

A ◦I B def
= A ◦ idI ◦ B Composition with interface I

A�J B def
= A→J � B Contexts with J as target guarantee

A�I B def
= AI � B Composing with terms with I as source guarantee

A � B def
= ¬(¬A ⊗ ¬B) Dual of tensor product

A • B def
= ¬(¬A ◦ ¬B) Dual of composition

A� B def
= ¬(¬A� ¬B) Dual of composition left adjunct

A� B def
= ¬(¬A� ¬B) Dual of composition right adjunct

A∃⊗ def
= T ⊗ A ⊗ T Some horizontal term satisfies A

A∀⊗ def
= F � A � F Every horizontal term satisfies A

A∃◦ def
= T ◦ A ◦ T Some vertical term satisfies A

A∀◦ def
= F • A • F Every vertical term satisfies A

I = J def
= T ⊗ (idε ∧ idI ⊗− idJ) Equality between interfaces

◊ A def
= (T ◦ A)ε Somewhere modality (on ground terms)

◊ A def
= ¬ ◊¬A Anywhere modality (on ground terms)

m, n. Interfaces here represent the number of holes and regions of place graphs. Place
graph terms are generated from the set Θ = {1 : 0 → 1, idn : n → n, join : 2 →
1, γm,n : m + n → n + m,K : 1 → 1 for K ∈ K}. The main structural term is K, that
represents a region containing a single node with a hole inside. Other simple terms are
placings, representing trees m → n with no nodes; the constructor 1 represents a barren
region; join is a mapping of two regions into one; γm,n is a permutation that interchanges
the first m regions with the following n. The structural congruence ≡ for place graph
terms is refined by the usual axioms for symmetry of γm,n and by the place axioms
that essentially turn the operation join ◦ (⊗) in a commutative monoid with neutral
element 1. Hence, the places generated by composition and tensor product from γm,n are
permutations. A place graph is prime if it has type I → 1 (i.e., with a single region).

Defined the transparency predicate τ on each control in K , the Place Graph Logic
PGL(K , τ) is BiLog(ω,+, 0,≡,K∪{1, join, γm,n}, τ). We assume the τ to be true for join
and γm,n. It follows from Theorem 3.2 that PGL can describe place graphs precisely. The
logic resembles a propositional spatial tree logic, like [2]. The main differences are that
PGL models contexts of trees and that the tensor product is not commutative, allowing
us to model the order of regions. We can define a commutative separation using join
and the tensor product, the parallel composition A | B def

= join ◦ (A→1 ⊗ B→1). This
separation is purely structural, and corresponds at term level to join ◦ (P ⊗ P′) that is a
total operation on all prime place graphs.

We show that BiLog restricted to prime ground place graphs (with the always-true
transparency predicate) is equivalent to the propositional spatial tree logic of [2] (STL
in the following). The logic STL expresses properties of unordered labelled trees T

Spatial Logics for Bigraphs 773

Table 3. Encoding STL in PGL over prime ground place graphs

Trees into Prime Ground Place Graphs
[[0]] def

= 1 [[a[T]]] def
= K(a) ◦ [[T]] [[T1 | T2]] def

= join ◦ ([[T1]] ⊗ [[T2]])

STL formulae into PGL formulae
[[0]] def

= 1 [[a[A]]] def
= K(a) ◦1 [[A]]

[[F]] def
= F [[A@a]] def

= K(a)�1 [[A]]
[[A ⇒ B]] def

= [[A]] ⇒ [[B]] [[A | B]] def
= [[A]] | [[B]]

[[A � B]] def
= ([[A]] | id1)�1 [[B]]

constructed from the empty tree 0, the labelled node containing a tree a[T], and the
parallel composition of trees T1 | T2. It is a static fragment of the ambient logic [6]
characterised by propositional connectives, spatial connectives (i.e., 0, a[A], A | B), and
their adjuncts (i.e., A@a, A � B).

In Table 3 we encode the tree model of STL into prime ground place graphs, and
STL operators into PGL operators. We assume a bijective encoding between labels and
controls, and associate every label a with a distinct control K(a). The monoidal prop-
erties of parallel composition are guaranteed by the symmetry and unit axioms of join.
The equations are self-explanatory once we remark that: (i) the parallel composition of
STL is the structural commutative separation of PGL; (ii) tree labels can be represented
by the corresponding controls of the place graph; and (iii) location and composition ad-
juncts of STL are encoded in terms of the left composition adjunct, as they add logically
expressible contexts to the tree. This encoding allows us to prove the following.

Theorem 3.3 (Encoding STL). For each tree T and formula A of STL we have that
T |=S L A if and only if [[T]] |= ([[A]])0→1.

Differently from STL, PGL can also describe structures with several holes and re-
gions. In [8] we show how PGL describes contexts of tree-shaped semistructured data.
In particular multi-contexts can be useful to specify properties of web-services. Con-
sider for instance a function taking two trees and returning the tree obtained by merging
their roots. Such function is represented by the term join, which solely satisfies the for-
mula join. Similarly, the function that takes a tree and encapsulates it inside a node
labelled by K, is represented by the term K and captured by the formula K. Moreover,
the formula join ◦ (K ⊗ (T ◦ id1)) expresses all contexts of form 2 → 1 that place their
first argument inside a K node and their second one as a sibling of such node.

Link Graph Logic (LGL). For Λ a denumerable set of names, we consider the monoid
of interfaces (Pfin(Λ),�, ∅), where Pfin() is the finite powerset operator and � is the
union on disjoint pairs of sets and undefined otherwise. The structures that arise from
such a monoid are the link graphs discussed in §2. They can describe nominal resources
common in many areas, such as object identifiers, location names in memory structures,
channel names, and ID attributes in XML documents.

Wiring terms are a structured way to map a set of inner names X into a set of outer
names Y . They are generated by the constructors: /a : {a} → ∅ and a/X : X → a. The

774 G. Conforti, D. Macedonio, and V. Sassone

closure /a hides the inner name a in the outer face. The substitution a/X associates all
the names in the set X to the name a. We denote wirings by ω, substitutions by σ, τ, and
renamings (i.e., bijective substitutions) by α, β. Substitutions can be specialised in:

a def
=

a/∅; a ← b def
=

a/{b}; a⇔ b def
=

a/{a,b}.

Constructor a represents the introduction of a name a, term a ← b the renaming of b to
a, and finally a⇔ b links (or fuse) a and b in the name a.

Given a signature K of controls K with corresponding ports ar(K) we generate link
graphs from wirings and the constructor K�a : ∅ → �a with �a = a1, . . . , ak, K ∈ K , and
k = ar(K); K�a represents a resource of kind K with named ports �a. Any ports may be
connected to other node ports via wiring compositions.

The structural congruence ≡ for link graphs is refined with obvious axioms for links,
modelling α-conversion and extrusion of closed names, cf. [9]. We assume the trans-
parency predicate τ to be true for wiring constructors.

Given the transparency τ for each control in K , the Link Graph Logic LGL(K , τ) is
BiLog(Pfin(Λ),�, ∅,≡,K∪{/a, a/X}, τ). By Theorem 3.2, LGL describes the link graphs
precisely. The logic expresses structural spatiality for resources and strong spatiality
(separation) for names, and it can therefore be viewed as a generalisation of Separation
Logic for contexts and multi-ports locations. On the other side the logic can describe
resources with local (hidden/private) names between resources, and in this sense the
logic is a generalisation of Spatial Graph Logic [4], considering the edges as resources.

In LGL the formula A ⊗ B describes a decomposition into two separate link graphs
(i.e., sharing no resources, names, nor connections) satisfying respectively A and B.
Observe that in this case, horizontal decomposition inherits the commutativity property
from the monoidal tensor product. If we want a name a to be shared between separated
resources, we need the sharing to be made explicit, and the sole way to do that is through
the link operation. We therefore need a way to first separate the names occurring in two
wirings in order to apply the tensor, and then link them back together.

As a shorthand if W : X → Y and W′ : X′ → Y ′ with Y ⊂ X′, we write [W′]W
for (W′ ⊗ idX′\Y) ◦ W and if �a = a1, . . . , an and �b = b1, . . . , bn, we write �a ← �b for
a1 ← b1 ⊗ . . . ⊗ an ← bn (and similarly for �a ⇔ �b). It is possible to derive from
the tensor product a product with sharing on �a. Given G : X → Y and G′ : X′ → Y ′

with X ∩ X′ = ∅, we choose a list �b (with the same length as �a) of fresh names. The
composition with sharing �a is:

G
�a⊗ G′ def

= [�a⇔ �b](([�b ← �a] ◦ G) ⊗ G′)

By extending this sharing to all names we can define the parallel composition G | G′
as a total operation. However, such an operator does not behave “well” with respect
to the composition, as shown in [15]. In addition a direct inclusion of a corresponding
connective in the logic would impact the satisfaction relation by expanding the finite
horizontal decompositions to the boundless possible name-sharing decompositions.

As a matter of fact, without name quantification it is not possible to build formulae
that explore a link, since the latter has the effect of hiding names. For this task, we
employ the name variables x1, ..., xn and a fresh name quantification in the style of
Nominal Logic [19].

Spatial Logics for Bigraphs 775

G |= Nx1, . . . , xn. A
def
= ∃a1 . . . an � fn(G) ∪ fn(A).G |= A{x1, . . . xn ← a1 . . . an}

Using fresh name quantification we can define a notion of �a-linked name quantifi-
cation for fresh names, whose purpose is to identify names that are linked to �a:

�a L �x. A def
= N�x. ((�a⇔ �x) ⊗ id) ◦ A.

The formula above expresses that variables in �x denote in A names that are linked in
the term to �a, and the role of (�a ⇔ �x) is to link the fresh names �x with �a, while id
deals with names not in �a. We also define a separation-upto, namely the decomposition
in two terms that are separated apart from the link on the specific names in �a, which
crosses the separation line.

A
�a⊗ B def
= �a L �x. (((�x ← �a) ⊗ id) ◦ A) ⊗ B.

The idea of the formula above is that the shared names �a are renamed in fresh names �x,
so that the product can be performed and finally �x is linked to �a in order to actually have
the sharing. The corresponding parallel composition operator is not directly definable
using separation-upto, since we do not know a priori the name shared in arbitrary de-
compositions. However, we will show that a careful encoding is possible for the parallel
composition of spatial logics with nominal resources.

We show that LGL can be seen as a contextual (and multi-edge) version of Spatial
Graph Logic (SGL) [4]. The logic SGL expresses properties of directed edge labelled
graphs G built from the empty graph nil, the edge labelled a from x to y nodes a(x, y), the
parallel composition of graphs G1 | G2, and the binding for local names of nodes (νx)G.
We consider a K such that: there is a bijective function associating every edge label a to
a distinct control K(a) and the arity of every control is 2 (the ports represent the starting
and arrival node respectively). The resulting link graphs can be interpreted as contextual
edge labelled graphs and the resulting class of ground link graphs is isomorphic to the
graph model of SGL. In Table 4 we encode the graphs modelling SGL into ground link
graphs and SGL formulae into LGL formulae. The encoding is parametric on a finite
set X of names containing the free names of the graph under consideration. Observe
that when we force the outer face of the graphs to be a fixed finite set X, the encoding of
parallel composition is simply the separation-upto �a, where �a is a list of all the elements
in X. Notice also how local names are encoded into name closures (and identity).

Theorem 3.4 (Encoding SGL). For each graph G, finite set X containing fn(G), and
formula φ of the propositional fragment of SGL, we have that G |=GL φ if and only if
[[G]]X |= ([[φ]]X)∅→X.

In LGL is also possible to encode the Separation Logics on heaps: names used as
identifiers of location will be forcibly separated by tensor product, while names used
for pointers will be shared/linked.

Bigraphs as a Model for BiLog. We combine the structures of link graphs and place
graphs to generate all (abstract pure) bigraphs of [12]. We take as monoid the product of
link and place interfaces, i.e. (ω×Pfin(Λ),⊗, ε) where 〈m, X〉 ⊗ 〈n, X〉 def

= 〈m + n, X � Y〉

776 G. Conforti, D. Macedonio, and V. Sassone

Table 4. Encoding Propositional SGL in LGL over two ported ground link graphs

Spatial Graphs into Two-ported Ground Link Graphs
[[nil]]X

def
= X [[a(x, y)]]X

def
= K(a)x,y ⊗ X \ {x, y}

[[G | G′]]X
def
= [[G]]X

�a⊗ [[G′]]X [[(νx)G]]X
def
= ((/x ⊗ idX\{x}) ◦ [[G]]{x}∪X)) ⊗ ({x} ∩ X)

SGL formulae into LGL formulae
[[nil]]X

def
= X [[a(x, y)]]X

def
= K(a)x,y ⊗ (X \ {x, y})

[[F]]X
def
= F [[φ⇒ ψ]]X

def
= [[φ]]X ⇒ [[ψ]]X

[[φ | ψ]]X
def
= [[φ]]X

�a⊗ [[ψ]]X

and ε def
= 〈0, ∅〉. We will use X for 〈0, X〉 and n for 〈n, ∅〉. As constructors for bigraphical

terms we have the union of place and link graph constructors apart from the controls
K : 1 → 1 and K�a : ∅ → �a, which are replaced by the new discrete ion constructor,
which we note K�a : 1 → 〈1, �a〉; this is a prime bigraph containing a single node with
ports named �a and an hole inside. Bigraphical terms thus are defined w.r.t. a control
signature K and a set of names Λ, cf. [15] for details.

PGL excels at expressing properties of unnamed resources, i.e., resources accessible
only by following the structure of the term. On the other hand, LGL characterises names
and their links to resources, but it has no notion of locality. A combination of them ought
to be useful to model spatial structures, either private or public. BiLog promises to be
a good (contextual) spatial logic for (semi-structured) resources with nominal links,
thanks to bigraphs’ orthogonal treatment of locality and connectivity. To witness this
we have proved in [9] that also the recently proposed Context Logic for Trees [3] can
be encoded into bigraphs. The idea of the encoding is to extend the one of STL with
contexts and identified nodes. Essentially, in [9] we show that the model of [3] is a
particular class of prime bigraphs with one port for each node and a number of holes
and regions limited to one. Since [3] is more general than separation logic, and is used
to reason about programs that manipulate tree structured memories, it is possible to
generalise separation logic as well.

4 Conclusion and Future Work

In this paper we moved a first step towards describing global resources by focusing on
bigraphs. Our final objective is to design a general dynamic logic able to cope uniformly
with all the models bigraphs have been proved useful for, as of today these include
CCS [17], pi-calculus [12] and Petri-nets [13, 16]. We introduced BiLog, a logic for
bigraphs (and more generally for monoidal categories), with two main spatial connec-
tives: composition and tensor product. Our main technical results are the embedding and
comparison with other spatial logics previously studied. Moreover, we have shown that
BiLog is expressive enough to internalise the somewhere modality. In §3 we observed
that the induced logical equivalence can be forced to coincide with the structural con-
gruence of terms. This property is fundamental in order to describe, query and reason
about bigraphical data structures. For a more detailed discussion we refer to [8].

Spatial Logics for Bigraphs 777

In [9] we study how BiLog can deal with dynamics. A natural solution is to add
a temporal next step modality basically describing bigraphs that can compute (react)
according to a Bigraphical Reactive System [12]. When the transparency predicate τ
enables the inspection of ‘dynamic’ controls, BiLog is ‘intensional’ in the sense of [11],
namely it can observe internal structures. In several cases, notably the bigraphical sys-
tem describing CCS [17], this can be to the extent that the next step modality can be
expressed directly by using the static fragment of BiLog. Notice that τ specifies what
structure the logic can directly observe, while the next step modality, along with the spa-
tial connectives, allows to deduce the structure by observing the behaviour. It would be
interesting to investigate how the transparency predicate influences the expressiveness
and intentionality of significant fragments of the dynamic logic.

The ‘separation’ plays differently in various fragments of the logic. For instance, in
the case of Place Graph Logic, where the model is the class of bigraphs without names,
the separation is purely structural and coincides with the notion of parallel composition
in Spatial Tree Logic. The separation in the Link Graph Logic is disjointness of nominal
resources. Finally, for Bigraph Logic it is a combination that can be seen as separation
in a structured term with nominal resources (e.g. the trees with pointers of [3] and trees
with hidden names [5]). In the paper we have not addressed logical operators for hidden
names (e.g.®, H,© of ambient logic). We can encode them easily using, in particular,

Nand /a. The decidability of BiLog is an open question, we are working on extending
the results of [2], and we are isolating decidable fragments of BiLog.

We are currently developing a proof theory for Bilog in order to complete the robust
logical setting provided by the model theory presented here. Besides aiming at a gen-
eralise existing proof systems, this will allow direct comparisons between BiLog and
other spatial logics also from the proof-theoretic point of view.

Acknowledgment. We would like to thank Philippe Bidinger, Annalisa Bossi, Rohit
Chadha, Murdoch Gabbay, Giorgio Ghelli, Robin Milner, Peter O’Hearn and all the
anonymous referees for useful comments and discussions.

References

1. L. Caires and L. Cardelli. A spatial logic for concurrency (Part I). In Proc. of TACS, volume
2215 of LNCS, pages 1–37. Springer-Verlag, 2001.

2. C. Calcagno, L. Cardelli, and A. D. Gordon. Deciding validity in a spatial logic for trees. In
Proc. of TLDI, 2003.

3. C. Calcagno, P. Gardner, and U. Zarfaty. A context logic for tree update. In Proc. of LRPP,
2004; revised version to appear in POPL, 2005.

4. L. Cardelli, P. Gardner, and G. Ghelli. A spatial logic for querying graphs. In Proc. of ICALP,
volume 2380 of LNCS, page 597. Springer-Verlag, 2002.

5. L. Cardelli, P. Gardner, and G. Ghelli. Manipulating trees with hidden labels. In Proc. of
FOSSACS, volume 2620 of LNCS, pages 216–232. Springer-Verlag, 2003.

6. L. Cardelli and A. D. Gordon. Ambient logic. To appear in Mathematical Structures in
Computer Science.

7. L. Cardelli and A. D. Gordon. Anytime, anywhere: Modal logics for mobile ambients. In
Proc. of POPL. ACM Press, 2000.

778 G. Conforti, D. Macedonio, and V. Sassone

8. G. Conforti, D. Macedonio, and V. Sassone. Bigraphical logics for XML. In Proc. of SEBD,
2005. To appear.

9. G. Conforti, D. Macedonio, and V. Sassone. BiLog: spatial logics for bigraphs. Computer
Science Report 2005:02, University of Sussex, 2005.

10. T. Hildebrandt and J.W. Winther. Bigraphs and (Reactive) XML, an XML-centric model of
computation. IT University of Copenhagen Technical Report TR-2005-26, 2005.

11. D. Hirschkoff. An extensional spatial logic for mobile processes. In Proc. of CONCUR,
volume 3170 of LNCS, pages 325–339. Springer-Verlag, 2004.

12. O. H. Jensen and R. Milner. Bigraphs and mobile processes (revised). Technical Report
UCAM-CL-TR-580. University of Cambridge, 2004.

13. J. J. Leifer and R. Milner. Transition systems, link graphs and petri nets. Technical Report
UCAM-CL-TR-598. University of Cambridge, 2004.

14. R. Milner. Bigraphical reactive systems. In Proc. of CONCUR, volume 2154 of LNCS, pages
16–35. Springer-Verlag, 2001.

15. R. Milner. Axioms for bigraphical structure. Technical Report UCAM-CL-TR-581. Univer-
sity of Cambridge, 2004.

16. R. Milner. Bigraphs for petri-nets. In Lectures on Concurrency and Petri Nets: Advances in
Petri Nets, pages 686–701. Springer-Verlag, 2004.

17. R. Milner. Pure bigraphs. Technical Report UCAM-CL-TR-614. University of Cambridge,
2005.

18. P. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning about programs that alter data
structures. In Proc. of CSL, volume 2142 of LNCS, pages 1–19. Springer-Verlag, 2001.

19. A. M. Pitts. Nominal logic: A first order theory of names and binding. In Proc. of TACS,
volume 2215 of LNCS, pages 219–242. Springer-Verlag, 2001.

Completely Non-malleable Schemes

(Extended Abstract)

Marc Fischlin�

Institute for Theoretical Computer Science, ETH Zürich, Switzerland
marc.fischlin@inf.ethz.ch

http://www.fischlin.de/

Abstract. An encryption scheme is non-malleable if the adversary can-
not transform a ciphertext into one of a related message under the given
public key. Although providing a very strong security property, some
application scenarios like the recently proposed key-substitution attacks
yet show the limitations of this notion. In such settings the adversary
may have the power to transform the ciphertext and the given pub-
lic key, possibly without knowing the corresponding secret key of her
own public key. In this paper we therefore introduce the notion of com-
pletely non-malleable cryptographic schemes withstanding such attacks.
We show that classical schemes like the well-known Cramer-Shoup DDH
encryption scheme become indeed insecure against this stronger kind of
attack, implying that the notion is a strict extension of chosen-ciphertext
security. We also prove that, unless one puts further restrictions on the
adversary’s success goals, completely non-malleable schemes are hard to
construct (as in the case of encryption) or even impossible (as in the case
of signatures). Identifying the appropriate restrictions we then show how
to modify well-known constructions like RSA-OAEP and Fiat-Shamir
signatures yielding practical solutions for the problem in the random
oracle model.

1 Introduction

According to the seminal paper by Dolev et al. [7] an encryption scheme is called
non-malleable if giving a ciphertext to an adversary does not significantly help
this adversary to produce a ciphertext of a related message under the same public
key. Analogous requirements can be formulated for other cryptographic primi-
tives like signatures or commitments. While this definition of non-malleability is
already quite strong and suffices in most settings it yet leaves open if there are
cases where refined notions are needed and, if so, whether they can be achieved
at all.

� This work was supported by the Emmy Noether Programme Fi 940/1-1 of the Ger-
man Research Foundation (DFG). Part of this work done while visiting University
of California, San Diego, USA.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 779–790, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

780 M. Fischlin

Motivation. A possible stronger definition of non-malleability, introduced here
as complete non-malleability, basically allows the adversary to transform the
public key as well. That is, in case of encryption the adversary may output a
ciphertext of a related message under an adversarial chosen public key. For this,
the adversary does not even need to know the matching secret key to the chosen
public key.

Our initial interest in completely non-malleable schemes stems from the area
of (regular) non-malleable commitments. Previous constructions of such non-
malleable commitments usually require a common reference string [4, 8, 5, 9], or
are rather theoretical in terms of efficiency [7, 1]. Coming up with an efficient
non-malleable commitment protocol in the plain model is still an open problem.

Early in cryptography it has been observed that efficient commitment schemes
can be derived from encryption schemes. To commit, the sender creates a key
pair and sends a ciphertext of the message together with the public key. To de-
commit, the sender transmits the message with the random bits used to create
the ciphertext, or simply sends the secret key (if appropriate). Now, if the en-
cryption scheme was completely non-malleable then the resulting commitment
scheme in this basic construction would be non-malleable in the ordinary sense.
And the derived commitment scheme would be non-interactive and would not
rely on public parameters either.

In addition to the application to commitment schemes, it turns out that, re-
cently, the problem of complete non-malleability also appeared in similar flavors
in related areas like signatures or hash functions [3, 13, 12]. For example, Blake-
Wilson and Menezes [3] show how to deploy unknown key-share attacks to show
weaknesses in the station-to-station key agreement protocol. In their case, the
adversary is given a signature s for message m under some public verification
key vk and her task is to find a different key pair (sk∗, vk∗) such that s is also a
valid signature for m under vk∗.

Our Results. In this work we discuss the issue of complete non-malleability for
public-key encryption and signatures. We first show that most of the well-known
encryption and signature schemes fall prey to complete non-malleability attacks.
Specifically, we propose attacks against the Cramer-Shoup DDH encryption
scheme, RSA-OAEP and signatures of the Fiat-Shamir type like Schnorr sig-
natures (of which only the first one appears in this version). This shows that the
security notion of complete non-malleability is not covered by chosen-ciphertext
security and by unforgeability against chosen-message attacks, respectively.

Then we give a formal framework for complete non-malleability of public-
key encryption and signatures. There are two major differences to the basic
definition of non-malleability. First, the adversary’s goal in the definition of [7]
for encryption is to relate the original secret message m to a chosen message m∗

via a relation R(m,m∗). Here we extend the relation to include the given public
key pk. For message-only relations it remains for example unclear if it is easy to
modify a ciphertext of some message m under some RSA-based non-malleable
encryption with random RSA-exponent e into a ciphertext of the related message
m∗ = m+e under the same public key. We answer this in the affirmative, showing

Completely Non-malleable Schemes 781

that this is indeed easy for general schemes. Namely, we present a scheme which
is non-malleable for relations over messages, but for which the adversary can
easily produce a ciphertext c∗ of a message m∗ under pk such that a specific
relation R(pk,m,m∗) is satisfied. We stress that the adversary does not even
take advantage of the possibility to select her own public key for this attack.

Our separating example for relations R(m,m∗) over messages shows that (reg-
ular) non-malleable commitments constructed by means of encryption schemes
in the common reference string model (as in [5]) may not provide adequate se-
curity for the classical Internet auction example. In the auction case the users’
bids are encrypted with a public key published in the reference string. Now, an
adversarial bidder may be able to transform such a sealed bid of an honest user
into one which is related via this public key, and may thus overbid this user
easily with a reasonably small amount (e.g., by m∗ = m + e).

The second, and more significant extension of the [7] framework for encryp-
tion is that the adversary now has the power to tamper the public key. Conse-
quently, the relations now also range over the given public key pk, the adversarial
chosen public key pk∗ and, for sake of generality, also over adversary’s ciphertext.
Similarly, for signatures we let the relation include the given verification key vk,
the adversarial key vk∗, message m∗ and signature s∗.

Concerning constructions of completely non-malleable schemes, the bad news
is that schemes for general relations are hard to derive or even impossible. We
show that there are relations where complete non-malleability cannot be proven
via black-box proofs for both encryption and signatures. Even worse, for more
complex relations we prove that completely non-malleable signature schemes do
not exist at all.

On the positive side, we can show that practical schemes like RSA-OAEP
and Fiat-Shamir signatures can be made completely non-malleable in the ran-
dom oracle model (while the basic versions do not achieve this goal, not even in
the random oracle model). Security holds for a broad class of relations which,
roughly, excludes only such relations for which we are able to show our uncondi-
tional impossibility results. Also, our solutions are essentially as efficient as the
original schemes, thus giving us complete non-malleability almost for free.

However, we remark that the completely non-malleable versions of the schemes
above are proven secure in the random oracle model only. A closer look re-
veals why this model provides a useful countermeasure: Random oracles are by
nature highly non-malleable constructs, because outputs of related inputs are
completely uncorrelated and because all users in the system use the same hash
function oracle as a common anchor. The advantage of giving security of these
schemes in terms of complete non-malleability, even in the random oracle model,
is that security now follows for a vast number of attacks, including for example
so-called key-substitution and strong-unforgeability attacks. That is, any attack
where the adversary’s goal can be cast through such relations provably fails;
extra security proofs become obsolete. An interesting open question is whether
there are secure schemes in the plain model for interesting relations or not.

782 M. Fischlin

Organization. To provide some intuition about the power of complete non-
malleability attack we start with the attack on the Cramer-Shoup encryption
scheme in Section 2. Then we define completely non-malleable schemes formally
in Section 3. Because of the complexity of the topic we mainly focus on the def-
initions. Our impossibility and positive results are outlined in Section 4, further
details appear in the full version.

2 Attack on Cramer-Shoup Encryption Scheme

The Cramer-Shoup encryption scheme [6] is semantically secure against adaptive
chosen-ciphertext attacks under the decisional Diffie-Hellman assumption. It is
thus also non-malleable (in the classical sense) with respect to such attacks.

Key Generation: The public key is given by the description of a group Gq of
prime order q for which the decisional Diffie-Hellman problem is believed to
be intractable, two random generators g1, g2 of this group as well as c, d and
h where

c = gx1
1 gx2

2 , d = gy1
1 gy2

2 , h = gz11 gz22

for random values x1, x2, y1, y2, z1, z2 ← Zq. The public key also contains a
collision-intractable hash function H. The secret key is (x1, x2, y1, y2, z1, z2).

Encryption: To encrypt a message m ∈ Gq pick a random r ← Zq and compute

u1 = gr
1, u2 = gr

2, e = hrm, α = H(u1,u2, e), v = crdrα

The ciphertext is given by (u1,u2, e, v).

Decryption: To decrypt a ciphertext (u1,u2, e, v) compute α = H(u1,u2, e)
and verify that v = ux1+αy1

1 ux2+αy2
2 . If so, then output m = e/uz11 u

z2
2 .

The attack showing that the scheme fails to provide complete non-malleability
now proceeds as follows. Given a public key (G, g1, g2,H, c, d,h) and a ciphertext
(u1,u2, e, v) first recompute α = H(u1,u2, e). With overwhelming probability
α �= 0 mod q and we can invert α in Z∗q ; else, if a random ciphertext maps to 0
with noticeable probability, collisions for H could be found easily. Next compute

u∗1 = u2
1, u∗2 = u2

2, e∗ = e2, α∗ = H(u∗1,u
∗
2, e

∗), v∗ = v2α∗/α

and finally prepare the public key as

c∗ = cα
∗/α, d∗ = d, h∗ = h.

A simple calculation shows that

v∗ = v2α∗/α = c2rα∗/αd2rαα∗/α = (c∗)2r(d∗)2rα∗

Completely Non-malleable Schemes 783

Hence, the tuple (u∗1,u
∗
2, e

∗, v∗) is a valid ciphertext of m∗ = m2 ∈ G under
randomness r∗ = 2r mod q and public key (G, g1, g2,H, c∗, d∗,h∗).1

The attack shows that the encryption scheme cannot be used as a non-
malleable commitment scheme, as explained in the introduction. With this attack
the adversary would be able to open her commitment correctly with (2r,m2) af-
ter seeing the decommitment (m, r) of the original sender. Analogously, if the
adversary is given the original secret key (x1, x2, y1, y2, z1, z2) she can modify
it to (x1α

∗/α, x2α
∗/α, y1, y2, z1, z2). We stress that the scheme still satisfies its

designated security goal of chosen-ciphertext security.

3 Definitions

In this section we define completely non-malleable public-key encryption and sig-
nature schemes. Our approach follows the line of Dolev at el. [7] and also investi-
gates the non-malleability question of an encryption or signature scheme merely
with respect to itself. Achieving non-malleability between different schemes is in
general impossible, even in the basic case.

3.1 Encryption

An obvious problem with defining completely non-malleable encryption schemes
lies in the adversary’s possibility to choose her own public key and the uniqueness
of ciphertexts. With a fake, yet valid-looking public key the adversary might be
able to produce ciphertexts which can be decrypted ambiguously. We consider
this to be a characteristic of the encryption scheme, and not an issue of complete
non-malleability. Specifically, we allow the adversary to produce such phony keys
if the scheme supports it, i.e., if one cannot distinguish good keys from fake ones.
We note that, for the application to non-malleable commitments as explained in
the introduction, verifying the validity of keys is for example necessary.

Relations. As mentioned in the introduction, regular non-malleability says that
it is hard to transform a given ciphertext of message m into one of a related mes-
sage m∗ under the same key. There, related messages are designated according
to an efficiently computable (probabilistic) algorithm R which basically takes the
messages m and m∗ as input.2 But here we are interested in more general attacks
where, as in the examples of non-malleable commitments or key-substitution at-
tacks on signatures, finding a related public key pk∗ or ciphertext c∗ to the given

1 At first glance it seems that replacing h by h∗ = ha (or similar substitutions), and
leaving the other ciphertext components untouched, would work as well. But then
the adversary would encrypt a message m∗ = e/(h∗)r = mhr(1−a). This, however,
would be a random message (over the choice of r) and would be thus unlikely to be
related to m in a reasonable way.

2 The definition in [7] lets the relations include another string chosen by the adversary,
mainly to deal with the case of symmetric encryption schemes. All our positive
and negative results for public-key encryption and signatures remain valid for this
extension.

784 M. Fischlin

key pk may be considered a success. Hence, we let the relations in general also
depend on pk and pk∗, c∗.

Our approach of allowing the relation to depend on other parameters than the
messages introduces an interesting issue for non-malleable encryption schemes in
the “ordinary” sense. In the original definition of [7] the relation R(m,m∗) does
not range over the user’s public key pk. Hence, it remains unclear if it is infeasible
to find a ciphertext of a message m∗ to a given ciphertext of some unknown m
such that m∗ is related to m via the public key pk for such schemes. We discuss
this in more detail in the final version, presenting an example which is malleable
if the relation includes the public key, but which is provably non-malleable if the
relations are defined over messages only.

To capture both the original definition of relations over messages only and the
more general approach including public keys, we look at classes R of relations
and define complete non-malleability with respect to such classes. The class for
the basic definition then spans over relations R(pk,m, pk∗,m∗, c∗) = R0(m,m∗)∧
pk = pk∗, for example.

Message Distributions. We assume that the distribution of the user’s message is
determined according to some efficiently computable probabilistic algorithm M
from some classM. The message distribution M may depend on the given public
key. Dolev at al. [7] let the adversary and the simulator determine the message
distribution after seeing the public key and having queried the decryption oracle
in a preprocessing phase. This can be subsumed in our model by letting these
two algorithms output some parameter μ before the ciphertext is created. Unless
stated differently all our results, positive and negative ones, remain valid in the
setting where the adversary and simulator select such values; yet, we usually do
not include them here for sake of simplicity.

Attack Model. In the first stage of the actual attack the adversary A is given
a public key pk and access to a decryption oracle dec(sk, ·), where (sk, pk) ←
kgen(1k) have been produced by the key generator. The adversary also gets a
description of the relation R and the message distribution M. A message m is
sampled according to the distribution M(pk) ∈ M and encrypted under pk to
ciphertext c← enc(pk,m; r). The adversary starts the attack on the ciphertext
c, the decryption oracle and some information about the message m in form of the
value h ← hist(m) of an efficiently computable probabilistic function hist. This
function can be formally regarded of part of the distribution M. The adversary
finally outputs a public key pk∗, possibly for a different yet polynomially related
security parameter, and a ciphertext c∗.

Let πenc(A,M,R) be the probability that (pk, c) �= (pk∗, c∗) and that there
exists some m∗, r∗ such that c∗ = enc(pk∗,m∗; r∗) and R(pk,m, pk∗,m∗, c∗) for
the relation R. We call this a related-ciphertext attack. Here, as usual for non-
malleability definitions, R may implicitly depend on the encryption scheme itself
and some security parameter. However, we do not demand that m �= m∗; it
suffices to produce a different key/ciphertext pair.

As explained in the introduction, the usage of the encryption scheme as a
commitment may result in different attacks and success goals, e.g., the adver-

Completely Non-malleable Schemes 785

A gets pk, c, oracle dec(sk, ·) and . . . S gets pk [and possibly
oracle dec(sk, ·)] and. . .

π
(′)
enc A outputs pk∗, c∗ S outputs pk′, c′,m′, r′

π
(′)
open A outputs pk∗, c∗, then m∗, r∗ after m, r S outputs pk′, c′,m′, r′

π
(′)
sk-open A outputs pk∗, c∗, then sk∗ after sk S outputs pk′, c′,m′, r′, sk′

Fig. 1. Overview of Attack and Simulation Modes for Encryption

sary may be obliged to actually open her ciphertext after seeing the opening
of the original ciphertext. Therefore, let πopen(A,M,R) denote the probability
that A after the first stage, on input α∗ and values m, r, also returns m∗, r∗

such that c∗ = enc(pk∗,m∗; r∗) and R(pk,m, pk∗,m∗, c∗) = 1. This is called a
related-opening attack. Write πsk-open(A,M,R) for the probability that A for
input α∗ and the secret key sk returns sk∗ such that dec(sk∗, c∗) = m∗ and
R(pk,m, pk∗,m∗, c∗) = 1 in a so-called related-key-opening attack. The three
cases are described informally in the middle column in Figure 1.

Simulation Model. To capture the idea of the user’s ciphertext not helping to
produce a ciphertext of a related message we define a simulator S which is
supposed to be as successful as the adversary but without seeing the ciphertext.
S gets as input a public key pk and descriptions of the relation and the message
distribution, but does not get access to a decryption oracle. Then, a message m
is sampled according to M(pk) and algorithm S receives h← hist(m) as input.

Depending on the adversary’s attack mode, the simulator’s task becomes
increasingly challenging such that a successful simulator for a security level au-
tomatically constitutes a simulator for a lower level. Precisely, the simulator is
supposed to output a key pk′, a ciphertext c′, a message m′ and randomness r′

(if the adversary runs a related-ciphertext or a related-opening attack),3 and a
key pk′, a ciphertext c′, a message m′, a random string r′ and a secret key sk′

(if the adversary runs a related-key-opening attack). Again, see Figure 1 for an
overview.

Concerning the auxiliary power of the simulator there are two possibilities.
One version is to give the simulator, like the adversary, additional access to the
decryption oracle. We call this an assisted simulator. This reflects the approach
that the simulator should have comparable power as the adversary. The other
possibility is to deny the simulator access to dec. We call such simulators stand-
alone simulators. This approach follows the definition of [7].

Although the definition with assisted simulators appears to be more intu-
itive at first, it is not clear that giving the simulator access to dec captures
the “right flavor” of complete non-malleability. The additional power may for

3 For some of our negative results we use a milder requirement and let the simulator
only output pk′, c′. This even strengthens these results.

786 M. Fischlin

example allow to prove schemes to be secure which are completely malleable
in a natural sense. While this question has somewhat been settled for chosen-
ciphertext security, where this additional power is acceptable, our separation
of complete non-malleability from chosen-ciphertext security means that these
arguments cannot be transfered without precautions. Instead, a conservative ap-
proach for designing schemes is therefore to rely on stand-alone simulators, as it
suffices for our solutions in the random oracle model for example. We note that
our impossibility results hold for both cases, although in a slightly weaker sense
for assisted simulators.

Let both π′enc(S,M,R) and π′open(S,M,R) denote the probability that c′ =
enc(pk′,m′; r′) and that R(pk,m, pk′,m′, c′) = 1 in the first and second simula-
tion experiment, respectively. Similarly, π′sk-open(S,M,R) stands for the proba-
bility that c′ = enc(pk′,m′; r′), m′ = dec(sk′, c′) and R(pk,m, pk′,m′, c′) = 1 in
the third simulation experiment.

Definition 1. A public-key encryption scheme is completely non-malleable (for
stand-alone or assisted simulator) with respect to kind ∈ {enc, open, sk-open},
distribution class M and relation class R, if for any adversary A there exists
a (stand-alone or assisted) simulator S such that for any distribution M ∈ M
and any relation R ∈ R the absolute difference |πkind(A,M,R) − π′kind(S,M,R)|
is negligible.

In the sequel, when speaking of completely non-malleable encryption schemes
we refer to related-ciphertext attacks and πenc(A,M,R), π′enc(S,M,R). The def-
initions for completely non-malleable encryption (and signatures in the next
section) can be extended in a straightforward way to the random oracle model.

3.2 Signatures

The attack scenario for completely non-malleable signature schemes resembles
the setting of adaptive chosen-message attacks known from regular signature
schemes.

Discussion. Defining the attack model for completely non-malleable signature
schemed as outlined above, it seems that the adversary can always generate a
new signature under a new public key, i.e., the adversary can naturally generate
a new key pair and sign some message with the self-generated secret key. As
explained, this attack can be confined as in the example of unknown-key attacks
[3] where the adversary is supposed to find a matching key pair for a given
message and a given signature. Here we do not restrict the adversary’s goal
in such a way. First, we do not want to give up generality and exclude certain
application scenarios, e.g., signatures encrypted together with the message under
a malleable encryption scheme, where the message is not known but the signature
may still be transformable by permeating the malleable ciphertext. Second, if the
adversary can trivially output a signature, i.e., without relying on the original
signature, then this does not violate the idea of (complete) non-malleability and
we should therefore be able to prove this formally as well.

Completely Non-malleable Schemes 787

A gets vk, oracle sig(sk, ·) and . . . S gets vk and . . .

π
(′)
sig A outputs vk∗,m∗, s∗ S outputs vk′,m′, s′

Fig. 2. Overview of Attack and Simulation Mode for Signatures

Attack and Simulation Model. At the outset of the complete non-malleability
attack the adversary A gets as input the description of the relation R and a ver-
ification key vk, generated together with the secret signing key sk by kgen(1k).
The adversary is then allowed to query a signature oracle sig(sk, ·) about mes-
sages of her choice. For definitional reasons we let the signature oracle prepend
the verification key vk and the message m to each signature reply s for such a
query. The adversary finally outputs some verification key vk∗, a message m∗

and some signature s∗. Define πsig(A,R) as the probability that s∗ is a valid
signature for m∗ under vk∗, i.e., vf(vk∗,m∗, s∗) = 1, that (vk∗,m∗, s∗) is differ-
ent from any previously given answer (vk,m, s) of the signature oracle, and that
R(vk, vk∗,m∗, s∗) holds for relation R from the class R.

The simulator only gets vk and the relation as input and is supposed to output
a triple (vk′,m′, s′) without having oracle access to sig(sk, ·). Let π′sig(S,R) be the
probability that s′ is a valid signature for m′ under vk′ and that R(vk, vk′,m′, s′)
is satisfied. The attack and simulation model is outlined in Figure 2.

Similar to the encryption case one could also distinguish between stand-
alone simulators (as defined here) and assisted simulators (which additionally get
access to the signature oracle). In the latter case one would have to unorthodoxly
extend the model to allow the adversary to ask for a “challenge signature” which
the simulator is denied. We do not follow this approach here as our negative
results would hold for this case as well, and our constructions in the random
oracle already work for stand-alone simulators.

Security Definition. The idea is now to say that for any adversary there is a
simulator such that the success probabilities differ only insignificantly. But with
this definition a signature scheme could be completely non-malleable and yet be
insecure in the sense of unforgeability, e.g., if it is easy to derive the secret key
from the verification key. Therefore, we also throw in the mild assumption that
the signature scheme must be unforgeable under key-only attacks, i.e., it must
be infeasible on input vk (but no signature oracle) to find some message together
with a valid signature under vk.

Definition 2. A signature scheme is completely non-malleable for relation class
R if it is existentially unforgeable under key-only attacks and if for any adversary
A there exists a simulator S such that for any relation R ∈ R the absolute
difference |πsig(A,R)− π′sig(S,R)| is negligible.

We briefly discuss some consequences of the definition, showing that the
definition is powerful to reflect the notions of strong unforgeability (i.e., where
the adversary is also considered victorious if she finds a new signature under the

788 M. Fischlin

original verification key to a message previously signed by the signature oracle)
or key-substitution attacks (where the adversary tries to find another key vk∗

to a valid triple vk,m, s), both under adaptive chosen-message attacks. For this,
let Rstr-unf(vk, vk∗,m∗, s∗) be the relation such that Rstr-unf(vk, vk∗,m∗, s∗) = 1
iff vk = vk∗; let Rkey-sub be the relation such that Rkey-sub(vk, vk∗,m∗, s∗) = 1 iff
vf(vk,m∗, s∗) = 1. The proof is omitted.

Proposition 1. Let (kgen, sig,vf) be a signature scheme which is completely
non-malleable with respect to R 1 Rstr-unf resp. R 1 Rkey-sub. Then the scheme is
strongly unforgeable under adaptive chosen-message attacks resp. secure against
key-substitution attacks.

4 Summary of Results

In this section we summarize our (positive and negative) results. For better
comprehensibility the results are stated in an informal way. The formal results
and technical details can be found in the the full version.

Regular Non-Malleability and Relations over Messages Only. We show that ex-
tending the relations in the definition of [7] for regular non-malleability, i.e.,
where the adversary does not tamper the public key, to include the given public
key pk (in addition to the messages m,m∗) can be fatal to security:

Theorem 1 (informal). There is an encryption scheme which is non-malleable
with respect to Rmsg = {R(m,m∗)} but which is malleable with respect to some
relation Rpk(pk,m,m∗).

Hardness of Constructions for General Relations. Here we discuss our negative
results for constructions of completely non-malleable schemes where, in contrast
to the previous case, the adversary is allowed to output another key pk∗. We show
that there are relations for which completely non-malleable schemes are hard to
construct. Although we prove this result for a specific set of “bad” relations, we
note that the implication carries over to any class where such relations can be
“somehow embedded” in relations of the class.

Theorem 2 (informal). Public-key encryption schemes which are completely
non-malleable according to black-box stand-alone simulators and general rela-
tions, do not exist.

Note that the previous theorem assumes that the simulator is stand-alone. For
assisted simulators, which are granted access to dec, we can show the same result
for relations which are efficiently computable relative to an oracle. We note that the
black-box simulator does not have access to this oracle directly, but only through
the relation.This corresponds to the case that the simulator can efficiently compute
the relation (via black-box access) but is denied the description of the relation.

Theorem 3 (informal). Public-key encryption schemes which are completely
non-malleable according to black-box assisted simulators and general relations
(relative to an oracle), do not exist.

Completely Non-malleable Schemes 789

The results about encryption easily transfers to signatures:

Proposition 2 (informal). Signature schemes which are completely non-malle-
able according to black-box simulations for general relations, do not exist.

Yet, for signatures we can show that completely non-malleable systems for
general relations are impossible at all, even when allowing non-black-box con-
structions or if the simulator depends on the relation.

Theorem 4 (informal). There do not exist completely non-malleable signature
schemes with respect to general relations.

Constructions in the Random Oracle Model. On the positive side, solutions in
the random oracle for completely non-malleable schemes exist. And while OAEP
encryption [2] and Fiat-Shamir signatures [11] provably do not have this prop-
erty, slight variations of these schemes work. The basic idea to simply include
the public encryption or signature key, respectively, to each hash function evalu-
ation. We append the term “with public-key hashing” to such modified schemes:

Proposition 3 (informal). RSA-OAEP with public-key hashing is completely
non-malleable with respect to stand-alone simulators and any relations, in the
random oracle model.

A similar result holds for Fiat-Shamir signatures:

Proposition 4 (informal). Fiat-Shamir signatures with public-key hashing are
completely non-malleable with respect to general relations (except for essentially
those relations, for which the unconditional impossibility results of Theorem 4
holds), in the random oracle model.

In both cases the proofs rely on the original results [2, 10, 14] about the se-
curity against regular chosen-ciphertext attacks and chosen-message attacks.

Acknowledgments

We would like to thank Yevgeniy Dodis, Alejandro Hevia, Bogdan Warinschi
and the reviewers for helpful input.

References

1. Boaz Barak. Constant-Round Coin-Tossing With a Man in the Middle or Realiz-
ing the Shared Random String Model. Proceedings of the Annual Symposium on
Foundations of Computer Science (FOCS) 2002. IEEE Computer Society Press,
2002.

2. Mihir Bellare and Phillip Rogaway. Optimal Asymmetric Encryption — How to
Encrypt with RSA. Advances in Cryptology — Eurocrypt’94, Volume 950 of Lec-
ture Notes in Computer Science, pages 92–111. Springer-Verlag, 1995.

3. Simon Blake-Wilson and Alfred Menezes. Unknown Key-Share Attacks on the
Station-to-Station (STS) Protocol. Public-Key Cryptography (PKC)’99, Volume
1560 of Lecture Notes in Computer Science, pages 154–170. Springer-Verlag, 1999.

790 M. Fischlin

4. G. Di Crescenzo, Y. Ishai, and R. Ostrovsky. Non-interactive and Non-Malleable
Commitment. Proceedings of the Annual Symposium on the Theory of Computing
(STOC) 1998, pages 141–150. ACM Press, 1998.

5. G. Di Crescenzo, J. Katz, R. Ostrovsky, and A. Smith. Efficient And Non-
Interactive Non-Malleable Commitment. Advances in Cryptology — Eurocrypt
2001, Volume 2045 of Lecture Notes in Computer Science, pages 40–59. Springer-
Verlag, 2001.

6. Ronald Cramer and Victor Shoup. A Practical Public Key Cryptosystem Prov-
ably Secure Against Adaptive Chosen Ciphertext Attacks. Advances in Cryptology
— Crypto’98, Volume 1462 of Lecture Notes in Computer Science, pages 13–25.
Springer-Verlag, 1998.

7. D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. SIAM Journal
on Computing, 30(2):391–437, 2000.

8. Marc Fischlin and Roger Fischlin. Efficient Non-Malleable Commitment Schemes.
Advances in Cryptology — Crypto 2000, Volume 1880 of Lecture Notes in Com-
puter Science, pages 414–432. Springer-Verlag, 2000.

9. Marc Fischlin and Roger Fischlin. The Representation Problem Based on Factoring.
Topics in Cryptology — Cryptographer’s Track, RSA Conference (CT-RSA) 2002,
Volume 2271 of Lecture Notes in Computer Science, pages 96–113. Springer-Verlag,
2002.

10. E. Fujisaki, T. Okamoto, David Pointcheval, and Jacques Stern. RSA-OAEP is
Secure Under the RSA Assumption. Advances in Cryptology — Crypto 2001,
Volume 2139 of Lecture Notes in Computer Science. Springer-Verlag, 2001.

11. A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification
and Signature Schemes. Advances in Cryptology — Crypto’86, Volume 263 of
Lecture Notes in Computer Science, pages 186–194. Springer-Verlag, 1986.

12. Burton Kaliski. On Hash Function Firewalls in Signature Schemes. Topics in
Cryptology — Cryptographer’s Track, RSA Conference (CT-RSA) 2002, Volume
2271 of Lecture Notes in Computer Science, pages 1–16. Springer-Verlag, 2002.

13. Alfred Menezes and Nigel Smart. Security of Signature Schemes in a Multi-User
Setting. Designs, Codes and Cryptography, Volume 33, pages 261–274. Springer-
Verlag, 2004.

14. David Pointcheval and Jacques Stern. Security Arguments for Digital Signatures
and Blind Signatures. Journal of Cryptology, 13(3):361–396, 2000.

Boneh-Franklin Identity Based Encryption
Revisited

David Galindo

Institute for Computing and Information Sciences,
Radboud University Nijmegen,

P.O.Box 9010 6500 GL, Nijmegen, The Netherlands
d.galindo@cs.ru.nl

Abstract. The first practical identity based encryption (IBE) scheme
was proposed by Boneh and Franklin in [BF03]. In this work we point
out that there is a flawed step in the security reduction exhibited by the
authors. Fortunately, it is possible to fix it without changing the scheme
or the underlying assumption.

In the second place, we introduce a variant of the seminal IBE scheme
which allows a more efficient security reduction. This variant is simpler,
and has more compact ciphertexts than Boneh-Franklin’s proposal, while
keeping the computational cost.

Finally, we observe that the flawed step pointed out here is present in
several works, and that our techniques can be applied to obtain tighter
reductions for previous relevant schemes.

Keywords: provable security, identity-based encryption, exact security,
bilinear maps.

1 Introduction

The concept of Identity Based Encryption (IBE) was proposed by Shamir in
[Sha84], aimed at simplifying certificate management in e-mail related systems.
The idea is that an arbitrary string such as an e-mail address or a telephone
number could serve as a public key for an encryption scheme. Once a user U
receives a communication encrypted using its identity IDU , the user authenticates
itself to a Private Key Generation Center (KGC) from which it obtains the
corresponding private key dIDU

.
The problem was not satisfactorily solved until the work by Boneh and

Franklin [BF03]. They proposed formal security notions for IBE systems and
designed a fully functional secure IBE scheme using bilinear maps. The security
is based on a variant of the Computational Diffie-Hellman assumption, called
Bilinear Diffie-Hellman assumption. This scheme and the tools developed in its
design have been successfully applied in numerous cryptographic settings, tran-
scending by far the identity based cryptography framework.

On the other hand, an important concern when exhibiting a security reduc-
tionist proof is that of the efficiency of the reduction. One of the goals pursued

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 791–802, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

792 D. Galindo

is to preserve as much as possible the strength of the underlying hard problem
which is used in the protocol’s design. An inefficient security reduction would
imply the use of larger key sizes to attain a given security level.

Our contributions. In the first place, we show there is a flawed step in the
security reduction exhibited in [BF03] for the scheme proposed for chosen ci-
phertext security. Fortunately, the reduction can be changed without modifying
the original scheme or the underlying hard problem used to state the security.
The efficiency of the new security reduction is a bit worse than the previous one.
This is just another example in which a well-known and widely used construction
turns out to have an unnoticed flawed security reduction.

In the second place, we modify the scheme by Boneh and Franklin towards
obtaining a more efficient security reduction. Indeed, it is possible to show a
tighter security reduction for a modified scheme which uses one less random or-
acle. The new proposal also presents more compact ciphertexts than the original
scheme.

Finally, since Boneh-Franklin IBE scheme has been used as a building block
for numerous protocols, the corrections and/or improvements we present here
are likely to be applied to further schemes. For instance, this is the case for the
schemes in [GS02, HL02, Gen03, AP03, YFDL04, CC05].

2 Preliminaries

We begin by fixing some notation. If A is a non-empty set, then x← A denotes
that x has been uniformly chosen in A. If A is a finite set, then |A| denotes its
cardinality.

2.1 Definitions for IBE Schemes

Identity based encryption (IBE). An IBE is specified by four probabilistic
polynomial time (PPT) algorithms:

Setup takes a security parameter 1
 and returns the system parameters params
and master-key. The system parameters include the description of sets M, C,
which denote the set of messages and ciphertexts respectively. params is
publicly available, while the master-key is kept secret by the KGC.

Extract takes as inputs params, master-key and an arbitrary string ID ∈ {0, 1}∗
and returns a private key dID to the user with identity ID. This must be
done over a secure channel, since dID enables to decrypt ciphertexts under
the identity ID.

Encrypt takes as inputs params, ID ∈ {0, 1}∗ and M ∈M. It returns a cipher-
text C ∈ C.

Decrypt takes as inputs params, C ∈ C and a private key dID, and it returns
M ∈M or rejects.

Boneh-Franklin Identity Based Encryption Revisited 793

Chosen ciphertext security. An IBE scheme is said to have indistinguisha-
bility against an adaptive chosen ciphertext attack (IND-ID-CCA) if any PPT
algorithm A has a negligible advantage in the following game:

Setup The challenger takes a security parameter 1
 and runs the Setup algo-
rithm. It gives params to the adversary. It keeps the master-key to itself.

Phase 1 The adversary issues queries of the form
– Extraction query 〈IDi〉. The challenger runs algorithm Extract to generate

the private key di corresponding to IDi. It sends di to the adversary.
– Decryption query 〈IDi,Ci〉. The challenger generates the private key di.

It then runs Decrypt to decrypt Ci under IDi.
These queries may be asked adaptively, that is, each query may depend on
the answers obtained to the previous queries.

Challenge The adversary outputs equal length plaintexts M0,M1 ∈ M and
an identity IDch. The only constraint is that the private key for IDch was
not requested in Phase 1. The challenger picks β ← {0, 1} and sets C =
Encrypt(params, IDch,Mβ). It sends C to the adversary.

Phase 2 The adversary issues extraction and decryption queries as in Phase 1,
with the restriction 〈IDi〉 �= 〈IDch〉 and 〈IDi,Ci〉 �= 〈IDch,C〉.

Guess The adversary outputs a guess β′ ∈ {0, 1}.
Such an adversary is called an IND-ID-CCA adversary A, and its advantage
is defined as AdvCCA

E,A (1
) = |Pr[β = β′]− 1/2| .

Similarly, indistinguishability against passive adversaries (IND-ID-CPA) can also
be defined. In this case, the game between the challenger and the adversary is
similar to the IND-ID-CCA case, but disallowing decryption queries. The advan-
tage of an adversary in this game is defined as AdvCPA

E,A(1
) = |Pr[β = β′]− 1/2| .

Definition 1. An IBE system E is secure under chosen ciphertext attacks (resp.
chosen plaintext attacks) if for any probabilistic polynomial time IND-ID-CCA
(resp. IND-ID-CPA) adversary A the function AdvCCA

E,A (1
) (resp. AdvCPA
E,A(1
)) is

negligible.

2.2 Bilinear Maps and Bilinear Groups

Let G1, G2 and GT be finite abelian groups in which the discrete logarithm is
believed to be hard. We use additive notation for G1, G2 whereas multiplicative
notation is used for GT . Thus, G∗

1 = G1 \ {O1} and G∗
T = GT \ {1T }, where

O1 and 1T are the identity elements in G1 and GT respectively. By a pairing or
bilinear map we will refer to a non-degenerate bilinear function ê : G1×G2 → GT .
In some protocols the existence of a computable isomorphism ψ : G2 → G1 is
assumed. In particular, this implies that ψ(aP2) = aψ(P2). By a bilinear group
we refer to a tuple (G1, G2, GT , ê,ψ) with the properties described above.

Bilinear maps are usually implemented using the Weil or modified Tate pair-
ings on an elliptic curve. In general, the elements in G1 allow more compact
representation than those in G2. In the following it is assumed that |G1| =
|G2| = |GT | = p, where p is prime; G1, G2 are cyclic groups generated by P1,P2

794 D. Galindo

respectively and ψ(P2) = P1. In this context, the map ê is non-degenerate if and
only if ê(P1,P2) �= 1GT

. We refer to [BF03] for further details.

Bilinear Diffie-Hellman (BDH) Problem on (G1, G2). Given aP2, bP2 ∈ G∗
2

and cP1 ∈ G∗
1, where P2 ← G∗

2, P1 = ψ(P2), a, b, c ← Z∗p; compute W =
ê(P1,P2)abc ∈ GT .
We say that an algorithm B (t, ε) breaks BDH on (G1, G2) if it runs in time at
most t and has advantage at least ε, that is,

Pr[B(P2, aP2, bP2, cP1) = ê(P1,P2)abc)] ≥ ε,

where the probability is taken over the random choices of the parameters,
and the random bits of B.

Bilinear Decision Diffie-Hellman (BDDH) Problem on (G1, G2). Let
aP2, bP2 ∈ G∗

2, cP1 ∈ G∗
1, and T ← GT , where P2 ← G∗

2, P1 = ψ(P2), a, b, c ←
Z∗p. We say that an algorithm B (t, ε) breaks BDDH on (G1, G2) if it runs in
time at most t and∣∣Pr[B(P2, aP2, bP2, cP1, ê(P1,P2)abc) = 1]− Pr[B(P2, aP2, bP2, cP1, T) = 1]

∣∣ ≥ ε,

where the probability is computed over the random choices of the parameters,
and the random bits of B. Hereafter, the distribution on the left side is called
BDH distribution and is denoted by PBDH , while the distribution on the right
is called random BDH distribution and is denoted by RBDH .

3 Security Proof of Boneh-Franklin Identity Based
Encryption Scheme Revisited

In this section we consider the identity based encryption (IBE) scheme by Boneh
and Franklin [BF03]. In the first place, we point out and fix a flaw in the security
reduction given by the authors. In repairing the proof, we do not need to change
the security assumption neither the specification of the scheme. However, the
security reduction is a bit worse than the original one.

3.1 Boneh-Franklin IBE Scheme

We will not directly use the original description of the BF scheme, because it
is phrased with bilinear group pairs where G1 = G2, so we must adapt their
scheme to the more general case G1 �= G2. In choosing how to use G1 and G2,
we preferred to minimize the length of the ciphertexts. This means we use G2 as
the set of private keys and then ciphertexts are elements in G∗

1 × {0, 1}n. Here
follows the description of the BF scheme, which is called Full-Ident in [BF03].

Boneh-Franklin Identity Based Encryption Revisited 795

Full-Ident
Setup. Let (G1,G2, GT , ê, ψ) a bilinear group. Choose a gen-
erator P2 ← G2 and set P1 = ψ(P2). Next pick s ← Z∗

p

and set Qpub = sP2 ∈ G∗
2, Ppub = sP1 ∈ G∗

1. Choose crypto-
graphic hash functions H1 : {0, 1}∗ → G∗

2, H2 : GT → {0, 1}n,
H3 : {0, 1}n×{0, 1}n → Z∗

p, H4 : {0, 1}n → {0, 1}n. The message space
isM = {0, 1}n and the ciphertext space is C = G∗

1 × {0, 1}n × {0, 1}n.
Extract. For a given string ID ∈ {0, 1}∗, compute QID = H1(ID) ∈ G∗

2

and set the private key dID to be dID = sQID ∈ G∗
2.

Encrypt. To encrypt M ∈ {0, 1}n under identity ID, compute QID =
H1(ID) ∈ G∗

2, choose σ ← {0, 1}n, set r = H3(σ,M) ∈ Z∗
p and finally

C = 〈rP1,σ ⊕H2(g
r
ID),M ⊕H4(σ)〉 where gID = ê(Ppub, QID) ∈ GT .

Decrypt. Let C = 〈U, V,W 〉 ∈ C be a ciphertext under the identity

ID. To decrypt C using the private key dID ∈ G∗
2 do:

1. Compute V ⊕H2(ê(U, dID)) = σ.

2. Compute W ⊕H4(σ) = M.

3. Set r = H3(σ,M). Check that U = rP. If not, reject the ciphertext.

4. Output M .

This completes the description of Full-Ident. This IBE scheme is sound since

ê(U, dID) = ê(rP1, sQID) = ê(P1,QID)sr = ê(Ppub,QID)r = gr
ID.

In [BF03] it is proven that the above scheme is IND-ID-CCA secure under
the BDH assumption in the Random Oracle model. That scheme uses Fujisaki
and Okamoto transformation [FO99] from a one-way encryption scheme into an
IND-CCA encryption scheme in the ROM (we refer to [BDPR98] for public key
encryption security notions). If we denote by Epk(M, r) the encryption of M
using the random bits r under the public key pk, the transformation by Fujisaki
and Okamoto is the hybrid scheme1

Ehy
pk (M) = 〈Epk(σ,H3(σ,M)),H4(σ)⊕M〉 (1)

where σ is random and H3,H4 are random oracles. To decrypt (C1,C2), one
first obtains σ′ decrypting C1 using the original scheme, next computes M ′ and
finally checks if Epk(σ′,H3(σ′,M)) = C1. If this is so, outputs M ; otherwise
outputs reject.

Two additional schemes are needed in order to exhibit the security proof in
[BF03]. These schemes are not IBE schemes but merely public key encryption
schemes. They are called BasicPub and BasicPubhy. Here follows the description of

1 In the case where the symmetric encryption scheme is the one-time pad.

796 D. Galindo

BasicPub
KeyGen. Let (G1,G2, GT , ê, ψ) a bilinear group. Choose a generator
P2 ← G2 and set P1 = ψ(P2). Next pick s ← Z∗

p, Q ← G∗
2 and set

Qpub = sP2 ∈ G∗
2, Ppub = sP1 ∈ G∗

1. Choose H2 : GT → {0, 1}n. Then
M = {0, 1}n and C = G∗

1 × {0, 1}n. The public key is

pk = 〈p,G1,G2,GT , ê,P1,P2,Ppub, Qpub, Q,H2〉.

The private key is sk = d = sQ ∈ G∗
2.

Encrypt. To encrypt M ∈ {0, 1}n choose r ← Z∗
p and set the cipher-

text to be

C = 〈rP1,M ⊕H2(g
r)〉 where g = ê(Ppub, Q) ∈ GT

Decrypt. Let C = 〈U, V 〉 ∈ C be a ciphertext under the public

key pk. To decrypt C using the private key d ∈ G∗
2, compute

V ⊕H2(ê(U, d)) = M.

Finally, the scheme BasicPubhy is the result of applying Fujisaki-Okamoto
transformation (1) to the above scheme. The security reduction for Full-Ident
scheme under the BDH assumption follows the diagram below

Full-Ident BasicPubhy BasicPub BDH

A1(t1, ε1) A2(t2, ε2) A3(t3, ε3) B(t′, ε′)�Res 1
�

�

�

�

�

�

�

�

�

�

�Res 2
�

�

�

�

�

�

�

�

�

�

�Res 3
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

The following results are shown in [BF03]. Hereafter, qE , qD, qHi
denote the

number of extraction, decryption and random oracle Hi queries respectively.

Result 1. Let A1 an IND-ID-CCA adversary that has advantage ε2 against Full-
Ident making at most qE , qD and qH1 queries. Then there is an IND-CCA adver-
sary A2 that has advantage at least ε1

e(1+qE+qD) against BasicPubhy. Its running
time is t2 ≤ t1 + cG2(qD + qH1 + qE), where cG2 denotes the time of computing
a random multiple in G2.

Result 2. Let A2 an IND-CCA adversary that has advantage ε2 against
BasicPubhy making at most qD, qH3 and qH4 queries. Then there is an IND-
CPA adversary A3 that has advantage at least 1

2(qH3+qH4) [(ε2 +1)(1−2/p)qD −1]
against BasicPub. Its running time is t3 ≤ t2 +O((qH3 + qH4) · (n + log p)).

Result 3. Let A3 an IND-CPA adversary that has advantage ε3 against BasicPub
making at most qH2 queries. Then there is an algorithm B breaking the BDH

problem on (G1, G2) with advantage at least
2ε3

qH2

and running time t′ ≈ t3.

Boneh-Franklin Identity Based Encryption Revisited 797

In order to come up with the total concrete security, we can bound any qHi

with a single qH , and assume that qE = qD, since extraction and decryption
operations have roughly the same computational complexity. Then, taking the
above reductions, we obtain that the BF scheme is (t1, qH , qD, ε1) IND-ID-CCA
secure if the BDH problem on (G1, G2) is(

t1 + cG1(2qD + qH)) + 2qH(n + log p),
ε1

8eq2
HqD

)
-secure. (2)

Therefore, the security reduction is far from tight, mainly because of the q2
HqD

factor relating the advantages against the scheme and the underlying problem.

3.2 A Flaw in the Security Reduction

In this section we point out a flaw in the reduction used to state Result 1, which
is Lemma 4.6 in [BF03].

The goal of that reduction is to construct an IND-CCA adversary B with ad-
vantage ε/e(1+ qE + qD) against BasicPubhy by using an IND-ID-CCA adversary
A with advantage ε against Full-Ident. B receives a public key

Kpub = 〈p, G1, G2, GT , ê,P1,P2,Ppub,Q,Qpub,H2,H3,H4〉
from its challenger. Then B simulates the challenger for A as follows:

Setup B gives A the parameters 〈p, G1, G2, GT , ê,P1,P2,Ppub,Qpub,H1,H2,H3,
H4〉, where H1 is an oracle controlled by B as indicated in the following:

H1-queries To respond to A queries, algorithm B maintains a list H list
1 of tuples

〈IDi,Qi, bi, ci〉 as explained below. When A queries H1 at an unrepeated IDi, B
generates a random coin ci ∈ {0, 1} such that Pr[ci = 0] = δ, and a random
bi ← Z∗p. If ci = 0 it computes Qi = biP2 ∈ G∗

2, and if ci = 1 it computes
Qi = biQ ∈ G∗

2. Finally, B adds the tuple 〈IDi,Qi, bi, ci〉 to the H list
1 and sends

H1(IDi) = Qi to A.
The idea is that tuples with ci = 0 enable B to answer private key queries

for identity IDi, while B can only take profit of A’s advantage when A chooses
a challenge identity IDch such that cch = 1.
Phase 1 - Extraction queries When A asks for the private key associated
to IDi, B runs the algorithm for responding H1-queries and gets H1(IDi) =
Qi, where 〈IDi,Qi, bi, ci〉 is the corresponding entry in H list

1 . If ci = 1 then B
aborts the game and the attack against BasicPubhy failed. Otherwise, ci = 0 and
therefore Qi = biP2. It turns out that di can be computed as di := biQpub, since
by definition di = sQi. Finally, B gives di to algorithm A.
Phase 1 - Decryption queries B answers to a decryption query 〈IDi,Ci〉
as follows. It runs H1-queries algorithm and let 〈IDi,Qi, bi, ci〉 ∈ H list

1 . If ci =
0, then B retrieves the private key di and decrypts Ci using the decryption
algorithm. If ci = 1, then Qi = biQ. Recall that the unknown private key is
di = sQi = sbiQ. Set C

′
i = 〈biUi, Vi,Wi〉, where Ci = 〈Ui, Vi,Wi〉. Then, the

authors claim that the Full-Ident decryption of Ci is equal to the BasicPubhy

decryption of C
′
i . The reason given is that

ê(biUi, d) = ê(biUi, sQ) = ê(Ui, sbiQ) = ê(Ui, sQi) = ê(Ui, di),

798 D. Galindo

which implies that the values σ and M obtained by decrypting Ci with Full-Ident
and by decrypting C

′
i with BasicPubhy are equal. However, BasicPubhy will out-

put the reject symbol when decrypting C
′
i with overwhelming probability. To

see this, remember that biUi = biriP1, and at least bi ← Z∗p, which implies that
bir is uniformly random in Z∗p. On the other hand, we have that H3 is a random
oracle not controlled by B. These facts imply that H3(σ,M) �= bir with proba-
bility 1 − 1/p, and therefore the decryption algorithm of BasicPubhy will reject
the ciphertext. Thereby, we can not use the decryption oracle for BasicPubhy

to decrypt ciphertexts under any IDi such that H1(IDi) �= Q. Therefore, the
reduction in [BF03] is not valid.

3.3 Fixing the Security Reduction

Due to the ciphertext integrity checking in FO transformation [FO99], we can
only answer decryption queries 〈IDi,Ci〉 such that:

– H1(IDi) = biP2, since we can use the private key di, or
– H1(IDi) = Q, since in this case, the decryption of Ci under such IDi is equal

to the decryption of Ci by BasicPubhy.

This remark enables us to fix the flawed reduction shown above. In the fol-
lowing we describe the new answers delivered by B.

Setup As in Section 3.2.
H1-queries Before initializing H list

1 , B selects at random j ← {1, . . . , qH1}.
When A queries H1 at IDi, algorithm B proceeds as follows: if i �= j, it picks
bi ← Z∗p, sets Qi = biP2, adds 〈IDi,Qi, bi〉 to the list and gives back Qi to A.
If i = j, it sets Qj = Q, adds 〈IDi,Qi, *〉 to the list and sends Qj to A. Here *
denotes a special symbol. Note that the outputs of H1 are uniformly distributed
in G∗

2 and independent of A′s current view, since Q is unknown to A and is
uniformly distributed in G∗

2.
Phase 1 - Extraction queries When A asks for the private key for IDi, B
runs the algorithm for responding H1-queries and gets H1(IDi) = Qi, where
〈IDi,Qi, bi〉 is the corresponding entry in H list

1 . If i = j, then B aborts the game
and the attack against BasicPubhy failed. Otherwise, it sets di := biQpub. Finally,
B gives di to algorithm A.
Phase 1 - Decryption queries B answers to a decryption query 〈IDi,Ci〉 as
follows. It runs H1-queries algorithm and let 〈IDi,Qi, bi〉 ∈ H list

1 . If i �= j, then
B retrieves the private key di and decrypts Ci using the decryption algorithm. If
i = j, then Qi = Q, and the decryption of 〈IDj ,Cj〉 is the same as the decryption
of Cj under BasicPubhy. Then, B asks its challenger to decrypt Cj and relays
the answer to A.
Challenge A outputs a public key IDch and two equal length plaintexts M0,M1.
Algorithm B proceeds as follows. If IDch �= IDj , it aborts the game and the attack
against BasicPubhy failed. Otherwise, it sends M0,M1 to its own challenger and
gets back C, the encryption of Mβ for a random bit β under BasicPubhy. Finally,
B relays C to A, which is an also encryption of Mβ under IDch for Full-Ident.

Boneh-Franklin Identity Based Encryption Revisited 799

Phase 2 - Extraction queries Algorithm B proceeds as in Phase 1, except for
the extraction query for IDch, which is rejected.
Phase 2 - Decryption queries Algorithm B proceeds as in Phase 1, except
for the decryption query 〈IDch,Cβ〉, which is rejected.
Guess Algorithm A outputs a guess β′ for β. B outputs β′ as its guess.

Using this algorithm B, we are able to state the following:

Result 4. Let A an IND-ID-CCA adversary that has advantage ε against Full-
Ident making at most qE , qD and qH1 queries. Then there is an IND-CCA ad-
versary B that has advantage at least ε

qH1

(
1− qE

qH1

)
≈ ε

qH1
against BasicPubhy.

Its running time is t2 ≤ t1 + cG2(qD + qH1 + qE), where cG2 denotes the time
of computing a random multiple in G2.

Proof : The proof appears in the full version of the paper. ��

Therefore, joining Results 2, 3 and 4, an IND-ID-CCA advantage ε1 against
Full-Ident is turned into an algorithm with advantage roughly ε1/(q3

H) in solving
the BDH problem. Compared to the original flawed reduction, where the advan-
tage obtained against BDH was roughly ε1/(q2

HqD), the new reduction is a bit
worse, since in general qD / qH . In the next section we show a modification of
Full-Ident which allows a tighter security reduction.

4 A New Identity Based Encryption Scheme with
Improved Tightness

In this section we design a new IBE scheme using the scheme Basic-Ident from the
previous section and a second general transformation also due to Fujisaki and
Okamoto [FO00]. This conversion starts from an IND-CPA encryption scheme
and builds an IND-CCA scheme in the ROM. If we denote by Epk(M, r) the
encryption of M using the random bits r under the public key pk, with set
of messages M = {0, 1}n, set of coins R and set of ciphertexts C, the new
transformation is the scheme

EhyNew
pk (M) = Epk(M ||r,H(M ||r)) (3)

where M ||r ∈ {0, 1}n−k0 × {0, 1}k0 and H : {0, 1}∗ → R is a hash function.
Then, MhyNew = {0, 1}n−k0 , RhyNew = {0, 1}k0 and ChyNew = C. To decrypt
C, one first obtains M ′||r′ using the original decryption algorithm, and next
checks if Epk(M ′||r′,H(M ′||r′)) = C. If this is so, outputs M ; otherwise outputs
reject.

Let us describe the new IBE scheme thereby obtained.

800 D. Galindo

NewFull-Ident
Setup. Let (G1,G2, GT , ê, ψ) a bilinear group. Choose a genera-
tor P2 ← G2 and set P1 = ψ(P2). Next pick s ← Z∗

p and
set Qpub = sP2 ∈ G∗

2,Ppub = sP1 ∈ G∗
1. Choose hash func-

tions H1 : {0, 1}∗ → G∗
2, H2 : GT → {0, 1}n and H3 :

{0, 1}∗ → Z∗
p. Now M = {0, 1}n−k0 , C = G∗

1 × {0, 1}n and
params = 〈p,G1,G2,GT , ê,P1,P2,Ppub,Ppub, Qpub, H1, H2, H3〉.

The master-key is s ∈ Z∗
p.

Extract. For a given ID ∈ {0, 1}∗, compute QID = H1(ID) ∈ G∗
2 and

set dID = sQID ∈ G∗
2 where s is the master key.

Encrypt. To encrypt M ∈ {0, 1}n−k0 under ID, compute QID =
H1(ID) ∈ G∗

2, choose σ ← {0, 1}k0 , set r = H3(M,σ) ∈ Z∗
p and fi-

nally

C = 〈rP1, (M ||σ)⊕H2(g
r
ID)〉 where gID = ê(Ppub, QID) ∈ GT

Decrypt. Let C = 〈U, V 〉 ∈ C be a ciphertext under the public key

ID. To decrypt C using the private key dID ∈ G∗
2 do:

1. Compute V ⊕H2(ê(U, dID)) = M ||σ.
2. Parse M ||σ and compute r = H3(M,σ). Check that U = rP. If not,

reject the ciphertext.

4. Output M .

On the basis of the proof sketched in the previous section, we define in a
similar fashion a public key encryption scheme NewBasicPubhy, which is obtained
applying the conversion from expression (3) to Basic-Pub. Then the following
results hold:

Result 5. Let A1 an IND-ID-CCA adversary with advantage ε1 against
NewFull-Ident making at most qE private key extraction queries, qD decryption
queries and qH1 hash queries. Then there is an IND-CCA adversary A2 that has
advantage at least ε

qH1

(
1− qE

qH1

)
≈ ε

qH1
against NewBasicPubHy. Its running

time is t2 ≤ t1 + cG1(qD + qH1 + qE).

Proof: Use the same reduction as for Result 4 in Section 3.3.

Result 6. Let A2 an IND-CCA adversary with advantage ε2 against
NewBasicPubhy making at most qD decryption queries and at most qH2 hash
queries. Then there is an IND-CPA adversary A3 that has advantage at least(

ε2 − qH2 · 2−(k0−1)
)(

1− 1
p

)qD

≈ ε2

against BasicPub. Its running time is t3 ≤ t2 + qH2(TBasicPub + log p), where
TBasicPub is the running time of Encrypt algorithm in BasicPub.

Proof: This result is obtained as a special case of Theorem 5.4 in [FO00].

Boneh-Franklin Identity Based Encryption Revisited 801

Finally, taking into account these new reductions, we obtain that NewFull-
Ident scheme is (t1, qH , qD, ε1) IND-ID-CCA secure if the BDH problem on
(G1, G2) is(

t1 + cG1(2qD + qH) + qHO(log3 p + log p),
ε1

q2
H

)
-secure

The last expression has been simplified replacing any of the hash queries
qHi

by qH and setting qD = qE . Then, we get rid of a qH factor in the BDH
advantage with respect to the reduction in expression (2).

Compared to Full-Ident scheme, which is the result of using FO transforma-
tion in expression (1), the NewFull-Ident scheme presents several advantages:

– It provides more compact ciphertexts. In fact, Full-Ident scheme adds a n-bits
component to a Basic-Ident ciphertext to get chosen ciphertext security, while
NewFull-Ident achieves this preserving Basic-Ident ciphertext’s structure.

– It presents a tighter security reduction to the BDH problem.
– It uses one less hash function than Full-Ident.

We can obtain a second tightness improvement using a stronger assumption,
namely, the BDDH assumption. In this case, we have the following result:

Result 7. Let A3 an IND-CPA adversary that has advantage ε3 against BasicPub
making at most qH2 hash queries. Then there is an algorithm B breaking the
BDDH problem on (G1, G2) with advantage roughly ε3 and running time t′ ≈ t3.

Proof : The proof appears in the full version of the paper. ��

With this second tightness improvement, we obtain that NewFull-Ident scheme
is (t1, qH , qD, ε1) IND-ID-CCA secure if the BDDH problem on (G1, G2) is(

t1 + cG1(2qD + qH) + qHO(log3 q + log q),
ε1

qH

)
-secure

Then, we get rid of a qH factor in the security reduction at the cost of relying
on a stronger assumption.

5 Conclusions

In this work, we have shown there is a flawed step in the security reduction ex-
hibited in [BF03] for the so called Boneh-Franklin IBE scheme. We have provided
a new reduction without modifying the original scheme neither the underlying
hard problem used to state the security.

In the second place, we have proposed a new IBE scheme slightly changing
the original scheme. The proposal presents a tighter reduction than BF scheme,
uses one less random oracle and has more compact ciphertexts.

Finally, we point out that it is still an open problem to design an IND-ID-
CCA IBE scheme with a tight security reduction under a reasonable assumption
either in the standard or the random oracle models.

802 D. Galindo

Acknowledgements. The author is grateful to Javier Herranz and Paz Morillo
for useful comments on an early draft of this paper. The author also acknowledges
the anonymous referees’ comments.

References

[AP03] S. AlRiyami and K.G. Paterson. Certificateless public key cryptography.
In ASIACRYPT 2003, volume 2894 of LNCS, pages 452–473, 2003. Full
version available at http://eprint.iacr.org/.

[BDPR98] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among
notions of security for public-key encryption schemes. In - CRYPTO 1998,
volume 1462 of LNCS, pages 26–45, 1998.

[BF03] D. Boneh and M. Franklin. Identity-Based encryption from the Weil pair-
ing. SIAM Journal of Computing, 32(3):586–615, 2003. This is the full
version of an extended abstract of the same title presented at Crypto’01.

[CC05] Z. Cheng and R. Comley. Efficient certificateless public key encryption.
Cryptology ePrint Archive, Report 2005/012, 2005.

[FO99] E. Fujisaki and T. Okamoto. Secure integration of asymmetric and sym-
metric encryption schemes. In - CRYPTO 1999, volume 1666 of LNCS,
pages 537–554, 1999.

[FO00] E. Fujisaki and T. Okamoto. How to enhance the security of public-key
encryption at minimum cost. IEICE Trans. Fund., E83-9(1):24–32, 2000.

[Gen03] C. Gentry. Certificate-based encryption and the certificate revocation prob-
lem. In EUROCRYPT 2003, volume 2656 of LNCS, pages 272–293, 2003.

[GS02] C. Gentry and A. Silverberg. Hierarchical ID-based cryptography. In ASI-
ACRYPT 2002, volume 2501 of LNCS, pages 548–566, 2002.

[HL02] J. Horwitz and B. Lynn. Toward hierarchical identity-based encryption. In
- EUROCRYPT 2002, volume 2332 of LNCS, pages 466–481, 2002.

[Sha84] A. Shamir. Identity-based cryptosystems and signature schemes. In
CRYPTO 1984, volume 196 of LNCS, pages 47–53, 1985.

[YFDL04] D. Yao, N. Fazio, Y. Dodis, and A. Lysyanskaya. Id-based encryption for
complex hierarchies with applications to forward security and broadcast
encryption. In Proceedings of the 11th ACM CCS, pages 354–363. ACM
Press, 2004.

Single-Database Private Information Retrieval
with Constant Communication Rate

Craig Gentry and Zulfikar Ramzan

DoCoMo Communications Laboratories USA, Inc.
{cgentry, ramzan}@docomolabs-usa.com

Abstract. We present a single-database private information retrieval
(PIR) scheme with communication complexity O(k+d), where k ≥ log n
is a security parameter that depends on the database size n and d is the
bit-length of the retrieved database block. This communication complex-
ity is better asymptotically than previous single-database PIR schemes.
The scheme also gives improved performance for practical parameter set-
tings whether the user is retrieving a single bit or very large blocks. For
large blocks, our scheme achieves a constant “rate” (e.g., 0.2), even when
the user-side communication is very low (e.g., two 1024-bit numbers).
Our scheme and security analysis is presented using general groups with
hidden smooth subgroups; the scheme can be instantiated using compos-
ite moduli, in which case the security of our scheme is based on a simple
variant of the “Φ-hiding” assumption by Cachin, Micali and Stadler [2].

1 Introduction

Problem Statement and Background. Private Information Retrieval (PIR)
schemes allow a user to retrieve the ith bit of an n-bit database, without revealing
to the database the value of i. The “trivial” solution is for the user to retrieve the
entire database, but this approach may incur enormous communication costs. A
good PIR scheme, on the other hand, should have considerably lower (certainly
sub-linear) communication complexity. Private Block Retrieval (PBR) is a nat-
ural and more practical extension of PIR in which, instead of retrieving only a
single bit, the user retrieves a d-bit block that begins at index i.

PIR and PBR have been studied extensively; here, we only mention the work
most relevant to us. The notion of PIR was introduced by Chor et al. [5], who
focused on the information-theoretic case, where one requires that the user’s
query give absolutely no information about i. They proved that if only a single
database is used, then n bits must be communicated. On the other hand, if the
database is replicated in k servers, and if the user is allowed to give a separate
query to each server, one can construct a PIR scheme with k user queries each
being O(n1/k)-bits and k single-bit server responses.1 However, to ensure user
privacy in the multi-server setting, the servers must be trusted not to collude.

1 Currently, the lowest asymptotic total communication complexity for information-
theoretic PIR is O(nlog log k/k log k) [1].

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 803–815, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

804 C. Gentry and Z. Ramzan

Chor et al. also introduced PBR. They showed that any PIR scheme with
αk(n)-bit queries and βk(n)-bit responses can be converted into a PBR scheme
for d-bit blocks with αk(n)-bit queries and dβk(n)-bit responses. This means
that, for a constant k ≥ 2 of servers, the above information-theoretic PIR
scheme can be converted into a PBR scheme with an asymptotically constant
“rate” of 1/k – i.e., the ratio of bits retrieved (i.e., d) versus total communi-
cation complexity (i.e., kd + O(n1/k)) tends towards 1/k as n and d increase
appropriately. Increasing the rate to 1 in the information-theoretic setting seems
difficult.

Chor and Gilboa studied the problem of whether one could achieve better
communication complexity for multi-server PIR by using computational assump-
tions [4]. Subsequently, Kushilevitz and Ostrovsky showed that one can achieve
single database PIR under the Quadratic Residuosity assumption with commu-
nication 2O

√
log n log lm , where lm is the bit length of a composite modulus m.

Like all current single-database PIR schemes, the server needs Ω(n) computa-
tion to generate a query response. Since the number field sieve [10] can factor an
lm-bit composite number in time 2O(1)l1/3

m (log lm)2/3
(and hence solve quadratic

residuosity), and since it seems reasonable that the server should need at least as
much computation to break user privacy as to generate a response, one should
set lm = Ω(log3−o(1) n) to ensure adequate security.

Cachin, Micali, and Stadler [2] constructed the first single-database PIR
scheme with poly-logarithmic communication complexity (about O(log8 n) for
their suggested parameters), addressing an open problem left by Kushilevitz
and Ostrovsky. The security of their scheme (CMS) is based on the “Φ-hiding”
assumption – roughly, that is hard to distinguish which of two primes divides
φ(m) for composite modulus m. Essentially, the scheme works as follows. Each
index j ∈ [1, n] is mapped to a distinct prime pj . To recover bit bi from database
B = b1 · · · bn, the user sends a composite (hard-to-factor) modulus m such that
pi divides φ(m) and a generator x ∈ Z∗m with order divisible by pi. The server
sends back r = xP (modm) for P =

∏
j p

bj

j . The user concludes that bi = 1
if r is a p-residue modulo m; otherwise, bi = 0. The communication complex-
ity of (this simplified version of) CMS is 3lm to recover 1 database bit. Again,
lm = Ω(log3−o(1) n) for adequate security, though [2] recommends an even larger
value of lm (O(log8 n)).

Recently, Lipmaa [11] gave a PBR scheme with stated Θ(lm · log2 n+d · log n)
communication complexity for d-bit blocks, where again lm = Ω(log3−o(1) n).
Thus, Lipmaa’s scheme has a better “rate” – namely 1/(log n) – than CMS
for large blocks. In fact, as we describe in the full version of this paper, one
can apply Chor et al.’s [5] abovementioned conversion from PIR to PBR to
Lipmaa’s scheme to get a PBR scheme with rate arbitrarily close to 1. However,
for Lipmaa’s scheme to achieve a good rate in practice, n and d must be quite
large (on the order of gigabits and megabits, respectively) before they begin to
offset the large one-time cost represented by the lm · log2 n term.

Our Results. We present a single-database PBR scheme that has, to the
best of our knowledge, the lowest asymptotic communication complexity of

Single-Database Private Information Retrieval 805

Θ(k + d). The scheme is somewhat similar to CMS [2], but the scheme is de-
scribed (and its security proven) with respect to general groups that have “hid-
den subgroups” of smooth order. Our scheme also transforms the CMS tech-
nique to maximize the number of database bits the user can recover from a
short server response. The essential technique is to associate each block of bits
with a distinct small prime (or power of a small prime), rather than allocat-
ing a (largish) prime to each bit. The database’s response protocol uses the
Chinese Remainder Theorem to encode each database chunk modulo its asso-
ciated prime power. To decode, the user computes a discrete logarithm, but in
a subgroup whose order is smooth – i.e., a product of small primes. We can
carry out this step efficiently in a (somewhat surprising) constructive applica-
tion of the Pohlig-Hellman method [14]. In the full version of the paper, we
show that our scheme is secure against generic attacks even when k = O(log n)
and when the rate of the scheme approaches 1. We provide an oblivious trans-
fer scheme with similar performance characteristics by using the Naor-Pinkas
transformation[13].

We describe an instantiation of our scheme that, like CMS, uses a (e.g.,
1024-bit) composite modulus m. In CMS as described above, a user sends a
2lm-bit query and gets back a lm-bit response that allows the user to retrieve
a single bit; in our scheme, with the same communication complexity, the user
can recover c · lm bits for c < 1/4; this is a fairly high constant “rate” – i.e.,
the communication of the PBR scheme is only a small constant times more
than the communication needed to transmit the block with no privacy at all.
This instantiation has the best known asymptotic communication complexity
Θ(log3−o(1) n, d) in terms of n and d among single-database PIR schemes and
has the lowest complexity for most practical parameters (until it is overtaken
by the modified version of Lipmaa’s scheme with rate approaching 1). However,
this instantiation does not perform as well as our scheme could perform accord-
ing to the generic group model, since it is vulnerable to the number field sieve
unless k = Ω(log3−o(1) n) and to Coppersmith’s attack [6, 7] when c ≥ 1/4. We
speculate on approaches to instantiating the scheme that may achieve better
performance.

2 Preliminaries

In the sequel, n denotes the database size in bits. If S is a set of elements, and D
is a sampleable probability distribution on S, we let s

D←− S denote the process
of picking an element s from S according to distribution D. Throughout, π will
denote a prime power. We say that an integer m Φ-hides π if π divides φ(m).

If A is an algorithm, we let A(·, . . . , ·) denote that A may take one or more
inputs. By P r[y ← A(x) : b(y)], we denote the probability that b(y) is true after
y was generated by A on input x. By A(B)(·), we denote an algorithm that can
make oracle queries to B. For a, b ∈ Z with a ≤ b, let [a, b] denote the set of
integers between a and b inclusive. Let [b] denote [1, b].

Now, we define polylogarithmic private information retrieval as in [2].

806 C. Gentry and Z. Ramzan

Definition 1 (Polylogarithmic CPIR). Let Q(·, ·, ·), D(·, ·, ·) and R(·, ·, ·, ·, ·)
be polynomial-time algorithms. We say that (Q,D,R) is a fully polylogarithmic
CPIR scheme if there exists constants a, b, c, d > 0 such that:

– (Correctness) ∀n ∈ N, ∀B ∈ {0, 1}n, ∀i ∈ [1, n], and ∀k′ ∈ N,

Pr[(q, s)
R←− Q(n, i, 1k′

); r
R←− D(B, q, 1k′

) : R(n, i, (q, s), r, 1k′
) = Bi] > 1− 2−ak′

.

– (User Privacy) ∀n ∈ N, ∀i, j ∈ [1, n], ∀k′ ∈ N such that 2k′
> nb, and

∀2ck′
-gate circuits A,∣∣∣Pr[(q, s)

R←− Q(n, i, 1k′
) : A(n, q, 1k′

) = 1]− Pr[(q, s)
R←− Q(n, j, 1k′

) : A(n, q, 1k)

= 1]
∣∣∣ < 2−dk′

.

Here a, b, c, d are the fundamental constants of the CPIR scheme; B is the con-
tents of the database, D is the database’s response algorithm; Q is the user’s
query-generating algorithm; R is the user’s response reconstruction algorithm;
q is the user’s actual query; s is the user’s secret (associated with q); r is the
database’s response; and k′ is a security parameter.

Notice that we have mentioned two security parameters – namely, k′ > b log n
above, and k in the Introduction (which may be, e.g., the bit-length of a com-
posite modulus). The two parameters are related by k = O(f(k′)) for some
polynomial f . For example, for the modulus-based instantiation, we may have
k = max{1024,Ck′3} for some constant C to ensure that no (2ck′

= poly(n))-
gate circuits A (e.g., a circuit running NFS) can break user privacy with proba-
bility 1/poly(n). Against generic attacks, k = k′ suffices to ensure user privacy.
In short, the security parameter k′ is useful because it ensures (above) that no
algorithms A that are polynomial in n can break user privacy, while allowing
us to separately define the security parameter k in the “common parlance” of
a particular instantiation. (For example, for cryptosystems related to factoring,
the security parameter k is typically defined as the modulus bit-length, even
though such schemes have only exp(O(1)k1/3(log k)2/3) security against NFS.)

3 Our General Private Block Retrieval Scheme

We now describe our PIR scheme using general groups with hidden smooth-
order subgroups; afterwards, once the essential strategy of our scheme has been
laid out, we will describe the computational assumption on which user privacy
is based (which, by then, will seem relatively natural).

First, we give a high-level description of the scheme. The scheme has some
public parameters known to all users, including the database size n, an integer
parameter
, a set of t =
n/
� (small) distinct prime numbers {p1, . . . , pt}, and a
set S = {π1, . . . ,πt} of prime powers πi = pci

i , where ci =

/ log2 pi� (i.e., so that
pci

i ≥ 2
). The server partitions the database B into t blocks B = C1‖C2‖ · · · ‖Ct

of size at most
. In our scheme, the user will retrieve the entire
-bit block that

Single-Database Private Information Retrieval 807

contains its desired bit. Each block Ci is associated to a prime power πi. Using
the Chinese Remainder Theorem, the server can express the entire database B
as an integer e that satisfies e ≡ Ci(modπi), where the
-bit block Ci is treated
as an integer satisfying 0 ≤ Ci < 2
 ≤ πi. Notice that to retrieve Ci, it suffices
to retrieve e(modπi).

Roughly speaking, to query the value of e(modπi), the user generates an
appropriate cyclic group G = 〈g〉 with order |G| = qπi for some suitable integer
q. It sends (G, g) to the server and keeps q private. Notice that G contains a
subgroup H of order πi, and that h = gq is a generator of H. (For technical
reasons, in the actual scheme below, 〈g〉 may be a proper subgroup of G.)

The server responds with ge = ge ∈ G. The user then obtains e(modπi) by
setting he = gqe ∈ H and performing a (tractable) discrete logarithm compu-
tation: logh he ≡ e(modπi). This discrete logarithm computation, which occurs
entirely in the subgroup H of order pci

i , can actually be quite efficient if pi is
small. Correctness is demonstrated below. Now, we give a more precise descrip-
tion of the general scheme.

For some parameter choices, the user can select G such that |G| is divisible by
multiple πi’s. In this case, the user can recover multiple
-bit blocks (note that
this does not contradict the security requirements for PIR schemes). However,
for simplicity, we focus on the single-block case.

Specification of the Scheme. Let B be an n-bit database. Let f1(x, y) and
f2(x, y) be functions. Let k′ = Θ(log n) and k = f2(k′, log n) be security pa-
rameters. Set
 = �f1(k, log n)� and t =
n/
�. For primes P = {p1, . . . , pt},
set πi = pci

i for ci =

/(log2 pi)�, and S = {πi}. Let Gi be the set of cyclic
groups whose order is a number in [2k, 2k+1] that is divisible by πi. Let Di be
a distribution under which elements of Gi can be efficiently sampled. We as-
sume that for G

Di←− Gi, each g ∈ G has a unique “normal” representation. (We
will discuss the security considerations involved in choosing k′, f1, f2 and {Di}
later.)
Query Generation: Given input (n, f1, f2,S, {Di}, 1k′

), the user determines
the index i of its desired block, and generates a query for block Ci as follows:

1. Generate G
Di←− Gi and a uniformly random “quasi-generator” g of G – i.e.,

g is a random element of G such that GCD(|G : 〈g〉|,
∏t

j=1 pj) = 1;
2. Output query (G, g); keep q = |〈g〉|/πi private; store h = gq for future use.

Database Response Generation: Given the input (B, f1, f2,S, G, g, 1k′
), the

server responds to the user’s query as follows:

1. Express each
-bit database block Cj (after appending zeros to Ct if needed)
as a number in [0, 2
 − 1] in the obvious fashion;

2. Set e to be the smallest positive integer such that e ≡ Cj (mod πj) for all j;
3. Output the response ge = ge ∈ G.

Note that steps 1 and 2 are independent of the query, and can be precomputed.
Response Retrieval: Given the input (πi, ge, G, q,h, 1k′

), the user retrieves
block Ci as follows:

808 C. Gentry and Z. Ramzan

1. Compute he = gqe ;
2. Compute Ci as the discrete logarithm logh he within the subgroup H ⊂ G

of order πi = pci
i using Pohlig-Hellman.

Notice that we need pi to be small (unlike CMS) for the discrete logarithm
computation using Pohlig-Hellman to be efficient. Fortunately, as we show below,
the Prime Number Theorem will help us ensure that max{pi} is small, and that
response retrieval is efficient.

Correctness of Response Retrieval. Let eπi
∈ [0,πi − 1] satisfy eπi

≡
e(modπi); observe that eπi

is equal to Ci. So, it suffices to show that eπi
is the

discrete logarithm of he with respect to base h. Write e = eπi
+ πi ·E, for some

E ∈ Z. Now:

he = g|〈g〉|/πi
e = ge|〈g〉|/πi = geπi

|〈g〉|/πi = heπi .

Remark 1. The above scheme has some similarities to CMS, particularly if one
instantiates the group G using a composite modulus m. However, for recover-
ing blocks of data (a more realistic scenario anyway), our scheme is much more
communication efficient; the server’s (log m)-bit response uses the Chinese Re-
mainder Theorem to give the user
 bits instead of 1 bit. Later, we will see that

 can equal (log m)/C for reasonably small constant C.

Choosing the Set P Wisely. Recall that P = {p1, . . . , pt} is the set of primes
that the scheme uses; let pt be the largest. As mentioned above, pt must be
reasonably small to ensure efficient response retrieval. Also, since we must have
log |G| ≥ max{πi} ≥ pt, the size of pt also affects communication complexity.
The following result of Rosser and Schoenfeld related to the Prime Number
Theorem [15] gives an upper bound on pt.

Theorem 1 (Rosser and Schoenfeld). For t > 20, let P = {p1, . . . , pt} be
the first t primes, with pt the largest. Then, pt < t(ln t + ln ln t− 1/2).

For technical reasons in the security proof, we need p1 ≥ 2t. Nonetheless, in
terms of n and
, we easily get that pt < 16(n/
) log2(n/
) suffices. For the
performance analysis below, we assume for convenience that
 is chosen so that
2
 ≥ pt.

Computational Complexity. The dominant component of the querier’s com-
putation is in computing the discrete logarithm of he for base h. This step
involves solving ci discrete logarithm sub-problems in groups of order pi for
pci

i ∈ [2
, 2
pt]. Assuming that each sub-problem involves
√

pi group operations
– e.g., using baby-step giant-step – the entire discrete logarithm problem requires
about ci

√
pi group operations. Considering the curve yx = 2
pt for y ≤ pt, we see

that x
√
y = (

√
y/ log y)(x log y) = (

√
y/ log y)(log(2
pt)) takes its maximum at

y = pt. As a very rough upper bound,
√

pt/ log pt < 2
√

n/
 and log(2
pt) < 2
,
so the querier’s computation is no more than 4

√
n
 group operations, where

must be less than log |G| (which will be polylogarithmic in n). This does not seem

Single-Database Private Information Retrieval 809

unreasonable given that the database’s computation in single-database PIR is
unavoidably linear in n (since otherwise the database has not included every
database bit in the computation, which would imply that it knows at least one
bit that the user did not request).

The dominant component of the database’s computation is in computing
ge mod m. This requires (roughly) log e group operations. Since e is a number
modulo

∏t
i=1 πi, we have log e ≤

∑t
i=1 log πi. Since, pi ≤ 2
 for all i, πi = pci

i <

22
 for all ci =

/(log pi)�. Thus, we have
∑t

i=1 log πi < 2
t = 2

n/
� – i.e.,
the database needs Θ(n) group operations, which is about the best we can hope
for in single-database PIR.

Communication Complexity. Suppose that the group G and any element of
G can be described in lG = Ω(log |G|) bits. (For example, the group generated
by g modulo m for composite modulus m can be described in O(log φ(m)) bits.)
Then, the total communication complexity is 3lG. The size of lG depends, in
part, on security considerations pertaining to the particular instantiation of our
general scheme; so, we obviously cannot give a general upper bound for lG. Here,
we merely note that, in terms of the scheme’s correctness, the only constraint
on |G| is that it be divisible by (and, hence, at least as large as) πi. Above, we
saw that when 2
 > pt, πi < 22
 for all i. Thus, if we set
 =
log pt�, then
max{log πi} < 2
 < 4 log pt < 8 log n. Thus, the mechanics of the scheme do not
prevent log |G| = Θ(log n) or lG = Θ(log n).

We stress that lG may need to be larger to ensure user privacy. However, in
our analysis of the scheme’s security in the generic group model in Section 6,
we find that generic attacks do not prevent our scheme with lG = Θ(log n) from
having the security required by CMS’s definition of polylogarithmic PIR; any
attack that forces lG to be larger must exploit the encoding of the group or its
elements.

Private Block Retrieval. In our scheme, the user already recovers
-bit
blocks. This scheme can be converted, using the general transformation described
in [5], into a scheme that recovers d
-bit blocks with total communication com-
plexity (2+d)lG, as follows. The user generates a query (G, g) for the
-bit block
beginning with index i. To allow the user to retrieve the
-bit block with index
i + x
 for x ∈ [0, d− 1], the server temporarily relabels the database, giving the
database bit with index j (for j ∈ [n]) the “temporary index” j − x
(modn);
it then responds to the user’s query (G, g) using the temporary indices, rather
than the actual ones. The “rate” of our scheme – i.e., the ratio of the num-
ber of bits that the user retrieves over the total communication complexity – is
d
/(d + 2)lG, which approaches
/lG as d increases. We will see that our general
scheme is secure against generic group attacks for
/lG arbitrarily close to 1.
When we instantiate the scheme using Φ-hiding and a composite modulus m in
the natural way, however, an attack by Coppersmith [7] forces
/lG < 1/4.

Oblivious Transfer. Naor and Pinkas [13] describe how to construct 1-out-
of-n OT scheme from a PIR scheme for n-bit databases and log n invocations
of a 1-out-of-2 OT scheme. Since the transformation is generic, we omit the

810 C. Gentry and Z. Ramzan

details, except to mention that 1-out-of-2 OT can be accomplished fairly effi-
ciently through the ElGamal encryption scheme. If k′′ is the bit-length of group
elements in the ElGamal group (e.g., k′′ = 160), the transformation only adds
6k′′(log n) bits to our PIR scheme, regardless of the block size d.

4 Our General Computational Assumption

In our PIR scheme, the server is given not only a description of G (and gen-
erator g), but also a promise that one of the prime powers in S – i.e., the
one associated to the user’s target block index i – actually divides |G|. For
our PIR scheme to be user-private, the server should be unable to distinguish
which of π0 or π1 divides |G| – or, equivalently, to distinguish whether the
“smooth” subgroup H hidden inside G has order π0 or π1. So, our computa-
tional assumption is roughly that, given (π0, π1, G) and the promise that πb
divides |G| for one b ∈ {0, 1}, it is computationally hard (if G is generated
appropriately) to distinguish the value of b, even if π0 and π1 are not “much
smaller” than |G|, and even if π0 and π1 are “special” integers such as pow-
ers of small primes. We formalize this assumption in terms of the following
problem.

Definition 2 (The Decision Subgroup Problem). Let
 be an integer and
k a parameter. Let π0,π1 ∈ [2
, 22
 − 1] be distinct integers. Let Gi be the set of
cyclic groups whose order is a number in [2k, 2k+1] that is divisible by πi. Let
Di be a distribution on Gi. We say that algorithm A has advantage ε against the
(
, k,π0,π1,D0,D1)-Decision Subgroup Problem if∣∣∣∣Pr

[
b

R←− {0, 1}, Gb
Db←−− Gb : A(Gb,
, k,π0,π1, {Di}, {Gi}) = b

]
− 1

2

∣∣∣∣ ≥ ε.

A solves the problem if it guesses b correctly.

In our PIR scheme, we want the above problem to be hard for each pair πi0 ,πi1 ∈
S, a set of prime powers. Thus, we state our computational assmption as
follows.

Definition 3 (The (Extended) Decision Subgroup Assumption). Let
f1(x, y) and f2(x, y) be functions. Let S be a set of t ≥ 2 powers of distinct
primes. The (f1, f2,S)-Extended Decision Subgroup Assumption is that there
exist constants b, c, d > 0 such that, for all n ∈ N and all k′ > b log n with

 = �f1(k′, log n)� and k = f2(k′, log n), there exist efficiently sampleable dis-
tributions {Di : i ∈ [t]} such that, for all i0, i1 ∈ [t], all circuits A with
(2ck′

+ t · f2(k′, log n) · C{Di}) gates have advantage at most 2−dk′
against the

(
, k,πi0 ,πi1 ,Di0 ,Di1)-Decision SubgroupProblem,where C{Di} is an upper bound
on the circuit complexity of a group multiplication in groups drawn according to
Di for i ∈ [t].

Single-Database Private Information Retrieval 811

5 Security Proof for Our PIR Scheme

We base the security of our scheme on the extended decision subgroup assump-
tion. The proof is done in the standard model.

Theorem 2. Suppose that a circuit A with 2ck′
gates can break user privacy

with advantage 2−dk′
. Then, there is an A′ with O(2ck′

+ t · f2(k′, log n) ·C{Di})
gates that solves the extended decision subgroup problem with advantage 1

52−dk′
.

Proof. Suppose that the privacy condition fails for (Q,D,R). Then for all b, c, d >
0, there exist n, k′ > b log n, B ∈ {0, 1}n, block indices i �= j, and a circuit A
with 2ck′

gates, such that |αi,0t − αj,0t | ≥ 2−dk′
, where:

αi,v � Pr[((G, g), q) ← Q(i, T) : A((G, g
∏ t

x=1 pvx
x), T) = 1],

αj,v � Pr[((G, g), q) ← Q(j, T) : A((G, g
∏ t

x=1 pvx
x), T) = 1],

where v is a t-element integer vector and 0t is the zero vector, and where we
define T = (n, f1, f2,S, {Di}, 1k′

) for convenience. We now define two probabil-
ities representing A’s output when g is chosen uniformly at random from G (as
opposed to being a random quasi-generator of G):

βi,v � Pr[G Di←− Gi; g
R←− G : A((G, g

∏ t
x=1 pvx

x), T) = 1],

βj,v � Pr[G
Dj←−− Gj ; g

R←− G : A((G, g
∏ t

x=1 pvx
x), T) = 1].

Let ex be the unit vector in dimension x. If pvx
x is greater than 2f2(k,log n)+1 (the

maximum possible group order), then αi,v = αi,v−ex
since the distributions of

the element given to A are identical. Let v0 be s.t. εαα = |αi,v0−αj,v0 | is maximal
and s.t. p

v0,x
x ≤ 2f2(k,log n)+1 for all x ∈ [t]. Set εββ � |βi,v0 − βj,v0 |. Then, A′

can solve the decision subgroup problem instance for prime powers πi,πj with
advantage εββ simply by generating random g ∈ G and passing (G, g

∏ t
x=1 p

v0,x
x)

to A, and then outputting “i” if A outputs 1 and outputting “j” otherwise.
Let w ≥ v denote ∀x ∈ [t], wx ≥ vx. We express βi,v in terms of {αi,w : w ≥ v}

by noting that choosing an element of G uniformly at random is equivalent to
choosing a uniformly random quasi-generator and then exponentiating it by∏t

x=1 pwx−vx
x with probability (

∏t
x=1

px−1
px

)/(
∏t

x=1 pwx−vx
x). We obtain:

βi,v =

(
t∏

x=1

px − 1
px

)⎛⎝∑
w≥v

αi,w/(
t∏

x=1

pwx−vx
x)

⎞⎠ .

Since p1 > 2t,
∑

w≥v0
αi,w/(

∏t
x=1 p

wx−v0,x
x) < εαα

∏t
x=1

px

px−1 < εααet/(p1−1) <

εαα
√

e. By the triangle inequality, |βi,v0−βj,v0 | ≥ (εαα−(
√

e−1)εαα)(
∏t

x=1
px−1

px
)

≥ εαα(2 −
√

e)/(
√

e) > εαα/5. So, A has εββ ≥ εαα/5 ≥ (1/5)2−dk′
advantage

against the Decision Subgroup Problem for (πi,πj). The circuit complexity of
A′ is basically that of A, plus that needed to compute g

∏ t
x=1 p

v0,x
x . ��

812 C. Gentry and Z. Ramzan

6 Lessons from the Generic Group Model

To gain confidence in our computational assumption, we can consider the Deci-
sion Subgroup Problem’s vulnerability to generic attacks. The following theorem,
which is quite similar to a result by Damgard and Koprowski [8] on root extrac-
tion in generic groups, roughly states that, as long as the distributionsD0 andD1

each tend to output a group whose order is divisible by a large evenly-distributed
prime, the Decision Subgroup Problem is hard against generic attacks. In other
words, the security of the Decisional Subgroup Problem against generic attacks
depends less on the value of |H| (the order of the subgroup hidden in G) than
it does on the distribution of |G : H|.

Theorem 3. Let A be a generic algorithm for solving the Decision Subgroup
Problem on (
, k,π0,π1,D0,D1) that makes at most m oracle queries. Let S be a
set of bit strings of cardinality at least 22
. For group Gi, let θ(Gi) be the largest
prime divisor of |Gi| that does not divide π0π1. Let α(Di) = maxq{Pr[θ(Gi) =

q | Gi
Di←−− Gi]}. Let β(Di,M) be the probability that θ(Gi) ≤ M for distri-

bution Di; let β(D,M) = max{β(D0,M), β(D1,M)}. Now, randomly choose
b

R←− {0, 1}, Gb
Db←−− Gb, and a random mapping σb : Gb → S. Then,∣∣∣∣Pr

[
A(O)(S,
, k,π0,π1,D0,D1) = b

]
− 1

2

∣∣∣∣ ≤ m2

(
mα(D) + β(D,M) +

1
M

)
/2,

where the probability is over the random bits of the oracle and A.

Proof. See full version of this paper.

Let’s choose parameters to give Theorem 3 meaning. Suppose 2k/max{πi} ≥
2k′

, and define Di to choose |Gi| as follows: choose a uniformly random prime q
from [2k′

, 2k′+1] \ P (where P is the set of primes dividing π0π1) and an integer
d from the set of integers in the interval [2k/qπi, 2k+1/qπi] whose prime divisors
are all less than q; set |Gi| = πiqd. Then, by the Prime Number Theorem,
α(D) ≈ 2−k′+log k′

ln 2. If we set M = 2k′
, then β(D,M) = 0. Once we insert

these values into Theorem 3, we find that a generic algorithm for solving the
Decision Subgroup Problem for such Di takes Ω(2(k′−log k′)/3) oracle queries.
Thus, when 2k/max{πi} ≥ 2k′

, the Extended Decision Subgroup Assumption is
absolutely true in the generic group model.

Now, let’s consider how well our scheme could perform, if generic attacks
were the only security concern. First, consider the rate of our scheme. If we
set k =
k′ +
 + log pt�, then 2k/max{πi} ≥ 2k′

as required above, while the
rate f1(k′, log n)/f2(k′, log n) = k/
 can be arbitrarily close to 1. Also, since k′ =
b log n, log pt = O(log n), and
 can be chosen to be O(log n), k can also be purely
logarithmic in n. Thus, generic attacks do not prevent our scheme from achieving
an optimal rate (approaching 1) for blocks, and minimal communication O(log n)
for private bit retrieval.

Single-Database Private Information Retrieval 813

7 Instantiating Groups with Hidden Smooth Subgroups

Up to this point, we have discussed our PIR scheme and its performance and se-
curity properties in a general way, without discussing in detail how to instantiate
the group G securely. One way to instantiate G is using a composite modulus,
as in [2]. For example, to construct a modulus m that Φ-hides π, one may choose
a random “semi-safe” prime Q0 = 2q0π+1 for prime q0 and a random semi-safe
prime Q1 = 2dq1 + 1 for prime q1 and d chosen uniformly from a large inter-
val, and set m = Q0Q1. Then, m should have good uniformity properties, even
modulo the primes dividing π.

Cachin, Micali and Stadler [2] note that when a divisor π ≥ m1/4 of (Q0− 1)
is known, however, it is easy to decide whether π divides φ(m); in particular,
given m = Q0Q1 and divisor π ≥ m1/4 of (Q0 − 1), one can factor m using
Coppersmith’s method [7], [6] – a lattice-based attack. An abundance of work
relating to Coppersmith’s method has appeared in the literature, the most recent
being May’s Eurocrypt 2005 paper [12], which provides a unifying framework for
most of the results. His Corollary 14 applies to the Φ-hiding situation; it states:

Corollary 14 (A. May). Let f(x) ∈ Z[X] be a polynomial of degree δ. Let m
be a composite number of unknown factorization with divisor Q0 ≥ mβ. Then,
we can find all points x0 ∈ Z satisfying f(x0) = Q0 in time polynomial in log m

and δ if |x0| ≤ mβ2
.

Setting β = 1/2 and f(x) = πx + 1, the algorithm will give us the divisor Q0 =
πc + 1 in polynomial time, since c ≈ Q0/π < m1/4 for π > m1/4. As May notes,
this |x0| ≤ m1/4 bound occurs frequently in the literature on Coppersmith’s
method. Since the algorithm works well (in polynomial time) when π > m1/4,
one might expect that the algorithm’s performance declines only gradually –
e.g., so that for π > m1/5, the algorithm (while not polynomial-time) would
be only slightly super-polynomial, perhaps because of the inefficiency of lattice
reduction. However, this is not true; when (log m)/(log π) is larger than 4, the
target vector (i.e., the one that would help us factor m) is not even the shortest
vector in the lattice; thus, even perfect lattice reduction algorithms would not,
by themselves, make the attack work.

These considerations give us confidence that, as long as (log m)/(log π) > 4
(perhaps by a “comfortable” margin), then the Φ-hiding assumption, as out-
lined above, is hard. Thus, it seems plausible that the bit-length of m only
needs to be a constant factor greater than log π. This allows our PIR scheme
to achieve constant rate when instantiated with groups modulo composite num-
bers. A drawback of using composite moduli is that, as mentioned before, we need
log m = Ω(log3−o(1) n), due to the number field sieve [10]. This makes our PIR
scheme somewhat communication-inefficient for short block sizes d, even though
it is most efficient among the single-database PIR schemes that currently exist.

Of course, it would be preferable to instantiate our scheme using groups for
which the number field sieve is inapplicable if this could be done securely. For
example, one might try elliptic curve groups. However, algorithms exist to find
the orders of elliptic curves over finite fields; when we try using the compositum of

814 C. Gentry and Z. Ramzan

finite fields, we seem to be reverting back to a factorization problem. Class groups
are another interesting alternative, since currently the best known algorithms for
attacking class groups (e.g., determining their order) have quadratic-sieve-type
complexity. Unfortunately, in our scheme, the user generating the group must
know its order for response retrieval; currently, there are no efficient algorithms
that would allow the user to generate a class group with known partially-smooth
order, as required by our scheme.

8 Conclusion and Open Problems

We described single-database computational block retrieval schemes based on
the decision subgroup problem with communication complexity O(k +d), where
d is the size of the block to be retrieved and k is the security parameter. Asymp-
totically, this is about as good as one might expect since there is only an additive
communication overhead of the security parameter k. Indeed, our scheme has
better asymptotic performance compared to previous schemes.

We leave it as an open problem to construct an instantiation of our scheme
that achieves rate arbitrarily close to 1, while circumventing Coppersmith’s at-
tack. Clearly, based on our analysis of the Decision Subgroup Problem in the
generic group model, any attack that prevents the scheme from achieving rate
close to 1 must exploit the encoding of the elements.

Acknowledgments. We thank Phil Mackenzie, David Woodruff, Helger Lip-
maa, Yuval Ishai, and the anonymous referees for fruitful comments.

References

[1] A. Beimel, Y. Ishai, E. Kushilevitz, and J. F. Raymond. Breaking the O(n1/(2k−1))
Barrier for Information-Theoretic Private Information Retrieval, FOCS 2002.

[2] C. Cachin, S. Micali, M. Stadler, Computational Private Information Retrieval
with Polylogarithmic Communication, Eurocrypt 1999.

[3] Y. Chang. Single-Database Private Information Retreival with Logarithmic Com-
munication, ACISP 2004.

[4] B. Chor and N. Gilboa, Comput. Private Information Retrieval, STOC 1997.

[5] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, Private Information Re-
trieval, Journal of the ACM, 45, 1998. Earlier version in FOCS 95.

[6] D. Coppersmith, Finding a Small Root of a Bivariate Integer Equation; Factoring
with High Bits Known, Eurocrypt 1996.

[7] D. Coppersmith, Finding a Small Root of a Univ. Mod. Equation, Eurocrypt 1996.

[8] I. Damgard and M. Koprowski, Generic Lower Bounds for Root Extraction and
Signature Schems in General Groups, Eurocrypt 2002.

[9] E. Kushilevits and R. Ostrovsky, Replication is not needed: single database, com-
putationally private information Retrieval. FOCS 1997.

[10] A.K. Lenstra and H.W. Lenstra, Jr., (eds.), The Development of the Number Field
Sieve, Lecture Notes in Mathematics 1554, Springer-Verlag, 1995.

Single-Database Private Information Retrieval 815

[11] H. Lipmaa, An Oblivious Transfer Protocol with Log-Squared Communication.
Cryptology ePrint Archive, 2004/063.

[12] A. May, A Tool Kit for Finding Small Roots of Bivariate Polynomials over the
Integers, Eurocrypt 2005.

[13] M. Naor and B. Pinkas, Obl. Transfer and Polynomial Evaluation, STOC 1999.
[14] S.C. Pohlig and M. Hellman. An Improved Algorithm for Computing Logarithms

Over GF(p) and its Crypt. Significance, IEEE Trans. Inf. Th. IT-24 (1978).
[15] J.B. Rosser and L. Schoenfeld, Sharper Bounds for Chebyshev Functions θ(x) and

ψ(x), Math. Comput. 29, 243-269, 1975.
[16] J.P. Stern, A New and Efficient All or Nothing Disclosure of Secrets Protocol,

Asiacrypt 1998.

Concurrent Zero Knowledge in the
Public-Key Model�

Giovanni Di Crescenzo1 and Ivan Visconti2

1 Telcordia, Piscataway, NJ, USA
giovanni@research.telcordia.com

2 Dip. di Inf. ed Appl., Univ. di Salerno, Baronissi, Italy
visconti@dia.unisa.it

Abstract. The concurrent setting for Zero-Knowledge protocols is very
challenging as it requires protocols to remain secure even when sev-
eral parties execute the same protocol concurrently. Indeed, it has been
proved that achieving concurrent security for (black-box-simulation) zero-
knowledge protocols in standard models requires a non-constant number
of rounds, thus severely limiting efficiency. As a result, a few models
with additional setup or network assumptions have been introduced to
present constant-round concurrently-secure zero-knowledge protocols for
all languages in NP.

In this paper we consider the bare public-key model, which is known
to have very minimal setup assumptions, and we present the first con-
stant round and concurrently secure zero-knowledge argument for any
languages in NP, under standard intractability assumptions. In fact,
our protocol requires 4 rounds and is therefore round-optimal, is a proof
of knowledge, and is time-efficient, in the sense that it is based on a
tranformation that does not require any expensive NP reduction from
prover or verifier. One 5-round variant of our protocol can be based on
the minimal assumption of the existence of a one-way function.

1 Introduction

The classical notion of a zero knowledge proof (a proof that reveals no additional
information other than the theorem being true, even to malicious verifiers) was
introduced in [20] and, since its introduction, it has been widely used to prove
the security of distributed protocols for several applications. Motivated by the
use of such protocols in networks like the Internet, several researchers recently
realized the need of extending the security properties of zero-knowledge proto-
cols to multi-party and asynchronous settings. In particular, the notion of con-
current zero-knowledge considers the case where several concurrent executions
of the same protocol can take place and a malicious adversary may control the
scheduling of the messages and corrupt multiple provers or verifiers in order to vi-

� Copyright Telcordia. The second author releases his portion of the copyright to
Springer-Verlag. Part of the second author’s work done while being a post-doctoral
fellow at the Dép. d’Inf. of the Ecole Normale Supérieure in Paris, France; and part
supported by NoE ECRYPT under contract IST-2002-507932.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 816–827, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Concurrent Zero Knowledge in the Public-Key Model 817

olate the soundness or zero-knowledge properties. This notion is being studied in
a (standard) model without additional setup infrastructures or network assump-
tions, where several protocols have been proposed [26, 21, 25], but super-constant
lower bounds on the round complexity have been given (see, e.g. [6]). As these
bounds severely limit the applicability of these protocols and this notion, other
models are being studied to achieve efficient, and, in particular, constant-round
concurrent zero-knowledge protocols. Specifically, a model with synchronous net-
work assumptions is studied in [8]; the timing model [15, 16, 18] makes other
assumptions on the network asynchronicity; the preprocessing model [11] re-
quires an interactive preprocessing stage involving all parties; the common ran-
dom string model [3], and its various extensions, require a trusted party or
a trusted public auxiliary string. The model that seems to have the minimal
set-up or network assumptions is the bare public-key (BPK) model [5], where
verifiers register their public key in a public file during a set-up stage, and
there is no interactive preprocessing stage, trusted third party, trusted string,
or assumption on the asynchronicity of the network. In this model, both the
concurrent soundness and zero-knowledge notions are harder to achieve than
their non-concurrent variants, as noted in [22], who discussed four distinct and
increasingly stronger soundness notions: one-time, sequential, concurrent and
resettable soundness. Indeed, the constant-round concurrent zero-knowledge (in
fact, resettable zero-knowledge, a stronger notion from [5]) protocols in the
BPK model presented in [5, 22] only enjoy sequential soundness while it is con-
jectured that they do not satisfy concurrent soundness. Recently, [12] shows
constant-round concurrently sound resettable zero-knowledge arguments in the
BPK model, under non-standard assumptions on the hardness of computational
problems against subexponential adversaries; and [13] shows 3-round resettable
zero-knowledge arguments in a public-key model requiring stronger set-up as-
sumptions.

Our results. We obtain the first constant-round argument in the BPK model
with concurrent security (both soundness and zero-knowledge) under standard
intractability assumptions. Our protocol is based on number-theoretic hardness
assumptions, and is time-efficient, in the sense that it is based on a tranforma-
tion not requiring inefficient NP reductions. Moreover, it has desirable round-
complexity and security in the BPK model, with respect to the black-box simu-
lation model, as:

1. it is a 4-round protocol and therefore optimal among concurrently sound or
concurrent zero-knowledge arguments (see [22, 19]), unless NP is in BPP;

2. it is a concurrent zero-knowledge argument of knowledge and the stronger
notion of resettable zero-knowledge arguments of knowledge only exists for
trivial relations (see [5]);

3. it is concurrently sound and the stronger notion of resettably sound zero-
knowledge protocols can only be obtained for languages in BPP (see [22, 1]).

One 5-round variant of our protocol can be based on the minimal assumption
of the existence of a one-way function. Both our constructions are arguments of

818 G. Di Crescenzo and I. Visconti

knowledge and crucially use equivocal commitment schemes in the BPK model
that withstand certain types of malleability attacks.

2 Definitions

Model description. The BPK model can be seen as a relaxed version of two well-
known models in Cryptography: the Public-Key Infrastructure model, (one main
difference being in that the BPK model does not deal with certification issues
and therefore we do not discuss certification authorities) and the Preprocessing
model (one main difference being in that in the BPK model the preprocessing is
reduced to users non-interactively posting public keys on a public file). Formally,
this model assumes that: 1) there exists a public file F that is a collection of
records, each containing a public key; 2) an (honest) prover is an interactive
deterministic polynomial-time Turing machine that takes as input a security
parameter 1n, F , an n-bit string x, such that x ∈ L, for some language L, an
auxiliary input y, a reference to an entry of F and a random tape; 3) an (honest)
verifier V is an interactive deterministic polynomial-time Turing machine that
works in the following two stages: (a) on input a security parameter 1n and a
random tape, V generates a key pair (pk, sk) and stores the public key pk in
one entry of the file F ; (b) later, V takes as input the secret key sk, a statement
x ∈ L and a random string, and outputs “accept” or “reject” after performing
an interactive protocol with a prover; 4) the first interaction between a prover
and a verifier starts after all verifiers have completed their first stage.

Malicious provers in the BPK model. Let s be a positive polynomial. We say
that P � is an s-concurrent malicious prover if it is a probabilistic polynomial-
time Turing Machine that, on input 1n and PK, can perform the s(n) interactive
protocols with V as follows: 1) if P � is already running i protocols 0 ≤ i < s(n)
he can choose a new statement xi to be proved and start a new protocol with V
with xi ∈ L as statement; 2) he can output a message for any running protocol,
receive immediately the response from V and continue. (We assume that each
message is unambiguously associated with only one of the protocols.) Given an s-
concurrent malicious prover P � and an honest verifier V , an s-concurrent attack
is performed as follows: 1) the first stage of V is run on input 1n and a random
string to obtain pair (pk, sk); 2) P � is run on input 1n and pk so to obtain an
n-bit string x1; 3) whenever P � starts a new protocol choosing an n-bit string
xi, V uses inputs xi, a new random string ri and sk, and interacts with P �.

Malicious verifiers in the BPK model. We say that V � is an s-concurrent mali-
cious verifier if it is probabilistic polynomial-time Turing Machine that, on input
1n and PK, can perform the following s(n) interactive protocols with P : 1) if
V � is already running i protocols 0 ≤ i < s(n) he can decide the i-th protocol to
be started with P ; 2) he can output a message for any running protocol, receive
immediately the next message from P and continue. Given an s-concurrent ma-
licious verifier V � and an honest prover P , an s-concurrent attack is performed
as follows: 1) in its first stage, V �, on input 1n and a random string, generates

Concurrent Zero Knowledge in the Public-Key Model 819

a public file F ; 2) V � is run on input 1n and F so to start the first protocol
with P ; 3) whenever V � starts a new protocol, P uses a new statement, a new
random string, and interacts with V �.

We now define concurrently sound and zero-knowledge protocols in the BPK
model.

Definition 1. Given a language L ∈ NP, and its corresponding relation RL,
we say that a pair 〈P, V 〉 is complete for L, if for all n-bit strings x ∈ L and any
witness y such that (x, y) ∈ RL, the probability that V , at the end of the interac-
tion with P on input y, outputs “reject”, is negligible in n. We say that 〈P, V 〉
is concurrently-sound over L if, for any false statement “x ∈ L”, for all positive
polynomials s, for all s-concurrent malicious provers P �, the probability that in
an execution of an s-concurrent attack V outputs “accept” for such a statement
is negligible in n. Finally, we say that 〈P, V 〉 is concurrently-zero-knowledge over
L if for all positive polynomials s, for any s-concurrent malicious verifiers V �,
there exists a probabilistic polynomial-time algorithm SV � , called the simulator,
such that for all x1, . . . , xs(n) ∈ L, the probability distributions {viewPV �(x̄)} and
{SV �(x̄)} are computationally indistinguishable, where {viewPV �(x̄)} is the dis-
tribution of the transcript seen by V � on its input tape (i.e., x̄ = x1, . . . , xs(n)),
random tape and communication tape during its interaction with P .

3 Equivocal Commitments in the BPK Model

Crucial tools towards our main results are equivocal commitment schemes in
the BPK model that maintain security properties against certain concurrent
adversaries. We now describe these schemes after reviewing the notions of (con-
ventional) commitment schemes and equivocal commitment schemes.

Commitment schemes. Informally speaking, a commitment scheme (sen, rec)
is a two-phase interactive protocol between two probabilistic polynomial time
parties sen and rec, called the sender and the receiver, respectively, such that the
following is true. sen commits to a bit b in the first phase (called the commitment
phase); in the second phase (called the decommitment phase) sen convinces rec
of the value of the bit b committed in the first phase. A commitment scheme
has three requirements. First, if sen and rec behave honestly, then at the end
of the decommitment phase rec is convinced that sen committed to bit b with
high probability (this is the correctness requirement). Then, no matter which
polynomial-time computable strategy rec� uses in the commitment phase, rec�

is not able to guess such a bit with probability significantly better than its a
priori probability before such phase (this is the hiding property). Finally, for any
strategy played by a polynomial-time sen�, the probability that sen� can later
decommit both as 0 and as 1 is negligible (this is the binding property).

Equivocal commitment schemes. Informally speaking, a commitment scheme
(sen,rec) is equivocal if there exists an efficient equivocator algorithm returning
a transcript leading to a faked commitment key such that: (a) this commitment

820 G. Di Crescenzo and I. Visconti

can be decommitted both as 0 and as 1, (the key equivocation property) and
(b) the transcript is indistinguishable from a real execution (the transcript in-
distinguishability property). The advantage of the equivocator algorithm over
a real committer is usually realized by rewinding of the receiver, or auxiliary
information about a common reference string. Equivocal commitment schemes
are a strict generalization of trapdoor commitment schemes [4] and and have
been already applied in several works towards the construction of various types
of commitments and zero-knowledge proofs. In particular, [11] uses equivocal
commitment schemes to construct concurrent zero-knowledge protocols in the
preprocessing model.

Constructing equivocal commitments in the BPK model. Following [11], a first
natural step towards our goal of constructing concurrently zero-knowledge and
concurrently sound protocols in the BPK model could be that of constructing an
equivocal commitment scheme in this model. As we will see, this both requires
some work and turns out not be enough due to a subtle malleability attack by
a concurrent adversary. A first candidate for such a construction could be the
perfectly-hiding commitment scheme in [24], which we now describe.

Let p, q be primes such that p = 2q+1 and let Gq denote the only subgroup of
Z�

p of order q. We note that it can be efficiently decided whether an integer a is in
Gq, by checking that aq ≡ 1mod p. Moreover, any element of Gq different from 1
generates such a subgroup. For any a, b ∈ Gq, if b �= 1 the discrete logarithm of a
in base b is the integer x such that bx = amod p. In order to commit to an integer
z ∈ Zq, the committer uniformly chooses r ∈ Zq, computes com = gzhr mod p,
and sends com to the receiver. In order to decommit com as z, the committer sends
the pair (z, r) to the receiver, who checks that com = gzhr mod p. The hiding
property of this scheme follows from the fact that com is uniformly distributed
in Gq for any z; the binding property follows from the fact that if a committer
is able to successfully decommit a string com both as z and z′ with z′ �= z, then
he can be used to compute the discrete logarithm of h in base g. A simulator
recovering, either through rewinding or as an auxiliary input, the value α such
that gα = h, can open a commitment com = gzhr mod p of z as z′ by sending
pair (z′, r′ = r + (z − z′)α−1 mod q) as a decommitment.

One way to use this scheme in the BPK model goes as follows. The re-
ceiver sets her public key equal to values (p, q, g,h) chosen as above, and proves,
using well-known 3-round witness-indistinguishable proofs of knowledge (e.g.,
[27]), that he knows the discrete logarithm of h modulo p. The committer com-
putes the commitment key com and the decommitment key (z, r) as above.
While the commitment is equivocal as an equivocator can extract α from the
proof of knowledge, it is unclear how to prove the binding property because of
the conflicting requirements of computing the discrete logarithm of h from a
dishonest committer, and simulating the proof of knowledge to the dishonest
committer.

Achieving the binding property. A first idea to fix the above problem, based on
an approach of [23], is to extend the previously discussed commitment scheme so
that the receiver’s public key has two integers h0,h1 instead of one. The receiver’s

Concurrent Zero Knowledge in the Public-Key Model 821

public key is then a tuple (p, q, g,h0,h1) where p, q, g are as before, h0,h1 ∈ Gq,
and hi = gαi mod p, for i = 0, 1 and some α0, α1. In this case, the receiver
proves, using well-known 3-round witness-indistinguishable proofs of knowledge
(e.g., [7]), that he knows the discrete logarithm modulo p of one among h0,h1.
A commitment to a string z can be obtained by randomly choosing u, v ∈ Zq,
and computing com = guhv0h

z−v
1 mod p and the decommitment is implemented

by sending (u, v, z) and verifying that com = guhv0h
z−v
1 mod p. We will refer to

this scheme as EQdlog.
The correctness and hiding properties of EQdlog directly follow from the ana-

logue properties of the scheme in [24]. To see that the scheme enjoys the equiv-
ocation property, consider an equivocator that extracts one of the two values
α0, α1 from the receiver’s proof of knowledge, and then computes a commitment
com as com = guhv0h

z−v
1 mod p. Later, on input one of the two trapdoors α0, α1,

it can compute a decommitment (u′, v′, z′) as z′ ∈ Zq as follows:

1. on input α0 such that gα0 = h0, set v′ = z′+v−zmod q and u′ = u+α0(z−
z′)mod q;

2. on input α1 such that gα1 = h1, set v′ = v and u′ = u+ α1(z − z′)mod q.

It can be seen that in both cases (u′, v′, z′) is a valid decommitment of com as z′

and that the distribution of the tuples (com,u′, v′, z′) is perfectly indistinguish-
able from that produced by a honest committer on input z′.

To see that EQdlog is computationally binding, we show an efficient algorithm
DLbreak that can randomly choose b ∈ {0, 1} and use αb to compute the prover’s
messages in the witness-indistinguishable proofs of knowledge. Later, for any two
different decommitments (u, v, z), (u′, v′, z′) of a commitment com (i.e., z �= z′),
it can succeed in computing α1−b on input αb, with probability at least 1/2.
Specifically, we consider the following two cases:

1. v = v′mod q: notice that z �= z′mod q and thus z′ − v′ �= z − vmod q; since
gu+α0v+α1(z−v) = gu

′+α0v
′+α1(z

′−v′) mod p, if b = 0 then DLbreak computes
α1 = (u− u′)(z′ − v′ − z + v)−1 mod q;

2. v �= v′mod q: since gu+α0v+α1(z−v) = gu
′+α0v

′+α1(z
′−v′) mod p, if b = 1 then

DLbreak computes α0 = (u′ − u+ α1(z′ − v′ − z + v))(v − v′)−1 mod q.

A variant based on any one-way function. A variant of EQdlog, denoted as
EQoway, can be based on the (minimal) assumption of the existence of a one-
way function f . We now only sketch the main ideas behind scheme EQoway.
The receiver computes a public key pk = (y0, y1), where yj = f(xj), for xj

randomly chosen in {0, 1}n and j = 0, 1. The receiver proves, using a 3-round
witness-indistinguishable system (such as a parallel repetition of the protocol
with soundness error 1/2 from [2]), that he knows at least one of (x0, x1). The
committer uses the same language and the same atomic proof system with sound-
ness error 1/2, as follows. For this protocol, there exists a simulator that, on
input b ∈ {0, 1}, can compute a first message from the prover and an answer to
the verifier’s challenge, if equal to b. We use the first message returned by the
simulator as a commitment key and the answer as a decommitment key. We can
prove the following

822 G. Di Crescenzo and I. Visconti

Theorem 1. EQdlog (resp. EQoway) is an equivocal commitment scheme in the
BPK model for which the correctness, hiding, and equivocation property hold
unconditionally, and the binding property holds assuming the hardness of com-
puting discrete logarithms modulo primes p of the form p = 2q + 1, for q prime
(resp., assuming the existence of a one-way function).

Malleability attacks during concurrent executions. Both schemes from Theorem 1
are not enough to construct concurrently sound and zero-knowledge arguments
in the BPK model, as their properties may not hold under concurrent attacks
when the scheme is used as a subprotocol in a larger protocol. Assume, for in-
stance, that we use a constant-round honest-verifier zero-knowledge proof system
for an NP language L, denoted as BL, such as the one in [2], and implement
the commitment scheme necessary in this protocol by using, say, scheme EQdlog.
The resulting protocol has 4 messages: m1 (containing the first message from
the proof of knowledge in EQdlog), m2 (containing the second message from
the proof of knowledge and the commitment keys for BL computed as com in
EQdlog), m3 (containing the third message from the proof of knowledge in EQdlog

and the challenge message from BL), and m4 (containing the decommitments
as in EQdlog and the answer message from BL). While one would expect the
hiding and equivocation property of the commitment to still hold, this may not
be true for the binding property. In fact, we show an example of two concur-
rent executions between a malicious prover P � and two incarnations of the same
verifier V, V ′, where it is unclear how to prevent a malleability attack from P �

in the execution with V using the public key and the proof of knowledge from
the execution with V ′. Specifically, the schedule decided by a malicious prover
P � is (m1,m1′,m2,m3,m2′,m3′,m4,m4′), and P � might decide to compute the
commitments in m2 with some malleability attack over m1′ and the public key
of V ′. Now, assume P � tries to prove a false statement to V ; we then see that
the known approach in proving that P � only succeeds with negligible proba-
bility, fails. Indeed, in trying to extract two different decommitments from the
proof given by P � on a false statement to V , the rewind performed on P � while
interacting with V and possibly changing message m3, also rewinds the proof
given by V ′ to P � and may change message m2′ (as m2′ is carefully scheduled
by P � to happen after m3). As a consequence, the secret key αb extracted from
P � could always be the same used by V ′ in its witness indistinguishable proof
of knowledge, just due to a successful malleability attack, and thus not violating
the witness indistinguishability of the proof of knowledge used.1

Our atomic commitment scheme. Even if we will not use EQdlog or EQoway as
a black box in our main construction, we will crucially use their components
and properties. To avoid the above malleability attack, we cannot use known
round-efficient non-malleable commitment schemes, as some of these solutions
do not preserve their security when executed in a concurrent setting (e.g., [17]),
or are designed in the stronger public random string model (e.g., [10]). Instead,

1 We note that a similar problem applies to (unrefereed) protocols in [28], that con-
sequently do not seem to satisfy concurrent soundness.

Concurrent Zero Knowledge in the Public-Key Model 823

we observe that we do not need the full power of non-malleability, and avoid
the above attacks by requiring that the committer, after computing an equiv-
ocal commitment key eqcom and its decommitment key eqdec as in scheme
EQdlog (resp., EQoway), additionally commits to eqdec at commitment stage
and using a statistically-binding commitment scheme, that can be implemented
as a simple application of the El-Gamal encryption scheme (resp., starting from
any one-way function). To prevent the loss of the equivocation property, we ex-
tend an idea of [9] so that it can be applied to the BPK model, again using
statistically-binding commitments. Formally, we define an atomic commitment
scheme (sen,rec) using discrete logarithms (the analogue description using one-
way functions is similarly obtained), as follows. The common input to sen and
rec is public key (p, q, g,h0,h1), the private input of sen is the bit or string z
to be committed.

Commitment Phase:
1. sen checks that p = 2q + 1, that p, q are primes, that g is a generator of Gq

and that h0,h1 are in Gq.
2. sen commits to z by randomly choosing u, v ∈ Zq and by computing the com-

mitment com = (eqcom, sbcom0, sbcom1), where eqcom = guhv0h
z−v
1 mod p,

sbcom1−b is a statistically-binding commitment of a random chosen string
while sbcomb is a statistically-binding commitment of (u, v) for b ∈ {0, 1}.

Decommitment Phase:
1. sen decommits z by sending (u, v, z) and the decommitment that corre-

sponds to the statistically-binding commitment sbcomb (instead sbcom1−b is
not opened).

2. rec returns z if eqcom = guhv0h
z−v
1 mod p and one between sbcom0 and

sbcom1 has been correctly opened and corresponds to a commitment of (u, v).
We note that a polynomial-time malicious committer cannot change the com-
mitted bit unless he both knows two valid decommitments for opening eqcom
and commits to them in sbcomb and sbcom1−b at commitment phase. In partic-
ular, the previously described concurrent scheduling does not help a malicious
committer in computing the decommitted value at decommitment phase.

4 Concurrent Zero Knowledge and Soundness

We now present our concurrently sound and concurrently zero-knowledge argu-
ment system for any NP-language in the BPK model. Most importantly, it only
uses hardness assumptions with respect to polynomial-time adversaries, while
[12] obtains the same result (in fact, a stronger one) with hardness assumptions
against subexponential-time adversaries. We obtain the following

Theorem 2. Let L be a language in NP. Assuming the intractability of the
DDH problem for integers of the form p = 2q + 1, for p, q primes, in the BPK
model, there exists (constructively) a 4-round concurrently sound and concur-
rently zero-knowledge argument system for L. Moreover, this protocol is also an
argument of knowledge for the relation RL associated with L.

824 G. Di Crescenzo and I. Visconti

The above result is obtained using tools from commitment scheme EQdlog. If,
instead, we start from EQoway, we can reduce the assumption to the existence
of a one-way function, but we obtain a 5-round and less efficient protocol.

Construction of our argument system. Our protocol (P, V), depicted in Figure
1, uses the following tools:
1. The atomic commitment scheme (sen,rec) constructed in Section 3 to com-

pute commitments atcom = (eqcom, sbcom0, sbcom1).
2. A 3-round witness indistinguishable proof of knowledge πv given by the ver-

ifier in order to prove knowledge of one of the two secret keys corresponding
to his public key. We further need a partial witness-independence property
from πv: the message sent at its first round should have distribution indepen-
dent from the value of any witness for the theorem proved. We can obtain
such a protocol using [27, 7]. (For the variant based on one-way functions we
can use [2], requiring 4 rounds.)

3. A 3-round public-coin honest-verifier zero-knowledge argument of knowledge
πp for any NP-complete language L with the following special structure and
property. We denote by (a, c, z) the three messages exchanged by prover P
and verifier V and assume that (a, c, z) is an l-times parallel iteration of
a basic protocol with soundness 1/2, and a single-bit challenge. Then we
assume that πp satisfies a special witness-extraction property (specifically, an
extractor, given two accepting transcripts (a, c, z) and (a, c′, z′) with c′ �= c,
can compute a witness y for x). We can obtain such a protocol from [2].

Properties of our argument system. The completeness follows by the complete-
ness of protocols πp,πv and the correctness of scheme (sen,rec). Witness extrac-
tion also follows from the witness extraction of protocol πp, the completeness
of πv and the binding property of (sen,rec). For the concurrent zero-knowledge
property (when a concurrent malicious verifier is considered), we show a simu-
lator S that extracts the secret keys from the arguments of knowledge πv given
by the adversarial verifier V � and later uses them in order to compute equivocal
commitments. Note that since S performs a rewind, he could run in exponential-
time when concurrent executions are performed. We show that after an expected
polynomial number of rewinds S can complete the simulation without any fur-
ther rewinds and thus run in expected polynomial-time.

The most interesting part of our proof is verifying the concurrent soundness
property. Assume by contradiction that the protocol is not concurrently sound,
thus there exists a malicious s-concurrent prover P � that in a concurrent attack
succeeds with non-negligible probability in completing a proof for a false state-
ment “x ∈ L”. We show a probabilistic polynomial-time algorithm A that, using
black-box access to P �, breaks the discrete logarithm assumption.

We now describe algorithm A. On input as challenge a discrete logarithm
instance (p, q, g,h) A randomly chooses α ∈ Zq, b ∈ {0, 1}, and the session
number sj ∈ {1, . . . , s} (trying to guess the index of the proof in which P �

will succeed in cheating), and stores public key pki = (p, q, g,h0,h1), where
hb = gα,h1−b = h. Note that A knows the secret key corresponding to pki.

Concurrent Zero Knowledge in the Public-Key Model 825

Common input: the public file F , n-bit string x ∈ L, index i specifying the
entry pki = (p, q, g, h0, h1) of F .
P ’s private input: a witness y for x ∈ L.
V ’s private input: a secret key α.

V -P -PoK (rounds 1, 2, 3): V and P engage in the 3-round witness-
indistinguishable protocol πv in which V proves knowledge of α such that
gα = h0 mod p or gα = h1 mod p.
P -round-2:

1. compute l atomic commitments atcomc = (atcom1, . . . , atcoml) along
with the decommitment atdecc = (atdec1, . . . , atdecl) of l random bits
c1, . . . , cl by using public key pki;

2. compute the first round message a of protocol πp for proving “x ∈ L”;
3. send atcomc, a to V .

V -round-3:
1. compute the second l-bit message c of protocol πp;
2. send c to P .

P -round-4:
1. compute the third message z of protocol πp for “x ∈ L” by using as
challenge ĉ = c⊕ (c1| · · · |cl);

2. send z, atdecc, ĉ to V .
V -decision: accept if atdecc is a valid decommitment of atcomc as ĉ ⊕ c on
public key pki, and (x, a, ĉ, z) is an accepting transcript for πp.

Fig. 1. The four-round concurrently sound and concurrently zero-knowledge argument
of knowledge for any NP language in the BPK model

For all the proof sessions, A interacts with an s-concurrent malicious prover
P � during a concurrent attack. In particular in all but the sj-th session, A
works as an honest verifier, by using α to run the prover’s algorithm of πv. In
correspondence with the sj-th session, A uses the following rewind strategy.

1. The first time that A runs the session, he works as an honest verifier. After
the 4-th round A logs the accepting transcript (a, ĉ, z) of the honest-verifier
zero-knowledge proof πp given by the prover. Then A rewinds the prover so
that round V -round-3 can be played again.

2. A plays round V -round-3, by choosing random challenges c′ �= c until he
obtains an accepting transcript (a, ĉ′, z′) for protocol πp by the prover.

If ĉ �= ĉ′, by the special witness extraction property of the honest-verifier zero-
knowledge proof of knowledge πp, A obtains a witness for x ∈ L and this contra-
dicts the assumption that “x �∈ L”. If instead ĉ = ĉ′ then for each t ∈ {1, . . . , l}
such that the t-th bit of c′ is different from the t-th bit of c, the corresponding
t-th commitment atcomt in atcomc has been opened as both 0 and 1. We note
that the probability that this happens because P � reveals two decommitments
of any among commitments sbcom0, sbcom1 contained in atcomc is exponentially

826 G. Di Crescenzo and I. Visconti

small because the commitment scheme used is statistically binding. Therefore
P � opens in two different ways commitment eqcom. Then A selects the pairs
that correspond to different openings and for each of them, say the t-th, A runs
DLbreak on input α, eqcomt and the t-th pair of decommitments. For j = 0, 1,
let ski,j be such that gski,j = hj mod p and ski,b = α in pki. In case the output of
DLbreak is at least once secret key ski,1−b, then A obtains the discrete logarithm
of h in base g and thus we reach a contradiction.

Therefore we have only to deal with the case that DLbreak always outputs
ski,b, that is the same secret key that A knows. Notice that A uses the secret key
as witness to compute the third round of the witness indistinguishable proofs of
knowledge. Let m be the number of sessions played until the end of session sj . We
now use hybrid arguments to contradict the assumed witness indistinguishability
of the proof of knowledge. We know that using m times ski,0, DLbreak outputs
ski,0 and using m times ski,1, DLbreak outputs ski,1. Then there must be γ ∈
{1, . . . , m} such that by using ski,0 for the first γ− 1 times and ski,1 for the last
m−γ times, the witness used in the γ-th proof is the same that will be extracted
by DLbreak. Now we distinguish two different cases, according to whether the
γ-th proof has been completed before or after P -round-2 of session sj :

1. “before”: here the γ-th proof is not affected by rewinds performed so far,
and we can use this session to break the witness indistinguishability of πv;

2. “after”: here, rewinds to P � may rewind the γ-th proof. Then we can flip a
bit j to use one of the two ski,j as witness in the γ-th proof and the same
discrete logarithm is also given as input to DLbreak; as assumed so far, the
same discrete logarithm will be also given as output by DLbreak. However,
because of the statistical binding property of the commitment scheme sbcom,
except with exponentially small probability, all values decommitted by P � at
step P -round-4 of the γ-th proof are already fixed at step P -round-2 of the
same proof. Furthermore, at this step P � has seen at most step V -round-1
of the γ-th proof, and, by the partial witness-independence property of πv,
the message sent by A at this step has distribution independent from bit j.
Therefore, except with exponentially small probability, P � can guess j with
probability at most 1/2, which contradicts our assumptions so far.

Acknowledgments. We thank Pino Persiano and Yunlei Zhao for many inter-
esting discussions on zero knowledge protocols in various models.

References

1. B. Barak, O. Goldreich, S. Goldwasser, and Y. Lindell. Resettably-Sound Zero-
Znowledge and its Applications. In Proc. of IEEE FOCS 01.

2. M. Blum. How to Prove a Theorem So No One Else Can Claim It. In Proceedings
of the International Congress of Mathematicians, 1986.

3. M. Blum, A. De Santis, S. Micali, and G. Persiano. Non-Interactive Zero-
Knowledge. SIAM J. on Computing, 20(6):1084–1118, 1991.

4. J. Brassard, D. Chaum, and C. Crepéau. Minimum Disclosure Proofs of Knowledge.
Journal of Computer and System Science, 37(2):156–189, 1988.

Concurrent Zero Knowledge in the Public-Key Model 827

5. R. Canetti, O. Goldreich, S. Goldwasser, and S. Micali. Resettable Zero-
Knowledge. In Proc. of ACM STOC 2000.

6. R. Canetti, J. Kilian, E. Petrank, and A. Rosen. Black-Box Concurrent Zero-
Knowledge Requires ω(log n) Rounds. In Proc. of ACM STOC 2001.

7. A. De Santis, G. Di Crescenzo, G. Persiano, and M. Yung. On Monotone Formula
Closure of SZK. In Proc. of IEEE FOCS 1994.

8. G. Di Crescenzo. Concurrent Zero-Knowledge without Complexity Assumptions.
In Proc. of Cocoon 2000, LNCS, Springer-Verlag.

9. G. Di Crescenzo. Equivocable and Extractable Commitment Schemes. In Proc. of
Security in Communication Networks 2002, LNCS, Springer-Verlag.

10. G. Di Crescenzo, J. Katz, R. Ostrovsky and A. Smith. Efficient and Non-Interactive
Non-Malleable Commitment. In Proc. of Eurocrypt 2001, LNCS, Springer-Verlag.

11. G. Di Crescenzo and R. Ostrovsky. On Concurrent Zero-Knowledge with Pre-
processing. In Proc. of CRYPTO 99, LNCS, Springer-Verlag.

12. G. Di Crescenzo, G. Persiano, and I. Visconti. Constant-Round Resettable Zero
Knowledge with Concurrent Soundness in the Bare Public-Key Model. In Proc. of
CRYPTO 04, LNCS, Springer-Verlag.

13. G. Di Crescenzo, G. Persiano, and I. Visconti. Improved Setup Assumptions for
3-Round Resettable Zero Knowledge. In Proc. of Asiacrypt ’04, LNCS, Springer-
Verlag.

14. D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. SIAM J. on
Computing, 30(2):391–437, 2000.

15. C. Dwork, M. Naor, and A. Sahai. Concurrent Zero-Knowledge. In Proc. of ACM
STOC 2001.

16. C. Dwork and A. Sahai. Concurrent Zero-Knowledge: Reducing the Need for
Timing Constraints. In Proc. of CRYPTO 98, LNCS, Springer-Verlag.

17. M. Fischlin and R. Fischlin, Efficient Non-Malleable Commitment Schemes. In
Proc. of CRYPTO 2000, LNCS, Springer-Verlag.

18. O. Goldreich. Concurrent Zero-Knowledge with Timing, Revisited. In Proc. of
ACM STOC 2002.

19. O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge Proof
Systems. SIAM J. on Computing, 25(1): 169–192 (1996).

20. S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexity of Interactive
Proof-Systems. SIAM J. on Computing, 18(6):186–208, 1989.

21. J. Kilian and E. Petrank. Concurrent and Resettable Zero-Knowledge in Poly-
Logarithmic Rounds. In Proc. of ACM STOC 2001.

22. S. Micali and L. Reyzin. Soundness in the Public-Key Model. In Proc. of CRYPTO
01, LNCS, Springer-Verlag.

23. M. Naor and M. Yung. Public-key Cryptosystems Provably Secure against Chosen
Ciphertext Attacks. In Proc. of STOC 1990, 427-437.

24. T. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In Proc. of CRYPTO 91, LNCS, Springer-Verlag.

25. M. Prabhakaran, A. Rosen, and A. Sahai. Concurrent Zero-Knowledge with Log-
arithmic Round Complexity. In Proc. of IEEE FOCS 2002.

26. R. Richardson and J. Kilian. On the Concurrent Composition of Zero-Knowledge
Proofs. In Proc. of EUROCRYPT 99, LNCS, Springer-Verlag.

27. C. P. Schnorr. Efficient Signature Generation for Smart Cards. Journal of Cryp-
tology, 4(3):239–252, 1991.

28. Y. Zhao. Concurrent/Resettable Zero-Knowledge With Concurrent Soundness in
the Bare Public-Key Model and Its Applications. Cryptology ePrint Archive, Re-
port 2003/265, last update June 5th, 2004.

A Faster Combinatorial Approximation
Algorithm for Scheduling Unrelated

Parallel Machines�

Martin Gairing, Burkhard Monien��, and Andreas Woclaw

Faculty of Computer Science,
Electrical Engineering and Mathematics,
University of Paderborn, Fürstenallee 11,

33102 Paderborn, Germany
{gairing, bm, wocland}@uni-paderborn.de

Abstract. We consider the problem of scheduling n independent jobs
on m unrelated parallel machines without preemption. Job i takes pro-
cessing time pij on machine j, and the total time used by a machine is
the sum of the processing times for the jobs assigned to it. The objec-
tive is to minimize makespan. The best known approximation algorithms
for this problem compute an optimum fractional solution and then use
rounding techniques to get an integral 2-approximation.

In this paper we present a combinatorial approximation algorithm
that matches this approximation quality. It is much simpler than the
previously known algorithms and its running time is better. This is the
first time that a combinatorial algorithm always beats the interior point
approach for this problem. Our algorithm is a generic minimum cost
flow algorithm, without any complex enhancements, tailored to handle
unsplittable flow. It pushes unsplittable jobs through a two-layered bi-
partite generalized network defined by the scheduling problem. In our
analysis, we take advantage from addressing the approximation prob-
lem directly. In particular, we replace the classical technique of solv-
ing the LP-relaxation and rounding afterwards by a completely inte-
gral approach. We feel that this approach will be helpful also for other
applications.

1 Introduction

We consider the scheduling problem where n independent jobs have to be as-
signed to a set of m unrelated parallel machines without preemption. Processing

� This work has been partially supported by the DFG-Sonderforschungsbereich 376
Massive Parallelität: Algorithmen, Entwurfsmethoden, Anwendungen, by the Euro-
pean Union within the 6th Framework Programme under contract 001907 (DELIS)
and by the DFG Research Training Group GK-693 of the Paderborn Institute for
Scientific Computation (PaSCo)

�� Parts of this work were done while the author was visiting Università di Roma La
Sapienza at Rome and the University of Texas at Dallas

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 828–839, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Faster Combinatorial Approximation Algorithm 829

job i on machine j takes time pij . For each machine j, the total time used by ma-
chine j is the sum of processing times pij for the jobs that are assigned to machine
j. The makespan of a schedule is the maximum total time used by any machine.
The objective is to find a schedule (assignment) that minimizes makespan. This
problem has many applications. Typically, they arise in the area of scheduling
multiprocessor computers and industrial manufacturing systems (see [18, 28]).

Related Work. There is a large amount of literature on scheduling inde-
pendent jobs on parallel machines (a collection of several approximation al-
gorithms can be found in [10]). A good deal of these publications concentrate
on scheduling jobs on unrelated machines. Horowitz and Sahni [11] presented a
(non-polynomial) dynamic programming algorithm to compute a schedule with
minimum makespan. Lenstra et al. [17] proved that unless P = NP, there is
no polynomial-time approximation algorithm for the optimum schedule with
approximation factor less than 3

2 . They also presented a polynomial-time 2-
approximation algorithm. This algorithm computes an optimal fractional solu-
tion and then uses rounding to obtain a schedule for the discrete problem with
approximation factor 2. Shmoys and Tardos [23] generalized this technique to
obtain the same approximation factor for the generalized assignment problem.
They also generalized the rounding technique to hold for any fractional solution.

The fractional unrelated scheduling problem can also be formulated as a gen-
eralized maximum flow problem, where the network is defined by the scheduling
problem and the capacity of some edges, that corresponds to the makespan, is
minimized. This generalized maximum flow problem is a special case of linear
programming. Using techniques of Kapoor and Vaidya [14] and by exploiting the
special structure of the problem, an optimum fractional solution can be found
with the interior point algorithm of Vaidya [27] in time O(|E|1.5|V |2 log(U)),
where U denotes the maximal pij .

In contrast to the linear programming methods, the aforementioned gener-
alized maximum flow problem can also be solved with a purely combinatorial
approach. Here, the makespan minimization is done by binary search. Computing
generalized flows has a rich history, going back to Dantzig [2]. The first combi-
natorial algorithms for the generalized maximum flow problem were exponential
time augmenting path algorithms by Jewell [13] and Onaga [19]. Truemper [26]
showed that the generalized maximum flow problem and the minimum cost flow
problem are closely related. More specifically, he transformed a generalized max-
imum flow problem into some minimum cost flow problem by setting the cost of
an edge to be the logarithm of the gain from the generalized maximum flow prob-
lem. Goldberg et al. [6] designed the first polynomial-time combinatorial algo-
rithms for the generalized maximum flow problem. Their algorithms were further
refined and improved by Goldfarb, Jin and Orlin [7] and later by Radzik [22].
Radzik’s algorithm is so far the fastest combinatorial algorithm with a running
time of O(|E| |V |(|E| + |V | log |V |) logU). In order to minimize makespan, this
algorithm has to be called at most O(log(nU)) times.

There exist fast fully polynomial-time approximation schemes for computing
a fractional solution [4, 12, 20, 21, 25]. Using the rounding technique from [23],

830 M. Gairing, B. Monien, and A. Woclaw

this leads to a (2 + ε)-approximation for the discrete problem. The approxima-
tion schemes can be divided into those that approximate generalized maximum
flows [4, 21, 25] and those that directly address the scheduling problem [12, 20].

Unrelated machine scheduling is a very important problem and many heuris-
tics and exact methods have been proposed. Techniques used here range from
combinatorial approaches with partial enumeration to integer programming with
branch-and-bound and cutting planes. For a selection we refer to [18, 24, 28] and
references therein.

Finding a discrete solution for the unrelated scheduling problem can be for-
mulated as an unsplittable generalized maximum flow problem. Several authors
[3, 15, 16] have studied the unsplittable flow problem for usual flow networks.
Kleinberg [15] formulated the problem of finding a solution with minimum
makespan for the restricted scheduling problem as an unsplittable flow prob-
lem. Here the restricted scheduling problem is a special case of our problem, in
which each job i has some weight wi, each machine j has some speed sj and
pij = wi

sj
or pij = ∞ holds for all i, j. Gairing et al. [5] exploited the special

structure of the network, gave a 2-approximation algorithm for the restricted
scheduling problem based on preflow-push techniques and also an algorithm for
computing a Nash equilibrium for the restricted scheduling problem on identical
machines.

Contribution. The algorithm presented in this paper computes an assignment
for the unrelated scheduling problem with makespan at most twice the optimum.
We prove that a 2-approximative schedule can be computed in
O(m2A log(m) log(nU)) time, where A is the number of pairs (i, j) with pij �= ∞.
This is better than the previously known best time bounds of Vaidya’s [27] and
Radzik’s [22] algorithms. In particular, this is the first time that a combinatorial
algorithm always beats the interior point approach for this problem.

An essential element of our approximation algorithm is the procedure
Unsplittable-Blocking-Flow from [5]. This procedure was designed to solve the
unsplittable maximum flow problem in a bipartite network, which is defined by
the restricted scheduling problem. In this paper the connection to flow is more
tenuous. We solve an unsplittable flow problem in a generalized bipartite net-
work, which is defined by the unrelated scheduling problem. The generalized flow
problem can be transformed to a minimum cost flow problem. Our algorithm
uses the primal-dual approach combined with a gain scaling technique to ob-
tain a polynomial running time. To compute a flow among the edges with zero
reduced cost it uses the procedure Unsplittable-Blocking-Flow from [5] in the
inner loop.

Given some candidate value for the makespan, our algorithm finds an approx-
imate solution for the generalized flow problem in the two-layered bipartite net-
work. Throughout execution the algorithm always maintains an integral assign-
ment of jobs to machines. Each assignment defines a partition of the machines
into underloaded, medium loaded and overloaded machines. Our overloaded ma-
chines are heavily overloaded, that is, their load is at least twice as large as the
candidate makespan.

A Faster Combinatorial Approximation Algorithm 831

The main idea of our algorithm is to utilize the existence of overloaded ma-
chines in conjunction with the fact that we are looking for an approximate in-
tegral solution. We use this idea twice. On the one hand this allows us to show
an improved lower bound on the makespan of an optimum schedule and thus
to overcome the (1 + ε) error usually induced by the gain scaling technique.
On the other hand this is also used to reduce the number of outer loops to
O(m log m), which is the main reason for the substantial running time improve-
ment. Our algorithm is a generic minimum cost flow algorithm without any
complex enhancements for generalized flow computation. Overloaded and un-
derloaded machines are treated as sources and sinks, respectively. The height
of a node is its minimum distance to a sink. In our algorithm the admissible
network, used for the unsplittable maximum flow computation, consists only of
edges and nodes which are on shortest paths from overloaded machines with
minimum height to underloaded machines. This modification to the primal-dual
approach is important to show the improved lower bound on the makespan of
an optimum schedule.

Our algorithm is simpler and faster than the previously known algorithms.
For the unrelated scheduling problem we have replaced the classical technique,
i.e., computing first a fractional solution and rounding afterwards, by a com-
pletely integral approach. Our algorithm takes advantage from addressing the
approximation problem directly. In particular, this allows us to benefit from an
unfavorable preliminary assignment. We feel that this might be helpful also in
other applications.

Identifying the connection to flow might be the key for obtaining combinato-
rial (approximation) algorithms for problems for which solving the LP-relaxation
and rounding is currently the (only) alternative. Our techniques and results do
not improve upon the approximation factor for the unrelated scheduling prob-
lem, however, we expect more exciting improvements for other hard problems.

Comparison of Running Times. We compare the running time of our algo-
rithm with the so far fastest algorithms of Vaidya [27] and Radzik [22]. Both
of the former approaches have been designed to solve the fractional generalized
maximum flow problem on a graph with node set V and edge set E. Rounding
the fractional solution yields the 2-approximation.
Technique and running time for computing a 2-approximative schedule:

– O(|E|1.5|V |2 log(U)): Interior Point approach for generalized flow problem
and rounding [27]

– O(|E| |V |(|E|+ |V | log |V |) logU log(nU)): Combinatorial algorithm for gen-
eralized flow problem and rounding [22]

– O(m2A log(m) log(nU)): The integral approach presented in this paper

To compare these bounds, note that in our bipartite network A = |E| = O(nm)
and |V | = n + m. Our algorithm is linear in A. It clearly outperforms the pre-
vious algorithms if n + m = o(A). In the case A = Θ(n + m) our algorithm is
better by a factor of Ω((n+m)0.5

log(n) log(m)) than Vaidya’s algorithm and by a factor
of Ω(logU) faster than Radzik’s algorithm. This is the first time that a com-

832 M. Gairing, B. Monien, and A. Woclaw

binatorial algorithm always beats the interior point approach for this problem.
The heuristics [18, 24, 28] consider instances where A = Θ(nm). In this case our
algorithm outperforms both former approaches by a factor almost linear in n.

The (1+ε)-approximation algorithms for the generalized maximum flow prob-
lem in [4, 21, 25] have all running time Õ(log ε−1|E|(|E|+ |V | log logU)), where
the Õ() notation hides a factor polylogarithmic in |V |. Again, an extra factor
of O(log(nU)) is needed for the makespan minimization. This running time is
not always better than ours. The fastest approximation scheme that directly
addresses the scheduling problem is due to Jansen and Porkolab [12] and has a
running time of O(ε−2(log ε−1)mnmin{m,n log m} log m). Clearly, for constant
ε this algorithm is faster than our algorithm. However, for ε in the order of 1

m
and log(U) = O(n) their running times become comparable.

Roadmap. The rest of the paper is organized as follows. In Section 2, we
introduce notation and model. Section 3.1 presents our approximation algorithm
and Section 3.2 shows the analysis.

2 Notation

2.1 The Scheduling Problem

We consider the problem of scheduling a set J of n independent jobs on a set
M of m machines. The processing time of job i on machine j is denoted by pij .
Define the n×m matrix of processing times P in the natural way. Throughout
the paper we assume that pij is either an integer or ∞ for all i ∈ J and j ∈M .
Define U = maxi∈J,j∈M{pij �= ∞}. Furthermore, define A as the number of
pairs (i, j) with pij �= ∞. An assignment of jobs to machines is denoted by a
function α : J !→ M . We denote α(i) = j if job i is assigned to machine j. For
any assignment α, the load δj on machine j for a matrix of processing times P
is the sum of processing times for the jobs that are assigned to machine j, thus
δj(P, α) =

∑
i∈J,α(i)=j pij . We omit P in the notation of δj if P is clear from

the context.
Define the makespan of an assignment α for a processing time matrix P,

denoted Cost(P, α), as the maximum load on a machine, hence Cost(P, α) =
maxj∈M δj(α). Associated with a matrix of processing times P is the optimum
makespan, which is the least possible makespan of an assignment α, that is
OPT(P) = minα Cost(P, α). Following Graham’s notation [9], our problem is
equivalent to R| |Cmax.

2.2 Generalized Maximum Flows and Minimum Cost Flows

The generalized maximum flow problem is a generalization of the maximum flow
problem, where each edge (i, j) has some gain factor μij . If fij units of flow are sent
fromnode i tonode j along edge (i, j), thenμijfij units arrive at j.More specifically,
let G = (V,E) be a directed graph of the generalized flow problem, μ : E !→ R+ a
gain function, and s and t source and sink node, respectively. Furthermore, there

A Faster Combinatorial Approximation Algorithm 833

is a capacity function on the edges. A generalized flow f : E !→ R is a function
on the edges that satisfies the capacity and antisymmetry constraints on all edges,
and the conservation constraints

∑
(j,i)∈E μjifji −

∑
(i,j)∈E fij = 0 on all nodes

i ∈ V \ {s, t}. The value of the flow f is defined as the amount of flow into the
sink. Among all generalized flows of maximum value, the goal is to find one that
minimizes the flow out of the source.

The fractional version of the scheduling problem can be converted into a
generalized maximum flow problem [20]. In order to check whether a fractional
schedule of length w exists, one can construct a bipartite graph with nodes
representing jobs and machines and introduce an edge from machine node i to
job node j with gain 1/pij . There is a source which is connected to all the
machine nodes with edges of unit gain and capacity w, and the job nodes are
connected to a sink with edges of unit gain and unit capacity. A generalized
flow in this network that results in an excess of n at the sink corresponds to a
solution of the fractional scheduling problem. If the maximum excess that can
be generated at the sink is below n, then the fractional scheduling problem is
infeasible, i.e., the current value of w is too small.

Truemper [26] established a relationship between the generalized maximum
flow problem and the minimum cost flow problem. In his construction, he de-
fined the cost for each arc in the minimum cost flow problem as the logarithm
of the gain in the generalized maximum flow problem. In order to transform
the generalized maximum flow problem to a minimum cost flow problem with
integral arc costs, a gain rounding technique can be used (see e.g. [25]). Gains
are rounded down to integer powers of some base b > 1. The rounded gain
of each residual arc (i, j) is defined as γij = bcij where cij = �logb μij�. An-
tisymmetry is maintained by setting γij = 1/γji and cij = −cji. The cost of
arc (i, j) in the resulting minimum cost flow problem equals cij . Using a po-
tential function π : V !→ R+, the reduced costs cπij of an arc (i, j) are defined
as cπij = cij − π(i) + π(j) (see [1]). The Primal-Dual approach [1] for mini-
mum cost flows can be used to compute a generalized maximum flow (see e.g.
[25]). The Primal-Dual approach preserves the reduced cost optimality con-
dition, i.e., cπij ≥ 0 for each edge (i, j) in the residual network. Because of the
rounding, an optimum solution of the minimum cost flow problem gives only
a (1 + ε)-approximation of the generalized (fractional) maximum flow problem.
Using techniques from [23], the fractional solution can be transformed to an in-
tegral solution. This approach leads to a (2+ε)-approximation algorithm for the
scheduling problem.

2.3 Our Model

We also formulate the scheduling problem as a generalized maximum flow prob-
lem. However, we use a different construction as in [20]. We construct a bipartite
graph with nodes representing jobs and machines. There is an arc from job node
i to machine node j with unit capacity and gain μij = pij if pij ≤ w. The pa-
rameter w will be determined by binary search. Each job node i has supply 1. A
generalized flow f is a solution to the fractional version of the scheduling prob-

834 M. Gairing, B. Monien, and A. Woclaw

lem, if in f all supplies are sent to the machines. In this case, we call f a feasible
flow. A generalized flow in such a network creates excess on the machine nodes.
An excess on machine j corresponds to the load on machine j. Define δj(P, f)
as the load on machine j under the generalized flow f with gains defined by P.
If we require that the supply of each job is sent to exactly one machine, then we
get an integral solution to the scheduling problem. In this case, we call f a gener-
alized unsplittable flow and f corresponds to an assignment α, i.e., assigning job
i to machine j corresponds to sending one unit of flow along edge (i, j). We are
interested in finding a generalized unsplittable flow f such that the maximum
excess over all machines is at most 2w. This is not always possible, however, if
we can’t find such a flow, we can still derive the lower bound OPT(P) ≥ w + 1.

Following the construction from Section 2.2, we formulate this generalized
maximum unsplittable flow problem as a minimum cost flow problem. For the
gain rounding, we choose b = (1 + z) where z = 1

m . If (i, j) is an edge from
job node i to machine node j then the cost cij and the rounded gain γij is
defined by cij = �logb(pij)�, and γij = bcij . For any path W , we define
γ(W) =

∏
(i,j)∈W γij . In the same way we define γ(K) for some cycle K. In the

following, denote C = (cij) and Γ = (γij). In order to solve the minimum cost
flow problem we use the well known Primal-Dual approach [1].

For a given assignment α, a positive integer w and a matrix of processing
times P, we now define the residual network Gα(w) (Definition 1) and we parti-
tion the machines, with respect to their loads, into three subsets (Definition 2).

Definition 1. Let α be an assignment and w ∈ N. We define a directed bi-
partite graph Gα(w) = (V,Eα(w)) where V = M ∪ J and each machine is
represented by a node in M , whereas each job defines a node in J . Further-
more, Eα = E1

α ∪ E2
α with E1

α = {(j, i) : j ∈M, i ∈ J, α(i) = j, pij ≤ w} and
E2
α = {(i, j) : j ∈M, i ∈ J, α(i) �= j, pij ≤ w}.

Definition 2. Let w ∈ N and α be an assignment. We partition the set of
machines M into three subsets:

M−(α) = {j : δj(P, α) ≤ w}
M0(α) = {j : w + 1 ≤ δj(P, α) ≤ 2w}
M+(α) = {j : δj(P, α) ≥ 2w + 1}

In our setting, at each time, nodes from M− can be interpreted as sink nodes,
whereas nodes from M+ as source nodes.

We now give a lemma that generalizes the path decomposition theorem to
generalized flows. The proof of a similar decomposition theorem can be found
in [8]. Note, that a fractional generalized flow on a path is defined as a flow
that fulfills the flow conservation constraints on the inner nodes. Similarly, a
generalized flow on a cycle fulfills the flow conservation constraints on all nodes
in the cycle except one.

Lemma 1 (Decomposition theorem). Let f and g be two generalized feasible
flows in G = (J ∪M, E). Then g equals f plus fractional flow: on some directed

A Faster Combinatorial Approximation Algorithm 835

cycles in Gf , and on some directed paths in Gf with end points in M and with
the additional property that no end point of some path is also the starting point
of some other path.

2.4 Unsplittable Blocking Flows

Our approximation algorithm will make use of the algorithm Unsplittable-
Blocking-Flow introduced in [5]. Unsplittable-Blocking-Flow was de-
signed for a restricted scheduling problem on identical machines. Here, each job
i has some weight wi and is only allowed to use a subset Ai of the machines. This
is a special case of the unrelated scheduling problem considered in this paper,
where pij = wi if j ∈ Ai and pij = ∞ otherwise. Given an assignment α and
an integer w, Unsplittable-Blocking-Flow(α,w) computes an assignment
β, where there is no path from M+(β) to M−(β) in Gβ(w).

We use Unsplittable-Blocking-Flow for arbitrary processing times pij .
In order to make clear that Unsplittable-Blocking-Flow runs on the orig-
inal processing times (pij) we include P in the parameter list. Furthermore,
we allow Unsplittable-Blocking-Flow only to reassign jobs according to
some graph G0

α(w), which can be any subgraph of Gα(w). These adaptations do
not influence the correctness and the running time of algorithm Unsplittable-
Blocking-Flow.

Lemma 2 and Theorem 1 are derived from [5] and state properties of algo-
rithm Unsplittable-Blocking-Flow that are used in the discussion of our
approximation algorithm.

Let G0
α(w) be any subgraph of Gα(w). Let β be the assignment computed

by Unsplittable- Blocking-Flow(α,G0
α(w),P, w). In this call jobs are reas-

signed by pushing them through edges of G0
α(w). We define G0

β(w) as the graph
that results from G0

α(w) after this reassignments.

Lemma 2 ([5, Lemma 4.2]). Let β be the assignment computed by
Unsplittable-Blocking-Flow(α,G0

α(w),P, w). Then
(a) j ∈M−(α) ⇒ δj(P, β) ≥ δj(P, α)
(b) j ∈M0(α) ⇒ w + 1 ≤ δj(P, β) ≤ 2w
(c) j ∈M+(α) ⇒ δj(P, β) ≤ δj(P, α).

Theorem 1 ([5, Lemma 4.4/Theorem 4.5]). Unsplittable-Blocking
-Flow(α,G0

α(w),P, w) takes time O(mA) and computes an assignment β, hav-
ing the property, that there is no path from M+(β) to M−(β) in G0

β(w).

3 Approximation Algorithm

We now present our approximation algorithm, Unsplittable-Truemper, which
will be used to compute an assignment α where Cost(P, α) ≤ 2 · OPT(P). We
always maintain an unsplittable flow, i.e., an integral solution. We loose a fac-
tor of 2 by allowing some gap for the machine loads. The special structure of
our algorithm allows us to compensate the error, introduced by the gain scaling
technique, by a better lower bound on OPT(P). We stop the computation as
soon as we get this better lower bound. This improves also the running time.

836 M. Gairing, B. Monien, and A. Woclaw

3.1 Algorithm Unsplittable-Truemper

We formulate the scheduling problem as a generalized maximum unsplittable
flow problem with rounded gain factors as described in Section 2.2. In order
to solve this generalized unsplittable flow problem we use the Primal-Dual
approach for computing a minimum cost flow [1]. Our algorithm maintains the
reduced cost optimality condition. In our setting this means that it does not
create negative cost cycles in the residual network. In order to achieve this,
Unsplittable-Truemper iteratively computes a shortest path graph G0

α(w),
which we define below, and uses Unsplittable-Blocking-Flow to compute
a blocking flow on this shortest path graph. While the costs in Unsplittable-
Truemper refer to the rounded processing times, it operates on the original
processing times. It is important to note, that both the costs as well as the
original processing times are integer. Because of Theorem 1, there is no path
from a machine from M+ to a machine from M− in G0

α(w) after termination of
Unsplittable-Blocking-Flow. We stop this procedure, when we can either
derive a good lower bound on OPT(P) (see Theorem 2) or we found an assignment
α with M+ = ∅.

Unsplittable-Truemper(α,P,C, w)

Input: assignment α with each job i assigned to a machine from B(i),
matrix of processing times P, matrix of edge costs C,

positive integer w
Output: assignment β

// Gα(w) is the graph corresponding to α and w.
π := 0;
while ∃ machine in M+ with a path to some machine in M− in Gα(w)

and ∀u ∈M+ : π(u) < logb(m)
{
determine shortest path distances d(·) from all nodes to the set

of sinks M− in Gα(w) with respect to the reduced costs cπ
ij;

update π := π + d;
define M+

min as the set of machines from M+ with minimum distance

to a node in M− with respect to the costs cij;

define G0
α(w) as the admissible graph, consisting only of edges on

shortest paths from M+
min to M− in Gα(w);

β := Unsplittable-Blocking-Flow(α,G0
α(w),P, w);

update α := β;
}

return α;

We now describe our algorithm in more detail. Unsplittable-Truemper starts
with an assignment α. In α, each job i ∈ J is assigned to some machine j ∈ B(i),
where its processing time is minimum, i.e., B(i) = {j ∈M : pij ≤ pik,∀k ∈M}.
Arc capacities are given by P whereas arc costs are given by C (as defined in

A Faster Combinatorial Approximation Algorithm 837

Section 2). Furthermore, Unsplittable-Truemper gets as input an integer
w. Assignment α and integer w define a graph Gα(w) as in Definition 1, and
a partition of the machines as in Definition 2. At all times, Unsplittable-
Truemper maintains a total assignment, that is all jobs are always assigned
to some machine. If a job gets unassigned from a machine, it is immediately
assigned to some other machine.

Our algorithm iteratively computes shortest path distances d(u) from each
node u to the set of sinks M−, with respect to the reduced costs cπij . Then π
is updated, such that all arcs on shortest paths have zero reduced costs. For
each node u ∈ M , π(u) never decreases. After the update of π, π(u) holds the
minimum distance from u to M− for each node u with respect to the costs cij .
We define M+

min as the set of machines from M+ with minimum distance to a
node in M− with respect to the costs cij . Note, that M+

min consists of all ma-
chines u ∈M+ where π(u) is minimum. G0

α(w) is then defined as the admissible
graph, consisting only of edges on shortest paths from M+

min to M− in Gα(w).
We will see in Section 3.2 that this is essential for our algorithm. Note, that
G0
α(w) consists only of arcs with zero reduced costs. Afterwards, Unsplittable-

Blocking-Flow is applied to the admissible graph G0
α(w). It reassigns jobs

from the admissible graph, such that after Unsplittable-Blocking-Flow re-
turns, there is no longer a path from a machine in M+

min to a machine in M−

in the admissible graph G0
α(w). Therefore, min{π(u);u ∈ M+} increases in the

next iteration of the while loop. The residual network Gα(w) is then updated
accordingly. The while-loop terminates when there exists no machine from M+

with a path to a machine from M− in Gα(w) or there exists a machine u ∈M+

with π(u) ≥ logb(m).

3.2 Analysis

We now analyze the behavior of our algorithm. The main result in this section
is Theorem 2. A call of Unsplittable-Truemper(α,P,C, w) terminates if
M+(α) = ∅. In this case, we know that Cost(P, α) ≤ 2w. We will see, that we
can take also some advantage from an assignment α which is still unfavorable,
i.e., for which M+(α) �= ∅ holds.

The reduced cost optimality condition cπij ≥ 0 holds for all (i, j) ∈ Eα(w)
during the whole computation. It implies γ(K) ≥ 1 for each cycle K in Gα(w).
This property does not necessarily hold for every path. Lemma 3 is of crucial
importance in our analysis. It shows that γ(W) ≥ 1 holds for every path W
connecting some node from M+(α) to any other node from M in Gα(w). For
proving this result, we need that G0

α(w) was defined only by shortest paths from
nodes in M+

min to nodes in M−.

Lemma 3. Unsplittable-Truemper maintains the property, that for each
path W in Gα(w) from any machine in M+ to any other machine in M , we
have γ(W) ≥ 1.

The following lemma will be used to derive a lower bound on OPT(P).

838 M. Gairing, B. Monien, and A. Woclaw

Lemma 4. Let (G,Γ) denote a generalized maximum unsplittable flow problem
defined by network G and matrix of processing times Γ. Let f be a generalized fea-
sible unsplittable flow in (G,Γ), and let s, t ∈ R+. Suppose ∀u ∈M : δu(Γ, f) ≥
s, and ∃û ∈ M : δû(Γ, f) ≥ s + t, and for each cycle K in Gf , γ(K) ≥ 1. If
on every path W in Gf from û to any other machine u ∈ M , γ(W) ≥ 1, then
OPT(Γ) ≥ s + t

m .

Theorem 2. Unsplittable-Truemper takes time O(m2A log(m)). Further-
more, if Unsplittable-Truemper(α,P,C, w) terminates with M+ �= ∅ then
OPT(P) ≥ w + 1.

We will now show how to use Unsplittable-Truemper to approximate a
schedule with minimum makespan. We do series of calls to Unsplittable-
Truemper(α,P,C, w) where, by a binary search on w ∈ [1, nU], we identify
the smallest w such that a call to Unsplittable-Truemper(α,P,C, w) re-
turns an assignment with M+ = ∅. Afterwards we have identified a parameter w,
such that Unsplittable-Truemper(α,P,C, w) returns an assignment where
M+ �= ∅ and Unsplittable-Truemper(α,P,C, w + 1) returns with M+ = ∅.
Theorem 3. Unsplittable-Truemper can be used to compute a schedule α
with Cost(P, α) ≤ 2 · OPT(P) in time O(m2A log(m) log(nU)).

Proof. We use Unsplittable-Truemper as described above. Let β1 be the
assignment returned by Unsplittable-Truemper(α,P,C, w) where M+ �= ∅.
Let β2 be the assignment returned by Unsplittable-Truemper(α,P,C, w+1)
where M+ = ∅. From β1 we follow by Theorem 2 that OPT(P) ≥ w+1 and in β2

we have Cost(P, β2) ≤ 2(w + 1). Thus, Cost(P, β2) ≤ 2 · OPT(P). It remains to
show the running time of O(m2A log(m) log(nU)). Due to Theorem 2, one call
to Unsplittable-Truemper takes time O(m2A log(m)). The binary search
contributes a factor log(nU). This completes the proof of the theorem. ��

Acknowledgments. We would like to thank Thomas Lücking for many fruitful
discussions and helpful comments.

References

1. R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows: Theory, Algorithms,
and Applications. Prentice Hall, 1993.

2. G. Dantzig. Linear Programming and Extensions. Princeton University Press,
Princeton, New York, 1963.

3. Y. Dinitz, N. Garg, and M.X. Goemans. On the single-source unsplittable flow
problem. Combinatorica, 19(1):17–41, 1999.

4. L. Fleischer and K. D. Wayne. Fast and simple approximation schemes for gener-
alized flow. Mathematical Programming, 91(2):215–238, 2002.

5. M. Gairing, T. Lücking, M. Mavronicolas, and B. Monien. Computing Nash equi-
libria for scheduling on restricted parallel links. In Proceedings of the 36th Annual
ACM Symposium on the Theory of Computing (STOC’04), pages 613–622, 2004.

A Faster Combinatorial Approximation Algorithm 839

6. A.V. Goldberg, S.A. Plotkin, and E. Tardos. Combinatorial algorithms for the
generalized circulation problem. Math. of Operations Research, 16:351–379, 1991.

7. D. Goldfarb, Z. Jin, and J.B. Orlin. Polynomial-time highest-gain augmenting path
algorithms for the generalized circulation problem. Math. of Operations Research,
22:793–802, 1997.

8. M. Gondran and M. Minoux. Graphs and Algorithms. Wiley, 1984.
9. R.L. Graham. Bounds for certain multiprocessor anomalies. Bell System Technical

Journal, 45:1563–1581, 1966.
10. D.S. Hochbaum. Approximation Algorithms for NP-hard Problems. PWS Publish-

ing Co., 1996.
11. E. Horowitz and S. Sahni. Exact and approximate algorithms for scheduling non-

identical processors. Journal of the ACM, 23(2):317–327, 1976.
12. K. Jansen and L. Porkolab. Improved approximation schemes for scheduling un-

related parallel machines. Math. of Operations Research, 26(2):324–338, 2001.
13. W.S. Jewell. Optimal flow through networks with gains. Operations Research,

10:476–499, 1962.
14. S. Kapoor and P.M. Vaidya. Fast algorithms for convex quadratic programming

and multicommodity flows. In Proceedings of the 18th Annual ACM Symposium
on Theory of Computing (STOC’86), pages 147–159, 1986.

15. J. Kleinberg. Single-source unsplittable flow. In Proceedings of the 37th Annual
Symposium on Foundations of Computer Science (FOCS’96), pages 68–77, 1996.

16. S.G. Kolliopoulos and C. Stein. Approximation algorithms for single-source un-
splittable flow. SIAM Journal on Computing, 31:919–946, 2002.

17. J.K. Lenstra, D.B. Shmoys, and E. Tardos. Approximation algorithms for schedul-
ing unrelated parallel machines. Mathematical Programming, 46:259–271, 1990.

18. E. Mokotoff and P. Chrétienne. A cutting plane algorithm for the unrelated parallel
machine scheduling problem. European Journal of Operational Research, 141:515–
525, 2002.

19. K. Onaga. Dynamic programming of optimum flows in lossy communication nets.
IEEE Transactions on Circuit Theory, 13:308–327, 1966.

20. S.A. Plotkin, D.B. Shmoys, and E. Tardos. Fast approximation algorithms for frac-
tional packing and covering problems. Math. of Operations Research, 20(2):257–
301, 1995.

21. T. Radzik. Faster algorithms for the generalized network flow problem. Math. of
Operations Research, 23:69–100, 1998.

22. T. Radzik. Improving time bounds on maximum generalised flow computations by
contracting the network. Theoretical Computer Science, 312(1):75–97, 2004.

23. D.B. Shmoys and E. Tardos. An approximation algorithm for the generalized
assignment problem. Mathematical Programming, 62:461–474, 1993.

24. F. Sourd. Scheduling tasks on unrelated machines: Large neighborhood improve-
ment procedures. Journal of Heuristics, 7:519–531, 2001.

25. E. Tardos and K. D. Wayne. Simple generalized maximum flow algorithms. In
Proceedings of the 6th Integer Programming and Combinatorial Optimization Con-
ference (IPCO’98), pages 310–324, 1998.

26. K. Truemper. On max flows with gains and pure min-cost flows. SIAM Journal
on Applied Mathematics, 32(2):450–456, 1977.

27. P.M. Vaidya. Speeding up linear programming using fast matrix multiplication. In
Proceedings of the 30th Annual Symposium on Foundations of Computer Science
(FOCS’89), pages 332–337, 1989.

28. S. L. van de Velde. Duality-based algorithms for scheduling unrelated parallel
machines. ORSA Journal on Computing, 5(2):182–205, 1993.

Polynomial Time Preemptive Sum-Multicoloring
on Paths

Annamária Kovács

Max-Planck Institut für Informatik,
Stuhlsatzenhausweg 85,

66123 Saarbrücken, Germany
panni@mpi-sb.mpg.de

Abstract. The preemptive Sum-Multicoloring (pSMC) problem is a
scheduling problem where pairwise conflicting jobs are represented by
a conflict graph. The time demands of jobs are given by integer weights
on the nodes. The goal is to schedule the jobs in such a way that the
sum of their finish times is minimized. We give an O(n · min(n, log p))
time algorithm for pSMC on paths and cycles, where n is the number
of nodes and p is the largest time demand. This is the first polyno-
mial algorithm for this problem. It answers the question raised in [8]
about the hardness of this problem. In this respect our result identifies
a gap between binary-tree conflict graphs – where the question is NP-
hard – and paths. Furthermore, our time bound gets very close to that of
O(n·log p/ log log p) for the non-preemptive SMC on paths [8]. A detailed
version of this paper is available at [3].

1 Introduction

In the paper we consider the preemptive Sum-Multicoloring (pSMC) problem.
In spite of the name “multicoloring”, we prefer to discuss it from a scheduling
point of view. The input is given by a simple undirected conflict graph G(V,E),
where the nodes model different jobs, and by integer weights on the nodes x :
V → N+, i.e., time demands for each job. The edges of the graph represent
pairwise conflicts between certain jobs, meaning that they cannot be processed
at the same time, e.g., due to some non-shareable resource they use. The goal
is to schedule the jobs, i.e., to determine a function Φ : V → 2N that assigns
a set of time units to each job, so that the sets assigned to conflicting jobs do
not intersect, and ∀v ∈ V : |Φ(v)| = x(v). Let f(v) = maxΦ(v) be the finish
time of node v. In the Sum-Multicoloring problems, the average finish time, or
equivalently, the sum of finish times

∑
v∈V f(v) has to be minimized. In the non-

preemptive version of SMC (npSMC) the assigned sets Φ(v) must be contiguous,
whereas in preemptive SMC they are arbitrary.

Scheduling jobs with pairwise conflicts is a classical problem, with appli-
cations in diverse areas like traffic intersection control, VLSI routing, session
management in local area networks, operating systems, etc. (see [7]). From the
jobs’ point of view, it is a natural goal to minimize the average completion time.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 840–852, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Polynomial Time Preemptive Sum-Multicoloring on Paths 841

The concern of this paper is the pSMC problem on path conflict graphs. The
path has n nodes, and the nodes are numbered by 1, ..., n, from left to right.
Let p := max1≤i≤n x(i) be the largest demand in the input. We provide the first
polynomial algorithm for pSMC on paths. It runs in time O(n · min(n, log p)).
Moreover, our result easily carries over to cycle conflict graphs.

Related work. For a comprehensive history of the SMC problems see, e.g., [2, 8].
The Sum-Multicoloring problem was introduced by Bar-Noy et al. in [7], as a
generalization of the Sum-Coloring problem (the latter was studied by Kubicka
in [5]). Even the Sum-Coloring problem was shown to be NP-hard on several
conflict graph classes, like e.g., on planar graphs [2]; it is hard to approximate
within a constant factor c > 1 on bipartite graphs [1].

The SMC problem on trees was studied by Halldórsson et al. in [8] and some
of the results were generalized to partial k-trees in [2]. In [8] an O(n2) and an
O(np) algorithm was provided for the non-preemptive SMC on trees. The first
one runs in time O(n · log p/ log log p) on paths. For the preemptive SMC on
trees a PTAS was given. The hardness of pSMC on trees or paths was posed
as an open question. Marx [6] showed, that pSMC is NP-hard on binary trees,
even for polynomially bounded p. Thus, the preemptive problem on trees turned
out to be essentially harder than the non-preemptive version. In [4] we gave a
pseudo-polynomial algorithm, running in time O(n3p) for pSMC on paths.

Our result. We provide an O(n · min(n, log p)) time algorithm for the pSMC
problem on paths which immediately implies an O(n·min(n, log p)) time solution
for cycles. This is the first polynomial algorithm for this problem. It improves
substantially on our previousO(n3p)-time result, and answers the question raised
in [8], whether pSMC is efficiently solvable on paths. Thus, we identify a major
difference between the solvability of the problem on binary trees – where it is
NP-hard [6] – and graphs of maximum degree 2. More interestingly, compared
to the results on the non-preemptive SMC problem in [8], our result gets very
close to the time-bound of O(n · log p/ log log p) for paths, whereas for very large
p, our O(n2) bound matches the O(n2) bound for npSMC on paths (or trees
in general). Our method is an improved version of the algorithm in [4]. The
core of this improvement is a result about the structure of some “nice” optimal
schedules, which we will briefly sketch here.

Without loss of generality, we add nodes 0 and n + 1 to the path, with
demands x(0) = x(n + 1) = 0. We denote by 〈i, j〉 the subpath i, ..., j. In a
fixed schedule Φ, we distinguish so called local minimum (loc-min), and local
maximum (loc-max) nodes on the path: a loc-min node has smaller finish time,
resp. a loc-max has larger finish time than any of its two neighbors. The rest
is called stair node. Restricted to optimal schedules with maximum value of∑

v∈V f2(v), the following hold: The schedule of a loc-min node determines the
schedule of the stairs on its two sides in a greedy fashion, and a loc-max node
receives the first time units idle on both sides. The hardness of this problem lies
in the fact that loc-mins are not always compact, i.e., in general f(i) �= x(i) for
a loc-min i. Let’s denote by r(i) and
(i) the first nodes to the right and to the
left of loc-min i with finish time less than f(i) (see Fig. 1). The main idea of [4]

842 A. Kovács

i k r(i)

F(f(i))

Fig. 1. Minimum-tree of a block

was that any “simultaneous permutation” of the time units in Φ(i) and Φ(r(i))
results in the same optimum sum on the subpath strictly between i and r(i). As a
further consequence, f(i) alone determines the optimum F (f(i)) :=

∑r(i)−1
j=i+1 f(j)

on this subpath. This observation facilitates a dynamic programming algorithm:
Two scheduled subpaths are glued at a loc-min, proceeding from short subpaths
to longer ones, from large loc-mins to smaller ones. However, on the subpath
〈i+1, r(i)−1〉 the optimum F (f(i)) for every possible f(i) has to be determined
(since f(i) depends also on what will be glued to the left of i).

Our new result is that the possible changes in f(i) cannot modify the struc-
ture on 〈i, r(i)〉, i.e., the order of the finish times remains the same. Moreover,
by increasing f(i) to f(i)+Δ, we increase the finish time of all the loc-mins and
decrease the finish time of all the loc-max’s on 〈i + 1, r(i)− 1〉 by Δ. In total we
decrease F (f(i)) by Δ. The optimum on 〈i+1, r(i)−1〉 is a simple linear function
of the form F (f(i)) = C − f(i). The only question for the dynamic algorithm is
the constant C in this function and the range of possible f(i) values.

What is the explanation for this determined structure on 〈i, r(i)〉? A subpath
between nearest compact loc-mins will be called a block. (Note that blocks are
easy to connect.) Inside a block, the loc-mins are non-compact, and there must
be “large” differences between their demands. They form a binary tree (see
Fig. 1), and the finish times on growing levels of this tree grow exponentially.
In other words, if there are many loc-mins of similar demands, not separated
by nodes of smaller demands, then some (e.g. the odd ones) will be compact.
The exponential growth within a block implies that for fixed i there are just
a constant number of candidates for r(i), and just a few candidates to be the
loc-min finished next, i.e., the child of i in the minimum-tree.

The fast growth within a block is quite intuitive. However, the order of finish
times must remain the same already on the lowest levels above f(i), meaning
roughly, that even the smallest differences between finish times should exceed
potential changes in f(i). The proof of these results is lengthy and technical; it
makes use of a handful of simple operations, and a tricky induction argument.

Polynomial Time Preemptive Sum-Multicoloring on Paths 843

Overview. In Section 2 we characterize the type of optimal schedules we will look
for, based on [4]. There we also try to provide more insight into the spirit of our
improvement. Section 3 contains the key result that facilitates a polynomial-
time algorithm. The proofs can be found at [3]. In Section 4 we present our
fast algorithm. We conclude with a few words about cycle conflict graphs, and
potential future work.

2 Definitions and Basic Facts

We will refer to time units as to levels. Given a schedule Φ, we say that i is
black on level a, if a ∈ Φ(i), and i is white on level a if a /∈ Φ(i). For i < j we
will also say, that the ordered pair (i, j) is black-white, black-black,... etc.
on level a. Note that (i, i + 1) cannot be black-black on any level.

Definition 1. An (i, j) pair has a conflict or is conflicting on level a, if
i and j are of the same parity and (i, j) is black-white, or white-black, or
i and j are of opposite parity and (i, j) is black-black, or white-white.

Obviously, if (i, j) is conflicting on level a, then ∃k ∈ 〈i, j − 1〉 s.t. (k, k + 1)
is white-white on level a.

Definition 2. For any ordered pair of nodes (i, j) and any fixed schedule Φ, we
may consider the number of levels under some fixed level Γ, where (i, j) is black-
black, white-black, white-white and black-white, respectively. We call the 4-tuple
of these numbers the scheme of (i, j) under Γ.

Definition 3. Given a schedule, we say that node i is
a loc-min, if f(i− 1) > f(i) and f(i) < f(i + 1), or i = 0, or i = n + 1;
a loc-max, if f(i− 1) < f(i) and f(i) > f(i + 1);
a stair otherwise, in particular a stair-up, if f(i−1) < f(i) < f(i+1), and

a stair-down, if f(i− 1) > f(i) > f(i + 1);
compact, if f(i) = x(i). Note that 0 and n + 1 are compact.
If both i and j are compact with no compact nodes between them, then we call

〈i, j〉 or (i, j) a block.

We provide with notation the following 4 nodes concerning a loc-min i :

Definition 4. If i is a loc-min in a schedule, then we denote by r(i) the first
node to the right of i s.t. f(r(i)) < f(i) and we denote by
(i) the first node to
the left of i s.t. f(
(i)) < f(i). Furthermore, R(i) := r(i)−1 and L(i) :=
(i)+1.

Note that R(i) (L(i)) is either a stair-down (stair-up) or a loc-max.
We would like to restrict our attention to schedules of the simplest possible

structure. In [4] we have shown that for any instance of the pSMC problem, a
schedule exists with properties (P1)–(P5) below. For example, among schedules
of minimum

∑n
i=1 f(i) those of maximum

∑n
i=1 f2(i) fulfil (P1)–(P5).

844 A. Kovács

(P1) the sum of finish times
∑n

i=1 f(i) is minimum over all proper schedules;
(P2) stairs and loc-max’s are scheduled “greedily”: e.g., a stair-up i is black on
the first possible levels where i − 1 is white; a loc-max m is black on the first
levels where both m− 1 and m + 1 are white;
(P3) if i is a non-compact loc-min and
(i) ≤ k ≤ r(i) then i has no conflict
with k on the level f(i) and on any level where i is white; therefore there are no
compact nodes inside 〈
(i), r(i)〉, since any node is white either on level f(i) or
on the levels where i is white.
(P4) if i is a non-compact loc-min and k is a loc-min i < k < r(i), then there
is no level where k (is black and) has conflict on both sides (with
(k) and with
r(k)).
(P5) if i < j are loc-mins, j < r(i) and f(i) = f(j), then i and j are compact.

Definition 5. A schedule Φ is called optimal schedule or a solution if prop-
erties (P1)–(P5) hold.

Corollary 1. The schedule of a loc-min determines the schedules of stairs lead-
ing up to the next loc-max’s on both sides. If, e.g., i is a stair-up, then f(i) =
x(i− 1) + x(i).

Corollary 2. Let i be a non-compact, even loc-min. (P2), (P3) and (P4) imply
the following on 〈i, r(i)〉: If (i, r(i)) have no conflict on level b, then exactly the
odd or exactly the even nodes are black on level b. If (i, r(i)) have a conflict on
level b, then there is a loc-max m, s.t. on 〈i,m − 1〉 exactly the even nodes, on
〈m + 1, r(i)〉 exactly the odd nodes are black on level b.

Corollary 3. Let i be a non-compact loc-min. (i, r(i)) is black-white on level
f(i), so i and r(i) are of different parity, and i + 3 ≤ r(i) (resp.
(i) ≤ i− 3).

Definition 6. Let i be a non-compact loc-min. We denote by pit(i, r(i)) the
loc-min of smallest finish time between i and r(i). If there is no loc-min between
them, then pit(i, r(i)) = ∅ and top(i, r(i)) denotes the unique loc-max in 〈i, r(i)〉.
The nodes pit(
(i), i) and top(
(i), i) are defined analogously.

Due to (P5), the pit() is well-defined. Note that if k = pit(i, r(i)) then 〈i +
1,
(k)〉 is a series of stair-ups and 〈r(k), r(i)− 1〉 is a series of stair-downs, and
(P3) implies that k = pit(i, r(i)) is non-compact.

If g is a compact loc-min, then – instead of 〈g, r(g)〉 –, the block 〈g,h〉 is of rel-
evance, where h is the nearest compact node. Blocks can be regarded as maximal
(i, r(i)) or (
(i), i) pairs, and we can define pit(g,h) similarly to Definition 6.

If 〈g,h〉 is a block then the (non-compact) loc-mins inside form a binary tree
in the following way: i = pit(g,h) is the root of the tree, and its two children are
pit(
(i), i) and pit(i, r(i)), etc. The loc-max’s can be regarded as the leaves of
this tree. We will call this tree the minimum-tree of (g,h) (see Fig. 1). We say
that the root i is on the 1st floor, the childen of i are on the 2nd floor, etc. of
the minimum-tree. Having the minimum-tree fixed, the root i is the only loc-min
that can have (black) levels conflicting with both
(i) and r(i), and so f(i) is

Polynomial Time Preemptive Sum-Multicoloring on Paths 845

not automatically determined by (P3), (P4). But once we have f(i) (Φ(i)), it
determines the schedule of all the other loc-mins (by (P3), (P4)), consequently
of all other nodes in the block (by (P2)).

Suppose we know that i is a non-compact loc-min and j = r(i). In [4] we have
shown that the optimum sum of finish times F :=

∑r(i)−1
k=i+1 f(k) depends only

on f(i). This fact is based on the following simple observations: The optimum
on 〈i + 1, r(i)− 1〉 depends only on the scheme of (i, r(i)) and not on the exact
schedule of i and r(i). And, since there are no conflicting white-white levels of
(i, r(i)) under f(i), fixing the scheme of (i, r(i)) boils down to fixing the number
of conflicting black-black levels under f(i) or equivalently, to fixing f(i) itself.

Let α denote the number of levels where (i, r(i)) is black-black. In this paper
we consider the optimum F as a function of α. Our goal is to show that for
the range of feasible α values, the order of finish times on 〈i, r(i)〉 is fixed. As a
consequence, F (α) is a simple linear function, namely F (α − Δ) = F (α) − Δ.
This result in turn, allows us to modify our previous algorithm: in the previous
version, for each potential (i, r(i)) we had to test the F (α) value for each α one
by one. Now it is sufficient to compute dynamically the domain and one value
of F (α) for each possible (i, r(i)) (resp. (
(i), i)).

From a more global perspective, observe that inside a block 〈i, j〉, or inside
〈i, r(i)〉, there is one more loc-max than loc-mins. On the whole, we will derive
that increasing the finish time of the root in a minimum-tree by Δ increases
every other loc-min and decreases every loc-max by the same value, resulting
in an improvement of Δ on the whole block. However, each increase must mean
exchanging a black level below the finish time for a white level above the finish
time of a loc-min, both having conflicts on both sides. This condition bounds
from above the potential values of Δ in a recursive manner. The rung of a stair is
the topmost set of contiguous black levels of the stair. The rungs of consecutive
stairs partition the set of levels above the loc-min.

Definition 7. Let s be a stair-up (stair-down) in a fixed solution Φ. The rung
of s is the set of levels S := [f(s− 1) + 1, f(s)], (resp. S := [f(s + 1) + 1, f(s)]).
For simplicity, we use the respective capital letters to denote rungs.

Definition 8. We say that s is a 2nd stair resp. S is a 2nd rung if s − 1
or s + 1 is a loc-min. We call a stair or rung high stair, resp. high rung
otherwise. Let i be a non-compact loc-min, c = L(i) and d = R(i). Now C and
D are the rungs of c and d, respectively, and f(i) ∈ C ∩D. We say that i (or
f(i)) ends in C on the left and in D on the right.

3 The Main Theorem

Let 〈i, j〉 be a subpath, and x(i), x(i + 1), ..., x(j) a fixed (partial) instance of
the pSMC problem. Regard all cases when this is part of an instance on a longer
path, and all solutions (if existent) where i is a non-compact loc-min and j = r(i).

846 A. Kovács

Let’s take all f(i) that ever occur in such a situation, and fix one solution
on 〈i, r(i)〉 for each of them. We can only talk about fixed solutions modulo
permutation of the levels below f(i), but with fixed finish times on 〈i, r(i)− 1〉.

From here on we discuss the case of potential (i, r(i)) pairs. Case (
(i), i) can
be handled symmetrically. Instead of considering the optimum as a function of
f(i), we will look at it as follows: Let α be the number of black-black conflicts
of (i, r(i)), and F (α) be the sum of finish times on 〈i + 1, r(i)− 1〉 in the corre-
sponding fixed solution Φα. Since α = x(i)+x(r(i))−f(i) (see (P3)), this makes
just a tiny technical difference. Those α values that correspond to an occurence
of f(i) constitute the domain DF of F (α).

We fix a level Γ := min(x(i) + x(i + 1), x(r(i)) + x(r(i)− 1)). We claim that
Γ separates the set of levels into two parts: For any of the fixed solutions on
〈i, r(i)〉, f(i) ≤ Γ, and f(pit(i, r(i))) > Γ. (The latter holds, because i and r(i)
are of different parity, and pit(i, r(i)) ends in rungs of the same parity.) In the
rest of the paper Γ denotes this level.

For fixed α, the optimum is indifferent to the permutation (exchange) of
levels below Γ (or even to change of roles of i and r(i)). Since f(pit(i, r(i))) > Γ,
such a permutation does not interfere with finish times inside the subpath.

Decreasing f(i) by Δ corresponds to the following change in the scheme of
(i, r(i)) below Γ : α increases by Δ, and equivalently, the number of white-white
conflicts increases by Δ, the number of black-white levels and white-black levels
both decrease by Δ. Theorem 1 serves as an illustration of what we would like to
show in general, and as the base step of an induction proof of the general case:

Theorem 1. Let i, r(i), α, etc. be as defined above. If for all α ∈ DF ,
pit(i, r(i)) = ∅ in Φα, then
(I.) we may assume wlog. that top(i, r(i)) is the same node m in every Φα and
(II.) F (α−Δ) = F (α)−Δ.

We will state a similar theorem about the general case, i.e. when for some α in
Φα there is a pit(i, r(i)) �= ∅. In the full version [3] we show that independent of
f(i), the solutions on 〈i, r(i)〉 have the same minimum-tree. The reason for this is
roughly as follows: Within 〈i, r(i)〉 the loc-mins end in different (pairs of) rungs,
and the sizes of these rungs are large compared to possible differences in f(i).
Consequently, the demands of nodes in 〈i, r(i)〉 differ too much to be alternative
candidates for, e.g., pit(i, r(i)). We could not exclude a few potential exceptions
to this rule (although we did not find any example for such an exception), but
fortunately these might appear only on the first two floors of a minimum-tree. For
example, we have more than one candidate for pit(i, r(i)) when r(i) is compact.
The notions of irregular vs. regular partial solutions on 〈i, r(i)〉 were introduced
in order to handle the possible exceptional solutions separately [3].

Let D′F ⊆ DF be the set of α for which a regular solution exists, and let Φα

be regular for α ∈ D′F . Now we state the generalized theorem:

Theorem 2. Let i, r(i), α, Φα, etc. and the partial instance on 〈i, r(i)〉 be as
defined above.

Polynomial Time Preemptive Sum-Multicoloring on Paths 847

(I.) Either m := top(i, r(i)) can be fixed to be the same node; or k := pit(i, r(i))
is the same, L(k) is the same, resp. R(k) is the same node in every Φα (α ∈ D′F).
(II.) F (α−Δ) = F (α)−Δ on D′F .

Theorem 3 below characterizes the candidate nodes for k,L(k), and R(k).
Recall that the potential finish time fα(k) of any possible k = pit(i, r(i)) is
determined by α (see (P3) and (P4)).

Theorem 3. Suppose that the unique pit(i, r(i)) of Theorem 2 is known to be
even. Let i < c and d < r(i) be the lowest even stairs s.t. ∃α, ∃k ∈ 〈c+2, d−2〉 so
that k is even, and fα(k) ∈ C∩D. Then L(k) = c, R(k) = d, and k = pit(i, r(i))
in any regular partial solution. Moreover, for all α ∈ D′F there is no even k′ �= k
s.t. fα(k′) ∈ C ∩D. Similar statement holds for odd k.

Corollary 4. Let x(i), ..., x(r(i)) be a given (partial) instance. When restricted
to regular solutions, there is at most one even and at most one odd node in
〈i, r(i)〉 to be a candidate for pit(i, r(i)), independent of α.

4 The Algorithm

Let x(1), x(2), ..., x(n) be an instance of the pSMC problem on the path (or
cycle) 1, 2, ..., n. Recall that p = maxi x(i). Theorem 2 allows us to get rid of
the factor p that was there in the O(n3p) algorithm of [4]. By the following
lemmas we can improve on the factor n3 and obtain an algorithm that runs in
O(n · min(n, log p)) time. The lemmas are quite intuitive: they reflect the fact
that within one block the finish times exhibit exponential growth.

In a fixed schedule, let the rungs of a loc-min mean the maximal sets of
contiguous black or contiguous white levels of the loc-min. Let I1, I2, ..., Iη be
the rungs of a loc-min i and S1,S2, ...,Sζ (ζ ≥ 0) be the rungs of any number
of consecutive stair-ups i = so, s1, s2, ..., sζ following i. Now all of these sets Iτ
and Sρ are disjoint and [1, f(sζ)] =

⋃η
τ=1 Iτ ∪

⋃ζ
ρ=1 Sρ.

Lemma 1. If η and ζ are numbers of rungs as described above, then η + ζ <
5 log f(sζ).

Lemmas 2 and 3 imply that for given non-compact i, there is a constant
number of candidate nodes for r(i) and pit(i, r(i)) :

Definition 9. Let
χ(i) := min(x(i) + x(i + 1), 2x(i));
χ(r(i)) := min(x(r(i)) + x(r(i)− 1), 2x(r(i))).

Lemma 2. If i is a loc-min, then x(r(i)) ≤ χ(i).

Lemma 3. Let i be a non-compact loc-min. A constant C ≤ 30 exists, such that
if i is even,

848 A. Kovács

(a.) there are ≤ C odd nodes l, and ≤ C even nodes k in 〈i, r(i)〉 s.t. x(l) ≤ χ(i),
resp. x(k) ≤ χ(r(i)).
(b.) there are ≤ C even nodes k ∈ 〈i, r(i)〉, s.t. x(k) ≤ 2x(i).

We did not provide the definition of irregular partial solutions on 〈i, r(i)〉 in
this short version. We will also omit the details concerning irregular solutions
from the algorithm description. We include here two hints, why these potential
exceptions to Theorem 2 do not blow up the running time. On the one hand, the
following claim, together with Lemma 3, imply that possible pit(i, r(i)) nodes of
irregular solutions can be found in constant time:

Claim 1. Suppose i is even, and k = pit(i, r(i)) in an irregular solution. If k is
odd, then x(k) ≤ χ(i); if k is even, then x(k) ≤ χ(r(i)).

On the other hand, recall that irregular partial solutions on 〈i, r(i)〉 may
appear only if i is on ≤2nd floor of a minimum-tree. Although we have to deal
with irregular solutions in the dynamic programming algorithm, fortunately they
do not propagate: We have to take the minimum function of F (α) functions
resulted by irregular solutions, which may be a non-linear function due to breaks
or holes in the domain. However, we can forget these solutions as soon as we
stepped down at least two floors in the minimum-tree. This implies, that we will
never have to deal with more than ≈ C2 breaks in the optimum function.

Proposition 1. For any node i in a solution, unless i has compact neighbours
on both sides, f(i) ≤ 4x(i).

The algorithm has two phases. In Phase 1. the blocks, and the minimum-tree
of each block are determined. In Phase 2. the schedule is determined.
Phase 1. We group the nodes into log p groups: nodes of demand in [2t−1, 2t−1]
belong to group Gt. First we traverse the path from right to left, and from a node
k in Gt we set pointers to the nearest nodes of each of Gt+2,Gt+1,Gt, ...,G1 to
the right of k. After that we do the same from left to right. This preprocessing
takes O(n ·min(n, log p)) time.

We test for every node 1 ≤ i ≤ n, if it can be a non-compact loc-min, and
every potential r(i) (and
(i)). Let i be a fixed even node. By Corollary 3 and
Lemma 2, r(i) must be an odd node s.t. x(r(i)) ≤ χ(i). According to Lemma 3,
we have to test at most C odd nodes of demand ≤ χ(i), both on the left and
on the right of i. However, we may stop earlier if we find a node of demand
< x(i)/4. Because of the preprocessing, finding these 2C candidate nodes for all
i, takes overall O(n) time. We partition all these candidate (i, r(i)) and (
(i), i)
pairs into sets depending on their distances. In the testing process, we have to
determine the optimum dynamically, and therefore we proceed from pairs of
short distances to pairs of long ones. We start with the possible r(i) = i + 3 and

(i) = i− 3 values for every i ∈ 〈1, n〉.

Suppose we have i and r(i) fixed. Let α and F (α) be as defined in Section 3.
Now we have to compute F (α) dynamically, for every potential (i, r(i)) (and
(
(i), i)) pairs. When we set the domain D′F of the possible α values, we must

Polynomial Time Preemptive Sum-Multicoloring on Paths 849

take care that each α and F (α) can be realized on 〈i, r(i)〉, and that all realizable
α are considered. It is straightforward to show that the nonnegative part of
[x(i) + x(r(i))− Γ,min(x(r(i)), x(i)− 1)] is an enclosing interval of all α. Later
we cut this domain as required by the connecting step of the dynamic algorithm.

Next, we search for k = pit(i, r(i)) or m = top(i, r(i)). Corollary 4 says that
there is not more than one even and one odd potential pit(i, r(i)). As for the
number of possible top(i, r(i)) nodes, there are obviously always≤ 2 even and≤ 2
odd candidates, since x(m−1) > x(m−3) > . . . , resp. x(m+1) > x(m+3) > . . . ,
must hold. The potential k or m nodes we find as described in Claim 2:

Claim 2. For given i and r(i) it takes O(min(n, log p)) steps to find the ≤ 2
candidates for pit(i, r(i)) or ≤ 4 candidates for top(i, r(i)) in a regular solution.

Sketch of proof. We proceed upwards along the stairs on the two sides of
〈i, r(i)〉. The potential finish time f(k) of a loc-min k, is calculated by summing
up the number of (potential) black levels of k: say k is even, these are the levels,
where on at least one side there is an even rung (see (P3)). Finally, f(k) is the
level where the sum totals to x(k). By Theorem 3, the even candidate is the node
k of the least possible f(k). Consequently, x(k) is minimum over all demands
inside 〈L(k),R(k)〉. The starting value of the summation is the number of black
levels below Γ, this depends on α. Large α values yield small f(k) values, and
we search for minimum f(k), so we fix α := min(x(r(i)), x(i)− 1).

In order to find potential nodes k of minimum x(k), we can check the linked
lists of each group Gt, starting nodes might be the stairs on the left. Applying
Lemma 3 (b.) to k implies that in the lowest group that is nonempty between
stairs on the two sides, there are at most 2C nodes. So, by Lemma 1 we find the
candidate k in O(min(n, log p)) steps. If stairs on the two sides meet before we
find a possible pit(i, r(i)), then the topmost stairs are candidates for top(i, r(i)).

If we have found an appropriate node k of minimum x(k), we have to restrict
the domain of α values to those for which f(k) ends in an even rung on both
sides. Should there be two different pairs of even rungs, where f(k) might end,
the higher pair does not provide optimal solutions by Theorem 3. Thus, the
restricted set of α values is an interval. �

First suppose that the process of Claim 2 yields possible top(i, r(i)) nodes.
Such (i, r(i)) pairs constitute the starting steps in the dynamic process. It is
trivial to check, which subinterval of the starting domain of α values allows
that m is a local maximum (it is easy to show that for m = top(i, r(i)) all of
the starting α are realizable). Moreover, each potential m provides a function
Fm(α) = α +Cm, where Cm is a constant, computable in O(min(n, log p)) time
along with the procedure of Claim 2. Finally, F (α) = α+C where C = minm Cm.

Second, suppose we have a candidate k = pit(i, r(i)). How do we compute the
optimum function Fk(α) for this k? Claim 2 settled a restricted interval domain
for α s.t. f(k) ends in a fixed pair of even rungs. We only search for “hereditarily”
regular solutions. In this case the optimum function on 〈
(k) + 1, k− 1〉 has the
form F ′(β) = β + C ′ and the optimum function on 〈k + 1, r(k) − 1〉 has the
form F ′′(γ) = γ +C ′′, where β and γ are the numbers of black-black conflicts of

850 A. Kovács

(
(k), k) resp. (k, r(k)) below f(k). These functions we computed earlier. Now
we further restrict the domain of α so that the β and γ values stay within the
domains of F ′, resp. F ′′. Since we take intersection of intervals, we have the
following:

(1) the restricted domain of F (α) is an interval [α0, α0 +Δ].
(2) the corresponding finish times range from f0(k) to f0(k)−Δ.
(3) β ranges from β0, to β0 +Δ and γ ranges from γ0, to γ0 +Δ.

The stairs 〈i + 1,
(k)〉 and 〈r(k), r(i) − 1〉 have constant finish times, that
total up to some S (see Corollary 1).

So, we have Fk(α0 + δ) = F ′(β0 + δ) + f0(k)− δ +F ′′(γ0 + δ) +S = β0 + δ +
C ′ + f0(k)− δ + γ0 + δ +C ′′ +S = α0 + δ +Ck. That is, Fk(α) = α +Ck, where
Ck := β0 + C ′ + f0(k) + γ0 + C ′′ + S − α0.

The even k, and the odd l candidate for pit(i, r(i)) yield the optimum func-
tions Fk(α) and Fl(α). Theorem 2 makes sure, that the function of smaller
constant (Ck or Cl) is the better one overall.

The last steps of this dynamic process are calculating the optimum on 〈i, r(i)〉,
(〈
(i), i〉) when i is compact. We also include here the case when 〈i, j〉 is a block
and x(i) = x(j). Suppose that node i is fixed, then node r(i) (in this broader
sense) may be a node of arbitrary parity, s.t. x(r(i)) ≤ x(i). By Lemma 3 (a.),
it is enough to test ≤ 2C such nodes of both parity in both directions to be r(i).

A natural variant of Theorem 3 holds for compact i. The 2 potential k (or 4
potential m = top(i, r(i))) nodes can be found as described in Claim 2. Since (P4)
does not apply to such a k, f(i) does not determine f(k). Let k be fixed and even,
and let f0(k) be the potential finish time of k as determined by f(i) = x(i) like
in Claim 2. The starting domain of possible f(k) values is f(k) ∈ [x(k), f0(k)].
This domain is trimmed further so that f(k) ends in rungs of some even L(k)
and R(k). (There are ≤ 3 different pairs of L(k) and R(k) to be considered.) We
fix L(k) and R(k) as well. Now the possible f(k) values constitute an interval I.

We have the optimum functions F ′k(β) on 〈
(k) + 1, k − 1〉 and F ′′k (γ) on
〈k +1, r(k)−1〉. The domains of these two functions correspond to two intervals
of possible f(k) values. We take the intersection of these two intervals and I.
The maximum possible f(k) will provide the optimum sum of finish times on
〈i + 1, j〉 for this k,L(k) and R(k).

We conclude Phase 1. with searching for (potential) blocks (i, j) (resp. (j, i))
assuming that f(i) ≥ f(j). Let i be fixed. Since x(r(i)) = x(i) was allowed,
we may assume that r(i) ≤ j. Claim 3 shows that for a fixed (i, r(i)) pair, any
possible j is within the first < 2 log p nodes to the right of r(i).

Claim 3. Let (i, j) be a block in a solution Φ, s.t. x(i) > x(j). Let r(i) = sη <
... < s2 < s1 < j be the series of consecutive stair-downs leading from r(i) to j.
Then ∀τ x(sτ+2) ≥ 2x(sτ).

Let F (i, j) denote the optimum sum of finish times on 〈i + 1, j〉. Calculating
F (i, j) is straightforward from the optimum on 〈i, r(i)〉. We can define a graph
G(V,E) on the nodes V := {0, 1, ..., n, n + 1} having ≤ 8 · C · nmin(2 log p, n)
edges. An edge leads between i and j if (i, j) is a potential block. The edge

Polynomial Time Preemptive Sum-Multicoloring on Paths 851

can be weighted by F (i, j). Finally, we determine the optimum and the blocks
on 〈0, n + 1〉 dynamically: if i is compact, then F (i), the optimum on 〈0, i〉 is
determined by F (i) = min{F (i − t) + F (i − t, i) | (i − t, i) ∈ E}. The running
time is proportional to the number of edges in G.

Phase 2. Now we have the blocks, and the minimum-tree for each block in
an optimal solution. Let (i, j) be a block of t nodes and x(i) > x(j). First we
schedule the stairs 〈r(i), j〉. Next we schedule k = pit(i, r(i)) and the stairs
〈i,
(k)〉 and 〈r(k), r(i)〉, and so on. (The root k of the minimum-tree has black
levels conflicting with both sides of the block (determined by f(k)). These levels
can be arbitrary, e.g. the lowest possible such levels.)

The scheduling procedure is basically the same as described in Claim 2. The
preemption levels in Φ(k) are obtained by way of merging the finish-times of
stairs on the two sides. Lemma 1 implies that a node has O(min(t, log p)) pre-
emption levels. Scheduling the whole block takes O(min(t2, t log p)) time.

5 Concluding Remarks

Since on cycles there is always at least one compact node i, the overlapping
path i, i + 1, ..., i + n, i + n + 1 = i(modn) constitutes one or more blocks. Let’s
take the first two nonempty groups of G1, ...,Gt. By Lemma 3, there must be a
compact node among the first ≤ 2C nodes of these groups. Testing these possible
starting nodes one by one, yields the same O(n ·min(n, log p)) time bound.

Due to the observation, that the total number of different preemption levels
is ≤ 2n (see [4]), the lower bound for pSMC on paths is O(n). If we may assign
a certain preemption level to a whole set of nodes at once (e.g., in 〈i,m〉 the
odd jobs should be started, and even jobs should be stopped at time a), then
it is not excluded that by way of a better analysis or an improved algorithm
the time-bound could be reduced. It could also be investigated, what our results
imply for conflict graphs with just one, or very few nodes of higher degree.

Acknowledgements. I would like to thank Katalin Friedl and Ulrich Meyer
for their remarks and suggestions during the writing of this paper.

References

1. A. Bar-Noy and G. Kortsarz. The minimum color-sum of bipartite graphs. Journal
of Algorithms, 28:339–365, 1998.

2. M. M. Halldórsson and G. Kortsarz. Tools for multicoloring with applications to
planar graphs and partial k-trees. Journal of Algorithms, 42(2):334–366, 2002.

3. A. Kovács. Fast preemtive sum-multicoloring on paths. Extended version:
http://www.mpi-sb.mpg.de/∼panni/pSMC long.ps.

4. A. Kovács. Sum-multicoloring on paths. In Proc. 21st Ann. Symp. on Theo.
Aspects of Comp. Sci. (STACS), volume 2996 of LNCS, pages 68–80. Springer,
2004.

852 A. Kovács

5. E. Kubicka. The Chromatic Sum of a Graph. PhD thesis, Western Michigan
University, 1989.

6. D. Marx. The complexity of tree multicolorings. In Proc. 27th Intl. Symp. Math.
Found. Comput. Sci. (MFCS), LNCS. Springer, 2002.

7. A. Bar-Noy M. M. Halldórsson G. Kortsarz H. Shachnai and R. Salman. Sum
multicoloring of graphs. Journal of Algorithms, 37:422–450, 2000.

8. M. M. Halldórsson G. Kortsarz A. Proskurowski R. Salman H. Shachnai and J. A.
Telle. Multi-coloring trees. Information and Computation, 180(2):113–129, 2002.

The Generalized Deadlock Resolution Problem

Kamal Jain1, MohammadTaghi Hajiaghayi2, and Kunal Talwar1

1 Microsoft Research
{kamalj, kunal}@microsoft.com

2 MIT Computer Science and Artificial Intelligence Laboratory,
hajiagha@csail.mit.edu

Abstract. In this paper we initiate the study of the AND-OR directed feedback
vertex set problem from the viewpoint of approximation algorithms. This AND-
OR feedback vertex set problem is motivated by a practical deadlock resolution
problem that appears in the development of distributed database systems1. This
problem also turns out be a natural generalization of the directed feedback vertex
set problem. Awerbuch and Micali [1] gave a polynomial time algorithm to find
a minimal solution for this problem. Unfortunately, a minimal solution can be
arbitrarily more expensive than the minimum cost solution. We show that finding
the minimum cost solution is as hard as the directed Steiner tree problem (and
thus Ω(log2n) hard to approximate). On the positive side, we give algorithms
which work well when the number of writers (AND nodes) or the number of
readers (OR nodes) are small.

We also consider a variant that we call permanent deadlock resolution where
we cannot specify an execution order for the surviving processes; they should get
completed even if they were scheduled adversarially. When all processes are writ-
ers (AND nodes), we give an O(log n log log n) approximation for this problem.

Finally we give an LP-rounding approach and discuss some other natural
variants.

1 Introduction

One of the best ways to understand deadlocks in databases is the dining philosophers
problem. Say there are five philosophers sitting on a circular table to eat spaghetti, with
a fork between every two of them. Each philosopher needs two forks to eat. But every-
body grabs the fork on the right, hence everybody has one fork and waiting for another
to be freed. This wait will be never ending unless one of the philosophers gave up and
freed up his fork. This never ending is an example of a deadlock. Picking up a philoso-
pher who can give up on eating the spaghetti is an example of deadlock resolution. Now
suppose that these philosophers have different likings for the spaghetti and hence differ-
ent inherent cost of giving up eating it. In this case we want to pick the philosopher who
likes spaghetti the least. This is called the minimum cost deadlock resolution problem.

In databases, philosophers correspond to independent agents e.g., transactions and
processes. Forks correspond to shared resources, e.g., shared memory. Eating spaghetti

1 Thanks to Ondrej Such from Microsoft for asking an algorithm for this problem.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 853–865, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

854 K. Jain, M. Hajiaghayi, and K. Talwar

corresponds to actions which these independent agents want to perform on the shared
resources e.g., reading or writing a memory location. So in general besides asking for
two forks these philosophers may ask for two spoons too, while they have grabbed only
one each. These spoons and forks can be of different kinds (e.g., plastic or metallic). In
general demands for resources can be very complicated and it can be represented by a
monotonic binary function, called demand function. A demand function takes a vector
of resources as an input and outputs whether it can satisfy the demand or not.

When a process does not get all the resources to satisfy its demand then it has to
wait. Like any other protocol involving waiting, there is a risk of deadlock. There are
ways to avoid deadlock, like putting a total order on all the resources and telling to
the users to ask them in the same order. In big or distributed databases, such solutions
are difficult to implement. Moreover such a solution works when the demand functions
consist of only ANDs. In essence deadlocks do happen and they need to be resolved at
a small cost. In practice one of the convenient solution is to time out on wait, i.e., if it
takes too long for a transaction to acquire further resources then it aborts and frees up
the resources held so far. This solution does not have any guarantee on the cost incurred.
For notational convenience, aborting a transaction will also be referred as killing it. We
assume that there is an associated cost of killing a process (this cost can also be the cost
of restarting it). The cost of a solution is the total cost of all the processes killed. For
the minimum cost deadlock resolution problem we want to kill the least expensive set
of processes to resolve the deadlock.

An instance of a generalized deadlock detection problem is captured by a waits-for-
graph (WFG) on transactions. An old survey by Knapp [17] mentions many relevant
models of WFG graphs. In the AND model, formally defined by Chandy and Misra [5],
transactions are permitted to request a set of resources. A transaction is blocked until
it gets all the resources it has requested. In the OR model, formally defined by Chandy
et al. [6], a request for numerous resources are satisfied by granting any requested re-
source, such as satisfying a read request for a replicated data item by reading any copy
of it. In a more generalized AND-OR model, defined by Gray et al. [12] and Herman et
al. [15], requests of both kinds are permitted. A node making an AND request is called
an AND node and a node making an OR request is called an OR node. An advantage
of using both these kinds of nodes is that one can express2 arbitrary demand functions
e.g., if a philosopher wants any one fork and any one spoon then we can create two sub-
agents for this philosopher, one responsible for getting a fork and the other for getting
a spoon. This philosopher then becomes an AND node and the two sub-agents become
two OR nodes. From the perspective of algorithm design, detecting deadlocks in all
these models is not a difficult task (see e.g. [11, 21, 23]). The difficult task is to resolve
it once detected and that too at a minimum cost (for some heuristics and surveys on the
generalized AND-OR model see e.g. [1,3,4,14]). In the next section we formally model
the problem as an AND-OR directed feedback vertex set problem.

Often it may not be possible for the deadlock resolving algorithm to specify a sched-
ule for the remaining processes, and when the cost of calling the deadlock resolution
algorithm is large (as one would expect in a distributed setting), we would like that

2 This expression may be of exponential size. See [17] for more models of waits-for-graphs.

The Generalized Deadlock Resolution Problem 855

no matter in what order the surviving transactions are scheduled, they do not deadlock
again. This motivates the permanent deadlock resolution problem. For the case when
the transactions are all writers (the AND only case), we show a polynomial-time ap-
proximation algorithm for the problem.

1.1 Our Results

When all the nodes are OR nodes then the problem can be solved in polynomial time
via strongly connected components decomposition. But the problem quickly becomes
at least as hard as the set-cover problem even in the presence of a single AND node.
Our reduction has deadlock cycles of length 3 capturing the special case mentioned
by Jim Gray, who says in practice deadlocks happen because of cycles of length 2 or
3. We give an O(na log(no)) factor approximation algorithm, where no is the number
of OR nodes and na is the number of AND nodes. On the other hand if all the nodes
are AND nodes, the problem is the well-studied directed feedback vertex set problem.
There are approximation algorithms with polylog approximation factor for this problem
due to Leighton-Rao [18] and Seymour [22]. We generalize those algorithms to destroy
all the handles at a pivot vertex. We define handles later in the paper and there we also
show that destroying handles is a more general problem than destroying cycles. We
use this generalization as a subroutine to develop an O(no log(na) log log(na)) factor
approximation algorithm.

From the hardness point of view, we show that the problem is as hard as the directed
Steiner tree problem, which was shown to be hard to approximate better than a factor
of O(log2−εn) by Halperin and Krauthgamer [13], and has no known polynomial time
polylogarithmic approximation algorithm. One difficulty in designing an approximation
algorithm for our problem is that we do not know any good LP relaxation. The natural
LP relaxation itself is at least as hard as the directed Steiner tree problem, even for the
case of one OR node. It will be interesting to interpret our algorithms in terms of LP
rounding. We do that in case there is one (or a constant number of) OR nodes . The size
of this LP is exponential in the number of OR nodes.

For the permanent deadlock resolution problem, we show that the case with only
AND nodes is reducible to the feedback vertex set problem in mixed graphs. Acyclic-
ity implies schedulability for both undirected and directed graphs - acyclic undirected
graphs have leaves and acyclic directed graphs have sinks. Corresponding theorem for
mixed graphs is not clear. We develop a corresponding theorem for bipartite mixed
graphs. This leads to an O(log n log log n) approximation algorithm for this problem.
We leave open the approximability of this problem in the general case.

This problem was also studied in theoretical computer science by Awerbuch and
Micali [1]. In their paper, they mentioned that the ideal goal is to kill a set of processes
with minimum cost, but the problem is a generalization of feedback vertex set and
seems very hard. Thus they gave a distributed algorithm for finding a minimal solution.
Unfortunately, a minimal solution can be arbitrarily more expensive than the minimum
cost solution. We study this problem from approximation algorithm point of view. We
are excited with the fact that the problem has such a rich mathematical structure. It
allows use of many results, which were discovered after the paper due to Awerbuch and
Micali. In this paper we try to find a proper place for the problem in the vast area of

856 K. Jain, M. Hajiaghayi, and K. Talwar

approximation algorithms. We show that this problem blends naturally with feedback
vertex and arc set problems. From hardness point of view it blends naturally with the
directed Steiner tree and set cover problems. In the discussion section we mention an
alternative approach to design approximation algorithms for the directed Steiner tree
problem. This approach is suggested by interpreting our algorithm for the case of one
OR node in terms of linear programming. This approach does not seem to be based
upon the standard LP for the directed Steiner tree problem, which some researchers
suspect to have integrality ratio worse than polylogarithmic.

Due to interest of space, we omit several proofs in this extended abstract and defer
them to the journal version of this paper.

2 Problem Definition and Preliminary Results

All the graphs in this paper are directed without loops or multiple edges, unless stated
otherwise. Our graph terminology is as follows. A graph G is represented by G =
(V,E), where V (or V (G)) is the set of vertices (or nodes) and E (or E(G)) is the set
of edges. We denote an edge e from u to v by (u, v), and we call it an outgoing edge
for u and an incoming edge for v. We say node u can reach node v (or equivalently v is
reachable from u) if there is a path from u to v in the graph. We shall use the notation
u � v to denote that v is reachable from u. We define n to be the number of vertices of
a graph when this is clear from context. We denote the maximum out-degree by Δout

and the maximum in-degree by Δin. We assume that the node set V is partitioned into
two sets Va and Vo. Nodes in Va and Vo are referred to as AND nodes and OR nodes
respectively. We let na = |Va| and no = |Vo|. With this terminology we now define the
wait-for-graphs (WFG).

Each node of a wait-for-graph, G = (V,E), represents a transaction. An edge (u, v)
denotes that transaction u has made a request for a resource currently held by transac-
tion v. There are two kinds of nodes. An AND node represents a transaction which has
made an AND request on a set of resources, which are held by other transactions. An
OR node represents a transaction which has made an OR request on a set of resources.
Without loss of generality we assume that a transaction is allowed to make only one
request. If a transaction makes multiple requests then we can create a sub-transaction
for each request and put the necessary dependency edges. Each transaction has an as-
sociated weight. We denote the weight of a transaction u by wu.

An AND transaction can be scheduled if it gets all the resources it has requested.
An OR transaction can be scheduled if it gets at least one of the resources it has re-
quested. Once a transaction is scheduled, it gives up all its locks, potentially allowing
other processes to get scheduled. A wait-for-graph is called deadlock free if there exist
an ordering of the transactions in which they can be executed successfully. If no such
ordering exist then we say that the graph has a deadlock. The minimum cost generalized
deadlock resolution problem (GDR) is to kill the minimum weight set of transactions to
free up the resources held by them so that the remaining transactions are deadlock free.
In other words, there exists an order on the remaining transactions so that for each AND
transaction, each of its children is either killed or can be completed before it and for each
OR transaction at least one of its children is either killed or can be completed before it.

The Generalized Deadlock Resolution Problem 857

2.1 Some Special Cases

We show some simple propositions which give us some intuition about the problem.

Proposition 1. The GDR problem when there is no OR node has an approximation
algorithm with ratio O(log n log log n).

Proposition 2. The GDR problem with all OR nodes can be solved in polynomial time.

In fact, we can strengthen Proposition 2 as follows:

Proposition 3. The GDR problem, when the reachability graph on the AND nodes is a
directed acyclic graph, can be solved in polynomial time.

Proposition 4. The GDR problem with uniform weights and O(log n) AND nodes can
be solved in polynomial time.

Using ideas of Propositions 3 and 4, we can show the following theorem.

Theorem 1. The GDR problem with uniform weights and na AND nodes has an O(na)-
approximation algorithm.

3 Hardness Results and Natural LP

In this section, we consider the hardness of the GDR problem. First, we show a simple
approximation preserving reduction from the set cover problem to this problem. Re-
call that the set cover problem is to find a minimum collection C of sets from a family
F ⊆ 2U , such that C covers U , i.e. ∪S∈CS = U . From the results of Lund and Yan-
nakakis [20] and Feige [10], it follows that no polynomial time algorithm approximates
the set cover problem better than a factor of lnn unless NP ⊆ DTIME(nlog log n). Our
reduction then implies a similar hardness for the GDR problem. There is no similar
inapproximability result known for the directed feedback vertex set problem.

Theorem 2. There exists an approximation preserving reduction from (unweighted) set
cover to GDR with only one AND node.

It is worth mentioning that in the reduction of Theorem 2, there is only one AND
node whose weight is m + 1 and the rest of the vertices are OR nodes with weight
one. Moreover, the one AND node of high weight can be replaced by m + 1 AND
nodes of unit weight placed “in parallel”. Thus the uniform weight case is also hard to
approximate better than a factor of Ω(log n).

Now the question is that whether it is possible to get a better inapproximability
result. To answer this question, we use a recent result of Halperin and Krauthgamer [13]
on the inapproximability of the directed Steiner tree problem. In the directed Steiner tree
problem, given a directed graph G = (V,E), a root r ∈ V and a set of terminals T ∈ V ,
our goal is to find a minimum subset E′ ⊆ E such that in graph G′ = (V,E′) there
is a path from r to every t ∈ T . Halperin and Krauthgamer [13] show that the directed
Steiner tree problem is hard to approximate better than a factor of Ω(log2 n), unless

858 K. Jain, M. Hajiaghayi, and K. Talwar

NP ⊆ ZTIME(npolylog n). So far, no polynomial-time polylogarithmic approximation
algorithm is known for this problem. We show a similar non-approximability result in
Theorem 3 for GDR by giving an approximation preserving reduction from directed
Steiner tree.

Theorem 3. There exists an approximation preserving reduction from directed Steiner
tree to GDR.

Proof. We consider an instance of directed Steiner tree given by a directed graph G =
(V,E), a set of terminals T ⊆ V and a root node r ∈ V . The goal is to find a minimum
cost subset E′ of edges containing a path from r to every terminal t ∈ T . The reduction
is as follows. For each vertex v ∈ V − {r}, we create an OR node v of weight ∞3 in
our GDR instance. For r, we create an OR node r of weight zero. In addition, we have
an AND node a of weight ∞ which has an edge (a, t) for each t ∈ T and an edge (v, a)
for each v ∈ V . For each edge e ∈ E, we put an AND-OR gadget shown in Figure 1,
with the weight of each node as shown in the figure. Recall that a is the global AND
node introduced before and oe and ae are new OR and AND nodes corresponding to
e respectively. Intuitively, using an edge e in the Steiner tree corresponds to killing the
OR node oe in this gadget.

Next we show that the cost of an optimum Steiner tree is equal to the minimum cost
of nodes to be killed such that the remaining graph is deadlock-free. First consider a
Steiner tree S in G. We kill all OR nodes corresponding to edges in S. For each edge
e = (u, v) ∈ S, killing oe allows v to be complete after u. Thus, first complete node
r, then complete nodes according to the directed Steiner tree. Since the Steiner tree
solution contains a path to each terminal, we can complete all terminals. Now, after
completing all terminals, we can complete the global AND node a and then complete
every other node in the graph.

On the other hand, since the only nodes with finite weight are the OR nodes corre-
sponding to edges and the node corresponding to root r, any feasible solution of finite
weight for GDR kills only such nodes. It is easy to check that the set of edges for which
the OR nodes are killed contain a directed Steiner tree. ��

a

a

c

o

e

e

e

v

u

u

v

ce

Fig. 1. Edge e = (u, v) in graph
G and its AND-OR gadget in the
new instance of GDR

Again, we might replace each node of weight ∞
with several nodes of unit weight, say |E(G)|, in or-
der to reduce the directed Steiner tree problem to the
uniform weighted case.

3.1 Natural LP and Hardness

We end this section by considering a natural LP for
the GDR problem, which is a generalization of the
LP for feedback vertex set (see e.g. [9]). We say a set
of nodes H forms a Minimal Deadlocked Structure
(MDS) if

3 As usual, the∞ weights can be replaced by a (polynomially) large weight.

The Generalized Deadlock Resolution Problem 859

1. For any OR node u ∈ H , all its outneighbors are in H .
2. For any AND node u ∈ H , at least one of its outneighbors is in H .
3. H is minimal4 amongst sets satisfying (1) and (2).

We now write a linear program (called LP 1) is as follows: minimize
∑

v∈V wvxv
such that

∑
v∈H xv ≥ 1 for any MDS H and xv ≥ 0 for all v ∈ V

Clearly an integral solution to this linear program is a feasible solution to the un-
derlying GDR instance and hence this is a relaxation. However, this linear program
can potentially have exponentially many constraints. Note that if the graph G does not
have any OR node, MDSs are exactly the minimal directed cycles and our LP is the
same as the LP considered in [18,22,9] for applying region growing techniques for the
feedback vertex set problem. In this special case of feedback vertex set, this LP has a
simple separation oracle which enables us to solve it using Ellipsoid method. However,
we now show that even the separation oracle for LP 1 is as hard as the directed Steiner
tree problem.

Theorem 4. The separation oracle for LP 1 is as hard as solving directed Steiner tree.

Proof. A separation oracle for LP 1 solves the following problem: given a vector −→x ,
is there an MDS H for which

∑
v∈H xv < 1. We shall reduce the directed Steiner tree

problem to this problem
We consider an instance of directed Steiner tree: given a root r and a set of termi-

nals T in a directed graph G = (V,E), is there is Steiner tree of weight at most 1 (by
scaling). Without loss of generality we assume G is a directed acyclic graph (DAG),
since the directed Steiner tree problem on DAGs is as hard as the one on general di-
rected graphs (see e.g. [7]). Also without loss of generality assume we have weights on
vertices instead of edges (again the two problems are equivalent). Now we are ready to
demonstrate the reduction. For each vertex v ∈ V , we place an AND node v with xv
equal to its weight in the Steiner instance. For each edge (u, v) in G, we place an edge
(v,u) in our new graph. In addition, we add an OR node with xo = 0 which has an
outgoing edge (o, t) for each terminal t ∈ T and an incoming edge (r, o) (r is the root
node). Call the new graph G′. It is easy to check that H ∪ {o} is an MDS in G′ if and
only if H is a directed Steiner tree in G. Hence the claim follows. ��

As shown by Jain et. al. [16], for these kinds of problems optimizing LP 1 is equiv-
alent to solving the separation oracle problem. Furthermore, these reductions are ap-
proximation preserving. Thus if we can optimize LP 1 within some factor then we can
solve its separation oracle for the same factor. Hence by Theorem 4, we can solve the
directed Steiner tree problem within the same factor.

Corollary 1. Optimizing LP 1 is at least as hard as the directed Steiner tree problem.

Finally, notice that finding the integrality gap of LP 1 is an interesting open problem.

4 With respect to set inclusion.

860 K. Jain, M. Hajiaghayi, and K. Talwar

4 Approximation Algorithms

In this section, we give an O(min{na log n, no log n log log n}) algorithm for this prob-
lem, where na is the number of AND nodes and no is the number of OR nodes in the
instance. Thus, when either of na or no is small, the problem is well approximable.

In subsection 4.1 we show how to use region growing to solve a slight generaliza-
tion of feedback vertex set. We use this to get an O(no log n log log n) algorithm in
subsection 4.2. In subsection 4.3, we give an O(na log n) approximation algorithm for
the problem. Thus the better of these two algorithms gives the claimed performance
guarantee.

4.1 Handle Removal Algorithm

In this section, we consider the following handle removal problem which plays an im-
portant role in the algorithm for the case of few OR nodes (see Section 4.2): Given
a directed graph G, and a designated vertex r, delete the smallest number (weight) of
vertices such that the remaining graph has no cycles reachable from r. For ease of expo-
sition, we shall replace each vertex by a pair of vertices joined by an edge, and transfer
the weight to this edge. The edges in the original graph are given an infinite weight. The
problem then reduces to finding the smallest cost set of edges whose removal eliminates
all cycles reachable from r.

We shall write this problem as an integer program, and consider its linear program-
ming relaxation. We first formally define a handle.

Definition 1. Let H = (r = u0,u1, . . . ,uk) be a simple path in G. We call H a handle
if for some p : 0 ≤ p < k, there is an edge (uk,up). We refer to up as the pivot of the
handle H . The edges on the path along with the edge {uk,up} constitute the edges of
the handle.

LetH be the set of all handles in G. We can write the following linear programming
relaxation for this problem: minimize

∑
e∈E wexe such that

∑
e∈H xe ≥ 1 for all H ∈

H and xe ≥ 0 for all e ∈ E.
Note that the above linear program has an exponential number of constraints. The

separation oracle for this LP requires us to find a violated handle in a given fractional
solution. Note that we can find in polynomial time, for each u ∈ V , the smallest cycle
passing through u, and the shortest path from r to u. The shortest handle in the graph is
then just the minimum, over all u, of the sum of the above two quantities. Thus the LP
has a polynomial time separation oracle, and hence can be solved by Ellipsoid method.

Given a solution to this linear program, we shall now argue that the techniques used
by Seymour [22] and Even et.al. [9] for the feedback arc set problem apply here to
give an O(log n log log n)-approximation algorithm to the problem. Given a graph G,
and a non negative length function xe on the edges, we can define the shortest path
function dx on the vertices of G. A modification of the algorithm of Seymour implies
the following theorem:

Theorem 5. Given a weighted graph G, a special vertex r and non-negative length
function xe, let W =

∑
e wexe. There exists a set of edges C such that:

The Generalized Deadlock Resolution Problem 861

–
∑

e∈C we ≤ O(log n log log n) ·W
– For any vertex v with dx(r, v) ≥ 1

4 , C is an r-v cut.
– For any pair of vertices u and v such that dx(u, v) ≥ 1

4 , C contains either a u-v
cut or a v-u cut.

We now argue that the rounding described in the theorem applied to a feasible LP
solution, gives a feasible solution to the handle removal problem.

Claim. Let x be a feasible solution to the linear program above and d be the shortest
path function defined accordingly. Then for any handle H with pivot u, either d(r,u) ≥
1
4 , Or there exists v ∈ H such that d(u, v) ≥ 1

4 .

From the above claim, and theorem 5, it follows that the handle removal problem is
approximable within a factor of O(log n log log n).

4.2 Few OR Nodes Algorithm

Using the algorithm for the handle removal problem in section 4.1, we are now ready
to prove the following theorem.

Theorem 6. There is an O(no log(na) log log(na))-approximation algorithm for the
Generalized Deadlock Resolution Problem.

Proof. We first assume that the OR nodes in the graph have infinite cost, and thus are
all scheduled. We shall give an O(αno) solution where α is the approximability of the
handle removal problem.

Let u be the first OR node to be scheduled. Since this node is scheduled, one of its
outneighbors, say v, is killed/scheduled before any other OR node. Since no cycle of
AND nodes can be scheduled, no such cycle reachable from v survives in the optimum
solution. OPT thus includes a solution to the handle removal problem with root v. Let
Ov be the optimum of the handle removal problem with root v, when all OR nodes are
removed. Hence OPT ≥ minu∈VO

minv:(u,v)∈E Ov .
Our algorithm is as follows. Using an α-approximation algorithm for the handle

removal problem, we compute solutions to handle removal problems rooted at {v :
(u, v) ∈ E,u ∈ VO}. We pick the cheapest of these and kill the nodes in this solution.
The cost of killing these nodes is at most αOPT . Now the OR node u can be scheduled,
and consequently some more nodes can be scheduled. We remove all such nodes along
with their incoming edges, and recur. In the base case, when there are no OR nodes, we
have the feedback vertex set problem, which is also approximable within α (by a simple
reduction to the handle removal problem). Thus we get obtain (no+1)α approximation.

We now show how to remove the assumption about OR node removal. To each OR
node u in the graph, we add a new outneighbor ua which is an AND node with cost
equal to the original OR node. We add another AND node v of infinite cost to the
graph, with edges to all the original vertices of the graph. Finally, we add an edge from
ua to the vertex v, and increase the costs of all OR nodes to infinity.

For any solution to the original instance that kills an OR node u, we can get a
solution to the new instance by killing ua. This lets us schedule u instead of killing u.
Moreover, after scheduling/killing all original nodes, the node v can be scheduled, after

862 K. Jain, M. Hajiaghayi, and K. Talwar

which any unkilled ua can be scheduled. Finally, the cost of the new solution is the
same as the original one.

A solution to the new instance immediately gives a solution to the original instance:
kill OR node u whenever the new solution killed ua. It is easy to see that this transfor-
mation preserves feasibility and cost. ��

4.3 Few AND Nodes Algorithm

In this section, we present an O(na log n)-approximation algorithm for this problem.
We note that in the reduction of set cover to generalized deadlock resolution (mentioned
in Theorem 2), we have only one AND node and thus our result is tight in this case.
However, in the reduction of directed Steiner tree to this problem, the number of AND
nodes is linear and the best non-approximability result is in Ω(log2 n).

The algorithm is as follows. We start with the original graph G and in each itera-
tion we update it. More precisely, if in an iteration graph G does not have any AND
node, we can obtain the optimal solution for G by the procedure mentioned in Proposi-
tion 2 (and thus we stop). Otherwise, for each AND node a whose outgoing edges are
(a, c1), (a, c2), · · · , (a, cΔout

) in graph G and all ci’s, 1 ≤ i ≤ Δout, are OR nodes, we
construct the following hitting set instance (note that the hitting set problem is the dual
of the set cover problem). For each ci, 1 ≤ i ≤ Δout, we form a set Si which contains
all OR nodes reachable via OR nodes from ci (i.e. paths from ci to Si do not use any
AND nodes). Now, the collection C contains all sets Si ⊆ S, where S is the set of all
OR nodes. Using the (1+lnΔout) = O(log n) approximation for hitting set, we obtain
a set S∗a of weight w∗a of OR nodes which hit every set. Let Wa = min{wa, w∗a} (wa is
the weight of node a). Choose the AND node a with minimum Wa over all AND nodes.
Kill AND node a or all the OR nodes in the corresponding hitting set solution (the one
with minimum weight). Clear graph G, i.e., remove every AND/OR node which can be
completed after killing the aforementioned nodes, and repeat the above iteration for G.
The final solution contain all AND/OR nodes killed during the iterations.

We finish by showing that

Theorem 7. The above algorithm kills a set of AND/OR nodes such that the remaining
graph is deadlock free and the weight of the solution is at most (1 + lnΔout)na + 1 =
O(na log n) times optimum.

Proof. The correctness of the solution can be easily seen from the description of the
algorithm. Thus, we only show the approximation factor here. To this end, we prove
that in each iteration, except the case in which there is no AND node, we kill nodes of
total weight at most (1 + lnΔout) times optimum weight for the updated graph G in
that iteration. In the last iteration, we kill nodes of total weight at most OPT according
to the description of the algorithm. Using these facts and that OPT in each iteration is
at most the original optimum, we obtain the desired approximation factor.

Consider an optimum solution and let a be the first AND node which is completed
or killed in the optimum resolution. Thus either we have killed a or we have completed
a by killing at least one OR node from the OR nodes reachable from each of its children.
Hence for at least one AND node, the weight of the solution to the corresponding hitting
set instance is at most the weight of optimum. Since the approximation factor of hitting

The Generalized Deadlock Resolution Problem 863

set is 1+lnΔout and we try all AND nodes and then take the minimum, the total weight
of the killed nodes is at most (1 + lnΔout) times optimum, as desired. ��

5 Permanent Deadlock Resolution

Here we consider another version of the deadlock resolution problem where it is not
possible for the algorithm to specify a feasible schedule on the remaining processes.
In particular, we want to kill enough processes, such that if the remaining processes
try to acquire locks in any order, they cannot deadlock. We then say that the remaining
processes are adversarially schedulable.

We consider the special case of this problem when all processes are writers (AND
nodes). In this case, we show that this problem can be reduced to the feedback vertex set
problem on mixed graphs (i.e. graphs with both directed and undirected edges). Since
this problem yields to the same techniques as those used for feedback vertex set of
directed graphs, we get an O(log n log log n)-approximation.

We are given a set of resources R and a set of processes P , each holding a lock
on some subset of resources, and waiting to get locks on another subset of resources.
We construct a bipartite mixed graph as follows: create a vertex vr for every resource
r with infinite cost, and a vertex vp for every process p. Whenever process p holds
the lock on resource r, we add a directed edge from vp to vr. Moreover, we add an
undirected edge between vp and vr′ whenever process p is waiting to get a lock on
resource r′.

Theorem 8. An instance is adversarially schedulable if and only if the corresponding
graph is acyclic.

Proof. We first argue that greedily schedulability implies acyclicity. Assume the con-
trary, and let the graph have a cycle p1, r1, p2, r2, . . . , pk, rk, p1. Now consider the
schedule in which pi grabs a lock on ri (or already holds it, in case the edge is di-
rected). Note that pi waits for a lock on ri−1 and p1 waits on rk. this entails a cyclic
dependency amongst processes p1, . . . , pk: pi cannot finish unless pi−1 finishes and
releases ri−1. This configuration is therefore deadlocked. Since we have shown how
to reach a deadlocked state from the initial state, the initial state was not adversarially
schedulable, which contradicts the assumption. Hence the claim follows.

Now suppose that the graph is acyclic. We claim that the initial configuration is
adversarially schedulable. Suppose not. Then there is a sequence of lock acquisition that
lead to a deadlocked configuration. Clearly, a deadlocked configuration corresponds to
processes p1, p2, . . . , pk such that pi+1 is waiting for pi to release some resource ri.
Since pi holds ri in this configuration, (pi, ri) must be directed/undirected edge in the
graph. Moreover, since pi+1 is waiting for ri, (ri, pi+1) is an undirected edge in the
graph. However, we have just shown that p1, r1, p2, r2, . . . , pk, rk, p1 is a cycle in G,
which contradicts the acyclicity of G. Thus the claim follows. ��

Theorem 9. The permanent deadlock resolution problem for AND nodes has an
O(log n log log n) approximation algorithm.

864 K. Jain, M. Hajiaghayi, and K. Talwar

Acknowledgement

We would like to thank, Ondrej Such, a developer at Microsoft for asking his question
on the Algorithm’s email list. The first author would also like to thanks Joseph Cheriyan
and Laci Lovasz for many initial and fruitful discussions. He would also like to thank
David Shmoys for a very short but helpful discussion. The last author would like to
thank Christos Papadimitriou and Joe Hellerstein for very useful discussions.

References

1. B. AWERBUCH AND S. MICALI, Dynamic deadlock resolution protocols, in The 27th An-
nual Symposium on Foundations of Computer Science, 1986, 196–207.

2. R. BAR-YEHUDA, D. GEIGER, J. NAOR, AND R. M. ROTH, Approximation algorithms for
the feedback vertex set problem with applications to constraint satisfaction and Bayesian
inference, SIAM J. Comput., 27 (1998), 942–959.

3. G. BRACHA AND S. TOUEG, A distributed algorithm for generalized deadlock detection,
in Proceedings of the 3rd annual ACM symposium on Principles of distributed computing,
ACM Press, 1984, 285–301.

4. K. M. CHANDY AND L. LAMPORT, Distributed snapshots: determining global states of
distributed systems, ACM Transactions on Computer Systems (TOCS), 3 (1985), 63–75.

5. K. M. CHANDY AND J. MISRA, A distributed algorithm for detecting resource deadlocks
in distributed systems, in Proceedings of the 1st ACM SIGACT-SIGOPS symposium on
Principles of distributed computing, ACM Press, 1982, 157–164.

6. K. M. CHANDY, J. MISRA, AND L. M. HAAS, Distributed deadlock detection, ACM Trans-
actions on Computer Systems (TOCS), 1 (1983), 144–156.

7. M. CHARIKAR, C. CHEKURI, T.-Y. CHEUNG, Z. DAI, A. GOEL, S. GUHA, AND M. LI,
Approximation algorithms for directed Steiner problems, J. Algorithms, 33 (1999), 73–91.

8. J. CHERIYAN, H. J. KARLOFF, AND Y. RABANI, Approximating directed multicuts, in The
42th Annual Symposium on Foundations of Computer Science, 2001, 348–356.

9. G. EVEN, J. NAOR, B. SCHIEBER, AND M. SUDAN, Approximating minimum feedback sets
and multicuts in directed graphs, Algorithmica, 20 (1998), 151–174.

10. U. FEIGE, A threshold of ln n for approximating set cover, J. ACM, 45 (1998), 634–652.
11. M. FLATEBO AND A. K. DATTA, Self-stabilizing deadlock detection algorithms, in Pro-

ceedings of the ’92 ACM annual conference on Communications, ACM Press, 1992,
117–122.

12. J. GRAY, P. HOMAN, R. OBERMARCK, AND H. KORTH, A straw man analysis of proba-
bility of waiting and deadlock, in Proceedings of the 5th Internafional Conference on Dis-
tributed Data Management and Computer Networks, 1981.

13. E. HALPERIN AND R. KRAUTHGAMER, Polylogarithmic inapproximability, in The 35th
Annual ACM Symposium on Theory of Computing (STOC’03), 2003, 585–594.

14. J.-M. HELARY, C. JARD, N. PLOUZEAU, AND M. RAYNAL, Detection of stable properties
in distributed applications, in Proceedings of the 6th PODC, ACM Press, 1987, 125–136.

15. T. HERMAN AND K. M. CHANDY, A distributed procedure to detect and/or deadlock, Tech.
Rep. TR LCS-8301, Dept. of Computer Sciences, Univ. of Texas, 1983.

16. K. JAIN, M. MAHDIAN, AND M. R. SALAVATIPOUR, Packing Steiner trees, in The 14th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’03), 2003, 266–274.

17. E. KNAPP, Deadlock detection in distributed databases, ACM Computing Surveys (CSUR),
19 (1987), 303–328.

The Generalized Deadlock Resolution Problem 865

18. T. LEIGHTON AND S. RAO, Multicommodity max-flow min-cut theorems and their use in
designing approximation algorithms, J. ACM, 46 (1999), 787–832.

19. R. J. LIPTON AND R. E. TARJAN, Applications of a planar separator theorem, SIAM J.
Comput., 9 (1980), 615–627.

20. C. LUND AND M. YANNAKAKIS, On the hardness of approximating minimization problems,
J. Assoc. Comput. Mach., 41 (1994), 960–981.

21. K. MAKKI AND N. PISSINOU, Detection and resolution of deadlocks in distributed database
systems, in Proceedings of the 4th international conference on Information and knowledge
management, ACM Press, 1995, 411–416.

22. P. D. SEYMOUR, Packing directed circuits fractionally, Combinatorica, 15 (1995), 281–288.
23. H. WU, W.-N. CHIN, AND J. JAFFAR, An efficient distributed deadlock avoidance algo-

rithm for the and model, IEEE Transactions on Software Engineering, 28 (2002), 18–29.

Facility Location in Sublinear Time

Mihai Bădoiu1, Artur Czumaj2,�, Piotr Indyk1, and Christian Sohler3,��

1 MIT Computer Science and Artificial Intelligence Laboratory,
Stata Center, Cambridge, Massachusetts 02139, USA

{mihai, indyk}@theory.lcs.mit.edu
2 Department of Computer Science,
New Jersey Institute of Technology,

Newark, NJ 07102, USA
czumaj@cis.njit.edu

3 Heinz Nixdorf Institute and Computer Science Department,
University of Paderborn, D-33102 Paderborn, Germany

csohler@uni-paderborn.de

Abstract. In this paper we present a randomized constant factor ap-
proximation algorithm for the problem of computing the optimal cost of
the metric Minimum Facility Location problem, in the case of uniform
costs and uniform demands, and in which every point can open a facil-
ity. By exploiting the fact that we are approximating the optimal cost
without computing an actual solution, we give the first algorithm for this
problem with running time O(n log2 n), where n is the number of metric
space points. Since the size of the representation of an n-point metric
space is Θ(n2), the complexity of our algorithm is sublinear with respect
to the input size.

We consider also the general version of the metric Minimum Facility
Location problem and we show that there is no o(n2)-time algorithm,
even a randomized one, that approximates the optimal solution to within
any factor. This result can be generalized to some related problems,
and in particular, the cost of minimum-cost matching, the cost of bi-
chromatic matching, or the cost of n/2-median cannot be approximated
in o(n2)-time.

1 Introduction

The design of algorithms operating on massive data sets has received a lot of at-
tention in recent years. The practical motivation of this study is that polynomial-
time algorithms that are efficient in relatively small inputs, may become imprac-
tical for input sizes of several gigabytes. For example, when we consider approx-
imation algorithms for clustering problems in metric spaces then they typically

� Research supported in part by NSF grant ITR-CCR-0313219.
�� Research supported in part by DFG grant Me 872/8-2 and by the IST program of

EC under contract no. IST-2002-001-907 (DELIS).

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 866–877, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Facility Location in Sublinear Time 867

have Ω(n2) running time where n is the number of input points. Clearly, such a
running time is not feasible for massive data sets. But for many problems — like
the facility location problem considered in this paper — such a running time is
provably unavoidable. Surprisingly, these lower bounds do not necessarily hold
when one wants to estimate the cost of an optimal solution. In this paper we
will indeed show that one can find a constant factor approximation algorithm
for the metric uncapacitated facility location problem with uniform costs and in
which every point can open a facility, that runs in O(n log2 n) time, that is, in
time sublinear in the input size.

Our approach is motivated by the fact that in many applications it suffices
to know an approximate cost of the facility location problem rather than to
find an approximate solution to the facility location problem. Let us consider
the example that a company wants to invest money and it can relate the cost
of the facility location problem to the possible return on investment. Then it
would first solve an instance of the problem for every market to find out the
most profitable one. In such a situation it is sufficient to know the return on
investment before one decides which market to enter. It is not (yet) necessary
to know how to achieve it. Finally, when one knows which market to enter one
only has to compute a solution to a single instance of the problem. Therefore, if
one could approximate the cost of an optimal solution significantly faster than
finding such a particular approximate solution this would significantly speed up
the market analysis.

Similar arguments hold for another popular application of facility location
algorithms, that of clustering data sets. In particular, it is good to know if the
data can be “well-clustered” before actually attempting to find the clustering.

1.1 Our Results

In this paper we consider the metric Minimum Facility Location problem with
uniform opening costs and demands, and in which every point can open a facil-
ity. We give a randomized O(1)-approximation algorithm for this problem that
runs in time O(n log2 n), where n is the number of metric space points. Since the
size of the representation of an n-point metric space is Θ(n2), the complexity of
our algorithm is sublinear with respect to the input size. No o(n2)-time approx-
imation algorithm for this problem was known before. It has been known that
any constant factor approximation algorithm that returns not only the cost, but
also a solution itself, requires the running time of Ω(n2) [14].

Next, we prove that if the set of facilities and the cities (points that are to
be connected to the facilities) are allowed to be disjoint, then any, even random-
ized, approximation algorithm for the cost of the Minimum Facility Location
that guarantees any bounded approximation ratio for the cost, requires time
Ω(n2). This bound holds even when the opening costs and demands are uni-
form. Furthermore, our proof can be extended to the problems of estimating
the cost of minimum-cost matching, the cost of bi-chromatic matching, and the
cost of k-median for k = n/2; all these problems require Ω(n2) to estimate the
cost of their optimal solution to within any factor. We feel that these results

868 M. Bădoiu et al.

demonstrate that most optimization problems for metric instances do not have
sublinear-time algorithms even to estimate well the cost of the optimal solution;
results like our sublinear-time algorithm for a O(1)-factor approximation of the
cost of the optimum solution for the metric uniform Minimum Facility Location
problem are rare (see however, [4, 6, 7]).

1.2 Our Techniques

Our analysis of a sublinear-time algorithm consists of two principal steps: we first
prove the existence of an appropriated estimator for the cost of the Minimum
Facility Location problem and then we show how such an estimator can be
approximated in time O(n log2 n). Our estimator is obtained by extending the
primal-dual approach from [12]: for each point we define an approximation of the
contribution of that point to the total cost, and then we prove that the sum of the
contributions for all the points approximates the cost of the Minimum Facility
Location problem. An important property of our estimator is that it can be
efficiently approximated by adaptive sampling. We first prove that the individual
value of an estimator for any single point can be efficiently approximated by
sampling with the running time depending on the value of the estimator, and
then we apply another adaptive sampling scheme to efficiently approximate the
sum of the estimators. A similar approach has been used in recent sublinear-time
algorithms for estimating the cost of the minimum spanning tree problem in [2]
and [4].

1.3 Definition of the Problem

The formal definition of the general form of the (Metric) Minimum Facility
Location problem is as follows: We are given a metric (P,D), and a subset
F ⊆ P of facilities. For each facility v ∈ F , we are given a nonnegative cost f(v),
and for each point u ∈ P , a nonnegative demand d(u). The problem consists of
finding a set F ⊆ F , so as to minimize∑

v∈F
f(v) +

∑
u∈P

d(u) ·D(u,F) ,

where D(u,F) = minv∈F D(u, v).
In this paper we focus on the variant of the facility location problem with

F = P and in which the costs as well as the demands are uniform. That is, for
each v ∈ F , f(v) = c for some c > 0, and for each u ∈ P , d(u) = 1. Observe
that we can assume that c = 1, if we re-scale the given metric, by dividing all
the distances by c. In what follows, we will refer to this variant of the facility
location problem as uniform.

The key property of our formulation, is that we are interested in computing
the cost of the optimal solution, without computing a solution itself. Thus, in
what follows, our task is to approximate the value:

min
F⊆P

|F |+
∑
u∈P

D(u,F) .

Facility Location in Sublinear Time 869

In the final part of the paper we also consider a more general variant of the
problem when P and F do not have to be the same. We prove in Theorem 2
that in that case there is no hope to obtain a sublinear-time algorithm.

1.4 Previous Work

The Minimum Facility Location problem is one of the most extensively studied
problems in combinatorial optimization. The problem is known to be NP-hard
and the first constant factor approximation algorithm was given by Shmoys et
al. [13]. Several other approximation algorithms are given in [1, 3, 8]. The best
approximation ratio of 1.52, is due to Madhian, Ye, and Zhang [10], while the
best lower bound of 1.463 for the approximation ratio is due to Guha and Khuller
[5].

The first constant factor approximation algorithm with almost linear running
time (that is, the running time of O(n2 log n)) was given by Jain and Vazirani
[9]; Mettu and Plaxton [12] gave a simple O(n2)-time constant approximation
ratio algorithm. Thorup [14] considered the facility location problem in metric
spaces defined by a graph. If the underlying graph has m edges, then even though
the metric space is of size Θ(n2), Thorup gives a constant-factor approximation
algorithm running in time Õ(m); this is a sublinear time for sparse graphs. On the
other hand, it has been shown [14] that for general metric spaces, any constant
factor approximation algorithm, even a randomized one, requires running time
of Ω(n2). Notice that this does not exclude the possibility of approximating the
cost of the Minimum Facility Location problem in sublinear time, in particular,
in time O(npolylog(n)).

2 Estimating the Cost of Uniform Minimum Facility
Location

In this section we present an O(n log2 n) time algorithm that approximates the
cost of the Minimum Facility Location in the uniform case, that is, when the
costs as well as the demands are uniform.

2.1 Preliminaries

Let (P,D) be a metric with a point set P = {p1, . . . , pn}. For any point pi ∈ P ,
and for any r ≥ 0, we denote by B(pi, r) the set of points in P which are at
distance at most r from pi. For each i, 1 ≤ i ≤ n, let ri > 0 be the number
satisfying ∑

p∈B(pi,ri)

(ri −D(pi, p)) = 1 .

Observe that the value
∑

p∈B(pi,r)
(r − D(pi, p)) is continuous and strictly

monotonically increasing with r. Thus, there exists a unique value ri satisfying
the above equality. Moreover, for any i, 1 ≤ i ≤ n, we have 1/n ≤ ri ≤ 1.

870 M. Bădoiu et al.

We begin with a lemma that establishes the relation between the value of ri

and the size of B(pi, ri).

Lemma 1. For every i, with 1 ≤ i ≤ n, we have 1
|B(pi,ri)| ≤ ri ≤ 2

|B(pi,ri/2)| .

Proof. By the definition of ri, we have
∑

p∈B(pi,ri)
(ri − D(pi, p)) = 1, which

implies
∑

p∈B(pi,ri)
ri ≥ 1, and thus ri ≥ 1/|B(pi, ri)|. The other inequality

follows directly from the following,

1 =
∑

p∈B(pi,ri)

(ri −D(pi, p)) ≥
∑

p∈B(pi,ri/2)

(ri −D(pi, p)) ≥|B(pi, ri/2)| · ri/2. ��

MP algorithm. In our analysis we will use a simple approximation algorithm
for the Minimum Facility Location problem due to Mettu and Plaxton [12]; we
will refer to that algorithm as the MP algorithm.

1. Compute the value of ri for every pi ∈ P .
2. Sort the input such that r1 ≤ r2 ≤ · · · ≤ rn.
3. For i = 1 to n: if there is no open facility in B(pi, 2 ri) then open the facility

at pi.

Mettu and Plaxton [12] proved that this simple algorithm will return a set
of open facilities for which the total cost is at most 3 times the minimum.

2.2 Cost Estimation

In this section, we show that the sum of the radii approximates the optimal
cost of the facility location to within a constant factor. Our analysis uses the
relation between the sum

∑
pi∈P ri and the cost of optimal solution and that of

the solution obtained by the MP algorithm discussed above.
Let COPT be the cost of an optimal solution. Let also FMP be the set of

facilities computed by the MP algorithm. For this solution given by the MP
algorithm, we define CMP , Cc

MP , and Cf
MP to be the total cost, the connection

cost, and the facility cost respectively.
The following lemma shows that the sum of the radii estimates well COPT .

Lemma 2. 1
4 · COPT ≤

∑
pi∈P ri ≤ 6 · COPT .

Proof. We first prove the lower bound that COPT ≤ 4 ·
∑

pi∈P ri and then the
upper bound that

∑
pi∈P ri ≤ 6 · COPT .

Lower bound: Since in the MP algorithm for every pi ∈ P there is an open
facility within distance at most 2 ri (for if not, then the algorithm would open
the facility at pi), we get that 2

∑
pi∈P ri ≥ Cc

MP .
It remains to show that

∑
pi∈P ri is an upper bound for Cf

MP . We first observe
that every pi ∈ P is contained in at most one ball B(pj , rj), for some pj ∈ FMP .
Indeed, if pi ∈ B(pj , rj) ∩ B(pk, rk) for some pj , pk ∈ FMP , j < k, then since

Facility Location in Sublinear Time 871

rj ≤ rk, we would have pj ∈ B(pk, 2 rk). But this implies that the MP algorithm
would not open the facility at pk, a contradiction.

This observation yields:∑
pi∈P

ri ≥
∑

pj∈FMP

∑
pk∈B(pj ,rj)

rk . (1)

Next, we observe that if pj ∈ FMP and pk ∈ B(pj , rj), then we must have
rj ≤ 2 rk. Indeed, for if not, then we would have B(pk, 2 rk) ⊆ B(pk, rj) ⊆
B(pk, rj +D(pj , pk)) ⊆ B(pj , 2 rj), and thus the MP algorithm would not open
the facility at pj , a contradiction. This observation can be now combined with
(1) to conclude:∑

pi∈P
ri ≥

∑
pj∈FMP

∑
pk∈B(pj ,rj)

rk ≥
∑

pj∈FMP

∑
pk∈B(pj ,rj)

rj/2

= 1
2 ·
∑

pj∈FMP

rj · |B(pj , rj)| ≥ 1
2 ·
∑

pj∈FMP

1 = 1
2 · C

f
MP ,

where the second inequality follows fromthe fact that rj ≥ 1/|B(pj , rj)|(Lemma1).
Thus, we have 2 ·

∑
pi∈P ri ≥ Cc

MP /2 + Cf
MP /2 ≥ CMP /2 ≥ COPT /2.

Upper bound: Next, we show that the sum of the radii is not much bigger than
the cost of optimal solution. Before we proceed, we introduce one definition from
[12]. For a set X ⊆ P and a point pi ∈ P , we define

charge(pi, X) = D(pi, X) +
∑

pj∈X
max{0, rj −D(pi, pj)} .

Mettu and Plaxton proved [12] that CMP =
∑

pi∈P charge(pi,FMP).
Now we are ready to prove that

∑
pi∈P ri ≤ 2 · CMP what will imply that∑

pi∈P ri ≤ 6 · COPT . We have,

2 · CMP = 2 ·
∑
pi∈P

charge(pi,FMP)

≥ 2 ·

⎛⎝ ∑
pi∈FMP

ri +
∑

pj∈P\FMP

max{rδ(j),D(pj , pδ(j))}

⎞⎠ ,

where δ(j) denotes the index of the facility in FMP that is closest to pj . We
want to show

2 ·

⎛⎝ ∑
pi∈FMP

ri +
∑

pj∈P\FMP

max{rδ(j),D(pj , pδ(j))}

⎞⎠ ≥ ∑
pi∈P

ri .

We will show that rj ≤ D(pj , pδ(j)) + rδ(j), which immediately implies the
above inequality because then max{rδ(j),D(pj , pδ(j))} ≥ rj/2. Assume rj >
D(pj , pδ(j)) + rδ(j). In this case we have B(pδ(j), rδ(j)) ⊆ B(pj , rj). We get

872 M. Bădoiu et al.∑
p∈B(pj ,rj)

(rj −D(pj , p)) ≥
∑

p∈B(pδ(j),rδ(j))

(rj −D(pj , p))

>
∑

p∈B(pδ(j),rδ(j))

(rδ(j) −D(pδ(j), p)) = 1 .

This is a contradiction because the definition of rj requires∑
p∈B(pj ,rj)

(rj −D(pj , p)) = 1 .

To summarize, we have proven that 2 · CMP ≥
∑

pi∈P ri, and now the lower
bound follows from the fact that CMP ≤ 3 · COPT [12]. ��

2.3 Estimating the Cost of the Facility Location Problem

From the previous section we know that to approximate the cost of the facility
location problem it suffices to estimate the sum

∑
i ri of the radii r1, . . . , rn of

the points p1, . . . , pn. A standard approach to this problem would be to sample
a set of s points (for a suitable s), determine (possibly approximately) their
radii, and then output n times their average radius as an approximation for∑

i ri. However, this approach cannot lead to a sublinear-time algorithm for
the following reason. In general, the time to determine the radius of a point in
Ω(n). For example, this might be the case when the radius is constant, because
there is only a constant number of points within the radius. Therefore, to certify
that a point has constant radius the algorithm must be able to certify that
no more than a constant number of points are within the radius. This task
cannot be done in o(n) time (even if one aims at an approximation and uses
randomization). We also note that, in general, s = Ω(n), if we need a constant
factor approximation of

∑
i ri. This follows from standard Chernoff-Hoeffding

bounds (which are essentially tight in this setting) and the fact that the average
radius can be as small as 1/n. Therefore, this standard sampling approach would
not give us a sublinear time algorithm.

In the following we will show that an adaptive sampling algorithm can esti-
mate the size of ri in O(ri n log n) time (recall that ri < 1). We start with a
constant size sample of points and determine their average radius. If our sample
is too small we double it and continue until we have found a sample of sufficient
size. For the analysis we will parameterize the sample size s by the average value
of the ri. Combining this with the running time of the adaptive algorithm leads
to a sublinear algorithm. Details follow in the next two subsections.

2.4 Estimating ri

In this section we present an algorithm that for a given i, in time O(ri n log n)
approximate the value of ri to within a constant factor, with high probability.

Let us fix i. Our approach of estimating the value of ri is by approximating
the value of r for which B(pi, r) contains approximately 1/r points. This is
formalized in the following lemma.

Facility Location in Sublinear Time 873

Lemma 3. Let j0 be the maximum integer j, with 1 ≤ j ≤ log n, such that
|B(pi, 2−j)| ≥ 2j. Then, we have 2−(j0+1) ≤ ri ≤ 2−j0+1.

Proof. WewilluseLemma 1.By ourassumption about j 0, we have |B(pi, 2−(j0+1))|
< 2j0+1 and |B(pi, 2−j0)| ≥ 2j0 . The first inequality implies that for any r <
2−(j0+1), |B(pi, r)| ≤ |B(pi, 2−(j0+1))| < 2j0+1 < 1/r. This bound together with
the lower bound in Lemma 1 yield that ri ≥ 2−(j0+1). On the other hand, the
inequality |B(pi, 2−j0)| ≥ 2j0 implies that for any r > 2−j0+1, |B(pi, r/2)| ≥
|B(pi, 2−j0)| ≥ 2j0 > 2/r. Therefore, by the upper bound in Lemma 1 we must
have ri ≤ 2−j0+1. ��

Lemma 3 implies that in order to estimate ri, it suffices to estimate the
value of j0. Our algorithm to estimate j0 runs as follows: We begin with set-
ting j = log n, and then we are decreasing j by one until for the first time
|B(pi, 2−j)| ≥ 2j . Since computing |B(pi, 2−j)| exactly requires Ω(n) time,
we only approximate |B(pi, 2−j)| by random sampling. This reduces the run-
ning time. At each step, we pick uniformly at random, and with replacement,
Kj = c 2−j n log n sample points to estimate the value of |B(pi, 2−j)|, where
c is a sufficiently large constant. Let Nj be the number of sample points that
are inside the ball B(pi, 2−j). We return βj = nNj/Kj as the estimator of
|B(pi, 2−j)|.

In the following three lemmas we first analyze the quality of the estimator
βj and then discuss the running time of this sampling scheme.

Lemma 4. If j ≥ j0 + 2, then Pr[βj ≥ 2j] < 1/poly(n).

Proof. Since j ≥ j0 + 2, it follows that B(pi, 2−j) ⊆ B(pi, 2−(j0+1)). Let q be
the probability that a randomly chosen sample point is in B(pi, 2−j). We have
q ≤ |B(pi, 2−(j0+1))|/n. By the choice of j0, we have |B(pi, 2−(j0+1))| < 2j0+1,
and thus q < 2j0+1/n ≤ 2j−1/n.

The expected number of sample points that fall inside B(pi, 2−j) is E[Nj] =
qKj < c log n

2 . Applying the Chernoff bound, we obtain

Pr[βj ≥ 2j] = Pr[Nj ≥ c log n] < 1/poly(n) . ��

Lemma 5. If j ≤ j0 − 1, then Pr[βj ≥ 2j] > 1− 1/poly(n).

Proof. Since j ≤ j0− 1, it follows that |B(pi, 2−j)| ≥ |B(pi, 2−j0)| ≥ 2j0 ≥ 2j+1.
Let q be the probability that a randomly chosen sample point is in B(pi, 2−j).
We have that q ≥ 2j+1/n.

The expected number of sample points that fall inside B(pi, 2−j) is E[Nj] =
qKj ≥ 2 c log n. Applying the Chernoff bound, we obtain

Pr[βj ≥ 2j] = Pr[Nj ≥ c log n] > 1− 1/poly(n) . ��

Lemma 6. The described procedure estimates the value of ri to within a con-
stant factor in time O(ri n log n), with high probability.

874 M. Bădoiu et al.

Proof. Let j′0 be the estimated value of j0. By Lemmas 4 and 5, it follows that
with high probability, j0 ≤ j′0 ≤ j0 + 1. If we use the value r′i = 2−j′

0 as an
estimation of ri, then by Lemma 3 we obtain that ri/2 ≤ r′i ≤ 4 ri.

Moreover, with high probability, the running time of the procedure is at most∑log n
j=j0

O(Kj) = O(ri n log n). ��

2.5 Estimating the Sum of the Radii

In this section we show how to estimate
∑

i ri in time almost linear in n. Let
us first assume that we know the cost of the solution c, and we sample a set of
s points independently and uniformly at random, where s = Θ(n

c log n). Since
by Lemma 6, the running time to estimate a radius ri is O(ri n log n), the total
expected running time of the algorithm is

E[time] = s ·E[one step] = s ·O(1
n ·
∑

i

ri n log n) = O(n log2 n) .

Let xi, for i ∈ {1, 2, . . . , s}, be the radii of the sample points taken by the
algorithm. We have

E[xi] =

∑
j rj

n
.

Let S =
∑s

i=1 xi and hence, E[S] = s·
∑

i ri

n = Θ(n
c log n)·

∑
i ri

n = Θ
(∑

i ri

c · log n
)
=

Θ(log n). Let ε > 0 be arbitrary. Our goal is to use the value of S as the estimator
of n

s

∑
i ri. To show the quality of this estimator we will bound Pr[|S −E[S]| ≥

ε ·E[S]]. By using the fact that 0 ≤ xi ≤ 1 for every i, we apply a variant of the
Hoeffding inequality, see [11, Theorem 2.3], to obtain

Pr[S ≥ (1 + ε) ·E[S]] ≤ e−
ε2·E[S]

2(1+ε/3) ,

Pr[S ≤ (1− ε) ·E[S]] ≤ e−
1
2 ·ε

2·E[S] .

This immediately implies the following bound for any 0 < ε ≤ 1,

Pr[|S −E[S]| ≥ ε ·E[S]] ≤ 2 e−Θ(ε2·E[S]) = 2 e−Θ(ε2·log n) .

We now show how to remove the assumption that we know the cost of the
solution. We run the algorithm in phases: we start in the first phase by “guessing”
c = n, because we know that the cost of the optimal solution is not bigger than
n. If S < s

n · c, then we start a new phase with estimated cost c/2, and so on.
If S ≥ s

n · c, we return S · n/s as the approximation of the cost. The probability
that the algorithm ends in a bad phase (when S far away from s

n · c) is low,
because Pr[S ≥ (1 + ε) · E[S]] < 1/poly(n), as shown above. Since we need to
have at least one facility in a solution, we have c ≥ 1, therefore we have at most
a logarithmic number of phases.

Note that we only get a constant slowdown by running these phases to guess
c, because the last phase, for the smallest c, dominates the running time of all
the other phases. Thus we obtain the following theorem.

Facility Location in Sublinear Time 875

Theorem 1. There exists a constant factor approximation algorithm for the
uniform case of the Minimum Facility Location problem which runs in time
O(n log2 n) with high probability.

3 Lower Bounds: Estimating the Cost in the General
Case of the Uniform Minimum Facility Location
Problem Requires Ω(n2) Time (Even for Randomized
Algorithms)

In this section, we consider a general case of the Minimum Facility Location
problem in which we do not impose the restriction that F = P (that is, we allow
only for a subset of points to be able to open a facility). We focus again on the
uniform case, and the goal is to minimize the following cost:

min
F⊆F

⎛⎝|F |+∑
p∈P

d(p,F)

⎞⎠ .

Our main result is the following theorem.

Theorem 2. For any ! ≥ 1, every approximation algorithm (even a randomized
one) with approximation ratio ! for the cost of the Minimum Facility Location
problem as defined above requires time Ω(n2).

Proof. We show the existence of two instances of the metric spaces which are
undistinguishable by any o(n2)-time algorithms and such that the cost of the

Fig. 1. Two metric spaces undistinguishable by any o(n2)-time algorithms whose costs
of the Minimum Facility Location differ by factor �. The perfect matching connecting
F with P is selected at random and the edge e is selected as a random edge from the
matching. We set Q = 2 n (�− 1) + 2. The distances not shown are all equal to n3 �

876 M. Bădoiu et al.

Minimum Facility Location in one instance is greater than ! times than the one
in the other instance (see Fig. 1).

Let us consider the metric space with 2 n points: n points in P and n points
in F . Take a random perfect matching M between the points in P and F , and
choose an edge e ∈ M at random. Now, we define the distances in (P ∪ F ,D)
according to the following:

– for any e∗ ∈ M \ {e}, D(e∗) = 1,
– D(e) is either 1 or Q = 2n (!− 1) + 2, and
– for any pair of points x, y not connected by an edge from M, D(x, y) = n3 !.

It is easy to see that both instances define properly a metric space (P ∪F ,D).
Furthermore, that for such problem instances, the solution to the Minimum
Facility Location will open all facilities and the cost of the Minimum Facility
Location problem will depend on the choice of D(e): if D(e) = Q then the cost
will be 2n − 1 + Q > 2n !, and if D(e) = 1, then the cost will be 2n. Hence,
any !-factor approximation algorithm for the matching problem must distinguish
between these two problem instances. However, this requires to find if there is an
edge of length Q, and this is known to require time Ω(n2), even if a randomized
algorithm is used. ��

3.1 Extensions

It is not difficult to see that almost an identical proof will also work for estimat-
ing the cost of minimum-cost matching, the cost of minimum-cost bi-chromatic
matching, and also the cost of k-median for k = n/2; all these problems require
Ω(n2) to estimate the cost of their optimal solution to within any factor. No
such lower bounds have been previously known.

Theorem 3. For any ! ≥ 1, every approximation algorithm (even a randomized
one) with approximation ratio ! for each of the following problems requires time
Ω(n2):

– estimating the cost of minimum-cost matching for a set of n points in a
metric space,

– estimating the cost of minimum-cost bi-chromatic matching for a set of n
points in a metric space,

– estimating the cost of metric k-median for k = n/2.

References

1. M. Charikar and S. Guha. Improved combinatorial algorithms for the facility
location and k-median problems. Proceedings of the 40th IEEE Symposium on
Foundations of Computer Science (FOCS), pp. 378–388, 1999.

2. B. Chazelle, R. Rubinfeld, and L. Trevisan. Approximating the minimum span-
ning tree weight in sublinear time. Proceedings of the 28th Annual International
Colloquium on Automata, Languages and Programming (ICALP), pp. 190–200,
2001.

Facility Location in Sublinear Time 877

3. F. A. Chudak. Improved approximation algorithms for uncapacitated facility loca-
tion. Proceedings of the 6th International Integer Programming and Combinatorial
Optimization Conference (IPCO), pp. 180–194, 1998.

4. A. Czumaj and C. Sohler. Estimating the weight of metric minimum spanning trees
in sublinear time. Proceedings of the 36th Annual ACM Symposium on Theory of
Computing (STOC), pp. 175–183, 2004.

5. S. Guha and S. Khuller. Greedy strikes back: Improved facility location algorithms.
Journal of Algorithms, 31(1): 228–248, 1999.

6. P. Indyk. Sublinear time algorithms for metric space problems. Proceedings of
the 31st Annual ACM Symposium on Theory of Computing (STOC), pp. 428–434,
1999.

7. P. Indyk. A sublinear time approximation scheme for clustering in metric spaces.
Proceedings of the 40th IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 154–159, 1999.

8. K. Jain, M. Mahdian, and A. Saberi. A new greedy approach for facility loca-
tion problems. Proceedings of the 34th Annual ACM Symposium on Theory of
Computing (STOC), pp. 731–740, 2002.

9. K. Jain and V. Vazirani. Approximaton algorithms for metric facility location
and k-median problems using the primal-dual schema and lagrangian relaxation.
Journal of the ACM, 48(2): 274–296, 2001.

10. M. Mahdian, Y. Ye, and J. Zhang. Improved approximation algorithms for metric
facility location problems. Proceedings of the 5th International Workshop on Ap-
proximation Algorithms for Combinatorial Optimization(APPROX), pp. 229–242,
2002.

11. C. McDiarmid. Concentration. In M. Habib, C. McDiarmid, J. Ramirez-Alfonsin,
and B. Reed, editors, Probabilistic Methods for Algorithmic Discrete Mathematics,
Algorithms and Combinatorics, pp. 195–247. Springer-Verlag, Berlin, 1998.

12. R. R. Mettu and C. G. Plaxton. The online median problem. SIAM Journal on
Computing, 32(3): 816–832, 2003.

13. D. B. Shmoys, E. Tardos, and K. Aardal. Approximation algorithms for facility
location problems. Proceedings of the 29th Annual ACM Symposium on Theory of
Computing (STOC), pp. 265–274, 1997.

14. M. Thorup. Quick k-median, k-center, and facility location for sparse graphs.
SIAM Journal on Computing, 34(2):405–432, 2005.

The Complexity of
Stochastic Rabin and Streett Games�,��

Krishnendu Chatterjee1, Luca de Alfaro2, and Thomas A. Henzinger1,3

1 EECS, University of California, Berkeley, USA
2 CE, University of California, Santa Cruz, USA

3 EPFL, Switzerland
{c krish, tah}@eecs.berkeley.edu, luca@soe.ucsc.edu

Abstract. The theory of graph games with ω-regular winning condi-
tions is the foundation for modeling and synthesizing reactive processes.
In the case of stochastic reactive processes, the corresponding stochastic
graph games have three players, two of them (System and Environment)
behaving adversarially, and the third (Uncertainty) behaving probabilis-
tically. We consider two problems for stochastic graph games: the qualita-
tive problem asks for the set of states from which a player can win with
probability 1 (almost-sure winning); the quantitative problem asks for
the maximal probability of winning (optimal winning) from each state.
We show that for Rabin winning conditions, both problems are in NP. As
these problems were known to be NP-hard, it follows that they are NP-
complete for Rabin conditions, and dually, coNP-complete for Streett
conditions. The proof proceeds by showing that pure memoryless strate-
gies suffice for qualitatively and quantitatively winning stochastic graph
games with Rabin conditions. This insight is of interest in its own right, as
it implies that controllers for Rabin objectives have simple implementa-
tions. We also prove that for every ω-regular condition, optimal winning
strategies are no more complex than almost-sure winning strategies.

1 Introduction

A stochastic graph game [5] is played on a directed graph with three kinds of
states: player-1, player-2, and probabilistic states. At player-1 states, player 1
chooses a successor state; at player-2 states, player 2 chooses a successor state;
and at probabilistic states, a successor state is chosen according to a given prob-
ability distribution. The result of playing the game forever is an infinite path
through the graph. If there are no probabilistic states, we refer to the game as
a 2-player graph game; otherwise, as a 21/2-player graph game. There has been
a long history of using 2-player graph games for modeling and synthesizing re-
active processes [1, 14, 16]: a reactive system and its environment represent the

� This research was supported in part by the ONR grant N00014-02-1-0671, the
AFOSR MURI grant F49620-00-1-0327, and the NSF grant CCR-0225610.

�� Full proofs are available in [2].

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 878–890, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The Complexity of Stochastic Rabin and Streett Games 879

two players, whose states and transitions are specified by the states and edges
of a game graph. Consequently, 21/2-player graph games provide the theoretical
foundation for modeling and synthesizing processes that are both reactive and
stochastic [9, 15].

For the modeling and synthesis (or “control”) of reactive processes, one tra-
ditionally considers ω-regular winning conditions, which naturally express the
temporal specifications and fairness assumptions of transition systems [11]. This
paper focuses on the complexity of solving 21/2-player graph games with respect
to two important normal forms of ω-regular winning conditions: Rabin condi-
tions and Streett conditions [17]. Rabin and Streett conditions are dual (i.e.,
complementary), and their practical relevance stems from the fact that their
form corresponds to the form of fairness conditions for transition systems.

In the case of 2-player graph games, where no randomization is involved, a
fundamental determinacy result ensures that, given an ω-regular winning con-
dition, at each state, either player 1 has a strategy to ensure that the condition
holds, or player 2 has a strategy to ensure that the condition does not hold [10].
Thus, the problem of solving 2-player graph games consists in finding the set of
winning states, from which player 1 can ensure that the condition holds. This
problem is known to be in NP ∩ coNP for parity conditions, to be NP-complete
for Rabin conditions [8], and consequently, to be coNP-complete for Streett con-
ditions. The proofs of inclusion in NP rely on the existence of pure (i.e., deter-
ministic) memoryless winning strategies, which act as polynomial witnesses. The
existence of pure memoryless winning strategies is also of independent interest,
as such strategies can be simply and effectively implemented by a controller.
Note that for Streett conditions, winning strategies in general require memory.

In the case of 21/2-player graph games, where randomization is present in the
transition structure, the notion of winning needs to be clarified. Player 1 is said to
win surely if she has a strategy that guarantees to achieve the winning condition
against all player-2 strategies. While this is the classical notion of winning in
the 2-player case, it is less meaningful in the presence of probabilistic states,
because it makes all probabilistic choices adversarial (it treats them analogously
to player-2 choices). To adequately treat probabilistic choice, we consider the
probability with which player 1 can ensure that the winning condition is met.
We thus define two solution problems for 21/2-player graph games: the qualitative
problem asks for the set of states from which player 1 can ensure winning with
probability 1; the quantitative problem asks for the maximal probability with
which player 1 can ensure winning from each state (this probability is called the
value of the game at a state) [7]. Correspondingly, we define almost-sure winning
strategies, which enable player 1 to win with probability 1 whenever possible,
and optimal strategies, which enable player 1 to win with maximal probability.
The main result of this paper is that, in 21/2-player graph games, both the
qualitative and the quantitative solution problems are NP-complete in the case of
Rabin conditions, and coNP-complete in the case of Streett conditions. The NP-
hardness for Rabin conditions follows from the NP-hardness of 2-player games
with Rabin conditions [8]; we establish the membership in NP. Both questions

880 K. Chatterjee, L. de Alfaro, and T.A. Henzinger

are known to be in NP ∩ coNP for the more restrictive, self-dual case of parity
conditions [4, 13, 18], whose exact complexity is an important open problem.

Our proof of membership in NP for stochastic Rabin games relies on es-
tablishing the existence of pure memoryless almost-sure winning and optimal
strategies. The corresponding result for stochastic parity games has been proved
only recently [4, 13, 18], and these proofs rely on the self-duality of parity condi-
tions. For Rabin conditions, a new proof approach is required. First, we show the
existence of pure memoryless almost-sure winning strategies in stochastic Rabin
games by a reduction from 21/2-player games to 2-player. The reduction pre-
serves the ability of player 1 to win with probability 1, but it does not preserve
the maximal probability of winning. The proof technique is combinatorial and
uses graph-theoretic arguments to account for the fact that Rabin conditions
are not closed under complementation. Second, to show the existence of pure
memoryless optimal strategies in stochastic Rabin games, we partition the game
graph into value classes, each consisting of states where the value of the game is
identical. We prove that if the players play according to optimal strategies, then
the game leaves every intermediate value class (in which the value is neither 0
nor 1) with probability 1. We then use the qualitative result on almost-sure
winning to establish the existence of pure memoryless optimal strategies.

We emphasize that, as mentioned earlier, the existence of pure memoryless
strategies is relevant in its own right, as such strategies consist in mappings
that associate with each player-1 state a unique successor, without need for
randomization or memory; such mappings are easily implemented in controllers.
Furthermore, our techniques lead us to a more general result, which states a
strong connection between certain qualitative and quantitative games: we show
that for every ω-regular winning condition in a 21/2-player game graph, if a
restricted family of strategies suffices for almost-sure winning, then it suffices
also for optimality. Hence future research on 21/2-player games with ω-regular
conditions can focus on qualitatively (i.e., almost-sure) winning strategies, and
our result generalizes these strategies to quantitatively winning (i.e., optimal)
strategies.

2 Definitions

We consider several classes of turn-based games, namely, two-player turn-based
probabilistic games (21/2-player games), two-player turn-based deterministic
games (2-player games), and Markov decision processes (11/2-player games).

Game graphs. A turn-based probabilistic game graph (21/2-player game graph)
G = ((S, E), (S1,S2,S©), δ) consists of a directed graph (S, E), a partition (S1,
S2, S©) of the finite set S of states, and a probabilistic transition function δ:
S© → D(S), where D(S) denotes the set of probability distributions over the
state space S. The states in S1 are the player-1 states, where player 1 decides the
successor state; the states in S2 are the player-2 states, where player 2 decides
the successor state; and the states in S© are the probabilistic states, where the

The Complexity of Stochastic Rabin and Streett Games 881

successor state is chosen according to the probabilistic transition function δ. We
assume that for s ∈ S© and t ∈ S, we have (s, t) ∈ E iff δ(s)(t) > 0, and we
often write δ(s, t) for δ(s)(t). For technical convenience we assume that every
state in the graph (S, E) has at least one outgoing edge. For a state s ∈ S, we
write E(s) to denote the set { t ∈ S | (s, t) ∈ E } of possible successors.

A set U ⊆ S of states is called δ-closed if for every probabilistic state
u ∈ U ∩ S©, if (u, t) ∈ E, then t ∈ U . The set U is called δ-live if for ev-
ery nonprobabilistic state s ∈ U ∩ (S1 ∪ S2), there is a state t ∈ U such that
(s, t) ∈ E. A δ-closed and δ-live subset U of S induces a subgame graph of G,
indicated by G � U .

The turn-based deterministic game graphs (2-player game graphs) are the
special case of the 21/2-player game graphs with S© = ∅. The Markov decision
processes (11/2-player game graphs) are the special case of the 21/2-player game
graphs with S1 = ∅ or S2 = ∅. We refer to the MDPs with S2 = ∅ as player-1
MDPs, and to the MDPs with S1 = ∅ as player-2 MDPs.

Plays and strategies. An infinite path, or play, of the game graph G is an
infinite sequence ω = 〈s0, s1, s2, . . .〉 of states such that (sk, sk+1) ∈ E for all
k ∈ N. We write Ω for the set of all plays, and for a state s ∈ S, we write
Ωs ⊆ Ω for the set of plays that start from the state s.

A strategy for player 1 is a function σ: S∗ · S1 → D(S) that assigns a prob-
ability distribution to all finite sequences w ∈ S∗ · S1 of states ending in a
player-1 state (the sequence represents a prefix of a play). Player 1 follows the
strategy σ if in each player-1 move, given that the current history of the game is
w ∈ S∗ ·S1, she chooses the next state according to the probability distribution
σ(w). A strategy must prescribe only available moves, i.e., for all w ∈ S∗, s ∈ S1,
and t ∈ S, if σ(w · s)(t) > 0, then (s, t) ∈ E. The strategies for player 2 are
defined analogously. We denote by Σ and Π the set of all strategies for player 1
and player 2, respectively.

Once a starting state s ∈ S and strategies σ ∈ Σ and π ∈ Π for the two
players are fixed, the outcome of the game is a random walk ωσ,π

s for which
the probabilities of events are uniquely defined, where an event A ⊆ Ω is a
measurable set of paths. Given strategies σ for player 1 and π for player 2,
a play ω = 〈s0, s1, s2, . . .〉 is feasible if for every k ∈ N the following three
conditions hold: (1) if sk ∈ S©, then (sk, sk+1) ∈ E; (2) if sk ∈ S1, then
σ(s0, s1, . . . , sk)(sk+1) > 0; and (3) if sk ∈ S2 then π(s0, s1, . . . , sk)(sk+1) > 0.
Given two strategies σ ∈ Σ and π ∈ Π, and a state s ∈ S, we denote by
Outcome(s,σ,π) ⊆ Ωs the set of feasible plays that start from s given strategies
σ and π. For a state s ∈ S and an event A ⊆ Ω, we write Prσ,πs (A) for the
probability that a path belongs to A if the game starts from the state s and
the players follow the strategies σ and π, respectively. In the context of player-1
MDPs we often omit the argument π, because Π is a singleton set.

We classify strategies according to their use of randomization and memory.
The strategies that do not use randomization are called pure. A player-1 strat-
egy σ is pure if for all w ∈ S∗ and s ∈ S1, there is a state t ∈ S such that
σ(w · s)(t) = 1. We denote by ΣP ⊆ Σ the set of pure strategies for player 1. A

882 K. Chatterjee, L. de Alfaro, and T.A. Henzinger

strategy that is not necessarily pure is called randomized. Let M be a set called
memory. A player-1 strategy can be described as a pair of functions: a memory-
update function σu: S × M → M and a next-move function σm: S1 × M → D(S).
The strategy (σu,σm) is finite-memory if the memory M is finite. We denote by
ΣF the set of finite-memory strategies for player 1, and by ΣPF the set of pure
finite-memory strategies; that is, ΣPF = ΣP ∩ ΣF . The strategy (σu,σm) is
memoryless if |M| = 1; that is, the next move does not depend on the history of
the play but only on the current state. A memoryless player-1 strategy can be
represented as a function σ: S1 → D(S). A pure memoryless strategy is a pure
strategy that is memoryless. A pure memoryless strategy for player 1 can be
represented as a function σ: S1 → S. We denote by ΣM the set of memoryless
strategies for player 1, and by ΣPM the set of pure memoryless strategies; that
is, ΣPM = ΣP ∩ΣM . Analogously we define the corresponding strategy families
ΠP , ΠF , ΠPF , ΠM , and ΠPM for player 2.

Given a finite-memory strategy σ ∈ ΣF , let Gσ be the game graph obtained
from G under the constraint that player 1 follows the strategy σ. The corre-
sponding definition Gπ for a player-2 strategy π ∈ ΠF is analogous, and we
write Gσ,π for the game graph obtained from G if both players follow the finite-
memory strategies σ and π, respectively. Observe that given a 21/2-player game
graph G and a memoryless player-1 strategy σ, the result Gσ is a player-2 MDP.
Similarly, for a player-1 MDP G and a memoryless player-1 strategy σ, the re-
sult Gσ is a Markov chain. Hence, if G is a 21/2-player game graph and the two
players follow memoryless strategies σ and π, the result Gσ,π is a Markov chain.
These observations will be useful in the analysis of 21/2-player games.

Objectives. An objective for a player consists of an ω-regular set of winning
plays Φ ⊆ Ω [17]. In this paper we study zero-sum games [9, 15], where the
objectives of the two players are complementary; that is, if the objective of one
player is Φ, then the objective of the other player is Ω \ Φ. We consider ω-
regular objectives specified in Rabin or Streett normal forms. For a play ω =
〈s0, s1, s2, . . .〉, let Inf(ω) be the set { s ∈ S | s = sk for infinitely many k ≥ 0 }
of states that occur infinitely often in ω. We use colors to define objectives
independent of game graphs. For a set C of colors, we write [[·]]: C → 2S for a
function that maps each color to a set of states. Inversely, given a set U ⊆ S of
states, we write [U] = { c ∈ C | [[c]] ∩ U �= ∅ } for the set of colors that occur
in U . Note that a state can have multiple colors.

A Rabin objective is specified as a set P = {(e1, f1), . . . , (ed, fd)} of pairs
of colors ei, fi ∈ C. Intuitively, the Rabin condition P requires that for some
1 ≤ i ≤ d, all states of color ei be visited finitely often and some state of
color fi be visited infinitely often. Let [[P]] = {(E1,F1), . . . , (Ed,Fd)} be the
corresponding set of so-called Rabin pairs, where Ei = [[ei]] and Fi = [[fi]] for all
1 ≤ i ≤ d. Formally, the set of winning plays is Rabin(P) = {ω ∈ Ω | ∃ 1 ≤ i ≤
d. (Inf(ω) ∩Ei = ∅ ∧ Inf(ω) ∩ Fi �= ∅) }. Without loss of generality, we require
that

(⋃
i∈{ 1,2,...,d }(Ei ∪ Fi)

)
= S. The parity (or Rabin-chain) objectives are

the special case of Rabin objectives such that E1 ⊂ F1 ⊂ E2 ⊂ F2 . . . ⊂ Ed ⊂
Fd. A Streett objective is again specified as a set P = {(e1, f1), . . . , (ed, fd)}

The Complexity of Stochastic Rabin and Streett Games 883

of pairs of colors. The Streett condition P requires that for each 1 ≤ i ≤ d,
if some state of color fi is visited infinitely often, then some state of color ei

be visited infinitely often. Formally, the set of winning plays is Streett(P) =
{ ω ∈ Ω | ∀ 1 ≤ i ≤ d. (Inf(ω) ∩ Ei �= ∅ ∨ Inf(ω) ∩ Fi = ∅) }, for the set
[[P]] = {(E1,F1), . . . , (Ed,Fd)} of so-called Streett pairs. Note that the Rabin
and Streett objectives are dual; i.e., the complement of a Rabin objective is
a Streett objective, and vice versa. Moreover, every parity objective is both a
Rabin objective and a Streett objective.

Sure winning, almost-sure winning, and optimality. Given a player-1 ob-
jective Φ, a strategy σ ∈ Σ is sure winning for player 1 from a state s ∈ S
if for every strategy π ∈ Π for player 2, we have Outcome(s,σ,π) ⊆ Φ. The
strategy σ is almost-sure winning for player 1 from the state s for the objec-
tive Φ if for every player-2 strategy π, we have Prσ,πs (Φ) = 1. The sure and
almost-sure winning strategies for player 2 are defined analogously. Given an
objective Φ, the sure winning set 〈〈1〉〉sure(Φ) for player 1 is the set of states
from which player 1 has a sure winning strategy. The almost-sure winning set
〈〈1〉〉almost(Φ) for player 1 is the set of states from which player 1 has an almost-
sure winning strategy. The sure winning set 〈〈2〉〉sure(Ω \ Φ) and the almost-
sure winning set 〈〈2〉〉almost(Ω \ Φ) for player 2 are defined analogously. It fol-
lows from the definitions that for all 21/2-player game graphs and all objec-
tives Φ, we have 〈〈1〉〉sure(Φ) ⊆ 〈〈1〉〉almost (Φ). Computing sure and almost-sure
winning sets and strategies is referred to as the qualitative analysis of 21/2-player
games [7].

Given ω-regular objectives Φ ⊆ Ω for player 1 and Ω\Φ for player 2, we define
the value functions 〈〈1〉〉val and 〈〈2〉〉val for the players 1 and 2, respectively, as
the following functions from the state space S to the interval [0, 1] of reals: for all
states s ∈ S, let 〈〈1〉〉val (Φ)(s) = supσ∈Σ infπ∈Π Prσ,πs (Φ) and 〈〈2〉〉val(Ω \Φ)(s) =
supπ∈Π infσ∈Σ Prσ,πs (Ω \ Φ). In other words, the value 〈〈1〉〉val (Φ)(s) gives the
maximal probability with which player 1 can achieve her objective Φ from state s,
and analogously for player 2. The strategies that achieve the value are called
optimal: a strategy σ for player 1 is optimal from the state s for the objective
Φ if 〈〈1〉〉val (Φ)(s) = infπ∈Π Prσ,πs (Φ). The optimal strategies for player 2 are
defined analogously. Computing values is referred to as the quantitative analysis
of 21/2-player games. The set of states with value 1 is called the limit-sure winning
set [7]. For 21/2-player game graphs with ω-regular objectives the almost-sure
and limit-sure winning sets coincide [3].

Let C ∈ {P,M,F,PM ,PF} and consider the family ΣC ⊆ Σ of special strate-
gies for player 1. We say that the family ΣC suffices with respect to a player-1
objective Φ on a class G of game graphs for sure winning if for every game
graph G ∈ G and state s ∈ 〈〈1〉〉sure(Φ), there is a player-1 strategy σ ∈ ΣC

such that for every player-2 strategy π ∈ Π, we have Outcome(s,σ,π) ⊆ Φ.
Similarly, the family ΣC suffices with respect to the objective Φ on the class
G of game graphs for almost-sure winning if for every game graph G ∈ G and
state s ∈ 〈〈1〉〉almost(Φ), there is a player-1 strategy σ ∈ ΣC such that for every
player-2 strategy π ∈ Π, we have Prσ,πs (Φ) = 1; and for optimality, if for every

884 K. Chatterjee, L. de Alfaro, and T.A. Henzinger

game graph G ∈ G and state s ∈ S, there is a player-1 strategy σ ∈ ΣC such
that 〈〈1〉〉val (Φ)(s) = infπ∈Π Prσ,πs (Φ).

For sure winning, the 11/2-player and 21/2-player games coincide with 2-player
(deterministic) games where the random player (who chooses the successor at the
probabilistic states) is interpreted as an adversary, i.e., as player 2. Theorem 1
and Theorem 2 state the classical determinacy results for 2-player and 21/2-player
game graphs with ω-regular objectives.

Theorem 1 (Qualitative determinacy [8, 10]). For all 2-player game graphs
and Rabin or Streett objectives Φ, we have 〈〈1〉〉sure(Φ) ∩ 〈〈2〉〉sure(Ω \ Φ) = ∅
and 〈〈1〉〉sure(Φ) ∪ 〈〈2〉〉sure(Ω \ Φ) = S. Moreover, on 2-player game graphs, the
family of pure memoryless strategies suffices for sure winning with respect to
Rabin objectives, and the family of pure finite-memory strategies suffices for
sure winning with respect to Streett objectives.

Theorem 2 (Quantitative determinacy [12]). For all 21/2-player game
graphs, all Rabin or Streett objectives Φ, and all states s, we have 〈〈1〉〉val (Φ)(s)+
〈〈2〉〉val (Ω \ Φ)(s) = 1.

3 Qualitative Analysis

We show that the pure memoryless strategies suffice for almost-sure winning with
respect to Rabin objectives on 21/2-player game graphs. The result is achieved
by a reduction to 2-player Rabin games. The reduction also allows us to apply
algorithms for solving 2-player Rabin games to the qualitative analysis of 21/2-
player Rabin games. Furthermore, in the next section, we will use the existence
of pure memoryless almost-sure winning strategies to prove the existence of pure
memoryless optimal strategies.
End components of MDPs. We review some facts about end components [6]
which are needed for the further development of the paper. We consider player-1
MDPs and hence strategies for player 1. Let G = ((S, E), (S1,S2,S©), δ) with
S2 = ∅ be a 11/2-player game graph.

Definition 1 (End components). A set U ⊆ S of states is an end component
if U is δ-closed and the subgame graph G � U is strongly connected.

We denote by E ⊆ 2S the set of all end-components of G. The next lemma
states that, under every strategy (memoryless or not), with probability 1 the
set of states visited infinitely often along a play is an end component. This
lemma allows us to derive conclusions on the (infinite) set of plays in an MDP
by analyzing the (finite) set of end components in the MDP. In particular, the
lemma implies that to show that a set {(E1,F1), . . . , (Ed,Fd)} of Rabin pairs
is satisfied with probability 1, it suffices to show that for each reachable end
component U , there exists an 1 ≤ i ≤ d such that U ∩Ei = ∅ and U ∩Fi �= ∅. To
state the lemma, for s ∈ S and U ⊆ S, we define ΩU

s = { ω ∈ Ωs | Inf(ω) = U }.

The Complexity of Stochastic Rabin and Streett Games 885

(ŝ, 0)

E(s) E(s) E(s) E(s) E(s)

e1 f1 e2 f2
(ŝ, 1) (ŝ, 4)(ŝ, 2) (ŝ, 3)

E(s) E(s)

s

(s̃, 0)

[s] [s]

(s̃, 4)(s̃, 2)
[s] [s]

[s]

(s̃, 2d)

ed
fd

(ŝ, 2d − 1) (ŝ, 2d)

fd+1

Fig. 1. Gadget for the reduction of 21/2-player Rabin games to 2-player Rabin games

Lemma 1. [6] For all states s ∈ S and strategies σ ∈ Σ, Prσs (
⋃

U∈E ΩU
s) = 1.

Reduction. Given a 21/2-player game graph G = ((S, E), (S1,S2,S©), δ), a set
C = {e1, f1, . . . , ed, fd} of colors, and a color map [·]: S → 2C \ ∅, we construct
a 2-player game graph G = ((S, E), (S1,S2), δ) together with a color map [·]:
S → 2C \ ∅ for the extended color set C = C ∪ {ed+1, fd+1}. The construction
is specified as follows. For every nonprobabilistic state s ∈ S1 ∪ S2, there is a
corresponding state s ∈ S such that (1) s ∈ S1 iff s ∈ S1, and (2) [s] = [s],
and (3) (s, t) ∈ E iff (s, t) ∈ E. Every probabilistic state s ∈ S© is replaced by
the gadget shown in Figure 1. In the figure, diamond-shaped states are player-2
states (in S2), and square-shaped states are player-1 states (in S1). From the
state s with [s] = [s], the players play the following 3-step game in G. First,
in state s player 2 chooses a successor (s̃, 2k), for k ∈ {0, 1, . . . , d}. For every
state (s̃, 2k), we have [(s̃, 2k)] = [s]. For k > 1, in state (s̃, 2k) player 1 chooses
from two successors: state (ŝ, 2k−1) with [(ŝ, 2k − 1)] = ek, or state (ŝ, 2k) with
[(ŝ, 2k)] = fk. The state (s̃, 0) has only one successor (ŝ, 0), with [(ŝ, 0)] = fd+1.
Note that no state in S is labeled by the new color ed+1, that is, [[ed+1]] = ∅.
Finally, in each state (ŝ, j) the choice is between all states t such that (s, t) ∈ E,
and it belongs to player 1 if k is odd, and to player 2 if k is even.

We consider the 21/2-player game played on the graph G with the Rabin
condition P = {(e1, f1), . . . , (ed, fd)} for player 1. Let U1 and U2 be the sure
winning sets for players 1 and 2, respectively, in the constructed 2-player game
graph G with the modified Rabin condition P = {(e1, f1), . . . , (ed+1, fd+1)} for
player 1. Define the sets U1 and U2 in the original 21/2-player game graph G by
U1 = { s ∈ S | s ∈ U1 } and U2 = { s ∈ S | s ∈ U2 }. From the determinacy
of 2-player Rabin games (Theorem 1), it follows that U1 = S \ U2, and hence
U1 = S \ U2.

Lemma 2. In the 21/2-player game graph G with the Rabin condition P for
player 1, there exists a pure memoryless strategy σ for player 1 such that for all
player-2 strategies π and all states s ∈ U1, we have Prσ,πs (Rabin(P)) = 1.

Proof. We define a pure memoryless strategy σ for player 1 in the game G from
a strategy σ in the game G as follows: for all states s ∈ S1, if σ(s) = t, then

886 K. Chatterjee, L. de Alfaro, and T.A. Henzinger

set σ(s) = t. Consider a pure memoryless sure winning strategy σ in the game
G from every state s ∈ U1. Our goal is to establish that σ is an almost-sure
winning strategy from every state in U1.

For the Rabin objective Rabin(P), let the set Rabin pairs be [[P]] =
{ (E1,F1), (E2,F2), . . . , (Ed,Fd) }. A strongly connected component (s.c.c.) W
in a graph G1 is winning for player 1, if there exists i ∈ { 1, 2, . . . , d } such that
W ∩ Fi �= ∅ and W ∩ Ei = ∅; otherwise W is winning for player 2. If G1 is a
MDP, then an end component W in G1 is winning for player 1, if there exists
i ∈ { 1, 2, . . . , d } such that W ∩Fi �= ∅ and W ∩Ei = ∅; otherwise W is winning
for player 2.

We prove that every end component in the player-2 MDP (G � U1)σ is winning
for player 1. It would follow from Lemma 1 that σ is an almost-sure winning
strategy. We argue that if there is an end component W in (G � U1)σ that is
winning for player 2, then we can construct an s.c.c. in the subgraph (G � U1)σ
that is winning for player 2, which is impossible because σ is a sure winning
strategy for player 1 from the set U1 in the 2-player Rabin game G. Let W be
an end component in (G � U1)σ that is winning for player 2. We denote by W the
set of states in the gadget of states in W . Hence for all i ∈ { 1, 2, . . . , d } we have
if Fi ∩W �= ∅, then W ∩ Ei �= ∅. Let us define the set I = { i1, i2, . . . , ij } such
that Eik

∩W �= ∅. Thus for all i ∈ ({ 1, 2, . . . , d } \ I) we have Fi ∩W = ∅. Note
that I �= ∅, as every state has at least one color. We now construct a sub-game
in Gσ as follows:

1. For a state s ∈W ∩ S2 keep all the edges (s, t) such that t ∈ W .
2. For a state s ∈W ∩ S© the sub-game is defined as follows:

– At state s choose the edges to state (s̃, 2i) such that i ∈ I.
– For a state s ∈W , let dis(s,W ∩Ei) denote the shortest distance (BFS

distance) from s to W ∩ Ei in the graph of (G � W)σ. At state (ŝ, 2i),
which is a player 2 state, player 2 chooses a successor ŝ1 such that
dis(s1,W ∩Ei) < dis(s,W ∩Ei) (i.e., shorten distance to the set W ∩Ei

in G).

We now prove that every terminal s.c.c. is winning for player 2 in the subgame
thus constructed in (G � W)σ, where W is the set of states in the gadget of states
in W . Consider any arbitrary terminal s.c.c. Y in the subgame constructed in
(G � W)σ. It follows from the construction that for every i ∈ ({ 1, 2, . . . , d } \ I),
we have Fi ∩ Y = ∅. Suppose for a i ∈ I we have Fi ∩ Y �= ∅, we show that
Ei ∩ Y �= ∅. There are two cases:

1. If there is at least one state (s̃, 2i) such that the strategy σ chooses the
successor (ŝ, 2i− 1), then Ei ∩ Y �= ∅, since [(s̃, 2i− 1)] = ei.

2. Else for every state (s̃, 2i) the strategy for player 1 chooses the successor
(ŝ, 2i). At state (ŝ, 2i), which is a player 2 state, player 2 chooses a successor
ŝ1 that shortens distance to the set Y ∩Ei. Hence the terminal s.c.c. Y must
contain a state s such that [s] = ei. Hence Ei ∩ Y �= ∅.

We argue that for every probabilistic state s ∈ S© ∩ U1, all of its successors
are in U1. Otherwise, player 2 in the state s of the game G can choose the

The Complexity of Stochastic Rabin and Streett Games 887

successor (s̃, 0) and then a successor to its winning set U2, which contradicts
the assumption that the strategy σ is a sure winning strategy for player 1 in the
game G from U1. It follows from Lemma 1 that for all strategies π, for all states
s ∈ U1, with probability 1 the set of states visited infinitely often along the
play ωσ,π

s is an end component in U1. Since every end component in (G � U1)σ
is winning for player 1 the strategy σ is an almost-sure winning strategy for
player 1 from U1.

Lemma 3. In the 21/2-player game graph G with the Rabin condition P for
player 1, there exists a finite-memory strategy π for player 2 such that for all
player-1 strategies σ and all states s ∈ U2, we have Prσ,πs (Ω \ Rabin(P)) > 0.

From Lemma 2, it follows that U1 ⊆ 〈〈1〉〉almostRabin(P). From Lemma 3, it
follows that 〈〈1〉〉almostRabin(P) ⊆ U1. Therefore U1 = 〈〈1〉〉almostRabin(P). The
proof of Lemma 2 also establishes the existence of pure memoryless almost-sure
winning strategies for Rabin objectives.

Theorem 3. The family of pure memoryless strategies suffices for almost-sure
winning with respect to Rabin objectives on 21/2-player game graphs.

4 Quantitative Analysis

We extend sufficiency results for families of strategies from almost-sure winning
to optimality with respect to all ω-regular objectives. In the following, we fix a
21/2-player game graph G. Given an ω-regular objective Φ, for every real r ∈ IR
the value class with value r is VC(r) = {s ∈ S | 〈〈1〉〉val (Φ)(s) = r}. Proposition 1
states that there exist optimal strategies for player 1 such that they never choose
an edge to a lower value class.

Proposition 1. For all ω-regular objectives Φ, there exists an optimal strategy
σ for player 1 such that for all w ∈ S∗, s ∈ S1, and t ∈ S, if 〈〈1〉〉val (Φ)(t) <
〈〈1〉〉val (Φ)(s), then σ(w · s)(t) = 0.

Definition 2 (Boundary probabilistic states). Given an ω-regular objec-
tive Φ, a probabilistic state s ∈ S© is a boundary probabilistic state if there
exists a successor t ∈ E(s) such that 〈〈1〉〉val (Φ)(t) �= 〈〈1〉〉val (Φ)(s). Observe
that for every boundary probabilistic state s, there exist t1, t2 ∈ E(s) such that
〈〈1〉〉val (Φ)(t1) < 〈〈1〉〉val (Φ)(s) and 〈〈1〉〉val(Φ)(t2) > 〈〈1〉〉val(Φ)(s).

Lemma 4. Consider a 21/2-player game G with an ω-regular objective Φ. Given
a value class VC(r) with 0 < r < 1, let B(r) be the set of boundary proba-
bilistic states in the value class VC(r). Convert each state in B(r) into a sink
state that is winning for player 1. Let the new game be G′. Then player 1 wins
almost-surely from all states in the subgame with game graph G′ � VC(r) and
objective Φ.

888 K. Chatterjee, L. de Alfaro, and T.A. Henzinger

Proof. Assume that player 1 does not win almost-surely from every state in
G′ � VC(r). Then there exists a state where player 2 wins with positive bounded
probability. It follows from Corollary 1 of [7] that there exist a non-empty set U ⊆
VC(r) such that that player 2 wins almost-surely from U in G′ � VC(r). Consider
an optimal strategy σ that never chooses an edge with positive probability to a
lower value class (such a strategy exists from Proposition 1). Since player 2 wins
almost-surely from U it follows that for every state s ∈ U∩S1, for every successor
t of s in VC(r) we have t ∈ U . It follows that every move of the strategy σ exists
in U . Hence player 2 wins almost-surely from U against σ. This is a contradiction
to the assumption that r > 0 and that σ is an optimal strategy.

Definition 3 (Qualitatively optimal strategies). A strategy σ is qualita-
tively optimal for player 1, for an ω-regular objective Φ, if the following con-
ditions hold: (a) for every state s ∈ 〈〈1〉〉almost(Φ), the strategy σ is almost-sure
winning, and (b) for every state s ∈ VC(r) such that 0 < r < 1, there is a
constant c > 0 such that infπ∈Π Prσ,πs (Φ) ≥ c.

Lemma 4 shows that in every value class, if the boundary probabilistic states
are assumed to be winning for player 1, then player 1 wins almost-surely. We call
such an almost-sure winning strategy a conditional almost-sure winning strategy.
We compose conditional almost-sure winning strategies in value classes to obtain
an optimal strategy. If a strategy σ is conditional almost-sure winning, it follows
that for all player-2 strategies π that are optimal against σ, the play ωσ,π

s reaches
the boundary probabilistic states with positive probability, for s ∈ VC(r) and
r > 0. From every boundary probabilistic state the game proceeds to a higher
value class with positive probability. An induction on the number of value classes
yields Lemma 5.

Lemma 5. For every ω-regular objective Φ, if a player-1 strategy σ is almost-
sure winning from every state s ∈ 〈〈1〉〉almost (Φ), and is conditionally almost-sure
winning from every state s �∈ 〈〈2〉〉almost(Ω \ Φ), then σ is qualitatively optimal
for Φ.

Definition 4 (Locally optimal strategies). A strategy σ is locally optimal
for player 1, for an ω-regular objective Φ, if for all w ∈ S∗, s ∈ S1, and t ∈ S,
if 〈〈1〉〉val (Φ)(t) < 〈〈1〉〉val (Φ)(s), then σ(w · s)(t) = 0.

Note that by definition, a conditional almost-sure winning strategy is locally
optimal. The following Lemma generalizes Lemma 5.3 of [4]. Theorem 4 follows
from Lemma 6. Since pure memoryless strategies suffice for almost-sure win-
ning with respect to Rabin objectives on 21/2-player game graphs (Theorem 3),
Theorem 5 is immediate from Theorem 4.

Lemma 6. Consider a 21/2-player game G with an ω-regular objective Φ for
player 1. Let σ be a finite-memory strategy such that σ is both qualitatively
optimal and locally optimal for Φ. Then σ is an optimal strategy for Φ from all
states of G.

The Complexity of Stochastic Rabin and Streett Games 889

Theorem 4. If a family ΣC of strategies suffices for almost-sure winning with
respect to an ω-regular objective Φ on 21/2-player game graphs, then ΣC suffices
for optimality with respect to Φ on 21/2-player game graphs.

Theorem 5. The family of pure memoryless strategy suffices for optimality with
respect to Rabin objectives on 21/2-player game graphs.

The existence of pure memoryless optimal strategies for 21/2-player game
graphs with Rabin objectives, and of polynomial-time algorithms for comput-
ing the values of MDPs with Streett objectives [2], establishes that the 21/2-
player games with Rabin objectives can be decided (qualitatively and quanti-
tatively) in NP. The NP-hardness follows from the hardness of 2-player Rabin
games.

Theorem 6. Given a 21/2-player game graph G, an objective Φ for player 1,
a state s of G, and a rational r, the complexity of determining whether
〈〈1〉〉val (Φ)(s) ≥ r is as follows: NP-complete if Φ is a Rabin objective; coNP-
complete if Φ is a Streett objective; and in NP ∩ coNP if Φ is a parity objective.

References

1. J.R. Büchi and L.H. Landweber. Solving sequential conditions by finite-state
strategies. Transactions of the AMS, 138:295–311, 1969.

2. K. Chatterjee, L. de Alfaro, and T.A. Henzinger. The complexity of stochastic
Rabin and Streett games. Technical Report UCB/CSD-3-1355, UC Berkeley, 2004.

3. K. Chatterjee, M. Jurdziński, and T.A. Henzinger. Simple stochastic parity games.
In CSL’03, volume 2803 of LNCS, pages 100–113. Springer, 2003.

4. K. Chatterjee, M. Jurdziński, and T.A. Henzinger. Quantitative stochastic parity
games. In SODA’04, pages 114–123. SIAM, 2004.

5. A. Condon. The complexity of stochastic games. Information and Computation,
96:203–224, 1992.

6. L. de Alfaro. Formal Verification of Probabilistic Systems. PhD Thesis, Stanford
University, 1997.

7. L. de Alfaro and T.A. Henzinger. Concurrent ω-regular games. In LICS’00, pages
141–154. IEEE Computer Society, 2000.

8. E.A. Emerson and C. Jutla. The complexity of tree automata and logics of pro-
grams. In FOCS’88, pages 328–337. IEEE Computer Society, 1988.

9. J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer, 1997.
10. Y. Gurevich and L. Harrington. Trees, automata, and games. In STOC’82, pages

60–65. ACM, 1982.
11. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:

Specification. Springer, 1992.
12. D.A. Martin. The determinacy of Blackwell games. Journal of Symbolic Logic,

63:1565–1581, 1998.
13. A.K. McIver and C.C. Morgan. Games, probability, and the quantitative μ-calculus

qmμ. In LPAR’02, volume 2514 of LNAI, pages 292–310. Springer, 2002.
14. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In POPL’89,

pages 179–190. ACM, 1989.

890 K. Chatterjee, L. de Alfaro, and T.A. Henzinger

15. T.E.S. Raghavan and J.A. Filar. Algorithms for stochastic games—a survey.
ZOR—Methods and Models of Operations Research, 35:437–472, 1991.

16. P.J. Ramadge and W.M. Wonham. Supervisory control of a class of discrete-event
processes. SIAM Journal of Control and Optimization, 25:206–230, 1987.

17. W. Thomas. Languages, automata, and logic. In Handbook of Formal Languages,
volume 3 (Beyond Words), pages 389–455. Springer, 1997.

18. W. Zielonka. Perfect-information stochastic parity games. In FoSSaCS’04, volume
2987 of LNCS, pages 499–513. Springer, 2004.

Recursive Markov Decision Processes
and Recursive Stochastic Games

Kousha Etessami1 and Mihalis Yannakakis2

1 LFCS, School of Informatics, University of Edinburgh
2 Department of Computer Science, Columbia University

Abstract. We introduceRecursiveMarkov Decision Processes (RMDPs)
and Recursive Simple Stochastic Games (RSSGs), and study the decid-
ability and complexity of algorithms for their analysis and verification.
These models extend Recursive Markov Chains (RMCs), introduced in
[EY05a, EY05b] as a natural model for verification of probabilistic proce-
dural programs and related systems involving both recursion and proba-
bilistic behavior. RMCs define a class of denumerable Markov chains with
a rich theory generalizing that of stochastic context-free grammars and
multi-type branching processes, and they are also intimately related to
probabilistic pushdown systems. RMDPs & RSSGs extend RMCs with
one controller or two adversarial players, respectively. Such extensions
are useful for modeling nondeterministic and concurrent behavior, as
well as modeling a system’s interactions with an environment.

We provide upper and lower bounds for deciding, given an RMDP
(or RSSG) A and probability p, whether player 1 has a strategy to force
termination at a desired exit with probability at least p. We also address
“qualitative” termination, where p = 1, and model checking questions.

1 Introduction

Markov Decision Processes (MDPs) are a fundamental formalism for modeling
control optimization problems in sequential stochastic environments. They have
found widespread applications in many fields (see, e.g., [Put94, FS02]). They
have also been studied extensively in recent years for verification of probabilistic
systems. Stochastic games generalize MDPs with multiple players, and in their
2-player zero-sum version are also known as Competitive MDPs (see [FV97]).
Simple Stochastic Games (SSGs) [Con92] are a special class of 2-player zero-
sum stochastic games, where the goal of one player is to reach a given terminal
state, while the other aims to avoid it. SSGs generalize parity games and other
important games for model checking, and the termination problem for finite
SSGs already presents a well-known algorithmic challenge: it is in NP ∩ coNP,
but no P-time algorithm is known ([Con92]).

Recursive Markov Chains (RMCs) were introduced and studied in our earlier
work ([EY05a, EY05b]) as a natural model of probabilistic procedural programs
and systems exhibiting both recursion and probabilistic behavior. There we pro-
vided strong upper and lower bounds for both reachability and ω-regular model

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 891–903, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

892 K. Etessami and M. Yannakakis

checking questions for RMCs. Informally, a RMC consists of a (finite) collection
of finite state Markov chains that can call each other in a potentially recursive
manner. RMCs define a class of denumerable Markov chains with a rich the-
ory generalizing that of Stochastic Context-Free Grammars (SCFGs) (see, e.g.,
[MS99]) and Multi-Type Branching Processes ([Har63]), both of which corre-
spond to 1-exit RMCs: RMCs in which each component Markov chain has 1
terminating exit state where it can return control back to a component that
called it. RMCs are also intimately related to probabilistic Pushdown Systems
(pPDSs), which have also been studied recently in connection to verification of
probabilistic programs ([EKM04, BKS05]).

For verification, it is natural and useful to extend RMCs with nondetermin-
istic choice, where some states are controlled by the system while others exhibit
probabilistic behavior. Indeed, finite MDPs have been studied extensively for ver-
ification of probabilistic systems, and optimized verification tools already exist
for them (see, e.g.,[CY98, Var85, dAKN+00, Kwi03]; [Kwi03] is a recent survey).
SSGs extend MDPs with a second (adversarial) player. Like non-probabilistic
game graphs, they can also be used to model and analyze the interactions be-
tween a controlled (but probabilistic) system and an (adversarial) environment.

In this paper we focus on precisely such extensions of RMCs: we introduce
Recursive Markov Decision Processes (RMDPs) and Recursive Simple Stochas-
tic Games (RSSGs), which define natural classes of countable MDPs and SSGs,
respectively. In the stochastic dynamic programming literature, MDPs are stud-
ied under many different reward criteria, such as average reward, discounted
reward, etc. Our focus here is on verification of probabilistic systems, and for
this purpose we study RMDPs and RSSGs under reachability criteria which are
central to any analysis like model checking. In particular, we ask the quantita-
tive termination question: given an RMDP (or RSSG) A and a probability p,
is there a strategy for the controller where (regardless of the strategy used by
the adversary, in the case of RSSGs) the process terminates at a desired exit
with probability at least p (or at most p)? We also ask the qualitative question
of whether the controller has a strategy to force termination with probability 1.
Lastly, we address model checking questions.

Our positive results apply primarily to 1-exit RMDPs and 1-exit RSSGs,
which correspond to controlled and game extensions, respectively, of both SCFGs
and Multi-Type Branching Processes (MT-BPs). Branching processes are an im-
portant class of stochastic processes, dating back to the early work of Galton and
Watson in the 19th century (they studied the single-type case, a subcase of 1-exit
1-entry 1-component RMCs), and continuing in the 20th century in the work of
Kolmogorov, Sevastianov, Harris and others for MT-BPs and beyond (see, e.g.,
[Har63]). These have been used to model a wide variety of applications, includ-
ing in population genetics ([Jag75]), nuclear chain reactions, and RNA modeling
in computational biology (based on SCFGs) ([SBH+94]). SCFGs are also fun-
damental models in statistical natural language processing (see, e.g., [MS99]).
1-exit RMDPs correspond to a controlled version of MT-BPs (and SCFGs): the
reproduction of some types can be controlled, while the dynamics of other types

Recursive Markov Decision Processes and Recursive Stochastic Games 893

is probabilistic as in ordinary MT-BPs. This model would also be suitable for
analysis of population dynamics under worst-case (or best-case) assumptions for
some types and probabilistic assumptions for others. Such controlled MT-BPs
can be readily translated to 1-entry, 1-exit RMDPs, where the number of com-
ponents is bounded by the number of types (a reverse translation is possible,
but will not in general preserve the number of components, i.e., 1-entry, 1-exit
RMDPS with a bounded number of components are more general than MT-BPs
with a bounded number of types). Thus, our results on 1-exit RMDPs apply,
among other things, to such controlled MT-BPs; these do not appear to have
been studied in the rich Branching Process literature. Indeed, even some basic
algorithmic problems about SCFGs and MT-BPs had received limited attention
prior to our work in [EY05a, EY05b].
We now outline our main results in this paper:

– We show that the Least Fixed Point solution of certain systems of nonlin-
ear min/max equations captures optimal termination probabilities for 1-exit
RMDPs & 1-exit RSSGs. These equations generalize linear Bellman’s equa-
tions for finite MDPs (see, e.g., [Put94, FV97]) and also generalize the mono-
tone systems of nonlinear equations for RMCs that we studied in ([EY05a]).

– We show a quite nontrivial Stackless & Memoryless (S&M) Determinacy
result for 1-exit RSSG termination, whereas we observe this fails badly even
for 2-exit RMDPs (namely, optimal strategies of any kind do not always exist
for 2-exit RMDP termination; one must make do with ε-optimal strategies).

– Using the equations, we show that quantitative termination for 1-exit RMDPs
and 1-exit RSSGs is decidable in PSPACE. This matches our PSPACE upper
bound for the special case of 1-exit RMCs in [EY05a] and, as shown there, it
can not be improved without resolving a long standing open problem in the
complexity of numerical computation, namely the square-root sum problem.

– Using S&M-determinacy, we show qualitative termination (where p = 1) can
be decided in NP for 1-exit RMDPs , and in ΣP

2 ∩ΠP
2 for 1-exit RSSGs.

– For the special case of linearly recursive 1-exit RMDPs (RSSGs), we show
that the exact optimal, and rational, termination probabilities can be com-
puted in polynomial time (in NP∩co-NP, respectively).

– Lastly, and unfortunately, we show that for multi-exit RMDPs & RSSGs the
situation is far worse: even qualitative termination for general RMDPs is
undecidable, even when the number of exits in bounded by a fixed constant
and the RMDP is restricted to be linearly-recursive. It is even undecidable,
for any fixed ε > 0, to distinguish whether the optimal value is 1 or < ε.
So optimal probabilities can not be approximated in a strong sense, with
any resources. Furthermore, we show undecidability applies already to qual-
itative model checking of 1-exit RMDPs, against regular or LTL properties.
Our undecidability results are derived from classic and recent undecidability
results for Probabilistic Finite Automata (PFA) [Paz71, CL89, BC03]. We
show PFAs can be viewed as essentially a special case of multi-exit RMDPs.

Related work. Both MDPs and Stochastic Games have a vast literature, dating
back to Bellman and Shapley (see, e.g., [Put94, FS02, FV97]). MDPs are studied

894 K. Etessami and M. Yannakakis

in both finite state and infinite state variants. Verification of finite state MDPs,
also called concurrent Markov chains, has been studied for a long time (see,
e.g., [CY98, CY95, Var85, HSP83]). [CY98] provides efficient algorithms for ω-
regular model checking of finite MDPs. Model checking tools like PRISM contain
optimized implementations of branching-time model checkers for finite MDPs
(see, e.g., [dAKN+00, Kwi03]).

Our earlier work [EY05a, EY05b] developed the basic theory of RMCs and
studied efficient algorithms for both their reachability analysis and model check-
ing. We showed, among many results, that qualitative model checking of ω-
regular properties for 1-exit RMCs can be decided in polynomial time in the
size of the RMC, and that quantitative model checking of RMCs can be done
in PSPACE in the size of the RMC. As mentioned, 1-exit RMCs correspond
to both MT-BPs and SCFGs (see, e.g., [Har63] and [MS99]), while general
RMCs are intimately related to probabilistic Pushdown Systems (pPDSs). Model
checking questions for pPDSs, for both linear and branching time properties,
have also been recently studied in [EKM04, BKS05]. RMDPs and RSSGs are
natural extensions of RMCs, introducing nondeterministic and game behavior.
Countable state MDPs are studied extensively in the MDP literature (see, e.g.,
[Put94, FS02]), but the concise representations afforded by RMDPs and its al-
gorithmic properties, appear not to have been studied prior to our work.

2 Basics

A Recursive Simple Stochastic Game (RSSG), A, is a tuple A = (A1, . . . , Ak),
where each component graph Ai = (Ni,Bi, Yi, Eni, Exi, pli, δi) consists of:

– A set Ni of nodes . Let N = ∪k
i=1Ni be the (disjoint) union of all nodes of A.

– A distinguished subset of entry nodes Eni ⊆ Ni, and a disjoint subset of exit
nodes Exi ⊆ Ni. Let En = ∪k

i=1Eni and Ex = ∪k
i=1Exi.

– A set Bi of boxes. Let B = ∪k
i=1Bi be the (disjoint) union of all boxes of A.

– A mapping Yi : Bi !→ {1, . . . , k} that assigns to every box (the index of)
of a component. Let Y = ∪k

i=1Yi be the map Y : B !→ {1, . . . , k} where
Y |Bi

= Yi, for 1 ≤ i ≤ k.
– To each box b ∈ Bi, we associate a set of call ports, Callb = {(b, en) | en ∈

EnY (b)}, and a set of return ports, Returnb = {(b, ex) | ex ∈ ExY (b)}. Let
Calli = ∪b∈Bi

Callb and let Call = ∪k
i=1Calli denote all calls in A. Similarly,

define Returni and Return.
– We let Qi = Ni ∪ Calli ∪ Returni, denote collectively the nodes, call ports,

and return ports, We will use the term vertex of Ai to refer to elements of
Qi. We let Q =

⋃k
i=1Qi be the set of all vertices of the RSSG A.

– A mapping pli : Qi !→ {0, 1, 2} that assigns to every vertex a player (Player
0 represents “chance” or “nature”). We assume pli(ex) = 0 for all ex ∈ Exi.
Let pl = ∪k

i=1pli denote pl : Q !→ {0, 1, 2} where pl|Qi
= pli, for 1 ≤ i ≤ k.

– A transition relation δi ⊆ (Qi × (R ∪ {⊥}) × Qi), where for each tuple
(u, x, v) ∈ δi, the source u ∈ (Ni \ Exi) ∪ Returni, the destination v ∈

Recursive Markov Decision Processes and Recursive Stochastic Games 895

(Ni\Eni)∪Calli, and x is either (i) a real number pu,v ∈ [0, 1] (the transition
probability) if pl(u) = 0, or (ii) x = ⊥ if pl(u) = 1 or 2. For computational
purposes we assume that the given probabilities pu,v are rational. Further-
more they must satisfy the consistency property: for every u ∈ pl−1(0),∑
{v′|(u,pu,v′ ,v′)∈δi} pu,v′ = 1, unless u is a call port or exit node, neither of

which have outgoing transitions, in which case by default
∑

v′ pu,v′ = 0.
Let δ = ∪iδi be the set of all transitions of A.

An RSSG A defines a global denumerable Simple Stochastic Game (SSG)
MA = (V = V0 ∪ V1 ∪ V2,Δ, pl) as follows. The global states V ⊆ B∗ × Q of
MA are pairs of the form 〈β,u〉, where β ∈ B∗ is a (possibly empty) sequence
of boxes and u ∈ Q is a vertex of A. More precisely, the states V ⊆ B∗ ×Q and
transitions Δ are defined inductively as follows:

1. 〈ε,u〉 ∈ V , for u ∈ Q. (ε denotes the empty string.)
2. if 〈β,u〉 ∈ V & (u, x, v) ∈ δ, then 〈β, v〉 ∈ V and (〈β,u〉, x, 〈β, v〉) ∈ Δ.
3. if 〈β, (b, en)〉∈V & (b, en) ∈ Callb, then 〈βb, en〉∈V & (〈β, (b, en)〉, 1, 〈βb, en〉)∈Δ.

4. if 〈βb, ex〉∈V & (b, ex)∈Returnb, then 〈β, (b, ex)〉∈V &(〈βb, ex〉, 1, 〈β, (b, ex)〉)∈Δ.

Item 1 corresponds to the possible initial states, item 2 corresponds to control
staying within a component, item 3 is when a new component is entered via a
box, item 4 is when control exits a box and returns to the calling component.
The mapping pl : V !→ {0, 1, 2} is given as follows: pl(〈β,u〉) = pl(u) if u is in
Q \ (Call ∪ Ex), and pl(〈β,u〉) = 0 if u ∈ Call ∪ Ex. The set of vertices V is
partitioned into V0, V1, and V2, where Vi = pl−1(i).

We consider MA with various initial states of the form 〈ε,u〉, denoting this by
Mu

A. Some states of MA are terminating states and have no outgoing transitions.
These are states 〈ε, ex〉, where ex is an exit node.

An RSSG where V2 = ∅ (V1 = ∅) is called a maximizing (minimizing, respec-
tively) Recursive Markov Decision Process (RMDP); an RSSG where V1∪V2 = ∅
is called a Recursive Markov Chain (RMC) ([EY05a, EY05b]); an RSSG where
V0 ∪ V2 = ∅ is called a Recursive Graph ([AEY01]); an RSSG where V0 = ∅ is
called a Recursive Game Graph (see [ATM03, Ete04]). We use 1-exit RSSG to
refer to RSSGs where every component has 1 exit. W.l.o.g., we can assume every
component has 1 entry, because multi-entry RSSGs can be transformed to equiv-
alent 1-entry RSSGs with polynomial blowup (similar to RSM transformations
[AEY01]). This is decidedly not so for exits: 1-exit RSSGs form an important
sub-class of RSSGs and are the main focus of our upper bounds. We shall call a
RSSG (RMDP, RMC, etc.) linearly-recursive (denoted lr-RSSG, etc.) if there in
no path of transitions in any component from any return port to a call port. lr-
RMCs are much easier to analyse than general RMCs: reachability probabilities
are rational and both reachability analysis and model checking can be performed
with the same complexity as for finite Markov chains, using the decomposed New-
ton’s method [EY05a] and techniques we developed in [EY05a, EY05b] (although
lr-RMCs were not mentioned explicitly in [EY05a, EY05b]).

A basic goal is to answer termination questions for RSSGs: “Does player 1
have a strategy to force the game to terminate at ex (i.e., reach state 〈ε, ex〉),

896 K. Etessami and M. Yannakakis

starting at 〈ε,u〉, with probability ≥ p, regardless of how player 2 plays?”. A
strategy σ for player i, i ∈ {1, 2}, is a function σ : V ∗Vi !→ V , where, given the
history ws ∈ V ∗Vi of play so far, with s ∈ Vi (i.e., it is player i’s turn to play
a move), σ(ws) = s′ determines the next move of player i, where (s,⊥, s′) ∈ Δ.
(We could also allow randomized strategies.)

Let Ψi denote the set of all strategies for player i. A pair of strategies σ ∈ Ψ1

and τ ∈ Ψ2 induce in a straightforward way a Markov chain Mσ,τ
A = (V ∗,Δ′),

whose set of states is the set V ∗ of histories. Given initial vertex u, a final exit ex
in the same component, and a k ≥ 0, let qk,σ,τ

(u,ex) be the probability that, in Mσ,τ
A ,

starting at initial state 〈ε,u〉, we will reach a state w〈ε, ex〉 in at most k “steps”
(i.e., where |w| ≤ k). Let q∗,σ,τ(u,ex) = limk→∞ qk,σ,τ

(u,ex) be the probability of ever
terminating at ex, i.e., reaching 〈ε, ex〉 (the limit exists: the sequence is mono-
tonically non-decreasing & bounded by 1). Let qk

(u,ex) = maxσ∈Ψ1 minτ∈Ψ2 qk,σ,τ
(u,ex)

and let q∗(u,ex) = supσ∈Ψ1
infτ∈Ψ2 q∗,σ,τ(u,ex). Next, for a strategy σ ∈ Ψ1, let qk,σ

(u,ex) =

minτ∈Ψ2 qk,σ,τ
(u,ex), and let q∗,σ(u,ex) = infτ∈Ψ2 q∗,σ,τ(u,ex). Lastly, given instead a strategy

τ ∈ Ψ2, let qk,·,τ
(u,ex) = maxσ∈Ψ1 qk,σ,τ

(u,ex), and let q∗,·,τ(u,ex) = supσ∈Ψ1
q∗,σ,τ(u,ex).

From very general determinacy results (eg. Martin’s “Blackwell determi-
nacy” [Mar98]) it follows that the games MA are determined, meaning that
supσ∈Ψ1

infτ∈Ψ2 q∗,σ,τ(u,ex) = infτ∈Ψ2 supσ∈Ψ1
q∗,σ,τ(u,ex). Of course, finite SSGs are even

memorylessly determined ([Con92]), meaning that the strategies of either player
can be restricted to memoryless strategies which ignore the history prior to the
current position, without harming the optimal outcome. As we shall see, 1-exit
RSSGs exhibit memoryless determinacy in an even stronger sense, namely, the
strategy is also independent of the call stack. This fails badly for multi-exit
RMDPs, as we will see. We are interested in the following questions:

(1) The qualitative termination problem: Is q∗(u,ex) = 1?
(2) The quantitative termination problems: Given r ∈ [0, 1], is q∗(u,ex) ≥ r? Is

q∗(u,ex) = r? Or we may wish to compute or approximate probabilities q∗(u,ex).

More generally, we can ask model checking questions, where, given a Σ-labeling
of vertices, and e.g., an LTL formula ϕ over Σ, we ask what is the supremum
probability with which player 1 can force the satisfaction of property ϕ? We
refrain from formal definitions due to space (see,e.g., [CY98, EY05b]). Our re-
sults for model checking will be negative: undecidability, stemming from the
undecidability of termination problems for general RMDPs.

3 Systems of Nonlinear Min-max Equations for 1-Exit
RSSGs

We generalize the monotone nonlinear system of equations for RMCs ([EY05a])
to monotone nonlinear min-max systems for 1-exit RSSGs, whose Least Fixed
Point yields the desired probabilities q∗(u,ex) . Let us use a variable x(u,ex) for

Recursive Markov Decision Processes and Recursive Stochastic Games 897

each unknown q∗(u,ex). We will often find it convenient to index the variables
x(u,ex) according to a fixed order (say lexicographical), so we can refer to them
also as x1, . . . , xn, with each x(u,ex) identified with xj for some j. In this way we
obtain a vector of variables: x = (x1 x2 . . .xn)T .

Definition 1. Given 1-exit RSSG A = (A1, . . . , Ak), we define a system of
polynomial/min-max equations, SA, over the variables x(u,ex), where u ∈ Qi

and ex ∈ Exi, for 1 ≤ i ≤ k. The system contains one equation of the form
x(u,ex) = P(u,ex)(x), for each variable x(u,ex). There are 5 cases to distinguish,
based on what “type” of vertex u is:
1. Type I: u = ex. In this case: x(ex,ex) = 1.
2. Type II: pl(u) = 0 & u ∈ (Ni \ {ex}) ∪ Returni: x(u,ex) =

∑
{v|(u,pu,v,v)∈δ}

pu,vx(v,ex). (If u has no outgoing transitions, this equation is by definition
x(u,ex) = 0.)

3. Type III: u = (b, en) is a call port: x((b,en),ex) = x(en,ex′) · x((b,ex′),ex), where
ex′ ∈ ExY (b) is the unique exit of AY (b).

4. Type IV: pl(u) = 1 & u ∈ (Ni \ {ex}) ∪ Returni: x(u,ex) = max{v|(u,⊥,v)∈δ}
x(v,ex). (If u has no outgoing transitions, we define max(∅) = 0.)

5. Type V: pl(u) = 2 and u ∈ (Ni \ {ex}) ∪Returni: x(u,ex) = min{v|(u,⊥,v)∈δ}
x(v,ex). (If u has no outgoing transitions, we define min(∅) = 0.)

In vector notation, we denote SA = (xj = Pj(x) | j = 1, . . . , n) by: x = P (x).

Given 1-exit RSSG A, we can easily construct x = P (x) in linear time. We
now identify a particular solution to x = P (x), called the Least Fixed Point
(LFP) solution, which gives precisely the termination game values. For vectors
x,y ∈ Rn, define the partial-order x 3 y to mean xj ≤ yj for every coordinate
j. For D ⊆ Rn, we call a mapping H : Rn !→ Rn monotone on D, if: for
all x,y ∈ D, if x 3 y then H(x) 3 H(y). Define P 1(x) = P (x), and define
P k(x) = P (P k−1(x)), for k > 1. Let q∗ ∈ Rn denote the n-vector q∗(u,ex) (using
the same indexing as used for x). For k ≥ 0, let qk denote, similarly, the n-vector
qk
(u,ex). Let 0 (1) denote the n-vector consisting of 0 (respectively, 1) in every

coordinate. Define x0 = 0, and for k ≥ 1, define xk = P (xk−1) = P k(0).

Theorem 1. Let x = P (x) be the system SA associated with 1-exit RSSG A.

1. P : Rn !→ Rn is monotone on Rn
≥0. Hence, for k ≥ 0, 0 3 xk 3 xk+1.

2. For all k ≥ 0, qk 3 xk+1 3 q2k

.
3. q∗ = P (q∗). In other words, q∗ is a fixed point of the map P .
4. For all k ≥ 0, xk 3 q∗.
5. For all q′ ∈ Rn

≥0, if q′ = P (q′), then q∗ 3 q′.
In other words, q∗ is the Least Fixed Point, LFP(P), of P : Rn

≥0 !→ Rn
≥0.

6. q∗ = limk→∞ xk = limk→∞ qk.

The proofs are omitted due to space. They are similar to those of an analogous
theorem in [EY05a] for nonlinear systems associated with RMCs, but some parts

898 K. Etessami and M. Yannakakis

are substantially more tricky because of the players. We sketch here the idea for
part (5). Consider any fixpoint q′ of the equations, i.e., q′ = P (q′). Let τ ′ be the
(S&M) strategy for player 2 that always picks, at any state 〈β,u〉, for vertex u ∈
pl−1(2), the particular successor v of u such that v = arg min{v|(u,⊥,v)∈δ} q′(v,ex)

(breaking ties, say, lexicographically). Then we prove a lemma stating that, for
all strategies σ ∈ Ψ1 of player 1, and for all k ≥ 0, qk,σ,τ ′ 3 q′. The lemma implies
that q∗,σ,τ

′
= limk→∞ qk,σ,τ ′ 3 q′. This holds for any strategy σ ∈ Ψ1. There-

fore, supσ∈Ψ1
q∗,σ,τ

′

(u,ex) ≤ q′(u,ex), for every vertex u. Thus, by the determinacy of

RSSG games, it follows that q∗(u,ex) = infτ∈Ψ2 supσ∈Ψ1
q∗,σ,τ(u,ex) ≤ supσ∈Ψ1

q∗,σ,τ
′

(u,ex) ≤
q′(u,ex), for all vertices u. In other words, q∗ 3 q′. ��

4 S&M Determinacy

We now identify a very restricted kind of strategy that suffices as an optimal
strategy in 1-exit RSSGs. Call a strategy Stackless & Memoryless (S&M) if it
is not only independent of the history of the game, but also independent of the
current call stack, i.e., only depends on the current vertex. (See also [ATM03],
where such strategies are called modular strategies.)

Corollary 1. In every 1-exit RSSG termination game, player 2 (the minimizer)
has an optimal S&M strategy.

Proof. Consider the strategy τ ′ in the proof of part (5) of Theorem 1, chosen
not for just any fixed point q′, but for q∗ itself. ��

Far less trivially, we establish next that player 1 (the maximizer) also has
an optimal S&M strategy and thus the game is S&M-determined, meaning both
players have optimal S&M strategies. (Note that the game is not symmetric with
respect to the two players.)

Theorem 2. Every 1-exit RSSG termination game is S&M-determined.

Although the statement is intuitive, the proof is quite nontrivial and delicate;
the full proof is given in the full paper. We sketch the approach here. By Corollary
1, we only need to show that player 1 has an optimal S&M strategy. Let σ be any
S&M strategy for player 1, and let q∗,σ = infτ∈Ψ2 q∗,σ,τ . If q∗,σ is a fixpoint of
the equations then it follows that it is the least fixpoint and σ is optimal. On the
other hand, it can be shown that q∗,σ satisfies all the equations except possibly
for some type IV equations. We argue that if u is such a vertex (belonging
to player 1) whose equation is violated, then switching to another strategy σ′

where u picks another successor leads to a strictly better strategy than σ (for
any strategy of player 2). This is the heart of the proof. We parameterize the
game with respect to the value t at vertex u, and we express the optimal values
of the other vertices z (for all strategies τ of player 2) as functions fz(t). We then
carefully analyze the properties of these functions, which are power series in t

Recursive Markov Decision Processes and Recursive Stochastic Games 899

R

L

1
ex1

ex2
1/2

1/2

en

A1

b : A1

Fig. 1. 2-exit RMDPs: no optimal strategy exists for terminating at ex1

with non-negative coefficients, and we analyze their fixpoints, and conclude that
switching the choice at vertex u leads to a strategy σ′ that has at least as great
value as σ at every vertex, and strictly better at u. We repeat the process until
we arrive at a S&M strategy σ∗ whose probabilities satisfy all the equations, and
hence it is optimal. We refer to the full paper for the details. ��

Already for 2-exit RMDP termination, not only are there no optimal S&M
strategies for player 1, there are in general no optimal strategies at all! Figure 1
illustrates this. In this 2-exit maximizing RMDP the supremum probability of
terminating at exit ex1 starting from en is 1. However, no strategy player 1
achieves this. Specifically, for n ≥ 0, the strategy LnR terminates at ex1 with
probability (1− 1

2n). Note that any S&M strategy for player 1 would yield prob-
ability 0 of terminating at ex1, so such strategies are the worst possible.

5 Termination Problems for 1-Exit RMDPs & RSSGs

Using Corollary 1 and Theorem 2, and results from [EY05a], we can show the
following results for qualitative termination of 1-exit RMDPs and 1-exit RSSGs:

Theorem 3.
1. We can decide in P-time if the value of a 1-exit RSSG termination game

(and optimal termination probability in a maximizing or minimizing 1-exit
RMDP) is exactly 0.

2. We can decide in NP whether the maximum probability of termination in a
maximizing 1-exit RMDP is exactly 1, and in coNP whether the minimum
probability of termination in a minimizing 1-exit RMDP is exactly 1.

3. Deciding whether a 1-exit RSSG termination game has value 1 is in ΣP
2 ∩ΠP

2 .
4. For 1-exit lr-RMDPs we can compute the exact optimal (rational) termi-

nation probability in P-time, and for 1-exit lr-RSSGs we can compute the
exact optimal (rational) value of the termination game in NP∩co-NP.

Part (1) is done via a fixpoint algorithm; parts (2) and (3) involve guessing
the optimal S&M strategies and verifying the optimality with the appropriate
complexity using techniques from [EY05a]; part (4) exploits the fact that for 1-
exit lr-RMDPs & lr-RSSGs the non-linear system x = P (x) can be decomposed

900 K. Etessami and M. Yannakakis

into linear parts that can be solved sequentially by linear programming (and by
guessing strategies for RSSGs); see the full paper. ��

We next show that quantitative termination questions for 1-exit RMDPs
and 1-exit RSSGs can be answered in PSPACE by appealing to the deep al-
gorithms for deciding the Existential Theory of Reals, ExTh(R). A first-order
sentence in the theory of reals is formed from quantifiers and boolean connec-
tives over a vocabulary with “atomic predicates” of the form: fi(x)Δ0, where
the fi, are multi-variate polynomials with rational coefficients over the variables
x = x1, . . . , xn, and Δ is any comparison operator: =, <, or ≤. The existential
theory of reals, ExTh(R), consists of prenex sentences: ∃x1, . . . , xnR(x1, . . . , xn),
where R is a boolean combination of “atomic predicates”. Beginning with Tarski,
algorithms for deciding the theory of reals and fragments such as ExTh(R) have
been deeply investigated. Current, it is known that ExTh(R) can be decided in
PSPACE [Can88, Ren92, BPR96]. Furthermore, it can be decided in exponential
time where the exponent depends (linearly) only on the number of variables;
hence for a fixed number of variables the time is polynomial.

Suppose we want to decide whether a vector c = [c1, . . . , cn]T of rational
numbers is LFP (P), where x = P (x) is the system of equations for a given
1-exit RSSG. Consider the sentence:

ϕ ≡ ∃x1, . . . , xn

n∧
i=1

(Pi(x1, . . . , xn) = xi) ∧
n∧

i=1

(xi = ci)

ϕ is true iff c = P (c). For type I, II, and III nodes, Pi is a polynomial. It remains
to show how to encode, in arithmetic, the predicate “Pi(x1, . . . , xn) = xi” in
the case (IV) where Pi(x1, . . . , xn) = maxj∈J xj , and in the case (V) where
Pi(x1, . . . , xn) = minj∈J xj , for some subset J ⊆ {1, . . . , n}. For type IV nodes,
note that xi = maxj∈J xj iff

∧
j∈J xi ≥ xj ∧ (

∨
j∈J xi ≤ xj). Likewise, for type

V nodes, xi = minj∈J xj iff
∧

j∈J xi ≤ xj ∧ (
∨

j∈J xi ≥ xj). Thus, we can encode
the predicates xi = Pi(x1, . . . , xn) as a boolean combination of quantifier-free
predicates, and we can encode the sentence ϕ in ExTh(R). To guarantee that
c = LFP(P), we need in addition to check the following sentence:

ψ ≡ ∃x1, . . . , xn

n∧
i=1

(Pi(x1, . . . , xn) = xi) ∧
n∧

i=1

(0 ≤ xi) ∧
n∨

i=1

(xi < ci)

ψ is false iff there is no solution z ∈ Rn
≥0 to x = P (x) such that c �3 z. Hence,

to decide whether c = LFP(P), we only need two queries to ExTh(R). Namely,
we check that ϕ is true, and hence c = P (c), and that ψ is false, and hence
c = LFP(P). If we only want to check an inequality q∗j ≤ cj , then let ϕ′ be
ϕ with the last conjunction of equations replaced by

∧n
i=1(0 ≤ xi) ∧ (xj ≤ cj).

Applying the results on ExTh(R), we obtain the following:

Theorem 4. Given a 1-exit RSSG A and a vector of rational probabilities c,
there is a PSPACE algorithm to decide whether q∗ = c, as well as to decide
whether q∗j Δcj, for any comparison operator Δ. Moreover, the running time is
O(|A|O(1) · 2O(n)) where n is the number of variables in x = P (x). Hence the
running time is polynomial if n is bounded.

Recursive Markov Decision Processes and Recursive Stochastic Games 901

Since 0 ≤ LFP(P) ≤ 1, we can use such queries to ExTh(R) in a “binary
search” to “narrow in” on the value of each coordinate of LFP(P). Via obvious
modifications of sentences like ψ, we can gain one extra bit of precision on the
exact value of each ci with one extra query to ExTh(R). This yields:

Theorem 5. Given 1-exit RSSG A and a number j in unary, there is an algo-
rithm that approximates every coordinate of q∗ to within j bits of precision in
PSPACE. Moreover, the running time is O(j · |A|O(1) · 2O(n)), where n is the
number of variables in x = P (x).

6 Multi-exit RMDP Termination and 1-Exit RMDP
Model Checking: Undecidability

We next show strong undecidability results for RMDPs, and thus for RSSGs.

Theorem 6. Given a multi-exit linearly-recursive RMDP, A, entry en and exit
ex, it is undecidable whether q∗(en,ex) = 1. This is so even when the number of
exits in each component of A is bounded by a fixed constant. Furthermore, there
is no algorithm that approximates the probability q∗(en,ex) within any constant
(multiplicative) factor. In particular:

1. For any fixed rational ε with 0 < ε < 1, given lr-RMDP A with only one
component such that either q∗(en,ex) > 1 − ε or q∗(en,ex) < ε, it is undecidable to
distinguish which is the case.
2. For any fixed rational ε with 0 < ε < 1, given a lr-RMDP A with only two
components such that either q∗(en,ex) = 1 or q∗(en,ex) < ε, it is undecidable to
distinguish which is the case.

We have two proofs: one is a reduction from the halting problem for 2-counter
machines. The second is a reduction from the emptiness problem for Probabilistic
Finite Automata (PFAs). The latter reduction is simpler and connects RMDPs
to the well-studied area of PFAs, allowing us to leverage extensive research in
that area [Paz71, CL89, BC03]. We show that PFAs are, in effect, a special case
of RMDPs. Recall, a PFA is a FA whose transitions from a state on a given
input are probabilistic. The PFA emptiness problem is to decide for a given
PFA A and threshold λ, whether there is a word accepted by A with probabil-
ity > λ. It is undecidable in strong ways ([Paz71, CL89, BC03]). Our reduction
constructs from a PFA A a lr-RMDP whose termination probability under the
optimal strategy is precisely the supremum probability of acceptance of any
word by A. Please see the full paper for details. With a modified construction
we show:

Theorem 7. Qualitative & quantitative LTL model checking for 1-exit lr-
RMDPs is undecidable; this holds even for a fixed property; moreover, the opti-
mum probability of the property can’t be approximated within any constant factor.

902 K. Etessami and M. Yannakakis

Acknowledgement. Thanks to Amir Pnueli for asking us about lr-RMCs.

References

[AEY01] R. Alur, K. Etessami, and M. Yannakakis. Analysis of recursive state
machines. In Proc. of 13th CAV, pages 304–313, 2001.

[ATM03] R. Alur, S. La Torre, and P. Madhusudan. Modular strategies for re-
cursive game graphs. In TACAS, volume 2619 of LNCS, pages 363–378,
2003.

[BC03] V. Blondel and V. Canterini. Undecidable problems for probabilistic
automata of fixed dimension. Theory of Comput. Sys., 36:231–245, 2003.

[BKS05] T. Brázdil, A. Kučera, and O. Stražovský. Decidability of temporal prop-
erties of probabilistic pushdown automata. In Proc. of STACS’05, 2005.

[BPR96] S. Basu, R. Pollack, and M. F. Roy. On the combinatorial and algebraic
complexity of quantifier elimination. J. ACM, 43(6):1002–1045, 1996.

[Can88] J. Canny. Some algebraic and geometric computations in PSPACE. In
Prof. of 20th ACM STOC, pages 460–467, 1988.

[CL89] A. Condon and R. Lipton. The complexity of space bounded interactive
proofs. In Proc. of 30th IEEE FOCS, 1989.

[Con92] A. Condon. The complexity of stochastic games. Inf. & Comp.,
96(2):203–224, 1992.

[CY95] C. Courcoubetis and M. Yannakakis. The complexity of probabilistic
verification. Journal of the ACM, 42(4):857–907, 1995.

[CY98] C. Courcoubetis and M. Yannakakis. Markov decision processes and
regular events. IEEE Trans. on Automatic Control, 43(10):1399–1418,
1998.

[dAKN+00] L. de Alfaro, M. Kwiatkowska, G. Norman, D. Parker, and R. Segala.
Symbolic model checking of probabilistic processes using MTBDDs and
the kronecker representation. In Proc. of 6th TACAS, pages 395–410,
2000.

[EKM04] J. Esparza, A. Kučera, and R. Mayr. Model checking probabilistic push-
down automata. In Proc. of 19th IEEE LICS’04, 2004.

[Ete04] K. Etessami. Analysis of recursive game graphs using data flow equations.
In Proc. 5th VMCAI, vol. 2937 LNCS, pages 282–296. Springer, 2004.

[EY05a] K. Etessami and M. Yannakakis. Recursive markov chains, stochastic
grammars, and monotone systems of non-linear equations. In Proc. of
22nd STACS’05. Springer, 2005. (Tech. Report, U. Edinburgh, June
2004).

[EY05b] K. Etessami and M. Yannakakis. Algorithmic verification of recursive
probabilistic state machines. In Proc. 11th TACAS, vol. 3440 of LNCS,
2005.

[FS02] E. Feinberg and A. Shwartz, editors. Handbook of Markov Decision Pro-
cesses. Kluwer, 2002.

[FV97] J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer,
1997.

[Har63] T. E. Harris. The Theory of Branching Processes. Springer-Verlag, 1963.
[HSP83] S. Hart, M. Sharir, and A. Pnueli. Termination of probabilistic concurrent

programs. ACM Trans. Prog. Lang. & Sys., 5(3):356–380, 1983.
[Jag75] P. Jagers. Branching Processes with Biological Applications. Wiley, 1975.

Recursive Markov Decision Processes and Recursive Stochastic Games 903

[Kwi03] M. Kwiatkowska. Model checking for probability and time: from theory
to practice. In 18th IEEE LICS, pages 351–360, 2003.

[Mar98] D. A. Martin. Determinacy of Blackwell games. J. Symb. Logic,
63(4):1565–1581, 1998.

[MS99] C. Manning and H. Schütze. Foundations of Statistical Natural Language
Processing. MIT Press, 1999.

[Paz71] A. Paz. Introduction to Probabilistic Automata. Academic Press, 1971.
[Put94] M. L. Puterman. Markov Decision Processes. Wiley, 1994.
[Ren92] J. Renegar. On the computational complexity and geometry of the first-

order theory of the reals, parts I-III. J. Symb. Comp., 13(3):255–352,
1992.

[SBH+94] Y. Sakakibara, M. Brown, R Hughey, I.S. Mian, K. Sjolander, R. Un-
derwood, and D. Haussler. Stochastic context-free grammars for tRNA
modeling. Nucleic Acids Research, 22(23):5112–5120, 1994.

[Var85] M. Vardi. Automatic verification of probabilistic concurrent finite-state
programs. In Proc. of 26th IEEE FOCS, pages 327–338, 1985.

Decidability in Syntactic Control of Interference

J. Laird

Dept. of Informatics, University of Sussex, UK
jiml@sussex.ac.uk

Abstract. We investigate the decidability of observational equivalence
and approximation in “Syntactic Control of Interference” (SCI). By as-
sociating denotations of terms in an inequationally fully abstract model
of finitary basic SCI with multitape finite state automata, we show that
observational approximation is not decidable (even at first order), but
that observational equivalence is decidable for all terms. We then con-
sider the same problems for basic SCI extended with non-local control in
the form of backwards jumps. We show that both observational approx-
imation and observational equivalence are decidable in this language by
describing a fully abstract games model in which strategies are regular
languages.

1 Introduction

Reynolds’ Syntactic Control of Interference [18] is a prototypical functional-
imperative language in which covert interference between functions and their
arguments is prevented by the use of an affine typing discipline. By eliminating
phenomena such as aliasing, interference control should make it easier to pre-
dict program behaviour. Here, we shall investigate decidability of properties of
observational approximation and equivalence for terms over finite datatypes.

The full SCI system contains a notion of passive type (as do related languages
with interference control such as SCIR [15]); the programs (and contexts) ty-
pable at purely passive types are essentially those of PCF, and equivalence at
such types is therefore not decidable [9]. Consequently, we restrict attention to
the active types or basic SCI, which may be thought of as a common core for in-
terference controlled languages. Basic SCI is essentially a subsystem of Idealized
Algol, for which a hierarchy of decidability results has recently been developed,
based on “algorithmic game semantics” [3]: associating the denotation of each
term as a strategy in a fully abstract game semantics with a formal language.
These techniques have been used to show that observational equivalence and ap-
proximation in (finitary) Idealized Algol are decidable at third-order types — by
showing that the denoting strategies are recognized by deterministic pushdown
automata [14] — but not at fourth order [13]. The latter undecidability result
depends crucially on the nesting of function calls, which is not possible in SCI.

These results provide motivation and a methodological basis for investigating
observational equivalence in basic SCI, but one obstacle is that game semantics
appears to be “too sequential” to capture this directly. (McCusker and Wall

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 904–916, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Decidability in Syntactic Control of Interference 905

have described a games model [12], but the associated full abstraction result
depends on a quotient operation.) However, basic SCI has an appealingly simple
semantics based on sets and relations, described by Reddy [17], and investigated
further by McCusker, who proved that it is fully abstract [10]. We show that
the denotations of first-order terms in this semantics correspond to multitape
deterministic finite state automata, as introduced by Rabin and Scott in 1959
[16]. It is straightforward to show that containment of 2-tape deterministic FSA
is undecidable [7]. By contrast, the problem of decidability of equivalence for
all multitape deterministic FSA remained open for thirty years, before being
resolved (affirmatively) by Harju and Karhumäki [4]. These results have direct
implications for basic SCI: observational equivalence (equivalence of denotations)
is decidable at first order but observational approximation (inclusion of denota-
tions) is not (even though all first-order terms of Idealized Algol are typable in
SCI (up to β-equivalence) — the point being that the possible observations of
first-order terms are more restricted in SCI). Although denotations of terms at
higher-order types do not correspond directly to multitape automata, we show
that there is a “definable monomorphism” from every type to a first-order type,
and that equivalence is therefore decidable at all types.

The undecidability of observational approximation (and associated results,
such as the undecidability of equivalence in a non-deterministic variant of the
language) raises the question of whether deciding such properties in the presence
of interference control is always difficult. The problem in basic SCI is in some re-
spects analogous to the situation in PCF: whilst it is a sequential language, it is
not observably sequential ; different sequentializations of a program may approx-
imate each other (for example, λx.λy.x; y is equivalent in SCI to λx.λy.y;x). In
the case of PCF, Cartwright and Felleisen [2] have shown that adding simple non-
local control operators results in a language (“observably sequential PCF”) with
a finitely presentable fully abstract model, for which equivalence and approx-
imation are therefore decidable. Pursuing the analogy between PCF and SCI,
we obtain an observably sequential version of the latter by adding backwards
jumps to labelled points. We give a regular game semantics for this language and
show that it is inequationally fully abstract (although it contains compact ele-
ments which are not definable) and that observational approximation is therefore
decidable.

2 Basic SCI

The syntax of basic SCI [18] is, in essence, the same as that of Idealized Algol [19]
but the typing rules are more restrictive. In our finitary version of the language
we assume a base type n (of expressions) for each natural number n, containing
the mumerals 0, . . . , n− 1, and generate types using the constructors → (affine
function-space) and & (additive product). The depth or order of a type (and the
corresponding closed terms) is defined: o(n) = 0, o(S&T) = max{o(S), o(T)},
o(S → T) = max{o(S) + 1, o(T)}.

906 J. Laird

Typing judgements are based on the affine λ-calculus with pairing:

x:T,Γ�x:T
Γ,x:S,Δ�M :T
Γ,Δ,x:S�M :T

Γ�M :S Γ�N :T
Γ�〈M,N〉:S&T

Γ,x:S�M :T
Γ�λx.M :S→T

Γ�M :S→T Δ�N :S
Γ,Δ�M N :T

For the sake of concision, we work with a lean syntax which can be easily sugared
up to more closely resemble that of Idealized Algol. We write Tn for the n-
fold product of copies of T (setting T 0 = 1). We represent the type var[n] of
imperative variables with values in n as the type n&1n (the product of the
types of its “methods”, assignment and dereferencing).1 We extend the term
formation rules with the following constants (we omit parallel composition as it
is observationally equivalent to sequential composition):

Projections πl : A&B → A, πr : A&B → B yielding πi : An → A for i < n.
Numerals i : n for i < n.
Case statements casen,m : n&mn → m. from which we derive casen,T :

n&Tn → T for arbitrary T .
Loops while0 : m + 1→ m. We write Ω for while0 0.
New variable declaration new : (var[n] → m) → m.

If M : 1, we write case 〈M,N〉 as M ;N , and if M : 0 we write abortM for
case 〈M, 0〉. Given M : var[n], we may write !M for πlM and M := N for
case 〈N,πr M〉.

The “small-step” operational semantics is based on the evaluation contexts:

E[·] ::= [] | E[]M | πi E[] | caseE[] | case 〈E[],M〉 | while0E[]

and the following reductions for pairs M, E of a term (of ground type) and a
store (a set of pairs 〈a, v〉 of location names and natural numbers).

E[(λx.M)N], E −→ E[M [N/x]], E
E[πi 〈M1,M2〉] −→Mi, E

E[case 〈i,M〉], E −→ E[πi M]
E[while0M] −→ E[case 〈M, 〈while0M, 0, . . . , 0〉〉]
E[newM], E −→ E[M a], E ∪ {〈a, 0〉} a �∈ π1(E)

E[πl a], E −→ E[v], E 〈a, v〉 ∈ E
E[πi (πl a)], E −→ E[0], E [a !→ i]

We write M ⇓ if evaluation of M, ∅ terminates, and so define standard notions
of observational approximation and equivalence:
M � N if C[M] ⇓ implies C[N] ⇓, and M " N if M � N and N � M .

1 So this version of the language implicitly contains “bad variables”. This does not
affect the results given here for basic SCI: approximation is shown to be undecidable
for the var-free types, whilst McCusker has shown that observational equivalence in
basic SCI with bad variables is conservative over equivalence in the language without
bad variables [11].

Decidability in Syntactic Control of Interference 907

2.1 Fully Abstract Semantics of Basic SCI

We briefly describe the fully abstract model of basic SCI, based on sets and
relations, which we shall use to prove our results. This is essentially a version of
Reddy’s semantics [17], simplified and proved to be fully abstract by McCusker
[10]. We may present this model as a typed BCK-algebra [5] with products:

– A collection of objects and a set el(α) of elements for each object. In the
relational model, objects are sets and el(α) = P(α).

– Objects α → β and α&β for each pair of objects α, β. In the relational model,
we define α → β to be the set α∗ × β (where α∗ is the set of finite words
over α) and α&β to be the disjoint union α+β = {el | e ∈ α}∪{er | e ∈ β}.
So in the relational model, elements of α → β are relations between α∗ and
β, and elements of α&β correspond to pairs of elements from α and β.

– An application operation — a function · : el(α → β)× el(α) → el(β). In the
relational model X · Y = {z ∈ β | ∃y ∈ Y ∗.〈y, z〉 ∈ X}.

– For each α, β, γ, elements B ∈ el((β → γ) → (α → β) → α → γ), C ∈
el((α → β → γ) → β → α → γ), T ∈ el(α → β → α&β), P ∈ el((α →
β)&(α → γ) → α → β&γ), πl ∈ el(α&β → α) and πr ∈ el(α&β → β)
satisfying the axioms:
B · x · y · z = x · (y · z),
C · x · y · z = x · z · y
πl · (T · x · y) = x and πr · (T · x · y) = y
P · (T · x · y) · z = T · (x · z) · (y · z)
(note that we may define K ∈ el(α → β → α) to be B · (B · πr) ·T). In the
relational model we define e.g. B ∈ el((β → γ) → (α → β) → α → γ) =

{〈〈b, c〉, 〈e, 〈a, c〉〉〉 | a ∈ α∗, b ∈ β∗, c ∈ γ,e ∈ (α∗ × β)∗.e�α = a ∧ e�β = b}

BCK-algebras yield an interpretation of derivations in the affine λ-calculus (as
standard combinatory algebras do for the λ-calculus), and the extension with
products is straightforward. Thus to interpret basic SCI, we define [[n]] =
n� =
{i | i < n}, and assign meanings to the remaining constants as follows:

– [[casem,n]] = {〈iljir, j〉 | i < m ∧ j < n},
– [[while0]] = {〈0∗(n + 1), 0〉 | s ∈ {i < n | i �= 0}∗},
– [[new]] = {〈〈(0l)∗s, j〉, j〉 | s ∈ {(0i)l(ir)∗ | i < n}∗}

Concretely, this interpretation is equivalent to Reddy’s and McCusker’s (for
closed terms), and therefore fully abstract.

Theorem 1 (McCusker [10]). M � N if and only if [[M]] ⊆ [[N]].

Note that the semantics does not have the “finite definability” property: there
are compact elements which are not the denotation of any term. In particular,
we may interpret a non-deterministic choice between any two terms of the same
type as the union of their denotations.

908 J. Laird

3 Multitape Automata and SCI Terms

Our definition of deterministic multitape finite state automata is tailored for
establishing a correspondence with the relational model. However, it is straight-
forward to show that it yields the same class of languages as the original [16].

A deterministic n-tape automaton α = (C0,C1, . . . ,Cn,F, s0, δ) over an al-
phabet Σ = {0, . . . , k} consists of disjoint sets of states C0,C1, . . . ,Cn,F , an
initial state s0 and a (partial) transition function δ : (Σ ∪ {ε})× S ⇀ S, where
S = C0 ∪ . . . ∪ Cn ∪ F . C0 consists of states in which (only) a ε-transition may
be performed, Ci of states in which a symbol is read from tape i (for 0 < i ≤ n),
and F of final states. We say that α accepts a tuple of tapes if it consumes
all of them to reach a final state. Formally, for each final state f , we may say
that the set of pairs Af ⊆ (Σ∗)n × S of tuples and states accepted in state f is
the least set such that 〈〈ε, . . . , ε〉, f〉 ∈ Af , and if 〈〈t1, . . . , tn〉, s〉 ∈ Af , s′ ∈ Ci

and δ(m, s′) = s then if i = 0 then 〈〈t1, . . . , tn〉, s′〉 ∈ Af and if i > 0 then
〈〈t1, . . . , mti, . . . , tn〉, s′〉 ∈ Af .
We write L(α) for the set {x | ∃f ∈ F.〈x, s0〉 ∈ Af} of tuples accepted by α.

There is a natural connection between multitape FSA and SCI terms at first-
order types, based on the fact that the denotations of the latter are sets of tuples
of words over a finite alphabet.

Proposition 1. For any 2-tape deterministic FSA α over the alphabet {0, . . . ,
m − 1} there is a (closed) term Mα : m → m → 1 such that 〈s, t〉 ∈ L(α) ⇔
〈s, 〈t, 0〉〉 ∈ [[Mα]].

Proof. Every deterministic n-tape FSA is equivalent to one with no ε transitions,
so we assume C0 is empty. We number the states of α as 0, . . . , k − 1, with 0
being initial. We assume terms state : k → 3 such that [[state s]] = 0 if s ∈ F
and [[state s]] = i if s ∈ Ci, and tr : k → km such that [[πi (tr j)]] = δ(j, i). Mα

may then be defined as follows:

λx.λy.new λs.while0 (case 〈state !s, 〈1, s := case〈x, tr !s〉, s := case〈y, tr !s〉〉〉)

So we may show undecidability of inclusion of denotations in the fully abstract
model, and hence of observational approximation in SCI via the following result,
which may be proved via an encoding of Post’s correspondence problem.

Proposition 2. [7] Inclusion of deterministic 2-tape FSA is undecidable.

Corollary 1. Observational approximation in SCI is undecidable at first-order.

Since M � N if and only if M orN " N , this entails that observational equiva-
lence (w.r.t. may-testing) in SCI with erratic choice is undecidable at first order.
The denotations of first-order terms without loops are finite sets, and there-
fore approximation for such terms is decidable at first-order. However, we can
simulate any 2-tape FSA as a term of type (1n → 1) → (1n → 1) → 1 (as
in Proposition 1) without using the while0 constant, and so approximation is
undecidable at second order for the loop-free language.

Decidability in Syntactic Control of Interference 909

The situation with respect to equivalence of multitape automata (and hence,
as we shall show, observational equivalence of SCI) is different.

Theorem 2 (Harju and Karhumäki [4]). Equivalence of n-tape determinis-
tic finite state automata is decidable for all n.

To use this result to show decidability of SCI equivalence, we prove a converse
to Proposition 1: the denotation of every first-order term corresponds to the
language accepted by a multitape automaton.

Proposition 3. For each term x1 : T1, . . . , xn : Tn � M : m, where each Ti

is a product of ground types, there is a deterministic n-tape FSA with final
states F = f0, . . . , fm−1 which accepts 〈s1, . . . , sn〉 in final state fi if and only if
〈〈s1, . . . , sn〉, i〉 ∈ [[M]].

Proof. We may show using a reducibility argument that every first-order term
is reducible to a βπ-normal form (i.e. no subterms of the form (λx.P)Q or
πi 〈M,N〉). So we assume that M is βπ-normal, and define an n-tape determin-
istic automaton (CM

0 , . . . ,CM
n ,F, sM

0 , δM) with the additional property that if
Ti = m1& . . .&mk then for any state s ∈ CM

i , if δM (vi, s) and δM (uj , s) are
both defined then i = j.

– If M = i, then CM
j = ∅ for all j, sM

0 = fi and δM = ∅.
– If M = πj(xi), then CM

i = {s}, CM
j = ∅ for j �= i, sM

0 = s,
δ(lk, s0) = fl if k = j, and δ(m, s) is undefined otherwise.

– If M = case 〈L,N0, . . . ,Nk−1〉 then CM
i = CL

i + (CN0
i + . . . + C

Nk−1
i),

sM
0 = (sL0)l and

δM (m, sl) = (sNi
0)ir if δL(m, s) = fi, δM (m, sl) = (δL(m, s))l otherwise,

δM (m, sir) = fj if δNi(m, s) = fj , δM (m, sir) = (δNi(m, s))ir otherwise.
– If M = while0N then CM

i = CN
i for each i, sM

0 = sN0 ,
δM (m, s) = sN0 if δN (m, s) = f0 and δM (m, s) = δN (m, s), otherwise.

– IfM = new λxj : var[n].N , then CM
0 = (CN

0 ∪CN
i)×
n� and CM

k = CM
k ×
n�

for k �∈ {0, j}, sM
0 = 〈sL0 , 0〉 and

δM (ε, 〈s, i〉) = 〈s′, i〉 if s ∈ CN
j and δN (il, s) = s′,

δM (ε, 〈s, i〉) = 〈s′, j〉 if s ∈ CN
j and δ(0ir, s)) = s′,

δM (m, 〈s, i〉) = 〈δN (m, s), i〉, otherwise.

Corollary 2. Observational equivalence in basic SCI is decidable at first-order.

At higher types, denotations no longer consist of tuples of words and so we
cannot decide observational equivalence between terms at these types simply by
constructing multitape automata which recognize their denotations. However, we
will show that we can associate a first-order term (and hence a multitape automa-
ton) to each higher-order term in a way which reflects observational equivalence,
which is therefore decidable at all types.

Definition 1. A definable monomorphism between types S and T is a term
mono : S → T such that [[mono]] · e = [[mono]] · e′ implies e = e′.

910 J. Laird

By full abstraction, for any M,N : S we have M " N iff [[M]] = [[N]] iff [[mono]] ·
[[N]] = [[mono]] · [[N]] iff monoN " monoN . Thus we can prove that equivalence is
decidable for terms of type S by showing that there is a definable monomorphism
from S to some first-order type.

First, we observe that we may restrict attention to functional types — i.e.
types which do not contain any instances of the product construction. A definable
retraction between types S and T is a pair of terms in : S → T and out : T → S
such that [[λx.in (out x)]] = [[λx.x]]. Clearly, in is a monomorphism. We note
also that if there is a definable retraction from R to R′ and from S to S′ then
there are definable retractions from S → R to S′ → R′ and from S&R to S′&R′.

Proposition 4. Given functional types S, T there is a functional type prod(S, T)
(of order max{o(S), o(T), 1}) such that S&T is a definable retract of prod(S, T).

Proof. is by induction on o(S)+ o(T). For the base case, we have S = m, T = n
for some m,n. We define prod(S, T) = 2 → max{m,n}, in = λx.λy.case 〈y, x〉
and out = λx.〈x 0, x 1〉. For the inductive case, suppose T = U → V . Then
S&T � (U → S)&(U → V) ∼= U → (S&V) � U → prod(S, V) =df prod(S, T).

Corollary 3. For every type T there exists a functional type T of order at most
o(T) + 1 and a definable retraction from T to T .

We now define monomorphisms from higher-order to lower-order functional
types. They are based on the observation that we may uniquely represent a
sequence of tuples of sequences 〈s11, . . . , s1n〉 . . . 〈sk1, . . . , skn〉 as a tuple of se-
quences 〈s11@ . . .@sk1, . . . , s1n@ . . .@skn〉, where @ is a symbol not occurring
in any of the sij .

Lemma 1. For any types S, T , there is a definable monomorphism from (n →
S)→ T to n + 1 → S → T .

Proof. Assuming a term eq : n&n → 2 such that [[eq 〈n, n〉]] = {0} and [[eq 〈n, m〉]]
= ⊥ if n �= m, we define mono1 : ((n→ S)→ T)→ (n + 1) → S → T :

λf.λx.λy.f (λz.(while0 (case 〈x, 〈〈eq 〈i, z〉 | i < n〉, 1〉)); y)

The denotation of mono1 relates each element 〈〈j1, s1〉 . . . 〈jm, sm〉, t〉 to the
unique element 〈j1n . . .njmn, 〈s1 . . . sn, t〉〉. Clearly this is a 1-1 relation, and
therefore a monomorphism.

Lemma 2. For any type ((S → T) → U) → V there is a definable monomor-
phism into (S&1) → (T → U) → V .

Proof. We define mono2 : (((S → T)→ U)→ V) → (S&1) → (T → U)→ V =

λf.λx.λg.f λy.(g (π2(x); (y π1(x))))

Decidability in Syntactic Control of Interference 911

The denotation of mono2 relates each element

〈〈s11, t11〉 . . . 〈s1m1 , t1m1〉,u1〉 . . . 〈〈sn1, tn1〉 . . . 〈snmn
, tnmn

〉,un〉, v〉

to the unique element

〈0rsl
11 . . . 0

rsl
1m1 . . . 0

rsl
n1 . . . 0

rsl
nmn , 〈〈t11 . . . t1m1 , u1〉 . . . 〈tn1 . . . tnmn , un〉, v〉〉

Proposition 5. For any functional type R of order n + 2 there is a functional
type R̂ of order n + 1 and a definable monomorphism from R to R̂.

Proof. By induction on the size of R. For the induction step, if R is of order 2
then it is isomorphic to a type of the form (n → S) → T). By Lemma 1 there
is a definable isomorphism from R to n + 1 → S → T and hence — using the
induction hypothesis — to n + 1 → S̃ → T .

If o(R) > 2 then R is isomorphic to a type of the form ((S → T)→ U)→ V .
By Lemma 2 there is a definable monomorphism from R to S&1→ (T → U)→
V and hence — using the induction hypothesis — to S&1 → ̂(T → U) → V .

Theorem 3. Observational equivalence in finitary basic SCI is decidable.

Proof. We use Proposition 5 to show there is a definable monomorphism from
each type of SCI into a first-order type.

4 Observably Sequential SCI

We will now show that observational approximation is decidable in an “observ-
ably sequential” version of SCI containing a simple form of non-local control in
the form of backwards jumps to labelled program points.2We extend the syntax
of SCI with the constant label : (0 → 0) → 1, and the operational semantics
with the evaluation contexts labelE[] and label λk.E[] and the reduction:

E[label λk.E′
k[k]], E −→ E[0], E

(where we write Ek[] for an evaluation context which does not bind k, and
assume that all substitutions are capture-avoiding).

We may use label to distinguish SCI-equivalent terms such as x; y and y;x.
More generally, we can express Cartwright and Felleisen’s catch operators [2].
For each n, catchn : (T0 → . . .→ Tn−1 → m) → m + n returns i if its argument
is strict in its ith argument, or n + j if it is non-strict with value j. We define
catch0 = λx.x, and
catchn+1 = λf.new λx.(label λk.(x := ((catchn (f (abort k))) + 1); k); !x).

2 This breaks the equivalence between parallel and sequential composition.

912 J. Laird

We will now give a fully abstract games model of observably sequential SCI,
and show that denotations may be represented as regular languages. It is similar
to Abramsky and McCusker’s semantics of Idealized Algol [1], based on Hyland-
Ong dialogue games [6]. Since only one thread of computation relating to each
argument may be “open” at a time in SCI programs, we may omit explicit
justification pointers from our model. As in McCusker and Wall’s semantics of
SCI [12] (and the author’s semantics of linearly used continuations [8]) we add
an equivalence relation ∼ “interference” to the notion of HO-arena in order to
indicate which moves may not occur in the same thread. We allow the interpre-
tation of backwards jumps by abandoning the notion of questions and answers,
and hence the “bracketing condition”.

A SCI arena is a directed acyclic graph (MA,�A) — in the form of a set
of nodes or moves MA , and a set of directed edges (or enabling relation) �A⊆
MA × MA — with a labelling function λA : MA → {O,P}, partitioning the
moves between Player and Opponent, and an equivalence relation ∼⊆MA×MA

such that:

– Root nodes (the initial moves M I
A) are Opponent moves, and there is no

edge between two Opponent moves or two Player moves.
– If m � n and m′ � n then m ∼ m′.

For any sequence s of moves, we define a subsequence open(s) — the “stack of
open moves” — containing at most one move from each ∼ equivalence class.
open(ε) = ε,
open(sm) = tm, if tm′ , open(s) and m′ ∼ m,
open(sm) = open(s)m, otherwise.

By definition, the stack of open moves contains at most one enabler for each
move — which we may designate its justifier — and so we may unambiguously
define the view �open(s)� as follows:3

�ε� = ε and �m� = m
�smtn� = �s�mn if m � n.

The set LA of legal sequences of the arena A consists of finite alternating
sequences of moves of A containing at most one initial move (well-openedness),
in which every non-initial move is preceded by an enabling move, which occurs
in the view of the stack of open moves (visibility), and which satisfy the non-
interference condition. Essentially this requires that two potentially interfering
moves cannot be ”called” from non-interfering parts of the game.

Definition 2. A sequence t satisfies the non-interference condition if for any
sb, s′b′ , t and moves a, a′ ocurring (respectively) in �open(s)� and �open(s′)�
and having the same justifier: if b ∼ b′ and λ(a) = λ(b) then a ∼ a′.

We define a BCK-algebra with products in which the objects are arenas, with
product and function-space given by the following constructions:

3 We do not distinguish Player and Opponent views — the view of any sequence is
that of the participant about to move.

Decidability in Syntactic Control of Interference 913

– A&B = (MA + MB, [λA,λB],�A + �B , (∼A + ∼B) ∪ ((M I
A)l × (M I

B)r) ∪
((M I

B)l × (M I
A)r))

– A→ B = (MA +MB , [λA,λB], (�A + �B) ∪ ((M I
A)l × (M I

B)r),∼A + ∼B).

The elements of A are the deterministic strategies on A (non-empty and even-
branching subsets of LA). Application of σ : A → B to τ : A is defined σ · τ =
{s�B | s ∈ σ ∧ s�A ∈ τ∗}. The combinators B,C,T,P and πi are interpreted as
copycat strategies.

Proposition 6. The BCK-algebra of SCI-arenas and strategies is well-defined.

Proof. The key point is to show that application is well-defined — that the set
of legal sequences is compositional : i.e. if s ∈ LA→B and s �A ∈ (LA)∗ then
s�B ∈ LB . The proof that s�B ∈ LB satisfies the non-interference condition is
based on techniques used to prove compositionality of innocence in HO-games.

We obtain a model of SCI by setting the denotation of the ground type n
to be the arena with a single initial move enabling n different Player moves.
Thus 0 → 0 is isomorphic to 1, and we define the denotation of label to be this
isomorphism. The remaining constants of SCI are interpreted as in the game
semantics of Idealized Algol [1]. Proof of soundness and adequacy uses standard
techniques and follows those of similar results for games models.

Proposition 7. For any closed term M : 1, M ⇓ if and only if [[M]] �= ⊥.

We now observe that denotational equivalence and approximation are de-
cidable because the strategy denoting each term is a regular language. The key
point is that the set of legal sequences over each SCI type-object is itself regular.

Lemma 3. For any finitary SCI type T , the set L[[T]] is regular.

Proof. We define a FSA in which each state is a pair consisting of a non-repetitive
(and hence bounded) legal sequence t and a function from MA to sets of non-
repetitive sequences over MA. The initial state is the pair of the empty sequence
and the constantly ∅ function, and the transition function is defined so that
having read the legal sequence of moves r, the FSA is in the state 〈open(r), f〉,
where f(m) is the set of views of prefixes of r which contain an occurrence of m
which is in open(r): this information is sufficent to determine the legality of the
next move to be read.

Hence the copycat strategies interpreting the B,C,K,P and π combinators are
regular. Following [3], we show that the application of one regular strategy to
another is regular, and that the interpretations of case, while0, label and new
are regular.

Proposition 8. The denotation of each term of observably sequential SCI is
regular.

914 J. Laird

4.1 Full Abstraction

We will now prove that our interpretation of observably sequential SCI is (in-
equationally) fully abstract. This is the case despite the fact that there are fini-
tary strategies in the model which are not the denotations of terms (and may in
fact exhibit interfering behaviour). For example, the strategy on the arena (1→
1 → 1) → 2 — corresponding to the Idealized Algol term λf.new λx.((f (x :=
1)) x := 0); !x — which runs its argument once, and returns one if the last
argument tested by f was the leftmost one and 0 otherwise.

It is sufficient to establish full abstraction for functional types, since every
type is a definable retract of such a type (as in Proposition 4). We further simplify
the set of types for which we need to prove full abstraction to the zero types:
functional types generated from the atomic type 0.

Proposition 9. Every functional type is definably isomorphic to a zero type.

Proof. Define the type 0k for each k ≥ 0 by 00 = 0 and 0k+1 = 0 → 0k.
The arenas denoting 0k and k are clearly isomorphic; these isomorphisms are
definable as catchk : 0k → k and λx.λy.case 〈x, 〈y0, . . . , yk−1〉〉 : k → 0k.

We now show that sufficient “observations” are definable to prove full abstrac-
tion. For any sequence s, let |s| be the multiset of moves occurring in s.

Lemma 4. Let T be a functional type. For any sequence s ∈ L[[T]], there exists
a term M(s) : T such that s ∈ [[M(s)]] and if t ∈ [[M(s)]] then |t| ⊆ |s|.

Proof. By Corollary 9 we may assume T is a zero type. We define M(s) by
induction on the length of s. For the induction case, suppose s = m1m2r for
some r. First we suppose that the move m2 does not occur in r, and define M(s)
by induction on the arity of T .

– For the base case, suppose T = (S → 0) → 0. For each i, s � [[Si]] =
ti1t2 . . . tini

, where each tij is a well-opened legal sequence on [[Si]] which
is shorter than s. Thus we may define xi : var[n + 2] � Ni : Si = xi :=
xi + 1; case 〈!xi, 〈Ω,M(t1), . . . ,M(tn), Ω〉〉 for each i, and

M(s) = λf.new λx1 . . . new λxn.(f N1 . . . Nn)

– If T has arity greater than one, it is (definably) isomorphic to a type of the
form R → S → (U → 0) → 0, where m2 is the initial move in [[U → 0]],
so we assume that it has this form. We may show that if tb , s, where b is
the initial move in S, then there exists a unique i such that the initial move
in Ui occurs in �open(tb)�. By the non-interference condition, for any two
occurrences of b in s, this index i is the same. Hence we may define a legal
sequence ŝ on the arena [[R → (V → 0) → 0]] — where Vi = S → Ui, and
Vj = Ui if j �= i — by relabelling each move from S in s as the corresponding
move in Vi. We may then define

M(s) = λx.λy.λz.(M(ŝ) x) λa.z a1 . . . ai−1(ai y)ai+1 . . . an

Decidability in Syntactic Control of Interference 915

If m2 does occur in r — i.e. s = m1m2r1m2r2, where m2 does not occur in r1,
then the sequence m1m2r1n in 0→ T (where n is the move from 0) is no longer
than s, whilst m1m2r2 is shorter than s. Thus we may define

M(s) = λx.(label λk.(M(m1m2r1n) kx)); (M(m1m2r2) x)

Proposition 10. For any closed M,N : T , [[M]] ⊆ [[N]] iff M �� N .

Proof. From left to right (soundness) this is standard. For the converse, suppose
[[M]] �⊆ [[N]] and let smn be a minimal length sequence in [[M]]−[[N]]. By prefixing
an initial move q ∈M1 and postfixing its “answer” a, we obtain a legal sequence
qsmna in [[T → 1]]. By Lemma 4, there exists L : T → 1 such that qsmna ∈ [[L]]
(hence [[LM]] �= ⊥) and if t ∈ [[L]] then |t| ⊆ |qsmna|.

Suppose [[LN]] �= ⊥. Then there exists qta ∈ [[L]] such that t ∈ [[N]]. By
minimality of smn, s ∈ [[N]], and hence by determinacy of [[L]] and [[N]], qsm ,
qt, and so |qsm| ⊆ |qta| ⊆ |qsmna| by definition of [[L]]. But then t = smn,
contradicting the assumption that smn �∈ [[N]].

Hence [[LM]] �= ⊥ and [[LN]] = ⊥, and LM ⇓, LN �⇓ as required

Theorem 4. Observational equivalence and approximation are decidable in fini-
tary observably sequential SCI.

References

1. S. Abramsky and G. McCusker. Linearity, Sharing and State: a fully abstract
game semantics for Idealized Algol with active expressions. In P.W. O’Hearn and
R. Tennent, editors, Algol-like languages. Birkhauser, 1997.

2. R. Cartwright and M. Felleisen. Observable sequentiality and full abstraction. In
Proceedings of POPL ’92, 1992.

3. D. Ghica and G. McCusker. The regular language semantics of second-order Ide-
alised Algol. Theoretical Computer Science (To appear), 2003.

4. T. Harju and J. Karhumäki. The equivalence problem of multitape finite automata.
Theoretical Computer Science, 78:347–355, 1991.

5. J. R. Hindley. Basic Simple Type Theory. Cambridge University Press, 1997.
6. J. M. E. Hyland and C.-H. L. Ong. On full abstraction for PCF: I, II and III.

Information and Computation, 163:285–408, 2000.
7. E. Kinber. The inclusion problem for some classes of deterministic multitape

automata. Theoretical Computer Science, 26:62–73, 1983.
8. J. Laird. Game semantics and Linear CPS interpretation. Theoretical Computer

Science, 333:199–224, 2005.
9. R. Loader. Finitary PCF is undecidable. Annals of Pure and Applied Logic, 2000.

10. G. McCusker. A fully abstract relational model of Syntactic Control of Interference.
In Proceedings of Computer Science Logic ’02, number 2471 in LNCS. Springer,
2002.

11. G. McCusker. On the semantics of the bad-variable constructor in Algol-like lan-
guages. In Proceedings of MFPS XIX, ENTCS, 2003. To appear.

12. G. McCusker and M. Wall. Categorical and game semantics for SCIR. In the
proceedings of Games for Logics and Programming Languages, 2004.

916 J. Laird

13. A. Murawski. On program equivalence in languages with ground-type references.
In Proceedings of LICS ’03. IEEE Press, 2003.

14. A. Murawski and I. Walukiewicz. Third-order Idealized Algol with iteration is
decidable. In Proceedings of FoSSACS ’05, number 3411 in LNCS, pages 202–218.
Springer, 2005.

15. P. W. O’Hearn, A.J. Power, M. Takeyama and R.D. Tennent. Syntactic control of
interference revisited. Theoretical Computer Science, 228(1-2):211–252, 1999.

16. M. Rabin and D. Scott. Finite automata and their decision problems. IBM Journal
of Research and Development, 3:114–125, 1959.

17. U. S. Reddy. Global state considered unnecesary: Object-based semantics for
interference-free imperative programs. Lisp and Symbolic Computation, 9(1), 1996.

18. J. Reynolds. Syntactic Control of Interference. In Conf. Record 5th ACM Sympo-
sium on Principles of Programming Languages, pages 39–46, 1978.

19. J. Reynolds. The essence of Algol. In Algorithmic Languages, pages 345–372. North
Holland, 1981.

Idealized Algol with Ground Recursion,
and DPDA Equivalence�

A.S. Murawski1, C.-H.L. Ong1, and I. Walukiewicz2

1 Oxford University Computing Laboratory,
Parks Road, Oxford OX1 3QD, UK

2 CNRS, Université Bordeaux-1, 351, Cours de la Libération,
33 405, Talence, France

Abstract. We prove that observational equivalence of IA3 + Y0 (3rd-
order Idealized Algol with 0th-order recursion) is equivalent to the DPDA
Equivalence Problem, and hence decidable. This completes the classifi-
cation of decidable fragments of Idealized Algol. We also prove that ob-
servational approximation of IA1 + Y0 is undecidable by reducing the
DPDA Containment Problem to it.

1 Introduction

Observational equivalence is an extensional notion of program equivalence. Two
program phrases are observationally equivalent if one can be replaced by the
other in any program without causing any observable difference to the compu-
tational outcome. Reynolds’s Idealized Algol (IA) is an elegant and compact
programming language that combines imperative programming with high-order
features, mediated by a simple type theory. Observational equivalence in IA
is in general undecidable even when ground types are finite sets. This paper
is concerned with the question of decidability of observational equivalence for
appropriate fragments of IA.

We begin with a quick review of IA. Ground types of IA, which are ranged
over by β, are exp (expressions), com (commands) and var (assignable variables).
Types of IA, ranged over by θ, θ′ etc., are generated from ground types by the
function space constructor θ → θ′. The order of a type is defined by ord(β) = 0
and ord(θ → θ′) = max(ord(θ) + 1, ord(θ′)). Finitary Idealized Algol, IAf , is just
recursion-free Idealized Algol over finite ground types. We can extend IAf with
iteration by adding the rule

Γ �M : exp Γ � N : com
Γ � while M do N : com

and with general recursion by adding the rule
Γ, x : θ �M : θ

Γ � μxθ.M : θ
.

� Work supported by the UK EPSRC (GR/R88861/01), European Research Training
Network GAMES and St John’s College, Oxford.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 917–929, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

918 A.S. Murawski, C.-H.L. Ong, and I. Walukiewicz

We call a term an ith-order term provided its typing derivation uses exclusively
judgments of the shape Γ � M : θ where the types of the free identifiers in
Γ have order less than i and ord(θ) ≤ i. The collection of ith-order IAf (resp.
IAf +while) terms will be denoted by IAi (resp. IAi +while). We write IAi +Yj

to refer to ith-order IAf terms with recursion that can be typed using the recur-
sion rule in which ord(θ) ≤ j. We tabulate all known results on the complexity
of observational equivalence of β-normal terms in IA [1, 2, 3, 4]:

pure +while +Y0 +Y1

IA1 coNP Pspace ? = IA1 + Y0

IA2 Pspace Pspace ? undecidable
IA3 Exptime Exptime ? undecidable
IA4 undecidable undecidable undecidable undecidable

The same results as above also hold for observational approximation.
This paper addresses the cases marked with question marks. In IAi +Y0 only

programs of ground type can call themselves recursively. For example, while-
loops while bdo c can then be defined by

b : exp, c : com, z � μzcom . ifzero b skip (c; z).

We show that observational equivalence in IAi +Y0 is decidable for i = 1, 2, 3 by
giving a reduction to the DPDA Equivalence Problem (recently proved decidable
by Sénizergues [8]). This does not tell us much about the complexity, though.
At the moment it is only known that the complexity of DPDA Equivalence
is bounded by a primitive recursive function [5]. We also show that already
for i = 1 observational equivalence is at least as hard as DPDA Equivalence.
In consequence, no advance on the complexity of the former problem can be
made without an advance on the latter. Another result is that observational
approximation in IAi +Y0 is undecidable for i = 1, 2, 3, because the undecidable
DPDA Containment Problem [6] can be reduced to it.

Let us comment on the relationship of our results to a recent paper [4] showing
decidability of IA3 +while. In that paper a simpler language was considered but
it was translated to a weaker form of pushdown automata. This was essential
to get a precise complexity bound. In this paper we model a richer language
but, for reasons explained above, we do not concern ourselves with complexity,
hence our constructions are not designed to optimize the size of the resulting
automata. In [4] most constructions relied on parallel composition of automata.
This is not possible here as DPDAs are not closed under that operation.

2 Game Semantics: Complete Plays

We assume familiarity with the treatment of game semantics of IA as presented,
for example, in [7]. Recall that the multiplicative composition σ;m τ : A � C

Idealized Algol with Ground Recursion, and DPDA Equivalence 919

of two strategies σ : A � B and τ : B � C is defined by parallel composi-
tion with hiding by letting the strategies interact in the shared subgame B and
subsequently hiding the B-moves.

Let σ : A ⇒ B and τ : B ⇒ C. Recall that A ⇒B =!A � B and B ⇒ C =
!B � C. In order to compose the strategies, one first defines σ† :!A �!B by

σ† = { s ∈ L!A�!B | for all initial m, s � m ∈ σ },

where s � m stands for the subsequence of s (pointers included) whose moves are
hereditarily justified by m. Then σ; τ : A ⇒ C is taken to be σ†;m τ .

Given a set σ of positions on G we write L(σ) for the set of the underlying
sequences of moves from MG. For a given strategy σ, we write compσ for the set
of its non-empty plays in which the number of questions matches the number of
answers; such plays are called complete.

Remark 1. We will be interested in the † construction when B = �θ� and
ord(θ) ≤ 1. Then σ† can be characterized explicitly as follows.

– B = �β�: Then σ† = (compσ)∗ σ, i.e. σ† simply iterates σ.
– B = �β1 → β0�: Then the switching conditions in the game !A �!B imply

that a new copy of σ can be started each time σ is finished (as above)
and, additionally, after each question q1 from β1. We can thus capture K =
{ ε } ∪ comp (σ†) by the equation below.

K = {ε}∪
⋃
{q0Uq1Ka1U · · · q1Ka1Ua0K | q0Uq1a1U · · · q1a1Ua0 ∈ compσ},

where U ’s stand for (possibly empty and possibly different) segments of
moves from A.

The operational semantics of IA can be found in [7]. We write M⇓ if the closed
termM reduces to skip. Recall that two terms Γ �M1,M2 : θ are observationally
equivalent, written Γ � M1

∼= M2, if for any context C[−] such that C[M1] and
C[M2] are closed terms of type com, we have C[M1]⇓ iff C[M2]⇓. Similarly, M1

observationally approximates M2, written Γ � M1
�∼M2, just if for all contexts

satisfying the properties above, C[M1]⇓ implies C[M2]⇓.

Theorem 1 ([7]). Γ � M1
�∼M2 iff comp �Γ �M1� ⊆ comp �Γ �M2�. Conse-

quently, Γ �M1
∼= M2 iff comp �Γ �M1� = comp �Γ �M2�.

3 Simple Terms and Pointer-Free Representation

Suppose θ = θ1 → · · · → θn → β. Then we write tail(θ) = β. Given Γ � M : θ,
depending on whether tail(β) is com, exp or var respectively, we define the sets
of sequences of moves �Γ �M : θ� by the following decompositions:

L(comp �Γ �M : θ�) = run · �Γ �M� · done

L(comp �Γ �M : θ�) = q ·
max∑
j=0

(�Γ �M�j · j)

920 A.S. Murawski, C.-H.L. Ong, and I. Walukiewicz

L(comp �Γ �M : θ�) =
max∑
j=0

write(j) · �Γ �M�w
j · ok + read ·

max∑
j=0

(�Γ �M�r
j · j).

It will turn out convenient to define automata accepting �· · ·� instead of
L(comp �· · ·�), because then it will not be necessary to interpret hiding in many
cases (an operation under which DCFLs are not closed in general). Since �· · ·�
are sets of sequences of moves, they do not always represent comp �· · ·� faithfully
because they ignore pointers. Nevertheless, we are going to identify a sufficiently
rich class of terms for which comp �· · ·� can be recovered from �· · ·�.

First, we note that to establish decidability it suffices to consider β-normal
terms only. This does not solve the pointer problem though. To address it we
replace the application rule with its multiplicative version (left) and contraction
(right):

Γ �M : θ → θ′ Δ � N : θ

Γ,Δ �MN : θ′
Γ, x1 : θ, x2 : θ �M : θ′

Γ, x : θ �M [x/x1, x/x2] : θ′
.

All β-normal terms in IA3+Y0 are typable if we allow the above rules for ord(θ) ≤
2. We will call a β-normal IA3 + Y0 term simple if it can be typed by using the
contraction rule only for θ such that ord(θ) < 2. For instance, λf.f(λx.f(λy.x))
is not simple. Note that pointer reconstruction is uniquely defined for all moves
except third-order questions (pointers for answers can be reconstructed uniquely
thanks to the bracketing condition; first-order moves must point to the unique
initial move; finally, because of Visibility, second-order questions must point to
the necessarily unique first-order question in the appropriate O-view). As made
precise in the lemma below, for simple terms, we can still recover comp �· · ·� from
�· · ·�.

Lemma 1. Suppose Γ � M : θ is simple. If sq3 ∈ �Γ � M : θ�, and q3 is a
third-order question then q3’s justifier in sq3 is the last unanswered enabler of
q3 in s.

Proof. By induction on the structure of simple terms. The crucial point is that
if σ : A � B satisfies the Lemma for B = �θ� such that ord(θ) ≤ 1, so does σ†.
This follows from the description in Remark 1.

On the other hand, simple terms are good representatives of β-normal terms.
Any β-normal term of IA3 + Y0 can be typed by extending a typing derivation
of a simple term with a number of applications of the contraction rule for θ of
order 2 followed by a number of applications of the λ-abstraction rule.

4 G-Automata

We are going to use a variant of deterministic pushdown automata. Their states
will be divided into O-states and P-states and the stack will be modified and
inspected only during ε-moves.

Idealized Algol with Ground Recursion, and DPDA Equivalence 921

qO

m1
O

����
��

��

��

mk
O

���
��

��
� qP

mP

��

or qP

ε

��

or qP

ε/γ

��

or qP

��

ε,γ1

����
��

�� ε,γk

���
��

��
�

q1
P · · · qk

P
qO q′P q′P q1

P · · · qk
P

Fig. 1. Transitions in G-automata

– In O-states the automaton will only be able to read an O-move from the
input without inspecting or changing the stack; after the transition the state
will always change to a P-state.

– In P-states the automaton will either: read a single P-move without modi-
fying the stack and move to an O-state, or perform an ε-move and go to a
P-state possibly modifying the stack.

The constraints are summarized in Figure 1 and captured formally below.

Definition 1. Let G be a game. A G-automaton A is a tuple 〈Q, Ω, i,F, δ 〉
such that

– Q = QO + QP is the set of states partitioned into QO and QP , called the
sets of O-states and P-states respectively;

– Ω is the stack alphabet;
– i ∈ QP is the initial state, i does not have any incoming transitions;
– F ⊆ QP is the set of final states, final states do not have any outgoing

transitions;
– δ : [QO ⇀ (MO

G ⇀ QP)]+[QP ⇀
(
(MP

G×QO)+QP+(Ω×QP)+(Ω ⇀ QP)
)
]

is the transition function.

The interpretation of a transition δ(qO) ∈MO
G → QP is that the automaton

reads a letter a ∈MO
G from the input and changes the state to δ(qO)(a). Similarly

for δ(qP) = (b, qO) ∈MP
G ×QO, the automaton expects to see b as the input and

then changes its state to qO. On a transition δ(qP) = q′P the automaton changes
its state but does not consume the input or change the stack. On a transition
δ(qP) = (γ, q′P) the automaton changes the state and pushes γ on the stack. On
a transition δ(qP) ∈ Ω ⇀ QP the automaton makes a pop move and changes
its state depending on the letter that was popped. We will use arrow notation
for transitions as in Figure 1. Note that slash and comma denote push and pop
operations, respectively.

We write L(A) for the language that A accepts by final state and the empty
stack. It is easy to see that G-automata are DPDAs. They have a particularity
that they look at the stack only when doing a pop move. We make this restriction
to simplify the definitions that follow. It is not difficult to see that for every
deterministic pushdown automaton there is an equivalent one with this property.

By a G-automaton configuration, we mean a pair qw, where q is a state and
w ∈ Ω∗ is the content of the stack.

922 A.S. Murawski, C.-H.L. Ong, and I. Walukiewicz

Definition 2. We say that a G-automaton is productive if every non-initial
reachable configuration is productive, i.e. the configuration occurs in some ac-
cepting run of the automaton.

Lemma 2. For every G-automaton there is an equivalent productive automaton.

Proof. Let A = 〈Q, Ω, i,F, δ 〉 be a G-automaton. Consider the function β :
Ω∗ → P(Q) which for all contents of the stack w ∈ Ω∗ returns the set of
states q such that the configuration qw is productive. We will first modify A
so that it keeps the current value of β in its state. Note that it is easy to
update β after push-transitions, because β(wa) depends only on β(w) and a:
q ∈ β(wa) iff there exists q′ such that q′ ∈ β(w) and when A starts with a
on the stack in state q it can end up in q′ with empty stack (states q′ with
this property can be precomputed at the very beginning of the construction).
In order to handle pop-transitions, we simply force the automaton to push the
old value of β in addition to the pushed stack symbol. Finally, it now suffices
to suppress all transitions that are not consistent with β to obtain a productive
automaton.

Remark 2. (i) The productiveness of the automaton will play an important role
in our constructions for several reasons. One is that when A is productive
we can be sure that when running as a subautomaton of some automaton
construction (as in the proof of Theorem 2), it will only use the symbols it
pushed (it cannot try to make a pop operation on the empty stack as that
would be an unproductive configuration). Another consequence of produc-
tiveness is that the automaton cannot enter an accepting state while the
stack is not empty. Indeed, since there are no outgoing transitions from an
accepting state, the resulting configuration would not be productive. Fur-
ther, as the automaton stack is necessarily empty whenever it reaches a final
state, we also know that when it finishes the stack will be exactly as before
it has started.

(ii) From an O-state there are in principle several input letters from MO
G that

can make the automaton advance. However, because of productiveness, in
general, not every playable O-move can label an outgoing transition from
the O-state. From a P-state there is only one input letter from MP

G that
the automaton is prepared to read. We have this asymmetry because G-
automata are designed to accept strategies. Thus, an automaton works in
cycles: it reads a letter from MP

G , then a letter from MO
G and then does some

internal manipulations on the stack.

Definition 3. We say that an automaton is careful if whenever it reaches a
configuration qw after reading the sequence of moves s then the sequence of open
second-order questions in s appears in the stack w. More formally, there is a
function πA : Ω → MG ∪ {ε} such that π∗A(w) is the sequence of open second-
order questions in s.

Idealized Algol with Ground Recursion, and DPDA Equivalence 923

The final definition of this section makes it precise what kind of automata
we want to construct. Below, by A(F ′) we will denote the automaton A with F ′

as the set of accepting states.

Definition 4. We say that a tuple of G-automata 〈A1, · · · ,An 〉, where each
Aj = 〈Qj , Ωj , ij ,F j , δj 〉, is fully productive for Γ � M : θ just if each Aj is
productive and careful; further

– suppose tail(θ) = com: we have n = 1 and L(A1) = �Γ �M : θ�
– suppose tail(θ) = exp: we have n = 1, F 1 = ⊕max

j=0 Fj and L(A1(Fj)) = �Γ �
M : θ�j for any 0 ≤ j ≤ max;

– in case tail(θ) = var: we have n = max +2, F 1 = ⊕max
j=0 Fj and L(A1(Fj)) =

�Γ � M : θ�r
j for any 0 ≤ j ≤ max; for each 0 ≤ k ≤ max, we have

L(Ak+2) = �Γ �M : θ�w
k .

5 Modelling Simple Terms

Here we focus on simple terms. The extension to other β-normal terms is dis-
cussed in Section 6.

Theorem 2. For any simple IA3 + Y0 term Γ �M : θ there exists a fully pro-
ductive tuple of �Γ � θ�-automata for Γ �M : θ.

Proof. We use structural induction. Whenever our constructions fail to preserve
productiveness, we simply appeal to Lemma 2 to obtain an equivalent productive
automaton.

Thanks to the equalities below and the fact that productive G-automata
compose well (see Remark 2 (i))

�Γ � λx.M� =�Γ, x �M�

�Γ �!M�j =�Γ �M�r
j

�Γ �M ;N� =�Γ �M� · �Γ � N�

�Γ �M :=N� =
∑max

j=0 (�Γ � N�j · �Γ �M�w
j)

�Γ � if M then N1 else N2� =�Γ �M�0 · �Γ � N2�+
(
∑max

j=1 �Γ �M�j) · �Γ � N1�

the corresponding cases are easy. We can simply appeal to the inductive hypoth-
esis and construct the new automata by connecting suitable final states with
suitable initial states with ε-transitions. Note that this does not violate deter-
minism as final states do not have outgoing transitions. Equivalently, one could
“glue” final states with initial ones suitably. If one performs the constructions
for reachable final states only, productiveness will be preserved. The remaining
cases are treated as follows:

The case of Γ � new X in M : β. Suppose β = com and 〈A 〉 is fully produc-
tive for Γ,X : var �M : β. Let us construct max + 1 copies of A denoted by
A0, · · · ,Amax . We will use superscripts to refer to their states. The unique au-
tomaton B in the fully productive tuple for Γ � new X in M will consist of all

924 A.S. Murawski, C.-H.L. Ong, and I. Walukiewicz

these copies, the idea being that the index of the copy corresponds to the interim
value stored in the variable X. The new initial state will be i0, i.e. the initial
state of A0. The set of final states will be H =

⋃max
h=0 F

h, i.e. the set of final
states from all the copies Ah of A. We make the following changes to the copies
of A. Because A is productive, we can assume that each A-transition using the
P-moves readX or write(k)X (0 ≤ k ≤ max) originating from the distinguished
copy of var is followed by transitions on i1X , · · · , idX and okX respectively, where
{ i1, · · · , id } ⊆ { 0, · · · ,max }. To construct B we redirect transitions in the var-
ious copies of A as shown below

ph

readX��

ph

ε

��

oh
i1X

����
�� id

X

���
��

�
!→

phi1 · · · phid phh

ph

write(k)X��

ph

ε

��

oh

okX��

!→

ph0 pk
0

where 0 ≤ h ≤ max . These transformations redirect only the transition from
ph, while the transitions from oh remain as they were. In the first case the
transformation is performed only if h = ic for some 1 ≤ c ≤ d. Otherwise, the
transition from ph is just erased. Note that in the second case the new transition
connects Ah to Ak. After all the transitions on P-moves are dealt with, we
delete the transitions from oh. It is clear that the B is careful if A is. Using
Lemma 2 we can make it productive. If β = exp the same construction can be
performed to give us a fully productive tuple for Γ � new X in M . To define
the required partition of states H = ⊕max

j=0 Hj we simply take Hj =
⋃max

h=0 F
h
j ,

where F = ⊕max
j=0 Fj is the partition given by the inductive hypothesis. The case

of β = var combines the previous two cases.

The case of Γ � μxβ .M : β. Suppose β = com and 〈A 〉 is a fully productive
tuple for Γ, x : β �M : β, where A = 〈Q, Ω, i,F, δ 〉. The unique automaton B
in the fully productive tuple for Γ � μx.M will be constructed from two copies
A0,A1 of A. Intuitively, A1 will be used to process recursive calls from M ,
whereas A0 will correspond to the base copy of M . Accordingly, the initial state
will be i0 and the final states will be those from F 0. The stack alphabet of B
will, in addition to the stack alphabet of A, contain two copies of the set of
O-states of A. By productiveness of A, we can assume that each transition on
runx is followed by a transition on donex. In order to define B, for each h = 0, 1
and for each block of the shape ph

runx−−−→ oh
donex−−−−→ phdone we erase the transition

from ph and add the transitions: ph
ε/oh

−−−→ i1 and f1 ε,oh

−−→ phdone for any f ∈ F .
The case of β = exp is similar but, additionally, we have to pass on the result of
the recursive call. The notion of a productive tuple will make that easy. Suppose
F = ⊕max

j=0 Fj . Then we first create two copies A0,A1 of A and for h = 0, 1 and
for each block

Idealized Algol with Ground Recursion, and DPDA Equivalence 925

ph

qx��
oh

i1x
����

�� id
x

���
��

�

��
phi1 · · · phid

we erase the transition from ph and add the transitions: ph
ε/oh

−−−→ i1 and f1
ic

ε,oh

−−→
phic for any 1 ≤ c ≤ d and fic ∈ Fic . The initial state of the new automaton is i0,
the final states are those in F 0 = ⊕max

j=0 F
0
j . The remaining case of β = var is more

tedious but completely analogous to the previous two. Given a fully productive
tuple 〈A1, · · · ,Amax+2 〉 for Γ, x � M , blocks write(j)xokx are replaced with
calls to a copy of Aj+2 as for com, while blocks readxjx are replaced by calls to
a copy of A1. It is easy to see that the obtained automaton is careful. After the
above constructions we can apply Lemma 2 to make the resulting automaton
productive.

The case of fM1 · · ·Mk. For demonstration we assume that k = 1,M1 = M and
fM : com and f does not occur in M , i.e. f : θ → com, Γ � fM : com. Let us
write rf , df and r, d for the �com�-moves on the left and right respectively. Ob-
serve that because fM is interpreted by interaction of the identity strategy (cor-
responding to f) with (�Γ �M�)† we have comp �f : θ → com, Γ � fM : com� =
r rf ({ ε } ∪ L) df d, where L = φ(comp �Γ �M : θ�†) and φ is the (injective)
renaming map which acts like identity on moves from �Γ � and maps �θ�-moves
to their copies in �θ → com�. Below we examine two representative examples
in detail and give the precise shape of φ. We use subscripts to refer to (moves
from) various copies of com.

– Suppose Γ � M : com0 and f : comf,1 → comf , Γ � fM : com. Then L =
comp �Γ �M�†[r0 !→ rf,1, d0 !→ df,1].

– Suppose Γ � M : com1 → com0 and f : (comf,2 → comf,1) → comf , Γ �
fM : com. Then L = comp �Γ �M�†[r0 !→ rf,1, d0 !→ df,1, r1 !→ rf,2, d1 !→
df,2].

Consequently, the main difficulty is the construction of an automaton accepting
comp (σ†) ∪ {ε}, where σ = �Γ �M : θ� and ord(θ) ≤ 1. What is constructed in
the following is not a �Γ � θ�-automaton (the initial state, which is an O-state,
will coincide with the final one and it will have both incoming and outgoing
transitions), but the crucial fact is that it becomes one when the transitions on
rf and df (which will become the new initial and final moves respectively) are
added. We consider the case of θ = com1 → com0 for illustration.

Suppose 〈A 〉 is fully productive for Γ �M : θ, A = 〈Q, Ω, i,F, δ 〉 and
ord(θ) ≤ 1. Recall from Remark 1 that in this case † iterates as well as stacks
copies of the original strategy and a new copy can start either if the previous
one finished or after r1. To model that, we create two copies A0,A1 of A with
the aim of delegating the copies started after r1 to A1. The outermost iterated
copies will be processed by A0.

926 A.S. Murawski, C.-H.L. Ong, and I. Walukiewicz

First we define a few new states: i0new (which will be the initial and final state
of the automaton) and (◦, q), (•, q), where q ∈ Q0 +Q1 + { i0new }. We make the
following additions to A0,A1:

– i0new
r0−→ (•, i0new)

ε/(i0new,r0)−−−−−−−→ i0 and f0 ε,(i0new,r0)−−−−−−−→ (◦, i0new) d0−→ i0new for any
f ∈ F .

– Observe that r1 is always followed by d1 in σ. By productiveness of A, we can
assume that each transition ph

r1−→ oh (h = 0, 1) is followed by oh
d1−→ ph0 .

Then we add oh
r0−→ (•, oh)

ε/(oh,r0)−−−−−−→ i1. This makes it possible for the
automaton to start processing a new copy of σ, the return state is saved on

the stack. To process call returns, we add f1 ε,(oh,r0)−−−−−→ (◦, oh) d0−→ oh for any
f ∈ F .

Note that in addition to return addresses in the form of O-states we have also
arranged for the questions r0 to be pushed on the stack. They will remain there
as long as they are not answered in the corresponding position. These questions
are redundant for accepting comp (σ†) ∪ {ε}, but are necessary for the resulting
automaton to be careful. Since r0 will be substituted by rf,1, the questions r0

are exactly the second-order questions contributed by f . The case of fM1 · · ·Mk

is analogous, except that we need to apply † to
∑k

i=1�Γ �Mi�.

The contraction rule. The contraction rule for free identifiers of type θ, where
ord(θ) = 0, 1, is interpreted simply by identifying moves from the two copies of
�θ�. In general this might lead to nondeterminism, but thanks to the structure
of our automata this can never happen in our case. There is no problem with
P-moves as from each P-state the automaton can read at most one letter. Sup-
pose that a nondeterminism arises from some O-state reachable from the initial
configuration. This means that there exists a position s such that the automaton
can read both s o1 and s o2, where o1 and o2 are the O-moves from two different
copies of θ. However, this contradicts that fact that at most one of s o1 and s o2

can satisfy Visibility (because only one first-order question is O-visible in s).
Consequently, contraction can be interpreted without loss of determinacy.

6 Representing Pointers

We are going to introduce a representation of pointers for simple terms by fol-
lowing Lemma 1. Consider a position sq3, where q3 is a third-order question.
We define π(s, q3) = k − j + 2 where qj

2 is the last enabler of q3 in the sequence
q1
2 , · · · , qk

2 of all second-order unanswered questions in s (written in the order
they appear in s).

Definition 5. Suppose σ = �Γ � M : θ�, where Γ � M : θ is an IA3 + Y0

term. The language P(σ) over the alphabet M�Γ�θ� + { check } is defined by
P(σ) = { s checkπ(s,q3) | sq3s

′ ∈ compσ for some s′ }.

Idealized Algol with Ground Recursion, and DPDA Equivalence 927

Lemma 3. For any simple term Γ � M : θ there exists a DPDA accepting
L(compσ) ∪ P(σ), where σ = �Γ �M : θ�.

Proof. By Theorem 2 there is a fully productive tuple for Γ �M : θ. By adding
transitions on the missing initial and final moves, we can construct an automaton
A accepting L(compσ). Though A is not, strictly speaking, a G-automaton,
it is nonetheless a DPDA that is productive and careful. (The definitions of
productive and careful do carry over in this case.) Next, we will construct a
DPDA accepting L(compσ) ∪ P(σ). Suppose that the automaton A reads the
sequence sq3 where q3 is a third-order question. Note that q3 is always a P-move,
so it is uniquely determined by s and σ. As A is productive, we know that sq3

can be extended to a complete position. It remains to take care of check letters.
As A is careful, all second-order questions that are open in sq3 will be stored on
the stack. Hence, in order to accept the right number of check ’s after reading
s, the automaton can move to a fresh state (reading the letter check) and enter
a new mode in which it will repeatedly pop the stack reading check whenever
the topmost stack symbol contains a second-order question and ε otherwise. It
accepts exactly after it encounters the first enabler of q3.

Now that we can represent the semantics of simple terms with pointers, the
semantics of other β-normal terms can be obtained by renaming, because in
order to type such terms we only need to perform contraction at order 2 and
λ-abstraction. The former is done by relabelling (in the same manner as at order
0 or 1; the previous argument that determinism is preserved remains valid), the
latter amounts to identity in the games setting. Consequently, we get:

Theorem 3. For any IA3 +Y0 term Γ �M : θ in β-normal form there exists a
DPDA accepting L(compσ)∪P(σ), where σ = �Γ �M : θ�. Hence, the theorem
also holds for any IA3 + Y0 term.

By Lemma 1, L(compσ)∪P(σ) is a faithful representation of compσ. Thus, by
Theorem 3 and the decidability of DPDA equivalence [8], we get

Theorem 4. Observational equivalence is decidable for terms in IA3 + Y0.

7 Hardness

A DPDA [6] is a tuple B = 〈Q,Σ, Γ, δ, q0, Z0 〉, where δ : Q× (Σ ∪ { ε })× Γ ⇀
Q × Γ ∗. Additionally, whenever δ(q, a,X) is defined for some a ∈ Σ, δ(q, ε, X)
must be undefined. We consider acceptance by empty stack (initially the stack
contains Z0) and write N(B) for the language accepted by B. For simplicity, we
further assume that B can either pop the stack or push one symbol onto it, i.e.
if δ(q, a,X) = (q′, α) then α = ε or α = α0α1 (α0, α1 ∈ Γ) and α0 = X. Any
DPDA can be easily converted into this form.

We identify values of type exp with Σ. Consider the game G = �exp�⇒ �com�

so that we have MG = { q } ∪ Σ ∪ { r, d }. Given L ⊆ Σ∗ define L̂ ⊆ M∗
G by

L̂ = { rqx1 · · · qxnd | x1 · · ·xn ∈ L }. Note that L̂1 = L̂2 iff L1 = L2.

928 A.S. Murawski, C.-H.L. Ong, and I. Walukiewicz

Lemma 4. For any DPDA B there exists a term x : exp �MB : com such that
L(comp �x : exp �MB : com�) = N̂(B).

Proof. Push transitions are simulated by recursive calls, pop moves by call re-
turns. Before each call, the symbol to be pushed is stored in the variable TOP
which is used to initialize the local copy of X after the call. Take MB to be

x : exp � newQ := q0, TOP :=Z0, CH in
μzcom . newPOP := 0, X := !TOP in

while (not !POP) do
(if δ(!Q, ε, !X) = (q′, α) then

(Q := q′;
if α = ε then POP := 1 else ((TOP :=α1); z))

else
(CH := x;
if δ(!Q, !CH , !X) = (q′, α) then
(Q := q′;
if α = ε then POP := 1 else ((TOP :=α1); z))

else Ωcom)) : com

Proposition 1. For any DPDAs B1,B2 we have N(B1) ⊆ N(B2) iff MB1
�∼MB2 .

Observe that the term used in Lemma 4 is from IA1+Y0. Since the Containment
Problem for DPDAs is undecidable [6] we have:

Corollary 1. Observational approximation is undecidable for IA1 + Y0 terms;
observational equivalence is at least as hard as DPDA Equivalence.

Our results complete the classification of decidable and undecidable fragments
of IA. The exact complexity of observational equivalence for β-normal terms
is known in most cases, as shown in the table in Section 1. The complexity of
IAi + Y0 depends on the complexity of DPDA Equivalence, which is not known
at present. Our construction, when suitably optimized, yields DPDAs that are
doubly exponentially larger than the given term in β-normal form. It is also not
yet understood how the presence of β-redexes affects the complexity.

References

1. Ong, C.-H. L.: Observational equivalence of 3rd-order Idealized Algol is decidable.
In: Proceedings of LICS (2002) 245–256

2. Murawski, A. S.: On program equivalence in languages with ground-type references.
In: Proceedings of LICS (2003) 108–117

3. Murawski, A. S.: Games for complexity of second-order call-by-name programs.
Theoretical Computer Science, to appear.

4. Murawski, A. S., Walukiewicz, I.: Third-order Idealized Algol with iteration is
decidable. In: Proceedings of FOSSACS. LNCS 3441 (2005) 202–218

Idealized Algol with Ground Recursion, and DPDA Equivalence 929

5. Stirling, C.: Deciding DPDA equivalence is primitive recursive. In: Proceedings of
ICALP. LNCS 2380 (2002) 821–832

6. Hopcroft, J. E., Ullman, J. D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley (1979)

7. Abramsky, S., McCusker, G.: Linearity, sharing and state: a fully abstract game
semantics for Idealized Algol with active expressions. In O’Hearn, P.W., Tennent,
R.D., eds.: Algol-like languages, Birkhaüser (1997) 297–329

8. Sénizergues, G.: L(A)=L(B)? decidability results from complete formal systems.
Theoretical Computer Science 251(1-2) (2001) 1–166

From Primal-Dual to Cost Shares and Back:
A Stronger LP Relaxation for the Steiner

Forest Problem

Jochen Könemann1, Stefano Leonardi2, Guido Schäfer2,
and Stefan van Zwam3

1 Department of Combinatorics and Optimization,
University of Waterloo, Canada

jochen@uwaterloo.ca
2 Dipartimento di Informatica e Sistemistica,

Università di Roma “La Sapienza”, Italy
{leon, schaefer}@dis.uniroma1.it

3 Department of Mathematics and Computer Science,
Eindhoven University of Technology, The Netherlands

s.h.m.v.zwam@student.tue.nl

Abstract. We consider a game-theoretical variant of the Steiner forest
problem, in which each of k users i strives to connect his terminal pair
(si, ti) of vertices in an undirected, edge-weighted graph G. In [1] a nat-
ural primal-dual algorithm was shown which achieved a 2-approximate
budget balanced cross-monotonic cost sharing method for this game.

We derive a new linear programming relaxation from the techniques
of [1] which allows for a simpler proof of the budget balancedness of
the algorithm from [1]. Furthermore we show that this new relaxation
is strictly stronger than the well-known undirected cut relaxation for the
Steiner forest problem.

We conclude the paper with a negative result, arguing that no cross-
monotonic cost sharing method can achieve a budget balance factor of
less than 2 for the Steiner tree and Steiner forest games. This shows that
the results of [1, 2] are essentially tight.

1 Introduction

In the Steiner forest problem we are given an undirected graph G = (V,E), with
vertex set V and edge set E, a non-negative cost function c : E → IR+ on the
edges of G, and a set of k > 0 terminal pairs R = {(s1, t1), . . . , (sk, tk)} ⊆ V ×V.
A feasible solution for a Steiner forest instance is a forest F ⊆ E such that
vertices sj and tj are in the same tree of F for all 1 ≤ j ≤ k. The objective
is to find a feasible solution F of smallest total cost c(F) :=

∑
e∈F c(e). The

Steiner tree problem is a special case of the Steiner forest problem that consists
of connecting a set of terminals R ⊆ V to a root vertex r ∈ V in the cheapest
possible way.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 930–942, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

From Primal-Dual to Cost Shares and Back: A Stronger LP Relaxation 931

Computing minimum-cost Steiner trees and forests is NP-hard [3] and APX-
complete [4, 5] and therefore, neither of the two problems admits a polynomial-
time approximation scheme unless P=NP. The best known algorithm for the
Steiner forest problem, due to Agrawal, Klein and Ravi [6] and generalized by
Goemans and Williamson [7], uses the primal-dual schema. The algorithms in
[6, 7] achieve an approximation ratio of (2− 1/k).

In this paper we will consider the following natural game-theoretic version of
the Steiner forest problem: each terminal pair (sj , tj) ∈ R is associated with a
player j that wants to establish a connection between sj and tj . Player j derives
a (privately known) utility value uj from an existing connection between its
terminals.

A cost sharing method ξ is an algorithm that, given a subset Q ⊆ R of
the players, computes a Steiner forest of cost c(Q) satisfying the connectivity
requirements of all players in Q. Moreover, for each player j ∈ Q it determines
a non-negative cost share ξQ(j). We say that a cost sharing method is α-budget
balanced if

1
α
· c(Q) ≤

∑
j∈Q

ξQ(j) ≤ optQ.

The first inequality says that at least a 1/α fraction of the total cost of servicing
the users in Q is recovered by the sum of the cost shares of the users in Q. The
second inequality establishes fairness in that the sum of all cost shares is not
allowed to exceed the optimum cost of servicing the users in Q, denoted optQ.
This second inequality is often referred to as competitiveness. In this paper we
will be interested in cost sharing methods ξ that are computable in polynomial
time. Therefore, the cost c(Q) of servicing a set of players Q will necessarily
exceed the cost optQ of an optimum solution for some instances. This also means
that there is no hope to achieve budget balance, i.e., α = 1.

An important class of cost sharing methods are the cross-monotonic methods.
ξ is cross-monotonic if, for any two sets Q and S such that Q ⊆ S, and any
player j ∈ Q we have ξS(j) ≤ ξQ(j). In other words, the cost share of any player
under the given cost sharing method does not increase if the player set increases.
The importance of cross-monotonic cost sharing methods stems from a result
by Moulin and Shenker [8]: any budget balanced cross-monotonic cost sharing
method can be turned into a budget balanced group-strategyproof mechanism.

Despite the recent interest in computational game theory, examples for com-
binatorial optimization problems that possess a cross-monotonic cost sharing
method are still few: Moulin and Shenker [8] gave a cross-monotonic cost shar-
ing method for problems whose optimal cost function is a sub-modular function
of the set Q. However, this condition does not hold for many important net-
work design problems such as Steiner trees and facility location. Jain and Vazi-
rani [2] showed a 2-budget balanced and cross-monotonic cost sharing method
for Steiner trees. Pál and Tardos [9] later obtained a 3-budget balanced and
group-strategyproof cost sharing method for facility location and also provided
a 15-budget balanced solution to the single sink rent-or-buy problem.

932 J. Könemann et al.

In a recent paper, Immorlica, Mahdian and Mirrokni [10] show that com-
binatorial problems that are well-behaved with respect to their approximabil-
ity may prove hard when looking for approximately budget balanced cross-
monotonic cost sharing methods. Their lower bounds are achieved by using
cross-monotonicity only. The authors left open the issue of finding a lower bound
on the budget balance factor for the Steiner tree problem.

Our contribution. Both Jain and Vazirani [2] and Pál and Tardos [9] show that the
computed cost shares form a feasible solution for the dual of a linear programming
relaxation for the problem. Proving competitiveness of the methods can therefore
be reduced to an application of weak duality. The budget balance factor corre-
sponds to the performance guarantee of the underlying primal-dual algorithm.

In a recent paper [1], Könemann, Leonardi and Schäfer depart from this line.
The authors present a cost sharing method KLS which is an adaptation of the
primal-dual algorithm AKR for Steiner forests due to Agrawal, Klein and Ravi [6].
The cost shares computed by KLS are proven to be 2-budget balanced. They do
not, however, correspond to a feasible dual solution for any of the known Steiner
forest duals.

The obvious question left open by [1], that we answer affirmatively in this
paper, is this: Is there an alternate Steiner forest LP formulation such that the
cost shares computed by KLS correspond to a feasible dual solution? If so, how
does this new LP relaxation relate to the standard undirected-cut LP relaxation?

Theorem 1. There is a linear programming relaxation (LC-D) for the Steiner
forest problem whose optimum solution value is at most the cost of any feasible
Steiner forest for the given instance. (LC-D) is strictly stronger than the well-
known undirected-cut relaxation for Steiner forests. The dual solution computed
by KLS is feasible for (LC-D).

The algorithms in [6, 7] are based on the classical undirected cut formulation
for Steiner forests [11]. The integrality gap of this relaxation is known to be
(2 − 1/k) and the results in [6, 7] are therefore tight. Our lifted-cut dual relax-
ation is strictly stronger than the classical undirected cut formulation. There are
instances in which the dual solution achieved by our relaxation provides a much
better approximation of the optimum than the undirected-cut dual relaxation.
On the other hand, there are instances in which both relaxations achieve an
integrality gap of (2− 1/k).

Secondly, one naturally wonders whether there is a (2− ε)- budget balanced
and cross-monotonic cost sharing method for Steiner trees and forests. The an-
swer to this question is negative, and holds for any cross-monotonic cost sharing
method for these games, including those taking exponential time:

Theorem 2. There is no (2− ε)-budget balanced, cross-monotonic cost sharing
method for Steiner trees for any ε > 0.

This lower bound shows that the results in [1, 2] are essentially best possible.
Hence there is no hope to obtain a (2 − ε)-budget-balanced cross-monotonic cost
sharing scheme even if a linear programming relaxation with such integrality gap

From Primal-Dual to Cost Shares and Back: A Stronger LP Relaxation 933

existed. Prior to our work, the only upper bound known for the budget balance fac-
tor of a cross-monotonic cost sharing method for the Steiner tree and forest games
was the IP/LP gap of the bidirected cut relaxation [10] which is at most 8/9.

2 A Cost Sharing Method for Steiner Forests

We review the cross-monotonic cost sharing method for Steiner forests as given
in [1]. The algorithm is similar to the primal-dual algorithm AKR due to Agrawal,
Klein and Ravi [6]. In this section, we first state the standard LP formulation
on which AKR is based, then review AKR, and finally describe the cost sharing
algorithm KLS from [1].

Let S ⊆ V . We define δ(S) to be the set of all edges that have exactly one
endpoint in S and we also let R(S) be the set of terminal pairs in R that are
separated by S, i.e., R(S) := {(s, t) ∈ R : |{s, t} ∩ S| = 1}. We use r(S) for the
cardinality of R(S). A subset S ⊆ V is a Steiner cut if r(S) ≥ 1. Let S be the
set of all Steiner cuts.

Consider a Steiner cut S ∈ S. Any feasible solution F for a given Steiner forest
instance must cross this cut at least once, i.e., |δ(S)∩ F | ≥ 1. This gives rise to
the following integer programming formulation for the Steiner forest problem:
We have a variable xe for each edge e ∈ E which has value 1 if e is part of the
resulting forest and 0 otherwise.

optIP := min
∑
e∈E

c(e) · xe (IP)

s.t.
∑

e∈δ(S)

xe ≥ 1 ∀S ∈ S (1)

xe ∈ {0, 1} ∀e ∈ E .

The dual of the linear programming relaxation (LP) of (IP) has a variable yS
for all Steiner cuts S ∈ S. There is a constraint for each edge e ∈ E that limits
the total dual assigned to sets S ∈ S that contain exactly one endpoint of e to
be at most the cost c(e) of the edge.

optD := max
∑
S∈S

yS (D)

s.t.
∑

S∈S: e∈δ(S)

yS ≤ c(e) ∀e ∈ E (2)

yS ≥ 0 ∀S ∈ S .

AKR is a primal-dual algorithm. That is, it constructs both a feasible and inte-
gral primal solution for (LP) and a feasible dual solution for (D). The algorithm
starts with an infeasible primal solution and reduces the degree of infeasibility
as it progresses. At the same time, it creates a dual feasible packing of sets of
largest possible total value. The algorithm raises dual variables of certain subsets

934 J. Könemann et al.

of vertices. The final dual solution is maximal in the sense that no single set can
be raised without violating a constraint of type (2).

We can think of an execution of AKR as a process over time. Let xτ and yτ be
the primal incidence vector and feasible dual solution at time τ . We use F τ to
denote the forest corresponding to xτ . Initially, x0

e = 0 for all e ∈ E and y0
S = 0

for S ∈ S. In the following we say that an edge e ∈ E is tight if the corresponding
constraint (2) holds with equality.

Assume that the forest F τ at time τ is infeasible. We use F̄ τ to denote
the subgraph of G that is induced by the tight edges for dual yτ . A connected
component S of F̄ τ is active iff S separates at least one terminal pair, i.e., iff
S ∈ S. Let Cτ be the set of all active connected components of F̄ τ at time τ .
AKR raises the dual variables for all sets in Cτ uniformly at all times τ ≥ 0.

Suppose now that two active connected components S1 and S2 collide at time
τ in the execution of AKR. In other words, there are terminals u ∈ S1 and v ∈ S2

such that a path between u and v becomes tight as a consequence of increasing
yS1 and yS2 . If this happens, we add the path to F τ and continue. S1 and S2

are part of the same connected component of F̄ τ ′
for τ ′ > τ .

The following is the main result of [6]:

Theorem 3. Suppose that algorithm AKR outputs a forest F and a feasible dual
solution {yS}S∈S . Then c(F) ≤ (2 − 1/k) ·

∑
S∈S yS ≤ (2 − 1/k) · optR, where

optR is the minimum-cost of a Steiner forest for the given input instance with
terminal set R.

We next describe the modifications that are necessary to turn AKR into a
cross-monotonic cost sharing algorithm. We use KLS to refer to this algorithm.

Define the time of death d(s, t) for each terminal pair (s, t) ∈ R as

d(s, t) :=
1
2
· c(s, t) , (3)

where c(s, t) denotes the cost of the minimum-cost s, t-path in G. We assume for
ease of presentation that each vertex v ∈ V has at most one terminal on it. This
assumption is without loss of generality since we can replace each vertex in V by
a sufficient number of copies and link these copies by zero-cost edges. We extend
the death time notion to individual terminals and define d(s) = d(t) = d(s, t)
for terminals s, t ∈ R.

Using the notation introduced above we obtain KLS by modifying the defi-
nition of Cτ . We say that a connected component S of F̄ τ is active at time τ
if it contains at least one terminal v ∈ S with death time at least τ , i.e., S is
active iff there exists a v ∈ S with d(v) ≥ τ . KLS grows all active connected
components in Cτ uniformly at all times τ ≥ 0. Observe that this way KLS
also raises dual variables of connected components in Cτ that do not correspond
to Steiner cuts. In what follows we denote by N the set of non-Steiner cuts:
N := {S ⊆ V : S �∈ S, S ∩R �= ∅}. Furthermore, we let U := S ∪ N be the set
of all Steiner and non-Steiner cuts.

The intuition behind KLS is that a terminal pair (s, t) is active for the time it
would take s and t to connect in the absence of all other terminals. Therefore its

From Primal-Dual to Cost Shares and Back: A Stronger LP Relaxation 935

activity time is independent of other terminal pairs and this is crucial to achieve
cross-monotonicity.

For a terminal v ∈ R and for τ ≤ d(v) we let Sτ (v) be the connected compo-
nent in F̄ τ that contains v. Also let aτ (v) be the number of terminals in Sτ (v)
whose death time is at least τ . The cost share of terminal vertex v ∈ R is defined
as

ξR(v) :=
∫ d(v)

τ=0

1
aτ (v)

dτ . (4)

Furthermore, we define ξR(s, t) := ξR(s) + ξR(t) for all (s, t) ∈ R.

Theorem 4. ξ is a cross-monotonic cost sharing method that is 2-budget bal-
anced.
A proof of this theorem was presented in [1]. There, one of the major difficulties
was to show that ξ is competitive, i.e., that the sum of the cost shares is at
most the optimal cost, optR. Since we share the entire dual produced during
the execution of KLS among the terminal pairs in R, proving competitiveness is
equivalent to showing that the dual solution {yS}S∈U satisfies

∑
S∈U yS ≤ optR.

If y were a feasible solution to (D) this would follow immediately from weak
duality. Here, however, we cannot apply this argument, since KLS also raises
dual variables of non-Steiner cuts. Subsequently, we present an alternative, LP-
based proof for the competitiveness of ξ.

3 Lifted-Cut LP Relaxation for Steiner Forests

Recall that we let R = {(s1, t1), . . . , (sk, tk)} be the set of terminal pairs in our
instance. Without loss of generality, we assume in the following that d(s1, t1) ≤
. . . ≤ d(sk, tk). We define a precedence order ≺ on R by letting (si, ti) ≺ (sj , tj)
iff i ≤ j and we extend this order to terminal vertices by letting s1 ≺ t1 ≺
s2 ≺ t2 ≺ . . . ≺ sk ≺ tk. For ease of notation we assume that v ≺ v for all
v ∈ R.

Consider a terminal w and let w̄ be w’s mate in the Steiner forest instance
(i.e., (w, w̄) ∈ R). We let Sw ⊆ S be the set of Steiner cuts that separate w and
w̄ and for which (w, w̄) is the highest ranked such terminal pair:

Sw := {S ∈ S : w ∈ R(S), v ≺ w for all v ∈ R(S)} .

We also let Nw ⊆ N be the set of all non-Steiner cuts containing w and w̄ where
(w, w̄) is the terminal pair of highest rank:

Nw := {S ∈ N : {w, w̄} ⊆ S ∩R, (v, v̄) ≺ (w, w̄) for all (v, v̄) ∈ S ∩R} .

Recall that we define U := S ∪ N as the set of all Steiner and non-Steiner
cuts. We then say that a terminal w ∈ R is responsible for a cut S ∈ U if
S ∈ Sw ∪Nw.

936 J. Könemann et al.

The dual of the lifted-cut relaxation for the Steiner forest problem is as
follows:

optLC-D := max
∑
S∈U

yS (LC-D)

s.t.
∑

S∈U : e∈δ(S)

yS ≤ c(e) ∀e ∈ E (5)

∑
S∈Sw

yS +
∑

S∈Nw

yS ≤ d(w) ∀w ∈ R (6)

yS ≥ 0 ∀S ∈ U .

Notice that a feasible solution to (LC-D) may assign positive values to non-
Steiner cuts S ∈ N . The constraints of type (6) are necessary as the objective
function value of (LC-D) would be unbounded in their absence.

The linear programming dual of (LC-D) has variables xe for every edge e ∈ E
and variables xw for every terminal w ∈ R:

optLC-P := min
∑
e∈E

c(e) · xe +
∑
w∈R

d(w) · xw (LC-P)

s.t.
∑

e∈δ(S)

xe + xw ≥ 1 ∀S ∈ Sw, ∀w ∈ R (7)

∑
e∈δ(S)

xe + xw + xw̄ ≥ 1 ∀S ∈ Nw, ∀w ∈ R (8)

xe, xw ≥ 0 ∀e ∈ E, ∀w ∈ R .

Let {xe, xw}e∈E,w∈R be an integral solution that is feasible for (LC-P). We argue
that this solution gives rise to a feasible Steiner forest with cost not exceeding
the objective function value. Define F := {e ∈ E : xe = 1}. The total cost c(F)
of F is

∑
e∈E c(e) · xe. F is not necessarily a feasible Steiner forest since there

might exist a Steiner cut S ∈ S with no crossing edge, i.e., δ(S) ∩ F = ∅. Let
S ∈ Sw be such a set and let w̄ be the mate of w. Constraint (7) for S and w
implies that xw = 1 in this case. Next consider the complement S̄ = V \S. It can
be seen that w̄ is responsible for S̄ and hence, S̄ ∈ Sw̄. As no edge crosses S̄, we
must have xw̄ = 1. Therefore, we can add all edges along the shortest w, w̄-path
to F at a cost of 2d(w, w̄).

The following lemma relates the cost of any feasible solution for the given
Steiner forest instance to the objective function value of an optimal solution for
(LC-P).

Lemma 1. Let F be a feasible solution for the underlying Steiner forest in-
stance. We can then construct a solution x that is feasible for (LC-P) and sat-
isfies:

From Primal-Dual to Cost Shares and Back: A Stronger LP Relaxation 937

∑
e∈E

c(e) · xe +
∑
w∈R

d(w) · xw ≤ c(F) .

In particular, this implies that optLC-D = optLC-P ≤ optR.

Proof. Let T be a tree in F . We use E(T) and V (T) to refer to the edges and
vertices of T , respectively. We construct a solution x that is feasible for (LC-P)
and show that for each tree T ∈ F∑

e∈E(T)

c(e) · xe +
∑

w∈R∩V (T)

d(w) · xw ≤ c(T) .

The lemma then follows by summing over all trees in F .
Consider a tree T ∈ F . Let (w, w̄) be the terminal pair that is responsible

for the non-Steiner cut V (T). Moreover, let P denote the unique w, w̄-path
in T . We set xe := 1

2 for each edge e ∈ E(P) and xe := 1 for each edge
e ∈ E(T)\E(P). Moreover, we assign xw = xw̄ := 1

2 and xr := 0 for all terminals
r ∈ (R∩V (T))\{w, w̄}. By definition (3) of death time, d(w, w̄) ≤ 1

2c(P). Thus,
the objective value for x on T is c(T)− c(P)/2 + d(w, w̄) ≤ c(T).

It remains to be shown that x is feasible for (LC-P). We show for each tree T
in F and for all v ∈ R∩V (T) that x satisfies the cut-requirements of constraints
(7) and (8) for sets S ∈ Sv ∪Nv.

Consider a cut S ∈ Sv for some v ∈ R ∩ V (T). If v ∈ {w, w̄}, constraint (7)
holds since S intersects P and xv = 1

2 . Now let v /∈ {w, w̄}. As S ∈ Sv and
v ≺ w, by assumption, it follows that either {w, w̄} ⊆ S or {w, w̄} ∩ S = ∅. We
also have v̄ �∈ S. As T connects v and v̄, it can be seen that S either intersects
at least one edge e of T that is not on P (and hence xe = 1) or it intersects at
least two edges e1 and e2 on P (and therefore xe1 = xe2 = 1

2). Thus, constraint
(7) holds in this case as well.

Next consider a non-Steiner cut S ∈ Nv for terminal v ∈ R ∩ V (T). If
v �∈ {w, w̄} then {w, w̄} ∩ S = ∅ and S crosses at least one edge of T that is not
on P or at least two edges of P . Hence constraint (8) holds. Otherwise, S may
cross no edge of T but xw + xw̄ = 1 and thus (8) is satisfied. ��

Running algorithm KLS on terminal set R yields a cost-share ξR(s, t) for
all (s, t) ∈ R. It also returns a dual solution y such that

∑
(s,t)∈R ξR(s, t) =∑

S∈U yS . It is easy to verify that y is feasible for (LC-D). Lemma 1 therefore
yields an alternate proof of the competitiveness of KLS:

Corollary 1.
∑

(s,t)∈R ξR(s, t) =
∑

S∈U yS ≤ optLC-D ≤ optR.

The next lemma shows that (LC-D) is at least as strong as the standard LP
dual (D).

Lemma 2. Let {yS}S∈S be a feasible dual solution for (D). Then there is a fea-
sible dual solution {y′S}S∈U for (LC-D) with

∑
S∈S yS ≤

∑
S∈U y

′
S. This implies

that optD ≤ optLC-D.

938 J. Könemann et al.

Proof. Let y be a feasible solution for (D). The sets Sw for terminals w ∈ R
form a partition of S: S =

⋃
w∈R Sw. First, we argue that we can assume that y

is symmetric in the following sense. y is symmetric if for all (s, t) ∈ R:

ls :=
∑
S∈Ss

yS =
∑
S∈St

yS =: lt .

Suppose that this equality does not hold for some (s, t) ∈ R and, without loss
of generality, assume that ls > lt. Then, let S ∈ Ss be a set with yS > 0.

Consider the set S̄ = V \ S and observe that this set is a Steiner cut as
well. Moreover, S and S̄ trivially separate the same terminal pairs in R, i.e.,
R(S) = R(S̄). It therefore follows that t must be the responsible terminal for S̄
and hence S̄ ∈ St. Finally, notice that δ(S) = δ(S̄) and hence we can increase
yS̄ and decrease yS at the same rate without violating any of the constraints
of type (2). Continuing this procedure will lead to a symmetric dual y that is
feasible for (D).

Now define y′S = yS if S is a Steiner cut and let y′S = 0 otherwise. y′ clearly
satisfies all constraints of type (5). We will now show that y′ also satisfies all
constraints of type (6) and this will finish the proof of the lemma.

Assume for the sake of contradiction that y′ violates constraint (6) for some
terminal w ∈ R: lw +

∑
S∈Nw

y′S > d(w). Since y′S = 0 for all non-Steiner cuts
S ∈ Nw we therefore must have lw > d(w) = c(P)/2, where c(P) is the cost of
a minimum-cost w, w̄-path in G.

Using the symmetry of y we know that lw = lw̄ and hence we must have
lw + lw̄ > c(P). On the other hand, adding the constraints of type (2) for all
edges e ∈ P yields

lw + lw̄ ≤
∑
S∈S

|δ(S) ∩ P | · yS =
∑
e∈P

∑
S∈S: e∈δ(S)

yS ≤ c(P) ,

and this is a contradiction. ��

The dual of the lifted-cut relaxation is strictly stronger than the standard
LP dual (D). The proof of the following lemma is omitted.

Lemma 3. There exist instances for which optD < optLC-D.

Lemmas 1, 2, and 3 together with Corollary 1 finish the proof of Theorem
1. Unfortunately, as with the undirected cut formulation for Steiner forests, the
IP/LP gap of the lifted-cut relaxation is about 2 for certain instances. The proof
is omitted.

Lemma 4. There exist instances for which optR/optLC-D = 2− 2/(k + 1).

4 A Lower Bound for the Steiner Tree Game

The tools used in this section are adaptations of those used in [10]. In particular
we consider any given cross-monotonic cost sharing method ξ for the Steiner

From Primal-Dual to Cost Shares and Back: A Stronger LP Relaxation 939

tree game and show that there is an instance of the game where the sum of the
cost shares of all players is considerably smaller than the cost of an optimum
solution. Instead of using a probabilistic argument similar to the one described
in [10], we use a more direct (but ultimately equivalent) proof based on convex
combinations.

The family of instances used in our proof resembles the one used for the
facility location lower bound in [10]. We construct an undirected graph G =
(V,E). In this graph, there are k pairwise disjoint classes Ai, i = 1, . . . , k, each
of which contains m vertices. Every one of these vertices corresponds to a player
who wants to connect this vertex with the root. The set of all players that have
a vertex associated with them in Ai is denoted by Ai. The set of all players is
R :=

⋃k
i=1Ai.

Let B be a set containing all sets with exactly one element from each of the
Ai, i.e., B := {{a1, . . . , ak} : ai ∈ Ai, i = 1, . . . , k} . For each set B ∈ B, we
introduce a unique vertex fB with distance 1 to all vertices in B. The distance
to the vertices not in B is, by triangle inequality, equal to 3. Finally, every vertex
fB is connected to the root r, with edges of length 3.

The following lemma argues that we may assume that ξ is symmetric in the
following sense: Consider a subset T ⊆ R. We then may assume that ξT (c) =
ξT (d) for any two players c, d ∈ Ai ∩ T and for any 1 ≤ i ≤ k.

Lemma 5. Suppose that there is an α-budget balanced cost sharing method for
the Steiner tree game. Then, given an arbitrary player subset T ⊆ R, there
also is an α-budget balanced cost sharing method with ξT (c) = ξT (d) for all
c, d ∈ T ∩ Ai and for all 1 ≤ i ≤ k. Moreover, for all c ∈ T ∩ Ai and for all
d ∈ Ai \ T , we may assume that ξT (c) = ξ(T \{c})∪{d}(d).

Proof. Let ξ̃ be an α-budget balanced cost sharing method for the Steiner tree
game. Pick an index i and a set of players T ⊆ R. For a player c ∈ Ai∩T we let
ac ∈ Ai be the (original) terminal associated with c. Now consider a permutation
πi of the players in class Ai. The terminal of c under permutation πi is aπi(c).

Define the map π by letting π(c) = πi(c) iff c ∈ Ai. For a set of players T ,
we define π(T) := {d ∈ R : ∃c ∈ T : d = π(c)}. Let Π be the set of all (m!)k

possible maps that arise in this way. The cost sharing method ξ is then given by

ξT (c) =
∑
π∈Π

1
(m!)k

ξ̃π(T)(π(c))

for all c ∈ R.
The important observation here is that the cost sharing method ξ̃ works on

vertices. So if we swap the terminals associated with two players in T , the cost
shares for these players will be swapped as well. In other words, for any two
permutations the algorithm will be presented with the same set of terminals,
but the players associated with these terminals may have changed.

Notice that, for a player c �∈ T , the value ξT (c) is 0 as π(c) �∈ π(T) for all
π ∈ Π. It is now not difficult to see that, for all 1 ≤ i ≤ k and for any two players

940 J. Könemann et al.

c, d ∈ Ai∩T , we have ξT (c) = ξT (d) as we average over all player permutations.
It remains to show that ξ is cross-monotonic and α-budget balanced.

Consider adding a player d to set T . We have to argue that the cost share of
an individual player cannot increase. For a player c ∈ T we see that

ξT ∪{d}(c) =
∑
π∈Π

1
(m!)k

ξ̃π(T ∪{d})(π(c)) ≤
∑
π∈Π

1
(m!)k

ξ̃π(T)(π(c)) = ξT (c) .

This follows since π(T ∪{d}) = π(T)∪{π(d)} and hence the cross-monotonicity
of ξ̃ can be applied to each term.

Now we show α-budget balance. To this end we must specify which solution
is returned by the algorithm. If we denote with Sπ the solution returned by cost
sharing method ξ̃ when run on set π(T), we return the solution S ∈ {Sπ : π ∈
Π} with cost c(S) = minπ∈Π c(Sπ).

Of course this solution is not necessarily feasible for the original player set,
but because of the symmetry of the instance there is a graph isomorphism that
maps the solution back to a feasible one without changing the cost.

Now we can write

∑
c∈T

ξT (c) =
∑
c∈T

∑
π∈Π

1
(m!)k

ξ̃π(T)(π(c)) =
∑
π∈Π

1
(m!)k

∑
c∈T

ξ̃π(T)(π(c))

≥
∑
π∈Π

1
(m!)k

1
α
· c(Sπ) ≥

∑
π∈Π

1
(m!)k

1
α
· c(S) =

1
α
· c(S) .

Competitiveness can be proven using a similar line of reasoning: the cost of
the optimal solution must be the same in any permutation. With that, the proof
is complete. ��

Now suppose we are given a symmetric cost sharing method ξ. From this
point on we will identify players and vertices to avoid complication of notation.
Ask the algorithm for cost shares for a subset of players {a1, . . . , ak} where
ai ∈ Ai. By construction of the graph, all these terminals can connect to vertex
f{a1,...,ak} at cost 1, at which point they are only 3 units away from the root.
Hence there is a solution of cost k + 3 for this subset. Competitiveness states
that

k∑
j=1

ξ{a1,...,ak}(aj) ≤ opt{a1,...,ak} ≤ k + 3 .

Therefore there must be at least one index i such that ξ{a1,...,ak}(ai) ≤ (k+3)/k.
By Lemma 5, this holds for every set {a1, . . . , ai−1, c, ai+1, . . . , ak} where c ∈ Ai

and the other aj are the same as before.

From Primal-Dual to Cost Shares and Back: A Stronger LP Relaxation 941

For this index i we consider the instance with subset Q := {a1, . . . , ak} ∪Ai.
We bound the sum of the cost shares for this set as follows:∑

c∈Q
ξQ(c) =

∑
c∈Ai

ξQ(c) +
∑
j �=i

ξQ(aj)

≤
∑
c∈Ai

ξ{a1,...,ai−1,c,ai+1,...,ak}(c) +
∑
j �=i

ξ{a1,...,ai−1,ai+1,...,ak}(aj) (9)

≤ m · k + 3
k

+ k + 2 . (10)

The inequality in (9) is due to cross-monotonicity: the cost share of a player
over a subset of Q cannot be smaller than the cost share for that player over
Q. We know that a set of players never pays more than the cost of the optimal
tree connecting these players. For set {a1, . . . , ai−1, ai+1, . . . , ak}, which has one
player from k − 1 of the sets Aj , there is a solution of 3 + k − 1 = k + 2. This
provides an upper bound on the rightmost term of (9). For the leftmost term,
we argued above that ξ{a1,...,ai−1,c,ai+1,...,ak}(c) ≤ (k + 3)/k .

Due to the large amount of symmetry in the instance, we can in fact describe
the optimal solution. The proof of the following lemma is omitted.

Lemma 6. The optimal solution for connecting the players in a set Q, as defined
above, to the root has cost 2m + k + 1.

Combining Lemma 6 with Inequality (10), we can now prove Theorem 2.

Proof (Theorem 2). The ratio between the cost shares of players in the subset Q
as defined above and the cost of the network they use can be bounded as follows:∑

c∈Q ξQ(c)
c(Q)

≤
∑

c∈Q ξQ(c)
optQ

≤
mk+3

k + k + 2
2m + k + 1

=
k2 + 4k + 2
2k2 + k + 1

,

where the last equality holds if we choose m = k2. This ratio tends to 1
2 as

k → ∞, which completes the proof. ��

References

1. Könemann, J., Leonardi, S., Schäfer, G.: A group-strategyproof mechanism for
Steiner forests. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium
on Discrete Algorithms. (2005) 612–619

2. Jain, K., Vazirani, V.V.: Applications of approximation algorithms to cooperative
games. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory
of Computing. (2001) 364–372

3. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-completeness. Freeman, San Francisco (1979)

4. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification
and intractability of approximation problems. In: Proceedings of the Thirty-Third
IEEE Symposium on Foundations of Computer Science. (1992) 210–214

942 J. Könemann et al.

5. Bern, M., Plassmann, P.: The Steiner problems with edge lengths 1 and 2. Infor-
mation Processing Letters 32 (1989) 171–176

6. Agrawal, A., Klein, P., Ravi, R.: When trees collide: An approximation algorithm
for the generalized Steiner problem in networks. SIAM Journal on Computing 24
(1995) 445–456

7. Goemans, M.X., Williamson, D.P.: A general approximation technique for con-
strained forest problems. SIAM Journal on Computing 24 (1995) 296–317

8. Moulin, H., Shenker, S.: Strategyproof sharing of submodular costs: budget balance
versus efficiency. Economic Theory 18 (2001) 511–533

9. Pál, M., Tardos, É.: Group strategyproof mechanisms via primal-dual algorithms.
In: Proceedings of the Forty-Fourth Annual IEEE Symposium on Foundations of
Computer Science. (2003) 584–593

10. Immorlica, N., Mahdian, M., Mirrokni, V.S.: Limitations of cross-monotonic cost
sharing schemes. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium
on Discrete Algorithms. (2005) 602–611

11. Aneja, Y.P.: An integer linear programming approach to the Steiner problem in
graphs. Networks 10 (1980) 167–178

How Well Can Primal-Dual and Local-Ratio
Algorithms Perform?

Allan Borodin, David Cashman, and Avner Magen

Department of Computer Science,
University of Toronto

{bor, cashman, avner}@cs.toronto.edu

Abstract. We define an algorithmic paradigm, the stack model, that
captures most primal-dual and local-ratio algorithms for approximating
covering and packing problems. The stack model is defined syntacti-
cally and without any complexity limitations. Hence our approximation
bounds are independent of the P vs NP question. We provide tools to
bound the performance of primal dual and local ratio algorithms and
supply a (log n + 1)/2 inapproximability result for set-cover, a 4/3 in-
approximability for min steiner tree, and a 0.913 inapproximability for
interval scheduling on two machines.

1 Introduction

The primal dual and local ratio schemas for approximation algorithms are two
fundamental algorithm design techniques. The use of the primal dual schema is
pervasive, having been applied to give good approximation algorithms for several
basic NP-hard combinatorial optimization problems including set cover, vertex
cover, numerous network design problems, facility location and k-median, steiner
forest, and many others. The origins of the primal dual schema can be found in
the Bar Yehuda and Even [7] algorithm for the weighted vertex cover problem.
The re-introduction of the enhanced primal dual schema leading to its current
importance is due to the works of Agarwal, Klein and Ravi [1] and Goemans
and Williamson [15].

The list of problems tackled successfully by primal-dual and local-ratio algo-
rithm is long and impressive. For many of these problems the methods achieve
the best known approximation (see [24, 6] and references therein). But just how
far can these methods go? The goal of this paper is to shed some light on this
question. Our first step in achieving this is to put the two algorithmic schemas
under a larger umbrella – a syntactic computational model capturing both, de-
void of complexity considerations and that is related to the LP formulation via
the input model environment it works over. This model is what we call the stack
model and will be described in detail in Section 2. We then show hardness of
approximation results within this model for a few prominent problems in which
the primal-dual schema was applied before, sometimes achieving the best bound.

For the clarity of our exposition we will use the set-cover problem as a specific
running example. We shall focus our attention on what is considered to be the

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 943–955, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

944 A. Borodin, D. Cashman, and A. Magen

common method of the primal-dual schema for covering problems. Let us be more
specific: our abstraction of this method corresponds to what Williamson [24]
calls the “primal dual algorithm with reverse delete step”. The more restricted
version of the method which was the first to appear is called “basic primal-dual
algorithm”, can be simulated by the priority model of [11]. In the priority model,
an algorithm considers each input item once (according to some ordering) and
immediately makes an irrevocable decision (i.e. accept or reject) about each input
item. For the simulation to be possible, the input items are in correspondence
with the 0/1 variables constituting the problem, and the input items contain
information about their cost and about the constraints they appear in. In the
set-cover example, the items are the sets and the natural representation of a
set is its weight and the list of elements it contains, namely the cost and the
constraints of the natural LP relaxation. We elaborate on this somewhat subtle
issue when we discuss the specific applications we deal with. Returning to priority
algorithms, there is some natural restriction on what orderings are permissible
and we shall argue that the primal dual schema always leads to a permissible
ordering. Roughly speaking, the permissible orderings are those that are induced
by any (not necessarily computable) mapping of all possible input items into
R. Also, the ordering in priority algorithms can be established afresh at every
iteration of the algorithm.

A substantial leap forward in terms of the applicability of the primal-dual
approach was made at the beginning of the nineties, namely the introduction of
the “reverse delete step” [15, 17, 21]. Roughly speaking, this is a phase that guar-
antees that the output of the algorithm is a minimal feasible solution (w.r.t set
inclusion). This property is shown to be crucial in the analyses of problems such
as minimum Steiner tree, the feedback vertex set problem, generalized steiner
forests, and others. As is shown in [24] the analysis may sometime depend not
only on the minimality of the produced solution, but also on the exact process
that ensures this minimality. The analogous leap in the world of abstract mod-
els leads us to the definition of the stack model. Here, instead of irrevocably
rejecting/accepting an item, the algorithm decides whether to reject or to push
an item onto a stack. Then the elements in the stack are popped and removed
when this is possible.

The stack model also captures the local-ratio schema as described in the
survey of Bar-Yehuda et al [6]. This should not be taken as a surprise as Bar-
Yehuda and Rawitz [9] have demonstrated that there is an equivalence between
the primal dual and local-ratio schemas. In fact, in this extended abstract we
use their observation to argue that the stack model simulates regular local-ratio
algorithms, without a concrete description of such a simulation.

In contrast to the extensive use of primal-dual and local-ratio for covering
problems, the only (albeit important) use of the primal dual schema for packing
problems was the approximation of the bandwidth allocation problem in Bar-Noy
et al [5]. As was shown in [5], the local ratio technique can optimally solve the one
machine weighted interval selection problem whereas the negative result in [11]
precludes the possibility of any constant approximation to the problem within

How Well Can Primal-Dual and Local-Ratio Algorithms Perform? 945

the priority model. This provably shows that it is sometimes necessary to have
a second “clean-up” stage to obtain good approximation bounds.

It is important to note that, while most of the known applications of primal-
dual fall under “primal-dual with reverse delete”, there are several applications
that do not fit within the stack model framework. Of these, one of the most
prominent examples is Jain and Vazirani’s use of primal dual method for the
approximation of metric facility location and k-median problems [16]. Notice that
these problems are not covering or packing problems, and therefore inherently
in need of a more specialized algorithmic paradigm. A more basic example is the
steiner tree algorithm for the special class of quasi-bipartite graphs [18]. Their
method provides a 3/2+ ε approximation by combining local search with primal
dual and using the so called bidirected LP relaxation as a starting point. (This
method utilizes a non-standard input representation by considering each edge as
two directed edges and hence automatically falls outside of our model.) Another
example of a primal-dual/local-ratio algorithm that does not fit our model are
the so called fractional local-ratio/primal-dual algorithms which first solve the
LP, and use the solution as a guide to ordering items [8] and [10].

2 The Stack Model and Its Ancestor the Primal-Dual

Consider an integer program for a covering problem, and assume that the vari-
ables to the problem are the natural 0/1 variables of the problem, and that the
constraint matrix A and the cost vector c are nonnegative. In a nutshell, what
a primal dual schema does is to consider an LP relaxation of this IP and the
dual maximization problem and (i) starts with the feasible dual solution y = 0
(ii) increases y continuously until a dual constraint(s) becomes tight (iii) in this
case the corresponding primal variable(s) enter the solution (iv) continues as
long as the primal solution generated so far is not feasible (v) goes over the
primal variables in the solution in a reverse order and removes them whenever
feasibility is maintained. Notice that we haven’t specified exactly how the dual
vector y is increased, and we choose to stay at this level of generality. Return-
ing to our set-cover example, the dual variables in the natural LP relaxation
are elements of the ground set. We increase all the dual variables that do not
occur in a tight equation (uncovered elements) uniformly, until a new set (dual
constraint) becomes tight, in which case this set joins the solution. Step (v),
the reverse-delete, removes a set if it is not needed, while following the reverse
order.

We now get to the critical observation that later leads to the abstraction of the
model and to our lower bounds. Notice that the above process induces, at each
iteration, an ordering on the primal variables that has not entered the solution
yet. If at any point an adversary announces that a primal variable that has
not yet become tight has never existed, the algorithm has no way to recognize
such a change as it has no effect on the algorithm’s history. An adversarial
approach can be developed from this limitation of the algorithm and may lead
to inapproximability results.

946 A. Borodin, D. Cashman, and A. Magen

This sets the stage for the stack model. We consider a two-pass algorithm, in
which the first pass, the push phase, resembles an adaptive priority algorithm,
as defined in [11], and the second pass, the pop phase, is a simple greedy phase
that is not under the control of the algorithm. Here is a precise description.
The algorithm first orders the items by some valid ordering. This is just a total
ordering of all possible input items. In our example, one can imagine ordering
by cardinality of sets, or more generally by any function f1 on the characteristic
0/1 vectors and the weight of the sets. Next, it looks at the first item, and either
pushes it onto the stack or rejects it. It then may decide to change the ordering
using the information of the first item (defining f2 after looking at the first set).
Again, the first (unseen) item in this ordering is either pushed or rejected. This
process continues for at most n iterations, 1 at which point the algorithm enters
the “pop phase” in which items are popped from the stack (last in, first out).
The solution to be produced is a subset of the items on the stack and is defined
as follows. Each popped item will be rejected if the items that were popped
and accepted, together with the items still on the stack constitutes a feasible
solution; otherwise it is accepted. It is easy to see that if, at the beginning of the
pop phase, we have a feasible solution, we will have one at the end, and further,
that solution is minimal w.r.t set inclusion.

Having defined the stack model, we are ready to make the central claim of
this section : Every primal dual algorithm under the scheme described above
can be simulated by a stack algorithm. It is here that we insist that the input
representation of an item contains its cost and the objects that correspond to
the constraints that include it. Indeed, regardless of the way y is increased, we
get a primal variable that matches a dual constraint that was just made tight.
The variable(s) made tight is the one (are those) minimizing the expression
f(i) = ci −

∑
j:aij>0 aijyj . But, since the information about item i includes ci

and the positive aij , and since the algorithm may keep track of y we conclude
that f : [n] !→ R is a valid ordering function as it is a function on the items. The
first item is taken 2 and the stack algorithm pushes it and continues. The pop
phase is clearly a reflection of step (v) in the primal dual schema.

If the ordering used during the push phase is determined at the beginning
and is not changed during the process, we call this a fixed order stack algorithm.
Without this restriction we say the ordering is adaptive.

We now consider the modifications needed in order to define a stack model for
packing problems. Here too, we have a push phase and a pop phase where the
push phase proceeds like a fixed or adaptive priority algorithm in determining
which items to place on the stack. The pop phase starts with the empty set as
its existing solution, and then adds popped items to the existing solution unless
the addition of the item renders the current solution infeasible.

1 As we shall see later, the stack algorithm can end the push phase once a feasible
solution exists on the stack, as the items past this point are bound to get deleted.

2 If some items become tight simultaneously this is simulated by taking those items
one after the other.

How Well Can Primal-Dual and Local-Ratio Algorithms Perform? 947

We briefly indicate how we can derive negative results for approximation
ratios in the (adaptive ordering) stack model. An adversary initially presents a
large set of potential input items. As the computation proceeds, the adversary
is allowed to delete input items. We note that the adversary is allowed this
license since the ordering functions depend only on the item and any previously
considered items. Eventually the algorithm will consider all input items that have
not been deleted and that will end the push phase. Then since the pop phase is
completely determined, we can calculate the cost/profit of the stack algorithm
and compare it to an optimal solution for the actual set of items (i.e. the input
items not deleted by the adversary and hence considered by the algorithm). For
the case of fixed-order stack algorithms, the adversary can often construct the
initial set of potential items in such a way that some “difficult structure” exists
within a subset of the items no matter how the algorithm chose its order.

The reader may notice that in moving from the primal-dual methodology
to the abstraction we describe, the linear structure of the (relaxed) problem
disappears. One may also ask what role does the integrality gap play in this
discussion? As was observed [24], the ratio guarantee of primal dual algorithms
is never better than the integrality gap for the specific linear program relaxation
used by the algorithm. However, any formulation of the problem as an LP with
positive coefficients can lead to a primal dual algorithm, which in turn provides
an ordering of the elements that gives rise to a stack algorithm. In other words
the abstraction helps us to understand the power of primal dual algorithms with
respect to every LP relaxation with positive coefficients under the (nontrivial)
condition that the variables are the “natural” ones, and that the input represen-
tation “knows” the cost of an item and the constrains involving it. Specifically,
to show an inapproximability result for a suggested LP relaxation we are re-
quired to adjust the input-representation when we give the stack lower bound.
In vertex cover, for example, we may look at the LP relaxation that uses the
inequalities that require variables of the vertices in an odd cycle of size l to sum
up to (l+1)/2 (on top of the regular inequalities). Notice that this type of tight-
ening is a result of a lift and project method and was discussed in the context
of hardness result in [4]. If we obtain a lower bound for an input representation
in which a vertex knows all the edges and all the odd cycles containing it, this
would imply a lower bound for PD algorithm applied to this relaxation!

3 The Minimum Set Cover Problem

We consider the classical minimum set cover problem. We are given a family of
subsets S1,S2, . . . ,Sm of a ground set U of size n. In addition, each set Si is
associated with a cost ci. The goal is to minimize the cost of a collection of the
Si that cover every element in U . The unweighted version of the problem seeks
to minimize the number of subsets chosen.

The well known natural greedy algorithm for set cover selects sets with mini-
mum cost per size ratio, and continues recursively on the remaining set of uncov-
ered items with the remaining sets. The natural greedy algorithm yields an H(n)

948 A. Borodin, D. Cashman, and A. Magen

approximation. Notice that this algorithm is a priority algorithm, and hence a
special case of a stack algorithm.

Raz and Safra [19] showed that if P �= NP , then for some constant c > 0,
set cover cannot be approximated within a ratio of c log n in polynomial time.
Using a stronger complexity assumption, namely that NP �⊂ DT IME(nlog log n),
Feige was able to show an almost tight bound (1− ε)H(n). But these hardness
results do not apply to our model as the stack algorithm is not restricted to run
in polynomial time. Furthermore,, stack algorithms may be nonuniform, in the
sense of allowing a different algorithm for each n, the the number of input items.

In [2], a (log n + 1)/2 inapproximability bound for the weaker priority algo-
rithm model is shown. Without restating the proof given there, we note that
a stack model could provide an optimal solution to the instance that is used
in that paper to demonstrate the priority lower bound. Hence, we will need a
somewhat more complex set-up to prove the same lower bound for the stack
algorithm. We note that a somewhat similar construction is used [23] to show
that the integrality gap of the natural LP relaxation for set cover is Ω(log n).

We define the ground set U to be the cube {0, 1}log n. The initial input to the
algorithm consists of 2(n− 1) sets, Sb

v where v ∈ {0, 1}log n \ {0}, and b ∈ {0, 1}.
Set Sb

v contains all points x for which 〈v, x〉 = b where 〈·, ·〉 is the inner product
over GF2. The sets can be viewed as the inverse images of 0 (1) of all the
nontrivial Fourier characters of the boolean cube. We note that for any v, S0

v

and S1
v are a pair of complementary sets.

We require a simple lemma relating the combinatorial properties of sets in
our system to the algebraic properties of the vectors that define them:

Lemma 1. For any set of linearly independent vectors {v1, . . . , vk} and any
choice of b1, . . . , bk, the number of elements of U left uncovered by {Sb1

v1
, . . . ,Sbk

vk
}

are selected is exactly n/2k. In particular, any family of sets whose corresponding
vectors are linearly independent does not cover U completely.

Proof. The elements covered by the above sets are Sb1
v1
∪ . . . ∪ Sbk

vk
, hence the

uncovered ones are S1−b1
v1

∩ . . . ∩ S1−bk
vk

. Therefore, x is uncovered iff it is a
solution of the system 〈v1, x〉 = 1−b1, . . . 〈vk, x〉 = 1−bk. Since the vi are linearly
independent, the co-dimension of the solution space of uncovered elements is k
and so it contains |F2|l−k elements and the first part of the lemma follows. The
second part is obvious.

Using the set-system above, we will show that no stack algorithm can achieve
a set cover smaller than log(n + 1), while the optimal set cover is of size 2. At
stage i, the algorithm chooses a set Sbi

vi
to look at next. Recall that the adversary

may remove sets from the input as the algorithm proceeds.
At each step i, i < log n, suppose the algorithm accepts Sbi

vi
. Then, the

adversary removes all the sets Sb
v with v ∈ span{v1, . . . , vi}. Notice that this

strategy ensures that as long as i ≤ log n, the set of vectors defining the sets in
the stack are linearly independent. In particular, for any vector v, S0

v and S1
v

cannot both be on the stack.

How Well Can Primal-Dual and Local-Ratio Algorithms Perform? 949

In the other case in which the algorithm rejects the set Sbi
vi

, we argue that
the algorithm may fail to generate any set cover. Indeed, as a response the
adversary simply deletes all unseen inputs except for S1−bi

vi
. Note that vi �∈

span{v1, . . . , vi−1} so this is a valid strategy. But even if the algorithm takes
that last set, the stack still contains sets with corresponding linearly independent
vectors {v1, . . . , vi}, which by Lemma 1 does not form a cover. But of course
one exists as the input contains the two complementary sets {Sb0

vi
,Sb1

vi
}. This

argument holds also for i = log n.
Now, assuming that the algorithm continues to accept, after the (log n)-th

step, the algorithm has accepted log n sets whose defining vectors are linearly
independent, leaving exactly n/2log n = 1 uncovered element. The adversary will
delete all sets except for S0

v∗ and S1
v∗ , where v∗ =

∑log n
i=1 vi. (these sets were not

removed before as v∗ �∈ span{v1, . . . , vlog n−1}). At this point our the “game”
is over, and the input to the algorithm is determined. The stack contains log n
linearly independent sets and there are the two remaining sets that the algorithm
must consider. Clearly, the sets S0

v∗ and S1
v∗ constitute a set cover of size 2. It

remains to argue that the algorithm must take log n + 1 sets. Since only one
element is left uncovered before the two complementary sets are considered, one
of the sets is contained in the union of the sets on the stack. This means that this
set will be rejected in the pop phase and we may as well assume the algorithm
rejects it. The algorithm now has log n + 1 sets on the stack.

We claim that all of these sets must survive the pop phase. Indeed, by the
special choice of v∗ the vectors v1, . . . vl, v∗ are in general position, that is no log n
of them are linearly dependent. Since, by the independence of v1, . . . vlog n there
may be only one dependency between the log n+1 vectors, and since summing all
of them is a dependency, we know that there are no other dependencies, and so
the vectors are indeed in general position. We use the corollary again to deduce
that no strict sub-family of sets may cover the ground set, and in particular no
set can be removed in the pop phase. We have established:

Theorem 1. No stack algorithm can achieve an approximation ratio better than
log(n + 1)/2 for the unweighted minimum set cover problem, where n is the
number of elements in the ground set to be covered.

4 The Steiner Tree Problem

In the Steiner tree problem we are given a weighted graph and a set of distin-
guished terminal vertices T . The goal is to choose a subset of edges that connect
all terminal vertices, so as to minimize the sum of the weights. The primal-dual
algorithm that achieves a 2-approximation uses the natural LP relaxation in
which the IP constraints dictate that every cut separating T is crossed by an
edge. The input representation we consider is with edges as items. The informa-
tion in an item is its weight and the identity of the vertices of the edge. Also, the
names of the vertices is known and whether they are terminals or not. Notice
that this allows us to know all the separating sets an edge crosses. We later

950 A. Borodin, D. Cashman, and A. Magen

mention that a lower bound under a much richer input representation is possi-
ble, and will discuss the resulting implication. The reverse delete step ensures
that if an edge is not needed it will not be taken. In fact, here this step is easily
seen to be essential, and the analysis depends on the fact that the resulting set is
minimal w.r.t set inclusion. In this section we show that stack algorithms cannot
approximate the problem with better than a 4/3 factor.

In [22], it is shown that unless Co-RP = NP , no approximation ratio better
than about 1.007 is possible for the Steiner Tree problem. The best known algo-
rithm for Steiner tree, due to Robins and Zelikovsky [20] achieves approximation
ratio 1.55 and is not a local-ratio/primal-dual algorithm. For the class of quasi-
bipartite graphs (i.e. graphs not containing edges between Steiner nodes), their
algorithm achieves a ratio of about 1.28, slightly better than our lower bound of
4/3 for any stack algorithm. We note that our proof applies to quasi-bipartite
graphs. In some sense this shows that the algorithm in [20] is superior to any
primal-dual approach. We now turn to our result.

Theorem 2. No stack algorithm can achieve a worst-case approximation ratio
better than 4/3 for the (unweighted) Steiner tree problem.

Proof. Our proof is motivated by the priority lower bound of Davis and Impagli-
azzo [13]. Initially we consider the complete bipartite graph G =< T∪S,R×S >,
where T = {t1, t2, t3} are the terminals and S = {s1, s2} are the steiner nodes.
The algorithm is given the set of terminals and steiner nodes in advance, but is
not provided with a list of edges. After each stage of the algorithm, the adversary
has the option of deleting any edges that have not yet been seen.

The main ingredient of the proof is the following lemma.

Lemma 2. In the push phase, consider the first time t that the algorithm has
seen two edges connected to some sj assuming it has not rejected any edges
before time t. Call this event D. Then the solution produced by the algorithm
must contain these two edges.

Proof. The lemma is not vacuous : for the graph to have a steiner tree, at least
one of the steiner node must have degree at least 2. These edges must be pushed
since at time t there is no way to preclude the possibility that the graph is a
path of length 4 (this is still consistent with the input so far) and therefore all
edges must be taken, and a reject is impossible.

To show that these two edges must be used in the solution produced by the
algorithm, we should show that there is no edge e in this pair that will be not
rejected in the pop phase. Assume otherwise, then by the definition of the pop
phase, there must be a cycle C containing e, so that e is pushed last among all
edges in C. But since the graph is bipartite, C must contain two edges out of the
other steiner node. This leads to a contradiction, since the later of these edges
to be considered must come after e in the order.

Observe that the stars rooted at s1 and s2 both have cost 3, while the other
steiner trees must use both steiner nodes, and will have cost 4. Note that if an
edge adjacent to either steiner node is missing (i.e. deleted by the adversary)

How Well Can Primal-Dual and Local-Ratio Algorithms Perform? 951

then the star rooted at the other steiner node will be the only Steiner tree with
cost 3. Here then is the lower bound strategy. The adversary lets the algorithm
run, and waits until either the algorithm rejects an edge, or event D happens.

Suppose that the algorithm rejects an edge before event D happens, say the
one connected to s1. Then the adversary simply deletes an unseen edge adjacent
to s2. Such an edge must exist, since event D has not occurred yet. This makes
the star rooted at s1 the unique optimal solution, but the algorithm has just
rejected an edge in that star. Hence, in this case the algorithm can achieve a
cost of at best 4, for a ratio of 4/3.

Now, suppose that event D happens first. The algorithm pushes the two
edges connected to, say, s1. At this point the adversary deletes the third edge
adjacent to s1, leaving the star rooted at s2 as the only optimal solution. But
by Lemma 2, the algorithm cannot return this unique optimal solution , since it
is bound to take both edges connected to s1 in the solution. This again leads to
an approximation lower bound of 4/3.

By a somewhat more involved example and analysis we can prove a 7/6
-approximation lower bound when we allow the algorithm to not only know in
advance the nodes of the graph, but also the edges of the graph. The only thing
not known in advance is the edge costs. This relates quite nicely to the discussion
about what LP relaxations we may consider: when all the information is known
but the cost vector, then any LP relaxation with the natural variables and with
positive constraint coefficients is captured by the model.

5 Packing Problems: Scheduling

As was mentioned in the introduction, Bar Noy et al [5] provide the only use
to date of local-ratio/primal dual for packing problems. Several problems are
discussed there, the most general one being the NP -hard bandwidth alloca-
tion problem. Here we concentrate on one (polynomial time solvable) special
case, namely weighted interval scheduling on 2 identical machines (W ISP2),
and show that 0.913 is an upper bound to the approximation of this problem
by a fixed order (packing) stack algorithm. This should be contrasted with the
optimal local ratio algorithm for one machine interval scheduling (WISP1) and
the 2/3-approximation supplied in [5] for W ISP2. We also note that an optimal
algorithm for W ISPm can be obtained by a time O(nm) dynamic programming
algorithm or a time O(n2(n−m)) min cost max flow based algorithm [3].

For the interval scheduling problem (and the more general bandwidth al-
location problem) the natural input representation is that the input items are
intervals represented by their start times, finish times and weights (profits). This
representation is thus good “against” the natural LP formulation in which the
constraints are the bounds on the number of intervals that can be scheduled at
any time instance t.

For our packing results, we are thus far only able to provide bounds for fixed
order stack algorithms. This, however, does capture the one “meta-algorithm”
that Bar Noy et al use to solve various cases of the bandwidth allocation prob-

952 A. Borodin, D. Cashman, and A. Magen

lem. The fixed order there is determined by non-decreasing finishing times which
is also the order used for the optimal greedy algorithm for unweighted interval
scheduling, and for the one pass algorithms of Erlebach and Spieksma [14]. Ob-
viously our bound does not require the algorithm to use this ordering.

To provide a bound for a fixed-order model (be it a priority algorithm, back-
tracking algorithm [12], or stack algorithm), it is often useful to provide an initial
input set and claim that regardless of the ordering of elements in that set, some
combinatorial property must apply to a subset of the initial set. This is anal-
ogous to the Ramsey phenomena in graphs; i.e. in every colouring we can say
something about one of the colour classes. Restricted to such a (now ordered)
subset, we are able to bound the quality of the algorithm (see [12] Theorem 4.1).

We start by describing forbidden configurations of the input with respect
to an ordering. The first forbidden configuration consists of intervals I,J,K,
I ∩ J ∩ K �= ∅, that appear in that order and with profits x, y, z respectively,
such that y < x, z. We claim that if there is such a configuration, the best
approximation ratio achievable is

max{x/(x + y), (x + y)/(x + z), (y + z)/(x + z)}. (1)

To see the claim, consider the action of the algorithm on input that contains
(at most) only I, J and K. If the algorithm decides to reject an interval, that
interval becomes the last interval of the input. This leads to approximation ratios
0, x/(x + y) or (x + y)/(x + z) when rejecting the first, second or third items
respectively. In the more interesting case, all intervals are accepted to the stack,
and in the pop phase I will be rejected as it will be popped when J and K are
already in the solution. Therefore the algorithm achieves y + z while x + z is
possible, and the bound 1 follows.

Another forbidden configuration we consider is the following. There are four
intervals I1, I2,J,K of profits x, x, y, z respectively. I1 and I2 are disjoint, and
Ii ∩ J ∩ K �= ∅ for i = 1, 2. Also assume that y < 2x, z and that the order is
I1, I2,J,K or K,J, I1, I2. By a slightly more careful yet similar analysis, we show
that this configuration implies a lower bound of

max{1/2, 2x/(2x + y), (2x + y)/(2x + z), z/(y + z), (y + z)/(2x + z)}. (2)

We now describe the initial input set for our proof: There are two overlapping
intervals, one with profit a and the other with profit b, and three intervals,
each with profit c. Each c-interval overlaps the a and b intervals, but does not
overlap any other c-interval. Finally, for each c-interval, there are three “child”
intervals (for a total of 9), each with profit d. Each d-interval overlaps its parent
c-interval, and the a and b intervals, but no other intervals. We will later fix the
profit values, but for now we only require that a > b > c > d and 2d > b.

Now, a d or a c interval appearing between two other intervals of greater
profit corresponds to configuration I above. A b-interval appearing between an
a-interval and two c-intervals, or a c-interval appearing between a b-interval and
two d-intervals corresponds to configuration II above. By appropriately substi-
tuting the a, b, c, d values for x, y, z in equations 1 and 2, we obtain the following
bound on the approximation factor:

How Well Can Primal-Dual and Local-Ratio Algorithms Perform? 953

max {a/(a + d), (a + c)/(a + b), (a + d)/(a + c),
(c + d)/(b + c), 2c/(2c + b), (2c + b)/(2c + a),
(a + b)/(2c + a), 2d/(2d + c), (2d + c)/(2d + b)}}

(3)

Lemma 3. Any ordering selected by a fixed ordering stack algorithm will result
in at least one of the forbidden configurations described above.

The proof of the lemma is omitted from this extended abstract. Setting
(a, b, c, d) = (10, 8, 3

√
30− 10, 5), and substituting into (3) gives:

Theorem 3. For interval scheduling on two machines, no fixed ordering stack
algorithm can achieve a constant approximation factor better than .913.

We remark that the above can be extended to k machines, leading to a 1−O(1/k)
inapproximability result. This is not satisfying, as the upper bound achieved by
local ratio [5] is 1

2−1/k for k ≥ 2 which limits to 1/2 for large k.

6 Discussion and Conclusion

We have presented a syntactic model that captures the standard use of primal
dual/local ratio algorithms in the context of covering and packing problems. Our
framework exposes limits of these paradigms and hence hopefully suggests new
ways that modifications of these algorithmic techniques can be applied so as to
obtain better approximation guarantees while still maintaining the syntactic and
computational simplicity of the basic methods.

For example, our analysis of the interval scheduling problem does not preclude
the possibility of close to optimal and efficient (e.g. O(n log n) time) algorithms
for a large but fixed number of processors. For the more general bandwidth alloca-
tion problem, we would like to be able to derive a stack algorithm that can yield a
ratio better than 1/2 for small bandwidths. We have also seen the dependency of
these methods on the input representation which corresponds to the constraints
used in an LP relaxation of the problem. For the natural representations of set
cover, steiner tree and bandwidth allocation/interval allocation we can derive lim-
itations on the approximation ratio of such algorithms. But our bounds suggest
that further improvements can be made even assuming we stay within the natural
input representation. Our stack framework also suggests some natural extensions
to the known primal-dual/local-ratio paradigm; for example, allowing the stack al-
gorithm to make irrevocable acceptances during the push phase. The framework
also encourages us to think of other reasonable ways to order input items.

References

1. A. Agrawal, P. Klein, and R. Ravi. When trees collide: An approximation algorithm
for the generalized steiner problem on networks. SICOMP, 24:440–465, 1995.

2. S. Angelopoulos and A. Borodin. The power of priority algorithms for facility
location and set cover, 2002.

954 A. Borodin, D. Cashman, and A. Magen

3. E. M. Arkin and E. L. Silverberg. Scheduling jobs with fixed start and end times.
Disc. Appl. Math, 18:1–8, 1987.

4. S. Arora, B. Bollobás, and L. Lovász. Proving integrality gaps without know-
ing the linear program. In Proceedings of the 43rd Annual IEEE Conference on
Foundations of Computer Science, pages 313–322, 2002.

5. A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor, and B. Schieber. A unified ap-
proach to approximating resource allocation and scheduling. JACM, 48(5):1069–
1090, 2001.

6. R. Bar-Yehuda, A. Bendel, A. Freund, and D. Rawitz. Local ratio: A unified frame-
work for approxmation algorithms in memoriam: Shimon even 1935-2004. Com-
puting Surveys, 36:422–463, 2004.

7. R. Bar-Yehuda and S. Even. A linear time approximation algorithm for the
weighted vertex cover problem. Journal of Algorithms, 2:198–203, 1981.

8. R. Bar-Yehuda, M. M. Halldorsson, J. Naor, H. Shachnai, and I. Shapira. Schedul-
ing split intervals. In Proceedings of the 13th ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 732–741, 2002.

9. R. Bar-Yehuda and D. Rawitz. On the equivalence between the primal-dual schema
and the local ratio technique. In 4th International Workshop on Approximation Al-
gorithms for Combinatorial Optimization Problems, APPROX, pages 24–35, 2001.

10. R. Bar-Yehuda and D. Rawitz. Using fractional primal-dual to schedule split
intervals with demands, 2004.

11. A. Borodin, M. N. Nielsen, and C. Rackoff. (Incremental) priority algorithms. In
Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms,
2002.

12. M. Alekhnovich A. Borodin, J. Buresh-Oppenheim, R. Impagliazzo, A. Magen, and
T. Pitassi. Toward a model for backtracking and dynamic programming. Unpub-
lished manuscript, 2004.

13. S. Davis and R. Impagliazzo. Models of greedy algorithms for graph problems. In
Proceedings of the 15th ACM-SIAM Symposium on Discrete Algorithms, 2004.

14. T. Erlebach and F.C.R. Spieksma. Interval selection: Applications, algorithms,
and lower bounds. Technical Report 152, Computer Engineering and Networks
Laboratory, ETH, October 2002.

15. M. X. Goemans and D.P. Williamson. A general approximation technique for
constrained forest problems. SICOMP, 24:296–317, 1995.

16. K. Jain and V. Vazirani. Approximation algorithms for the metric facility loca-
tion problem and k-median problem using the primal-dual schema and lagrangian
relaxation. JACM, 48:274–299, 2001.

17. P. Klein and R. Ravi. When cycles collapse: A general approximation technique
for constrained two-connectivity problems. In Proceedings of the Third MPS Con-
ference on Integer Programming and Combinatorial Optimization, pages 39–55,
1993.

18. Rajagopalan and Vazirani. On the bidirected cut relaxation for the metric steiner
tree problem. In SODA, pages 742–751, 1999.

19. R. Raz and S. Safra. A sub-constant error-probability low-degree test, and sub-
constant error-probability pcp characterization of np. In Proceedings of the 29th
Annual ACM Symposium on the Theory of Computing, pages 475–484, 1997.

20. G. Robins and A. Zelikovsky. Improved steiner tree approximation in graphs. In
SODA, pages 770–779, 2001.

21. H. Saran, V. Vazirani, and N. Young. A primal-dual approach to approximation
algorithms for network steiner problems. In Proceedings of the Indo-US workshop
on Cooperative Research in Computer Science, pages 166–168, 1992.

How Well Can Primal-Dual and Local-Ratio Algorithms Perform? 955

22. Martin Thimm. On the approximability of the steiner tree problem. In Lecture
Notes in Computer Science, page 678. Springer-Verlag Heidelberg, 2001.

23. V. V. Vazirani. Approximation algorithms. Springer-Verlag New York, Inc., 2001.
24. D. P. Williamson. The primal-dual method for approximation algorithms. Math-

ematical Programming, Series B, 91(3):447–478, 2002.

Approximating Max kCSP - Outperforming
a Random Assignment with Almost

a Linear Factor

Gustav Hast

Department of Numerical Analysis and Computer Science,
Royal Institute of Technology, 100 44 Stockholm, Sweden

ghast@nada.kth.se

Abstract. An instance of Max kCSP consists of weighted k-ary con-
straints acting over a set of Boolean variables. The objective is to find
an assignment to the Boolean variables such that the total weight of
satisfied constraints is maximized. In this paper we provide a probabilis-
tical polynomial time approximation algorithm that c0k(log k)−12−k-
approximates Max kCSP, for a constant c0 > 0.

1 Introduction

An instance of Max kCSP consists of a set of Boolean variables and a set of
weighted constraints, each acting over a k-tuple of the variables. A solution is
an assignment of the Boolean variables, and its value is the sum of the weights
of the satisfied constraints. The objective is to find a solution with as large
value as possible. The Max kCSP problem is a natural generalization of many
well-known combinatorial maximization problems, such as Max CUT and Max
3SAT.

It is well-known that it is NP-hard to solve Max kCSP optimally. Therefore,
it is interesting to investigate if an efficient algorithm can find a good approxi-
mate solution. In order to measure the quality of an approximation algorithm,
we say that an algorithm r-approximates a maximization problem if the ratio
of the value of the solution found by the algorithm, and the value of an optimal
solution, is at least r for all instances. If the algorithm is probabilistic the value
of the solution may be an expected value over the random choices that are made
by the algorithm.

Trevisan [10] used a linear relaxation algorithm in order to 21−k-approximate
Max kCSP. He observed that the hardest instances consist of only conjunc-
tions of literals, where a literal is a variable or a negated variable. The prob-
lem Max kConjSAT consists of such instances. Trevisan then showed how
to 21−k-approximate Max kConjSAT. Note that a random assignment satis-
fies a single conjunction of length k with probability 2−k. This implies that a
random assignment 2−k-approximate Max kConjSAT, and thus the Trevisan
algorithm outperforms a random assignment with a factor of two. Recently, Hast

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 956–968, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Approximating Max kCSP - Outperforming a Random Assignment 957

[5] produced a 21.54−k-approximation of Max kCSP by utilizing a semi-definite
relaxation approach. Essentially, it combined already known algorithms for Max
2ConjSAT, Max 3ConjSAT and Max 4ConjSAT with a technique to reduce
large conjunctions into smaller ones.

If a Max kCSP instance is known to be satisfiable, then it can be (k+1)2−k-
approximated by using an algorithm by Trevisan [11]. The technique by Trevisan
reduces constraints, with at most k accepting inputs, into linear constraints. A
random assignment is then picked from the set of assignments that adhere to
the produced linear constraints. This ensures that each constraint is accepted
with probability at least (k + 1)2−k, and thus the algorithm is a (k + 1)2−k-
approximation.

In this paper we show that it is possible to c0k(log k)−12−k-approximate
general Max kCSP, for a constant c0 > 0. Our algorithm is the first that
outperforms a random assignment with an increasing factor for larger values of
k. It is interesting to see that we can match, up to a logarithmic factor, the
approximation ratio of Trevisan for satisfiable instances, even though we use
very different methods.

The power of a probabilistical checkable proof where the verifier asks k
bits is closely connected with the approximability of Max kCSP. The PCP
of Samorodnitsky and Trevisan [9] and the enhancement of Engebretsen and
Holmerin [3] shows that it is NP-hard to approximate Max kCSP within
2
√

2k−2+1/2−k. Our algorithm implies the following inclusion:

PCPc,s[log, k] ⊆ P, for any c/s >
log k

c0k
2k ,

where c is the completeness and s the soundness of a verifier that uses a loga-
rithmic number of random bits and asks k questions.

1.1 Our Method

An instance of Max kAllEqual consists of a collection of weighted constraints.
Each constraint is a k-tuple of literals and a constraint is satisfied if all its
literals have the same value, i.e., all are true or all are false. A simple reduction
shows that an r-approximation of Max kAllEqual can be turned into an r/2-
approximation of Max kConjSAT, and thus also into an r/2-approximation of
Max kCSP. In this paper we approximate Max kAllEqual in two steps. The
first step is to produce an unbalanced solution. For such a solution, constraints
tend to either have many literals that are true or many that are false. We find
such an unbalanced solution by using semi-definite relaxation techniques [2, 13].
We produce an assignment that is biased towards this solution. This is done by,
for some α ∈ [0, 1], assigning a variable according to the unbalanced solution
with probability (1 + α)/2, and negating the value with probability (1− α)/2.

It can be shown that as long as α is chosen appropriately such a biased
random assignment makes the value of all literals in a constraint equal with
much higher probability than if an unbiased random assignment is used. Too see
why this happen we look at a constraint consisting of eight literals of which the

958 G. Hast

first seven have the same value but the last one has the opposite value according
to the unbalanced solution. A random assignment makes all literals equal with
probability 2−7 ≈ 0.0078. For a biased random assignment the constraint is
satisfied if we assign the first seven literals according to the unbalanced solution
but the last literal is negated. This happens with probability

(
1+α

2

)7 (1−α
2

)
. By

choosing α = 3/4 this probability is larger than 0.049 making it more than six
times more probable to satisfy the constraint using a biased random assignment
compared with using an unbiased random assignment.

Let us briefly explain from where the approximation ratio of our algorithm
for Max kAllEqual comes from. Assume that we have a Max kAllEqual
instance and let W be the total weight of its constraints and let OPT be the
value of an optimal solution to the instance. The expected value of a random as-
signment is 2−kW , thus if OPT ≤ W/k then a random assignment achieves
an approximation ratio of k2−k. If OPT > W/k then the optimal solution
turns out to be unbalanced in our measure. If we pick an assignment that is
biased towards this solution we achieve an approximation ratio of k2−k. How-
ever, we do not know the optimal solution and instead we find an unbalanced
solution using the approximation algorithm by Charikar and Wirth [2]. In this
process we loose a factor of log k and thus the approximation ratio gets to be
Ω
(
k(log k)−12−k

)
.

1.2 Overview of the Paper

In Section 2 we define problems relevant to this paper. The next section contains
the formal description of our Max kAllEqual algorithm along with an analysis
of its approximation ratio. In Section 4 we evaluate our algorithm numerically
and give approximation ratios for Max kCSP, k = 5 . . . 100. In the last section
we identify a PCP class as a subset of P.

2 Definitions

An instance of the Max kCSP problem consists of a set {C1, . . . ,Cm} of con-
straints with associated non-negative weights {w1, . . . , wm} and a set of Boolean
variables X = {x1, . . . , xn}. Each clause Ci consists of a Boolean function fi of
arity h ≤ k and a size h tuple of Boolean variables (xi1 , . . . , xih

) where xij
∈ X.

A solution is an assignment to X and the objective value of the solution is the
sum of the weights of the satisfied clauses. A clause Ci = (fi, (xi1 , . . . , xih

)) is
satisfied if and only if fi(xi1 , . . . , xih

) is true.
Let X define the set {x : x ∈ X}. Max kConjSAT is a special type of Max

kCSP where each constraint is a conjunction of at most k literals from X ∪X.
Max kAllEqual is also a special type of Max kCSP. Each constraint is a

tuple of at most k literals from X ∪X, and it is satisfied if and only if all literals
have the same value.

The sum of all weights in an instance,
∑m

i=1 wi, is denoted by W . We use
OPT to refer to the value of an optimal solution to an instance and APP is used

Approximating Max kCSP - Outperforming a Random Assignment 959

to refer to the value of an approximative solution. We also use the normalized
values app = APP/W and opt = OPT/W .

3 An Approximation Algorithm for Max kAllEqual

In this section we describe and analyze our approximation algorithm for Max
kAllEqual. After the analysis we show some consequences for the approxima-
bility of Max kConjSAT and Max kCSP.

3.1 Algorithm Description

If some of the constraints of a Max kAllEqual are not of size k, then these
constraints are padded into size k using auxiliary variables, where each new
variable only appears once in the instance. This will not effect the satisfiability
of the instance. Thus, we can assume that all constraints are of length k. The
algorithm is shown in Figure 1.

Input: A set of Boolean variables {x1, . . . xn} and a set of all equal constraints
{C1, . . . Cm} with corresponding weights {w1, . . . wm}.

1. (EQ2-gadget) Each constraint Ci = zi1 ≡ zi2 . . . ≡ zik is transformed into
k(k − 1)/2 equality constraints, zi1 ≡ zi2 , zi1 ≡ zi3 , . . . zik−1 ≡ zik . Each
constraint is given weight wi.

2. (Solve Max 2AllEqual) Use the Charikar and Wirth [2] algorithm in order
to satisfy as much weight of the equality constraints as possible. Let bi be the
value of variable xi in the produced solution.

3. (Biased random assignment) For i := 1,. . .,n: assign xi according to

xi :=

{
bi with probability (1 + α)/2

bi with probability (1− α)/2
,

with α = 1/
√
k.

Fig. 1. Algorithm ALG: a Max kAllEqual algorithm

3.2 Algorithm Analysis

Theorem 1. For a constant c > 0, Max kAllEqual, for k ≥ 2, can in prob-
abilistical polynomial time be approximated within a factor of ck(log k)−12−k.

The proof of Theorem 1 is based on Lemmas 2 and 4.
Given an assignment to a Max kAllEqual instance we call a constraint

unbalanced if either many literals are true or many literals are false. Given an
assignment and a constraint Ci, γi is defined such that k/2 + γi literals are true
and k/2 − γi are false. Thus, γi is a function depending on an assignment but
due to notational convenience we do not make this dependency explicit. For a

960 G. Hast

fixed assignment, we let γ2
i be a measure of how unbalanced Ci is. The following

lemma shows that if there exists a good solution to a Max kAllEqual instance,
then we are able to find an assignment which makes constraints of large weight
unbalanced. We do this by first transforming the Max kAllEqual instance
into a Max 2AllEqual instance, and then solving it using the Charikar-Wirth
algorithm.

Lemma 2. Let I be an instance of Max kAllEqual with total weight W and
assume that the value of an optimal solution is opt ·W where k · opt ≥ 3. Let
d = ccw(k · opt − 1)/(4 log k), where ccw is a positive constant defined by the
Charikar-Wirth algorithm. Then a solution can be produced in polynomial time
such that

dk ≤ E

⎡⎣ 1
W

∑
i:|γi|>

√
k/2

wiγ
2
i

⎤⎦ , (1)

where the expectation is taken over the random choices of the Charikar-Wirth
algorithm.

Proof. Each constraint of k literals is transformed into k(k − 1)/2 equality con-
straints of arity two. If the original constraint is satisfied, then all new equality
constraints are satisfied as well. If k/2+γ literals are true and k/2−γ false, then
the number of equality constraints that are not satisfied is (k/2 + γ)(k/2− γ) =
k2/4 − γ2. Thus, at least k(k − 1)/2 − k2/4 constraints are satisfied for any
assignment.

A Max kAllEqual instance is transformed into a Max 2AllEqual in-
stance according to the first step of Algorithm ALG. An optimal solution that
satisfies weight opt ·W in the original Max kAllEqual instance then satisfies
clauses of weight

opt
(

k

2

)
W + (1− opt)

((
k

2

)
− k2

4

)
W =

((
k

2

)
− k2

4
+ opt

k2

4

)
W ,

in the Max 2AllEqual instance. We define that a solution of weight Weq(1/2+
δ) has gain δ, where Weq = Wk(k − 1)/2 is the total weight of the Max
2AllEqual instance. The gain is a measure of how much better a solution
is compared to a random assignment. We let δ∗ denote the optimal gain. From

Weq

(
1
2

+ δ∗
)
≥
((

k

2

)
− k2

4
+ opt

k2

4

)
W

it is not hard to derive the following lower bound

δ∗ ≥ k · opt− 1
2(k − 1)

.

We have the following Lemma due to Charikar and Wirth.

Approximating Max kCSP - Outperforming a Random Assignment 961

Lemma 3 (Charikar and Wirth [2]). If δ∗ is the optimum gain of a Max
CUT instance, ApproxMaxQP returns a solution whose expected gain is at least

ccw

(
δ∗

log(1/δ∗)

)
,

for a constant ccw > 0.

The proof of Lemma 3 shows that ccw = 1/64 is a valid choice. ApproxMaxQP
is a probabilistical polynomial time algorithm and the above lemma is still valid
if we instead of a Max CUT instance consider the more general case of a Max
2AllEqual instance.

We analyze the logarithmic factor that is lost when using the Charikar-Wirth
algorithm. The assumption from Lemma 2 implies that k · opt− 1 ≥ 2, thus

log(1/δ∗) ≤ log
2(k − 1)

k · opt− 1
< log k .

We run the algorithm of Charikar and Wirth. Lemma 3 implies that the expected
gain δ of the produced solution can be lower bounded

δ ≥ ccw
δ∗

log(1/δ∗)
> ccw

k · opt− 1
2(k − 1) log k

. (2)

Remember that γi is the value such that k/2+γi of the literals in constraint Ci

are true and k/2−γi are false according to the solution produced by the Charikar-
Wirth algorithm. The weight of satisfied equality constraints corresponding to
constraint Ci is then

((
k

2

)
−
(

k

2
+ γi

)(
k

2
− γi

))
wi =

(
k(k − 1)

4
+
(

γ2
i −

k

4

))
wi .

We sum the contribution of each constraint in order to get the total weight of
satisfied equality constraints. Thus,

Weq

(
1
2

+ δ

)
= E

[
m∑

i=1

wi

(
k(k − 1)

4
+
(

γ2
i −

k

4

))]

which implies that

(
k

2

)
δW = E

[
m∑

i=1

wi

(
γ2

i −
k

4

)]
. (3)

962 G. Hast

We derive from (2) a lower bound for the weighted sum of γ2
i which concludes

the proof of the lemma:

E

⎡⎣ 1
W

∑
i:|γi|>

√
k/2

wiγ
2
i

⎤⎦ ≥ E

⎡⎣ 1
W

∑
i:|γi|>

√
k/2

wi

(
γ2

i −
k

4

)⎤⎦
≥ E

[
1
W

m∑
i=1

wi

(
γ2

i −
k

4

)]
=
(

k

2

)
δ

≥ k(k − 1)
2

ccw
k · opt− 1

2(k − 1) log k
≥ kccw(k · opt− 1)

4 log k
,

where the equality follows from (3). ��

Lemma 4. Let I be an instance of Max kAllEqual with total weight W and
{b1, . . . bn} is a solution such that

dk ≤ 1
W

∑
i:|γi|>

√
k/2

wiγ
2
i ,

for d ≥ 1. Then the solution defined by

xi :=
{

bi with probability (1 + α)/2
bi with probability (1− α)/2

,

with α = 1/
√

k has an expected value of at least e2
√

d−1/22−kW .

Proof. Consider a constraint Ci that has |γi| >
√

k/2. Let AEi be the event that
all literals in Ci get the same value after the biased random assignment.

Pr [AEi] = Pr [all literals true] + Pr [all literals false]

=
(

1 + α

2

) k
2 +γi

(
1− α

2

) k
2−γi

+
(

1− α

2

) k
2 +γi

(
1 + α

2

) k
2−γi

> 2−k
(
(1 + α)

k
2 +|γi| (1− α)

k
2−|γi|

)
= 2−k

(
(1 + α)2|γi| (1− α2

) k
2−|γi|

)
> 2−ke2α|γi|− k

2α
2
.

The following claim validates the last inequality. The proof of the claim can be
found in [6].

Claim. For 1 ≥ α > 0 and 2|γi| ≥ kα,

(1 + α)2|γi| (1− α2
) k

2−|γi|
> e2α|γi|− k

2α
2
.

Approximating Max kCSP - Outperforming a Random Assignment 963

We calculate a lower bound on the expected weight of constraints that either
have all literals true or all literals false.∑

i:|γi|>
√

k/2

wiPr [AEi] > 2−k
∑

i:|γi|>
√

k/2

wie
2α|γi|− k

2α
2

(4)

We let si = γ2
i and rewrite the above lower bound:

2−ke−
k
2α

2 ∑
i:
√
si>

√
k/2

wie
2α
√
si .

We consider the terms e2α
√
si as functions of si and calculate their second deriva-

tive:

∂

∂2si
e2α

√
si =

(
α− 1

2
√

si

)
αs−1

i e2α
√
si .

We see that the second derivative is positive as long as α > 1
2
√
si

, thus e2α
√
si

is convex for all terms of the sum because
√

si >
√

k/2 and α = 1/
√

k. The
condition in the lemma gives a lower bound to

∑
i:
√
si>

√
k/2 wisi. Thus, using

Jensen’s inequality we conclude that (4) is minimized if all values of |γi| over
the threshold are equal.

We let W+ be the weight of all conjunctions meeting the threshold condition,
W+ =

∑
i:|γi|>

√
k/2 wi. We will see that the worst case happens if W+ = W ,

but for now we are general and let W+ = xW where x is a value between 0 and
1. In order to minimize (4), the value of all |γi| above the threshold should be
equal and by the assumption of the lemma at least

√
dk/x. We apply this to (4)

and get the expected weight of constraints that either have all literals true or all
literals false.

2−k
∑

i:|γi|>
√

k/2

wie
2|γi|√

k
− 1

2 ≥ 2−kxWe2
√

d/x−1/2 . (5)

We calculate the derivative of the above expression

∂

∂x
2−kxWe2

√
d/x−1/2 = (1−

√
d/x)2−ke2

√
d/x−1/2W .

As d ≥ 1, we see that the derivative is non-positive for x ∈ (0, 1]. Thus, (5) is
minimized by setting x = 1 and thus the expected weight of satisfied constraints
is at least 22

√
2d−1/22−kW which concludes the proof of Lemma 4. ��

We are now ready to prove Theorem 1 by using Lemma 2 and Lemma 4.

Proof (Theorem 1). Let I be an instance of Max kAllEqual and let opt be
the normalized value of an optimal solution. Set c = (c1/ccw + 1)−1, where c1

964 G. Hast

is a positive constant yet to be defined. If opt ≤ log k/(ck), then a random
assignment achieves the following approximation ratio:

APP
OPT

≥ 2−kW

log k/(ck)W
=

ck

log k
2−k .

Thus, we only need to consider if opt > log k/(ck). Assume that for some r > 1
we have that opt = r log k/(ck). We note that k · opt ≥ log k/c > 3 and apply
Lemma 2 with

d = ccw
k · opt− 1

4 log k
= ccw

r/c− 1
4

= ccw
r(c1/ccw + 1)− 1

4
> rc1/4 .

We can now apply Lemma 4 with an expected value of d = rc1/4. However, if
d < 1 then Lemma 4 does not give anything and thus the expected value of the
solution could be zero. The following function expresses a lower bound for the
expected value of the solution{

0 if 0 ≤ d < 1
e2
√

d−1/22−kW if d ≥ 1
.

It is not convex and thus we cannot apply Jensen’s inequality. However, the
following linear function is a lower bound for that function:

c2(d− 1)2−kW , where c2 = min
d>1

e2
√

d−1/2

d− 1
≈ 9.5 . (6)

By applying the lower bound (6) we get that APP, the expected value of the
solution, is at least c2(rc1/4− 1)2−kW . By setting c1 = 4/c2 + 4 we ensure that
APP ≥ r2−kW and thus the approximation ratio is

APP
OPT

>
r2−kW

r log k/(ck)W
=

ck

log k
2−k ,

which concludes the proof of Theorem 1. ��

3.3 Consequences for Max kConjSAT and Max kCSP

By using a simple observation we derive from Theorem 1 the following result on
the approximability of Max kConjSAT. The proof can be found in [6].

Theorem 5. There exists a constant c0 > 0 such that Max kConjSAT, for
k ≥ 2, can in probabilistical polynomial time be approximated within a factor of
c0k(log k)−12−k.

By using the observation of Trevisan [10], we conclude that an algorithm for
Max kConjSAT implies an approximation algorithm for Max kCSP with the
same approximation ratio. Thus, as a consequence of Theorem 5 we get our main
theorem:

Theorem 6. There exists a constant c0 > 0 such that Max kCSP, for k ≥
2, can in probabilistical polynomial time be approximated within a factor of
c0k(log k)−12−k.

Approximating Max kCSP - Outperforming a Random Assignment 965

4 Numerical Approximation Ratios for Fixed Values of k

In this section we give approximation ratios for Max kCSP for values of 5 ≤
k ≤ 100. The ratios are obtained using numerical methods and are presented
in Figure 2. For k ≤ 4 there are known good approximation algorithms, which
outperform our algorithm with a broad margin [4, 7, 12].

In this section we use an algorithm slightly different from Algorithm ALG
which is presented in Figure 1. First we use Zwick’s outward rotation algo-
rithm [13] in order to approximate the Max 2AllEqual instance instead of
the Charikar-Wirth algorithm. This choice is made because an exact approx-
imation ratio can numerically be calculated from [13], if the optimal gain is
known. In the last step of Algorithm ALG we use a somewhat different value of
the bias α. Given the solution of the Max 2AllEqual instance, it is possible to
calculate the optimal value of the parameter α. However, our calculation show
that by setting

α =

√
1
k

+
(

2− 2
k

)
δ ,

where δ is the expected gain of the approximate solution, we obtain an approxi-
mation ratio very close to the ratio that would be obtained if we used the optimal

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

k, clause length

ap
pr

ox
im

at
io

n
ra

tio
 *

 2
k

Fig. 2. Approximation ratios for Max kCSP

966 G. Hast

value of α. We choose this suboptimal value to ensure easier reproducibility of
the graph in Figure 2.

We can heuristically show why this value of α is suitable. It seems that the
worst case is if the solution makes all constraints equally unbalanced, thus the
value of |γi| is equal for all constraints. In the proof of Lemma 2 we saw that(

k

2

)
δW = E

[
m∑

i=1

wi

(
γ2

i −
k

4

)]
.

This implies that the worst case is if |γi| =
√

δk(k − 1)/2 + k/4.
In the proof of Lemma 4 we showed that the probability that all literals in

a constraint get the same value after a biased random assignment is at least
2−ke2α|γi|− k

2α
2
. It is easy to show that this expression is maximized by setting

α = 2|γi|/k. Inserting the worst case value for |γi| in this expression we see that
α is equal to the value we use.

For each value of k we calculate the approximation ratio in the following way.
For each possible optimal gain, using a suitable discretization, we calculate the
expected gain δ of the solution produced by the algorithm of Zwick. We then
produce a linear program where the objective value is equal to the expected
normalized objective value of the solution produced by the biased random as-
signment. The linear program has k+1 variables y0, y1, . . . yk, where yi indicates
the total weight of constraints with exactly i literals true. There are also con-
stants d0, . . . dk, where di = k(k−1)

2 −i(k−i) is the number of pair of literals that
are equal in a constraint with exactly i literals true. We let bi be the probability
that a constraint with exactly i literals true will be all equal after the biased
random assignment. This value depends on our choice of α.

min
k∑

i=0

biyi, given
k∑

i=0

yi = 1 and
k∑

i=0

diyi =
k(k − 1)

2

(
1
2

+ δ

)
By solving the linear program we get a numerical value of the approximation
ratio of the Max kAllEqual algorithm. By dividing this value with two we
get the approximation ratio of the Max kCSP algorithm.

Our algorithm approximates Max 5CSP within 2.91 · 2−5. The general
21.54−k = 2.90 · 2−k approximation algorithm in [5] do better for small val-
ues of k and actually 3.68 · 2−5 approximates Max 5CSP. However, for values
of k ≥ 6 our algorithm achieves the best known approximation ratio for Max
kCSP.

5 Relation with PCP Classes

We use the standard notation and definitions in connection with probabilistical
checkable proofs, PCPs. For those unfamiliar with these, we refer to the work of
Bellare et al. [1] which also contains the history of PCPs. The complexity class
PCPc,s[log, q] contains all languages that have a verifier with completeness c,

Approximating Max kCSP - Outperforming a Random Assignment 967

soundness s, which uses only a logarithmic number of random bits and asks at
most q (adaptive) questions.

The power of PCPs asking k questions is closely related to the approxima-
bility of Max kConjSAT as can be seen by the following theorem:

Theorem 7 (Trevisan [10]). If, for some r ≤ 1, Max kConjSAT is deter-
ministically r-approximable in polynomial time then PCPc,s[log, k] ⊆ P for any
c/s > 1/r.

Our Max kConjSAT algorithm is probabilistic, thus it is not immediate that
the above theorem can be applied. There are two steps in our algorithm that
are probabilistic, the rounding in the Charikar-Wirth algorithm and the biased
random assignment. We believe that the Charikar-Wirth algorithm can be deran-
domized using the method of Mahajan and Ramesh [8], but we have not looked
into the details. The biased random assignment can be derandomized using con-
ditional probabilities. However, in Theorem 7 we only need an algorithm that
give a lower bound of the optimal value, not an approximate solution. We get
such a lower bound directly from the semidefinite program of the Charikar-Wirth
algorithm. Thus, we have the following theorem.

Theorem 8. PCPc,s[log, k] ⊆ P for any c/s > log k
c0k 2k, where c0 > 0 is the

constant in Theorem 5.

Acknowledgment. I am very grateful for the help that Johan H̊astad gave me
when analyzing Algorithm ALG and in preparing this paper.

References

1. Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free bits, PCPs, and nonap-
proximability - towards tight results. SIAM Journal on Computing, 27(3):804–915,
1998.

2. Moses Charikar and Anthony Wirth. Maximizing quadratic programs: Extending
Grothendieck’s inequality. In Proceedings of the 45th Annual IEEE Symposium on
Foundations of Computer Science, pages 54–60, 2004.

3. Lars Engebretsen and Jonas Holmerin. More efficient queries in PCPs for NP and
improved approximation hardness of maximum CSP. In Proceedings of STACS
2005, Lecture Notes in Computer Science 3404, pages 194–205, 2005.

4. Venkatesan Guruswami, Daniel Lewin, Madhu Sudan, and Luca Trevisan. A tight
characterization of NP with 3 query PCPs. In Proceedings of the 39th Annual
IEEE Symposium on Foundations of Computer Science, pages 8–17, 1998.

5. Gustav Hast. Approximating Max kCSP using random restrictions. In Proceedings
of APPROX 2004, Lecture Notes in Computer Science 3122, pages 151–162, 2004.

6. Gustav Hast. Beating a Random Assignment. PhD thesis, Royal Institute of
Technology, 2005.

7. Michael Lewin, Dror Livnat, and Uri Zwick. Improved rounding techniques for the
MAX 2-SAT and MAX DI-CUT problems. In Proceedings of 9th IPCO, Lecture
Notes in Computer Science 2337, pages 67–82, 2002.

968 G. Hast

8. Sanjeev Mahajan and H. Ramesh. Derandomizing approximation algorithms based
on semidefinite programming. SIAM Journal on Computing, 28(5):1641–1663,
1999.

9. Alex Samorodnitsky and Luca Trevisan. A PCP characterization of NP with
optimal amortized query complexity. In Proceedings of the 32nd ACM Symposium
on Theory of Computing, pages 191–199, 2000.

10. Luca Trevisan. Parallel approximation algorithms by positive linear programming.
Algorithmica, 21(1):72–88, 1998.

11. Luca Trevisan. Approximating satisfiable satisfiability problems. Algorithmica,
28(1):145–172, 2000.

12. Uri Zwick. Approximation algorithms for constraint satisfaction problems involving
at most three variables per constraint. In Proceedings of the 9th Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 201–210, 1998.

13. Uri Zwick. Outward rotations: a tool for rounding solutions of semidefinite pro-
gramming relaxations, with applications to max cut and other problems. In Pro-
ceedings of the 31st annual ACM symposium on Theory of computing, pages 679–
687, 1999.

On Dynamic Bit-Probe Complexity

Corina E. Pǎtraşcu1 and Mihai Pǎtraşcu2

1 Harvard University
patrascu@fas.harvard.edu

2 MIT
mip@mit.edu

Abstract. This paper presents several advances in the understanding
of dynamic data structures in the bit-probe model:

– We improve the lower bound record for dynamic language member-
ship problems to Ω((lg n

lg lg n
)2). Surpassing Ω(lg n) was listed as the

first open problem in a survey by Miltersen.
– We prove a bound of Ω(lg n

lg lg lg n
) for maintaining partial sums in

Z/2Z. Previously, the known bounds were Ω(lg n
lg lg n

) and O(lg n).

– We prove a surprising and tight upper bound of O(lg n
lg lg n

) for prede-
cessor problems. We use this to obtain the same upper bound for
dynamic word and prefix problems in group-free monoids.

1 Introduction

Bit-probe complexity can be considered a fundamental measure of computation.
When analyzing space-bounded algorithms (branching programs), it is usually
preferred to cell-probe1 complexity. In data structures, cell-probe complexity is
used more frequently, but the machine independence and overall cleanness of
the bit-probe measure have made it a persistent object of study since the dawn
of theoretical computer science. Nonetheless, many of the most fundamental
questions are not yet understood. In this paper, we address this on several fronts.

Record Lower Bound. We prove a lower bound of Ω((lg n
lg lg n)2) for dynamic con-

nectivity. This problem asks to maintain an undirected graph, under insertion
and deletion of edges, and queries asking whether two nodes are in the same
connected component. The best upper bound is O(lg2 n · (lg lg n)3) [1], so our
lower bound is optimal up to doubly logarithmic factors.

Our lower bound is the highest known bound for an explicit dynamic language
membership problem. The previous record was Ω(lg n), shown in [2]. A survey on
cell probe complexity by Miltersen [3] lists improving this bound as the first open

1 Of course, the bit-probe model is an instantiation of the cell-probe model with one-
bit cells. For conciseness, however, we shall use “cell-probe” in a more restricted
sense, to refer to the cell-probe model with cells of Θ(lg n) bits.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 969–981, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

970 C.E. Pǎtraşcu and M. Pǎtraşcu

problem among three major challenges for future research. Our lower bound is
based on the recent technique of Pǎtraşcu and Demaine [4], which proved the first
Ω(lg n) bounds in the cell-probe model. While our contribution is mostly a series
of technical tricks necessary for the bit-probe model, it should be noted that in
no way is our Ω̃(lg2 n) bound a mere echo of an Ω(lg n) bound in the cell-probe
model. Indeed, Ω(lg n

lg lg n) bounds in the cell-probe model have been known for one
and a half decades (including for dynamic connectivity), but the bit-probe record
has remained just the trivially higher Ω(lg n). To our knowledge, our bound is
the first to show a quasi-optimal Ω̃(lg n) separation between the cell-probe and
bit-probe complexity, when the cell-probe complexity is superconstant.

Lower Bound for Maintaining Partial Sums. One of the most fundamental data-
structure problems is maintaining partial sums. This problems asks to maintain
an array A[1..n] under an update(k, x) operation, which changes A[k] ← x,
and a sum(k) operation, which asks for a partial sum

∑k
i=1 A[i]. Because we are

concerned with the bit-probe model, it is most natural to consider the case when
all operations are done in Z/2Z, i.e. we are interested in prefix parity. This can
be generalized to any fixed cyclic group Z/kZ, without any change in the bounds
discussed below. The only known upper bound is the classic O(lg n), based on a
balanced binary tree. It is widely believed that this is optimal.

Fredman [5] proved a lower bound of Ω(lg n
lg lg n) by considering the following

greater-than problem. First, the algorithm is given a number a ∈ [n], and can
write tu bits. Then, the algorithm is given another number b ∈ [n], and it must
determine whether b > a through tq bit probes. Observe that there is a trivial
reduction from this problem to the partial sums problem, with one update and
one query. It is quite tempting to believe that one cannot improve past the trivial
upper bound tu = tq = O(lg n), since, in some sense, this is the complexity of
“writing down” a. However, we show below that Fredman’s bound is optimal for
the greater-than problem. Therefore, one needs a different strategy to improve
the lower bound for maintaining partial sums.

It is natural to approach the problem in the framework of [4], which could
prove an Ω(lg n) bound in the cell-probe model (of course, the group was Z/nZ in
that case, matching the cell size). Applying the tricks we developed for dynamic
connectivity will only reprove the old Ω(lg n

lg lg n) bound. For reasons discussed
below, obtaining Ω(lg n) seems quite difficult.

We can, nonetheless, prove an Ω(lg n
lg lg lg n) bound, which is only a triply-

logarithmic factor away from the upper bound! We find the technique of this
bound at least as interesting as the result itself. The proof uses a variation of
the chronogram technique of Fredman and Saks [6]. However, it is well known
that the classic chronogram technique can only prove Ω(lg n

lg lg n). We present a
small, yet very important variation, which brings a considerable strengthening
of this technique: with this improvement, the chronogram technique can prove
lower bounds of Ω(lg n) in the cell-probe model. To fully appreciate this devel-
opment, one must remember that the chronogram technique was virtually the
only available technique for proving dynamic lower bounds before the work of [4].

On Dynamic Bit-Probe Complexity 971

At the same time, obtaining a logarithmic bound in the cell-probe model was
viewed as one of the most important problems in data-structure lower bounds.
It is now quite surprising to find that the answer has always been this close.

Upper Bound for Predecessor Problems. As mentioned already, we can achieve
an O(lg n

lg lg n) upper bound for Fredman’s greater-than problem. In fact, we can
achieve the same bound for several predecessor-type problems. Consider the clas-
sic predecessor problem: maintain a dynamic set S, under queries to determine
(some information about) the predecessor in S of a given number. Unfortunately,
we cannot determine the actual predecessor in o(lg n), because the output itself
has this many bits of entropy. But we can recover some constant amount of in-
formation about the predecessor (a stored “color”), which proves to be enough
for many purposes. For our classification of dynamic prefix problems, it is impor-
tant to generalize this slightly to the colored k-predecessor problem: the query
asks for the colors of the k predecessors of a given number. Here k is part of the
definition of the problem, so it is a constant.

In the interest of dynamic prefix problems, we also study a more unusual
stabbing problem. The problem itself is an interesting trick to circumvent finding
an exact predecessor in many cases. We have to maintain a dynamic set S =
{b1, b2, . . . } under the following query operation: given j ∈ (bi, bi+1), the query
determines a value in (bi, bi+1), which is only a function of bi and bi+1, but not of
j or i. Imagine that the elements of S break [n] into segments. The query must
then produce a representative for the segment stabbed by j, which is inside the
segment, but is independent of the actual choice of j. Adding or removing an
element merges or splits segments. The representatives of these affected segments
may change arbitrarily, but those of any other segments must remain the same
(because they are only functions of the end-points). The segment representative
has lg n bits, so it is maybe surprising that one can be found in O(lg n

lg lg n) time.
Of course, the query cannot actually write down the representative, but the
representative is determined by the query’s input and its bit probes.

A tight tradeoff between tu and tq was recently given for the greater-than
problem [7]. We can match this tradeoff for the more general predecessor prob-
lems that we consider. More details will be given in the full version of this paper.

Dynamic Word and Prefix Problems. Dynamic prefix problems are defined like
the partial sums problem, except that all additions take place in an arbitrary
finite monoid. The word problem is identical to the prefix problem, except that
queries only ask for the sum of the entire array, not an arbitrary prefix. The prob-
lem is defined by the monoid, so the monoid is considered fixed (and constants
may depend on it). The aim is to understand the complexity of the problem
in terms of the structure of the monoid. This line of research was inspired by
the intense study of parallel word problems, which eventually led to a complete
classification. Both in the parallel and in the dynamic case, it can be seen that
many fundamental problems are equivalent to word and prefix problems for cer-
tain classes of monoids. Examples include partial sums modulo some value, the
predecessor problem, and the priority queue problem. In the full version, we also

972 C.E. Pǎtraşcu and M. Pǎtraşcu

show that existential range queries in one dimension are captured by a class
of monoids. In general, we would expect any fundamental problem of a certain
one-dimensional flavor to be represented, making word problems an interesting
avenue for complexity-theoretic research.

The seminal paper of Frandsen, Miltersen and Skyum [8] achieved tight
bounds for many classes of monoids, both in the bit-probe and in the cell-probe
models, but the classification is incomplete in both cases. In this paper, we fur-
ther the classification for the bit-probe model in two ways. First, our lower bound
for partial sums in Z/kZ applies to the prefix problem in any monoid containing
groups, and for the word problem in monoids containing a certain kind of ex-
ternally noncommutative cycles [8–Theorem 2.5.1]. Second, we derive an upper
bound of O(lg n

lg lg n) for the word and prefix problems in group-free monoids. This
uses the same algebraic toolkit as used by [8] in the cell-probe model, but our ap-
plication needs several interesting algorithmic ideas to handle the idiosyncrasies
of the bit-probe model.

2 Lower Bound for Dynamic Connectivity

Theorem 1. Maintaining dynamic connectivity requires Ω((lg n
lg lg n)2) bit probes,

amortized per operation, in the average case of a certain input distribution.

We first describe the dynamic graph used in our lower-bound construction;
refer to Figure 1. The vertex set is roughly given by an integer grid of size√

n×
√

n. The edge set is given by a series of permutation boxes. A permutation
box connects the nodes in a column to the nodes in the next column arbitrarily,
according to a given permutation in S√n. Notice that the permutations decom-
pose the graph into a collection of

√
n paths. As the paths evolve horizontally,

the y coordinates change arbitrarily at each point due to the permutations. In
addition to this, there is a special test vertex to the left. This is connected to a
subset of the vertices in the first column.

We now describe the hard sequence of operations. The shape of the graph
allows us to implement a partial sums problem over S√n. The partial sums
macro-operations are implemented as follows:

π√nπ2π1

√
n

Fig. 1. Our graphs can be viewed as a sequence of
√

n permutation boxes

On Dynamic Bit-Probe Complexity 973

update(i,π): sets πi = π. This is done by removing all edges in permutation
box i and inserting new edges corresponding to the new permutation π. This
uses O(

√
n) elementary operations.

sum(i): returns σ = π1 ◦ · · · ◦ πi. We use O(lg n) phases, each one guessing
a bit of σ(j) for all j. Phase k begins by removing all edges incident to
the test node. Then, we add edges from the test vertex to all vertices in
the first column, whose row number has a one in the k-th bit. Then, we
test connectivity of all vertices from the i-th column and the test node,
respectively. This determines the k-th bit of σ(j) for all j. In total, sum uses
O(
√

n lg n) elementary operations.

This construction differs from the one used in the cell-probe model. There, it was
possible to prove a lower bound for a verify operation, which verifies a given
partial sum, rather than compute one from scratch. This does not seem possible
in the bit-probe model. The reason is quite technical: the “separators” used for
the cell-probe proof are too large. Unfortunately, known lower bounds show that
those separators are actually optimal, so the approach fails altogether. In the
bit-probe model, we are forced to revert to the sum operation. Interestingly, we
can still prove a good lower bound even if we blow up the queries by a lg n factor:
the cost is just one of the lg lg n factors in the denominator.

To fully specify the hard sequence, we must still say how updates and sums
are generated. We choose m = nε macro-operations randomly and independently
(ε > 0 can be an arbitrary small constant). Because queries are O(lg n) time more
expensive, each operation is chosen to be a query with probability 1

lg n . The
arguments of each operation (i, possibly π) are picked uniformly at random. Let
t be the running time of a connectivity operation. The total expected running
for m operations is O(t

√
n(1− 1

lg n)m + t
√

n lg n · 1
lg nm) = O(mt

√
n). We shall

prove an Ω(m
√

n(lg n
lg lg n)2) lower bound, implying the desired bound on t.

Proof of the Lower Bound. Following [4], we consider a tree whose leaves rep-
resent the entire sequence of operations in time order. Any bit probe is charac-
terized by when it occurs and when the bit was last written. These times are
given by two leaves in the tree. For every node in the tree, we will lower bound
the number of bit probes with the write time in the subtree of the node, and
the read time in a subtree of a right sibling of the node. We then add up these
lower bounds for all nodes, to obtain the overall bound. The correctness of this
strategy follows by two observations. First, we never double count a bit probe:
it is only counted for the node immediately under the lowest common ancestor
of the read and write times. Second, we can sum the lower bounds because they
all hold in the average case, under the same distribution.

We choose the branching factor of the time-tree to be Θ(lg n), as suggested
by the following intuition. Queries are fewer than updates by a logarithmic fac-
tor (because they are expensive). For maximal hardness, we must show that
essentially all information in a series of updates is extracted. To do this, we
must reuse most queries Θ(lg n) times. Most nodes have Θ(lg n) right siblings.
If the node has L leaves under it, we expect Θ(L) updates in its subtree, and

974 C.E. Pǎtraşcu and M. Pǎtraşcu

Θ(lg n · L 1
lg n) = Θ(L) queries in the subtrees of its right siblings, which allows

all information to be extracted. Thus, a query is effectively reused Θ(lg n) times
on each level – in the lower bound for all left siblings of its ancestor.

Lemma 2. Consider two adjacent intervals of operations, the left one of size L,
and the right one of size Θ(L lg n). Let r be the number of bit probes executed
in the right interval, and c the number of probes from the right interval, which
access a bit whose value after the left interval differs from its value before the
left interval. Then E[lg

(
r
c

)
] = Ω(L

√
n lg n).

Proof. Assume that we are told the entire sequence of macro-operations, except
the ones in the left interval. Given this information, the sequence of answers
to the sum queries from the right interval has entropy Ω(L

√
n lg n); see [4–

Lemmas 5.3 and 5.4]. In essence, we expect Θ(L) updates in the left interval,
and Θ(L) queries in the right interval. Further, we expect these to interleave
almost perfectly, causing the answers to Ω(L) queries to be independent.

We now propose the following encoding for the answers to the queries: encode
r, c, and the subset of the r bit probes which touch a bit changed during the left
interval, and not yet changed in the right interval. This takes E[lg

(
r
c

)
] +O(lg n)

bits on average. Note that we only encode a c-subset of [r]; this identifies the
relevant bit probes, but doesn’t, for example, identify the addresses they probe.
To decode, we first simulate the data structure’s behavior before the left interval
(we know everything from the past). We then simulate it for the right interval;
implicitly we will recover the answers to the queries. This simulation needs to
recover the values of all probed bits. If the bit location was written during the
simulation of the right interval, we already know the value. Otherwise, we check
whether the bit probe is in the set of c special bit probes. In this is true, the
value is the negation of what it was before the left interval began; otherwise, it
is the old value from before the left interval. ��

Now consider an arbitrary level of the tree. We apply the lemma by setting
the left interval to the subtree of a node, and the right interval to the union of
the subtrees of its right siblings. We do this only for nodes which are in the first
half of their siblings, so that the right interval is Θ(lg n) times bigger. For some
node i, we obtain E[lg

(
ri

ci

)
] = Ω(Li

√
n lg n). Let us sum this up for all nodes on

a level. Clearly,
∑
Li = m

2 = Θ(m). By linearity of expectation, the left hand
side becomes E[lg

∏(ri

ci

)
]. It is well known that

∏(ri

ci

)
≤
(∑

ri∑
ci

)
. Now,

∑
ri =

Θ(T lg n), where T is the total number of bit probes. This is because each bit
probe is counted at most once for every sibling of its ancestor on the current level.
Let

∑
ci = C
, where
 is the current level. We can now obtain E[lg

(
γT lg n
C�

)
] =

Ω(m
√

n lg n), for an appropriate constant γ. Now let us sum over all levels
. As
explained in the beginning,

∑
C
 ≤ T . Then, we obtain E[lg

(
γT lg n·lg n/ lg lg n

T

)
] =

Ω(m
√

n lg n lg n
lg lg n), which implies E[T]O(lg lg n) = Ω(m

√
n lg2 n

lg lg n).
This completes the proof of our Ω((lg n

lg lg n)2) lower bound. As explained al-
ready, one of the lg lg n factors is lost because we need to increase the complexity
of queries by a lg n factor, which translates into a higher branching factor for

On Dynamic Bit-Probe Complexity 975

the tree, and a depth of just O(lg n
lg lg n). The other lg lg n factor is lost from our

encoding. Intuitively, Lemma 2 should state that c = Ω(L
√

n lg n). This is be-
cause the right interval needs Ω(L

√
n lg n) bits of information, and, intuitively,

this can only come from so many bit probes. Unfortunately, the fact that a bit
was not modified during the left interval is also information, even if it is not
clear how such information could ever be used in an upper bound. The factor of
lg
(
r
c

)
≈ c lg lg n seems very hard to avoid.

3 Lower Bound for Partial Sums in Cyclic Groups

Let us review the ideas behind the chronogram method, at an intuitive level.
First, we generate a sequence of random updates, ended by one random query.
Looking back in time from the query, we partition the updates into exponentially
growing epochs: for a certain t, epoch i contains the ti operations immediately
before epoch i − 1. We then argue that for all i, the query needs to read at
least one cell from epoch i with constant probability. This is done as follows.
Clearly, information about epoch i cannot be reflected in higher epochs (those
occurred back in time). The first i− 1 epochs contain O(ti−1) updates. Assume
the cell-probe complexity of each update is bounded by tu. Then, during the first
i− 1 epochs, only O(ti−1tu) cells are written. If t = C · tu for a sufficiently large
constant C, these cells can only include complete information about a fraction
of the ti updates in epoch i. If a random query forces us to learn information
about a random update from epoch i, we are forced to read a cell from epoch
i, because this information is not available in any other epoch. This gives Ω(1)
probes in expectation to every epoch, so the lower bound on the query time is
given by the number of epochs that we can construct, i.e. tq = Ω(lg n/ lg tu).
A tradeoff of this form was indeed obtained by [9], and is the highest tradeoff
obtained by the chronogram method. Of course, these calculations assumed that
update inputs and query outputs match the cell size.

We now describe the ideas needed to improve the lg tu factor in the de-
nominator. Intuitively, the analysis done by the chronogram technique is overly
pessimistic, in that it assumes all cells written in the first i − 1 epochs concen-
trate on epoch i, encoding a maximum amount of information about it. In the
setup from above, this may actually be tight, up to constant factors, because the
data structure knows the division into epochs, and can build a strategy based on
it. However, we can randomize the construction of epochs to foil such strategies.
We generate a random number of updates, followed by one query; since the data
structure cannot anticipate the number of updates, it cannot base its decisions
on a known epoch pattern. Due to this randomization, we intuitively expect each
update to write O(tu/tq) cells about a random epoch (as before, tq is roughly
the number of epochs). Then, we should take t = C tu

tq
, and obtain bounds of the

form tq lg tu

tq
= Ω(lg n), implying max{tu, tq} = Ω(lg n).

Unfortunately, formalizing the intuition that the information written by up-
dates “splits” between epochs seems to lead to elusive information theoretic

976 C.E. Pǎtraşcu and M. Pǎtraşcu

arguments. To circumvent this, we need a second idea: we can look at cell reads,
as opposed to cell writes. Reads have more graspable information theoretic prop-
erties, dictated by the time when the cell was last written, and the time when
the read occurs. We can actually show that in expectation, O(tu/tq) of the
reads made by each update obtain information about a random epoch. Then,
regardless of how many cells are written, subsequent epochs can only encode
little information about epoch i, because very little information was read by the
updates in the first place.

One case in which the above reasoning works is the partial sums problem
in the cell-probe model (with the group Z/nZ), for which the tradeoff is tight.
Our bit-probe lower bound from below contains all ideas needed by this proof.
This is the largest cell-probe tradeoff known, and a different proof was described
recently in [4]. In the bit-probe model, we achieve a slightly weaker bound,
because O(tu/tq) bit probes into an epoch give more than this number of bits of
information. As for the connectivity bound, we must also account for the choice
of the relevant O(tu/tq) probes from the total of tu.

Theorem 3. For the partial-sums problem in Z/2Z, let tu be the amortized bit-
probe complexity of an update, and tq the bit-probe complexity of a query. Then
in the average case of a certain input distribution, tq(lg tu

tq
+ lg lg tq) = Ω(lg n).

In particular, max{tu, tq} = Ω(lg n
lg lg lg n).

Let M = nε, for any small ε > 0. We generate 2M operations update(i, x),
each with random i ∈ [n], x ∈ Z/2Z. Now pick m uniformly at random from
{M, . . . , 2M}. After m operations, we insert a query to a random index. Look-
ing back in time from the query, divide that last M operations into epochs.
Epoch i has the ti operations preceding epoch i − 1, where t will be specified
later (t ≥ 2). The number of epochs is Θ(lgt M) = Θ(lgt n). Let Pi be the
number of bit probes from epochs 1 through i− 1, touching bits written during
epoch i.

Lemma 4. If i is chosen uniformly at random, E[Pi

ti−1] = O(tu

lgt n).

Proof. We say that a bit probe has span j if tj−1 ≤ w − r < tj , where r and
w are the read and write times (i.e. the index of the operation during which
they occur). Let Cj be the total number of bit probes of span j that the 2M
updates would execute in the absence of an interleaving query. Fix i to some
arbitrary value, and let f be the last operation in epoch i. Observe that f
is a random variable depending on m. We are interested in bit probes with
w ∈ (f − ti, f], r ∈ (f,m]. All such bit probes must have span at most i + 1,
because m−f < 2ti−1. For all j, if r ≥ f + tj−1, the bit probe must have span at
least j. We count all probes which satisfy these necessary conditions, thus upper
bounding Pi.

Fix the 2M updates arbitrarily. Because m is not known to the data structure,
the first m updates behave as if no query ever happened. As m is chosen ran-
domly, we are interested in the probes of span j from a random segment of size tj .

On Dynamic Bit-Probe Complexity 977

There are Ω(M) choices for the position of this segment, and we choose uniformly
at random between them. Then, the expected number of span-j operations that
are relevant is O(tj Cj

M). For j = i or j = i + 1, we can upper bound the segment
size by m − f = O(ti−1). Then, Em[Pi] = O(ti−1 Ci+Ci+1

M) +
∑

j<i O(tj Cj

M), so
Em[Pi

ti−1] = O(Ci

M + Ci+1
M +

∑
j<i

Cj

M ·ti−j).
Observe that

∑
i Em[Pi

ti−1] ≤
∑

i(2 +
∑∞

k=1 t−k) · O(Ci

M) =
∑

i O(Ci

M). By
definition,

∑
i
Ci

M is the amortized running time of an update. When updates are
chosen uniformly at random, E[

∑
i
Ci

M] ≤ tu. Thus, if i is chosen uniformly at
random, E[Pi

ti−1] = O(tu

lgt n). ��

Now pick an epoch i at random. We show that with constant probability,
the query needs to probe a bit from epoch i. Then, by linearity of expectation,
tq = Ω(lgt n). By the Markov bound, there is a 1 − δ probability that for the
chosen i, E[Pi

ti−1] = O(tu

lgt n). Here the expectation is over the choice of m, and the
random updates, but i is already fixed; δ > 0 is an arbitrarily small constant. If
this relation does not hold, we make no claim. Otherwise, let p be the probability
that a random query accesses a cell from epoch i. We want to prove that p is
bounded away from 0. Then, be the union bound, there is a constant probability
that a query needs a bit probe into epoch i.

Pick ti queries independently at random, and imagine that each is run start-
ing with the state of the data structure after m updates. Given the choice of
the queries, and the random updates from all epoch except i, the entropy of
the answers to all queries is Ω(ti); see [4–Lemmas 5.3 and 5.4]. This is in-
tuitive, since the ti query indices are expected to interleave with the indices
updated in epoch i, so each query recovers one more bit of information about
the unknown updates. We now propose an encoding for the answers to these
queries.

First, we encode which bit probes executed in epochs [1, i − 1] read bits
that were changed in epoch i. Let R<i be the total number of bit probes
made by epochs [1, i − 1]. Since m is chosen randomly, E[R<i] = O(ti−1tu).
This part of the encoding takes O(lgPi + lgR<i) + lg

(
R<i

Pi

)
= O(Pi lg R<i

Pi
)

bits. Since (x, y) !→ x lg y
x is convex, the expected size is O(E[Pi] lg

E[R<i]
E[Pi]

) =
O(ti−1 tu

lgt n lg tu

tu/ lgt n) = O(ti−1 tu

lgt n lg lgt n).
The second part of the encoding identifies which of the ti queries reads at

least one bit-probe from epoch i. If this number is Q, this part takes lg
(
ti

Q

)
=

O(Q lg ti

Q) bits. By convexity, the expected size is O(pti lg ti

pti) = O(tip lg 1
p). For

the queries which read a bit from epoch i, we explicitly encode their answers;
this takes pti bits in expectation.

It is easy to see that the encoding actually works. We first simulate the data
structure up until the beginning of epoch i. Then, we simulate it after epoch i.
This can be done because we know which bit probes read later get a changed bit
because of epoch i. At the end, we simulate all queries which do not read bits
from epoch i. For the rest of the queries, we know the answers.

978 C.E. Pǎtraşcu and M. Pǎtraşcu

The total size of the encoding is O(tip lg 1
p) + O(ti−1 tu

lgt n lg lgt n). This must
be Ω(ti), from which we obtain p lg 1

p = Ω(1)−O(1
t ·

tu

lgt n lg lgt n). Now choose t

satisfying the equation t = C · tu

lgt n lg lgt n, for a large enough constant C. For this
t, we obtain p lg 1

p = Ω(1), hence p = Ω(1). The lower bound is tq = Ω(lgt n),
from which we obtain tq = Ω(lg n/(lg tu

tq
+ lg lg tq)).

4 Upper Bounds for Predecessor Problems

We only sketch the solution for the segment representatives problem. The other
problems are discussed in the full version of this paper. We construct a trie with
branching factor B = Θ(lg n

lg lg n), in which each element is represented by a root-
to-leaf path. A node is marked active if any leaf under it is in the current set.
Among the children of the node, the minimum and maximum active nodes are
specially marked. In the full version of this paper, we describe how to maintain
these markings in O(lg n

lg lg n) per insertion and deletion. It remains to implement
queries. The main idea is to find the lowest common ancestor of the predecessor
and the successor of the query point, and the children corresponding to the
predecessor and the successor. Once this is known, it is easy to determine a
canonical representative. First, take the bits corresponding to the LCA, which
are common to the query, the predecessor, and the successor. Then, take the lgB
bits giving the child corresponding to the successor. Finally, pad with zeroes.
This computation of the representative takes zero time, since all elements are
already known.

To find the lowest common ancestor of the predecessor and successor, we
proceed as follows. Traverse the leaf-to-root path from the query until an active
node is found. Scan the children of the node. If there is both an active node to
the left and one to the right of the query, we have found the answer. Otherwise,
assume by symmetry there is an active node to the left, so we have only found
the predecessor. We continue searching up the tree, until we find a node which
is not marked as maximum among its siblings. At that point, we scan the right
siblings, finding the next active one, which corresponds to the successor.

5 Group-Free Monoids

Theorem 5. The dynamic prefix problem in any group-free monoid has bit-
probe complexity Θ(lg n

lg lg n).

We use a corollary of the Krohn-Rhodes decomposition [10], which was also
used in the cell-probe case [8]. Unfortunately, our application of it is considerably
more involved due to the idiosyncrasies of the bit-probe model: we go through
considerable lengths to avoid an exact predecessor query.

Theorem 6 ([10]). Let M be a finite nontrivial group-free monoid. One of the
following holds:

On Dynamic Bit-Probe Complexity 979

1. M \ {1} = 〈a〉 = {a, a2, . . . , ak = ak+1};
2. M is left simple, i.e. ∀a, b ∈M \ {1}, ab = a;
3. M = V ∪ T , with V, T proper submonoids of M , and T \ {1} a left ideal of

M (i.e. (∀)a ∈M, b ∈ T : ab ∈ T).

We prove our upper bound by induction on the size of M . However, we need
a stronger induction hypothesis, which assumes a solution for a slightly harder
problem. We call this the prefix problem with breakpoints. Consider an array
A[1..n], in which an element can either be an element of M , or a breakpoint,
denoted©b . The update operation can change any position of A to any element
from M ∪ {©b }. A query on an arbitrary position i must return the composition
of A[j + 1], . . . , A[i], where j is the predecessor of i in the set of breakpoints.
For uniformity, we say A[0] = A[n + 1] = ©b . Also, we assume breakpoints do
not appear in consecutive positions. This can easily be arranged by doubling the
array, and inserting an identity at every other position.

Assume by induction that the predecessor problem with breakpoints in all
group-free monoids of size less than |M | has complexity O(lg n

lg lg n). Now apply the
decomposition theorem. Due to space constraints, cases 1 and 2 are discussed in
the full version of this paper.

Case 3 – M = T ∪ V . Since |T |, |V | ≤ |M | − 1, we have, by induction, solutions
for the prefix problem with breakpoints, both running in O(lg n

lg lg n). To obtain a
data structure for M , we use the following components:

– a prefix structure for V , built over the array AV [1..n]. The values of AV

are defined as follows: if A[i] ∈ V , AV [i] = A[i]; otherwise (A[i] ∈ T \ V or
A[i] =©b), let AV [i] =©b .

– a structure for finding segment representatives with the dynamic set being
B = {i | AV [i] =©b }. Denote the elements B = {b1, b2, . . . }.

– a prefix structure for T , built over the array AT . If A[i] =©b , let AT [i] =©b .
The other elements are represented in a less straightforward way. For any
segment (bi, bi+1), let AT [repr(bi + 1)] =

⊕bi+1
j=bi+1 A[j]. Note that all but

A[bi+1] are elements from V , but the composition is in T because of the
ideal property. All elements which are not segment representatives are 1M .

– a simple array C. For any segment (bi, bi+1), C[repr(bi +1)] = A[bi+1]. Other
values of C are ignored.

We claim that we can support the following operation: given any element
j ∈ (bi, bi+1), compute the composition of the entire segment in AV . Clearly,
we can recover the composition of the elements between bi + 1 and j − 1, by
running a prefix query in AV . In addition, we can define a monoid W , which
is “the reverse” of V : (∀)a, b : a ⊕W b = b ⊕V a. Since |W | = |V | ≤ m − 1, we
can construct a prefix structure on W by the induction hypothesis. We maintain
AW [n− i + 1] = AV [i], (∀)i. Now, by running a prefix query in AW at position
n − j + 1, we are effectively running a suffix query in AV . By composing the
prefix and the suffix, we obtain the composition of the entire segment.

980 C.E. Pǎtraşcu and M. Pǎtraşcu

We can now easily support a prefix query to position i. First, we run a prefix
query in AT up to repr(i) − 1. This will give the desired partial sum up to the
predecessor of i in B. To get the last part of the prefix, which consists only of
elements from V ′, we simply ask for the prefix up to i in AV . This works because
the predecessor from B of i is the most recent breakpoint in AV .

Updates are done in two steps: first we change the old value to 1M , and then
we change this to the new value. We distinguish the following cases:

– both the old and new values are in V (possibly 1M). We update AV [i],
and compute the composition of the entire segment containing i. Then, we
compose this with C[repr(i)], and we update AT [repr(i)] to this new value.

– an element from T \V is replaced by 1M . We update AV and remove i from
B, which merges two segments. We remove the old segment representatives
from AT (set AT [repr(i − 1)] = AT [repr(i + 1)] = 1M). Then, we add the
representative for the new segment. The value of B[repr(i)] is given by the
old value B[repr(i + 1)], corresponding to the right segment; AT [repr(i)] is
obtained by recomputing the composition of i’s segment, as above.

– 1M is replaced by an element in T \V . We update AV [i] to©b , and insert i into
B, thus splitting a segment. We first remove the old segment’s representative,
setting AT [repr(i)] = 1M , and then we add the two new representatives.
The values in B are obvious: B[repr(i − 1)] gets the new value of A[i], and
B[repr(i + 1)] gets the old B[repr(i)] from the unsplit segment. The values
in AT are obtained by recomputing the compositions of the two segments.

– ©b is replaced by 1M . We update AT [i] to 1M . Changing the other structures
is identical to the case when an element from T \ V is removed.

– 1M is replaced by©b . We propagate the change to AT [i]. Changing the other
structures is identical to the case when an element from T \ V is added.

Acknowledgements. We are grateful to Thore Husfeldt for many helpful sugges-
tions. Some of the results in this paper originate in a project of the first author for
a research course at Harvard. She is grateful to Nick Rogers for useful comments
made on that occasion.

References

1. Thorup, M.: Near-optimal fully-dynamic graph connectivity. In: Proc. 32nd ACM
Symposium on Theory of Computing (STOC). (2000) 343–350

2. Miltersen, P.B., Subramanian, S., Vitter, J.S., Tamassia, R.: Complexity models for
incremental computation. Theor. Comp. Sci. 130 (1994) 203–236 Also STACS’93.

3. Miltersen, P.B.: Cell probe complexity - a survey. In: Advances in Data Structures
Workshop, FSTTCS (1999)

4. Pǎtraşcu, M., Demaine, E.D.: Logarithmic lower bounds in the cell-probe model.
arXiv:cs.DS/0502041. Based on publications from SODA’04 and STOC’04 (2004)

5. Fredman, M.L.: The complexity of maintaining an array and computing its partial
sums. Journal of the ACM 29 (1982) 250–260

6. Fredman, M.L., Saks, M.E.: The cell probe complexity of dynamic data structures.
In: Proc. 21st ACM Symposium on Theory of Computing (STOC). (1989) 345–354

On Dynamic Bit-Probe Complexity 981

7. Mortensen, C.W., Pagh, R., Pǎtraşcu, M.: On dynamic range reporting in one
dimension. In: Proc. 37th ACM Symposium on Theory of Computing (STOC).
(2004) to appear

8. Frandsen, G.S., Miltersen, P.B., Skyum, S.: Dynamic word problems. Journal of
the ACM 44 (1997) 257–271 See also FOCS’93.

9. Alstrup, S., Husfeldt, T., Rauhe, T.: Marked ancestor problems. In: Proc. 39th
IEEE Symposium on Foundations of Computer Science (FOCS). (1998) 534–543

10. Krohn, K., Rhodes, J.: Algebraic theory of machines I. Prime decomposition the-
orem for finite semigroups and machines. Trans. AMS 116 (1965) 450–464

Time-Space Lower Bounds for the
Polynomial-Time Hierarchy
on Randomized Machines

Scott Diehl� and Dieter van Melkebeek��

University of Wisconsin-Madison, Madison WI 53706, USA
{sfdiehl, dieter}@cs.wisc.edu

Abstract. We establish the first polynomial-strength time-space lower
bounds for problems in the linear-time hierarchy on randomized machines
with bounded two-sided error. We show that for any integer � > 1 and
constant c < �, there exists a positive constant d such that QSAT� cannot
be computed by such machines in time nc and space nd, where QSAT�

denotes the problem of deciding the validity of a Boolean first-order
formula with at most � − 1 quantifier alternations. Corresponding to
� = 1, we prove that for any constant c < φ ≈ 1.618, there exists a
positive constant d such that the set of Boolean tautologies cannot be
decided by a randomized machine with one-sided error in time nc and
space nd.

1 Introduction

Proving lower bounds remains one of the most challenging tasks in computational
complexity. Satisfiability, the seminal NP-complete problem, is particularly un-
yielding in this respect. While we believe that any algorithm for satisfiability
takes time linear exponential in the number of variables in the formula, we have
been unable to prove super-linear time lower bounds on random access machines
despite several decades of effort. Additionally, problems complete for higher lev-
els of the polynomial-time hierarchy, while not receiving as much attention, have
also resisted nontrivial time lower bounds.

A few years ago, Fortnow [5] realized that if we restrict the work space that
a machine can use to solve satisfiability, then we can establish nontrivial lower
bounds. Fortnow’s technique has its roots in earlier work by Kannan [6] and
has been further developed in recent years [8, 9]. For example, Fortnow and Van
Melkebeek derived the following time-space lower bound for nondeterministic
linear time, which gives the same lower bound for satisfiability due to the tight
connection between satisfiability and nondeterministic linear time.

Theorem 1 (Fortnow-Van Melkebeek [4]). Let φ .= (
√

5 + 1)/2 ≈ 1.618
denote the golden ratio. For any constant c < φ there exists a positive constant

� Supported by NSF Career award CCR-0133693.
�� Partially supported by NSF Career award CCR-0133693.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 982–993, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Time-Space Lower Bounds for the Polynomial-Time Hierarchy 983

d such that nondeterministic linear time cannot be simulated by deterministic
random-access machines running in time nc and space nd.

Fortnow and Van Melkebeek also considered higher levels of the linear-time
hierarchy and managed to prove the following time-space lower bound.

Theorem 2 (Fortnow-Van Melkebeek [4]). For any integer
 ≥ 2 and con-
stant c <
, there exists a positive constant d such that Σ
TIME[n] cannot
be simulated by deterministic random-access machines running in time nc and
space nd.

The same tight relationship between nondeterministic linear time and sat-
isfiability also exists between Σ
TIME[n] and QSAT
, the problem of deciding
the validity of a given Boolean first-order formula with at most
− 1 quantifier
alternations. Thus, the time-space lower bound for Σ
TIME[n] of Theorem 2
holds for QSAT
 as well.

In this paper, we establish time-space lower bounds for the same problems
on randomized machines with two-sided error bounded away from 1/2.

Theorem 3 (Main Theorem). For any integer
 ≥ 2 and constant c <
,
there exists a positive constant d such that Σ
TIME[n] cannot be simulated by
randomized random-access machines with two-sided error bounded away from
1/2 running in time nc and space nd.

Observe that our bounds essentially match those for the deterministic simu-
lations given in Theorem 2, the only difference being the exact dependence of d
on c. As in the deterministic case, Theorem 3 implies the same time-space lower
bounds for QSAT
.

One can also view the instantiation of our Main Result for
 = 2 as an analog
of Theorem 1. Note that Theorem 1 relates to the question of P versus NP. We
know the trivial inclusion that P ⊆ NP and do not believe the converse but fail to
prove that conjecture. Thus, research evolved towards time-space lower bounds
to achieve partial negative results for the converse, as in [5, 8, 4, 9]. Similarly for
BPP, we know that BPP ⊆ Σp

2 but we do not believe the converse. In this work,
we turn to time-space lower bounds to achieve nontrivial negative results about
the converse.

We also further strengthen Theorem 3 by showing similar lower bounds for
problems that can be decided by Σ
 machines in linear time and space na for
some constant a < 1.

We note that Theorem 3 establishes the first polynomial-strength time-space
lower bounds for two-sided error randomized simulations of the polynomial-time
hierarchy. By time-space lower bounds of “polynomial strength” we mean time
lower bounds of the form Ω(nc) for some constant c > 1 under nontrivial space
upper bounds. Previous works establish randomized time-space lower bounds but
they either consider problems believed not to be in the polynomial-time hierar-
chy, or the time lower bounds involved are only slightly super-linear. Allender et
al.’s [1] time-space lower bounds for problems in the counting hierarchy on prob-
abilistic machines with unbounded error fall within the first category. Beame et

984 S. Diehl and D. van Melkebeek

al. [2] give a (nonuniform) time-space lower bound for a problem in P based on
a binary quadratic form, which falls in the second category.

At first glance, it might seem that the known results about space-bounded
derandomization let us derive time-space lower bounds on randomized machines
as immediate corollaries to the known time-space lower bounds on deterministic
machines. In particular, assuming that we can solve satisfiability on a randomized
machine in logarithmic space and time nc, Nisan’s deterministic simulation [11]
yields a deterministic algorithm for satisfiability that runs in polylogarithmic
space and polynomial time. However, even for c = 1, the degree of the latter
polynomial is far too large for this simulation to yield a contradiction with
Theorem 1 as we would like. Thus, we need a more delicate approach for the
randomized setting.

Our proofs follow the paradigm of indirect diagonalization. The technique
establishes a desired separation by contradiction – assuming the separation does
not hold, we derive a sequence of progressively unlikely inclusions of complex-
ity classes until we reach one that contradicts a known diagonalization result.
Kannan [6] used the paradigm avant la lettre to investigate the relationship
between deterministic linear time and nondeterministic linear time. All of the
recent work on time-space lower bounds for satisfiability and problems higher
up in the polynomial-time hierarchy [5, 8, 4, 9] follow it as well. Allender et al. [1]
employed the technique to establish time-space lower bounds for problems in the
counting hierarchy.

The critical ingredient that allows us to apply the paradigm to two-sided error
randomized algorithms for problems in the polynomial-time hierarchy is a time
and space efficient simulation of randomized computations in the second level of
the polynomial-time hierarchy with very few guess bits. The latter follows from a
careful combination of Nisan’s partial space-bounded derandomization [10] and
a version of Lautemann’s proof that BPP ⊆ Πp

2 [7].
We point out that earlier work implies lower bounds for (the complements of)

the above problems on randomized machines with one-sided error. This follows
because the lower bound arguments for conondeterministic linear time on deter-
ministic machines typically also work on nondeterministic machines, of which
randomized machines with one-sided error are special cases. However, the bounds
become weaker. For example, the bound on c in Theorem 1 reduces from the
golden ratio to

√
2.

Theorem 4 (Fortnow-Van Melkebeek [4]). For any constant c <
√

2 there
exists a positive constant d such that conondeterministic linear time cannot be
simulated by randomized random-access machines with one-sided error running
in time nc and space nd.
Using ideas from the proof of our main result, we manage to strengthen Theorem
4 so that the bound matches the one in Theorem 1.
Theorem 5. For any constant c < φ, there exists a positive constant d such
that conondeterministic linear time cannot be simulated by randomized random-
access machines with one-sided error running in time nc and space nd.
A similar strengthening holds for the analog of Theorem 2.

Time-Space Lower Bounds for the Polynomial-Time Hierarchy 985

2 Preliminaries

Most of the notation we use is standard [3, 12]. For a detailed description of the
machine model we use, we refer the reader to [9]. We adopt the convention that
time and space functions refer to constructible functions from natural numbers to
natural numbers. Our results ultimately apply to computations with polynomial
time and space bounds, which certainly meet these conditions.

We introduce some additional terminology to reason about randomized com-
putation. In particular, we use the notation BPTISP[t, s] to refer to the class
of languages recognized by randomized machines using time t and space s with
error bounded by 1

3 on both sides.
Our arguments involve Σp

k and Πp
k computations in which the numbers of

bits guessed at each stage are bounded by explicitly given small functions. To
this end, we use the following notation to describe such computations:

Definition 1. Given a complexity class C and a function f , we define the class
∃fC to be the set of languages that can be described as

{x|∃y ∈ {0, 1}O(f(|x|))P (x, y)},

where P is a predicate accepting a language in the class C when its complexity
is measured in terms of |x| (not |x|+ |y|). We analogously define ∀fC.

For example, ∃fDTIME[n] and ∀fDTIME[n] are subsets of NP and coNP for
f(n) = nO(1). The requirement that the complexity of P be measured in terms
of |x| allows us to express the running times simply in terms of the original input
length, which is a more natural notion for our arguments.

We also make use of the standard divide-and-conquer approach for speeding
up space bounded computation by introducing alternations. Namely, by splitting
up the computation tableau of a DTISP[T,S] computation into b > 0 equal size
blocks, we obtain

DTISP[T,S] ⊆ ∃bS∀log bDTISP[T/b,S] ⊆ Σ2TIME[bS + T/b]. (1)

If we choose b to optimize the running time of the resulting Σ2 computation,
the result is

DTISP[T,S] ⊆ ∃
√

TS∃log T ⊆ Σ2TIME[
√

TS]. (2)

When used within the framework of time-space lower bounds, it is not always
desirable to choose the block size to optimize the running time in this way, as
exhibited by [4]. Therefore, most of our arguments make use of (1) for some
unspecified b, and then set b later to yield the strongest results.

Finally, we need a standard diagonalization result from which we can derive
contradictions. The following lemma states that for a fixed number of alterna-
tions, if we switch from universal to existential initial states and allow for a little
more time, we can compute something we couldn’t compute before.

Lemma 1 (Folklore). Let
 be a positive integer and t a time function. Then

Σ
TIME[t] � Π
TIME[o(t)].

986 S. Diehl and D. van Melkebeek

3 Framework of Earlier Deterministic Results

In this section, we provide an overview of the arguments used to establish The-
orem 1 since our approach uses the same general framework. Specifically, both
arguments follow the paradigm of indirect diagonalization, which can be divided
into the following general steps:

1. Assume the inclusion that we wish to show does not hold. For example,
Σ2TIME[n] ⊆ BPTISP[t, s].

2. Using the hypothesis, derive inclusions of complexity classes which are in-
creasingly unlikely.

3. Eventually one of these inclusions contradicts a known diagonalization result,
proving the desired result.

Let us step through a weaker instantiation of Theorem 1 as an example.
Namely, we prove the result of [8] that NTIME[n] � DTISP[nc, no(1)] for c <

√
2

following the outline described above. Therefore, the first step is to assume that

NTIME[n] ⊆ DTISP[nc, no(1)]. (3)

Consider the class DTISP[T, T o(1)] for some polynomial T , say T (n) = n2.
Using (2), we can speed up this computation by introducing alternations, re-
sulting in a Σ2TIME[T 1/2+o(1)] simulation. Now observe that we can use the
hypothesis (3) to collapse Σ2 to NP, eliminating one alternation at the small
cost of raising the running time of the simulation to the power of c. Since DTISP
is closed under complement, this process gives the inclusion

DTISP[T, T o(1)] ⊆ coNTIME[T c/2+o(1), T o(1)]. (4)

If the cost of removing an alternation by this technique is less than the speedup
we gained by its introduction, then (4) is a more unlikely inclusion than the
hypothesis, which could lead to a contradiction with Lemma 1.

To find the values of c which yield a contradiction, consider the hypothesis
(3) padded to time T . Combining this with (4), we can conclude

NTIME[T] ⊆ DTISP[T c, T o(1)] ⊆ coNTIME[T c2/2+o(1)],

which contradicts Lemma 1 so long as c2/2 < 1. This proves the desired result.
One can obtain stronger results by applying these arguments recursively.

Specifically, once the speedup of (1) is applied, the final stage involved in the
resulting Σ2 simulation is itself a space bounded computation taking less time
than what we started with. Therefore, we can obtain a contradiction for larger c
if we recursively apply the same arguments to further speed up this computation.
Doing so in an economical way (with respect to alternations) and choosing the
block numbers optimally at each recursive step yields Theorem 1.

Time-Space Lower Bounds for the Polynomial-Time Hierarchy 987

4 Lautemann’s Proof and Derandomization

For this paper, we wish to derive a contradiction from the assumption

Σ2TIME[n] ⊆ BPTISP[t, s]. (5)

Taking a cue from the deterministic results, we would like to figure out a way
to transfer the hypothesis (5) into a statement giving a strong collapse of the
polynomial-time hierarchy, such as Σ2TIME[n] ⊆ Π2TIME[f(n)] for some small
function f(n). We can then use such a collapse to eliminate alternations intro-
duced by applying the speedup of (1). The focus of this section is the derivation
of such a statement.

Lautemann’s proof that BPP ⊆ Σp
2 ∩ Π

p
2 is the first tool which helps us

accomplish this task. The proof relies on the large gap in sizes of witness sets
for a BPP algorithm which uses R bits to accept a language L with sufficiently
small error. When x ∈ L, the witness set is large enough so that for most sets
of R shifts, the union of the R shifted witness sets covers the entire universe
of possible witnesses; when x /∈ L, the witness set is so small that no set of
R shifts covers the universe. These complementary conditions can be expressed
by a Σp

2 predicate. Since BPP is closed under complement, this shows that
BPP ⊆ Σp

2 ∩Π
p
2 . Specifically, we are interested in the Πp

2 side of the inclusion
for our results.

Theorem 6 (Lautemann [7]). Let L be a language recognized by a randomized
machine M with error bounded on both sides by 1/R that runs in time T , space
S (when provided two-way access to the random bits), and uses R random bits.
Then

L ∈ ∀R2∃RDTISP[RT,S + logR]. (6)

Theorem 6 is a natural candidate to derive the desired strong collapse of
the polynomial-time hierarchy from (5). However, the key question is if the
inclusion given by Theorem 6 is efficient enough to allow for a sufficiently strong
collapse. To answer this, first note the requirement that the error be 1/R does
not pose a problem, since this can be achieved by taking the majority vote of
O(logR) = O(log T) repetitions of a standard BPP algorithm. Thus, we can
transform an arbitrary BPP computation into an equivalent one satisfying the
conditions of Theorem 6 with only a logarithmic time blowup. This is good news
since we would be in trouble if the theorem required error exponentially small
in R – in general, the running time of the amplified algorithm would be at least
quadratic.

On the other hand, the Π2 simulation resulting in an application of Theorem
6 must run the randomized machine on R different shifts of a witness so its
running time is a factor of R greater than that of the randomized machine.
Since, in general, R can be as large as T , this slow-down is too much for our
arguments to compensate. Therefore, an additional ingredient is needed.

That ingredient exploits the fact that the hypothesis (5) gives simulations
by space-bounded BPP computations. In that setting, we know of techniques to

988 S. Diehl and D. van Melkebeek

reduce the number of random bits used, which in turn reduces the overhead in the
Π2 simulation given by Theorem 6. The means by which we achieve the needed
reduction in randomness is the space-bounded derandomization of Nisan [10].

Theorem 7 (Nisan [10]). Any randomized algorithm running in time T and
space S with error ε can be simulated by one running in time O(T) and space
O(S log T), which uses only O(S log T) random bits and has error ε + 2−S. If
two-way access to the random bits is allowed, the space requirement is reduced
to O(S).

Note that we do not apply Theorem 7 to deterministically simulate the ran-
domized algorithm. Instead, we use it to reduce the randomness required by
a BPTISP[T,S] algorithm to O(S log T) with no blowup in time. If we sub-
sequently apply Theorem 6, we only incur a blowup of O(S log T), which is
acceptable for polynomial T and small S. Therefore, we can conclude:

Theorem 8.

BPTISP[T,S] ⊆ ∀(S log T)2∃S log T DTISP[TS log2 T,S]. (7)

Proof. Let A be the randomized time T , space S procedure for recognizing L ∈
BPTISP[T,S]. We first take the majority of O(log T) independent repetitions of
A to reduce the error to 1/T 2, increasing the running time to O(T log T). We
then apply the derandomization provided by Theorem 7 to obtain a procedure
A′ taking time O(T log T), using O(S log T) random bits, and using space O(S)
when allowed two-way access to the random bits. Additionally, A′ has error at
most 1/T 2+2−S . Since we can assume without loss of generality that S ≤ T ≤ 2S

and S = ω(1), we have that 1/T 2+2−S = o(1/(S log T)). We now apply Theorem
6 to derive (7). ��

This result gives exactly the efficient inclusion of space bounded randomized
classes in the polynomial time hierarchy that we need. Combining it with the
hypothesis (5), we derive the inclusion

Σ2TIME[n] ⊆ ∀(s log t)2∃s log tDTISP[ts log2 t, s], (8)

which gives the desired strong collapse for small enough t and s.

5 Main Result

We now use the techniques discussed in the previous sections to complete our
indirect diagonalization argument for the proof of Theorem 3. Using (8) as a
starting point, we derive a series of inclusions giving stronger and stronger col-
lapses of the polynomial-time hierarchy, towards the end of contradicting Lemma
1. Specifically, we derive inclusions of the form Σ2TIME[n] ⊆ Π2TIME[f(n)]
for smaller and smaller f(n), eventually hoping to find such an inclusion for
f(n) = o(n). Given that the hypothesis allows a simulation of Σ2TIME[n] by

Time-Space Lower Bounds for the Polynomial-Time Hierarchy 989

BPTISP[t, s], we rely on finding a sequence of inclusions for the latter to give
these collapses. The following process derives the first such inclusion giving an
improvement over (8):

1. First, we use Theorem 8 to derive a Π2 simulation of a BPTISP[t, s] com-
putation.

2. Since the quantifiers of the Π2 simulation derived in the previous step are
over a small number of bits, the dominant term in the running time comes
from the final space bounded deterministic computation. Therefore, we can
apply the speedup of (1) to the final deterministic computation to achieve
a simulation taking less time, whose quantifiers look like ∀∃∃∀, i.e., a Π3

computation.
3. We now eliminate an alternation from this Π3 computation in two steps. We

first apply the hypothesis to simulate the computation represented by the
last two quantifiers (a Σ2 computation) by a BPTISP computation.

4. Finally, we complete the collapse by applying Theorem 8 to simulate this
BPTISP computation by a Π2 computation. Merging the two initial univer-
sal quantifiers gives us a Π2TIME[f(n)] simulation of BPTISP[t, s] for small
f(n), depending on the choice of t and s.

For small enough t and s, we have derived a stronger collapse of Σ2 toΠ2 than
that given by (8). We can achieve even stronger collapses by viewing the above
procedure as a process that takes as input a BPTISP computation and returns
a Π2 simulation which possibly takes less time. If we recursively apply this
procedure to the BPTISP computation in step 4 instead of Theorem 8, we can
complete the collapse to Π2 while possibly further speeding up the computation,
providing a stronger collapse. Running this recursive argument more and more
times yields the sequence of collapses we require.

The following lemma formalizes the above idea. Specifically, we consider the
hypothesis (5) for polynomial t and s, namely t = nc, s = nd, and derive the
running time of the resulting Π2 simulation in terms c, d, and k, the number of
times the argument is recursively applied.

Lemma 2. Suppose that

Σ2TIME[n] ⊆ BPTISP[nc, nd] (9)

for some constants c ≥ 1 and d > 0 where c + 2d ≤ 2. Then for any functions T
and S and positive integer k such that 2d ≤ fk,

BPTISP[T,S] ⊆ Π2TIME
[(

(TS2)fk + (n + S2)c+2d
)
polylog(T + n)

]
,

where
fk = (c+2d

2)k. (10)

Lemma 2 gives the sequence of collapses which, for certain values of c and d,
leads to a contradiction with Lemma 1. We now derive the resulting time-space
lower bound for Σ2TIME[n].

990 S. Diehl and D. van Melkebeek

Theorem 9. For any constant c < 2, there exists a positive constant d such
that Σ2TIME[n] cannot be simulated by randomized random-access machines
with error bounded away from 1/2 running in time nc and space nd.

Proof. For c < 1, the Theorem holds for any d by standard techniques.
We prove the case for c ≥ 1 via indirect diagonalization. Suppose, by way of

contradiction, that
Σ2TIME[n] ⊆ BPTISP[nc, nd], (11)

for some constant d > 0 to be determined later. Then for any time function
τ(n) ≥ n, the hypothesis and Lemma 2 give us the inclusions

Σ2TIME[τ] ⊆ BPTISP[τ c, τd]
⊆ Π2TIME

[(
(τ c+2d)fk + (τ2d + n)c+2d

)
polylog(τ)

]
when c + 2d ≤ 2 and 2d ≤ fk. In the case that 2d ≤ fk, the dominant power of
τ will be 2fk+1, allowing us to simplify the running time of the Π2 machine to
big-O of

(τ2fk+1 + nc+2d)polylog(τ).

Choosing a sufficiently large polynomial τ , we can further simplify this to

τ2fk+1polylog(τ).

Therefore, we have shown

Σ2TIME[τ] ⊆ Π2TIME[τ2fk+1polylog(τ)]. (12)

The inclusion (12) gives a contradiction with Lemma 1 for any k with fk+1 < 1/2.
Note that fk → 0 as k →∞ if c + 2d < 2. Therefore, all that remains is to show
that the latter condition is compatible with the other ones, i.e., that we can pick
a constant d > 0 and an integer k > 0 such that

c + 2d < 2, (13)
2d ≤ fk, and (14)

fk+1 < 1/2. (15)

It remains to show that d and k can be chosen to satisfy these constraints.
For any c and d satisfying (13), consider choosing k to be the smallest integer
such that (15) is satisfied. For such a choice, we can see that fk ≥ 1/2, so
d ≤ 1/4 satisfies (14). Therefore, choosing d such that d ≤ min(1/4, 2−c

2) and
then calculating k as described above yields a d and k satisfying all of the
constraints. ��

We point out that the dependence of d on c in Theorem 9 differs from the
deterministic setting. The proofs of Theorem 1 and Theorem 2 show that as c
approaches 1 from above, d approaches 1 from below. In the proof of Theorem
9, however, the strategy described for choosing d yields a value approaching 1/4

Time-Space Lower Bounds for the Polynomial-Time Hierarchy 991

from below as c approaches 1 from above. Although we have not optimized our
arguments to obtain the largest value of d possible, a smaller value than in the
deterministic case seems inherent to our approach.

The proof of Theorem 9 generalizes to higher levels of the linear-time hierar-
chy, as stated in our Main Theorem. In this setting, we can use the hypothesis
that Σ
TIME[n] ⊆ BPTISP[nc, nd] along with Theorem 8 to eliminate more
than one alternation at the same cost of removing one alternation in the setting
of Theorem 9. This lets us eliminate the alternations introduced by many recur-
sive applications of (1), achieving a greater speedup and allowing contradictions
for values of c less than
.

Through a tight connection to nondeterministic linear time, the results of
Theorem 1 extend to satisfiability and many other NP-complete problems. This
connection also exists between Σ
TIME[n] and Σ
-complete problems such as
QSAT
, allowing us to extend our time-space lower bounds to randomized com-
putations of such problems.

Corollary 1. For any integer
 ≥ 2 and constant c <
, there exists a posi-
tive constant d such that QSAT
 cannot be solved by randomized random-access
machines with error bounded away from 1/2 running in time nc and space nd.

Paying close attention to the space used by the simulations in our proofs, we
actually obtain time-space lower bounds for Σ2TIME[n, na] for certain values of
a < 1.

Theorem 10. For any integer
 ≥ 2 and any positive constants c and a with
c < 1 + (
 − 1)a, there exists a constant d > 0 such that Σ
TISP[n, na] �
BPTISP[nc, nd].

6 Other Results

In this section, we show how to extend the golden ratio result of Fortnow and
Van Melkebeek for deterministic machines (Theorem 1) to randomized machines
with one-sided error, yielding Theorem 5. As we will argue, Theorem 5 follows
from the next extension of Theorem 1 to a a slightly stronger class of machines.

Theorem 11. For any constant c < φ there exist positive constants d and b
such that conondeterministic linear time cannot be simulated by nondeterminis-
tic random-access machines which run in time nc, space nd, and nondetermin-
istically guess only nb bits.

Nisan’s space-bounded derandomization [10] given in Theorem 7 allows us to
reduce the number of random bits used by a randomized machine with one-sided
error running in time T and space S to O(S log T) without significantly increas-
ing the time or space used. Since a randomized machine with one-sided error is
also a special type of nondeterministic machine, we can view such a derandom-
ized machine as a space bounded nondeterministic machine which guesses only

992 S. Diehl and D. van Melkebeek

O(S log T) bits. Thus, the time-space lower bounds of Theorem 5 for cononde-
terministic linear time on randomized machines with one-sided error follow as a
corollary to Theorem 11.

In order to generalize Theorem 1 to nondeterministic machines that guess a
bounded number of bits, we derive an analog to Lemma 2 which gives an unlikely
inclusion of ∃BDTISP[T,S] into NTIME. Recall that in Section 5, we observed
that if the number of bits guessed in a Π2TISP[T,S] computation is much less
than the running time T , then the entire computation can be sped up by applying
(1) to the final deterministic stage of the computation. The same observation
allows us to speed up a ∃BDTISP[T,S] computation when T dominates B. We
accomplish the latter through an extension of Lemma 3.1 from [4], which gives
a speedup of DTISP[T,S] on nondeterministic machines under the hypothesis
that coNTIME[n] ⊆ NTIME[nc].

Lemma 3. Suppose that

coNTIME[n] ⊆ NTIME[nc]

for some constant c ≥ 1. Then for any functions T , S, and B and any integer
k ≥ 0

∃BDTISP[T,S] ⊆ NTIME[(T · Sk)fk + (n +B + S)ck

],

where fk is given by,

f0 = 1
fk+1 = c · fk/(1 + fk). (16)

We now describe how to use Lemma 3 to prove Theorem 11. First assume that
coNTIME[n] ⊆ ∃nb

DTISP[nc, nd] for b and d to be determined later. Padding
this assumption and applying Lemma 3 yields the inclusion

coNTIME[τ] ⊆ NTIME[τ (c+kd)fk + (n + τ b + τd)ck

] (17)

for any time function τ(n) ≥ n. Letting τ be a large enough polynomial and
choosing small enough values for b and d, (17) forms a contradiction to Lemma
1 as long as there is a k such that cfk < 1. Since the sequence (fk)k defined
by (16) decreases monotonically to c − 1 for c < 2, this is the case if and only
if c(c − 1) < 1. Since c(c − 1) = 1 defines the golden ratio φ, this establishes
Theorem 11.

We point out that a similar strengthening as Theorem 5 holds for the analog
of Theorem 2.

7 Further Research

The techniques discussed in this work allow us to establish time-space lower
bounds for two-sided error randomized simulations of the polynomial-time hier-
archy at the second level and higher. They do not seem to extend to the first

Time-Space Lower Bounds for the Polynomial-Time Hierarchy 993

level in a straightforward way. This is mainly due to the fact that the assumption
NTIME[n] ⊆ BPTISP[t, s] doesn’t seem to allow the collapsing of alternations in
an efficient manner. Thus, establishing time-space lower bounds for satisfiability
on randomized machines with two-sided error remains open.

Improving the quantitative results of this paper is another direction need-
ing further work. Very recently, Williams [13] used a bootstrapping argument
to improve the lower bounds for NTIME[n] on deterministic machines. He was
able to boost the bound on the exponent c in Theorem 1 from the golden ratio
φ ≈ 1.618 to 1.732, and we have been able to boost it further to 1.759. Using
the same technique, we can improve our lower bound for coNTIME[n] on ran-
domized machines with one-sided error, boosting the bound on the exponent c
in Theorem 5 from the golden ratio to 1.759. However, we have been unable to
apply the technique to improve our main result, the lower bounds for Σ
TIME[n]
on randomized machines with two-sided error, as given in Theorem 3.

Acknowledgements

We would like to thank Bess Berg and the anonymous referees for helpful com-
ments.

References

1. E. Allender, M. Koucky, D. Ronneburger, S. Roy, and V. Vinay. Time-space trade-
offs in the counting hierarchy. In CCC, pages 295-302. IEEE, 2001.

2. P. Beame, M. Saks, X. Sun, and E. Vee. Time-space tradeoff lower bounds for
randomized computation of decision problems. Journal of the ACM, 50(2):154-
195, 2003.

3. J. Balcázar, J. Dı́az, J. Gabarró. Structural Complexity I, volume 11 of EATCS
Monographs on Theoretical Computer Science. Springer-Verlag, 1995.

4. L. Fortnow and D. van Melkebeek. Time-space tradeoffs for nondeterministic com-
putation. In CCC, pages 2-13. IEEE, 2000.

5. L. Fortnow. Time-space tradeoffs for satisfiability. Journal of Computer and System
Sciences, 60:337-353, 2000.

6. R. Kannan. Towards separating nondeterminism from determinism. Mathematical
Systems Theory, 17:29-45, 1984.

7. C. Lautemann. BPP and the polynomial hierarchy. Information Processing Letters,
17(4):215-217, 1983.

8. R. Lipton and A. Viglas. On the complexity of SAT. In FOCS, pages 459-464.
IEEE, 1999.

9. D. van Melkebeek. Time-Space Lower Bounds for NP-Complete Problems. In G.
Paun, G. Rozenberg, and A. Salomaa, editors, Current Trends in Theoretical Com-
puter Science, pages 265-291. World Scientific, 2004.

10. N. Nisan. Pseudorandom generators for space-bounded computation. Combinator-
ica, 12(4):449-461, 1992.

11. N. Nisan. RL ⊆ SC. Computational Complexity, 4:1-11, 1994.
12. C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
13. R. Williams. Better Time-Space Lower Bounds for SAT and Related Problems. To

appear in CCC. IEEE, 2005.

Lower Bounds for Circuits with Few Modular
and Symmetric Gates

Arkadev Chattopadhyay1 and Kristoffer Arnsfelt Hansen2

1 School of Computer Science, McGill University
achatt3@cs.mcgill.ca

2 Department of Computer Science, University of Aarhus, Denmark
arnsfelt@daimi.au.dk

Abstract. We consider constant depth circuits augmented with few
modular, or more generally, arbitrary symmetric gates. We prove that cir-
cuits augmented with o(log2 n) symmetric gates must have size nΩ(log n)

to compute a certain (complicated) function in ACC0.
This function is also hard on the average for circuits of size nε log n

augmented with o(log n) symmetric gates, and as a consequence we can
get a pseudorandom generator for circuits of size m containing o(

√
logm)

symmetric gates.
For a composite integer m having r distinct prime factors, we prove

that circuits augmented with s MODm gates must have size nΩ(1
s

log
1

r−1 n)

to compute MAJORITY or MODl, if l has a prime factor not dividing
m. For proving the latter result we introduce a new notion of represen-
tation of boolean function by polynomials, for which we obtain degree
lower bounds that are of independent interest.

1 Introduction

Strong size lower bounds have been obtained for several classes of circuits. In
particular constant depth circuits (AC0 circuits) require exponential size to com-
pute even simple functions such as PARITY [1, 2, 3, 4]. More generally, if we
also allow gates computing MODq for a prime power q we have exponential
lower bounds for computing MAJORITY, and if l has a prime divisor not di-
viding q also for computing MODl [5, 6]. If we however allow gates computing
MODm for an arbitrary integer m, we have no nontrivial lower bounds. The
corresponding circuit class ACC0 is the smallest natural circuit class, for which
we have no nontrivial lower bounds. Another very interesting class of constant
depth circuits (containing ACC0) is the class of constant depth threshold cir-
cuits (TC0 circuits), i.e constant depth circuits built entirely from MAJORITY
gates.

Viewing TC0 circuits as AC0 circuits augmented with MAJORITY gates
instead, raises a natural question: Can lower bounds be proved if we limit the
amount of MAJORITY gates used. This question was answered affirmatively in
a series of papers. Aspnes et al [7] proved that AC0 circuits with a MAJORITY

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 994–1005, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Lower Bounds for Circuits with Few Modular and Symmetric Gates 995

gate on top, i.e MAJ◦AC0 circuits, and in fact even AC0 circuits with a single
MAJORITY gate anywhere in the circuit, require exponential size to compute
the MOD2 function. Beigel et al [8] improved this lower bound to allow for
o(log n) MAJORITY gates, and Beigel [9] showed that the lower bound also holds
for AC0 circuits augmented with no(1) MAJORITY gates. Finally Barrington
and Straubing [10] generalized this lower bound, showing that it also holds for
circuits computing the MODm function for any constant m. In fact, the proofs
of these lower bounds show that AC0 circuits of size 2no(1)

augmented with no(1)

MAJORITY gates must differ from the MODm function on a constant fraction
all inputs of length n.

The analogous question for ACC0 is: Can lower bounds be proved if we
limit the amount of MODm gates used. Note that although these functions
can be computed by small TC0 circuits, the above lower bounds for AC0 cir-
cuits augmented with few MAJORITY gates are not strong enough to be ap-
plied. Indeed, these lower bounds are proved for circuit computing the MODm

functions.
Another way of viewing TC0, is as AC0 augmented with gates computing

arbitrary symmetric functions, since every such function is computable by a
depth 2 threshold circuit and MAJORITY is obviously symmetric. Thus, re-
garding TC0, we could also ask, if lower bounds can be proved if we limit the
amount of symmetric functions used. Also note that since the MODm functions
are symmetric, an affirmative answer would answer both questions.

Our most powerful lower bound is a superpolynomial lower bound for cir-
cuits containing o(log2 n) arbitrary symmetric gates. Combining a technique of
Beigel [9] for reducing the number of symmetric gates with a lower bound for
MAJ ◦ SYM ◦ AC0 circuits by Hansen and Miltersen [11], one can immedi-
ately obtain superpolynomial lower bounds for AC0 circuits augmented with
up to o(log log n) MODm gates. Our significantly stronger result, is obtained
by instead generalizing the results of H̊astad and Goldmann [12], Razborov
and Wigderson [13] and Hansen and Miltersen [11]. We now give the defini-
tion of the functions we prove the lower bounds for. The so-called General-
ized Inner Product [14] is defined as GIPn,k = (MOD2)n ◦ ANDk, i.e. the
MOD2 function of n conjunctions each consisting of k variables. Let further
fn,k = (MOD2)n ◦ ANDk ◦ (MOD2)n, i.e. GIPn,k with each input replaced by
the MOD2 function of n variables.

Theorem 1. Any AC0 circuit augmented with o(log2 n) arbitrary symmetric
gates computing fn,log n must have size nΩ(log n).

It follows as a corollary of the following theorem.

Theorem 2. Any MAJ ◦ANYs ◦ SYM ◦ANYt circuit computing GIPn,t+1

must have size 2Ω(n
st2t). For constants δ > 0 and γ > 0 such that δ + γ < 1,

if t = δ log n and s = nγ , any MAJ ◦ANYs ◦ SYM ◦AC0 circuit computing
fn,t+1 must have size nΩ(log n).

For circuits augmented with MODm gates we are able to give lower bounds
for computing much simpler functions than that used for proving Theorem 1. In

996 A. Chattopadhyay and K.A. Hansen

particular are all these functions symmetric, and the results are thus incompa-
rable.

Theorem 3. Let m be a positive integer with r ≥ 2 distinct prime factors. Any

AC0 circuit augmented with s MODm gates require size nΩ(1
s log

1
r−1 n) to compute

MAJORITY or MODl, if l has a prime factor not dividing m.

This complements the mentioned results about circuits with few MAJORITY
gates: We cannot compute MODm with few MAJORITY gates and we cannot
compute MAJORITY with few MODm gates. Note also that the lower bounds
are for the same functions and under the same conditions as the mentioned lower
bounds for circuits with MODq gates for prime powers q.

Previously, Hansen and Miltersen [11] used results on weak representation of
boolean function by polynomials over Zm as introduced and proved by Green
[15] to obtain exponential lower bounds for circuits augmented with just one
MODm gate. Theorem 3 is proved, by greatly generalizing this technique. We
introduce a new notion of representation of boolean functions be polynomials
over Zm for which we prove lower bounds and finally apply these to obtain circuit
lower bounds.

Beigel and Maciel [16] showed how to convert a MAJ◦OR◦MODm circuit
into a MAJ ◦ORO(1) ◦MODm circuit with only a polynomial increase in size,
which they could then apply to results by Krause and Pudlák [17] to obtain
lower bounds for MAJ◦OR◦MODm circuits. Applying their technique to our
results we immediately obtain the following as a corollary to Theorem 2.

Theorem 4. Any MAJ ◦OR ◦MODm ◦ANYt circuit computing GIPn,t+1

must have size 2Ω(n
t2t). Any MAJ ◦ OR ◦ MODm ◦ AC0 circuit computing

fn,log n must have size nΩ(log n).

Viola [18] showed that by combining and modifying the proofs of [13] and [11] one
can obtain a function that is hard on the average for SYM◦AC0 circuits of size
nε log n. Viola used his result for constructing a pseudorandom generator for these
circuits, using the construction of Nisan and Wigderson [19], and generalized it
to circuits with a constant number of symmetric gates using the technique of
Beigel [9]. Adding our constructions, one can prove that the same function is
hard on the average for ANYnγ ◦SYM ◦AC0 circuits of size nε log n for γ < 1,
and thus also for AC0 circuits of size nε log n with γ log n symmetric gates. This
gives a pseudorandom generator for circuits of size m with o(

√
log m) symmetric

gates. Subsequently to this result, Viola showed how to improve this to o(log m)
symmetric gates [18].

1.1 Organisation of Paper

In Sect. 2 we introduce the notation and previous results we will use in our
proofs. In Sect. 3 we prove Theorem 1 and 2. In Sect. 4 we prove Theorem 3 as
well as our degree lower bounds used for this.

Lower Bounds for Circuits with Few Modular and Symmetric Gates 997

2 Preliminaries

2.1 Constant Depth Circuits

We consider circuits built from families of unbounded fanin gates. Inputs are
allowed to be boolean variables and their negations as well as the constants 0 and
1. Let x1, . . . , xn be boolean inputs. For a positive integer m, the MODm function
is 1 if and only if

∑n
i=1 xi �≡ 0 (mod m). Generally, for A ⊂ Zm the MODA

m

function is 1 is and only
∑n

i=1 xi ∈ A (mod m). The MAJORITY function is 1
if and only if

∑n
i=1 xi ≥ n

2 . A function is symmetric if and only if it only depends
on the sum of its inputs.

Let AND and OR denote the families of unbounded fanin AND and OR
gates. Let MODm, MAJ, SYM and ANY denote the families of MODm,
MAJORITY, all symmetric gates and any kind of gate, respectively. If G is a
family of boolean gates and C is a family of circuits we let G ◦C denote the class
of circuits consisting of a gate from G taking circuits from C as inputs. If we
need to specify a specific bound on the fanin of some of the gates, this will be
specified by a subscript.

AC0 is the class of functions computed by constant depth circuits built from
AND and OR gates. ACC0 is the the analogous class of functions computed
when we also allow unbounded fanin MODm gates for constants m, and similarly
is TC0 the class of functions computed when we instead allow unbounded fanin
MAJORITY gates.

2.2 Multiparty Communication Complexity

We consider the “Number on the Forehead” model of multiparty communication
as introduced by Chandra, Furst and Lipton [20]. Here k players wish to evalu-
ate a boolean function f(x1, . . . , xk) where xi ∈ {0, 1}n and player i knows all
input except xi. They exchange messages according to a fixed protocol by broad-
casting, and we are interested in the number of bits that must be exchanged in
order to evaluate f . We let Cε(f) denote the minimal number of bits that must
be exchanged in the worst case, for a deterministic protocol that computes f
correctly with probability at least 1− ε when x is chosen uniformly at random.

Babai, Nisan and Szegedy [14] studied the k-party communication complexity
of the Generalized Inner Product, and proved C 1

2−ε(GIPn,k) = Ω(n
4k + log ε).

We state an improvement due to Chung and Tetali [21].

Theorem 5. C 1
2−ε(GIPn,k) = Ω(n

2k + log ε).

H̊astad and Goldmann [12] observed that depth 2 threshold circuit can be
evaluated efficiently by a multiparty protocol if the fanin of the bottom gates
is restricted. We observe that essentially the same protocol works for depth 3
circuits if we restrict the fanin of both the top and bottom gates.

Proposition 6. Let f be a boolean function computed by a ANYs ◦ SYM ◦
ANYt circuit of size S. Then there is a t + 1 player protocol computing f with
1 + st logS bits exchanged.

998 A. Chattopadhyay and K.A. Hansen

Proof. Since the bottom fanin of the circuit is less than the number of players,
every ANYt gate can be evaluated by at least one player. In the protocol we fix
a partition of these gates to the players, such that every player can evaluate all
assigned gates. Now for each of the symmetric gates, the first t players compute
the sum of the assigned inputs and send the results separately to player t + 1.
Player t + 1 can then compute the output of the circuit and communicate the
result with 1 extra bit of communication. ��

2.3 The Discriminator Lemma and the Switching Lemma

Let C be a circuit taking n inputs and f a boolean function on n variables. We
say that C is an ε-discriminator for f if Pr[C(x) = 1|f(x) = 1] − Pr[C(x) =
1|f(x) = 0] ≥ ε. The so-called Discriminator Lemma by Hajnal et al [22], states
that if a circuit with a MAJORITY gate at the output computes a boolean
function f , then one of the inputs to the output gate is an ε-discriminator for f .

Lemma 7. Let f be a boolean function computed by a circuitC with a MAJORITY
gate as the output gate, and letC1, . . . ,Cs be the subcircuits ofC whose output gates
are the inputs to the output of C. Then for some i, Ci is an 1

s -discriminator for f .

A restriction on a set V of boolean variables is a map ρ : V → {0, 1, '}. It acts on
a boolean function f : V → {0, 1}, creating a new boolean function fρ on the set
of variables for which ρ(x) = ', obtained by substituting ρ(x) for x ∈ V whenever
ρ(x) �= '. The variables x for which ρ(x) = ' are called free; the other variables set.
Let Rl

n denote the set of all restriction ρ leaving l of n variables free.
A decision tree is a binary tree, where the internal nodes are labeled by

variables and leafs are labeled by either 0 or 1. On a given input x, its value
is the value of the leaf reached by starting at the root, and at any internal
node labeled by xi proceeding to the left child if xi = 0 and to the right child
otherwise. We will use the following version of H̊astads Switching Lemma due
to Beame [23].

Lemma 8. Let f be a DNF formula in n variables with terms of length at most
r. Let l = pn and pick ρ uniformly at random from Rl

n. Then the probability that
fρ does not have a decision tree of depth at most d is less than (7pr)d.

The advantage of using Beame’s switching lemma is that it directly gives
us a decision tree. If we convert a decision tree into a DNF, we have that all
terms are mutually contradictory, i.e. we can view it as a sum of terms , instead
as an OR of AND’s. This will allow us to absorb the sum into a symmetric
gate.

2.4 Representation by Polynomials

For composite m there are several different ways of defining representation by
polynomials. To obtain our lower bounds we will define new a notion which
we will call weak generalized representation. Let f be a boolean function in n
variables, and let P be a polynomial in n variables over Zm.

Lower Bounds for Circuits with Few Modular and Symmetric Gates 999

– P is a strong representation of f if f(x) = P (x) for all x ∈ {0, 1}n.
– P is a one-sided representation of f if f(x) = 0 ⇔ P (x) ≡ 0 (mod m) for

all x ∈ {0, 1}n.
– P is a weak representation of f if P �≡ 0 and P (x) �≡ 0 (mod m)⇒ f(x) = 1

for all x ∈ {0, 1}n.
– P is a generalized1 representation of f if there is a set S ⊂ Zm such that

f(x) = 1 ⇔ P (x) ∈ S.
– P is a weak generalized representation of f if there is a set S ⊂ Zm and

an x̄ ∈ {0, 1}n such that P (x̄) ∈ S and that for all x ∈ {0, 1}n we have
P (x) ∈ S ⇒ f(x) = 1 .

The minimal degree of a polynomial satisfying the above properties will be
called the strong, one-sided, weak, generalized and weak generalized MODm

degree, respectively. Note that a strong representation is also a one-sided repre-
sentation. A one-sided representation is also a weak representation as well as a
generalized representation, and these are both weak generalized representations.
For a weak generalized representation we can assume that |S| = 1, in fact, if P is
a weak generalized representation there exist a ∈ Zm such that P − a is a weak
generalized representation with respect to {0} of the same boolean function.

For convenience we will also consider a representation of a boolean func-
tion by more than one polynomial. Let f be as before and let P1, . . . ,Ps be
polynomials in n variables over Zm. We say P1, . . . ,Ps is a simultaneous weak
representation of f if there is an x̄ ∈ {0, 1}n such that Pi(x̄) �≡ 0 (mod m) for
all i, and if it holds that whenever Pi(x) �≡ 0 (mod m) for all i, we have that
f(x) = 1. The s-simultaneous weak MODm degree of f is the minimum over all
choices of polynomials P1, . . . ,Ps over Zm representing f of the maximal degree
of P1, . . . ,Ps.

We will several times use the following well known lemma. (cf. [24]).

Lemma 9. Let q = pk for a prime p, let P be a polynomial of degree d in n
variables over Zq and let S ⊆ Zq. Then there exists another polynomial P ′ of
degree at most (q − 1)d in n variables over Zp such that P (x) ∈ S ⇒ P ′(x) = 1
and P (x) �∈ S ⇒ P ′(x) = 0 for all x ∈ {0, 1}.
Thus if q = pk for a prime p, the strong MODp degree of f is at most (q − 1)
times the generalized MODq degree of f , and similarly the weak MODp degree
of f is at most (q − 1) times the weak generalized MODq degree of f .

The following lemma shows, that s-simultaneous weak degree and weak gen-
eralized degree are essentially the same, when s is a constant.

Lemma 10. Let m be a positive integer and let m = q1 · · · qt be the factorization
in prime powers qi = pki

i , let m′ = p1 · · · pt and let f be a boolean function. The
weak generalized MODm′ degree of f is at most s(q−1) times the s-simultaneous
weak MODm degree of f , where q is the largest prime power factor of m.

1 This notion was actually called weak representation in [24], but we prefer to reserve
this name for the representation introduced by Green [15], which is analogous to the
weak degree of a voting polynomial defined by Aspnes et al [7].

1000 A. Chattopadhyay and K.A. Hansen

On the other hand, the (m − 1)-simultaneous weak MODm degree of f is at
most as large as the weak generalized MODm degree of f .

3 Circuits with Few Symmetric Gates

Proof (of Theorem 2). Let C be a MAJ◦ANYs◦SYM◦ANYt circuit of size S
which computes f = GIPn,t+1. From Lemma 7 we have a ANYs◦SYM◦ANYt

subcircuit Ci that is an 1
S -discriminator for f , i.e. Pr[Ci(x) = 1 | f(x) = 1] −

Pr[Ci(x) = 1 | f(x) = 0] ≥ 1
S . From the Binomial Theorem we have Pr[f(x) = 0]−

P r[f(x) = 1] = (1 − 2−t)n and thus Pr[f(x) = 0] = 1
2 + (1−2−t)n

2 . For a, b ∈
{0, 1} let Pab = P r[Ci(x) = a | f(x) = b]. We thus get Pr[Ci(x) = f(x)] =
P11 Pr[f(x) = 1]+P00 Pr[f(x) = 0] = 1

2 + 1
2 (P11−P10)+

(1−2−t)n

2 (1−P11−P10) ≥
1
2 + 1

2S −
(1−2−t)n

2 ≥ 1
2 + 1

4S , where we assume without loss of generality
that S ≤ 1

2e
n
2t . Combining this with Theorem 5 and Proposition 6 we have

1 + st logS = Ω(n
2t + log 1

4S) and we can conclude that S = 2Ω(n
st2t).

For the second part, let C be a depth d + 3 MAJ ◦ANYs ◦ SYM ◦AC0

circuit of size nε log n computing fn,t+1. Let m = n2(t + 1). We choose a random

restriction ρ ∈ Rm
2
3

m , and argue that for sufficiently small ε, with positive prob-
ability, fn,t+1 contains GIPn,t+1 as a subfunction and the function computed
by Cρ is also computed by a MAJ ◦ ANYs ◦ SYM ◦ ANDt circuit of size
nε log n2t = nδ+ε log n. The statement then follows from the first part.

The probability that ρ fails the first requirement is at most n(t+1) times the
probability that a random subset of size m

2
3 does not intersect a fixed subset

of size n (corresponding to the inputs of the MOD2 functions substituted in
GIPn,t+1). This happens with probability at most 2−nΩ(1)

.
For the other part, view ρ as a composition of several restrictions ρ1, . . . , ρd

where ρi ∈ Rmi
mi−1

and mi = m
(
m

1
3d

)−i

. Assume that after having applied
the first i − 1 restrictions, that all functions computed at level i − 1 of C are
computed by decision trees of depth at most t, and hence DNFs with terms
of size at most t. Assume without loss of generality that the gates at level i
are OR gates, and thus also computable by decision trees of depth at most
t. By Lemma 8, the probability that the function computed by such an OR
gate can not be computed by a decision tree of depth t after applying ρi is

at most
(
7 mi

mi−1
t
)t

=
(
7m− 1

3d δ log n
)δ log n

= n−Ω(log n). Thus for ε sufficiently
small, ρ will convert all gates at level d into decision trees of depth at most t.
By rewriting these into DNFs with mutually contradictory terms, allows us to
simply directly feed these terms into the symmetric gate above, resulting in a
MAJ ◦ANYs ◦ SYM ◦ANDt circuit computing the same function. ��

Proof (of Theorem 1). Let C be a AC0 circuit of size S augmented with s
symmetric gates. Let g1, . . . , gs denote the symmetric gates, such that there is
no path from the output of gj to an input of gi if i < j. For α ∈ {0, 1}s, let Cα

i

Lower Bounds for Circuits with Few Modular and Symmetric Gates 1001

be the SYM ◦AC0 subcircuit of C with gi as output, where each gj for j < i is
replaced by the constant αj . Similarly, let Cα be the AC0 circuit obtained from
C where every gi is replaced by αi. Note that since the subcircuit of C with
output gi contain at most i− 1 other symmetric gates than gi, we have at most∑s

i=1 2i−1 = 2s−1 different SYM◦AC0 subcircuits of C. We can now compute
the same function as C by a OR2s ◦ANDs+1◦SYM◦AC0 circuit of size O(2sS)
constructed as follows: The output OR gate is fed by ANDs corresponding to
all α ∈ {0, 1}s. The AND gates takes Cα as input, as well as Cα

i if αi = 1 and
¬Cα

i (which is also a SYM ◦AC0 circuit) otherwise. If s = o(log2 n) Theorem
2 gives that S = nΩ(log n). ��

4 Circuits with Few Modular Gates

4.1 Degree Lower Bounds

Barrington and Tardos obtained the following lower bound on the generalized
degree of the OR function.

Theorem 11 ([24]). Let m be a positive integer with r ≥ 2 distinct prime
factors, and let q be the smallest maximal prime power of m. The generalized

degree of the OR function on n variables is at least
((

1
q−1 − o(1)

)
log n

) 1
r−1

.

As a corollary to this we obtain the same lower bounds for the weak gener-
alized degree of the MAJORITY and ¬MAJORITY functions.

Theorem 12. Let m be a positive integer with r ≥ 2 distinct prime factors, and
let q be the smallest maximal prime power of m. The weak generalized MODm

degree of the MAJORITY and ¬MAJORITY functions on n variables is at least((
1

q−1 − o(1)
)

log n
) 1

r−1
.

We will use the following lower bound on the degree of weak representation
due to Green [15] in a crucial way for proving Lemma 15.

Theorem 13. Let m and l be positive relative prime integers. The weak MODm

degree of the MODl and ¬MODl functions on n variables is at least � n
2(l−1)�.

Corollary 14. Let l be a positive integer and let q = pa for a prime p not divid-
ing l. The weak generalized MODq degree of the MODl and ¬MODl functions
on n variables is at least 1

(q−1)�
n

2(l−1)�.

For a subset S ⊆ {1, . . . , n}, let χ(S) ∈ {0, 1}n denote its characteristic
vector. Conversely for x ∈ {0, 1}n, let σ(x) ⊆ {1, . . . , n} be the set of indices
where xi = 1.

Lemma 15. Let P be a polynomial of degree d in n variables over Zq where
q = pa for a prime p, and let l be a positive integer not divisible by p. If k ≥ 1

1002 A. Chattopadhyay and K.A. Hansen

satisfies n ≥ 2(l−1)
(
k + (q − 1)

∑d
i=1(d + 1− i)

(
k
i

))
, then there exists pairwise

disjoint nonempty sets S1, . . . ,Sk ⊆ {1, . . . , n} such that for every y ∈ {0, 1}k

we have P (
∑k

i=1 yiχ(Si)) ≡ P (0) (mod q) and furthermore we have |Si| �≡ 0
(mod l) for all i.

Proof. Assume without loss of generality that P (0) = 0. We will find the sets Si

inductively with |Si| ≤ si, wheresj = 2(l − 1)
(
1 + (q − 1)

∑d
i=1

(
j−1
i−1

)
(d + 1− i)

)
.

First pick a set S of s1 = 2(l − 1)(d(q − 1) + 1) variables. If we consider the
polynomial obtained from P by substituting 0 for all variables not in S, we obtain
a polynomial which can not be a weak generalized representation of ¬MODl with
respect to the set {0}, by Corollary 14. Thus there is a subset S1 ⊆ S such that
P (χ(S1)) = 0 = P (0) and ¬MODl(χ(S1)) = 0, that is |S1| �≡ 0 (mod l).

In the general case, assume for j < k, that we have already found sets
S1, . . . ,Sj , where |Si| ≤ si and |Si| �≡ 0 (mod l) for all i ≤ j and we have
P (
∑t

i=1 yiχ(Si)) = 0 = P (0) for all y ∈ {0, 1}j . Pick a set S of size sj+1 of the
remaining variables.

For any y ∈ {0, 1}j , let Py be the polynomial obtained from P be substituting
yi for all variables in Si for all i, and further substituting 0 for all remaining
variables not in S. Let P ′y be the polynomial over Zp, obtained using Lemma 9,
that is a strong representation of the boolean function of which Py is a generalized
representation with respect to {0}. That is P ′y(x) ≡ 0 (mod p) ⇔ Py(x) �≡ 0
(mod q) and P ′y(x) ≡ 1 (mod p) ⇔ Py(x) ≡ 0 (mod q).

Let R =
∏

y∈{0,1}j P ′y. Observe that R only take the values 0 and 1 modulo
p, and that R(x) ≡ 1 (mod p) if and only if P ′y(x) ≡ 1 (mod p) for all y, that
is, if and only if Py(x) ≡ 0 (mod q) for all y. If R is not a weak representation
of ¬MODl, we could thus find a new set Sj+1 as before. But since the degree of
R is 2j(q− 1)d, this does not give our desired bound on the number of variables
sj+1 required for this contradiction. However, exactly as in [24] we can use
inclusion-exclusion to construct an equivalent polynomial R′, i.e R′(x) �≡ 0 if
and only if Py(x) ≡ 0 (mod q) for all y, of degree (q − 1)

∑d−1
i=0

(
j
i

)
(d− i). From

Theorem 13 and the choice of sj+1 we have that R′ is not a weak representation
of ¬MODl. We can thus find Sj+1 ⊆ S such that R′(χ(Sj+1)) �≡ 0 (mod p) and
¬MODl(χ(Sj+1)) = 0. It follows that Py(χ(Sj+1)) = 0 for all y and |Sj+1| �≡ 0
(mod l). To allow the induction to go through, we need that n ≥

∑k
j=1 sj , which

is exactly the requirement stated. ��

Theorem 16. Let m be a positive integer with r ≥ 2 distinct prime factors, let q
be the smallest maximal prime power factor of m and let p be a prime not dividing
m. For all a ∈ Zp the weak generalized MODm degree of the MOD{a}

p and

¬MOD{a}
p functions on n variables is at least

((
1

2(p−1)2(q−1) − o(1)
)

log n
) 1

r−1
.

Proof. The idea of the proof is to succesively use Lemma 15 to convert a given
representation into another representation (on fewer variables) that depend on
less prime factors, and finally use Corollary 14.

Lower Bounds for Circuits with Few Modular and Symmetric Gates 1003

Let n = n(m, d) denote the maximal number of variables, for which there is
a weak generalized representation over Zm of degree d, for any of the MOD{a}

p

and ¬MOD{a}
p functions. We need to prove that log n(m, d) ≤ (2(p − 1)2(q −

1) + o(1))dr−1. Let m = q1m1 where q1 is a maximal prime power divisor of m
different from q.

Assume that P is a polynomial in n variables of degree d over Zm which is
a weak generalized representation of f with respect to {0}, where f is either
MOD{a}

p or ¬MOD{a}
p for some a ∈ Zp. By assumption there exists x̄ ∈ {0, 1}n

such that P (x̄) ≡ 0 (mod m) and f(x̄) = 1. If |σ(x̄)| < n
2 let P ′ be the polyno-

mial obtained from P by setting the variables indexed by σ(x̄) to 1. Otherwise,
if |σ(x̄)| ≥ n

2 we can let P ′ be the polynomial where variables xi are substituted
with 1 − xi if i ∈ σ(x̄) and otherwise set to 0, and modify the following proof
accordingly. In either case the number n′ of variables in P ′ is at least n

2 .
For a given integer k, let k′ = (p − 1)k and assume that n′ is at least

2(p− 1)
(
k′ + (q1 − 1)

∑d
i=1(d + 1− i)

(
k′

i

))
. Then using Lemma 15 we can find

pairwise disjoint nonempty sets S′1, . . . ,S′k
′ ⊆ {1, . . . , n′} such that for ev-

ery y ∈ {0, 1}k′
we have P ′(Σk′

i=1yiχ(S′i)) ≡ P ′(0) ≡ 0 (mod q1) and fur-
thermore we have |S′i| �≡ 0 (mod p) for all i. Choosing the most occuring
residue b ∈ Zp \ {0} among |S′i| modulo p and extending the sets to {1, . . . , n},
we have pairwise disjoint nonempty sets S1, . . . ,Sk ⊆ {1, . . . , n} such that
P (x̄ +Σk

i=1yiχ(Si)) ≡ P (x̄) ≡ 0 (mod q1) for every y ∈ {0, 1}k, and |Si| ≡ b for
all i.

In case f is MOD{a}
p , we have P (x̄ + Σk

i=1yiχ(Si)) ≡ 0 (mod m) ⇒
|σ(x̄)| +

∑k
i=1 yi|Si| �≡ a (mod p) ⇒

∑k
i=1 yi �≡ b−1(a − |σ(x̄)|) (mod p).

In case f is ¬MOD{a}
p we have P (x̄ + Σk

i=1yiχ(Si)) ≡ 0 (mod m) ⇒
|σ(x̄)| +

∑k
i=1 yi|Si| ≡ a (mod p) ⇒

∑k
i=1 yi ≡ 0 (mod p). Since P (x̄ +

Σk
i=1yiχ(Si)) ≡ 0 (mod m1) ⇒ P (x̄ + Σk

i=1yiχ(Si)) ≡ 0 (mod m), we thus
have that P (x̄ + Σk

i=1yiχ(Si)) is a weak generalized MODm1 representation of
either MOD{b−1(a−|σ(x̄)|)}

p or ¬MOD{0}
p . Thus for k = n(m1, d)+1 we must have

n′ < 2(p− 1)
(
k′ + (q1 − 1)

∑d
i=1(d + 1− i)

(
k′

i

))
.

If r = 2 then m1 = q and from Corollary 14 we have that k ≤ 2(p −
1) ((q − 1)d + 1). Using n(m, d) ≤ O

(
d2k′

)
gives log n(m, d) ≤ O(log d) + (p −

1)k ≤
(
2(p− 1)2(q − 1) + o(1)

)
d.

If r > 2, we have by induction that log k ≤ (2(p − 1)2(q − 1) + o(1))dr−2.
Using n(m, d) ≤ O(k′d) gives log n(m, d) ≤ O(1) + d(log(p − 1) + log k) ≤
(2(p− 1)2(q − 1) + o(1))dr−1. ��

Corollary 17. Let m be a positive integer with r ≥ 2 distinct prime factors, let
q be the smallest maximal prime power factor of m and let l be a positive integer
having a prime factor p not dividing m.

Then the weak generalized MODm degree of the MOD{a}
l and ¬MOD{a}

l func-

tions on n variables is at least
((

1
2(p−1)2(q−1) − o(1)

)
log n

) 1
r−1

.

1004 A. Chattopadhyay and K.A. Hansen

4.2 Circuit Lower Bounds

Proof (of Theorem 3). Let C be a depth d AC0 circuit of size n
ε
s log

1
r−1 n con-

taining s MODm gates g1, . . . , gs computing a function f . Assume there is no
path from the output of gj to an input of gi if i < j. For α ∈ {0, 1}s let Cα

i be
the MODm ◦AC0 subcircuit of C with gi as output, where every gj for j < i is
replaced by the constant αj . Similarly, let Cα be the AC0 circuit obtained from
C where every gi is replaced by αi. We will choose a random restriction ρ ∈ R

√
n

n

and show that for every δ > 0 we can choose ε sufficiently small such that with
high probability we can obtain polynomials pαi and qα, of degree δ

s log
1

r−1 n, such
that Cα

i,ρ(x) = 1 ⇔ pαi (x) �≡ 0 (mod m) and Cα
ρ (x) = qα(x) for all x.

If we obtain this we can construct a simultaneous weak representation, using
s+1 of the polynomials, of either fρ or ¬fρ as follows: Pick a maximal set G of the
MODm gates that are 1 at the same time for some input x in Cρ and define α such
that αi = 1 ⇔ gi ∈ G. If there exist x such that all the gates in G evaluate to 1 on
x and at the same time Cρ(x) = 1, then {pαi | gi ∈ G} ∪ {qα} is a simultaneous
weak representation of fρ. Otherwise {pαi | gi ∈ G} is a simultaneous weak
representation of ¬fρ.

Note that if f is MODl then fρ is MOD{a}
l for some a. If f is MAJORITY and

the number of 0 and 1 assigned by ρ differ by at most 1 (which happens with prob-
ability Ω(n−

1
2)), we can fix at most 1 extra variable such that fρ will compute

MAJORITY. In any casewe canpick δ sufficiently small and obtain a contradiction
to the degree lower bounds in Theorem 12 and Corollary 17, using Lemma 10.

The polynomials are obtained similarly as in the proof of Theorem 2 by

applying a series of restrictions ρ1, . . . , ρd, where ρi leaves n
(
n

1
2d

)−i

variables

free, simultaneously on all of the at most 2s+1−1 different circuits defined above.
Here again the crucial step is to feed the terms of a DNF directly to the MODm

gates, thus obatining a polynomial over Zm. ��

Acknowledgement. We thank Emanuele Viola for sending his paper [18].
The first author is supported by a postgraduate scholarship from the Natural

Sciences and Engineering Research Council (NSERC) of Canada and research
grants of Prof. Denis Thérien. The second author is supported by BRICS, Ba-
sic Research in Computer Science, a Centre of the Danish National Research
Foundation.

References

1. Furst, M., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hierar-
chy. Mathematical Systems Theory 17 (1984) 13–27

2. Ajtai, M.: Σ1
1 -formulae on finite structures. Annals of Pure and Applied Logic 24

(1983) 1–48

3. H̊astad, J.: Computational limitations of small-depth circuits. MIT Press (1987)

Lower Bounds for Circuits with Few Modular and Symmetric Gates 1005

4. Yao, A.C.C.: Separating the polynomial–time hierarchy by oracles. In: 26th Annual
Symposium on Foundations of Computer Science, IEEE Computer Society Press
(1985) 1–10

5. Razborov, A.A.: Lower bounds for the size of circuits of bounded depth with basis
(∧, ⊕). Mathematical Notes of the Academy of Science of the USSR 41 (1987)
333–338

6. Smolensky, R.: Algebraic methods in the theory of lower bounds for Boolean circuit
complexity. In: 19th Annual ACM Symposium on Theory of Computing. (1987)
77–82

7. Aspnes, J., Beigel, R., Furst, M.L., Rudich, S.: The expressive power of voting
polynomials. Combinatorica 14 (1994) 135–148

8. Beigel, R., Reingold, N., Spielman, D.A.: PP is closed under intersection. Journal
of Computer and System Sciences 50 (1995) 191–202

9. Beigel, R.: When do extra majority gates help? Polylog(n) majority gates are
equivalent to one. Computational Complexity 4 (1994) 314–324

10. Barrington, D.A.M., Straubing, H.: Complex polynomials and circuit lower bounds
for modular counting. Computational Complexity 4 (1994) 325–338

11. Hansen, K.A., Miltersen, P.B.: Some meet-in-the-middle circuit lower bounds. In:
29th International Symposium on Mathematical Foundations of Computer Science.
Volume 3153 of Lecture Notes in Computer Science., Springer (2004) 334–345

12. H̊astad, J., Goldmann, M.: On the power of small-depth threshold circuits. Com-
putational Complexity 1 (1991) 113–129

13. Razborov, A., Wigderson, A.: nΩ(log n) lower bounds on the size of depth-3 thresh-
old circuits with AND gates at the bottom. Information Processing Letters 45
(1993) 303–307

14. Babai, L., Nisan, N., Szegedy, S.: Multiparty protocols, pseudorandom generators
for logspace, and time-space trade-offs. Journal of Computer and System Sciences
45 (1992) 204–232

15. Green, F.: A complex-number fourier technique for lower bounds on the mod-m
degre. Computational Complexity 9 (2000) 16–38

16. Beigel, R., Maciel, A.: Upper and lower bounds for some depth-3 circuit classes.
Computational Complexity 6 (1997) 235–255

17. Krause, M., Pudlák, P.: On the computational power of depth-2 circuits with
threshold and modulo gates. Theoretical Computer Science 174 (1997) 137–156

18. Viola, E.: Pseudorandom bits for constant-depth circuits with few arbitrary sym-
metric gates. In: 20th Annual IEEE Conference on Computational Complexity,
IEEE Computer Society Press (2005) (to appear).

19. Nisan, N., Wigderson, A.: Hardness vs randomness. Journal of Computer and
System Sciences 49 (1994) 149–167

20. Chandra, A.K., Furst, M.L., Lipton, L.: Multi-party protocols. In: 15th Annual
ACM Symposium on Theory of Computing, ACM Press (1983) 94–99

21. Chung, F.R.K., Tetali, P.: Communication complexity and quasi randomness.
SIAM Journal on Discrete Mathematics 6 (1993) 110–123

22. Hajnal, A., Maass, W., Pudlák, P., Szegedy, M., Turán, G.: Threshold circuits of
bounded depth. Journal of Computer and System Sciences 46 (1993) 129–154

23. Beame, P.: A switching lemma primer. Technical Report UW-CSE-95-07-01, De-
partment of Computer Science and Engineering, University of Washington (1994)
Availible online at www.cs.washington.edu/homes/beame.

24. Tardos, G., Barrington, D.A.M.: A lower bound on the mod 6 degree of the or
function. Computational Complexity 7 (1998) 99–108

Discrete Random Variables over Domains�

M.W. Mislove

Tulane University, New Orleans, LA 70118

Abstract. In this paper we explore discrete random variables over do-
mains. We show that these lead to a continuous endofunctor on the
categories RB (domains that are retracts of bifinite domains), and FS
(domains where the identity map is the directed supremum of deflations
finitely separated from the identity). The significance of this result lies
in the fact that there is no known category of continuous domains that
is closed under the probabilistic power domain, which forms the stan-
dard approach to modeling probabilistic choice over domains. The fact
that RB and FS are cartesian closed and also are closed under the dis-
crete random variables power domain means we can now model, e.g., the
untyped lambda calculus extended with a probabilistic choice operator,
implemented via random variables.

1 Introduction

Domain theory, perhaps the most widely used method for assigning denotational
meanings to programming languages, has recently seen its influence broaden
to other areas of computation and mathematics. It provides a wide range of
constructors for modeling data types, nondeterminism, functional programming,
and several other constructs needed in semantics. It also admits a number of
cartesian closed categories, the fundamental objects needed to model the lambda
calculus. Even probabilistic computation admits a model in the theory, although
truth to tell, this particular constructor has proven to be very difficult to unravel.
Of particular interest is the question

Is there a cartesian closed category of domains
that is closed under the probabilistic power domain?

There have been many attempts to resolve this, but the most we know to date
is contained in [9], where it is shown that the probabilistic power domain of
a finite tree is in RB, that the probabilistic power domain of a finite reversed
tree is in FS, and that RB is closed under the probabilistic power domain if the
probabilistic power domain of every finite poset is in RB. But, other than finite
trees, the only finite posets whose probabilistic power domain is known to be in
RB is the class of flat posets, whose probabilistic power domains are bounded
complete (the continuous analogs of Scott domains).

� This work supported by the US National Science Foundation and the US Office of
Naval Research.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 1006–1017, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Discrete Random Variables over Domains 1007

We do not contribute to settling this question here, but we do provide an
alternative construction—what we call the power domain of discrete random
variables, which we show defines a continuous endofunctor on the category RB,
as well as on FS and on CDOM, the category of coherent domains.

Objects in RB are retracts of bifinite domains, those that can be expressed
as bilimits of finite posets under embedding–projection pairs. This category is
cartesian closed, and it also is closed under the various power domains for nonde-
terminism [4]. With the addition of a mechanism to model probabilistic choice,
RB provides virtually all the tools required to support semantic modeling. Fur-
thermore, playing off results of Varacca [20, 21], we show that the formation of
the power domain of discrete random variables over RB yields a monad that
enjoys a distributive law with respect to each of the power domain monads, and
this in turn implies that each of these power domain monads lifts to a monad on
the category RB that are also algebras for the discrete random variable power
domain monad. In short, we can now form domain-theoretic models of compu-
tation that respect the laws of discrete random variables as well as any of the
laws we choose for nondeterminism: angelic, demonic or convex choice.

The outline of the rest of the paper is as follows. In the next section we
provide some background about domains and about the constructions we need.
We then review briefly a construction by Varacca [21] which inspired our work,
and that Varacca calls the Plotkin indexed valuations. In the following section,
we investigate bag domains—domain-theoretic models for multisets, which are
at the heart of our reformulation of Varacca’s construction, and we then show
how our approach recaptures Varacca’s construction. Next we present the main
result of the paper, which is to define that what we call the power domain
of discrete random variables, and we show it defines a continuous endofunctor
on RB, FS and on CDOM. In the final section, we discuss further work along
this line, including how to construct Varacca’s other examples of indexed val-
uations. We also discuss the relationship between a random variable approach
to modeling probabilistic computation and one based directly on probability
distributions.

1.1 Background

We begin with some basic results about partial orders, and about domains in
particular. A general reference for this material is [1] or [3].

A subset A of a partially ordered set P is directed if A has an upper bound
for each of its finite subsets. A mapping between partially ordered sets is Scott
continuous if it preserves the order and the suprema of those directed sets that
have a supremum. A directed complete partial order (dcpo) is a partially ordered
set in which each directed set has a least upper bound. A cpo is a dcpo with a
least element ⊥.

If P is a partial order and x, y ∈ P , then we say x is way-below y (x / y)
if whenever A ⊆ P is directed and has a supremum, if y , �A, then x , a for
some a ∈ A. A poset P is continuous if ⇓ y = {x ∈ P | x / y} is directed and
y = �⇓ y for each y ∈ P . A domain is a continuous dcpo.

1008 M.W. Mislove

An abstract basis is a pair (B,/) where / is a transitive relation on B
satisfying the interpolation property:

F / x & F ⊆ B finite ⇒ (∃y ∈ B) F / y / x.

By F / x we mean z / x ∀z ∈ F . If (B,/) is an abstract basis, then I ⊆ B is a
round ideal if I is a /-lower set, and x ∈ I ⇒ (∃y ∈ I) x / y. The round-ideal
completion of an abstract basis (B,/) is the family of round ideals, ordered by
inclusion. This forms a domain, where I / J iff (∃x / y ∈ B) I ⊆ ⇓x ⊆ ⇓ y ⊆
J . In fact, every domain P is isomorphic to the round-ideal completion of an
abstract basis, namely P is isomorphic to the round ideal completion of (P,/)
under the mapping sending a point x to ⇓x, whose inverse is the mapping that
sends a round ideal to its supremum.

One of the fundamental results about dcpos is that the family of Scott con-
tinuous maps between two dcpos is another dcpo in the pointwise order. Since
it’s easy to show that the finite product of a family of continuous posets is an-
other such, and the one-point poset is a terminal object, a central question is
which categories of dcpos and Scott continuous maps are cartesian closed. This is
true of DCPO, but not of DOM, the category of domains. Still, there are several
full subcategories of DOM that are cartesian closed. Among the notable such
categories are:

BCD Bounded complete domains, in which every non-empty subset has a great-
est lower bound.

RB Domains which are retracts of bifinite domains, themselves bilimits of
families of finite posets under embedding-projection maps; these are pairs
of Scott continuous mappings e:P → Q and p:Q→ P satisfying p◦e = 1P
and e ◦ p ≤ 1Q.

FS Domains D satisfying the property that the identity map is the directed
supremum of selfmaps f :D → D each finitely separated from the identity:
i.e., for each f there is a finite subset Mf ⊆ D with the property that, for
each x ∈ D, there is some m ∈Mf with f(x) ≤ m ≤ x.

Actually, BCD is a full subcategory of RB, which in turn is a full subcategory
of FS, and FS is a maximal ccc of domains. An interesting (some might say
frustrating) open question is whether RB and FS are equal. The objects in all
of these categories are coherent,1 but the category CDOM of coherent domains
and Scott continuous maps is not a ccc.

We also recall some facts about categories. A monad on a category A is a triple
(T,μ, η) where T :A → A is an endofunctor, and μ:T 2 .−→ T and η: 1A

.−→ T
are natural transformations satisfying the laws:

μ ◦ Tμ = μ ◦ μT and μ ◦ ηT = T = μ ◦ Tη

If (T,μ, η) is a monad, then a T -algebra is a pair (a,h), where a ∈ A and
h:Ta → a is an A-morphism satisfying h ◦ ηa = 1a and h ◦ Th = h ◦ μa. For

1 A domain is coherent if its Lawson topology is compact; cf. [1].

Discrete Random Variables over Domains 1009

example, each of a power domains, PL(P),PU (P) and PC(P) define monads on
DCPO (cf. [4]), whose algebras are ordered semilattices; another example is the
probabilistic power domain V(P) (cf. [7]), whose algebras satisfy equations that
characterize the probability measures over P .

One goal of domain theory is to provide a setting in which all of the con-
structors needed to model a given programming language can be combined. If
the aim is to model both nondeterminism and probabilistic choice, then one
needs to combine the appropriate nondeterminism monad with the probabilistic
power domain monad, in order that the laws of each constructor be preserved
in the resulting model. This is the function of a distributive law, which is a nat-
ural transformation d:ST

.−→ TS between monads S and T on A satisfying
several identities—cf. [2]. The significance of distributive laws is a theorem of
Beck [2], which says there is a distributive law of S over T if and only if T lifts to a
monad on the category of S-algebras. Unfortunately, it was shown by Plotkin and
Varacca [20] that there is no distributive law of V over PX , or of PX over V for
any of the nondeterminism monads PX . This led to the work we report on next.

2 Indexed Valuations

We now recall some of the work of Varacca [21] that was motivated by problems
associated with trying to model both nondeterminism and probabilistic choice.
Once it was shown that there is no distributive law between V and any of the
nondeterminism monads, Varacca realized that weakening one of the laws of
probabilistic choice could result in a monad that enjoys a distributive law with
respect to a monad for nondeterminism. For 0 < p < 1 and A a domain element,
the law in question is

pA + (1− p)A = A (1)

which he weakened in three ways:

pA + (1− p)A * A (2)
pA + (1− p)A , A (3)

pA + (1− p)A and A unrelated by order. (4)

He called the monad he constructed satisfying (2) the Hoare indexed valuations,
the one satisfying (3) the Smyth indexed valuations and the one satisfying (4), a
non-relation, the Plotkin indexed valuations. We exploit this last construction—
the so-called Plotkin indexed valuations over a domain—in defining our power
domain of discrete random variables.

2.1 Plotkin Indexed Valuations

An indexed valuation over the poset P is a tuple (ri, pi)i∈I where I is an index
set,2 each ri ≥ 0 is a non-negative real number and pi ∈ P for each i ∈ I.

2 For our discussion, we can assume I is always finite.

1010 M.W. Mislove

Two indexed valuations satisfy (ri, pi)I "1 (sj , qj)J if |I| = |J | and there is
a permutation φ ∈ S(|I|) 3 with rφ(i) = si and pφ(i) = qi for each i. If we
let I ′ = {i ∈ I | ri �= 0} and similarly for J , then (ri, pi)I "2 (sj , qj)J if
(ri, pi)I′ "1 (sj , qj)J ′ , and we let " denote the equivalence relation on indexed
valuations generated by "2. For an indexed valuation (ri, pi)I , we let 〈ri, pi〉I
denote the equivalence class modulo ".

Next, let R≥0 denote the extended non-negative real numbers, with the usual
order. Then for a domain P , Varacca defines a relation /P on the family
{〈ri, pi〉I | ri ∈ R≥0 & pi ∈ P} of indexed valuations over P by

〈ri, pi〉I /P 〈sj , qj〉J iff (|I ′| = |J ′|) (∃φ ∈ S(|I ′|)) (5)
ri < sφ(i) & pi /P qφ(i) (∀i ∈ I ′).4

Note that we can “add” indexed valuations 〈ri, pi〉I and 〈sj , qj〉J by simply

concatenating the tuples and taking the equivalence class of the resulting I
·
∪ J-

tuple. This forms a continuous operation on indexed valuations that is commu-
tative, by construction. We also can let R+ act on 〈ri, pi〉I by r · 〈ri, pi〉I =
〈r · ri, pi〉I . Varacca’s main result for the family of Plotkin indexed valuations is:

Theorem 1 (Varacca [20]).

– If P is a continuous poset, then the family of Plotkin indexed valuations
ordered by /P as defined in (5) is an abstract basis. The family IVP (P),
the round ideal completion of the Plotkin indexed valuations, satisfies the
following family of equations:

(1) A⊕B = B ⊕A (2) A⊕ (B ⊕ C) = (A⊕B)⊕ C
(3) A⊕ 0 = A (4) 0A = 0
(5) 1A = A (6) p(A⊕B) = pA⊕ pB
(7) p(qA) = (pq)A where p, q ∈ R+ and A,B,C ∈ IVP (P).

– The Plotkin indexed valuation defines the object level of a functor which
is monadic over DOM, and each of the power domain monads satisfies a
distributive law with respect to the Plotkin indexed valuations monad.

A corollary of this result is that the composition PP ◦ IVP defines a monad
on CDOM, the category of coherent domains, whose algebras satisfy the laws
listed in Theorem 1 and the laws of the Plotkin power domain:

(i) X + Y = Y + X (ii) X + X = X (iii) X + (Y + Z) = (X + Y) + Z

In other words, PP (IVP (P)) is the initial domain semilattice algebra over P that
also satisfies the laws listed in Theorem 1.

3 S(n) denotes the permutation group on n.
4 Note that r < s iff r � s for r, s ∈ R.

Discrete Random Variables over Domains 1011

3 Bag Domains

In this section we develop some results that are fundamental for our main con-
struction. The details of these results are contained in [15]. The construction of
bag domains—domains whose elements are bags or multisets from an underlying
domain, originated in the work of Vickers [22], and also have been considered
by Johnstone [5, 6]. Those works were inspired by work in database theory, and
the goals of their work was to capture the abstract categorical nature of the
construction. Here we present results along the same line, but we provide a more
direct construction that allows us to analyze the internal structure of the objects
more closely. It also allows us to capture the constructions of Varacca [20] more
concretely. We begin with a simple result about posets:

Definition 1. Let P be a poset and let n ∈ N. For φ ∈ S(n), define a mapping
φ:Pn → Pn by φ(d)i = dφ−1(i). Then φ permutes the components of d according
to φ’s permutation of the indices i = 1, . . . , n. Next, define a preorder ,n on
Pn by

d ,n e iff (∃φ ∈ S(n)) φ(d) ≤ e iff dφ−1(i) ≤ ei (∀i = 1 . . . , n). (6)

Finally, we define the equivalence relation ≡ on Pn by

≡ = ,n ∩ *n, (7)

and we note that (Pn/≡,,n) 5 is a partial order. We denote by [d] the image of
d ∈ Pn in Pn/≡.

Lemma 1. Let P be a poset and let n ∈ N. Then the following are equivalent:

1. d ,n e,
2. (∃φ ∈ S(n))(∀i = 1, . . . , n) di ≤ eφ(i), for i = 1, . . . , n.
3. ↑{φ(d) | φ ∈ S(n)} ⊇ ↑{φ(e) | φ ∈ S(n)}.

Proof. For (i) implies (ii), we note that, if φ ∈ S(n) satisfies dφ−1(i) ≤ ei, then
di ≤ eφ(i), for each i = 1, . . . , n, so (ii) holds. Next, (ii) implies φ−1(e) ∈ ↑ d, and
then ψ(e) ∈ ↑{(φ(d) | φ ∈ S(n)} for each ψ ∈ S(n) by composing permutations,
from which (iii) follows. Finally, (iii) implies (i) is clear.

We also need a classic result due to M.-E. Rudin [10]

Lemma 2 (Rudin). Let P be a poset and let {↑Fi | i ∈ I} be a filter basis
of non-empty, finitely-generated upper sets. Then there is a directed subset A ⊆
∪iFi with A ∩ Fi �= ∅ for all i ∈ I.

Next, let P be a dcpo and let n > 0. We can apply the lemma above to derive
the following:

5 We use �n to denote the �/≡, the partial order on P n/≡ induced by the pre-order
defined above.

1012 M.W. Mislove

Proposition 1. Let P be a dcpo, and let n > 0.

– If A ⊆ Pn/≡ is directed, then there is a directed subset B ⊆
⋃

[a]∈A{φ(a) |
φ ∈ S(n)} satisfying

↑{φ(�B) | φ ∈ S(n)} =
⋂
a∈A

↑{φ(a) | φ ∈ S(n)} and [�B] = �A. (8)

– In particular, (Pn/≡,,) is a dcpo, and the mapping x !→ [x]:Pn → Pn/≡ is
Scott continuous.

Proof. If A ⊆ Pn/≡ is directed, then Lemma 1 implies that {∪φ∈S(n) ↑φ(a) |
[a] ∈ A} is a filter basis of finitely generated upper sets, and so by Lemma 2 there
is a directed set B ⊆

⋃
[a]∈A{φ(a) | φ ∈ S(n)} with B ∩ {φ(a) | φ ∈ S(n)} �= ∅

for each [a] ∈ A. Since B ⊆ Pn is directed, we have x = �B exists. If [a] ∈ A,
then B ∩ {φ(a) | φ ∈ S(n)} �= ∅ means there is some φ ∈ S(n) with φ(a) ∈ B, so
φ(a) ≤ x by Lemma 1. Hence a , x for each [a] ∈ A, so [x] is an upper bound
for A.

We also note that, since �B = x,⋂
b∈B

↑{φ(b) | φ ∈ S(n)} = ↑{φ(x) | φ ∈ S(n)}.

Indeed, the right hand side is clearly contained in the left hand side since b ≤ x
for all b ∈ B. On the other hand, if y is in the left hand side, then b , y for
each b ∈ B. Now, since S(n) is finite, there is some φ ∈ S(n) and some cofinal
subset B′ ⊆ B with φ(b) ≤ y for each b ∈ B′. But then �B′ = �B, and so
�{φ(b) | b ∈ B′} = φ(x), from which we conclude that φ(x) ≤ y. Thus y is in
the right hand side, so the sets are equal.

Now, if y ∈ Pn satisfies a , y for each [a] ∈ A, then since B ⊆
⋃

[a]∈A{φ(a) |
φ ∈ S(n)}, it follows that b , y for each b ∈ B. Then y ∈

⋂
b∈B ↑{φ(b) | φ ∈

S(n)} = ↑{φ(x) | φ ∈ S(n)}, and so x , y. Thus [x] = �A in the order ,n. This
also shows the

⋂
[a]∈A ↑{φ(a) | φ ∈ S(n)} = ↑{φ(x) | φ ∈ S(n)}

It is clear now that Pn/≡ is a dcpo, and the argument we just gave shows
that directed sets B ⊆ Pn satisfy [�B] = �b∈B[b].

Proposition 2. Let P be a domain and let n ∈ N. Then

1. (Pn/≡,,n) is a domain. Moreover, [di]n / [ei]n iff
(∃φ ∈ S(n)) φ((di)n) / (ei)n.

2. If P is RB or FS, then so is Pn/≡.
3. If P is coherent, then so is Pn/≡.

Proof. Pn/≡ is a domain: Proposition 1 shows that (Pn/≡,,n) is directed
complete and that the quotient map is Scott continuous. To characterize the
way-below relation on Pn/≡, let x, y ∈ Pn with x / y. Then xi / yi for each
i = 1, . . . , n, and it follows that φ(x) / φ(y) for each φ ∈ S(n). If A ⊆ Pn/≡
is directed and [y] ,n �A, then there is some φ ∈ S(n) with φ(y) ≤ z, where

Discrete Random Variables over Domains 1013

[z] = �A. Then Proposition 1 shows there is a directed set B ⊆ ∪[a]∈A ↑{φ(a) |
φ ∈ S(n)} with �B ≡ z. Hence, there is some ψ ∈ S(n) with ψ(y) ≤ �B. Since
ψ(x) / ψ(y), it follows that there is some b ∈ B with ψ(x) ≤ b, so [x] ,n [b].
Hence [x] / [y] in Dn/≡ .

We have just shown that x / y in Pn implies that [x] / [y] in Pn/≡.
Since Dn is a domain, ↓↓y is directed with y = �↓↓y, and so the same is true for
↓↓[y] ∈ Dn/≡. Thus Pn/≡ is a domain.

Pn/≡ is RB if P is: Now suppose the P is in RB. Then, by Theorem 4.1 of [8]
there is a directed family fk:P → P of Scott continuous maps with 1P = �kfk

and fk(P) finite for each k ∈ K. Then the mappings (fk)n:Pn → Pn also form
such a family, showing Pn is in RB.

Next, given k ∈ K, x ∈ Pn and φ ∈ S(n), we have φ(fn
k (x)) = fn

k (φ(x)) since
fn

k is fk acting on each component of x. It follows that there is an induced map
[fn

k]:Pn/≡ → Pn/≡ satisfying [fn
k]([x]) = [fn

k (x)], and this map is continuous
since [] is a quotient map. Finally, [fn

k](Pn/≡) is finite since fn
k (Pn) is finite,

and that �k[fn
k] = 1Pn/≡ follows from �kfn

k = 1Pn . Thus, Pn/≡ is RB is P is.
Pn/≡ is FS if P is: Continuing, the domain P is FS if there is a directed

family of selfmaps fk:P → P satisfying �kfk = 1P and for each k ∈ K, there is
some finite Mk ⊆ P with fk(x) ≤ mx ≤ x for some mx ∈ Mk, for each x ∈ P .
The remainder is similar to the case of RB.

Pn/≡ is coherent if P is: Last, we consider coherent domains. Recall a domain
is coherent if the Lawson topology is compact, where the Lawson topology has
for a basis the family of sets {U \ ↑F | F ⊆ P finite & U Scott open}. Now,
if x ∈ Pn, then {φ(x) | φ ∈ S(n)} is finite, and so if F ⊆ Pn/≡ is finite,
then [↑F]−1 = ∪[x]∈F ↑{φ(x) | φ ∈ S(n)} is finitely generated. It follows that
[]:Pn → Pn/≡ is Lawson continuous, so if P is coherent, then so are Pn

and Pn/≡.

Definition 2. For a domain P , we let Bn(P) = Pn/≡ denote the domain of
n-bags over P . We also let B(P) = ⊕nBn(P) denote the coalesced sum 6 of the
Bn(P), where we identify P 0 ≡ 0.

Theorem 2.

1. Bn defines a continuous endofunctor on the categories DCPO, DOM, CDOM,
RB and FS for each n ∈ N.

2. B defines a continuous endofunctor on DCPO and DOM, as well as on
CDOM⊥, RB⊥ and FS⊥.7

3. In fact, B defines the monad of commutative monoids over each of the cat-
egories listed in 2.

6 The coalesced sum of cpos takes their disjoint union and identifies their least ele-
ments.

7 If A is a category of dcpos, the A⊥ denotes the subcategory of cpos in A and maps
that preserve least elements.

1014 M.W. Mislove

Proof. Bn is defined as a composition of constructors that define continuous
endofunctors on each of the categories, so it is continuous.

For B, we must add the countable coalesced sum operator, which it is easy
to show leaves each of the indicated categories invariant.

The fact that B(P) is a monoid follows by defining 〈pi〉m⊕ 〈qj〉n = 〈rk〉m+n,
where rk = pk for k ≤ m and rk = qm+k otherwise, with P 0 ≡ 0 as the identity.

Example 1. If P = {⊥, a, b,8} is the four-element lattice with a and b incom-
parable, then P 2/≡ is not in BCD: the pair [a,⊥], [b ⊥] has [a, b] and [8,⊥] as
minimal upper bounds.8

3.1 Reconstructing IVP (P)

We now use our results on bag domains to reconstruct Varacca’s Plotkin indexed
valuations. The facts we need are contained in the following.

Definition 3. We define the family of real n-bags over a domain P by BR
n(P) =

Bn(R≥0 × P)/{[ri, di]n | (∃i) ri = 0}. We also define BR(P) = ⊕nBR
n(P).

Theorem 3. BR
n and BR define continuous endofunctors on CDOM, RB and on

FS. Moreover, BR defines a monad on each of these categories whose algebras
satisfy the laws (1) – (7) of Theorem 1.

Proof. BR
n(P) is the quotient of Bn(R≥0×P) modulo a Scott-closed subset, which

shows BR
n(P) is in CDOM, RB or FS if P is. The definition of BR(P) implies 0 is

the least element, which implies BR leaves these categories invariant.
Given f :P → Q, we define BR

n(f)([ri, di]n) = [ri, f(di)]n, and then BR(f) =
⊕nBR

n(f). Clearly R+ acts on BR
n(P), and the last part follows from the fact that

these Scott-closed subsets are invariant with respect to this action.

Theorem 4. For a domain P , IVP (P) " BR(P).

Proof. This follows by noting that the mapping 〈ri, pi〉n !→ [ri, pi]n and 0 !→ 0
defines a bijection that takes /P on IVP (P) to / on BR(P).

Corollary 1. Each of the power domain monads PX lifts to a monad on BR-
algebras.

Proof. Varacca showed that there is a distributive law of IVP over PX in [20],
and this implies that PX lifts to a monad on the class of BR-algebras by Beck’s
Theorem [2] and by Theorem 4. In fact, we can easily recover the distributive
law that Varacca obtains in [21]: the distributive law d:BRPX

.−→ PXBR can be
defined as dP ([ri, Xi]n) = 〈[ri, xi]n | xi ∈ Xi ∈ PX(P)〉. The result follows.

8 Thanks to one of the anonymous referees for this example.

Discrete Random Variables over Domains 1015

4 Random Variables over Domains

We now show how to construct the power domain of discrete random variables
over a domain. Recall that a random variable is a function f : (X,μ) → (Y,Σ)
where (X,μ) is a probability space, (Y,Σ) is a measure space, and f is a mea-
surable function, which means f−1(A) is measurable in X for every A ∈ Σ, the
specified σ-algebra of subsets of Y . Most often random variables take their values
in R, equipped with the usual Borel σ-algebra. For us, X will be a countable,
discrete space, and Y will be a domain, where Σ will be the Borel σ-algebra
generated by the Scott-open subsets.

Given a random variable f :X → Y , the usual approach is to “push the
probability measure μ forward” onto Y by defining f · μ (A) = μ(f−1(A)) for
each measurable subset A of Y . But this defeats one of the attractions of ran-
dom variables: namely, that there may be several points x ∈ X which f takes
to the same value y ∈ Y . This is ‘attractive’ because it means that the ran-
dom variable f makes distinctions that the probability measure f · μ does not,
and we would like to exploit this fact. Varacca makes exactly this point in
his work [20, 21], a point he justifies by showing how to distinguish the ran-
dom variable f from the probability measure f · μ operationally. We return
to this point later. For the moment, we define our power domain of random
variables.

Definition 4. For a domain P , we define the power domain of discrete random
variables over P to be the subdomain

RV(P) =
⋃
n

{[ridi]n | n ≥ 1 &
∑

i

ri ≤ 1} ∪ {0} ⊆ BR(P).

Remark 1. We can think of a discrete random variable over P as a formal sum∑
i≤n riδxi

where some of the xi can be repeated. But, the order from BR(P)
distinguishes, for example, 1

2 δx⊕ 1
2 δx from δx, while these two would be identified

as probability measures.

We now come to our main result.

Theorem 5. RV defines a continuous endofunctor on CDOM, RB and FS.

Proof. RV is obtained by restricting BR in the “real components” to ones whose
sum is at most 1, which defines a Scott-closed subset of BR(P). Hence RV(P)
is in each of the indicated categories if P is. Since continuous maps f :P → Q
are extended to BR(P) by BR(f)[ri, pi] = [ri, f(pi)] and since the elements in
RV(P) are those in BR(P) whose real components sum to at most 1; it follows
that BR(f) preserves this property in BR(Q). The result follows.

Corollary 2. Each of the power domain monads PX lifts to a monad on RV-
algebras.

Proof. The distributive law given in the proof of Corollary 1 clearly restricts to
one for RV.

1016 M.W. Mislove

This corollary means we can solve domain equations such as P " PX ◦RV(P)
for each of the power domain monads PX . The resulting domain P will be a PX -
algebra and simultaneously a RV-algebra.

One might also ask about the relationship between our construction and the
traditional probabilistic power domain over a domain. The following provides
the answer.

Theorem 6. If P is a domain, then there is an epimorphism Flat: RV(P) →
V(P), the domain of valuations over P .

Proof. The mapping Flat is defined by Flat([ri, di]n) =
∑

i≤n riδdi
, where in

V(P), summands with the same support are identified. This is easily seen to
define a continuous map. It is an epimorphism of domains because the simple
valuations are dense [7], and clearly they are the range of Flat.

5 Summary and Future Work

We have presented a power domain for discrete random variables, and shown that
it enjoys a distributive law with respect to each of the power domain monads.
Moreover, our construction defines a continuous endofunctor on the cartesian
closed categories RB and FS, as well as on the category CDOM. This is where our
results on bag domains have their payoff, since trying to devise these last results
using abstract bases would be much more difficult. Varacca actually presents
three separate constructions, as indicated in Section 2. Our methods can be
adopted to recapture each of them; a discussion of the Hoare indexed valuations
from our approach is presented in [15]. Since no similar result is known to hold
for the probabilistic power domain, our construction provides an alternative for
modeling probabilistic choice on domains.

One issue we haven’t discussed is what sort of operational intuition there
is for random variables. Again, we rely on Varacca, who showed in [21] that,
for a simple state-based language supporting nondeterminism and probabilistic
choice, probabilistic schedulers could distinguish distinct programs in his model.
This is similar to refusal testing in CSP: one tests a process at each place where a
probabilistic choice is made. In the more traditional approach using probabilistic
bisimulation, such as in [16], one tests processes at the end of their computation,
not at each stage. This provides a viable, albeit more complicated method of
assigning behaviors to programs.

Another issue not discussed here is whether one can bring Shannon’s infor-
mation theory into the picture [18]. This is based on bringing entropy into play;
there are some very interesting results about domains and entropy in Martin’s
recent work [12], a line we plan to explore. A particularly appealing issue here is
defining an order on random variables over a domain relative to which entropy
forms a measurement. If Martin’s work is any indication, this will probably be
a fairly difficult issue to resolve.

Acknowledgment. We wish to thank the anonymous referees for many valuable
suggestions.

Discrete Random Variables over Domains 1017

References

1. Abramsky, S. and A. Jung, “Doman Theory,” in: Handbook of Logic in Computer
Science, S. Abramsky and D. M. Gabbay and T. S. E. Maibaum, editors, Clarendon
Press, 1994, pp. 1—168.

2. Beck, J., Distributive laws, in: Semian on Triples and Categorical Homology The-
ory, 1969, pp. 119–140.

3. Gierz, G., K. H. Hofmann, K. Keimel, J. Lawson, M. Mislove and D. Scott, “Con-
tinuous Lattices and Domains,” Cambridge University Press, 2003.

4. Hennessy, M. and G. D. Plotkin, Full abstraction for a simple parallel programming
language, Lecture Notes in Computer Science 74 (1979), pp. 108–120.

5. Johnstone, P. T., Partial products, bag domains and hyperlocal toposes, LMS Lec-
ture Notes Series 77 (1992), pp. 315–339.

6. Johnstone, P. T., Variations on a bagdomain theme, Theoretical Computer Science
136 (1994), pp. 3–20.

7. Jones, C., “Probabilistic Nondeterminism,” PhD Dissertation, University of Edin-
burgh, Scotland, 1989.

8. Jung, A., “Cartesian Closed Categories of Domains,” CWI Tracts 66 (1989), Cen-
trum voor Wiskunde en Informatica, Amsterdam.

9. Jung, A. and R. Tix, The problematic probabilistic power domain, Electronic Notes
in Theoretical Computer Science 13 (1999).
http://www.elsevier.com/locate/entcs/volume13.html

10. Lawson, J. D., The upper interval topology, property M and compactness, Elec-
tronic Notes in Theoretical Computer Science 13 (1998).
http://www.elsevier.com/locate/entcs/volume13.html.

11. Lowe, G., “Probabilities and Priorities in Timed CSP,” DPhil Thesis, Oxford Uni-
versity, 1993.

12. Martin, K. Entropy as a fixed point, Proceedings of ICALP 2004, LNCS 3142,
2004.

13. Mislove, M. Algebraic posets, algebraic cpos and models of concurrency, Proceedings
of the Oxford Symposium on Topology, G. M. Reed, A. W. Ros-coe and R. Wachter,
editors, Oxford University Press, 75 – 111.

14. Mislove, M. Nondeterminism and probabilistic choice: Obeying the laws, Lecture
Notes in Computer Science 1877 (2000), pp. 350–364.

15. Mislove, M. Monoids over domains, submitted to MSCS, 2005.
16. Mislove, M., J. Ouaknine and J. B. Worrell, Axioms for probability and nondeter-

minism, Proceedings of EXPRESS 2003, Electronic Notes in Theoretical Computer
Science 91(3), Elsevier.

17. Morgan, C., et al, Refinement-oriented probability for CSP, Technical Report PRG-
TR-12-94, Oxford University Computing Laboratory, 1994.

18. Shannon, C., A mathematical theory of information, Bell Systems Technical Jour-
nal 27 (1948), pp. 379–423 & 623–656.

19. Tix, R., “Continuous D-Cones: Convexity and Powerdomain Constructions,” PhD
Thesis, Technische Universität Darmstadt, 1999.

20. Varacca, D., The powerdomain of indexed valuations, Proceedings 17th IEEE Sym-
posium on Logic in Computer Science (LICS 2002), IEEE Press, 2002.

21. Varacca, D., “Probability, Nondeterminism and Concurrency: Two Denotation-
al Models for Probabilistic Computation,” PhD Dissertation, Aarhus University,
Aarhus, Denmark, 2003.

22. Vickers, S. Geometric theories and databases, LMS Lecture Notes Series 77 (1992),
pp. 288–314.

An Accessible Approach to
Behavioural Pseudometrics

With an Application to Probabilistic Systems

Franck van Breugel1,�, Claudio Hermida2, Michael Makkai3,∗, and
James Worrell4,��

1 York University, Department of Computer Science,
4700 Keele Street, Toronto, Ontario M3J 1P3, Canada

franck@cs.yorku.ca
2 Instituto Superior Técnico, Department of Mathematics,

Av. Rovisco Pais, 1049-001, Lisbon, Portugal
chermida@math.ist.utl.pt

3 McGill University, Department of Mathematics and Statistics,
805 Sherbrooke Street West, Montreal, Quebec H3A 2K6, Canada

makkai@math.mcgill.ca
4 Tulane University, Department of Mathematics,

6823 St Charles Avenue, New Orleans LA 70118, USA
jbw@math.tulane.edu

Abstract. Behavioural pseudometrics are a quantitative analogue of be-
havioural equivalences. They provide robust models for those concurrent
systems in which quantitative data plays a crucial role. In this paper, we
show how behavioural pseudometrics can be defined coalgebraically. Our
results rely on the theory of accessible categories. We apply our results
to obtain a robust model for probabilistic systems.

1 Introduction

The study of concurrent systems with quantitative data, such as probabilities,
time, costs or rewards, has led to various extensions of the classical notion of
transition system and its associated notions of behavioural equivalences, with
emphasis on bisimilarity. However, such discrete notions (states are either be-
haviourally equivalent or they are not) sit uneasily with the presence of quantita-
tive data. For instance, if some of the probabilities associated with the transitions
change slightly—the probabilities are often obtained experimentally and, hence,
are usually approximations—states that used to be behaviourally equivalent may
not be anymore or vice versa. In short, behavioural equivalences like probabilistic
bisimilarity are not robust.

� Supported by the Natural Sciences and Engineering Research Council of Canada.
�� Supported by the US Office of Naval Research.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 1018–1030, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Accessible Approach to Behavioural Pseudometrics 1019

To address this problem, Giacalone, Jou and Smolka [18] suggested to exploit
pseudometrics that assign a distance, a real number between 0 and 1, to each
pair of states of a system. Such a pseudometric yields a quantitative notion of
behavioural equivalence in that the distances between states express the simi-
larity of the behaviour of those states. The smaller the distance, the more the
states behave alike. In particular, the distance between states is 0 if they are
behaviourally indistinguishable. Recently, there has been a renewed interest in
such behavioural pseudometrics (see, for example, [6, 9, 10, 11, 12, 13, 14, 15, 19]).

Three different approaches have been put forward to define behavioural pseu-
dometrics. Desharnais, Gupta, Jagadeesan and Panangaden [13] defined a be-
havioural pseudometric in terms of a real-valued interpretation of a modal logic.
Van Breugel and Worrell [6] gave a coalgebraic definition of a behavioural pseu-
dometric and showed that it coincides with the logical definition. Desharnais et
al. [14] also defined a behavioural pseudometric as the greatest fixed point of
a monotone function on a complete lattice. Each approach has its advantages
and disadvantages. The coalgebraic approach is completely driven by a single
functor. This allows for a uniform approach and a general theory, which are two
of the advantages of the coalgebraic approach. Having a logical, a coalgebraic
and a fixed point characterisation of a behavioural pseudometric allows us to
exploit the advantages of all three approaches.

There are two types of behavioural pseudometrics: those that discount the
future and those that do not. In the discounted setting, differences in behaviour
in the farther future have less impact on the distance, whereas in the undis-
counted setting, all differences are weighted equally (see, for example, [11] for
more details). Pseudometrics that do not discount the future usually provide
quantitative information different from those that discount the future (even the
induced topologies often differ). Both types of behavioural pseudometrics can
be defined by means of the logical approach and the fixed point approach. So
far, the coalgebraic approach has only been shown to be applicable to the dis-
counted setting. In this paper, we show that behavioural pseudometrics that do
not discount the future can be defined coalgebraically as well. Furthermore, we
show that the three approaches give rise to the same behavioural pseudometric
for (a generalisation of) probabilistic transition systems.

Let us provide some more details of the coalgebraic approach to define a
behavioural pseudometric for a class of systems. This approach is completely
driven by a functor F : CMet1 → CMet1 on the category CMet1 of 1-bounded
complete metric spaces and nonexpansive functions. The functor F should be
such that the F-coalgebras represent the systems of interest and such that a ter-
minal F-coalgebra exists. An F-coalgebra consists of a space S, which represents
the state space of the system, and a function t : S → F(S), which captures the
transitions of the system. The terminal F-coalgebra can be viewed as a univer-
sal system, as it contains all possible behaviours. Let us denote the state space
of this universal system by T . Then for every F-coalgebra with state space S,
there exists a unique function h : S → T that preserves and reflects behaviour.
That is, h only maps states s1 and s2 to the same state in T if s1 and s2 are

1020 F. van Breugel et al.

behaviourally equivalent. Since T is a metric space, its distance function can be
transferred to the set of states S along the function h. That is, the behavioural
distance of states s1 and s2 is defined as the distance of h(s1) and h(s2) in T .
Since h preserves and reflects behaviour, states only have distance 0 if they are
behaviourally indistinguishable.

De Vink and Rutten [27] have shown that probabilistic transition systems can
be represented as coalgebras (see also [6]). To prove the existence of a terminal
coalgebra, they exploit the metric terminal coalgebra theorem of Turi and Rutten
[26]. This theorem is only applicable to functors that give rise to behavioural
pseudometrics that discount the future. More generally, all known techniques to
solve recursive equations of the form X = F(X) require the functor F to discount
the future (note that this is indeed more general since a terminal F-coalgebra
solves the equation). Such recursive equations play a key role in semantics (see,
for example, [3]). In this paper, we show that for many functors F that are used
in semantics, in particular those that do not discount the future, a terminal
F-coalgebra exists and, hence, the equation X = F(X) can be solved.

The rest of this paper is organised as follows. In Section 2 we present a termi-
nal coalgebra theorem, which is shown to be applicable to the category CMet1 in
Section 3. In Section 4 and 5 we study some functors used in semantics that do
not discount the future. In Section 6 we apply our results to give a coalgebraic
definition of a behavioural pseudometric for probabilistic transition systems that
does not discount the future. Furthermore, we show that the coalgebraic defi-
nition coincides with a logical and a fixed point definition. We assume that the
reader is familiar with category theory, metric topology and measure theory (see,
for example, [23, 17, 5]).

2 A Terminal Coalgebra Theorem for Accessible
Categories

Numerous terminal coalgebra theorems can be found in the literature. As far as
we know, only one of them, due to Turi and Rutten [26], is applicable to metric
spaces. In this section, we present a terminal coalgebra theorem for accessible
categories. This theorem is implicit in the work of Makkai and Paré [24] (see also
[4, Theorem 1.2]). As we will see in Section 3, the theorem is applicable to metric
spaces. Before we present the theorem, we introduce the reader to those concepts
and results of the theory of coalgebra and the theory of accessible categories that
we will use in the rest of this paper.

Definition 1. Let C be a category. Let F : C → C be a functor. An F-coalgebra
consists of an object C in C together with a morphism f : C → F(C) in C. An
F-homomorphism from F-coalgebra 〈C, f〉 to F-coalgebra 〈D, g〉 is a morphism
h : C → D in C such that F(h) ◦ f = g ◦ h. The F-coalgebras and F-
homomorphisms form a category. If this category has a terminal object, then
this object is called a terminal F-coalgebra.

An Accessible Approach to Behavioural Pseudometrics 1021

For more details about the theory of coalgebra, we refer the reader to, for
example, the tutorial [21] of Jacobs and Rutten.

Next, we turn to accessible categories and accessible functors.

Definition 2. A category C is accessible if it is κ-accessible for some infinite
regular cardinal κ.

We will not provide the definition of κ-accessible category since we do not
need this definition in our paper. It can be found in, for example, [24, Defini-
tion 2.1.3]. To prove that categories are accessible, either we will exploit the
“logical” characterisation of accessible categories as proposed by Makkai and
Paré in [24, § 3.2] or we will make use of the following result.

Proposition 1. (Theorem 5.1.6 of [24]) If the categories C and D are ac-
cessible, then the category C× D is accessible.

Definition 3. Let κ be an infinite regular cardinal. A functor F : C → D is
κ-accessible if C and D are κ-accessible and F preserves κ-filtered colimits. A
functor F : C → D is accessible if it is κ-accessible for some infinite regular
cardinal κ.

We will also not introduce the definition of κ-filtered colimit because we
do not need this definition in our paper either. It can be found in, for exam-
ple, [24, page 13]. To prove that a functor is accessible, we will either prove
that the functor preserves all colimits or we will exploit one of the following
results.

Proposition 2. (page 32 of [24]) If the functors F : C → D and G : D → E
are accessible, then the functor G ◦ F : C → E is accessible.

Proposition 3. (Theorem 5.1.6 of [24]) If the functors F : C1 → D1 and
G : C2 → D2 are accessible, then the functor F × G : C1 × C2 → D1 × D2 is
accessible.

Proposition 4. (Proposition 2.4.8 of [24]) Let C and D be accessible cate-
gories. Any functor F : C → D which has a left or right adjoint is accessible.

The main point of working with accessible categories in this paper is the
existence of a terminal coalgebra for accessible functors.

Theorem 1. If the category C is accessible and complete and the functor
F : C → C is accessible, then a terminal F-coalgebra exists.

For more details about theory of accessible categories we refer the reader
to the textbook [24] of Makkai and Paré and the textbook [1] of Adámek and
Rosický.

1022 F. van Breugel et al.

3 The Category of Complete Metric Spaces Is Accessible

Since the category Top of topological spaces and continuous functions is not
accessible as shown, for example, in [1, Example 2.3(1)], it may come as a surprise
that the category CMet1 of 1-bounded complete metric spaces and nonexpansive
functions is accessible, as we will show below. However, since the category Ban
of Banach spaces and contractions is accessible as demonstrated in, for example,
[24, § 3.4], the accessibility of the category CMet1 may not be that surprising
after all.

Definition 4. A metric space is a pair (X, dX) consisting of a set X and a
distance function dX : X ×X → [0,∞) satisfying

1. for all x, y ∈ X, dX(x, y) = 0 if and only if x = y,
2. for all x, y ∈ X, dX(x, y) = dX(y, x),
3. for all x, y, z ∈ X, dX(x, z) ≤ dX(x, y) + dX(y, z).

Instead of (X, dX) we often write X and we denote the distance function of a
metric space X by dX . A metric space X is 1-bounded if

4. for all x, y ∈ X, dX(x, y) ≤ 1.

A metric space X is complete if

5. each Cauchy sequence in X is convergent in X.

A sequence (xn)n∈N in X is Cauchy if

∀ε> 0∃N ∈ N∀m >N ∀n >N dX(xm, xn) < ε.

A sequence (xn)n∈N in X is convergent in X if

∃x ∈ X ∀ε> 0∃N ∈ N∀n >N dX(xn, x) < ε.

A function f : X → Y is nonexpansive if for all x, y ∈ X,

dY (f(x), f(y)) ≤ dX(x, y).

The category CMet1 has 1-bounded complete metric spaces as objects and
nonexpansive functions as morphisms. One can prove that CMet1 is accessible
exploiting the “logical” characterisation of accessible categories of Makkai and
Paré [24, § 3.2] (see also [1, Section 5.B]).

Theorem 2. The category CMet1 is accessible.

4 The Kantorovich Functor Is Accessible

As we will see in Section 6, probabilistic nondeterminism can be modelled by
means of the set of tight Borel probability measures on a metric space endowed
with the Kantorovich metric. Below, we will show that the corresponding Kan-
torovich functor is accessible.

An Accessible Approach to Behavioural Pseudometrics 1023

First, let us review the notion of a tight Borel probability measure on a metric
space. Let X be a metric space and let the set of open sets O(X) be the smallest
set of subsets of X which contains {y ∈ X | dX(x, y) < r } for each x ∈ X and
r ∈ [0,∞), and which is closed under unions. The set B(X) of Borel sets is the
smallest set of subsets of X which contains O(X) and which is closed under
countable intersections and countable unions. Then ∅ ∈ B(X), if B ∈ B(X)
then X \B ∈ B(X), and for each sequence (Bn)n in B(X),

⋃
n Bn ∈ B(X) (see,

for example, [25, Theorem I.1.3]), that is, B(X) is a σ-field. A Borel probability
measure on X is a function μ : B(X) → [0, 1] satisfying μ(X) = 1 and for each
sequence (Bn)n of pairwise disjoint sets in B(X), μ(

⋃
n Bn) =

∑
n μ(Bn). A

Borel probability measure on X is tight if for each ε> 0 there exists a compact
subset Kε of X such that μ(X \ Kε) < ε. We write K(X) for the set of tight
Borel probability measures on a metric space X. This set is endowed with the
Kantorovich metric.

Definition 5. The Kantorovich metric dK(X) : K(X) × K(X) → [0,∞] is de-
fined by

dK(X)(μ, ν) = sup
{∫

f dμ−
∫

f dν | f ∈ X → [0, 1] is nonexpansive
}
.

If X is a 1-bounded metric space, then so is K(X). Furthermore, if X is
complete, then also K(X) is complete (see, for example, [16, Theorem 2.5.25]).
Given a 1-bounded complete metric space X, the 1-bounded complete metric
space K(X) together with the binary operation mapping the tight Borel proba-
bility measures μ and ν to the tight Borel probability measure 1

2 · μ+ 1
2 · ν form

a metric mean-value algebra.

Definition 6. A metric mean-value algebra is a pair 〈X,⊕〉 consisting of a
1-bounded complete metric space X and a choice operation ⊕ : X × X → X
satisfying

1. for all x ∈ X, x⊕ x = x,
2. for all x, y ∈ X, x⊕ y = y ⊕ x,
3. for all v, w, x, y ∈ X, (v ⊕ w)⊕ (x⊕ y) = (x⊕ w)⊕ (v ⊕ y), and
4. for all v, w, x, y ∈ X, dX(v ⊕ w, x⊕ y) ≤ dX(v,x)+dX(w,y)

2 .

A function f : X → Y is choice preserving if f(x⊕X y) = f(x)⊕Y f(y) for all
x, y ∈ X.

The above definition is a metric analogue of the notion of mean-value algebra
[20] given by Heckmann.

The category MV(CMet1) has metric mean-value algebras as objects and
nonexpansive and choice preserving functions as morphisms. The metric mean-
value algebras provide a finitary description of the algebras of the Kantorovich
monad which will enable us to prove that the category of these algebras is ac-
cessible (again exploiting the “logical” characterisation of accessible categories)
and, hence, that the Kantorovich functor itself is accessible.

1024 F. van Breugel et al.

Theorem 3. The category MV(CMet1) is accessible.

The operation mapping a 1-bounded complete metric space X to the met-
ric mean-value algebra 〈K(X), 1

2 · − + 1
2 · −〉 can be extended to a functor

K : CMet1 → MV(CMet1) as follows.

Definition 7. Let f : X → Y be a nonexpansive function. The function
K(f) : K(X) → K(Y) is defined by K(f)(μ)(B) = μ(f−1(B)).

The forgetful functor U : MV(CMet1) → CMet1 maps each metric mean-
value algebra to the underlying 1-bounded complete metric space. The functors
K and U are related as follows.

Theorem 4. K is a left adjoint for U .

From Theorem 2, 3 and 4 and Proposition 2 and 4 we can derive

Corollary 1. The functor U ◦ K : CMet1 → CMet1 is accessible.

Instead of U ◦ K we will just write K in the sequel.
Similarly, we can show that the Hausdorff functor H : CMet1 → CMet1 that

maps a 1-bounded complete metric space to the set of nonempty and compact
subsets of the space endowed with the Hausdorff metric is an accessible functor.
This functor is often used to model nondeterminism.

5 Other Accessible Functors

After having shown that the Kantorovich functor is accessible, we introduce
some other functors that are often used in semantics and we show that they are
accessible as well.

The identity functor IdCMet1 : CMet1 → CMet1 preserves all colimits and,
hence, is accessible. Let X be a 1-bounded complete metric space. We denote the
constant functor mapping each 1-bounded complete metric space to the space X
by X : CMet1 → CMet1. We write 1 for a singleton metric space (which is
unique up to isomorphism). The functor 1 : CMet1 → CMet1 is an example of
a constant functor. Obviously, these constant functors preserve all colimits and,
hence, are accessible.

The coproduct X + Y of X and Y in CMet1 consists of the disjoint union
of the sets underlying the 1-bounded complete metric spaces X and Y endowed
with the following distance function.

Definition 8. Let X and Y be 1-bounded complete metric spaces. The distance
function dX+Y : (X + Y)× (X + Y) → [0, 1] is defined by

dX+Y (u, v) =

⎧⎨⎩dX (u, v) if u, v ∈ X
dY (u, v) if u, v ∈ Y
1 otherwise.

An Accessible Approach to Behavioural Pseudometrics 1025

This operation can be extended to a bifunctor + : CMet1×CMet1 → CMet1.
Since the bifunctor + is left adjoint to the diagonal (see, for example, [23,
page 85]), we can conclude from Theorem 2 and Proposition 1 and 4 that the
functor + is accessible.

The copower A · X of a set A and a 1-bounded complete metric space X
consists of the A-fold disjoint union of the set underlying X endowed with the
following distance function.

Definition 9. Let A be a set and X a 1-bounded complete metric space. The
distance function dA·X : A ·X ×A ·X → [0, 1] is defined by

dA·X(xa, yb) =
{

dX(x, y) if a = b
1 otherwise.

The power XA of a set A and a 1-bounded complete metric space X consists
of the A-indexed Cartesian product of the set underlying X endowed with the
following distance function.

Definition 10. Let A be a set and X a 1-bounded complete metric space. The
distance function dXA : XA ×XA → [0, 1] is defined by

dXA(〈xa〉a, 〈ya〉a) = sup
a∈A

dX(xa, ya).

Given a set A, the operations A · − and −A can be extended to functors
A · − : CMet1 → CMet1 and −A : CMet1 → CMet1. Since the functors A · −
and −A form an adjunction (see, for example, [23, page 88]), we can conclude
from Theorem 2 and Proposition 4 that both functors are accessible.

Several other functors, including the product and tensor product functor, are
accessible as well. The hom functor is not accessible.

6 A Behavioural Pseudometric for Probabilistic
Transition Systems

The results of the foregoing sections are applied in this section to give a coal-
gebraic definition of a behavioural pseudometric for (a generalisation of) proba-
bilistic transition systems. The behavioural pseudometric does not discount the
future. Furthermore, we give a fixed point characterisation and a logical charac-
terisation of the behavioural pseudometric.

Definition 11. A probabilistic transition system is a triple 〈S, A, (πa)a∈A〉 con-
sisting of

– a set S of states,
– a set A of actions, and
– for each a ∈ A, a function πa : S × S → [0, 1] satisfying

∑
s′∈S πa(s, s′) ≤ 1

for each s ∈ S.

1026 F. van Breugel et al.

Next, we introduce a family of functors PA, such that each probabilistic
transition system 〈S, A, (πa)a∈A〉 can be represented as a PA-coalgebra.

Definition 12. The functor PA : CMet1 → CMet1 is defined by

PA = −A ◦ K ◦+ ◦ 〈1, IdCMet1〉,

where A is a set.

Proposition 5. Each probabilistic transition system 〈S, A, (πa)a∈A〉 can be rep-
resented as a PA-coalgebra.

From the fact that the functors −A, K, +, 1 and IdCMet1 are accessible and
Proposition 2 and 3, we can conclude that the functor PA is accessible. Since
the category CMet1 is accessible (Theorem 2) and complete (see, for example,
[2, Chapter 4]), we can deduce from Theorem 1 the following result.

Proposition 6. For each set A, a terminal PA-coalgebra exists.

For the rest of this section, we fix a PA-coalgebra 〈S,π〉. To simplify the
presentation, we assume that the space S of states is compact.

Definition 13. Let 〈TA, ι〉 be a terminal PA-coalgebra. The distance function
dc : S × S → [0, 1] is defined by

dc(s1, s2) = dT A(h(s1),h(s2)),

where h is the unique PA-homomorphism from the PA-coalgebra 〈S,π〉 to the
terminal PA-coalgebra 〈TA, ι〉.

Since terminal objects are unique up to isomorphism, the definition of the
distance function dc does not depend on which terminal PA-coalgebra is cho-
sen. The distance function dc satisfies the condition 2–4 of Definition 4 but not
condition 1. It does satisfy the following weaker condition: 1’. for all s ∈ S,
d(s, s) = 0. Therefore, dc is called a 1-bounded pseudometric. Note that in a
pseudometric space, different elements may have distance 0. In the behavioural
pseudometric dc, distance 0 captures the behavioural equivalence probabilistic
bisimilarity [22].

Theorem 5. For all s1, s2 ∈ S, dc(s1, s2) = 0 iff s1 and s2 are probabilistic
bisimilar.

Next, we characterise the behavioural pseudometric as the greatest fixed point
of a monotone function on a complete lattice. This approach was first proposed
by Desharnais et al. [14]. We consider those distance functions on the set un-
derlying the 1-bounded compact metric space S that satisfy condition 1’ and
condition 2–4 of Definition 4 and order them as follows.

Definition 14. The relation , on 1-bounded pseudometrics on S is defined by

d1 , d2 if d1(s1, s2) ≥ d2(s1, s2) for all s1, s2 ∈ S.

An Accessible Approach to Behavioural Pseudometrics 1027

The set of 1-bounded pseudometrics on S endowed with the order , forms a
complete lattice (see, for example, [14, Lemma 3.2]).

Definition 15. Let d be a 1-bounded pseudometric on S. The distance function
Δ(d) : S × S → [0, 1] is defined by

Δ(d)(s1, s2) = sup
a∈A

(
inf
{∫

d dμ | μ ∈ π(s1)a ⊗ π(s2)a

})
,

where π(s1)a⊗π(s2)a denotes the set of Borel probability measures on the product
space (1 + S)2 with marginals π(s1)a and π(s2)a, that is, those Borel probability
measures μ such that for all B ∈ B(1 + S), μ(B × (1 + S)) = π(s1)a(B) and
μ((1 + S)×B) = π(s2)a(B).

Note that Δ(d) is also a 1-bounded pseudometric on S. Furthermore, Δ
is monotone, that is, if d1 , d2 then Δ(d1) , Δ(d2). According to Tarski’s
fixed point theorem, a monotone function f : X → X on a complete lattice X
has a greatest fixed point. Hence, we can conclude that Δ has a greatest fixed
point df .

Theorem 6. dc = df .

We conclude this section with a logical characterisation of the behavioural
pseudometric, as first given by Desharnais et al. in [13]. We introduce a logic that
shows similarities with the modal logic that characterises probabilistic bisimi-
larity [22] (see [15] for a detailed discussion).

Definition 16. The logic L is defined by

ϕ ::= true | ¬ϕ | 〈a〉ϕ | ϕ- q | ϕ ∧ ϕ

where a ∈ A and q ∈ Q ∩ [0, 1].

Next, we provide a real-valued interpretation of the logic. For each formula ϕ
and state s, the real number ϕ(s) provides a quantitative measure of the validity
of ϕ in s. The larger ϕ(s), the more likely it is that ϕ holds in s.

Definition 17. For each ϕ ∈ L, the function ϕ : S → [0, 1] is defined by

true(s) = 1
(¬ϕ)(s) = 1− ϕ(s)

(〈a〉ϕ)(s) =
∫
ϕ dπ(s)a

(ϕ- q)(s) = max{ϕ(s)− q, 0}
(ϕ ∧ ψ)(s) = ϕ(s)minψ(s)

Given the logic and its real-valued interpretation, we can define a behavioural
pseudometric as follows.

Definition 18. The distance function d
 : S × S → [0, 1] is defined by

d
(s1, s2) = sup
ϕ∈L

ϕ(s1)− ϕ(s2).

1028 F. van Breugel et al.

The above definition of d
 can be seen as a logical characterisation of dc since
the pseudometrics d
 and dc coincide.

Theorem 7. dc = d
.

The proof of the above theorem shows some similarities with the proof of
[8, Theorem 42] in which Van Breugel and Worrell show that a coalgebraic
and a logical characterisation of a behavioural pseudometric that discounts the
future coincide. However, the proof of the above theorem also includes some
new ingredients. These ingredients allow us to remove from [8, Theorem 42] the
assumption that the set A of actions is finite.

7 Conclusion

Let us briefly highlight our main contributions, before discussing related and
future work. We have shown that an accessible endofunctor on an accessible and
complete category has a terminal coalgebra. This terminal coalgebra theorem
was implicit in [24] (see also [4]). Furthermore, we have shown that the cat-
egory CMet1 is accessible (it is well-known to be complete) and that many
functors used in semantics are accessible. As a consequence, for most func-
tors F used in semantics, a terminal F-coalgebra exists and, hence, the equa-
tion X = F(X) can be solved, even if F does not discount the future. As
an application of our developed theory, we have presented a coalgebraic def-
inition of a behavioural pseudometric that does not discount the future for
probabilistic transition systems. Furthermore, we have provided a fixed point
characterisation and a logical characterisation of the behavioural pseudomet-
ric. As far as we know, we are the first to relate a fixed point definition to
the corresponding coalgebraic and logical definitions. We have also shown that
there is no need to restrict to finite action sets when relating the different ap-
proaches.

In this paper we have made fruitful use of the theory of accessible categories
[1, 24]. Our coalgebraic definition of the behavioural pseudometric is inspired by
the work of De Vink and Rutten [27] and Van Breugel and Worrell [6]. The
logical characterisation and the fixed point characterisation are based on work
of Desharnais et al. [13, 14].

The theory developed in this paper has already been applied to a large class
of timed transition systems. The details will be presented in [7].

We are confident that the results developed in this paper can also be exploited
to provide coalgebraic characterisations of the fixed point and logical definitions
of behavioural pseudometrics given in [9, 10, 11, 12].

Acknowledgements

The authors thank Jǐŕı Adámek, Michael Barr and the referees for their helpful
comments.

An Accessible Approach to Behavioural Pseudometrics 1029

References

1. J. Adámek and J. Rosický. Locally Presentable and Accessible Categories, Cam-
bridge University Press, 1994.

2. M.A. Arbib and E.G. Manes. Arrows, Structures, and Functors: the categorical
imperative, Academic Press, 1975.

3. J.W. de Bakker and E.P. de Vink. Control Flow Semantics, The MIT Press, 1996.
4. M. Barr. Terminal coalgebras in well-founded set theory. Theoretical Computer

Science, 114(2):299–315, 1993.
5. P. Billingsley. Probability and Measure, John Wiley & Sons, 1995.
6. F. van Breugel and J. Worrell. Towards quantitative verification of probabilistic

transition systems. In Proceedings of ICALP, volume 2076 of LNCS, pages 421–432,
2001. Springer-Verlag.

7. F. van Breugel and J. Worrell. A behavioural pseudometric for metric labelled
transition systems. 2005.

8. F. van Breugel and J. Worrell. A behavioural pseudometric for probabilistic tran-
sition systems. Theoretical Computer Science, 331(1):115–142, 2005.

9. L. de Alfaro. Quantitative verification and control via the mu-calculus. In Pro-
ceedings of CONCUR, volume 2761 of LNCS, pages 102–126, 2003. Springer-
Verlag.

10. L. de Alfaro, M. Faella, and M. Stoelinga. Linear and branching metrics for quan-
titative transition systems. In Proceedings of ICALP, volume 3142 of LNCS, pages
97–109, 2004. Springer-Verlag.

11. L. de Alfaro, T.A. Henzinger, and R. Majumdar. Discounting the future in systems
theory. In Proceedings of ICALP, volume 2719 of LNCS, pages 1022–1037, 2003.
Springer-Verlag.

12. Y. Deng, T. Chothia, C. Palamidessi, and J. Pang. Metrics for action-labelled
quantitative transition systems. In Proceedings of QAPL, ENTCS, 2005. Elsevier.

13. J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Metrics for labeled
Markov systems. In Proceedings of CONCUR, volume 1664 of LNCS, pages 258–
273, 1999. Springer-Verlag.

14. J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. The metric analogue
of weak bisimulation for probabilistic processes. In Proceedings of LICS, pages
413–422, 2002. IEEE.

15. J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Metrics for labelled
Markov processes. Theoretical Computer Science, 318(3):323–354, 2004.

16. G.A. Edgar. Integral, Probability, and Fractal Measures, Springer-Verlag, 1998.
17. R. Engelking. General Topology, Heldermann Verlag, 1989.
18. A. Giacalone, C.-C. Jou, and S.A. Smolka. Algebraic reasoning for probabilistic

concurrent systems. In Proceedings of PROCOMET, pages 443–458, 1990. North-
Holland.

19. V. Gupta, R. Jagadeesan, and P. Panangaden. Approximate reasoning for real-time
probabilistic processes. In Proceedings of QEST, pages 304–313, 2004. IEEE.

20. R. Heckmann. Probabilistic domains. In Proceedings of CAAP, volume 787 of
LNCS, pages 142–156, 1994. Springer-Verlag.

21. B. Jacobs and J.J.M.M. Rutten. A tutorial on (co)algebras and (co)induction.
Bulletin of the EATCS, 62:222–259, 1997.

22. K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. Information
and Computation, 94(1):1–28, 1991.

1030 F. van Breugel et al.

23. S. Mac Lane. Categories for the Working Mathematician, Springer-Verlag, 1971.
24. M. Makkai and R. Paré. Accessible Categories: The Foundation of Categorical

Model Theory, American Mathematical Society, 1989.
25. K.R. Parthasarathy. Probability Measures on Metric Spaces, Academic Press, 1967.
26. D. Turi and J.J.M.M. Rutten. On the foundations of final coalgebra semantics:

non-well-founded sets, partial orders, metric spaces. Mathematical Structures in
Computer Science, 8(5):481–540, 1998.

27. E.P. de Vink and J.J.M.M. Rutten. Bisimulation for probabilistic transition sys-
tems: a coalgebraic approach. Theoretical Computer Science, 221(1/2):271–293,
1999.

Noisy Turing Machines

Eugene Asarin1 and Pieter Collins2

1 LIAFA, Université Paris 7 / CNRS, case 7014,
2 place Jussieu, 75251 Paris Cedex 05, France

Eugene.Asarin@liafa.jussieu.fr
2 Centrum voor Wiskunde in Informatica,

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
Pieter.Collins@cwi.nl

Abstract. Turing machines exposed to a small stochastic noise are con-
sidered. An exact characterisation of their (≈ Π0

2) computational power
(as noise level tends to 0) is obtained. From a probabilistic standpoint
this is a theory of large deviations for Turing machines.

1 Introduction

Computers are always subjected to faults and component failures, and even
random changes of memory bits caused by to cosmic rays or neutrons flipping
memory cells [1]. From the practical viewpoint these phenomena are particularly
important for computers operating in hostile environments, such as aboard a
spacecraft [2]. In the present paper we adopt a more theoretical and abstract
approach to this issue and study how small random perturbations can affect
the computational power of popular computational models, in our case Turing
machines (TMs).

As far as we know, the pioneering paper considering influence of infinitesi-
mal noise on computational models was Puri’s [3], where the author introduces
the infinitesimally perturbed semantics and solves the reachability problem for
timed automata. Fränzle [4] applies a version of Puri’s noise to hybrid systems,
and argues that such a noise leads to a sort of “practical decidability”. The
immediate predecessor of the present paper is [5] where computational power is
analysed for infinitesimally perturbed hybrid systems and TMs. The main result
of [5] is the Π0

1 completeness of reachability or acceptance problems for such
machines. It is important to notice that all the papers cited above considered a
non-deterministic noise of a bounded (and tending to zero) magnitude, with no
probabilistic assumptions.

The influence of a small stochastic noise on computational models has been
considered in [6] for finite-state models, and in [7] for neural networks. Other re-
lated work concerns the behaviour of dynamical systems under a small stochastic
noise, known as the theory of large deviations. A good reference is [8].

In the present paper we consider TMs exposed to a small stochastic noise,
or in other words large deviations for TMs. We give an exact characterisation of
their computational power in terms of classes of arithmetic hierarchy (see [9]).

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 1031–1042, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1032 E. Asarin and P. Collins

The rest of the paper is organised as follows. In Sec. 2 we introduce Noisy
Turing Machines (NTMs) and several versions of “computability” by such ma-
chines. In Sec. 3 we explore NTMs with a noise level ε > 0 and establish some
basic properties, such as continuity and computability of acceptance probability,
decidability of the halting problem etc. In Sec. 4 we describe several interest-
ing NTMs used in the subsequent sections. This section also gives a flavour of
“noisy programming” and reasoning about noisy programs. The main techni-
cal results of the paper are established in Sec. 5 and 6 where we explore the
computational power of NTMs for a noise level tending to zero. Such a “limit
computational power” turns out to be stronger than that of a TM; we give its
precise characterisation.

2 The Model

We consider a standard multi-tape TM augmented by an additional parameter
giving the noise level. Formally, a Noisy Turing Machine (NTM) is a tuple

Mε = (Q,Σ, Γ,N, ρ, ε, q0, q� , q⊥) , (1)

where Q is the set of states, Σ is the input alphabet (not containing the special
blank symbol �), Γ ⊃ Σ ∪ {�} is the tape alphabet, N is the number of tapes,
ρ : Q × ΓN → Q × ΓN × {L,R,S}N is the transition function, ε is the noise
level, q0 is the initial state, q� the accepting state and q⊥ the rejecting state.

Every tape is infinite in both directions. Initially the ith tape contains a word
wi ∈ Σ∗ completed by two infinite tails of blank symbols �, and the ith tape
head is pointing to the first symbol of wi. Every computation step performed by
an NTM consists of two stages:

At the noisy stage the tapes are exposed to a noisy environment, which
changes each symbol on the tape independently with probability ε / 1. A
changed symbol takes any other value in the tape alphabet with equal prob-
ability.

At the progress stage the computation proceeds as follows. Starting in state
q−, the machine reads the symbol on each tape, giving an N -tuple s− ∈ ΓN . If
ρ(q−, s−) = (q+, s+,m+), the machine changes to state q+, writes (s+)i on the
ith tape, and shifts the ith tape head left if (m+)i = L, right if (m+)i = R, and
does not move it if (m+)i = S. Whenever the machine arrives at q� or at q⊥ it
halts.

We are interested in the probabilities IP (Mε(w) ↓), IP (Mε(w) = 8) and
IP (Mε(w) = ⊥) that, for a given noise level ε and a given input word w, the
NTM M halts, accepts or rejects, respectively. We are even more interested in
the behaviour of those probabilities as ε → 0.

Definition 1. An NTM M is

– lim-halting if ∀x ∈ Σ∗, limε→0 IP (Mε(x) ↓) = 1, i.e the limit probability to
halt is 1;

Noisy Turing Machines 1033

– almost sure (a.s.)-halting if for any x ∈ Σ∗ and any ε > 0 the probability to
halt is 1;

– converging if ∀x ∈ Σ∗, limε→0 IP (Mε(x) = 8) exists.

Clearly if an NTM is a.s.-halting, then it is lim-halting. The former two properties
seem restrictive, but in Sec. 3 it will be shown that any NTM is equivalent to
an a.s.-halting one, in the sense that the acceptance probabilities are equal.

The “limit computational power” of an NTM captures the behaviour of a
machine operating in an environment which is almost, but not entirely, noise-
free.

Definition 2. An NTM M lim-generates a function p : Σ∗ → [0, 1] if it is
lim-halting, converging, and for any x ∈ Σ∗, the limit probability to accept it is
p(x):

∀x ∈ Σ∗, lim
ε→0

IP (Mε(x) = 8) = p(x).

An NTM M lim-decides a set S ⊂ Σ∗ if it lim-generates its characteristic
function.

Notice that in order to lim-decide a set S, an NTM should satisfy a 0-1 law:

lim
ε→0

IP (Mε(x) = 8) =
{

1, if x ∈ S;
0, if x �∈ S.

A weaker notion of computability considering limsup (or lim inf) rather than
lim is suitable for non-converging machines.

Definition 3. An NTM M limsup-generates a function p : Σ∗ → [0, 1] if it is
lim-halting and for any x ∈ Σ∗, the upper limit probability to accept it is p(x):

∀x ∈ Σ∗, limsup
ε→0

IP (Mε(x) = 8) = p(x).

An NTM M limsup-decides a set S ⊂ Σ∗ if for any x ∈ Σ∗ it limsup-generates
its characteristic function.

The question whether this can be really considered as a computation is left to a
philosophically-minded reader.

2.1 If It Halts Without Noise

We start the study of noisy machines with the easy case when a machine without
noise halts on an input x.

Theorem 1. If M(x) = 8 then limε→0 IP (Mε(x) = 8) = 1. Symmetrically, if
M(x) = ⊥ then limε→0 IP (Mε(x) = ⊥) = 1.

Proof. Consider the first case, M(x) = 8; the other case is similar. Let τ be the
computation time of M on the input x. For any δ > 0 take an ε < δτ−2.

A normal computation (without noise) of M on x uses at most τ tape cells
during τ time units. When noise is added the probability for at least one of

1034 E. Asarin and P. Collins

those cells being perturbed during τ time units cannot exceed τ · τ · ε < δ. The
computation of M on x leading to acceptance is then unaffected by the noise,
hence the NTMMε accepts x with probability at least 1−δ. Since δ is arbitrary,
limε→0 IP (Mε(x) = 8) = 1. ��

Corollary 1. If a TM M decides a set S ⊂ Σ∗ then its NTM version lim-
decides the same set S.

3 General Properties: ε > 0

In this section we explore NTMs and acceptance by NTMs for a positive noise
level ε > 0. This paves the way for the characterisation of the limit behaviour of
NTMs as ε → 0 in subsequent sections.

3.1 Automaton

For an NTM M described by a tuple (1), we can abstract away the memory
tapes to obtain an automaton

A = (Q, ρ′, q0, q� , q⊥) ,

where the transition relation ρ′ ⊂ Q × Q is obtained from ρ : Q × ΓN →
Q × ΓN × {L,R,S}N by projection. Any allowable sequence of transitions of
A is a possible sequence of transitions for M, since it is always possible that
the element at the tape head changes just before the step to enable the desired
transition.

We say a state q of M is a looping state if for every possible sequence of
transitions starting at q, no halting state is reached. In this case, the probability
that M halts given that it reaches q is zero.

Theorem 2. For any NTM M, there exists an effectively constructible a.s.-
halting NTM M′ with the same acceptance probability for any input x ∈ Σ∗ and
any ε > 0.

Proof. We construct M′ by deleting all looping states from M, and replacing
all transitions leading to looping states with a transition leading to q⊥ . Then
clearly, IP (M′

ε(x) = 8) = IP (Mε(x) = 8).
It remains to show that IP (M′

ε(x) ↓) = 1. Since M′ has no looping states,
for any state q of M′, there is a sequence of transitions leading to a halting
state in at most k = |Q| steps. This sequence of transitions occurs for the noisy
machine with probability at least (ε/|Σ|)k. Therefore the probability that the
machine halts after nk steps is at least 1−

(
1− (ε/|Σ|k

)n. Hence M′ halts with
probability 1. ��

We can therefore replace any NTM with one that halts with probability 1
for every ε > 0 without changing the acceptance probability. This means that,
unlike ordinary TMs, we need only consider NTMs which almost surely halt on
any input. In the rest of this paper, we assume that all NTMs have no looping
states.

Noisy Turing Machines 1035

3.2 Continuity

Theorem 3. IP (Mε(w) = 8) is continuous with respect to ε for ε > 0.

Proof. Let p(w, ε, t) be the probability that M halts in time t in state q� , and
q(w, ε, t) be the probability that M halts in time t in state q⊥ . Then clearly
p(w, ε, t) and q(w, ε, t) are continuous as functions of ε > 0, since they depend
on finite computations. Let r(w, ε, t) = 1 − p(w, ε, t) − q(w, ε, t). Then by our
standing assumption of almost-sure halting, r(w, ε, t) → 0 as t →∞.

It is easy to see that

p(w, ε, t) < IP (Mε(w) = 8) < p(w, ε, t) + r(w, ε, t) = 1− q(w, ε, t). (2)

To prove continuity of IP (Mε(w) = 8) at ε, take t such that r(w, ε, t) < δ/3. For
ε′ sufficiently close to ε, both |p(w, ε′, t)−p(w, ε, t)| < δ/3 and r(w, ε′, t) < 2δ/3.
Then, using (2), we obtain |IP (Mε(w) = 8) − IP (Mε′(w) = 8) | < δ. Hence
IP (Mε(w) = 8) is continuous. ��

3.3 Computability

We now consider ε-perturbed machines for a fixed rational ε. By computability
of a real number x (see [10]), we mean that given an error bound δ > 0, there is
a TM which computes an approximation to x with an error of at most δ.

Theorem 4. IP (Mε(w) = 8) is computable as a function of M, rational ε > 0
and w.

Proof. Let p(w, ε, t), q(w, ε, t) and r(w, ε, t) be as in the proof of Theorem 3. By
simulating all possible runs of the NTM of length at most t and computing the
probability of each, we can compute p, q and r exactly. Since r(w, ε, t) → 0 as t →
∞, we can take t sufficiently large so that r(t, ε, t) < δ, and so |IP (Mε(w) = 8)−
p(w, ε, t)| < δ. ��

4 Some Gadgets

We now describe some generally useful NTMs and their properties.

4.1 Measuring Time

The first gadget is a Timer. Its construction is very simple: it is just a TM
with one tape (initially blank), whose head goes right at every step. If it sees a
non-blank cell it stops.

The following lemma establishes that, when subjected to an ε-noise, Timer
is capable to measure approximately a lapse of ε−1/2 time units.

Lemma 1. Let τ be the time before the Timerε stops. Then for any a, b with
a < 1/2 < b, the following estimates hold:

1036 E. Asarin and P. Collins

1. IP (τ < ε−a) = O(ε1−2a);
2. IP

(
τ > ε−b

)
= O(εd) for any 0 < d < 1/2.

Proof. First we estimate the probability of the event E1 that τ < ε−a. This
probability can be majorated by the probability of the event E2 that during
�ε−a� time units at least one of the first �ε−a� cells on the tape has been altered
by the noise. For each cell and each step the probability to be altered is ε, which
gives an upper bound

IP (E1) ≤ IP (E2) ≤ �ε−a� · �ε−a� · ε = O(ε1−2a).

In the sequel we will omit �·� and
·� symbols and make all the computations
as if all the powers of ε considered were integer numbers.

The event E3 that τ > ε−b, implies either the event E4 that none of the first
ε−b cells have been modified before the timer scans them, or the event E5 that
at least one of the first ε−b cells has been modified at least twice in time ε−b.
Hence IP (E3) ≤ IP (E4) + IP (E5).

E4 is a conjunction of ε−b ·ε−b/2 independent events with probabilities 1−ε;
each event means that a cell has not been perturbed at a time instant. Hence

IP (E4) = (1− ε)ε−2b/2 = O(exp(−ε1−2b)).

In particular, if b > 1/2, IP (E4) = o(εn) for any n > 0.
The event E5 is a disjunction of independent n = ε−b events. Each of those

events is that a particular cell has been perturbed at least twice during ε−b time
units. Hence

IP (E5) ≤ n
(
1− (1− ε)n − nε(1− ε)n−1

)
= O(n3ε2) = O(ε2−3b).

Therefore, IP (E3) = O(ε2−3b) for 1/2 < b < 2/3. Since IP (E3) is a decreasing
function of b, we must have IP (E3) = O(εd) for any 0 < d < 1/2. ��

We say an event E occurs with high probability if there exists d > 0 such that
IP (E) = 1−O(εd). Similarly, it occurs with low probability if IP (E) = O(εd).

We remark that it would be easier to build a timer measuring ε−1 lapse of
time. Such a timer is an NTM staying in place and observing one cell, until
its contents is modified. Unfortunately, such a timer would be rather useless,
because during such a long time the contents of all the cells on the tape becomes
completely random.

We prefer the ε−1/2 timer described at the beginning of this section because
during such time the probability of perturbation on a small zone of tape or of a
“double error” in the same position of two tapes is low. In the next subsection we
formalise these properties, and explain how they allow for reliable computations
of duration ε−1/2 and even more. We will then be able to use these constructions
to build O(ε−c) Timers for 1/2 < c < 1.

Noisy Turing Machines 1037

4.2 Tossing Coins

By letting two Timers race each other to find a non-blank symbol, we can
generate random bits.

A RandomBit machine has two tapes. Two Timers are launched concur-
rently on both tapes. If the first one stops before the second one, the result is
⊥, if the second one stops before the result is 8. In the highly improbable case
of a tie, the Timers are restarted. The following result is straightforward, but
important; it shows that NTMs can produce random bits.

Lemma 2. The RandomBitε terminates almost surely and returns ⊥ and 8
(or 0 and 1) with probabilities 1/2 each. Its computation time is bounded above
by ε−b (with b > 1/2) with probability 1−O(εd) for any 0 < d < 1/2.

Notice that the RandomBitε gadget can also be started some time T after the
beginning, and can be run continuously to generate a succession of random bits.

4.3 Memory

Even on time scales of order ε−1/2 generated by a Timer, the behaviour of
a noisy version of a regular TM M has unacceptably high errors. To obtain
correct execution with high probability of a time interval of order ε−a, we run
all computations of M on a multi-tape Memory with error correction.

For computations taking O(ε−a) time with a < 2/3 we can guarantee error-
freedom with high probability by taking three identical copies of the tape and
making the same computation on all of them. If at some moment a disagreement
between the three tapes is observed, it is immediately corrected by a majority
vote. This procedure allows to correct single errors, while Lemma 3 ensures that
double errors are highly improbable.

By using more tapes, we can, in fact, construct Memory which is error-free
with high probability on time intervals O(ε−c) for any c < 1.

Lemma 3. Let Mε be an NTM running on a three-tape Memory for a time
period O(ε−a) using space O(ε−b). Then the probability of incorrect execution of
Mε is of order O(ε2−2a−b).

Proof. Incorrect execution can only occur if two cells with the same coordinate
are perturbed in time period τ = O(ε−a). The probability of such a “double
error” in a given cell is O(ε2(1−a)), hence the probability of a double error in
any of b cells is O(ε2−2a−b).

4.4 Programming NTMs

Armed with a Timer, a RandomBit and (fairly) reliable Memory, we can
start to program NTMs by running ordinary TMs on a Memory, using a
Timer to halt the computation before the noise-induced errors become too
high.

A simple, but very useful gadget is a Counter machine. This machine stores
an integer n in binary form in a three-tape Memory. The Counter spends all
its time incrementing its value, which asymptotically grows as n ∼ t/ log t.

1038 E. Asarin and P. Collins

Using a Counter, we can construct a Delay gadget. When this gadget is
activated, it copies the time n contained in the counter, and computes some
(easy to compute) function f(n) ∼ ns. It then waits until the Counter reaches
f(n), emits a signal, and goes back to sleep.

Using the Counter and Delay gadgets, we can construct an improved
version of a Timer. We run an ∼ ε−1/2 timer as usual, but when this stops, we
activate a Delay gadget with f(n) ∼ n2c. The program continues running until
the Delay gadget deactivates. This new Timer(c) gadget stops in time ∼ ε−c

with high probability.
We can use Timer(c) and RandomBit to construct a RandomNumber.

By storing successively generated bits in a Memory, we generate an increas-
ing sequence of rationals ri converging to a real number r which is uniformly
distributed in [0, 1]. By using a Timer(c), we can generate ∼ ε1/2−c digits of r.

4.5 Oscillators

An Oscillator is a gadget which stores a binary digit in a “register” variable
where it is unaffected by the noise. (Formally, we construct a register by taking
a set of states Q×{0, 1}.) When the Oscillator is halted by a Timer, it stops
in q� if the register holds 1, and in q⊥ if the register holds 0.

A simple oscillator which changes register state at every step is not very
interesting; the limiting acceptance probability is 1/2. By using a Delay, we
can hold the value of the register for a period [m, f(m) ∼ mc]; long enough for
its value to be seen when the Timer halts.

Lemma 4. Let M be an Oscillator which uses a delay to switch state at
times ni = f(ni−1) with f(n) ≥ nc, and which halts when a Timer stops. Then
M halts almost surely, but IP (Mε = 8) does not converge as ε → 0.

Proof. Choose a, b such that a < 1/2 < b < 2/3, b/a < c and a + b < 1, and let
d = 1− a− b. For any given n, we can find ε < 1 such that [ε−a, ε−b] ⊂ [n, nc].
If oscillator switches at times ni, then ni+1 ≥ nc

i . Hence, there is a sequence εi

with εi → 0 as i→ ∞ such that [ε−a
i , ε−bi] ⊂ [ni, ni+1].

The Timer halts at τ ∈ [ε−a
n , ε−bn] with high probability. Further, in this time

the Memory ensures correct execution with high probability. Hence for noise
levels ε2i, the probability that the timer halts with the register in state 0 tends
to 1 as n → ∞, and for noise levels ε2i+1 timer halts with the register in state
1 with high probability. Thus IP (Mε = 8) oscillates between 0 and 1 as ε → 0,
and does not converge as ε → 0. ��

5 Decisional Power of NTMs

In this section we address the capabilities of NTMs for deciding sets S ⊂ Σ∗.
The main result of this section is
Main Result 1. A set S ⊂ Σ∗ is lim-decidable if and only if it is Δ0

2. A set
S ⊂ Σ∗ is limsup-decidable if and only if it is Π0

2 .
The upper complexity bounds follow from Theorems 9 and 11 in the next section.

Noisy Turing Machines 1039

5.1 Deciding Recursively Enumerable Sets

The following result illustrates how converging NTMs can be stronger than or-
dinary TMs, and solve, for example, the halting problem.

Theorem 5. For any recursively enumerable (Σ0
1) set S there exists an NTM

N which lim-decides S.

Proof. Recall that S is Σ0
1 if there is a TM M such that M(w) halts if, and

only if, w ∈ S. Given such a TM, we construct an NTM Nε with 4 tapes to
lim-decide S. On tapes 1, 2 and 3 we have a Memory store on which we run
M, correcting errors by majority vote. On tape 4, we run a Timer gadget.

The computation terminates in the accepting state if M runs successfully
and reaches its halting state. The computation terminates in the rejecting state
if the Timer stops.

Since the Timer stops almost surely, and does so with high probability in
time τ ∈ [ε−a, ε−b], the computation performed by M runs successfully with
high probability, terminating in state q� if w ∈ S (as long as ε is small enough,
namely such that ε−a exceeds the computation time of M(w)), and halts in
state q⊥ if w �∈ S. ��

5.2 Deciding Δ0
2 Sets

We now strengthen the result of Theorem 5 to show that NTMs can lim-decide
Δ0

2 sets. Recall that a set S is Δ0
2 if both S and its complement are Π0

2 .
A particularly useful characterisation of a Π0

2 set, similar to Büchi acceptance
by ω-automata, can be given in terms of signalling TMs. A signalling TM has
no halting states, but instead a distinguished set of signalling states Qs ⊂ Q. A
set S is Π0

2 if there is a signalling TM M which enters states from Qs infinitely
often if, and only if, w ∈ S.

Theorem 6. For any Δ0
2 set S there exists an NTM which lim-decides S.

Proof. Let M1 be a TM such that M1(w) emits a signal infinitely often iff
w ∈ S, and M0 a TM such that M0(w) emits a signal infinitely often iff w �∈ S.

We can run M1 and M0 in parallel with a register variable. Whenever Mi

emits a signal, we store i in the register. If w ∈ S, then eventually M0 emits no
more signals, butM1 continues to do so, and the register sticks to 1. Conversely,
if w �∈ S, then eventually the register contains 0. In both cases, after some time
T (w) the register’s content never changes and is equal to χS(w).

We lim-decide S by an NTM N running M1 and M0 as described above.
Computation is terminated when a Timer stops, the outcome is the register’s
content. Whenever ε is small enough to ensure that the Timer stops after time
T (w), we can easily see that Nε operates correctly with high probability and
outputs χS(w). Hence N lim-decides S. ��

5.3 Deciding Π0
2 Sets

We now investigate the computational power of NTMs without restriction of
convergence.

1040 E. Asarin and P. Collins

Theorem 7. For any Π0
2 set S there exists an NTM which limsup-decides S.

Proof. Let M be a TM such that M(w) emits a signal infinitely often iff w ∈ S.
To ensure that signals are noticed in the presence of noise, we combineM with a
Delay which activates whenM emits a signal, setting a register to 1. Whenever
Delay deactivates, it resets the register to 0. As usual, the computation is halted
whenever the Timer stops.

Assuming correct operation of M and Delay, which occurs with high prob-
ability, the register variable is equal to 1 on time intervals [τi, τ c

i] infinitely often
if w ∈ S, and is eventually equal to 0 if w �∈ S. Using the argument from the
proof of Lemma 4 we can see that N limsup-decides S. ��

6 Generating Probability Functions

In this section, we investigate the functions which can be generated as the ac-
ceptance probability of an NTM as ε → 0. We shall prove the following result:

Main Result 2. A function p : Σ∗ → [0; 1] can be lim-generated by a con-
verging NTM if and only if it is 0′-computable. A function p : Σ∗ → [0; 1] is
limsup-generated by an NTM if and only if it is upper 0′-semicomputable.

6.1 Generating 0′-Computable Probabilities

Recall that a function is called 0′-computable if it can be computed by a TM
using an oracle for the halting problem. Equivalently, p is 0′-computable iff
{(r, w) ∈ Q×Σ∗ | r < p(w)} and {(r, w) ∈ Q×Σ∗ | r > p(w)} are Π0

2 -sets.

Theorem 8. Let p : Σ∗ → [0, 1] be a 0′-computable function. There exists a
converging NTM S that lim-generates the function p.

Proof. Since {(r, w) ∈ Q × Σ∗ | r < p(w)} is Π0
2 , there is a TM M< such that

M<(r, w) emits infinitely many signals if, and only if, r < p(w).
We now aim to extend this computation to real numbers. Suppose we have

access to an increasing sequence of rationals ri converging to a real number
r. We run M< sequentially on inputs (ri, w), starting M<(rn, w) after each
computation M<(ri, w) (with i < n) has emitted n− i signals.

Suppose r < p(w). Then ri < p(w) for all i, so M<(ri, w) emits infinitely
many signals for all i. Conversely, if r > p(w), then ri ≥ p(w) for some i, and
M<(ri, w) emits only finitely many signals before looping indefinitely.

We can therefore construct a TM M′
< which, given w ∈ Σ∗ and n digits of

r, emits infinitely many signals if r < p(w), and finitely many signals if r > p(w)
and n is sufficiently large. Similarly, we can construct a TM M′

> which, given n
elements of a decreasing sequence converging to r, emits infinitely many signals
if r > p(w), and finitely many signals if r < p(w) and n is sufficiently large.

We now construct an NTM N to lim-generate the function p. We use a
RandomNumber gadget to generate the binary approximants ri to a random

Noisy Turing Machines 1041

variable r uniformly distributed in [0, 1]. Notice that the distribution of the
ri is independent of the noise ε. We use M′

< and M′
> to compute r < p(w)

and r > p(w). The computation is halted by a Timer(c) with 1/2 < c < 2/3
to ensure that RandomNumber generates sufficiently many bits, but that the
Memory is still error-free with high probability.

Fix w ∈ Σ∗ and n, and suppose p(w) �∈ [rn, rn + 1/2n], which occurs with
probability 1 − 1/2n. We claim that after a fixed time T , independent of r,
the value of the register does not change. In the case rn + 1/2n < p(w), then
ri < p(w) for all i, so M′

< emits infinitely many signals, whereas M>(rn, w)
emits only finitely many signals, so after some time T (rn), machine M>(rn, w)
does not emit further signals. Since there are only finitely many possible values
of rn, we can choose T independently of rn The case rn > p(w) is similar.

Using the same argument as in Theorem 6, we see that with high probability,
Nε accepts if rn < p(w) and rejects if p(w) < rn +1/2n. Hence IP (Nε(w) = 8) ∈
[rn, rn + 1/2n], and since n is arbitrary, IP (Nε(w) = 8) = p(w). ��

To prove that Theorem 8 gives a precise characterisation of the computational
power of a converging NTM, we analyse the limit as ε→ 0.

Theorem 9. limε→0 IP (Mε(w) = 8) is 0′-computable for any converging NTM.

Proof. The function f(ε, w) given by IP (Mε(w) = 8) is computable when ε is
rational, and converges as ε → 0 for all w ∈ Σ∗. By definition,

r < lim
ε→0

f(ε, w) ⇐⇒ ∃s > r, ∃q > 0, ∀ε < q, (¬(s > f(ε, w))).

The inequality (s > f(ε, w)) belongs to the class Σ0
1 . We deduce that the relation

(r < limε→0 f(ε, w)) belongs to the class Σ0
2 , and hence is 0′-recursively enumer-

able. Symmetrically, the inequality (r > limε→0 f(ε, w)) is also 0′-recursively
enumerable. Hence limε→0 f(ε, w) is 0′-computable. ��

6.2 Generating Upper 0′-Semicomputable Probabilities

Recall that a function p is upper 0′-semicomputable if the set {(r, w) ∈ Q×Σ∗ |
r > p(w)} is of class Σ0

2 , so that {(r, w) ∈ Q×Σ∗ | r ≤ p(w)} is of class Π0
2 .

Theorem 10. Let p : Σ∗ → [0, 1] be an upper 0′-semicomputable function.
There exists an NTM S that limsup-generates p.

Proof. We use the machine M′
<(r, w) and the RandomNumber from the proof

of Theorem 8, and combine this with Delay as in the proof of Theorem 7, and
a Timer(c) to halt the computation.

Computation proceeds by runningM′
<, and starting a Delay wheneverM<

emits a signal. If M< emits signals infinitely often, then every rn < p(w), so
r ≤ p(w), and if M<(rn, w) loops for some rn, then rn ≥ p(w), so r ≥ p(w).

The rest of the proof follows that of Theorems 7 and 8, and is omitted. ��

1042 E. Asarin and P. Collins

Theorem 11. limsupε→0 IP (Mε(w) = 8) is upper 0′-semicomputable.

Proof. As in the proof of Theorem 9, it is easy to show that limsupε→0 f(ε, w)
is upper 0′-semicomputable whenever f : (0, 1) × Σ∗ → [0; 1] is continuous and
computable. ��

7 Concluding Remarks

We have described a class of randomly perturbed Turing machines and studied
their computational properties. We have shown that in the limit of infinitesimal
noise, these machines can be programmed to lim-decide Δ0

2, and limsup-decide
Π0

2 sets. It is interesting to compare this result with [5], where a small nonde-
terministic noise led to a Π0

1 computational power only. We have also given a
characterisation of the acceptance probability distributions which can be gener-
ated. As a future work we are planning to explore how sensitive are these results
to the choice of a computational model (discrete, hybrid or analog) and of a
stochastic noise model.

References

1. McKee, W., Bergman, D., Nguyen, N., Aton, T., Block, L., Huynh, V., McAdams,
H., Smith, E., McPherson, J., Janzen, J., Ondrusek, J., Hyslop, A., Russell, D.,
Coy, R.: Cosmic ray neutron induced upsets as a major contributor to the soft error
rate of current and future generation DRAMs. In: Proceedings of the International
Reliability Physics Symposium. (1996)

2. Howard, J.J., Hardage, D.: Spacecraft environments interactions: Space radiation
and its effects on electronic systems. Technical Report TP-1999-209373, NASA
(1999) http://trs.nis.nasa.gov/archive/00000502/01/tp209373.pdf.

3. Puri, A.: Dynamical properties of timed automata. Discrete Event Dynamic Sys-
tems 10 (2000) 87–113

4. Fränzle, M.: Analysis of hybrid systems: An ounce of realism can save an infin-
ity of states. In Flum, J., Rodŕıguez-Artalejo, M., eds.: Computer Science Logic
(CSL’99). Volume 1683 of LNCS., Springer-Verlag (1999) 126–140

5. Asarin, E., Bouajjani, A.: Perturbed Turing machines and hybrid systems. In:
Proceedings of the 16th Annual IEEE Symposium on Logic in Computer Science,
IEEE Computer Society (2001) 269

6. Delyon, B., Maler, O.: On the effects of noise and speed on computations. Theo-
retical Computer Science 129 (1994) 279–291

7. Maass, W., Orponen, P.: On the effect of analog noise in discrete-time analog
computations. Neural Computation 10 (1998) 1071–1095

8. Freidlin, M., Wentzell, A.: Random perturbations of dynamical systems. Springer-
Verlag, New York (1984)

9. Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw-
Hill (1967)

10. Weihrauch, K.: Computable analysis. Springer-Verlag, Berlin (2000)

A Better Approximation Ratio for the Vertex
Cover Problem�

George Karakostas��

Department of Computing and Software, McMaster University
karakos@mcmaster.ca

Abstract. We reduce the approximation factor for Vertex Cover to
2−Θ(1√

log n
) (instead of the previous 2−Θ(log log n

log n
), obtained by Bar-

Yehuda and Even [3], and by Monien and Speckenmeyer [11]). The im-
provement of the vanishing factor comes as an application of the recent
results of Arora, Rao, and Vazirani [2] that improved the approximation
factor of the sparsest cut and balanced cut problems. In particular, we
use the existence of two big and well-separated sets of nodes in the so-
lution of the semidefinite relaxation for balanced cut, proven in [2]. We
observe that a solution of the semidefinite relaxation for vertex cover,
when strengthened with the triangle inequalities, can be transformed
into a solution of a balanced cut problem, and therefore the existence of
big well-separated sets in the sense of [2] translates into the existence of
a big independent set.

1 Introduction

One of the most well-studied problems in combinatorial optimization is the ver-
tex cover (VC) problem: given a graph G = (V,E), we look for a minimum size
subset of vertices such that for every (u, v) ∈ E, at least one of u, v belongs to
this subset. In the weighted version of VC, each vertex has an integral weight,
and we are looking for the minimum total weight subset of vertices with the
property above.

Since the complexity of VC has been heavily studied since Karp’s original
proof of its NP-completeness [9], the related bibliography is vast and cannot be
covered, of course, in this introductory note. We mention here that VC is known
to be APX-complete [12], and moreover it cannot be approximated within a
factor of 1.36 [6], unless P=NP. A 2-approximation on the other hand can be
trivially obtained by taking all the vertices of a maximal matching in the graph.

Improving this simple 2-approximation algorithm has been a quite non-trivial
task. The best approximation algorithms known before this work were published
20 years ago by Bar-Yehuda and Even [3], and by Monien and Speckenmeyer [11].

�A preliminary version of this work appeared as a McMaster University Technical
Report CAS-04-05-GK and ECCC Report TR04-084, September/October 2004.

��Research supported by an NSERC Discovery grant.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 1043–1050, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1044 G. Karakostas

They achieved an approximation factor of 2 − ln ln n
2 ln n , where n is the number of

vertices. If Δ is the maximum degree of the graph, Halperin [8] showed that a
factor of 2 − (1 − o(1))2 ln lnΔ

lnΔ can be achieved by using the semidefinite pro-
gramming (SPD) relaxation of VC.

In this work we use a stronger SDP relaxation to improve the approximation
factor achieved in polynomial time to 2−Θ(1√

log n
). We observe that the intro-

duction of all the so-called triangle inequalities to the standard SDP relaxation
of VC is, in fact, very similar to the balanced cut SDP relaxation used by Arora,
Rao, and Vazirani [2]. Then we use one of the main results of [2], which asserts
that in the solution of this SDP, there are two big and well-separated vertex
subsets. At the same time, we show that edges that were not covered by a trivial
initial rounding are too big to have both of their endpoints in either of these
two sets. Hence, one of these two big subsets has to be a big independent set,
which can be excluded. We show this process first for the unweighted VC, and
then we show how it can be extended to the weighted case in a straight-forward
manner.

Hence the main idea in this improvement of the approximation factor is
the transformation of the ‘classic’ SDP formulation of VC to a formulation
that corresponds to a balanced cut problem with the addition of the ‘antipo-
dal’ points of the original points. This appears to be a very general technique
that can find application to other problems, and bring the Arora, Rao, Vazi-
rani [2] improved approximation factor for balanced cuts to other contexts as
well. Indeed, subsequently to our work, Agarwal, Charikar, Makarychev, and
Makarychev [1] used this stronger SDP formulation and the negative symmet-
ric metric that it implies, together with a clever iterative application of the
separation algorithm of [2], and several other ideas like volume arguments to im-
prove the approximation factor of several problems (Min UnCut, Min 2CNF
Deletion, Directed Balanced Separator, Directed Sparsest Cut) to
O(
√

log n).

2 The Unweighted Case

The following is a semidefinite-programming relaxation of unweighted Vertex
Cover (VC) for a graph G = (V,E) with n nodes:

min
n∑

i=1

1 + v0vi

2
s.t. (SDP)

(v0 − vi)(v0 − vj) = 0, ∀(i, j) ∈ E (1)
(vi − vj)(vi − vk) ≥ 0, ∀i, j, k ∈ V ∪ {0} (2)

v2
i = 1, ∀i ∈ V ∪ {0} (3)

where vi ∈ Rn+1. Constraints (2) are triangular inequalities, which must be
satisfied by the vertex cover. In an ‘integral’ solution of (SDP) (which would

A Better Approximation Ratio for the Vertex Cover Problem 1045

correspond to a vertex cover of G), vertices that are picked coincide with v0,
while vertices that are not picked coincide with −v0. In general though, an
optimal solution of (SDP) will not be ‘integral’.

In fact one can strengthen this SDP relaxation for VC by adding all the so
called triangle inequalities:

min
n∑

i=1

1 + v0vi

2
s.t.

(v0 − vi)(v0 − vj) = 0, ∀(i, j) ∈ E

(vi − vj)(vi − vk) ≥ 0, ∀i, j, k ∈ V ∪ {0}
(vi + vj)(vi − vk) ≥ 0, ∀i, j, k ∈ V ∪ {0}
(vi + vj)(vi + vk) ≥ 0, ∀i, j, k ∈ V ∪ {0}

v2
i = 1, ∀i ∈ V ∪ {0}

This relaxation is in fact equivalent to the following relaxation: We add n more
‘shadow’ points to (SDP) so that for every unit vector vi, i = 1, . . . , n we add
unit vector v′i which is the antipodal of vi, i.e., viv

′
i = −1, ∀i. Let V ′ be the set

of shadow points. Note that in an integral solution of (SDP), exactly half (n)
of the points in V ∪ V ′ coincide with v0 and the other half coincide with −v0.
Therefore the following must hold∑

i,j∈V ∪V ′
|vi − vj |2 = 4n2

where every pair (i, j) appears only once in the sum. (Hence the set V ∪V ′ is 1/2-
spread in the terminology of [2]). In addition, the triangular inequalities (2) must
also hold when we extend V with V ′. Hence we have the following strengthened
SDP:

min
n∑

i=1

1 + v0vi

2
s.t. (SDP’)

(v0 − vi)(v0 − vj) = 0, ∀(i, j) ∈ E (4)
(vi − vj)(vi − vk) ≥ 0, ∀i, j, k ∈ V ∪ V ′ ∪ {0} (5)

v2
i = 1, ∀i ∈ V ∪ V ′ ∪ {0} (6)

viv
′
i = −1, ∀i ∈ V (7)∑

i,j∈V ∪V ′
|vi − vj |2 = 4n2 (8)

where vi, v
′
i ∈ Rd for some d (log n. Constraint (8) is in fact unnecessary since

it is always satisfied by a set of points and their antipodals, but we include it in
order to point out that this relaxation defines a spread metric as defined in [2].
Now we can use results of [2] to find an approximate VC.

1046 G. Karakostas

For any ε > 0, we define the following two sets of graph vertices:

S1 := {v ∈ V : v0v > ε}
S2 := {v ∈ V ∪ V ′ : −ε ≤ v0v ≤ ε}

For now, we concentrate our attention on S2. Note that in S2 we have included
also shadow points. In fact, note that if vi ∈ V belongs to S2 then its shadow
v′i ∈ V ′ belongs to S2 as well, and vice-versa. In other words, S2 contains both
original points and their shadows.

Lemma 1. ∑
i,j∈S2

|vi − vj |2 = 4|S2|2

Proof. Note that for a particular pair i, j ∈ S2∩V we have viv
′
j = v′ivj = −vivj .

So if we group the summation terms according to pairs of vertices i, j ∈ S2 ∩ V ,
we get the lemma, due to cancellation of terms.

Let Δ,σ > 0 be two parameters to be determined later. Let u be a random unit
vector, and let

Su := {v ∈ S2 : uv ≥ σ√
d
}

Tu := {v ∈ S2 : uv ≤ − σ√
d
.}

Since vi = −v′i, it is easy to prove the following

Lemma 2. If vi ∈ Su for some vi ∈ V , then v′i ∈ Tu, and vice-versa, if v′i ∈ Tu,
then vi ∈ Su. The same holds with the roles of Su, Tu interchanged.

As a result of Lemma 2, Su ∪ Tu contains only pairs of points in V with their
shadow points, and each such pair is separated between Su, Tu, and |Su| = |Tu|.
Moreover, the following easy fact also holds:

Lemma 3.

vi ∈ Su, vj ∈ Tu, |vi − vj |2 ≤ Δ
v′i ∈ Su, vj ∈ Tu, |v′i − vj |2 ≤ Δ
vi ∈ Su, v′j ∈ Tu, |vi − v′j |2 ≤ Δ
v′i ∈ Su, v′j ∈ Tu, |v′i − v′j |2 ≤ Δ

⎫⎪⎪⎬⎪⎪⎭ ⇒

⎧⎪⎪⎨⎪⎪⎩
v′j ∈ Su, v′i ∈ Tu, |v′i − v′j |2 ≤ Δ
v′j ∈ Su, vi ∈ Tu, |vi − v′j |2 ≤ Δ
vj ∈ Su, v′i ∈ Tu, |v′i − vj |2 ≤ Δ
vj ∈ Su, vi ∈ Tu, |vi − vj |2 ≤ Δ

Let c′ > 0 be another parameter which will be defined later. We modify the
procedure set-find of [2] as follows:

– If |Su| < 2c′|S2| or |Tu| < 2c′|S2| then we HALT (just like in [2]).
– Otherwise, pick any x ∈ Su, y ∈ Tu such that |x− y|2 ≤ Δ. Then, because of

Lemma 3, the corresponding pair of antipodal points y′ ∈ Su, x′ ∈ Tu also
satisfy |x′ − y′|2 ≤ Δ. Delete x, x′, y, y′. Repeat until no such x, y can be
found.

A Better Approximation Ratio for the Vertex Cover Problem 1047

Note that initially Tu contains the antipodal points of Su (Lemma 2), and every
deletion eliminates two points from each of Su, Tu, and these four actually form
two (a point in V , its shadow point in V ′) pairs. Therefore, in the end, the
remaining points in Su are exactly the antipodal points of Tu (or both Su, Tu are
empty). As in [2], |x− y|2 > Δ, ∀x ∈ Su, y ∈ Tu. One can define the parameters
c′,σ so that, initially, Su, Tu are big with high probability:

Lemma 4. [Lemma 4 in [2]] For every positive c < 1/3, there are c′,σ > 0
such that the probability (over the choice of u) is at least c/8 that the initial sets
Su, Tu defined above have size at least 2c′|S2|.

Proof. From Lemma 1 and application of Lemma 4 of [2].

In fact, since Su initially (and throughout the running of the algorithm) contains
the antipodal points of Tu, |Su| = |Tu| = |S2|/2 before the algorithm starts
running no matter which u we choose, therefore c′ = 1/4.

One of the main results of [2] is to show that, with high probability over u,
not many points are deleted before set-find terminates. Note that the points
removed form a matching (at every step, x is matched to y, and x′ is matched
to y′). Theorem 5 in [2] shows that, with Δ = O(log−2/3 n), the probability
that set-find removes a matching of size c′|S2| is o(1). Hence the final Su, Tu

of set-find have size ≥ c′|S2| with probability Ω(1), and |Su| = |Tu|. In what
follows, we assume that Su, Tu are the big final sets we get with high probability
from set-find.

Lemma 5. If ε ≤ Δ/4, then there is no edge (i, j) ∈ E such that vi, vj ∈ V
belong both to Su or both to Tu.

Proof. W.l.o.g. suppose that there is (i, j) ∈ E such that vi, vj ∈ Su. Then their
shadow (antipodal) points belong to Tu, i.e., v′i, v

′
j ∈ Tu. Since vi, vj ∈ S2 and

constraint (4) holds, we have that

vivj = v0vi + v0vj − 1 ≤ −(1− 2ε). (9)

Since v′i ∈ Tu and vj ∈ Su are not deleted in set-find, |v′i − vj |2 > Δ, or,
equivalently, |vi + vj |2 > Δ. This implies that

vivj > −1 +
Δ

2
. (10)

But (9) and (10) together imply that ε > Δ/4 which contradicts the hypothesis.

From now on we set ε := Δ/4 > 0. Since |Su| = |Tu| ≥ c′|S2|, and the
two sets contain antipodal points, one of them (w.l.o.g. let’s assume that this is
Su), contains at least c′|S2|

2 points from V . Let I be this set of points from V .
Lemma 5 implies that I is an independent set of G of size at least c0|S2|, where
c0 := c′/2 > 0. We return the set S := S1 ∪ (S2 \ (I ∪ V ′)) as our vertex cover.

1048 G. Karakostas

Lemma 6. S is a vertex cover of G.

Proof. If there is (i, j) ∈ E with vi, vj ∈ V \ (S1∪S2), we have (by the definition
of S1,S2) that v0vi < −ε and v0vj < −ε, which implies that v0vi + v0vj − 1 <
−1− 2ε. Then constraint (4) implies that vivj < −1− 2ε, a contradiction. Also,
since I is an independent set, not both of vi, vj can belong to it. If vi ∈ I and
vj ∈ V \ (S1 ∪S2), then v0vi ≤ ε and v0vj < −ε, therefore constraint (4) implies
that vivj < −1, a contradiction. We conclude that every edge must have at least
one of its endpoints in S.

Our main result is the following

Theorem 1. |S| ≤ (2−Θ(1
log2/3 n

))V C(G).

Proof. We follow the analysis of Halperin [8]. From (SDP’) and the definition of
S1,S2 we have that

V C(G) ≥ |S1|
1 + ε

2
+ |S2 \ V ′|1− ε

2

or, equivalently,

|S1| ≤
2 · V C(G)

1 + ε
− |S2 \ V ′|1− ε

1 + ε
. (11)

Hence

|S| = |S1|+ |S2 \ V ′| − |I|
(11)

≤ 2
1 + ε

V C(G) + |S2 \ V ′|(2ε

1 + ε
− c0).

Note that for Δ = Θ(log−2/3 n), 2ε
1+ε = Θ(log−2/3 n) < c0, for big enough n.

Therefore,

|S| ≤ 2
1 + ε

V C(G) = (2−Θ(log−2/3 n)) · V C(G).

Very recently, J. Lee proved that the set-find algorithm of [2] can also be
used to obtain their stronger result [10], i.e., Δ can be as big as Θ(1/

√
log n).

Therefore we can get the following strengthening of Theorem 1:

Theorem 2. |S| ≤ (2−Θ(1√
log n

))V C(G).

Theorem 2 can be somewhat strengthened by noticing that in the proof of
Theorem 1 we just need to pick Δ so that 2ε

1+ε < c0, and therefore [2] and [10]
imply that if x := 1/Δ2, it is enough for x to be the solution of equation

x

log x
= c log n

where c > 0 is a constant (cf. [5] for more details on solving this equation through
Lambert’s W function).

A Better Approximation Ratio for the Vertex Cover Problem 1049

3 The Weighted Case

The following is a semidefinite-programming relaxation of weighted Vertex Cover
(VC) for a graph G = (V,E) with n nodes:

min
n∑

i=1

wi ·
1 + v0vi

2
s.t. (WSDP)

(v0 − vi)(v0 − vj) = 0, ∀(i, j) ∈ E

(vi − vj)(vi − vk) ≥ 0, ∀i, j, k ∈ V ∪ {0}
v2

i = 1, ∀i ∈ V ∪ {0}

where wi is the integral weight of node i. Let W :=
∑n

i=1 wi.
In order to apply the methods of Section 2, we solve (SDP’) with the weights

incorporated in the objective function, and replace every vi by wi copies of vi (v′i
is also replaced by wi copies of v′i). In fact we don’t need to do this replacement in
practice, but this mental experiment is helpful in order to see how the unweighted
case applies here, too. Note that this new set of vectors still satisfies the triangular
inequalities, and Lemmata 4 through 6 in Section 2 apply here as well with n := W .
Note that set-find can be made to run in polynomial time in this case (recall that
we don’t really do the replacement of vi with wi, all we need to do is to keep track
of how much weight remains for each node after each matching). Now Theorem 1
(and hence Theorem 2) can be proven in the same way as before, if we replace the
cardinality of sets | · | with their weights w(·).

4 Open Problems

Obviously one of the biggest open problems in theoretical computer science is the
exact determination of the approximability of VC. There is a big gap between
the hardness and the approximability results. Unfortunately, the Set-Find pro-
cedure of [2] is limited to a gap of at most Θ(1/

√
log n) by the embedding of the

log n-dimensional hypercube: in this case any two subsets of linear size are closer
than Θ(1/

√
log n) (this simple fact was pointed out to us by James R. Lee).

We couldn’t extend our techniques to other problems related toVC, for example
the maximum independent set problem (IS), and we don’t know whether this is
possible (Halperin’s [8] techniques, on the contrary, can be applied to IS). Another
extension of VC is the vertex cover problem in hypergraphs. We don’t know how to
extend our techniques to this problem as well. Therefore we leave the application
of the results above to these and other problems as an open question.

Finally, we point out that we don’t know what the integrality gap of the
strengthened SDP relaxation (SDP’) used above is. A weaker formulation, that
doesn’t contain all the triangle inequalities but is equivalent to Schrijver’s θ′

function [7], was proven to have an integrality gap of 2 − ε for any constant
ε > 0 by Charikar [4]. It would be interesting to show the same result for the
stronger SDP.

1050 G. Karakostas

Acknowledgements. I am grateful to Sanjeev Arora for reading an earlier
draft of this work and for bringing [10] to my attention.

References

1. A. Agarwal, M. Charikar, K. Makarychev, and Y. Makarychev. O(
√

log n) approxi-
mation algorithms for Min UnCut, Min 2CNF Deletion, and directed cut problems.
In 37th STOC, 2005 (to appear).

2. S. Arora, S. Rao, and U. Vazirani. Expander flows, geometric embeddings and
graph partitioning. In Proc. of 36th STOC, pp. 222–231, 2004.

3. R. Bar-Yehuda and S. Even. A local-ratio theorem for approximating the weighted
vertex cover problem. Annals of Discrete Mathematics, 25, pp. 27–45, 1985.

4. M. Charikar. On semidefinite programming relaxations for graph coloring and
vertex cover. In Proc. of 13th SODA, pp. 616–620, 2002.

5. R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth. On the
Lambert W Function. Advances in Computational Mathematics, vol. 5, pp. 329–359,
1996.

6. I. Dinur and S. Safra. On the importance of being biased (1.36 hardness of ap-
proximating Vertex-Cover). Annals of Mathematics, to appear. Also in Proc. of
34th STOC, 2002.

7. M. Goemans and J. Kleinberg. The Lovász Theta Function and a Semidefinite
Programming Relaxation of Vertex Cover. SIAM Journal on Discrete Mathematics
11(2), pp. 196–204, 1998.

8. E. Halperin. Improved approximation algorithms for the vertex cover problem in
graphs and hypergraphs. SIAM J. on Computing, 31(5), pp. 1608–1623, 2002. Also
in Proc. of 11th SODA, pp. 329–337, 2000.

9. R. Karp. Reducibility among combinatorial problems. in R. E. Miller and
J. W. Thatcher (eds.) Complexity of Computer Computations, Plenum Press, NY,
pp. 85–103.

10. J. R. Lee. On distance scales, embeddings, and efficient relaxations of the cut cone.
SODA 2005 (to appear), see http://www.eecs.berkeley.edu/~jrl.

11. B. Monien and E. Speckenmeyer. Ramsey numbers and an approximation algo-
rithm for the vertex cover problem. Acta Informatica, 22, pp. 115–123, 1985.

12. C. E. Papadimitriou and M. Yannakakis. Optimization, approximation, and com-
plexity classes. JCSS, 43(3), pp. 425–440, 1991.

Stochastic Steiner Trees Without a Root

Anupam Gupta1 and Martin Pál2,�

1 Dept. of Computer Science,
Carnegie Mellon University, Pittsburgh PA 15213

anupamg@cs.cmu.edu
2 DIMACS, Rutgers University, Piscataway, NJ

mpal@acm.org

Abstract. This paper considers the Steiner tree problem in the model of two-
stage stochastic optimization with recourse. This model, the focus of much recent
research [11, 16, 8, 18], tries to capture the fact that many infrastructure planning
problems have to be solved in the presence of uncertainty, and that we have make
decisions knowing merely market forecasts (and not the precise set of demands);
by the time the actual demands arrive, the costs may be higher due to inflation.

In the context of the Stochastic Steiner Tree problem on a graph G = (V,E),
the model can be paraphrased thus: on Monday, we are given a probability dis-
tribution π on subsets of vertices, and can build some subset EM of edges. On
Tuesday, a set of terminals D materializes (drawn from the same distribution π).
We now have to buy edges ET so that the set EM ∪ ET forms a Steiner tree on
D. The goal is to minimize the expected cost of the solution.

We give the first constant-factor approximation algorithm for this problem. To
the best of our knowledge, this is the first O(1)-approximation for the stochas-
tic version of a non sub-additive problem. In fact, algorithms for the unrooted
stochastic Steiner tree problem we consider are powerful enough to solve the
Multicommodity Rent-or-Buy problem, itself a topic of recent interest [3, 7, 15].

1 Introduction

Real world planning problems often have a significant component of uncertainity. For
instance, when designing networks, the precise demand patterns and future costs of
building capacity are often unknown to begin with, and only become clear as time
progresses. However, with our increasing ability to collect statistical data, and the de-
velopment of sophisticated and realistic forecast models, the paradigm of stochastic
optimization has gained much traction. Indeed, we can now aim to solve a wider class
of problems: given not a single input, but a distribution over inputs, we want to find a
solution that is good in expectation (taken with respect to the randomness in the model).

In this paper, we study the problem of connecting a group of terminals by a Steiner
tree in a stochastic setting. In the classical Steiner tree problem, we are given an undi-
rected graph G = (V,E) with edge costs ce, and a group of terminals g = {t1, t2, . . . ,

� Supported by ONR grant N00014-98-1-0589 (at Cornell University) and NSF grant EIA 02-
05116 (at DIMACS).

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 1051–1063, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

1052 A. Gupta and M. Pál

tk}; the goal is to find a subset E′ of edges of minimum cost that connects all these
terminals. We consider this problem when the group g is not deterministically given in
advance; instead, it is given by a random variable Γ , with Pr[Γ = g] being the proba-
bility that we will be required to build a network that connects a particular group g ⊆ V
of terminals. As sketched in the abstract, we work the model of two-stage stochastic
optimization with recourse.

– In the first stage, we assume to have (some) knowledge of the distribution of the
random variable Γ . Armed with this information, we construct a network F 0 ⊆ E
of edges bought as the first anticipatory part of the solution.

– In the second stage, we learn a group g ⊆ V of terminals that is a realization of
the random variable Γ . We have to purchase an additional augmenting set F 1(g)
of edges to ensure that F 0 ∪ F 1(g) connects the terminals of g. The problem is
interesting when the edges bought in the second stage have a higher cost (due to
inflation, or because the second phase has to be built on short notice). We use σ > 1
to denote the inflation factor by which the edges are more expensive.

Our goal is to minimize the expected cost of the two-stage solution. If we define c(F) =∑
e∈F ce, and denote the first and second stage solutions F 0 ∈ E and F 1 : 2V !→ 2E

to minimize
c(F 0) + EΓ [σ · c(F 1(Γ))]. (1.1)

Our results. The main quantitative result of this paper is the following:

Theorem 1. There is a 12.6-approximation algorithm for the two-stage stochastic (un-
rooted) Steiner tree problem.

Note that while the stochastic Steiner tree problem has been considered in previous
papers [11, 8, 9], their model is subtly but significantly different. All these works make
the crucial assumption that the there is a fixed root r, and the goal is to connect the
group g to the root r. This assumption, while a trifling detail in the deterministic case,
turns out to make a big difference in the stochastic setting, requiring us to develop new
techniques. For example, a fact used in one way or another by all previous results was
that the first stage solution F 0 in the rooted case can be assumed to be a connected
tree containing the root; this is just not true in the unrooted case: in fact, insisting on
a connected first stage network may cost arbitrarily more than the optimum solution.
Indeed, our result is the first approximation algorithm given for a problem that is not
sub-additive, and requires us to interpret and use cost-sharing ideas in a novel way.

Specifying the distribution. The distribution π of the random variable Γ is an ob-
ject whose size may be exponential in |V |. Our algorithm does not need to know π
explicitly; it only requires access to a sampling oracle that can upon request supply
independent samples drawn from the distribution π.

Related work. As already mentioned, several papers studied the rooted version of the
stochastic Steiner tree problem. Immorlica et al. [11] give a O(log n) approximation in
the independent decisions model, while [8] and [9] give constant approximation algo-
rithms for the oracle and scenario models respectively. Karger and Minkoff [13] and

Stochastic Steiner Trees Without a Root 1053

Hayrapetyan et al. [10] study the maybecast problem, where one is to output a single
tree T , to minimize the expected size of the smallest subtree of T spanning a random
set of terminals. While technically this is also a stochastic problem, the recourse action
is fixed, and the randomness is present only in the objective function.

Gupta et al. [8] give a simple boosted sampling framework to convert an algorithm
for a deterministic minimization problem to an algorithm for its stochastic counterpart.
Their framework relies crucially on two ingredients: the deterministic version of the
problem at hand has to be subadditive, and have an approximation algorithm that admits
a strict cost sharing function. Since the unrooted Steiner tree problem is not sub-additive
(i.e., if T1 is a solution for terminal set g1, and T2 for g2, then T1 ∪ T2 may not be a
solution for g1 ∪ g2), we cannot apply their techniques directly here.

The general area of stochastic optimization is studied heavily in the operations re-
search community, dating back to the seminal works of Dantzig [5] and Beale [2] in
the 1950s; the books [4, 12] and monograph [17] could serve as introduction for the
interested reader. Much of the work related to combinatorial optimization problems in
this area has been concerned with finding and characterizing optimal solutions either
for restricted classes of inputs or with algorithms without polynomial running times
guarantees. Recently, there has been some work on taking solutions to stochastic lin-
ear programs and rounding those to obtain approximation algorithms for the stochastic
problems [18]; however, it is not clear how to apply those techniques to the Steiner tree
problem.

The Boosted Sampling Framework. Gupta et al. [8] propose the Boosted Sampling
framework of Figure 1 to solve any two-stage stochastic problem Π where the set Γ of
demand points is stochastic.

One would naturally expect that in the case of stochastic Steiner tree, the determinis-
tic algorithm of Step 2 would build a Steiner tree on the set of terminals g1∪g2∪· · ·∪gσ .
In fact, if the support of Γ was on sets that all contained the fixed root r, [8] shows that
this is enough to obtain an 3.55-approximation algorithm for stochastic Steiner tree.

Unfortunately, building a Steiner tree fails in the unrooted case. For an example,
consider two groups g1 and g2 that are very far apart relative to their diameter; assume
that Pr[Γ = gi] · σ is large. In this case, the optimum solution must connect up each
group gi in the first stage to avoid high second stage cost, but it should not build a
link between g1 and g2 (to make F0 span g1 ∪ g2) if it wants to avoid a high first
stage cost. On the other hand, if the two groups are interspersed in the same region

1: Boosted Sampling: Take �σ� independent samples g1, g2, . . . , g�σ� from the sampling oracle
for Γ .

2: Building First Stage Solution: Use an algorithm A to find a solution to the deterministic
equivalent of the problem Π on the groups g1, g2, . . . , g�σ�. Use this solution as the first
stage solution to the stochastic problem.

3: Building Recourse: Once the group g of required terminals materializes, use an augmenting
algorithm AugA to augment the first stage solution to a valid solution that satisfies g.

Fig. 1. Algorithm Boost-and-Sample(Π)

1054 A. Gupta and M. Pál

of the graph, the optimum solution may benefit from link sharing and hence build a
single Steiner tree spanning both groups. Hence it seems natural to suggest that the
algorithmA should build a forest ensuring that each group lies within a single connected
component; different groups may or may not be in the same component. As it turns
out, building a Steiner Forest on the groups gi is a suitable deterministic equivalent of
stochastic unrooted Steiner tree; however, proving this requires a lot more work.

To this end, we have to show that the main theorem of [8] which relates the per-
formance of the boosted sampling framework to the notion of strictness (which we
define shortly) of certain cost-sharing functions can be proved in our case, even though
our problem is not sub-additive. The proof of this is simple, and we will sketch it in
Section 2. We then define the cost-shares in Section 3, and prove them to be strict in 4.

2 Notation and Preliminaries

Let G = (V,E) be an undirected weighted graph with weigths ce on the edges. A
network is simply a subset of the edges. We say that a network F is feasible for (or
connects) a group of terminals g = {t1, t2, . . . , tk}, if all the terminals of g lie in the
same connected component of F . The cost of a network F is simply the sum of costs
of its edges; that is c(F) =

∑
e∈F ce.

In the Steiner Forest problem, given a weighted undirected graph G and a list of
groups of terminals D = {g1, g2, . . . , gn} with each gi = {ti1, . . . , tiki

}, we want to
construct a network F of minimum cost that is feasible for each group gi. For a setD of
terminal groups, let Sols(D) denote the set of networks that are feasible for each of the
groups inD, and let OPT(D) be the network in Sols(D) of minimum cost. An algorithm
A is an α-approximation algorithm for the Steiner Forest problem, if for any set D of
terminal groups, it finds a network FD ∈ Sols(D) of cost at most α cost(OPT(D)).

Given a group g of terminals and an existing network F ⊆ E, the goal of an aug-
menting algorithm is buy a set of extra edges F ′ so that F ∪ F ′ is a network that
connects the group g. For instance, given a network FD ∈ Sols(D) that connects each
of the groups in D, and a new group g /∈ D, the augmenting algorithm AugA seeks to
find a set of edges F ′ of minimum cost so that FD ∪ F ′ ∈ Sols(D ∪ {g}).

Definition 1. A cost-sharing function ξ is a function that, for any instance (G,D) of
the Steiner forest problem, assigns a non-negative real number ξ(G,D, gi) to every
participating group gi ∈ D.

We shall drop a reference to the graph G, if clear from the context. Note that the cost
sharing function assigns shares to groups, and not to the individual terminals.

Since the above definition is so general, let us specify some properties of these func-
tions that we would like to get. A cost-sharing function ξ is competitive if∑

g∈D ξ(D, g) ≤ cost(OPT(D)) holds for any Steiner forest instance (G,D). Thus,
competitive cost-shares serve as a lower bound on the cost of the optimal solution. The
following notion is crucial to the development of the paper, and implicitly places lower
bounds on the cost-shares themselves.

Stochastic Steiner Trees Without a Root 1055

Definition 2. A cost sharing function ξ is β-strict with respect to an algorithm A, if
there exists an augmenting algorithm AugA, such that for any set of demand groups D
and any group g /∈ D,

cost(AugA(A(D), g)) ≤ βξ(D + g, g). (2.2)

Remark 1. There is a fine distinction between the notion of strictness we use here and
strictness as defined in [7, 8]. In [7], strictness was defined only for augmentations with
groups of size 2; in this paper, we allow for groups of larger sizes. However, the strict-
ness in [8] is stronger than our notion, and allows for multiple group augmentations;
the question of proving strictness by this definition remains open despite much effort.

Given all these definitions, we can now state the the following theorem, which can
be derived from the proof of [8–Theorem 3.1]. We defer its proof to a full version of the
paper.

Theorem 2. Suppose thatA is an α-approximation algorithm for deterministic Steiner
forest. Then, the boosted sampling algorithm of Figure 1 is an (α + β)-approximation
algorithm for unrooted stochastic Steiner tree whenever there is a cost-sharing function
ξ that is β-strict with respect to A and single group augmentations.

3 The Algorithm A and the Cost Shares ξ

In this section we review the Steiner forest algorithm of [7], although the algorithm
of Becchetti et al. [3] would serve our purpose equally well. Both algorithms are ex-
tensions of the algorithm of Agarwal, Klein, and Ravi (AKR) [1], and Goemans and
Williamson (GW) [6], and are designed to “build a few extra edges” over and above the
AKR-GW algorithms, while keeping the overall cost of the solution within a constant
factor of the cost of the optimum. We also describe our cost-sharing method.

Recall that we are given a graph G = (V,E) and a set D of groups g1, . . . , gn

of terminals, where each group gi = {ti1, ti2, . . . , tiki
} ⊆ V . Before defining our

algorithm, we review the LP relaxation and the corresponding LP dual of the Steiner
forest problem that was used in [6]:

min
∑

ecexe (SF-LP)

x(δ(S)) ≥ f(S) ∀S ⊆ V

xe ≥ 0

max
∑

Sf(S)yS (SF-DP)∑
S⊆V :e∈δ(S) yS ≤ ce (3.3)

yS ≥ 0,

where f(S) is equal to 1 if S separates gi for some i (that is, if both S ∩ gi and (V −
S) ∩ gi is nonempty), and is 0 otherwise. Note that variables yS for sets S that do not
separate any group are not contributing to the dual objective function, they still play an
important role in our algorithm.

We now describe a general way to define primal-dual algorithms for the Steiner
forest problem. As is standard for the primal-dual approach, the algorithm with maintain
a feasible (fractional) dual, initially the all-zero dual, and a primal integral solution (a

1056 A. Gupta and M. Pál

set of edges), initially the empty set. The algorithm will terminate with a feasible Steiner
forest, which will be proved approximately optimal with the dual solution (which is a
lower bound on the optimal cost by weak LP duality). The algorithms of [1, 6] arise as
a particular instantiation of the following algorithm. Our presentation is closer to [1],
where the “reverse delete step” of Goemans and Williamson [6] is implicit; this version
of the algorithm is more suitable for our analysis.

Our algorithm has a notion of time, initially 0 and increasing at a uniform rate.
At any point in time, some terminals will be active and others inactive. All terminals
are initially active and eventually become inactive. At any point of time, the vertex set
is also partitioned into clusters, which can again be either active or inactive. In our
algorithm, a cluster will be one or more connected components (w.r.t. the currently
built edges). Initially, each vertex is a cluster by itself, and the active clusters are just
the terminals. We will consider different rules by which demands and clusters become
active or inactive, which we describe shortly. To maintain dual feasibility, whenever the
constraint (3.3) for some edge e between two clusters S and S′ becomes tight (i.e., first
holds with equality), the clusters are merged and replaced by the cluster S ∪ S′. We
raise dual variables of active clusters until there are no more such clusters.

We have not yet specified how an edge can get built. Towards this end, let us define a
(time-varying) equivalence relation R on the set of terminals. Initially, all terminals lie
in their own equivalence class; these classes will only merge with time. When two active
clusters are merged, we merge the equivalence classes of all active terminals in the two
clusters. Since inactive terminals cannot become active, this rule ensures that all active
terminals in a cluster are in the same equivalence class. (Note that if an active cluster
merges with an inactive one, this merging of equivalence classes does not happen.)

We build enough edges to maintain the following invariant: the terminals in the same
equivalence class are connected by built edges. This clearly holds at the beginning, since
the equivalence classes are all singletons. When two active clusters meet, the invariant
ensures that, in each cluster, all active terminals lie in a common connected component.
To maintain the invariant, we join these two components by adding a path between
them. Building such paths without incurring a large cost is simple but somewhat subtle;
Agrawal et al. [1] (and implicitly, Goemans and Williamson [6]) show how to do this.
We refer the reader to [1] for details of this procedure, instead of repeating it here.
Specifying the rule by which clusters are deemed active or inactive now gives us two
different algorithms:

1. Algorithm GW(G,D): A terminal tij ∈ gi is active if the current cluster containing
it does not contain the entire group gi. A cluster is active as long as it contains at
least one active demand. This implementation of the algorithm is equivalent to the
algorithms of Agrawal et al. [1] and Goemans and Williamson [6].

2. Algorithm Timed(G,D, T): This algorithm takes as an additional input a function
T : V → R≥0 which assigns a stopping time to each vertex. (We can also view T
as a vector with coordinates indexed by V .) A vertex j is active at time τ if j ∈ D
and τ ≤ T (j). (T is defined for vertices not in D for future convenience, but such
values are irrelevant, and can be imagined to be set to 0 for the rest of the paper.)
As before, a cluster is said to be active if at least one demand in it is active.

Stochastic Steiner Trees Without a Root 1057

To get a feeling for Timed(G,D, T), consider the following procedure: run the algo-
rithm GW(G,D) and set TD(j) to be the time at which vertex j becomes inactive during
this execution. (If j /∈ D, then TD(j) is set to zero.) Since a vertex stays active for ex-
actly the same duration of time in the two algorithms GW(G,D) and Timed(G,D, TD),
the two algorithms clearly have identical outputs. Similarly, if for each tij ∈ gi we set
T (tij) = maxt,t′∈gi

dG(t, t′), we obtain the algorithm of Könemann et al. [14].
It turns out that the Timed algorithm gives us a nice principled way to force the GW

algorithm to build additional edges: run the Timed algorithm with a vector of demand
activity times that is larger than what is naturally induced by the GW algorithm.

The Algorithm A: The algorithm Algorithm A(G,D) that we use to build the first
stage solution is

1: Run GW(G,D), and let TD(v) be the time at which v becomes inactive.

2: Run Timed(G,D, γTD)—the timed algorithm with the above time vector TD scaled
up by a parameter γ ≥ 1—and output the resulting forest FD.

A technical point: when γ > 1, algorithm A may raise the dual variables of vertex
sets that do not separate any group, and hence do not contribute to the value of the
dual objective function. However, this will not hinder our analysis. The fact that FD is
a feasible Steiner network for D is easily verified, using the fact that the terminals of
each group became inactive at the same time TD(gi) (equal to TD(tij) for any tij ∈ gi)
when gi became connected, and that γ ≥ 1. We now define the cost shares ξ.

The Cost Shares ξ: We want the cost share of a group gi of users to account for the
growth of components that contain only terminals from gi. Let a(gi, τ) be the number
of active clusters in the execution of GW(G,D) that contain a terminal from gi but do
not contain any active terminals outside gi. We define the cost share of gi to be

ξ(D, gi) =
∫

a(gi, τ)dτ, (3.4)

where the integral is over the entire execution of the algorithm. Note that the cost shares
defined by Equation (3.4) do not account for the full cost of the dual solution y, as the
cost of growth of clusters with active demands from more than one group more than one
active demand is not reflected at all. We could fix this by dividing the cost of growing
mixed clusters among participating groups in some way; however, we do not see how
to use this to improve our approximation ratio.

Augmentation Algorithm AugA: A practical augmenting algorithm AugA would sim-
ply contract all edges of FD, and then find an approximate Steiner tree on the terminals
of g in this contracted graph G/FD. However, in order to bound the second stage cost,
we build a specific Steiner tree on g in G/FD, and argue that the cost of this tree can be
bounded by β ξ(D + g, g) for some β ∈ R. The construction of this tree is implicit in
the proof of Theorem 4, and can be found efficiently in polynomial time if required. In
the following, we let AugA be the algorithm that constructs this implicit tree. Our main
technical result is thus the following.

1058 A. Gupta and M. Pál

Theorem 3. For any γ > 2,A is a α = (γ +1)-approximation for the Steiner network
problem, and ξ is a β = (4γ/(γ − 2))-strict cost sharing method with respect to the
algorithms A and AugA.

Proof. The fact that A is a (γ + 1)-approximation can be proved along the lines of
[3–Lemma 3.1] (We postpone the details to the full paper). The proof of strictness
(Theorem 4) is the analytical heart of this paper, and is given in the following section.

4 Proving Strictness

Our analysis follows a fairly natural line of analysis that was also used in [7]. We start
by fixing a set D of demand groups, and a group g /∈ D. To prove strictness of our
cost shares, we compare two executions of the GW algorithm: the inflated algorithm
A(G,D) on the set of groups D that results in the forest FD, and the uninflated algo-
rithm GW(G,D + g) which is responsible for computing the cost share ξ(D + g, g).

Recall that we have to show that g can be connected in FD with cost at most
O(ξ(D + g, g)). We prove this in the following theorem, which also implicitly de-
scribes the augmenting algorithm AugA. In the rest of the discussion, we will assume
that γ > 2.

Theorem 4. There is a tree F ′ in the graph G/FD that spans all terminals of g and
has cost at most 4γ/(γ − 2) ξ(D+ g, g). The tree F ′ can be constructed in polynomial
time.

The main difficulty in proving Theorem 4 arises from the fact that the two executions
A(G,D) and GW(G,D + g) may be very different. Hence it is not immediately clear
how to relate the cost of augmenting the forest FD produced by the former by the cost
share ξ(D+g, g) computed by the latter. To make a direct comparison possible, we work
through some transformations that allow us to find a mapping between dual variables in
these two executions. In the grand finale, we produce a tree T that spans terminals of g,
and show that a 1/β fraction of its edges is covered by dual variables corresponding to
the cost share of g, which will complete the proof. Let us introduce some time vectors
to facilitate this comparison.

– Let TD be the time vector obtained by running GW(G,D). Recall that FD is the for-
est constructed by Timed(G,D, γTD); we also let RD be the equivalence relation
constructed by the latter algorithm.

– Let TD+g be the time vector generated by the execution GW(G,D + g) and let
τ = TD+g(g) be the time when the terminals of g got connected in this execution.

– Let T be the vector obtained by truncating TD+g at time τ . That is,
T (v) = min(τ, TD+g(v)) for v ∈ V . (The intuition for T is loosely this: we do not
care about time after g has been connected, and this truncation captures this fact.)

– Finally, let T−g be the vector T with g “taken out”, that is, T−g(v) = T (v) if v /∈ g,
and T−g(v) = 0 if v ∈ g. Let R−g be the equivalence relation constructed by the
execution Timed(G,D, γT−g).

Stochastic Steiner Trees Without a Root 1059

A side-by-side comparison of the executions GW(G,D) and GW(G,D + g) shows
that for all v ∈ V ,

TD(v) ≥ T−g(v); (4.5)

the simple inductive proof is omitted. The forest constructed by Timed(G,D, γT−g)
will serve us as a proxy for the forest FD created by Timed(G,D, γTD); intuitively,
since T−g is smaller than TD, it should also produce a forest with fewer edges. We will
make this intuition precise in Lemma 1 below.

To state the lemma in a general form that will be useful later, we need some more
notation. For two weighted graphs G and G′ on the same vertex set V , we write G′ ≤ G
if the shortest path distance between any pair of vertices (u,v) in G′ is no more than their
distance in G. For a graph G = (V,E) and a set F ⊆ (V ×V), the graph G′ = G/F is
a contraction of G, and is obtained by adding a zero-cost edge in G between every pair
(u, v) ∈ F . Since R ⊆ V × V , we can define G/R in the same way. It immediately
follows that if G′ is a contraction of G, then G′ ≤ G. For time vectors, let T ≤ T ′

denote coordinate-wise inequality (and hence we can rewrite (4.5) as T−g ≤ TD).

Lemma 1 ([7]). Let G ≤ G′ be two weighted graphs and T ≤ T ′ be two time
vectors. Then, for the equivalence relations R and R′ produced by the executions
Timed(G,D, T) and Timed(G′,D, T ′), it holds thatR ⊆ R′.

A Simpler graph H: We now define a simpler graph H = G/R−g; this graph H will
act as a proxy for G/FD in the following sense. For two vertices u, v connected by
a zero-cost path in H , we know that u and v are connected by a path in FD. This is
because the inequality T−g ≤ TD used with Lemma 1 implies that R−g ⊆ RD; now
the invariant maintained by the algorithm Timed implies that there is a path connecting
u and v in FD whenever (u, v) ∈ RD.

Thus, to prove Theorem 4, it suffices to exhibit a tree T in H that spans all terminals
of g, and has cost at most 4γ/(γ − 2)ξ(D + g, g). By the properties of the graph H , it
then follows that the network T ∪ FD is feasible for the group g.

Note that each equivalence class of R−g can also be thought of as a single (super)-
vertex of the graph H; this view may be more useful in some contexts. To complete the
correspondence between the two views, let us extend the definition of a time vector to
supernodes in the natural way: if wC is an equivalence class of the relationR−g , we let
T (wc) = maxvi∈C T (vi); this allows us to talk about running the Timed algorithm on
H with the vector T .

4.1 The Tree T Spanning Terminals of g

We will obtain the desired Steiner tree on the group g inH by considering the execution
of the algorithm Timed(H,D + g, T); we denote this execution by E . Recall that the
time vector T was defined to ensure that in the execution Timed(G,D + g, T) on the
original graph G, the terminals of g eventually merge into a single equivalence class
of the respective relation R. Since the graph H is a contraction of G, it follows from
Lemma 1 that the terminals of g must end up in the same equivalence class in E , and
hence in the same connected component of the forest constructed by E . There is a
unique minimal tree that spans the terminals of g in this forest; let T denote this tree.

1060 A. Gupta and M. Pál

Since T was constructed by the execution E , all of its edges must be fully tight with
the dual grown in E . Our plan of attack is to show that the dual variables corresponding
to the terminals of g account for a significant fraction of this dual, and hence the cost
share of g must be large enough to pay for a 1/β fraction of the tree. To pursue this
plan, we introduce the following notion of layers as in [7]; this terminology is just a
convenient way of talking about “dual moats”.

In an execution of an algorithm, a layer (C, I) corresponds to an active cluster
C whose dual variable yC has been growing during the time interval I = [τ1, τ2);
the thickness of this layer is |I| = τ2 − τ1. A layering L of an execution is a set of
layers such that, for every time τ and every active cluster C, there is exactly one layer
(C, I) ∈ L such that τ ∈ I .

Lonely layers: A layer (C, I) is lonely, if it does not contain any active terminals ex-
cept terminals belonging to g. Thus, the cost share of g can be expressed as the total
thickness of lonely layers in any layering of Timed(G,D + g, T). Using Lemma 1, we
can argue that the total thickness of lonely layers in the execution E is no more than in
Timed(G,D + g, T) (see [7] for details). Hence the total thickness of lonely layers in
the execution E is a lower bound on the cost share of g.

We lower bound the thickness of lonely layers by arguing that the thickness of non-
lonely layers intersecting T is significantly smaller than the length of T: since all of T
has to be covered, this leaves a considerable fraction of the tree to be covered by lonely
layers. Hence our overall goal can be reduced to giving an upper bound on the thickness
of non-lonely layers that intersect the tree T.

To get a hold on this quantity, we proceed to compare a layering L of the execution
E—recall that E = Timed(H,D + g, T)—with a layering L′ of its inflated counterpart
E ′ = Timed(H,D, γT−g). We construct a mapping that maps every non-lonely layer

 = (C, I) ∈ L to a distinct layer
′ = (C ′, γI) ∈ L′ that is γ times thicker. (Note
that lonely layers do not have a natural counterpart, as the terminals of g do not appear
at all in the execution E ′.) To ensure the existence of such a mapping, we align the
two layerings to satisfy the following property: if (C, I) ∈ L and (C ′, I ′) ∈ L′ with
γI ∩ I ′ �= ∅, then I ′ = γI . (I.e., I ′ = [γτ1, γτ2) and I = [τ1, τ2).) This condition
can easily be imposed by repeatedly splitting layers of L and L′, that is, replacing an
offending layer (C, [τ1, τ2)) by two layers (C, [τ1, τ̂)) and (C, [τ̂ , τ2)) for a suitably
chosen τ̂ ∈ [τ1, τ2).

Mapping non-lonely layers ofL to layers ofL′: Every non-lonely layer
 = (C, [τ1, τ2))
must contain a terminal t ∈ C such that t /∈ g, that was active in the interval [τ1, τ2).
Since T−g ≤ TD, the terminal t must have been active in the interval [γτ1, γτ2) in the
execution E ′, and hence there is a unique layer
′ = (C ′, [γτ1, γτ2)) such that t ∈ C ′.
We thus map
 to
′. A layer
 may contain multiple active terminals outside g; in that
case, pick one of them arbitrarily.

The following two lemmas supply us with all the ammunition we will need to finish
our argument. In the next lemma, let V (T) denote the vertex set of the tree T. The
proofs are omitted due to lack of space.

Stochastic Steiner Trees Without a Root 1061

Lemma 2. The mapping from non-lonely layers of L to layers of L′ is one to one; that
is, distinct layers of L map to distinct layers of L′.

Lemma 3. Let
 = (C, I) ∈ L be a non-shared layer, such that V (T) ∩ C �= ∅. Then,
for its corrsponding layer
′ = (C ′, γI) we have that V (T) ∩ C �= ∅.

4.2 The Book Keeping

Let L and N denote the total thickness of lonely and non-lonely layers that intersect the
tree T. Note that we count every layer only once, irrespective of how many edges of T
it cuts. We can express the total length of the tree as

|T| = L+N + X, (4.6)

where X represents the “extra” contributions of layers that intersect T more than once.
(If a lonely layer intersects T in three edges, it is counted once in L and twice in X).

At any time instant τ , consider all the active clusters in the execution E that have
a non-empty intersection with the tree T. We claim that any such cluster C “carves
out” a connected portion of the tree T, that is, C ∩ T is a connected graph. Hence if
we construct a graph with a node for every cluster intersecting T and an edge between
every pair of clusters connected by a direct path along T, this graph will also be a tree.
The number of layers intersecting T is equal to the number of nodes in this graph; the
number of times each layer intersects T is equal to the degree of the corresponding
vertex in this graph. Since the average vertex degree in a tree is at most 2, the number
of intersections is at any time bounded by twice the number of layers intersecting T.
Integrating over the course of the execution E , we obtain that

L+N + X ≤ 2(L+N). (4.7)

A non-lonely layer
 is considered wasted if
 intersects T, but its image
′ does
not. According to Lemma 3, this happens only if T is fully contained inside
′. Let
W denote the total thickness of wasted layers. The total thickness of layers of L′
intersecting T is a lower bound on the length of T. Since the image of every non-
lonely layer
 that intersects T and is not wasted also intersects T, and because im-
ages of distinct layers do not overlap, we get the following lower bound on the length
of T.

γ(N −W) ≤ |T|. (4.8)

The final piece of our argument is the following claim: for every layer that is wasted,
there must be a lonely layer growing at the same time, and hence W ≤ L. To see this
claim, suppose that a non-lonely layer
 = (C, I) intersects T but is wasted—hence
for its inflated image
′ = (C ′, γI), we have V (T) ⊆ C ′. Since
 intersects T, there
must be a terminal t ∈ g such that t /∈ C. We now claim that during the interval I ,
the terminal t must have been a part of a lonely cluster. Indeed, suppose not; let t be
inside a non-lonely layer
1 = (C1, I) with some other active terminal t1 /∈ g. But
then, by Lemma 3, the inflated image
′1 = (C ′1, γI) of this layer
1 must contain some

1062 A. Gupta and M. Pál

vertex of T, and since V (T) ⊆ C ′, the layers
′ and
′1 have a nonempty intersection.
This is possible only if
′ and
′1 are the same inflated layer, which contradicts Lemma
2, as the clearly distinct layers
 and
1 would then map to the same layer
′ =
′1. Thus,

W ≤ L. (4.9)

Combining the inequalities (4.6–4.9), we obtain (γ − 2)|T| ≤ 4γL, thus proving
Theorem 4.

References

1. Ajit Agrawal, Philip Klein, and R. Ravi. When trees collide: an approximation algorithm
for the generalized steiner problem on networks. SIAM J. Comput., 24(3):440–456, 1995.
(Preliminary version in 23rd STOC, 1991).

2. E. M. L. Beale. On minimizing a convex function subject to linear inequalities. J.
Roy. Statist. Soc. Ser. B., 17:173–184; discussion, 194–203, 1955. (Symposium on linear
programming.).

3. Luca Becchetti, Jochen Könemann, Stefano Leonardi, and Martin Pál. Sharing the
cost more efficiently: Improved approximation for multicommodity rent-or-buy. In
Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms,
2005.

4. John R. Birge and François Louveaux. Introduction to stochastic programming. Springer
Series in Operations Research. Springer-Verlag, New York, 1997.

5. George B. Dantzig. Linear programming under uncertainty. Management Sci., 1:197–206,
1955.

6. Michel X. Goemans and David P. Williamson. A general approximation technique for con-
strained forest problems. SIAM J. Comput., 24(2):296–317, 1995. (Preliminary version in
5th SODA, 1994).

7. Anupam Gupta, Amit Kumar, Martin Pál, and Tim Roughgarden. Approximation via cost
sharing: A simple approximation algorithm for the multicommodity rent or buy problem.
In Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science,
pages 606–615, 2003.

8. Anupam Gupta, Martin Pál, R. Ravi, and Amitabh Sinha. Boosted sampling: Approximation
algorithms for stochastic optimization. In Proceedings of the 36th Annual ACM Symposium
on Theory of Computing, 2004.

9. Anupam Gupta, R. Ravi, and Amitabh Sinha. An edge in time saves nine: Lp rounding ap-
proximation algorithms. In Proceedings of the 45th Annual IEEE Symposium on Foundations
of Computer Science, 2004.

10. Ara Hayrapetyan, Chaitanya Swamy, and Éva Tardos. Network design for information net-
works. In ACM-SIAM Symposium on Discrete Algorithms, 2005.

11. Nicole Immorlica, David Karger, Maria Minkoff, and Vahab Mirrokni. On the costs and ben-
efits of procrastination: Approximation algorithms for stochastic combinatorial optimization
problems. In Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, 2004.

12. Peter Kall and Stein W. Wallace. Stochastic programming. Wiley-Interscience Series in
Systems and Optimization. John Wiley & Sons Ltd., Chichester, 1994.

13. David R. Karger and Maria Minkoff. Building steiner trees with incomplete global knowl-
edge. In Proceedings of the 41st Annual Symposium on Foundations of Computer Science,
pages 613–623, 2000.

Stochastic Steiner Trees Without a Root 1063

14. Jochen Könemann, Stefano Leonardi, and Guido Schäffer. A group-strategyproof mech-
anism for steiner forests. In Proceedings of the 16th Annual ACM-SIAM Symposium on
Discrete Algorithms, 2005.

15. Amit Kumar, Anupam Gupta, and Tim Roughgarden. A constant factor approximation al-
gorithm for the multicommodity rent-or-buy problem. In Proceedings of the 43rd Annual
Symposium on Foundations of Computer Science, 2002.

16. R. Ravi and Amitabh Sinha. Hedging uncertainty: Approximation algorithms for stochas-
tic optimization problems. In Proceedings of the 10th International Conference on Inte-
ger Programming and Combinatorial Optimization (IPCO), 2004. GSIA Working Paper
2003-E68.

17. R. Schultz, L. Stougie, and M. H. van der Vlerk. Two-stage stochastic integer programming:
a survey. Statist. Nederlandica, 50(3):404–416, 1996.

18. David Shmoys and Chaitanya Swamy. Stochastic optimization is (almost) as easy as deter-
ministic optimization. In Proceedings of the 45th Annual IEEE Symposium on Foundations
of Computer Science, 2004.

Approximation Algorithms for the Max-coloring
Problem�

Sriram V. Pemmaraju and Rajiv Raman

The University of Iowa, Iowa City, IA 52242, USA
{sriram, rraman}@cs.uiowa.edu

Abstract. Given a graph G = (V,E) and positive integral vertex
weights w : V → N, the max-coloring problem seeks to find a proper ver-
tex coloring of G whose color classes C1, C2, . . . , Ck, minimize∑k

i=1
maxv∈Ciw(v). The problem arises in scheduling conflicting jobs

in batches and in minimizing buffer size in dedicated memory managers.
In this paper we present three approximation algorithms and one

inapproximability result for the max-coloring problem. We show that if
for a class of graphs G, the classical problem of finding a proper vertex
coloring with fewest colors has a c-approximation, then for that class G
of graphs, max-coloring has a 4c-approximation algorithm. As a conse-
quence, we obtain a 4-approximation algorithm to solve max-coloring on
perfect graphs, and well-known subclasses such as chordal graphs, and
permutation graphs. We also obtain constant-factor algorithms for max-
coloring on classes of graphs such as circle graphs, circular arc graphs,
and unit disk graphs, which are not perfect, but do have a constant-
factor approximation for the usual coloring problem. As far as we know,
these are the first constant-factor algorithms for all of these classes of
graphs. For bipartite graphs we present an approximation algorithm and
a matching inapproximability result. Our approximation algorithm re-
turns a coloring whose weight is within 8

7
times the optimal. We then

show that for any ε > 0, it is impossible to approximate max-coloring
on bipartite graphs to within a factor of (8

7
− ε) unless P = NP . Thus

our approximation algorithm yields an optimum approximation factor.
Finally, we also present an exact sub-exponential algorithm and a PTAS
for max-coloring on trees.

1 Introduction

The max-coloring problem takes as input a vertex-weighted graph G = (V,E)
with weight function w : V → N. The problem requires that we find a proper
vertex coloring of G whose color classes C1,C2, . . . ,Ck, minimize the sum of the
weights of the heaviest vertices in the color classes, that is,

∑k
i=1 maxv∈Ci

w(v).
When all the weights are one, this problem reduces to the classical problem of

� This research is partially supported by the National Science Foundation Grant DMS-
0213305.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 1064–1075, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Approximation Algorithms for the Max-coloring Problem 1065

finding a proper vertex coloring of a graph using fewest possible colors. For any
color class C of G, we will use weight(C) to denote max{w(v) | v ∈ C}. The
weight of a coloring C1,C2, . . . ,Ck is then

∑k
i=1 weight(Ci).

The max-coloring problem arises in two distinct applications. In one applica-
tion the max-coloring problem models the problem of minimizing the total buffer
size needed for memory management in wireless protocol stacks like GPRS or 3G
[7] and in digital signal processing applications [2]. In general, programs that run
with stringent memory or timing constraints use a dedicated memory manager
that provides better performance than the general purpose memory management
of the operating system. The most commonly used memory manager design for
this purpose is the segregated buffer pool. The problem of minimizing the total
size of the buffer pool corresponds to the max-coloring problem.

A second application of max-coloring arises in the scheduling of jobs with
conflicts in a multiprocessor environment. In systems in which jobs require ex-
clusive access to certain resources, a fundamental problem is of scheduling jobs
onto processors such that jobs requiring access to the same resource are not
scheduled together. The problem of scheduling jobs in conflict to processors can
be modeled as a graph coloring problem. When jobs have different processing
times, this is modeled as a generalized coloring problem on vertex weighted
graphs. One such generalization that models the problem of scheduling conflict-
ing jobs in batches to minimize the makespan or the time to complete all the
jobs in the system corresponds to the max-coloring problem.

Our Results. Although graph coloring is hopelessly hard to approximate on gen-
eral graphs, the underlying conflict graphs that arise in applications have more
structure, and this structure can be exploited to obtain efficient exact or ap-
proximation algorithms for max-coloring. However, the max-coloring problem
is hard even on instances where the coloring problem can be solved in polyno-
mial time. In [7], the authors prove that max-coloring is NP-hard on interval
graphs, even though there is a simple greedy algorithm for the usual coloring
problem [1]. [7] also presents a 2-approximation for the max-coloring problem
on interval graphs. For other classes of graphs, very little seems to be known
about how to solve the max-coloring problem efficiently, either exactly or ap-
proximately. In this paper we present three approximation algorithms and one
inapproximability result. We show that for any hereditary1 class of graphs G, if
the usual vertex coloring problem has a c-approximation, then max-coloring has
a 4c-approximation on G. One implication is that there is a 4-approximation al-
gorithm to solve max-coloring on perfect graphs. For bipartite graphs we present
an approximation algorithm and a matching inapproximability result. Our ap-
proximation algorithm always returns a coloring whose weight is within 8

7 times
the optimal and following this we show that for any ε > 0, it is impossible to
approximate max-coloring on bipartite graphs to with a factor of (8

7 − ε) unless

1 A class G of graphs is hereditary, if for any G ∈ G, every induced subgraph of G is
also in G.

1066 S.V. Pemmaraju and R. Raman

P = NP . Thus our approximation algorithm yields an optimum approximation
factor. Finally, we also present an exact sub-exponential algorithm and a PTAS
for trees. The max-coloring problem on trees was also studied by Guan and Zhu
[3] where the authors present a polynomial time algorithm that finds an optimal
max-coloring of a given tree, that uses exactly r colors for a fixed constant r.

2 Max-coloring Trees

The max-coloring problem has turned out to be surprisingly difficult even for
trees. Though we believe that the problem can be solved in polynomial time,
the two best algorithms we have are (i) a sub-exponential exact algorithm and
(ii) a PTAS. We present these in this section. Our first observation is on the
distribution of weights of color classes in an optimal max-coloring of bipartite
graphs.

Lemma 1. Let G be a bipartite graph. Let {C1,C2, . . . ,Ck} be an optimal max-
coloring of G with wi = weight(Ci) and w1 ≥ w2 ≥ · · · ≥ wk. Then, we have
that wi ≥

∑k
j=i+1 wj, i = 1, · · · , k − 1.

Proof. If wi <
∑k

j=i+1 wj , then the subgraph induced by vertices in ∪k
j=iCj can

be colored with two colors with weight at most 2wi. This coloring has weight
less than the weight of {C1,C2, . . . ,Ck}, a contradiction. ��

Corollary 1. Let G be a bipartite graph. Let {C1, · · · ,Ck} be an optimal max-
coloring of G with wi = weight(Ci) and w1 ≥ w2 ≥ · · · ≥ wk, we have that
wi

2 ≥ wi+2, for i = 1, · · · , k − 2, and hence, w1 ≥ 2�(i−1)/2� · wi.

Since the weights of the color classes decrease rapidly, we can expect that the
max-color number of a tree may not be too high. Let χmc(G) denote the max-
color number of a graph G, the minimum number of colors required in a minimum
cost max-coloring. We now state three upper bounds on χmc.

Lemma 2. Let T be an n-vertex tree with maximum degree Δ. Let W denote the
ratio of the weight of the heaviest vertex to the weight of the least heavy vertex.
Then, (i) χmc(T) ≤ Δ + 1, (ii) χmc(T) ≤
log2 n� + 1, and (iii) χmc(T) ≤

log2 W �+ 1.

Proof. Let k = χmc(T) and let {C1, · · · ,Ck} be the color classes in an optimal
max-coloring of T . Let wi = weight(Ci) and without loss of generality assume
that w1 ≥ w2 ≥ · · · ≥ wk.

(i) Suppose χmc(T) > Δ+ 1. For each vertex v in Ck, we can find a color class
Ci, i < k such that v is not adjacent to any vertex in Ci. We can thus move
each vertex in Ck to a lower color class thus decreasing the coloring weight, a
contradiction. Note that this upper bound holds in general for any graph G.
(ii) For each i > 1, we can assume without loss of generality that every vertex
v ∈ Ci has a neighbor in Cj , for every j < i.

Approximation Algorithms for the Max-coloring Problem 1067

For each vertex v ∈ C1, let T (v) denote the rooted tree with one vertex,
namely v. For each v ∈ Ci, i > 1, define T (v) as the tree rooted at v, such that
(i) the children of v in T (v) are exactly the neighbors of v in T belonging to color
classes C1,C2, . . . ,Ci−1, and (ii) for each child u of v, the subtree of T (v) rooted
at u is simply T (u). For each i, 1 ≤ i ≤ k, let Si = min{|T (v)| | v ∈ Ci}. In other
words, Si is the size of a smallest tree T (v) rooted at a vertex v in Ci. Then,

S1 = 1

Si ≥
i−1∑
j=1

Sj + 1, for each i > 1

This implies that Si ≥ 2i−1, 1 ≤ i ≤ k. Using the fact that Sk ≤ n, we get
χmc = k ≤ �log2 n�+ 1.
(iii) Let
 = min{t ∈ N | for all v ∈ V (T), w(v) ≥ w1/2t}. Therefore,
 =

log2 W �. Recall that W is the ratio of the weights of the heaviest vertex to the
lightest vertex. Consider the collection of disjoint intervals I = {I0, I1, . . . , I
−1},
where Ii = [w1

2i+1 , w1
2i), for i = 1, . . . ,
 − 1 and let I0 = [w1

2 , w1]. Because of the
choice of
, for each vertex v ∈ V (T), w(v) belongs to exactly one interval Ij .
Let Vj = {v ∈ V (T) | w(v) ∈ Ij}, j = 0, 1, . . . ,
 − 1. We say that a vertex
v contributes to a color class Ci if v ∈ Ci, and w(v) = max{w(u) | u ∈ Ci}.
The contribution of an interval Ij is the maximum number of vertices in Vj that
contribute to distinct color classes.

Corollary 1 tells us that wi ≥ 2 · wi+2 for i = 1, · · · k − 2. This immediately
implies that no interval Ij , j = 1, 2, . . . ,
 − 1 has a contribution of more than
two. Now suppose that intervals Ii1 , Ii2 , . . . , Iit

, 0 ≤ i1 < i2 < · · · < it ≤
 − 1,
is the sequence of all intervals in I, each of whose contribution is two. We now
claim that for any pair of consecutive intervals Ip, p = ij and Iq, q = ij+1,
where j < t, there is an interval in {Ip+1, Ip+2, . . . , Iq−1} with contribution zero.
If we can show this claim, then we can charge the “extra” contribution of each
Iij

to an interval between Iij
and Iij+1 , whose contribution is zero. Since there

are
 intervals and since the contribution of Iit
is at most two, there is a total

contribution of at most
+1, implying that there are at most
+1 color classes.
We prove the above claim by contradiction, assuming that the contribution

of every interval in {Ip+1, Ip+2, . . . , Iq−1} is one. Let {xp, xp+1, . . . , xq}∪{yp, yq}
be vertices such that (i) for each j = p, p + 1, . . . , q, xj ∈ Vj and xj contributes
to some color class and (ii) for each j ∈ {p, q}, yj ∈ Vj and xj and yj contribute
to distinct color classes. Since xj ∈ Vj , w(xj) ≥ w1

2j+1 , j = p, p + 1, . . . , q. Also,
since yq ∈ Vq, w(yq) ≥ w1

2q+1 . Therefore,
q∑

j=p

w(xj) + w(yq) ≥
q∑

j=p

w1

2j+1
+

w1

2q+1

= w1
2q−p+1 − 1

2q+1
+

w1

2q+1

=
w1

2p
> w(yp)

This contradicts Lemma 1 and proves the claim. ��

1068 S.V. Pemmaraju and R. Raman

There are simple examples that show that the bounds in Lemma 2 are all
tight [6].

Since the number of colors are at most
log n� + 1, this immediately gives
a simple sub-exponential time algorithm. Try all
log n� + 1 possible colors for
each vertex, and return a feasible coloring of minimum weight. This algorithm
runs in O(nlog n+1) time.

Now we show that if the given tree has a constant number of distinct vertex
weights, we can find an optimal max-coloring in polynomial time. We deal with
the case of constant number of distinct weights via the solution to a problem
called FEASIBLE k-COLORING.
FEASIBLE k-COLORING

INPUT: A tree T with weight function w : V → N, and a positive integer
sequence (W1,W2, · · · ,Wk) of positive integers, satisfying W1 ≥W2 ≥ · · · ≥Wk.
OUTPUT: Either a coloring of the tree into color classes A1, · · · , Ak, such that
for all v ∈ Ai, w(v) ≤ Wi or if such a coloring does not exist, a report that no
such feasible coloring exists.

There is a simple dynamic programming algorithm for solving FEASIBLE
k-COLORING on trees in O(nk) time [6].

The main idea underlying our PTAS is the reduction of the number of distinct
weights of the vertices down to a constant. We then pick candidates for the
weights of the color classes and for each such choice, using the algorithm for
FEASIBLE k-COLORING, we test if there is a legal coloring of the tree with the
chosen weights for the color classes.

We are given a tree T , with weight function w : V → N and an ε > 0.
Let c > 0 be an integer such that (2 log c + 3)/c ≤ ε, and let α = (W − 1)/c
where W is the maximum weight of any vertex. Let I1, I2, · · · , Ic be a partition
of the range [1,W), where Ii = [1 + (i − 1)α, 1 + i · α), 1 ≤ i ≤ c. Let T ′

be a tree that is identical to T , except in its vertex weights. The tree T ′ has
vertex weights w′ : V → N defined by the rule: for any v ∈ V , if w(v) ∈ Ij
then w′(v) = 1 + (j − 1) · α and if w(v) = W , then w′(v) = W . In other words,
except for vertices with maximum weight W , all other vertices have their weights
“rounded” down. As a result T ′ has c+1 distinct vertex weights. Now let OPT ′

denote the weight of an optimal max-coloring of T ′ and let C′ = C ′1,C
′
2, . . . ,C

′
k

be the color classes corresponding to OPT ′. Since the weights of vertices have
fallen in going from T to T ′, clearly OPT ′ ≤ OPT . If we use the coloring C′ for
T , we get a coloring whose weight is at most OPT ′+kα. Substituting (W −1)/c
for α and noting that W ≤ OPT ′, we obtain that weight of C′ used as a coloring
for T ′ is at most (1+ k

c)OPT ′ We now show that given the distribution of vertex
weights of T ′, k = O(log c). If k = 2 we are done, so assume that k ≥ 3. To
see this first observe that the weights of last three color classes C ′k, C ′k−1, and
C ′k−2 cannot all be identical, by Lemma 1. Also, observe that the possible vertex
weights of T ′ are 1, 1 + α, 1 + 2α, Therefore, weight(C ′k−2) ≥ 1 + α. From
Corollary 1, we obtain

1 + α ≤ weight(C ′k−2) ≤
W

2�(k−3)/2� .

Approximation Algorithms for the Max-coloring Problem 1069

Solving this for k yields k ≤ 2 log2(c) + 3. Therefore, by our choice of c, we have

k

c
≤ 2 log2(c) + 3

c
≤ ε.

Thus (1 + ε)OPT ′ is an upper bound on the weight of C′ used as a coloring for
T . Since OPT ′ ≤ OPT , we see that the weight of C ′ used as a coloring for T is
at most (1 + ε)OPT .

To construct OPT ′ in polynomial time, for each k = 1, . . . , 2
log2 c�+ 3, we
generate all O(ck) possible sequences of weights and call algorithm FEASIBLE
k-COLORING for each subsequence and pick the coloring with the minimum
weight. This gives OPT ′. Each solution to FEASIBLE k-COLORING takes O(nk)
time, and we have O(ck) sequences, for k = 1, . . . , 2
log2 c� + 3. Using the fact
that (2 log2 c+3)/c ≤ ε, a little bit of algebra yields a running time that is linear
in n and exponential in 1/ε.

3 Max-coloring Bipartite Graphs

This section presents an 8
7 -approximation algorithm for the max-coloring prob-

lem on bipartite graphs, followed by a hardness of approximation result that
shows that for any ε > 0, there is no (8

7 − ε)-approximation algorithm unless
P = NP . Thus our approximation algorithm produces an optimal approxima-
tion ratio.

One feature of our approximation algorithm is that it uses at most 4 colors,
even though though an optimal max-coloring of an n-vertex bipartite graph may
need a Ω(n) colors [6]. Our PTAS for the max-coloring problem on trees relied
on the fact that the FEASIBLE k-COLORING problem on trees can be solved in
polynomial time for any k. However, FEASIBLE k-COLORING is NP-complete for
bipartite graphs for k ≥ 3 [5]. This has forced us to use a different approach for
bipartite graphs. Another difference between max-coloring on trees and max-
coloring on bipartite graphs is that in contrast to the O(log n) upper bound on
the number of colors used by an optimal max-coloring for an n-vertex tree, there
are simple examples of n-vertex bipartite graphs G with χmc(G) ≥ n/2 [6].

Our (8
7 − ε)-hardness result for max-coloring bipartite graphs is via a gap

introducing reduction from the PRE-COLORING EXTENSION problem [5].

3.1 An 8
7
-Approximation Algorithm

First note that since bipartite graphs are 2-colorable, Lemma 1 holds and hence
if an optimal max-coloring of a bipartite graph uses a large number of colors,
the contribution of all but the first few color classes must be quite small. We
can use this to our advantage and develop an algorithm that tries to find a
good approximation to the weights of the first few color classes. We run three
algorithms, A2, A3, and A4, that use 2, 3 and 4 colors respectively. The color
classes produced by algorithm Ai, 2 ≤ i ≤ 4, are denoted {Ai

1, A
i
2, · · ·}, and

the weights of the corresponding color classes are denoted {ai
1, a

i
2, · · ·}. We start

with a description of algorithm A2.

1070 S.V. Pemmaraju and R. Raman

Algorithm A2(G, w)
1. For each connected component Gi of G do
2. Color Gi with colors 1 and 2, such that a vertex

with maximum weight is colored 1.

The fact that A2 is a 2-approximation immediately follows from the fact
that weight(A2) ≤ 2w1, and w1 ≤ OPT . We encode this result in the following
lemma.

Lemma 3. weight(A2) ≤ 2w1

In an optimum coloring, the weight of the first color class, w1 is fixed. By using
more colors, OPT may gain an advantage because it can then push heavy vertices
into lower color classes. We now introduce algorithm A3 which constructs a 3-
coloring of G such that the weight of the second color class is minimized.

Algorithm A3(G, w)
1. Let S be a maximal independent set of G picked

by examining vertices in non-increasing weight order.
2. Use Algorithm A2 to color G \ S.
3. Rename colors 1 and 2, as colors 2 and 3 respectively.
4. Color S with color 1.

Lemma 4. weight(A3) ≤ w1 + 2w2.

Proof. In algorithm A3, a3
1 = w1. Since S is a maximal independent set selected

in non-increasing weight order, the weight of the second color class of OPT, w2

cannot be smaller than the weight of any vertex in G \S. Hence, w2 ≥ a3
2. Since

a3
3 ≤ a3

2, it follows that weight(A3) = a3
1+a3

2+a3
3 ≤ w1+w2+w2 = w1+2w2. ��

The greedy strategy employed by algorithm A3 in selecting the first color class
causes a3

2 to be no larger than w2. However, it might cause a3
3 to be significantly

larger than w3. We rectify this situation by introducing algorithm A4 that uses
four colors to color G.

Algorithm A4(G, w)
1. For all w∗ such that there is a u ∈ V , with w(u) = w∗ do

2. Partition the vertices of G into two parts
P1 = {v ∈ V | w(v) > w∗}, and
P2 = {v ∈ V | w(v) ≤ w∗}.

3. Use algorithm A2 to color P2.
4. Rename colors 1 and 2 as 3 and 4 respectively.
5. Use algorithm A2 to color P1.

6. Return the coloring with minimum weight, over all choices of w∗.

Approximation Algorithms for the Max-coloring Problem 1071

Lemma 5. weight(A4) < w1 + w2 + 2w3

Proof. Since the weight of every vertex in G is used for the threshold w∗, in
some iteration of A4, w∗ = w3. At this point, A4 partitions the vertex set such
that P1 = {v | w(v) > w3} and P2 = {v | w(v) ≤ w3}. In this iteration, A4

colors P1 with weight at most w1 + w2, and colors P2 with weight at most 2w3.
Since A4 returns the coloring with minimum weight, over all choices of w∗, it
follows that weight(A4) ≤ w1 + w2 + 2w3. ��

The final algorithm, which we call Bipartite Max-Color runs A2, A3, A4, and
returns the minimum weight coloring.

Theorem 1. Algorithm Bipartite Max-Color is a 8
7 -approximation for the

max-coloring problem on bipartite graphs.

Proof. Let w(B) denote the weight of the coloring produced by algorithm
Bipartite Max-Color. From Lemmas 3, 4, and 5, we know that w(B) ≤ 2w1,
w(B) ≤ w1 + 2w2, w(B) ≤ w1 + w2 + 2w3. Now, multiplying the first inequality
by 1, the second inequality by 2, the third inequality by 4 and adding, we get

7 · w(B) ≤ 8 · (w1 + w2 + w3) ≤ 8 ·OPT ��

3.2 An (8
7

− ε)-Hardness Reduction

We now show that the 8/7-approximation produced by the above algorithm is
optimal. We do this by showing a matching hardness result via a reduction from
the PRE-COLORING EXTENSION problem on bipartite graphs. The PRE-COLORING
EXTENSION problem for general graphs is defined below.
PRE-COLORING EXTENSION

INPUT: A graph G = (V,E), with r ≥ χ(G), a subset P ⊆ V , and a proper
assignment c : P → {1, · · · , r} of colors to vertices in P .
QUESTION: Is there an extension of the proper vertex coloring of P to a
proper vertex coloring of G, using colors from {1, · · · , r}?
In [5], Kratochvil proved that PRE-COLORING EXTENSION is NP-complete for pla-
nar bipartite graphs even when the color bound r = 3. We now show a simple
gap introducing reduction from PRE-COLORING EXTENSION on bipartite graphs
with r = 3 to max-coloring on bipartite graphs.

Theorem 2. For any ε > 0, there is no (8/7 − ε)-approximation algorithm for
max-coloring on bipartite graphs, unless P=NP.

Proof. The reduction is from PRE-COLORING EXTENSION. Let the given instance
of PRE-COLORING EXTENSION consist of a bipartite graph G = (V1, V2, E), a
subset P ⊆ V1∪V2, and a proper assignment c : P → {1, 2, 3} of colors to vertices
in P . We transform G into a vertex-weighted bipartite graph G′ = (V ′

1 , V ′
2 , E′)

as follows. Add four new vertices, x1, x2, y1, and y2 to G. Let X = {x1, x2},

1072 S.V. Pemmaraju and R. Raman

Y = {y1, y2}, V ′
1 = V1 ∪ X, and V ′

2 = V2 ∪ Y . To each vertex v ∈ P , assign
a weight w(v) using the rule: w(v) = 23−i if c(v) = i, for each i ∈ {1, 2, 3}. If
v ∈ (V1∪V2)−P , set w(v) = 1. The new vertices are assigned weights as follows:
w(x1) = w(y1) = 4 and w(x2) = w(y2) = 2. The edge set E′ of G′ contains some
additional edges between the new vertices and the old.

E′ = E ∪ {{xi, y}|y ∈ P ∩ V ′
2 , and w(y) < w(xi)} ∪

{{yi, x}|x ∈ P ∩ V ′
1 and w(x) < w(yi)} ∪ {{x1, y2}} ∪ {{x2, y1}}.

This completes the description of G′.
Now suppose that the coloring of P can be extended to a proper 3-coloring

c : V1 ∪ V2 → {1, 2, 3} of G. Start with the coloring c and extend this to a
proper vertex coloring of G′ by assigning colors to the new vertices as follows:
c(x1) = c(y1) = 1 and c(x2) = x(y2) = 2. Observe that this indeed produces a
proper coloring of G′. To see that the weight of this coloring on G′ has weight
at most 7, note that the weight of the coloring in G′ restricted to the vertices of
G is at most 7, and since the coloring above of the vertices {x1, x2, y1, y2} does
not increase this cost, we are done.

Now suppose that G does not have a pre-coloring extension. We show by
contradiction that in this case G′ does not have a proper vertex coloring of
weight less than 8. So suppose that there is a proper vertex coloring c′ : V ′

1∪V ′
2 →

{1, 2, . . .} of weight less than 8. Without loss of generality, assume that in this
coloring, the color classes are labeled in non-increasing order of their weight.
Therefore, all vertices of weight 4 are in color class 1. This includes vertices x1

and y1 and this forces all vertices of weight 2 to be excluded from color class
1. Since color class 1 has weight 4, to prevent the total weight of the coloring
from reaching 8, all vertices of weight 2 have to be included in color class 2. This
includes vertices x2 and y2, and so this color class is also non-empty. Therefore
the total weight of color classes 1 and 2 is 6. Since c′ is a coloring of G′ of weight
less than 8, it must be the case that color class k, for each k ≥ 4, is empty. This
means that c′ is a 3-coloring of G′. Furthermore, it is a 3-coloring of G that
respects the pre-coloring of P . This contradicts the assumption that G has no
pre-coloring extension and therefore we have that any proper vertex coloring of
G′ has weight at least 8.

If for some ε > 0, there were an (8
7 − ε)-approximation algorithm for max-

coloring bipartite graphs, then using the above polynomial time transformation
from G to G′, we could distinguish between positive and negative instances of
PRE-COLORING EXTENSION on bipartite graphs with r = 3. This is not possible
unless P = NP . ��

4 Max-coloring on Arbitrary Graphs

Let G be a hereditary class of graphs for which the minimum vertex coloring
problem has a c-approximation. In other words, there is a polynomial time algo-
rithm A that takes a graph G ∈ G as input and returns a proper vertex coloring

Approximation Algorithms for the Max-coloring Problem 1073

of G using at most c·χ(G) colors. In this section, we present an 4c-approximation
algorithm, that we call GeomFit, for the max-coloring problem on the class of
graphs G. The algorithm is inspired by the algorithm of Halldórsson, et. al. [4] for
sum-coloring interval and comparability graphs. GeomFit will repeatedly use A
as a black box to obtain “good” vertex colorings of portions of the input graph.
For ease of exposition, below we describe GeomFit assuming that c = 1.

GeomFit(G, w)
1. Let i = 0, li = 0
2. While G �= ∅ do

3. Set ci = 2i

4. Let Gi = mkc(G, ci)
5. Color Gi optimally using colors li + 1, · · · , li + ci

6. Set li+1 = li + ci, i = i + 1.
7. Set G = G \Gi.

8. End While

A round of the algorithm corresponds to an iteration of the while loop. Sup-
pose that each round is labeled with the value of i at the beginning of that round.
For some integer t > 0, suppose that the algorithm executes rounds 0, 1, · · · , t−1,
after which the graph is entirely colored. In each round i, 0 ≤ i < t, the algorithm
calls the subroutine mkc(G, ci), that returns a maximal ci-colorable subgraph of
G, obtained by examining vertices in non-increasing order of weight. Here G is
the subgraph of the input graph induced by the not yet colored vertices and
ci = 2i. When called, the subroutine mkc(G, ci) starts with an empty set S and
processes each vertex v of G, in non-increasing order of weight. The subroutine
tests if G[S ∪ {v}] is ci-colorable or not and if it is, it adds v to S, and proceeds
to the next vertex in G. To perform this test, mkc(G, ci) calls the algorithm A
that returns a minimum vertex coloring of G.

Lemma 6. If GeomFit uses t rounds to color G, then χ(G) > ct−2.

Proof. In round t− 2, the algorithm picks a maximal ct−2 colorable subgraph of
G. If G were ct−2-colorable, then all of it would have been picked up in round
t − 2 or earlier. Since we used one more round to color G, it must mean that
χ(G) > ct−2. ��

Without loss of generality, suppose that OPT uses numbers 1, 2, . . . for colors
such that color classes are numbered in non-increasing order of weight. Now
observe that color classes created in round i by GeomFit are all heavier than color
classes created in round i + 1. Without loss of generality, assume that the color
classes created in each round of GeomFit are numbered in non-increasing order
of weight. Let colorOPT (v) denote the color assigned to vertex v in OPT , Now
using the color classes of OPT we define a pairwise disjoint collection of vertex
subsets of G, {V0, · · · , Vt−1}, where Vi = {v ∈ G|ci−1 < colorOPT (v) ≤ ci},
i = 0, · · · , t− 1. For the definition to make sense, we assume that c−1 = 0. Since
Vt−1 contains vertices colored ct−2 + 1, ct−2 + 2, . . . , ct−1 by OPT , from Lemma

1074 S.V. Pemmaraju and R. Raman

6, it follows that Vt−1 �= ∅. Now we state and prove a critical inequality that
follows from the greedy choice of a subgraph in each round of GeomFit. Let Wi

denote the weight of color class ci−1 + 1 in OPT . Note that color class ci−1 + 1
is a subset of Vi and by our labeling convention, it is a heaviest color class in Vi.
Similarly, let Ri denote the weight of color class li +1 created by GeomFit. Note
that this is a heaviest color class created in round i be GeomFit. Also note that
li =

∑i−1
j=0 cj = ci − 1 and therefore color class li + 1 is simply color class ci.

Lemma 7. Ri ≤Wi, for i = 0, 1, · · · , t− 1.

Proof. Since R0 and W0 are equal to the maximum weight vertex in G, the
lemma holds for i = 0. By the greedy choice employed in selecting G0, we ensure
that for any other independent set S of G, the maximum weight of a vertex in
G \ S is at least as large as the maximum weight vertex in G \G0. This ensures
that R1 ≤W1. By the same reasoning, since in round i− 1, we greedily select a
maximal ci−1 colorable subgraph of OPT , and V1∪V2∪· · ·Vi−1 is ci−1 colorable,
it follows that Ri ≤ Wi. ��

Theorem 3. Let G be a hereditary class of graphs on which the minimum vertex
coloring problem can be solved in polynomial time. Algorithm GeomFit is a 4-
approximation algorithm for the max-coloring problem on G.

Proof. The weight of the max-coloring produced by GeomFit is bounded above by

weight(GeomFit) ≤
t−1∑
i=0

ci ·Ri ≤
t−1∑
i=0

ci ·Wi

The first inequality follows from the fact that in each round i, GeomFit uses at
most ci colors and a heaviest color class in round i has weight Ri. The second
inequality follows from Lemma 7.

We obtain a lower bound on OPT as follows. The set V0 contains one color
class and this has weight W0. Now consider a set Vi, 1 ≤ i ≤ t − 2. It contains
one color class of weight Wi and the remaining color classes have weight at
least Wi+1. Recall that Vi has color classes labeled ci−1 + 1, ci−1 + 2, . . . , ci and
therefore weight(Vi) ≥ Wi + (ci−1 − 1)Wi+1.

OPT ≥
t−1∑
i=0

weight(Vi) ≥ W0 +
t−2∑
i=1

(Wi + (ci−1 − 1)Wi+1) + Wt−1

= W0 + W1 +
t−3∑
i=0

ciWi+2.

Therefore, 4 · OPT ≥ 4W0 + 4W1 +
∑t−3

i=0 4ciWi+2 = 4W0 + 4W1 +
∑t−1

i=2 ciWi.
This lower bound on 4·OPT is larger than the upper bound on weight(GeomFit)
above. Therefore, weight(GeomFit) ≤ 4 ·OPT . ��

Approximation Algorithms for the Max-coloring Problem 1075

Now suppose that G is a heriditary class of graphs that has a c-approximation
algorithm A for the minimum vertex coloring problem. A 4c-approximation algo-
rithm for max-coloring on graphs in G is obtained by modifying GeomFit slightly.
In Step (4), the algorithm computes a maximal �c · ci�-colorable subgraph. Cor-
respondingly, in Step (5), Gi is colored using colors li + 1, · · · , li + �c · ci�. The
analysis of this modified GeomFit proceeds in a manner similar to the c = 1 case.
For details, see [6].

Theorem 4. Let G be a hereditary class of graphs on which the minimum vertex
coloring problem has a c-approximation algorithm. Algorithm GeomFit is a 4c-
approximation algorithm for the max-coloring problem on G.

The choice of ci = 2i in GeomFit gave us an approximation factor of 4c. This
approximation factor can be improved to 3.5c by running GeomFit twice, once by
setting ci = 2i, and once by setting ci = �1.5×2i� and returning the coloring with
smaller weight. More generally, setting ci = �αqi�, where α is chosen uniformly
at random from a certain range and q is an appropriately chosen constant, may
yield a furthur improvement in the approximation ratio.

Acknowledgments. We would like to thank the anonymous referees for sug-
gestions that led to a simplified proof of Theorem 1, and also for pointing out
the work done in [3].

References

1. M.C. Golumbic. Algorithmic graph theory and perfect graphs. Academic Press, NY,
1980.

2. R. Govindarajan and S. Rengarajan. Buffer allocation in regular dataflow networks:
An approach based on coloring circular-arc graphs. In Proceedings of the 2nd In-
ternational Conference on High Performance Computing, 1996.

3. D.J. Guan and Xuding Zhu. A coloring problem for weighted graphs. Information
Processing Letters, 61:77–81, 1997.

4. Magnús M. Halldórsson, Guy Kortsarz, and Hadas Shachnai. Sum coloring interval
and k-claw free graphs with application to scheduling dependent jobs. Algorithmica,
37(3):187–209, 2003.

5. J. Kratochvil. Precoloring extensions with a fixed color bound. Acta Mathematica
Universitatsis Comenianae, 62:139–153, 1993.

6. S. V. Pemmaraju and R. Raman. Approximation algorithms for the max-coloring
problem. http://www.cs.uiowa.edu/∼sriram/papers/tbPerfectFull.ps.

7. S.V. Pemmaraju, R. Raman, and K. Varadarajan. Buffer minimization using max-
coloring. In Proceedings of The ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 562–571, 2004.

Tight Lower Bounds for Query Processing on
Streaming and External Memory Data

Martin Grohe1, Christoph Koch2, and Nicole Schweikardt1

1 Institut für Informatik, Humboldt-Universität Berlin, Germany
{grohe, schweika}@informatik.hu-berlin.de

2 Database Group, Universität des Saarlandes, Saarbrücken, Germany
koch@cs.uni-sb.de

Abstract. We study a clean machine model for external memory and
stream processing. We show that the number of scans of the external data
induces a strict hierarchy (as long as work space is sufficiently small, e.g.,
polylogarithmic in the size of the input). We also show that neither joins
nor sorting are feasible if the product of the number r(n) of scans of
the external memory and the size s(n) of the internal memory buffers is
sufficiently small, e.g., of size o(5

√
n). We also establish tight bounds for

the complexity of XPath evaluation and filtering.

1 Introduction

It is generally assumed that databases have to reside in external, inexpensive stor-
age because of their sheer size. Current technology for external storage systems
(disks and tapes) presents us with a reality that performance-wise, a small num-
ber of sequential scans of the data is strictly preferable over random data accesses.
Indeed, the combined latencies and access times of moving to a certain position in
external storage are by orders of magnitude greater than actually reading a small
amount of data once the read head has been placed on its starting position.

Database engines rely on main memory buffers for assuring acceptable per-
formance. These are usually small compared to the size of the externally stored
data. Database technology – in particular query processing technology – has de-
veloped around this notion of memory hierarchies with layers of greatly varying
sizes and access times. There has been a wealth of research on query process-
ing and optimization along these lines (cf. e.g. [27, 14, 32, 22]). It seems that the
current technologies scale up to current user expectations, but on closer investi-
gation it may appear that our theoretical understanding of the problems involved
– and of optimal algorithms for these problems – is not quite as developed.

Recently, data stream processing has become an object of study by the data
management community (e.g. [15]) but from the viewpoint of database theory,
this is, in fact, a special case of the query processing problem on data in external
storage where we are limited to a single scan of the input data.

In summary, it appears that there are a variety of data management and query
processing problems in which a comparably small but efficiently accessible main
memory buffer is available and where accessing external data is costly and is best
performed by sequential read/write scans. This calls for an appropriate formal

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 1076–1088, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Tight Lower Bounds for Query Processing 1077

model that captures the essence of external memory and stream processing. In
this paper, we study such a model, which employs a Turing machine with one
external memory tape (external tape for short) and a number internal memory
tapes (internal tapes for short). The external tape initially holds the input; the
internal tapes correspond to the main memory buffers of a database management
system and are thus usually small compared to the input.

As computational resources for inputs of size n, we study the space s(n) avail-
able on the internal tapes and the number r(n) of scans of (or, random accesses
to) the external tape, and we write ST(r, s) to denote the class of all problems
solvable by (r, s)-bounded Turing machines, i.e., Turing machines which comply
to the resource bounds r(n) and s(n) on inputs of size n.

Formally, we model the number of scans, respectively the number of random
accesses, by the number of reversals of the Turing machine’s read/write head on
the external tape. The number of reversals of the read/write head on the internal
tapes remains unbounded. The reversals done by a read/write head are a clean
and fundamental notion [8], but of course real external storage technology based
on disks does not allow to reverse their direction of rotation. On the other hand,
we can of course simulate k forward scans by 2k reversals in our machine model
— and allowing for forward as well as backward scans makes our lower bound
results even stronger.

As we allow the external tape to be both read and written to, the external
tape can be viewed, for example, as modeling a hard disk. By closely watching
reversals of the external tape head, anything close to random I/O will result
in a very considerable number of reversals, while a full sequential scan of the
external data can be effected cheaply. We will obtain strong lower bounds in
this paper that show that even if the external tape (whose size we do not put a
bound on) may be written to and re-read, certain bounds cannot be improved
upon. For our matching upper bounds, we will usually not write to the external
tape. Whenever one of our results requires writing to the external tape, we will
explicitly indicate this.

The model is similar in spirit to the frameworks used in [18, 19], but differs
from the previously considered reversal complexity framework [8]. Reversal com-
plexity is based on Turing machines with a single read/write tape and the overall
number of reversals of the read/write head the main computational resource. In
our notion, only the number of reversals on the external tape is bounded, while
reversals on the internal tapes are free; however, the space on the internal tapes
is considered to be a limited resource.1

1 The justification for this assumption is simply that accessing data on disks is cur-
rently about five to six orders of magnitude slower than accessing main memory.
For that reason, processor cycles and main memory access times are often neglected
when estimating query cost in relational query optimizers, where cost measures are
often exclusively based on the amount of expected page I/O as well as disk latency
and access times. Moreover, by taking buffer space rather than running time as a
parameter, we obtain more robust complexity classes that rely less on details of the
machine model (see also [31]).

1078 M. Grohe, C. Koch, and N. Schweikardt

Apart from formalizing the ST(r, s) model, we study its properties and locate
a number of data management problems in the hierarchy of ST(·, ·) classes.
Our technical contributions are as follows:

• We prove a reduction lemma (Lemma 4.1) which allows easy lower bound
proofs for certain problems.

• We prove a hierarchy (Corollary 4.11 and Theorem 4.10), stating for each
fixed number k that k +1 scans of the external memory tape are strictly more
powerful than k scans of the external memory tape.

• We consider machines where the product of the number of scans of the external
memory tape, r(n), and internal memory tape size, s(n), is of size o

(
n

log n

)
,

where n is the input size, and show that joins cannot be computed by (r, s)-
bounded Turing machines (cf., Lemma 4.4).

• We show that the sorting problem cannot be solved with (o(5
√

n), O(5
√

n))-
bounded Turing machines that are not allowed to write intermediate results
to the external memory tape (cf., Corollary 4.9).

• We show (cf., Theorem 4.5) that for some XQuery queries, filtering is impos-
sible for machines with r(T) · s(T) ∈ o

(
n

log n

)
, where n is the size of the input

XML document T .
• We show (cf., Corollary 5.5) that for some Core XPath [12] queries, filtering is

impossible for machines with r(T) · s(T) ∈ o
(
d
)
, where d denotes the depth of

the input XML document T . Furthermore, we show that the lower bound on
Core XPath is tight in that we give an algorithm that solves the Core XPath
filtering problem with a single scan of the external data (zero reversals) and
O(d) buffer space.

The primary technical machinery that we use for obtaining lower bounds
is that of communication complexity (cf. [21]). Techniques from communication
complexity have been used previously to study queries on streams [4, 6, 2, 3, 5, 23,
24, 18]. The work reported on in [4] addresses the problem of determining whether
a given relational query can be evaluated scalably on a data stream or not at
all. In comparison, we ask for tight bounds on query evaluation problems, i.e.
we give algorithms for query evaluation that are in a sense worst-case optimal.
As we do, the authors of [6] study XPath evaluation; however, they focus on
instance data complexity while we study worst-case bounds. This allows us to
find strong and tight bounds for a greater variety of query evaluation problems.
Many of our results apply beyond stream processing in a narrow sense to a more
general framework of queries on data in external storage. Also, our worst-case
bounds apply for any evaluation algorithm possible, that is, our bounds are not
in terms of complexity classes closed under reductions that allow for nonlinear
expansions of the input (such as LOGSPACE) as is the case for the work on the
complexity of XPath in [12, 13, 28].

Lower bound results for a machine model with multiple external memory
tapes (or harddisks) are presented in [17]. In the present paper, we only consider
a single external memory tape, and are consequently able to show (sometimes
exponentially) stronger lower bounds.

Tight Lower Bounds for Query Processing 1079

Due to space limitations we had to defer detailed proofs of our results to the
full version of this paper [16] which extends the present paper by an appendix
that contains proofs of all results presented here.

2 Preliminaries

In this section we fix some basic notation concerning trees, streams, and query
languages. We write N for the set of non-negative integers. If M is a set, then
2M denotes the set of all subsets of M . Throughout this paper we make the
following convention: Whenever the letters r and s denote functions from N to
N, then these functions are monotone, i.e., we have r(x) � r(y) and s(x) � s(y)
for all x, y ∈ N with x � y.

Trees and Streams. We use standard notation for trees and streamed trees
(i.e. documents). In particular, we write Doc(T) to denote the XML document
associated with an XML document tree T . An example is given in Figure 1.

Query Languages. By Eval(·, ·) we denote the evaluation function that maps
each tuple (Q, T), consisting of a queryQ and a tree T to the corresponding query
result. Let Q be a query language and let T1 ⊆ Treesτ and T2 ⊆ T1. We say that
T2 can be filtered from T1 by a Q-query if, and only if, there is a query Q ∈ Q
such that the following is true for all T ∈ T1: T ∈ T2 ⇐⇒ Eval(Q, T) �= ∅.

We assume that the reader is familiar with first-order logic (FO) and monadic
second-order logic (MSO). An FO- or MSO-sentence (i.e., a formula without any
free variable) specifies a Boolean query, whereas a formula with exactly one free
first-order variable specifies a unary query, i.e., a query which selects a set of
nodes from the underlying input tree.

It is well-known [9, 30] that the MSO-definable Boolean queries on binary
trees are exactly the (Boolean) queries that can be defined by finite (deterministic
or nondeterministic) bottom-up tree automata. An analogous statement is true
about MSO on unranked trees and unranked tree automata [7].

Theorem 4.5 in section 4 gives a lower bound on the worst case complexity
of the language XQuery. As we prove a lower bound for one particular XQuery
query, we do not give a formal definition of the language but refer to [33].

Apart from FO, MSO, and XQuery, we also consider a fragment of the XPath
language, Core XPath [12, 13]. As we will prove not only lower, but also upper
bounds for Core XPath, we give a precise definition of this query language in
[16]. An example of a Core XPath query is

/descendant::∗[child::A and child::B]/child::∗,

which selects all children of descendants of the root node that (i.e., the descen-
dants) have a child node labeled A and a child node labeled B.

Core XPath is a strict fragment of XPath [12], both syntactically and seman-
tically. It is known that Core XPath is in LOGSPACE w.r.t. data complexity

1080 M. Grohe, C. Koch, and N. Schweikardt

and P-complete w.r.t. combined complexity [13]. In [12], it is shown that Core
XPath can be evaluated in time O(|Q| · |D|), where |Q| is the size of the query
and |D| is the size of the XML data. Furthermore, every Core XPath query is
equivalent to a unary MSO query on trees (cf., e.g., [11]).

Communication complexity. To prove basic properties and lower bounds
for our machine model, we use some notions and results from communication
complexity, cf., e.g., [21].

Let A,B,C be sets and let F : A × B → C be a function. In Yao’s [34]
basic model of communication two players, Alice and Bob, jointly want to eval-
uate F (x, y), for input values x ∈ A and y ∈ B, where Alice only knows x and
Bob only knows y. The two players can exchange messages according to some
fixed protocol P that depends on F , but not on the particular input values x, y.
The exchange of messages starts with Alice sending a message to Bob and ends
as soon as one of the players has enough information on x and y to compute
F (x, y).
P is called a k-round protocol, for some k ∈ N, if the exchange of messages

consists, for each input (x, y) ∈ A × B, of at most k rounds. The cost of P on
input (x, y) is the number of bits communicated by P on input (x, y). The cost
of P is the maximal cost of P over all inputs (x, y) ∈ A×B. The communication
complexity of F , comm-compl(F), is defined as the minimum cost of P, over all
protocols P that compute F . For k � 1, the k-round communication complexity
of F , comm-complk(F), is defined as the minimum cost of P, over all k-round
protocols P that compute F .

Many powerful tools are known for proving lower bounds on communication
complexity, cf., e.g., [21]. In the present paper we will use the following basic
lower bound for the problem of deciding whether two sets are disjoint.

Definition 2.1. For n ∈ N let the function Disjn : 2{1,. . ,n} × 2{1,. . ,n} → {0, 1}
be given via

Disjn(X,Y) :=
{

1 , if X ∩ Y = ∅
0 , otherwise. �

Theorem 2.2 (cf., e.g., [21]). For every n ∈ N, comm-compl(Disjn) � n.

3 Machine Model

We consider Turing machines with (1) an input tape, which is a read/write tape
and will henceforth be called “external memory tape” or “external tape”, for
short, (2) an arbitrary number u of work tapes, which will henceforth be called
“internal memory tapes” or “internal tapes”, for short, and, if needed, (3) an
additional write-only output tape.

Let M be such a Turing machine and let ρ be a run of M . By rev(ρ) we denote
the number of times the external memory tape’s head changes its direction in
the run ρ. For i ∈ {1, . . ,u} we let space(ρ, i) be the number of cells of internal
memory tape i that are used by ρ.

Tight Lower Bounds for Query Processing 1081

The class ST(r, s) for strings

Definition 3.1 (ST(r, s) for strings). Let r : N → N and s : N → N.

(a) A Turing machine M is (r, s)-bounded, if every run ρ of M on an input of
length n satisfies the following conditions:
(1) ρ is finite, (2) 1 + rev(ρ) ≤ r(n),2 and (3)

∑u
i=1 space(ρ, i) ≤ s(n),

where u is the number of internal tapes of M .
(b) A string-language L ⊆ Σ∗ belongs to the class ST(r, s) (resp., NST(r, s)), if

there is a deterministic (respectively, nondeterministic) (r, s)-bounded Tur-
ing machine which accepts exactly those w ∈ Σ∗ that belong to L.

(c) A function f : Σ∗ → Σ∗ belongs to the class ST(r, s), if there is a determin-
istic (r, s)-bounded Turing machine which produces, for each input string
w ∈ Σ∗, the string f(w) on its write-only output tape. �

For classes R and S of functions, we let ST(R,S) :=
⋃

r∈R,s∈S ST(r, s).
If k ∈ N is a constant, then we write ST(k, s) instead of ST(r, s), where r is

the function with r(x) = k for all x ∈ N. We freely combine these notations and
use them for NST(·, ·) instead of ST(·, ·), too.

If we think of the external memory tape of an (r, s)-bounded Turing machine
as representing the incoming stream, stored on a hard disk, then admitting the
external memory tape’s head to reverse its direction might not be very realistic.
But as we mainly use our model to prove lower bounds, it does not do any harm
either, since the reversals can be used to simulate random access. Random access
can be introduced explicitly into our model as follows: A random access Turing
machine is a Turing machine M which has a special internal memory tape that
is used as random access address tape, i.e., on which only binary strings can be
written. Such a binary string is interpreted as a positive integer specifying an
external memory address, that is, the position index number of a cell on the
external tape (we think of the external tape cells being numbered by positive
integers). The machine has a special state qra. If qra is entered, then in one step
the external memory tape head is moved to the cell that is specified by the num-
ber on the random access address tape, and the content of the random access
address tape is deleted.

Definition 3.2. Let q, r, s : N → N. A random access Turing machine M is
(q, r, s)-bounded, if it is (r, s)-bounded (in the sense of an ordinary Turing ma-
chine) and, in addition, every run ρ of M on an input of length n involves at
most q(n) random accesses. �

Noting that a random access can be simulated with at most 2 changes of the
direction of the external memory tape head, one immediately obtains:

2 It is convenient for technical reasons to add 1 to the number rev(ρ) of changes of
the head direction. As defined here, r(n) bounds the number of sequential scans of
the external memory tape rather than the number of changes of head directions.

1082 M. Grohe, C. Koch, and N. Schweikardt

Lemma 3.3. Let q, r, s : N → N. If a problem can be solved by a (q, r, s)-bounded
random access Turing machine, then it can also be solved by an (r + 2q,O(s))-
bounded Turing machine.

In the subsequent parts of this paper, we will concentrate on ordinary Turing
machines (without random access). Via Lemma 3.3, all results can be transferred
from ordinary Turing machines to random access Turing machines.

The class ST(r, s) for trees. We make an analogous definition to ST(r, s) on
strings for trees. This definition is given in detail in [16].

4 Lower Bounds for the ST Model

A reduction lemma. The following lemma provides a convenient tool for show-
ing that a problem L does not belong to ST(r, s). The lemma’s assumption can
be viewed as a reduction from the problem Disjn(·, ·) to the problem L.

Lemma 4.1. Let Σ be an alphabet and let λ : N → N such that the following is
true: For every n0 ∈ N there is an n � n0 and functions fn, gn : 2{1,. . ,n} → Σ∗

such that for all X,Y ⊆ {1, . . , n} the string fn(X)gn(Y) has length � λ(n).
Then we have for all r, s : N → N with r(λ(n)) · s(λ(n)) ∈ o(n), that there

is no (r, s)-bounded deterministic Turing machine which accepts a string of the
form fn(X)gn(Y) if, and only if, X ∩ Y = ∅.

Disjointness. Every n-bit string x = x1 · · ·xn ∈ {0, 1}n specifies a set S(x) :=
{i : xi = 1} ⊆ {1, . . , n}. Let LDisj consist of those strings x#y where x and y
specify disjoint subsets of {1, . . , n}, for some n � 1. That is,

LDisj :=
{

x#y : ex. n � 1 with x, y ∈ {0, 1}n and S(x) ∩ S(y) = ∅
}
.

From Lemma 4.1 one easily obtains

Proposition 4.2. Let r : N → N and s : N → N. If r(n) · s(n) ∈ o(n), then
LDisj �∈ ST(r, s).

The bound given by Proposition 4.2 is tight, as it can be easily seen that LDisj ∈
ST(r, s) for all r, s : N → N with r(n) · s(n) ∈ Ω(n).

Joins. Let τ be the set of tag names { rels, rel1, rel2, tuple, no1, no2, 0, 1 } .
We represent a pair (A,B) of finite relations A,B ⊆ N2 as a τ -tree T (A,B)
whose associated XML document Doc(T (A,B)) is a Στ -string of the following
form: For each number i ∈ N let Bin(i) = b

(i)

i · · · b

(i)
0 be the binary representation

of i. For each tuple (i, j) ∈ {1, . . , n}2 let Doc(i, j) :=

〈tuple〉 〈no1〉 〈b(i)

i

/〉 · · · 〈b(i)
0 /〉 〈/no1〉 〈no2〉 〈b(j)

j
/〉 · · · 〈b(j)

0 /〉 〈/no2〉 〈/tuple〉 .

Tight Lower Bounds for Query Processing 1083

For each finite relation A ⊆ N2 let t1, . . , t|A| be the lexicographically ordered
list of all tuples in A. We let Doc(A) := Doc(t1) · · · Doc(t|A|) . Finally, we let

Doc(T (A,B)) := 〈rels〉 〈rel1〉 Doc(A) 〈/rel1〉 〈rel2〉 Doc(B) 〈/rel2〉 〈/rels〉.

It is straightforward to see that the string Doc(T (A,B)) has length O
(
(|A| +

|B|) · log n
)
, if A,B ⊆ {1, . . . , n}2.

We write A)*1 B to denote the join of A and B on their first component,
i.e., A)*1 B := { (x, y) : ∃z A(z, x) ∧B(z, y) } . We let

TRels :=
{
T (A, B) : A, B ⊆ N2, A, B finite

}
TEmptyJoin :=

{
T (A, B) ∈ TRels : A ��1 B = ∅

}
TNonEmptyJoin :=

{
T (A, B) ∈ TRels : A ��1 B �= ∅

}
.

Lemma 4.3. TNonEmptyJoin can be filtered from TRels by an XQuery query.

Lemma 4.4. Let r, s : Treesτ → N.
If r(T) · s(T) ∈ o

(size(T)
log(size(T))

)
, then TEmptyJoin �∈ ST(r, s).

From Lemma 4.4 and Lemma 4.3 we immediately obtain a lower bound on the
worst-case data complexity for filtering relative to an XQuery query:

Theorem 4.5. The tree-language TEmptyJoin

(a) can be filtered from TRels by an XQuery query,
(b) does not belong to the class ST(r, s), whenever r, s : Treesτ → N with

r(T) · s(T) ∈ o
(

size(T)
log(size(T))

)
.

Remark 4.6. Let us note that the above bound is “almost tight” in the follow-
ing sense: The problem of deciding whether A)*1 B = ∅ and, in general, all
FO-definable problems belong to ST(1, n) – in its single scan of the external
memory tape, the Turing machine simply copies the entire input on one of its
internal memory tapes and then evaluates the FO-sentence by the straightfor-
ward LOGSPACE algorithm for FO-model-checking (cf. e.g. [1]). �

Sorting. By KeySort, we denote the problem of sorting a set S of tuples
t = (K, V) consisting of a key K and a value V by their keys. Let ST−(r, s)
denote the class of all problems in ST (r, s) that can be solved without writing
to the external memory tape. Then,

Theorem 4.7. Let r, s : N → N. If KeySort is in ST−(r, s), then computing
the natural join A)* B of two finite relations A,B is in

ST−
(
r(n2) + 2, s(n2) + O(log n) + O(maxt∈A∪B |t|)

)
.

1084 M. Grohe, C. Koch, and N. Schweikardt

Remark 4.8. Given that the size of relations A and B is known (which is usually
the case in practical database management systems DBMS), the algorithm given
in the previous proof can do a merge-join without additional scans after the
sort run and without a need to buffer more than one tuple. This is guaranteed
even if both relations may contain many tuples with the same join key – in
current implementations of the merge join in DBMS, this may lead to grass-
roots swapping. The (substantial) practical drawback of the join algorithm of
the proof of Theorem 4.7, however, is that much larger relations A′,B′ need to
be sorted: indeed |A′| = |A| ∗ |B|. �

Corollary 4.9.

(a) Let r, s : N → N such that r(n2) ·
(
s(n2) + log n

)
∈ o

(
n

log n

)
.

Then, KeySort �∈ ST−(r, s).
(b) KeySort �∈ ST−

(
o(5
√

n), O(5
√

n)
)
.

It is straightforward to see that by using MergeSort, the sorting problem can
be solved using O(log n) scans of external memory provided that three external
memory tapes are available. (In [17], this logarithmic bound is shown to be
tight, for arbitrarily many external tapes.) Corollary 4.9 gives an exponentially
stronger lower bound for the case of a single external tape.

A hierarchy based on the number of scans

Theorem 4.10. For every fixed k � 1,

ST(k, O((log k) + log n)) ∩ NST(1, O(k · log n)) �⊆ ST
(
k−1, o

(√
n

k5(log n)3

))
.

The proof of this theorem is based on a result due to Duris, Galil and Schnit-
ger [10]. Theorem 4.10 directly implies

Corollary 4.11. For every fixed k ∈ N and all classes S of functions from N to
N such that O(log n) ⊆ S ⊆ o

(√
N

(lg n)3

)
we have ST(k,S) � ST(k+1,S).

Remark 4.12. On the other hand, of course, the hierarchy collapses if internal
memory space is at least linear in the size of the input: For every r : N → N and
for every s : N → N with s(n) ∈ Ω(n), we have

ST(r, s) ⊆ ST(1, n + s(n)) and ST(r,O(s(n))) = DSPACE(O(s(n))).

5 Tight Bounds for Filtering and Query Evaluation on
Trees

Lower Bound. We need the following notation: We fix a set τ of tag names via
τ :=

{
root, left, right, blank

}
. Let T1 be the τ -tree from Figure 1. Note that

Tight Lower Bounds for Query Processing 1085

T1 has a unique leaf v1 labeled with the tag name “left”. For any arbitrary τ -
tree T we let T1(T) be the τ -tree rooted at T1’s root and obtained by identifying
node v1 with the root of T and giving the label “left” to this node. Now, for
every n � 2 let Tn be the τ -tree inductively defined via Tn := T1(Tn−1). It
is straightforward to see that Tn has exactly 2n leaves labeled “blank”. Let
x1, . . , xn, yn, . . , y1 denote these leaves, listed in document order (i.e., in the
order obtained by a pre-order depth-first left-to-right traversal of Tn). For an
illustration see Figure 2.

We let τ01 := τ ∪{0, 1}. For all sets X,Y ⊆ {1, . . , n} let Tn(X,Y) be the τ01-
tree obtained from Tn by replacing, for each i ∈ {1, . . , n}, (*) the label “blank”
of leaf xi by the label 1 if i ∈ X, and by the label 0 otherwise and (*) the label
“blank” of leaf yi by the label 1 if i ∈ Y , and by the label 0 otherwise.

We let

TSets :=
{

Tn(X,Y) : n � 1, X, Y ⊆ {1, . . , n}
}

,

TDisj :=
{

Tn(X,Y) ∈ TSets : X ∩ Y = ∅
}

,

TNonDisj :=
{

Tn(X,Y) ∈ TSets : X ∩ Y �= ∅
}
.

Lemma 5.1. (a) There is a Core XPath query Q such that the following is true
for all τ -trees T ∈ TSets: Eval(Q, T) �= ∅ ⇐⇒ T ∈ TNonDisj.

(b) There is a FO-sentence ϕ such that the following is true for all τ -trees T :
T |= ϕ ⇐⇒ T ∈ TNonDisj.

Lemma 5.2. Let r, s : Treesτ → N.
If r(T) · s(T) ∈ o(depth(T)), then TNonDisj �∈ ST(r, s).

From Lemma 5.1 and Lemma 5.2 we directly obtain a lower bound on the
worst-case data complexity of Core XPath filtering:

Theorem 5.3. The tree-language TNonDisj

(a) can be filtered from TSets by a Core XPath query,

root

left

blank

right

left right

blank

<root>
<left>

<blank/>
</left>
<right>

<left/>
<right>

<blank/>
</right>

</right>
</root>

Fig. 1. A τ -tree T1 and its XML docu-
ment Doc(T1) ∈ Σ∗

τ with tag names τ :=
{root, left, right, blank}

root

left

x1 blank

right

left

left

x2 blank

right

left right

blank y2

right

blank y1

Fig. 2. Tree T2 and nodes x1, x2, y1, y2

1086 M. Grohe, C. Koch, and N. Schweikardt

(b) is definable by an FO-sentence (and therefore, also definable by a Boolean
MSO query and recognizable by a tree automaton), and

(c) does not belong to the class ST(r, s), whenever
r, s : Treesτ → N with r(T) · s(T) ∈ o(depth(T)).

In the following subsection we match this lower bound with the corresponding
upper bound.

Upper bounds. Recall that a tree-language T ⊆ Treesτ is definable by an
MSO-sentence if, and only if, it is recognizable by an unranked tree automaton,
respectively, if, and only if, the language {BinTree(T) : T ∈ T } of associated
binary trees is recognizable by an ordinary (ranked) tree automaton (cf., e.g.,
[7, 9, 30]).

Theorem 5.4 (implicit in [25, 29]). Let T ⊆ Treesτ be a tree-language. If T
is definable by an MSO-sentence (or, equivalently, recognizable by a ranked or
an unranked finite tree automaton), then T ∈ ST

(
1, depth(·) + 1

)
.

Recall that every Core XPath query is equivalent to a unary MSO query. Thus
a Core XPath filter can be phrased as an MSO sentence on trees. From the
Theorems 5.4 and 5.3 we therefore immediately obtain a tight bound for Core
XPath filtering:

Corollary 5.5. (a) Filtering from the set of unranked trees with respect to every
fixed Core XPath query Q belongs to ST

(
1, O(depth(·))

)
.

(b) There is a Core XPath query Q such that, for all r, s : Treesτ → N with
r(T) · s(T) ∈ o

(
depth(T)

)
, filtering w.r.t. Q does not belong to ST(r, s).

Next, we provide an upper bound for the problem of computing the set
Eval(Q, T) of nodes in an input tree T matching a unary MSO (or Core XPath)
query Q. We first need to clarify what this means, because writing the subtree
of each matching node onto the output tape requires a very large amount of
internal memory (or a large number of head reversals on the external memory
tape), and this gives us no appropriate characterization of the difficulty of the
problem. We study the problem of computing, for each node matched by Q, its
index in the tree, in the order in which they appear in the document Doc(T). We
distinguish between the case where these indexes are to be written to the output
tape in ascending order and the case where they are to be output in descending
(i.e., reverse) order.

Theorem 5.6 (implicit in [26, 20]). For every unary MSO or Core XPath
query Q, the problem of computing, for input trees T , the nodes in Eval(Q, T)
(a) in ascending order belongs to ST(3, O(depth(·))).
(b) in reverse order belongs to ST(2, O(depth(·))).

Note that this bound is tight: From Corollary 5.5(c) we know that, for some Core
XPath query Q, not even filtering (i.e., checking whether Eval(Q, T) is empty)
is possible in ST(r, s) if r(T) · s(T) ∈ o

(
depth(T)

)
.

Tight Lower Bounds for Query Processing 1087

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. G. Aggarwal, M. Datar, S. Rajagopalan, and M. Ruhl. On the streaming model
augmented with a sorting primitive. In Proc. FOCS’04, pages 540–549.

3. N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the
frequency moments. Journal of Computer and System Sciences, 58:137–147, 1999.

4. A. Arasu, B. Babcock, T. Green, A. Gupta, and J. Widom. “Characterizing Mem-
ory Requirements for Queries over Continuous Data Streams”. In Proc. PODS’02,
pages 221–232, 2002.

5. B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues
in data stream systems. In Proc. PODS’02, pages 1–16.

6. Z. Bar-Yossef, M. Fontoura, and V. Josifovski. “On the Memory Requirements of
XPath Evaluation over XML Streams”. In Proc. PODS’04, pages 177–188, 2004.

7. A. Brüggemann-Klein, M. Murata, and D. Wood. “Regular Tree and Regular
Hedge Languages over Non-ranked Alphabets: Version 1, April 3, 2001”. Technical
Report HKUST-TCSC-2001-05, Hong Kong Univ. of Science and Technology, 2001.

8. J.-E. Chen and C.-K. Yap. “Reversal Complexity”. SIAM J. Comput., 20(4):622–
638, Aug. 1991.

9. J. Doner. “Tree Acceptors and some of their Applications”. Journal of Computer
and System Sciences, 4:406–451, 1970.

10. P. Duris, Z. Galil, and G. Schnitger. Lower bounds on communication complexity.
Information and Computation, 73:1–22, 1987. Journal version of STOC’84 paper.

11. G. Gottlob and C. Koch. “Monadic Datalog and the Expressive Power of Web
Information Extraction Languages”. Journal of the ACM, 51(1):74–113, 2004.

12. G. Gottlob, C. Koch, and R. Pichler. “Efficient Algorithms for Processing XPath
Queries”. In Proc. VLDB 2002, pages 95–106, Hong Kong, China, 2002.

13. G. Gottlob, C. Koch, and R. Pichler. “The Complexity of XPath Query Evalua-
tion”. In Proc. PODS’03, pages 179–190, San Diego, California, 2003.

14. G. Graefe. “Query Evaluation Techniques for Large Databases”. ACM Computing
Surveys, 25(2):73–170, June 1993.

15. T. J. Green, G. Miklau, M. Onizuka, and D. Suciu. “Processing XML Streams
with Deterministic Automata”. In Proc. ICDT’03, 2003.

16. M. Grohe, C. Koch, and N. Schweikardt. Tight lower bounds for query processing
on streaming and external memory data. Technical report CoRR cs.DB/0505002,
2005. Full version of ICALP’05 paper.

17. M. Grohe and N. Schweikardt. Lower bounds for sorting with few random accesses
to external memory. In Proc. PODS, 2005. To appear.

18. M. Henzinger, P. Raghavan, and S. Rajagopalan. Computing on data streams.
In External memory algorithms, volume 50, pages 107–118. DIMACS Series In
Discrete Mathematics And Theoretical Computer Science, 1999.

19. J. E. Hopcroft and J. D. Ullman. Some results on tape-bounded Turing machines.
Journal of the ACM, 16(1):168–177, 1969.

20. C. Koch. “Efficient Processing of Expressive Node-Selecting Queries on XML Data
in Secondary Storage: A Tree Automata-based Approach”. In Proc. VLDB 2003,
pages 249–260, 2003.

21. E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge Univ. Press,
1997.

22. U. Meyer, P. Sanders, and J. Sibeyn, editors. Algorithms for Memory Hierarchies,
volume 2832 of Lecture Notes in Computer Science. Springer-Verlag, 2003.

1088 M. Grohe, C. Koch, and N. Schweikardt

23. J. Munro and M. Paterson. Selection and sorting with limited storage. Theoretical
Computer Science, 12:315–323, 1980.

24. S. Muthukrishnan. Data streams: algorithms and applications. In Proc. 14th
SODA, pages 413–413, 2003.

25. A. Neumann and H. Seidl. “Locating Matches of Tree Patterns in Forests”. In
Proc. 18th FSTTCS, LNCS 1530, pages 134–145, 1998.

26. F. Neven and J. van den Bussche. “Expressiveness of Structured Document Query
Languages Based on Attribute Grammars”. J. ACM, 49(1):56–100, Jan. 2002.

27. R. Ramakrishnan and J. Gehrke. Database Management Systems. McGraw-Hill,
2002.

28. L. Segoufin. “Typing and Querying XML Documents: Some Complexity Bounds”.
In Proc. PODS’03, pages 167–178, 2003.

29. L. Segoufin and V. Vianu. “Validating Streaming XML Documents”. In Proc.
PODS’02, 2002.

30. J. Thatcher and J. Wright. “Generalized Finite Automata Theory with an Applica-
tion to a Decision Problem of Second-order Logic”. Math. Syst. Theory, 2(1):57–81,
1968.

31. P. van Emde Boas. “Machine Models and Simulations”. In J. van Leeuwen, edi-
tor, Handbook of Theoretical Computer Science, volume 1, chapter 1, pages 1–66.
Elsevier Science Publishers B.V., 1990.

32. J. Vitter. External memory algorithms and data structures: Dealing with massive
data. ACM Computing Surveys, 33(2):209–271, June 2001.

33. World Wide Web Consortium. “XQuery 1.0 and XPath 2.0 Formal Semantics.
W3C Working Draft (Aug. 16th 2002), 2002. http://www.w3.org/XML/Query.

34. A. Yao. Some complexity questions related to distributive computing. In Proc.
11th STOC, pages 209–213, 1979.

Decidability and Complexity Results for Timed
Automata via Channel Machines

Parosh Aziz Abdulla1, Johann Deneux1, Joël Ouaknine2, and James Worrell3

1 Department of Computer Systems,
Uppsala University, Sweden
{parosh, johannd}@it.uu.se

2 Oxford University Computing Laboratory, UK
joel@comlab.ox.ac.uk

3 Department of Mathematics, Tulane University, USA
jbw@math.tulane.edu

Abstract. This paper is concerned with the language inclusion prob-
lem for timed automata: given timed automata A and B, is every word
accepted by B also accepted by A? Alur and Dill [3] showed that the
language inclusion problem is decidable if A has no clocks and unde-
cidable if A has two clocks (with no restriction on B). However, the
status of the problem when A has one clock is not determined by [3].
In this paper we close this gap for timed automata over infinite words
by showing that the one-clock language inclusion problem is undecid-
able. For timed automata over finite words, building on our earlier paper
[20], we show that the one-clock language inclusion problem is decidable
with non-primitive recursive complexity. This reveals a surprising diver-
gence between the theory of timed automata over finite words and over
infinite words. Finally, we show that if ε-transitions or non-singular post-
conditions are allowed, then the one-clock language inclusion problem is
undecidable over both finite and infinite words.

1 Introduction

An execution of a real-time system can be modelled as a timed word consist-
ing of a sequence of events and their associated timestamps, and properties of
such systems can be expressed as languages of timed words. Timed automata
were introduced by Alur and Dill [3] to specify languages of timed words, and
have since been extensively studied by many researchers. In particular, timed
automata have been used as the foundation for several verification algorithms
and tools (see [8] for a survey).

One of the most fundamental results about timed automata is the undecid-
ability of the language inclusion problem: ‘Given timed automata A and B, is
every word accepted by B also accepted by A?’ This problem is undecidable ir-
respective of whether one considers automata over finite words or automata over
infinite words with a Büchi acceptance condition. In this context it is natural
to seek subclasses of timed automata, with reduced expressive power, for which

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 1089–1101, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1090 P.A. Abdulla et al.

the language inclusion problem is decidable [5, 7, 8, 4, 13, 19, 20]. In this paper we
consider subclasses parameterized by the number of clocks an automaton has.
In particular, we consider the n-clock language inclusion problem in which A is
allowed n clocks but where no restriction is placed on B.

A close analysis of the proof of the undecidability of language inclusion in
[3] reveals that the tightest possible formulation of their result is that the two-
clock language inclusion problem is undecidable. On the other hand, from the
decidability of language emptiness for timed automata, also proved in [3], it
follows that the zero-clock language inclusion problem is (PSPACE-complete)
decidable. This leaves an interesting open question about the status of the one-
clock language inclusion problem. In fact, many interesting specifications can
be expressed by automata with a single clock, or parallel combinations thereof.
This is particularly so for alternating timed automata [16, 21]. For instance, every
formula of Metric Temporal Logic [6, 4] can be translated into an alternating
timed automaton with a single clock [21]. The model checking problem then
corresponds to language inclusion.

Recently, using techniques from the theory of well-quasi-ordered transition
systems [11], we showed that over finite words the one-clock language inclusion
problem is decidable [20]. However, while finite words are sufficient to capture
safety properties, to capture liveness or fairness properties it is most natural to
consider automata over infinite words. The main result of this paper is that,
for timed automata over infinite words (with Büchi acceptance conditions) the
one-clock language inclusion problem is undecidable. This reveals a surprising
divergence between the theory of timed automata over finite words and over infi-
nite words. We also show that over finite words the one-clock language inclusion
problem has non-primitive recursive complexity. Finally, language inclusion be-
comes undecidable over both finite and infinite words if ε-transitions are allowed
or if reset clocks have nonsingular postconditions (as in [9, 12]).

We use channel machines [10] as a convenient middleware between Turing
machines and timed automata. This allows us to develop a schematic approach
to proving undecidability and complexity results for various classes of timed
automata. In each case we show how to encode a certain class of channel com-
putations as a timed language, whose complement can be recognized by a timed
automaton of a certain type.

Related Work. The non-primitive recursive complexity of language inclusion
over finite words and the undecidability of language inclusion over finite words
with ε-transitions have recently and independently been proved by Lasota and
Walukiewicz [16]. They have also concurrently discovered the undecidability of
universality for one-clock Büchi timed automata [17]. Like us, they make use
of channel machines in their work, although via a different encoding of channel
histories as timed words.

Alur, La Torre and Madhusudan [7] consider automata with perturbed clocks
whose rates may vary; they show that for every automaton with a single per-
turbed clock there is an equivalent deterministic timed automaton. It follows
that the language inclusion problem is decidable for this class of automata.

Decidability and Complexity Results 1091

Laroussinie, Markey and Schnoebelen [15] classify the complexity of deciding
language emptiness for timed automata with one, two and three clocks respec-
tively.

2 Timed Automata and Timed Words

Let Σ be a finite alphabet and write Σε for Σ∪{ε}, where ε �∈ Σ. Let R+ be the
set of non-negative reals. A timed event is a pair (t, a), where t ∈ R+ is called the
timestamp of the event a ∈ Σ. A timed word is a finite or infinite sequence u =
(t0, a0)(t1, a1)(t2, a2) . . . of timed events whose sequence of timestamps t0t1t2 . . .
is non-decreasing and is either finite or diverges to infinity. (This last assumption
rules out so-called Zeno words.) We say that a timed word is strictly monotonic
if its sequence of timestamps is strictly monotonic increasing. We write TΣ∗ for
the set of finite timed words over alphabet Σ and TΣω for the set of infinite
timed words over alphabet Σ.

Let X be a finite set of clocks, denoted x, y, z, etc. We define the set Φ(X) of
clock constraints over X via the following grammar (here k ∈ N is a non-negative
integer).

φ ::= x < k | x � k | φ ∧ φ | ¬φ .

Definition 1. A timed automaton is a tuple A = (Σ,S,S0,F, X,E), where

– Σ is a finite alphabet of events,
– S is a finite set of control states,
– S0 ⊆ S is a set of initial control states,
– F ⊆ S is a set of accepting control states,
– X is a finite set of clocks, and
– E ⊆ S × S × Φ(X) × Σε × 2X × Φ(X) is a finite set of edges. An edge

(s, s′,φ, α,R,φ′) allows α-labelled transition from s to s′, provided the pre-
condition φ on clocks is met. Afterwards, the clocks in R are nondetermin-
istically reset to values satisfying the postcondition φ′, and all other clocks
remain unchanged.

A clock valuation of A is a function ν : X → R+. If δ ∈ R+, we let ν + δ be
the clock valuation such that (ν + δ)(x) = ν(x) + δ for all x ∈ X. A global state
of A is a pair (s, ν), where s ∈ S is a control state and ν is a clock valuation.
Write Q = S × (R+)X for the set of global states.

Automaton A induces an (R+×Σε)-labelled transition relation on the set of

global states as follows: write (s, ν)
δ, α−→ (t, ν′) iff there is an edge (s, t,φ, α,R,φ′)

in E such that ν+δ satisfies φ, ν′ satisfies φ′ and (ν+δ)(x) = ν′(x) for all x �∈ R.
A run of A is a finite or infinite sequence of transitions

(s0, ν0)
δ0, α0−→ (s1, ν1)

δ1, α1−→ (s2, ν2)
δ2, α2−→ · · · (1)

where s0 ∈ S0 is an initial control state and ν0(x) = 0 for all x ∈ X. We require
that an infinite run contain infinitely many transitions labelled from Σ and that∑∞

i=0 δi be infinite.

1092 P.A. Abdulla et al.

A finite run is accepting if the last control state in the run is accepting. An
infinite run is accepting if infinitely many control states in the run are accepting.
Let αi0αi1αi2 . . . be the sequence of non-ε-labels occurring in an accepting run
and let tj =

∑j
i=0 δi. Then the timed word (ti0 , αi0)(ti1 , αi1)(ti2 , αi2) . . . is said

to be accepted by A. We write Lf (A) for the set of finite timed words accepted
by A and Lω(A) for the set of infinite timed words accepted by A.

Remark 1. Definition 1 represents quite a general model of timed automata.
We will adopt the convention that, unless otherwise specified, a given timed
automaton has no ε-transitions, and has singular postconditions, i.e., for each
edge (s, t,φ, α,R,φ′), if clock valuations ν and ν′ both satisfy φ′, then ν(x) =
ν′(x) for all x ∈ R.

3 Hardness Results over Finite Words

In [20] we showed that it is decidable whether Lf (B) ⊆ Lf (A) for an arbitrary
timed automaton B and a one-clock automaton A. In this section we show that
this problem has non-primitive recursive complexity and is undecidable if A is
allowed ε-transitions or non-singular postconditions. We prove these results by
reduction from the reachability problem for channel machines.

A channel machine [1, 10, 22] consists of a finite-state automaton acting on
an unbounded fifo channel (or buffer). More precisely, a channel machine is a
tuple C = (S, s0,M,Δ), where S is a finite set of control states, s0 ∈ S is the
initial control state, M is a finite set of messages, and Δ ⊆ S × L × S is the
transition relation over label set L = {m!,m? : m ∈M}.

A global state of C is a pair (s, x), where s ∈ S is the control state and
x ∈ M∗ is the contents of the channel. The rules in Δ induce an L-labelled
transition relation on the set of global states as follows: (s,m!, t) ∈ Δ yields a
transition (s, x) m!−→ (t, x·m) that writes m ∈ M to the tail of the channel, and
(s,m?, t) ∈ Δ yields a transition (s,m·x) m?−→ (t, x) that reads m ∈M from the
head of the channel. If we only allow the transitions indicated above, then we
call C an error-free channel machine.

We also consider channel machines that operate with insertion errors. Given
x, y ∈ M∗, write x , y if x can be obtained from y by deleting any number
of letters, e.g. sub , stubborn, as indicated by the underlining. Following [22]
we introduce insertion errors by extending the transition relation on global
states with the following clause: if (s, x) α−→ (t, y), x′ , x and y , y′, then
(s, x′) α−→ (t, y′). Dually, we define lossy channel machines by adding by a
clause: if (s, x) α−→ (t, y), x , x′ and y′ , y, then (s, x′) α−→ (t, y′).

A computation of C is a finite or infinite sequence of transitions between
global states (s0, x0)

α0−→ (s1, x1)
α1−→ (s2, x2)

α2−→ · · · .
The control-state reachability problem asks, given a channel machine C =

(S, s0,M,Δ) and a control state t ∈ S, whether there is a computation of C
starting in global state (s0, ε) and ending in global state (t, ε). It is well-known
that the control-state reachability problem for error-free channel machines is

Decidability and Complexity Results 1093

undecidable1. Next we show how to reduce the control-state reachability problem
for error-free channel machines to the universality problem (which is a special
case of language inclusion) for various classes of timed automata.

Let C = (S, s0,M,Δ) and t ∈ S be an instance of the control-state reacha-
bility problem. Given this data, let Σ = {m!,m? : m ∈ M} ∪ {�} be a finite
alphabet. We encode the finite control of C as an untimed automaton (i.e., a
timed automaton with no clocks) Acont over alphabet Σ. Acont is just the un-
derlying control automaton of C with a �-labelled self-transition added to every
control state, with s0 as the initial control state and t ∈ S as the only accepting
control state. Let Lcont denote the timed language Lf (Acont).

Definition 2. Let Lchan ⊆ TΣ∗ consist of those timed words u such that:

1. u is strictly monotonic.
2. u contains a �-event at time zero, and thereafter consecutive �-events are

separated by one time unit.
3. Every m!-event in u is followed one time unit later by an m?-event.
4. Every m?-event is preceded one time unit earlier by an m!-event.

Clauses 3 and 4 capture the channel discipline: every message written to the
channel is read from the channel one time unit later, and every message that is
read from the channel was written to the channel one time unit earlier. The one-
to-one unit-time-delayed correspondence between read and write events ensures
that messages are read from the channel in the order that they were written
to the channel. The requirement that every message written to the channel is
eventually read corresponds to the fact that we consider computations that end
with an empty channel. The �-events in Lchan have no particular significance
other than to facilitate the encoding below.

Proposition 1. C has an error-free computation from (s0, ε) to (t, ε) iff Lcont ∩
Lchan �= ∅.

Let Acont denote the complement of Acont as an untimed automaton. It is
clear that Acont is also the complement of Acont with respect to timed lan-
guages, i.e., Lf (Acont) = TΣ∗ − Lcont . Now suppose that Achan is a timed au-
tomaton such that Lf (Achan) = TΣ∗ −Lchan . From Proposition 1 it holds that
Acont ∪Achan is universal (i.e. accepts every timed word) iff C has no error-free
computation from (s0, ε) to (t, ε). Since the control-state reachability problem
is undecidable for error-free channel machines, it follows that the universality
problem is undecidable for any class of timed automata that is closed under
unions and can capture the complement of Lchan .

1 The usual formulation of the problem asks whether there is a computation from
(s0, ε) to (t, x) for some x ∈M∗. It is straightforward to reduce this problem to the
formulation above.

1094 P.A. Abdulla et al.

3.1 Two Clocks

We show how to define a timed automaton Achan with two clocks such that
Lf (Achan) = TΣ∗ − Lchan . We define Achan as the disjunction of several au-
tomata, each of which accepts the set of words that fail to satisfy a particular
clause in the definition of Lchan . The interesting clauses here are 3 and 4.

Automaton A1, below, accepts those timed words in which some m!-event is
not followed one time unit later by an m?-event, i.e., those words that fail to
satisfy Clause 3 in Definition 2. Automaton A2 (both left-hand and right-hand
components) accepts those timed words in which some m?-event is not preceded
one time unit earlier by any event. Note that a strictly monotonic timed word
satisfying Clause 2 in Definition 2 fails to satisfy Clause 4 if and only if it is
either accepted by A2 or contains an α-event followed one time unit later by an
m?-event, with α �= m!. It is straightforward to capture this last condition with
a one-clock timed automaton. In fact A2 is the only component of Achan that
uses two clocks.

A1
���������	

��
��

Σ

��
m!

x:=0
���������	��
�
���

��
��
Σ x �=1

��

���
��
Σ\{m?}

��

A2
���������	

��
��
Σ x:=0

��
Σ

y:=0
���������	

��
��

Σ

��
m?

x>1∧y<1
���������	��
�
���

��
��

Σ

��
���������	

��
��

Σ

��
m?

x<1
���������	��
�
���

��
��

Σ

��

Thus we obtain a new proof of Alur and Dill’s classical result [3].

Theorem 1. The universality problem for timed automata with two clocks is
undecidable.

3.2 ε-Transitions

By allowing ε-transitions, we can replace the left-hand component of automaton
A2, above, with the following automaton which uses only one clock. The ε-
transition and the m?-transition in A3 are separated by exactly one time unit;
this prevents any visible event from preceding this occurrence of m? by one time
unit.

A3
���������	

��
��
Σ x:=0

��
ε x>0

x:=0
���������	

��
��
Σ x>0

��
m?

x=1
���������	��
�
���

��
��

Σ

��

Theorem 2. The universality problem for the class of timed automata with one
clock and ε-transitions is undecidable.

Decidability and Complexity Results 1095

3.3 Non-singular Postconditions

Instead of ε-transitions we can consider non-singular postconditions for clock
resets. In this case we can replace automaton A3 with the following one-clock
timed automaton, where the �-labelled edge non-deterministically resets x to a
value strictly less than 1.

A4
���������	

��
��

Σ

�� �
x:<1

���������	

��
��
Σ x �=1

��
m?

x=2
���������	��
�
���

��
��

Σ

��

Theorem 3. The universality problem for the class of timed automata with one
clock and with non-singular postconditions is undecidable.

3.4 Complexity

The control-state reachability problem for lossy channel machines was shown
to be decidable, in contrast to the error-free case, by Abdulla and Jonsson [2].
Later Schnoebelen [22] proved that it has non-primitive recursive complexity.

Proposition 2. The control-state reachability problem for channel machines
with insertion errors has non-primitive recursive complexity.

Proof. Given a channel machine C = (S, s0,M,Δ), define a new transition rela-
tion Δop ⊆ S × {m!,m? : m ∈M} × S by

Δop = {(s,m!, t) : (t,m?, s) ∈ Δ} ∪ {(s,m?, t) : (t,m!, s) ∈ Δ} .

Notice that there is a transition from global state (s, x) to global state (t, y)
under Δ iff there is a transition from (t, rev(y)) to (s, rev(x)) under Δop, where
rev : M∗ → M∗ reverses the order of a finite string. Thus there is computation
with lossiness errors from (s, ε) to (t, ε) under Δ iff there is a computation
with insertion errors from (t, ε) to (s, ε) under Δop. This observation allows
us to reduce the control-state reachability problem for channel machines with
lossiness errors to the control-state reachability problem for channel machines
with insertion errors. ��

Define the timed language Lins ⊆ TΣ∗ to consist of those timed words sat-
isfying Clauses 1-3 in Definition 2. Thus for a word in Lins , every m!-event is
followed one time unit later by an m?-event, but every m?-event need not be
preceded one time unit earlier by an m!-event. This corresponds to a channel
with insertion errors.

Proposition 3. C has a computation with insertion errors starting in state
(s0, ε) and ending in state (t, ε) iff Lcont ∩ Lins �= ∅.

Note that we can express TΣ∗ − Lins as the language of a one-clock timed
automaton. This automaton incorporates A1 in Section 3.1, but not A2. Thus
we obtain

1096 P.A. Abdulla et al.

Theorem 4. The universality problem for the class of timed automata with a
single clock has non-primitive recursive complexity.

4 Universality for One-Clock Büchi Automata

In this section we prove the undecidability of the following universality problem:
‘Given a one-clock timed automaton A (without ε-transitions and with singular
postconditions) does Lω(A) = TΣω?’.

As in Section 3 the idea behind the proof is to encode the computations of
a certain type of channel machine as a timed language. To this end, say that
a non-terminating computation of a channel machine is space-bounded if there
exists N ∈ N such that the number of messages stored on the channel during
the computation never exceeds N . We define a timed language Lbound ⊆ TΣω

encoding space-bounded computations of a channel with insertion errors. We
capture the space bound by requiring an upper bound on the number of events
per time unit for each word u ∈ Lbound . Besides space-boundedness the other
key ingredient in our proof is the notion of alternation, defined below.

Define a channel machine C to be alternating if we can partition the set of
control states into two classes, called read states and write states respectively,
such that each edge is of the form (s,m?, t) with s a read state and t a write
state, or of the form (s,m!, t) with s a write state and t a read state. Then
any computation of C consists of an alternating sequence of read transitions and
write transitions.

The recurrent-state problem for alternating channel machines is as follows.
Given an alternating channel machine C = (S, s0,M,Δ), does there exist x ∈
M∗ such that C has a non-terminating computation starting in global state
(s0, x) and visiting s0 infinitely often? The following proposition is a relatively
straightforward reduction from the halting problem for Turing machines.

Proposition 4. The recurrent-state problem for error-free alternating channel
machines is undecidable.

The space-bounded recurrent-state problem for alternating channel machines
with insertion errors asks if a given alternating channel machine has a space-
bounded computation, possibly with insertion errors, passing infinitely often
through the initial control state. The following proposition, which is reminiscent
of a result of Mayr [18] on lossy counter machines, asserts that this problem is
undecidable.

Proposition 5. The space-bounded recurrent-state problem for alternating chan-
nel machines with insertion errors is undecidable.

Proof. Given an alternating channel machine C, we claim that C has a space-
bounded recurrent computation with insertion errors iff it has an error-free re-
current computation. Then Proposition 5 follows from Proposition 4. Indeed,
since C is alternating, at any point in a computation the total number of inser-
tion errors up to that point is within one of the current size of the channel minus

Decidability and Complexity Results 1097

the size of the channel at the start of the computation. Thus any error-free com-
putation of C is space-bounded, and any space-bounded computation of C with
insertion errors is eventually error-free (the space bound gives an upper bound
on the total number of insertion errors). ��

Definition 3. Given a strictly monotonic timed word u = (t0, a0)(t1, a1) . . .,
define density(u) = sup{j − i : tj − ti � 1}. The density of a timed word
measures the maximum number of events in any time unit along the word.

Theorem 5. The universality problem for one-clock Büchi timed automata is
undecidable.

The proof is by reduction from the space-bounded recurrent-state problem for
alternating machines with insertion errors. Given an alternating channel machine
C = (S, s0,M,Δ), we define a one-clock Büchi timed automaton A such that C
has a space-bounded recurrent computation with insertion errors iff A is non-
universal.

Let Σ = {m!,m? : m ∈M} ∪ {�} be a finite alphabet. We encode the finite
control of C as a Büchi timed automaton Acont with no clocks over alphabet
Σ. Acont is just the underlying control automaton of C with a �-labelled self-
transition added to every control state and with s0 as the initial control state and
only accepting control state. Let Lcont denote the timed language Lω(Acont).

Next we capture the behaviour of a space-bounded channel with insertion
errors using a timed language Lbound over alphabet Σ.

Definition 4. Lbound consists of those timed words u satisfying:

1. u is strictly monotonic and contains infinitely many non-�-events.
2. There is a �-event at time zero, and thereafter consecutive �-events are

separated by one time unit.
3. For every m!-event in u there is an m?-event one time unit later.
4. For every m?-event in u there is a n!-event one time unit later, for some

n ∈M .
5. density(u) < ∞.

As with the corresponding clause in Definition 2, Clause 3 captures the chan-
nel discipline: every message sent is received. The channel has insertion errors
because not every m?-event is necessarily preceded one time unit earlier by an
m!-event. On the other hand, Clause 4 has nothing to do with the channel dis-
cipline. However its presence, together with Clauses 2 and 3, ensures that for
every event of u ∈ Lbound there is an event exactly one time unit later. (This fact
will play a significant role later.) Since we are dealing with alternating channel
machines, the imposition of Clause 4 will prove to be no restriction when we
seek to match words in Lbound with channel computations. Finally, Clause 5
corresponds to the space-boundedness of the channel.

Proposition 6. C has a space-bounded recurrent computation with insertion
errors iff Lcont ∩ Lbound �= ∅.

1098 P.A. Abdulla et al.

Proof. (⇐) Let u ∈ Lcont ∩ Lbound . We show how to recover a space-bounded
recurrent computation of C from u. Since u ∈ Lcont , the automaton Acont , which
represents the finite control of C, has a run

(s0, ν0)
δ0, α0−→ (s1, ν1)

δ1, α1−→ (s2, ν2)
δ2, α2−→ · · · (2)

on u. Let αi0αi1αi2 . . . be the sequence of non-�-events in u. Then we obtain a
recurrent computation of C

(si0 , x0)
αi0−→ (si1 , x1)

αi1−→ (si2 , x2)
αi2−→ · · ·

where xj ∈M∗ is the sequence of messages that occur as read events in the unit
time interval

(
tij−1 , tij−1 + 1

]
, where, by convention, i−1 = 0. Since u ∈ Lbound ,

Clause 3 in Definition 4 ensures that this is a legitimate computation of C,
albeit with insertion errors. Since u has finite density this computation is space-
bounded.

(⇒) We have already observed that if C has a space-bounded recurrent com-
putation with insertion errors, then it has a space-bounded recurrent error-free
computation. The trace of channel events along such an error-free computation
can easily be encoded as a word in Lbound as we now explain. Since C is al-
ternating, there is a number N ∈ N such that the size of the channel is either
N or N − 1 at any point in the computation. When any message is written to
the channel, the machine performs exactly 2N − 1 (read and write) operations
before that message is read off the channel. We transform the sequence of read
and write events along a computation into a timed word u by putting exactly
1/(2N − 1) time units between consecutive events. This automatically guaran-
tees that Clauses 3–5 in Definition 4 hold. Finally, adding �-events at integer
times yields a timed word in Lbound . ��

Similarly to the development in Section 3, the undecidability of the univer-
sality problem will follow from Proposition 6 provided that we can define a
one-clock timed automaton Abound such that Lω(Abound) = TΣω − Lbound . We
define Abound to be the disjunction of several automata, corresponding to the
different clauses in the definition of Lbound . It is straightforward, for each clause
1–4, to define an automaton that accepts precisely the timed words that fail to
satisfy that clause. Below we define two automata Ainc and Adec such that, if a
timed word u already satisfies 1–4, then it is accepted by Ainc or Adec precisely
if it fails Clause 5, i.e., it has infinite density.

First we recall the following simple proposition about real numbers.

Proposition 7. If x = 〈xn : n ∈ N〉 is a sequence of real numbers in the open
interval (0, 1) that takes on infinitely many values, then x has either a strictly
increasing subsequence or a strictly decreasing subsequence.

Let u = (t0, a0)(t1, a1)(t2, a2) . . . be a timed word satisfying Clauses 1–4 in
Definition 4. Then for every event of u there is an event exactly one time unit
later. Thus u has infinite density iff {frac(ti) : i ∈ N} is infinite. By Proposition 7,

Decidability and Complexity Results 1099

this holds iff the sequence 〈frac(ti) : i ∈ N 〉 has either a strictly increasing
subsequence or a strictly decreasing subsequence. We define an automaton Ainc

that accepts u iff 〈frac(ti) : i ∈ N〉 has a strictly increasing subsequence, and
an automaton Adec that accepts u iff 〈frac(ti) : i ∈ N〉 has a strictly decreasing
subsequence.

Consider a run of Ainc (depicted below) on u = (t0, a0)(t1, a1)(t2, a2) Let
tij

be the timestamp of the transition that resets clock x for the j-th time. Notice
that either tij+1 = tij

+ 1 or frac(tij+1) > frac(tij
). The Büchi condition ensures

that the second eventuality holds infinitely often in the run, and so the sequence
frac(tij

) has a strictly increasing subsequence. Thus, among those timed words
u satisfying Clauses 1–4 in Definition 4, Ainc accepts precisely those for which
〈frac(ti) : i ∈ N〉 has a strictly increasing subsequence. (Notice the importance
of the fact that for each event in u there is an event one time unit later.)

Ainc
���������	

��
��

Σ

��
Σ\{�}
x:=0

���������	

��
��
Σ x<1

��

�� ���
Σ x=1 x:=0

��

Σ x=1
���������	��
�
���

��
��
Σ\{�}

��

Σ\{�} x:=0

��

Adec (depicted below) operates in a similar manner to Ainc except that it
accepts those words u = (t0, a0)(t1, a1)(t2, a2) . . . for which 〈frac(ti) : i ∈ N〉 has
a strictly decreasing subsequence.

Adec
���������	

��
��

Σ

��
Σ\{�}
x:=0

���������	

��
��
Σ x<1

��

�� ���
Σ x=1 x:=0

��

�
���������	��
�
���

��
��
Σ x<1

��

Σ x<1 x:=0

��

5 Remarks and Future Work

The main result of this paper is that the universality problem for one-clock
Büchi timed automata is undecidable. A closely related problem concerns the
decidability of the satisfiability and model checking problems for Metric Tempo-
ral Logic (MTL) [6, 4]. This logic is known to be undecidable under an interval
semantics. However, under a point-based semantics—i.e., interpreting the logic
over timed words—the satisfiability problem is open, cf. [21].

In [21] we show how to translate an MTL formula into an alternating timed
automaton with a single clock. In terms of alternating automata, the present
paper shows that the emptiness problem for one-clock alternating automata
with co-Büchi acceptance conditions is undecidable. However one can express
MTL formulas using a particularly simple acceptance condition—the so-called

1100 P.A. Abdulla et al.

weak parity acceptance condition2. It does not seem possible to capture the timed
language Lbound by an MTL formula, or, more generally, a one-clock alternating
automata with weak parity acceptance conditions. So it remains possible that the
satisfiability problem for MTL is decidable, and we are currently investigating
this question.

References

1. P. Abdulla and B. Jonsson. Undecidable Verification Problems with Unreliable
Channels. Information and Computation 130:71–90, 1996.

2. P. Abdulla and B. Jonsson. Model checking of systems with many identical timed
processes. Theoretical Computer Science 290(1):241-264, 2003.

3. R. Alur and D. Dill. A Theory of Timed Automata. Theoretical Computer Science
126:183–235, 1994.

4. R. Alur, T. Feder and T. A. Henzinger. The Benefits of Relaxing Punctually.
Journal of the ACM 43:116–146, 1996.

5. R. Alur, L. Fix and T. A. Henzinger. Event-clock automata: a determinizable class
of timed automata. Theoretical Computer Science 211(1-2):253–273, 1999.

6. R. Alur and T. A. Henzinger. Real-time Logics: Complexity and Expressiveness.
Information and Computation 104:35–77, 1993.

7. R. Alur, S. La Torre and P. Madhusudan. Perturbed Timed Automata. Proc.
HSCC 05, LNCS 3414, Springer-Verlag, 2005.

8. R. Alur and P. Madhusudan. Decision problems for timed automata: A survey,
4th Intl. School on Formal Methods for Computer, Communication, and Software
Systems: Real Time, LNCS 3185, Springer-Verlag, 2004.

9. P. Bouyer, C. Dufourd, E. Fleury and A. Petit. Updatable timed automata. The-
oretical Computer Science 321(2-3):291-345, 2004.

10. G. Cécé, A. Finkel and S. Purushothaman Iyer. Unreliable Channels are Easier to
Verify Than Perfect Channels. Information and Computation 124:20–31, 1996.

11. A. Finkel and P. Schnoebelen. Well-Structured Transition Systems Everywhere!
Theoretical Computer Science 256(1-2):63–92, 2001.

12. T. A. Henzinger, P.W. Kopke, A. Puri and P. Varaiya. What’s Decidable About
Hybrid Automata? Journal of Computer and System Sciences 57:94–124, 1998.

13. T. A. Henzinger, Z. Manna, and A. Pnueli. What Good Are Digital Clocks? Proc.
ICALP 92, LNCS 623, Springer-Verlag, 1992.

14. J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

15. F. Laroussinie, N. Markey and P. Schnoebelen. Model Checking Timed Au-
tomata with One or Two Clocks. Proc. CONCUR 04, LNCS 3170, Springer-Verlag,
2004.

16. S. Lasota and I. Walukiewicz. Alternating Timed Automata. Proc. of FOSSACS 05,
LNCS 3441, Springer-Verlag, 2005.

17. S. Lasota and I. Walukiewicz. Personal communication, 2005.

2 In the untimed case an alternating automaton with a Büchi or co-Büchi acceptance
condition can be translated into an alternating automaton with a weak parity ac-
ceptance condition, however this translation does not apply in the timed case.

Decidability and Complexity Results 1101

18. R. Mayr. Undecidable problems in unreliable computations. Theoretical Computer
Science 1-3(297):337-354, 2003.

19. J. Ouaknine and J. Worrell. Universality and Language Inclusion for Open and
Closed Timed Automata. Proc. HSCC 03, LNCS 2623, Springer-Verlag, 2003.

20. J. Ouaknine and J. Worrell. On the Language Inclusion Problem for Timed Au-
tomata: Closing a Decidability Gap. Proc. LICS 04, IEEE, 2004.

21. J. Ouaknine and J. Worrell. On the Decidability of Metric Temporal Logic. Proc.
LICS 05, IEEE, 2005.

22. P. Schnoebelen. Verifying Lossy Channel Systems has Nonprimitive Recursive
Complexity. Information Processing Letters 83(5):251–261, 2002.

Congruences for Visibly Pushdown Languages�

Rajeev Alur1, Viraj Kumar2, P. Madhusudan2, and Mahesh Viswanathan2

1 University of Pennsylvania, Philadelphia, PA, USA
alur@cis.upenn.edu

2 University of Illinois at Urbana-Champaign, Urbana, IL, USA
{kumar, madhu, vmahesh}@cs.uiuc.edu

Abstract. We study congruences on words in order to characterize the
class of visibly pushdown languages (Vpl), a subclass of context-free
languages. For any language L, we define a natural congruence on words
that resembles the syntactic congruence for regular languages, such that
this congruence is of finite index if, and only if, L is a Vpl. We then
study the problem of finding canonical minimal deterministic automata
for Vpls. Though Vpls in general do not have unique minimal automata,
we consider a subclass of VPAs called k-module single-entry VPAs that
correspond to programs with recursive procedures without input parame-
ters, and show that the class of well-matched Vpls do indeed have unique
minimal k-module single-entry automata. We also give a polynomial time
algorithm that minimizes such k-module single-entry VPAs.

1 Introduction

The class of visibly pushdown languages (Vpl), introduced in [1], is a subclass
of context-free languages accepted by pushdown automata in which the input
letter determines the type of operation permitted on the stack. Visibly push-
down languages are closed under all boolean operations, and problems such as
inclusion, that are undecidable for context-free languages, are decidable for Vpl.
Vpls are relevant to several applications that use context-free languages such as
the model-checking of software programs using their pushdown models [1, 2, 3].
Recent work has shown applications in other contexts: in modeling semantics
of effects in processing XML streams [4], in game semantics for programming
languages [5], and in identifying larger classes of pushdown specifications that
admit decidable problems for infinite games on pushdown graphs [6].

Our main result in this paper is a characterization of the class of Vpls in
terms of congruences on strings. It is well known that the syntactic congruence,
which is defined as w1 ≈ w2 when for every u, v, uw1v ∈ L if and only if
uw2v ∈ L, has finite index precisely for languages L that are regular. Our central

� This research was partially supported by ARO URI award DAAD19-01-1-0473,
NSF awards CCR-0306382 and CCF 04-29639, and DARPA/AFOSR MURI award
F49620-02-1-0325.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 1102–1114, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Congruences for Visibly Pushdown Languages 1103

thesis is that for Vpls L, when we restrict our attention to well-matched words
w1 and w2 (i.e., words where every push transition has a corresponding pop
transition and vice versa), the syntactic congruence has finite index. Moreover,
for languages consisting only of well-matched words, if the syntactic congruence
on well-matched words has finite index then the language is a Vpl. For languages
containing strings that are not well-matched, we need some additional conditions
only because no congruence on well-matched words can saturate such a language.
Our characterization of Vpls is a natural generalization of the Myhill-Nerode
theorem for regular languages— when restricted to languages that do not require
any push or pop operations, our congruence coincides with the right congruence
defined by Myhill and Nerode [7, 8].

One important consequence of the congruence based characterization of reg-
ular (word) languages and regular tree languages is that for any regular language
there is a unique minimum state deterministic automaton recognizing the lan-
guage, which can also be constructed efficiently [8, 9]. For Vpls, however, we
show that in general there is no unique minimum state recognizer. Thus, while
our characterization yields the construction of a canonical deterministic accep-
tor for Vpls, it may not in general be minimal. An implicit consequence of the
results in [1] is that Vpls have canonical deterministic pushdown automata. It
is shown in [1] that with any language L, a language of trees called stack trees,
can be associated such that L is a Vpl exactly when the corresponding set of
stack trees form a regular tree language. The unique minimal bottom-up tree
automaton accepting the language of stack trees can then be translated to a
canonical deterministic visibly pushdown automaton. However, since bottom-up
tree automata can only be translated into deterministic pushdown automata
with exponentially more states, the implicit construction in [1] does not result
in necessarily small deterministic Vpas.

Visibly pushdown automata are a natural model for programs with recursive
procedure calls and finite data types. Such programs are called Boolean programs
in the literature on software model checking [3]. When modeling a program as
a visibly pushdown automaton, the natural structure the model assumes is one
where the machine’s states are partitioned into k modules, one for each procedure
in the program. As one expects, these modules are such that from a state in a
module, a sequence of calls and returns to other modules results in a state of
the same module. Moreover, if the programs modeled are such that the calls to
modules have no input parameters (or if a function is modeled separately for each
possible value of its input parameters), then the visibly pushdown automaton
assumes additional structure, namely that every call results in going to a unique
state in the module corresponding to the call. We call such structured VPAs k-
module single-entry VPAs (k-SEVPAs). They correspond roughly to the model
of recursive state machines with a single entry per module [10].

Though visibly pushdown languages in general do not have unique minimum-
state recognizers, partitioning the calls into the modules they correspond to
fixes enough additional structure that there is a minimum-state k-SEVPA that
respects the partition and accepts the language. More precisely, we show that

1104 R. Alur et al.

for any partition of the call-alphabet into k-sets, there is a unique minimum-
state k-SEVPA accepting any well-matched Vpl L. If k = 0 (that is, there
are no calls), the result is equivalent to the Myhill-Nerode theorem for regular
languages. The characterization of this unique minimal k-SEVPA is done via a
set of k + 1 congruences on words. We also present an algorithm which, given
any deterministic k-SEVPA accepting a well-matched language, minimizes it in
O(n3) time, where n is the size of the original machine.

The rest of the paper is organized as follows. We first recall the definitions of
visibly pushdown languages and visibly pushdown automata in Section 2. Our
main result characterizing visibly pushdown languages in terms of language the-
oretic congruences is presented in Section 3. We also show that Vpls, in general,
do not have unique minimum state deterministic recognizers. In Section 4, we
define the notion of how partitions on calls define k-module single-entry VPAs
and prove that every (well-matched) Vpl has a unique minimal k-SEVPA ac-
cepting it. We also present an example of a family of languages for which the
minimal 1-module machine is super polynomial in the size of the smallest vis-
ibly pushdown automaton recognizing it. Conclusions and open problems are
presented in Section 5.

2 Preliminaries

In this section, we recall definitions of visibly pushdown automata and visibly
pushdown languages, and introduce some notation that we will use in the rest of
the paper.

Pushdown Alphabet. A pushdown alphabet is a tuple Σ̂ = (Σcall,Σret,Σint) that
comprises three disjoint finite alphabets— Σcall is a finite set of calls, Σret is a
finite set of returns, and Σint is a finite set of internal actions. For any such Σ̂,
let Σ = Σcall ∪Σret ∪Σint. In the paper we will use u, v,u1, . . . for strings in Σ∗,
c, c1, ci, . . . for elements of Σcall, r, r1, ri, . . . for elements of Σret, and i, i1, ij , . . .
for elements of Σint.

Visibly Pushdown Automata. For visibly pushdown automata, unlike the case
of pushdown automata, it turns out that deterministic VPAs are as power-
ful as a non-deterministic VPAs [1]. In light of this, we will only consider de-
terministic VPAs. A visibly pushdown automaton (VPA) on finite strings over
Σ̂ = (Σcall,Σret,Σint) is a tuple M = (Q, q0, Γ, δ,QF) where Q is a finite set of
states, q0 ∈ Q is the initial state, Γ is a finite stack alphabet that contains a
special bottom-of-stack symbol ⊥, δ = δcall ∪ δret ∪ δint is the transition func-
tion, where δcall : Q × Σcall → Q × (Γ \ {⊥}), δret : Q × Σret × Γ → Q, and
δint : Q×Σint → Q, and QF ⊆ Q is a set of final states.

If δcall(q, c) = (q′, γ), where c ∈ Σcall and γ �= ⊥, there is a push-transition
from q on input c where on reading c, γ is pushed onto the stack and the control

changes from state q to q′; we denote such a transition by q
c/γ−−→ q′. Similarly, if

δret(q, r, γ) = q′, there is a pop-transition from q on input r where γ is read from

Congruences for Visibly Pushdown Languages 1105

the top of the stack and popped (if the top of the stack is ⊥, then it is read but
not popped), and the control changes from q to q′; we denote such a transition

by q
r/γ−−→ q′. If δint(q, i) = q′, there is an internal-transition from q on input i

where on reading i, the state changes from q to q′; we denote such a transition
by q

i−→ q′. Note that there are no stack operations on internal transitions.

Acceptance. A stack is a non-empty finite sequence over Γ ending in the bottom-
of-stack symbol ⊥. The set of all stacks is denoted as St = (Γ \ {⊥})∗ · {⊥}. A
configuration is a pair (q,σ) such that q is a state and σ ∈ St . The transition
function of a VPA can be used to define how the configuration of the machine
changes in a single step: we say δ((q,σ), a) = (q′, a′) 1 if one of the following
holds:

1. If a ∈ Σcall then there exists γ ∈ Γ such that δcall(q, a) = (q′, γ) and σ′ = γ ·σ
2. If a ∈ Σret, then there exists γ ∈ Γ such that δret(q, a, γ) = q′ and either

γ �= ⊥ and σ = γ · σ′, or γ = ⊥ and σ = σ′ = ⊥
3. If a ∈ Σint is an internal action, then δint(q, a) = q′ and σ′ = σ

The transitive closure of the single-step transition function, which we also denote
by δ, can be easily defined in the standard inductive manner. For a stack σ ∈ St ,
we define the function δσ : Q×Σ∗ → Q as δσ(q,u) = q′ whenever δ((q,σ),u) =
(q′,σ′) for some σ′ ∈ St .

A string u ∈ Σ∗ is accepted by VPA M if δ⊥(q0,u) ∈ QF . The language of
M , L(M), is the set of strings accepted by M .

Visibly Pushdown Languages. A language over finite strings L ⊆ Σ∗ is a visibly
pushdown language (Vpl) with respect to Σ̂ (a Σ̂-Vpl) if there is a VPA M

over Σ̂ such that L(M) = L.

Matched calls and returns. Let MR(Σ̂) denote the set of all strings where every
return has a matched call before it, i.e. u ∈ MR(Σ̂) if for every prefix u′ of
u, the number of return symbols in u′ is at most the number of call symbols
in u′. Similarly, let MC (Σ̂) denote the set of all strings where every call has a
matching return after it, i.e. u ∈ MC (Σ̂) if for every suffix u′ of u, the number
of call symbols in u′ is at most the number of return symbols in u′. The set of
well-matched strings over Σ̂ is WM (Σ̂) = MR(Σ̂) ∩MC (Σ̂).

A Σ̂-Vpl L is said to be well-matched if L ⊆WM (Σ̂).

Remark 1. For every w ∈WM (Σ̂), there is a unique matching between call and
return symbols such that every call-symbol always precedes its matching return-
symbol and the substring w′ between a matching pair of call and return symbols
is a well-matched string.

1 We abuse notation and use δ for both the transition function of the automaton and
the single step transition function on configurations.

1106 R. Alur et al.

3 Congruence Based Characterization of Vpls

In this section we present a congruence based characterization of when a language
over Σ̂ is a visibly pushdown language. Before presenting the characterization
for general Vpls, we first consider the case of Vpls that have only well-matched
words.

3.1 Well-Matched Visibly Pushdown Languages

For a language L over the pushdown alphabet Σ̂ = (Σcall,Σret,Σint), consider
the following congruence on well-matched words:

w1 ≈ w2 iff ∀u, v ∈ Σ∗, uw1v ∈ L iff uw2v ∈ L

Recall that this is the standard syntactic congruence restricted to well-matched
words over Σ̂. For example, if Σ̂ = ({c}, {r}, ∅) and L = {cn.rn | n ≥ 0}, then
there are only two equivalence classes that ≈ defines: {cnrn | n ≥ 0} and the
complement of this set with respect to WM (Σ̂).

Analogous to the case of regular languages, the finiteness of the number of
equivalence classes of the syntactic congruence (on well-matched words) provides
a precise characterization of well-matched Vpls.

Theorem 1. L is a well-matched Σ̂-Vpl iff ≈ (as defined above) has finitely
many equivalence classes.

Proof. Suppose L is a Σ̂-Vpl and M = (Q, q0, Γ, δ,QF) is a VPA over Σ̂ with
(unique) initial state q0 such that L(M) = L. Every well-matched string w
defines a function fw : Q→ Q as follows: fw(q) = δ⊥(q, w). Define the following
equivalence on well-matched strings:

w1 ≈M w2 iff fw1 = fw2

Observe that ≈M has finitely many equivalence classes (bounded by |Q||Q|). We
will show that ≈M is a refinement of ≈, thus establishing that ≈ is also of finite
index. Consider w1 ≈M w2. Then for any u, v ∈ Σ∗, we know

δ((q0,⊥),uw1v) = δ(δ(δ((q0,⊥),u), w1), v)
= δ(δ(δ((q0,⊥),u), w2), v) since fw1 = fw2

= δ((q0,⊥),uw2v)

Hence uw1v ∈ L iff uw2v ∈ L, and so w1 ≈ w2. Thus ≈M is a refinement of ≈.
Observe that this proof does not rely on L being a well-matched language.

To prove the converse, consider a language L such that ≈ is of finite index. We
construct a deterministic (but incomplete2) VPA that recognizes L and whose

2 A VPA is incomplete if the transition function δ is not total. An incomplete VPA
can be easily modified to yield a VPA with at most one extra “dead” state to which
all undefined transitions go.

Congruences for Visibly Pushdown Languages 1107

states are the equivalence classes of ≈. Consider a string with no unmatched re-
turns u = w1c1w2c2 · · · ckwk+1 ∈ MR(Σ̂), where c1, . . . ck are the unmatched call
symbols in u, and w1, . . .wk+1 are well-matched strings between the unmatched
call symbols. The automaton we construct will maintain the following invariant:
after reading the string u ∈ MR(Σ̂), the state of the machine will be [wk+1]≈
and the stack will be ([wk]≈, ck)([wk−1]≈, ck−1) · · · ([w1]≈, c1)⊥.

The formal construction of VPA M = (Q, q0, Γ, δ,QF) is as follows: Q =
{[w]≈ |w ∈WM (Σ̂)}, q0 = [ε]≈, Γ = {⊥}∪(Q×Σcall), and QF = {[w]≈ |w ∈ L}.
The transition function δ is defined as follows.

– [w]≈
i−→ [wi]≈ for every i ∈ Σint

– [w]≈
c/([w]≈,c)−−−−−−→ [ε]≈ for every c ∈ Σcall

– [w]≈
r/([w′]≈,c)−−−−−−−→ [w′cwr]≈ for every r ∈ Σret

The above machine has no pop transitions when ⊥ is the only symbol on the
stack. Observe that the definitions ofQF and δ are sound because≈ saturates L 3

and ≈ is a congruence with respect to well-matched words. Further, it is easy to
verify that the above invariant is maintained. Thus, after reading a well-matched
word w, the automaton will be in the state [w]≈ and hence L = L(M)∩WM (Σ̂).
Since WM (Σ̂) is a Vpl, and Vpls are closed under intersection, the result
follows. ��

3.2 General Visibly Pushdown Languages

For visibly pushdown languages that are not necessarily well-matched, ≈ being
of finite index is not sufficient. This is because ≈ is no longer a congruence that
saturates the Vpl. We need to define two additional congruences on strings—
one that will capture the behavior of a state when the stack only has ⊥, and one
that will capture the behavior when the stack has more than one element. The
reason we need to distinguish the cases of the stack having only ⊥ and that of the
stack having additional elements, is because symbols in Σret behave differently.
In the first case, elements of Σret are like internal actions which leave the stack
unchanged, and in the second case they result in the stack being popped.

For a language L over Σ̂, define the following congruences.

For u1,u2 ∈ Σ∗, u1 ≡ u2 iff ∀v ∈ MR(Σ̂). u1v ∈ L iff u2v ∈ L
For u1,u2 ∈ MC (Σ̂), u1 ∼0 u2 iff ∀v ∈ Σ∗. u1v ∈ L iff u2v ∈ L

Intuitively, the congruence ≡ says that the two strings u1 and u2 cannot be
distinguished by experiments (v ∈ MR(Σ̂)) that do not examine the stacks
reached on u1 and u2. The congruence ∼0 is only defined on strings where every
call is matched. Thus, after reading such a word, any VPA will only have⊥ on the
stack. Starting from such configurations, as was observed earlier, return symbols

3 An equivalence ≡ saturates L iff either [w]≡∩L = ∅ or [w]≡ ⊆ L, for any equivalence
class [w]≡ of ≡.

1108 R. Alur et al.

behave like internal actions, and the congruence is the usual Myhill-Nerode right
congruence. We now present the main theorem of this paper.

Theorem 2. L is a Σ̂-Vpl iff ≈, ≡ and ∼0 all have finite index.

Proof. For a Vpl L, let M = (Q, q0, Γ, δ,QF) be a VPA recognizing L. In the
proof of Theorem 1, we already showed that ≈ will have finite index. Define the
following two equivalences over words in Σ∗:

u1 ≡M u2 iff δ⊥(q0,u1) = δ⊥(q0,u2)
u1∼0

Mu2 iff δ⊥(q0,u1) = δ⊥(q0,u2)

It can be shown that ≡M refines ≡, and ∼M
0 refines ∼0 when restricted to

MC (Σ̂) (proof skipped in the interests of space). Hence, both ≡ and ∼0 have
finitely many equivalence classes.

For the converse, we show that L is a Vpl by once again constructing a VPA
M whose states are equivalence classes of the congruences we have defined,
but the construction is a bit more involved. The main intuition behind the
construction is to ensure that the following invariant is maintained after M
has read a string u ∈ Σ∗

– If u ∈ MC (Σ̂) then the state of M is [u]∼0 and the stack is ⊥.
– If u = vc1w1 · · · ckwk, where v ∈ MC (Σ̂), each wj ∈ WM (Σ̂), and each

cj ∈ Σcall, then M is in state ([u]≡, [wk]≈) and the stack is
([wk−1]≈, ck) · · · ([w1]≈, c2)([v]∼0 , c1)⊥.

The formal construction of M is as follows. M = (Q, q0, Γ, δ,QF) where
Q = {[u]∼0 | u ∈ MC (Σ̂)} ∪ {([u]≡, [w]≈) | u ∈ Σ∗, w ∈WM (Σ̂)}; q0 = [ε]∼0 ;
Γ = Q × Σcall ∪ {⊥}; QF = {[u]∼0 | u ∈ L} ∪ {([u]≡, [w]≈) | u ∈ L}; and δ is
defined as follows:

– [u]∼0

i−→ [ui]∼0 for every i ∈ Σint

– [u]∼0

c/([u]∼0 ,c)−−−−−−−→ ([uc]≡, [ε]≈) for every c ∈ Σcall

– [u]∼0

r/⊥−−→ [ur]∼0 for every r ∈ Σret

– ([u]≡, [w]≈) i−→ ([ui]≡, [wi]≈) for every i ∈ Σint

– ([u]≡, [w]≈)
c/(([u]≡,[w]≈),c)−−−−−−−−−−−→ ([uc]≡, [ε]≈) for every c ∈ Σcall

– ([u]≡, [w]≈)
r/([u′]∼0 ,c)−−−−−−−→ [u′cwr]∼0 for every r ∈ Σret

– ([u]≡, [w]≈)
r/(([u′]≡,[w′]≈),c)−−−−−−−−−−−−→ ([u′cwr]≡, [w′cwr]≈) for every r ∈ Σret

The correctness of the construction relies on the intuition outlined earlier and is
skipped in the interests of space. ��

Remark 2. Note that in the case where Σcall = Σret = ∅ (i.e. for regular lan-
guages), the machine M constructed in Theorem 2 is the unique minimum-state

Congruences for Visibly Pushdown Languages 1109

q0

q1 q2

q3 q4

c1/x c2/x

q5

r/x r/x

a

a b

b

b

b a

a

q0

q1

q5q2 q4

q3

r/x,y

r/x r/y

b

b

a
a

a

b

b

a

c2/yc1/x

Fig. 1. Two non-isomorphic minimum-state VPAs

automaton for L because the only reachable states will be of the form [w]∼0 ,
where w ∈ Σ∗.

Despite the above remark, the VPA M constructed in Theorem 2 need not
be a minimum-state Σ̂-VPA accepting L. Furthermore,

Proposition 1. There are Vpls that have no unique minimum-state VPA ac-
cepting them.

To illustrate the above proposition, consider the VPAs in Figure 1. Let Σ̂ =
({c1, c2}, {r}, {a, b}). Let L = c1L1r + c2L2r, where L1 is the regular language
over {a, b} such that the number of a’s is even, and L2 is the regular language over
{a, b} such that the number of b’s is even. The figure shows two non-isomorphic
minimum-state Σ̂-VPAs accepting L. In both machines, the initial state is q0

and the following transitions have been omitted in the figure for readability: in

both machines, every call-transition not shown is of the form q
cj/z−−−→ q2, and

every other transition not shown goes to state q2.
Notice that the first machine consists of two distinct “modules”, one rec-

ognizing L1 and one recognizing L2, and the call symbol c1 or c2 determines
which module is “invoked”. In contrast, the second machine consists of a sin-
gle recognizer for both L1 and L2, and this module is invoked regardless of the
call symbol. As this example illustrates, it is not clear when splitting the task
of recognition into distinct modules reduces the total number of states in the
VPA. In the following section, we consider a restricted class of VPAs for which
the partition of the VPA into modules has already been provided and the call-
symbol determines which module is to be invoked. The task then is to minimize
the number of states of the automaton, while preserving the given partition of
states into modules.

1110 R. Alur et al.

4 k-Module Single-Entry Visibly Pushdown Automata

In this section we show that the class of well-matched Vpls have unique minimum-
state k-module single-entry automata (k-SEVPA). As mentioned in the introduc-
tion, these automata are motivated by models of programs with finite data-types,
and are similar to single-entry recursive state machines [10] (see [11] for a precise
comparison).

k-SEVPAs. Let {Σj
call}k

j=1 be a partition of Σcall. A VPA M = (Q, q0, Γ, δ,QF)
is a k-module single-entry VPA with respect to {Σj

call}k
j=1 if there is a partition

{Qj}k
j=0 of Q and distinguished states qj ∈ Qj for every j = 1, . . . , k such that:

1. QF ⊆ Q0, q0 ∈ Q0;
2. Γ = {⊥} ∪ (Q×Σcall);
3. if q

i−→ q′ for some i ∈ Σint, then ∃j. q, q′ ∈ Qj ;

4. if q
c/(q,c)−−−−→ q′ for some c ∈ Σj

call, then q′ = qj ;

5. if q′
r/(q,c)−−−−→ q′′ for some c ∈ Σcall, then ∃j. q, q′′ ∈ Qj .

Intuitively, Q0 is the base module (corresponding to the ‘main’ module of a
program), and the transition relation is such that a call leads to a unique state
in the module corresponding to the call (in models of programs, this state will be
the initial control state of the function called), and upon return will return to the
calling module. Such automata are no less expressive than VPAs: as Theorem 3
below shows, for any partition of call symbols, any well-matched VPL is accepted
by some k-SEVPA.

We use the abbreviation k-SEVPA for such machines and explicitly denote
them asM = ((Q, q0, Γ, δ,QF), {Σ1

call, . . . ,Σ
k
call}, {Q0, . . . ,Qk}, {q1, . . . , qk}). For

example, for the first VPA in Figure 1, given the partition Σcall = {{c1}, {c2}},
there is a partition of Q as {Q0,Q1,Q2}, where Q0 = {q0, q5}, Q1 = {q1, q3},
and Q2 = {q2, q4} witnessing the fact that this is a 2-SEVPA. Similarly, for the
second VPA, given the partition Σcall = {{c1, c2}}, there is a partition of Q as
{Q0,Q1}, where Q0 = {q0, q5} and Q1 = {q1, q2, q3, q4} establishing that it is a
1-SEVPA.

Remark 3. The automaton constructed in Theorem 1 is a 1-SEVPA. However,
in general, this VPA will be much bigger than the smallest 1-SEVPA. The reason
for this is similar to the reason why the finite automaton constructed for regular
languages from the syntactic congruence is much larger than that obtained from
the syntactic right congruence. Thus, in order to characterize the minimal k-
SEVPAs, we need a new congruence that partitions words like the Myhill-Nerode
right congruence does for regular languages.

In our construction of the minimal k-SEVPA for a language L, we will use
k + 1 congruences. To model the case when the stack only has ⊥, we will use
∼0 (defined in Section 3.2 on strings with matched calls). For the case when
the stack has additional symbols, we need k new congruences that make use of

Congruences for Visibly Pushdown Languages 1111

the fact that the states of the machine are partitioned into k modules identified
by the call symbol. Given a k-SEVPA M = (M ′, {Σj

call}k
j=1, {Qj}k

j=0, {qj}k
j=1)

accepting a language L over Σ̂, define the following congruences on well-matched
strings: for every j = 1, . . . , k,

w1 ∼j w2 iff ∀u, v ∈ Σ∗∀c ∈ Σj
call. ucw1v ∈ L iff ucw2v ∈ L

Since ∼j ’s will be used to define states when the stack has more than just ⊥,
when defining the equivalence we only need to consider contexts where there is
an unmatched call. We are ready to present the main theorem of this section.

Theorem 3. For any well-matched Σ̂-Vpl L and any partition {Σj
call}k

j=1 of
Σcall, there is a unique (upto isomorphism) minimum-state k-SEVPA for L with
respect to this partition.

Proof. We first show that given any partition {Σcall}k
j=1 of Σcall, there is a k-

SEVPA M that recognizes L. We construct M using the equivalences {∼j}k
j=1

and ∼0 (defined in Section 3.2 on strings with matched calls). We then show
that this machine M is the unique minimum-state k-SEVPA that recognizes L.
The construction of M relies on the observation that ∼0 and ∼j ’s all have finite
index if L is a Vpl. From Theorems 1 and 2, we know that when L is a Vpl,
∼0 and ≈ are of finite index. Since ≈ is a refinement of ∼j for every j, it follows
that all ∼j ’s are also of finite index. For 0 ≤ j ≤ k, we use the notation [u]j to
denote the equivalence class of ∼j containing u.

The formal construction of M = ((Q, q0, Γ, δ,QF), {Σj
call}k

j=1, {Qj}k
j=0,

{qj}k
j=1) is: Q0 = {[u]0 | u ∈ MC (Σ̂)}, and for every j = 1, . . . , k, Qj =

{[w]j | w ∈WM (Σ̂)}. For every j ≥ 0, qj = [ε]j , and QF = {[u]0 | u ∈ L}.
The transition function δ is given as follows.

– For every i ∈ Σint and j ≥ 0, [u]j
i−→ [ui]j

– For every c ∈ Σj′
call and j ≥ 0, [u]j

c/([u]j ,c)−−−−−−→ [ε]j′

– For every r ∈ Σret and j, j′ ≥ 0, [w]j
r/([u]j′ ,c)−−−−−−→ [ucwr]j′

– For every r ∈ Σret, [u]0
r/⊥−−→ [ur]0

QF is well-defined because ∼0 is an equivalence that saturates L. The transition
function is consistent because u1i ∼j u2i whenever u1 ∼j u2 and i ∈ Σint, and
because when u1 ∼j′ u2 and w1 ∼j w2, u1cw1r ∼j′ u2cw2r for every j > 0, j′ ≥ 0
and c ∈ Σj

call, r ∈ Σret. Thus, the above machine is well defined. Further observe
that the following invariant is maintained during the execution: after reading a
string u

– If u ∈ MC (Σ̂) then the state of M is [u]0 and the stack is ⊥.
– If u = vc1w1 . . . clwl, where v ∈ MC (Σ̂), each cj ∈ Σ

mj

call and each wj ∈
WM (Σ̂), then the state of M is [wl]ml

and the stack is
([wl−1]ml−1 , cl) . . . ([w1]m1 , c2)([v]0, c1)⊥.

1112 R. Alur et al.

Hence, if a string reaches a final state, we are guaranteed that the stack only
has ⊥, and recognizes L. The formal proof of correctness is skipped.

Consider any k-SEVPA M ′ = ((Q′, q′0, Γ
′, δ′,Q′F), {Σj

call}k
j=1, {Q′j}k

j=0,

{q′j}k
j=1) recognizing L. We show that M is the unique minimum-state k-SEVPA

by demonstrating a homomorphism from M ′ to M . In other words, we construct
an onto function f :

⋃
j≥0Q

′
j →

⋃
j≥0Qj having the following properties.

1. f(q′j) = qj for every j ≥ 0

2. For any i ∈ Σint, if p′
i−→M ′ q′ then f(p′) i−→M f(q′)

3. For any c ∈ Σcall, if p′
c/(p′,c)−−−−−→M ′ q′ then f(p′)

c/(f(p′),c)−−−−−−−→M f(q′)

4. For any r ∈ Σret, if p′
r/(s′,c)−−−−−→M ′ q′ then f(p′)

r/(f(s′),c)−−−−−−−→M f(q′)

Thus, we will be able to conclude that | ∪Q′j | ≥ | ∪Qj |, and if | ∪Q′j | = | ∪Qj |
then f witnesses an isomorphism between M and M ′.

The homomorphism f from M ′ to M is defined as follows:

f(q′) =

{
[u]0 if ∃u ∈ MC (Σ̂). δ′⊥(q′0,u) = q′

[w]j if ∃u ∈ Σ∗, c ∈ Σj
call, w ∈WM (Σ̂). δ′⊥(q′0,ucw) = q′

Note that f(q′j) = [ε]j for every 0 ≤ j ≤ k. Observe that f maps states of Q′j
to the equivalence classes of ∼j for every 0 ≤ j ≤ k. We need to show that f is
well defined, i.e., f is indeed a function and does not map a state of M ′ to two
different states of M . This follows from the following lemma.

Lemma 1. If u1,u2 ∈ MC (Σ̂) are such that δ′⊥(q′0,u1) = δ′⊥(q′0,u2), then u1 ∼0

u2. In addition, for well-matched strings w1 and w2 and every j = 1, . . . , k, if
δ′⊥(q′j , w1) = δ′⊥(q′j , w2) then w1 ∼j w2.

The proof of the above lemma is similar to the proofs in Theorems 1 and 2
where we show our congruences to have finite index. Thus, f is indeed a function.
Further, f is clearly onto. Also, f preserves initial state and distinguished states
qj , by definition. It preserves the transitions of M ′ because ∼0 and ∼j ’s are
congruences. This completes the proof that there is a unique minimum-state
k-SEVPA. ��

While the above theorem shows that each (well-matched) Vpl has a unique
k-SEVPA with respect to a given partition of Σcall, the constructed machine
may be much bigger than the smallest VPA recognizing the language because in
a k-SEVPA, each module is constrained to have a unique “entry” (an entry is the
destination of a push-transition). The presence of multiple entries can greatly
reduce the size of the VPA as the following proposition shows.

Proposition 2. For positive integers m,n, there is a family of well-matched
Vpls Lm,n such that the smallest VPA recognizing Lm,n has at most O(nm)
states, while the smallest 1-SEVPA recognizing Lm,n has at least nm states.

Congruences for Visibly Pushdown Languages 1113

As the following theorem states, there is an efficient algorithm to minimize
k-SEVPAs. The algorithm is omitted due to lack of space, but can be found
along with the proof of correctness and complexity analysis in [11].

Theorem 4. Given a k-SEVPA M with respect to a partition {Σj
call}k

j=1 of
Σcall accepting a well-matched language L, the unique minimum-state k-SEVPA
with respect to {Σj

call}j that accepts L can be computed in time O(n3), where n
is the size M .

5 Conclusions

We presented a characterization of Vpls in terms of congruences on strings of
finite index and gave constructions of canonical automata recognizing visibly
pushdown languages. We showed that while Vpls in general do not have unique
minimum-state deterministic recognizers, the class of well-matched Vpls do have
unique minimal k-module single-entry deterministic visibly pushdown automata
(k-SEVPAs) for any fixed partition of the call symbols.

Our constructions of visibly pushdown automata based on congruences can,
in general, result in automata with exponentially more states than a smallest
deterministic visibly pushdown automaton recognizing the language. A char-
acterization and construction of visibly pushdown automata that are at most
polynomial in the size of the smallest automaton recognizing a language is an
interesting open problem.

We presented a minimization algorithm for k-SEVPAs that runs in time
O(n3). The computational complexity of the problem of constructing the small-
est k-SEVPA given any visibly pushdown automaton (not necessarily k-module)
is open, and would be interesting to investigate.

Acknowledgements. We would like to thank a referee for strengthening the
lower bound for Proposition 2.

References

1. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proceedings of STOC
’04, ACM Press (2004) 202–211

2. Alur, R., Etessami, K., Madhusudan, P.: A temporal logic of nested calls
and returns. In: Proceedings of TACAS ’04. LNCS 2988, Springer (2004)
467–481

3. Ball, T., Rajamani, S.: Bebop: A symbolic model checker for boolean programs.
In: SPIN 2000 Workshop on Model Checking of Software. LNCS 1885. Springer
(2000) 113–130

4. Pitcher, C.: Visibly pushdown expression effects for XML stream processing. In:
Programming Language Technologies for XML. (2005) 1–14

5. Murawski, A., Walukiewicz, I.: Third-order idealized algol with iteration is decid-
able. In: FOSSACS. 3441 (2005) 202–218

6. Löding, C., Madhusudan, P., Serre, O.: Visibly pushdown games. In: Proceedings
of FSTTCS’04. LNCS (2004)

1114 R. Alur et al.

7. Nerode, A.: Linear automaton transformations. In: Proc. AMS. Volume 9. (1958)
541–544

8. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison Wesley (1979)

9. Hopcroft, J.E.: An n log n algorithm for minimizing the states in a finite au-
tomaton. In: The Theory of Machines and Computations. Acad. Press (1971)
189–196

10. Alur, R., Benedikt, M., Etessami, K., Godefroid, P., Reps, T., Yannkakis, M.: Anal-
ysis of recursive state machines. ACM Transactions on Programming Languages
and Systems (to appear) (2005)

11. Alur, R., Kumar, V., Madhusudan, P., Viswanathan, M.: Congruences for visibly
pushdown languages. Technical Report UIUCDCS-R-2005-2565, UIUC (2005)

Approximation Algorithms for
Euclidean Group TSP

Khaled Elbassioni, Aleksei V. Fishkin, Nabil H. Mustafa, and René Sitters

Max-Planck-Institut für Informatik, Saarbrücken, Germany
{elbassio, avf, nmustafa, sitters}@mpi-sb.mpg.de

Abstract. In the Euclidean group Traveling Salesman Problem (TSP),
we are given a set of points P in the plane and a set of m connected re-
gions, each containing at least one point of P . We want to find a tour of
minimum length that visits at least one point in each region. This unifies
the TSP with Neighborhoods and the Group Steiner Tree problem. We
give a (9.1α + 1)-approximation algorithm for the case when the regions
are disjoint α-fat objects with possibly varying size. This considerably im-
proves the best results known, in this case, for both the group Steiner tree
problem and the TSP with Neighborhoods problem. We also give the first
O(1)-approximation algorithm for the problem with intersecting regions.

1 Introduction

A salesman wants to meet a set of potential buyers. Each buyer indicates a set of
potential locations where he or she can meet the buyer. The salesman would like
to minimize the total length of the tour required to meet all the potential buyers.
How to construct such a tour? This problem is a generalization of the classical
Traveling Salesman Problem (TSP), and hence is NP-hard. More formally, the
problem we study can be stated as follows.

Euclidean Group TSP. Given a set P of points in the Euclidean plane, and
m subsets {S1, . . . ,Sm} of P , one has to construct a tour on a set P ′ ⊆ P such
that P ′ contains at least one point from each subset (group) Si. The objective
is to minimize the length of the tour.

This model unifies two important separate bodies of research – the Group
Steiner Tree problem, and the Euclidean TSP with Neighborhoods problem,
which arise in VLSI design [RW90], and routing-related applications [Mit00].
We describe these problems in more detail.

Group Steiner Tree. Given a graph G on n vertices with non-negative weights
on the edges, and m subsets of vertices, the group Steiner tree problem calls for
computing a sub-tree of G which contains at least one vertex from each subset
(group), and whose total length is minimized.

Slavik [Sla97] presented an O(k)-approximation algorithm for the Group
Steiner Tree Problem in the metric case, where k is the maximum group size.
Using probabilistic tree embeddings together with randomized rounding, Garg

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 1115–1126, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1116 K. Elbassioni et al.

a) b)

Fig. 1. a) a tour in Euclidean Group TSP b) a tour in Euclidean TSP with Neighbor-
hoods

et al. [GKR00] obtained a randomized O(log3 n log m)-approximation algorithm
for the general case. On the negative side, it was observed (see e.g. [Sla96]) that
the problem is a direct generalization of the set covering problem, and hence is
NP-hard to approximate within a factor of o(log m).

A natural question is whether the above approximation ratio can be im-
proved, if we consider restricted versions of the problem. For example, when the
metric is Euclidean and each group is induced by a geometric object, such as a
disk in the plane.

Euclidean TSP with Neighborhoods (TSPN). Given m connected geo-
metric regions S1, . . . ,Sm in the Euclidean plane, find a minimum length tour
that hits each region at least once.

The TSPN is a generalization of the classical Euclidean TSP which is known
to be NP-hard [GGJ76, Pap77]. A 3/2-approximation algorithm, that works for
any metric, was given by Christofides [Chr76]. Arora and Mitchell [Aro98, Mit99]
independently obtained a (1 + ε)- approximation algorithm.

The TSPN was first studied by Arkin and Hassin [AH94]. They presented
constant-factor approximations for the case where the geometric regions are
translates of disjoint convex polygons, and for disjoint unit disks. For the gen-
eral problem, Mata and Mitchell [MM95], and later Gudmundsson and Lev-
copoulos [GL00], gave an O(log m)-approximation algorithm. Dumitrescu and
Mitchell [DM03] gave an O(1)-approximation algorithm for intersecting unit
disks. For disjoint varying-sized convex fat regions de Berg et al. [dBGK+02]
present a sophisticated algorithm with approximation ratio 12000α3, where α is a
measure of fatness of the regions. Their algorithm uses Slavik’s algorithm [Sla97]
for the Group Steiner tree problem, mentioned above. On the hardness side, Safra
and Schwartz [SS03] showed that approximating Euclidean TSPN within (2−ε)
is NP-hard.

By viewing each geometric region Si as an infinite set of points, the TSPN
becomes a special case of the Euclidean Group TSP. In this context, it is natural
to study the Euclidean Group TSP in which the point sets are separated by
geometric objects, such as disks or more generally fat objects (see Figure 1).

Approximation Algorithms for Euclidean Group TSP 1117

Our Results. As mentioned above, our problem relates to both the Group
Steiner Tree and the TSP with neighborhoods problems. Our algorithms improve
and give new results in both areas.

In Section 3 we consider the problem with disjoint regions and give a (9.1α+
1)-approximation algorithm for the problem where groups are enclosed by non-
intersecting α-fat objects of arbitrary size. This improves the previous best result
on the TSP with neighborhoods problem in several ways. First, we dramatically
reduce the previous best approximation factor of 12, 000α3 [dBGK+02]. Second,
our groups are arbitrary point sets S1, . . . ,Sm, separated by fat objects in the
Euclidean plane, whereas previous results only deal with the (continuous) case
where each set Si is the (infinite) set of points belonging to an object. We also
do not require the objects to be convex. Furthermore, our algorithm yields an
O(α/

√
d)-approximate solution for any dimension d. In contrast, it was shown

in [SS03] that TSP with neighborhoods in R3 is unlikely to be approximable
within O(log1/2 n), and thus, for d ≥ 3, it is unlikely that there is a approxima-
tion factor independent of both n and α.

In Section 4 we consider the variant of the problem in which the instances are
defined by m sets of points in the Euclidean plane and a set of m disks. Disks
may intersect and each disk defines a group consisting of the enclosed points.
Clearly, the intersection between disks admits much more complicated systems
of subsets than what we can get from the non-intersecting sets. We present an
O(1)-approximation algorithm for this problem.

2 Preliminaries

We consider instances of the Euclidean Group TSP in which the sets Si are
contained in geometric regions in the plane. Formally, we define a region as
a connected and closed subset of the Euclidean plane R2. An instance of our
problem is given by a finite set of points P and m subsets S1, . . . ,Sm of P .
The subsets have the property that there exist regions O1, O2, . . . , Om such that
Si = P ∩ Oi. A solution is given by a tour (spanning tree) on a subset P ′ of P
such that P ′ ∩ Si �= ∅. The objective is to minimize the length of the tour. We
denote an optimal tour (spanning tree) by Opt, and its length by |Opt|.

In this paper we restrict to so called fat regions. The definition of fatness we
use here was introduced by Van der Stappen [Sta94] and used by De Berg et
al. [dBGK+02] in their paper on the TSP with neighborhoods problem.

Definition 1. An object O ⊆ R2 is said to be α-fat if for any disk Θ which does
not fully contain O and whose center lies in O, the area of the intersection of O
and Θ is at least 1/α times the area of Θ.

Notice for example that the plane R2 has fatness 1, a halfspace has fatness 2
and a disk has fatness 4. We define the size of an object as the diameter of it’s
smallest enclosing disk.

1118 K. Elbassioni et al.

Lemma 1 (Packing Lemma). The length of the shortest path connecting c
disjoint α-fat objects in R2 is at least (c/α− 1)πS/4, where S is the size of the
smallest object.

Proof. Consider a path T that connects the c objects and let the center of a disk
with diameter S follow this path. At the point where the path touches a certain
object, the disk intersects its boundary and hence at least an 1/α fraction of the
disk at that point intersects the object. The total area covered by the moving
disk must be at least c/α times the area πS2/4 of the disk. On the other hand,
it is easy to see that the total area covered by a disk that follows a continuous
path T in R2 is at most πS2/4 + S|T |. Combining the upper and lower bound
on the area we get,

cπS2/(4α) ≤ πS2/4+S|T | ⇒ |T | ≥ (c/α−1)πS/4. ��

3 Varying-Sized Objects

In this section, we consider the case where the object O1, . . . , Om are pairwise
disjoint. Further, we assume that all objects have fatness at most α. However,
we do not put any restriction on the size of the objects, i.e., we do not assume
that objects have comparable sizes. The problem reduces to geometric TSP when
each set Si consists of a single point.

There exists a simple (m − 1)-approximation algorithm that we denote by
Greedy. We define the distance between a point p and a set X as d(p,X) =
minx∈X d(p, x).

Algorithm Greedy:

(1) Pick the points pi ∈ Si (i = 1 . . .m) that minimize
∑m

j=2 d(p1, pj).
(2) For all j ≥ 2, select twice the edge (p1, pj) and construct a tour by short

cutting the edges.

Lemma 2. Algorithm Greedy gives an (m−1)-approximate solution for Group
TSP.

Proof. Any TSP-tour contains two edge disjoint paths from S1 to Si for all
i ∈ {2, . . . , m}. Therefore, (m−1)|Opt| ≥ 2

∑m
i=2 d(p1, pi), which is at most the

length of the tour constructed by the algorithm. ��

By δi we denote the diameter of the point set Si, i.e. the largest distance
between any two points in Si. Notice that δi is at most the size of its enclosing
object. The following is an immediate corollary of Lemma 1.

Corollary 1. The length of the shortest path connecting c of the given sets
is at least (c/α − 1)πδ/4, where δ is the minimum of the diameters of the
sets.

Approximation Algorithms for Euclidean Group TSP 1119

Algorithm A:
(1) Order the point sets by their diameter δ1 ≤ δ2 ≤ . . . ≤ δm. Pick any p1 in S1.

For i = 2 up to m pick the point pi in Si that minimizes d(pi, {p1, . . . , pi−1}),
i.e. pick the point that is closest to the already chosen points.

(2) Construct a (1 + ε)-approximate TSP tour T on this set of m points.
(3) Output the minimum of T and the tour constructed by algorithm Greedy.

The second step can be done efficiently for any ε > 0 using techniques from [Aro98]
and [Mit99].

Theorem 1. Algorithm A gives a (1+ε)(9.1α+1)-approximate solution for the
group TSP with non-intersecting α-fat neighborhoods.

Proof. We assume m − 1 > 9.1α + 1 since we can use Greedy for smaller
values of m. Denote the set of points chosen by A as P ′ = {p1, . . . , pm}. Let
p∗i ∈ {p1, . . . , pi−1} be the point at minimum distance from pi and denote the
distance by xi.

Consider some optimal solution Opt and fix an orientation of this tour. We
choose some number c ∈ {1, . . . , m} and define Ti as the part of this directed
tour that connects exactly c sets and starts from the point in Si. Let ti be the
length of path Ti.

We choose c =
α(4/π + 1)�. Notice that c ∈ {1, . . . , m} is satisfied by the
assumption in the first line of the proof. (By choosing c a bit smaller we can get
a marginal improvement of the approximation ratio. Since this would make the
proof more complicated we omit this here.) Consider some i ∈ {1, . . . , m} and
let Sh(i) be a set with smallest diameter among those from the c sets on the path
Ti. Then, by Corollary 1 and the choice of c we have

ti ≥ (c/α− 1)πδh(i)/4 ≥ δh(i). (1)

Since Si is on this path Ti and we ordered the sets by their diameter we have
1 ≤ h(i) ≤ i. We distinguish two cases.

If hi = i, meaning that Si has smallest diameter, then by (1) we have

ti ≥ δi. (2)

Otherwise, if h(i) < i, then we argue as follows. Since the algorithm picked point
pi we know that the distance from any point in Si to the point ph(i) (which is
chosen before pi) is at least xi. Hence, the distance from any point in Si to any
point in Sh(i) is at least xi − δh(i), implying ti ≥ xi − δh(i). Together with (1)
this yields

ti ≥ max{δh(i), xi − δh(i)} ≥ xi/2. (3)

We will construct a tour on the set of points P ′ = {p1, . . . , pm} chosen by the
algorithm, using the bounds (2) and (3). Let H be the set of indices i for which
ti ≥ δi and let OptH be the smallest tour through the points {pi|i ∈ H}. Clearly,

|OptH | ≤ |Opt|+ 2
∑
i∈H

δi ≤ |Opt|+ 2
∑
i∈H

ti.

1120 K. Elbassioni et al.

Let H̄ = {1, . . . , m} \H. Then, by (3) we know that for any i ∈ H̄, the length
of the edge (pi, p

∗
i) equals xi ≤ 2ti. We add this edge twice for any i ∈ H̄ to the

tour OptH . Clearly, the resulting graph is Eulerian. Moreover, it is connected
since p1 ∈ H, and for any i we have p∗i = pj for some j < i. The total length of
the Eulerian graph is

|OptH |+ 2
∑
i∈H̄

d(pi, p
∗
i) ≤ |Opt|+ 2

∑
i∈H

ti + 2
∑
i∈H̄

2ti ≤ |Opt|+ 4
m∑

i=1

ti.

When we take the sum over all ti then every edge is counted c−1 times, implying
(c − 1)|Opt| =

∑m
i=1 ti. Substituting the value of c we conclude that the tour

given by our algorithm has length at most

(1 + ε)(1 + 4(c− 1))|Opt| < (1 + ε)(9.093α + 1)|Opt|.

��

The algorithm and proof apply directly to the Euclidean TSP with Neighbor-
hoods problem under the weak assumption that, given the points {p1, . . . , pi−1},
we can efficiently find the point pi in the infinite set of points Si that minimizes
d(pi, {p1, . . . , pi−1}).

Corollary 2. Algorithm A gives a (1 + ε)(9.1α + 1)-approximate solution for
the TSP with neighborhoods problem.

3.1 Higher Dimensions

The generalization of the definitions and lemma’s of the previous section to
higher dimensions is straightforward.

Definition 2. An object O ⊆ Rd is said to be α-fat if for any d-dimensional
sphere D which does not fully contain O and whose center lies in O, the volume
of the intersection of O and D is at least 1/α times the volume of D.

We denote the volume of a d-dimensional sphere with radius r by Vd(r).

Lemma 3. If the center of a d-dimensional sphere with radius r follows a path
T in Rd, then the volume covered by the sphere is at most |T |Vd−1(r) + Vd(r).

Lemma 4. The length of the shortest path connecting c disjoint α-fat objects is
at least (c/α− 1)Vd(r)/Vd−1(r), where r is half the size of the smallest object.

The volume of a d-dimensional sphere with radius r is

Vd(r) =
πd/2rd

Γ (d+2
2

)
,

where Γ is the well-known gamma function. For d ≥ 3 we get

Vd(r)
Vd−1(r)

= r
√
π

Γ ((d + 2)/2)
Γ ((d + 1)/2)

> r
√
πd/2.

Approximation Algorithms for Euclidean Group TSP 1121

For small values of K we can simply get a K-approximation as described in the
previous section. If we choose c such that (c/α − 1)

√
πd/2 = 1, then the proof

of Theorem 1 applies here without any adjustment.

Theorem 2. Algorithm A is an O(α/
√

d)-approximation algorithm for the TSP
in Rd with non-intersecting α-fat neighborhoods.

Notice that the approximation factor decreases in the dimension for constant α.
However, for bounded objects, α grows exponentially in d. For example, α = 2d

for a d-dimensional sphere.
Safra and Schwartz [SS03] showed that TSP with neighborhoods in R3 is

unlikely to be approximable within O(log1/2 n). Hence, there is little hope to
improve our result for d ≥ 3 to a ratio independent of the fatness α.

4 Intersecting Objects

In this section, we consider the case when the objects defining the sets S1, . . . ,Sm

are intersecting disks of the same radius r. We denote these disks by D =
{D1, . . . ,Dm}, and their centers by ci. Then Si = P ∩ Di, and assume that
P = S1 ∪ . . . ∪ Sm.

A subset P ′ ⊆ P is called a hitting pointset for D if P ′∩Si �= ∅ for i = 1, . . . , m
and a minimal hitting pointset if for every x ∈ P ′ there exists an i ∈ [m] such
that (P ′ \ {x}) ∩ Si = ∅. A minimal hitting set can be found by the natural
greedy algorithm: Set P ′ = P , and keep deleting points from P ′ as long as it is
still a hitting set. A (square) box B is called a covering box for the set of disks D
if B contains a hitting pointset for D, and a minimum covering box if it has the
smallest size amongst all such covering boxes. Since a minimum covering box
is determined by two points of P on its boundary, there are only O(n2) such
candidates. By enumerating over all such boxes, and verifying if they contain a
hitting set, one can compute a minimum covering box.
Consider the following algorithm for the Group TSP problem on the sets S1, . . . ,Sm.
Note that the last step can be done efficiently for any ε > 0 using techniques
from [Aro98] and [Mit99].

Algorithm B:
(1) Compute a minimum covering box B of D.
(2) Find a minimal hitting pointset P ′ ⊆ P for D inside B.
(3) Compute a (1 + ε)-approximate TSP tour on P ′.

To analyze the performance of the algorithm, we need the following lemma.

Lemma 5. Let B be a box of diameter L that contains P = {p1, . . . , pn}. Let
D = {D1, . . . ,Dn} be a collection of disks of radius r, such that (i) each point
p ∈ P is contained in exactly one disk D(p) ∈ D (ii) each disk D contains exactly
one point of P . Then there exists a tour T on P with length at most f(L/r)L,
where f(L/r) is defined in (5). In particular, f(6) ≤ 113.

1122 K. Elbassioni et al.

a1

a2

a3

as A2

A3

As 2π
s

A1 â2

â2

â2

L/k

α M

Fig. 2. (a) Partitioning disks into cones. (b) Partitioning B into k strips in direction
â2. The longest path is M (bold) if each angle is at most α

Proof. Fix constants s, k > 0. Denote the center of disk Di by ci. Set s equally-
spaced identical ‘direction’ points on each circle, say a1, . . . , as. Partition each
disk Di into s identical cones A1, . . . , As where Aj(Di) = {q ∈ Di : π/s ≤
∠ciq ciaj ≤ π/s}. Denote by âj the direction of the tangent to the circles at
point aj . See Figure 2(a).

Now partition P into s subsets P1, . . . ,Ps, where Pj contains all the points
p ∈ P that lie in the cone Aj(D(p)) of the disk containing p. We will first
construct a path on all the points in each Pj separately, and then connect these
paths together.

Fix any set Pj . Partition B into k strips of equal width (each of width at
most L/k), in the direction âj . W.l.o.g., assume âj is horizontal (one can always
rotate everything to get this). The situation is shown in Figure 2 (b). Let P i

j

be the set of points belonging to the i-th strip. Assume P i
j is sorted along the

x-coordinates. Now construct a path M by connecting all the points in P i
j in

this linear sequence.

Claim. The path M constructed above has length at most L/ cos α, where

α ≤ max{ sin−1 L

rk
,

π

2s
+
π

4
− 1

2
sin−1(cos

π

s
− L

rk
) } (4)

Proof. Let P i
j = 〈r1, . . . , rm〉. We first bound the angle that each rlrl+1 and

rlrl−1 makes with the horizontal line passing through rl. The case of rlrl−1 is
symmetric, so we only consider the first case. One can assume that rl+1 is below
rl (otherwise, consider the angle made by rl+1rl with line passing through rl+1;
both angles are the same and now rl lies below rl+1).

We would like to place points rl and rl+1 such that the angle of the edge rlrl+1

with the horizontal is maximized. By assumption, rl and rl+1 are contained in
two disks of radius r containing only their respective points. It is not hard to see
that there are two possible worse-case choices, as shown in Figure 3. The first

Approximation Algorithms for Euclidean Group TSP 1123

rl+1

rl

r

r

b

c

α

π/s

a

L/k

α

r

rl

rl+1

Fig. 3. The two cases for bounding α

case is when rl is the center of its enclosing disk D(rl), and rl+1 lies (almost) on
the boundary of D(rl), see Figure 3(a). Clearly, the required angle α ≤ sin−1 L

rk .
The second case is shown in Figure 3(b). By elementary geometry, we get

a = r cos
π

s
, b = a− L

k
, sin c =

b

r

from which one can derive that

α ≤ π

2s
+
π

4
− 1

2
sin−1 b

r
.

Therefore, the maximum angle that any edge rlrl+1 makes with the horizontal is
given by Equation 4. Finally, the weight of M is maximized if each edge makes
the maximum angle (at most α) with the horizontal, as shown in Figure 2 (b).
Then M ≤ L/ cos α, as required. ��

The above claim bounds the weight of the spanning path (constructed by
simply sorting the points by x-coordinates and connecting them in this order)
of points lying in cone Aj and the i-th strip. There are at most sk such paths,
and they can be connected together into a tour T at the cost of additional total
length of sk · L. Therefore the constructed tour has a total length of at most
L · f(L/r), where

f(
L

r
) = min

s,k
{sk(1 + sec α(s, k,L/r))}, (5)

and where α(s, k,L/r) = max{sin−1 L
rk , π

2s + π
4 −

1
2 sin−1(cos π

s −
L
rk)}. In par-

ticular, with L/r = 6, and setting k = 6.5 and s = 4.5, the tour has length at
most 113L. ��

Theorem 3. Algorithm B is a O(1)-approximation algorithm for the Group
TSP problem.

1124 K. Elbassioni et al.

Proof. Since P ′ is a hitting set for D, it is enough to show that there exists a
tour T on the set P ′ whose total cost is within O(1) of the optimum for D 1

To P ′ we can associate a subset of the disks D′ ⊆ D with the property that
|P ′ ∩D| = 1 for all D ∈ D′ and |{D ∈ D′ : x ∈ D}| = 1 for all x ∈ P ′. The set
D′ can be found as follows. By the minimality of P ′, for every point x ∈ P ′ there
exists a disk D(x) ∈ D such that D ∩ P ′ = {x}. Let D′ = {D(x) : x ∈ P ′}.

For a disk D ∈ D′, let us denote by x(D) the (unique) point of P ′ contained
inside D. Let I ⊆ D′ be a maximal independent set of disks in D′, i.e. a maximal
collection of pairwise disjoint disks. If every maximal independent set in D′ has
size at most 2, we assume that I consists of two disks in D′, the distance δ
between which is the largest. Let OptI be an optimal Group TSP tour on I,
when we are allowed to use any of the points lying inside the disks of I, and
let Opt′I an optimal TSP tour on the set of points {x(I) : I ∈ I}. Clearly,
|OptI | ≤ |Opt|. We consider three cases:

Case 1: |I| ≥ 3: By the maximality of I, every disk in D′ \ I must intersect
some disk in I. Let {DI ⊆ D′ \I : I ∈ I} be a partition of D′ \I, such that, for
I ∈ I, DI contains only disks intersecting I. For I ∈ I, let OptI be an optimal
TSP tour on the pointset SI = {x(D) : D ∈ DI} ∪ {x(I)} contained in the
partition of disks intersecting I. To define the tour T , take the union T ′ of OptI
and

⋃
I∈I OptI to obtain an Eulerian connected graph T ′ on the pointset P ′.

Finally, we use short-cutting on an Eulerian tour in T ′ to get a TSP tour T on
P ′ (see Figure 4).

T OPT ′
I

I

OPTI

Fig. 4. Constructing an approximate tour as in the proof of Theorem 3

1 The constants in the approximation factor can be improved by a more complicated
analysis, which we omit from this extended abstract.

Approximation Algorithms for Euclidean Group TSP 1125

Claim. |T | ≤ (1 + (4 + 6f(6))/0.14)|Opt|, where f(·) is defined by (5).

Proof. Note that, for I ∈ I, all the points of SI lie inside a box of diameter
at most 6r. Thus applying Lemma 5, we conclude that there is a tour on SI of
size at most f(6) · 6r. In particular, |OptI | ≤ 6f(6) · r. On the other hand, by
Lemma 1, and using α = 4 for disks, one can derive that |OptI | ≥ 0.14r|I|.
Furthermore, by connecting by a double edge, for each disk I ∈ I, the point
picked by the optimal solution OptI to the point x(I), we can construct a TSP
tour on the set {x(I) ; I ∈ I} of total length at most OptI + 4r|I|. Thus it
follows that |OptI′ | ≤ |OptI |+ 4r|I|. Combining these together, we get

|T | ≤ |Opt′I |+
∑
I∈I

|OptI | ≤ |OptI |+ (4 + 6f(6))r|I|

≤ (1 +
4 + 6f(6)

0.14
)|OptI | ≤ (1 +

4 + 6f(6)
0.14

)|Opt|,

and our claim follows. ��
Case 2: |I| = 2 and δ > 2r: Note that δ is a lower bound on |OptI |. Then
r|I| ≤ |OptI | and, similar to Case 1, we can construct a tour T of length at
most (1 + (4 + 6f(6))/0.14)|Opt|.
Case 3: |I| = 2 and δ ≤ 2r, or |I| = 1: Let L be the size of the minimum covering
box B. Note that Opt ≥ L because (i) any box containing Opt is a covering
box, and (ii) the smallest such box has width or height at most |Opt|. It is easy
to see, in this case, that all the points of P ′ lie inside a box of size at most 6r.
In particular, this implies that L ≤ 6r. By Lemma 5, we can construct a tour T
on the pointset P ′ whose total length does not exceed f(6) ·L ≤ f(6)|Opt|. ��

References

[AH94] E. M. Arkin and R. Hassin. Approximation algorithms for the geometric
covering salesman problem. Discrete Applied Mathematics, 55(3):197–
218, 1994.

[Aro98] S. Arora. Nearly linear time approximation schemes for euclidean TSP
and other geometric problems. J. ACM, 45(5):1–30, 1998.

[Chr76] N. Christofides. Worst-case analysis of a new heuristic for the traveling
salesman problem. Technical report, GSIA, Carnegie-Mellon University,
1976.

[dBGK+02] M. de Berg, J. Gudmundsson, M.J. Katz, C. Levcopoulos, M.H. Over-
mars, and A. F. van der Stappen. TSP with Neighborhoods of varying
size. In Proceedings 10th Annual European Symposium on algorithms
(ESA), pages 187–199, 2002.

[DM03] A. Dumitrescu and J.S.B. Mitchell. Approximation algorithms for TSP
with neighborhoods in the plane. J. Algorithms, 48(1):135–159, 2003.

[GGJ76] M. R. Garey, R. L. Graham, and D. S. Johnson. Some NP-complete
geometric problems. In Proceedings 8th Annual ACM Symposium on the
Theory of Computing (STOC), 1976.

1126 K. Elbassioni et al.

[GKR00] N. Garg, G. Konjevod, and R. Ravi. A polylogarithmic approximation
algorithm for the Group Steiner Tree Problem. J. Algorithms, 37(1):66–
84, 2000.

[GL00] J. Gudmundsson and C. Levcopoulos. Hardness result for TSP with
neighborhoods, 2000. Technical Report LU-CS-TR:2000-216, Depart-
ment of Computer Science, Lund University, Sweden.

[Mit99] J.S.B. Mitchell. Guillotine subdivions approximate polygonal subdi-
visons: A simple polynomial-time approximation scheme for geometric
TSP, k-MST and related problems. SICOMP, 28(4):1298–1309, 1999.

[Mit00] J.S.B. Mitchel. Handbook of Computational Geometry, chapter Geometric
shortest paths and network optimization, pages 633–701. Elsevier, North-
Holland, Amsterdam, 2000.

[MM95] C.S. Mata and J.S.B. Mitchell. Approximation algorithms for geometric
tour and network design problems (extended abstract). In Proceedings
11th Ann. ACM Symposium on Computational Geometry, pages 360–369,
1995.

[Pap77] C. H. Papadimitriou. The Euclidean traveling salesman problem is NP-
complete. Theoretical Computer Science, 4(3):237–244, 1977.

[RW90] G. Reich and P. Widmayer. Beyond steiner’s problem: a VLSI oriented
generalization. In WG ’89: Proceedings of the fifteenth international
workshop on Graph-theoretic concepts in computer science, pages 196–
210. Springer-Verlag New York, Inc., 1990.

[Sla96] Petr Slavik. A tight analysis of the greedy algorithm for set cover. In
STOC ’96: Proceedings of the twenty-eighth annual ACM symposium on
Theory of computing, pages 435–441, 1996.

[Sla97] P. Slavik. The errand scheduling problem. Technical report, March 14
1997. Technical Report, SUNY, Buffalo, USA.

[SS03] S. Safra and O. Schwartz. On the complexity of approximating TSP
with Neighborhoods and related problems. In Proceedings 11th Annual
European Symposium on algorithms (ESA), volume 2832 of Lecture Notes
in Computer Science, pages 446–458. Springer, 2003.

[Sta94] A. F. van der Stappen. Motion Planning amidst Fat Obstacles. Ph.d.
dissertation, Utrecht University, Utrecht, Netherlands, 1994.

Influential Nodes in a Diffusion Model for Social
Networks

David Kempe1,�, Jon Kleinberg2,��, and Éva Tardos2,� � �

1 Department of Computer Science,
University of Southern California

dkempe@usc.edu
2 Department of Computer Science, Cornell University

kleinber@cs.cornell.edu, eva@cs.cornell.edu

Abstract. We study the problem of maximizing the expected spread
of an innovation or behavior within a social network, in the presence
of “word-of-mouth” referral. Our work builds on the observation that
individuals’ decisions to purchase a product or adopt an innovation are
strongly influenced by recommendations from their friends and acquain-
tances. Understanding and leveraging this influence may thus lead to a
much larger spread of the innovation than the traditional view of mar-
keting to individuals in isolation.

In this paper, we define a natural and general model of influence prop-
agation that we term the decreasing cascade model, generalizing models
used in the sociology and economics communities. In this model, as in
related ones, a behavior spreads in a cascading fashion according to a
probabilistic rule, beginning with a set of initially “active” nodes. We
study the target set selection problem: we wish to choose a set of indi-
viduals to target for initial activation, such that the cascade beginning
with this active set is as large as possible in expectation. We show that in
the decreasing cascade model, a natural greedy algorithm is a 1−1/e−ε
approximation for selecting a target set of size k.

1 Introduction

Suppose that we are trying to market a product, or promote an idea, innovation
or behavior, within a population of individuals. In order to do so, we can “tar-
get” individuals; for instance, this “targeting” could take the form of offering
free samples of the product, demonstrating an innovation, or explaining an idea
(such as the consequences of drug use to teenagers). An important question is

� This research was supported by an Intel Graduate Fellowship and an NSF Grad-
uate Research Fellowship.

�� Supported in part by a David and Lucile Packard Foundation Fellowship and NSF
grants 0311333 and 0329064.

� � � Supported in part by NSF ITR grant CCR-0325453, NSF grant CCR-0311333,
and ONR grant N00014-98-1-0589.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 1127–1138, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1128 D. Kempe, J. Kleinberg, and É. Tardos

then whom we should target. Clearly, if there were no interaction between the
individuals, this would be straightforward: the effect on each targeted individ-
ual could be determined in isolation, and we could choose the set of individuals
with largest (expected) revenue or reach. However, individuals do not exist in a
vacuum; rather, they form complex social networks based on a multitude of dif-
ferent relations and interactions. By virtue of these interactions, they influence
each other’s decisions in adopting a product or behavior.

Research in the area of viral marketing [1, 2, 3, 4, 5] takes advantage of these
social network effects, based on the premise that targeting a few key individuals
may lead to strong “word-of-mouth” effects, wherein friends recommend a prod-
uct to their friends, who in turn recommend it to others, and so forth, creating
a cascade of recommendations. In this way, decisions can spread through the
network from a small set of initial adopters to a potentially much larger group.
Given a probabilistic model for the way in which individuals influence one an-
other, the influence maximization problem consists in determining a set A of k
individuals yielding the largest expected cascade.

The influence maximization problem has been proposed and studied by Domin-
gos and Richardson [2, 5], who gave heuristics for the problem in a very general
descriptive model of influence propagation. In recent work [6], we obtained prov-
able performance guarantees for approximation algorithms in several simple,
concrete, but extensively studied models from mathematical sociology (see, e.g.,
[7, 8, 9] for comprehensive introductions to this area).

In this paper, we show that the influence maximization problem can be ap-
proximated in a very general model that we term the decreasing cascade model.
The analysis techniques from our earlier work [6] rely on the concrete forms of
influence used in that paper, and we show that they cannot be applied to the
general model considered here. We therefore develop a more general framework,
which we believe will be of interest in its own right, for reasoning about dynamic
processes in network models such as these.

1.1 The Decreasing Cascade Model

Throughout this paper, we call individuals (nodes) active if they have adopted
the product, and inactive otherwise. We assume that once a node becomes ac-
tive, it will remain so forever (see [6] for a discussion on how this assumption can
be lifted). We focus on cascade models that capture the dynamics of recommen-
dations in a step-by-step fashion: when a node u first becomes active, say at time
t, it is considered contagious. It has one chance of influencing each previously
inactive neighbor v. A successful attempt will cause v to become active in the
next time step t + 1. If multiple neighbors of v become active at time t, then
their activation attempts are sequenced in an arbitrary order, but we assume
that they all happen within time step t. After a node u has made all its at-
tempts at influencing other nodes, it remains active, but is now non-contagious.
The process terminates when there are no more contagious nodes.

In order to fully describe the model, we need to specify the probability of
success for node u’s attempt at activating v. In the simplest independent cascade

Influential Nodes in a Diffusion Model for Social Networks 1129

model [3], this probability is a constant pv(u), independent of the history of the
process. In general, however, v’s propensity for being activated may change as
a function of which of its neighbors have already attempted (and failed) to
influence it; if S denotes the set of v’s neighbors that have already attempted to
influence v, then u’s success probability is denoted by pv(u,S). For this model to
be well-defined, we also need to assume order-independence: if all nodes from a
set T try to influence v, then the order in which their attempts are made does
not affect the probability of v being active in the end. Formally, if u1, . . . ,ur,
and u′1, . . . ,u

′
r are two permutations of T , and Ti = {u1, . . . ,ui−1} as well as

T ′i = {u′1, . . . ,u′i−1}, then order-independence means that

r∏
i=1

(1− pv(ui,S ∪ Ti)) =
r∏

i=1

(1− pv(u′i,S ∪ T ′i))

for all sets S disjoint from T .
From the point of view of influence maximization, we start by targeting a set A

of individuals for activation at time 1, making them contagious. Afterwards, the
process unfolds as described above, until there are no more contagious nodes;
we say that the process quiesces. Note that this happens after at most n + 1
rounds. At that point, we have some set ϕ(A) of active nodes, which is is a
random variable. The goal is to choose A so as to maximize the expected size
σ(A) := E [|ϕ(A)|] of this final set of active nodes. Due to the computational
difficulty of this goal (see the discussion below), we will consider approximation
algorithms: for a constant c, we wish to choose a set A for which σ(A) is at least
1
c times as large as σ(A∗) for any set A∗ of k nodes. The quantity c is thus the
approximation guarantee of the algorithm.

The order-independent cascade model is very general — it specifies how each
node influences each other node, and how the influence is “attenuated” by pre-
vious interactions a node has had. It is also equivalent in a precise sense to
a generalization of Granovetter’s threshold model [10] for social networks (see
Section 3).

In general, it is NP-hard to approximately maximize the size σ(A) of the final
active set to within n1−ε, for any ε > 0. The inapproximability follows from a
straightforward reduction, e.g., from VertexCover, and can already be shown
in the case of a hard threshold model [11, 12, 13], where a node v is activated if
at least a fixed fraction (say, 1/2) of its neighbors are active; this corresponds to
pv(u,S) being 0 if S contains fewer than half of v’s neighbors, and 1 otherwise.

Thus, we study here a natural restriction that we term the decreasing cas-
cade model. In the decreasing cascade model, the functions pv(u,S) are non-
increasing in S, i.e., pv(u,S) ≥ pv(u, T) whenever S ⊆ T . Intuitively, this re-
striction states that a contagious node’s probability of activating some v ∈ V
decreases if more nodes have already attempted to activate v, and v is hence
more “marketing-saturated”. The decreasing cascade model contains the inde-
pendent cascade model [3] as a special case, and even for the independent cascade
model, maximizing σ(A) is NP-hard [6]; in fact, the proof in [6] shows that it is
NP-hard to approximate within 1− 1/e + ε for any ε > 0.

1130 D. Kempe, J. Kleinberg, and É. Tardos

2 An Approximation Algorithm

In this paper, we analyze the following simple greedy algorithm (Algorithm 1.)
for influence maximization. The approximation guarantee for this algorithm is
the main theorem of this paper:

Algorithm 1. Greedy Approximation Algorithm
1: Start with A = ∅
2: for i = 1 to k do
3: Let vi be a node (approximately) maximizing the marginal gain σ(A ∪ {v}) −

σ(A).
4: Set A← A ∪ {vi}.
5: end for

Theorem 1. Let A∗ be the the set maximizing σ(·) among all sets of k nodes.

1. If the optimal vi is chosen in each iteration, then the greedy algorithm is
a (1 − 1/e)-approximation, i.e., the set A found by the algorithm satisfies
σ(A) ≥ (1− 1/e) · σ(A∗).

2. If the node vi is a 1 − ε approximate best node in each iteration, then the
greedy algorithm is a (1 − 1/e − ε′)-approximation, where ε′ depends on ε
polynomially.

Before proceeding with the proof of Theorem 1, a few words are in order
about determining the node vi in the for loop of the algorithm. Even in the sim-
ple independent cascade model, it is not clear how to evaluate σ(A) exactly, or
whether this can be done in polynomial time; in fact, we consider the question
of evaluating σ(A) an interesting direction for further research. However, the
cascade process has the property that it can be efficiently simulated, simply by
running the probabilistic rule for influence propagation until quiescence (which,
as noted above, will occur within at most n + 1 rounds). By repeatedly simu-
lating the cascade process and sampling ϕ(A), we can compute arbitrarily close
approximations to σ(A). A straightforward calculation shows that with a num-
ber of simulations polynomial in ε, δ, and n, one can obtain a 1±ε approximation
to σ(A), with probability at least 1− δ. This approximate evaluation of σ(A) in
turn is enough to find an element v whose marginal gain σ(A ∪ {v}) − σ(A) is
within a factor of 1− ε′ of maximal.

The idea for the proof of Theorem 1 is to show that σ(A) is a monotone and
submodular function of A. The property of submodularity formally means that
σ(S ∪ {w}) − σ(S) ≥ σ(T ∪ {w}) − σ(T) whenever S ⊆ T . Informally, this is
known as the “diminishing returns condition”: the return derived from investing
in node w diminishes as the size of the total investment (set) increases.

These properties of σ(A) are sufficient to prove the desired approximation
guarantee, for we can apply a well-known theorem of Nemhauser, Wolsey and
Fischer. The first part of the theorem below is due to Nemhauser, Wolsey and
Fischer [14, 15]; the generalization can be obtained by straightforward modifica-
tions to the proof.

Influential Nodes in a Diffusion Model for Social Networks 1131

Theorem 2. Let f be a non-negative, monotone, submodular function on sets.

1. The greedy algorithm, which always picks the element v with largest marginal
gain f(S∪{v})−f(S), is a (1−1/e)-approximation algorithm for maximizing
f on k-element sets S.

2. A greedy algorithm which always picks an element v within 1−ε of the largest
marginal gain results in a 1− 1/e− ε′ approximation, for some ε′ depending
polynomially on ε.

Given Theorem 2, in order to prove Theorem 1 (or its approximate version),
it is sufficient to establish the following result:

Theorem 3. For the decreasing cascade model, σ(A) is a monotone and sub-
modular function of A.

Remark. The proof of the (1 − 1/e) approximation guarantee in [6] was based
on the same outline. In order to establish submodularity for the independent
cascade and linear threshold models of [6], it was shown that for both models, it is
possible to define distributions over directed graphs with the following property:
for any set S of nodes, the probability that ϕ(A) = S under the influence model
is equal to the probability that the nodes of S are exactly the ones reachable from
A in a graph chosen according to the corresponding distribution. Submodularity
then follows readily from the fact that the number of reachable nodes in a fixed
graph is a submodular function of the set of source nodes.

The decreasing cascade model is more general than the models considered
in [6]. In Section 5, we give an instance which provably has no corresponding
distribution on graphs. Therefore, the proof for submodularity becomes more
intricate, and we have to consider the dynamics of the process in a more de-
tailed way.

Most of the rest of this paper will be concerned with the proof of Theorem
3. We first introduce a generalized version of Granovetter’s threshold model [10]
in Section 3, as a useful reparametrization of the probability space. Using this
threshold model, we then give the proof of Theorem 3 in Section 4.

3 The General Threshold Model

Recall that the notion of order-independence, as defined in Section 1.1, postulates
that for a given set S of nodes trying to influence node v, the order in which
these attempts are made does not affect the probability that v will be active once
all the nodes in S have made their attempts. For the proof of Theorem 3, we
require a stronger version of this statement: namely that even if the activation
of nodes, or some activation attempts, are deferred for many time steps, the
ultimate distribution over active sets remains the same.

It is not clear how to argue this fact directly from the definition of the cas-
cade model, and we therefore introduce the general threshold model, a natural

1132 D. Kempe, J. Kleinberg, and É. Tardos

generalization of Granovetter’s linear threshold model [10]. The linear thresh-
old model has been the foundation for a large body of work in sociology; see,
e.g., [8, 16, 17, 18, 19, 20, 21]; its generalization was introduced in [6]. While the
General threshold model is a natural model in its own right, in this work, we
are most interested in it as a reparametrization of the cascade model. Indeed,
Lemma 1 proves that the two models are equivalent.

In the general threshold model [6], each node v has a monotone activation
function fv : 2V → [0, 1], and a threshold θv, chosen independently and uniformly
at random from the interval (0, 1]. A node v becomes active at time t + 1 if
fv(S) ≥ θv, where S is the set of nodes active at time t. Again, the process
starts with the activation of a select set A at time 1.

The threshold model focuses more on the “cumulative effect” of a node set S’s
influence on v, instead of the individual attempts of nodes u ∈ S. The perhaps
somewhat surprising fact is that for any activation functions fv(·), we can define
corresponding success probabilities pv(·, ·) such that the distribution over final
active sets ϕ(A) is identical under both models, for all sets A.

Specifically, given success probabilities pv(u,S), we define the activation func-
tions

fv(S) = 1−
r∏

i=1

(1− pv(ui,Si)), (1)

where S = {u1,u2, . . . ,ur}, and Si = {u1, . . . ,ui−1}. That fv is well defined
follows from the order-independence assumption on the pv(u,S). Conversely,
given activation functions fv, we define success probabilities

pv(u,S) =
fv(S ∪ {u})− fv(S)

1− fv(S)
. (2)

It is straightforward to verify that the activation functions defined via Equation
(1) satisfy Equation (2), and the success probabilities defined via Equation (2)
satisfy Equation (1).

Lemma 1. Assume that the success probabilities pv(u,S) and activation func-
tions fv(S) satisfy Equation (2). Then, for each node set T and each time t, the
probability that exactly the nodes of set T are active at time t is the same under
the order-independent cascade process with success probabilities pv(u,S) and the
general threshold process with activation functions fv(S).

Proof. We show, by induction, a slightly stronger statement: namely that for
each time t and any pair (T, T ′), the probability that exactly the nodes of T are
active at time t, and exactly those of T ′ are active at time t + 1, is the same
under both views. By summing over all sets T ′, this clearly implies the lemma.

At time t = 0, the inductive claim holds trivially, as the probability is 1 for
the pair (∅, A) and 0 for all other pairs, for both processes. For the inductive
step to time t, we first condition on the event that the nodes of T are active at
time t− 1, and those of T ′ at time t.

Influential Nodes in a Diffusion Model for Social Networks 1133

Consider a node v /∈ T ′. Under the cascade process, v will become active
at time t + 1 with probability 1 −

∏r
i=1(1 − pv(ui, T ∪ T ′i)), where we write

T ′ \ T = {u1, . . . ,ur} and T ′i = {u1, . . . ,ui−1}. Under the threshold process,
node v becomes active at time t + 1 iff fv(T) < θv ≤ fv(T ′). Because node v is
not active at time t, and by the Principle of Deferred Decisions, θv is uniformly
distributed in (fv(T), 1] at time t, so the probability that v becomes active is
fv(T ′)−fv(T)

1−fv(T) . Substituting Equation (1) for fv(T) and fv(T ′), a simple calculation
shows that

fv(T ′)−fv(T)
1−fv(T) = 1−

∏r
i=1(1− pv(ui, T ∪ T ′i)).

Thus, each individual node becomes active with the same probability under
both processes. As both the thresholds θv and activation attempts are indepen-
dent for distinct nodes, the probability for any set T ′′ to be the set of active
nodes at time t + 1 is the same under both processes. Finally, as the probability
distribution over active sets T ′′ is the same conditioned on any pair (T, T ′) of
previously active sets, the overall distribution over pairs (T ′, T ′′) is the same in
both the cascade and threshold processes.

Lemma 1, which was stated without proof in [6], shows that the threshold
model is a non-trivial reparametrization of the cascade model. In a natural way,
it allows us to make all random choices at time 0, before the process starts.
An alternate way of attempting to pre-flip all coins, for instance by providing
a sequence of random numbers from [0, 1] for use in deciding the success of
activation attempts, would not preserve order-independence.

The nice thing about this view is that it makes a strong generalization of the
notion of order-independence an almost trivial feature of the model. To formulate
this generalization, we allow each node v a finite waiting time τv, meaning that
when v’s criterion for activation has been met at time t (i.e., an influence attempt
was successful in the cascade model, or fv(S) ≥ θv in the threshold model), v
only becomes active at time t+τv. Notice that when τv = 0 for all nodes, this is
the original threshold/cascade model.

Lemma 2. Under the general threshold model, the distribution ϕ(A) over active
sets at the time of quiescence is the same regardless of the waiting times τv. This
even holds conditioned upon any random event E.

Proof. We prove the stronger statement that for every choice of thresholds θv,
and every vector τ of waiting times τv, the set Sτ of nodes active at the time
of quiescence is the same as the set S0 of nodes active at quiescence when all
waiting times are 0. This will clearly imply the claim, by integrating over all
thresholds that form the event E . So from now on, fix the thresholds θv.

Let A0,t denote the set of nodes active at time t when all waiting times are
0, and Aτ,t the set of nodes active at time t with waiting times τ . A simple
inductive proof using the monotonicity of the activation functions fv shows that
Aτ,t ⊆ A0,t for all times t, which, by setting t to be the time of quiescence of the
process with waiting times τ , implies that Sτ ⊆ S0.

1134 D. Kempe, J. Kleinberg, and É. Tardos

Assume now that Sτ �= S0, and let T = S0 \ Sτ �= ∅. Among the nodes in
T , let v be one that was activated earliest in the process without waiting times,
i.e., T ∩ A0,t = ∅, and v ∈ A0,t+1 for some time t. Because v was activated, we
know that θv ≤ fv(A0,t), and by definition of v, no previously active nodes are
in T , i.e., A0,t ⊆ Sτ . But then, the monotonicity of fv implies that θv ≤ fv(Sτ),
so v should be active in the process with waiting times τ , a contradiction.

4 Proof of Theorem 3

The monotonicity is an immediate consequence of Lemma 3 below, applied with
V = V ′ and p′v(u,S) = pv(u,S) for all S, v,u. So we focus on submodularity for
the remainder of the proof. We have to show that, whenever A ⊆ A′, we have
σ(A ∪ {w})− σ(A) ≥ σ(A′ ∪ {w})− σ(A′), for any node w /∈ A′.

The basic idea of the proof is to characterize σ(A ∪ {w})−σ(A) in terms of a
residual process which targets only the node w, and has appropriately modified
success probabilities (similarly for σ(A′ ∪ {w})−σ(A′)). To show that these resid-
ual processes indeed have the same distributions over final active sets ϕ({w}) as
the original processes, we use Lemma 2.

Given a node set B, we define the residual process on the set V \ B: the
success probabilities are p

(B)
v (u,S) := pv(u,S ∪B), and the only node targeted

is w, targeted at time 1. Let ϕB(w) denote the set of nodes active at the time
of quiescence of the residual process; notice that this is a random variable. We
claim that, conditioned on the event that [ϕ(A) = B], the variable ϕB(w) has
the same distribution as the variable ϕ(A ∪ {w}) \ ϕ(A).

In order to prove this fact, we focus on the threshold interpretation of the
process, and assign node w a waiting time of τw = n + 1. By Lemma 2, this
view does not change the distribution of ϕ(A ∪ {w}) \ ϕ(A). Then, w is the
only contagious node at time n + 1, and by the conditioning, the other active
(but non-contagious) nodes are those from B. This implies that only nodes from
V \ B will make activation attempts after time n + 1. By using the same order
of activation attempts, and the same coin flips for each pair u, v ∈ V \ B, a
simple inductive proof on the time t shows that the set S of nodes is active in
the residual process at time t if and only if the set S ∪B is active in the original
process at time n + t. In particular, this shows that the two random variables
have the same distributions.

Having shown this equivalence, we want to compare the expected sizes of
ϕB(w) and ϕB′(w), when B ⊆ B′. We write σB(w) = E [|ϕB(w)|], as well as
σB′(w) = E [|ϕB′(w)|]. First off, notice that the node set V \ B of the former
process is a superset of V \B′. Furthermore, for all nodes u, v and node sets S,
the decreasing cascade condition implies that

p
(B)
v (u,S) = pv(u,S ∪B) ≥ pv(u,S ∪B′) = p

(B′)
v (u,S).

Lemma 3 below proves the intuitively obvious fact that the combination of a
larger ground set of nodes and larger success probabilities results in a larger set
of activated nodes, i.e.,

Influential Nodes in a Diffusion Model for Social Networks 1135

σw(B) ≥ σw(B′) (3)

Finally, we can rewrite the expected number of active nodes as

σ(A ∪ {w})− σ(A) =
∑
B

σw(B) · Prob[ϕ(A) = B]

=
∑
B

∑
B′⊇B

σw(B) · Prob[ϕ(A) = B,ϕ(A′) = B′]

≥
∑
B

∑
B′⊇B

σw(B′) · Prob[ϕ(A) = B,ϕ(A′) = B′]

=
∑
B′

σw(B′) · Prob[ϕ(A′) = B′]

= σ(A′ ∪ {w})− σ(A′).

The inequality followed by applying Inequality (3) under the sum. In both of the
steps surrounding the inequality, we used that Prob[ϕ(A) = B,ϕ(A′) = B′] = 0
whenever B �⊆ B′, by the monotonicity of the cascade process. This completes
the proof of submodularity.

Lemma 3. Let V ′ ⊆ V , and assume that p′v(u,S) ≤ pv(u,S) for all nodes
u, v ∈ V and all sets S. If A′ ⊆ A are the targeted sets for cascade processes on
V ′ and V , then the expected size of the active set at the end of the process on V
is no smaller than the corresponding expected size for the process on V ′.

Proof. This claim is most easily seen in the threshold view of the process. Equa-
tion (1) shows that the activation functions f ′v, fv corresponding to the success
probabilities p′v(u,S) and pv(u,S) satisfy f ′v(S) ≤ fv(S), for all nodes v and sets
S. Then, for any fixed thresholds θv, a simple inductive proof on time steps t
shows that the set of active nodes in the former process (with functions f ′v) is
always a subset of the set of active notes in the latter one (with functions fv).
Since the inequality thus holds for every point of the probability space, it holds
in expectation.

5 Distributions over Graphs

As mentioned briefly before, the outline of the proof of the (1 − 1/e) approxi-
mation guarantee in [6] was the same as here. However, a simpler technique was
used to show the submodularity of σ(A).

This technique can be most easily understood in the case of the independent
cascade model, where each activation attempt of a node u on a node v succeeds
independently with probability pv(u). By the definition of the process, a node
v is active in the end if it is reachable from one of the initially targeted nodes
by a chain of successful activation attempts. If we consider a graph G that
contains a directed arc (u, v) iff u’s activation attempt on v succeeded, then
it follows that a node v is active iff it is reachable in G from the targeted set

1136 D. Kempe, J. Kleinberg, and É. Tardos

A. Due to the independence of activation attempts, and by the Principle of
Deferred Decisions, the graph G can be generated by including each arc (u, v)
independently with probability pv(u). As the set of nodes reachable from a given
set A is a submodular function of A, and the expected size of the activated set is
a non-negative linear combination (over all possible graphs G) of these functions,
the function σ(A) is shown to be submodular.

This technique can be applied whenever the influence model allows for a
corresponding distribution on directed graphs G — the fact that we included
each arc independently did not matter. In fact, [6] uses this technique to show
submodularity in two other, less obvious, cases. In this section, we give an in-
stance of the decreasing cascade model for which there is no distribution over
graphs resulting in the same activation probabilities. This example shows that
the techniques used to show submodularity of σ(A) in [6] cannot be applied for
the more general decreasing cascade model.

Our example has five nodes. Node v could potentially be influenced by four
nodes u1, . . . ,u4. The first two nodes to try activating v have a probability of 1

2
each to succeed, whereas all subsequent attempts fail. The influences are thus
pv(ui,S) = 1

2 whenever |S| < 2, and pv(ui,S) = 0 otherwise. Notice that this is
indeed an instance of the decreasing cascade model, and order independent.

Assume, for contradiction, that there is a distribution on graphs such that
node v is reachable from a set S with the same probability that S will activate v
in the cascade model. For any set S ⊆ {1, 2, 3, 4}, let qS denote the probability
that in this distribution over graphs, exactly the edges from ui to v for i ∈ S
are present. Because with probability 1

4 , v does not become active even if all
ui are, we know that q∅ = 1

4 . If u1,u2,u3 are active, then v is also active with
probability 3

4 , so the edge (u4, v) can never be present all by itself (if it were,
then the set {u1,u2,u3,u4} together would have higher probability of reaching
v than the set {u1,u2,u3}). Thus, we have that q{i} = 0 for all i. The same
argument shows that q{i,j} = 0 for all i, j.

Thus, the only non-empty edge sets with non-zero probabilities can be those
of size three or four. If node u1 is the only active node, then v will become active
with probability 1

2 , so the edge (u1, v) is present with probability 1
2 . Hence,

q{1,2,3} + q{1,2,4} + q{1,3,4} + q{1,2,3,4} = 1
2 , while q{1,2,3} + q{1,2,4} + q{1,3,4} +

q{2,3,4} + q{1,2,3,4} = 1− q∅ = 3
4 . Therefore, q{2,3,4} = 1

4 , and a similar argument
for nodes u2,u3,u4 gives that qS = 1

4 for each set S of cardinality 3. But then,
the total probability mass on edge sets is at least 5

4 , as there are four such sets
S, and the empty set also has probability 1

4 . This is a contradiction, so there is
no such distribution over graphs.

6 Conclusions

In this paper, we have presented and analyzed a simple greedy algorithm for
maximizing the spread of influence in a general model of social influence termed
the decreasing cascade model. The proof centered on showing that the expected
number of influenced nodes is a monotone and submodular function of the tar-

Influential Nodes in a Diffusion Model for Social Networks 1137

geted set, which required new techniques beyond those used in previous work,
including a non-trivial reparametrization of the probability space.

An interesting direction for future work is to investigate which are the most
general influence models for which provable approximation guarantees can be
achieved. A conjecture in [6], which is as of yet unresolved, states that whenever
the activation functions fv of the general threshold process of Section 3 are
monotone and submodular at each node v, so is σ(A).

Another direction for future work concerns the evaluation of the function
σ(A). At this point, we do not know if the function can be evaluated exactly in
polynomial time, even for the simplest influence models.

References

1. Brown, J., Reinegen, P.: Social ties and word-of-mouth referral behavior. Journal
of Consumer Research 14 (1987) 350–362

2. Domingos, P., Richardson, M.: Mining the network value of customers. In: Proc.
7th Intl. Conf. on Knowledge Discovery and Data Mining. (2001) 57–66

3. Goldenberg, J., Libai, B., Muller, E.: Using complex systems analysis to advance
marketing theory development: Modeling heterogeneity effects on new product
growth through stochastic cellular automata. Academy of Marketing Science Re-
view (2001)

4. Goldenberg, J., Libai, B., Muller, E.: Talk of the network: A complex systems look
at the underlying process of word-of-mouth. Marketing Letters 12 (2001) 211–223

5. Richardson, M., Domingos, P.: Mining knowledge-sharing sites for viral marketing.
In: Proc. 8th Intl. Conf. on Knowledge Discovery and Data Mining. (2002) 61–70

6. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence in a social
network. In: Proc. 9th Intl. Conf. on Knowledge Discovery and Data Mining. (2003)
137–146

7. Rogers, E.: Diffusion of innovations. 4th edn. Free Press (1995)
8. Valente, T.: Network Models of the Diffusion of Innovations. Hampton Press

(1995)
9. Wasserman, S., Faust, K.: Social Network Analysis. Cambridge University Press

(1994)
10. Granovetter, M.: Threshold models of collective behavior. American Journal of

Sociology 83 (1978) 1420–1443
11. Berger, E.: Dynamic monopolies of constant size. Journal of Combinatorial Theory

Series B 83 (2001) 191–200
12. Morris, S.: Contagion. Review of Economic Studies 67 (2000) 57–78
13. Peleg, D.: Local majority voting, small coalitions, and controlling monopolies in

graphs: A review. In: 3rd Colloquium on Structural Information and Communica-
tion. (1996) 170–179

14. Cornuejols, G., Fisher, M., Nemhauser, G.: Location of bank accounts to optimize
float. Management Science 23 (1977) 789–810

15. Nemhauser, G., Wolsey, L., Fisher, M.: An analysis of the approximations for
maximizing submodular set functions. Mathematical Programming 14 (1978) 265–
294

16. Macy, M.: Chains of cooperation: Threshold effects in collective action. American
Sociological Review 56 (1991) 730–747

1138 D. Kempe, J. Kleinberg, and É. Tardos

17. Macy, M., Willer, R.: From factors to actors: Computational sociology and agent-
based modeling. Annual Review of Sociology 28 (2002) 143–166

18. Schelling, T.: Micromotives and Macrobehavior. Norton (1978)
19. Watts, D.: A simple model of fads and cascading failures. Technical Report 00-

12-062, Santa Fe Institute Working Paper (2000)
20. Young, H.P.: Individual Strategy and Social Structure: An Evolutionary Theory

of Institutions. Princeton University Press (1998)
21. Young, H.P.: The diffusion of innovations in social networks. Technical Report

02-14-018, Santa Fe Institute Working Paper (2002)

An Optimal Bound for the MST Algorithm to Compute
Energy Efficient Broadcast Trees in Wireless Networks

Christoph Ambühl�

Department of Computer Science,
The University of Liverpool

christoph@csc.liv.ac.uk

Abstract. Computing energy efficient broadcast trees is one of the most promi-
nent operations in wireless networks. For stations embedded in the Euclidean
plane, the best analytic result known to date is a 6.33-approximation algorithm
based on computing an Euclidean minimum spanning tree. We improve the anal-
ysis of this algorithm and show that its approximation ratio is 6, which matches a
previously known lower bound for this algorithm.

1 Introduction

Multi-hop wireless networks [14] require neither fixed, wired infrastructure nor prede-
termined interconnectivity. In particular, ad hoc networks [11, 17] are the most popular
type of multi-hop wireless networks. An ad hoc wireless network is built of a bunch of
radio stations. The links between them are established in a wireless fashion using the
radio transmitters and receivers of the stations.

In order to send a message from a station s to a station t, station s needs to emit
the message with enough power such that t can receive it. In the model, the power Ps
required by a station s to transmit data to station t must satisfy the inequality

Ps
dist(s, t)α

> γ. (1)

The term dist(s, t) denotes the distance between s and t, and α ≥ 1 is the distance-
power gradient, and γ ≥ 1 is the transmission-quality parameter. In an ideal environ-
ment (i.e. in the empty space) it holds that α = 2 but it may vary from 1 to more than 6
depending on the environment conditions of the location of the network (see [19]).

In ad hoc networks, a power value is assigned to each station. These values, ac-
cording to Equation (1), determine the so-called range of each station. The range of a
station s is the area in which stations can receive all messages sent by s.

� This paper was written while the author worked at the Istituto Dalle Molle di Studi sull’ In-
telligenza Artificiale in Manno, Switzerland and was supported by the Swiss National Science
Foundation project 200021-100539/1, “Approximation Algorithms for Machine Scheduling
Through Theory and Experiments”. It also contains ideas obtained while the author stayed at
Università degli Studi di Roma “ Tor Vergata” in Italy and was supported by the European
Union under the RTN Project ARACNE.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 1139–1150, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

1140 C. Ambühl

Using the ranges, one can determine the so-called transmission graph G = (S, A).
The vertex set S is the set of stations, and the directed edge from s to t is in A if and
only if t is within the range of s.

All stations in the range of a station i can receive messages sent by i. The minimal
range needed for station i to establish all its out-going connections in G is therefore

rG(i) := max
j∈ΓG(i)

dist(i, j). (2)

where ΓG(i) denotes the set of out-neighbors of station i in G. The total power needed
to establish all connections in G is therefore

power(G) :=
∑
i∈V

γ · rG(i)α, (3)

Since the value of γ does not influence the relative quality of the solutions, we
assume γ = 1 for the rest of the paper. In this paper we address the following problem:

Problem 1 (Energy Efficient Broadcast Tree Problem (EEBT)). Let S be a set of sta-
tions represented by points from the Euclidean plane. That is, the distance function
becomes dist(s, t) := |st|, where |st| is the Eulidean distance between s and t. One of
the stations is called the source station s. The goal is to find the transmission graph G
which minimizes power(G) and contains a directed spanning tree rooted at s (a branch-
ing from s).

The relevance of this problem is due to the fact that any transmission graph satis-
fying the above property allows the source station to perform a broadcast operation.
Broadcast is a task initiated by the source station to transmit a message to all stations
in the wireless network: This task constitutes a major part of real life multi-hop radio
networks [1, 2, 7].

The EEBT Problem is known to be NP-hard [4, 3]. Furthermore, if the dist func-
tion is arbitrary, the problem cannot be approximated with a logarithmic factor unless
P = NP [10]. The currently best approximation algorithm for the EEBT Problem is
as follows.

Algorithm 1 (MSTALG). The input of the algorithm is a set of stations S repre-
sented by points in the Euclidean plane. One of the stations is designated as the source.
The algorithm first computes the Euclidean minimum spanning tree (EMST) of the point
set S. Then the EMST is turned into a directed EMST by directing all the edges such
that there exists a directed path from the source station to all other stations.

In [21], Wan, Cǎlinescu, Li, and Frieder claimed that MSTALG is a 12-approxi-
mation. Unfortunately, there is a small error in their paper. The correct analysis yields
an approximation ratio of 12.15, as stated by Klasing, Navarra, Papadopoulos, and
Perennes in [13]. Independently, Clementi, Crescenzi, Penna, Rossi, and Vocca showed
an approximation ratio of 20 for MSTALG [4]. Recently, Flammini,Klasing, Navarra,
and Perennes [8] showed that MSTALG is a 7.6-approximation algorithm. And even
more recently, Navarra proved an approximation ratio of 6.33 [18]. In this paper, we

An Optimal Bound for the MST Algorithm 1141

show that MSTALG is a 6-approximation for all α ≥ 2. This matches the lower
bound given in [4] and [21].

Experimental studies reported in [6, 15] show that for most instances, the approxi-
mation ratio of MSTALG is much better than 6. In [16], exact algorithms for EEBT
have been studied. The EEBT problem falls into the class of so-called range assign-
ment problems: Find a transmission range assignment such that the corresponding
transmission graph G satisfies a given connectivity property Π , and power(G) is min-
imized (see for example [12, 7]). In [5], the reader may find an exhaustive survey on
previous results related to range assignment problems.

Theorem 1. Let S be a set of points from the unit disk around the origin, with the
additional property that the origin is in S. Let e1, e2, . . . , e|S|−1 be the edges of the
Euclidean minimum spanning tree of S. Then

μ(S) :=
|S|−1∑
i=1

|ei|2 ≤ 6.

Theorem 1 is the main theorem of this paper. Together with the next lemma, it proves
that MSTALG is a 6-approximation algorithm for the EEBT problem.

The problem of giving upper bounds for μ(S) has already been looked at inde-
pendently of the EEBT problem. Already in 1968, Gilbert and Pollack [9] gave a upper
bound of 8π/

√
3, based on a technique very similar to the one used by Wan et al in [21].

In 1989, Steele gave a bound of 16 based on space filling curves [20].

Lemma 1. A bound on μ(S) automatically implies the same bound on the approxima-
tion ratio of MSTALG for α ≥ 2.

Up to a few differences concerning the station at the origin of the unit disk, this
lemma has already been proven in [21] to obtain the 12.15-approximation. We therefore
skip its proof. For the case α < 2, Clementi et al have shown that the MST algorithm
does not provide a constant approximation ratio [4].

We now sketch the proof of the μ(S) ≤ 12.15 bound given in [21]. It works as
follows. The cost of each edge e of the MST is represented by a geometric shape called
diamonds, shown in Figure 1 on the bottom left. Diamonds consist of two isosceles

diametral disk

half disk

diamond

Fig. 1. Proof idea of previous bounds

1142 C. Ambühl

Fig. 2. A worst case example for MSTALG

triangles with an angle of 2
3π. The area of a diamond for an edge e with length |e| is

λ · |e|2, with λ =
√

3/6. Diamonds are considered being open sets. It can be shown
that if one puts these diamonds along the edges of an MST as shown in the middle of
Figure 1, they do not intersect. It can further be shown that the area of the polygon
shown on the right of Figure 1 is an upper bound on the area that can be covered by the
diamonds along the MST edges. The area of this polygon is 12.15λ. Therefore one can
conclude μ(S) ≤ 12.15λ/λ = 12.15.

Similar bounds can be obtained using diametral disks (μ(S) ≤ 40) or half disks
(μ(S) ≤ 20) [3]. In both cases, one has to give an upper bound on the area generated
by these shapes. In the case of diametral disks, this is done using the fact that in any
point, at most five diametral disks can intersect. This gives only a very crude bound,
which leads to a very crude bound on μ(S). On the other hand, open half disks do
not intersect. But since they are smaller than diamonds, the bound provided by them is
worse.

Concerning lower bounds on μ(S), there is a point set S that attains μ(S) = 6. It
is a regular 6-gone with one point in the middle. A lower bound on the approximation
ratio of MSTALG is shown in Figure 2 [21, 4]. The length of the edges of the MST
shown in Figure 2 are ε and 1− ε, respectively. We have opt(S) = 1 and power(G) =
ε2 + 6 · (1 − ε)2. Hence for ε → 0, the ratio between the two becomes 6. This lower
bound holds for all values of α. Our analysis will give a matching upper bound for this
lower bound for α ≥ 2. As already stated earlier, MSTALG does not have a constant
approximation ratio for the case α < 2 [4].

2 The Main Idea of the Proof of Theorem 1

Among the shapes that do not intersect, diamonds seem to be the best possible geomet-
ric shape for this kind of analysis. For a better bound, we need to use larger shapes and
we need to deal with the intersection of the shapes more accurately. The shapes used for
our new bound are pairs of equilateral triangles. As depicted in Figure 3, the equilateral
triangles intersect heavily. We will give a quite accurate bound on the area generated by
them.

An Optimal Bound for the MST Algorithm 1143

Fig. 3. The total area of the equilateral triangles on the left is bounded by the hatched area in the
middle. The point set that maximizes the hatched area is the star shown on the right

A high level description of the proof of our bound is the following. Consider a point
set S with n points. Hence, the MST will have n− 1 edges and therefore, there will be
2(n − 1) equilateral triangles representing the cost of the MST. Let AMST be the total
area generated by these triangles.

In order to obtain an upper bound on AMST, let c be the number of edges of the
convex hull of S. By triangulating S, we end up with a planar graph G with n vertices,
e edges, and f facets. Let t be the number of triangles of the triangulation. Then the
following three equations hold. ∣∣∣∣∣∣

f = t + 1
3t + c = 2e

n + f − e = 2

∣∣∣∣∣∣
The first one simply states that the number of facets is equal to the number of tri-

angles plus the infinite facet. For the second one, we add up the number of edges of all
facets. For triangles, this is 3, whereas for the infinite facet, it is c. Since every edge is
part of exactly two facets, this sums up to 2e. The last equation is the Descartes-Euler
polyhedral formula [22]. If we solve the system for t, we obtain t = 2(n − 1) − c.
Hence, if we add c equilateral triangles along the convex hull of S as depicted in the
center of Figure 3, the number of triangles becomes equal to the number of triangles
generated by the MST, as shown on the left side of the figure. Let ATRI be the total
area of the triangles within the convex hull of S plus the c additional triangles along the
convex hull.

The main idea of the proof is to show that AMST ≤ ATRI. To get an intuitive
understanding of it, consider a point set S obtained from the hexagonal grid for which
all edges of the triangulation of its convex hull have the same length. In this case, all
triangles that are involved in AMST and ATRI are congruent. Furthermore, since their
number is equal, it holds AMST = ATRI. Intuitively, if the edges of the triangulation
have different lengths, AMST will be smaller compared to ATRI since the MST will be
composed mainly of small edges.

1144 C. Ambühl

We then conclude the proof by showing that ATRI is maximized by the star config-
uration depicted on the right of Figure 3. The area of the star is 6λ. Therefore we get
μ(S) ≤ 6λ/λ = 6.

3 A Sketch of the Proof of Theorem 1

First, we introduce some notations. The area of an equilateral triangle with side length
s will be denoted by ;(s). The area of a triangle with edge lengths a, b, and c is
denoted by ;(a, b, c). Every edge can be partitioned lengthwise into two half edges.
Both half edges are incident to the same vertices, but each of them is incident to only
one facet. Slightly abusing notations, we call the largest side of an obtuse triangle its
hypothenuse.

Consider the two triangles incident to an edge e. Let α and β be the two angles
opposite e in the two triangles. We will call β the opposite angle of α.

Consider the MST of S and the Delaunay triangulation of the convex hull of S. Re-
member that the MST edges are also edges of the Delaunay triangulation. Now choose
any edge e of the triangulation. Consider the unique cycle that is formed by adding e to
the MST. This cycle and its (finite) interior is called a pocket. The triangles of the De-
launay triangulation within a pocket are called pocket triangles. The area of a pocket
is the total area of all pocket triangles. The edge e is called the door of the pocket.
All MST edges of the cycle are called border edges. Those in the interior are called
interior edges. If e is an MST edge, the pocket will be called an empty pocket. Here,
e is a border edge and the door at the same time. Empty pockets have area 0.

Note that the door of a pocket is incident to exactly one pocket triangle. If this
triangle is obtuse and the door is its hypothenuse, the pocket is called an obtuse pocket,
otherwise we call it an acute pocket.

The MST-triangles of a pocket P is the following set of triangles. Every half edge
which is part of the MST and incident to a pocket triangle of P generates an MST-
triangle. An MST-triangle of a half edge of length l is an equilateral triangle with side
length l.

Obviously, both half edges of an interior edge belong to the pocket. On the other
hand, only one half edge of a border edge belongs to the pocket. The MST-area of a
pocket is the sum of the areas of all the MST-triangles. The MST-area of an empty
pocket is;(e).

Figure 4 shows a pocket. The door of the pocket is the dashed line. Its border consists
of all the edges of the MST connecting the two end points of the pocket. The largest of
these edges is denoted by b1. There are four inner edges. Note that the inner edges have
two MST-triangles attached, one for each half edge, whereas the border edges have only
one. The area of the pocket consists of the interior of the pocket. Because b1 is part of
the MST whereas the door is not, b1 is never longer then the door.

Lemma 2. In a acute pocket with largest border edge b, the difference between MST-
area and pocket area is bounded by;(|b|).

The proof of Lemma 2 is quite complicated. We therefore only give a sketch of it
towards the end of this section. Using this lemma, one can prove Lemma 3. Due to lack

An Optimal Bound for the MST Algorithm 1145

b1 b1

Fig. 4. A pocket with its MST-triangles on the left and the pocket triangles on the right. Note that
there are 22 MST-triangles and 21 pocket triangles

to space, also this proof is omitted here. Lemma 3 in turn leads directly to the proof of
Theorem 1.

Lemma 3. Consider a pocket formed by an edge e. Then its MST-area can be bounded
by the area of the pocket plus the area of a set of equilateral triangles whose side lengths
are bounded by 1 and add up to |e|.

Proof of Theorem 1. Consider the pockets whose doors are the edges of the convex
hull of S. The sum of the MST-areas of all these pockets is equal to the total MST-area
generated by S. Using Lemma 3, we can conclude that the total MST-area is bounded
by the area of a so-called sun. A sun is defined by a convex set T from the unit disk,
with the additional property that all edges of the convex hull are bounded by 1. The
area of a sun is the convex hull of T plus, for each edge e of the convex hull of T , the
area of an equilateral triangle with side length |e|.

Observe that the MST-area of S is μ(S) ·
√

3/2. Hence we just need to prove that
the area of a sun is bounded by 6

√
3/2, which is exactly the area of a sun produced by

a regular hexagon.
A point set T maximizing the area of its sun has all points on the unit circle. This

holds since by moving a point towards the unit circle, the area of the sun increases.
The area of a sun with all points on the unit circle can be partitioned as indicated in
Figure 5(a). Each part consists of the triangle formed by the origin and an edge of the
convex hull, plus the corresponding equilateral triangle. The area of each part can be
expressed in terms of the angle ρ the first triangle forms at the origin. It is

f(ρ) := sin
(ρ

2

)(
cos
(ρ

2

)
+ 2 · sin

(ρ
2

) √3
2

)
=

1
2
sin(ρ) +

√
3 · sin

(ρ
2

)2

.

Because we assumed that the edges of the convex hull are bounded by 1, the angle ρ
must be between 0 and π

3 . Note that f(π3) =
√

3/2. In order to prove that the sun area
is maximized by a regular hexagon, observe from Figure 5(b) that f(ρ)/ρ, restricted to
the range 0 ≤ ρ ≤ π

3 , is maximized for ρ = π
3 . �

In the remainder of this section, we describe the main ideas of the proof of Lemma 2.

1146 C. Ambühl

ρ

Fig. 5(a). A sun

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

π
3

π
6

0

Fig. 5(b). f(ρ)/ρ =
1
2 sin(ρ)+

√
3sin(1

2 ρ)2

ρ

Lemma 4. In a pocket, the number of MST-triangles exceeds the number of pocket
triangles by one.

Proof. Let n, e, b, t, be the number of nodes, edges, border edges (not including the
door), and pocket triangles of a pocket. Let us first count the MST-triangles. Since the
edges of a pocket form a tree, there are n− 1 edges of the MST involved in the pocket.
Each border edge produces one MST-triangle, whereas each inner edges produces two.
Therefore their number is 2n − 2 − b. Let us now count the pocket triangles. The
Descartes-Euler polyhedral formula gives n + (t + 1) − e = 2, where the additional
1 is the face outside the pocket. By double counting the half edges, we obtain 2e =
3t + (b + 1). Here, the additional 1 stands for the door of the pocket. Solving for t, we
get that the number of pocket triangles is t = 2n− 2− b− 1. �

The extended pocket area (EP-area) of a pocket is defined as the area of the pocket
triangles plus an additional equilateral triangle with side length b, where b is the longest
border edge of the pocket. This additional triangle is called door triangle. We call
the union of the pocket triangles and the door triangle EP-triangles. The net-area of
the pocket is defined as its EP-area minus its MST-area. Using the above definition,
Lemma 2 can be rewritten as

Lemma 2 (reformulated) The net-area of an acute pocket is non-negative.

Let V ⊆ S be the set of vertices that are part of the pocket, i.e., all the vertices
that are inside or at the border of the pocket. Let G = (V,E) be the weighted graph
obtained by adding all the edges of the triangulation of the pocket, including the border
edges and the door. The weight of the edge e = uv, u, v ∈ S, is denoted by w(e) and
its value is |uv|. Observe that the EP-, MST-, and net-area of a pocket are just a sum of
triangle areas. Therefore, using Heron’s formula [22]

;(a, b, c) =
1
4

√
−a4 − b4 − c4 + 2 a2b2 + 2 a2c2 + 2 b2c2

for the area of a triangle with side lengths a, b, and c, their areas can all be expressed in
terms of the weighted planar graph G. What is more, defining EP-, MST-, and net-area

An Optimal Bound for the MST Algorithm 1147

in terms of weighted planar graphs allows to define them even if the planar graph does
not have an embedding in the plane. The next lemma takes full advantage of this fact.

Lemma 5. Let G′ be a graph obtained from G by setting all weights to the same value.
Then the net-area of G′ is 0.

Proof. If all weights of G′ are equal, all the triangles involved in the EP-area and the
MST-area of G′ are equilateral and have the same side length. By Lemma 4, the number
of EP-triangles is equal to the number of MST-triangles. Since both the EP-area and the
MST-area consist of the same number of congruent triangles, we can conclude that their
area is equal. �

We will now define a continuous process that turns G into a graph in which all
edges have the same weight. During the process, only the weights of the edges are
altered, whereas the combinatorial structure of G remains unchanged. The process is
designed in such a way that the net-area of G decreases monotonically. This property,
together with Lemma 5, proves that the net-area of G is non-negative.

Let wmin and wmax be the length of the smallest and the largest edge in G. The
process will be described by a set of graphs G(m), m ∈ R, wmin ≤ m ≤ wmax. We
start with G = G(wmax) and end with G(wmin), in which all weights will be wmin.

The complete proof is quite involved and therefore deferred to the full version of this
paper. In the remainder of the paper, we sketch the proof for a special case. Namely, we
assume that all pocket triangles in G are acute. In this case, the process can be described
very easily: Let w(e) and wm(e) be the weight of edge e in G and G(m) respectively.
Then wm(e) = min(m,w(e)). That is, in every stage of the process, all maximal edges
are decreased simultaneously until all edges have the same weight.

During this process only maximal edges are decreased. Hence, the ordering of the
edges in terms of length remains unchanged during the process. Therefore the MST of
G remains valid in all G(m).

It is easy to see that during the process, the area of the pocket triangles of G decrease
monotonically. This holds only because we assumed that the pocket triangles are acute.

We need to show that the net-area decreases. Hence, we have to show that in every
G(m), the decrease of the pocket area is at least as large as the decrease of the MST-
area. To do this, we will partition G(m) into so-called chains for which we will prove
that their total net-area decreases monotonically.

Consider a graph G(m) for fixed m. Chains are defined in terms of a graph Q. The
vertex set of Q is the set of triangles in G(m) plus the door triangle. Each maximal
MST edge e of G(m) creates the following set of edges in Q. If we remove e, the MST
is divided into two subtrees. Let R(e) be the ring of triangles that separates the two
subtrees. For any pair of adjacent triangles in R(e), we add an edge in Q. Note that if
e is a border edge, the door triangle is also part of the ring and it is connected with the
triangle incident to e and the pocket triangle incident to the door, as shown on the right
of Figure 5. This completes the definition of the graph Q.

The chains are defined as the connected components of Q. Let Q′ be a chain. We
can define the area, the MST-area, and the net-area of Q′ as follows. The area of Q′ is
equal to the sum of the areas of all triangles of Q′. Concerning the MST-area, note that
every MST half edge h of G(m) and its corresponding MST-triangle can be assigned

1148 C. Ambühl

Fig. . Two chains in a graph G plus the door triangle. During the process, the chain on the left
appears when there are two maximal MST edges, whereas the one on the right appears when
there are three maximal MST edges. The maximal edges are the thick MST edges

to a unique chain, namely the one that contains the unique triangle h is incident to. The
MST-area of Q′ is equal to the sum of the areas of all MST-triangles belonging to the
chain. The net-area of Q′ is its area minus its MST-area. Since the net-area of a pocket
is equal to the sum of the net-areas of all its chains, all we have to do to complete the
proof is to show that the net-area of a chain decreases monotonically.

Remember that in G(m), only the maximal MST edge decrease. Therefore only the
MST-triangles of maximal MST edges decrease. In what follows, we will show that the
decrease of the area of the chain makes up for the decrease of these maximal MST-
triangles.

Some chains contain only a single triangle and no maximal MST-triangles. For these
chains, it is obvious that the net-area decreases. Let us now look at chains that contain
maximal MST-triangles. We need to consider two cases.

In case (i), we assume that the door triangle is not part of the chain. The border of
Q′ is the cycle in G with smallest area that contains all the triangles of Q′. The triangles
from Q′ that are incident to a border edge are called border triangles. On the left of
Figure , the border triangles are shaded.

Let us now change Q′ as follows. Let e be a maximal MST edge belonging to Q′.
Assume its two incident triangles are q1 and q2. Add two new vertices h1 and h2 to
Q′. They represent the half edges of e. Then remove the edge q1q2 from Q′ and add
q1h1 and q2h2. If we do this for all maximal MST edges e, Q′ becomes a tree. Let di

be the number of vertices of Q′ with degree i, let n and e be the number of vertices
and edges, respectively. From e = n − 1 (since Q′ is a tree), n = d1 + d2 + d3 and
2e = 3d3 + 2d2 + d1 (by double counting), we get d3 = d1 − 2.

The vertices of degree three represent equilateral triangles with side length m in
G(m). Let D3 be the set of these triangles. The vertices of degree one represent the
maximal MST half edges in G(m). Let D1 be the set of their corresponding MST-
triangles. The area of the triangles in D1 and D3 decreases in the same way. Hence, the
decrease of all but two triangles fromD1 is made up by the triangles inD3. To complete
the proof, one can show that the decrease of the border triangles of the chain makes up

6

6

An Optimal Bound for the MST Algorithm 1149

for the decrease of the remaining two maximal MST-triangles. Due to lack of space, we
skip this proof here.

For case (ii), assume that the door triangle belongs toQ′. Apply the edge splitting of
the previous case to Q′. This time, remove all the leafs adjacent to vertex representing
the door triangle. We can do the same analysis as in the previous case to find that if the
number of leafs in Q′ is d1, then the number of degree three vertices is d3 = d1 − 2.
But this time, one of the leafs is the door triangle, which is an equilateral triangle with
side length m. Hence there are as many half edges as equilateral triangles. Hence, if m
decreases, the MST-area of the chain decreases at least as much as the area of the chain.

Acknowledgements

I am grateful for interesting discussions with Andrea Clementi, Miriam di Ianni, Gian-
luca Rossi, Andreas Paffenholz, Ingo Schurr, Emo Welzl, and Birgitta Weber.

References

1. R. Bar-Yehuda, O. Goldreich, and A. Itai. On the Time Complexity of Broadcast Operations
in Multi-Hop Radio Networks: An Exponential Gap Between Determinism and Randomiza-
tion. Journal of Computer and Systems Science, 45:104–126, 1992.

2. R. Bar-Yehuda, A. Israeli, and A. Itai. Multiple Communication in Multi-Hop Radio Net-
works. SIAM Journal on Computing, 22:875–887, 1993.

3. A.E.F. Clementi, P. Crescenzi, P. Penna, G. Rossi, and P. Vocca. A Worst-case Analysis of an
MST-based Heuristic to Construct Energy-Efficient Broadcast Trees in Wireless Networks.
Technical Report 010, University of Rome “Tor Vergata”, Math Department, 2001.

4. A.E.F. Clementi, P. Crescenzi, P. Penna, G. Rossi, and P. Vocca. On the Complexity of
Computing Minimum Energy Consumption Broadcast Subgraphs. In Proceedings of the
18th Annual Symposium on Theoretical Aspects of Computer Science (STACS), pages 121–
131, 2001.

5. A.E.F. Clementi, G. Huiban, P. Penna, G. Rossi, and Y.C. Verhoeven. Some Recent Theoret-
ical Advances and Open Questions on Energy Consumption in Ad-Hoc Wireless Networks.
In Proceedings of the 3rd Workshop on Approximation and Randomization Algorithms in
Communication Networks (ARACNE), pages 23–38, 2002.

6. A.E.F. Clementi, G. Huiban, P. Penna, G. Rossi, and Y.C. Verhoeven. On the Approxima-
tion Ratio of the MST-based Heuristic for the Energy-Efficient Broadcast Problem in Static
Ad-Hoc Wireless Networks. In 3rd Workshop on Wireles, Mobile and Ad-Hoc Networks
(WMAN) in the Proceedigs of the 17th International Parallel and Distributed Precessing
Symposium (IPDPS), 2003.

7. A. Ephremides, G.D. Nguyen, and J.E. Wieselthier. On the Construction of Energy-Efficient
Broadcast and Multicast Trees in Wireless Networks. In Proceedings of the 19th Annual
Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), pages
585–594, 2000.

8. M. Flammini, R. Klasing, A. Navarra, and S. Perennes. Improved approximation results
for the minimum energy broadcasting problem. Proceedings of the 2004 joint workshop on
Foundations of mobile computing, 2004.

9. E. N. Gilbert and H. O. Pollak. Steiner minimal trees. SIAM Journal on Applied Mathemat-
ics, 16(1):1–29, 1968.

1150 C. Ambühl

10. S. Guha and S. Khuller. Improved Methods for Approximating Node Weighted Steiner Trees
and Connected Dominating Sets. Information and Computation, 150:57–74, 1999.

11. Z. Haas and S. Tabrizi. On Some Challenges and Design Choices in Ad-Hoc Communica-
tions. In Proceedings of the IEEE Military Communication Conference (MILCOM), 1998.

12. L. M. Kirousis, E. Kranakis, D. Krizanc, and A. Pelc. Power Consumption in Packet Radio
Networks. Theoretical Computer Science, 243:289–305, 2000.

13. R. Klasing, A. Navarra, A. Papadopoulos, and S. Perennes. Adaptive broadcast consumption
(abc), a new heuristic and new bounds for the minimum energy broadcast routing problem.
pages 866–877, 2004.

14. G.S. Lauer. Packet radio routing, chapter 11 of Routing in communication networks, M.
Streenstrup (ed.), pages 351–396. Prentice-Hall, 1995.

15. A. Navarra M. Flammini and S. Perennes. The ”real” approximation factor of the mst heuris-
tic for the minimum energy broadcasting. pages 22–31, 2005.

16. R. Montemanni and L.M. Gambardella. Exact algorithms for the minimum power symmetric
connectivity problem in wireless networks. Computers and Operations Research, to appear.

17. R. Montemanni, L.M. Gambardella, and A.K. Das. Mathematical models and exact algo-
rithms for the min-power symmetric connectivity problem: an overview. In Handbook on
Theoretical and Algorithmic Aspects of Sensor, Ad Hoc Wireless, and Peer-to-Peer Networks.
Jie Wu ed., CRC Press, to appear.

18. A. Navarra. Tighter bounds for the minimum energy broadcasting problem. pages 313–322,
2005.

19. K. Pahlavan and A. Levesque. Wireless Information Networks. Wiley-Interscience, 1995.
20. J. M. Steele. Cost of sequential connection for points in space. Operations Research Letters,

8(3):137–142, 1989.
21. P.J. Wan, G. Cǎlinescu, X.Y. Li, and O. Frieder. Minimum-Energy Broadcast Routing in

Static Ad Hoc Wireless Networks. In Proceedings of the 20th Annual Joint Conference of
the IEEE Computer and Communications Societies (INFOCOM), pages 1162–1171, 2001.

22. E. W. Weisstein. MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com.

New Approaches for Virtual Private Network
Design

Friedrich Eisenbrand1,�, Fabrizio Grandoni2, Gianpaolo Oriolo3,
and Martin Skutella4,��

1 Max-Planck-Institut für Informatik,
Stuhlsatzenhausweg 85, D-66123 Saarbrücken, Germany

eisen@mpi-sb.mpg.de
2 Università di Roma “La Sapienza”,

Dipartimento di Informatica,
Via Salaria 113, 00198 Roma, Italy

grandoni@di.uniroma1.it
3 Università di Roma “Tor Vergata”,

Dipartimento di Ingegneria dell’Impresa,
Via del Politecnico 1, 00165, Roma, Italy

oriolo@disp.uniroma2.it
4 Universität Dortmund, Fachbereich Mathematik,

44221 Dortmund, Germany
martin.skutella@uni-dortmund.de

Abstract. Virtual private network design is the following NP-hard prob-
lem. We are given a communication network, represented as a weighted
graph with thresholds on the nodes which represent the amount of flow
that a node can send to and receive from the network. The task is to
reserve capacities at minimum cost and to specify paths between every
ordered pair of nodes such that all valid traffic-matrices can be routed
along the corresponding paths.

Recently, this network design problem has received considerable at-
tention in the literature. It is motivated by the fact that the exact amount
of flow which is exchanged between terminals is not known in advance
and prediction is often illusive. The main contributions of this paper are
as follows:
– Using Hu’s 2-commodity flow theorem, we provide a new lower bound

on the cost of an optimum solution.
– Using this lower bound we reanalyze a simple routing scheme which

has been described in the literature many times and provide a con-
siderably stronger upper bound on its approximation ratio.

– We present a new randomized approximation algorithm for which,
in contrast to earlier approaches from the literature, the resulting
solution does not have tree structure.

� Partially supported by the DFG as part of the Transregional Collaborative Research
Center “Automatic Verification and Analysis of Complex Systems” (SFB/TR 14
AVACS).

�� Partially supported by the DFG Focus Program 1126, “Algorithmic Aspects of Large
and Complex Networks”, grant no. SK 58/4-1.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 1151–1162, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1152 F. Eisenbrand et al.

– Finally we show that a combination of our new algorithm with the
simple routing scheme yields a randomized algorithm with expected
performance ratio 3.55 for virtual private network design. This is a
considerable improvement of the previously best known approxima-
tion results (5.55 STOC’03, 4.74 SODA’05).

1 Introduction

Consider a communication network which is represented by an undirected graph
G = (V,E) with edge costs c : E −→ R+. Within this network there is a set
of terminals T ⊆ V which want to communicate with each other. However, the
exact amount of traffic between pairs of terminals is not known in advance.
Instead, each terminal v ∈ T has an associated input and output threshold
bin(v) ∈ Z≥0 and bout(v) ∈ Z≥0. A traffic matrix D ∈ QT×T

≥0 is valid, if it
respects the lower and upper bounds on the incoming and outgoing traffic of the
terminals, i.e., if the following holds for each terminal i ∈ T∑

j∈T,j �=i

D(i, j) ≤ bout(i) and
∑

j∈T,j �=i

D(j, i) ≤ bin(i).

The (asymmetric) Virtual Private Network Design Problem (VPND) defined
by G, c, T and b consists of finding capacities u(e), e ∈ E, and paths Pij for
each ordered pair (i, j) ∈ T × T such that the following conditions hold:

i) All valid traffic matrices can be routed without exceeding the installed ca-
pacities where all traffic from terminal i to terminal j is routed along path
Pij .

ii) The total cost of the capacity reservation
∑

e∈E u(e) c(e) is minimal.

A reservation of capacities u : E −→ R+ is a tree reservation, if the subgraph of
G induced by the edges e ∈ E with u(e) > 0 is a tree. A general reservation is
sometimes referred to as a graph reservation.

The virtual private network design problem is NP-hard by the following re-
duction from the Steiner tree problem [9]. Given an instance of the Steiner tree
problem, pick a terminal v which has to be connected with the other terminals in
a Steiner tree. This terminal is assigned thresholds bin(v) := 0 and bout(v) := 1.
All other terminals of the Steiner tree instance have input threshold one and
output threshold zero. It is easy to see that a minimum cost Steiner tree yields
an optimum reservation for this VPND-instance.

The virtual private network design problem has independently been defined
by Fingerhut et al. [8] in the context of broadband ATM networks, and by
Duffield et al. [5] (VPN “hose” model). Since then, it has been studied by various
authors in several variations which we discuss next. In the following list, the last
variant (AsymG) is the one which we refer to as VPND.

(SymT) Symmetric thresholds, tree reservation: In this variant, each terminal
i ∈ T has only one threshold b(i), which is an upper bound on the cumulative

New Approaches for Virtual Private Network Design 1153

amount of traffic that terminal i can send or receive. The task is to find an
optimal tree reservation, which supports all valid traffic matrices. Gupta et
al. [9] show that (SymT) is polynomially solvable.

(SymG) Symmetric thresholds, graph reservation: This variant is defined in the
same way as (SymT), except that the capacity reservation can be arbitrary
and not necessarily a tree. Gupta et al.[9] present a 2-approximation for
(SymG). It is not known whether SymG is NP-hard.

(BalT) Balanced thresholds, tree reservation: The thresholds are balanced, which
means that

∑
v∈T bin(v) =

∑
v∈T bout(v). The reservation has to be a tree.

Italiano et al. [13] show that this variant can be solved in polynomial time.
(AsymT) Asymmetric thresholds, tree reservation: This problem is NP-hard [9].

Constant approximation algorithms are presented in [9, 10, 6]. Interestingly,
while the algorithm in [9] is deterministic, the other algorithms are random-
ized and seem difficult to de-randomize.

(AsymG) Asymmetric thresholds, graph reservation: This is the VPND problem
defined above. We have seen that this problem is NP-hard. The randomized
approximation results presented in [10, 6] in fact compare the computed tree
solution to an optimal graph reservation. The current best approximation
algorithm is the one in [6] which achieves an expected performance ratio 4.74.

Simplifying Assumptions and a Lower Bound

Following [10], we make some simplifying assumptions without loss of generality.
By duplicating nodes, we can assume that each terminal is either a sender s,
with bout(s) = 1 and bin(s) = 0, or a receiver r, with bout(r) = 0 and bin(r) = 1.
This simplifying assumption is feasible as long as we make sure that the selected
paths in our solution between copies of a terminal v and copies of a terminal
u are all equal. Let S and R be the set of senders and the set of receivers,
respectively. Let S = |S| and R = |R| denote the corresponding cardinalities.
The algorithms presented in this paper can easily be adapted such as to run
in polynomial time even when the thresholds are not polynomially bounded
and to satisfy the consistence property described above. Moreover, by symmetry
reasons, we always assume R ≥ S.

We can now interpret VPND as follows. Let B = (S ∪R, EB) be the complete
bipartite graph with nodes partitioned into senders and receivers. We have to
reserve capacities on the edges of G and we have to specify a set of paths P in
graph G containing one path Psr for each edge sr ∈ EB such that each bipartite
matching of B can be routed along these paths. In other words, for each edge
e ∈ E, the reservation u(e) has to satisfy the following condition:∣∣{Prs ∈ P | e ∈ Prs and rs ∈M}

∣∣ ≤ u(e) for each matching M in B. (1)

Notice that for a fixed set of paths P, an optimal reservation of capacity is the
component-wise minimal u satisfying (1). (In particular, given P, the integral
capacity u(e) of edge e can be obtained by a maximum bipartite matching com-
putation.) Thus, a solution to VPND can be encoded by only specifying a set of
paths P in G.

1154 F. Eisenbrand et al.

The cost of a bipartite matching between senders and receivers in the metric
closure of G is obviously a lower bound on OPT , the value of an optimum
solution to the VPND-instance. We denote the shortest path distance between
nodes u and v of G by
(u, v). Thus, if edges (r, s) in B are assigned weights

(r, s), then the cost of any matching in B is a lower bound on OPT . This lower
bound is used in the analyses of all previous constant factor approximation
algorithms for VPND.

Lemma 1 ([10]). Let B = (S + R, EB) be the complete bipartite graph on the
senders and receivers with edge weights
 : EB → R+ given by the shortest path
distances in the graph G. Then, the weight of any matching in B is a lower
bound on OPT .

Contribution of This Paper

The design of good approximation results usually requires two main ingredients:
Cleverly constructed algorithms and thoroughly chosen lower bounds on the
optimum such that the quality of the computed solutions can be assessed in
terms of the lower bounds. We considerably advance the state of the art of
approximating VPND by making contributions to both ingredients.

In Section 2 we present a new lower bound which generalizes and thus
strengthens the one stated in Lemma 1. We prove that the weight of any match-
ing (not necessarily bipartite) on the union of the senders and at most S receivers
is at most OPT . The edge-weights in the matching are again the shortest path
distances in G. This new lower bound relies on an interesting interrelation be-
tween a special case of VPND and 2-commodity flows. Its proof is based on an
application of Hu’s 2-commodity flow theorem [11].

In Section 3 we employ the new lower bound in order to show that the follow-
ing simple algorithm achieves performance ratio 1 + R/S: Find a vertex v ∈ V
whose shortest path tree to the union of senders and receivers is of minimal
cost; cumulatively install a capacity of one on each shortest path. One inter-
esting consequence of this result is that (BalG), VPND with balanced thresholds
and graph reservation, has a 2-approximation. Our result improves upon the
3-approximation of Italiano et al. [13] for this problem and generalizes the 2-
approximation for (SymG) by Gupta et al. [9].

In Section 4 we present a new randomized algorithm for VPND. The algorithm
chooses a random subset of receivers and connects each sender via its own Steiner
tree to this subset. The remaining receivers are then connected to the randomly
chosen subset of receivers by shortest paths. Due to the Steiner trees for each
individual receiver, the resulting solution has in general no tree structure. In
contrast to our new approach, the previous algorithm by Gupta et al. [10] and
its refinement in [6] construct only one ‘high-bandwidth’ core which is a Steiner
tree with high capacity. In particular, all previous approximation algorithms for
VPND produce tree solutions.

Finally, we can show that our new algorithm in combination with the simple
algorithm from above yields a 3.55 randomized approximation algorithm. The
previously best known algorithm [6] achieves performance ratio 4.74.

New Approaches for Virtual Private Network Design 1155

Related Work

As discussed above, VPND can be seen as a generalization of the Steiner tree
problem. The currently best known approximation ratio for the Steiner tree
problem is ρ < 1.55 [15]. A related problem is buy at bulk network design (see,
e.g. [1, 2]). In this problem, there is a fixed demand dij between each pair of
nodes in the graph, specifying the amount of flow which has to be sent from
i to j. The costs of the capacities however is a concave function on the amount
purchased, which reflects “economies of scale”. Gupta et al. [10] consider the
single source buy-at-bulk network design problem and present a constant factor
approximation algorithm.

Another important issue in this context is to cope with edge failures [3].
Italiano et al. [14] consider the problem of restoring the network, when at most
one edge in a tree-solution to VPND might fail and provide a constant factor
approximation algorithm.

Recently, Hurkens, Keijsper and Stougie [12] considered the problem (SymT)
in the special case when the given network is a ring. It is conjectured that
(SymG) can be solved in polynomial time. It is in fact conjectured that an
optimal solution to (SymT) is also an optimal solution to (SymG). Hurkens
et al. [12] show that this conjecture holds for ring networks. The authors also
describe an integer programming formulation for VPND, which proves that a frac-
tional version can be solved in polynomial time. This fractional version allows
to specify several paths for each sender-receiver pair and requires the fraction
for each of these paths, which describes how the commodity has to be split.

2 A New Lower Bound via Hu’s 2-Commodity Flow
Theorem

This section is devoted to proving a new lower bound on the cost of an optimal
solution to VPND. Generalizing Lemma 1, we prove that the cost of an arbitrary
(not necessarily bipartite) matching between terminals in S∪R′ is at most OPT ,
for any subset of receivers R′ ⊆ R of cardinality |R′| = S. The proof of this result
is based on Hu’s classical 2-commodity flow theorem [11].

Theorem 1 (Hu’s 2-commodity flow theorem). Let G = (V,E) be a graph
and let {s1, r1}, {s2, r2} be pairs of vertices of G; let u : E −→ R+ be a capacity
function on the edges and let d1, d2 ∈ R+. Then, there exists a (fractional)
2-commodity flow of value d1, d2 if and only if the cut condition is satisfied.
Moreover, if all edge capacities are integral, then a half-integral flow exists.

The cut condition requires that u(δ(X)) ≥ d1 χ1(X) + d2 χ2(X) for each
X ⊆ V . Here δ(X) denotes the cut induced by X. Moreover, for i = 1, 2, we set
χi(X) = 1 if the cut δ(X) separates si from ri and χi(X) = 0, otherwise.

Corollary 1. Let G = (V,E) be an undirected graph with edge capacity func-
tion u : E → R+ and s1, s2, r1, r2 ∈ V . In the following, all demand values

1156 F. Eisenbrand et al.

are equal to 1. If there exists a feasible 2-commodity flow for terminal pairs
{s1, r1}, {s2, r2} and for terminal pairs {s1, r2}, {s2, r1}, then there also exists a
feasible 2-commodity flow for terminal pairs {s1, s2}, {r1, r2}.
Proof. In the case of unit demands, the cut condition requires that, for all X ⊆
V , the capacity u(δ(X)) of the cut induced by X must be at least the number
of terminal pairs which are separated by the cut. It thus remains to prove that
the cut condition holds for the terminal pairs {s1, s2}, {r1, r2} if it holds for
{s1, r1}, {s2, r2} and for {s1, r2}, {s2, r1}.

Consider an arbitrary X ⊆ V . If the corresponding cut separates neither
{s1, s2} nor {r1, r2}, nothing needs to be shown. If δ(X) separates one terminal
pair, say {s1, s2}, then it separates either {s1, r1} or {s2, r1} since s1 and s2 lie
on different sides of the cut. In particular, the capacity of the cut is at least 1.
Finally, if δ(X) separates both terminal pairs {s1, s2}, {r1, r2}, then it either
separates {s1, r1} and {s2, r2} or it separates {s1, r2} and {s2, r1}. In both cases
it follows that the capacity of the cut is at least 2.

We remark that Corollary 1 is no longer true if we replace “2-commodity
flow” by “integral 2-commodity flow”. Even, Itai, and Shamir show that finding
an integer 2-commodity flow is NP-hard [7]. On the other hand, Hu’s result states
that there always exists a half-integral flow in this case. For a more detailed
account of results we refer to Schrijver’s book [16–Chapter 71].

Before we formulate and prove our new lower bound for VPND, we first state
a general technique for deriving such lower bounds.

Lemma 2. Let S1, . . . , Sk be a partition of S and let R1, . . . ,Rk be a partition
of R. We denote the VPND-instance on graph G with senders Si and receivers Ri

by Ii. Then,
k∑

i=1

OPTi ≤ OPT ,

where OPTi is the cost of an optimal solution to instance Ii.

We are now ready to prove the main result of this section.

Theorem 2. Let R′ ⊆ R be an arbitrary subset of cardinality |R′| = S and
let M be a matching in the complete graph on S ∪ R′. Then,∑

vw∈M

(v, w) ≤ OPT.

Proof. Let S = {s1, s2, . . . , sS} and R′ = {r1, r2, . . . , rS}. It suffices to prove the
claim for perfect matchings M . Suppose that M consists of edges

s1s2, s3s4, . . . , s2k−1s2k, and r1r2, r3r4, . . . , r2k−1r2k,
and s2k+1r2k+1, s2k+2r2k+2, . . . , sSrS .

Consider the following partition of S and R′ into S − k subsets Si and R′i each:

Si = {s2 i−1, s2 i}, R′i = {r2 i−1, r2 i}, for 1 ≤ i ≤ k,

Si = {si}, R′i = {ri}, for 2 k + 1 ≤ i ≤ S.

New Approaches for Virtual Private Network Design 1157

By Lemma 2, the sum of OPTi for the VPND-instances Ii with senders Si and
receivers R′i is a lower bound on OPT . Thus we only need to prove that

(s2 i−1, s2 i) +
(r2 i−1, r2 i) ≤ OPTi for each 1 ≤ i ≤ k.

For 1 ≤ i ≤ k, any solution to instance Ii yields a reservation of capac-
ities that supports 2-commodity flows with unit demands for terminal pairs
{s2 i−1, r2 i−1}, {s2 i, r2 i} and for {s2 i−1, r2 i}, {s2 i, r2 i−1}. By Corollary 1, it
must also support a 2-commodity flow for terminal pairs {s1, s2}, {r1, r2}. There-
fore, the cost of this solution is at least
(s1, s2) +
(r1, r2). This concludes the
proof.

3 The Quality of a Simple Routing Scheme

Consider the following simple VPND algorithm: Select the node with the cheapest
shortest path tree to the union of senders and receivers and reserve one unit of
capacity along each shortest path. The effect of installing capacities along short-
est paths is cumulative. In other words, if k shortest paths share the same edge,
the algorithm assigns k units of capacity to that edge. Moreover, the shortest
paths can be computed with a consistent tie-breaking rule such that the edges
with nonzero capacity form a tree.

This algorithm produces an optimal tree reservation in the symmetric case
(SymT) [9] and in the balanced case (BalT) [13]. In the symmetric case, Gupta
et al. [9] show that the tree produced by the algorithm is a 2-approximate so-
lution to the optimum graph reservation. Italiano et al. [13] show that, in the
balanced case, the produced tree is a 3-approximate solution to the optimum
graph reservation.

In this section, we apply our new lower-bound result to show that this algo-
rithm produces a tree-solution whose cost is within a factor of 1 + R/S of the
optimum graph reservation cost. As a consequence, also (BalG) can be approx-
imated within a factor of two.

In [6] the following inequality is shown which follows from Lemma 1 and
which we will use in the proof of the theorem below:∑

s∈S

∑
r∈R

(s, r) ≤ R OPT. (2)

We are now ready to bound the approximation ratio provided by this simple
routing scheme.

Theorem 3. The above described algorithm achieves a performance ratio 1 +
R/S.

Proof. Let Gm = (R ∪ S, Em) be the metric closure of R ∪ S, i.e., the complete
graph on R ∪ S with edge weight
(u, v) given by the shortest path distance
between u and v in G. We show that there exists a node u ∈ R∪S such that the
cost of its star satisfies

1158 F. Eisenbrand et al.∑
v∈R∪S

(u, v) ≤ (1 +R/S)OPT.

If R = S, then the edges of Em can be partitioned into 2S − 1 perfect
matchings. By Theorem 2, the weight of each matching is a lower bound on
OPT . Since each edge is contained in exactly two stars of Gm, there must exist
one star, whose weight is at most (2 (2S − 1)/(2S))OPT < 2OPT .

Suppose for the remainder of the proof that R > S. In the following we denote
by MS the set of (possibly not perfect) matchings of the senders in Gm and by
MR the matchings of at most S receivers. Theorem 2 implies the inequality

(MS) +
(MR) ≤ OPT for each MS ∈ MS, MR ∈ MR, (3)

where
(E′) :=
∑

uv∈E′
(u, v) for any E′ ⊆ Em. In consideration of (3), we
distinguish two cases.

First case:
(MS) ≤ OPT/2 for each MS ∈ MS.
Consider the subgraph Gm

S of Gm which is induced by the senders. The edges of
Gm

S can be partitioned into S matchings. On the other hand one has∑
s′∈S

∑
s∈S

(s′, s) = 2
(Em
S) (4)

and thus
∑

s′∈S

∑
s∈S
(s

′, s) ≤ S ·OPT . This means that the average weight of
a complete star in Gm

S is at most OPT . Let s′ be a random sender. Inequality (2)
implies that E[

∑
r∈R
(s

′, r)] ≤ (R/S)OPT . Together with the above discussion
this implies for a random sender s′

E

[∑
s∈S

(s′, s) +
∑
r∈R

(s′, r)

]
≤ (1 +R/S)OPT. (5)

Second case:
(MS) > OPT/2 for some maximum weight matching MS ∈MS.
Let Gm

R denote the subgraph of Gm which is induced by the receivers. We will
show below that the cost of any matching M̃ in Gm

R is bounded by (R/S)OPT/2.
Since the edges of Gm

R can be partitioned into R matchings, we can then argue
in a similar manner as above that E[

∑
r∈R
(r

′, r)] ≤ (R/S)OPT for a random
receiver r′. Together with (2) this implies

E

[∑
s∈S

(s, r′) +
∑
r∈R

(r, r′)

]
≤ (1 +R/S)OPT. (6)

It remains to bound the cost of any matching M̃ in Gm
R . First assume that S

is even. Theorem 2 implies
(MR) ≤ OPT/2 for each matching MR ∈ MR of at
most S receivers. As a consequence, the average cost of an edge in a matching
M̃ is at most (OPT/2)/(S/2) = OPT/S. Since M̃ has at most R/2 edges, we
get
(M̃) ≤ (R/S)OPT/2 for any matching M̃ in Gm

R .

New Approaches for Virtual Private Network Design 1159

It remains to consider the case that S is odd. Then there is a sender s∗ which
is missed by the maximum cost matching MS of Gm

S . Theorem 2 yields

(MR) +
(s∗, r∗1) ≤ OPT/2 (7)

for each matching MR ∈ MR and r∗1 ∈ R which is not matched by MR. Since
R > S, there exists another receiver r∗2 which is missed by MR. By the triangle
inequality one has
(r∗1 , r∗2) ≤
(s∗, r∗1) +
(s∗, r∗2). As a result we get

(MR) + 1/2
(r∗1 , r∗2) ≤ OPT/2 (8)

for each matching MR ∈MR and receivers r∗1 , r∗2 which are missed by MR. This
implies that the average weight of an edge of M̃ is bounded by OPT/S and thus

(M̃) ≤ (R/S)OPT/2.

4 A New Algorithm for VPND

In Section 3 we described an algorithm which guarantees a good approximation
ratio for R close to S. In this section we present a better approximation algorithm
for the case that R is sufficiently larger than S. As the algorithm by Gupta
et al. [10], this algorithm is based on Steiner-tree computations. However, in
contrast to the algorithm in [10], it does not construct a “high bandwidth core”,
which is a small Steiner tree with high capacity, which collects and distributes the
demands from outside, and routes them along its high capacity paths. Instead,
we proceed by constructing Steiner trees for each sender to a previously sampled
subset of receivers, and by connecting the other receivers along their shortest
paths to the sampled subset.

Algorithm 1.

(1) Partition R into S subsets uniformly at random. Among the non-empty
subsets in the partition, select one subset R′ uniformly at random.

(2) For each sender s ∈ S, compute a ρ-approximate Steiner tree T (s) on {s}∪R′,
and add one unit of capacity to each edge of T (s).

(3) Add one unit of capacity along a shortest path between each receiver r ∈ R

and R′.

It is interesting to note here that the thereby produced solution is not a
tree solution. Though an optimal tree-solution is a constant-factor approxima-
tion to an optimal graph-solution, it is known [9] that an optimal solution to
(AsymT) is in general not an optimal solution to VPND. All previous constant
factor approximation algorithms for VPND produce tree reservations [10, 6].
It remains to specify the path between each sender-receiver pair (s, r). Assume
that the shortest paths are computed in a consistent way. Let r∗ be the receiver
in R′ which is closest to r. The path Psr between s and r is obtained by con-
catenating the (simple) path between s and r∗ in T (s) with the shortest path
between r∗ and r.

1160 F. Eisenbrand et al.

Before we proceed with the analysis of Algorithm 1, we state a corollary of
Lemma 2. Here, given a subset V ′ of nodes, we denote the cost of an optimum
Steiner tree on terminal set V ′ by st(V ′).

Corollary 2 ([10]). Let R1, . . . ,Rs be a partition of R into S (disjoint) subsets.
Consider an arbitrary perfect matching between S and this family of subsets. Let
R(s) be the subset matched with sender s. Then,∑

s∈S

st({s} ∪ R(s)) ≤ OPT.

Theorem 4. Algorithm 1 is a (2+ ρ)/(1− e−R/S) approximation algorithm for
VPND.

Theorem 4 is a straightforward consequence of the following lemmas.

Lemma 3. For a uniformly chosen random sender s′,

E[st({s′} ∪ R′)] ≤ OPT

S(1− e−R/S)
.

Proof. Consider the following random process. For each receiver r, we assign r
to a sender s chosen uniformly at random. Let R(s) be the subset of receivers
assigned to s. Note that the subsets R(s) partition R into S (possibly empty)
subsets. Thus, by Corollary 2,

∑
s∈S st({s} ∪ R(s)) ≤ OPT . This means that,

for the random sender s′, E[st({s′}∪R(s′))] ≤ OPT/S. Let A denote the event
that R(s′) is empty. By elementary probability theory,

E[st({s′} ∪ R(s′))] =P (A)E[st({s′} ∪ R(s′)) | A]

+ P (A)E[st({s′} ∪ R(s′)) | A] .

Now observe that P (A) = 1− (1− 1/S)R ≥ 1− e−R/S . Moreover E[st({s′} ∪
R(s′)) | A] = E[st({s′})] = 0. Thus

E[st({s′} ∪ R(s′)) | A] =
E[st({s′} ∪ R(s′))]

P (A)
≤ OPT

S(1− e−R/S)
.

The claim follows by observing that, given A, R(s′) and R′ are identically dis-
tributed. Thus

E[st({s′} ∪ R′)] = E[st({s′} ∪ R(s′)) | A] ≤ OPT

S(1− e−R/S)
.

This implies the following upper bound on the expected cost of capacity
which is installed in the second step of the algorithm.

Lemma 4. The expected cost of the capacity installed in the second step of Al-
gorithm 1 is at most

ρOPT/(1− e−R/S).

New Approaches for Virtual Private Network Design 1161

The cost of the third step can be bounded as in the following lemma. A proof
can be found in the full version of this paper.

Lemma 5. The expected cost of the capacity installed in the third step of Algo-
rithm 1 is at most

2OPT/(1− e−R/S).

In Section 3 we described a (1 +R/S) approximation algorithm. The factors
1 + R/S and (2 + ρ)/(1 − e−R/S) are equal for R/S = 2.78 . . . < 2.79. Note
that 1+R/S is increasing in R/S and (2+ρ)/(1− e−R/S) is decreasing in R/S.
It follows that a combination (taking the minimum cost solution) of the simple
routing scheme of section 3 and Algorithm 1 has an expected approximation
guarantee of 3.79.

Theorem 5. The combination (taking the cheaper solution) of the simple rout-
ing scheme and Algorithm 1 is an expected 3.79 approximation algorithm for
VPND.

4.1 Computing the Optimum Steiner Tree

The performance ratios of the simple scheme and Algorithm 1 meet roughly at
R/S = 2.78. In this case, the sampled set R′ of receivers has expected constant
size. An optimum Steiner tree on a graph with n nodes and t terminals can be
computed in O(3t n + 2t n2 + n3) time with the Dreyfus-Wagner algorithm [4].
This suggests the following variant of Algorithm 1.

In the second step of Algorithm 1 compute an optimal Steiner tree whenever
|R′| ≤ log n, where n is the number of nodes in (the original graph) G. A similar
technique was already applied in [6].

Clearly, this modification is a polynomial time algorithm whose expected
approximation guarantee is not worse than the one of Algorithm 1. In particular,
if R/S ≥ log log n, the approximation achieved is

(2 + ρ)/(1− e−R/S) ≤ (2 + ρ)/(1− 1/ log n) = 2 + ρ+ o(1) < 3.55.

What can be said about the approximation guarantee if R/S ≤ log log n? In
that case, the expected size of R′ is 1 + (R − 1)/S < 1 + log log n. The prob-
ability that the size of R′ exceeds log n is, by Markov’s inequality, at most
(1+log log n)/ log n. In this unlikely event however, we can estimate the outcome
of the combination of the thereby computed solution with the solution computed
by the simple routing scheme described in section 3.

The next theorem is proved in a similar way as the main theorem in [6]. The
proof can be found in the full version of this paper.

Theorem 6. The combination (taking the cheaper solution) of the above de-
scribed modification of Algorithm 1 and the simple routing scheme described in
section 3 is an expected 3.55-approximation algorithm for VPND.

1162 F. Eisenbrand et al.

References

1. M. Andrews and L. Zhang. The access network design problem. In Proceedings
of the 39th Annual Symposium on Foundations of Computer Science(FOCS-98),
pages 40–49, Los Alamitos, CA, Nov.8–11 1998. IEEE Computer Society.

2. B. Awerbuch and Y. Azar. Buy-at-bulk network design. In 38th Annual Symposium
on Foundations of Computer Science, pages 542–547, Miami Beach, Florida, 20–22
Oct. 1997. IEEE.

3. G. Brightwell, G. Oriolo, and F.B. Shepherd. Reserving resilient capacity in a
network. SIAM J. Discrete Math., 14(4):524–539, 2001.

4. S.E. Dreyfus and R.A. Wagner. The Steiner problem in graphs. Networks, 1:195–
207, 1971/72.

5. N.G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K.K. Ramakrishnan, and J.E.
van der Merive. A flexible model for resource management in virtual private net-
works. In Proceedings of the conference on Applications, technologies, architectures,
and protocols for computer communication, pages 95–108. ACM Press, 1999.

6. F. Eisenbrand and F. Grandoni. An improved approximation algorithm for vir-
tual private network design. In Proceedings of the sixteenth annual ACM-SIAM
symposium on Discrete algorithms, SODA 05, pages 928–932, 2005.

7. S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multicom-
modity flow problems. SIAM Journal on Computing, 5(4):691–703, 1976.

8. J.A. Fingerhut, S. Suri, and J. S. Turner. Designing least-cost nonblocking broad-
band networks. Journal of Algorithms, 24(2):287–309, 1997.

9. A. Gupta, J. Kleinberg, A. Kumar, R. Rastogi, and B. Yener. Provisioning a
virtual private network: a network design problem for multicommodity flow. In
ACM Symposium on the Theory of Computing, pages 389–398, 2001.

10. A. Gupta, A. Kumar, and T. Roughgarden. Simpler and better approximation
algorithms for network design. In ACM, editor, Proceedings of the Thirty-Fifth
ACM Symposium on Theory of Computing, San Diego, CA, USA, June 9–11,
2003, pages 365–372, New York, NY, USA, 2003. ACM Press.

11. T. Hu. Multi-commodity network flows. Operations Research, 11:344–360, 1963.
12. C. Hurkens, J. Keijsper, and L. Stougie. Virtual private network design: A proof

of the tree routing conjecture on ring networks. In Proceedings of the eleventh
Conference on Integer Programming and Combinatorial Optimization, IPCO XI,
2005. to appear.

13. G. Italiano, S. Leonardi, and G. Oriolo. Design of networks in the hose model. In
Proceedings of ARACNE 2002, pages pp 65–76, 2002.

14. G.F. Italiano, R. Rastogi, and B. Yener. Restoration algorithms for virtual private
networks in the hose model. In Proceedings of the 21st Annual Joint Conference
of the IEEE Computer and Communications Society (INFOCOM-02), volume 1 of
Proceedings IEEE INFOCOM 2002, pages 131–139. IEEE Computer Society, 2002.

15. G. Robins and A. Zelikovsky. Improved steiner tree approximation in graphs. In
Proceedings of the eleventh annual ACM-SIAM Symposium on Discrete Algorithms,
SODA’00, pages 770–779, 2000.

16. A. Schrijver. Combinatorial optimization. Polyhedra and efficiency (3 volumes).
Algorithms and Combinatorics 24. Berlin: Springer., 2003.

Hadamard Tensors and Lower Bounds on
Multiparty Communication Complexity

Jeff Ford and Anna Gál�

Dept. of Computer Science,
University of Texas at Austin, Austin, TX 78712-1188, USA

{jeffford, panni}@cs.utexas.edu

Abstract. We develop a new method for estimating the discrepancy
of tensors associated with multiparty communication problems in the
“Number on the Forehead” model of Chandra, Furst and Lipton. We
define an analogue of the Hadamard property of matrices for tensors in
multiple dimensions and show that any k-party communication prob-
lem represented by a Hadamard tensor must have Ω(n/2k) multiparty
communication complexity. We also exhibit constructions of Hadamard
tensors, giving Ω(n/2k) lower bounds on multiparty communication com-
plexity for a new class of explicitly defined Boolean functions.

1 Introduction

Communication complexity was introduced by Yao [23] in 1979. Two players
wish to compute f(x, y). One player knows x, and the other knows y. Both
have unlimited computational power. The communication complexity of f is the
number of bits they must exchange on an arbitrary input in order to determine
the value of f . This model and many of its variants have been widely studied
[14]. Communication complexity arguments have been used to derive results in
circuit complexity and in other computational models.

We consider the multiplayer model of Chandra, Furst, and Lipton [7] usually
called the “Number on the Forehead” model. With k players, the input is par-
titioned into k parts: x1, . . . , xk. The i-th player has access to every xj except
xi. The Number on the Forehead model is stronger than the 2-party model, and
sometimes the overlap between the players’ inputs can be used to obtain surpris-
ing upper bounds (e.g. [18, 17]). This model is harder to analyze than the 2-party
model, and very few lower bounds are known. On the other hand, lower bounds in
this model have many applications in complexity theory, including constructions
of pseudorandom generators for space bounded computation, universal traver-
sal sequences, and time-space tradeoffs [2], as well as circuit complexity lower
bounds [13, 16, 18].

� Supported in part by NSF CAREER Award CCR-9874862, NSF Grant CCF-0430695
and an Alfred P. Sloan Research Fellowship.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 1163–1175, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1164 J. Ford and A. Gál

The largest known lower bounds for explicit functions are of the form Ω(n/2k)
where k is the number of players, and n is the number of bits each player misses.
The first bounds of this form were given by Babai, Nisan and Szegedy [2] for
the “quadratic character of the sum of coordinates” (QCS) function. They also
gave an Ω(n/4k) lower bound for the “generalized inner product” (GIP) func-
tion that was later improved to Ω(n/2k) by Chung and Tetali [10]. Chung [9]
and Raz [19] generalized the method of [2] to give a sufficient condition for a
function to have Ω(n/2k) multiparty communication complexity. Raz [19] also
obtained Ω(

√
n/2k) lower bounds for a new function based upon matrix multi-

plication over GF(2). Babai, Hayes and Kimmel [3] obtained further examples
of functions with Ω(n/2k) multiparty communication complexity. All of these
lower bounds were obtained by estimating discrepancy, and so they also hold in
the distributional and randomized communication complexity models.

The known bounds all decrease exponentially as the number of players grows,
becoming trivial for k > log n. It is a major open problem, with important
implications in circuit complexity, to prove nontrivial lower bounds on multiparty
communication problems for a large number of players. The class ACC0, defined
by Barrington [4], consists of languages recognized by constant depth, unbounded
fan-in polynomial size circuit families with AND, OR, NOT and MODm gates
for a fixed m. By the results of [24, 5, 13], families of functions that belong to
ACC0 can be computed by multiparty protocols with polylogarithmic (in n)
communication by a polylogarithmic (in n) number of players (where n is the
number of bits each player misses). Separating ACC0 from other complexity
classes (e.g. NP) is a major open problem, and a sufficiently large multiparty
communication complexity lower bound would resolve it.

As proved by Chor and Goldreich [8], any Boolean function defined by a Had-
amard matrix has Ω(n) 2-party communication complexity. Their proof uses
a lemma by Lindsey (see [11] p. 88) that estimates the largest possible sum
of entries in a submatrix of a Hadamard matrix. Lindsey’s lemma implies up-
per bounds on the discrepancy of functions defined by Hadamard matrices and
“nearly” Hadamard matrices. Babai, Nisan and Szegedy [2] generalized the proof
of Lindsey’s lemma to obtain upper bounds on the discrepancy of tensors asso-
ciated with certain multiparty communication problems. The lower bounds that
followed (e.g. [9, 10, 19, 3]) all used this approach. These papers did not consider
generalizing the Hadamard property to tensors. In fact, [10] mentions that it is
not clear how to generalize Hadamard matrices to tensors.

In this paper we propose a generalization of the Hadamard property of ma-
trices to tensors of arbitrary dimension. We show that any k-party communica-
tion problem represented by a Hadamard tensor must have Ω(n/2k) multiparty
communication complexity. We construct families of Hadamard tensors, giving
Ω(n/2k) lower bounds for a new class of explicitly defined Boolean functions.
Our Hadamard property is stronger than the sufficient condition of Chung [9]
and Raz [19] for Ω(n/2k) bounds, and could yield larger than Ω(n/2k) lower
bounds. There are no matching upper bounds known for functions represented
by Hadamard tensors. We show how the Chung-Raz condition and some pre-

Hadamard Tensors and Lower Bounds 1165

vious lower bounds fit into a “nearly” Hadamard framework. We believe that
Hadamard tensors may also be of independent interest.

Our approach is based upon a new general upper bound on the discrepancy
of tensors in terms of the largest possible value achievable by multiplying a
collection of lines of the tensor by −1 and taking the sum of the entries of the
resulting tensor. We refer to this value as the weight. This measure has been
analyzed for matrices (see e.g. [1, 20]), and the corresponding matrix problem is
sometimes called the “switching lights game”. Generalizing the switching lights
game to tensors was previously suggested in [10]. As far as we know, the general
upper bound we give for the discrepancy of a tensor in terms of its weight
is new. We also show that this upper bound is not too much larger than the
actual discrepancy. Thus, the weight will give good bounds and may be easier
to use than directly computing discrepancy. Since our lower bounds are based
on discrepancy, they also hold in the distributional and randomized models.

2 Preliminaries

In the k-party model of Chandra, Furst and Lipton [7], k players with unlimited
computational power wish to compute the value of a function f : X1×· · ·×Xk →
{−1, 1} on input x = (x1, . . . , xk). Usually we assume that X1 = . . . = Xk =
{0, 1}n. The function f is known to each player, and player Pi gets all of the
input except xi ∈ Xi. Players communicate by broadcasting messages, so all
players receive all messages. If each player misses n bits of input, then n+1 bits
of communication is sufficient: Player P2 broadcasts x1, and then player P1 who
now has the entire input broadcasts the answer.

Definition 2.1. The deterministic k-party communication complexity of f (de-
noted C(f)) is the number of bits communicated by the players on the worst input
x using the best protocol for computing f .

Definition 2.2. Let μ be a probability distribution over the input of f . The bias
achieved by a protocol P is defined as |P r[P (x) = f(x)] − P r[P (x) �= f(x)]| ,
where x is chosen according to the distribution μ.

The ε-distributional communication complexity of f (denoted Cε,μ(f)) is the
number of bits communicated by the players on the worst input x using the best
protocol for computing f that achieves bias at least ε under the distribution μ.
When μ is the uniform distribution we abbreviate to Cε(f).

Definition 2.3. [2] A subset Zi ⊆ X1× · · · ×Xk is called a cylinder in the i-th
dimension, if membership in Zi does not depend on the i-th coordinate, that is for
every (x1, . . . , xi, . . . , xk) ∈ Zi and every x′i ∈ Xi we have (x1, . . . , x

′
i, . . . , xk) ∈

Zi as well. A subset Z ⊆ X1 × · · · ×Xk is called a cylinder intersection if it can
be represented as Z = ∩k

i=1Zi, where each Zi is a cylinder in the i-th dimension.

A protocol can be thought of as reducing the space of possible inputs at each
step until all the remaining possibilities give the same output. A message from

1166 J. Ford and A. Gál

player Pi winnows the input space, but not along the i-th dimension. Thus it
causes the space of possible inputs to be intersected with a cylinder in the i-th
dimension. After each message the consistent inputs form a cylinder intersection.

Definition 2.4. The discrepancy of f on the cylinder intersection Z (denoted
DiscZ(f)) is defined by

DiscZ(f) = |Pr[(x ∈ Z) ∧ (f(x) = 1)]− Pr[(x ∈ Z) ∧ (f(x) �= 1)]| ,

where x is chosen according to the uniform distribution. The discrepancy of f
(denoted Disc(f)) is the maximum of DiscZ(f) over all cylinder intersections Z.

Since Disc(f) is defined with respect to the uniform distribution, and the
output of f is from {−1, 1}, we have the following:

DiscZ(f) = |
∑
x∈Z

f(x)| / |X1 × . . .×Xk| .

Lemma 2.1. [2] For any function f : X1 ×X2 × · · · ×Xk → {−1, 1}, C(f) ≥
log2(1/Disc(f)) and Cε(f) ≥ log2(ε/Disc(f)).

3 A General Upper Bound on Discrepancy

Problems in 2-party communication complexity can be represented as matrices
with rows labeled by the possible inputs for player P1 and columns labeled by
the possible inputs for player P2. An entry in the matrix at location (x, y) is
given by f(x, y).

A multiparty communication complexity problem can be represented by a
tensor, the multidimensional analogue of a matrix. Each dimension of the tensor
is labeled by the piece of input missed by a player. That is, the i-th dimension of
the tensor is indexed by the elements of Xi. We denote by A(x1, . . . , xk) the entry
of the k-dimensional tensor A at location (x1, . . . , xk). For tensor Af representing
function f we have Af (x1, . . . , xk) = f(x1, . . . , xk). If |X1| = . . . = |Xk| = N ,
we say that the tensor has order N .

Definition 3.1. Given a tensor A in k dimensions, a line of A is any vec-
tor formed by fixing all but one coordinate of A. A face of A is any (k − 1)-
dimensional tensor formed by fixing one coordinate of A.

A tensor of order N has N entries in each line and Nk−1 entries in each face. It
has Nk−1 lines and N faces along each of the k dimensions.

Definition 3.2. Let A be a tensor with ±1 entries. We say that a line of the
tensor A is flipped if each entry in that line is multiplied by −1.

Definition 3.3. We say that a tensor is cylindrical in the i-th dimension, if it
does not depend on the i-th coordinate xi.

Hadamard Tensors and Lower Bounds 1167

If a tensor is cylindrical in the i-th dimension, the entries of any given line
along the i-th dimension are identical, and the corresponding N faces are iden-
tical. Thus, a k-dimensional cylindrical tensor can be specified by a (k − 1)-
dimensional tensor (specifying the face that is repeated N times).

Definition 3.4. We define the excess of a tensor A (denoted S(A)) to be the
sum of its entries; that is, S(A) =

∑
x∈X1×···×Xk

A(x).

Lemma 3.1. (implicit in [10]) Disc(f) = maxS(Af ◦C1◦. . .◦Ck)/Nk, where Af

is the ±1 tensor representing f , and each Ci is a 0/1 tensor which is cylindrical
in the i-th dimension. (Af ◦ C1 ◦ . . . ◦ Ck denotes the entrywise product of the
tensors A,C1, . . . ,Ck.)

Proof. Let Zi ⊆ X1 × · · · × Xk be a cylinder in the i-th dimension, and let
Ci be the 0/1 tensor representing the characteristic function of the cylinder
Zi. Then Ci is cylindrical in the i-th dimension. Conversely, every 0/1 tensor
which is cylindrical in the i-th dimension represents the characteristic function
of some cylinder in the i-th dimension. The lemma immediately follows from the
definitions and our notation. ��

Definition 3.5. We define the weight of a tensor A (denoted W (A)) to be the
largest possible excess of a tensor A′ where A′ can be obtained from A by flipping
an arbitrary collection of lines (in any direction). Note that the order in which
the flips are performed does not matter.

Alternatively, W (A) can be described as W (A) = maxS(A ◦ T1 ◦ . . . ◦ Tk),
where each Ti is a ±1 tensor which is cylindrical in the i-th dimension. (A ◦T1 ◦
. . . ◦ Tk denotes the entrywise product of the tensors A, T1, . . . , Tk.)

Theorem 3.1. Disc(f) ≤ W (Af)/Nk, where N is the order of the tensor Af

representing f .

Proof. For i = 1, . . . , k, let Ci be an arbitrary 0/1 tensor which is cylindrical
in the i-th dimension. We inductively define related ±1 tensors Ĉi and Ti. For
each i = 1, . . . , k, we define a (k − 1)-dimensional ±1 tensor Ĉi, where the
i-th coordinate is left out. For example, Ĉ1 is a (k − 1)-dimensional tensor that
depends on the k−1 coordinates x2, . . . , xk. To simplify notation, we will denote
the entries of these tensors by Ĉi(x), with the understanding that for Ĉi, xi is
not used for indexing. For example, Ĉ1(x) stands for Ĉ1(x2, . . . , xk).

We define Ĉ1 as follows: Ĉ1(x) = sign(
∑

x1
Af (x) ·C2(x) · · ·Ck(x)). In other

words, to obtain Ĉ1, we collapse the k dimensional tensor Af ◦ C2 ◦ . . . ◦ Ck to
a k − 1 dimensional tensor by summing the entries of each line along the first
dimension and taking the sign of each line sum as an entry of Ĉ1. (If a given line
sums to a negative number, the corresponding entry in Ĉ1 is −1, otherwise it is
1.) We use Ĉ1 to define the ±1 tensor T1, which is k-dimensional, and cylindrical
in the first dimension. T1 is obtained by taking N copies of Ĉ1 and using them
as the faces of T1 (along the first dimension).

1168 J. Ford and A. Gál

Assume that T1, . . . , Ti−1 are already defined. We define Ĉi as follows:

Ĉi(x) = sign(
∑
xi

Af (x) · T1(x) · · ·Ti−1(x) · Ci+1(x) · · ·Ck(x))

Once Ĉi is defined we use it to obtain Ti which is k-dimensional, and cylindrical
in the i-th dimension. Ti is obtained by taking N copies of Ĉi and using them
as the faces of Ti (along the i-th dimension).

First we show S(Af ◦C1 ◦C2 ◦ . . .◦Ck) ≤ S(Af ◦T1 ◦C2 ◦ . . .◦Ck). When we
replace C1 by T1, the contribution of each line of the tensor Af ◦C1 ◦C2 ◦ . . .◦Ck

(along the first dimension) is replaced by a nonnegative value at least as large
as the absolute value of the sum of the entries of the original line. To see this,
notice that by definition, Ĉ1 and T1 contain the signs of the sum of the entries
of the corresponding lines of Af ◦C2 ◦ . . . ◦Ck. (If the sum is 0, we use 1 for the
sign.) Obtaining Af ◦ T1 ◦ C2 ◦ . . . ◦ Ck corresponds to multiplying each entry
of a given line of Af ◦ C2 ◦ . . . ◦ Ck by the sign of the sum of the entries of
that line. Recall that each Ci is cylindrical, thus the lines of C1 along the x1

coordinate are constants (all 0 or all 1). If all entries of a given line of C1 are 0
then the corresponding line of Af ◦C1 ◦C2 ◦ . . .◦Ck did not contribute anything
to the sum, while after the replacement it contributes a nonnegative value. For
the lines of C1 that are constant 1, the contribution of the corresponding line of
Af ◦C1 ◦ . . . ◦Ck is replaced by its absolute value. Thus, we never decrease the
total sum. Similarly, at each inductive step above, we maintain that S(Af ◦T1 ◦
. . . ◦ Ti−1 ◦ Ci ◦ . . . ◦ Ck) ≤ S(Af ◦ T1 ◦ . . . ◦ Ti ◦ Ci+1 ◦ . . . ◦ Ck). It follows that
S(Af ◦ C1 ◦ . . . ◦ Ck) ≤ S(Af ◦ T1 ◦ . . . ◦ Tk). By Lemma 3.1 and the definition
of W (Af) the theorem follows. ��

The following simple example shows that the discrepancy Disc(f) can be
strictly smaller than W (Af)/Nk. Let k = 2, and f be the parity function, i.e.,
f is 1 if the number of 1’s among the input bits is even, and −1 otherwise.
Then the discrepancy Disc(f) = 1/4, while W (Af)/N2 = 1. To see this, note
that in the matrix corresponding to the parity function the sum of entries in
any rectangle is at most N2/4. On the other hand, it is possible to flip the lines
of the matrix so that we obtain the all 1 matrix. (Theorem 8 in [10] appears
to claim that Disc(f) = W (Af)/Nk. However, this seems to be a mistake in
notation, and they in fact prove Lemma 3.1.)

The following theorem shows that the discrepancy can not be too much
smaller than the bound given by the weight. Thus, using the weight for bounding
discrepancy will give good bounds.

Theorem 3.2.
Disc(f) ≥W (Af)/(2kNk) .

Proof. Consider the lines used to generate W (Af). Partition the entries of Af

into 2k groups according to whether they were flipped by the lines along each of
the k dimensions. Along each dimension the entries flipped by the lines form a
cylinder, as do the unflipped entries. Thus the partition splits the entries of Af

Hadamard Tensors and Lower Bounds 1169

into 2k cylinder intersections. At least one of these cylinder intersections has en-
try sum with absolute value at least W (Af)/2k. Using that cylinder intersection
in the discrepancy definition gives discrepancy at least W (Af)/(2kNk). ��

It is known that W (A) ≥ N3/2/
√

2 for any N by N matrix A with ±1 entries
(see Theorem 5.1 in [1]; see also [6] (c.f. [15])). We show the following extension
of that result:

Theorem 3.3. W (A) ≥ Nk− 1
2 /
√

2, for any k dimensional ±1 tensor A of or-
der N .

Proof. Consider the set of matrices formed by fixing all but the first two di-
mensions of A. Each of the matrices has weight at least N3/2/

√
2. They do not

intersect, so their lines can be flipped independently giving a tensor weight at
least Nk−2(N3/2/

√
2). ��

A standard probabilistic argument shows that there are tensor with weight
O(
√

kNk− 1
2). Proving similar upper bounds on the weight of explicitly defined

tensors would yield lower bounds of the form Ω(n) on multiparty communication
complexity, for any number of players. Thus, estimating the weight of tensors
can potentially give close to optimal bounds on the discrepancy, and on the
multiparty communication complexity of the corresponding functions.

4 Hadamard Tensors

An N by N matrix with ±1 entries is called a Hadamard matrix if the inner
product of any two of its distinct rows is 0. It is equivalent to state the condition
for columns: The product of any two distinct rows is 0 if and only if the product
of any two distinct columns is 0.

The Hadamard property is invariant under the arbitrary flipping of lines.
Thus, Lindsey’s lemma (see [11] p. 88) gives the following well known statement:

Lemma 4.1. For any Hadamard matrix A of order N , W (A) ≤ N3/2.

We define the product of t lines (along the same dimension) of a tensor as
the sum of entries in their entrywise product. For example, if l1, . . . , lt are lines
along the first dimension, then their product is

∑
x1
l1(x1) · · · lt(x1).

Let A be a k-dimensional tensor of order N with ±1 entries. For each of
the first k − 1 dimensions i = 1, . . . , k − 1, choose two distinct indices yi, zi ∈
Xi. Picking exactly one of yi or zi for each i = 1, . . . , k − 1 gives a point in
X1×. . .×Xk−1, and each such point specifies a line of A along the last coordinate
xk. There are 2k−1 possible choices for the selection described above, and since
for each i = 1, . . . , k−1, yi �= zi, we get 2k−1 distinct lines this way. We say that
the tensor A is Hadamard, if the product of any 2k−1 lines chosen in this way is
0. More formally, we define Hadamard tensors as follows:

1170 J. Ford and A. Gál

Definition 4.1. Let A be a k-dimensional tensor of order N with ±1 entries.
We say that A is a Hadamard tensor if for any y1, z1 ∈ X1, . . . , yk−1, zk−1 ∈
Xk−1 such that yi �= zi for i = 1, . . . , k − 1, the following holds:∑

xk∈Xk

∏
x1∈{y1,z1},...,xk−1∈{yk−1,zk−1}

A(x1, x2, . . . , xk) = 0 .

When k = 2 this definition is identical to the definition of Hadamard matrices.

Lemma 4.2. Let Axi denote the face of A obtained by fixing the i-th coordinate
to the value xi. Let k ≥ 3. A is a k-dimensional Hadamard tensor if and only
if for any i �= k and yi �= zi the entrywise product of two faces Ayi ◦ Azi is a
(k − 1)-dimensional Hadamard tensor.

Proof. Without loss of generality, let i = k − 1. We need to show that for any
y1, z1 ∈ X1, . . . , yk−2, zk−2 ∈ Xk−2 such that yi �= zi for i = 1, . . . , k − 2, the
following holds:∑

xk∈Xk

∏
x1∈{y1,z1},...,xk−2∈{yk−2,zk−2}

Ayk−1 ◦Azk−1(x1, . . . , xk−2, xk) = 0 .

But Ayk−1 ◦ Azk−1(x1, . . . , xk−2, xk) =
∏

xk−1∈{yk−1,zk−1}A(x1, x2, . . . , xk), and
the statement directly follows from Definition 4.1. The proof in the reverse di-
rection is similar. ��

Since the k-th coordinate plays a special role in the definition of a Hadamard
tensor, we can say that the definition is given with respect to the k-th dimension.
It is not hard to see (using Lemma 4.2) that, just as for matrices, if a tensor is
Hadamard with respect to one dimension, then it is Hadamard with respect to
any other dimension. We leave the proof of this statement for the full version of
the paper.

Lemma 4.3. Let A′ be a tensor obtained from a Hadamard tensor A by flipping
a collection of lines. Then A′ is a Hadamard tensor.

Proof. This follows by induction from the characterization of Hadamard tensors
given by Lemma 4.2. The result holds for matrices since after flipping a row or
column any row or column product that was 0 remains 0. Suppose the result
holds for tensors of dimension k − 1. Consider any face product Ayi ◦ Azi of a
k-dimensional Hadamard tensor A. Flipping a line of A may miss Ayi and Azi

entirely, intersect both in one entry, or flip an entire line of Ayi or Azi . In the
first case the face product is unaffected. In the second case the face product
is unchanged since the corresponding entry is negated twice. In the third case
the face product has a line flipped. By the induction hypothesis this is still a
Hadamard tensor. ��

Hadamard Tensors and Lower Bounds 1171

4.1 The Discrepancy of Hadamard Tensors

In light of Theorem 3.1, we can prove upper bounds on the discrepancy of any
tensor A by proving upper bounds on W (A). Let Wk(N) denote the largest
possible value of W (A) if A is a k-dimensional Hadamard tensor of order N .

Lemma 4.4. Let A be a k-dimensional Hadamard tensor of order N . Then

(W (A))2 ≤ N2k−1 +Nk+1(Wk−1(N)) .

Proof. Let A′ be the k-dimensional tensor obtained from A by flipping a collec-
tion of lines that achieves maximal excess, that is W (A) = S(A′). By Lemma
4.3, A′ is a Hadamard tensor, and by Lemma 4.2 the entrywise product of any
two distinct faces of A′ is a Hadamard tensor in k−1 dimensions. Thus, we have
the following estimates (using the Cauchy-Schwartz inequality).

(S(A′))2 =

(∑
x∈X1×···×Xk

A′(x)

)2

≤ Nk−1
∑

x1,...,xk−1

(∑
xk

A′(x)

)2

= Nk−1

⎛⎝Nk +
∑
i�=j

∑
x1,...,xk−1

A′(x1, . . . , xk−1, i)A′(x1, . . . , xk−1, j)

⎞⎠
≤ Nk−1(Nk + (N2 −N)(Wk−1(N))) ≤ N2k−1 +Nk+1(Wk−1(N))) .��

Theorem 4.1. Let A be a k-dimensional Hadamard tensor of order N . Then
W (A) ≤ φNk−(1/2k−1) where φ = (1 +

√
5)/2.

Proof. Follows by induction using Lemma 4.1 and Lemma 4.4. ��

Theorem 4.2. Let f : ({0, 1}n)k → {1,−1} be a function represented by a
Hadamard tensor. Then Disc(f) ≤ φN−1/2k−1

where φ = (1 +
√

5)/2.

Proof. Follows from Theorem 4.1 and Theorem 3.1. ��

By the results of [2] (see Lemma 2.1) this yields the following:

Theorem 4.3. Let f : ({0, 1}n)k → {1,−1} be a function represented by a
Hadamard tensor. Then C(f) = Ω(n/2k), and Cε(f) = Ω((n/2k) + log2 ε).

4.2 Constructions of Hadamard Tensors

Let x1, ..., xk be n-bit strings. Consider each of these strings as an element of
the finite field GF(2n), representing the field elements as univariate polynomials
over GF(2) modulo a fixed irreducible polynomial of degree n. (In this represen-
tation the i-th bit (0 ≤ i ≤ n− 1) of a given n-bit string indicates whether the
corresponding polynomial p(a) contains the term ai.)

1172 J. Ford and A. Gál

Let χS stand for the function obtained by raising −1 to the parity of the bits
with coordinates in S, such that χS is 1 when the parity is even, and −1 when
the parity is odd. It is not hard to see that for any x, y ∈ {0, 1}n,

χS(x)χS(y) = χS(x + y) , (1)

where + represents addition in GF(2n). (In fact the χS are the additive char-
acters of GF(2n).) By the definition of χS , χS(x)χS(y) = χS(x⊕ y), viewing x
and y as strings and taking bitwise XOR, which is the same as χS(x + y) using
addition in the field.

Definition 4.2. Given a function f : {0, 1}n → {1,−1}, we define the function
FFMn,k

f : ({0, 1}n)k → {1,−1} by

FFMn,k
f (x1, . . . , xk) = f(x1 · x2 · . . . · xk) ,

where x1 · x2 · . . . · xk denotes the product of the field elements x1, . . . , xk, and f
is applied to the n-bit string representing the resulting field element.

For S ⊆ {0, 1, . . . , n− 1}, we denote by FFMn,k
S the function FFMn,k

χS
.

“FFM” is an abbreviation for “Finite Field Multiplication”.

Theorem 4.4. For every ∅ �= S ⊆ {0, 1, . . . , n − 1}, the k-dimensional tensor
associated with FFMn,k

S is Hadamard.

We need the following technical lemma:

Lemma 4.5. For any k and for any y1, z1, . . . , yk, zk ∈ GF(2n) with y1 �=
z1, . . . , yk �= zk, ∑

x1∈{y1,z1},...,xk∈{yk,zk}
x1x2 · · ·xk �= 0

Proof. The proof is by induction. For distinct y1 and z1, y1 + z1 is nonzero since
in GF(2n) each element is its own additive inverse. Suppose the statement holds
for k − 1. Let yk, zk ∈ GF(2n) with yk �= zk.∑

x1∈{y1,z1},...,xk∈{yk,zk}
x1x2 · · ·xk

= yk

∑
x1∈{y1,z1},...,xk−1∈{yk−1,zk−1}

x1x2 · · ·xk−1 +

zk

∑
x1∈{y1,z1},...,xk−1∈{yk−1,zk−1}

x1x2 · · ·xk−1

= (yk + zk)
∑

x1∈{y1,z1},...,xk−1∈{yk−1,zk−1}
x1x2 · · ·xk−1

Since yk + zk is nonzero (because in GF(2n) each element is its own additive
inverse), and the sum is nonzero by the induction hypothesis, this is nonzero. ��

Hadamard Tensors and Lower Bounds 1173

Proof. (of Theorem 4.4) Consider the following sum from Definition 4.1:∑
xk

∏
x1∈{y1,z1},...,xk−1∈{yk−1,zk−1}

χS(x1x2 · · ·xk)

By (1) this is the same as

∑
xk

χS

⎛⎝ ∑
x1∈{y1,z1},...,xk−1∈{yk−1,zk−1}

x1x2 · · ·xk

⎞⎠
=
∑
xk

χS

⎛⎝xk

∑
x1∈{y1,z1},...,xk−1∈{yk−1,zk−1}

x1x2 · · ·xk−1

⎞⎠
As shown in Lemma 4.5, the inner sum evaluates to a non-zero field element,

so for some fixed non-zero w, we obtain
∑

xk
χS(xkw) =

∑
xk
χS(xk) = 0 ��

By Theorem 4.3 we immediately obtain the following:

Theorem 4.5. For every ∅ �= S ⊆ {0, 1, . . . , n − 1}, C(FFMn,k
S) = Ω(n/2k),

and Cε(FFMn,k
S) = Ω(n/2k + log2 ε).

Although all finite fields of order 2n are isomorphic, it is necessary to spec-
ify exactly which one is being used to obtain explicit constructions of Boolean
functions this way. The deterministic algorithm developed by Shoup [21] can be
used to construct an irreducible polynomial of degree n for any given n. Thus
the family of Boolean functions associated with the tensors FFMS belongs to
the complexity class P . Note also that the polynomial xn+xn/2+1 is irreducible
over GF(2) when n is of the form n = 2 · 3m (Theorem 1.1.28 in [22]). Assuming
that an irreducible polynomial of degree n is given, we can show that the cor-
responding Boolean function can be computed by depth O(log k) ACC circuits.
We leave the proof of this for the full version of the paper.

4.3 Relaxations of the Hadamard Property

Raz [19] considered the function defined as follows: each part of the input xi ∈
{0, 1}n is interpreted as a

√
n by

√
n matrix with 0, 1 entries. The function is

defined by the bit in the upper left corner of the matrix obtained by taking
the product (over GF(2)) of the k matrices. Raz [19] proved that this function
has (probabilistic) k-party communication complexity Ω(

√
n/2k). The tensor

associated with this function is not Hadamard, but we can show that it contains
a subtensor of order 2

√
n which is Hadamard. Thus, our methods give Ω(

√
n/2k)

lower bounds on the k-party communication complexity of the function.
Chung [9] and Raz [19] state a sufficient condition for a function to have

Ω(n/2k) multiparty communication complexity (generalizing the method of [2]).
We can show that satisfying the condition of [9] and [19] is equivalent to being
nearly Hadamard in the following, relaxed sense: Instead of requiring that all

1174 J. Ford and A. Gál

the products of the 2k−1-tuples of lines selected according to the Hadamard def-
inition are 0, it is enough to require that the products are small on average; e.g.
that the sum of the squares of the line products is small. The tensor correspond-
ing to the “generalized inner product” (GIP) function of [2] is nearly Hadamard
in this relaxed sense, but it is not Hadamard. For the tensor corresponding to
the “quadratic character of the sum of coordinates” (QCS) function of [2] we
can show that each (nontrivial) product of the selected 2k−1 tuples of lines is
small (at most 2k

√
N). We leave the proof for the full version of the paper. Note

that the property we prove for QCS is stronger than the condition required in
[9, 19], but weaker than the Hadamard property.

Grolmusz [12] proved an O(kn/2k) upper bound on the multiparty commu-
nication complexity of GIP, showing that the Ω(n/2k) lower bounds for GIP
cannot be significantly improved. There are no similar upper bounds known for
any of the functions that we presented as examples of Hadamard tensors. The
examples of Hadamard tensors we give and the QCS function are candidates for
having Ω(n/poly(k)) multiparty communication complexity.

References

[1] N. Alon, J. H. Spencer, “The Probabilistic Method”, Wiley-Interscience, 2000.
[2] L. Babai, N. Nisan, M. Szegedy, “Multiparty Protocols, Pseudorandom Generators

for Logspace, and Time-Space Trade-Offs”, JCSS, 45(2):204-232, 1992.
[3] L. Babai, T. P. Hayes, P. G. Kimmel, “The Cost of the Missing Bit: Communica-

tion Complexity with Help”, Proc. 30th ACM STOC, 673-682, 1998.
[4] D. Barrington, “Bounded-width polynomial size branching programs recognize

exactly those languages in NC1”, JCSS, 38(1):150-164, 1989.
[5] R. Beigel, J. Tarui, “On ACC”, Proc. 32nd IEEE FOCS, 783-792, 1991.
[6] M. R. Best, “The Excess of a Hadamard Matrix”, Indag. Math., 39(5):357-361,

1977.
[7] A. Chandra, M. Furst, R. Lipton: “Multiparty protocols”, Proc. 15th ACM STOC,

94-99, 1983.
[8] B. Chor, O. Goldreich, “Unbiased Bits from Sources of Weak Randomness and

Probabilistic Communication Complexity”, SIAM J. Comp. 17:230-261, 1988.
[9] F. Chung, “Quasi-Random Classes of Hypergraphs”, Random Structures and Al-

gorithms, 1(4):363-382, 1990.
[10] F. Chung, P. Tetali, “Communication complexity and quasi randomness”, SIAM

J. Discrete Math., 6(1):110-123, 1993.
[11] P. Erdős, J. H. Spencer, “Probabilistic methods in combinatorics”, Academic

Press, 1974.
[12] V. Grolmusz, “The BNS Lower Bound for Multi-Party Protocols is Nearly Opti-

mal”, Information and Computation, 112:51-54, 1994.
[13] J. H̊astad, M. Goldmann, “On the power of small depth threshold circuits”, Com-

putational Complexity, 113-129, 1991.
[14] E. Kushilevitz, N. Nisan, “Communication complexity”, Cambridge, 1997.
[15] J. H. van Lint, R. M. Wilson, “A Course in Combinatorics”, Cambridge, 1992.
[16] N. Nisan, A. Wigderson, “Rounds in communication complexity revisited” SIAM

J. Comp., 22:211-219, 1993.

Hadamard Tensors and Lower Bounds 1175

[17] P. Pudlák, “Unexpected upper bounds on the complexity of some communication
games”, Proc. ICALP’94, 1-11, 1994.

[18] P. Pudlák, V. Rödl, J. Sgall, “Boolean circuits, tensor ranks and communication
complexity”, SIAM J. Comp., 26:605-633, 1997.

[19] R. Raz, “The BNS-Chung criterion for multiparty communication complexity”,
Computational Complexity, 9(2):113-122, 2000.

[20] J. Spencer, “Ten lectures on the probabilistic method”, Soc. for Industrial and
Applied Math., 1987.

[21] V. Shoup, “New Algorithms for Finding Irreducible Polynomials over Finite
Fields”, Mathematics of Computation, 54:435-447, 1990.

[22] J.H. van Lint, “Introduction to Coding Theory”, Springer-Verlag, 1998.
[23] A. Yao, “Some complexity questions related to distributed computing”, Proc. 11th

ACM STOC, 209-213, 1979.
[24] A. Yao, “On ACC and threshold circuits”, Proc. 31st IEEE FOCS, 619-627, 1990.

Lower Bounds for Lovász-Schrijver Systems and
Beyond Follow from Multiparty Communication

Complexity�

Paul Beame1, Toniann Pitassi2, and Nathan Segerlind1

1 Computer Science and Engineering,
University of Washington, Seattle, WA 98195-2350

2 Computer Science Department, University of Toronto,
Toronto, ON M5S 1A4

Abstract. We prove that an ω(log3 n) lower bound for the three-party number-
on-the-forehead (NOF) communication complexity of the set-disjointness func-
tion implies an nω(1) size lower bound for tree-like Lovász-Schrijver systems that
refute unsatisfiable CNFs. More generally, we prove that an nΩ(1) lower bound
for the (k+1)-party NOF communication complexity of set-disjointness implies

a 2nΩ(1)
size lower bound for all tree-like proof systems whose formulas are

degree k polynomial inequalities.

1 Introduction

Linear programming, the problem of optimizing a linear objective function over the points
of a given polyhedron, was shown to be polynomial-time solvable over the rationals by
Khachian [15]. When integrality constraints are added, however, the resulting integer
linear programming problem becomes NP-hard. Many algorithms for such problems at-
tempt to apply efficiencies from rational linear programming to the integral case.

One of the most powerful of such approaches is to begin with the polytope defined
by the original linear program without integrality constraints and systematically pare
down the polytope by repeatedly refining the linear program with “cutting planes” that
remove only nonintegral solutions until we are left with the convex hull of the integral
solutions. These are local methods in which the initial polytope Q (expressed by the
natural cutting planes constraints) is transformed through a sequence of local operations
to smaller and smaller polytopes (each contained in the original one), until the integral
hull of Q is reached. (At this point, rational linear programming will find the correct
solution.) For decision problems, this sequence terminates with the empty polytope if
and only if the initial polytope contains no integral points.

� Paul Beame’s research was supported by NSF grants CCR-0098066 and ITR-0219468. Toni-
ann Pitassi’s research was supported by an Ontario Premiere’s Research Excellence Award,
an NSERC grant, and the Institute for Advanced Study where this research was done. Nathan
Segerlind’s research was supported by NSF Postdoctoral Fellowship DMS-0303258 and done
while at the Institute for Advanced Study.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 1176–1188, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Lower Bounds for Lovász-Schrijver Systems 1177

One such method is that of Gomory-Chvátal cuts [6] which derives each new cut-
ting plane as a linear combination and shift of existing facet constraints. There are even
more subtle methods available, particularly in the case of 01-programming, which is
also NP-complete. In a seminal paper, Lovász and Schrijver [16] introduced a variety
of cutting planes methods that derive new cutting planes by first “lifting” the inequal-
ities to higher degree polynomial inequalities (in particular quadratic inequalities) and
then “projecting” them down to linear inequalities using polynomial identities and the
fact that x2 = x for x ∈ {0, 1}. These systems are now known as Lovász-Schrijver
systems (LS).

It may be too costly to apply these techniques to pare all the way down to the in-
tegral hull. However, even applying a smaller number of rounds of the procedure can
often lead to a smaller polytope that has good approximability ratio, one for which the
best nonintegral solution is not too far away from the best integral solution, so that by
rounding we can achieve a good approximation to the optimal value.

Two complexity measures are commonly studied for Lovász-Schrijver and related
cutting planes proof systems: size and rank. Intuitively, rank is the number of interme-
diate polytopes that must be passed through before arriving at the integral hull. In [16]
it was shown that for any (relaxed) polytope P , if the rank of P is d, then the opti-
mization and decision problems for P can be solved exactly deterministically in time
nO(d). This very nice algorithmic property of Lovász-Schrijver systems makes them
especially appealing for solving or approximating NP-hard optimization problems via
linear programming. A variety of rank lower bounds for exact solution are known, even
for the case of unsatisfiable systems [4, 8, 11, 7, 12]. Moreover, interesting bounds on
the ranks required for good approximations to vertex cover [1] and MaxSAT [5] have
been obtained. This, in turn, implies inapproximability results for these problems for
any polynomial-time algorithm based on rank.

While there is a rich and growing body of results concerning rank, very little is
known about the size of LS proofs. Informally, the size of an LS procedure with respect
to some polytope P is the smallest number of hyperplanes defining all of the polytopes
that we need to pass through before arriving at the integral hull. Clearly size lower
bounds imply rank lower bounds, and even tree-size lower bounds imply rank lower
bounds, but the converse is not known to be true. The one unconditional (tree-like)
size lower bound known for LS [12] is for a family of polytopes for which decision
and optimization are trivial and for which the integral hull has a trivial derivation in
Chvátal’s cutting planes proof system.

Problems in which the facets represent clauses of a CNF formula and a decision
algorithm for 01-programming yields a propositional proof system are particularly im-
portant to analyze. Proving (tree-like) size lower bounds for such polytopes was given
as one of the main open problems in [12]. The only LS size lower bounds known at
present for such polytopes formulas are conditional results. First, it is an easy observa-
tion that NP �= coNP implies superpolynomial LS size lower bounds for some family
of unsatisfiable CNF formulas. It has also been shown by [19, 9, 10] that these lower
bounds also hold under other natural complexity assumptions.

In this paper we develop a new method for attacking size lower bounds for LS and
for systems that generalize LS. Our main result is a proof that lower bounds on the 3-

1178 P. Beame, T. Pitassi, and N. Segerlind

party communication complexity of set disjointness (in the number-on-forehead model)
imply lower bounds on the size of tree-like LS proofs for a particular family of unsat-
isfiable CNF formulas. We also generalize this result to a much more powerful family
of proof systems known as semantic LSk, where lines are now degree k polynomial
inequalities. All versions of LS are special cases of LS2, and Chvátal’s Cutting Planes
proof system is a special case of LS1.

More generally, we show that proving lower bounds on the (k + 1)-party commu-
nication complexity of set disjointness implies lower bounds on the size of tree-like
semantic LSk proofs. By a natural extension of the ideas in [2] one can show that the
(k + 1)-party set disjointness problem is “complete” for the (k + 1)-party commu-
nication complexity class (k + 1)-NPcc and a lower bound showing that it is not in
(k + 1)-RPcc would already given excellent lower bounds for LSk proofs. Such a re-
sult is already known in the case k = 1 [2] (and was used in [13] to derive tree-like
size lower bounds for Chvátal’s Cutting Planes system) and set disjointness is one of
the most well-studied problems in communication complexity.

Our proof can be seen as a generalization of [13] to arbitrary k but the extension
requires a number of new ideas and a substantially more complicated argument that
includes a detailed analysis of large sets of vertex-disjoint paths in expander graphs.

2 Definitions

2.1 Multiparty Communication Complexity and Set Disjointness

The k-party number-on-the-forehead (NOF) model of communication complexity com-
putes functions (or relations) of input vectors (x1, . . . , xk) ∈ X1× . . .×Xk distributed
among k parties, such that party i ∈ [k] sees all xj for all j ∈ [k], j �= i.

The k-party set disjointness problem DISJk,n : ({0, 1}m)k → {0, 1} is defined by
DISJk,n(+x) = 1 iff there is some j ∈ [n] such that xi,j = 1 for all i ∈ [k]. (We follow
standard terminology although it might be more appropriate to call this set intersection
rather than disjointness.)

A (0, ε)-error k-party NOF communication protocol for set disjointness is a protocol
that for every disjoint input produces output 0 and for intersecting inputs outputs 1 with
probability at least 1− ε.

It is conjectured that for any k ≥ 2 the k-party set disjointness problem requires
nearly linear randomized NOF communication complexity. This conjecture is equiva-
lent showing that nondeterministic k-party communication complexity can be almost
optimally separated from randomized k-party communication complexity. The conjec-
ture is proven for k = 2 [14], but the best known lower bound for k ≥ 3 is Ω(log n) for
general models and Ω(n1/k) for more restricted models [3].

2.2 Threshold Logics and the Complexity of a Search Problem

The two most prevalent classes of threshold logics are Gomory-Chvátal cutting planes
[6], and matrix cuts, defined by Lovász and Schriver [16]. These proof systems, CP
LS, LS0, and LS+, are special cases of more general semantic threshold logic proof
systems.

Lower Bounds for Lovász-Schrijver Systems 1179

A k-threshold formula over Boolean variables x1, . . . , xn is a formula of the form∑
j γjmj ≥ t, where γj , t are integers, and for all j, mj is a multilinear monomial of

degree at most k. The size of a k-threshold formula is the sum of the sizes of γj and t,
written in binary notation.

Let f1, f2, g be k-threshold formulas in the variables +x. We say that g is semantically
entailed by f1 and f2 if for every 0/1 assignment to +x that satisfies both f1 and f2, g is
also satisfied.

Let f be an unsatisfiable CNF formula over x1, . . . , xn, and let t1, . . . , tm be the
underlying set of clauses of f , written as 1-threshold inequalities. A Th(k) refutation
of f , P , is a sequence of k-threshold formulas, L1, . . . ,Lq , where each Lj is one of the
inequalities ti, i ∈ [m], or is semantically entailed by two formulas Li and Li′ with
i, i′ < j, and the final formula Lq is 0 ≥ 1. The size of P is the sum of the sizes of all
k-threshold formulas occurring in P . The proof is tree-like if the underlying directed
acyclic graph, representing the implication structure of the proof, is a tree. (That is,
every formula in the proof, except for the formulas from f , is used at most once as an
antecedent of an implication.)

CP refutations are a special case of Th(1) semantic refutations, and thus lower
bounds for tree-like Th(1) semantic refutations imply similar lower bounds for tree-
like CP. (This was already shown in [13].)

As mentioned earlier, since we can assume that any of the Lovász-Schrijver systems
can be assumed to have fan-in two, it follows that any of the systems LS0, LS and
LS+ can easily be converted into Th(2) semantic refutations with at most a polynomial
increase in size, and if the original proof is tree-like, so is the semantic refutation. Thus,
lower bounds for tree-like Th(2) semantic refutations imply similar lower bounds for
all tree-like Lovász-Schrijver systems.

Let f be an unsatisfiable CNF formula. We will be interested in the following search
problem, Searchf associated with f : given a truth assignment α, find a clause from f
which is falsified by α. The model for this computation is a decision tree whose nodes
evaluate polynomial threshold functions:

A k-threshold decision tree is a rooted, directed tree whose vertices are labeled with
k-threshold functions and edges are labeled with either 0 or 1. The leaves of the tree are
labeled with clauses of f . A k-threshold decision tree solves Searchf in the obvious
way: start at the root and evaluate the threshold function; follow the edge that is con-
sistent with the value of the threshold function; continue until the computation reaches
a leaf and output the associated clause. The size S of a k-threshold decision tree is the
sum of the sizes of all threshold formulas in the tree, where the coefficients are written
in binary. The depth of a k-threshold decision tree is the depth of the underlying tree.

Theorem 1. Suppose that f has a tree-like Th(k)-semantic refutation of size S. Then
there exists a k+1-party 0-error randomized NOF communication complexity protocol
for Searchf (over any partition of the variables into k groups) that communicates
O(log3 S) bits and produces an answer with probability at least 1− 1/n.

Further, if all k-threshold formulas in the Th(k)-semantic refutation have coeffi-
cients bounded by a polynomial in n, then the 0-error randomized communication com-
plexity can reduced to O(logS(log log n)2) or the protocol can be made deterministic
using O(logS log n) bits.

1180 P. Beame, T. Pitassi, and N. Segerlind

Proof (Sketch). First, following ideas similar to the degree 1 case in [13], we recur-
sively search the proof tree using the 1

3 - 2
3 trick to derive a k-threshold decision tree

for Searchf of depth O(logS) and size O(S). Then, adapting arguments from [18],
we show that any relation computed by a shallow k-threshold decision tree can also be
efficiently computed by a k + 1 player communication complexity protocol (number-
on-forehead model), over any partition of the variables.

2.3 k-Fold Tseitin Formulas

Our hard examples are based on the well-known Tseitin graph formulas. Let G =
(V,E) be any connected, undirected graph and let +c ∈ {0, 1}V . The Tseitin formula
for G with respect to charge vector +c, TS(G,+c), has variables Vars(G) = {ye | e ∈ E}.
The formula states that for every vertex v ∈ V , the parity of the edges incident with v
is equal to the charge, cv , at node v. It is expressed propositionally as the conjunction
of the clauses obtained by expanding ⊕e vye = cv for each v ∈ V . For a graph with
maximum degree d, each clause is of width ≤ d and the number of clauses is ≤ |V |2d.

TS(G,+c) is satisfiable if and only if
∑

v∈V cv is even. For odd +c, SearchTS(G,�c)

takes a 0/1 assignment α to Vars(G) and outputs a clause of TS(G,+c) that is violated.
In particular, a solution to SearchTS(G,�c) will produce a vertex v such that the parity
equation associated with vertex v is violated by α.

To make the search problem hard for k-party NOF communication protocols (and
thus, by Theorem 1, hard for k − 1-threshold decision trees) we modify TS(G,+c) by
replacing each variable ye by the conjunction of k variables,

∧k
i=1 y

i
e, and expanding

the result into clauses. We call the resulting k-fold Tseitin formula, TSk(G,+c), and its
variable set, Varsk(G) = {yi

e | e ∈ E, i ∈ [k]}.
For a fixed graph G and different odd-charge vectors +c ∈ {0, 1}V (G), the various

problems SearchTSk(G,�c) are very closely related. Define ODDCHARGEk(G) to be the
k-party NOF communication search problem which takes as input an odd charge vector
+c ∈ {0, 1}V (G), seen by all players, and an assignment α to Varsk(G), in which player
i sees all values but the assignment αi

e to yi
e for e ∈ E(G), and requires that the players

output a vertex v that is a solution to SearchTSk(G,�c).

3 Reduction from Set Disjointness to ODDCHARGE

We give a sequence of reductions to show that for a suitably chosen graph G, an ef-
ficient k-party NOF communication complexity protocol for ODDCHARGEk(G) will
imply an efficient 1-sided error randomized k-party NOF protocol for the set disjoint-
ness relation.

We apply the Valiant-Vazirani argument to show that, without loss of generality,
it suffices to derive a 1-sided error protocol for a version of set disjointness in which
the input has intersection size 0 or size 1, and the job of the players is to distinguish
between these two cases. We call this promise problem zero/one set disjointness.

Our reduction from zero/one set disjointness to ODDCHARGEk(G) goes via
an intermediate problem, EVENCHARGEk(G), which is the exact analog of
ODDCHARGEk(G) except that the input charge vector +c is even rather than odd and

Lower Bounds for Lovász-Schrijver Systems 1181

the requirement is either to find a charge violation or to determine that no charge viola-
tion exists.

The reduction from EVENCHARGEk(G) to ODDCHARGEk(G), which is similar in
spirit to a reduction of Raz and Wigderson [20], works by planting a single randomly
chosen additional charge violation. This yields a protocol for EVENCHARGEk(G) that
works well on average for each class of inputs with a given number of charge violations.

The most difficult part of our argument is the reduction from zero/one set disjoint-
ness to EVENCHARGEk(G) for suitable graphs G. The key idea is that for even +c,
charge violations of TSk(G,+c) come in pairs: Given an instance +x ∈ ({0, 1}m)k of
zero/one set disjointness, using the public coins, the players randomly choose an even
charge vector+c and m vertex-disjoint paths in G, p1, . . . , pm, for each j ∈ [m], the play-
ers plant the x1,j , . . . , xk,j as the assignment along each edge of path pj , in a random
solution that otherwise meets the chosen charge constraint. By construction, a charge
violation can occur only at the endpoints of a path and only if there is an intersection in
the set disjointness problem.

It is tricky to ensure that the resulting problem looks sufficiently like a random in-
stance of EVENCHARGEk(G) with either 0 or 2 charge violations so that we can apply
the average case properties of the protocol for EVENCHARGEk(G). This places ma-
jor constraints on the graph G and in particular requires that m ≤ n1/3/ log n where
|V (G)| = n. The bulk of the work is in showing that a small number of specific prop-
erties: rapid mixing, modest degree, and high girth – properties all met by a family of
expanders constructed in [17] – are sufficient.

Distributions on labeled graphs. For the rest of the paper in the Tseitin tautologies
we will use a family of graphs Hn that is the union of two edge-disjoint graphs on the
same set of n vertices [n], Gn and Tn. Gn will be a Δ-regular expander graph of the
form defined by Lubotzky, Phillips, and Sarnak [17] for Δ = Θ(log n). Since Gn has
degree > n/2, there is a spanning tree Tn of maximum degree 2 (a Hamiltonian path)
in Gn. Clearly Hn also has maximum degree Θ(log n) and thus TSk(Hn,+c) has size
nO(k).

Let Hn be such a graph and let +c be an even charge vector. We define Sol(Hn,+c)
to be the set of all 0/1 assignments to the edges of Hn so that for each vertex v ∈ [n],
the parity of edges incident with v is equal to cv . A uniform random distribution over
Sol(Hn,+c) can be obtained by first selecting 0/1 values uniformly at random for all
edges in Gn and then choosing the unique assignment to the edges of Tn that fulfill the
charge constraints given by +c.

Given a bit value b associated with an edge e ∈ Gn, we can define a uniform dis-
tribution Lk = Lk(b) over the corresponding variables yi

e, i ∈ [k]. Such an assignment
is chosen randomly from Lk on input b by the following experiment. If b = 1 then set
all variables associated with edge e, yi

e, i ∈ [k] to 1. Otherwise if b = 0, set the vector
(+ye)i∈[k] by choosing uniformly at random from the set of 2k − 1 not-all-1 vectors.

Definition 1. For any t ≥ 0 let Dt be a distribution given by the following experiment
on input Hn = Gn ∪ Tn.
1. Choose an even charge vector +c ∈ {0, 1}n uniformly at random.
2. Choose some β ∈ Sol(Hn,+c) uniformly at random.

1182 P. Beame, T. Pitassi, and N. Segerlind

3. For each e ∈ Gn, select the values for the vector (ye)i∈[k] from Lk(βe) and for
each e ∈ Tn, set yi

e = βe for all i ∈ [k].
4. Select a random subset U ⊆ [n] of 2t vertices and produce charge vector +c U from
+c by toggling all bits cv for v ∈ U .

5. Return the pair (α,+c U) where α is the boolean assignment to the variables yi
e,

i ∈ [k], e ∈ Hn.

Reduction from EVENCHARGE to ODDCHARGE

Lemma 1. Let G be any connected graph on n vertices and let Δ(G) be the max-
imum degree in G. Suppose that Πodd is a randomized k-party NOF protocol for
ODDCHARGEk(G) that produces an answer with probability at least 1 − ε, is cor-
rect whenever it produces an answer, and uses at most s bits of communication. Then
there is a randomized k-party NOF protocol Πeven for EVENCHARGEk(G) that uses
s +Δ(G) bits of communication and has the following performance:

Pr
(α,�c)∈D0

[Πeven(α,+c) = true] = 1

Pr
(α,�c)∈Dt

[Πeven(α,+c) ∈ Err(α,+c)] ≥ 2/3− ε for t ≥ 1.

Proof. Let Πodd be a protocol for ODDCHARGEk(G) and assume that V (G) = [n].
We give a protocol Πeven for EVENCHARGEk(G). On input (α,+c) and random public
string r: Using r, choose a random vertex v ∈ [n]. Check whether the parity equation
associated with vertex v is satisfied by α using at most Δ(G) bits of communication.
If it is not, return v. Otherwise, create an odd charge vector, +c {v}, which is just like +c
except that the value of cv is toggled. Now run Πodd on input (+c {v}, α). If Πodd returns
the planted error v or if Πodd does not return a value then return “true”; if Πodd returns
u �= v, output u.

Suppose that (α,+c) ∈ D0. Then α satisfies all charges specified by +c, so when
Πodd returns a vertex the above protocol must output “true” because Πodd has one-
sided error–that is, Πodd will only return a vertex u when there is an error on the parity
equation associated with u. Now suppose that (α,+c) ∈ Dt so exactly 2t parity equations
are violated. If the random vertex v does not satisfy its parity constraints, then the
algorithm is correct. The remaining case is when v satisfies the parity equation and in
this case we call Πodd on a pair (α,+c {v}) where exactly 2t + 1 parity equations are
violated.

We show the probability bound separately for each T ∈ [n](2t+1). Because the
events Err(α, +c′) = T partition the probability space, this proves the claim. By
symmetry, for T ∈ [n](2t+1) and any function g with codomain T , we have that
Prα,�c,v[g(α,+c {v}) = v | Err(α,+c {v}) = T] = 1/(2t + 1) since it is equally likely for
+c′ = +c {v} to be generated as +c {u} for any u ∈ T . Thus we obtain:

Pr
α,�c,v

[Πeven(α,+c {v}) errs | Err(α,+c {v}) = T]

= Pr
α,�c,v

[Πodd(α,+c {v}) = v or Πodd(α,+c {v}) is not defined | Err(α,+c {v}) = T]

≤ 1/(2t + 1) + ε ≤ 1/3 + ε for t ≥ 1.

Lower Bounds for Lovász-Schrijver Systems 1183

Reduction from Zero/One Set Disjointness to EVENCHARGE: We now show
how to use a k-party NOF communication complexity protocol Πeven for
EVENCHARGEk(Hn) as guaranteed by Lemma 1 to produce a k-party NOF protocol
for the zero/one set disjointness problem which uses the following definition.

Definition 2. Let P (m)
l be the set of all sequences of m vertex-disjoint length l paths

in Gn.

Lemma 2. Let m = n1/3/ log n. For sufficiently large n and for any even charge vector
+c, if there is a probabilistic k-party NOF communication complexity protocol, Πeven

for EVENCHARGEk(Hn) using s bits, satisfying the conditions in Lemma 1 for D0 and
D1, then there is a randomized (0, 1/3 + ε+ o(1)) error k-party NOF communication
complexity protocol Π01disj for zero/one set disjointness on input +x ∈ ({0, 1}m)k that
uses s bits of communication.

Proof. Let +x be an instance of zero/one set disjointness. Protocol Π01disj will call
Πeven on the graph Hn, on a pair (α,+c) chosen according to the following distribu-
tion/experiment:
1. On input +x with public coins r:

(a) Using public coins r, choose a random even charge vector +c ∈ {0, 1}n.
(b) Using public coins r, choose a sequence of m vertex-disjoint length l paths,

p1, . . . pm uniformly at random from P
(m)
l .

(c) Using the public coins r, choose β ∈ Sol(Hn −
⋃m

j=1 pj ,+c)
2. For all edges e ∈ Hn, all players other than player i compute αi

e as follows:
(a) If e ∈ pj for j ∈ [m], set αi

e = xi,j

(b) If e ∈ Gn and e �∈
⋃m

j=1 pj , choose the vector α1
e . . .α

k
e according to the

distribution Lk(βe).
(c) For the remaining edges e ∈ Tn, set all variables αi

e for i ∈ [k] equal to βe.
3. Return (α,+c)

We write R(+x) to denote the distribution on assignment/charge pairs produced by
reduction Π01disj when given an input +x. The following lemma, proven in section 4,
has the main technical argument and shows that for t = | ∩ +x| ∈ {0, 1}, althoughR(+x)
is not the same as Dt,R(+x) is close to the distribution Dt in the
1 norm.

Lemma 3. Let +x ∈ ({0, 1}m)k and | ∩ +x| = 1. Then ||R(+x)−D1||1 is o(1).

ProtocolΠ01disj will output 0 ifΠeven returns “true” and 1 otherwise. If∩+x = ∅, by
the above construction, the support ofR(+x) is contained in that ofD0 and thus onR(+x),
Πeven must answer “true” and the vector +x is correctly identified as being disjoint. In
the case that ∩+x contains exactly one element, Pr[Π01disj(+x)) = 0] ≥ 2/3− ε− o(1).
This completes the proof of the Lemma 2.

Reduction from Set disjointness to Zero/One Set disjointness

Lemma 4. If there is an (0, ε) randomized NOF protocol for the k-party zero-one-
promise set-disjointness problem that uses s bits of communication where ε is a constant
< 1, then there is a (0, 1

3) randomized NOF protocol for the k-party set-disjointness
problem that uses O(s log n) bits of communication.

1184 P. Beame, T. Pitassi, and N. Segerlind

Naturally, our starting point is the well-known result of Valiant and Vazirani [21].

Lemma 5 (Valiant-Vazirani). Let a be a positive integer. Fix a nonempty S ⊆ {0, 1}a,
and choose w1, . . .wa ∈ {0, 1}a independently and uniformly. With probability at least
1/4, there exists j ∈ {0, . . . , a} so that |{x ∈ S | ∀i ≤ j, x · wi = 0}| = 1.

Proof (of Lemma 4). Let Π be the protocol for the promise problem. Set a =
log n�.
Using public coins, independently and uniformly choose w1, . . .wl ∈ {0, 1}a. For j ∈
{0, . . . a}, the players run the protocol Π , using the following rule for evaluating the
input xi,r for i ∈ [k], r ∈ [m]: interpret r as a vector in {0, 1}a, and replace the value
of xi,r by zero if for some j′ ≤ j, wj′ · r �= 0, and use the value xi,r if for all j′ ≤ j,
wj′ · r = 0. If the protocol Π returns 1, the players halt and output 1, otherwise, the
players proceed to round j + 1. If no intersection is found after all a + 1 rounds, the
players announce that the inputs are disjoint.

Clearly, this protocol uses O(s log n) bits of communication, and by the 0-error
property of Π on disjoint inputs, it never outputs 1 when the inputs are disjoint. When
the inputs are non-disjoint, the Valiant-Vazirani construction ensures that with proba-
bility at least 1/4, at some round j the protocol Π is used on an input with a unique
intersection, and therefore, conditioned on this event, the correct answer is returned
with probability at least 1−ε. Therefore, the correct answer is returned with probability
at least 1

4 −
ε
4 . Because ε is bounded away from 1 and the error is one-sided, a constant

number of repetitions decreases the probability of error to 1/3.

Combining the reductions

Theorem 2. Let k ≥ 2 and m = n1/3/ log n. For each n there is an odd charge vector
+c ∈ {0, 1}n such that for any ε < 1/2 the size of any tree-like Th(k-1) refutation

of TSk(Hn,+c) is at least 2Ω((Rk
ε (DISJk,m)/ log n)1/3). Further if the coefficients in the

Th(k-1) refutations are bounded by a polynomial in n then the refutation size must be
at least 2Ω(Rk

ε (DISJk,m)/(log n(log log n)2)) or at least 2Ω(Dk
ε (DISJk,m)/ log2 n).

Proof (Sketch). By Theorem 1 and the definition of ODDCHARGEk(Hn), if for every
+c ∈ {0, 1}n there is tree-like Th(k-1) refutation of TSk(Hn,+c) of size at most S, then
there is a 1/n-error randomized k-party NOF communication complexity protocol for
ODDCHARGEk(Hn) in which at most O(log3 S) bits are communicated. By sending
one more bit the players can check that the answer is correct and only output it in this
case. Then applying Lemmas 1, 2, and 4 in turn yields an error 1/3 randomized k-
party NOF protocol for DISJk,m of complexity O(log3 S log n + log2 n) bits in total.
Applying a similar reduction using the other parts of Theorem 1 yields the claimed
result.

In the full paper we prove that the same lower bounds as Theorem 2 hold for every
odd charge vector +c ∈ {0, 1}n.

4 Proximity of Distributions D1 and R(
x) When | ∩
x| = 1

In this section we prove Lemma 3 that for | ∩ +x| = 1 the distributions R(+x) and D1

are close in the
1 norm. Let μD1 and μR(�x) be their associated probability measures.

Lower Bounds for Lovász-Schrijver Systems 1185

We will show that for all but a set of (α,+c) with μD1 measure o(1), μD1(α,+c) = (1 ±
o(1))μR(�x)(α,+c).

Given an instance of the set disjointness variables, +x = ({0, 1}m)k, for j ∈ [m]
we say that the color of j is the tuple (x1,j , . . . , xk,j) ∈ {0, 1}k. By construction, the
assignment R(+x) produced by R on this instance has color (x1,j , . . . , xk,j) on each
edge of the path pj .

Definition 3. Given an ordered sequence of paths +p ∈ P
(m)
l , an +x ∈ ({0, 1}m)k, and

an assignment α, write χ(α�p) = +x if and only if every edge on path pj has color
(x1,j , . . . , xk,j) for every j ∈ [m].

We first observe that for any (α,+c) with |Err(α,+c)| = 2 the probability μDt
(α,+c)

depends only on the number of edges e ∈ Gn having color 1k in α.

Definition 4. Let φ(a, b) = 2−a(2k − 1)−(a−b).

Lemma 6. For any (α,+c) with |Err(α,+c)| = 2t and m1 = |{e ∈ E(Gn) | αe = 1k}|,
μD1(α,+c) = φ(|E(Gn)|,m1)/(2n−1

(
n
2

)
).

Proof. Let U = Err(α,+c). The probability under D1 that U is chosen to be flipped is
1/
(

n
2t

)
and, given U , all of the 2n−1 even charge vectors +cU are equally likely. Con-

ditioned on these events, the chance that α labels the edges for the randomly selected
element of Sol(Hn,+c) is 2−|E(Gn)|(2k − 1)−(|E(Gn)|−m1).

Definition 5. For U ⊂ V with |U | = 2 let P (m)
l (U) be the set of all elements of P (m)

l

that have a path whose endpoints are U .

Now consider the measure μR(�x)(α,+c). Let {i} = ∩+x ⊆ [n], U = Err(α,+c) with
|U | = 2, and m1 = |{e ∈ E(Gn) | αe = 1k}|. By the definition of R,

μR(�x)(α,+c) = Pr
�p∈P (m)

l

[Ends(pi) = Err(α,+c) ∧ χ(α�p) = +x]

× Pr
�c′∈{0,1}n, α′∈Lk(Sol(Hn−�p,�c′))

[α′ = αGn−�p and +c′ = +c]

= Pr
�p∈P (m)

l

[Ends(pi) = Err(U)]× Pr
�p∈P (m)

l (U)

[χ(α�p) = +x]

× φ(|E(Gn)| −ml,m1 − l)/2n−1.

Observe that pi is a uniformly chosen element of Pl and we can analyze the first
term using the following property of random paths on LPS expanders proven in the full
paper.

Lemma 7. For u �= v ∈ V (Gn) and l ≥ c1 log n/ log log n,
Prp∈Pl

[Ends(p) = {u, v}] = (1± o(1))/
(
n
2

)
.

1186 P. Beame, T. Pitassi, and N. Segerlind

Thus μR(�x)(α,+c) = (1± o(1))
φ(|E(Gn)| −ml,m1 − l)(

n
2

)
2n−1

· Pr
�p∈P (m)

l (U)

[χ(α�p) = +x]

= (1± o(1))
μD1(α,+c)
φ(ml, l)

· Pr
�p∈P (m)

l (U)

[χ(α�p) = +x].

It follows that we will obtain the desired result if we can show that for all but a o(1)
measure of (α,+c) under μD1 ,

Pr
�p∈P (m)

l (U)

[χ(α�p) = +x] = (1± o(1))φ(ml, l) = (1± o(1))2−ml(2k − 1)−(m−1)l

where U = Err(α,+c). In the case that this happens, we say that (α,+c) is well-distributed
for +x.

Using the second moment method we prove the following lemma which shows that
for all but a o(1) measure of (α,+c) under μD1 , (α,+c) is indeed well-distributed for +x.
The detailed proof is given in the full paper; the proof uses the fact thatΘ(log n)-degree
LPS expanders have O(log n/ log log n) mixing time and Ω(log n/ log log n) girth.

Lemma 8. Let m ≤ n1/3/ log n and l = 2
c1 log n/ log log n� and +x ∈ ({0, 1}m)k

with | ∩ +x| = 1. For almost all U ⊂ [n] with |U | = 2,
Pr(α,�c)∈D1 [(α,+c) is well-distributed for +x | Err(α,+c) = U] = 1− o(1).

Lemma 3 follows from this almost immediately.

Proof (of Lemma 3). Let +x ∈ ({0, 1}m)k and |∩+x| = 1. By Lemma 8 and the preceding
argument, for all but a set B of U that forms o(1) fraction of all subsets [n] of size
2, Pr

(a,�c)∈D1

[μR(�x)(α,+c) = (1 ± o(1))μD1(α,+c) | Err(α,+c) = U] = 1 − o(1). By

Lemma 7, Pr(α,�c)∈D1 [Err(α,+c) ∈ B] = o(1). Therefore by summing over distinct
choices of U , we obtain that with probability 1− o(1) over (α,+c) ∈ D1, μR(�x)(α,+c) =
(1 ± o(1))μD1(α,+c). This is equivalent to the desired conclusion that ||D1 − R(+x)||1
is o(1).

5 Discussion

There are a couple of interesting open problems related to our work beyond the natural
problem of the communication complexity of DISJk. First, does semantic LSk have
a separation oracle, as LS does? This is closely related to whether or not LSk is au-
tomatizable and we conjecture that the answer to both questions is negative. Secondly,
is it possible to extend our lower bounds to other tautologies that would imply inap-
proximability results for polynomial-time LSk-based algorithms? (For example, if we
could prove superpolynomial lower bounds for tree-like LSk proofs of random 3CNF
formulas, this would imply inapproximability results for LSk-based linear program-
ming algorithms for MaxSAT [5].)

Lower Bounds for Lovász-Schrijver Systems 1187

Finally we would like to point out a connection between our main result and the
complexity of disjoint NP pairs. An open question in complexity theory is whether or
not all pairs of disjoint NP sets can be separated by a set in P. This is known to be
false under the assumption P �= UP and also by the assumption P �= NP ∩ coNP. It
is an open question whether or not it is implied by P �= NP. Let us consider the same
question with respect to communication complexity rather than polynomial time: can
every pair of relations with small nondeterministic k-party communication complex-
ity be separated by a small probabilistic/deterministic protocol? In [20] the answer is
shown to be unconditionally false for k = 2. In particular, they give a pair of disjoint
properties on 3m-vertex graphs G, a matching on 2m vertices of G and an independent
set of 2m + 1 vertices of G, and show that this pair cannot be separated by any small
probabilistic/deterministic protocol. In this paper, we have shown that for any k, the
question is still false, under k-RPcc �= k-NPcc.

Acknowledgements

We are indebted to Avi Wigderson for helpful discussions and insights.

References

1. S. Arora, B. Bollobás, and L. Lovász. Proving integrality gaps without knowing the linear
program. In Proceedings 43nd Annual Symposium on Foundations of Computer Science,
pages 313–322, Vancouver, BC, November 2002. IEEE.

2. L. Babai, P. Frankl, and J. Simon. Complexity classes in communication complexity theory.
In 27th Annual Symposium on Foundations of Computer Science, pages 337–347, Toronto,
Ontario, October 1986. IEEE.

3. P. Beame, T. Pitassi, N. Segerlind, and A. Wigderson. A direct sum theorem for corrup-
tion and the multiparty NOF communication complexity of set disjointness. In Proceedings
Twentieth Annual IEEE Conference on Computational Complexity, San Jose, CA, June 2005.

4. A. Bockmayr, F. Eisenbrand, M.E. Hartmann, and A.S. Schulz. On the Chvatal rank of
polytopes in the 0/1 cube. Discrete Applied Mathematics, 98(1-2):21–27, 1999.

5. J. Buresh-Oppenheim, N. Galesi, S. Hoory, A. Magen, and T. Pitassi. Rank bounds and
integrality gaps for cutting planes procedures. In Proceedings 44th Annual Symposium on
Foundations of Computer Science, pages 318–327, Boston, MA, October 2003. IEEE.

6. V. Chvátal. Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Math-
ematics, 4:305–337, 1973.

7. V. Chvátal, W. Cook, and M. Hartmann. On cutting-plane proofs in combinatorial optimiza-
tion. Linear Algebra and its Applications, 114/115:455–499, 1989.

8. W. Cook, C. R. Coullard, and G. Turan. On the complexity of cutting plane proofs. Discrete
Applied Mathematics, 18:25–38, 1987.

9. S. Dash. On the matrix cuts of Lovász and Schrijver and their use in Integer Programming.
PhD thesis, Department of Computer Science, Rice University, March 2001.

10. S. Dash. An exponential lower bound on the length of some classes of branch-and-cut proofs.
In W. Cook and A. S. Schulz, editors, IPCO, volume 2337 of Lecture Notes in Computer
Science, pages 145–160. Springer-Verlag, 2002.

11. F. Eisenbrand and A. S. Schulz. Bounds on the Chvatal rank of polytopes in the 0/1-cube.
Combinatorica, 23(2):245–261, 2003.

1188 P. Beame, T. Pitassi, and N. Segerlind

12. D. Grigoriev, E.A. Hirsch, and D.V. Pasechnik. Complexity of semi-algebraic proofs. In
(STACS) 2002: 19th Annual Symposium on Theoretical Aspects of Computer Science, volume
2285 of Lecture Notes in Computer Science, pages 419–430, Antibes, France, February 2002.
Springer-Verlag.

13. R. Impagliazzo, T. Pitassi, and A. Urquhart. Upper and lower bounds on tree-like cutting
planes proofs. In 9th Annual IEEE Symposium on Logic in Computer Science, pages 220–
228, Paris, France, 1994.

14. B. Kalyanasundaram and Georg Schnitger. The probabilistic communication complexity of
set intersection. In Proceedings, Structure in Complexity Theory, Second Annual Conference,
pages 41–49, Cornell University, Ithaca, NY, June 1987. IEEE.

15. L. G. Khachian. A polynomial time algorithm for linear programming. Doklady Akademii
Nauk SSSR, n.s., 244(5):1093–1096, 1979. English translation in Soviet Math. Dokl. 20,
191–194.

16. L. Lovasz and A. Schrijver. Cones of matrices and set-functions and 0-1 optimization. SIAM
J. Optimization, 1(2):166–190, 1991.

17. A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica, 8(3):261–277,
1988.

18. N. Nisan. The communication complexity of threshold gates. In V.S.D. Mikl’os and
T. Szonyi, editors, Combinatorics: Paul Erdös is Eighty, Volume I, pages 301–315. Bolyai
Society, 1993.

19. P. Pudlák. Lower bounds for resolution and cutting plane proofs and monotone computations.
Journal of Symbolic Logic, 62(3):981–998, September 1997.

20. R. Raz and A. Wigderson. Monotone circuits for matching require linear depth. Journal of
the ACM, 39(3):736–744, July 1992.

21. L. Valiant and V. Vazirani. NP is as easy as detecting unique solutions. Theoretical Computer
Science, pages 85–93, 1986.

On the l-Ary GCD-Algorithm in
Rings of Integers

Douglas Wikström

Royal Institute of Technology (KTH)
KTH, Nada, S-100 44 Stockholm, Sweden

Abstract. We give an l-ary greatest common divisor algorithm in the
ring of integers of any number field with class number 1, i.e., factorial
rings of integers. The algorithm has a quadratic running time in the
bit-size of the input using naive integer arithmetic.

1 Introduction

The greatest common divisor (GCD) of two integers a and b is the largest in-
teger d such that d divides both a and b. The problem of finding the GCD of
two integers efficiently is one of the oldest problems studied in number theory.
The corresponding problem can be considered for two elements α and β in any
factorial ring R. Then λ ∈ R is a GCD of α and β if it divides both elements,
and whenever λ′ ∈ R divides both α and β it also holds that λ′ divides λ. A pre-
cise understanding of the complexity of different GCD algorithms gives a better
understanding of the arithmetic in the domain under consideration.

1.1 Previous Work

The Euclidean GCD algorithm is well known. The basic idea of Euclid is that if
|a| ≥ |b|, then |a mod b| < |b|. Since we always have gcd(a, b) = gcd(a mod b, b),
this means that we can replace a with a mod b without changing the GCD.
Swapping the order of a and b does not change the GCD, so we can repeatedly
reduce |a| or |b| until one becomes zero, at which point the other equals the
GCD of the original inputs. In a more general setting with α and β in a facto-
rial ring R, Euclid’s idea works essentially unchanged if there exists a valuation
v : R → R+ with the following properties for α, β ∈ R. There exists γ, δ ∈ R
with α = γβ + δ and δ = 0 or v(δ) < v(β), if αβ �= 0 then v(α) < v(αβ).
Rings for which there exists such a valuation are called Euclidean. If in an al-
gebraic ring v(α) = |Nα|, where Nα is the algebraic norm of α, the ring is
called norm-Euclidean. Most algebraic rings are not even Euclidean. If we also
want the Euclidean algorithm to terminate there must be a constant k such that
{α | v(α) < k} is finite.

All is however not lost. Kaltofen and Rolletschek [5] devise a GCD algorithm
with quadratic running time for the ring of integers in any quadratic number
field. Their approach is based on the idea to find an integer j such thatN(jα mod

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 1189–1201, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1190 D. Wikström

β) < Nβ. This is always possible with |j| bounded essentially by the square root
of the discriminant. We are not aware of any generalization of this approach to
more general rings of integers.

Interestingly, there are alternative approaches to compute the GCD. These
are generalizations of Stein’s binary GCD algorithm [9], which is particularly
well suited for implementation on computers. It is based on the following facts.

gcd(a, b) = 2 gcd(a/2, b/2) if a and b are even,
gcd(a, b) = gcd(a/2, b) if a is even and b is odd, and
gcd(a, b) = gcd((a− b)/2, b) if a and b are odd.

One may always apply one of the rules to reduce the size of elements, while
preserving the GCD. Thus, by simply shifting and subtracting integers, the GCD
of two integers can be computed. Weilert [11] generalizes this algorithm to the
Gaussian integers. Damg̊ard and Skovbjerg Frandsen [3, 4] independently also
generalize the binary algorithm to the Eisenstein and Gaussian integers.

Sorenson [8] give the l-ary algorithm for computing the GCD of integers,
which generalizes the binary algorithm. The l-ary algorithm is based on the result
by Minkowski that given a and b one can find c and d such that ca+db = 0 mod l
for an integer l, where |c| and |d| essentially are bounded by

√
l. Thus, in each

iteration the larger of a and b is replaced by (ca + db)/l. This is an analog to
the binary algorithm, in that in each iteration the size of the largest integer is
reduced roughly by a factor 2

√
l/l. The details of this algorithm is slightly more

involved than the binary algorithm, since the linear expression does not preserve
the GCD. Sorenson also constructs a parallel version of his algorithm. Weilert
[10] generalizes also this algorithm to the Gaussian integers.

Agarwal and Skovbjerg Frandsen [2] introduce an algorithm related to both
the binary and the l-ary algorithms for computing GCD in several complex
quadratic rings. It is interesting to note that one of the rings they consider is
not Euclidean.

Wikström [13] generalizes the l-ary approach to compute the GCD in the ring
of integers in the octic cyclotomic field. This is the first l-ary GCD algorithm in
a non-quadratic ring, and the main inspiration to the current work.

The binary or l-ary GCD algorithm in the ring of integers Z[ζm] of the cy-
clotomic number fields Q(ζm) for m = 2, 3, 4, 8 can be “translated” to compute
the corresponding power residue symbol. Shallit and Sorenson [7] give a binary
algorithm for computing the Jacobi symbol. Weilert [11] generalizes the idea to
compute the quartic residue symbol. Independently, both Damg̊ard and Skovb-
jerg Frandsen [3, 4] and Wikström [12] generalize the idea to compute the cubic
and quartic residue symbols. Wikström [13] also uses the idea to compute octic
residue symbols.

1.2 Contribution

We give a GCD algorithm in the ring of integers OK of any number field K
with class number 1, i.e., rings of integers with unique factorization. Our result
is non-uniform in the sense that we, for each ring, assume that we already know

On the l-Ary GCD-Algorithm in Rings of Integers 1191

an integral basis, fundamental units, and several constants derived from these.
The running time of the algorithm is quadratic in the bit-size of the input.

As far as we know, the only previous generic GCD algorithm with quadratic
running time is given by Kaltofen and Rolletschek [5], and this is only applicable
to quadratic rings. The algorithm in [5] is in some sense “almost Euclidean”,
whereas our algorithm generalizes the l-ary algorithm [8]. As explained in the
introduction, l-ary algorithms have appeared in the literature for specific rings,
but the present work is the first to give a generic description of this approach.

We are confident that our algorithm can be “translated” to compute the m-
th power residue symbol in the ring of integers of the m-th cyclotomic number
field Q(ζm) if it has class number 1.

Proofs of all claims are given in [14], but we try to convey the main ideas
used in each proof here.

2 Notation

We denote the number of elements in a finite set A by #(A). We write Z, Q, R,
and C for the rational integers, the rational numbers, the real numbers, and the
complex numbers. The imaginary unit is denoted by i =

√
−1. We denote the

complex absolute value by | · | : C → R, where |a + bi| =
√

a2 + b2. We write α
to denote the complex conjugate of an α ∈ C.

Throughout the paper we use K to denote a number field with class number
1, and we use OK to denote its ring of integers. Since Q is a perfect field K/Q
is a separable extension. The ring OK has an integral basis which we denote by
ω1, . . . ,ωg, since OK is the integral closure of Z which is a principal ideal domain.
This means that OK = Zω1 + . . . + Zωg and K = Qω1 + . . . + Qωg. We write
O∗K to denote the units of OK , i.e., the invertible elements. The corresponding
notation is used also for other domains. We use ε1, . . . , εh to denote a maxi-
mal set of independent fundamental units in OK . We denote the group of roots
of unity by μ(K). We denote by G = HomQ(K, C) the set of Q-embeddings
of K into C, i.e., isomorphisms of K, which keep Q fixed. This implies that
g = #(G). We assume throughout that g ≥ 2. We use multiplicative notation
for the action of an element σ ∈ HomQ(K, C), i.e., σ : α !→ ασ. We denote by
Nα =

∏
σ∈G ασ the algebraic norm of α. For α ∈ O∗K , we have Nα ∈ Z. We

use the term irreducible only for non-units. One source for the above facts is
Neukirch [6].

The naive complexity model we use in this paper stipulates that addition or
subtraction of positive integers x and y takes time O(log x + log y), and multi-
plication, integer division or computing remainders takes time O(log x log y).

3 Preliminary Results

Before we describe the algorithm and analyze it we need to generalize the results
given in [13].

1192 D. Wikström

3.1 Balanced Elements

Consider the absolute value of the algebraic norm, |Nα| =
∏

σ∈G |ασ|, of an ele-
ment α ∈ OK . It is given by the product of the absolute values of the conjugates
of α. The quotient |ασ|/|ασ′ | of two such absolute values can be arbitrarily large
for elements with a fixed absolute norm |Nα|. However, it follows from Dirich-
let’s Unit Theorem that there exists an associate β of α for which the absolute
values |βσ| are roughly the same size. This is an important observation, since it
allows us to establish a weak triangle inequality. Informally, we could say that
we can balance the complex absolute values of the algebraic conjugates of α. We
use the following definition.

Definition 1 (Δ-Balanced Element) We say that a non-zero α ∈ K is Δ-
balanced if |ασ| ≤ Δ|ασ′ | for all σ,σ′ ∈ HomQ(K, C).

Note that α is Δ-balanced precisely when all of its conjugates are Δ-balanced,
and that the requirement is equivalent to 1

Δ |ασ| ≤ |ασ′ | for all σ,σ′ ∈ G.

3.2 A Weak Triangle Inequality

It would be nice if given α, β ∈ K, we had |N(α + β)| ≤ cmax{|Nα|, |Nβ|}
for a constant c ∈ R, i.e., some type of “triangle inequality”. Unfortunately, for
almost all K there is no such law. Instead we show that there exists a triangle
inequality for balanced elements.

Theorem 1 (Triangle Inequality for Δ-Balanced Elements) Let α and β
be Δ-balanced elements in K, and set g = #(HomQ(K, C)). Then

|N(α + β)| ≤ 2gΔg−1 max{|Nα|, |Nβ|} .

The idea of the proof is to expand the product |N(α+β)| = |
∏

σ∈G(ασ+βσ)| as
a sum, apply the triangle inequality for the complex absolute value, and bound
each term using the fact that α and β are balanced.

Remark 1 If the conjugates of α can be organized in pairs of complex conjugates
one can give a slightly tighter inequality as is done in [13].

3.3 Linear Combinations

In this section we construct the cofactors of the l-ary approach, but first we
exhibit a large set of elements with relatively small norm. Let l ∈ Z, l > 0,
denote a constant to be determined later and define the set

Sl =
{ g∑

j=1

ajωj

∣∣∣∣ 0 ≤ aj ≤
√
l + 1

}
.

Each σ ∈ G may be described as a Z-linear map in the basis ω1, . . . ,ωg. We
denote the matrix corresponding to this map by fσ = (fσ

k,j)1≤k,j≤g, and define
the constant cω = max1≤k,j≤g,σ∈G{|fσ

k,jωk|}. We have the following result.

On the l-Ary GCD-Algorithm in Rings of Integers 1193

Lemma 1 Let γ, γ′ ∈ Sl. Then for all σ ∈ G

|(γ − γ′)σ| ≤ g2cω(
√
l + 1) , and #(Sl) > lg/2 .

The first part of the lemma follows by the linearity of σ, application of the trian-
gle inequality, and the fact that elements in Sl have small positive coefficients.
The second part follows by counting.

Denote by Tl the set of pairwise differences Tl = {γ−γ′ | γ, γ′ ∈ Sl}. We show
that for any Δ-balanced elements α, β ∈ OK , we can find elements γ, δ ∈ Tl such
that l | (γα+ δβ) and still keep |N(γα+ δβ)| relatively small. More precisely we
define Clin(l) = (g2cω(

√
l + 1))gΔg−1 and have the following theorem.

Theorem 2 Let α and β be Δ-balanced elements in OK . Then there exists γ, δ ∈
Tl, with (γ, δ) �= (0, 0), such that l | (γα + δβ), and

|N(γα + δβ)| ≤ Clin(l)max{|Nα|, |Nβ|} .

The idea of the proof is as follows. The existence of the γ and δ follows by the
pigeon-hole principle. The bound follows by an argument similar to that in the
proof of Theorem 1, except that we apply Lemma 1 to bound the norm of the
cofactors γ and δ.

In the following we need a notation to identify the cofactors guaranteed to
exist by the theorem. We write γα,β and δα,β for a pair of cofactors in Tl such
that l | (γα,βα + δα,ββ).

3.4 Spurious Factors

Sorenson [8] notes that gcd(a, b) = gcd(ca + db, b) may not hold for rational
integers a, b, c, d ∈ Z. A similar problem arises for algebraic integers. Fortunately,
the following straightforward lemma explains this completely.

Lemma 2 Let α, β, γ, and δ lie in OK . Then gcd(α, β) | gcd(γα + δβ, β) and
(gcd(γα + δβ, β)/ gcd(α, β)) | γ.

3.5 Approximating the Norm of a Δ-Balanced Element

The norm of an element gives in some sense the “size” of the element. Unfor-
tunately, the way the norm is defined requires multiplication of integers, which
takes time O(n2) in the naive arithmetic model. This is far too expensive to be
done in each iteration of our algorithm, since we are looking for an algorithm
that has a total running time of O(n2). It is natural to try to approximate the
norm, but since elements can have small norm but large representation, i.e.,
be unbalanced, there may be much cancellation during the computation of the
norm.

We consider a weaker estimate of the size of an element, which we call N+ :
K → R, and prove some useful results about this function. We do not know
how to compute this function quickly, but in contrast to the norm it can be
approximated within a constant factor in linear time for elements in OK .

1194 D. Wikström

Definition 2 Define N+ : K → R by N+α = maxσ∈G{|ασ|}.

It is not hard to see that N+ approximates the norm N arbitrarily badly, but
it turns out to be useful anyway. The next lemma says that if an element is
Δ-balanced, then N+ is essentially a good approximation of the norm N .

Lemma 3 Let α ∈ K be Δ-balanced. Then g
√
|Nα| ≤ N+α ≤ Δ g

√
|Nα|.

For the lemma to be useful there must be a way to balance an element α without
computing its norm Nα, but we ignore this issue for now. Instead we introduce
a function N ′

+ which approximates N+ within a constant factor.

Definition 3 Define N ′
+ : K → R by N ′

+α = max1≤j≤g{|aj |} for an element
α ∈ K given by α =

∑g
j=1 ajωj with aj ∈ Q.

The function N ′
+ can obviously be evaluated in linear time in the bit-size of the

input when α ∈ OK , since then aj ∈ Z. Next we show that it approximates N+

within a constant factor.
Denote by K∗

C the direct product
∏

σ∈G C∗, and denote by ψ : K → K∗
C

the map given by ψ : α !→ (ασ)σ∈G. We consider K as a g-dimensional Q-
vector space, where elements are represented in the basis ω1, . . . ,ωg. Then the
image ψ(K) is an isomorphic Q-vector space from the Q-linearity of the ho-
momorphisms. Denote by (ψσ,j)σ∈G,1≤j≤g the complex valued matrix which
represents the map ψ : K → ψ(K) expressed in the basis ω1, . . . ,ωg. De-
note by (ψ′j,σ)σ∈G,1≤j≤g the complex valued matrices corresponding to the map
ψ−1 : ψ(K) → K expressed in the canonical orthonormal basis {eσ}σ∈G for
KC =

∏
σ∈G C. Define Γ = gmax1≤j≤g,σ∈G{|ψσ,j |, |ψ′j,σ|}. The lemma below

follows straightforwardly from the linearity of ψ and its inverse.

Lemma 4 Let α ∈ K. Then 1
ΓN+α ≤ N ′

+α ≤ ΓN+α.

Corollary 1 Let α ∈ K be Δ-balanced. Then

1
Γ

g
√
|Nα| ≤ N ′

+α ≤ ΓΔ g
√
|Nα| .

3.6 Balancing Elements

In this section we prove a result that allows us to balance elements in OK effi-
ciently. Recall the statement of Dirichlet’s Unit Theorem. It considers a number
field K which has r real embeddings and s pairs of conjugates of complex em-
beddings of K in C, and says that the group of units O∗K is the direct product
of the group of roots of unity, μ(K), and a free abelian group of rank r + s− 1.
The theorem itself is not strong enough for our purposes, but we can extract a
useful result from the construction used in its proof. We follow the exposition
given in Neukirch [6], but use slightly different notation.

We have already defined the map ψ : K → K∗
C. Denote by vlog : K∗

C →∏
σ∈G R the map given by vlog : (zσ)σ∈G !→ (log |zσ|)σ∈G. Conjugation F : z !→

z in C induces involutions. In K∗
C it acts by F (zσ)σ∈G = (zσ)σ∈G and in

∏
σ∈G R

On the l-Ary GCD-Algorithm in Rings of Integers 1195

it acts by F (xσ)σ∈G = (xσ)σ∈G. We define K∗
R and

[∏
σ∈G R

]+ to be the vector
spaces consisting of fixed points of F in K∗

C and
∏

σ∈G R respectively. If σ is a
real embedding, it is clearly fixed by F , and the complex embeddings comes in
pairs. Since there are s pairs of complex embeddings we see that

[∏
σ∈G R

]+ is
isomorphic to Rr+s.

Define NC : KC → C, NC : (zσ)σ∈G !→
∏

σ∈G zσ and TrR :
∏

σ∈G R →
R, TrR : (xσ)σ∈G !→

∑
σ∈G xσ. It is shown in [6] that the following diagram

commutes.

K∗ ψ ��

N

��

K∗
R

vlog��

NC

��

[∏
σ∈G R

]+
TrR

��
Q∗ �� R∗

log �� R

Consider the following subgroups.

O∗K = {ε ∈ OK | Nε = ±1} the units,
S = {y ∈ K∗

R | NCy = ±1} the norm one surface, and
H = {x ∈

[∏
σ∈G R

]+ | TrR(x) = 0} the trace zero hyperplane.

The commutative diagram above induces the homomorphisms

O∗K
ψ �� S

vlog �� H .

Denote by λ the composed map λ = vlog ◦ ψ, and let L = λ(O∗K) be the image
of the units in

[∏
σ∈G R

]+. Recall the definition of a lattice.

Definition 4 A lattice in an R-vector space V is a subgroup L = E1Z + . . . +
EhZ, where E1, . . . , Eh are linearly independent vectors in V . It is called com-
plete if E1, . . . , Eh is a basis for V .

It is proved in [6] that the group of roots of unity, μ(K), is isomorphic to the
kernel of λ and that L is a complete lattice in the (r + s− 1)-dimensional vector
space H. Dirichlet’s theorem follows from this. Let h = r + s − 1. To define
the fundamental units ε1, . . . , εh we pick a basis E1, . . . , Eh for L, and define
εj = λ−1(Ej). We also define E′

j = gEj .

Suppose we map an element α into
[∏

σ∈G R
]+ using λ. Let x = (xσ) = λ(α).

Then it is not hard to see that α is balanced when all xσ are of roughly the same
size. Another way to phrase this is that the orthogonal projection of x onto H
is close to the origin. If we multiply α by εj , the image λ(αεj) is translated by
the vector Ej , i.e., λ(αεj) = λ(α) + λ(εj) = x + Ej . To balance an element we
want to find some integer combination of the vectors E1, . . . , Eh that translates
x close to the origin, since this corresponds to multiplying α by the fundamental
units ε1, . . . , εh. We can always write x =

∑h
j=1 rjEj , with rj ∈ R, since L is a

complete lattice, i.e., E1, . . . , Eh is a R-basis for H. Then we pick integers close
to these real coefficients. Below we prove two lemmas that allow us to give a
simple algorithm for balancing elements that is easy to analyze.

1196 D. Wikström

Recall that {eσ}σ∈G denotes the canonical orthonormal basis for the space∏
σ∈G R. We define the max-norm ‖ · ‖ : H → R in terms of this basis by

‖
∑

σ∈G xσeσ‖ = maxσ∈G{|xσ|}. It is intuitively clear that if an element x ∈ H is
sufficiently far from the origin, we may reduce its max-norm ‖x‖ by an additive
term t by translating it by a bounded element in the lattice L. We define a
constant cE = maxr1,...,rh∈[−1/2,1/2] ‖

∑h
j=1 rjE

′
j‖, and turn this into a precise

statement as follows. Denote by A(t) the set {x ∈ H | x =
∑h

j=1 rjE
′
j , rj ∈

R, ‖x‖ ≤ t + cE}, and define

w(t) =
1
2

+ max∑h
j=1 rjE′

j∈A(t)
{|rj |} ,

where rj ∈ R. We prove the following result.

Lemma 5 Let t > 0 and let x ∈ H be an element such that ‖x‖ > t + cE. Then
there exists k1, . . . , kh ∈ Z with |kj | ≤ w(t) such that∥∥∥∥x +

h∑
j=1

kjE
′
j

∥∥∥∥ ≤ ‖x‖ − t .

Choose t such that Γ 2

2t < 1
2 and define the constants Φ = w(gt) and Δ =

2
2
g (gt+cE). We translate the above lemma from the space H back to OK and

take care of the lack of precision in our approximation of N+. This gives the
following lemma.

Lemma 6 If α in OK is not Δ-balanced, then there exists k1, . . . , kh ∈ Z with
|kj | ≤ Φ such that

N ′
+

(
α

h∏
j=1

ε
kj

j

)
<

1
2
N ′

+α .

The idea of the proof is the following. Suppose α is not balanced and consider the
element β = αg/Nα. Note that β is “normalized” in the sense that x = λ(β) ∈ H
(we may have β �∈ OK though). Up to a constant factor, the element α is balanced
if and only if β is balanced. This implies that x ∈ H is far from the origin. We
then apply Lemma 5 to translate x closer to the origin. Since we do this using the
basis E′

1, . . . , E
′
h this translates to multiplying β by a product of the fundamental

units εj . When this is no longer possible, x is close to the origin, which implies
that β, and thus α, are balanced.

4 The Algorithm

In this section we describe the algorithm. We divide it into subroutine calls to
improve readability.

On the l-Ary GCD-Algorithm in Rings of Integers 1197

4.1 Subroutines

Consider the set of non-unit elements that divide some δ in the set of cofactors
Tl. This set is clearly infinite, since each element in OK has an infinite number
of associates. This makes it natural to consider the following set instead

Fl = {π ∈ OK : π | l or π | δ ∈ Tl, and π is Δ-balanced and irreducible} .

The set Fl is bounded and we denote its elements by Fl = {π1, . . . ,πsF
}. We

write Fl
 α to denote the fact that π
 α for all π ∈ Fl. For clarity we state trial
division as an algorithm below.

Algorithm 1 (Extract Small Factors)

SMALL(α)
Input : α ∈ OK .

Output : (α′, (k1, . . . , ksF
)), where α = α′

∏sF

j=1 π
kj

j and Fl
 α′.

The algorithm is the trivial one. Find α′, and kj by trial division.

Lemma 7 Let α ∈ OK and suppose (α′, (k1, . . . , ksF
)) = SMALL(α). Then the

running time of the SMALL-algorithm on input α is O(n(1 + log |Nα|
|Nα′|)).

Note that π | α if and only if Nπ | Nπ
π α. Since Nπ

π ∈ OK this reduces, in linear
time, trial division in OK to trial division in Z.

Next we consider the problem of Δ-balancing elements. The algorithm below
repeatedly applies Lemma 6 to find an increasingly balanced associate of the input.
When this is no longer possible, we know that the current associate isΔ-balanced.

Algorithm 2 (Balance Element)

BALANCE(α)
Input : α ∈ OK .
Output : a Δ-balanced associate β of α.
β ← α
Do

α ← β
For (k1, . . . , kh) ∈ [−Φ,Φ]h Do

If N ′
+

(
β
∏h

j=1 ε
kj

j

)
< 1

2N
′
+β Then

β ← β
∏h

j=1 ε
kj

j

End If
End For

While N ′
+β < N ′

+α
Return α

Lemma 8 The output of the BALANCE-algorithm is Δ-balanced, and the al-
gorithm runs in time O

(
n(1 + log(maxσ,σ′∈G

|ασ|
|ασ′ |))

)
.

1198 D. Wikström

Identify OK/(l) with the set of representatives
∑g

j=1 ajωj , with 0 ≤ aj < l.
Then let (γα′,β′ , δα′,β′)α′,β′∈OK/(l) be the table of elements from Tl guaranteed
to exist by Theorem 2, i.e., elements such that l | (γα′,β′α′+δα′,β′β′). For clarity
we state finding the cofactors as an algorithm.

Algorithm 3 (Find γ and δ)

GAMMADELTA(α, β)
Input : α, β ∈ OK .
Output : (γ, δ) ∈ T 2

l , such that l | (γα + δβ).
Compute α′ = α mod (l) and β′ = β mod (l). Then output (γα′,β′ , δα′,β′).

Lemma 9 The algorithm is correct and runs in time O(n).

4.2 Greatest Common Divisor

Finally, we are ready to give the algorithm for computing a greatest common
divisor of two elements α and β in OK . The special case where one of the inputs
is zero is treated in the first two lines. Then we extract all small factors of
both inputs and store these. This allows us to determine all small factors in a
GCD. Then we make sure that β is balanced. Consider now the while-loop of the
algorithm. In each iteration α is balanced. This ensures that when we compute
N ′

+α and N ′
+β the results are in fact approximations of g

√
|Nα| and g

√
|Nβ|.

This gives us a good idea of which of the elements is the larger. The if-statement
swaps α and β such that the norm of α is larger or at least within a constant
factor of the norm of β. Then a linear expression is formed using the special

Algorithm 4 (Greatest Common Divisor)

GCD(α, β)
Input : α, β ∈ OK , with either α or β non-zero.
Output : The greatest common divisor of α and β.
If α = 0 Return β
If β = 0 Return α
(α, (k1, . . . , ksF

)) ← SMALL(α)
(β, (k′1, . . . , k

′
sF

)) ← SMALL(β)
β ← BALANCE(β)
While α �= 0 Do

α ← BALANCE(α)
If N ′

+α < N ′
+β Then

(α, β) ← (β, α)
End If
(γ, δ) ← GAMMADELTA(α, β)
(α, ·) ← SMALL((γα + δβ)/l)

Done

Return β
∏sF

j=1 π
min{kj ,k

′
j}

j

On the l-Ary GCD-Algorithm in Rings of Integers 1199

cofactors of bounded norm, and the result is divided by l. This reduces the norm
of α. During the iterations of the while-loop spurious factors from the set Fl may
be introduced into the current β. These are removed in the subroutine call, and
the output is formed in the obvious way.

In each iteration, α, perhaps after swapping with β, is replaced by the
expression (γα + δβ)/l. We must obviously choose l large enough such that
|N((γα + δβ)/l)| < |Nα|. But, we must also take into account the lack of exact-
ness in the approximation N ′

+ of the norm used when deciding which of α and
β is the larger. For simplicity we choose l such that the norm of α is guaranteed
to be reduced by a factor of two in each iteration. More precisely we choose l
as the smallest integer that satisfies the inequality Clin(l)/lg < 1/(2Γ 2gΔg). We
can choose l to satisfy this inequality since Clin(l) = O(lg/2).

5 Analysis

In this section we prove the correctness of the algorithm and bound its running
time. To simplify the exposition we denote by αj and βj , and α′j and β′j the
values of α and β before and after the if-statement in the jth iteration of the
while-loop.

Lemma 10 The jth iteration, j > 1, runs in time O
(
n(1+log |Nαj |·|Nβj |

|Nαj+1|·|Nβj+1|)
)
.

To see why the lemma is true, note that from the triangle inequality of the
complex absolute value follows that in each iteration, max{|ασ

j+1|} can only be
a constant factor larger than max{|(α′j)σ|}. This means that if αj+1 is very
unbalanced, then |Nαj+1| must also be much smaller than |Nα′j |. The lemma
then follows from Lemma 7 and Lemma 8.

Theorem 3 Algorithm 4 computes the greatest common divisor of its inputs in
time O(n2) in the bit-size n of its input using naive arithmetic in Z.

The proof of correctness is straightforward except from the handling of spu-
rious factors. Since all small factors are removed from both inputs and stored
before the while-loop, any small factors found in the while-loop can safely be dis-
carded. By Lemma 2, replacing α by (γα+ δβ)/l preserves the GCD up to small
factors. Since all small factors are removed by the call to the SMALL-algorithm
the GCD of α and β is preserved and the output of the algorithm is correct.
The bound of the running time is explained as follows. We have chosen l such
that the absolute norm of one of the elements is reduced at least by a factor
1/2 in each iteration. Since the norm is an integer and the algorithm halts when
α = 0, the algorithm executes at most d = O(n) iterations. The subroutine calls
made outside of the while-loop can be done in time O(n2). The running time of
each iteration is bounded in Lemma 10. Thus, it remains to argue that the com-
bined execution time

∑d
j=2 O(n log |Nαj |·|Nβj |

|Nαj+1|·|Nβj+1|) of all subroutine calls sum
to O(n2), but this follows by calculation.

1200 D. Wikström

6 On the Existence of Practical Algorithms

In this paper we focus on conceptual simplicity, and not on minimizing the
constants in the running time. In particular the three subroutines SMALL,
BALANCE, and GAMMADELTA are trivial brute force algorithms. Thus, an
interesting line of future research is to device more efficient specialized ver-
sions of these subroutines, e.g., it should be possible to use lattice reduction
techniques to balance elements. Another line of research is to exploit specific
properties of OK when #(G) is relatively small. In addition to the complex
rings mentioned in the introduction, this seems possible for some real quadratic
rings [1].

Acknowledgments

I wish to thank my advisor Johan H̊astad for excellent advise. Without his help
I would still be struggling. I also thank Torsten Ekedahl who essentially played
the role of an extra advisor during this work.

References

1. S. Agarwal, Personal communication, November, 2004.

2. S. Agarwal, G. Skovbjerg Frandsen, Binary GCD Like Algorithms for Some Com-
plex Quadratic Rings, ANTS 2004, LNCS 3076, pp. 57-71, 2004.

3. I. Damg̊ard, G. Skovbjerg Frandsen, Efficient Algorithms for gcd and Cubic Residu-
osity in the Ring of Eisenstein Integers, BRICS Technical Report, ISSN 0909-0878,
BRICS RS 03-8, 2003.

4. I. Damg̊ard, G. Skovbjerg Frandsen, Efficient algorithms for GCD and cubic resid-
uosity in the ring of Eisenstein integers, Fundamentals of computation theory,
LNCS 2751, pp. 109-117, 2003 (revised version to appear in Journal of Symbolic
Computation).

5. E. Kaltofen, H. Rolletschek, Computing greatest common divisors and factoriza-
tions in quadratic number fields, Mathematics of Computation, 53(188):697-720,
1989.

6. J. Neukirch, Algebraic Number Theory, ISBN 3-540-65399-6, Springer-Verlag
Berlin, 1999.

7. J. Shallit, J. Sorenson, A binary algorithm for the Jacobi symbol, ACM SIGSAM
Bulletin, 27 (1), pp. 4-11, 1993.

8. J. Sorenson, Two Fast GCD Algorithms, Journal of Algorithms, 16(1):110-144,
1994.

9. J. Stein, Computational problems associated with Racah algebra, Journal of Com-
putational Physics No. 1, pp. 397-405, 1969.

10. A. Weilert, Asymptotically fast GCD computation in Z[i], In Algorithmic number
theory (Leiden, 2000), LNCS 1838, pp. 595-613, 2000.

11. A. Weilert, (1+ i)-ary GCD computation in Z[i] as an analogue to the binary GCD
algorithm, Journal of Symbolic Computation, 30(5):605-617, 2000.

On the l-Ary GCD-Algorithm in Rings of Integers 1201

12. D. Wikström, On the Security of Mix-Nets and Related Problems, Licentiate thesis,
Nada, KTH, TRITA-NA-04-06, ISSN: 0348-2952, ISRN KTH/NA/R--04/06--SE,
ISBN 91-7283-717-9, May, 2004.

13. D. Wikström, On the l-Ary GCD-Algorithm and Computing Residue Symbols,
Technical Report, Nada, KTH, Royal Institute of Technology, TRITA-NA-04-39,
ISSN: 0348-2952, ISRN KTH/NA/R--04/39--SE, November, 2004.

14. D. Wikström, On the l-Ary GCD-Algorithm in Rings of Integers, Technical Report,
Nada, KTH, Royal Institute of Technology, TRITA-NA-05-15, ISSN: 0348-2952,
ISRN KTH/NA/R--05/15--SE, April, 2005.

A Fully Abstract Encoding of
the π-Calculus with Data Terms�

(Extended Abstract)

Michael Baldamus1,��, Joachim Parrow2, and Björn Victor2

1 Linnaeus Centre for Bioinformatics
2 Department of Information Technology, Uppsala University, Sweden

Abstract. The π-calculus with data terms (πT) extends the pure π-calculus
by data constructors and destructors and allows data to be transmitted between
agents. It has long been known how to encode such data types in π, but until now
it has been open how to make the encoding fully abstract, meaning that two en-
codings (in π) are semantically equivalent precisely when the original πT agents
are semantically equivalent. We present a new type of encoding and prove it to
be fully abstract with respect to may-testing equivalence. To our knowledge this
is the first result of its kind, for any calculus enriched with data terms. It has
particular importance when representing security properties since attackers can
be regarded as may-test observers. Full abstraction proves that it does not matter
whether such observers are formulated in π or πT, both are equally expressive
in this respect. The technical new idea consists of achieving full abstraction by
encoding data as table entries rather than active processes, and using a firewalled
central integrity manager to ensure data security.

1 Introduction

The increasingly complicated mechanisms to guarantee secure communications have
spurred the development of appropriate formal description techniques. In this paper we
study a prototypical such formalism, a π-calculus enriched with data terms (πT), and
show how it can be encoded in the more fundamental π-calculus [13] while preserving
full abstraction. This means that two processes in πT are equivalent precisely when
their encodings are equivalent. Although encodings between such calculi has proved
a rich field of study this is the first result of its kind. We achieve it by designing the
encoding in a different way from what is usually done. The full proof is very technical
and we here outline the main ideas, which are quite general and can in principle be
applied to many similar calculi.

πT extends the basic π-calculus by including constructors and deconstructors for
data terms. In this the calculus resembles a high level parallel programming language,
and specifications of security protocols can be made in a familiar operational style. It

� Work supported by European Union project PROFUNDIS, Contract No. IST-2001-33100.
�� To whom correspondence should be addressed (http://www.lcb.uu.se/∼michaelb).

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 1202–1213, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

A Fully Abstract Encoding of the π-Calculus with Data Terms 1203

can be seen as a generalisation of the spi-calculus [3] (which extends π with primitives
for encryption and decryption) in that arbitrary constructors and destructors are allowed.
It can also be seen as a simplification of the applied π-calculus by Abadi and Fournet
[1], since it does not admit equations over the data terms.

A key idea when encoding data was expressed already in the first papers on the
π-calculus: a data structure is represented in π as a process with the ability to interact
along designated ports in order to carry out operations. In such a manner all known
kinds of data structures, certainly including those of πT, can be encoded.

The problem with this kind of encoding appears when we consider a useful notion
of semantic equality between πT processes. We shall here as a prime example look at
testing equivalence. The main idea is that two processes are behaviourally equivalent
precisely when they can satisfy the same tests. Tests are arbitrary processes of the cal-
culus, which of course is expressive enough to describe not only security protocols but
also the potential attackers on them. So if we know of two processes that they are testing
equivalent we know that they will behave similarly in all conceivable environments. In
an earlier paper [4] we have proved for the spi calculus that a process satisfies a test
if and only if the encoding of the process satisfies the encoding of the test. The same
result, as we will show in this paper, holds for an encoding from πT to π.

Unfortunately, with the traditional kind of encoding from πT to π the testing equiva-
lences in πT and π turn out to be different. The reason is, briefly put, that the encodings
of two πT processes satisfy the same tests only if the tests are encodings of πT tests.
But in the π-calculus there are also tests which are not encodings of any πT test, and
some of these may be able to discriminate between the encodings of otherwise equiva-
lent processes. Formally full abstraction, the result that two πT processes are equivalent
precisely when their encodings are equivalent, has proved elusive, not only for πT but
for all similar calculi, and for similar operationally defined equivalences.

In this paper we exhibit an encoding from πT to π and prove it to be fully abstract.
A key ingredient is that we use a central so called integrity manager (M) which stores
all data values generated throughout a computation. All access to data must go through
a level of indirection at M, which only allows accesses that adheres to the protocols for
interacting with data. Thus, the previously dangerous π-calculus processes that are not
encodings of πT processes are rendered impotent.

The remaining sections of this paper are organised as follows: Section 2 introduces
πT. Section 3 presents the encoding of πT into the polyadic π-calculus. The reader may
refer to [5] for some parts that have to be left out here due to a lack of space. Section 4
states the full-abstraction result. It also gives an idea of its long and complex proof. The
full proof can be found in [5]. Section 5 discusses related work. Section 6 concludes the
paper with some final remarks, in particular about the lack of compositionality of the
encoding due to the global integrity manager.

2 Background: π-Calculus, πT-Calculus

2.1 The πT-Calculus

As always in π-like calculi, an infinite set of names is assumed to be given. This set is
here typically ranged over by lower-case letters from the middle of the alphabet, such

1204 M. Baldamus, J. Parrow, and B. Victor

as n. Sets of names are typically ranged over by upper-case letters from the middle of
the alphabet, such as N . As usual in spi-calculus-like extensions of the π-calculus we
distinguish names and variables. The set of variables is also assumed to be infinite. It
is here typically ranged over by lower-case letters from the end of the alphabet, such as
x. We designate finite vectors by means of the -̃symbol. The length of any finite vector
X̃ is denoted by |X̃|.

The πT-calculus is further characterised by assuming a set of function symbols from
which data terms can be formed, distinguishing dedicated constructors and deconstruc-
tors (with minor restrictions, see below). Predictably, constructors are used to build data
terms and deconstructors to take them apart. Both the set of constructors and the set of
deconstructors are assumed to be finite. Constructors are typically ranged over by f ,
deconstructors by d. Each constructor f is assumed to have a fixed, finite arity ar[f].

Data terms are then given as follows:

T , . . . ::= n | x | f(T1, . . . , Tar[f])

For the sake of simplicity, no type discipline is assumed for data terms, only the con-
structor arities must be respected. The set of all names that occur in any given vector
T̃ of data terms is denoted by nm[T̃]. Deconstructors must not occur within data terms.
They may only be applied via the let construct introduced below. A value is a data
term without any variables. Values are typically ranged over by V and W .

Agent expressions are then given as follows:

P , . . . ::= 0 | T (x).P | T 〈U〉.P | P |Q | (ν n) P | ! P
| if T = U then P else Q | let x = d(T̃) in P

The 0 constant denotes the inert process. An input prefix T (x).P can be performed in
a context where T evaluates to some name n. Then a value, e.g. V , is received over the
channel denoted by n and the process continues as P where x is substituted by V . An
output prefix T 〈U〉.P can also be performed in a context where T evaluates to some
name n and U to some value V . Then V is sent via the channel denoted by n and the
process continues as P . Here n and T are called the subject, and x and V the object
of the input or output. The next three operators are standard in pi-calculus-like calculi:
P | Q behaves like P and Q acting concurrently; (ν n)P behaves like P where n is
local; !P behaves like infinitely many copies of P put in parallel. The conditional and
the let have their usual meaning. In πT, let is the only place where deconstructors
may be applied.

Input prefixing, let , and restriction are binders: T (x).P and let x = d(T̃) in P
bind the variable x in P ; (ν n)P binds the name n in P . The set of names occurring
free (non-bound) in a process expression P is denoted by fn[P] and similarly for a
vector P̃ = P1 . . . Pn of process expressions fn[P̃] means the union of all fn[Pi].

We do not distinguish between expressions that differ only up to alpha conversion of
bound names and variables. Given any data term or process expression H , H{x̃ := T̃}
denotes the term after simultaneously substituting each xi by Ti. Substitution always
entails implicit alpha-conversion of bound names in H such that there is no capture of
any free names in T̃ . A process is an agent expression without free variables.

A Fully Abstract Encoding of the π-Calculus with Data Terms 1205

We often omit trailing 0 suffixes, writing x〈y〉 for x〈y〉.0. We often also use an
“inline” notation for restriction, and e.g. write x〈ν y〉.P as shorthand for (ν y) x〈y〉.P .
Further, we use the standard notation

∏
i∈{j1,...,jk} Pi = Pj1 | . . . | Pjk

.

Deconstructor Equations. Deconstructor equations describe how deconstructors act
upon values. To this end, we need to introduce value patterns:

G ::= x | f(G1, . . . , Gar[f])

A deconstructor equation is then of the form d(G̃) Δ= x where x must occur in G̃. There
may be several, but only finitely many equations for each deconstructor. Since there are
finitely many deconstructors, there are only finitely many deconstructor equations.

Operational Semantics. Abadi’s and Fournet’s semantics for the applied π-calculus [1]
use active substitutions and rely heavily on structural congruence rules. Our semantics,
using the let construct for deconstruction, is more direct and does not utilise structural
congruence. The rules for scope opening are similar to the variant in [1] giving the finest
bisimulation equivalence relation; we are dealing with may testing where this finesse
does not matter.

Actions are of one of three forms:

n(V): Input of value V on channel n where V is bound to x as shown below.
(ν M) n〈V 〉: Output of value V on channel n where the names in M are extruded as

private names. The SOS clauses ensure that we always have M ⊆ fn(V).
τ : Silent action.

The individual clauses are as shown below. The treatment of replication follows [17].
The clauses for if then else are slightly non-standard since they entail a τ -action,
just like in [1]. This is advantageous for our purposes of considering may-testing. The
missing symmetric clauses for interleaving and closure are left implicit.

n(x).P
n(V)−−−→ P{x := V }

n〈V 〉.P (ν ∅) n〈V〉−−−−−−→ P

P
n(V)−−−→ P ′ Q

(ν M) n〈V 〉−−−−−−−→ Q′ fn[P] ∩M = ∅
P |Q τ−→ (ν M)(P ′ |Q′)

P
α−→ P ′ bn[α] ∩ fn[Q] = ∅

P |Q α−→ P ′ |Q
P

(ν M) n〈V 〉−−−−−−−→ P ′ n �= m′ m′ ∈ nm[V] \M

(ν m′) P
(ν M + m′) n〈V 〉−−−−−−−−−−−→ P ′

P
α−→ P ′ n �∈ nm[α]

(ν n) P
α−→ (ν n) P ′

if T = T then P else Q
τ−→ P

T �= U

if T = U then P else Q
τ−→ Q

P
α−→ P ′ bn[α] ∩ fn[P] = ∅

! P
α−→ P ′ | ! P

P
n(V)−−−→ P ′

1 P
(ν M) n〈V 〉−−−−−−−→ P ′

2 fn[P] ∩M = ∅
! P

τ−→ ((ν M)(P ′
1 | P ′

2)) | ! P
d(G̃)

Δ
= x G̃σ = Ṽ

let y = d(Ṽ) in P
τ−→ P{y := xσ}

We denote by nm[α] the set of names that syntactically occur in any action α; we
denote by bn[α] the set of bound names of α: bn[n(x)] = ∅, bn[(ν M) n〈T 〉] = M ,
bn[τ] = ∅; (ν {n1, . . . , nk}) stands for (ν n1) . . . (ν nk), k ≥ 0. Also, we denote map-
pings from variables to values by σ, and by T̃σ the vector that results from applying σ
to each element of T̃ .

1206 M. Baldamus, J. Parrow, and B. Victor

2.2 Polyadic π-Calculus

In the next section we will encode πT into the polyadic π-calculus. The specific di-
alect that we use is derived from πT via three simple modifications: First, the sets
of constructors and deconstructors are assumed to be empty; second, nondeterminis-
tic CCS-like choice of the form P + Q and polyadic input and output prefixes of the
form a(x̃).P or a〈̃b〉, respectively, are admitted, where a and b range over both names
and variables; third, process constants are admitted. They are typically ranged over by
upper-case letters from the beginning of the alphabet, such as A. Process constant defi-

nitions are of the form A(x̃) Δ= P where the free variables of P must be from x̃. There
must be a unique definition for each process constant. The number of actual parameters
in each instantiation of any process constant must be the same as the number of for-
mal parameters in the constant’s definition. The necessary modifications of the above
SOS clauses and the accompanying notion of action are standard. Here, we just give the
semantics of the nondeterministic choice operator:

P
α−→ P ′

P + Q
α−→ P ′

Q
α−→ Q′

P + Q
α−→ Q′

As α ranges over all actions including τ , + is the ordinary CCS-like nonderministic
choice operator.

3 The Encoding of the πT-Calculus

In this section we present the encoding of πT-processes into the polyadic π-calculus.
As in previous work [4], the main issue is encoding values.

The idea is to let encoded processes operate on encoded values only via value identi-
fiers (IDs). To this end, an integrity manager M is set up, which maintains tables of the
existing IDs and the values these correspond to. Whenever an encoded process wants
to operate on one or more encoded values, it must send a specific request carrying the
value IDs to M. M will check whether it already knows the IDs, i.e., whether the IDs
correspond to any actual values: if that is the case, then M will perform the operation;
if not, then the request will deadlock. If the operation requires generating a new value,
M will do so, and it will also generate a new ID that it will associate with the value.
Completion will be signalled on a dedicated channel that has been supplied when the
request was issued. The channel carries an ID which refers to the result of the operation,
if there was any.

M thus shields encoded processes from any malformed complex values that might
be sent to them by π-observers which are not encodings of πT processes. Moreover,
as πT- and π-processes have the same pure synchronisation capabilities, π-observers
are unable to do anything to encoded πT-processes that encoded πT-observers cannot
already do. The only requirement is that no encoded πT-process may ever get connected
to a “fake” integrity manager. This is assured by (a) restricting the channels that are used
for interacting with M and (b) setting up a uni-directional firewall F via which M can
receive requests from an external observer via duplicate, non-restricted channels.

The encoding of πT processes is constructed using one encoding function �·� for
processes as such (section 3.1), and one encoding function �·�r of values occurring in

A Fully Abstract Encoding of the π-Calculus with Data Terms 1207

the processes (section 3.2), parameterised by a location r used to represent the value.
M is presented in section 3.3.

The full encoding of a πT process P is thus �P � = (νKM)(�P � |M | F), and our
main theorem

P �may Q iff �P � �may �Q�.

The encoded processes communicate with M using a simple protocol over the free
names of M, which we denote by KM. Below we describe their use and the parameters
passed over them.

input : (i, r) i is the ID of the channel the process wants to input a value over; r is a
fresh name over which the process will receive the value (itself an ID).

output : (i, j, r) i is the ID of the channel the process wants to output a value over; j
is the ID of the value to be sent; r is a fresh name which will be used for synchro-
nisation when the output has been performed by M.

applyE : (̃i, r) (for each deconstructor equation E : d(G1, . . . , Gk) = x, where |̃i| =
k). ĩ are the IDs of the actual components of the value pattern; r is a fresh name
where the ID of the value corresponding to x (if any) can be received by the process.

r : (i) (for each value occurring in the process). Each value used in the process is rep-
resented by a fresh name r, where the process can receive the ID of the value, e.g.
to pass in the above operations.

The encoded values register with M by communicating with it over two additional
channels:

new : (n, r) n is a πT name occurring in the source process; r is a name where the ID
of the name can be received.

newf : (x̃, r) (for each constructor f , where |x̃| = ar[f]). x̃ are the actual components
of the constructor f ; r is a name where the ID of the constructed value f(x̃) can be
received.

3.1 Encoding Processes

The encoding of processes is homomorphic for 0, |, (ν) and ! operators:

�0� = 0 �P |Q� = �P � | �Q� �(ν n) P � = (ν n)�P � �! P � = !�P �

Input and output prefixes (below) encode the subject, request its ID, and contacts M for
doing the actual input or output. In the case of input, the response channel s is used for
performing the input, binding the object x, while in the case of output, M performs the
output and responds with a pure synchronisation. r, s, t, i and j are fresh.

�T (x).P � = (ν r)(�T �r | r(i).input〈i, ν s〉.s(x).�P �)

�T 〈U〉.P � = (ν r, s)(�T �r | �U�s | r(i).s(j).output〈i, j, ν t〉.t().�P �)

The conditional retrieves the IDs of the encodings of the compared values and tests
them for identity. (M ensures that identical values have the same ID.) r, s, i and j are
fresh.

�if T = U then P else Q� = (ν r, s)(�T �r | �U�s | r(i).s(j).if i = j then �P � else �Q�)

1208 M. Baldamus, J. Parrow, and B. Victor

Fig. 1. Defining equation of integrity manager and empty value table

M = (ν lock, unlock, put, getId, getAlias, [∀f ∈ F. putf , getIdf , getArgIdsf], lookUp)(
EmptyValTbl(put, getId, getAlias, [∀f ∈ F.getIdf , getArgIdsf], lookUp)
| NameRegistrar(lock, unlock, put, getId, lookUp,new)
|
∏

f∈F
ConsTermRegistrarf (lock, unlock, putf , getIdf ,newf)

| InputInterpreter(lock, unlock, getAlias, input)
| OutputInterpreter(lock, unlock, getAlias, lookUp, output)
|
∏

E∈E
EquationInterpreterE(lock, unlock, [∀f ∈ F.getArgIdsf], applyE)

| Mutex(lock, unlock))

The let processes use a deconstructor. Each deconstructor d of arity k has a set of
associated deconstructor equations Ed,k. Each such equation E has a handler in M,
contacted over applyE . In the encoding of let below (left), all such handlers are applied
in parallel (line 2), and the first one to complete (line 3) locks the others out (using the
one-time lock u on line 1). r̃, ĩ and u are fresh.

�let x = d(T1, . . . , Tk) in P � =
(ν r1, . . . , rk)(

�T1�r1 | . . . | �Tk�rk

| r1(i1). . . . rk(ik).
(ν u)(

u〈〉 (1)
|
∏

E∈Ed,k
(

applyE〈i1, . . . , ik, ν r〉. (2)
r(x).u().�P �) (3)

�f(T1, . . . , Tar[f])�r

= (ν r1, . . . , rar[f])(
�T1�r1 | . . . | �Tar[f]�rar[f] (4)

| r1(i1). . . . rar[f](iar[f]). (5)
newf 〈i1, . . . , iar[f], r〉) (6)

�n�r = new〈n, r〉
�x�r = r〈x〉

3.2 Encoding Value Terms

Value terms come in three kinds: constructor terms, names, and variables. Their encod-
ing is above (right). Terms using a constructor f encode their component values (line
4), and supply their IDs (line 5) to the newf handler (line 6). Names are encoded by
calling the new handler of M, while occurrences of variables will always be substituted
at runtime by an ID, which will then be returned.

3.3 Integrity Manager M

M is shown in Figure 1. The names input, output, new, newf for all f ∈ F, and
applyE for all E ∈ E are free in M. They may be used by π-calculus observers to
interact with any encoded process, but thanks to the firewall, they can not interfere in
the communication between the encoded processes and M.

M uses an initially empty value table (EmptyValTbl) to maintain the correspon-
dence between values and their value IDs. Each name in the table has an alias, used
for the actual input and output, such that M can monitor all values passed, making sure
they are value IDs. For each constructor in the table, the IDs of its subcomponents are

A Fully Abstract Encoding of the π-Calculus with Data Terms 1209

maintained. The Mutex is used as a mutual exclusion lock for the table. (The reader
may refer to [5] for parts that have to be left out here due to a lack of space.)

Additional components of M insert new values into the tables, if necessary:

NameRegistrar. The first time a name is used in the encoded process, the name
registrar adds its corresponding ID and alias to the name table. Later uses of the
name only result in a lookup; the ID and alias is maintained.

ConsTermRegistrarf (for each f ∈ F). The constructor term registrars perform
the corresponding function for values built by constructors f ; the ID of the value
and its components is maintained, and together the name and constructor term reg-
istrars ensure that identical values have the same ID.

The remaining components of M are (1) the handlers for input and output, Input-
Interpreter and OutputInterpreter, which ensure that all names used as chan-
nels, and values passed over them, have appropriate table entries and (2) the decon-
structor equation handlers EquationInterpreterE , used to match a deconstructor
application against deconstructor equations.

Value Table. IDs of names and constructors are added to the value table by commu-
nication over put and putf , respectively; they can be retrieved over getId and getIdf .
The lookUp is used to verify that an ID is in the table. Subcomponents of constructors
can be retrieved over getArgIds.

The table is built by appending table cells to the initial empty table. Such a cell
is either a NameEntry or a ConsTermEntryf (f ∈ F). All requests to retrieve
information have among their parameters the names r+, r−, which are used for the
response. Each cell checks if it should handle the request, and if not, passes it on to the
next cell. If no cell handles the request, the EmptyValTbl eventually signals on r−.

Name Registrar. Name records maintain the IDs and aliases of names. The latter are the
channels used internally for communication, to make sure all objects passed are value
IDs. The name registrar first checks if the supplied name is a value ID, supplied by a
“malicious” observer: this is an error, and the requester gets no reply. If it is not a value
ID, it checks if the name is in the name table; in that case it returns its ID, otherwise it
adds the name together with its new ID and alias to the name table, adds the ID to the
ID table (since all IDs used must be there), and responds with the ID.

Constructor Term Registrars. The constructor registrars for a constructor f is a varia-
tion of the name registrar: it checks that each component value is in the ID table (and
thus is a valid value in the encoding), and if they are, either returns the ID of the con-
structed term (if it is already there) or puts in an association between the constructed
term and its (new) ID, puts the ID in the ID table, and returns it.

Equation Interpreters. Given an equation E : d(G1, . . . , Gar[E])
Δ= x, an interpreter

for E is given a vector of ar[E] actual value IDs, and tries to match each value ID
against the corresponding value pattern Gi of the equation. If it succeeds, the value ID
corresponding to x of the equation is returned over the result channel r. If it fails, no
result is given.

1210 M. Baldamus, J. Parrow, and B. Victor

Given E : d(G1, . . . , Gar[E])
Δ= x,

EquationInterpreterE(lock, unlock,[∀f ∈ F.getArgIdsf], lookUp,applyE)
Δ
=

! applyE(i1, . . . , iar[E], r).lock().lookUp〈i1, ν s+
1 , ν s−1 〉

(s−1 ().unlock〈〉
+ s+

1 ().
...

lookUp〈iar[E], ν s+
ar[E], ν s−ar[E]〉.

(s−ar[f]().unlock〈〉
+ s+

ar[f]().�G1, i1, . . . , Gar[E], iar[E], ∅�) · · ·)

where the �H1, j1, . . . ,Hk, jk,S�-construct, k ≥ 0, handles the matching of actual
component values against components of the equation. Its definition is recursive.

1. If k = 0, then �S� = unlock〈〉.r〈x〉.
2. If k ≥ 1 and H1 = z for some variable z �∈ S,

�H1, j1, . . . ,Hk, jk,S� = �H2, j2, . . . ,Hk, jk,S ∪ {z}�{z := j1}
3. If k ≥ 1 and H1 = z for some variable z ∈ S,

�H1, j1, . . . ,Hk, jk,S� = if z = j1 then �H2, j2, . . . ,Hk, jk,S�

else unlock〈〉
4. If k ≥ 1 and H1 = f(H ′

1, . . . ,H
′
ar[f]) for some constructor f and arguments H ′

1,
. . . , H ′

ar[f], then:

�H1, j1, . . . ,Hk, jk,S� = getArgIdsf 〈j1, ν t+, ν t−〉.
(t−().unlock〈〉
+ t+(j′1, . . . , j

′
ar[f]).

�H ′
1, j

′
1, . . . ,H

′
ar[f], j

′
ar[f],H2, j2, . . . ,Hk, jk,S�)

where j′1, . . . , j′ar[f] are fresh.

Communication Interpreters. The communication interpreters handle the input and
output requests to M. Both look up the alias of the subject channel in the name table;
the input handler returns this so the encoded input prefix can perform the input and bind
the object variable in the correct context; the output handler looks up the object ID and
performs the output on behalf of the encoded output prefix, and synchronises on the
result channel when done.

InputInterpreter(
lock, unlock, getAlias, input

)
Δ
= ! input(i, r).lock().

getAlias〈i, ν s+, ν s−〉.
(s−().unlock〈〉
+ s+(a).unlock〈〉.a(x).r〈x〉)

OutputInterpreter(
lock, unlock, getAlias, lookUp, output

)
Δ
= ! output〈i, j, r〉.lock().

getAlias〈i, ν s+, ν s−〉.
(s−().unlock〈〉
+ s+(a).lookUp〈j, ν t+, ν t−〉

(t−().unlock〈〉
+ t+().unlock〈〉.a〈j〉.r〈〉))

A Fully Abstract Encoding of the π-Calculus with Data Terms 1211

3.4 Firewall

For every free name n of M, we introduce a distinct fresh name n′ via which external
observers may interact with M and thus indirectly also with any encoded πT-process.
The firewall F receives requests on the channels named with those fresh names and
encodes them to requests on the corresponding internal channels.

4 Full Abstraction

The relevance of may-testing equivalence for analysing security protocols has been
stated elsewhere (see e.g. [3]). For this reason, we keep this section relatively technical
apart from stating an outline of the long and complex proof of the full abstraction result.
Recall the full encoding of a πT process P is �P � = (νKM)(�P � |M | F).

Definition 1. 1. An observer is a process that may use a distinguished name $. An
action on channel $ is a success signal.

2. A test is a parallel composition P |O of a process P and an observer O.
3. A process P may pass a test P |O if some sequence of τ -steps of P |O has a state

in which O signals success. Formally, we denote this property by P may O.
4. Any two processes P and Q are may-testing equivalent if P may O if and only if

Q may O for every observer O – in other words, the tests P and Q may pass are
the same. We denote this property by P �may Q.

Theorem 2. Given any πT-processes P and Q, P �may Q iff �P � �may �Q�.

Proof. (Outline) The proof has two main steps:

1. This step consists of proving that may-tests are preserved, that is to say, proving that
the encodings of two πT processes satisfy the same tests if the tests are encodings of
πT tests. This result is analogous to earlier work [4] but, at the same time, it is by
far more difficult. The reason is that, unlike [4], the global context in the form of the
integrity manager has to be taken into account. The solution consists of working with
a set-theoretical abstraction of the integrity manager that allows us to consider only
factions of it as we exploit the syntax-directed way in which the pure encoding � � is
defined. In this way we are able to re-instantiate the concept of an ancestor relation
introduced in [4] to prove both a forward and a backward operational correspondence
between unencoded and encoded process-observer couplings. The preservation of may
tests is then an easy corollary once we also have an operational correspondence between
abstract and concrete integrity management.

2. This step mainly consists of using the result from Step 1 in obtaining a π-calculus
trace characterisation of πT-may-testing equivalence. This property is reminiscent of
trace characterisations of may-testing equivalence in other settings (see e.g. [10]). All
what is left is then to take the firewall into account to obtain the final full-abstraction
result.

The full proof can be found in [5].

1212 M. Baldamus, J. Parrow, and B. Victor

5 Related Work

Arbitrary equations between data terms are the most crucial feature of the applied π-
calculus that is lacking from πT. Also, we require that deconstructors are only used in
let-expressions. πT is therefore in between the applied π-calculus and the spi calculus
in that it resembles Borgström, Briais and Nestmann’s parameterised spi calculus [7].
These simplifications entail a loss of expressiveness when describing security protocols.
The advantage is that we can still give a straightforward Structural Operational Seman-
tics (SOS) for agents without having to first define a complex evaluation semantics for
value terms. This simplifies our proofs to a great extent.

Full abstraction in the kind of encoding considered here is difficult to achieve. Mil-
ner’s encoding of the λ-calculus [12] is not fully abstract. Sangiorgi [16] demonstrates
full abstraction for an encoding from the higher order (HO) π-calculus. The main dif-
ference is that in HOπ the language does not contain an equality test for HO values. In
πT there is such a test for data terms. This means that in the encoding the interior of a
term must, so to speak, be open for inspection, and this makes our encoding and proof
very different.

The applied π-calculus, the spi calculus [3], Burrows, Abadi and Needham’s logic
of authentication [9], which is nowadays known as BAN logic, and a number of other
modelling and analysis techniques for security protocols rest on the Dolev-Yao assump-
tion [11]. This means that the underlying crypto-system is considered unbreakable, so
that the protocol logic on top of that is the only concern. A central aspect of all of these
lines of work is that an analysis makes it necessary to explicitly represent the knowledge
that an observer of a supposedly secure system can accumulate over time. This situation
is similar in mobile process approaches: Observer knowledge has there been incorpo-
rated in notions of bisimulation and testing within the framework of the spi calculus;
Borgström and Nestmann give a good overview of bisimulation for the spi calculus in
[8]; Boreale, De Nicola and Pugliese have, besides treating bisimulation, shown how to
take account of may-testing for the spi calculus in terms of knowledge-enriched traces
[6]. In contrast to all of them our characterisation seems to be unique in that all ob-
server knowledge is internalised. That is to say, it appears on the calculus level, not on
the meta-level. In this sense it could be considered much closer to traditional process
algebra methodology than the above-mentioned approaches.

6 Conclusion

We have presented a new encoding from the value-enriched mobile process calculus
πT into the polyadic π-calculus. The cornerstone of the translation is an integrity man-
ager that acts as a clearing house for all operations that involve translated values. It
is protected by a firewall so that it cannot be impersonated by a hostile environment.
Similar techniques were used in [2]. This encoding solves the long open full abstraction
problem for πT-like calculi.

Our encoding is not compositional since it has the integrity manager and the firewall
as a global context. While compositionality has been put forward as a criterion for
whether an encoding from one calculus to the other is good [15], it can be argued

A Fully Abstract Encoding of the π-Calculus with Data Terms 1213

(see [14]) that these criteria are too strong for practical purposes, and that by allowing
a top-level context (but keeping the inner encoding compositional), many practically or
theoretically motivated encodings turn out to be “good”.

One way to interpret our result is that the π-calculus can provide as much “security”
in the sense of protected data values as the πT-calculus and its instantiations such as
the spi calculus. The means to achieve this are an integrity manager and a firewall.
Thus we could claim to have proved that integrity management plus firewalling is a
viable security philosophy. Modulo possible termonological differences this belief may
actually be common; our contribution is to prove the correctness of a formal statement
of it.

References

[1] M. Abadi and C. Fournet. Mobile Values, New Names, and Secure Communication. In
Principles of Programming Languages, pages 104–115. ACM, 2001.

[2] M. Abadi, C. Fournet, and G. Georges. Secure Implementation of Channel Abstractions.
In Logic in Computer Science, pages 105–116. IEEE, 1998.

[3] M. Abadi and A. Gordon. A Calculus for Cryptographic Protocols: The Spi Calculus.
Information and Computation, 148(1):1–70, 1999.

[4] M. Baldamus, J. Parrow, and B. Victor. Translating Spi Calculus to π-Calculus Preserving
May-Tests. In Logic in Computer Science, pages 22–31. IEEE, 2004.

[5] M. Baldamus, J. Parrow, and B. Victor. A Fully Abstract Encoding of the π-Calculus with
Data Terms. Technical Report 2005-004, Department of Information Technology, Uppsala
University, February 2005.

[6] M. Boreale, R. De Nicola, and R. Pugliese. Proof Techniques for Cryptographic Processes.
SIAM Journal on Computing, 31(3):947–986, 2002.

[7] J. Borgström, S. Briais, and U. Nestmann. Symbolic Bisimulation in the Spi Calculus. In
Concurrency Theory, LNCS 3170, pages 161–176, 2004. Concur conference proceedings.

[8] J. Borgström and U. Nestmann. On Bisimulations for the Spi Calculus. Technical Report
IC/2003/34, EPFL I&C, 2003.

[9] A. Burrows, M. Abadi, and R. Needham. A logic of authentication. Proceedings of the
Royal Society of London A, 426:233–271, 1989.

[10] R. De Nicola and M. Hennessy. Testing Equivalences for Processes. Theoretical Computer
Science, 34:83–133, 1984.

[11] D. Dolev and A. Yao. On the Security of Public-Key Protocols. IEEE Transactions on
Information Technology, 29(2):198–208, 1983.

[12] R. Milner. Functions as Processes. Mathematical Structures in Computer Science,
2(2):119–141, 1992.

[13] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, Parts I/II. Information
and Computation, 100:1–77, 1992.

[14] U. Nestmann. What Is a ‘Good’ Encoding of Guarded Choice? Information and Compu-
tation, 156:287–319, 2000.

[15] C. Palamidessi. Comparing the Expressive Power of the Synchronous and the Asyn-
chronous π-Calculus. In Principles of Programming Languages. ACM, 1997.

[16] D. Sangiorgi. From π-Calculus to Higher-Order π-Calculus – and Back. In Theory and
Practice of Software Development, LNCS 668, pages 151–161. Springer, 1993.

[17] D. Sangiorgi and D. Walker. The π-Calculus: A Theory of Mobile Processes. Cambridge
University Press, 2003.

Orthogonal Extensions in
Structural Operational Semantics

(Extended Abstract)

MohammadReza Mousavi and Michel A. Reniers

Department of Computer Science,
Eindhoven University of Technology,

NL-5600MB Eindhoven, The Netherlands

Abstract. In this paper, we give novel and more liberal notions of oper-
ational and equational conservativity for language extensions. We moti-
vate these notions by showing their practical application in existing for-
malisms. Based on our notions, we formulate and prove meta-theorems
that establish conservative extensions for languages defined using Struc-
tural Operational Semantics (SOS).

Keywords: Formal Semantics, Structural Operational Semantics (SOS),
Conservative Extension, Operational Conservativity, Equational Conser-
vativity, Orthogonality.

1 Introduction

Programming languages and process calculi have been subject to constant ex-
tensions. It is often crucial to make sure that such extensions do not change the
intuition behind the old subset, or said otherwise, the extensions are conserva-
tive. In the context of languages with Structural Operational Semantics (SOS)
[13], this topic has been studied in depth in [1, 3, 5, 10, 15, 17]. This research has
resulted in meta-theorems proving sufficient conditions for an extension to be
operationally and/or equationally conservative. In the remainder, we mostly re-
fer to [5] which gives the most detailed account of the problem and subsumes
almost all previous results. We do not treat multi-sorted and variable binding
signatures, addressed in [5, 10], in this paper.

So far, operational conservativity has only allowed for extensions that consis-
tently deny the addition of any new behavior to the old syntax. One can imagine
that an extension which grants a new behavior consistently to the old syntax
can also be considered safe or “conservative”. This phenomenon occurs quite
often in practice. For example, designers of many timed extensions of existing
formalisms (e.g., the timed process algebras of [2, 9, 14]) have decided to add
timed behavior homogenously to the terms from the old syntax. Unfortunately,
it turns out that the existing definitions and their corresponding meta-theorems
come short of any formal result about such extensions.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 1214–1225, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Orthogonal Extensions in Structural Operational Semantics 1215

In this paper, we present a more liberal notion of operational conservativity,
called orthogonality, which caters for both possibilities (i.e., denying some types
of behavior from the old syntax while granting some other types). We show that
our notion is useful in the aforementioned cases where the old notions cannot be
used. We formulate orthogonality meta-theorems for languages with Structural
Operational Semantics and prove them correct.

In [15], equational conservativity is considered in the setting where a new
set of axioms is added to an existing set. Then, the extension is called equa-
tionally conservative if it induces exactly the same derivable closed equalities
on the old syntax as the original equational theory. In this paper, we remove
the requirement for including the old set of axioms in the extended equational
theory. This relaxation is motivated by the fact that in many extensions, such
as those of [2, 14], for some axioms, only all closed derivable equalities on the old
syntax are kept and the axioms themselves are removed. Operational conserva-
tivity is usually considered as a means for equational conservativity and we show
that our notion of orthogonality leads to equational conservativity in the same
way as operational conservativity does (no matter which notion of equational
conservativity is chosen, the traditional notion or the relaxed one).

The rest of this paper is structured as follows. Section 2 gives the basic defini-
tions about Structural Operational Semantics, Transition System Specification
(TSS) and equational theory. Section 3 presents the notions of operational and
equational conservativity and gives sufficient conditions for proving operational
conservativity. Orthogonality and related notions are defined in Section 4. Sub-
sequently, Section 5 defines sufficient conditions for orthogonality. In the same
section, we also present theorems establishing the link between orthogonality and
equational conservativity. Finally, Section 6 summarizes the results and presents
future directions. In each section, we provide abstract and concrete examples
from the area of process algebra to motivate the definitions and illustrate the re-
sults. Due to lack of space, we could not present all of the results and the proofs
of the theorems in this extended abstract. Interested readers can find these in
the full version of this paper [11].

2 Preliminaries

2.1 Structural Operational Semantics

Structural Operational Semantics [13] is a logical way of defining operational
semantics which has found lots of applications in different areas of computer
science. A semantic specification in the style of SOS, called a Transition Sys-
tem Specification (TSS), consists of a number of deduction rules which specify
the possibility of a transition (in the conclusion of the rules) in terms of the
(im)possibility of other transition (in the premises). Predicates on states are
other possible ingredients of TSS’s which can both be defined in the conclusion
of the rules and used in the premises. Predicates can always be coded as tran-
sitions with dummy right-hand sides (cf. [16]) and thus, we do not complicate

1216 M.R. Mousavi and M.A. Reniers

the presentation with their formal treatment. Next, we formalize the rest of the
concepts mentioned above.

Definition 1 (Term and Substitution). We assume that the set of process terms,
denoted by T (Σ) with typical members t, t′, ti, . . ., is inductively defined on a
given set of variables V = {x, y, . . .} and a signature Σ. A signature contains a
number of function symbols (composition operators: f, g, . . .) with fixed arities.
Function symbols with arity 0 are called constants. Closed terms, denoted by
C(Σ) with typical members p, q, pi, . . ., are terms that do not contain variables.
The set of variables appearing in term t is denoted by vars(t).

A (closed) substitution σ replaces variables in a term with other (closed)
terms. The set of terms generated by a set of terms S, denoted by G(S), is the
set of all terms t′ = σ(t), for some t ∈ S and some σ such that ∀x∈V σ(x) ∈ S. A
set of terms S covers Σ-terms, if C(Σ) ⊆ G(S).

A transition system specification, defined below, is a logical way of defining
a transition relation on (closed) terms.

Definition 2 (Transition System Specification (TSS)). A transition system spec-
ification is a tuple (Σ,L,D) where Σ is a signature, L is a set of labels (with
typical members l, l′, l0, . . .) and D is a set of deduction rules. For all l ∈ L, and
t, t′ ∈ T (Σ) we define that (t, l, t′) ∈ → and (t, l) /∈ → are formulae (positive
and negative, respectively). To avoid any confusion, note that . . . ∈ → and
. . . /∈ → are used as a syntactic notation and are not intended to denote the
set-theoretic membership at this point. The notion of closed is lifted from terms
to formulae in the natural way. A deduction rule dr ∈ D, is defined as a tuple
(H, c) where H is a set of formulae and c is a positive formula. The formula c is
called the conclusion and the formulae from H are called premises. A deduction
rule with label l in its conclusion is called an l-rule.

Formulae (t, l, t′) ∈ → and (t, l) /∈ → are denoted by the more intuitive
notations t

l→ t′ and t
l� , respectively. We refer to t as the source of both formulae

and to t′ as the target of the first one. A deduction rule (H, c) is denoted by H
c

in the remainder.

Different interpretations of the transition relation (the set of closed positive
formulae) induced by a TSS are given in the literature. In [6], an extensive
overview of alternative interpretations is provided. We formulate and prove our
main results in such a general way that they remain independent from the chosen
interpretation and can be adopted for several existing ones. In cases where we
need an explicit transition relation, we assume that this transition relation is
uniquely defined by the corresponding TSS using one of the interpretations given
in [6]. In such cases, we use the notation tss � φ to denote that a closed positive
formula φ is in the transition relation induced by tss.

One criterium that guarantees the existence and uniqueness of a transition
relation associated with a TSS is the following concept of (strict) stratification,
which we use for other purposes in this paper, as well.

Orthogonal Extensions in Structural Operational Semantics 1217

Definition 3 (Stratification [8]). A TSS tss is stratified by a function S from
closed positive formulae to an ordinal if and only if for all deduction rules in tss
of the following form:

{ti
li→ t′i|i ∈ I} {tj

lj� |j ∈ J}

t
l→ t′

and for all closed substitutions σ, ∀i∈IS(σ(ti
li→ t′i)) ≤ S(σ(t l→ t′)) and ∀j∈J

S(σ(tj
lj→ t′′)) < S(σ(t l→ t)), for all terms t′′. If the measure decreases also from

the conclusion to the positive premises, then tss is strictly stratified by S.

The following example illustrates the concepts defined in this section.

Example 1 (Minimal Process Algebra (MPA)). Consider the following deduc-
tion rules defined on a signature with a constant δ, a family of unary operators
a. (for all a ∈ A, where A is a given set of atomic actions) and a binary operator
+ . The labels of transitions are a ∈ A.

(a)
a.x

a→x
(a ∈ A) (c0)

x
a→x′

x + y
a→x′

(c1)
y

a→ y′

x + y
a→ y′

This TSS (called tssm in the remainder) is supposed to define a transition rela-
tion for the Minimal Process Algebra (MPA) of [2], simplified here by removing
the concept of termination, which we use as our running example in the re-
mainder. Deduction rules of MPA are (strictly) stratified using a measure of size
on the terms in the source of formulae and it defines a unique transition rela-
tion by all possible interpretations. The following transitions are among those:
tssm � (a.δ) + δ

a→ δ and tssm � a.(δ + a.δ) a→ δ + a.δ.

2.2 Equational Theory

Equational theories play a central role in process algebras. They capture the
basic intuition behind the algebra, and the models of the algebra are expected
to respect this intuition (e.g., the models induced by operational semantics). To
establish a reasonable link between the operational model and the equational
theory of the algebra, a notion of behavioral equality is needed. This notion
captures when two syntactic terms show the “same behavior” and thus they
should belong to the same equivalence class. There is a spectrum of notions of
behavioral equality in the literature [7]. We take the notion of strong bisimilarity
[12], denoted by ↔ , as the notion of behavioral equivalence, but as we show in
the extended version of this paper [11], our results are valid for a wide range of
notions in this spectrum.

Getting back to the equational side of the algebra, the notion of behavioral
equivalence should ideally coincide with the closed derivations of the equational
theory. One side of this coincidence is captured by the soundness theorem which
states that all closed derivations of the equational theory are indeed valid with

1218 M.R. Mousavi and M.A. Reniers

respect to the particular notion of behavioral equality. The other side of the
coincidence, called completeness, phrases that all induced behavioral equalities
are derivable from the equational theory, as well. These concepts are formalized
in the remainder.

Definition 4 (Equational Theory). An equational theory or axiomatization
(Σ, E) is a set of equalities E on a signature Σ of the form t = t′, where
t, t′ ∈ T (Σ). A closed instance p = p′, for some p, p′ ∈ C(Σ), is derivable from
E, denoted by E � p = p′ if and only if it is in the smallest congruence relation
induced by the equalities of E.

An equational theory (Σ, E) is sound with respect to a TSS tss (also on
signature Σ) if and only if for all p, p′ ∈ C(Σ), if E � p = p′, then it holds that
tss � p ↔ p′. It is complete if the implication holds in the other direction.

An equational theory E on Σ eliminates function symbols from Σ′ ⊆ Σ if and
only if for all p ∈ C(Σ) there exists a term p′ ∈ C(Σ \Σ′) such that E � p = p′.

The following example illustrates the idea of equational theory.

Example 2 (MPA: Equational Theory). Consider the Minimal Process Algebra
of Example 1. The following is an axiomatization of MPA [2].

x + y = y + x x + (y + z) = (x + y) + z x + x = x x + δ = x

It is well-known that this axiomatization is sound and complete with respect to
tssm given in Example 1. The following are examples of derivable equalities from
the above axiomatization: (a.δ) + δ = a.δ and (a.δ) + a.δ = a.δ.

3 Operational and Equational Conservativity

In this section, we define different concepts regarding language extensions. To
extend a language defined by a TSS, one may have to combine an existing sig-
nature with a new one. However, not all signatures can be combined into one
as the arities of the function symbols may clash. To prevent this, we define two
signatures to be consistent when they agree on the arity of the shared function
symbols. Henceforth, we always assume that extended and extending TSS’s are
consistent. The following definition formalizes the concept of operational exten-
sion.

Definition 5 (Extension of a TSS). Consider TSS’s tss0 = (Σ0,L0,D0) and
tss1 = (Σ1,L1,D1). The extension of tss0 with tss1, denoted by tss0 ∪ tss1, is
defined as (Σ0 ∪Σ1,L0 ∪ L1, D0 ∪D1).

Next, we define when an extension of a TSS is called operationally conserva-
tive.

Definition 6 (Operational Conservativity [15]). Consider TSS’s tss0 = (Σ0,L0,
D0) and tss1 = (Σ1,L1,D1). If ∀p∈C(Σ0) ∀p′∈C(Σ0∪Σ1) ∀l∈L0∪L1 tss0 ∪ tss1 �

Orthogonal Extensions in Structural Operational Semantics 1219

p
l→ p′ ⇔ tss0 � p

l→ p′, then tss0∪tss1 is an operationally conservative extension
of tss0.

Note that in the above definition, the labels and the targets of the tran-
sitions are taken from the extended TSS and thus, any new transition of the
old syntax, even with a new label or a new target is prohibited. The following
example illustrates the idea of extending TSS’s and the concept of operational
conservativity.

Example 3 (Timed MPA: Operational Semantics). Consider the following de-
duction rules (divided into three parts) which are defined on a signature with
two constants δ and δ, a unary function symbol σ. , two families of unary func-
tion symbols a. and a. (for all a ∈ A) and a binary function symbol + . The
set of labels of the TSS is A ∪ {1} (for 1 /∈ A).

(ua)
a.x

a→x
(td)

σ.x
1→x

(1)

(tc0)
x

1→x′ y
1→ y′

x + y
1→x′ + y′

(tc1)
x

1→x′ y
1�

x + y
1→x′

(tc2)
y

1→ y′ x
1�

x + y
1→ y′

(2)

(ta)
a.x

1→ a.x
(d)

δ
1→ δ

(3)

The above TSS, which we call tsst defines the aspect of timing in terms of new
time transitions 1→ and it is added in [2] to tssm in Example 1 to define a
relative-discrete-time extension of MPA. The intuition behind the new under-
lined function symbols (a. and σ.) is that they are not delayable in time and
should take their (respectively action and time) transitions immediately. Addi-
tion of the first and/or the second parts of the above TSS (each or both) to
tssm results in an operationally conservative extension of the latter as the newly
added transitions will be restricted to the new syntax. (Note that in the first and
second parts, there is no rule about timed transition of constants in the old syn-
tax.) This claim can be checked formally as an instance of a meta-theorem in the
rest of this section. However, the addition of part (3) violates the conservativity
of the extension as it adds time transitions (1→) to the behavior of terms from
the old syntax. For example, in combination with the first two parts, it allows for
transitions such as tssm ∪ tsst � a.δ

1→ a.δ and tssm ∪ tsst � (a.δ)+ δ
1→ (a.δ)+ δ,

all of which are prohibited by the original TSS and thus are considered harmful
from the operational conservativity point of view.

Next, we formulate sufficient conditions to prove operational conservativity.
But before that, we need a few auxiliary definitions.

Definition 7 (Source Dependency). All variables appearing in the source of the
conclusion of a deduction rule are called source dependent. A variable of a de-
duction rule is source dependent if it appears in a target of a premise of which all
the variables of the source are source dependent. A premise is source dependent

1220 M.R. Mousavi and M.A. Reniers

when all the variables appearing in it are source dependent. A deduction rule is
source dependent when all its variables are. A TSS is source dependent when all
its rules are.

Definition 8 (Reduced Rules). For a deduction rule d = (H, c), the reduced
rule with respect to a signature Σ is defined by ρ(d,Σ) .= (H ′, c) where H ′ is
the set of all premises from H which have a Σ-term as a source.

Theorem 1. (Operational Conservativity Meta-Theorem [5]) Given two TSS’s
tss0 = (Σ0,L0,D0) and tss1 = (Σ1,L1,D1), tss0 ∪ tss1 is an operationally
conservative extension of tss0 if:

1. tss0 is source dependent;
2. for all d ∈ D1 at least one of the following holds:

(a) the source of the conclusion has a function symbol in Σ0 \Σ1, or
(b) ρ(d,Σ0) has a source-dependent positive premise t

l→ t′ such that l /∈ Σ0

or t′ /∈ T (Σ0).

The following definition formalizes the concept of equational conservativity.

Definition 9 (Equational Conservativity). An equational theory E1 on signa-
ture Σ1 is an equationally conservative extension of E0 on Σ0 if and only if
Σ0 ⊆ Σ1 and for all p, p′ ∈ C(Σ0), E0 � p = p′ ⇔ E1 � p = p′.

It is worth mentioning that the above definition is more liberal than the
similar notion in [15] in that there, it is required that the same axioms are
included in the extended equational theory (i.e., E0 ⊆ E1). In practice, some
process algebras do not keep the same axioms when extending the formalism
while they make sure that the closed instantiations of the old axioms with old
terms indeed remain derivable (see for example, [2, 14] and Example 4 in the
remainder). Hence, we believe that the restriction imposed by [15] unnecessarily
limits the applicability of the theory. If, for any reason, one chooses the more
restricted notion of [15], the theorems concerning equational conservativity in
this paper remain valid.

Example 4 (Timed MPA: Equational Theory). Consider the TSS resulting
from extending tssm of Example 1 with (all three parts) of the timed extension
defined in Example 3. The following are a set of sound and complete axioms
(w.r.t. strong bisimilarity) for this TSS:

x + y = y + x x + (y + z) = (x + y) + z x + x = x δ = σ.δ

x + δ = x (σ.x) + σ.y = σ.(x + y) a.x = (a.x) + σ.a.x (a.x) + δ = a.x

The above axiomatization underscores the fact we mentioned before. Namely,
the axioms of the old system do not hold in the new system (e.g., (a.x)+δ �= a.x
as an instance of x + δ = x) but all closed instantiations of the old axioms by
the old syntax are derivable from the new set of axioms.

Orthogonal Extensions in Structural Operational Semantics 1221

It can be checked that the above axiomatization of timed MPA is indeed an
equationally conservative extension of the axiomatization of MPA in the sense
of Definition 9. Thus, if one considers operational conservativity as a means to
equational conservativity, this example already suggests the need for an extension
of Definition 6. In other words, we believe that the transitions added by the
extension are quite innocent and harmless to the intuition behind the original
semantics, for they are added uniformly to the old syntax without changing
the old behavior or violating previously valid equalities. In the next section, we
formalize our idea of orthogonal extensions which caters for extensions of the
above type.

4 Orthogonality

In this section, we define the notion of orthogonality and an instance of this
notion, called granting extensions, which can be checked syntactically.

Definition 10 (Orthogonal Extension). Consider TSS’s tss0 = (Σ0,L0,D0)
and tss1 = (Σ1,L1,D1). The TSS tss0 ∪ tss1 is an orthogonal extension of tss0

when first, ∀p,p′∈C(Σ0) ∀l∈L0 tss0 ∪ tss1 � p
l→ p′ ⇔ tss0 � p

l→ p′ and second,
and ∀p,p′∈C(Σ0) tss0 ∪ tss1 � p ↔ p′ ⇔ tss0 � p ↔ p′.

Note that it immediately follows from the above definition that orthogonality
is a preorder, i.e., a reflexive and transitive relation, on TSS’s. Besides strong
bisimilarity, our results in the this paper are valid for orthogonality with respect
to most other notions of behavioral equivalence in the literature (cf. [11]). The
notion of operational conservativity up to φ-equivalence of [15, 3] can be seen as
a variant of orthogonality which only has the second condition. This and other
variants of the notion of orthogonality can also be useful and our results can be
used to establish meta-theorems for these notions. To our knowledge, beyond
operational conservativity results (e.g., in [15]), no systematic study of these
notions (including meta-theorems guaranteeing them) has been carried out.

Corollary 1. An operationally conservative extension is an orthogonal exten-
sion.

Corollary 1 addresses operational conservativity as an extreme case of orthog-
onality which denies all new transitions from the old syntax; the other extreme
is an extension which grants all new behavior to the old syntax. However, for
such an extension to be orthogonal, these transitions should be made to equiv-
alent terms from the old syntax. In particular, if we allow for self transitions,
we are able to prove orthogonality with respect to many notions of behavioral
equivalence. The following definitions and the subsequent theorem substantiate
these concepts.

Definition 11 (Granting Extension). Consider TSS’s tss0 = (Σ0,L0,D0) and
tss1 = (Σ1,L1,D1) with disjoint labels. We call tss0 ∪ tss1 a granting extension

1222 M.R. Mousavi and M.A. Reniers

of tss0 when first, ∀p,p′∈C(Σ0) ∀l∈L0 tss0 � p
l→ p′ ⇔ tss0 ∪ tss1 � p

l→ p′ and

second, ∀p∈C(Σ0) ∀p′∈C(Σ0∪Σ1) ∀l∈L1\L0 tss0 ∪ tss1 � p
l→ p′ ⇔ p = p′.

The above definition states that granting extensions keep the old transitions
on the old terms intact and only add self transitions with all of the new labels
to old terms. This definition does not make any statement about the transitions
on the new terms, i.e., terms from T (Σ0 ∪Σ1) \ T (Σ0).

We are doubtful whether any meaningful relaxation of Definition 11 would
be at all possible that allows for anything coarser than syntactic equality on the
old terms involved in (the left- or the right-hand side of) the new transitions
and still can be captured by simple syntactic checks. This suggests that to for-
mulate syntactic criteria for proving orthogonality, we have to resort to one of
the two extremes (operational conservativity or granting extensions). We admit
that combining these two extremes is interesting. This is partly possible by ex-
ploiting the the transitivity of orthogonal extension relation. This way, one can
interleave the application of granting and operational conservativity theorems
(cf. Example 5). We propose an alternative method of combining operationally
conservative and granting extensions in [11]. Next, we show that granting exten-
sions are indeed orthogonal.

Theorem 2. For TSS’s tss0 and tss1, if tss1 is a granting extension of tss0

then tss1 is an orthogonal extension of tss0.

5 Meta-theorems

In this section, we seek sufficient conditions for establishing orthogonality and
equational conservativity.

We start with defining sufficient conditions to prove an extension to be grant-
ing. Hence, we need to define when a deduction rule proves (only) self transitions.
We use unification as a means to this end.

Definition 12 (Unification). A term t is unifiable with t′ using σ, denoted by
t ≈σ t′ if and only if σ(t) = σ(t′). The set of unifiers of t and t′ is defined by
U(t, t′) = {σ | t ≈σ t′}. The set of unifiers of a set of pairs is defined as the
intersection of the sets of unifiers of each pair. The set of unifiers of an empty
set is defined to include all substitutions.

The set of unifiers of a positive formula t
l→ t′ is defined as the set of unifiers

of t and t′. Unification also naturally extends to a set of positive formulae, again,
using intersection.

Next, we characterize the set of rules that induce self transitions. This is
done by only allowing for unifiable (positive) formulae in the premises and the
conclusion of a rule and further, by forcing the unification of the conclusion to
follow from that of the premises.

Definition 13 (Source Preserving Rules). A deduction rule Hc without negative
premises is source preserving if U(H) �= ∅ and U(H) ⊆ U(c). A TSS is source

Orthogonal Extensions in Structural Operational Semantics 1223

preserving if all its deduction rules are. For a source preserving TSS, the set of
unified conclusions contains conclusions of the deduction rules with their unifiers
applied to them.

Source-preserving rules are safe for the purpose of proving self transitions.
However, there might be other rules in the extending TSS that can be harm-
ful in that they may prove other types of transition for old terms. This may
be prevented by forcing the other (non-source-preserving) rules to have nega-
tive or non-unifiable positive premises addressing the old syntax. The following
definition gives sufficient conditions for an extension to be granting.

Definition 14 (Granting Criteria). Consider a TSS tss = (Σ,L,D) stratified
by S. It grants L0 transitions on Σ0-terms, if tss = tss0 ∪ tss1 (with tssx =
(Σx,Lx,Dx) for x ∈ {0, 1}) such that:

1. tss0 is strictly stratified by S, it is source preserving and for all l ∈ L0, the
set containing sources of unified conclusions of l-rules covers Σ0-terms, and

2. for all deduction rules d ∈ D1 at least one of the following holds:
(a) d has a function symbol from Σ1 \Σ0 in the source of its conclusion, or
(b) ρ(d,Σ0) has a negative source-dependent premise with a label in L1, or
(c) ρ(d,Σ0) has a positive source-dependent premise t

l→ t′ with l ∈ L1 and
U(t, t′) = ∅.

The first condition in the above definition is dedicated to proving self tran-
sitions from the syntax of Σ0, and the the second one takes care of preventing
Σ0-terms from performing other types of transitions while allowing other terms
to do so.

Theorem 3. (Granting Meta-theorem) Consider source-dependent TSS’s tss0 =
(Σ0,L0,D0) and tss1 = (Σ1,L1,D1). If tss1 grants L1 transitions on Σ0-terms
and L0 ∩ L1 = ∅ then tss0 ∪ tss1 is a granting extension of tss0.

The following example applies our meta-theorem to obtain orthogonality of
relative-discrete-time extension of MPA.

Example 5 (Timed MPA: Orthogonality). Consider the tssm of MPA in Ex-
ample 1 and tsst of Example 3. TSS tsst can be decomposed into the following
three parts: tss0

.= ({a. , δ}, A, {(ua), (td)}), tss1
.= ({δ, a. , + }, {1}, {(tc0),

(ta), (d)}) and tss2
.= ({ + }, {1}, {(tc1), (tc2)}).

It follows from Definition 13 that tss1 is source preserving since:

1. the conclusions of (ta) and (d) are unifiable using any substitution, hence
using the unifiers of the empty set of premises,

2. and the conclusion of (tc0) is unifiable using the unifiers of the premises,
i.e., those that evaluate x and x′ to the same term and y and y′ to the same
term.

It then follows from Definition 14 that tss1∪tss2 grants time transitions over
MPA terms since

1224 M.R. Mousavi and M.A. Reniers

1. tss1 is strictly stratified using a simple measure of size on terms, it is source
preserving as shown before, and by applying unifiers to the source of con-
clusion of (tc0), (ta) and (d), i.e., the set {x + y, a.x, δ}, we can cover the
syntax of MPA,

2. in tss2, deduction rules (tc1) and (tc2) have source-dependent negative
premises with label 1 (note that (tc1) and (tc2) are the same as their reduced
versions).

From Theorem 3, it follows that the extension of tssm with tss1 ∪ tss2 is a
granting extension, hence an orthogonal extension. Furthermore, the extension of
tssm ∪ tss1∪ tss2 with tss0 is conservative, hence orthogonal, following Theorem
1. Since orthogonality is a preorder, we conclude that tssm∪tsst is an orthogonal
extension of tssm .

The following theorem establishes the link between orthogonality and equa-
tional conservativity. It is very similar to the theorem stated in [16, 17] about the
relation between operational and equational conservativity. The theorem states
that a sound axiomatization of an operationally conservative extension cannot
induce new equalities on the old syntax.

Theorem 4. (Equational Conservativity Theorem) Consider TSS’s tss0 = (Σ0,
L0,D0) and tss1 = (Σ1, L1,D1) where tss1 is an orthogonal extension of tss0.
Also let E0 be a sound and complete axiomatization of tss0 and E1 be a sound
axiomatization of tss1. If ∀p,p′∈C(Σ0) E0 � p = p′ ⇒ E1 � p = p′ then E1 is an
equational conservative extension of E0.

Finally, the last theorem establishes sufficient conditions for a sound equation-
ally conservative extension to be a complete equational theory for the extended
language.

Theorem 5. (Elimination Theorem) Consider TSS’s tss0 = (Σ0,L0,D0) and
tss1 = (Σ1,L1,D1) where tss1 is an orthogonal extension of tss0. Also let E0 and
E1 be sound axiomatizations of tss0 and tss1, respectively. If E0 is also complete
for tss0, E1 is an equational conservative extension of E0 and E1 eliminates
terms from Σ1 \Σ0, then E1 is complete for tss1.

A typical line of reasoning starts with taking an orthogonal extension and a
sound axiomatization thereof, and proving equational conservativity using Theo-
rem 4. Then, by proving an elimination result for the newly introduced operators,
one can get completeness of the axiomatization following Theorem 5.

6 Conclusions

In this paper, we defined a more relaxed notion of operational conservativity,
called orthogonality which allows for non-destructive extension of the behavior
of the old language. We gave a meta-theorem providing sufficient conditions
for this notion. Also, we presented a slightly more general notion of equational
conservativity and established the link between these two notions.

Orthogonal Extensions in Structural Operational Semantics 1225

Extending the theory presented in this paper with the concept of variable
binding is an straightforward extension along the lines of [5]. The second en-
hancement of our work concerns operational extensions that require a translation
of labels (using a kind of abstraction function). Finally, investigating the pos-
sibility of other realizations of orthogonality is an interesting subject for future
research.

References

1. L. Aceto, W. J. Fokkink, and C. Verhoef. Structural operational semantics. In
Handbook of Process Algebra, Chapter 3, pages 197–292. Elsevier, 2001.

2. J. C. M. Baeten. Embedding untimed into timed timed process algebra: the case
for explicit termination. MSCS, 13(4):589–618, 2003.

3. J. C. M. Baeten and C. Verhoef. Concrete Process Algebra. In Handbook of Logic
in Computer Science, volume 4, pages 149–268. Oxford University Press, 1995.

4. R. Bol and J. F. Groote. The meaning of negative premises in transition system
specifications. JACM, 43(5):863–914, 1996.

5. W. J. Fokkink and C. Verhoef. A conservative look at operational semantics with
variable binding. I&C, 146(1):24–54, 1998.

6. R. J. van Glabbeek. The meaning of negative premises in transition system speci-
fications II. JLAP, 60-61:229–258, 2004.

7. R.J. van Glabbeek. The linear time - branching time spectrum I. In Handbook
of Process Algebra, Chapter 1, pages 3–100. Elsevier, 2001.

8. J. F. Groote. Transition system specifications with negative premises. TCS,
118(2):263–299, 1993.

9. G. Leduc and L. Leonard. A timed LOTOS supporting a dense time domain
and including new timed operators. In Proceedings of FORTE’92, pages 87–102.
North-Holland, 1993.

10. C.A. Middelburg. An alternative formulation of operational conservativity with
binding terms. JLAP, 55(1/2):1–19, 2003.

11. M.R. Mousavi and M. A. Reniers. Orthogonal Extensions in Structural Operational
Semantics. Technical Report, Dept. of Computer Science, Eindhoven Univ. of
Tech., 2005.

12. D. M. Park. Concurrency and automata on infinite sequences. In Proceedings of
the 5th GI Conference, volume 104 of LNCS, pages 167–183. Springer, 1981.

13. G. D. Plotkin. A structural approach to operational semantics. JLAP, 60:17–139,
2004.

14. J. J. Vereijken. Discrete Time Process Algebra. PhD thesis, Department of Com-
puter Science, Eindhoven University of Technology, 1997.

15. C. Verhoef. A general conservative extension theorem in process algebra. In Pro-
ceedings of PROCOMET’94, pages 274–302. Elsevier, 1994.

16. C. Verhoef. A congruence theorem for structured operational semantics with pred-
icates and negative premises. Nordic Journal of Computing, 2(2):274–302, 1995.

17. C. Verhoef, L. Aceto, and W. Fokkink. Conservative extension in structural oper-
ational semantics. BEATCS, 69:110–132, 1999.

Basic Observables for a Calculus for Global Computing

Rocco De Nicola1, Daniele Gorla2, and Rosario Pugliese1

1 Dipartimento di Sistemi e Informatica, Università di Firenze
2 Dipartimento di Informatica, Università di Roma “La Sapienza”

Abstract. We introduce a foundational language for modelling applications over
global computers whose interconnection structure can be explicitly manipulated.
Together with process distribution, mobility, remote operations and asynchronous
communication through distributed data spaces, the language provides constructs
for explicitly modelling inter-node connections and for dynamically establishing
and removing them. For the proposed language, we define natural notions of ex-
tensional observations and study their closure under operational reductions and/or
language contexts to obtain barbed congruence and may testing equivalence. For
such equivalences, we provide alternative characterizations in terms of a labelled
bisimulation and a trace equivalence that can be used for actual proofs.

1 Introduction

In the last decade, we have witnessed the birth of many calculi and kernel languages
intended to support programming of global systems and to provide formal tools for rea-
soning over them. These formalisms in general provide constructs and mechanisms, at
different abstraction levels, for modelling the execution contexts of the network where
applications roam and run, for coordinating and monitoring the use of resources, for
expressing process communication and mobility, and for specifying and enforcing se-
curity policies. However, much research effort has been devoted to studying the impact
of different communication and mobility paradigms, but little attention has been devoted
to the modelling of the actual network underlying global computers as such. Usually,
the model of the network implicitly originates from other linguistic choices concern-
ing, e.g., the mobility paradigm. All foundational languages proposed in the literature
either model the network as an evolving graph of fully connected nodes [17, 9, 26, 1]
or model it as an evolving forest of trees [7, 14, 24, 8]. In our view, both approaches do
not convincingly model global computers (the Internet is neither a clique nor a forest
of trees) and lack of flexibility (‘sharing of resources’ is difficult to control and requires
complex modelling).

Here, we want to develop the semantic theory of a new model that takes its ori-
gin from two formalisms with opposite objectives, namely the programming language
X-Klaim [2] and the π-calculus [23]. The former one is a full fledged programming
language based on Klaim [9], while the latter one is the generally recognized mini-
mal common denominator of calculi for mobility. The resulting model has been called
tKlaim (topological Klaim); it retains the main features of Klaim (distribution, remote
operations, process mobility and asynchronous communication through distributed data

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 1226–1238, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Basic Observables for a Calculus for Global Computing 1227

spaces), but extends it with new constructs to flexibly model the interconnection struc-
ture underlying a net. tKlaim permits explicit creation of inter-node connections and
their destruction. Connections are essential to perform remote operations: these are pos-
sible only if the node where they are initiated and the target one are directly connected.

For the proposed formalism, we introduce two abstract semantics, barbed congru-
ence and may testing, that are obtained as the closure under operational reductions
and/or language contexts of the extensional equivalences induced by what we consider
basic observables for global computers. For deciding the observables to use, we have
been struggling with the following ones:

i. a specific site is up and running (i.e., it provides a datum of any kind)
ii. a specific information is available in (at least) a site,

iii. a specific information is present at a specific site.

Other calculi for global computers make use of (barbed) congruences induced by similar
observables: for example, Ambient uses barbs that are somehow related to i. ; the barbs
in Dπ-calculus instead, are strongly related to iii. . Within our framework, it can be
proved that, by closing observations under any tKlaim context, the three observables
all yield the same congruence. This is already an indication of the robustness of the
resulting semantic theories. Moreover, the observables are powerful enough to yield
interesting theories also when considering lower-level features, such as failures [11].

Of course, the step that comes next after defining equivalence as context closure is
determining some alternative characterizations that would permit to better appreciate
their discriminating power and to devise proof techniques that avoid universal quantifi-
cation over contexts (that would render equivalence checking very hard).

In this paper, we concentrate on the barbed and may equivalences induced by the
first basic observable (a site is up and running) and establish their correspondence with
a bisimulation-based and a trace-based equivalence. To this aim, we introduce a labelled
transition system for tKlaim (with labels indicating the performed action) and, on top
of it, we define alternative characterizations of barbed congruence and may testing in
terms of (non-standard) labelled bisimilarity and trace equivalence, resp. . The actual
development of the alternative characterizations, although performed along the lines
of similar results for CCS [20, 4] and π-calculus [23] had to face problems raised by
process distribution and mobility, by the explicit use of connections and by asynchrony.

2 The Process Language tKlaim

The syntax of tKlaim is reported in Table 1. We assume the existence of two countable
and disjoint sets: names, ranged over by l, l′, . . . , u, . . . , x, y, . . ., and process variables,
ranged over by X,Y, Names provide the abstract counterpart of the set of communi-
cable objects and can be used as localities or variables; notationally, we prefer letters
l, l′, . . . when we want to stress the use of a name as a locality, and x, y, . . . when we
want to stress the use of a name as a variable. We will use u for variables and localities.

Nets, ranged over by N,M, . . ., are finite collections of nodes and inter-node con-
nections. A node is a pair l :: C, where locality l is the address of the node and C is the
(parallel) component located at l. Components, ranged over by C,D, . . ., can be either

1228 R. De Nicola, D. Gorla, and R. Pugliese

Table 1. tKlaim Syntax

Nets: N ::= 0
∣∣∣ l :: C

∣∣∣ {l1 ↔ l2}
∣∣∣ (νl)N

∣∣∣ N1‖N2

Components: Processes:
C ::= 〈l〉 ∣∣∣ P

∣∣∣ C1|C2 P ::= nil
∣∣∣ a.P

∣∣∣ P1|P2

∣∣∣ X
∣∣∣ rec X.P

Actions:
a ::= in(!x)@u

∣∣∣ in(u2)@u1

∣∣∣ out(u2)@u1

∣∣∣ eval(P)@u
∣∣∣ new(l)

∣∣∣ conn(u)
∣∣∣ disc(u)

processes or data, denoted by 〈l〉. Connections are pairs of node addresses {l1 ↔ l2}
stating that the nodes at address l1 and l2 are directly and bidirectionally connected.
In (νl)N, name l is private to N; the intended effect is that, if one considers the term
M ‖ (νl)N, then locality l of N cannot be referred from within M.

Processes, ranged over by P,Q,R, . . ., are the tKlaim active computational units and
may be executed concurrently either at the same locality or at different localities. They
are built from the inert process nil and from the basic actions by using prefixing, parallel
composition and recursion. Actions permit removing/adding data from/to node reposi-
tories (actions in and out), activating new threads of execution (action eval), creating
new nodes (action new), and establishing and removing connections (actions conn and
disc). Notice that in(l)@l′ differs from in(!x)@l′ in that the former evolves only if da-
tum 〈l〉 is present at l′, while the latter accepts any datum. Indeed, in(l)@l′ is a form of
name matching operator reminiscent of Linda’s [16] pattern-matching.

Names occurring in tKlaim processes and nets can be bound. More precisely, prefix
in(!x)@u.P binds x in P; prefix new(l).P binds l in P, and, similarly, net restriction
(νl)N binds l in N; finally, rec X.P binds X in P. A name that is not bound is called free.
The sets fn(·) and bn(·) of free and bound names of a term, respectively, are defined
accordingly. The set n(·) of names of a term is the union of its free and bound names.
As usual, we say that two terms are alpha-equivalent if one can be obtained from the
other by renaming bound names. We shall say that a name u is fresh for if u � n(). In
the sequel, we shall work with terms whose bound names are all distinct and different
from the free ones.
tKlaim operational semantics relies on a structural congruence and a reduction rela-

tion. The structural congruence, ≡, is formally defined in [10] and identifies nets which
intuitively represent the same net. It is inspired to π-calculus’s structural congruence
(see, e.g., [23]): it states that ‘‖’ and ‘|’ are monoidal operators with 0 and nil as iden-
tity elements, it equates alpha-equivalent nets, it regulates commutativity of restrictions,
and it allows to freely fold/unfold recursive processes. Moreover, the following laws are
crucial in our setting:

(Clone) (Self) (BiDir)
l :: C1|C2 ≡ l :: C1 ‖ l :: C2 l :: nil ≡ {l ↔ l} {l1 ↔ l2} ≡ {l2 ↔ l1}
(RNode) (Ext)
(νl)N ≡ (νl)(N ‖ l :: nil) N ‖ (νl)M ≡ (νl)(N ‖ M) if l � fn(N)

(Clone) turns the parallel composition of co-located components into a parallel between
nodes; (Self) states that nodes are self-connected; (BiDir) states that connections are

Basic Observables for a Calculus for Global Computing 1229

Table 2. tKlaim Operational Semantics

(R-Out)
l1 :: out(l)@l2.P ‖ {l1 ↔ l2} �−→ l1 :: P ‖ {l1 ↔ l2} ‖ l2 :: 〈l〉
(R-Eval)
l1 :: eval(P2)@l2.P1 ‖ {l1 ↔ l2} �−→ l1 :: P1 ‖ {l1 ↔ l2} ‖ l2 :: P2

(R-In)
l1 :: in(!x)@l2.P ‖ {l1 ↔ l2} ‖ l2 :: 〈l〉 �−→ l1 :: P[l/x] ‖ {l1 ↔ l2}
(R-Match)
l1 :: in(l)@l2.P ‖ {l1 ↔ l2} ‖ l2 :: 〈l〉 �−→ l1 :: P ‖ {l1 ↔ l2}
(R-New)
l :: new(l′).P �−→ (νl′)(l :: P ‖ l′ :: nil)

(R-Conn)
l1 :: conn(l2).P ‖ l2 :: nil �−→ l1 :: P ‖ {l1 ↔ l2}
(R-Disc)
l1 :: disc(l2).P ‖ {l1 ↔ l2} �−→ l1 :: P ‖ l2 :: nil

(R-Par)

N1 �−→ N′
1

N1 ‖ N2 �−→ N′
1 ‖ N2

(R-Res)

N �−→ N′

(νl)N �−→ (νl)N′

(R-Struct)

N ≡ M �−→ M′ ≡ N′

N �−→ N′

bidirectional; (Ext) is the standard π-calculus rule for scope extension. Finally, (RNode)
states that any restricted name can be used as the address of a node; indeed, we con-
sider restricted names as private network addresses, whose corresponding nodes can be
activated and deactivated on demand. In the sequel, we shall assume that each restricted
name does correspond to an actual node. This assumption is justified by law (RNode).

The reduction relation is given in Table 2. In (R-Out) and (R-Eval), the existence
of a connection between the nodes source and target of the action is necessary to place
the spawned component. Notice that existence of the connection can only be checked at
run-time: an approach like [17] does not fit well in a global computing setting because it
relies on a typing mechanism that would require to statically know the whole net. (R-In)
and (R-Match) additionally require the existence of a matching datum in the target
node. (R-Match) states that action in(l)@l2 consumes exactly the datum 〈l〉 at l2, while
(R-In) states that action in(! x)@l2 can consume any 〈l〉 at l2; l will then replace the
free occurrences of x in the continuation of the process performing the action. (R-New)
states that execution of action new(l′) adds a restriction over l′ to the net, while creating
a node with address l′. Finally, (R-Conn) and (R-Disc) deal with activation/deactivation
of connections. In the first case, we need to ensure that the connected nodes do exist; in
the second case, we need to check existence of the connection to be removed.
tKlaim adopts a Linda-like [16] communication mechanism: communication is

asynchronous and data are anonymous. Indeed, no synchronization takes place between
(sending and receiving) processes, because their interactions are mediated by nodes,
that act as data repositories. For the sake of simplicity, we only consider monadic data,
but the semantic theories we develop could be smoothly extended to deal with tuples of
data and with a full-blown Linda-like pattern matching mechanism.

1230 R. De Nicola, D. Gorla, and R. Pugliese

3 Observables, Closures and Equivalences

In this section we present both a linear time and a branching time equivalence that yield
sensible semantic theories for tKlaim. The approach we follow relies on the definition
of an observation (also called barb) that intuitively formalises the possible interactions
of a process. We use observables to define equivalence relations that identify those nets
that cannot be taken apart by any basic observation along reductions in any execution
context. As usual, |=⇒ denotes the reflexive and transitive closure of �−→ and l̃ denotes
a possibly empty set of names.

Definition 1 (Barbs and Contexts). Predicate N ↓ l holds true if and only if N ≡
(ν̃l)(N′ ‖ l :: 〈l′〉) for some l̃, N′ and l′ such that l � l̃. Predicate N ⇓ l holds true if and
only if N |=⇒ N′ for some N′ such that N′ ↓ l. A context C[·] is a tKlaim net with an
occurrence of a hole [·] to be filled in with any net. Formally,

C[·] ::= [·] ∣∣∣ N ‖ C[·] ∣∣∣ (νl)C[·]
We have chosen the basic observables by taking inspiration from those used for the

asynchronous π-calculus [23]. One may wonder if our choice is “correct” and argue that
there are other alternative notions of basic observables that seem quite natural, as we
have discussed in the Introduction. In the full paper [10], we prove that the congruences
induced by these alternative observables do coincide. This means that our results are
quite independent from the observable chosen and vindicates our choice. Now, we say
that a binary relation ! between nets is

- barb preserving, if N ! M and N ⇓ l imply M ⇓ l;

- reduction closed, if N ! M and N �−→ N′ imply M |=⇒ M′ and N′! M′, for some M′;
- context closed, if N ! M implies C[N] ! C[M], for every context C[·].
Our touchstone equivalences should at the very least relate nets with the same observ-
able behaviour; thus, they must be barb preserving. However, an equivalence defined
only in terms of this property would be too weak: indeed, the set of barbs of a net
may change during computations or when interacting with an external environment.
Moreover, for the sake of compositionality, our touchstone equivalences should also be
congruences. These requirements lead us to the following definitions.

Definition 2 (May testing). " is the largest symmetric, barb preserving and context
closed relation between nets.

Definition 3 (Barbed congruence). � is the largest symmetric, barb preserving, re-
duction and context closed relation between nets.

We want to remark that the above definition of barbed congruence is the standard one,
see [18, 23]. May testing is, instead, usually defined in terms of observers, experiments
and success of an experiment [13]. In [10], we prove that, if we let "′ denote the equiv-
alence on tKlaim nets defined a lá [13], the two definitions do coincide. Moreover, the
inclusions between our touchstone equivalences reflect the inclusions that hold in the
π-calculus, since also in our setting may testing, differently from barbed congruence,
ignores the branching structure of a process. A pair of nets proving that � ⊂ " can

Basic Observables for a Calculus for Global Computing 1231

be obtained from the CCS terms a1.(a2 + a3) and a1.a2 + a1.a3, that are may test-
ing equivalent but not barbed congruent, by implementing the non-deterministic choice
(‘+’) through parallel composition.

The problem with the definitions of barbed congruence and may testing is that con-
text closure makes it hard to prove equivalences due to the universal quantification over
contexts. In the following section, we shall provide two alternative characterisations of
� and " , as a bisimulation-based and as a trace-based equivalence, respectively.

4 Alternative Characterisations

4.1 A Labelled Transition System

In order to provide more tractable characterisations of our touchstone equivalences, we
introduce a labelled transition system (LTS) to make apparent the action a net is willing

to perform in order to evolve. The labelled transition relation,
α−→ , is defined as the

least relation over nets induced by the inference rules in Table 3. Labels take the form

α ::= τ
∣∣∣ l1 � l2

∣∣∣ (ν̃l) 〈l〉@ l1 : l2
∣∣∣ l1 : � l2

∣∣∣ l1 : (ν̃l)l � l2
∣∣∣ l1 : l2

∣∣∣ l1 : ¬ l2

We let bn(α) be l̃ if α = (ν̃l) 〈l〉 @ l1 : l2 or α = l1 : (ν̃l)l � l2 , and be ∅ otherwise;
fn(α) and n(α) are defined accordingly.

Let us now explain the intuition behind the labels of the LTS and some key rules.

Label α in N
α−→ N′ can be

τ : this means that N may perform a reduction step to become N′ (see Proposition 1).
l1 � l2 : this means that in N there is a direct connection between nodes l1 and l2 (see

(LTS-Link)).
(ν̃l) 〈l〉 @ l1 : l2 : this means that in N there is a datum 〈l〉 located at l1 and a connec-

tion {l1 ↔ l2}; the datum is available for processes located at l2 (see (LTS-Datum),
(LTS-Offer) and (LTS-Link)). Moreover, according to whether l̃ = {l} or l̃ = ∅, we
also know if N restricts l or not (see (LTS-Open)).

l1 : � l2 : this means that in N there is a process located at l1 willing to send a compo-
nent at l2 (see (LTS-Out) and (LTS-Eval)1). For the sending to take place, a direct
connection between such nodes is needed (see (LTS-Send)).

l1 : (ν̃l)l � l2 : this means that in N there is a process located at l1 willing to retrieve
a (possibly fresh) datum 〈l〉 at l2 (see (LTS-In), (LTS-Match) and (LTS-BIn)). For
the actual retrieval, a direct connection between such nodes and a proper datum at
l2 are needed (see (LTS-Comm)).

l1 : l2 : this means that in N there is a process located at l1 willing to activate a con-
nection with l2 (see (LTS-Conn)). For the actual activation, the net must contain a
node with address l2, as pointed out by label l2 � l2 (see (LTS-Est) and (Self)).

1 It should not be surprising that actions out and eval yield the same label. Of course, the two
actions should be taken apart for security reasons because accepting processes for execution
is more dangerous than accepting data. However, in our setting, an external observer has not
enough power to notice any difference: in both cases, it can just observe that a packet is sent.

1232 R. De Nicola, D. Gorla, and R. Pugliese

l1 : ¬ l2 : this means that in N there is a process located at l1 willing to deactivate
a connection with l2 (see (LTS-Disc)). For the actual deactivation, the net must
contain the connection {l1 ↔ l2} (see (LTS-Rem)).

The last four kinds of labels describe ‘intentions’ of a process running in the net. Thus,
(LTS-Out) should be read as: “process out(l)@l2.P running at l1 is willing to send a
component at l2; whenever the execution context provides the connection needed, l1
will host process P for execution and will run in a net where the connection {l1 ↔

Table 3. A Labelled Transition System

(LTS-Out)
l1 :: out(l)@l2.P

l1: � l2−−−−−→ l1 :: P ‖ {l1 ↔ l2} ‖ l2 :: 〈l〉
(LTS-Eval)
l1 :: eval(P2)@l2.P1

l1: � l2−−−−−→ l1 :: P1 ‖ {l1 ↔ l2} ‖ l2 :: P2

(LTS-In)
l1 :: in(! x)@l2.P

l1: l � l2−−−−−−→ l1 :: P[l/x] ‖ {l1 ↔ l2}
(LTS-Match)
l1 :: in(l)@l2.P

l1: l � l2−−−−−−→ l1 :: P ‖ {l1 ↔ l2}
(LTS-New)
l :: new(l′).P

τ−→ (νl′)(l :: P ‖ l′ :: nil)

(LTS-Conn)
l1 :: conn(l2).P

l1 : l2−−−−→ l1 :: P ‖ {l1 ↔ l2}
(LTS-Disc)
l1 :: disc(l2).P

l1 : ¬ l2−−−−−−→ l1 :: P ‖ l2 :: nil

(LTS-Link) {l1 ↔ l2} l1� l2−−−−→ 0

(LTS-Datum) l1 :: 〈l〉 〈l〉 @ l1 : l1−−−−−−−−−→ 0

(LTS-Offer)

N1
〈l〉 @ l2 : l2−−−−−−−−−→ N′

1 N2
l1� l2−−−−→ N′

2

N1 ‖ N2
〈l〉 @ l2 : l1−−−−−−−−−→ N′

1 ‖ N′
2

(LTS-BIn)

N
l1: l � l2−−−−−−→ N′ l � fn(N)

N
l1:(νl) l � l2−−−−−−−−→ N′ ‖ l :: nil

(LTS-Par)

N1
α−→ N2 bn(α) ∩ fn(N) = ∅

N1 ‖ N
α−→ N2 ‖ N

(LTS-Send)

N1
l1: � l2−−−−−→ N′

1 N2
l1� l2−−−−→ N′

2

N1 ‖ N2
τ−→ N′

1 ‖ N′
2

(LTS-Comm)

N1
l1: l � l2−−−−−−→ N′

1 N2
〈l〉 @ l2 : l1−−−−−−−−−→ N′

2

N1 ‖ N2
τ−→ N′

1 ‖ N′
2

(LTS-Est)

N1
l1 : l2−−−−→ N′

1 N2
l2� l2−−−−→ N′

2

N1 ‖ N2
τ−→ N′

1 ‖ N′
2

(LTS-Rem)

N1
l1 : ¬ l2−−−−−−→ N′

1 N2
l1� l2−−−−→ N′

2

N1 ‖ N2
τ−→ N′

1 ‖ N′
2

(LTS-Res)

N
α−→ N′ l � n(α)

(νl)N
α−→ (νl)N′

(LTS-Open)

N
〈l〉 @ l2 : l1−−−−−−−−−→ N′ l � {l1, l2}

(νl)N
(νl) 〈l〉 @ l2 : l1−−−−−−−−−−−→ N′

(LTS-Struct)

N ≡ N1 N1
α−→ N2 N2 ≡ N′

N
α−→ N′

Basic Observables for a Calculus for Global Computing 1233

l2} does exist and the datum 〈l〉 is placed at l2”. (LTS-Eval), (LTS-In), (LTS-Match),
(LTS-Conn) and (LTS-Disc) should be interpreted similarly.

(LTS-Open) signals extrusion of bound names; as in some presentation of the π-
calculus, this rule is used to investigate the capability of processes to export bound
names, rather than to actually extend the scope of bound names.

Notice that the LTS of Table 3 may appear unnecessarily complicated as a tool to
define the operational semantics of tKlaim: consider, e.g., the right hand side of the
rules for out/in/eval, or rule (LTS-BIn) (used to signal that a received name is fresh for
the receiving net). Nevertheless, it is adequate as a tool to establish alternative, more
tractable, characterisations of the touchstone equivalences we are interested in. Indeed,
the complications in the operational rules of Table 3 resemble those arisen in [25] when
defining an ‘equivalent’ LTS depending on the reduction semantics of a calculus. How-
ever, in [25] only simple calculi are considered and it would be interesting to investigate
if the approach can be satisfactory extended to tKlaim. Finally, the LTS is ‘correct’ w.r.t.
the actual operational semantics of tKlaim, �−→, as stated by the following Proposition.

Proposition 1. N �−→ M if and only if N
τ−→ M.

4.2 Bisimulation Equivalence

We now characterize barbed congruence by using the labels of the LTS instead of the
universal quantification over contexts; in this way, we obtain an alternative characteri-
zation of � in terms of a labelled bisimilarity. As a matter of notation, we let

χ ::= τ
∣∣∣ l1 � l2

∣∣∣ (ν̃l) 〈l〉 @ l1 : l2

Moreover, =⇒ stands for
τ−→∗,

α
=⇒ stands for =⇒ α−→ =⇒ , and

α̂
=⇒ stands for =⇒ , if

α = τ, and for
α
=⇒ , otherwise.

Definition 4 (Bisimilarity). A symmetric relation ! between tKlaim nets is a (weak)
bisimulation if, for each N ! M, it holds that:

1. N
χ−→ N′ implies that M

χ̂
=⇒ M′ and N′ ! M′, for some M′;

2. N
l1: � l2−−−−−→ N′ implies that M ‖ {l1 ↔ l2} =⇒ M′ and N′ ! M′, for some M′;

3. N
l1: l � l2−−−−−→ N′ implies that M ‖ {l1 ↔ l2} ‖ l2 :: 〈l〉 =⇒ M′ and N′ ! M′, for some M′;

4. N
l1 : l2−−−−→ N′ implies that M ‖ l2 :: nil =⇒ M′ and N′ ! M′, for some M′;

5. N
l1 : ¬ l2−−−−−−→ N′ implies that M ‖ {l1 ↔ l2} =⇒ M′ and N′ ! M′, for some M′.

Bisimilarity, ≈, is the largest bisimulation.

Bisimilarity requires that labels of the form (ν̃l) 〈l〉 @ l1 : l2 or l1 � l2 must be
replied to with the same label (possibly with some additional τ-step). This is necessary
since such labels describe the structure of the net (its data and connections) and, to be
equivalent, two nets must have at least the same structure. Labels different from χ only
express intentions and are handled differently. For example, the intention of sending a

component, say N
l1: � l2−−−−−→ N′, can be simulated by a net M (in a context where l1 and l2

are connected) through the execution of some τ-steps that lead to some M′ equivalent to
N′. Indeed, since we want our bisimulation to be a congruence, a context that provides

1234 R. De Nicola, D. Gorla, and R. Pugliese

a connection between the source and the target nodes of the sending action must not tell
apart N and M. Similar considerations also hold for the last three items of Definition 4.

Notice that labels of the form l1 : (νl)l � l2 are not necessary for the definition of
bisimulation. Indeed, they exactly work like labels l1 : l � l2 with the extra information
that l is fresh for the receiving net; for the bisimulation game this information is useless,
while it will be of fundamental importance when considering trace-based equivalence.

Remarkably, though in tKlaim processes can occur as arguments in process actions
(eval), the LTS and the bisimulation we developed do not use labels containing pro-
cesses. Thus, the bisimulation relies only on a standard quantification over names (in
the input case) and we strongly conjecture that it is decidable, under proper assump-
tions: techniques similar to those in [21] could be used here. Moreover, the presence
of rule (LTS-Struct) in the LTS does not compromise the tractability of ≈; obviously,
(LTS-Struct) can be dropped, if one is prepared to have more rules in the LTS.

We can now present our first main result, whose proof is in the full paper [10].

Theorem 1 (Alternative Characterization of Barbed Congruence). ≈ = � .

4.3 Trace Equivalence

In this section, we develop an alternative characterization of may testing. For some
well-known process calculi, may testing coincides with trace equivalence [13, 3, 5]; in
this section, we show how a similar result is obtained also in the setting of tKlaim.

The idea behind trace equivalence is that N and M are related if and only if the
sets of their traces coincide. Put in another form, if N exhibits a sequence of visible
actions σ, then M must exhibit σ as well, and vice versa. In an asynchronous setting
[5], this requirement must be properly weakened, since the discriminating power of
asynchronous contexts is weaker: in the asynchronous π-calculus, for example, contexts
cannot observe input actions.

To carry out proofs, we found it convenient to introduce a complementation function
· over visible labels (i.e. labels different from τ), ranged over by φ, such that

l1 � l2
�

= l1 : � l2 l1 : � l2
�

= l1 � l2 l1 : (ν̃l) l � l2
�

= (ν̃l) 〈l〉 @ l2 : l1

l1 : l2
�

= l2 � l2 l1 : ¬ l2
�

= l1 � l2 (ν̃l) 〈l〉 @ l2 : l1
�

= l1 : (ν̃l) l � l2

Because of the interplay between free and bound names (bound names are always asso-
ciated to nodes, see rule (RNode)), we need to distinguish reception of a free name from
reception of a bound name (that must be fresh for the receiving net). Similarly to the
π-calculus [3, 5], this can be done by exploiting bound input labels, l1 : (νl)l � l2 , gen-
erated by rule (LTS-BIn) (that also adds a node with address l because of law (RNode)).
Finally, we let σ to range over (possibly empty) sequences of visible actions, i.e.

σ ::= ε
∣∣∣ φ · σ

where ε denotes the empty sequence of actions and ‘·’ represents concatenation. As

usual, N
ε
=⇒ denotes N =⇒ and N

φ·σ
===⇒ denotes N

φ
=⇒ σ
=⇒ .

The naive formulation of trace equivalence such as “N
σ
=⇒ if and only if M

σ
=⇒ ”

is too strong in an asynchronous setting: for example, it would distinguish l ::

Basic Observables for a Calculus for Global Computing 1235

Table 4. The Ordering Relation on Traces

(L1) σ · (ν̃l)σ′ $ σ · (ν̃l)(β · σ′) if (ν̃l)σ′ � UNDEF

(L2) σ · (ν̃l)(φ · γ · σ′) $ σ · (ν̃l)(γ · φ · σ′) if (ν̃l)(φ · γ · σ′) � UNDEF

(L3) σ · (ν̃l)σ′ $ σ · (ν̃l)(γ · γ · σ′) if (ν̃l)σ′ � UNDEF

(L4) σ · l : � l · φ · σ′ $ σ · φ · σ′ if l ∈ Υ(φ)

(L5) σ · l : � l · φ · σ′ $ σ · φ · l : � l · σ′ if l � bn(φ)

(L6) σ · φ′ · σ′ $ σ · φ · σ′ if (φ, φ′) ∈ Ψ
(L7) σ · l1 : (ν̃l) l � l1 · σ′ $ σ · l2 : (ν̃l) l � l1 · σ′

(L8) σ · l2 : (ν̃l) l � l1 · σ′ $ σ · l1 : (ν̃l) l � l1 · l1 : � l2 · σ′

In law (L1), β stands for either l1 : � l2 or l1 : l � l2 or l1 : l2 or l1 : ¬ l2 .
In laws (L2) and (L3), γ stands for either l1 : � l2 or l1 : l � l2 .
In law (L4), function Υ(·) is defined as follows: Υ(l1 : (ν̃l)l � l2) = Υ(l1 : l2) = {l1, l2} and

Υ(l1 � l2) = {l1} and Υ(l1 : � l2) = Υ((ν̃l) 〈l〉 @ l1 : l2) = {l2}.
In law (L6), relation Ψ is { (l1 : ¬ l2 , l1 : � l2) , (l1 : � l2 , l1 : ¬ l2) , (l2 : � l2 , l1 : l2) }.

in(!x)@l1.in(!y)@l2 and l :: in(!y)@l2.in(!x)@l1, which are indeed may testing equiv-
alent. Like in [5], a weaker trace-based equivalence can be defined as follows.

Definition 5 (Trace Equivalence). % is the largest symmetric relation between tKlaim

nets such that, whenever N % M, it holds that N
σ
=⇒ implies M

σ′
==⇒ , for some σ′ $ σ.

The crux is to identify a proper ordering on the traces such that may testing is exactly
captured by %. The ordering $ is the least reflexive and transitive relation induced by
the laws in Table 4. The first three laws have been inspired by [5], while the last five
ones are strictly related to inter-node connections. The intuition behind σ′ $ σ is that,
if a context can interact with a net that exhibits σ, then the context can interact with any
net that exhibits σ′ as well. The ordering $ relies on the function (ν̃l)σ, that is used in
laws (L1), (L2) and (L3) when moving/removing a label of the form l1 : (νl) l � l2 . In
this case, the information that l is a fresh received value must be kept in the remaining
trace. The formal definition is

(ν̃l)σ
�

= σ if l̃ ∩ fn(σ) = ∅

(νl)(φ · σ)
�

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
l1 : (νl) l � l2 · σ
φ · (νl)σ
UNDEF

if φ = l1 : l � l2 and l � {l1, l2}
if l � n(φ) and (νl)σ � UNDEF
otherwise

Further explanations can be found in the full paper [10].
The rules in Table 4 can be explained as follows. (L1) states that labels representing

intentions cannot be directly observed; at most, their effect can be somehow observed.
(L2) states that the execution of an input/output/migration can be delayed along com-

1236 R. De Nicola, D. Gorla, and R. Pugliese

putations without being noticed by any observer. (L3) states that two adjacent ‘com-
plementary’ actions can be deleted. (L4) states that an action involving l as source or
target node always enables sending actions from l to l; because, in all these cases, a
node at address l exists. Function Υ(·) is needed to restrict applicability of (L4) only to
the cases needed to prove Theorem 2. (L5) states that, if a sending action from l to l
is enabled after an action φ, then the action can take place before φ, since the node at
l was already present; clearly, this is possible only if l is not bound by φ. (L6) states
that some intentions are interchangeable; indeed, since the complementation function
is not injective, the same observer may enable different kinds of process actions. (L7)
states that, if a process located at l2 can retrieve a datum from l1, then processes located
at l1 can retrieve such datum as well. Finally, (L8) states that, if a process located at l1
can retrieve a datum 〈l〉 locally and then migrate at l2, then processes located at l2 can
retrieve 〈l〉 remotely.

Remarkably, may testing in the (synchronous/asynchronous) π-calculus [3, 5] can-
not distinguish bound names from free ones; thus, a bound name can be replaced with
any name in a trace. This is not the case here: indeed, bound names can always be con-
sidered as addresses of nodes, while free names cannot. This makes a difference for an
external observer; thus, a law like

σ · 〈l′〉 @ l1 : l2 · (σ′[l′/l]) $ σ · (νl) 〈l〉 @ l1 : l2 · σ′
(that, mutatis mutandis, holds for the π-calculus [3, 5]) does not hold for tKlaim.

We can now state our second major result; detailed proofs are in [10].

Theorem 2 (Alternative Characterization of May Testing). % = " .

5 Conclusions and Related Work

We have introduced tKlaim, a foundational language that provides constructs to explic-
itly model and dynamically establish/remove inter-node connections, and some associ-
ated semantic theories. In a companion paper [11], we have applied the theory to a few
examples that illustrate usability.

We believe that, although tKlaim can be somehow encoded in the π-calculus, the in-
troduction of the former is justified by at least two reasons. First, tKlaim clearly enlight-
ens the key features we want to model such as distribution and mobility of processes,
and inter-node connections; an encoding of such features in the π-calculus would hide
them within complex process structures. Second, a convincing encoding should enjoy
‘reasonable’ properties, like those pointed out in [22]. We believe this is not the case.
For example, in [12] we developed an intuitive encoding of a tKlaim’s sub-calculus into
the asynchronous π-calculus that does not preserve convergence. We are now working
on proving that this is not incidental and is due to the check of existence of the target of
a communication that is performed in tKlaim and not in the π-calculus. We conjecture
that a divergence free encoding does not exist.
Related Work. To our knowledge, no alternative characterization of may testing in terms
of a trace-based equivalence has ever been given for a distributed language with process
mobility. Bisimulation-based equivalences for calculi relying on a flat net topology are
developed in [1, 17]; such equivalences are mainly derived from bisimulation equiva-
lences for the π-calculus and its variants. Bisimulation-based equivalences for calculi

Basic Observables for a Calculus for Global Computing 1237

relying on a hierarchical net topology are developed in [19, 6, 8]. Although these bisim-
ulations are inspired by Sangiorgi’s context bisimulation [23] and, thus, exploit univer-
sal quantification over processes, they yield proof techniques that are usable in practice.

Finally, the most closely related work is [15]; there, a distributed version of the π-
calculus is presented where nodes are connected through links that can fail during the
computation. A bisimulation-based proof technique is used to establish properties of
systems. However, differently from our approach, the authors only consider links that
can fail and do not model dynamic connections establishment.

Acknowledgements. We thank the anonymous referees for their useful comments.

References

1. R. M. Amadio. On modelling mobility. Theor. Comp. Sci., 240(1):147–176, 2000.
2. L. Bettini, R. De Nicola, G. Ferrari, and R. Pugliese. Interactive Mobile Agents in X-Klaim.

In Proc. of the 7th WETICE, pages 110–115. IEEE, 1998.
3. M. Boreale and R. De Nicola. Testing equivalences for mobile processes. Information and

Computation, 120:279–303, 1995.
4. M. Boreale, R. De Nicola, and R. Pugliese. Basic observables for processes. Information

and Computation, 149(1):77–98, 1999.
5. M. Boreale, R. De Nicola, and R. Pugliese. Trace and testing equivalence on asynchronous

processes. Information and Computation, 172:139–164, 2002.
6. M. Bugliesi, S. Crafa, M. Merro, and V. Sassone. Communication and Mobility Control in

Boxed Ambients. To appear in Information and Computation.
7. L. Cardelli and A. D. Gordon. Mobile ambients. TCS, 240(1):177–213, 2000.
8. G. Castagna and F. Zappa Nardelli. The Seal Calculus Revisited: contextual equivalence and

bisimilarity. In Proc. of FSTTCS’02, volume 2556 of LNCS, pages 85–96.
9. R. De Nicola, G. Ferrari, and R. Pugliese. Klaim: a Kernel Language for Agents Interaction

and Mobility. IEEE Transactions on Software Engineering, 24(5):315–330, 1998.
10. R. De Nicola, D. Gorla, and R. Pugliese. Basic observables for a calculus for global com-

puting. Tech. Rep. 07/2004, Dip. Informatica, Università di Roma “La Sapienza”, 2004.
11. R. De Nicola, D. Gorla, and R. Pugliese. Global Computing in a Dynamic Network of Tuple

Spaces. In Proc. of COORDINATION’05, volume 3454 of LNCS, pages 157–172.
12. R. De Nicola, D. Gorla, and R. Pugliese. On the Expressive Power of Klaim-based Calculi.

Proc. of EXPRESS’04, ENTCS 128(2):117–130.
13. R. De Nicola and M. Hennessy. Testing equivalence for processes. TCS, 34:83–133, 1984.
14. C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and D. Rémy. A calculus of mobile agents.

In Proc. of CONCUR ’96, volume 1119 of LNCS, pages 406–421. Springer, 1996.
15. A. Francalanza and M. Hennessy. A Theory of System Behaviour in the Presence of Node

and Link Failures. Tech. Rep. cs01:2005, Univ. of Sussex.
16. D. Gelernter. Generative communication in linda. TOPLAS, 7(1):80–112. ACM, 1985.
17. M. Hennessy, M. Merro, and J. Rathke. Towards a behavioural theory of access and mobility

control in distributed systems. In FoSSaCS ’03, volume 2620 of LNCS, pages 282–299.
18. K. Honda and N. Yoshida. On reduction-based process semantics. TCS, 152(2), 1995.
19. M. Merro and F. Zappa Nardelli. Bisimulation proof methods for mobile ambients. In Proc.

of ICALP’03, volume 2719 of LNCS, pages 584–598. Springer, 2003.
20. R. Milner and D. Sangiorgi. Barbed bisimulation. In Proc. of ICALP ’92, volume 623 of

LNCS, pages 685–695. Springer, 1992.

1238 R. De Nicola, D. Gorla, and R. Pugliese

21. U. Montanari and M. Pistore. Finite state verification for the asynchronous pi-calculus. In
Proc. of TACAS’99, volume 1579 of LNCS, pages 255–269. Springer, 1999.

22. C. Palamidessi. Comparing the Expressive Power of the Synchronous and the Asynchronous
π-calculi. Mathematical Structures in Computer Science, 13(5):685–719, 2003.

23. D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes. Cambridge
University Press, 2001.

24. A. Schmitt and J.-B. Stefani. The m-calculus: a higher-order distributed process calculus.
SIGPLAN Not., 38(1):50–61, 2003.

25. P. Sewell. From Rewrite Rules to Bisimulation Congruences. In Proc. of CONCUR’98,
volume 1466 of LNCS, pages 269–284. Springer, 1998.

26. P. Sewell, P. Wojciechowski, and B. Pierce. Location independence for mobile agents. In
Proc. of ICCL, volume 1686 of LNCS. Springer, 1999.

Compositional Verification of Asynchronous
Processes via Constraint Solving

Giorgio Delzanno1 and Maurizio Gabbrielli2

1 Dip. di Informatica e Scienze dell’Informazione, Università di Genova,
via Dodecaneso 35, 16146 Genova, Italy

giorgio@disi.unige.it
2 Dip. di Scienze dell’Informazione, Università di Bologna,

Mura Anteo Zamboni, 7 40127 Bologna, Italy
gabbri@cs.unibo.it

Abstract. We investigate the foundations of a constraint-based compo-
sitional verification method for infinite-state systems. We first consider
an asynchronous process calculus which is an abstract formalization of
several existing languages based on the blackboard model. For this calcu-
lus we define a constraint-based symbolic representation of finite compu-
tations of a compositional model based on traces. The constraint system
we use combines formulas of integer arithmetics with equalities over un-
interpreted functions in which satisfiability is decidable. The translation
is inductively defined via a CLP program. Execution traces of a pro-
cess can be compositionally obtained from the solutions of the answer
constraints of the CLP encoding. This way, the task of compositional
verification can be reduced to constraint computing and solving.

1 Introduction

Compositional verification of infinite state systems introduces several problems
along two main axis. On one hand, in order to apply verification methods devel-
oped for finite state systems we need suitable abstractions to finitely represent
infinite sets of states. On the other hand, compositionality is usually quite diffi-
cult to achieve already in the case of finite state systems, as it requires semantics
structures which are often rather complicated. Nevertheless, when considering
some important classes of infinite state systems, for example those arising in
distributed computing, compositional verification is almost mandatory as the
environment in which software agents operate cannot be fixed in advance.

In this paper we deal with this problem by proposing a new technique which
combines classical compositional semantics based on sequences (or traces) with
constraint programming. More specifically, we consider an asynchronous process
calculus which is an abstract formalization of several existing languages based on
the blackboard model like [4, 11, 16], where processes communicates and synchro-
nize by posting and retrieving messages from a global, common store. For this
process calculus we define a symbolical representation, in terms of constraints, of

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 1239–1250, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1240 G. Delzanno and M. Gabbrielli

a compositional model based on traces, thus reducing the task of (compositional)
verification to constraint solving.

Technically, our approach is based on the following steps. First of all, we define
a compositional model based on traces of basic actions on the store which de-
scribes correctly the sequences of stores obtained in a finite computation. This fol-
lows a standard approach to trace based models of concurrent languages (e.g. see
[14, 8]), even though our technical treatment is different. We represent the traces
arising in the compositional model by using the constraint system CE+Zwhich
combines linear integer arithmetics with uninterpreted function symbols. Arith-
metic constraints allow us to describe the addition and deletion of a message to
the store at a given time instant. Uninterpreted symbols are used to relate store
configurations in different time instants. Indeed, they can be used to represent
variables which depend on other variables as in the formula sa(i+1) = sa(i)+1
which can be used to represent the addition of a message a to the store at time i.
Following from the results on the combination of decision procedures of [15], we
know that the quantifier-free satisfiability problem for constraints in CE+Z is
decidable. In order to deal with finite computations of recursive process defi-
nitions, the above mentioned constraint system is embedded into a Constraint
Logic Programming (CLP) language [13]. Then we compositionally translate a
process of our algebra into a CLP program P and a goal G so as to extract the
traces describing the semantics of the process from the constraints computed by
the evaluation of G in P . In this setting a recursive process definition naturally
translates into a CLP recursive clause.

The resulting encoding has several benefits. Firstly, we introduce an im-
plicit, compact representation of finite computations, which are described by
CE+Z formulas and which can be obtained explicitly by taking the solutions of
these constraints. Moreover, we can use logical operators to represents the oper-
ators on sequences which are the semantic counterpart of the syntactic operators
of the language, thus obtaining a compositional construction. Notably, the in-
terleaving of sequences which models the syntactic parallel composition, can be
simply defined in terms of conjunction of constraints, provided that we select
the solutions of the resulting constraint with some care. Secondly, we obtain a
natural compositional model by translating processes into CLP programs, where
we exploit the and-compositionality of the computed answer constraint of CLP
programs. Thirdly, we can combine CLP systems with solvers like CVCL [5]
and MathSAT [7] to define compositional verification procedures based on our
symbolic semantics. Indeed, since CE+Zconstraints can also be used to express
initial and final conditions on the store, the verification of a property P for a
process P can be reduced to the existence of a satisfiable answer constraint for
the CLP translation of P in conjunction with the constraint defining P.

Related Work The use of sequences (or traces) in the semantics of concurrent lan-
guages is not new: compositional models based on traces have been defined for a
variety of concurrent languages, ranging from dataflow languages [14] and imper-
ative ones [8] to (timed) concurrent constraint programming [3] and Linda-like
languages (expressed in terms of process algebras) [2]. However, all the existing

Compositional Verification of Asynchronous Processes via Constraint Solving 1241

approaches consider sequences explicitly and do not take into account the issue
of defining a suitable language for expressing and manipulating them implicitly.
As a consequence, the resulting models cannot be used directly to define auto-
matic verification tools. On the other hand, our approach introduces a constraint
system for expressing and manipulating sequences, where the semantic parallel
composition operator can be simply seen in terms of conjunction of constraints.
This allows us to express symbolically the semantic of a process and to reason
on it without the need to generate explicitly all the sequences, thus reducing
the task of property verification to constraint solving. Finally, while in other
CLP-based verification methods like [9] arithmetic constraints are used to repre-
sent infinite sets of states, in our approach we combine them with uninterpreted
function symbols to represent set of traces.
Plan of the paper In Section 2 we present a process algebra for asynchronous
processes. In Section 3 we present the logic language CLP(CE+Z). In Section
3 we present the encoding from processes to CLP(CE+Z) programs. Finally, in
Section 5 we discuss related and future work.

2 An Asynchronous Process Algebra

The calculus that we consider in this paper is an abstract formalization of several
existing concurrent languages based on the blackboard model, e.g., [4, 11, 16].
The calculus is equipped with two basic operations out(a) and in(a) for adding
and removing a message from a common global store. Then we have the usual
parallel composition and (internal) choice operators. We also have a construct
which allows to test for presence of a message, allowing different continuations
depending on the result of the test. This construct, which cannot be simulated by
the basic operations, is needed in order to obtain Turing completeness. Infinite
behaviors are expressed by allowing the recursive definition of process constants.

Definition 1 (The language). Given a finite set of messages Msg, with typ-
ical elements a, b . . ., and a set of process constants K with typical elements
p, q, . . ., the syntax of process terms is given by the following grammar:

P,Q ::= α.P | β?P : Q | P ||Q | P +Q | p | halt
α ::= out(a) | in(a)
β ::= inp(a) | rdp(a)

where we assume that for each process constant p there exists a single definition
p =def P where P is a process term and we assume guarded recursion. A closed
process is a pair 〈P,D〉 where P is a process term and D is a set of definitions
for all the constants in P .

Since the out operation is non blocking the communication is asynchronous: a
process that wants to communicate with another one simply adds a message to
the global store and then proceeds in its computation. The process that wants
to receive a message can retrieve it from the global store by performing an in

1242 G. Delzanno and M. Gabbrielli

Table 1. The transition system (symmetric rules omitted)

R1 〈out(a).P,M〉 → 〈P,M⊕{a〉}

R2 〈in(a).P,M〉 → 〈P,M�{a}〉 provided a ∈M

R3 〈rdp(a)?P : Q,M〉 → 〈P,M〉 provided a ∈M
〈rdp(a)?P : Q,M〉 → 〈Q,M〉 provided a �∈ M

R4 〈inp(a)?P : Q,M〉 → 〈P,M�{a}〉 provided a ∈M
〈inp(a)?P : Q,M〉 → 〈Q,M〉 provided a �∈ M

R5 〈P + Q,M〉 → 〈P,M〉

R6
〈P,M〉 → 〈P ′,M′〉

〈P || Q,M〉 → 〈P ′ || Q,M′〉

R7 〈p,M〉 −→ 〈P,M〉 provided (p =def P) ∈ D

operation, which is blocking: if (an occurrence of) the required message is not
present in the store then the computation suspends, possibly being resumed later
when the message is available. The process inp(a)?P : Q tests for the presence
of (an occurrence of) message a in the current store: if present, (an occurrence
of) a is removed and the process continues as P , otherwise the process continues
as Q. The process rdp(a)?P : Q behaves similarly with the exception that rdp
only tests for the presence of a without removing it. The parallel operator is
modeled in terms of interleaving, as usual. As for the choice, we consider here
the internal (or local) choice, where the environment cannot influence the choice.
In the following we will work modulo the congruence relation halt ≡ halt||halt.

Operational Semantics The operational semantics is formally described by a
transition system T = (Conf ,−→). Configurations (in Conf) are pairs consist-
ing of a process and a multiset of messages M representing the common store.
We will use use - and ⊕ to denote multiset union and difference, respectively.
The transition relation −→ is the least relation satisfying the rules R1-R7 in
Table 1, where we omit definitions since these do not change during the compu-
tation. So 〈P,M〉 −→ 〈Q,M′〉 means that the process P with the store M and
a given set of declarations D can perform a transition step yielding the process
Q and the store M′. A computation is a sequence of configurations C1C2 . . . Ck

such that Ci −−→ Ci+1 for any i : 1, . . . , k− 1. In the following Store will denote
the set of possible stores, i.e. multiset over Msg, while Store∗ will indicate the
set of finite sequences over Store. The observables are obtained by projecting
runs over sequences in Store∗.

Definition 2. For any program 〈P,D〉, we define

O(〈P,D〉) = {M1 · . . . · Mn | 〈P1,M1〉 → . . .→ 〈Pn,Mn〉�−→, P = P1}

Furthermore, we define the observable of terminating computations as follows.

Compositional Verification of Asynchronous Processes via Constraint Solving 1243

Definition 3. For any program 〈P,D〉, we define

Oh(〈P,D〉) = {M1 · . . . · Mn | 〈P1,M1〉 → . . .→ 〈halt,Mn〉, P = P1}

For instance, let P = out(b).in(a).halt. Then, ∅·{b} is in O(Q) but not in Oh(Q),
whereas {a} · {a, b} · {b} ∈ O(Q) ∩ Oh(Q).

2.1 Denotational Semantics

We can compositionally characterize the observables using the set A∗ of se-
quences built on A = {in(a), out(a), inp(a), rdp(a), inp(a), rdp(a) | a ∈ Msg}.
To define the semantics of parallel, we consider the shuffle operator of [12]. The
shuffling of s and t in A∗, denoted s= t, is the set of all sequences of the form

s1 · t1 · . . . · sk · tk

where k > 0, s = s1 · . . . · sk, t = t1 · . . . · tk, and the sequences si and ti,
1 ≤ i ≤ k, can be of arbitrary length (including the empty sequence). The
operator = associates less than concatenation; it can be extended to sets of
sequences as follows: S = T = {s= t|s ∈ S, t ∈ T}.
As an example, in(a) · in(b)= in(c) = {in(c) · in(a) · in(b), in(a) · in(c) · in(b)}.

Definition 4. The denotational semantics is the least functionD from programs
to ℘(A∗) which satisfies the equations in Table 2.

As an example, consider the processes p = inp(a)?q : r, q = out(b).out(c).halt
and r = out(c).out(b).halt. Then, the denotational semantics D[[p]] of p contains
the sequences inp(a) · out(b) · out(c) and inp(a) · out(c) · out(b).

From the denotational semantics we can reconstruct the observables by re-
sorting to the partial map eval ∈ [A∗ × Store → Store∗] defined in Table 3.
Going back to the previous example, eval(inp(a) · out(b) · out(c), ∅) is undefined,
since the evaluation of inp(a) in the empty store does not succeed, whereas

Table 2. Denotational semantics for process terms with definitions in D

E1 D[[halt]] = {ε}

E2 D[[out(a).P]] = {out(a) · s | s ∈ D[[P]]}

E3 D[[in(a).P]] = {in(a) · s | s ∈ D[[P]]}

E4 D[[rdp(a)?P : Q]] = {rdp(a) · s | s ∈ D[[P]]} ∪ {rdp(a) · s | s ∈ D[[Q]]}

E5 D[[inp(a)?P : Q]] = {inp(a) · s | s ∈ D[[P]]} ∪ {inp(a) · s | s ∈ D[[Q]]}

E6 D[[P ‖ Q]] = D[[P]]�D[[Q]]

E7 D[[P + Q]] = D[[P]] ∪ D[[Q]].

E6 D[[p]] = D[[B]] provided (p =def B) ∈ D

1244 G. Delzanno and M. Gabbrielli

Table 3. The eval mapping

eval(ε,M) =M

eval(out(a) · s,M) =M · eval(s,M⊕{a})

eval(in(a) · s,M) =

{
M · eval(s,M�{a}) if a ∈M

M otherwise

eval(inp(a) · s,M) =M · eval(s,M�{a}) if a ∈M

eval(rdp(a) · s,M) =M · eval(s,M) if a ∈M

eval(rdp(a) · s,M) = eval(inp(a) · s,M) =M · eval(s,M) if a �∈ M

eval(inp(a) · out(c) · out(b), ∅) = ∅ · {c} · {b, c}. Notice that in the definition of
the eval map the treatment of in(a) and inp(a) is different: in fact, in case the
message a is not present in the store the evaluation of in(a) suspends, hence
the result of the eval is simply the store M, without any further continuation.
On the other hand, if the message a is not present in the store the evaluation
of inp(a) does not suspend and follows the alternative branch which, in our se-
quences, is indicated by the inp(a) construct (see equation E5 in Table 2). The
following result states the correctness of the denotational semantics with respect
to the notion of observables of Def. 2.

Theorem 1. For any P , O(P) = {eval(s,M) | s ∈ D[[P]], M∈ Store}.

3 The Logic Language CLP(CE+Z)

In this section we introduce the CLP(CE+Z) language, obtained as a specific
instance of the CLP scheme [13] by considering constraints defined over the
combination of the first order theories of equality over uninterpreted functions
and of integer arithmetics.

The combined constraint system CE+Z is defined as follows. CE+Z con-
straints are quantifier free formulas built over the signature ΣE ∪ ΣZ , where
ΣE is a set of functions symbols, and ΣZ = {0, 1, . . . ,+,−, <,≤} is the usual
signature of integer arithmetics. An example of CE+Z constraint is the formula
x ≤ y ∧ f(x) = g(y) + 1 ∧ f(g(x) + 1) ≤ 2. Thus in CE+Z we can represent
arithmetics over variables that depend on other variables. The theory of equal-
ity is the ΣE-theory with no axioms, whereas the theory of arithmetics is defined
as the set of ΣZ-sentences that are true in the standard interpretation of con-
stants, function and predicate symbols in ΣZ . From the general results of Nelson
and Oppen [15], quantifier-free satisfiability is decidable in the combined theory
TE+Z . Solvers like CVCL [5] and MathSAT [7] implement decision procedures
to check satisfiability of these constraints.

Let Π be a finite set of predicate symbols (program predicates), disjoint from
ΣE+Z and let V be a denumerable set of variables. The language CLP(CE+Z) is
defined on top of CE+Z as follows.

Compositional Verification of Asynchronous Processes via Constraint Solving 1245

Definition 5 (Clauses, Goals, and Programs). A clause is an implicitly
universally quantified formula of the form

A0 ⇐ ϕ ∧A1 ∧ . . . ∧An,

and a goal is an implicitly existentially quantified formula of the form

ϕ ∧A1 ∧ . . . ∧An,

where ϕ is a CE+Z constraint over V, Ai = pi(xi
1, . . . , x

i
ni

) is an atom with
pi ∈ Π, 0 ≤ i ≤ n, and xk

j ∈ V for j, k ≥ 0. A program is a set of clauses.

We use ⇒P to denote the usual notion of CLP derivation relation (see [13])
for goals and (renamings of) clauses taken from a CLP(CE+Z) program P . A
derivation step replaces an atomic formula A in a goal G with the body B of a
clause A′ ⇐ B whose head A′ can be unified with A. The constraint resulting
from unification in conjunction with those in B and in G must be satisfiable.
⇒∗

P denotes its reflexive and transitive closure. CLP(CE+Z) programs allow to
compute answer constraints [10]. Formally, we have the following definition.

Definition 6. The answer constraint semantics of P and G is defined as

A(P, G) = {ϕ | G ⇒∗
P ϕ, ϕ is a CE+Z constraint}.

Thus an answer constraint is the conjunction of constraints which are left when
all atomic goals have been resolved using program clauses.

4 Encoding Processes in CLP(CE+Z)

First of all, given the set of messages Msg = {a1, . . . , ak}, we build the signature
ΣE = {s1, . . . , sk} (contained in ΣE+Z by definition). The term si(t) is used to
represent the number of occurrences of message ai in the store at time t. The
effect of an action like out(ai) executed at time x can then be described via
the clause like that defining the store atom out(ai, x) of Fig. 4. Thus in the rest
of the paper we will focus our attention on the subclass of CE+Z constraints
defined as follows.

Definition 7 (Store Constraints). A store atom is a formula α(ai, x) with
α ∈ {out, in, inp, rdp, inp, rdp} defined by the CLP clauses of Table 4. A store
constraint is a conjunction of store atoms and arithmetic formulas.

The effect of an action like out(ai) executed at time x can then be described
via the store atom out(ai, x). Its definition describes the addition of a new oc-
currence of message ai to the store. More in general, store constraints will allow
us to express in a logical way the composition operators of our process algebra.
In order to formally relate store constraints to the denotational semantics of a
process, we need to refine the notion of solutions as follows.

Definition 8 (Solutions). Given a store constraint ϕ with variables in V ,

1246 G. Delzanno and M. Gabbrielli

Table 4. Definition of store atoms: ai is a message in Msg

out(ai, x) ⇐ si(x + 1) = si(x) + 1 ∧
∧k

j=1,j �=i sj(x + 1) = sj(x)

in(ai, x) ⇐ si(x) ≥ 1 ∧ si(x + 1) = si(x)− 1 ∧
∧k

j=1,j �=i sj(x + 1) = sj(x)

inp(ai, x) ⇐ si(x) ≥ 1 ∧ si(x + 1) = si(x)− 1 ∧
∧k

j=1,j �=i sj(x + 1) = sj(x)

inp(ai, x) ⇐ si(x) = 0 ∧
∧k

j=1 sj(x + 1) = sj(x)

rdp(ai, x) ⇐ si(x) ≥ 1 ∧
∧k

j=1 sj(x + 1) = sj(x)

rdp(ai, x) ⇐ si(x) = 0 ∧
∧k

j=1 sj(x + 1) = sj(x)

– a partial solution ν of ϕ is a map from V to Z such that ϕ evaluates to true
under some TE+Z-interpretation which extends ν in the natural way;

– a solution extends a partial solution with maps from the function symbols
si to the functions si : Z → Z for i : 1, . . . , k;

– a (partial) solution ν is injective for U ⊆ V if ν(x) �= ν(y) for every x, y ∈ U
such that x �= y;

– given a subset U ⊆ V with cardinality m, a (partial) solution ν is closed for
U if ν(x) ∈ [1,m] for any x ∈ U .

A CE+Z constraint is satisfiable if it has a solution. The store function of a
solution ν is defined as s(t) = 〈s1(t), . . . , sk(t)〉. Notice that s(t) represents the
content of the store at time t, i.e, the multiset in which ai has si(t) occurrences for
i : 1, . . . , k. An injective solution associates distinct values to updates represented
in a store constraint. A closed solution associates values from a closed interval.
With a closed injective solution each variable in U = {x1, . . . , xk} is assigned
a distinct value in 1, . . . , k. This notion will be used to consider sequences of a
closed system in which events occur at time instants with no gaps between them.

Remark 1. It is important to notice that, given a store constraint ϕ and a subset
U of its variables, the injective (closed) solutions of ϕ for U coincide with the
solutions of the constraint ϕ ∧

∧
x,y∈U x �= y (ϕ ∧

∧
x∈U 1 ≤ x ≤ |U |).

4.1 Formal Definition of the Translation

The translation of a process term P with definitions in D to a CLP(CE+Z) pro-
gram is inductively defined via the functions Tp, Td and T . The function Tp

takes as input the process term P and a variable x, representing a time instant,
and returns a CLP program P rog and a goal G. The CLP program contains
the clauses defining some new process constants that we introduce in order to
represent the choice operator and the conditionals. The goal G is the translation
of P where we interpret actions in terms of store constraints, parallel in terms
of conjunction and process constants as predicate symbols taken from Π (and
therefore not in Σ). The function Td translates process definitions in D into
CLP(CE+Z) clauses. Finally, the function T , defined on top of Td and Tp, is
used to encode the closed process 〈P,D〉.

Compositional Verification of Asynchronous Processes via Constraint Solving 1247

Definition 9 (Translation). Let V be a denumerable set of variables, then the
translation functions Tp, Td and T are formally defined as follows.
Halt: The process halt does not produce any constraint on the store. Thus, for
any x ∈ V we define Tp(halt, x) = 〈∅, true〉.
In/Out: The precondition and effect of the action out(a) performed at time
x can be described via the store atom out(a, x) of Table 4. Since the effect of
out(a) is visible at time x + 1, if y is the time starting from which actions in
P may occur, we can enforce the sequentiality between the execution of out(a)
and of the actions in P by requiring that x < y. Thus, if Tp(P, y) = 〈P rog, G〉
for some variable y ∈ V, then we define

Tp(out(a).P, x) = 〈P rog, out(a, x) ∧ x < y′ ∧G′〉

for any variable x ∈ V, and renamings y′, G′ of y, G such that x �∈ V ar(G′)∪{y′}.
The treatment of the term in(a).P is analogous (predicate out is replaced by in).

Conditional: The preconditions and effects of the “if” branch of the conditional
rdp(a)?P1 : P2 performed at time x can be described by using the store atom
rdp(a, x) in conjunction with the formula representing P1. Similarly, the store
atom rdp(a, x) can be used to model the “else” branch. In order to describe the
whole conditional construct we then use a new predicate symbol which models
the choice point in terms of two mutually exclusive clauses, corresponding to
the two different cases. Formally, if Tp(P1, y1) = 〈P rog1, G1〉 and Tp(P2, y2) =
〈P rog2, G2〉 for two variables y1, y2 ∈ V, then we define

Tp(rdp(a)?P1 : P2, x) = 〈P rog ∪ P rog1 ∪ P rog2, p(x)〉
P rog = {p(u) ⇐ rdp(a,u) ∧ u < y′1 ∧G′

1, p(u) ⇐ rdp(a,u) ∧ u < y′2 ∧G′
2}

for variables x,u ∈ V, a new predicate symbol p, and renamings y′1, y
′
2, G′

1, G′
2

of y1, y2, G1, G2 such that x,u �∈ V ar(G′
1) ∪ V ar(G′

2) ∪ {y′1, y′2}.
The treatment for the term inp(a)?P1 : P2 is analogous.
Choice: To model internal choice we use the CLP non-determinism in the
selection of the clause to apply to a given goal. Thus, also in this case we
introduce a new predicate symbol and we define it using two different CLP
clauses, which correspond to the two branches of the choice construct. Formally,
if Tp(P1, y1) = 〈P rog1, G1〉 and Tp(P2, y2) = 〈P rog2, G2〉 for y1, y2 ∈ V, then

Tp(P1 + P2, x) = 〈P rog ∪ P rog1 ∪ P rog2, p(x)〉
P rog = {p(y1) ⇐ G1, p(y2) ⇐ G2}

for any x ∈ V and a new predicate symbol p. Notice that, differently from the
case of the conditionals, here the two clauses in P rog are not mutually exclusive.

Parallel: The translation of parallel composition is more subtle. The only con-
straint that we can put on the set of events occurring in two distinct processes
running in parallel is that they will occur after the whole system started its
execution. Now, suppose that y1 represent the time at which process P1 starts,

1248 G. Delzanno and M. Gabbrielli

y2 the time at which process P2 starts and assume that x is the starting point
of P1 || P2. Then the constraint x ≤ y1 ∧ x ≤ y2 must hold. Notice that the
encoding that we use does not forbid solutions that map time variables associ-
ated to distinct actions to the same value. This might lead to illegal traces, i.e.,
traces where two different basic actions are performed on the store at the same
time instant, which is not acceptable since we use an interleaving model for the
parallel operator. Illegal traces can be ruled out by considering solutions that
are injective (see Def. 8) for the set of variables associated to actions, thus en-
suring that different variables assume distinct values (see Theorem 3). Formally,
if Tp(P1, y1) = 〈P rog1, G1〉 and Tp(P2, y2) = 〈P rog2, G2〉 for y1, y2 ∈ V, then

Tp(P1 || P2, x) = 〈P rog1 ∪ P rog2, (x ≤ y′1 ∧ x ≤ y′2) ∧G′
1 ∧G′

2〉,

for any variable x ∈ V, and renamings y′1, y
′
2, G

′
1, G

′
2 of y1, y2, G1, G2 such that

V ar(G′
1) ∩ V ar(G′

2) = ∅, and x �∈ V ar(G′
1) ∪ V ar(G′

2) ∪ {y′1, y′2}.

Constant: A process constant p occurring in a term can be viewed as the
invocation of a process definition. In our translation this maps naturally to a
goal denoting a call to a clause defining p. Formally, for any x ∈ V we define

Tp(p, x) = 〈∅, p(x)〉.

Definition: Given p =def P and Tp(P, x) = 〈P rog, G〉 for x ∈ V, we define

Td(p =def P) = P rog ∪ {p(x) ⇐ G}.

Program: Now let D = {d1, . . . , dn} be process definitions, y ∈ V, and P be a
process term such that Tp(P, x) = 〈P rog, G〉 for some x ∈ V. Then we define

T (〈P,D〉) = 〈{Td(d1, y), . . . , Td(dn, y)} ∪ P rog, G〉.

Notice that the function T introduces an arbitrary initial time variable x.

4.2 Properties of the Encoding

The translation of a process term into a CLP(CE+Z) program allows us to re-
construct the denotational semantics of Def. 4 and the observables of Def. 2, by
considering the answer constraint semantics of Def. 6. To make this claim more
formal, it will be convenient to use the following terminology.
Given a (possibly instantiated) store constraint ϕ, we will use A(ϕ) to denote
the set of store atoms occurring in ϕ, and given a store atom α(t, x), we define
T (α(a, t)) = t and E(α(a, t)) = α(a). T and E are extended to sets, formulas,
and sequences in the natural way. In particular, T applied to a store constraints
ϕ returns the set of variables (time-stamps for an instantiated constraint) asso-
ciated to the actions E(ϕ). Furthermore, let ν be a partial solution of ϕ injective
for T (ϕ), and let A(ν(ϕ)) = {A1, . . . , An}, then

Sν(ϕ) = {Ai1 ·Ai2 · . . . ·Ain
| T (Aik

) ≤ T (Aik+1) for k : 1, . . . , n− 1}

Compositional Verification of Asynchronous Processes via Constraint Solving 1249

We are now ready to state the adequacy of our encoding. The following theorem
shows that the answer constraints of the CLP(CE+Z) program associated with
a closed process is an implicit representation of its denotational semantics.

Theorem 2. For any closed process S = 〈P,D〉 such that T (S) = 〈P rog, G〉,
we have that D[[S]] = {E(s) | s ∈ Sν(ϕ), ϕ ∈ A(P rog, G), and ν is a partial
solution of ϕ injective for T (ϕ)}.

Now, given a solution of ϕ with store function s (see Section 4) from ϕ we can
extract the history of updates by evaluating s on the time-stamps T (ν(ϕ)) =
{t1 ≤ . . . ≤ tk} (recall that s(t) is an alternative representation of a multiset):

Oν(ϕ) = {M1 · . . . · Mk | Mi = s(ti), for i : 1, . . . , k}

The following theorem shows that in order to extract the observables of a termi-
nating process we need to consider solutions that are both injective and closed
(see Def. 8). Indeed a closed solution assigns to time variables values taken from
a closed interval whose cardinality corresponds to the number of possible actions
of the original process term.

Theorem 3. For any closed process S = 〈P,D〉 such that T (S) = 〈P rog, G〉,
we have that Oh(S) = {s | s ∈ Oν(ϕ), ϕ ∈ A(P rog, G), and ν is a solution of ϕ
injective and closed for T (ϕ)}.

5 Conclusions

In this paper we have shown how to use CLP to obtain a constraint-based symbolic
representation of the set of finite computations of asynchronous processes commu-
nicating via a common store. Theorem 2 and 3 are at the basis of a possible compo-
sitional verification method for this computational model. Indeed CLP enjoys the
and-compositionality property: an answer constraint for G1 ∧G2 can be obtained
by conjoining the answer constraints of G1 and G2 [10]. And-compositionality can
be exploited for a compositional analysis of composed systems as follows. Suppose
that the translation of processes P1 and P2 returns the goal G1 and G2 and a CLP
program P rog = P rog1 ∪ P rog2. Since the combination of P1 and P2 can be ex-
pressed as a constraint G1 ∧ G2 ∧ ψ (ψ depends on the composition operator) we
can use and-compositionality to separately analyze G1 and G2 and then join the re-
sults. Indeed, from Theorem 2, we know that answer constraints characterize open
traces of processes that can be further combined with other traces. Furthermore,
Theorem 3 can be exploited to combine CLP and aCE+Z solver for checking prop-
erties of observables. To illustrate, let us consider a process P encoded via the CLP
programP rog and goal G and suppose we are interested in checking if a given store
canbe reached starting froman initial one.We firstnotice thatwe can encode a con-
figurationM of the store at time t using the constraint s1(t) = n1, . . . , sk(t) = nk

where ni is the number of occurrences of message ai inM for i : 1, . . . , k. Reach-
ability can be reduced then constraint computing and solving as follows. We first
exploit the CLP component to compute an answer constraintϕ of G (by exploiting

1250 G. Delzanno and M. Gabbrielli

and-compositionality this canbedone separately for the subcomponents). Suppose
now that the time-stamps of actions in ϕ are T (ϕ) = {x1, . . . , xm}, where x1 is the
initial point of the evaluation of G. Furthermore, let ψ0 be a constraint expressing
initial condition on the store at time x1, and ψ1 be a constraint expressing condi-
tions on the final store (i.e. at a time greater or equal than x1, . . . , xm. By Theorem
3, the existence of an injective and closed solution for ψ0 ∧ ϕ ∧ ψ1 can be used as
sufficient condition for the original reachability question. (Notice that to obtain a
complete test we need to generate all answer constraints.) From remark 1 and from
the encoding of store atoms inCE+Z of Fig. 4 the latter problem can be reduced to
a satisfiability problem of a CE+Z formula. This kind of reasoning can be viewed
as an extension of the bounded model checking paradigm [6] in which the encoding
of a bounded execution of a system is constructed in a compositional way. We are
currently working on a prototype implementing this verification method for our
process algebra.

References

1. W. Ackermann. Solvable cases of the decision procedure. North-holland, 1954.
2. F. S. de Boer, M. Gabbrielli, and M. C. Meo. A Denotational Semantics for a

Timed Linda Language. PPDP 2001: 28-36.
3. F. S. de Boer, M. Gabbrielli, and M. C. Meo. A Timed Concurrent Constraint

Language. Information and Computation, 161(1): 45-83, 2000.
4. J.P Banatre and D. Le Metayer. Programming by Multiset Transformation. Com-

munication of the ACM, 36(1): 98-111, 1993.
5. C. Barrett and S. Berezin. CVC Lite: A New Implementation of the Cooperating

Validity Checker. CAV 2004: 515-518.
6. A. Biere, A. Cimatti, E. Clarke, Y. Zhu Symbolic Model Checking without BDDs

TACAS 1999: 193-207.
7. M.Bozzano, R.Bruttomesso, A.Cimatti, T.Junttila, P.v.Rossum, S.Schulz, and

R.Sebastiani. An incremental and Layered Procedure for the Satisfiability of Linear
Arithmetic Logic. TACAS 2005: 317-333.

8. S. Brookes. A Fully Abstract Semantics of a Shared Variable Parallel Language.
LICS 1993: 98-109.

9. G. Delzanno and A. Podelski. Model Checking in CLP. TACAS 1999: 223–239.
10. M. Gabbrielli and G. Levi. Modeling Answer Constraints in Constraint Logic

Programs. ICLP 1991: 238-252.
11. D. Gelernter. Generative Communication in Linda. TOPLAS, 70(1): 80-112, 1985.
12. S. Ginsburg and E. H. Spanier. Mappings of languages by two-tape devices JACM,

12(3): 423-434, 1965.
13. J. Jaffar and M. J. Maher. Constraint Logic Programming: A Survey. JLP, 19-

20:503-582, 1994.
14. B. Jonsson. A Model and a Proof System for Asynchronous Processes. PODC

1985: 49-58.
15. G. Nelson and D. C. Oppen. Fast Decision Procedures based on Congruence Clo-

sure. JACM, 27(2):356-364, 1980.
16. V.A. Saraswat and M. Rinard. Concurrent Constraint Programming. POPL 1990:

232–245.

Optimal Spaced Seeds for Faster Approximate
String Matching

Martin Farach-Colton1, Gad M. Landau2, S. Cenk Sahinalp3, and Dekel Tsur4

1 Dept. of Computer Science and DIMACS, Rutgers University
2 Dept. of Computer Science, University of Haifa

3 School of Computing Science, Simon Fraser University
4 Dept. of Computer Science and Engineering, University of California, San Diego

Abstract. Filtering is a standard technique for fast approximate string
matching in practice. In filtering, a quick first step is used to rule out
almost all positions of a text as possible starting positions for a pattern.
Typically this step consists of finding the exact matches of small parts
of the pattern. In the followup step, a slow method is used to verify or
eliminate each remaining position. The running time of such a method
depends largely on the quality of the filtering step, as measured by its
false positives rate. The quality of such a method depends on the number
of true matches that it misses, that is, on its false negative rate.

A spaced seed is a recently introduced type of filter pattern that
allows gaps (i.e. don’t cares) in the small sub-pattern to be searched for.
Spaced seeds promise to yield a much lower false positives rate, and thus
have been extensively studied, though heretofore only heuristically or
statistically.

In this paper, we show how to optimally design spaced seeds that
yield no false negatives.

1 Introduction

Given a pattern string P of length m, a text string T of length
, and an integer
k, the approximate pattern matching problem is to find all substrings of T whose
edit distance or Hamming distance to P is at most k.

The basic idea employed in many approximate pattern matching algorithms
[17, 8] and commonly used software tools such as BLAST [1] is filtering based
on the use of the pigeonhole principle: Let P and S be two strings with edit
distance or Hamming distance at most k. Then P and S must have identical
substrings (contiguous blocks) whose sizes are at least (m−k)/(k+1). This sim-
ple observation can be used to perform efficient approximate pattern matching
through the following approach. (i) Anchor finding: consider each substring of
P of size b ≤ (m− k)/(k + 1) and find all of its exact occurrences in T . (ii) An-
chor verification: verify whether each initial exact match extends to a complete
approximate match, through the use of (a localized) dynamic program or any
other appropriate method.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 1251–1262, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1252 M. Farach-Colton et al.

When T is available off-line, the anchor finding step above can be imple-
mented very efficiently: (i) build a compact trie of all substrings in T of size b
and (ii) search each substring in P of size b on the compact trie. By the use of
suffix links, the compact trie can be built in O(
) time and the pattern processing
can be completed in O(m) time, both independent of the size of b.

The running time of the anchor verification step depends on the specific
method for extending an initial exact match and the value of b: As b increases,
the number of false positives is expected to decrease, but if b > (m− k)/(k + 1)
some actual occurrences of the pattern may be missed, yielding false negatives.

In the remainder of this discussion we will focus on filtering processes with
no false negatives, except as noted. Under this constraint, much of the literature
on pattern matching via filtering focuses on improving the specific method for
verifying anchors. The fastest approximate pattern matching algorithms based
on filtering have a running time of O(
(1+ poly k·polylog

m)) and thus are especially
powerful for “small” values of k [17, 8, 2]. In general, pattern matching under
edit distance can be solved in time O(
k) [13], whereas pattern matching under
Hamming distance can be solved in time O(

√
k log k) [2].

1.1 The Performance of the Filtering Approach

Although the filtering approach does not always speed up pattern matching,
it is usually quite efficient on high-entropy texts, such as those in which each
character is drawn uniformly at random from the input alphabet (of size σ).
Given a pattern P , suppose that the text string T is a concatenation of (1) actual
matches of P : substrings of size m whose Hamming distance to P is at most
k; (2) high entropy text: long stretches of characters, determined uniform i.i.d.
from the input alphabet. On this T and P we can estimate the performance of
the anchor verification step and thus the filtering approach in general as follows.
Let the number of actual matches be #occ. each such match will be identified
as an anchor due to the pigeonhole principle. The expected number of false
positives, which in this case are substrings from the high entropy text that will
be identified as anchors, can be calculated as follows. The probability that a
substring T [i : i + m − 1] is identified as an anchor, i.e. has a block of size b
which exactly matches its corresponding block in P , is ≤ mσ−b. The expected
number of anchors from the high entropy text is thus ≤
 ·m · σ−b. This implies
that the running time of the filtering approach is proportional to #occ +
mσ−b

as well as the time required to verify a given anchor.
The above estimate of the performance of the filtering approach is determined

mostly by problem specific parameters, #occ,
,m or the time for verifying a
given anchor, none of which can be changed. There is only one variable, b, that
can be determined by the filter designer. Unfortunately, in order to avoid false
negatives b must be ≤ (m− k)/(k + 1).

It is possible to relax the above constraint on b by performing filtering through
the use of non-contiguous blocks, namely substrings with a number of gaps (i.e.
don’t care symbols). To understand why searching with blocks having don’t care
symbols can help, consider the case when k = 1, that is, we allow one mismatch.

Optimal Spaced Seeds for Faster Approximate String Matching 1253

When contiguous blocks are used, the maximum value of b is (m − 1)/2. Now
consider using a block of size b + 1 with one don’t care symbol in the center
position. How large can b be while guaranteeing that each substring of T with
a single mismatching character with P will be found? No matter where the
mismatch occurs, we are guaranteed that such a substring can be found even
when b = �(2m−1)/3�. This is a substantial improvement over ungapped search,
where b ≤ (m − 1)/2, reducing the time spent on false positives by a factor of
≈ σm/6.

1.2 Previous Work

The idea of using gapped filters (which are called spaced seeds) was introduced
in [7] and the problem of designing the best possible seed was first posed in [6]
without providing any theoretical bound on the quality of the seed design.
Available literature on designing “optimal” spaced seeds relies on experimen-
tal/statistical techniques [16, 6, 15, 4, 5, 3, 12], or assumes that the input is gen-
erated by a random data model [10]. More recent work on the use of multiple
spaced seeds are also experimental in nature [11, 19,18].

Some of the above approaches for designing spaced seeds allow false negatives.
However, it is desirable to construct seeds that guarantee no false negatives, i.e.,
that finds all matches of a any pattern P of length m under Hamming distance
k. Alternatively, one can want to find all matches of any pattern P ′ of length
m′ ≥ m within error rate k/m. Unfortunately this combinatorial seed design
problem has remained largely open (see, for example [6]) since the introduction
of spaced seeds in early nineties [7]. In fact, it was proven in [14] that for a specific
pattern and a set of substrings that are no more than Hamming distance k from
the pattern, the combinatorial seed design problem is NP-hard.

1.3 Our Contributions

In this paper we show how to solve the general combinatorial seed design problem
optimally. That is, we give worst-case bounds for the combinatorial seed design
problem for all possible pattern/text pairs, whereas a particular pattern and
text may admit a “better” seed.

Our specific results are as follows. The combinatorial seed design problem has
four parameters: minimum pattern length m, the number of “solid” symbols in
the seed b, the number of “don’t care” symbols in the seed g, and the maximum
number of allowed errors between the pattern and its match k. We denote by
n the seed length, namely n = g + b. Our method can optimize any one of
the parameters, given the values of the other three parameters. In this paper
we focus on two variants of this optimization problem; solutions to the other
variants can be derived from these without much difficulty.

1. Given m,n, g, we show how to maximize the number of errors k; i.e. we
show how to compute the maximum possible number of errors k and the
associated spaced seed (with length n and g don’t cares) which guarantees
that all matches of a pattern of length m within Hamming distance k are

1254 M. Farach-Colton et al.

found. This spaced seed also maximizes the error rate k′/m′ for the problem
of finding all matches of any given pattern P ′ whose length is m′ ≥ m.

2. More interestingly, given the number of errors k and minimum pattern length
m, we show how to compute the largest possible b such that b + g = n ≤
m, and the associated seed that guarantees no false negatives. Clearly this
seed minimizes the time spent on false positives and thus maximizes the
performance of the filtering approach for any given pattern of size m with
k errors. This spaced seed also provides the maximum possible b for the
problem of finding all matches of any pattern P ′ of length m′ ≥ m within
error rate k/m.

Our final result is on the design of multiple seeds: for any fixed pattern length
m and number of errors k (alternatively minimum pattern length m ≤ m′ and
error rate k/m), we show that by the use of s ≥ m1/k seeds one can guarantee
to improve on the maximum size of b achievable by a single seed.

2 Preliminaries

For the rest of the paper, the letters A and B will be used to denote strings over
the alphabet {0, 1}. For a string A and an integer l, Al denotes the concatenation
of A l times. Let Ones(A) be the number ones in the string A. A[i : j] denotes
the substring of A that starts at the i-th character of A and ends at the j-th
character.

For two strings A and B of equal lengths, we write A ≥ B if A[i] ≥ B[i] for
i = 1, . . . , |A|. Note that this differs from lexicographic ordering. We say that
a string A covers a string B if there is a substring B′ of B of length |A| such
that A ≥ B′. In words, A covers B if we can align A against B such that every
character 1 in the aligned region of B, is aligned against a character 1 in A. We
will say that such an alignment covers B.

The connection between the above definitions and the seed design problem
is as follows: a seed of length n will be represented by a string A of length n
such that A[i] = 1 if the i-th symbol of the seed is a don’t care, and A[i] = 0
otherwise. Given a pattern string P and a substring T ′ of some text T of length
m, create a string B of length m, where B[i] = 0 if P [i] = T ′[i], and B[i] = 1
otherwise. Then, the filtering algorithm using seed A will find a match between
P and T ′ if and only if A covers B.

We define k(n, g,m) to be the maximum k such that there is a string A of
length n containing g ones that covers every string B of length m with at most
k ones. In other words, for a seed length of n with g don’t cares, k(n, g,m)
is the maximum possible number of errors between any P and any substring
T ′ of length m that is guaranteed to be detected by the best possible seed.
Also, b(k,m) is the maximum b such that there is a string A with b zeros that
covers every string B of length m with at most k ones. In other words, given the
maximum number of errors k, b(k,m) is the maximum number of solid symbols
one can have in a seed so that a match between any P and T ′ with k errors
could be detected by the best possible seed.

Optimal Spaced Seeds for Faster Approximate String Matching 1255

In the next sections we will give upper and lower bounds on k(n, g,m) and
b(k,m) for various values of parameters, effectively solving the combinatorial
seed design problem.

3 Maximizing k

We first present our results on maximizing the number of errors k when the
other parameters n, g and m are fixed. Our results also extend to the problem
of maximizing the error rate k′/m′ for any pattern P ′ of length m′ ≥ m with
fixed n and g.

3.1 Constant g

Theorem 1. For every fixed g, k(n, g,m) = (2− 1
g+1) · m

n ±O(max(1, m
n2)).

Proof. We first show a lower bound on k(n, g,m). The main idea of the proof is
that if B contains “few” 1 characters, then using some form of the pigeonhole
principle, there will be an “isolated” 1 in B. Thus, we can align A over B such
that the isolated one in B is aligned against some one in A, and there are no
more ones in the aligned region of B.

Suppose that n is divisible by 2g + 1. Let A be the string of length n that
contains ones in positions n

2g+1 , 2· n
2g+1 , . . . , g · n

2g+1 , and zeros elsewhere. We will
show that A covers any string B of length m with at most (2− 1

g+1) · m
n −2 ones.

Let B such a string, and denote by y1, . . . , yf the indices in which the character
1 appears in B.

If y1 > n, then A ≥ B[1 : n] = 0n, and we are done. In the following, we
assume that y1 ≤ n. Let L = g+1

2g+1n, x1 = y1−L, xi = yi− yi−1 for i = 2, . . . , f ,
and xf+1 = m + 1 − yf . We note that the reason x1 is defined as above rather
than x1 = y1 is technical, and will be revealed in the proof of Lemma 1. The
average of the numbers x1, . . . , xf+1 is∑f+1

i=1 xi

f + 1
=

m− g+1
2g+1n + 1

f + 1
>

m− g+1
2g+1n

2g+1
g+1 ·

m
n − 1

≥ g + 1
2g + 1

n = L.

Lemma 1. There is an index i > 1 such that xi > L and xi + xi−1 > 2L.

Proof. Suppose conversely that for every index j > 1 such that xj > L, we have
that xj−1 + xj ≤ 2L. We say in this case that xj−1 and xj are matched. We
have that x1 ≤ L because otherwise, y1 = x1 + L > 2L > n, contradicting the
assumption that y1 ≤ n. Suppose that there are r pairs of matched xj-s. From
the above, we have that the sum of the matched xj-s is at most r·2L, and the sum
of the unmatched xj-s is at most (f +1−2r) ·L. Therefore,

∑f+1
j=1 xj ≤ (f +1)L,

a contradiction. ��

By Lemma 1, the string B′ = B[yi−2L : yi−1] has at most one occurrence of the
character one, which may appear at position at most L. There are 2L−n + 1 =

1256 M. Farach-Colton et al.

1
2g+1n+1 ways to align A against B′, and at least one of these alignments cover
B′. More precisely, if B′ does not contain the character 1, then every alignment
of A and B′ covers B′. Otherwise, let j be the index such that B′[j] = 1, and
let s ≤ g be the integer for which s

2g+1n < j ≤ s+1
2g+1n. For s = 0, the alignment

of A and B′ in which A[1] is aligned with B′[j + 1] covers B′. For s > 1, the
alignment of A′ and B in which the s-th one in A is aligned against B′[j] covers
B′

For every n which is not divisible by 2g + 1, let A′ be the string constructed
above for the length n′ = (2g+ 1)
n/(2g+ 1)�, and let A be the prefix of length
n of A′ (if A contains less than g ones, arbitrarily change some zeros into ones).
A covers every string that is covered by A′. Therefore, A covers any string B of
length m with at most

(
2− 1

g+1

)
· m

n′ − 2 ones. Thus,

k(n, g,m) ≥
(

2− 1
g + 1

)
· m

n′
− 2 ≥

(
2− 1

g + 1

)
· m

n + 2g
− 2

=
(

2− 1
g + 1

)
· m

n
−

(2− 1
2g+1)2g ·m

n(n + 2g)
− 2.

Upper bound. We now give an upper bound on k(n, g,m). Let A be some string of
length n with g ones. We will construct strings B0, . . . ,Bg that are not covered by
A, such that at least one of these strings has at most (2− 1

g+1)·mn +O(max(1, m
n2))

ones.
Let y1, . . . , yg be the indices of the ones in A. Let Y = {yj − yi : 1 ≤ i <

j ≤ g}, and let Z be the multi-set {max(yi − 1, n − yi) : i = 1, . . . , g}. Denote
the elements of Z in a non-decreasing order by z1, . . . , zg, and denote zg+1 = n.
Define di = max({0, . . . , zi+1} \ Y) for i = 0, . . . , g, and d′i = max({0, . . . , n −
1− zi} \ Y) for i = 1, . . . , g.

The strings B0, . . . ,Bg are constructed as follows: Let B0 be the prefix of
length m of the string (0d0−11)m. The string Bi is the prefix of length m of
(0di−110d′

i−11)m. If either di = 0 or d′i = 0 for some i, we say that Bi is undefined.
We now show that A does not cover the defined strings in B0, . . . ,Bg. To see

that A does not cover B0 (if it is defined), suppose conversely that there is an
alignment of A with B0 that covers B0. Since d0 < n, the aligned region of B0

contains one in some position j, and this one must be aligned with a one in A.
Suppose that B0[j] is aligned with A[yi]. We can break the string A into two
parts: the characters to the left of yi, and the characters to the right of yi, whose
lengths are yi− 1 and n− yi, respectively. By the definition of z1, it follows that
the size of the larger part is at least z1. W.l.o.g. assume that the larger part is
the part of the characters to the right of yi. Since d0 ≤ z1, the aligned region
of B0 contains another one at position j + d0. From the definitions of d0 and
Y , this position must be aligned with a zero in A, contradicting the assumption
that the alignment covers B0.

Now, suppose that there is an alignment of A with Bl that covers Bl. The
aligned region of Bl must contain one in some position j, which is aligned with
A[yi] for some i. We again break the string A into two parts, and we have that

Optimal Spaced Seeds for Faster Approximate String Matching 1257

either the larger part is of size at least zl+1, or the smaller part is of size at most
n− 1− zl. From the definition of dl, d′l, and Y , it follows that there is a one in
the aligned region of Bl that is aligned against a zero in A, a contradiction.

As A doesn’t cover the strings B0, . . . ,Bg, we obtain that k(n, g,m) <
min{Ones(Bi) : i = 0, . . . , g}. If z1 ≥ g+1

2g+1n, then d0 ≥ g+1
2g+1n − |Y | ≥

g+1
2g+1n− g2

2 . For large enough n, d0 > 0, so B0 is defined and

Ones(B0) ≤
m

d0
≤ m

g+1
2g+1n− g2

2

=
2g + 1
g + 1

· m

n
+ O(m

n2).

Otherwise zg+1 − z1 > g
2g+1n, so there is an index i ≥ 1 such that zi+1 − zi >

1
2g+1n. Thus, d′i ≥ n− 1− zi − |Y | ≥ zi+1 − zi − g2

2 > 1
2g+1n− g2

2 , so for large
n, d′i > 0 (and also di > 0). Moreover, di + d′i ≥ n − 1 + zi+1 − zi − 2|Y | ≥
n + 1

2g+1n− g2, and

Ones(Bi) ≤ 2
⌈

m

di + d′i

⌉
≤ 2m

n + 1
2g+1n− g2

+2 =
2g + 1
g + 1

·m
n

+O(max(1, m
n2)). ��

3.2 Non-constant g

Theorem 2. For every fixed integers r ≥ 2 and l ≥ r, k(n, (1+o(1))l·n1−1/r,m)
≥ (r + 1− r

l−r+2) · m
n −O(max(1, m

n1+1/r)).

Proof. Recall that in the construction of Theorem 1, we were able to find an
alignment of A and B such that the aligned region of B contained the character
1 at most once, and this character was aligned against one of the ones in A. Here,
we will find an alignment that contains at most r ones in the aligned region of
B, which will be aligned against ones in A.

We first prove the theorem for the case r = 2. Suppose that
√

n is integer,
and that

√
n is divisible by 3l − 2. Let A be a string that consists of

√
n blocks

of size
√

n. The blocks numbered 2i
3l−2

√
n for i = 1, . . . , l − 1 contain only ones.

The other blocks contain
√

n− 1 zeros, and a one at the end.
We will show that A covers any string B of length m with

Ones(B) ≤ (3− 2
l
) · m

n
− m

√
n

l
3l−2n(l

3l−2n +
√

n)
− 5.

Let B such a string, and denote by y1, . . . , yf the indices of the ones in B.
If y2 ≥ n +

√
n, then the string B[1 : n +

√
n − 1] contains at most one

occurrence of the character 1, at position y1. If y1 > n we are done. Otherwise,
consider the alignment of A against B in which A[1] is aligned against B[1]. Let
d be the distance from position y1 to the nearest occurrence of 1 in A to the
left of y1 (d = 0 if A[y1] = 1), and d = y1 if there is no such occurrence. From
the construction of A, d <

√
n. Therefore, if we move A d positions to the right

along B, the 1 at position y1 will either be aligned with a 1 of B (if d �= y1), or

1258 M. Farach-Colton et al.

will be outside the aligned region of B (if d = y1). Moreover, the aligned region
of B will contain no more ones (as y2 ≥ n +

√
n). Therefore, this alignment

covers B. For the rest of the proof we assume that y2 < n +
√

n.
Let L = l

3l−2n, x1 = y1 − 2L, x2 = y2 − y1 − 2L, xi = yi − yi−1 for
i = 3, . . . , f , and xf+1 = m + 1− yf . We claim that there is an index i > 2 such
that xi > L+

√
n and xi + xi−1 + xi−2 > 3L+ 3

√
n. The proof of this claim is

similar to the proof of Lemma 1.
If xi > n, then A covers B. Otherwise, let B′ = B[yi − 3L − 3

√
n : yi − 1].

B′ contains at most two ones, where the rightmost one is at position at most
2L+2

√
n. W.l.o.g. assume that B′ contains two ones, at positions j and j′, with

j′ < j. Suppose that j > 2
3l−2n+ 2

√
n (the case j ≤ 2

3l−2n+ 2
√

n is similar, and
we omit its proof). Let s ≤ l − 1 be the integer such that 2s

3l−2n + 2
√

n < j ≤
2(s+1)
3l−2 n + 2

√
n.

Consider an alignment of A and B′ in which B′[j] is aligned against A[2s
3l−2n].

Note that A[2s
3l−2n] is the last character of block number 2s

3l−2

√
n in A. If B′[j′]

is not in the aligned region, or it is aligned against a 1 in A then we are done.
Otherwise, denote by i = j′+ 2s

3l−2n−j the position in A which is aligned against
B′[j′]. Let d be the distance from position i to the nearest occurrence of 1 in
A to the left of i, and d = i if there is no such occurrence. Since d <

√
n, by

moving A d positions to the right, we obtain an alignment that covers B′.
The case when

√
n is not integer, or when

√
n is not divisible by 3l − 2, is

handled in the same way as in Theorem 1: We build a string A′ of length n′ as
described above, where n′ is the minimal integer greater than n such that

√
n′

is an integer divisible by 3l−2, and we take A to be the prefix of length n of A′.
We now deal with the case of r > 2. If n1/r is an integer divisible by (r+1)(l−

r + 1) + 1, then we build the string A as follows: We begin by taking A = 0n.
We then partition A into blocks of different levels. Level i (i = 0, . . . , r − 1)
consists of n1−i/r blocks of size ni/r each. For every i = 0, . . . , r − 2, and every
j which is divisible by n1/r, we change block number j in level i to consists
of all ones. Furthermore, for j = 1, . . . , l − r + 1, we change block number
j · l−r+2

(r+1)(l−r+1)+1 ·n1/r in level r− 1 to consists of all ones. The blocks that were
changed are called the ones blocks.

For every string B of length m with

Ones(B) ≤ (r + 1− r

l − r + 2
) · m

n
−O(max(1, m

n1+1/r)),

we have that either there is a substring B′ of B of length (1+ r
(r+1)(l−r+1)+1)n+

o(n) that contains at most r ones, or the prefix of B of length n + O(n1−1/r)
contains at most r−1 ones. We describe below the proof for the former case (the
proof for the latter case is similar). Suppose w.l.o.g. that B′ contains exactly r
ones. We create an alignment of A and B that covers B as follows: First, we align
the rightmost one in B′ with the rightmost character of the appropriate ones
block of level r− 1. Then, for i = 2, . . . , r, we move A to the right, until the i-th
one from the right in B′ is either aligned against the rightmost character of some
ones block of level r− i, or it is outside the aligned region. By our construction,

Optimal Spaced Seeds for Faster Approximate String Matching 1259

the movement of A is no more than n1−(i−1)/r − 1 positions. Moreover, during
the movements of A the following invariant is kept: For every j ≤ i−1, after the
i-th movement, the j-th one from the right in B′ is aligned against a character
of some ones block of level j′, where r − i− 1 ≤ j′ ≤ r − j. In particular, at the
end, all the ones in B′ are aligned against ones in A, and therefore A covers B.

The case when n1/r is not an integer, or when n1/r is not divisible by (r +
1)(l − r + 1) + 1, is handled the same as before. ��

The following theorem gives an upper bound that matches the lower bound
in Theorem 2 (we omit the proof due to lack of space).

Theorem 3. For every integer r, if g ≤ n1−1/r then k(n, g,m) ≤ r · m
n + O(1).

4 Maximizing b

We now focus on the problem of maximizing b, the number of solid symbols in
a seed, given the number of errors k and the pattern length m. This result also
provides the maximum b for the problem of finding all matches of any pattern
P ′ of size m′ ≥ m within error rate k′/m′ = k/m.

Theorem 4. For every k < 1
2 log m,

b(k,m) ≥
{

m−O(km1−1/(k+1)) if k < log log m

m−O(m1−1/(k+1)) if k ≥ log log m

and b(k,m) ≤ m−Ω(m1−1/(k+1)).

Proof. We begin with showing the lower bound on b(k,m). Let s = �m1/(k+1)�.
We construct a string A of length n = m− 2

∑k
i=1 si by dividing it into blocks

in k levels, similarly to Theorem 2: The i-th level of blocks (i = 0, . . . , k − 1)
consists of blocks of size si each (the last m mod si characters of A do not belong
to a level i block). For every i ≤ k − 1 and every j which is divisible by s, we
make block number j in level i a ones block.

We need to show that A covers every string B of length m with k ones.
Let B be such string, and let y1, . . . , yk be the indices in which the character 1
appears in B. Let yk+1 = m + 1. If yi+1 − yi ≤ 2si for all i ≤ k then we have
that y1 ≥ m + 1−

∑k
i=1 2si = n + 1. Therefore B[1 : n] = 0n, and A covers B.

Otherwise, let j be the maximum index such that yj+1−yj > 2sj . Note that from
the maximality of j, yj+1 = m + 1−

∑k
i=j+1(yi+1 − yi) ≥ m + 1−

∑k
i=j+1 2si,

so yj+1 − n > 2sj .
We align A over B such that A[n] is aligned with B[max(n, yj)]. Then, for

i = j, j − 1, . . . , 1, we move A to the right until B[yi] is against the rightmost
character of some level i−1 ones block in A. The total movement of A is at most∑j

i=1 sj ≤ 2sj < yj+1 −max(n, yj), and therefore at the end of this process the
alignment covers B.

1260 M. Farach-Colton et al.

We therefore have that b(k,m) ≥ n− g, where g is the number of ones in B.
The lower bound for k < log log m follows from the fact that g = O(km1−1/(k+1)).

Now, suppose that k ≥ log log m. We randomly construct a string A of
length n = m − �m1−1/(k+1)�: Each character of A is 1 with probability p =
100/m1/(k+1), and 0 otherwise, where all the choices are are independent. By
Markov’s inequality, with probability at least 1/2, the number of ones in A is at
most 2pn = O(m1−1/(k+1)). We will show that with probability at least 2/3, A
covers every string of length m with k ones. Therefore, there exists a string of
length n with O(m1−1/(k+1)) ones that covers every string of length m with k
ones, and the lower bound follows.

Let B be some string of length m with k ones at positions y1, . . . , yk. There is
a set X ⊆ {0, . . . , m−n} of size at least (m−n)/k2 such that for every x, x′ ∈ X,
there are no indices i and j such that yi +x = yj +x′ (Such a set X can be built
by starting from X = φ and X ′ = {0, . . . , m− n} and moving elements from X ′

to X. Each element added to X rules out at most k(k − 1) elements in X ′, and
therefore |X| ≥ (m− n + 1)/(k(k − 1) + 1) > (m− n)/k2).

For every x ∈ X, the probability that the alignment that aligns A[1] with
B[1 + x] does not cover B is at most 1− pk (the probability is less than 1− pk

if some of the ones of B are outside the aligned region). From the definition of
X, the events above are independent, so the probability that A does not cover
B is at most (1− pk)|X|. Using the union bound we obtain that the probability
that there is a string B that is not covered by A is at most(

m

k

)
(1− pk)(m−n)/k2 ≤ mke−pkm1−1/(k+1)/k2

<
1
3
.

Upper bound. Denote M =
 1
2m1−1/(k+1)�. Let A be a string with b zeros and g

ones, and suppose that b ≥ m−M + 1. We will show that there is a string B of
length m with k ones that is not covered by A. Clearly, g ≤ m− b ≤M − 1.

Define Ii = {(i − 1)M + 1, . . . , iM} for i = 1, . . . , 2m1/(k+1) − 1. Let Y
be the set of all k-tuples (j, i1, . . . , ik−1) such that (1) j ≤ 2m1/(k+1) − 1 and
M + 1 ≤ i1 < · · · < ik−1 ≤ jM , and (2) there is an index x ∈ Ij such that
A[x] = A[x− i1] = · · · = A[x− ik−1] = 1. We have that

|Y | ≤
(
g

k

)
<

(
M

k

)
<

(
m−2M

k

)
M

.

Since the number of k-tuples that satisfy (1) above is at least
(
m−2M

k

)
/M , we

have that there is a k-tuple (j, i1, . . . , ik−1) that satisfies (1) but does not satisfy
(2). We now construct a string B of length m that contains ones in positions
jM, jM − i1, . . . , jM − ik−1 and zeros elsewhere. If A covers B, then consider
some alignment of A and B that covers B, and suppose that A[1] is aligned
with B[y]. Since the length of A is at least b ≥ m − M + 1, we have that
y ≤ M . Therefore, B[jM] is aligned with A[x] for some x ∈ Ij . It follows that
(j, i1, . . . , ik−1) ∈ Y , a contradiction. Therefore, A does not cover B, and the
upper bound follows. ��

Optimal Spaced Seeds for Faster Approximate String Matching 1261

Theorem 5. For every k ≥ 1
2 log m, b(k,m) = Ω(m

k log m
k) and b(k,m) =

O(m
k log m).

Proof. The lower bound is trivial if k = Ω(m), so assume that k < m
10 . By

Theorem 4, there is a string A of length n = 1
2 ·

m
k log m

k that contains b = Θ(n)
ones and covers every string of length 2n with at most log n ones. If B is a string
of length m with at most k ones, then by the pigeon-hole principle, there is a
substring B′ of B of length 2n that has at most k · 2n

m = log m
k ≤ log n ones, and

therefore A covers B′. Thus, A covers B.

Upper bound. Suppose that A is a string of length n with b ≥ m
k log m zeros.

Let z1, . . . , zb be the positions of the zeros in A. Construct a collection of sets
S1, . . . ,Sm, where Sx = {y ∈ {0, . . . , m − n} : ∃j s.t. zj + y = x}. For every
y = 0, . . . , m − n, there are b sets among S1, . . . ,Sm that contain y. Therefore,
there is a set cover of {0, . . . , m−n} using l ≤ log(m−n + 1)/ log(1/(1− b/m))
sets from S1, . . . ,Sm [9], namely, there are indices x1, . . . , xl such that ∪li=1Sxi

=
{0, . . . , m−n}. Now, let B be a string of length m that contains ones in positions
x1, . . . , xl and zeros elsewhere. If we align A and B, where A[1] is aligned with
B[1 + y] for some 0 ≤ y ≤ m − n, then there is an index xi such that y ∈ Sxi

,
that is, there is an index j such that zj +y = xi. This implies that the character
A[zj] = 0 is aligned against B[xi] = 1. Therefore, A doesn’t cover B. The number
of ones in B is at most

log(m− n + 1)
log 1

1−b/m

≤ m

b
· log m ≤ k,

and the upper bound follows. ��

4.1 Multiple Seeds

To model multiple seeds, we define that a set of strings {A1, . . . , As} covers a
string B if at least one string Ai from the set covers B. Let b(k,m, s) be the
maximum b such that there is a set of strings {A1, . . . , As} that covers every
string B of length m with at most k ones, and each string Ai contains at least
b zeros. The following theorem shows that using multiple seeds can give better
results than one seed, namely, b(k,m,m1/k) is slightly larger than b(k,m) (see
Theorem 4).

Theorem 6. For every k < log log m, b(k,m,m1/k) ≥ m−O(km1−1/k).

Proof. We take s = �m1/k�, and build a string A of length n = m −
∑k−1

l=0 sl,
that has k − 1 levels of blocks as in the proof of Theorem 4. Then, we build
strings A1, . . . , As−1, where Ai is obtained by taking the string A and adding
ones at positions js− i for j ≥ s. It is easy to verify that {A1, . . . , As−1} covers
every string of length m with at most k ones. ��

1262 M. Farach-Colton et al.

References

1. S. Altschul, W. Gisch, W. Miller, E. Myers, and D. Lipman. Basic local alignment
search tool. J. of Molecular Biology, 215(3):403–410, 1990.

2. A. Amir, M. Lewenstein, and E. Porat. Faster algorithms for string matching with
k-mismatches. In Proc. ACM-SIAM SODA, pp 794–803, 2000.

3. B. Brejova, D. G. Brown, and T. Vinar. Vector seeds: an extension to spaced seeds
allows substantial improvements in sensitivity and specificity. In Proc. WABI, pp
39–54, 2003.

4. J. Buhler. Provably sensitive indexing strategies for biosequence similarity search.
In Proc. ACM RECOMB, pp 90–99, 2002.

5. J. Buhler, U. Keich, and Y. Sun. Designing seeds for similarity search in genomic
DNA. In Proc. ACM RECOMB, pp 67–75, 2003.

6. S. Burkhardt and J. Karkkainen. Better filtering with gapped q-grams. Funda-
menta Informaticae, 56:51–70, 2003.

7. A. Califano and I. Rigoutsos. Flash: a fast look-up algorithm for string homology.
In Proc. ISMB, pp 56–64, 1993.

8. R. Cole and R. Hariharan. Approximate string matching, a simpler, faster algo-
rithm. In Proc. ACM-SIAM SODA, pp 463–472, 1997.

9. M. Karpinski and A. Zelikovsky. Approximating dense cases of covering. Electronic
Colloquium on Computational Complexity, 4(4), 1997.

10. U. Keich, M. Li, B. Ma, and J. Tromp. On spaced seeds for similarity search.
Discrete Applied Mathematics, 138(3):253–263, 2004.

11. G. Kucherov, L. Noé, and M. Roytberg. Multi-seed lossless filtration. In Proc.
CPM, pp 297–310, 2004.

12. G. Kucherov, L. Noé, and Y. Ponty. Estimating seed sensitivity on homogeneous
alignments. In Proc. IEEE BIBE, pp 387–394, 2004.

13. G. M. Landau and U. Vishkin. Fast parallel and serial approximate string match-
ing. Journal of Algorithms, 10(2):157–169, 1989.

14. M. Li, B. Ma, D. Kisman, and J. Tromp. Patternhunter II: Highly sensitive fast
homology search. J. of Bioinformatics and Computational Biology, 2(3):417–439,
2004.

15. B. Ma, J. Tromp, and M. Li. PatternHunter: Faster and more sensitive homology
search. Bioinformatics, 18:440–445, 2002.

16. P. Pevzner and M. Waterman. Multiple filtration and approximate pattern match-
ing. Algorithmica, 13:135–154, 1995.

17. S. C. Sahinalp and U. Vishkin. Efficient approximate and dynamic matching of
patterns using a labeling paradigm. In Proc. IEEE FOCS, pp 320–328, 1996.

18. Y. Sun and J. Buhler. Designing multiple simultaneous seeds for DNA similarity
search. In Proc. ACM RECOMB, pp 76–84, 2004.

19. J. Xu, D. Brown, M. Li, and B. Ma. Optimizing multiple spaced seeds for homology
search. In Proc. CPM, pp 47–58, 2004.

Fast Neighbor Joining

Isaac Elias and Jens Lagergren

Dept. of Numerical Analysis and Computer Science,
Royal Institute of Technology, Stockholm, Sweden

{isaac, jensl}@nada.kth.se

Abstract. Reconstructing the evolutionary history of a set of species is
a fundamental problem in biology and methods for solving this problem
are gaged based on two characteristics: accuracy and efficiency. Neighbor
Joining (NJ) is a so-called distance-based method that, thanks to its good
accuracy and speed, has been embraced by the phylogeny community.
It takes the distances between n taxa and produces in Θ(n3) time a
phylogenetic tree, i.e., a tree which aims to describe the evolutionary
history of the taxa. In addition to performing well in practice, the NJ
algorithm has optimal reconstruction radius.

The contribution of this paper is twofold: (1) we present an algorithm
called Fast Neighbor Joining (FNJ) with optimal reconstruction radius
and optimal run time complexity O(n2) and (2) we present a greatly
simplified proof for the correctness of NJ. Initial experiments show that
FNJ in practice has almost the same accuracy as NJ, indicating that the
property of optimal reconstruction radius has great importance to their
good performance. Moreover, we show how improved running time can
be achieved for computing the so-called correction formulas.

1 Introduction

The evolutionary history of a set of species is a central concept in biology that
is commonly described by a phylogenetic tree. Frequently it is the case that the
phylogenetic tree is unknown and the only information available are the genetic
sequences from the extant species, i.e., currently living species. It is therefore
a fundamental problem to reconstruct the phylogenetic tree given genetic se-
quences. Several reconstruction methods have been suggested, and it is natural
to compare these based on how accurate they are in reconstructing the correct
phylogeny. Unfortunately though, of these methods the more accurate are much
too slow to be used in studies that involve reconstructing large or many phylo-
genies. The focus of this paper is to build an algorithm that is accurate and has
quadratic running time in the number of species.

As more genetic information is collected it becomes possible to answer more
complex questions. An obvious question that involves reconstructing a large
phylogeny is to relate all living species in the tree of life. Another very central
question is to relate large sets of genes and from such phylogenies draw conclusion
about their function and origin. However, reconstruction of large phylogenies is

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 1263–1274, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1264 I. Elias and J. Lagergren

not the only case in which efficient reconstruction is necessary. There are other
cases that involve many reconstructions, e.g., studies where phylogenies are built
for each gene shared by a set of species. The common technique of bootstrapping
also requires many reconstructions in order to obtain significance values for a
single phylogeny.

Throughout the paper, phylogenetic trees are leaf-labeled binary trees with
edge lengths. Thus each phylogenetic tree T naturally induces an additive leaf-to-
leaf distance function DT . The reconstruction methods for which most complex-
ity results have been shown are the so-called distance methods. These algorithms
take as input an estimated distance function D (normally computed from the
genomic sequences) and construct a phylogeny whose additive distance function
is close to D. The problem of finding the closest additive distance function under
the infinity norm is known to be NP-hard [1].

The Neighbor Joining (NJ) algorithm is a distance method introduced by
Saitou and Nei in [15]. As shown in [8], when NJ is given an additive distance
function DT , it reconstructs the unique tree T . However, as Atteson [2] proved
NJ reconstructs the closest tree for even more cases. A distance function D is
nearly additive if there is an additive distance function DT such that

|D −DT |∞ < μ(T)/2, (1)

where μ(T) is the minimum edge length in T . All the additive distance functions
for which Equation 1 holds have the same topology, i.e., disregarding the edge
lengths, T is the unique tree for which the equation holds. The NJ algorithm
has optimal reconstruction radius in the sense that: (a) given a nearly additive
distance function it reconstructs the unique tree T and (b) there can be more
than one tree for which |D − DT | < δ holds if δ ≥ μ(T)/2. In practice most
distances are far from being nearly additive. Thus, although important, optimal
reconstruction radius is not sufficient for an algorithm to be useful in practice.

The estimated distances that are given as input to distance methods are
normally deduced from genomic sequences and a probabilistic model. There are
various Markov models of sequence evolution which describe how sites evolve
independently and identically from the root down toward the leafs. Many of these
models have an associated closed correction formula for inverting the model and
giving an estimated evolutionary distance for a pair of sequences. These formulas
are consistent in the sense that the estimated distance approaches the underlying
additive distance as the sequence length approaches infinity. As a result, the NJ
algorithm is a consistent method for recovering the correct phylogeny, i.e., NJ
reconstructs the correct phylogeny given infinitely long sequences.

An interesting line of research is to design fast-converging algorithms, i.e.,
algorithms that reconstruct the correct phylogeny from sequences whose length
is polynomial in the number of sequences [7, 9, 12, 5]. However, except from the
Disc-Covering Method (DCM) [9, 12] these algorithms have had little or no prac-
tical impact. The only variation of DCM that is fast-converging and of practical
interest uses NJ to construct small sub-phylogenies that are later patched to-
gether into one larger phylogeny, i.e., NJ is used as a subroutine.

Fast Neighbor Joining 1265

Although the NJ algorithm is not fast-converging, it has in experimental
studies been shown to perform very well [13]. Moreover, with O(n3) as the worst
case running time it has become the reconstruction algorithm that is most fre-
quently used in practice. Heuristic implementations of NJ have been given which,
without leading to better worst case analysis of the time complexity, in practice
show improved running time [3, 17].

There are two major contributions in this paper: (1) we present an algorithm
called Fast Neighbor Joining (FNJ) with optimal reconstruction radius and op-
timal run time complexity O(n2) and (2) we present a greatly simplified proof
for the correctness of the NJ algorithm. Initial experiments show that the FNJ
algorithm in practice has almost the same accuracy as the NJ algorithm; this
indicates that it is the optimal reconstruction radius and other similarities with
NJ that give FNJ its good performance. We also describe how a better running
time for computing the correction formulas can be achieved, in theory, through
matrix multiplication and, in practice, through table lookups.

The FNJ algorithm is useful in its own right. But it is also important to note
that FNJ together with the proof of optimal reconstruction radius presents a
good foundation for building reconstruction algorithms that are both practically
useful and fast-converging. For example the running time of DCM can be im-
proved by a factor O(n) by simply replacing NJ with FNJ. It will be interesting
to see how the running time of extensions of NJ, such as Weighbor and BioNJ,
can be improved using our ideas.

The paper is organized as follows. The next section contains some basic defi-
nitions and a description of the NJ algorithm. In Section 3, the FNJ algorithm is
introduced. Subsequently we give the proof of the FNJ algorithm and also a more
economical and intuitively appealing proof of Atteson’s theorem. Finally, in Sec-
tion 7, we approach the practical problem of computing the correction formulas
and also show that the FNJ algorithm in practice performs almost exactly as good
as the NJ algorithm. Except for Lemma 1 below, which in [2] (Lemma 12) is proved
by straightforward algebraic verification, the present paper is self-contained.

2 Definitions and the Neighbor Joining Algorithm

A n×n distance function D, for a set of taxa N (D), is a function N (D)2 → R+,
where |N (D)| = n, which is symmetric and satisfies D(x, x) = 0 for every x ∈
N (D). For two distance functions D1 and D2 such that N (D1) = N (D2) = N ,
their distance is defined as maxx,y∈N |D1(x, y) − D2(x, y)| and denoted |D1 −
D2|∞. By a phylogenetic tree we mean a tree T given together with an edge
length function lT : E(T) → R+. For a phylogenetic tree T , μ(T) denotes the
minimum edge length of T , i.e., mine∈E(T) l(e). The unique path in a tree T
between two of its vertices u and v is denoted PT (u, v). Every phylogenetic tree
T induces a distance function for the leafs in the tree, i.e., DT : L(T)2 → R+

where DT (a, b) �
∑

e∈PT (a,b) l(e).
A distance function D is additive if there is a phylogenetic tree T such that

D = DT ; the tree is said to realize D, it is unique, and it is denoted T (D). A

1266 I. Elias and J. Lagergren

distance function D is nearly additive if there is a phylogenetic tree T such that
|D −DT |∞ < μ(T)/2; again, the tree is said to realize D, it is unique, and it is
denoted T (D) [2]. The parent of a leaf a in a tree T is the unique neighbor of a
in T . A pair of leaves of a tree T are siblings if they have the same parent in T
(note only leaf-siblings).

The NJ algorithm builds a tree by iteratively combining pairs of taxa. It takes
as input a distance function D for n taxa and attempts to identify two siblings
by selecting the pair of taxa (a, b) that minimizes the NJ function, defined by

SD(x, y) �
(
|N (D)| − 2

)
·D(x, y)−

∑
z∈N (D)

(
D(z, x) +D(z, y)

)
. (2)

Thereafter the pair (a, b) is reduced to a a new node c, representing the parent,
which gives a new distance function D′ with N (D′) = (N (D) \ {a, b}) ∪ {c}
defined by

D′(x, y) �
{
D(x, y), if c /∈ {x, y}
D(z,a)+D(z,b)

2 , otherwise z ∈ {x, y} \ {c}. (3)

Finally the algorithm is applied iteratively on the new distance function D′. A
formal description of the NJ algorithm is given below.

Algorithm NJ(D1)

1. For each i← 1 to n− 3 do
(a) (ai, bi) ← argminx�=y∈N (Di)SDi

(x, y)
(b) Reduce ai and bi to a new node ci and let Di+1 be the new distance

function given by the reduction in Equation 3.
(c) Connect ai and bi to ci by adding edges (ai, ci) and (bi, ci).

2. Connect the three nodes of N (Dn−3) in a star and return the resulting
tree.

Theorem 1 (Atteson’s Theorem). Given a nearly additive distance function
D NJ outputs T (D). Moreover, in each iteration i, Di is nearly additive and
T (Di) = T (Di−1) \ {ai−1, bi−1}.

In Section 3, we will show the analogous theorem for the FNJ algorithm,
by showing that for nearly additive distance functions it gives exactly the same
output as NJ. In Section 5, we give a proof of Atteson’s theorem above.

3 The Fast Neighbor Joining Algorithm

In Step 1a of the NJ algorithm and for i ≤ n/2, the minimum is taken over
Ω(n2) pairs which implies a running time of Ω(n3). In the FNJ algorithm an
O(n2) running time is obtained by using two ideas. First, the minimum is taken

Fast Neighbor Joining 1267

over a set, called the visible set, of cardinality O(n). Second, using the auxiliary
function R, introduced below, the updated NJ function can be computed in
constant time. It should be noted that the resulting trees of NJ and FNJ are
only guaranteed to be the same if the input is nearly additive.

A pair (a, b) is visible from a w.r.t. a distance function D if

b = argminx∈N (D)\{a}SD(a, x).

A pair (a, b) is visible w.r.t. D if it is visible from either a or b. Hence the
number of visible pairs is O(n). In the next section it is shown that for each
nearly additive distance function D, any sibling pair in T (D) is visible w.r.t. D.

To enable an overall O(n2) running time, the NJ function is computed using
an auxiliary function R defined by RD(a) �

∑
x∈N (D)D(a, x), i.e., R is the row

sums. It is straightforward to verify that for a D′ defined as in Equation 3,

RD′(x) = RD(x)− D(x, a) +D(x, b)
2

. (4)

Hence, given RD it is possible to compute the updated row sums RD′ in time
O(n). Moreover, since SD(x, y) = (|N (D)| − 2) ·D(x, y)− RD(x)− RD(y), the
NJ function can be computed in constant time, for any given pair (x, y).

It should be clear, from the formal description below that the FNJ algorithm
runs in time O(n2). Note that the input actually has size Ω(n2).

Algorithm FNJ(D1)

1. The first visible set V1 is initialized to the set of pairs visible w.r.t. D1.
2. For each a ∈ N (D), RD1(a) is initialized to

∑
x∈N (D1)

D1(a, x).
3. For each i← 1 to n− 3 do

(a) (ai, bi) ← argmin(x,y)∈Vi
SDi

(x, y)
(b) Reduce ai and bi to a new node ci and let Di+1 be the new distance

function given by the reduction in Equation 3.
(c) Connect ai and bi to ci by adding edges (ai, ci) and (bi, ci).
(d) Compute RDi+1 .
(e) Vi+1 ← (Vi \ {(x, y) : x = ai or x = bi})∪ {(ci, d)} where (ci, d) is the

pair visible from ci w.r.t. Di+1.
4. Connect the three nodes of N (Dn−3) in a star and return the resulting

tree.

4 Correctness of FNJ

According to Theorem 1, given a nearly additive distance functionD, NJ outputs
T (D), i.e., it outputs the unique tree that is close to D. Here we prove that FNJ
has the same property. Since NJ constructs the correct tree, we know that in
each iteration the minimum pair over the NJ function is a sibling pair in T (Di).

1268 I. Elias and J. Lagergren

Hence, to prove the correctness of FNJ, it suffices to show that in each iteration
the minimum pair is in the visible set, Vi. The proof is in two steps; first the
Visibility lemma is presented. According to this, if a has a sibling b in T (D), then
(a, b) is in the visible set. Second, in Theorem 2, the Visibility lemma together
with the correctness of NJ is used to prove the correctness of FNJ.

Before we proceed to prove the Visibility lemma, we state an observation
and a lemma which in Atteson [2] are proved through straightforward algebraic
verification. For any tree T , edge e of T , and leaf a of T , let LT (a, e) denote the
set of leaves of T belonging to the same connected component of T \ {e} as a.

Observation 1 (Atteson). If DT is an additive distance function, then,

SDT
(a, b) =

∑
e∈E(T)

we(a, b) l(e), where

we(a, b) =
{
−2 if e ∈ E(PT (a, b))
−2|L(T) \ LT (a, e)| otherwise.

Lemma 1 (Atteson, Lemma 12). Let DT and D be two n-domain distance
functions such that DT is additive and D is nearly additive w.r.t. DT . For any
a, b, x, y ∈ N (D), the value of SD(a, b)− SDT

(a, b) + SDT
(x, y)− SD(x, y) is

>

{
−3(n− 4)μ(T) if {a, b} ∩ {x, y} = ∅
−2(n− 3)μ(T) if |{a, b} ∩ {x, y}| = 1.

Lemma 2 (The Visibility Lemma). Let DT and D be two n-domain distance
functions such that DT is additive and D is nearly additive w.r.t. DT . If a has
a sibling b in T , then (a, b) is visible from a w.r.t. D, i.e.,

b = argminx∈N (D)\{a}SD(a, x).

Proof. As in Figure 1, let c ∈ N (D) \ {a, b} and let ea, eb, and ec be the edges
of T incident with a, b, and c, respectively. Moreover, let e be the edge incident
with the parent of a and b which is not incident with either a or b. Consider DT ,
by definition of the weights in Observation 1 the following is true

(i) wf (a, b) = −2 = wf (a, c) for any f ∈ {ea, eb, ec},
(ii) wf (a, b) ≤ −3 < wf (a, c) for any f ∈ E(PT (a, c)) \ {ea, ec},
(iii) wf (a, b) = wf (a, c) for any f ∈ E(T) \ E(PT (a, c)).

Moreover, since we(a, b) = −2(n−2) and we(a, c) = −2, it follows that SDT
(a, c)−

SDT
(a, b) ≥ 2(n− 3)μ(T). Finally, by Lemma 1,

SD(a, c)− SD(a, b) =

SD(a, c)− SDT
(a, c) + SDT

(a, b)− SD(a, b)︸ ︷︷ ︸
>−2(n−3)μ(T)

+SDT
(a, c)− SDT

(a, b)︸ ︷︷ ︸
≥2(n−3)μ(T)

> 0. ��

Fast Neighbor Joining 1269

We are now ready to prove that given a nearly additive distance function
D, FNJ in each iteration selects the same sibling pair as NJ, i.e., FNJ outputs
T (D). By Atteson’s theorem NJ outputs T (D) by in each iteration reducing a
pair of siblings such that T (Di) = T (Di−1) \ {ai−1, bi−1}. Since FNJ uses the
same reduction as NJ it is sufficient to show that all sibling pairs are in the
visible set. In the next section, we give a short and intuitively appealing proof
of Atteson’s theorem, which together with the Visibility lemma gives a direct
proof of the theorem below.

Theorem 2. Given a nearly additive distance function D, FNJ outputs T (D).

Proof. We prove by induction that, for each i = 1, . . . , n − 3, Vi contains all
sibling pairs of T (Di) (here D1 = D). By the Visibility lemma it is clear that the
statement is true for i = 1. Assume that the statement holds for each i = 1, . . . , j.

By the correctness of NJ, if (aj , bj) is the minimum over the NJ function, then
(aj , bj) is a sibling pair T (Dj). Therefore, by the induction assumption, (aj , bj)
is in Vj . Consequently, since the minimum over the NJ function is a sibling pair,
FNJ and NJ select the same sibling pair in iteration j.

After reducing (aj , bj) to cj , by the Visibility lemma, if cj has a sibling d in
T (Dj+1), then in Step 3e (cj , d) is added to Vj+1. Moreover, by the assumption,
all other sibling pairs of T (Dj+1) are in Vj and therefore also in Vj+1. Hence,
by induction and the correctness of NJ, FNJ outputs T (D). ��

5 Atteson’s Theorem - Correctness of NJ

The proof of Atteson’s theorem is in two steps. The first step consists of the key
technical lemma below, of which we give a much more concise and direct proof.
The central idea in this proof, is to show that for any additive distance function
the difference is large between the value of NJ function applied to a sibling pair,
and applied to a pair of leaves which are not siblings. In fact, the difference is so
large that even when the distance function is nearly additive the NJ function is
minimized by a sibling pair. The final step in proving Atteson’s theorem consists
of showing that the distance function, after a reduction, remains nearly additive.

Lemma 3. If D is a nearly additive distance function, a, b ∈ N (D), and
SD(a, b) = minx�=y∈N (D) SD(x, y), then (a, b) is a sibling pair in T = T (D).

Proof. According to the Visibility lemma, if a has a sibling b then SD(a, b) <
SD(a, x) for any x �= b. Hence, the lemma follows if for any two leaves, x and
y, of which none has a sibling in T , there exists a sibling pair (a, b), such that
SD(x, y) − SD(a, b) > 0. Let DT be an additive distance function such that
|D −DT | < μ(T)/2. Notice that

SD(x, y)− SD(a, b)

= SD(x, y)− SDT
(x, y) + SDT

(a, b)− SD(a, b) + SDT
(x, y)− SDT

(a, b)

1270 I. Elias and J. Lagergren

a

b

ceea

eb

ec

x

x′

y

y′e

f

a b

T x T y

Fig. 1. To the left the figure for the Visibility lemma. To the right the figure for
Lemma 3

> −3(n− 4)μ(T) + SDT
(x, y)− SDT

(a, b),

where the inequality follows by Lemma 1. We proceed by showing that SDT
(x, y)−

SDT
(a, b) > 3(n− 4)μ(T).

In T let x′ and y′ be the unique neighbors of x and y, respectively (see
Figure 1). Further, let T x and T y be the subtrees of T \ PT (x′, y′) containing
x and y, respectively. W.l.o.g., assume that |L(T x)| ≤ |L(T y)|, and hence that
|L(T x)| ≤ n/2. Let e be the edge of PT (x′, y′) incident to x′. Since neither x
nor y has a sibling, both T x and T y contain a sibling pair of T . Let a and b be
siblings in T x, and let f be the edge incident with their parent but not a and
not b.

First note that wg(a, b) ≤ wg(x, y) for any g ∈ E(T) \ {e, f}. The only edges
for which the latter inequality is non-trivial are those of PT (a, x′); for those the
inequality follows from the assumption that |L(T x)| ≤ n/2. Using the definition
of weights, it is straightforward to verify that we(a, b) = −2|L(T)\L(T x)| ≥ −n
while we(x, y) = −2, and that wf (a, b) = −2(n − 2) while wf (x, y) = −4. It
follows that

SDT
(x, y)− SDT

(a, b) ≥
(
− 2− 4 + n + 2(n− 2)

)
μ(T)

= (3n− 10)μ(T)
> 3(n− 4)μ(T). ��

(Proof Theorem 1). The proof is by induction. First note that the theorem
holds when |N (D)| = 3. Assume that the theorem holds when |N (D)| = n− 1.
We now prove that it holds for |N (D)| = n.

Since D is nearly additive, by the lemma above, NJ in the first iteration
reduces a pair (a, b) that are siblings in T = T (D) to a new node c, representing
their parent. Denote the distance function after the reduction by D′. We need
to prove that D′ is nearly additive and that T (D′) = T \ {a, b}.

Let S be the tree T \ {a, b} with the edge length function defined as follows:

lS(u, v) � lT (u, v)

for all u, v ∈ V (S) \ {c}, and

Fast Neighbor Joining 1271

lS(c, c′) � lT (c, c′) +
lT (c, a) + lT (c, b)

2
for the unique neighbor c′ of c in S. It should be clear that μ(T) ≤ μ(S).

We now show that |D′ − DS | < μ(S)/2, i.e., that T (D′) = S = T \ {a, b}.
From this, the theorem follows immediately. For u, v ∈ L(S) \ {c},

|D′(u, v)−DS(u, v)| = |D(u, v)−DT (u, v))| < μ(T)
2

≤ μ(S)
2

For all u ∈ L(S),∣∣D′(u, c)−DS(u, c)
∣∣

=
∣∣∣D(u, a) +D(u, b)

2
−DS(u, c′)− lS(c′, c)

∣∣∣
=
∣∣∣D(u, a) +D(u, b)

2
−DT (u, c′)− lT (c′, c)− lT (c, a) + lT (c, b)

2

∣∣∣
≤
∣∣∣D(u, a)−DT (u, a)

2
+
D(u, b)−DT (u, b)

2

∣∣∣
≤
∣∣∣D(u, a)−DT (u, a)

2

∣∣∣+ ∣∣∣D(u, b)−DT (u, b)
2

∣∣∣
<
μ(T)

4
+
μ(T)

4
=
μ(T)

2
≤ μ(S)

2
. ��

6 Improved Computations of Correction Formulas

As was mentioned in the introduction, the real input to a reconstruction problem
is usually n sequences of length l. The assumption is that these sequences have
evolved from an original ancestor sequence down the branches of the phylogeny,
according to a model of sequence evolution. The distance method approach, to
the reconstruction problem, is to first use the sequences to estimate the actual
distances between every pair of leaves, and thereafter find a phylogeny that fits
the estimated distances. That is, from the n sequences of length l, an n × n
distance function is computed through a correction formula. This formula is
dependent on the model assumed to have generated the sequences; the most
common models are Jukes-Cantor (JC) [10] and Kimura 2-parameter (K2P)
[11]. Most correction formulas are in a sense functions of the hamming distance,
e.g., the JC correction formula is given by

JC(s1, s2) � −3
4
· log

(
1− 4 ·H(s1, s2)

3l

)
,

where H is the hamming distance. Clearly, the straightforward way of computing
this function takes O(l) time, and as a result the overall running time of com-
puting all estimated distances is O(ln2). Since l typically is larger than n, the
computation of the correction formula is the bottleneck in fast reconstruction
algorithms.

1272 I. Elias and J. Lagergren

Computing all n2 pairwise hamming distances for n strings is a special case
of matrix multiplication, and can therefore be done in O(ln1.376) time [4]. The
reduction for strings from the alphabet {A,C, G, T}, is by representing each
string by a row in the matrixM , and code each symbol by the unary code, e.g., by
letting A = 1000. Thereby, the elements in the matrix MMT are l−H(si, sj). It
should be noted that the general belief is that matrix multiplication can be done
in O(ln) time, which would imply that the correction formulas can be computed
in optimal time. Unfortunately, all existing matrix multiplication algorithms are
slow in practice.

Below we present an algorithm that improved the computations of the cor-
rection formula by more than a factor of 3, compared to the straightforward
approach. The idea is to first represent each symbol by 2 bits, and then use a
precomputed table with 22k entries to look up the distance for k symbols at a
time. In our tests, k = 7 resulted in the best running time.

1. Code the symbols of the sequences as follows: A = 00, C = 01, G = 10,
T = 11.

2. For each pair of compacted strings ci and cj

(a) Compute the xor Xij = ci

⊕
cj .

(b) Read 2k bits of Xij at a time and use the table to look up the distance
for the associated k symbols.

7 Experiments

In this paper it has been shown that both NJ and FNJ have optimal recon-
struction radius. However, there are many distance matrices that are not nearly
additive and for which both algorithms reconstruct the closest tree. And for yet
more matrices the algorithms fail to reconstruct the tree, but they do not fail
by much. Therefore, it is of major interest to know how well the two algorithms
perform in practice.

Several studies have been made on the accuracy of different reconstruction
algorithms, the most notable work being that by Nakhleh et al. [13]. In that
paper, four different methods are examined: NJ, DCM-NJ+MP, Weighbor, and
Greedy Parsimony. And it is noted that the NJ algorithm, because of its speed,
is the method of choice when the input data are accurate, i.e., when the sequence
length is large and the corrected distances are close to additive. In this section,
we replicate some of the experiments and show that although the NJ algorithm
perform slightly better than the FNJ algorithm, when the input data are accurate
the performance is in fact close to the same.

The test data were produced in the same way as in [13]. First, the model
trees were generated through a random birth-death process using the r8s[16]
software package. These trees where then made non-ultrametric, i.e., root to leaf
paths where made to vary in length, by multiplying the edge lengths with a

Fast Neighbor Joining 1273

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
vg

. R
F

 r
at

e

Sequence length

NJ vs. FNJ for 400 leafs

NJ
FNJ

Algo. Time (min) Avg. RF (%)

FNJ 4 10.5
NJ 52 10.1
GME 26 14.1

Fig. 2. Left: Trees with 400 taxa. Right: Comparing the running time for 10 trees of
4000 taxa

random number in different intervals1. Subsequently, sequence data was gener-
ated according to the JC model using the Seq-Gen[14] program. The JC correc-
tion formula was then applied to get the distances, and for saturated data a fix
factor of 1 was used.

To measure the accuracy we used the normalized Robinson-Foulds (RF) dis-
tance between the model tree and the tree given by the method. To get sta-
tistically robust results we performed 20 runs on each test size, and computed
the average RF rate and standard deviation. In Figure 2, to the left, we plot
the average RF rate as a function of the sequence length for trees with 400
taxa. Notice that both methods converge to the true tree as the sequence length
increases, and that for accurate data the methods perform almost the same.
For these experiments the standard deviation varied between 1-4% except for
sequences of length 50. Many more experiments have been performed and the
same pattern emerges there too but due to space limitations these data have
been omitted.

7.1 Comparison with GME

In Desper et al. [6], an O(n2) algorithm called GME is introduced that, although
it does not have optimal reconstruction radius, in practice it has acceptable
accuracy. However, as is clearly shown in Figure 2, for 10 trees of 4000 taxa
each, FNJ outperforms both GME and NJ. When accuracy is concerned the
best algorithm is NJ, tightly followed by FNJ. In addition to GME, Desper
et al. present a clever nearest neighbor interchange (NNI) algorithm, that in
many cases improves the accuracy of reconstruction algorithms. It is therefore
reasonable to believe that FNJ in conjunction with NNI would be a very fast
and accurate combination.

1 Following [13] we used ultrametric deviation 4 and generated sequences with diam-
eter factors 0.05, 0.10, 0.25, and 0.5. E.g. diameter factor 0.25 yields the interval
[1/16, 1]

1274 I. Elias and J. Lagergren

Acknowledgments

We would like to thank Luay Nakhleh and Tandy Warnow for discussions on
experimental studies of the NJ algorithm and for helping us replicate their ex-
periments. We are also grateful to Johan H̊astad for valuable comments and
ideas.

References

1. R. Agarwala, V. Bafna, M. Farach, M. Paterson, and M. Thorup. On the ap-
proximability of numerical taxonomy (fitting distances by tree metrics). SICOMP,
28(3):1073–1085, 1999.

2. K. Atteson. The performance of neighbor-joining methods of phylogenetic recon-
struction. Algorithmica, 25, 1999.

3. G.S. Brodal, R. Fagerberg, T. Mailund, C.N. Pedersen, and D. Phillips. Speeding
up neighbour-joining tree construction. Technical Report ALCOMFT-TR-03-102,
2003.

4. D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progres-
sions. In STOC ’87, pages 1–6, 1987.

5. M. Csűrös. Fast recovery of evolutionary trees with thousands of nodes. In
RECOMB-01, pages 104–113, 2001.

6. R. Desper and 0. Gascuel. Fast and accurate phylogeny reconstruction algorithms
based on the minimum-evolution principle. Journal of Computational Biology,
19(5):687–705, 2002.

7. P.L. Erdös, M.A. Steel, L.A. Szekely, and T.J. Warnow. A few logs suffice to build
(almost) all trees (I). RSA: Random Structures & Algorithms, 14:153–184, 1999.

8. O. Gascuel. Concerning the NJ algorithm and its unweighted version, UNJ. Amer-
ican Mathematical Society, pages 149–170, 1997.

9. D.H. Huson, S. Nettles, and T. Warnow. Disk-covering, a fast-converging
method for phylogenetic tree reconstruction. Journal of Computational Biology,
6(3/4):369–386, 1999.

10. T.H. Jukes and C.R. Cantor. Evolution of protein molecules. Mammalian Protein
Metabolism, pages 21–132, 1969.

11. M. Kimura. A simple model for estimating evolutionary rates of base substitu-
tions through comparative studies of nucleotide sequences. Journal of Molecular
Evolution, 16:111–120, 1980.

12. J. Lagergren. Combining polynomial running time and fast convergence for the
disk-covering method. JCSS: Journal of Computer and System Sciences, 65, 2002.

13. L. Nakhleh, B.M.E. Moret, K. St John, J. Sun, U. Roshan, and T. Warnow. The
accuracy of fast phylogenetic methods for large datasets. PSB-02, pages 211–222,
2002.

14. A. Rambaut and N.C. Grassly. Seq-gen: An application for the monte carlo sim-
ulation of dna sequence evolution along phylogenetic trees. Comp. Appl. Biosci.,
13:235–238, 1997.

15. N. Saitou and M. Nei. The neighbor-joining method: a new method for recon-
structing phylogenetic trees. Mol. Biol. Evol., 4:406–425, 1987.

16. M. Sanderson. r8s software package. http://ginger.ucdavis.edu/r8s/.
17. CN. Pedersen T. Mailund. Quickjoin–fast neighbour-joining tree reconstruction.

Bioinformatics, 2004.

Randomized Fast Design of Short DNA Words�

Ming-Yang Kao, Manan Sanghi, and Robert Schweller

Department of Computer Science,
Northwestern University,
Evanston, IL 60201, USA

{kao, manan, schwellerr}@cs.northwestern.edu

Abstract. We consider the problem of efficiently designing sets (codes)
of equal-length DNA strings (words) that satisfy certain combinato-
rial constraints. This problem has numerous motivations including DNA
computing and DNA self-assembly. Previous work has extended results
from coding theory to obtain bounds on code size for new biologically
motivated constraints and has applied heuristic local search and genetic
algorithm techniques for code design. This paper proposes a natural op-
timization formulation of the DNA code design problem in which the
goal is to design n strings that satisfy a given set of constraints while
minimizing the length of the strings. For multiple sets of constraints, we
provide high-probability algorithms that run in time polynomial in n and
any given constraint parameters, and output strings of length within a
constant factor of the optimal. To the best of our knowledge, this work
is the first to consider this type of optimization problem in the context
of DNA code design.

1 Introduction

In this paper we study the problem of efficiently designing sets (codes) of DNA
strings (words) of near optimal length that fulfill certain combinatorial con-
straints. Many applications have emerged in recent years that depend on the
scalable design of such words. One such problem is in DNA computing where
inputs to computational problems are encoded into DNA strands for the purpose
of computing via DNA complementary binding [1]. Another application involves
implementing Wang tile self-assembly systems by encoding glues of Wang tiles
into strands of DNA [17]. DNA words can also be used to store information at
the molecular level [4], act as molecular bar codes for identifying molecules in
complex libraries [5, 4, 13], or implement DNA arrays [3].

For a set of DNA words to be effective for the above applications, they must
fulfill a number of combinatorial constraints. Of particular importance is the
need for specific hybridization between a given word and its unique Watson-
Crick complement. That is, we need to make sure that hybridization does not

� Supported in part by NSF Grant EIA-0112934.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 1275–1286, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1276 M.-Y. Kao, M. Sanghi, and R. Schweller

Table 1. This table summarizes our results regarding the efficient design of DNA
words. Here n is the number of words; k denotes the maximum of the constraint
parameters for constraints 1 through 6 (see Section 2); and � = Θ(k + log n) denotes
the optimal achievable word length for the listed word design problems (see Theorems 1,
3, 4 and 6)

Word Length and Time Complexity for DNA Word Design

Word Length Time Complexity
Lower Bound Upper Bound Lower Bound Upper Bound

DWD1,2,3,4,5,6,7 Θ(�) Θ(n�)
(Thm. 1) (Thm. 3) (Thm. 1) (Thm. 3)

DWD1,2,3,7,8 Θ(�) Θ(n�)
(Thm. 1) (Thm. 4) (Thm. 1) (Thm. 4)

DWD1,2,3,4,5,6,9 Θ(�) Ω(n�) O

(
min

{
�1.5 log0.5 � + n�,
n� log �

})
(Thm. 1) (Thm. 6) (Thm. 1) (Thm. 6)

occur among a word and the complement of a different word in the set, or
even of any word with any other word in the set. For this requirement Marathe
et al. [12] have proposed the basic Hamming constraint, reverse complement
Hamming constraint, and self-complementary constraint. We further consider the
more restricting shifting Hamming constraint which requires a large Hamming
distance between all alignments of any pair of words [6].

We also consider three constraints not related to Hamming distance. The
consecutive base constraint limits the length of any run of identical bases in any
given word. Long runs of identical bases are considered to cause hybridization
errors [14, 6]. The GC content constraint requires that a large percentage of the
bases in any given word are either G or C. This constraint is meant to give each
string similar thermodynamic properties [14, 16, 15]. The free energy constraint
requires that the difference in free energy of any two words is bounded by a
small constant. This helps ensure that each word in the set has a similar melting
temperature [6, 12].

In addition to the above constraints, it is desirable for the length
 of each
word to be as small as possible. The motivation for minimizing
 is evident from
the fact that it is more difficult to synthesize longer strands. Similarly, longer
DNA strands require more DNA to be used for the respective application.

There has been much previous work in the design of DNA words [6, 12, 4, 9,
10, 11, 13, 16, 15]. In particular, Marathe et al. [12] have extended results from
coding theory to obtain bounds on code size for various biologically motivated
constraints. However, most work in this area has been based on heuristics, genetic
algorithms, and stochastic local searches that do not provide provably good
words provably fast.

Randomized Fast Design of Short DNA Words 1277

In this work we provide algorithms with analytical guarantees for combina-
torial structures and time complexity. In particular, we formulate an optimiza-
tion problem that takes as input a desired number of strings n and produces n
length-
 strings that satisfy a specified set of constraints, while at the same time
minimizing the length
. We restrict our solution to this problem in two ways.
First, we require that our algorithms run in time only polynomial in the number
of strings n as well as any given constraint parameters. Second, we require that
our algorithms produce sets of words that achieve word length
 that is within a
constant multiple of the optimal achievable word length, while at the same time
fulfilling the respective constraints with high probability. For various subsets of
the constraints we propose, we provide algorithms that do this. We thus provide
fast algorithms for the creation of sets of short words.

Paper Layout: In Section 2, we describe the different biologically motivated com-
binatorial constraints we use. In Section 3 we solve the design problem with
subsets of constraints including the Hamming constraints, the consecutive bases
constraint, and the GC content constraint. In Section 4 we extend our algorithms
to deal with the free energy constraint.

2 Preliminaries

2.1 Notations

Let X = x1x2 . . .x
 be a word where xi belongs to some alphabet Π. In this
paper we deal with two alphabets, namely, the binary alphabet ΠB = {0, 1} and
the DNA alphabet ΠD = {A,C,G,T}. The elements of an alphabet are called
characters. We will use capital letters for words and small letters for characters.
Our goal is to design DNA words but some of our algorithms generate binary
words in intermediate steps.

The reverse of X, denoted by XR, is the word x
x
−1 . . .x1. The complement
of a character x is denoted by xc. The complements for the binary alphabet are
given by 0c = 1, 1c = O, and for the DNA alphabet we have Ac = T , Cc = G,
Gc = C, T c = A.

The complement of a word is obtained by taking the complement of each
of the characters in the word, i.e., XC = xc

1x
c
2 . . .x

c

. The reverse complement

of X is the complement of XR, XRC = xc

x

c

−1 . . .x

c
1. The Hamming distance

H(X,Y) between two words X and Y is the number of positions where X differs
from Y .

We are interested in designing a set W of n words over ΠD each of length

which satisfy the constraints defined in Section 2.2 below.

2.2 Constraints

The constraints we consider can be classified into two categories: non-interaction
constraints and stability constraints. Non-interaction constraints ensure that un-
wanted hybridizations between two DNA strands are avoided, and stability con-
straints ensure that the DNA strands are stable in a solution. The first six

1278 M.-Y. Kao, M. Sanghi, and R. Schweller

constraints below are non-interaction constraints while the remaining three are
stability constraints.

C1(k1): Basic Hamming Constraint (k1) = for any words Y,X ∈ W, H(Y,X)
≥ k1.
This constraint limits non-specific hybridizations between the Watson-Crick
complement of some word Y with a distinct word X.

C2(k2): Reverse Complementary Constraint (k2) = for any words Y,X ∈
W, H(Y,XRC) ≥ k2.
This constraint is intended to limit hybridization between a word and the
reverse of another word.

C3(k3): Self Complementary Constraint (k3) = for any word Y ,H(Y, Y RC) ≥
k3.
This constraint prevents a word from hybridizing with itself.

C4(k4): Shifting Hamming Constraint (k4) = for any two words Y,X ∈ W,

H(Y [1..i], X[(
− i + 1)..
]) ≥ k4 − (
− i) for all i.

This is a stronger version of the Basic Hamming Constraint.
C5(k5): Shifting Reverse Complementary Constraint (k5) = for any two

words Y,X ∈ W,

H(Y [1..i], X[1..i]RC) ≥ k5 − (
− i) for all i; and

H(Y [(
− i + 1)..
], X[(
− i + 1)..
]RC) ≥ k5 − (
− i) for all i.

This is a stronger version of the Reverse Complementary Constraint.
C6(k6): Shifting Self Complementary Constraint (k6) = for any word Y ∈

W,
H(Y [1..i], Y [1..i]RC) ≥ k6 − (
− i) for all i; and

H(Y [(
− i + 1)..
], Y [(
− i + 1)..
]RC) ≥ k6 − (
− i) for all i.

This is a stronger version of the Self Complementary Constraint.
C7(γ): GC Content Constraint (γ) = γ percentage of bases in any word

Y ∈ W are either G or C.
The GC content affects the thermodynamic properties of a word [14, 16, 15].
Therefore, having the same ratio of GC content for all the words will assure
similar thermodynamic characteristics.

C8(d): Consecutive Base Constraint (d) = no word has more than d consec-
utive bases for d ≥ 2.
In some applications, consecutive occurrences (also known as runs) of the
same base increase the number of annealing errors.

C9(σ): Free Energy Constraint (σ) = for any two words Y,X ∈ W, FE(Y)−
FE(X) ≤ σ where FE(W) denotes the free energy of a word defined in
Section 4.
This constraint ensures that all the words in the set have similar melting
temperatures which allows hybridization of multiple DNA strands to proceed
simultaneously [13].

Randomized Fast Design of Short DNA Words 1279

For each of the given constraints above we assign a shorthand boolean func-
tion Ci(t) to denote whether or not a given set of words W fulfills constraint Ci

with respect to parameter t. For a given integer n, the goal of DNA word design
is to efficiently create a set of n length-
 words such that a given subset of the
above constraints are satisfied, while trying to minimize
. That is, for a given
subset of constraints {Cπ1 ,Cπ2 , . . . ,Cπr

} ⊆ {C1,C2, . . . ,C9}, the corresponding
DNA word design (DWD) optimization problem is as follows.

Problem 1 (DWDπ1,π2,...,πr
).

Input: Integers n, t1, t2, . . . , tr.
Output: A set W of n DNA strings each of the minimum length such that for
all 1 ≤ i ≤ r the constraint Cπi

(ti) is satisfied over set W.

For this problem we have the following trivial lower bounds for time com-
plexity and the word size
 when any one of the first six constraints is applied.

Theorem 1. Consider a set W of n DNA words each of length
.

1. If W fulfills any one of the constraints C1(k),C2(k),C3(k),C4(k),C5(k), and
C6(k), then
 = Ω(k + log n).

2. The time complexity of producing a set W that fulfills any one of the con-
straints C1(k), C2(k), C3(k), C4(k), C5(k), and C6(k) is Ω(nk + n log n).

The goal of DNA word design is to simultaneously satisfy as many of the
above nine constraints as possible while achieving words within a constant factor
of the optimal length
 for the given set of constraints. In Section 3 we show how
to accomplish this goal for various subsets of the constraints.

3 Algorithms for DNA Word Design

In this section we develop randomized algorithms to generate sets of length-

DNA words that satisfy certain sets of constraints while keeping
 within a con-
stant of the optimal value. In particular, we first show how simply generating
a set of n words at a specific length
 = O(k + log n) uniformly at random
is sufficient to fulfill constraints 1, 2, 3, 4, 5, and 6 simultaneously with high
probability. We then propose three extensions to this algorithm to fulfill differ-
ent subsets of constraints within a constant factor of the optimal word length.
The first extension yields an algorithm for fulfilling the GC content constraint
while the second yields one for the consecutive base and GC content constraints
at the cost of the shifting constraints. Finally, we extend the basic randomized
algorithm to fulfill the free energy constraint. The first is thus an algorithm for
simultaneously fulfilling constraints 1, 2, 3, 4, 5, 6, and 7, the second simultane-
ously fulfills constraints 1, 2, 3, 7, and 8, and the last one fulfills constraints 1,
2, 3, 4, 5, 6 and 9.

1280 M.-Y. Kao, M. Sanghi, and R. Schweller

Algorithm. FastDWD1,2,3,4,5,6(n, k1, k2, k3, k4, k5, k6)

1. Let k = max{k1, k2, k3, k4, k5, k6}.
2. Generate a setW of n words over ΠD of length � = 9·max{k, !log4 n"} uniformly

at random.
3. Output W.

Fig. 1. A randomized algorithm for generating n DNA strings satisfying constraints
C1(k1), C2(k2), C3(k3), C4(k4), C5(k5), and C6(k6)

3.1 A Simple Randomized Algorithm

Problem 2 (DWD1,2,3,4,5,6).
Input: Integers n, k1, k2, k3, k4, k5, k6.
Output: A set W of n DNA strings each of the minimum length such that the
constraints C1(k1), C2(k2), C3(k3), C4(k4), C5(k5), C6(k6) hold.

The next theorem shows that Algorithm FastDWD1,2,3,4,5,6 (n, k1, k2, k3, k4,
k5, k6) in Figure 1 yields a polynomial-time solution to the DWD1,2,3,4,5,6 prob-
lem with high probability. We omit the proof in the interest of space.

Theorem 2. Algorithm FastDWD1,2,3,4,5,6 produces a setW of n DNA words of
optimal length Θ(k+log n) in optimal time Θ(n·k+n· log n) satisfying constraints
C1(k1), C2(k2), C3(k3), C4(k4), C5(k5) and C6(k6) with probability of failure
o(1/(n + 4k)), where k = max{k1, k2, k3, k4, k5, k6}.

Proof (Sketch). The probability that two random words violate any of the con-
straints C1(k1), C2(k2), C4(k4), and C5(k5), can be bounded using Chernoff type
bounds. Similarly, we can bound the probability of a random word violating any
of the constraints C3(k3) and C6(k6).

We can then apply the Boole-Bonferroni Inequaltities to yield a bound on the
probability that any pair of words in a set of n random words violates constraints
C1(k1), C2(k2), C4(k4), or C5(k5); or that any single word violates constraints
C3(k3) or C6(k6). ��

3.2 Incorporating the GC Content Constraint into
FastDWD1,2,3,4,5,6

Now we show how to modify Algorithm FastDWD1,2,3,4,5,6 so that it produces a
set of words that also satisfies the GC content constraint. That is, we will show
how to solve the following problem.

Problem 3 (DWD1,2,3,4,5,6,7).
Input: Integers n, k1, k2, k3, k4, k5,k6, γ.
Output: A set W of n DNA strings each of the minimum length such that the
constraints C1(k1), C2(k2), C3(k3), C4(k4), C5(k5), C6(k6), C7(γ) hold.

We modify Algorithm FastDWD1,2,3,4,5,6 to get Algorithm FastDWD1,2,3,4,5,6,7

shown in Figure 2. The next theorem shows that FastDWD1,2,3,4,5,6,7 yields a

Randomized Fast Design of Short DNA Words 1281

Algorithm. FastDWD1,2,3,4,5,6,7(n, k1, k2, k3, k4, k5, k6, γ)

1. Let k = max{k1, k2, k3, k4, k5, k6}.
2. Generate a set W of n words over the binary alphabet ΠB of length � =

10·max{k, !log2 n"} uniformly at random.
3. For each word W ∈ W, for any !γ·�" characters in W , replace 0 by G and 1 by

C. For the remaining characters replace 0 by A and 1 by T to get W ′. Let W ′

be the set of all words W ′.
4. Output W ′.

Fig. 2. A randomized algorithm for generating n DNA strings satisfying constraints
C1(k1), C2(k2), C3(k3), C4(k4), C5(k5), C6(k6), and C7(γ)

polynomial-time solution to DWD1,2,3,4,5,6,7 with high probability. We omit the
proof in the interest of space.

Theorem 3. Algorithm FastDWD1,2,3,4,5,6,7 produces a set W of n DNA words
of optimal length Θ(k + log n) in optimal time Θ(n·k + n· log n) satisfying con-
straints C1(k1), C2(k2), C3(k3), C4(k4), C5(k5), C6(k6), and C7(γ) with proba-
bility of failure o(1/(n + 2k)), where k = max{k1, k2, k3, k4, k5, k6}.

3.3 Incorporating the Consecutive Bases Constraint into
FastDWD1,2,3,4,5,6,7

Now we modify Algorithm FastDWD1,2,3,4,5,6,7 so that it produces a set that
satisfies both the GC content constraint and the consecutive base constraint
at the cost of the shifting constraints. That is, we will show how to solve the
following problem.

Problem 4 (DWD1,2,3,7,8).
Input: Integers n, k1, k2, k3, γ, d.
Output: A set W of n DNA strings each of the minimum length such that the
constraints C1(k1), C2(k2), C3(k3), C7(γ), C8(d) hold.

We use Algorithm BreakRuns shown in Figure 3 to break long runs for a
binary word so that it satisfies the consecutive bases constraint with parameter
d. Intuitively what this algorithm does is for a given word X, it outputs X ′ by
inserting characters at intervals of d− 1 from the left and the right in a manner
such that there are no consecutive runs of length greater than d. We need to add
characters from both ends to ensure that H(X,Y RC) ≤ H(X ′, Y ′RC) where X ′

and Y ′ are the respective outputs for X and Y from BreakRuns.
We modify Algorithm FastDWD1,2,3,4,5,6,7 to get Algorithm FastDWD1,2,3,7,8

shown in Figure 3. The next theorem shows that FastDWD1,2,3,7,8 yields a
polynomial-time solution to DWD1,2,3,7,8 with high probability. We omit the
proof in the interest of space.

Theorem 4. Algorithm FastDWD1,2,3,7,8 produces a set W of n DNA words of
optimal length Θ(k+log n) in optimal time Θ(n·k+n· log n) satisfying constraints

1282 M.-Y. Kao, M. Sanghi, and R. Schweller

Algorithm. BreakRuns(X, d)

1. Let X = x1x2 . . . x�. For 0 < i ≤ ! �
2(d−1)

" − 1, let x′
�i

= xc
i(d−1) and x′

ri
=

xc
�−i(d−1). Let x′

mid = xc
��/2�.

2. Output X ′ = x1 . . . xd−1x
′
�1xd . . . x��/2�x

′
midx��/2�+1 . . . x�−(d−1)−1x

′
r1x�−(d−1)

. . . x�.

Algorithm. FastDWD1,2,3,7,8(n, k1, k2, k3, γ, d)

1. Let k = max{k1, k2, k3}.
2. Generate a set W of n words over the binary alphabet ΠB of length � =

10·max{k, !log2 n"} uniformly at random.
3. For each word W ∈ W, let W ′ = BreakRuns(W, d). Let W ′ be the set of all

words W ′.
4. For each word W ′ ∈ W ′, for any !γ·�" characters in W ′, replace 0 by G and 1

by C. For the remaining characters replace 0 by A and 1 by T to get W ′′. Let
W ′′ be the set of all words W ′′.

5. Output W ′′.

Fig. 3. Algorithms for generating n DNA strings satisfying constraints C1(k1), C2(k2),
C3(k3), C7(γ), and C8(d)

C1(k1), C2(k2), C3(k3), C7(γ), and C8(d) with probability of failure o(1/(n+2k)),
where k = max{k1, k2, k3}.

4 Incorporating the Free Energy Constraint into
FastDWD1,2,3,4,5,6

Now we give an alternate modification of Algorithm FastDWD1,2,3,4,5,6 such that
the free energy constraint is satisfied. The free-energy FE(X) of a DNA word
X = x1x2 . . .x
 is approximated by FE(X) = correction factor +

∑
−1
i=1 Γxi,xi+1 ,

where Γx,y is the pairwise free energy between base x and base y [7]. For sim-
plicity, we denote the free energy as simply the sum

∑
−1
i=1 Γxi,xi+1 with respect

to a given pairwise energy function Γ . Let Γmax and Γmin be the maximum and
the minimum entries in Γ respectively. Let D = Γmax − Γmin.

We now show how to satisfy the free energy constraint C9(σ) for a constant
σ = 4D + Γmax, while simultaneously satisfying constraints 1, 2, 3, 4, 5, and 6.
That is, we show how to solve the following problem.

Problem 5 (DWD1,2,3,4,5,6,9).
Input: Integers n, k1, k2, k3, k4, k5, k6.
Output: A set W of n DNA strings each of the minimum length such that the
constraints C1(k1), C2(k2), C3(k3), C4(k4), C5(k5), C6(k6), C9(4D+Γmax) hold.

We modify Algorithm FastDWD1,2,3,4,5,6 to get Algorithm FastDWD1,2,3,4,5,6,9

shown in Figure 4 for solving DWD1,2,3,4,5,6,9. The following lemmas identify the prop-
erties of symbols Δ,W,Wmax,Wmin, Si, Ŝj , α, β, and W ′

i defined in Figure 4 and are
used for proving the correctness of Algorithm FastDWD1,2,3,4,5,6,9.

Randomized Fast Design of Short DNA Words 1283

Algorithm. FastDWD1,2,3,4,5,6,9(n, k1, k2, k3, k4, k5, k6)

Let Ŝ1, Ŝ2, . . . , Ŝ4m

be all possible sequences of length m = 2� where � is as defined
in Step 2 below such that FE(Ŝ1) ≤ FE(Ŝ2) ≤ · · · ≤ FE(Ŝ4m

). For two strings X
and Y of respective lengths �X and �Y where �Y is even, let X ⊗ Y be the string
Y [1..(�Y /2)] X[1..�X] Y [(�Y /2 + 1)..�Y]. Let Δ = maxi{FE(Ŝi+1)− FE(Ŝi)}.

1. Let k = max{k1, k2, k3, k4, k5, k6}.
2. Generate a set W of n DNA words of length � = 9·max{k, !log4 n"} uniformly

at random.
3. Let Wmax = maxX∈W{FE(X)} and Wmin = minX∈W{FE(X)}.

if Wmax −Wmin ≤ 3D, then output W.
else

4. Let α = Wmax + Ŝ1 and β = α + Δ. For each Si ∈ W, find Ŝj such that
α ≤ FE(Si) + FE(Ŝj) ≤ β. Let W ′

i = Si ⊗ Ŝj .
5. output W ′ = {W ′

1, . . . ,W
′
n}.

Fig. 4. A randomized algorithm for generating n DNA strings satisfying constraints
C1(k1), C2(k2), C3(k3), C4(k4), C5(k5), C6(k6), and C9(4D + Γmax)

Lemma 1. Δ < 2D.

Lemma 2. If Wmax −Wmin > 3D, then Wmax −Wmin + 2D ≤ FE(Ŝ4m

)− FE(Ŝ1).

Lemma 3. For each Si ∈ W, there exists Ŝj such that α ≤ FE(Si) + FE(Ŝj) ≤ β.

Lemma 4. For all i, α−D ≤ FE(W ′
i) ≤ β + D + Γmax.

Section 4.1 discusses the details for Step 4 of the algorithm. Finally, Section 4.2
establishes its correctness and time complexity.

4.1 Computing Strings with Bounded Energies

In Step 4 of Algorithm FastDWD1,2,3,4,5,6,9 we need to produce a set of n DNA strings
Ŝ1, Ŝ2, . . . Ŝn, each of a given length L = m, such that Ai ≤ FE(Ŝi) ≤ Bi for some Ai,
Bi such that Bi −Ai ≤ Δ. That is, we need to solve the following problem.

Problem 6 (Bounded-Energy Strand Generation).
Input:

1. Integers Ai and Bi for i = 1 to n such that
(a) Ai ≥ Wmin;
(b) Bi ≤ Wmax;
(c) Bi −Ai ≤ Δ.

2. Length L.

Output: Strings Ŝ1, Ŝ2, . . . Ŝn each of length L and respective energy Ei such that
Ai ≤ Ei ≤ Bi.

1284 M.-Y. Kao, M. Sanghi, and R. Schweller

Our solution to this problem involves transforming the blunt of the computational
task into the problem of polynomial multiplication. Consider the following polynomial.

Definition 1. For any integer � ≥ 1, let f�,a,b(x) be the polynomial
∑�·m

z=0 ζzx
z where

coefficient ζz is the number of length-� strings whose first character is a, last character
is b, and free energy is z.

For f�(x) =
∑

∀a,b∈Π f�,a,b(x) the coefficient of xi denotes the number of strings of
length � and free energy i. As a first step towards our solution, we use a subroutine
BUILD(L) which computes Φ, the polynomials fL,a,b(x), f�L/2�,a,b(x), . . . , f1,a,b(x), for
all a, b ∈ Π in O(L logL) time. The efficient computation of these polynomials relies
on the following recursive property.

Lemma 5. For any integers �1, �2 ≥ 1,

f�1+�2,a,b(x) =
∑

d1,d2∈Π

f�1,a,d1(x) · f�2,d2,b(x) · xΓd1,d2 .

The problem of determining the number of strings of length L and free energy E is
considered in [12] and a dynamic programming based O(L2)-time algorithm is provided.
However, exploiting the recursive property of Lemma 5 and Fast Fourier Transforms
[8] for polynomial multiplication the subroutine BUILD solves this problem in faster
O(L logL) time and may be of independent interest.

Our algorithm for Problem 6 has two phases, the build phase and the extract phase.
The build phase constructs a data structure that permits the extract phase to be
executed quickly. In the extract phase, an extraction routine is run n times to output
Ŝi for each i ∈ [1,n]. Since the extraction routine is executed n times and the build
routine only once, the phase that constitutes the bottleneck for our algorithm for
Problem 6 depends on the values of n and L. We thus provide two forks for the
algorithm to take, one with a fast build routine and a modestly fast extract routine,
and the other with a slower build routine but an optimally fast extract routine. In
particular, if n is sufficiently larger than L, our algorithm for Problem 6 calls a routine
SlowBuild(L) which improves the runtime of Extract. Otherwise, only a faster BUILD
function is called in the first phase, leading to a slower Extract routine. The algorithm
for Problem 6 is given in Figure 5.

Algorithm ConstructStrings makes use of three subroutines – Build, SlowBuild
and Extract. The procedure Build(L) computes Φ, a data structure containing for all
a, b ∈ Π and a given L, the polynomials f�,a,b(x) for � = L, �L

2
�, �L

4
�, �L

8
�, . . ., 1. This

Algorithm. ConstructStrings({Ai}, {Bi}, L)

1. Let Φ← Build(L).

2. if n ≥
√

L
log L

, then Ψ ← SlowBuild(L), else Ψ ← NULL.

3. For each i = 1 to n, find a nonzero coefficient ζEi of XEi in some polynomial
fa,b

L (x) ∈ Φ such that Ai ≤ Ei ≤ Bi.

4. For i = 1 to n, set Ŝi = Extract(Ei, Φ, Ψ).

Fig. 5. This algorithm solves the Bounded Energy Strand Generation Problem (Prob-
lem 6)

Randomized Fast Design of Short DNA Words 1285

permits Extract(E,Φ, Ψ) to obtain a length L string of energy E in time O(L logL).
A call to SlowBuild(L) of time complexity O(L1.5 log0.5 L) improves the complexity of
Extract(E,Φ, Ψ) to O(L) by computing Ψ , a data structure containing for every non-
zero term xi in f� L

2a �,a,b a corresponding pair of non-zero terms xj and xi−j−Γd1,d2 in

f� L
2a+1 �,a,d1

and f� L
2a+1 �,d2,b respectively. This yields the following theorem.

Theorem 5. Algorithm ConstructStrings({Ai}, {Bi}, L) solves Problem 6 in time
O(min{nL logL,L1.5 log0.5 L + nL}).

4.2 Putting It All Together for DWD1,2,3,4,5,6,9

Theorem 6. Algorithm FastDWD1,2,3,4,5,6,9 produces a set of n DNA words of optimal
length Θ(k+ log n) in time O(min{n� log �, �1.5 log0.5 �+n�}) satisfying the constraints
C1(k1), C2(k2), C3(k3), C4(k4), C5(k5), C6(k6), and C9(4D + Γmax) with probability
of failure o(1/(n + 4k)), where k = max{k1, k2, k3, k4, k5, k6}.

Proof. From Theorem 2 we know that W satisfies constraints C1(k1), C2(k2), C3(k3),
C4(k4), C5(k5), and C6(k6) with probability of failure o(1/(n+4k)). IfWmax−Wmin ≤
3D, then FastDWD1,2,3,4,5,6,9 outputsW which satisfies C9(3D) and hence also satisfies
C9(4D+Γmax). Otherwise, it is easy to verify that sinceW satisfies these six constraints,
so does W ′. From Lemma 3 we know that there always exists a string Ŝj as required
in Step 4 of FastDWD1,2,3,4,5,6,9. Further, Lemma 4 shows that W ′ satisfies C9(Δ +
2D+Γmax). Therefore,W ′ satisfies constraints C1(k1), C2(k2), C3(k3), C4(k4), C5(k5),
C6(k6), and C9(4D + Γmax) with the stated failure probability.

The length of any word W ′ ∈ W ′ is at most 3� where � = Θ(k + log n), which is
optimal from Theorem 1.

GeneratingW takes O(n·k+n· log n) time. The bulk of the time complexity for the
algorithm comes from Step 4, which is analyzed in Section 4.1 to get O(min{nL logL,
L1.5 log0.5 L + nL}) (see Theorem 5) where L = O(�). $%

5 Future Work

A number of problems related to this work remain open. It is still unknown how to
generate words of optimal length that simultaneously satisfy the free energy constraint
and the consecutive bases constraint. We also have not provided a method for combining
the consecutive bases constraint with any of the shifting constraints.

Another open research area is the verification problem of testing whether or not
a set of words satisfy a given set of constraints. This problem is important because
our algorithms only provide a high-probability assurance of success. While verification
can clearly be done in polynomial time for all of our constraints, the naive method of
verification has a longer runtime than our algorithms for constructing the sets. Finding
faster, non-trivial verification algorithms is an open problem.

A third direction for future work involves considering a generalized form of the
basic Hamming constraint. There are applications in which it is desirable to design
sets of words such that some distinct pairs bind with one another, while others do not
[2, 14]. In this scenario, we can formulate a word design problem that takes as input
a matrix of pairwise requirements for Hamming distances. Determining when such a
problem is solvable and how to solve it optimally when it is are open problems.

1286 M.-Y. Kao, M. Sanghi, and R. Schweller

References

[1] L. M. Adleman, Molecular Computation of Solutions to Combinatorial Problems,
Science, 266 (1994), pp. 1021–1024.

[2] G. Aggarwal, M. H. Goldwasser, M.-Y. Kao, and R. T. Schweller, Com-
plexities for Generalized Models of Self-Assembly, in Proceedings of the 15th An-
nual ACM-SIAM Symposium on Discrete Algorithms, 2004, pp. 880–889.

[3] A. Ben-Dor, R. Karp, B. Schiwkowski, and Z. Yakhini, Universal DNA
Tag Systems: A Combinatorial Design Scheme, in Proceedings of the 4th Annual
International Conference on Computational Molecular Biology, 2000, pp. 65–75.

[4] S. Brenner, Methods for Sorting Polynucleotides using Oligonucleotide Tags. US
Patent Number 5,604,097, February 1997.

[5] S. Brenner and R. A. Lerner, Encoded Combinatorial Chemistry, in Proceed-
ings of Natianal Academy of Science, vol. 89, June 1992, pp. 5381–5383.

[6] A. Brennerman and A. E. Condon, Strand Design for Bio-Molecular Compu-
tation, Theoretical Computer Science, 287 (2001), pp. 39–58.

[7] K. J. Breslauer, R. Frank, H. Blocker, and L. A. Marky, Predicting DNA
Duplex Stability from the Base Sequence , in Proceedings of the National Academy
of Sciences, vol. 83, 1986, pp. 3746–3750.

[8] T. H. Cormen, C. L. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, MIT Press, Cambridge, MA, 2nd ed., 2001.

[9] R. Deaton, M. Garzon, R. Murphy, D. Franceschetti, and S. Stevens,
Genetic Search of Reliable Encodings for DNA Based Computation, in Proceedings
of the 1st Annual Conference on Genetic Programming, 1996, pp. 9–15.

[10] A. G. Frutos, Q. Liu, A. J. Thiel, A. M. W. Sanner, A. E. Condon, L. M.
Smith, and R. M. Corn, Demonstration of a Word Design Strategy for DNA
Computing on Surfaces, Nucleic Acids Research, 25 (1997), pp. 4748–4757.

[11] M. Garzon, R. Deaton, P. Neathery, D. Franceschetti, and R. Murphy,
A New Metric for DNA Computing, in Proceedings of the 2nd Genetic Program-
ming Conference, 1997, pp. 472–278.

[12] A. Marathe, A. Condon, and R. M. Corn, On Combinatorial DNA Word
Design, Journal of Computational Biology, 8 (2001), pp. 201–219.

[13] D. D. Shoemaker, D. A. Lashkari, D. Morris, M. Mittmann, and R. W.
Davis, Quantitative Phenotypic Analysis of Yeast Deletion Mutants Using a Highly
Parallel Molecular Bar-coding Strategy, Nature, 16 (1996), pp. 450–456.

[14] S. A. Tsaftaris, DNA Computing from a Signal Processing Viewpoint, IEEE
Signal Processing Magazine, 21 (2004), pp. 100–106.

[15] D. C. Tulpan and H. H. Hoos, Hybrid Randomised Neighbourhoods Improve
Stochastic Local Search for DNA Code Design, in Lecture Notes in Computer
Science 2671: Proceedings of the 16th Conference of the Canadian Society for
Computational Studies of Intelligence, Y. Xiang and B. Chaib-draa, eds., Springer-
Verlag, New York, NY, 2003, pp. 418–433.

[16] D. C. Tulpan, H. H. Hoos, and A. Condon, Stochastic Local Search Algorithms
for DNA Word Design, in Lecture Notes in Computer Science 2568: Proceedings
of the 8th International Workshop on DNA-Based Computers, M. Hagiya and
A. Ohuchi, eds., Springer-Verlag, New York, NY, 2003, pp. 229–241.

[17] E. Winfree, F. Liu, L. Wenzler, and N. Seeman, Design and Self-Assembly
of Two-Dimensional DNA Crystals, Nature, 394 (1998), pp. 539–544.

A Quantum Lower Bound for the Query

Complexity of Simon’s Problem

Pascal Koiran, Vincent Nesme, and Natacha Portier

Laboratoire de l’Informatique du Parallélisme,
Ecole Normale Supérieure de Lyon, 46, allée d’Italie,

69364 Lyon Cedex 07, France
{Pascal.Koiran, Vincent.Nesme, Natacha.Portier}@ens-lyon.fr

Abstract. Simon in his FOCS’94 paper was the first to show an expo-
nential gap between classical and quantum computation. The problem
he dealt with is now part of a well-studied class of problems, the hidden
subgroup problems. We study Simon’s problem from the point of view of
quantum query complexity and give here a first nontrivial lower bound
on the query complexity of a hidden subgroup problem, namely Simon’s
problem. More generally, we give a lower bound which is optimal up to
a constant factor for any Abelian group.

1 Introduction

Given an Abelian group G and a subgroup H ≤ G, a function f : G → X is said
to be hiding H if f can be defined in a one-to-one way on G/H . More precisely,
f hides H if and only if

∀g, g′ ∈ G (f(g) = f(g′) ⇐⇒ ∃h ∈ H g = g′ + h)

Suppose G is a fixed group and f is computed by an oracle: a quantum black-
box. We are interested here in algorithms that find the hidden subgroup H .
A large amount of documentation about the hidden subgroup problem can be
found in the book of Nielsen and Chuang [13]1. Among all work already done
about such algorithms one can cite Shor’s famous factoring algorithm [17]: it
uses a period-finding algorithm, which is a special case of a hidden subgroup
problem. In recent years, attention has shifted to non-Abelian hidden subgroup
problems but we will restrict our attention here to Abelian groups.

In general, two kinds of complexity measures for black-box problems can
be distinguished: query complexity, i.e., the number of times the function f
is evaluated using the black-box, and computational or time complexity, i.e.,
the number of elementary operations needed to solve the problem. Typically, a
hidden subgroup algorithm is considered efficient if its complexity (in query or in

1 History of the problem on page 246 and expression of many problems (order-finding,
dicrete logarithm...) in terms of hidden subgroup problems on page 241.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 1287–1298, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

1288 P. Koiran, V. Nesme, and N. Portier

time, depending on the interest) is polynomial in the logarithm of the cardinality
of G. For example, Kuperberg’s algorithm [10] for the (non-Abelian) dihedral
hidden subgroup problem is subexponential (but superpolynomial) in both time
and query complexities.

Our main result is that the query complexity of finding a subgroup hidden
in G is of order r(G) for any Abelian group G, where r(G) denotes the rank
of G, that is, the minimal cardinality of a generating set of G (for instance,
r((Z/pZ)n) = n if p ≥ 2 is an arbitrary integer). The proof of this result is
naturally divided into an upper bound and a lower bound proof. The upper
bound is achieved through a tight analysis of the standard Fourier sampling
algorithm. It is a folklore theorem in quantum computation that this algorithm
solves the hidden subgroup problem in Abelian groups with polynomial query
complexity (see for instance [7], [5], [2] or [8]), but strangely enough no precise
analysis seems to be available in the litterature.

The greatest part of this paper is devoted to the lower bound proof. Here
all the important ideas already appear in the analysis of Simon’s problem, to
which our preprint [9] is devoted. It is therefore fitting to recall the history
of this problem, which is defined as follows. We are given a function f from
G = (Z/2Z)n to a known set X of size 2n, and we are guaranteed that the
function fulfills Simon’s promises, that is either:

(1) f is one-to-one, or
(2) ∃s �= 0 ∀w,w′ f(w) = f(w′) ⇐⇒ (w = w′ ∨ w = w′ + s).

The problem is to decide whether (1) or (2) holds. Note that (1) is equivalent
to “f hides the trivial subgroup H = {(0, . . . , 0)}” and (2) is equivalent to “f
hides a subgroup H = {(0, . . . , 0), s} of order 2”. The original problem [18] was
to compute s and the problem considered here is the associated decision problem.
Of course, any lower bound on this problem will imply the same one on Simon’s
original problem. In his article, Simon shows that his problem can be solved by
a quantum algorithm which makes O(n) queries in the worst case and has a
bounded probability of error. The time complexity of his algorithm is linear in
the time required to solve an n×n system of linear equations over (Z/2Z)n. He
also shows that any classical (probabilistic) algorithm for his problem must have
exponential query complexity. As a side remark, note that Simon also gives a
Las Vegas version of his algorithm with expected query complexity O(n). Even
better, Brassard and Høyer [4] have given an “exact polynomial time” quantum
algorithm for Simon’s problem (i.e., their algorithm has a polynomial worst case
running time and zero probability of error).

The two main methods for proving query complexity lower bounds in quan-
tum computing are the adversary method of Ambainis and the polynomial
method (for an excellent review of these methods in French, read [16]). We shall
use the polynomial method, which was introduced in quantum complexity theory
in [3]. There are recent interesting applications of this method to the collision
and element distinctness problem [1, 12]. All previous applications of the poly-
nomial method ultimately rely on approximation theory lemmas of Paturi [15]

A Quantum Lower Bound for the Query Complexity 1289

or Nisan and Szegedy [14]. Besides the application to a new type of problems
(namely, the hidden subgroup problems) we also contribute to the development
of the method by applying it in a situation where these lemmas are not applica-
ble. Instead, we use an apparently new (and elementary) approximation theory
result: Lemma 3 from section 3.

The remainder of this paper is organized follows. After some preliminaries
in section 2 we give in section 3 an Ω(n) lower bound for groups of the form
(Z/pZ)n, where p is a prime number. The general case of arbitrary Abelian
groups (lower and upper bound) is treated in section 4. The longer version of this
paper will also contain lower bounds for other query models than the standard
model presented in section 2. Obtaining tight bounds for non-Abelian groups is
of course a natural open problem.

2 Preliminaries

From now on, p denotes a prime number and the problem of distinguishing the
trivial subgroup from a group of order p in (Z/pZ)n will be called “Simon’s
problem in (Z/pZ)n” (or sometimes just “Simon’s problem”). More precisely,
we are given a function f from G = (Z/pZ)n to a known set X of size pn, and
we are guaranteed that the function fulfills Simon’s promises, that is, either:

(1) f is one-to-one, or
(2) ∃s �= 0 ∀w,w′ [f(w) = f(w′) ⇐⇒ w − w′ ∈ 〈s〉], where 〈s〉 is the group

generated by s.

Again, the problem is to decide whether (1) or (2) holds. As pointed out in the
introduction, Simon considered only the case p = 2.

We assume here that the reader is familiar with the basic notions of quantum
computing [13, 6] and we now present the polynomial method. Let A be a quan-
tum algorithm solving Simon’s decision problem. Without loss of generality, we
can suppose that for every n the algorithm A acts like a succession of operations

U0, O,U1, O, . . . , O,UT (n),M

on a m-qubit, for some m ≥ 2n, starting from state |0〉⊗m. The Ui are unitary
operations independent of f and O is the call to the black-box function: if x and
y are elements of {0, 1}n then O |x, y, z〉 = |x, y ⊕ f(x), z〉. The operation M is
the measure of the last qubit. There are some states of (m− 1)-qubits |φ0(f, n)〉
and |φ1(f, n)〉 (of norm possibly less than 1) such that

UT (n)OUT (n)−1O . . . OU0 |0〉⊗m = |φ0(n, f)〉 ⊗ |0〉+ |φ1(n, f)〉 ⊗ |1〉 .

After the measure M , the result is 0 (reject) with probability ||φ0(n, f)||2 and 1
(accept) with probability ||φ1(n, f)||2. The algorithm A is said to solve Simon’s
problem with bounded error probability ε if it accepts any bijection with prob-
ability at least 1− ε and rejects every other function fullfilling Simon’s promise
with probability at least 1 − ε. By definition, the query complexity of A is the
function T . In section 3 we will prove the following lower bound.

1290 P. Koiran, V. Nesme, and N. Portier

Theorem 1. If A is an algorithm which solves Simon’s problem in (Z/pZ)n with
bounded error probability ε and query complexity T , then for every large enough
integer n we have:

T (n) ≥
log2

(
(2 − 4ε)p

n+3

p−1

)
− 1

2 log2

(
p3

p−1

)
+ 2

.

Altghough it might not be self-evident that T (n) = Ω(n), this bound is in-
deed in the expected range. Indeed, it can be checked easily that the right-hand
side is equivalent, for large values of n, to A(p).n, where A(p) is positive and
lim

p→+∞
A(p) = 1

4 . For p = 2 we obtain the result presented in our preprint [9]:

T (n) ≥ n+2+log2(2−4ε)
8 .

As explained in the introduction, our proof of this theorem is based on the
polynomial method. Lemma 1 below is the key observation on which this method
relies. We state it using the formalism of [1]: if s is a partial function from
(Z/pZ)n to X and f a function from (Z/pZ)n to X , |dom(s)| denotes the size
of the domain of s. Moreover, we define:

Is(f) =
{

1 if f extends s
0 otherwise.

Lemma 1. [3] If A is an algorithm of query complexity T , there is a set S of
partial functions from (Z/pZ)n → E such that for all functions f : (Z/pZ)n →
E, A accepts f with probability

Pn(f) =
∑
s∈S

αsIs(f)

where for every s ∈ S we have |dom(s)| ≤ 2T (n) and αs is a real number.

The goal is now to transform Pn(f) into a low-degree polynomial of a single
real variable. This is achieved in Proposition 1. We can then prove and apply
our lower bound result on real polynomials (Lemma 3).

3 Lower Bound Proof

An algorithm for Simon’s problem is only supposed to distinguish between the
trivial subgroup and a hidden subgroup of cardinality p (we recall that p is
a prime number). To establish our lower bound, we will nonetheless need to
examine its behavior on a black-box hiding a subgroup of arbitrary order (a
similar trick is used in [1] and [12]). Note that this “generalized Simon problem”
(finding an arbitrary hidden subgroup of (Z/pZ)n) can still be solved in O(n)
queries and bounded probability of error by essentially the same algorithm, see
for instance [6].

A Quantum Lower Bound for the Query Complexity 1291

From now on we suppose that A is an algorithm solving Simon’s problem
with probability of error bounded by ε < 1

2 and query complexity T . Moreover,
Pn(f) =

∑
s∈S

αsIs(f) as given by lemma 1.

For 0 ≤ d ≤ n and D = pd, let Qn(D) be the probability that A accepts
f when f is chosen uniformly at random among the functions from (Z/pZ)n to
X hiding a subgroup of (Z/pZ)n of order D. Of course, Qn(D) is only defined
for some integer values of D and it can be extended in many different ways. By
abuse of language we will say that Qn is a polynomial of degree δ if it can be
interpolated by a polynomial of degree δ.

The point of this definition is that we have a bound on some values of Qn,
and a gap between two of them. Namely, we have:

1. for any integer d ∈ [0;n], 0 ≤ Qn(pd) ≤ 1 (this number is a probability), and
2. Qn(1) ≥ 1−ε and Qn(p) ≤ ε, hence |Q′

n(x0)| ≥ 1−2ε
p−1 > 0 for some x0 ∈ [1; 2].

If we denote by XD the set of functions hiding a subgroup of order D, by

Lemma 1 we have Qn(D) =
∑
s∈S

(
αs

|XD |
∑

f∈XD

Is(f)

)
. Hence

Qn(D) =
∑
s∈S

αsQ
s
n(D), (1)

where Qs
n(D) is the probability that a random function f hiding a subgroup of

order D extends s. We now prove that Qn is a low-degree polynomial. By (1),
it suffices to bound the degree of Qs

n. Let us start by counting subgroups:

Lemma 2. Let n and k be nonnegative integers.
The group (Z/pZ)n has exactly βp(n, k) =

∏
0≤i<k

pn−i−1
pk−i−1 distinct subgroups of

order pk.

Proof. We look at (Z/pZ)n as a vector space over the field Z/pZ: from this point
of view the subgroups are the subspaces. We start by counting the number of
free k-tuples of vectors. For the first v0, we can choose anything but 0, so there
are pn−1 choices. For the second vector v1 we can choose any element not in the
subspace generated by v0; pn − p possibilities remain. For the third vector, any
linear combinaison of v0 and v1 is forbidden: there are p2 of them. In general, the
number of free k-tuples of vectors is αp(n, k) =

∏
0≤i<k

(
pn − pi

)
. Each subspace of

dimension k can be generated by αp(k, k) different k-tuples, so the total number
of subspaces of dimension k is αp(n,k)

αp(k,k) =
∏

0≤i<k

pn−i−1
pk−i−1 . Note that this formula is

correct even if k > n, in which case αp(n, k) = 0.

Proposition 1. The polynomial Qn is of degree at most 2T (n).

1292 P. Koiran, V. Nesme, and N. Portier

Proof. By (1), it suffices to show that for all partial functions s : (Z/pZ)n → E
such that |dom(s)| ≤ 2T (n), the probability Qs

n(D) that a random function f
hiding a subgroup of order D extends s is a polynomial in D of degree at most
2T (n). So, let s be such a partial function. We will proceed in three steps: we
first examine the case where s is a constant function, then the case where s is
injective and finally the general case.

Let us therefore suppose that s is constant and note dom(s) = {ai/i = 1 . . . k},
with k ≤ 2T (n), the ai’s being of course all different. A function f hiding a sub-
group H extends s if and only if {ai − a1/i = 1 . . . k} ⊆ H and f(a1) = s(a1).
So Qs

n(D) = Qs′
n (D) where s′(x) = s(x− a1). We will thus suppose without loss

of generality that a1 = 0. Since E, the possible range for f , is of size pn, we have
Qs
n(D) = λ

pn , where λ is the proportion, among the subgroups of order D, of
those containing dom(s). Let H ′ be the subgroup generated by dom(s), and D′ =
pd

′
its order, d′ being the dimension of H ′ as a vector space. The number of sub-

groups of order D containing H ′ is equal to the number of subgroups of order D
D′

of (Z/pZ)n /H ′, which is isomorphic to (Z/pZ)n−d
′
; so there are β(n−d′, d−d′)

of them. We then have Qs
n(D) = 1

pn

β(n−d′,d−d′)
β(n,d) = 1

pn

∏
0≤i<d′

pd−i−1
pn−i−1 , which is a

polynomial in D of degree d′ < |dom(s)| ≤ 2T (n).
Let us now suppose that s is injective. We still note in the same way dom(s) =

{ai/i = 1 . . . k}. A function f hiding a subgroup H extends s if and only if the
ai’s lie in distinct cosets of H and f takes appropriate values on these cosets; so
Qs
n(D) = νλ, where λ is the probability for a subgroup H of order D to contain

none of the ai − aj(i �= j) and ν is the probability to extend s for a function h
hiding a subgroup H of order D that does not contain any of the ai− aj(i �= j).
First we compute ν. For each subgroup H of order D that does not contain any
of the ai−aj(i �= j) there are (pn)(pn−1) . . . (pn−pn/D+1) possible functions f :
choose a different value for each coset of H . Among these functions, the number
of them extending s is (pn−k)(pn−k−1) . . . (pn−pn/D+1): choose a value for
each coset not containing any ai. So ν = (pn−k)!

(pn)! . The probability λ is equal to
1 − μ, where μ is the probability for a subgroup H of order D to contain some
ai − aj for some i �= j.

By the inclusion-exclusion formula, we can expand λ as follows:

λ = 1−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
i�=j

Pr(ai − aj ∈ H)

−
∑

i1 �= j1
i2 �= j2

{i1; j1} �= {i2; j2}

Pr(ai1 − aj1 ∈ H ∧ ai2 − aj2 ∈ H)

+ · · ·
− · · ·
...
+ Pr(∀i �= j ai − aj ∈ H)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Our study of the first case above shows that each term in this sum is a

polynomial in D of degree less than d′, where the order of the subgroup generated

A Quantum Lower Bound for the Query Complexity 1293

by the ai−aj’s is pd
′
. Since ai−aj is always in the subgroup generated by dom(s),

d′ ≤ |dom(s)| ≤ 2T (n).
Finally, in the general case the partial function s is defined by conditions of

the form ⎧⎪⎪⎪⎨⎪⎪⎪⎩
s(a1

1) = s(a1
2) = · · · = s(a1

k1
) = b1

s(a2
1) = s(a2

2) = · · · = s(a2
k2

) = b2
...

s(al
1) = s(al

2) = · · · = s(al
kl

) = bl

with b1, . . . , bl all different. In the same way as before, we will suppose without
loss of generality that a1

1 = 0. Furthermore, since f(aji) = f(aj1) is equivalent to
f(aji − aj1) = f(0) (i.e. aji and aj1 are in the same coset of H) we can remove
each aji , for i, j > 1 from dom(s) and replace them by adding the point aji − aj1
to dom(s) associated to the value b1. The size of dom(s) does not increase. It
may happen that s was already defined on one of these entries and that our
new definition is contradictory. In that case there is simply no subgroup-hiding
function f extending s, so Qs

n is simply the null polynomial and we are done.
We will therefore consider only conditions of the form:⎧⎪⎪⎪⎨⎪⎪⎪⎩

s(0) = s(a1
2) = · · · = s(a1

k1
) = b1

s(a2) = b2
...

s(al) = bl

The probability Qs
n(D) that a function f hiding a subgroup of order D extends s

is the probability Q1 that f satisfies f(0) = f(a1
2) = · · · = f(a1

k1
) = b1 times the

probability Q2 that f extends s given that f(0) = f(a1
2) = · · · = f(a1

k1
) = b1. We

have already computed the first probability: this is the case where s is constant.
Let H ′ be the subgroup generated by the a1

i ’s and D′ = pd
′

its order; then
Q1 = 1

pn

∏
0≤i<d′

pd−i−1
pn−i−1 . Let us define s′ on G/H ′ as the quotient of s if it exists

(if not, this means again that Qs
n is the null polynomial, and we are done). If

f satisfies f(0) = f(a1
2) = · · · = f(a1

k1
) = b1 then we can define f ′ on G/H ′ as

the quotient of f ; the condition “f extends s and hides a subgroup of order D”
is equivalent to “f ′ extends s′ and hides a subgroup of order D/D′”. Since s′

is defined by the condition s′(H ′) = b1, s
′(a2 + H ′) = b2, . . . , s

′(al + H ′) = bl
and is injective, our study of the second case shows that Q2 = Qs′

n (D/D′) is a
polynomial in D of degree less than |dom(s′)|. Hence, Qs

n(D) is a polynomial in
D of degree at most d′ + |dom(s′)| ≤ |dom(s)| ≤ 2T .

Now that we have an upper bound on the degree of Q, let us find a lower
bound. The following analogue of the lemmas of Paturi [15] and Nisan-Szegedy [14]
will help.

Lemma 3. Let c > 0 and ξ > 1 be constants and P a polynomial with the
following properties:

1294 P. Koiran, V. Nesme, and N. Portier

1. For any integer 0 ≤ i ≤ n we have
∣∣P (ξi)

∣∣ ≤ 1.

2. For some real number 1 ≤ x0 ≤ ξ we have |P ′(x0)| ≥ c.

Then deg(P) = Ω (n), and more precisely: deg(P) ≥ min
(

n
2 ,

log2(ξn+3c)−1

log2

(
ξ3

ξ−1

)
+1

)
.

Proof. Let d be the degree of P , and let us write P ′(X) = λ
d−1∏
i=1

(X −αi), where

the αi’s are real or complex numbers. The polynomials P ′ and P ′′ are respectively
of degree d− 1 and d− 2, so there exists an integer a ∈ [n− 2d+ 2;n− 1] such
that P ′′ has no real root in

(
ξa; ξa+1

)
, and P ′ has no root whose real part is in

this same interval. If d ≥ n/2 there is nothing to prove, so we may and we will
assume that d ≤ n

2 . This implies in particular that ξa ≥ ξ2.
The polynomial P ′ is monotone on

(
ξa; ξa+1

)
, for P ′′ has no root in it. This

means that P is either convex or concave on this interval, so that the graph
of P is either over or under its tangent at the middle point of the interval,
which is equal to ξa+ξa+1

2 = 1+ξ
2 ξa. Suppose that P ′

(
1+ξ
2 ξa

)
is nonnegative

(the case when it is negative is similar). Then P is increasing on
(
ξa; ξa+1

)
,

since P ′ has no root in this interval. Let y = t(x) be the equation of the tangent
of P at 1+ξ

2 ξa. If t
(
ξa+1

)
> 1, then P

(
ξa+1

)
< t
(
ξa+1

)
, so P is concave on(

ξa; ξa+1
)
, hence −1 ≤ P (ξa) ≤ t (ξa). But, since P is monotone on

(
ξa; ξa+1

)
,

t
(

1+ξ
2 ξa

)
= P

(
1+ξ
2 ξa

)
≤ 1. Since t(ξa+1) − t

(
1+ξ
2 ξa

)
= t
(

1+ξ
2 ξa

)
− t(ξa), it

follows that t
(
ξa+1

)
≤ 3 and t

(
ξa+1

)
− t (ξa) ≤ 4. The same inequality can also

be derived if we assume t (ξa) < −1, and it is of course still true if t (ξa) ≥ −1
and t

(
ξa+1

)
≤ 1. We conclude that the inequality t

(
ξa+1

)
− t (ξa) ≤ 4 always

holds, which implies that 0 ≤ P ′
(

1+ξ
2 ξa

)
≤ 4

ξa(ξ−1) . If we now include the case
where P ′ is negative, we obtain the inequality

∣∣∣∣P ′
(

1 + ξ

2
ξa
)∣∣∣∣ ≤ 4

ξa(ξ − 1)
.

We therefore have

∣∣∣∣∣∣
P ′
(

1+ξ
2 ξa

)
P ′(x0)

∣∣∣∣∣∣ ≤ 4
cξa(ξ − 1)

≤ 4
cξn−2d+2(ξ − 1)

. (2)

To conclude we need to state a simple geometric fact. Let MBC be a trian-
gle, M ′ the orthogonal projection of M onto (BC), and (d) the perpendicular
bissector of [BC]. Let us suppose that M is “at the right of (d)”, i.e. MC ≤ MB.

A Quantum Lower Bound for the Query Complexity 1295

α β

CM ′

M

(d)

B

Since C is closer to the line (MM ′) than B, tanα = MM ′/BM ′ ≤ tanβ =
MM ′/CM ′. Hence α ≤ β, and cosα ≥ cosβ, i.e.:

MC

MB
≥ M ′C

M ′B
. (3)

Let f :

(
R \ {x0} → R

x �→
∣∣∣ 1+ξ

2 ξa−x
x0−x

∣∣∣
)

. Since x0 < ξa < 1+ξ
2 ξa < ξa+1, a quick

study of this function shows that for all x ∈ R \
(
{x0} ∪

(
ξa; ξa+1

))
, f(x) ≥

min(1, f(ξa), f(ξa+1)) ≥ ξ−1
2ξ .

We will distinguish two cases for each i ∈ {1; . . . ; d− 1}.

1. If >(αi) ≤ 1
2

(
1+ξ
2 ξa + x0

)
, then

∣∣∣ 1+ξ
2 ξa−αi

x0−αi

∣∣∣ ≥ 1.

2. If >(αi) > 1
2

(
1+ξ
2 ξa + x0

)
, let us apply (3) to the points M = αi, M ′ =

>(αi), B = x0 and C = 1+ξ
2 ξa. We obtain the inequality∣∣∣∣∣ 1+ξ

2 ξa − αi

x0 − αi

∣∣∣∣∣ ≥
∣∣∣∣∣ 1+ξ

2 ξa −>(αi)
x0 −>(αi)

∣∣∣∣∣ .
Remember though that no root of P ′ has its real part in

(
ξa; ξa+1

)
, so that∣∣∣ 1+ξ

2 ξa−αi

x0−αi

∣∣∣ ≥ ξ−1
2ξ .

1296 P. Koiran, V. Nesme, and N. Portier

We conclude that
∣∣∣ 1+ξ

2 ξa−αi

x0−αi

∣∣∣ ≥ ξ−1
2ξ in both cases. Taking (2) into account, we

finally obtain the inequality
(
ξ−1
2ξ

)d−1

≤ 4
cξn−2d+2(ξ−1)

, hence d ≥ log2(ξn+3c)−1

log2

(
ξ3

ξ−1

)
+1

.

We can now complete the proof of Theorem 1. Let A be our algorithm
solving Simon’s problem with bounded error probability ε and query complex-
ity T . As pointed out before Lemma 2, the associated polynomial Qn satisfies
|Q′

n(x0)| ≥ 1−2ε for some x0 ∈ [1, ξ] and Qn(ξi) ∈ [0, 1] for any i ∈ {0, 1, . . . , n}.
An application of Lemma 3 to the polynomial P = 2Qn − 1 therefore yields

the inequality deg(Qn) ≥ min

(
n
2 ,

log2

(
(2−4ε) pn+3

p−1

)
−1

log2

(
p3

p−1

)
+1

)
. Theorem 1 follows since

deg(Qn) ≤ 2T (n) by Proposition 1.

4 Abelian Groups

In this section we give lower and upper bounds for the quantum query complexity
of Abelian hidden subgroup problems. As explained in the introduction, our
bounds are optimal up to constant factors.

Let G be a finite Abelian group, Ĝ its dual group, i.e. the group of its charac-
ters (see for example [6]). For each subgroup H of G, we note H⊥ the orthogonal
of H , which is a subgroup of Ĝ consisted of those characters χ such that χ(h) = 1
for all h ∈ H . According to basic representation theory, Ĝ is isomorphic to G
and, for all subgroup H ≤ G, the index of H⊥ in Ĝ is equal to the order of H .

The well-established method of Fourier sampling allows one, with one query
to the black-box function, to pick a uniformly random element of the orthogonal
of the hidden subgroup. In order to solve the hidden subgroup problem for G,
this routine is run k times so as to generate k random elements x1, . . . , xk ∈ H⊥.
The algorithm outputs the orthogonal of the group generated by x1, . . . , xk. This
output is correct if x1, . . . , xk generate all of H⊥.

We will now show that this algorithm is optimal if we know when to stop,
i.e., how many random elements should be picked in H⊥. The following lemma
states that the query complexity of the cyclic subgroup problem is constant.
The proof is ommited from this extended abstract (note that this fact is already
pointed out in [17]).

Lemma 4. For any integer M ≥ 1, two random elements chosen uniformly and
independently in Z/MZ generate all of this group with probability at least 1

2 .

We recall that (following for instance [11]) the rank r(G) of a group G is the
minimal cardinality of a generating set of G. According to the fundamental theo-
rem of finite Abelian groups,G is isomorphic to Z/m1Z×Z/m2Z×· · ·×Z/mr(G)Z
where mi divides mi−1 for every i ∈ {2, . . . , r(G)}, and this decomposition is
unique.

Proposition 2. For any ε > 0 there exists an integer k such that for any finite
Abelian group G, k.r(G) random elements chosen uniformly and independently
in G generate all of this group with probability at least 1− ε.

A Quantum Lower Bound for the Query Complexity 1297

Proof. Let us denote by En the supremum of the expectations of the number
of random elements of G needed to generate G, taken over the groups G such
that r(G) ≤ n. We can assume that G = Z/m1Z × · · · × Z/mr(G)Z, where
mr(G)| . . . |m1. To generate G we can proceed with the two following steps.

First we pick enough random elements
(
x1

1, . . . , x
r(G)
1

)
, . . . ,

(
x1
k, . . . , x

r(G)
k

)
in G so that x1

1, . . . , x
1
k generate Z/m1Z; the expectation of k is at most E1. By

Lemma 4, E1 is finite; we can very roughly bound it in the following way.
First pick two random elements in Z/m1Z. With probability p≤2 they gen-

erate Z/m1Z and with probability p>2 they do not; when they fail to generate,
just forget about them and renew the experiment with two new random ele-
ments. In the first case the expectation of the number of elements is 2, in the
second case it is at most 2 + E1, so we have E1 ≤ 2p≤2 + (2 + E1) p>2. Clearly
p≤2 + p>2 = 1 and according to Lemma 4 we have p≤2 ≥ 1

2 . This shows that
E1 ≤ 4.

Then the subgroup generated by these elements contains some element y =(
y1, . . . , yr(G)

)
such that the of order of y1 is m1. The rank of G/ 〈y〉 is equal to

r(G) − 1 since G/ 〈y〉 is isomorphic to Z/m2Z × · · · × Z/mr(G)Z. This isomor-
phism follows from the fact the classes of e2, . . . , er(G) generate G/ 〈y〉, where ei
denotes the element of G whose ith coordinate is equal to 1 and all other coor-
dinates equal to 0. We now pick enough random elements xk+1, . . . , xk+l ∈ G
so that their images in G/ 〈y〉 generate all of it; the expectation of l is of course
at most Er(G)−1. Putting it together, we get En+1 ≤ E1 + En, so En ≤ 4n. By
Markov’s inequality, if we choose

⌊
4
ε

⌋
r(G) random elements in a group G, we

generate all of this group with probability at least 1− ε.

We can now prove our main result.

Theorem 2. The quantum query complexity of the hidden subgroup problem in
a finite Abelian group G is Θ(r(G)).

Proof. The upper bound is achieved with the standard method: one just applies
Proposition 2 to the orthogonal of the hidden subgroup, which is isomorphic to
a subgroup of G, using the fact that r is an nondecreasing function on finite
Abelian groups.

The lower bound of course comes from Theorem 1. Since for every finite
Abelian group G there is some prime p such that (Z/pZ)r(G) is isomorphic to
some subgroup of G, we need only to state that the hidden subgroup problem
for a subgroup of G reduces correctly to the hidden subgroup problem for G.
Indeed, let H be a subgroup of G and let H + t0, . . . ,H + tk be the cosets of
H in G, where t0 = 0. If γ : H → X hides a subgroup of H , we can define a
function γ′ : G → X × {ti/0 ≤ i ≤ k} which hides the same subgroup. Namely,
we define γ′(x + ti) = (γ(x), ti) for x ∈ H . Moreover, a call to γ′ uses just one
call to γ, so we are done.

1298 P. Koiran, V. Nesme, and N. Portier

Acknowledgments

Many thanks to Xavier Caruso, Yves de Cornulier and Joël Riou for useful
help. Thanks also go to Frédéric Magniez and to the anonymous referees for
bibliographical hints.

References

1. Scott Aaronson and Yaoyun Shi. Quantum lower bounds for the collision and the
element distinctness problems. Journal of the ACM, 51(4):595–605, July 2004.

2. Robert Beals. Quantum computation of Fourier transforms over symmetric groups.
In Proceedings of the 29th Annual ACM Symposium on the Theory of Computation
(STOC), pages 48–53. ACM Press, 1997.

3. Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf.
Quantum lower bounds by polynomials. J. ACM, 48(4):778–797, 2001.

4. Gilles Brassard and Peter Høyer. An exact quantum polynomial-time algorithm
for Simon’s problem. In Israel Symposium on Theory of Computing Systems, pages
12–23, 1997.

5. Lisa R. Hales. The Quantum Fourier Transform and Extensions of the Abelian
Hidden Subgroup Problem. PhD thesis, UC Berkeley, 2002.

6. Mika Hirvensalo. Quantum Computing (Natural Computing Series). SpringerVer-
lag, 2001.

7. Peter Høyer. Conjugated operators in quantum algorithms. Phys. Rev. A, 59:3280–
3289, may 1999.

8. R. Jozsa. Quantum algorithms and the Fourier transform. Proc. R. Soc. of London
A, 454, 1998.

9. Pascal Koiran, Vincent Nesme, and Natacha Portier. A quantum lower bound
for the query complexity of Simon’s problem. http://www.arxiv.org/pdf/quant-
ph/0501060.

10. Greg Kuperberg. A subexponential-time quantum algorithm for the dihedral hid-
den subgroup problem. Quantum Physics e-Print Archive, 2003.

11. Hans Kurzweil and Bernd Stellmacher. The Theory of Finite Groups, An Intro-
duction. Universitext. Springer, 2004.

12. Samuel Kutin. Quantum lower bound for the collision problem. quant-ph/0304162,
2003.

13. Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quantum
information. Cambridge University Press, 2000.

14. Noam Nisan and Mario Szegedy. On the degree of boolean functions as real poly-
nomials. Comput. Complex., 4(4):301–313, 1994.

15. Ramamohan Paturi. On the degree of polynomials that approximate symmetric
boolean functions (preliminary version). In STOC ’92: Proceedings of the twenty-
fourth annual ACM symposium on Theory of computing, pages 468–474, 1992.

16. Pierre Philipps. Bornes inférieures en calcul quantique : Méthode par adversaire
vs. méthode des polynômes. Rapport de stage de DEA, effectué au LRI sous la
direction de Frédéric Magniez, http://www.lri.fr/˜magniez/stages-dea.html, 2003.

17. Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM J. Comput., 26(5):1484–1509, 1997.

18. David R. Simon. On the power of quantum computation. SIAM Journal on
Computing, 26(5):1474–1483, 1997.

All Quantum Adversary Methods Are
Equivalent

Robert Špalek1,� and Mario Szegedy2,��

1 CWI, Amsterdam
sr@cwi.nl

2 Rutgers University
szegedy@cs.rutgers.edu

Abstract. The quantum adversary method is one of the most versatile
lower-bound methods for quantum algorithms. We show that all known
variants of this method are equal: spectral adversary [1], weighted adver-
sary [2], strong weighted adversary [3], and the Kolmogorov complexity
adversary [4]. We also present a few new equivalent formulations of the
method. This shows that there is essentially one quantum adversary
method. From our approach, all known limitations of all versions of the
quantum adversary method easily follow.

1 Introduction

1.1 Lower-Bound Methods for Quantum Query Complexity

In the query complexity model, the input is accessed using oracle queries and
the query complexity of the algorithm is the number of calls to the oracle. The
query complexity model is helpful in obtaining time complexity lower bounds,
and often this is the only way to obtain time bounds in the random access
model.

The first lower-bound method was the hybrid method of Bennett, Bernstein,
Brassard, and Vazirani [5] to show an Ω(

√
n) lower bound on the quantum

database search. Their proof is based on the following simple observation: If the
value of function f differs on two inputs x, y, then the output quantum states
of any bounded-error algorithm for f on x and y must be almost orthogonal.
On the other hand, the inner product is 1 at the beginning, because the com-
putation starts in a fixed state. By upper-bounding the change of the inner
product after one query, we lower bound the number of queries that need to be
made.

The second lower-bound method is the polynomial method of Beals, Buhrman,
Cleve, Mosca, and de Wolf [6]. It is based on the observation that the measure-

� Supported in part by the EU fifth framework project RESQ, IST-2001-37559.
�� Supported by NSF grant 0105692, and in part by the National Security Agency

(NSA) and Advanced Research and Development Activity (ARDA) under Army
Research Office (ARO), contract number DAAD19-01-1-0506.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 1299–1311, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1300 R. Špalek and M. Szegedy

ment probabilities can be described by low-degree polynomials in the input bits.
If t queries have been made, then the degree is at most 2t. Since the measurement
probabilities are always inside [0, 1], one can apply some degree lower bounds for
polynomials and thus obtain good lower bounds for quantum query complexity.

The third lower-bound method is the quantum adversary method of Ambai-
nis [7]. It extends the hybrid method. Instead of examining a fixed input pair,
Ambainis takes an average over many pairs of inputs. In this paper, we study
different variants of the quantum adversary method.

The fourth lower-bound method is the semidefinite programming method of
Barnum, Saks, and Szegedy [1]. It exactly characterizes quantum query com-
plexity by a semidefinite program. The dual of this program gives a lower bound
that encompasses the quantum adversary bound.

1.2 The Variants of the Quantum Adversary Method

The original quantum adversary method, let us call it unweighted, was invented
by Ambainis [7]. It was successfully used to obtain the following tight lower
bounds: Ω(

√
n) for Grover search [8], Ω(

√
n) for two-level And-Or trees (see [9]

for a matching upper bound), and Ω(
√

n) for inverting a permutation.
Some functions, such as sorting or ordered search, could not be well lower-

bounded by the unweighted method. Høyer, Neerbek, and Shi used a weighting
argument [10] to obtain tight bounds for these problems. Barnum, Saks, and
Szegedy proposed a general method [1] that gives necessary and sufficient con-
ditions for the existence of a quantum query algorithm. They also described
a special case, so-called spectral method, which gives a lower bound in terms
of spectral norms of an adversary matrix. Ambainis also published a weighted
version of his adversary method [2]. He applied it to get a lower bound for
several iterated functions. Zhang observed that Ambainis had generalized his
oldest method [7] in two independent ways, so he unified them, and published a
strong weighted adversary method [3]. Finally, Laplante and Magniez used Kol-
mogorov complexity in an unusual way and described a Kolmogorov complexity
method [4].

A few relations between the methods are known. The strong weighted adver-
sary is clearly at least as good as the weighted adversary. Laplante and Magniez
showed [4] that the Kolmogorov complexity method is at least as strong as all the
following methods: the Ambainis unweighted and weighted method, the strong
weighted method, and the spectral method. The method of Høyer et al. [10] is
a special case of the weighted adversary method.

In addition it was known that there were some limitations for lower bounds
obtained by the adversary method. Szegedy observed [11] that the weighted ad-
versary method is limited by min(

√
C0n,

√
C1n), where C0 is the zero-certificate

complexity of f and C1 is the one-certificate complexity of f . Laplante and
Magniez proved the same limitation for the Kolmogorov complexity method [4],
which implies that all other methods are also bounded. Finally, this bound was
improved to

√
C0C1 for total f by Zhang [3] and independently by us.

All Quantum Adversary Methods Are Equivalent 1301

1.3 Our Results

In this paper, we clean up the forest of adversary methods. We show that there
is essentially only one quantum adversary method and that all the former meth-
ods [1, 2, 3, 4, 10] are just different formulations of the same method. This means
that the quantum adversary method is a very robust concept. Furthermore, we
also present a new simple proof of the min(

√
C0n,

√
C1n) limitation of the quan-

tum adversary method for partial f , resp.
√
C0C1 for total f .

This paper is an extended abstract with some proofs omitted. The full version
can be downloaded from http://arxiv.org/abs/quant-ph/0409116.

1.4 Separation Between the Polynomial and Adversary Method

The polynomial method and the adversary method are incomparable. There are
examples when the polynomial method gives better bounds and vice versa.

The polynomial method was successfully applied to obtain tight lower bound
Ω
(
n1/3

)
for the collision problem and Ω

(
n2/3

)
for the element distinctness prob-

lem [12] (see [13] for a matching upper bound). The adversary method is inca-
pable of proving such lower bounds due to the small certificate complexity of the
function. Furthermore, the polynomial method often gives tight lower bounds for
the exact and zero-error quantum complexity, such as n for the Or function [6].
The adversary method can only provide bounded-error lower bounds.

On the other hand, Ambainis exhibited some iterated functions [2], for which
the adversary method gives better lower bounds than the polynomial method.
The biggest proved gap between the two methods is n1.321. Furthermore, the
polynomial method did not yet succeed in proving several lower bounds that are
very simple to prove by the adversary method. A famous example is the two-
level And-Or tree. The adversary method gives a tight lower bound Ω(

√
n) [7],

whereas the best bound obtained by the polynomial method is Ω
(
n1/3

)
and it

follows from the element distinctness lower bound [12].
There are functions for which none of the methods is known to give a tight

bound. A long-standing open problem is the binary And-Or tree. The best known
quantum algorithm just implements the classical zero-error algorithm by Saks
and Wigderson [14] running in expected time O

(
n0.753

)
. Adversary lower bounds

are limited by
√
C0C1 =

√
n. Recently, Laplante, Lee, and Szegedy showed [15]

that this limitation
√

n holds for every read-once {∧,∨} formula. The best known
lower bound obtained by the polynomial method is also Ω(

√
n) and it follows

from embedding the parity function. The polynomial method might prove a
stronger lower bound. Another example is triangle finding. The best upper bound
is O

(
n1.3
)

[16] and the best lower bound is Ω(n). Again, the adversary method
cannot give better than a linear bound, but the polynomial method might.

The semidefinite programming method [1] gives an exact characterization of
quantum query complexity. However, it is too general to be applied directly. It
is an interesting open problem to find a lower bound that cannot be proved by
the adversary or polynomial method.

1302 R. Špalek and M. Szegedy

2 Preliminaries

2.1 Quantum Query Algorithms

We assume familiarity with quantum computing [17] and sketch the model of
quantum query complexity, referring to [18] for more details, also on the relation
between query complexity and certificate complexity. Suppose we want to com-
pute some function f . For input x ∈ {0, 1}N , a query gives us access to the input
bits. It corresponds to the unitary transformation, which depends on input x in
the following way: Ox : |i, b, z〉 !→ |i, b ⊕ xi, z〉. Here i ∈ [N] = {1, . . . ,N} and
b ∈ {0, 1}; the z-part corresponds to the workspace, which is not affected by the
query. We assume the input can be accessed only via such queries. A T -query
quantum algorithm has the form A = UT OxUT−1 · · ·OxU1OxU0, where the Uk

are fixed unitary transformations, independent of x. This A depends on x via
the T applications of Ox. The algorithm starts in initial S-qubit state |0〉. For a
Boolean function f , the output of A is obtained by observing the leftmost qubit
of the final superposition A|0〉, and its acceptance probability on input x is its
probability of outputting 1.

2.2 Kolmogorov Complexity

An excellent book about Kolmogorov complexity is the book [19] by Li and
Vitányi. A deep knowledge of Kolmogorov complexity is not necessary to under-
stand this paper. Some results on the relation between various classical forms
of the quantum adversary method and the Kolmogorov complexity method are
taken from Laplante and Magniez [4], and the others just use basic techniques.

A set is called prefix-free if none of its members is a prefix of another mem-
ber. Fix a universal Turing machine M and a prefix-free set S. The prefix-
free Kolmogorov complexity of x given y, denoted by K(x|y), is the length of
the shortest program from S that prints x if it gets y on the input. Formally,
K(x|y) = min{|P | : P ∈ S,M(P, y) = x}.

2.3 Notation

Let [n] = {1, 2, . . . , n}. Let Σ∗ denote the set of all finite strings over alphabet
Σ. All logarithms are binary. Let I denote the identity matrix. Let AT denote
the transpose of A. Let diag (A) denote the column vector containing the main
diagonal of A. Let tr (A) be the trace of A and let A · B be the scalar product
of A and B. For a column vector x, let |x| denote the
2-norm of x. Let λ(A)
denote the spectral norm of A, formally λ(A) = maxx:|x|�=0 |Ax|/|x|. We say that
a matrix is Boolean, if it contains only zeroes and ones. Let AB denote the usual
matrix product and let A ◦ B denote the Hadamard (point-wise) product [20].
Let A ≥ B denote the point-wise comparison and let C ? D denote that C −D
is positive semidefinite. Let rx(M) denote the
2-norm of the x-th row of M and
let cy(M) denote the
2-norm of the y-th column of M . Let r(M) = maxx rx(M)
and c(M) = maxy cy(M).

All Quantum Adversary Methods Are Equivalent 1303

We call a function f : S → {0, 1} total, if S = {0, 1}n, otherwise it is called
partial. Let f be a partial function. A certificate for an input x ∈ S is a subset
I ⊆ [n] such that fixing the input bits i ∈ I to xi determines the function value.
Formally, ∀y ∈ S : y|I = x|I ⇒ f(y) = f(x), where x|I denotes the substring
of x indexed by I. A certificate I for x is called minimal, if |I| ≤ |J | for every
certificate J for x. Let Cf (x) denote the lexicographically smallest minimal cer-
tificate for x. Let C0(f) = maxx:f(x)=0 |Cf (x)| be the zero-certificate complexity
of f and let C1(f) = maxx:f(x)=1 |Cf (x)| be the one-certificate complexity of f .

3 Main Result

In this section, we present several equivalent quantum adversary methods and
a new simple proof of the limitations of these methods. We can categorize these
methods into two groups. Some of them solve conditions on the primal of the
quantum system [1]: these are the spectral, weighted, strong weighted, and gen-
eralized spectral adversary; and some of them solve conditions on the dual: these
are the Kolmogorov complexity bound, minimax, and the semidefinite version
of minimax. Primal methods are mostly used to give lower bounds on the query
complexity, while we can use the duals to give limitations of the method.

Theorem 1. Let n ≥ 1 be an integer, let S ⊆ {0, 1}n, and let f : S → {0, 1} be
a partial Boolean function. Let Qε(f) be the ε-error quantum query complexity
of f . Then Qε(f)

1−2
√

ε(1−ε)
≥ SA(f) = WA(f) = SWA(f) = MM(f) = SMM(f) =

GSA(f) = Θ(KA(f)) , where SA, WA, SWA, MM, SMM, GSA, and KA are
lower bounds given by the following methods:

– Spectral adversary [1]. Let Di,F be |S|×|S| Boolean matrices that satisfy
Di[x, y] = 1 iff xi �= yi for i ∈ [n], and F [x, y] = 1 iff f(x) �= f(y). Let Γ
denote an |S| × |S| non-negative symmetric matrix with Γ ◦ F = Γ . Then

SA(f) = max
Γ

λ(Γ)
maxi λ(Γ ◦Di)

. (1)

– Weighted adversary [2].1 Let w,w′ denote a weight scheme as follows:

• Every pair (x, y) ∈ S2 is assigned a non-negative weight w(x, y) =
w(y, x) that satisfies w(x, y) = 0 whenever f(x) = f(y).

• Every triple (x, y, i) ∈ S2×[n] is assigned a non-negative weight w′(x, y, i)
that satisfies w′(x, y, i) = 0 whenever xi = yi or f(x) = f(y), and
w′(x, y, i)w′(y, x, i) ≥ w2(x, y) for all x, y, i such that xi �= yi.

1 We use a different formulation [4] than in the original Ambainis papers [7, 2]. In
particular, we omit the relation R ⊆ A×B on which the weights are required to be
nonzero, and instead allow zero weights.

1304 R. Špalek and M. Szegedy

For all x, i, let wt(x) =
∑

y w(x, y) and v(x, i) =
∑

y w′(x, y, i). Then

WA(f) = max
w,w′

min
x,i

f(x)=0
v(x,i)>0

√
wt(x)
v(x, i)

· min
y,j

f(y)=1
v(y,j)>0

√
wt(y)
v(y, j)

. (2)

– Strong weighted adversary [3]. Let w,w′ denote a weight scheme as
above. Then

SWA(f) = max
w,w′

min
x,y,i

w(x,y)>0
xi �=yi

√
wt(x)wt(y)
v(x, i)v(y, i)

. (3)

– Kolmogorov complexity [4].2 Let σ ∈ {0, 1}∗ denote a finite string. Then

KA(f) = min
σ

max
x,y

f(x)�=f(y)

1∑
i:xi �=yi

√
2−K(i|x,σ)−K(i|y,σ)

. (4)

– Minimax over probability distributions [4]. Let p : S× [n] → R denote
a set of probability distributions, that is px(i) ≥ 0 and

∑
i px(i) = 1 for every

x. Then

MM(f) = min
p

max
x,y

f(x)�=f(y)

1∑
i:xi �=yi

√
px(i) py(i)

(5)

= 1
/

max
p

min
x,y

f(x)�=f(y)

∑
i:xi �=yi

√
px(i) py(i). (6)

– Semidefinite version of minimax. Let Di,F be Boolean matrices as
above. Then SMM(f) = 1/μmax, where μmax is the maximal solution of
the following semidefinite program:

maximize μ
subject to ∀i : Ri ? 0,∑

i Ri ◦ I = I,∑
i Ri ◦Di ≥ μF.

(7)

– Generalized spectral adversary. Let Di,F be Boolean matrices as above.
Then GSA(f) = 1/μmin, where μmin is the minimal solution of the following
semidefinite program:

minimize μ = trΔ
subject to Δ is diagonal

Z ≥ 0
Z · F = 1

∀i : Δ− Z ◦Di ? 0.

(8)

2 We use a different formulation than Laplante and Magniez [4]. They minimize over
all algorithms A computing f and substitute σ = source code of A, whereas we
minimize over all finite strings σ.

All Quantum Adversary Methods Are Equivalent 1305

Before we prove the main theorem in the next sections, let us draw some con-
sequences. We show that there are limits that none of these quantum adversary
methods can go beyond.

Theorem 2. Let S ⊆ {0, 1}n and let f : S → {0, 1} be a partial Boolean
function. The max-min bound (6) is upper-bounded by MM(f) ≤ min(

√
C0(f)n,√

C1(f)n). If f is total, then MM(f) ≤
√
C0(f)C1(f).

Proof. The following simple argument is due to Ronald de Wolf. We exhibit a
set of probability distributions p such that

m(p) = min
x,y

f(x)�=f(y)

∑
i:xi �=yi

√
px(i) py(i) ≥

1√
C0n

, resp.
1√
C0C1

.

The max-min bound is MM(f) = 1/maxp m(p) and the statement follows.
Let f be partial. For every x ∈ f−1(0), distribute the probability uniformly

over any minimal certificate Cf (x), and for every y ∈ f−1(1), distribute the
probability uniformly over all input bits. Formally, px(i) = 1/|Cf (x)| iff i ∈ Cf (x),
px(i) = 0 for i �∈ Cf (x), and py(i) = 1/n. Take any x, y such that f(x) = 0 and
f(y) = 1, and the zero-certificate I = Cf (x). Since y|I �= x|I , there is a j ∈ I
such that xj �= yj . Now we lower-bound the sum of (6):∑

i:xi �=yi

√
px(i) py(i) ≥

√
px(j) py(j) =

√
1

|Cf (x)| ·
1
n
≥ 1√

C0n
.

If f is total, then we can do even better. For every x ∈ {0, 1}n, distribute
the probability uniformly over any minimal certificate Cf (x). Formally, px(i) =
1/|Cf (x)| iff i ∈ Cf (x), and px(i) = 0 otherwise. Take any x, y such that f(x) �=
f(y), and let I = Cf (x) ∩ Cf (y). There must exist a j ∈ I such that xj �= yj ,
otherwise we could find an input z that is consistent with both certificates. (That
would be a contradiction, because f is total and hence f(z) has to be defined
and be equal to both 0 and 1.) After we have found a j, we lower-bound the sum
of (6) in the same way as above. ��

Some parts of the following statement have already been observed for indi-
vidual methods by Szegedy [11], Laplante and Magniez [4], and Zhang [3]. This
corollary rules out all adversary attempts to prove good lower bounds for prob-
lems with small certificate complexity, such as element distinctness [12], binary
And-Or trees [14, 21, 9], or triangle finding [16].

Corollary 1. All quantum adversary lower-bounds are at most min(
√
C0(f)n,√

C1(f)n) for partial functions and
√
C0(f)C1(f) for total functions.

4 Equivalence of Spectral and Strong Weighted
Adversary

In this section, we give a linear-algebraic proof that the spectral bound [1] and
the strong weighted bound [3] are equal. The proof has three steps. First, we

1306 R. Špalek and M. Szegedy

show that the weighted bound [2] is at least as good as the spectral bound.
Second, using a small combinatorial lemma, we show that the spectral bound is
at least as good as the strong weighted bound. The third step is trivial, since the
strong weighted bound is always at least as good as the weighted bound. The
generalization of the weighted adversary method thus does not make the bound
stronger, however its formulation is easier to use.

First, let us state two useful statements upper-bounding the spectral norm
of a Hadamard product of two non-negative matrices. The first one is due to
Mathias [20]. The second one is our generalization and its proof is omitted.

Lemma 1. [20] Let S be a non-negative symmetric matrix and let M and N
be non-negative matrices such that S ≤ M ◦ N . Then λ(S) ≤ r(M)c(N) =
maxx,y rx(M)cy(N). Moreover, for every S there exist M,N such that S = M◦N
and λ(S) = r(M)c(N).

Lemma 2. Let S be a non-negative symmetric matrix and let M and N be non-
negative matrices such that S ≤M◦N . Let B(M,N) = max x,y

S[x,y]>0
rx(M)cy(N).

Then λ(S) ≤ B(M,N).

Now we reduce the spectral adversary to the weighted adversary.

Theorem 3. SA(f) ≤WA(f).

Proof. Let Γ be any non-negative symmetric matrix with Γ ◦ F = Γ as in
equation (1). Assume without loss of generality that λ(Γ) = 1. Let δ be the
principal eigenvector of Γ , that is Γδ = δ. Define the following weight scheme:
w(x, y) = w(y, x) = Γ [x, y] · δ[x]δ[y]. Furthermore, for every i, decompose every
Γi = Γ ◦Di into a Hadamard product of two non-negative matrices Γi = Mi ◦Ni

such that λ(Γi) = r(Mi)c(Ni). This is always possible by Lemma 1. We ensure
that r(Mi) = c(Ni) =

√
λ(Γi) by multiplying Mi and dividing Ni by the same

constant. Define w′:

w′(x, y, i) =

⎧⎨⎩ (Mi[x, y] δ[x])2 iff f(x) = 0, f(y) = 1, and xi �= yi,
(Ni[y, x] δ[y])2 iff f(x) = 1, f(y) = 0, and xi �= yi,
0 otherwise.

Let us verify that w,w′ is a weight scheme. From the definition, w(x, y) =
w′(x, y, i) = 0 if f(x) = f(y), and also w′(x, y, i) = 0 if xi = yi. Furthermore, if
f(x) = 0, f(y) = 1, and xi �= yi, then w′(x, y, i)w′(y, x, i) = (Mi[x, y] δ[x])2

(Ni[x, y] δ[y])2 = (Γi[x, y] δ[x]δ[y])2 = w(x, y)2. Finally, let us compute the
bound (2) given by the weight scheme. Let vb = max x,i

f(x)=b

v(x,i)
wt(x) . Then

wt(x) =
∑
y

w(x, y) = δ[x]
∑
y

Γ [x, y]δ[y] = δ[x] (Γδ)[x] = δ[x]2,

v0 = max
x,i

f(x)=0

∑
y w′(x, y, i)
wt(x)

≤ max
x,i

f(x)=0

∑
y(Mi[x, y])2 δ[x]2

δ[x]2
≤ max

i
(r(Mi))2,

All Quantum Adversary Methods Are Equivalent 1307

and, analogously, v1 ≤ maxi(c(Ni))2. Since r(Mi) = c(Ni) =
√
λ(Γi), both

v0, v1 ≤ maxi λ(Γi). Hence 1/
√
v0v1 ≥ 1/maxi λ(Γi), and the weight scheme

w,w′ gives at least as good bound as the matrix Γ . ��

Now we reduce the strong weighted adversary to the spectral adversary.

Theorem 4. SWA(f) ≤ SA(f).

Proof. Let w,w′ be any weight scheme as in equation (2). Define the following
symmetric matrix Γ on S × S: Γ [x, y] = w(x,y)√

wt(x)wt(y)
. We also define column

vector δ on S such that δ[x] =
√

wt(x). Let W =
∑

x wt(x). Then λ(Γ) ≥
δT Γδ/|δ|2 = W/W = 1. Next, we show that, for every i, we have λ(Γi) ≤

√
ui

for ui = max x,y
w(x,y)>0,xi �=yi

v(x,i)v(y,i)
wt(x)wt(y) . Once we prove this, we are done, since the

strong weighted bound (3) is 1/maxi
√
ui. Let A = f−1(0) and B = f−1(1). Fix

i and define the following rectangular matrices on the index set A×B:

Mi[x, y] =

√
w′(x, y, i)

wt(x)
, Ni[x, y] =

√
w′(y, x, i)

wt(y)
.

Every weight scheme satisfies w′(x, y, i)w′(y, x, i) ≥ w2(x, y) for all x, y, i such
that xi �= yi. It follows that if we reorder Γi to put A first and B last, then

Γi = Γ ◦Di ≤
(

0 Mi ◦Ni

MT
i ◦NT

i 0

)
=

(
0 M i

N i
T

0

)
◦
(

0 N i

M i
T

0

)
,

where M i =
√

c(Ni)
r(Mi)

Mi and N i =
√

r(Mi)
c(Ni)

Ni. This is done for balancing the row

norm of Mi and column norm of Ni: r(M i) = c(N i) =
√

r(Mi)c(Ni). Evaluate

B(Mi,N
T
i) = max

x,y
Γi[x,y]>0

√∑
k

w′(x, k, i)
wt(x)

∑

w′(y,
, i)
wt(y)

= max
x,y

w(x,y)>0
xi �=yi

√
v(x, i)v(y, i)
wt(x)wt(y)

.

By Lemma 2, λ(Γi) ≤ B(M i,N i
T
) = B(Mi,N

T
i) =

√
ui, as claimed. ��

5 Equivalence of Minimax and Generalized Spectral
Adversary

In this section, we prove that the minimax bound is equal to the generalized
spectral bound. We first get rid of the reciprocal by taking the max-min bound.
Second, we write this bound as a semidefinite program. An application of duality
theory of semidefinite programming finishes the proof.

1308 R. Špalek and M. Szegedy

Theorem 5. MM(f) = SMM(f).

Proof. Let p be a set of probability distributions as in equation (6). Define
Ri[x, y] =

√
px(i) py(i). Since px is a probability distribution, we get that

∑
i Ri

must have all ones on the diagonal. The condition min x,y
f(x)�=f(y)

∑
i:xi �=yi

Ri[x, y] ≥
μ is rewritten into ∀x, y : f(x) �= f(y) =⇒

∑
i:xi �=yi

Ri[x, y] ≥ μ, which is∑
i Ri ◦ Di ≥ μF . However, the matrices Ri are rank-1 and they have non-

negative entries. We have replaced that condition by Ri ? 0 to get semidefinite
program (7). Hence the program (7) is a relaxation of the condition of (6) and
SMM(f) ≤ MM(f).

Let us show that every solution Ri of the semidefinite program can be changed
to an at least as good rank-1 solution R′i. Take a Cholesky decomposition Ri =
XiX

T
i . Define a column-vector qi[x] =

√∑
j Xi[x, j]2 and a rank-1 matrix R′i =

qiq
T
i . It is not hard to show that all R′i satisfy the same constraints as Ri. First,

R′i is positive semidefinite. Second, R′i[x, x] =
∑

j Xi[x, j]2 = Ri[x, x], hence∑
i Ri ◦ I = I. Third, by a Cauchy-Schwarz inequality,

Ri[x, y] =
∑

j

Xi[x, j]Xi[y, j] ≤
√∑

k

Xi[x, k]2
√∑

Xi[y,
]2 = R′i[x, y],

hence
∑

i R
′
i ◦Di ≥

∑
i Ri ◦Di ≥ μF . We conclude that MM(f) ≤ SMM(f). ��

Theorem 6. SMM(f) = GSA(f).

Proof. Omitted; it only uses the duality theory of semidefinite programming.

6 Equivalence of Generalized Spectral and Spectral
Adversary

In this section, we prove that the generalized spectral adversary bound is equal
to the spectral adversary bound. The main difference between them is that the
generalized method uses a positive diagonal matrix Δ as a new variable.

Theorem 7. GSA(f) = SA(f).

Proof. Let Z,Δ be a solution of (8). First, let us prove that Δ @ 0. Since both
Z ≥ 0 and Di ≥ 0, it holds that diag (−Z◦Di) ≤ 0. We know that Δ−Z◦Di ? 0,
hence diag (Δ − Z ◦Di) ≥ 0, and diag (Δ) ≥ 0 follows. Moreover, diag (Δ) > 0
unless Z contains an empty row, in which case we delete it (together with the
corresponding column) and continue. Second, Δ−Z ◦Di ? 0 implies that Z ◦Di

is symmetric for every i. It follows that Z must be also symmetric.
Take a column vector a = diag (Δ−1/2) and a rank-1 matrix A = aaT @ 0. It

is simple to prove that A ◦ X ? 0 for every matrix X ? 0.

All Quantum Adversary Methods Are Equivalent 1309

Since Δ − Z ◦Di ? 0, also A ◦ (Δ − Z ◦Di) = I − Z ◦Di ◦ A ? 0 and hence
λ(Z ◦ Di ◦ A) ≤ 1. Now, define the spectral adversary matrix Γ = Z ◦ F ◦ A.
Since 0 ≤ Z ◦ F ≤ Z, it follows that

λ(Γ ◦Di) = λ(Z ◦ F ◦A ◦Di) ≤ λ(Z ◦Di ◦A) ≤ 1.

It remains to show that λ(Γ) ≥ 1/ trΔ. Let b = diag (
√
Δ) and B = bbT . Then

1 = Z · F = Γ ·B = bT Γb ≤ λ(Γ) · |b|2 = λ(Γ) · trΔ.

Γ is clearly symmetric, Γ ≥ 0, and Γ ◦ F = Γ . The bound (1) given by Γ is
bigger than or equal to 1/ trΔ, hence SA(f) ≥ GSA(f).

For the other direction, let Γ be a non-negative symmetric matrix satisfying
Γ ◦F = Γ . Let δ be its principal eigenvector with |δ| = 1. Assume without loss of
generality that λ(Γ) = 1 and let μ = maxi λ(Γi). Take A = δδT , Z = Γ ◦A, and
Δ = μI ◦A. Then Z ·F = Γ ·A = δT Γδ = 1 and trΔ = μ. For every i, λ(Γi) ≤ μ,
hence μI − Γ ◦ Di ? 0. It follows that 0 3 A ◦ (μI − Γ ◦ Di) = Δ − Z ◦ Di.
The semidefinite program (8) is satisfied and hence its optimum is μmin ≤ μ. We
conclude that GSA(f) ≥ SA(f). ��

7 Proof of the Main Theorem

In this section, we close the circle of reductions. We use the results of Laplante
and Magniez, who recently proved [4] that the Kolmogorov complexity bound
is asymptotically lower-bounded by the weighted adversary bound and upper-
bounded by the minimax bound. The upper bound is implicit in their paper,
because they did not state the minimax bound as a separate theorem.

Theorem 8. [4–Theorem 2] KA(f) = Ω(WA(f)).

Theorem 9. KA(f) = O(MM(f)).

Proof. Take a set of probability distributions p as in equation (5). The query
information lemma [4–Lemma 3] says that K(i|x, p) ≤ log 1

px(i) + O(1) for every
x, i such that px(i) > 0. This is true, because any i of nonzero probability can
be encoded in
log 1

px(i)� bits using the Shannon-Fano code of distribution px,
and the Shannon-Fano code is prefix-free. Rewrite the inequality as px(i) =
O
(
2−K(i|x,p)

)
. The statement follows, because the set of all strings σ in (4)

includes among others also the descriptions of all probability distributions p. ��

Proof (of Theorem 1). We have to prove that Qε(f)

1−2
√

ε(1−ε)
≥ SA(f) = WA(f) =

SWA(f) = MM(f) = SMM(f) = GSA(f) = Θ(KA(f)) , Put together all known
equalities and inequalities:

1310 R. Špalek and M. Szegedy

– SA(f) = WA(f) = SWA(f) by Theorem 3 and Theorem 4,
– MM(f) = SMM(f) by Theorem 5,
– SMM(f) = GSA(f) by Theorem 6,
– GSA(f) = SA(f) by Theorem 7,
– KA(f) = Θ(WA(f)) by Theorem 8 and Theorem 9.

Finally, one has to prove one of the lower bounds. For example, Ambainis
proved [2] that Q2(f) ≥ (1− 2

√
ε(1− ε))WA(f). ��

Acknowledgments

We thank Ronald de Wolf for many fruitful discussions, for his suggestions con-
cerning Theorem 2, and for proofreading, and Troy Lee for discussions.

References

1. Barnum, H., Saks, M., Szegedy, M.: Quantum decision trees and semidefinite pro-
gramming. In: Proc. of the 18th IEEE Conference on Computational Complexity.
(2003) 179–193

2. Ambainis, A.: Polynomial degree vs. quantum query complexity. In: Proc. of the
44th IEEE Symp. on Foundations of Computer Science. (2003) 230–239

3. Zhang, S.: On the power of Ambainis’s lower bounds. In: Proceedings of 31st
ICALP. (2004) 1238–1250 quant-ph/0311060.

4. Laplante, S., Magniez, F.: Lower bounds for randomized and quantum query
complexity using Kolmogorov arguments. In: Proceedings of 19th IEEE Conference
on Computational Complexity. (2004) 294–304 quant-ph/0311189.

5. Bennett, H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses
of quantum computing. SIAM Journal on Computing 26 (1997) 1510–1523 quant-
ph/9701001.

6. Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds
by polynomials. Journal of the ACM 48 (2001) 778–797 Earlier version in FOCS’98.
quant-ph/9802049.

7. Ambainis, A.: Quantum lower bounds by quantum arguments. Journal of Com-
puter and System Sciences 64 (2002) 750–767 Earlier version in STOC’2000. quant-
ph/0002066.

8. Grover, L.K.: A fast quantum mechanical algorithm for database search. In:
Proceedings of 28th ACM STOC. (1996) 212–219 quant-ph/9605043.

9. Høyer, P., Mosca, M., de Wolf, R.: Quantum search on bounded-error inputs. In:
Proceedings of 30th ICALP. (2003) 291–299 LNCS 2719, quant-ph/0304052.

10. Høyer, P., Neerbek, J., Shi, Y.: Quantum complexities of ordered searching, sort-
ing, and element distinctness. Algorithmica 34 (2002) 429–448 Special issue on
Quantum Computation and Cryptography. quant-ph/0102078.

11. Szegedy, M.: On the quantum query complexity of detecting triangles in graphs.
quant-ph/0310107 (2003)

12. Aaronson, S., Shi, Y.: Quantum lower bounds for the collision problem. Journal
of the ACM 51 (2004) 595–605 quant-ph/0111102.

All Quantum Adversary Methods Are Equivalent 1311

13. Ambainis, A.: Quantum walk algorithm for element distinctness. In: Proceedings
of 45th IEEE FOCS. (2004) 22–31 quant-ph/0311001.

14. Saks, M., Wigderson, A.: Probabilistic Boolean decision trees and the complexity
of evaluating games trees. In: Proc. of the 27th Annual Symp. on FOCS. (1986)
29–38

15. Laplante, S., Lee, T., Szegedy, M.: The quantum adversary method and formula
size lower bounds. In: Proceedings of 20th IEEE Conference on Computational
Complexity. (2005) To appear. quant-ph/0501057.

16. Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle prob-
lem. In: Proceedings of 16th SODA. (2005) 1109–1117 quant-ph/0310134.

17. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press (2000)

18. Buhrman, H., de Wolf, R.: Complexity measures and decision tree complexity: A
survey. Theoretical Computer Science 288 (2002) 21–43

19. Li, M., Vitányi, P.M.B.: An Introduction to Kolmogorov Complexity and its Ap-
plications. Second edn. Springer, Berlin (1997)

20. Mathias, R.: The spectral norm of a nonnegative matrix. Linear Algebra and its
Applications 139 (1990) 269–284

21. Barnum, H., Saks, M.: A lower bound on the quantum query complexity of read-
once functions. Journal of Computer and Systems Sciences 69 (2004) 244–258
quant-ph/0201007.

Quantum Complexity of Testing
Group Commutativity�

Frédéric Magniez1 and Ashwin Nayak2

1 CNRS–LRI, UMR 8623 Université Paris–Sud, France
2 University of Waterloo and Perimeter

Institute for Theoretical Physics, Canada

Abstract. We consider the problem of testing the commutativity of a
black-box group specified by its k generators. The complexity (in terms
of k) of this problem was first considered by Pak, who gave a randomized
algorithm involving O(k) group operations. We construct a quite optimal
quantum algorithm for this problem whose complexity is in Õ(k2/3). The
algorithm uses and highlights the power of the quantization method of
Szegedy. For the lower bound of Ω(k2/3), we introduce a new technique
of reduction for quantum query complexity. Along the way, we prove the
optimality of the algorithm of Pak for the randomized model.

1 Introduction

A direction of research in quantum computation pioneered by Grover [1] around
search problems in unstructured, structured, or partially structured databases
has recently seen an extraordinary expansion. In contrast to problems based on
Hidden Subgroup Problem (HSP) (see for instance Ref. [2]), the speed up for
these search problems is often only polynomial.

Usually in search problems, the access to the input is done via an oracle mod-
eling access to the input. This leads to the notion of query complexity which mea-
sures the number of accesses to the oracle. While no significant lower bounds are
known for quantum time complexity, the oracle constraint sometimes enables
us to prove such bounds in the query model. For promise problems quantum
query complexity indeed can be exponentially smaller than the randomized one.
A prominent example is the HSP. On the other hand, for total functions, deter-
ministic and quantum query complexities are polynomially related [3].

In the HSP, the group with its all structure is known to the algorithm de-
signer, and the group operations are generally efficiently computable. In the
event that the group is not explicitly known, or the group operations are not
efficient to implement, it is appropriate to model the group operations by an
oracle or a black-box. The notion of black-box groups was introduced by Babai
and Szemerédi [4]. In this model, the elements of a group are encoded by words

� For their research support, F.M. thanks the EU 5th framework program RESQ and
the French Research Ministry, and A.N. thanks Canada’s NSERC and CIAR.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 1312–1324, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Quantum Complexity of Testing Group Commutativity 1313

over a finite alphabet, and the group operations are performed by an oracle (the
black-box). The groups are assumed to be specified by generators, and the en-
coding of group elements is not necessarily unique: different strings may encode
the same group element. Mosca [2] showed that one can learn in quantum poly-
nomial time the structure of any black-box abelian group. Such a task is known
to be hard classically. Then Watrous [5] pioneered the study of black-box group
properties in the quantum context.

In this context, we study the problem of testing commutativity of a black-box
group (Group Commutativity) given by its generators. The classical complex-
ity of this problem was first considered by Pak [6]. The straightforward algorithm
for the problem has complexity O(k2), where k is the number of generators, since
it suffices to check if every pair of generators commute. Pak presented a surpris-
ing randomized algorithm whose complexity is linear in k, and also showed that
the deterministic lower bound is quadratic. The linear upper bound on com-
plexity may also be obtained by applying quantum search [1] to locate a pair
of generators that do not commute. Using the quantization of random walks by
Szegedy [7], we instead present a sublinear algorithm in Õ(k2/3) (Theorem 3),
where the Õ notation means that logarithmic multiplicative factors are omitted.

Group Commutativity bears a deceptive resemblance to Element Dis-
tinctness. The aim in the former is to detect the presence of a pair of generators
which collide in the sense that they do not commute. However, since the group
structure is unknown, whether or not a pair of generators collide can only be
determined by invoking the group oracle. Moreover, the group oracle provides
access to elements from the entire group spanned by the given generators, which
may be used towards establishing commutativity.

These differences necessitate the use of ideas from Pak’s algorithm, the theory
of rapidly mixing Markov chains, and perhaps most remarkably, the Szegedy
quantization of walks. Group Commutativity appears to be the first natural
problem for which the approach of Szegedy has no equivalent using other known
techniques for constructing quantum algorithms—Grover search [1], or the type
of quantum walk introduced by Ambainis [8]. A recent result of Buhrman and
Spalek [9] on matrix product verification is in the same situation for its time
complexity but not for the query complexity, since the approach of Ambainis
gives an algorithm whose query complexity is the same in the worst case.

We also prove that our algorithm is almost optimal by giving an Ω(k2/3)
lower bound for the quantum query complexity of Group Commutativity
(Theorem 6). Simultaneously, we give an Ω(k) lower bound for its randomized
query complexity (Theorem 5). This lower bound shows that the algorithm of
Pak [6] is optimal, and to our knowledge is new. We first state an easier lower
bound using a simple reduction from the problem of detecting a unique collision
pair of a function, which is a special case of Element Distinctness, when one
allows non-unique encoding of the black-box group (Theorem 4). For the lower
bound for uniquely encoded black-box groups, the proof gets more complex.
The randomized case relies upon an adversary argument. The quantum case is
subtle. We show the said lower bound for the number of accesses to the given

1314 F. Magniez and A. Nayak

generators. The lower bound also holds for the number of group operations in
generic quantum algorithms (see Section 4 for a definition). This is shown using
a new kind of reduction based on approximation degree of the problem.

2 Preliminaries

2.1 Black-Box Groups

We will suppose that the elements of the group G are encoded by binary strings
of length n for some fixed integer n, which we call the encoding length. The
groups will be given by generators, and therefore the input size of a group is the
product of the encoding length and the number of generators. For simplicity,
we also assume that the identity element of the group is given. Note that the
encoding of group elements need not be unique, a single group element may be
represented by several strings. If the encoding is not unique, one also needs an
oracle for identity tests. Unless otherwise specified, we assume that the encoding
is unique in this paper. All of our results apply when the encoding is not unique
if one is given an oracle for identity tests.

Since we will deal with black-box groups we shall shortly describe them in the
framework of quantum computing (see also [2] or [5]). For a general introduction
to quantum computing the reader might consult [10, 11]. We will work in the
quantum circuit model. For a group G of encoding length n, the black-box will
be given by two oracles OG and its inverse O−1

G , both operating on 2n qubits.
For any group elements g,h ∈ G, the effect of the oracles is the following:
OG|g〉|h〉 = |g〉|gh〉, and O−1

G |g〉|h〉 = |g〉|g−1h〉.
In this notation we implicitly use the encoding of a group element. We will do

that everywhere in the paper when there is no ambiguity. Also, not every binary
string of length n necessarily corresponds to a group element. In this case, the
behavior of the black box can be arbitrary.

2.2 Query Model

The quantum query model was explicitly introduced by Beals, Buhrman, Cleve,
Mosca, and de Wolf [3]. In this model, as in its classical counterpart, we pay for
accessing the oracle, but unlike the classical case, the machine can use the power
of quantum parallelism to make queries in superposition.

The state of the computation is represented by three registers, the query
register g, the answer register h, and the work register z. The computation takes
place in the vector space spanned by all basis states |g,h, z〉. In the quantum
model the state of the computation is a complex combination of all basis states
which has unit length in the
2 norm.

For a black-box group the query operator will be OG together with its inverse
O−1
G . For oracle function F : X → Y the query operator is OF : |g〉|h〉 !→
|g〉|h⊕ F (g)〉, where ⊕ denotes the bitwise xor operation.

Non-query operations are independent of the oracle. A k-query algo-
rithm is a sequence of (k + 1) operations (U0,U1, . . . ,Uk) where each Ui

Quantum Complexity of Testing Group Commutativity 1315

is unitary. Initially the state of the computation is set to some fixed
value |0̄, 0̄, 0̄〉. In case of an oracle function, the sequence of operations
U0, OF ,U1, OF , . . . ,Uk−1, OF ,Uk is applied. For black-box groups, the modi-
fied sequence of operations U0, O

b1
G ,U1, O

b2
G , . . . ,Uk−1, O

bk

G ,Uk is applied, where
bi = ±1. Finally, one or more qubits designated as output bits are measured to
get the outcome of the computation. The quantum algorithms we consider might
give an erroneous answer, but the probability of making an error is bounded by
some fixed constant γ < 1/2.

In the query model of computation each query adds one to the query complex-
ity of an algorithm, but all other computations are free. The time complexity of
the algorithm is usually measured in terms of the total circuit size for the unitary
operations Ui. We will however take a more coarse grained view of time com-
plexity, and assume that operations such as accessing qubits containing group
encodings or updating them, take unit time.

2.3 Quantum Walks

We state a simple version of the recent result of Szegedy [7]. Let P be an ergodic
and symmetric Markov chain on a graph G = (V,E) on N vertices. We denote
by P [u, v] the transition probability from u to v. Let M be a set of marked nodes
of V . Assume, one is given a database D that associates some data D(v) to every
node v ∈ V . From D(v) we would like to determine if v ∈ M . We expedite this
using a quantum procedure Φ. When operating with D three types of cost are
incurred. The cost might denote any measure of complexity such as query or
time complexities.

Setup cost S: The cost to set up D(v) for a v ∈ V .
Update cost U: The cost to update D(v) for a v ∈ V , i.e. moving from D(v)
to D(v′), where the transition from v to v′ is allowed by the Markov chain P .
Checking cost C: The query complexity of Φ(D(v)) for a v ∈ V .

Concerning the quantization of the walk P , one needs to consider the quan-
tum time complexity of its implementation in terms of the following parameters.
Initialization time I: The time complexity for constructing the superposition

1√
N

∑
u,v

√
P [u, v]|u, v〉.

Transition time T: The time complexity of realizing the transformation
|u, v〉 !→ 2

√
P [u, v]

∑
v′
√
P [u, v′]|u, v′〉 − |u, v〉.

In the following theorem, the notation O(·) denotes the existence of a univer-
sal constant so that the expression is an upper bound. We now state the main
result of [7].

Theorem 1 (Szegedy [7]). Let δ be the eigenvalue gap of P , and let |M |
|V | ≥ ε >

0 whenever M is non-empty. There exists a quantum algorithm that determines if
M is non empty with cost S+O((U + C)/

√
δε), and an additional time complexity

of I + O(T/
√

δε).

1316 F. Magniez and A. Nayak

Moreover, if P is state transitive then the cost of finding a marked element
of M is the same as above.

Note that in this theorem, when the cost denotes the time complexity, we need
to add to it the additional time complexity term given in the theorem.

2.4 The Problems

Here we define the problems we are dealing with. The focus of the paper is on

Group Commutativity
Oracle: Group operations OG and O−1

G for an encoding in {0, 1}n

Input: The value of n and the encoding of generators g1, . . . , gk of G
Output: Yes if G is commutative, and No otherwise (if there are two
indices i, j such that gigj �= gjgi)

The next problem is a special instance of a well-studied problem, Element
Distinctness.

Unique Collision
Oracle: A function F from {1, . . . , k} to {1, . . . , k}
Input: The value of k
Output: Yes if there exists a unique collision pair x �= y ∈ {1, . . . , k}
such that F (x) = F (y), and No if the function is a permutation

This is a promise problem (or a relation) since we do not require a definite
output for certain valid oracle functions. We will also use a further specialization
of the problem when k is even, Unique Split Collision, where one element
of the colliding pair has to come from {1, . . . , k/2} and the other from {k/2 +
1, . . . , k}. We call this a split collision. Note that in the positive instances of
this problem, the restriction of the function to the two intervals {1, . . . , k/2}
and {k/2 + 1, . . . , k} is injective.

2.5 Approximation Degree

We describe the notion of approximation degree for oracle decision problems.
Let S be the set of functions from {1, . . . , k} to {1, . . . , k}. An oracle decision
problem is a boolean function on the set S. For every function F ∈ S, we define
the variables xij which are 1 if F (i) = j and 0 otherwise.

Definition 1 ([3, 12]). Let Φ : S → {0, 1} be an oracle decision problem. Then
the approximation degree of Φ is the lowest degree of real multivariate polyno-
mials P in variables xij, such that |P (x)− Φ(F)| ≤ 1/3, for every F ∈ S

The following powerful result relates approximation degree to quantum query
complexity.

Proposition 1 ([3, 12]). If the quantum query complexity of Φ is T , then the
approximation degree of Φ is at most 2T .

Quantum Complexity of Testing Group Commutativity 1317

A beautiful application of the polynomial method gives us the optimal query
complexity of Unique Collision.

Theorem 2 ([12, 13, 14]). The approximation degree of Unique Collision,
and hence its quantum query complexity, is Ω(k2/3).

The original result of the works cited above refer to the more general problem
Element Distinctness, which requires the detection of one or more colliding
pairs. This was proven by a randomized reduction from the problem Collision
which detects between a bijection and a two-to-one function. However, the re-
duction is still valid for the special case we consider. As noticed by Ambainis [14],
this reduction also implies the lower bound on the approximation degree.

3 A Quantum Algorithm for Group Commutativity

We are given a black-box group G with generators g1, . . . , gk. The problem is
to decide if G is abelian. For technical reasons (see the proof of Lemma 1), and
without loss of generality, we assume that g1 is the identity element.

We denote by Sl the set of all l-tuples of distinct elements of {1, . . . , k}.
For any u = (u1, . . . ,ul) ∈ Sl, we denote by gu the group element gu1 . . . gul

.
Our algorithm is based on the quantization of a random walk on S2

l . We will
also adapt an approach due to [6]. For this we generalize Lemma 1.3 of [6] for
random elements from Sl. Then we show how to walk on S2

l for finding a non
commutative element in G, if there is any. We will conclude using Theorem 1.

In this section, we let p = l(l−1)+(k−l)(k−l−1)
k(k−1) . Observe that when k = 2l,

then p = l−1
2l−1 ≤

1
2 . Moreover, when l = o(k), then 1− p = Θ(l/k).

Lemma 1. Let K �= G be a subgroup of G. Then Pru∈Sl
[gu �∈ K] ≥ 1−p

2 .

Proof. First we fix a total order (equivalently, a permutation) σ of {1, . . . , k},
and we denote by Sσ

l that subset of l-tuples in Sl which respect the total order σ.
In other words, u = (u1, . . . ,ul) ∈ Sσ

l iff σ−1(ui) < σ−1(ui+1) for all 1 ≤ i < l.
Since (Sσ

l)σ is an equitable partition of Sl, picking a random element from Sl is
the same as first picking a random permutation σ, and then picking a random
element u ∈ Sσ

l . Therefore it is enough to prove the theorem for any fixed order
σ. The reader may find it helpful to take σ to be the identity permutation to
understand the idea behind the proof.

We denote g′j = gσ(j) for every j = 1, . . . , k. Let i be the smallest index such
that g′i �∈ K. Such an i exists since K �= G. Let j be such that g′j = g1, the
identity element.

Fix an ordered l-tuple u such that g′i �∈ u and g′j ∈ u. We denote by v
the ordered l-tuple where g′j has been deleted from u, and g′i has been inserted
into it at the appropriate position (that respects the total order). Formally,
if u = (u1, . . . ,um,um+1, . . . ,ul) such that σ−1(um) < i < σ−1(um+1), then v is
obtained by deleting g′j from the (l + 1)-tuple (u1, . . . ,um,σ(i),um+1, . . . ,ul).

1318 F. Magniez and A. Nayak

Let a = gu1gu2 · · · gum
, and b = gum+1 · · · gul

. Then gu = ab and gv = ag′ib.
Note that because of the choice of i, a ∈ K. If gu = ab ∈ K so that b ∈ K as
well, then gv �∈ K. Therefore Pru∈Sσ

l
[gu ∈ K|i ∈ u xor j ∈ u] ≤ 1

2 .
Since Pru∈Sσ

l
[i, j ∈ u or i, j �∈ u] = p, we conclude that Pru∈Sσ

l
[gu ∈ K] ≤

(1− p)× 1
2 + p× 1. ��

With the approach of [6] and from Lemma 1, we can generalize easily Lemma 1.1
of [6].

Lemma 2. If G is non commutative then Pru,v∈Sl
[gugv �= gvgu] ≥ (1−p)2

4 .

Proof. If G is non-commutative, then the centre C(G) of G is a proper sub-
group. With probability at least (1 − p)/2, gu does not belong to C(G) for a
random u ∈ Sl (Lemma 1). Conditioned upon this event, the probability that
for a random v ∈ Sl, gv does not belong to the centralizer of gu is also at
least (1− p)/2. ��

Let tu be the balanced binary tree with l leaves, whose leaves are from left to
right the elements gui

, for i = 1, . . . , l, and such that each internal node is the
group product of its two successors. If l is not a power of 2, we put the deepest
leaves to the left.

The random walk on S2
l that forms the basis of our quantum algorithm will

consist of two independent simultaneous walks on Sl. For a pair (u, v) of l-tuples,
we will maintain the binary trees tu, tv as described above as the data.

The random walk on Sl
Suppose the current state is u ∈ Sl.
With probability 1/2 stay at u; with probability 1/2, do the following:
– Pick a uniformly random position i ∈ {1, . . . , l}, and a uniformly ran-
dom index j ∈ {1, . . . , k}.
– If j = um for some m, then exchange ui and um, else, set ui = j.
– Update the tree tu (using O(log l) group operations).

Lemma 3. The spectral gap of the walk described above is at least c
l log l , for a

universal constant c ≥ 1
8e , provided l ≤ k/2.

Proof. First, we will show that the random walk mixes rapidly using a “coupling
argument”. Then, using a relation between mixing time and the second largest
eigenvalue, we will get a bound on the spectral gap.

Note that the walk is ergodic and has the uniform distribution on Sl as its
stationary distribution π. Thus π(u) = (k−l)!

k! for all u. Moreover, because of the
self-loops, all the eigenvalues of the walk are non-negative.

Let P t
x be the probability distribution on Sl obtained by performing t steps of

the walk starting at x. Let Δ(t) be the maximum over all starting states x ∈ Sl
of the total variation distance ‖P t

x−π‖. Let τ (the mixing time) be the smallest t
such that Δ(t′) ≤ 1

2e for all t′ ≥ t.

Quantum Complexity of Testing Group Commutativity 1319

A coupling for a Markov chain is a stochastic process on pairs of states (Ut, Vt)
such that Ut and Vt, viewed marginally, each evolve according to the Markov
chain, and if Ut = Vt, then Ut+1 = Vt+1. The coupling time T is the maxi-
mum expected time (over all pairs of initial states (u, v)) for the states Ut, Vt to
coincide: T = maxu,v E[argmint{Ut = Vt,U0 = u, V0 = v}].

We will use the following facts about mixing of Markov chains:

1. [15–Proposition 2.2, Chapter 2] For walks with only non-negative eigenval-
ues, λt ≤ Δ(t) ·(minu π(u))−1, where λ is the second largest eigenvalue. This
bounds the second largest eigenvalue in terms of the total variation distance.

2. (see e.g., Ref. [16]) Δ(t) ≤ 2 exp(−� t
τ �). This relates the total variation

distance at any time t to the mixing time τ .
3. [17] τ ≤ 2eT . This bounds the mixing time τ in terms of the coupling time T .

Combining all three relations, taking t-th roots, and letting t → ∞, we see
that λ ≤ exp(− 1

2eT) ≤ 1− 1
4eT . Thus, the spectral gap is 1− λ ≥ 1

4eT .
A coupling for which T ≤ l log l is the obvious one: for any pair u, v ∈ Sl,

follow one step of the random walk with the same choice of random position i
and index j. This is clearly a valid coupling.

Let d be the hamming distance between the two tuples u, v. This distance
never increases during the process described above. Moreover, in one step of the
process, the distance goes down by 1 with probability at least d

2l . This is because
with probability d/l, the position i is one where u and v are different, and with
probability at least (k − l)/k, the index j is not one from the positions where u
and v are the same. Since l ≤ k/2, the net probability that the distance decreases
by 1 is at least d/2l.

By a straightforward calculation, the expected time T for the distance to
go to zero is at most 2l log l (since d ≤ l). Using the relation described above
between λ and T , we get our bound on the spectral gap. ��

Theorem 3. There is a quantum algorithm that solves Group Commutativ-
ity problem with O(k2/3 log k) queries and time complexity O(k2/3 log2 k).

Proof. The walk is the above described walk on S2
l . The database associated

with a tuple u ∈ Sl is the binary tree tu. Using Szegedy’s theorem 1, we need
only compute the eigenvalue gap of the random walk and the initial success
probability (in the uniform distribution).

The stationary distribution for the walk is the uniform distribution on Sl×Sl.
So, from Lemma 2 above, the success probability is at least (1 − p)2/4. The
spectral gap for the walk is the same as that on Sl, i.e. c/(l log l), from Lemma 3.

Since we start with a uniform distribution over |u, tu〉|v, tv〉, where u, v ∈ Sl.
The setup cost is at most 2(l− 1) and the updating cost of the walk is O(log l).
We will choose l = o(k) so that 1− p = Θ(l/k). The total query cost is then

2(l − 1) + O
(

1
1−p

√
l log l · log l

)
= 2(l − 1) + O

(
k√
l
log3/2 l

)
.

This expression is minimized when l = k2/3 log k, and the cost is O(k2/3 log k).

1320 F. Magniez and A. Nayak

The time complexity overhead comes from the initialization and transition
times that are both essentially equal to the time complexity of performing a
Grover diffusion operation. For the initialization, we use a diffusion over S2

l ,
whose time complexity is O(log(|Sl|2)) = O(l log k). For the transition, we use a
diffusion over a set of size 2 tensor product with a diffusion over a set of size kl,
therefore the corresponding time complexity is O(log(kl)) = O(log k). ��

4 Reduction from Unique Split Collision

We begin our presentation of the lower bound by considering the complexity
of Unique Split Collision. This problem is at least as hard as Unique Col-
lision in its query complexity since any bounded-error algorithm for the former
can be used to detect an arbitrary collision. The proof is omitted due to the lack
of space.

Proposition 2. The approximation degree and the quantum query complexity of
Unique Split Collision are both Ω(k2/3). The randomized query complexity
of this problem is Ω(k).

We conclude by proving the same lower bound for Group Commutativity
as well. We thus show that the algorithm described in the previous section is
almost optimal.

The group involved in the proof of the lower bound will be a subgroup G
of U(2k), the group (under matrix multiplication) of 2k × 2k unitary matrices.
The generators of G will be block diagonal, each with k blocks of dimension 2×2.
Each block will be one of the following three (Pauli) matrices:

I =
(

1 0
0 1

)
, X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
.

The group may also involve the remaining Pauli matrix Y = XZ =
(

0 −1
1 0

)
.

No pair of matrices amongst X,Y and Z commute. An encoding of the group
consists in words σ1 . . . σk of length k over the alphabet {I, X, Y, Z} together with
a sign vector s = (s1, s2, . . . , sk) in {+1,−1}k. A tuple (s,σ1, . . . σk) represents
the matrix diag(s1σ1, . . . , skσk). We will call this encoding the explicit encoding.

Let aj and bj be generators that have the identity matrix in all their blocks
except for the j-th. The j-th block is Z in aj and X in bj .

We describe a connection between Unique Split Collision and Group
Commutativity. Suppose the oracle for the problem Unique Split Collision
computes the function F : {1, . . . , k} → {1, . . . , k}. We associate a generator gi

of the type described above with each element i in the domain. The generator gi

is aF (i) if i ≤ k/2, and it is bF (i) if i > k/2. As long as the function F is injective
on the two intervals {1, . . . , k/2} , {k/2 + 1, . . . , k}, the set of generators {gi}
consists of k distinct elements. None of these generators is contained in the span
of the remaining generators.

It is straightforward to check that there is a collision in F (with one point
on either side of k/2) iff the group generated by {gi} is non-commutative. We

Quantum Complexity of Testing Group Commutativity 1321

use this connection for proving our lower bound. While the main result uses a
non-standard method, we first prove a weaker result which explains the intuition
behind the final proof to the reader.

Theorem 4. If non-unique encoding of group elements is allowed, the random-
ized and the quantum query complexity of Group Commutativity are respec-
tively Ω(k) and Ω(k2/3).

Proof. Suppose we allow non unique encoding of the group G. We show that any
algorithm A solving Group Commutativity may be adapted to solve Unique
Split Collision, with at most four times the query complexity of A. We then
conclude our theorem using Proposition 2.

We construct a black-box group which may invoke the oracle for Unique
Split Collision to implement group operations. The encoding of the group
elements will be either the explicit encoding defined above, or an element of
{1, . . . , k}. When the encoding is an integer i ∈ {1, . . . , k}, it represents the
generator gi. When an integer i is involved in a group operation, we query the
oracle for F at i, and construct gi as defined above. One more query to F is
required to erase the value of the function. Group operations can be performed
without incurring any further calls to F . Operations on previously computed
products also do not cost any queries. Therefore a group operation involves F at
most four times, when both of the elements are encoded by integers. The oracle
hides the group G with this non-unique encoding, and the input is the sequence
of encodings 1, 2, . . . , k. ��

In the case of unique encoding of group elements by the black-box, the reduc-
tion above is not guaranteed to work. The reason is that non-trivial products of
generators may evaluate to the value of a generator. These products are repre-
sented in explicit form, and therefore our simulation possibly uses two different
representations for the generators. We can nevertheless modify our simulation
to work, while maintaining essential properties of the algorithm. In the classical
model, our simulation preserves the number of oracle queries. In the quantum
model, our simulation will produce a polynomial that approximates Unique
Split Collision and has degree of the order of the number of queries made by
the commutativity algorithm.

In our arguments, we assume that the algorithm never queries the black-box
with encodings that did not result from previous queries to the oracle. This family
of algorithm are usually called generic algorithms. This notion was introduced
to cryptography by Nechaev [18] and Shoup [19]. By suitably randomizing the
encoding such as in [20], we can ensure that the probability that the algorithm
chances upon a valid pair of encoded group elements is o(1), if this input does not
result from previous queries. If we choose n, the encoding length, to be Ω(log |G|),
this probability would be exponentially small in n. We can therefore assume in
the black-box group setting that a correct algorithm is always generic, and we
make this assumption until the end of this section. These arguments do not
generalize easily to the quantum setting; we leave a proof to a more complete
version of this paper. We start with the classical simulation.

1322 F. Magniez and A. Nayak

Theorem 5. With unique encoding of group elements, the randomized query
complexity of Group Commutativity is Ω(k).

Proof. Our reduction from Unique Split Collision works essentially because
all the generators are distinct, and because no generator is contained in the span
of the remaining k − 1 generators. We modify the simulation in the proof of
Theorem 4 so that we record the value of the function F at any point which is
queried. We retain the explicit encoding for all group elements except the gen-
erators as the encoding for the black-box group. The generators are represented
by integers 1, . . . , k. A non-trivial product may equal a generator gi only if the
product contains this generator. The value of F at point i would necessarily have
been queried for the algorithm to have computed this product. The index i can
therefore be located by examining the record of all queries made thus far in the
algorithm, and used to encode the generator. ��

For the modified simulation in the quantum case, we introduce another
implicit encoding of elements of G as tuples (s, x1, x2, . . . , xk), where s ∈
{+1,−1}k, and xi ∈ {0, 1}. A word in this implicit encoding represents the
group element diag(s1I, s2I, . . . , skI) · gx1

1 gx2
2 · · · gxk

k . This is a unique encoding
of elements in G.

As in the proof of the classical lower bound, we restrict ourselves to generic
algorithms. In a generic quantum black-box group algorithm, along every com-
putational path, the queries to the oracle involve either a generator, or a product
that was previously computed along that path.

Theorem 6. With unique encoding of group elements, any generic quantum
algorithm for Group Commutativity performs Ω(k2/3) group operations
(queries to the group oracle).

Proof. In using a generic algorithm for Group Commutativity to solve
Unique Split Collision we now use the implicit encoding of group elements.
The generators are specified in this notation, and we will maintain this represen-
tation for all the intermediate products that are computed during the algorithm.
The query cost of simulating a group operation is no longer O(1). Indeed, we
may need up to O(k) queries to F to implement a multiplication of two ele-
ments. Nevertheless, we argue that the degree of the polynomial that results
from this simulation is of the order of the query cost of the commutativity
algorithm.

We refine the proof of Proposition 1 due to [3, 12] to claim that after t queries:

– The amplitude of any basis state is a polynomial of degree at most O(t) in
the variables xij .

– Fix a classical basis state. If a generator gi occurs in the implicit encoding
of group elements stored in the special registers, then a variable xij (for
some j) is a factor of the polynomial that gives the amplitude of that state.

This ensures that in our simulation, the degree of the polynomial corresponding
to a basis state does not increase as we query F to implement a group operation

Quantum Complexity of Testing Group Commutativity 1323

involving a previously computed product. In making this claim, we rely on the
fact that xij ∈ {0, 1} for inputs of interest to us, so xijxij′ = δjj′xij . (The degree
goes up by O(1) when at least one of the operands is a fresh generator.)

As a consequence, we derive a polynomial of degree of the order of the num-
ber of queries made by the commutativity algorithm, and this approximates
Unique Split Collision. We can thus conclude the same lower bound as in
Proposition 2 for testing commutativity as well. ��

Note that the complications due to the unique encoding requirement do not
arise if we are concerned with the number of accesses to the input generators.
For arbitrary (possibly non-generic) quantum algorithms, the same reduction
also directly gives a bound on this notion of complexity.

Proposition 3. The lower bound of Ω(k2/3) above also holds for the query com-
plexity of any quantum algorithm, if the generators to a possibly known group
are specified by an input oracle.

References

1. Grover, L.: A fast quantum mechanical algorithm for database search. In: Proc.
of 28th ACM STOC. (1996) 212–219

2. Mosca, M.: Quantum Computer Algorithms. PhD thesis, Univ. of Oxford (1999)
3. Beals, R., Buhrman, H., Cleve, R., Mosca, M., Wolf, R.: Quantum lower bounds

by polynomials. J. of the ACM 48 (2001) 778–797
4. Babai, L., Szemerédi, E.: On the complexity of matrix group problems I. In: Proc.

of 25th IEEE FOCS. (1984) 229–240
5. Watrous, J.: Quantum algorithms for solvable groups. In: Proceedings of 33rd

Symposium on Theory of Computing, ACM (2001) 60–67
6. Pak, I.: Testing commutativity of a group and the power of randomization. Elec-

tronic version at http://www-math.mit.edu/∼pak/research.html (2000)
7. Szegedy, M.: Quantum speed-up of markov chain based algorithms. In: Proc. of

45th IEEE FOCS. (2004) 32–41 Also arXiv.org report quant-ph/0401053.
8. Ambainis, A.: Quantum walk algorithm for Element Distinctness. In: Proceedings

of 45th IEEE FOCS. (2004) 22–31
9. Buhrman, H., Spalek, R.: Quantum verification of matrix products. Technical

Report quant-ph/0409035, arXiv archive (2004)
10. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cam-

bridge University Press (2000)
11. Kitaev, A., Shen, A., Vyalyi, M.: Classical and Quantum Computation. Volume 47

of Graduate Studies in Mathematics. AMS (2002)
12. Aaronson, S., Shi, Y.: Quantum lower bound for the collision problem. J. of the

ACM 51 (2004) 595–605
13. Kutin, S.: A quantum lower bound for the collision problem. Technical Report

quant-ph/0304162, arXiv archive (2003)
14. Ambainis, A.: Quantum lower bounds for collision and element distinctness with

small range. Technical Report quant-ph/0305179, arXiv archive (2003)
15. Sinclair, A.: Algorithms for Random Generation and Counting: A Markov

Chain Approach. Progress in theoretical computer science. Birkhäuser, Boston
(1993)

1324 F. Magniez and A. Nayak

16. Aldous, D.: Random walks on finite groups and rapidly mixing Markov chains. In:
Séminaire de Probabilités XVII. Volume 986 of Lecture Notes in Mathematics.,
Springer-Verlag (1981–82) 243–297

17. Griffeath, D.: Coupling methods for Markov processes. In Rota, G.C., ed.: Studies
in Probability and Ergodic Theory. Academic Press (1978) 1–43

18. Nechaev, V.: Complexity of a determinate algorithm for the discrete logarithm.
Mathematical Notes 55 (1994) 165–172

19. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Proc.
of Eurocrypt. (1997) 255–266

20. Schnorr, C., Jakobsson, M.: Security of signed ElGamal encryption. In: Proc. of
6th Asiacrypt. (2000) 73–89

Semantic-Based Code Obfuscation by
Abstract Interpretation

Mila Dalla Preda and Roberto Giacobazzi

Dipartimento di Informatica, Università di Verona,
Strada Le Grazie 15, 37134 Verona Italy

dallapre@sci.univr.it, roberto.giacobazzi@univr.it

Abstract. In this paper we introduce a semantic-based approach for
code obfuscation. The aim of code obfuscation is to prevent malicious
users to disclose properties of the original source program. This goal
can be precisely modeled by abstract interpretation, where the hiding
of properties corresponds to abstract the semantics. We derive a general
theory based on abstract interpretation, where the potency of code ob-
fuscation can be measured by comparing hidden properties in the lattice
of abstract interpretations. Semantic-based code obfuscation is applied
to show that well known program transformation methods, such as con-
stant propagation, can be seen as code obfuscation.

Keywords: Code Obfuscation, Abstract Interpretation, Program Trans-
formation, Semantics.

1 Introduction

Code obfuscation is a program transformation typically intended to prevent re-
verse engineering [2, 4, 5, 6]. A number of results are known in the literature pro-
viding obfuscation algorithms such as: Layout transformations, which remove
source code formatting and scramble identifiers; control transformations, which
affect the control flow of the program; and data transformations, which operate
obfuscating the data structures used in the program [5]. The major negative re-
sult on code obfuscation is given in Barak et al. [1]. They prove that there is no
obfuscation method that works for any program and it is able to transform them
in such a way that the only properties which can be disclosed are those which can
be derived from the input/output semantics. This result is not as bad as it might
seen, in fact even though the “ideal” obfuscator of Barak et al. does not exist,
software obfuscation would be still useful when employed for hiding specific code
properties and working for specific classes of programs [14]. The classical notion
of code obfuscation of Collberg et al. [4, 5, 6] defines an obfuscator as a potent
transformation that preserves the observable behavior of programs. In this set-
ting a transformation is potent when the obfuscated program is more complex
than the original one. Clearly this definition of code obfuscator relies on a fixed
metric for measuring program complexity, and finding such metrics is a major
challenge in practical code obfuscation algorithms.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 1325–1336, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1326 M. Dalla Preda and R. Giacobazzi

The Problem

The major drawback of most software obfuscation techniques is that they do
not have a well found theoretical base, and thus it is unclear how effective they
are. Even if semantic preservation is implied in code obfuscation [18], the lack
of a complete formal setting where these program transformations can be stud-
ied defects any possibility of comparing them with respect to their ability to
obfuscate program properties. The main problem here is to fix a measure for po-
tency. Usually syntactic (textual) measures are considered, such as code length,
nesting-levels, fan-in-out complexity, branching, etc [5]. Semantic-based mea-
sures are instead less common, even thought they may provide a deeper insight
in the true potency of code obfuscation. In order to understand this point we
need to model attackers, i.e., code de-obfuscation techniques. Static program
analysis is the standard method for making reverse-engineering. Recently dy-
namic attacks have also been considered in [3] for strengthening static ones for
de-obfuscation. Both static and dynamic attacks strongly relies upon program
semantics: the first corresponds precisely to a decidable semantic abstraction,
while the last are based on the concrete semantics, e.g., interpreters. In both
cases syntactic measures can be misleading. More significant measures have to
be derived from semantics and this, as far as we know, is an open problem.

Main Results

In this paper we consider the lattice of abstract interpretations as the domain
for measuring potency. The goal of code obfuscation is to prevent reverse en-
gineering (e.g., by static or dynamic analysis) to grasp sensible properties on
program’s structure and semantics. It is well known that static analysis can be
completely and fully specified as an abstract interpretation [10], i.e., as an ap-
proximation of the concrete semantics of programs. Similarly, dynamic analysis
can be seen as a possibly non decidable approximation of the concrete seman-
tics. In this sense, code obfuscation can be seen as a way to prevent that some
information about program behaviour is disclosed by an abstract interpreta-
tion of its semantics. In order to apply abstract interpretation as a model for
attackers, we need to replace syntactic code obfuscators with corresponding se-
mantic transformations. Recently, Cousot & Cousot in [12] have introduced a
semantic-based formalization of program transformation based on abstract in-
terpretation. In this construction the relation between syntactic and semantic
transformations is specified by an abstract interpretation, where syntax is an
abstraction of semantics. This allows us to mirror code obfuscators, viewed as
syntactic transformations, in the semantics, by considering corresponding se-
mantic obfuscators instead. Therefore the role of abstract interpretation in a
semantic-based approach to code obfuscation is crucial: By fixing a formal re-
lation between syntactic and semantic transformations, abstract interpretation
provides the most general setting where attackers can be compared by compar-
ing abstractions, leading us to derive a semantic-based metric for the potency
of code obfuscation. Traditionally code obfuscation is intended to preserve in-
put/output (denotational) semantics of programs. This is again an unreasonable

Semantic-Based Code Obfuscation by Abstract Interpretation 1327

restriction: Semantics at different levels of abstraction can be related by abstract
interpretation in a hierarchy of semantics [9]. Therefore, any program transfor-
mation τ which preserves a given semantics in the hierarchy may act as a code
obfuscation for those properties that are not preserved by the transformation.
The idea is that the transformed program τ [[P]] is more complex (obscure) then
the original program P , i.e., τ is potent, when there exists a semantic property,
i.e., an abstract semantics, which is not preserved by the transformed program
τ [[P]]. Potency is therefore strictly related with the rate of abstraction of the
most concrete preserved semantics of a code transformation. This corresponds
to map code transformations to the lattice of abstract interpretations to measure
their obfuscating potency. We introduce a constructive systematic method for
deriving the most concrete preserved abstraction of a generic code transforma-
tion. Then we generalize Collberg et al. definition of code obfuscation [4, 5] by
considering as obfuscators those transformations that mask some abstractions
in the lattice of abstract interpretations. This means that, in principle, any pro-
gram transformation may potentially act as a code obfuscator. We show how a
well known program transformation for solving the constant propagation prob-
lem, can be seen as a code obfuscator. In this case the transformation acts as a
code obfuscator relatively to the command-line structure.

2 Preliminaries

Abstract Interpretation. The notation 〈C,≤,∨,∧,8,⊥〉 denotes a complete lat-
tice C, with ordering ≤, lub ∨, glb ∧, greatest element 8, and least element
⊥. x ∈ C is meet-irreducible if x = a ∧ b then x ∈ {a, b}. The set of meet-
irriducibile elements in C is denoted M irr(C). The downward closure of S ⊆ C
is ↓ S def= {x ∈ C|∃y ∈ S.x ≤ y}, and for x ∈ C, ↓ x is a shorthand for ↓ {x}, while
the upward closure ↑ is dually defined. Abstract domains can be formulated ei-
ther in terms of Galois connections or upper closures operators [11]. An upper
closure operator on a ordered set C, μ : C → C, is a monotone, idempotent, and
extensive (∀x ∈ C.x ≤ μ(x)) function. With uco(C) we denote the set of all upper
closure operators of C. Each closure μ ∈ uco(C) is uniquely determined by the
set of its fix-points μ(C) [17]. X ⊆ C is a set of fix-points of an upper closure op-
erator on C iff X is a Moore family of C, i.e., X = M(X) def= {∧S|S ⊆ X} - where
∧∅ = 8 ∈M(X). If C is a complete lattice also uco(C) is a complete lattice de-
noted by 〈uco(C),,,�,�,λx.8,λx.x〉 where, given two closures η and μ, η , μ
iff μ(C) ⊆ η(C). On the other side a concrete domain C and an abstract domain
A form a Galois Connection (GC), denoted by (C, α,A, γ), when α : C → A and
γ : A → C define an adjunction, namely ∀x ∈ C, y ∈ A : α(x) ≤ y ⇔ x ≤ γ(y).
Given a GC (C, α,A, γ) the closure corresponding to the abstract domain A is
ρ = γ◦α on C. If ρ is a closure in C and ι : ρ(C) → A is an isomorphism
of complete lattices (with inverse ι−1), then (C, ι◦ρ, A, ι−1) is a GC. Given a
function f : C → C and a closure α ∈ uco(C), then f " is a correct (sound)
approximation of f in α when f " : α(C) → α(C) and α◦f◦α ≤ f ". fα def= α◦f◦α
is the best correct approximation of f in α [11]. The abstraction α is complete

1328 M. Dalla Preda and R. Giacobazzi

Table 1. Abstract syntax

Arithmetic expressions E ∈ E E ::= n | X | E1 − E2

Boolean expressions B ∈ B B ::= E1 < E2 | B1 ∨B2 | ¬B1 | true | false
Program actions A ∈ A A ::= X := E | X :=? | B

Commands C ∈ C C ::= L1 : A→ L2 where L1, L2 ∈ L ∪ {� l}
and � l is the undefined label

when α◦f = fα [10, 16]. The point-wise ordering on uco(C) corresponds to the
standard ordering used to compare abstract domains with regard to their preci-
sion: Let ρi ∈ uco(C) and Ai = ρi(C), then A1 is more precise then A2 (i.e., A2

is an abstraction of A1) iff A1 , A2 in uco(C). Let {Ai}i∈I ⊆ uco(C): �i∈IAi

is the most concrete among the domains in uco(C) which is abstraction of all
the Ai’s, i.e., �i∈IAi is the least (w.r.t ,) common abstraction of all the Ai’s,
and �i∈IAi is the well-known reduced product of all the Ai’s, namely the most
abstract among the domains in uco(C) which is more concrete then every Ai.
Complementation corresponds to the inverse of reduced product [7], namely an
operator that, given two domains C , D, gives as result the most abstract do-
main C-D, whose reduces product with D is exactly C (i.e., (C-D)�D = C).
Therefore we have that C-D def= �{E ∈ uco(C)|D�E = C}. It has been proved
in [15] that M(M irr(C) \M irr(D)) = C -D.

Semantics. Given a transition system 〈Σ,-〉, where Σ is a nonempty set of
states and -⊆ Σ × Σ is the transition relation over states, we denote by Σ+

and Σω def= N → Σ respectively the finite nonempty and the infinite sequences of
symbols in Σ. Let σ ∈ Σ∞ def= Σ+ ∪Σω be a generic (finite or infinite) sequence
of states then |σ| ∈ N ∪ ω is its length, σi is its i-th element, and σf is the final
state if σ ∈ Σ+. A finite (infinite) sequence of states σ is a program trace when
for all i < |σ| : 〈σi,σi+1〉 ∈-, denoted σ = σ�1 σ�2 . . .� σ�i In the following
σ�i σ denotes the concatenation of a state σi with a trace σ. In this context μ
is a subtrace of σ if there exists i, j ∈ [0, |σ|), where i < j, and μ = σ�i . . .� σj .
The maximal trace semantics of a transition system is τ∞ def= τ+ ∪ τω, where τ+

is the set of finite traces and τω the set of infinite traces [9] of τ . From now
on the trace semantics τ∞ of the program P is considered as the concrete se-
mantics S[[P]] ⊆ Σ∞. In [9] Cousot defines a hierarchy of semantics, where the
big-step, termination and nontermination, Plotkin’s natural, Smyth’s demonic,
Hoare’s angelic relational and corresponding denotational, Dijkstra’s predicate
transformer weakest-precondition and weakest-liberal precondition and Hoare’s
partial and total axiomatic semantics, have all been derived by successive ab-
stractions from the maximal trace semantics of a transition system τ∞. In this
setting uco(℘(Σ∞)) is the lattice of abstract semantics, namely each closure
in uco(℘(Σ∞)) represents an abstraction of trace semantics. For example the
(natural) denotational semantics D ∈ uco(℘(Σ∞)) can be formalized as an ab-
stract interpretation of τ∞: D(X) =

{
σ ∈ Σ+

∣∣∃δ ∈ X+. σ0 = δ0 ∧ σf = δf
}
∪{

σ ∈ Σω
∣∣∃δ ∈ Xω.σ0 = δ0

}
, where X+ def= X ∩ Σ+ and Xω def= X ∩ Σω. D ab-

Semantic-Based Code Obfuscation by Abstract Interpretation 1329

Table 2. Semantics

Arithmetic expressions A[[n]]ρ
def
= n, A[[X]]ρ

def
= ρ(X)

A : E[[χ]] → DΥ and var[[E]] ⊆ χ A[[E1 − E2]]ρ
def
= A[[E1]]ρ−A[[E2]]ρ

Boolean expressions B[[E1 < E2]]ρ
def
= A[[E1]]ρ < A[[E2]]ρ

B : E[[χ]] → {true, false, Λ} and var[[B]] ⊆ χ B[[B1 ∨B2]]ρ
def
= B[[B1]]ρ ∨B[[B2]]ρ

B[[¬B]]ρ = ¬B[[B]], B[[true/false]]ρ
def
= true/false

Program actions S[[B]]ρ
def
=
{
ρ′
∣∣B[[B]]ρ′ = true ∧ ρ′ = ρ

}
S : A → (E[[χ]] → ℘(E[[χ]])) and var[[A]] ⊆ dom(ρ) S[[X :=?]]ρ

def
=
{
ρ′
∣∣∃z ∈ Z : ρ′ = ρ[X := z]

}
S[[X := E]]ρ

def
= {ρ[X := A[[E]]ρ]}

S[[true]]ρ
def
= S[[skip]]ρ

def
= {ρ}

stracts away the history of the computation by observing the input/output rela-
tion of finite traces and the input of diverging computations only. In the following
we consider the simple imperative language defined in [12] with abstract syntax
in Table 1, together with the following basic functions: lab[[L1 : A → L2]]

def= L1,
lab[[P]] def= {lab[[C]]|C ∈ P}, var[[L1 : A → L2]]

def= var[[A]], var[[P]] def= ∪C∈P var[[C]],
succ[[L1 : A → L2]]

def= L2 and act[[L1 : A → L2]]
def= A. Each variable X ∈ var[[P]]

has values in the semantic domain D, where the undefined value is denoted by
Υ and DΥ

def= D ∪ {Υ}. We define an environment ρ ∈ E as a map from vari-
ables X ∈ dom(ρ) to values ρ(X) ∈ DΥ . Let χ be a subset of variables, then
ρ|χ is the restriction of environment ρ to the domain dom(ρ) ∩ χ. The seman-
tics is in Table 2. A state σi ∈ Σ

def= E × C is a pair 〈ρ,C〉, where C is the
next command to be executed in the environment ρ. The transition relation be-
tween states specifies the set of states that can be reached from a given state:
RP (〈ρ, C〉) def

=
{

(ρ′, C′)
∣∣ ρ′ ∈ S[[act(C)]]ρ, succ[[C]] = lab[[C′]], ρ, ρ′ ∈ E[[P]], C′ ∈ P

}
.

The finite traces of a program P ∈ P are obtained by the computation of the
lfp⊆F [[P]], while the infinite traces by the computation of the gfp⊆F [[P]], where
F [[P]](X) def= X ∪

{
σ�i σ′�i σ

∣∣σ′i ∈ RP (σi), σ′�i σ ∈ X
}
. We denote with S[[P]]

the set of finite and infinite traces of P .

Program Transformation. In [12] the authors define a language-independent
methodology for systematically derive syntactic program transformations from
semantic ones by mean of abstract interpretation (see Fig. 1). Given a program
P ∈ P and a syntactic transformation τ : P → P which returns the transformed
program τ [[P]] ∈ P, we have that the corresponding semantic transformation t
takes the semantics S[[P]] ∈ ℘(Σ∞) of P , and returns the semantics S[[τ [[P]]]] of
the transformed program. We consider programs as an abstraction of their se-
mantics, as formalized by the Galois connection (〈℘(Σ∞);,〉, p, 〈P;≤〉,S), where
p[S] is the simplest program whose semantics upper approximates S ∈ ℘(Σ∞)
[12]. Therefore the semantic transformation t : ℘(Σ∞) → ℘(Σ∞) induced by
the syntactic transformation τ is t(S[[P]]) = S[[τ [[p(S[[P]])]]]], while the syntactic
transformation τ induced by the semantic transformation t is τ [[P]] = p(t(S[[P]])).
A program transformation is correct if at some level of abstraction it is meaning

1330 M. Dalla Preda and R. Giacobazzi

Subject
program P

Syntactic

transformation τ

Transformed
program τ [[P]]

Transformed program
semantics S[[P]] semantics t[S[[P]]] " S[[τ [[P]]]]

Semantic
Subject program

transformation t

p pS S

αO αO

αO(S[[P]]) = αO(t[S[[P]]]) = αO(S[[τ [[P]]]])

Fig. 1. Syntactic-Semantic Program Transformations

preserving, namely a syntactic transformation τ is correct w.r.t. an observational
abstraction αO if αO(S[[P]]) = αO(S[[τ [[P]]]]) [12].

3 Semantic-Based Program Obfuscators

Traditionally a program transformation τ : P → P is an obfuscation if: 1) it is a
potent transformation and 2) P and τ [[P]] have the same observational behavior,
i.e., if P fails to terminate or it terminates with an error condition then τ [[P]]
may or may not terminate; otherwise τ [[P]] must terminate and produce the
same output as P [4, 5, 6]. This definition requires that given an initial state
σ0, if σ�0 σ ∈ S[[P]]ω or σ�0 σ�σe ∈ S[[P]]+, where σe ∈ Err with Err being
the set of error states, then σ�0 σ′ ∈ S[[τ [[P]]]]∞; otherwise if σ ∈ S[[P]]+ then
σ ∈ D(S[[τ [[P]]]]+). We denote by C the family of these code transformations.

3.1 Abstract Interpretation-Based Code Obfuscation

In this section we specify what is hidden by a syntactic transformation, by in-
troducing a novel definition of code obfuscation based on semantics.

Definition 1. Let τ : P → P be a program transformation. τ is potent if there
is a property α ∈ uco(℘(Σ∞)) such that: α(S[[P]]) �= α(S[[τ [[P]]]]).

Therefore a transformation τ is potent when there exists a property α and a
program P such that the approximation of the concrete trace semantics of P is
different from the same approximation for the concrete trace semantics of τ [[P]].

Example 1. Let us consider a program P and its transformed version P ′:

P: P’:

L1: X:= ? → L2 L1: X:= ? → L2

L2: Y:= ? → L3 L2: Y:= ? → L3

L3: out:= (X - Y)2 → � l L3: out:= X2 → L4

L4: out:= out - 2XY → L5

L5: out:= out - Y2 → � l

Semantic-Based Code Obfuscation by Abstract Interpretation 1331

Let us define α ∈ uco(℘(Σ∞)) as α(X) def=
{
σ ∈ Σ+

∣∣∃η ∈ X : |σ| = |η|
}
. The

property α observes the length of program traces. In this case we have α(S[[P]]) ={
σ ∈ Σ+

∣∣ |σ| = 3
}
, while α(S[[τ [[P]]]]) =

{
σ ∈ Σ+

∣∣ |σ| = 5
}
. It is clear that

α(S[[P]]) �= α(S[[τ [[P]]]]), i.e., the transformation obfuscates α.

In order to factor the observational semantics into preserved and masked prop-
erties, we define the most concrete property preserved by a transformation
τ : P → P, as follows δτ

def= � {ϕ ∈ uco(℘(Σ∞))|ϕ(S[[P]]) = ϕ(S[[τ [[P]]]])}.

Lemma 1. Given a transformation τ : P → P, δτ (S[[P]]) = δτ (S[[τ [[P]]]]).

Given a program transformation τ we want to characterize the set of properties
that are not preserved, i.e., obfuscated, by τ . By considering the transformation
τ and the property α ∈ uco(℘(Σ∞)) that the attacker wants to observe, we note
that α - (δτ � α) is precisely what the transformation τ hides of the property
α. In fact when α- (δτ � α) �= 8 some parts of the property α has been lost in
the transformation. In this case we say that the property α is obfuscated by the
transformation τ , because that property cannot be observed on the semantics of
the transformed program.

Definition 2. Oδτ
=
{

α ∈ uco(℘(Σ∞))
∣∣α- (δτ � α) �= 8

}
is the set of prop-

erties obfuscated by τ : P → P.

Given δ ∈ uco(℘(Σ∞)), we define a δ-obfuscator as any potent program trans-
formation τ : P → P, such that every program is equivalent to its obfuscated
version w.r.t. the particular observational semantics δ.

Definition 3. τ : P → P is a δ-obfuscator if δ = δτ and Oδ �= ∅

Lemma 2. Given a δ-obfuscator τ : P → P, then for each α ∈ Oδ there exists a
program P such that α(S[[P]]) �= α(S[[τ [[P]]]]).

The above definition of obfuscator is a generalization of the classical one by
Collberg et al. , introduced at the beginning of this Section.

Theorem 1. If τ is a D-obfuscator then τ ∈ C.

In particular we can define a partial order between obfuscating transformations,
by considering the set of properties that the transformations hide. Given two
program transformations τ and τ ′, then τ ′ is more potent than τ , denoted τ ≤P

τ ′, if Oδτ
⊆ Oδτ′ . We can also compare the potency of τ and τ ′ w.r.t. a particular

property α, namely by measuring the approximation in the knowledge of that
property that can be obtained by observing semantics. Let α ∈ Oδτ

∩Oδτ′ , then
τ ′ is more potent than τ w.r.t. α, denoted τ ≤α τ

′, if α-(δτ ′ �α) , α-(δτ �α).
In this case τ ′ obfuscates the property α more than what τ does. From the
structure of the lattice of abstract interpretations uco(℘(Σ∞)) we can derive the
some basic properties of Oδ and therefore of the potency of code obfuscations.

Proposition 1. Let δ,μ ∈ uco(℘(Σ∞)) and τ, τ ′ be program transformations:
1) Oδ =

{
α ∈ uco(℘(Σ∞))

∣∣α /∈↑ δ
}
; 2) If μ � δ then Oμ ⊂ Oδ, i.e., τμ ≤P τδ;

3) Oδ#μ = Oδ ∪Oμ; 4) If τ ≤δ τ
′, then for each property μ , δ we have τ ≤μ τ

′;
5) If τ ≤δ$μ τ

′, then τ ≤δ τ
′ and τ ≤μ τ

′.

1332 M. Dalla Preda and R. Giacobazzi

3.2 Constructive Characterization of Potency

In this section we define a method for deriving δτ for a given syntactic trans-
formation τ : P → P. By Definition 2, this provides a characterization of the
potency of a code transformation. Let t : ℘(Σ∞) → ℘(Σ∞) be a semantic trans-
formation and KP,t : uco(℘(Σ∞)) → uco(℘(Σ∞)) be a domain transformer that,
given a property μ ∈ uco(℘(Σ∞)), returns the closest abstraction preserved by
t on P ∈ P: KP,t

def= λμ. �
{
ϕ ∈ uco(℘(Σ∞))

∣∣μ , ϕ ∧ ϕ(S[[P]]) = ϕ(t(S[[P]]))
}
.

For a given μ ∈ uco(℘(Σ∞)), KP,t(μ) is a closure operator on sets of traces. In
order to characterize the set of its fix-points, we have to specify the set of traces
X ⊆ Σ∞ preserved by the transformation t on a particular program P . The
predicate PresP,t(X), where X ∈ ℘(Σ∞), precisely captures this notion, in fact
PresP,t(X) evaluates to true if and only if ∀Y ⊆ S[[P]] : Y ⊆ X ⇒ t(Y) ⊆ X.

Lemma 3.
{

X ∈ ℘(Σ∞)
∣∣PresP,t(X)

}
is preserved by t on program P .

Theorem 2. KP,t(id) =
{

X ∈ ℘(Σ∞)
∣∣PresP,t(X)

}
KP,t(id) models the most concrete property preserved by the transformation t
for the program P . The generalization of this notion for all programs follows
straightforwardly.

Corollary 1. Let τ : P → P, then δτ =
⊔
P∈P

KP,p◦τ◦S(id).

4 An Example: Obfuscation by Program Specialization

In this section we consider constant propagation as code obfuscation. This proves
that our semantic-based approach to code obfuscation is adequate both to in-
clude a wide range of program transformation techniques and to compare them
by extracting what is actually masked by the transformation. We follow Cousot
& Cousot [12] in the definition of an algorithm for constant propagation.

4.1 Cousot’s Constant Propagation

The residual R[[E]]ρ of an arithmetic or boolean expression E in an environment
ρ is the expression resulting by the specialization of E in such environment
(see Table 3). An expression E ∈ E ∪ B is static in the environment ρ, denoted
static[[E]]ρ, if it can be fully evaluated in ρ, that is var[[E]] ⊆ dom(ρ); other-
wise E is dynamic. With R[[A]]ρ we denote the specialization of action A in the
environment ρ (see Table 3). We consider syntactic and semantic program trans-
formations relative to the constant propagation problem as formalized in [12],
where the arguments of the program transformation are the semantics S[[P]] and
the result of a constant detection static analysis SC [[P]].
Abstract semantics: It is defined as SC = αC◦S, where αC is given by:

αC(S[[P]]) = λL.λX.
⊔̇{

ρ(X)
∣∣σ ∈ S[[P]],C ∈ C,σi = 〈ρ,C〉, lab[[C]] = L

}

Semantic-Based Code Obfuscation by Abstract Interpretation 1333

Table 3. Expression and Action specialization

Expressions R ∈ E× E → E
R[[n]]ρ = n
R[[X]]ρ = if X ∈ dom(ρ) then ρ(X) else X

R[[E1 − E2]]ρ = let Er
1 = R[[E1]]ρ and Er

2 = R[[E2]]ρ
if Er

1 = Λ or Er
2 = Λ then Λ

else if Er
1 = n1 and Er

2 = n2 then n = n1 − n2 else Er
1 − Er

2

R ∈ B× E → B
R[[E1 < E2]]ρ = let Er

1 = R[[E1]]ρ and Er
2 = R[[E2]]ρ

if Er
1 = Λ or Er

2 = Λ then Λ
else if Er

1 = n1 and Er
2 = n2 and b = n1 < n2

then b else Er
1 < Er

2

R[[B1 ∨B2]]ρ = let Br
1 = R[[B1]]ρ and Br

2 = R[[B2]]ρ
if Br

1 = Λ or Br
2 = Λ then Λ

else if Br
1 = true or Br

2 = true then true
else if Br

1 = false then Br
2

else if Br
2 = false then Br

1

else Br
1 ∨Br

2

R[[¬B]]ρ = let Br = R[[B]]ρ
if Br = Λ then Λ
else if Br = true then false
else if Br = false then true
else ¬Br

R[[true]]ρ = true
R[[false]]ρ = false

Actions R ∈ A× E → A
R[[B]]ρ = 〈ρ,R[[B]]ρ〉

R[[X :=?]]ρ = 〈ρ \X,X :=?〉
R[[X := E]]ρ = if static[[E]]ρ then 〈ρ[X := R[[E]]ρ]〉, skip

else 〈ρ \X,X := R[[E]]ρ〉

This function, given a label L and a variable X, returns the least upper bound
�̇ on the flat lattice of program values for X at the program point L.
Semantic transformation: The semantic transformation tC is defined in [12]
where: tC [S[[P]],SC [[P]]] def= {tC [σ,SC [[P]]]|σ ∈ S[[P]]} is the transformation of se-
mantics, tC [σ,SC [[P]]] def= λi.tC [σi,S

C [[P]]] is the transformation of traces, and
tC [〈ρ,C〉,SC [[P]]] def= 〈ρ, tC [C, τC(lab[[C]])]〉 is the transformation of states, where
tC [L1 : A → L2, ρ

C] def= L1 : tC [A, ρC] → L2 is command specialization and
tC [A, ρC] = let 〈ρr, Ar〉 def= R[[A]]ρ|{X∈X|ρC(X)∈DΥ } ∈ Ar is action specialization.
The syntactic transformation τC can be systematically derived as shown in [12].
Observational semantics: Given a partial trace σ, the observational semantics
αC

O returns the sequence of its environments: αC
O(S[[P]]) def= {αC

O(σ)|σ ∈ S[[P]]},
αC

O(σ) def= λi.αC
O(σi), and αC

O(〈ρ,C〉) def= ρ.

1334 M. Dalla Preda and R. Giacobazzi

Table 4. A simple program from [8]

a:= 1; b:=2; c:=3; d:=3; e:=0; L1 : a:= 1; b:=2; c:=3; d:=3; e:=0; → L2

while B do L2 : B → L3

L2 : ¬B → L5

b:=2*a; d:=d+1; e:=e-a; L3 : b:=2*a; d:=d+1; e:=e-a; → L4

a:=b-a; c:=e+d; L4 : a:=b-a; c:=e+d; → L2

endw L5 : stop →� l

4.2 Code Obfuscation by Constant Propagation

In order to specify the properties obfuscated by constant propagation τC , we
derive δτC . Let us define the property θ as follows: θ(S[[P]]) def= {θ(σ)|σ ∈ S[[P]]},
θ(σ) def= λi.θ(σi), and θ(〈ρ,C〉) def= 〈ρ, lab[[C]], succ[[C]]〉.

Theorem 3. θ = δτC and Oθ �= ∅.

It is worth noting that θ is the most concrete property preserved by constant
propagation τC . Let us consider the property ϑ ∈ uco(℘(Σ∞)), observing the
environment, the labels, and the type of actions: ϑ(τ∞) def= {ϑ(σ)|σ ∈ τ∞},
ϑ(σ) def= λi.ϑ(σi), and ϑ(〈σ,C〉) def= 〈ρ, lab[[C]], succ[[C]], type(act[[C]])〉, where type
maps actions into the following set of action types {assign, skip, test}. This prop-
erty belongs to Oθ, meaning that Oθ �= ∅, as requested by Definition 3 and
shown in Example 2 below. This proves that τC is actually a program obfus-
cator, hiding the type of the command actions. This is a consequence of the
structure of the masked closure ϑ - (ϑ � θ), which characterizes what is obfus-
cated from ϑ by τC . Consider the closure η which observes the type of actions
defined as follows:

η = λX.

{
σ

∣∣∣∣σ′ ∈ X and ∀i. σi = 〈ρi,Ci〉,σ′i = 〈ρ′i,C ′i〉
type(Ci) = type(C ′i)

}
The following theorem specifies that η is masked by the constant propagation,
i.e., τC obfuscates η.

Theorem 4. ϑ- (ϑ � θ) , η.

Example 2. As observed above, ϑ is not preserved by tC , namely it could hap-
pen that: ϑ(S[[P]]) �= ϑ(tC [S[[P]],SC [[P]]]). In the following we represent the en-
vironment as a tuple (va, vb, vc, vd, ve) of values corresponding to the variables
a, b, c, d, e in a certain execution point. Let us run the program in Table 4, and
consider the states σ2 = 〈(1, 2, 3, 3, 0),L3 : b := 2∗a; d := d+1; e := e−a;→ L4〉
and σ3 = 〈(1, 2, 3, 4,−1),L4 : a := b−a; c := e+d → L2〉. Their transformed ver-
sions are: tC(σ2) = 〈(1, 2, 3, 3, 0),L3 : d := d+1; e := e−a;→ L4〉 and tC(σ3) =
〈(1, 2, 3, 4,−1),L4 : skip→ L2〉. In this case ϑ(σ2) = 〈(1, 2, 3, 3, 0),L3,L4, assign〉
and ϑ(σ3) = 〈(1, 2, 3, 4,−1),L4,L2, assign〉; while ϑ(tC(σ2)) = 〈(1, 2, 3, 3, 0),L3,
L4, assign〉 and ϑ(tC(σ3)) = 〈(1, 2, 3, 4,−1),L4,L2, skip〉, showing that the prop-
erty η is not preserved.

Semantic-Based Code Obfuscation by Abstract Interpretation 1335

5 Discussion

In this paper we introduce a notion of code obfuscation providing a general
enough definition including both most program transformation techniques as
obfuscators and the standard definition of Collberg et al. [5] as special cases.
Moreover, it provides advanced techniques for comparing obfuscating algorithms
relatively to their potency in the lattice of abstract interpretations. This defi-
nition can be considered as the first step towards a semantic-based theory for
code obfuscation. Note however that in Definition 1 we consider abstractions of
concrete semantics and not arbitrary sound, possibly incomplete, abstract in-
terpretations. This makes Definition 1 too strong for modeling attackers which
can be any decidable sound approximation of semantics, e.g., arbitrary static
program analyzers. Consider the following example of program transformation:

P: P’:

L1: X:= ? → L2 L1: X:= ? → L2

L2: Y:= ? → L3 L2: Y:= ? → L3

L3: out:= (X - Y)2 → � l L3: out:= X2 - 2XY + Y2 → � l

Let’s consider the property of the sign of a variable, i.e., the abstract domain
Sign def= {Z, Z+, Z−, ∅}. By considering the sign of the variable out, when X is pos-
itive and Y is negative, we have that: Sign(S[[P]]) = Sign(S[[τ [[P]]]]) = Z+, while
SSign[[P]] = Z+ and SSign[[τ [[P]]]] = Z. Therefore the previous transformation
obfuscates program P for the sign analysis, because the static sign analysis of
the transformed program is unable to get the sign of out. This is not captured
by Definition 1, because Sign is incomplete for integer addition [16]. Indeed, in
Definition 1, the abstraction is applied to the concrete semantics, returning Z+

in both cases. It would be important to weaken our notion of potency by consid-
ering abstract semantics derived by sound (possibly incomplete) approximations
of the concrete semantics. This is crucial in order to include in our model of
attackers arbitrary sound program analyzers. Moreover the systematic design
of program transformation by abstract interpretation [12] can be applied for
the systematic design of code obfuscation algorithms, driven by the abstraction
(semantic property) to be masked. We can observe that other program trans-
formations, such as abstract watermarking [13], can be seen as a particular code
obfuscation. The relation between our notion of code obfuscation and abstract
watermarking deserves further investigation.

References

1. B. Barak, O. Goldreich, R. Impagliazzo, and S. Rudich. On the (Im)possibility
of Obfuscating Programs. In Advances in Cryptology, Proc. of Crypto’01, 2001,
volume 2139 of LNCS, pages 1-18. Springer-Verlag.

2. C. Collberg and C. Thomborson. Watermarking, Tamper-Proofing, and
Obfuscation-Tools for Software Protection. In IEEE Trans. Software Eng., pages
735-746, 2002.

3. S. Chandrasekharan and S. Debray. Deobfuscation: Improving Reverse Engineering
of Obfuscated Code. Draft, 2005.

1336 M. Dalla Preda and R. Giacobazzi

4. C. Collberg and C. Thomborson. Breaking Abstractions and Unstructural Data
Structures. In Proc. of the 1994 IEEE Internat. Conf. on Computer Languages
(ICCL ’98), pages 28-37, 1998.

5. C. Collberg, C. Thomborson, and D. Low. A Taxonomy of Obfuscating Transfor-
mations. Technical Report 148, Dept. of Computer Science, The Univ. of Auckland,
1997.

6. C. Collberg, C. Thomborson, and D. Low. Manufacturing Cheap, Resilient, and
Stealthy Opaque Constructs. In Proceedings of the 25th ACM SIGPLAN-SIGACT
Symposium on Principles of programming languages (POPL ’98), pages 184-196.
ACM Press, 1998.

7. A. Cortesi, G. Filé, R. Giacobazzi, C. Palamidessi, and F. Ranzato. Complemen-
tation in abstract interpretation. In ACM Trans. Program. Lang. Syst., 19(1):7-47,
1997.

8. P. Cousot. Méthodes itératives de construction et d’approximation de points fixes
d’opérateurs monotones sur un treillis, analyse sémantique des programmes. PhD
Thesis, Université Scientifique et Médicale de Grenoble, Grenoble, France. 1978.

9. P. Cousot. Constructive Design of a Hierarchy of Semantics of a Transition System
by Abstract Interpretation. Theoretical Computer Science, 277(1-2):47-103, 2002.

10. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Con-
ference Record of the 4th ACM Symp. on Principles of Programming Languages
(POPL ’77), pages 238–252. ACM Press, New York, 1977.

11. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Conference Record of the 6th ACM Symp. on Principles of Programming Languages
(POPL ’79), pages 269–282. ACM Press, New York, 1979.

12. P. Cousot and R. Cousot. Systematic Design of Program Transformation Frame-
works by Abstract Interpretation. In Conference Record of the Twentyninth Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 178-190, New York, NY, 2002. ACM Press.

13. P: Cousot and R: Cousot. An Abstract Interpretation-Based Framework for Soft-
ware Watermarking. Conference Record of the Thirtyfirst Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 173-185.
ACM Press, New York, NY, 2004.

14. L. D’Anna, B. Matt, A. Reisse, T. Van Vleck, S. Schwab, and P. LeBlanc. Self-
Protecting Mobile Agents Obfuscation Report. Technical report, Network Asso-
ciates Laboratory, 2003.

15. G. Filé and F. Ranzato. Complementation of abstract domains made easy. In
Proceedings of the 1996 Joint International Conference and Symposium on Logic
Programming (JICSLP ’96), pages 348-362. The MIT Press,Cambridge, Mass.,
1996.

16. R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations com-
plete. J. of the ACM., 47(2):361–416, 2000.

17. J. Morgado. Some results on the closure operators of partially ordered sets. Portug.
Math., 19(2):101-139, 1960.

18. R. Paige. Future directions in program transformations. In ACM SIGPLAN Not.,
volume 32, pages 94-97, 1997.

About Hoare Logics for Higher-Order Store�

Bernhard Reus1,�� and Thomas Streicher2

1 University of Sussex, Brighton BN1 9QH, UK
2 TU Darmstadt, 64298 Darmstadt, Germany

Abstract. We present a Hoare logic for a simple imperative while-
language with stored commands, ie. stored parameterless procedures.
Stores that may contain procedures are called higher-order. Soundness
of our logic is established by using denotational rather than operational
semantics. The former is employed to elegantly account for an inher-
ent difficulty of higher-order store, namely that assertions necessarily
describe recursive predicates on a recursive domain. In order to obtain
proof rules for mutually recursive procedures, assertions have to explic-
itly refer to the code of the procedures.

1 Introduction and Motivation

Hoare logic for imperative languages has been invented in the late 60es [7] and
since then extended in many directions (for a survey see e.g. [4]). Procedures
are a typical example. For a simple while language with parameterless recursive
procedures it is common to apply the following rule (see [4]) for a procedure p
declared with body C:

(proc)
{P} p {Q} � {P}C {Q}

{P} p {Q}

In order to verify the effect of a procedure call, one has to show that the procedure
body satisfies the very same effect under the assumption that the call already
does so. Semantically, this corresponds to a form of fixpoint induction where
admissibility of the semantical predicates is guaranteed automatically as store is
modeled by a flat domain. Thus, in rule (proc) the {P} p {Q} in the conclusion
refers to the fixpoint of the definition rec p⇐ C[p] whereas on the left hand side
in the premise it refers to an arbitrary implementation of p.

The situation changes dramatically if one allows stored procedures, ie. if
procedures are kept in the store – in the same way as basic data like numbers
– and called by their (variable) name. For example, runx invokes the procedure

� Both authors have been partially supported by APPSEM II (Applied Semantics), a
thematic network funded by the IST programme of the European Union, IST-2001-
38957.

�� The first author has been partially supported by the EPSRC under grant
GR/R65190/01, “Programming Logics for Denotations of Recursive Objects”.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 1337–1348, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1338 B. Reus and T. Streicher

stored in variable x. The semantics of programs, being state transformers, now
becomes implicitly higher-order, as they depend on the (code in the) store which
contains such transformers itself. For this reason such stores are sometimes called
“higher-order” or even recursive.

Landin had already observed1 that in such situations one is able to tie “knots
through the store”. Put differently, recursion through the store becomes available
such that additional fixpoint operators are obsolete. Consider e.g. the example
x := C; run x which first stores a command C in x and then runs this command.
But C itself may contain a command runx, in which case we obtain a recursive
procedure. In traditional semantics (see [9, 14, 6]) the semantics of a procedure
is a fixpoint. This is fine as long as newly added code can only call the old
procedures and not vice-versa. In object-oriented languages, however, new sub-
classes can change the semantics of the old classes (that is the whole point of
object-orientation) and the traditional semantics cannot cope with that. For
languages with higher-order store this is no problem, as recursion is through the
store and not by fixpoint.

To the best of our knowledge, there is no Hoare-calculus for partial correctness
of (even simple) imperative languages with higher-order store in the literature.
However, in [8] a calculus for total correctness of programs with higher-order
store has been presented recently where soundness is based on induction on a
termination measure. The semantics does not make use of domain theory and
does not seem to be easily extendible to partial correctness.

Several (fully-abstract) models using games (or abstract versions of games)
have been developed but they focus on observational equivalence, e.g. [3, 10, 11].

A Hoare-like calculus for an object-based language, Abadi and Cardelli’s
imperative object calculus [1], has been suggested in [2]. In that language, simple
field values and method closures are kept together in the same store. Hence,
the store is higher-order. In [2], the program logic does not use Hoare-triples
but specifications that refer to the state before and after method execution.
Consequently, in [2], method specifications can only use static information about
other methods and thus cannot cope with callbacks or dynamic loading where
specifications may change at runtime. Method update had to be disallowed. Note
that in this paper our stored procedures can be updated.

In [16, 17], we have presented a denotational technique to understand and
model such object logics. This has been extended to a complete analysis of the
entire Abadi-Leino calculus in [15]. Separately, in [5], Calcagno and O’Hearn
set out to put ideas of separation logic [12] into a program logics for objects in
a traditional Hoare-triple style but had problems with the object introduction
rule.

In this paper we present a simple imperative language (Sect. 2) with higher-
order store but without objects, and an assertion language (Sect. 3). We present
some new proof rules (Sect. 4), give examples (Sect. 5) and prove soundness

1 As Peter O’Hearn pointed out to the first author.

About Hoare Logics for Higher-Order Store 1339

Table 1. BNF syntax of L

x ∈ Var variable
e ∈ Exp ::= x variable expression

| k numbers and other constants
| e ◦2 e binary operators
| ◦1 e unary operators
| ‘s’ quote (command as expression)

s ∈ Com ::= nop no op
| x := e assignment
| s; s sequential composition
| if e then s else s conditional
| run x unquote (run the command in x)

(Sect. 6). We finish with an outlook where the results of this paper may lead us
and how related work could be helpful.

The language in use is arguably the simplest language that uses higher-order
store. It is thus an ideal candidate to investigate the problems caused by higher-
order store in isolation. Using denotational semantics we will discover where
exactly the difficulties of higher-order store are rooted.

2 The Programming Language

Syntax First we define the programming language syntax of our language, called
L. Let Var be the set of (countable) program variables, Exp the side effect free
expressions, and Com the statements (commands). A BNF grammar for L is
presented in Table 1.

The simplest non-terminating loop can be written as x := ‘runx’; runx.

Semantics The semantics is developed in a category of cpo-s and partial con-
tinuous maps (predomains). For any (pre-)domain there is, as usual, a partial
order ,, and for a partial continuous function f ∈ A⇀B and a ∈ A, we write
f(a)↓ to state that the application is defined.

Let BVal be the set of basic first-order values like numbers or booleans ordered
discretely. Values and stores are defined by the following system of (pre-)domain
equations

Val = BVal + [St⇀St] St = ValVar

Stores in St map variables into values in Val. The fact that state transformers
can be values reflects the fact that the store is higher-order. Note that for a store
σ, a variable x, and a value a we write σ[x !→ a] for the map σ′ defined as

σ′(y) =
{

a if y ≡ x
σ(y) otherwise

1340 B. Reus and T. Streicher

Table 2. Semantics of L

[[x]]e σ = σ(x)
[[‘s’]]e σ = [[s]]
[[k]]e σ = k
[[e1 ◦2 e2]]

e σ = ◦2([[e1]]
e σ, [[e2]]

e σ)
[[◦1 e1]]

e σ = ◦1([[e1]]
e σ)

[[nop]] σ = σ
[[x := e]] σ = σ[x (→ [[e]]e σ]
[[s1; s2]] σ = [[s2]]([[s1]] σ)

[[if e then s1 else s2]] σ =

⎧⎨⎩
[[s1]]σ if [[e]]eσ = true
[[s2]]σ if [[e]]eσ = false
undefined otherwise

[[run x]] σ = σ(x)(σ)

The equations for higher-order store can thus be rewritten in one equation
as follows:

St = (BVal + [St⇀St])Var

or equivalently, by setting Cl = [St⇀St],

Cl = [(BVal+Cl)Var ⇀ (BVal+Cl)Var]

The mixed-variant functor for which Cl is the solution is given by its object
and morphism part below:

F (X,Y) = [(BVal+X)Var ⇀ (BVal+Y)Var]

If e : X⇀Y then let ê = (BVal + e)Var : (BVal + X)Var⇀(BVal + Y)Var. More
precisely, for a store σ ∈ (BVal + X)Var, ê(σ) is defined as follows:

ê(σ)(x) =
{
σ(x) if σ(x) ∈ BVal
e(σ(x)) if σ(x) ∈ X

Now we can define the morphism part:

F (e, f) = λh : F (X,Y). f̂ ◦ h ◦ ê.

For e ∈ [Cl⇀Cl] let eA ∈ [ClA⇀ClA] be defined by eA(h)(a) = e(h(a)). We
can interpret L using an interpretation function for expressions [[]]e : Exp →
[St⇀Val] and commands [[]] : Com → [St⇀St] as presented in Table 2.

The last equation [[runx]]σ = σ(x)(σ) is reminiscent of the self-application
semantics of method call in OO-languages.

3 The Assertion Language

The assertion language is based on the assertions of the classic Hoare-calculus
with the difference, though, that expressions can also refer to stored procedures.

About Hoare Logics for Higher-Order Store 1341

Table 3. Syntax of Assertions

n, p ∈ AuxVar
τ ∈ Type ::= bool | int | com types
e ∈ Exp ::= n | p auxiliary variables in BVal and Cl

| x | k | e ◦2 e | ◦1 e | ‘s’
P ∈ Asrt ::= false falsity

| P ∧ P conjunction
| ¬P negation
| ∀n.P universal quantification
| τ? e type check
| e ≤τ e comparison

Table 4. Semantics of Assertions

(|false|) η = ∅
(|P ∧Q|) η = (|P |) η ∩ (|Q|) η
(|∀n.P |) η = ∩v∈Val(|P |) η[n (→ v]
(|τ? e|) η = {σ | [[e]]e η σ ∈ [[τ]] } where [[com]] = Cl, [[int]] = Z, [[bool]] = B
(|¬P |) η = {σ | σ �∈ (|P |) η }
(|e1 ≤τ e2|) η = {σ | [[e1]]

e η σ ∈ [[τ]] ∧ [[e2]]
e η σ ∈ [[τ]] ∧ [[e1]]

e η σ � [[e2]]
e η σ }

Syntax The syntax of assertions is presented in Table 3. They may contain ex-
pressions of L which have no side effects. Note that e = e and φ ∨ φ can be
expressed using ≤, and ∧ and ¬, respectively.

As already known from classic Hoare-calculus one needs “ghost variables”
(also called auxiliary variables) to be able to refer to values in the pre-execution
state. For example, in the Hoare-triple {x = n} fac {x = n!} we have a program
variable x, and an auxiliary variable n. The countable set of auxiliary ghost vari-
ables is called AuxVar. Throughout the paper we use x, y, z to denote instances
of program variables in Var and n, p, q to denote instances of auxiliary variables
in AuxVar where n is usually used for auxiliary variables of basic type and p
and q for auxiliary variables for commands (procedures). It is important not to
confuse those different types of variables.

Semantics The denotational semantics of assertions is standard but we have to
take care of auxiliary variables. For those variables an additional environment is
in use of type Env = ValAuxVar. Correspondingly, an interpretation function for
assertions must have type (| |) : Asrt → Env → P(St) and its equations can be
found in Table 4.

Observe that [[]]e has to be extended to auxiliary variables. Therefore, we
stipulate [[n]]eη σ = η(n) and assume that the definitional equations for [[]]e in
Table 2 have been changed accordingly.

1342 B. Reus and T. Streicher

Table 5. Syntax of pure assertions without undesired comparisons of commands

φ,∈ BAsrt ::= false | φ ∧ φ | ¬φ | ∀n. φ | τ? e | e ≤nat e | e ≤bool e
P ∈ DClAsrt ::= φ | ∀n.P | x ≤com n | x ≤com ‘s’ | ‘s’ ≤com ‘s’ | P ∧ P | P ∨ P

A particular subset of downward-closed assertions Equality between procedures
(≤com) is problematic as it is not a downward-closed predicate which will be
important for our semantics. We therefore identify a particular sublanguage of
assertions, DClAsrt, which are more restrictive with respect to comparisons of
commands, in particular they do not admit equality on procedures. To define
DClAsrt, we introduce “basic assertions” BAsrt first, which do not use any com-
parison between expressions of type com at all. The exact definitions can be
found in Table 5.

Assertions like x =com ‘s’, i.e. x ≤com ‘s’ ∧ ‘s’ ≤com x, are not in DClAsrt as
‘s’ ≤com x is not in DClAsrt. The assertions in DClAsrt all satisfy three conditions
explained in Lemma 1 below. These properties will turn out to be crucial to
obtain a semantics that validates the proof rules introduced in the next section.

Lemma 1. For any assertion P ∈ DClAsrt its semantics (|P |) ∈ Env → P(St)
has the following properties:

1. (|P |) η is a downward closed predicate for all η ∈ Env.
2. (|P |) is monotonic in its (procedure environment) argument.
3. (|P |) η σ implies (|P |) ê(η) ê(σ) for all e ∈ Cl⇀Cl, σ ∈ St, and η ∈ Env where

ê(η) is defined analogously to ê(σ) with the only difference that the variables
used in Env are AuxVar whereas those used in St are Var.

Proof. We only have to consider assertions on commands. Assertions on basic
types trivially fulfill the requirements since BVal is ordered discretely. Since ∀,
∧, and ∨ preserve the conditions above we only need to show each of them for
the three comparisons on commands (and the type check assertion com?e which
trivially fulfills all conditions). (1) and (2) are immediate by definition of the
assertions. For (3) we show the interesting case: [[x ≤com n]] η σ iff σ(x) , η(n)
(†). Now [[x ≤com n]] ê(η) ê(σ) iff ê(σ)(x) = e(σ(x)) , ê(η)(n) = e(η(n)) which
follows from (†) as e is monotonic.

4 Proof Rules

First of all, the standard rules for assignment (A), composition (S), conditional
(I), weakening (W), and no operation (ε) are in use as presented in Fig. 1.

New rules are needed to deal with stored procedures as outlined in Fig. 2. The
run-rule (R) is canonical for non-recursive procedure calls. Rule (H) is like (R)
for cases where the code in a variables is not known but described by an auxiliary
variable. Finally, the recursion rule (μ) is used for stored procedures that are
(mutually) recursive. This is necessary as rule (R) is not able to get rid of the

About Hoare Logics for Higher-Order Store 1343

(A) {P [e/x]}x := e {P} (S)
{P}C1 {R} {R}C2 {Q}

{P}C1;C2 {Q}

(I)
{b ∧ P}C1 {Q} {¬b ∧ P}C2 {Q}
{P} if b thenC1 elseC2 {Q}

(W)
P ⇒ P ′ {P ′}C {Q′} Q′ ⇒ Q

{P}C {Q}
(ε) {P} nop {P}

Fig. 1. Standard Rules

(R)
{P ∧ x ≤ ‘C’}C {Q}
{P ∧ x ≤ ‘C’} runx {Q} Q ∈ DClAsrt

(H) {P ∧ x ≤ p} p {Q} * {P ∧ x ≤ p} runx {Q} Q ∈ DClAsrt

(μ)

∧
1≤i≤n {P1} p1 {Q1} . . . {Pn} pn {Qn} * {Pi}Ci {Qi}∧

1≤i≤n {Pi[C/p]}Ci {Qi[C/p]} ∀1≤i≤n. Pi, Qi ∈ DClAsrt

Fig. 2. New Rules for Stored Procedures

circular reference to the procedure. Rule (μ) is able to do just that analogously
to the standard procedure rule (proc) mentioned in the introduction. In fact, by
using first (R) and then (μ), one obtains the derived rule stated below (left). For
comparison the standard recursive procedure rule is repeated next to it (right).

{P ∧ x ≤ p} p {Q} � {P ∧ x ≤ p}C {Q}
{P ∧ x ≤ ‘C’} run x {Q} (proc)

rec p ⇐ C[p]
{P} p {Q} � {P}C {Q}

{P} p {Q}

Whereas for (proc) the definition of the procedure p is separate, for stored pro-
cedure x one needs to use an auxiliary variable p to denote the content of x
during execution of its body which may change x.

Note that throughout the rest of the paper we simply write ≤ instead of ≤com

when one of its arguments is obviously of type com. The necessity of the side
conditions for (μ), (R), and (H) will become clear when we discuss the soundness
of these rules.

5 Sample Derivations

We present some sample derivations to demonstrate how the proof rules above
are to be used.

Example 1. A derivation for a specification of our introductory example of a
non-terminating loop, {true}x := ‘run x’ ; runx {false}, is outlined in Figure 3.

Example 2. Because of recursion through the store we can simulate a while loop
while B do C od as z := ‘if B thenC; run z else nop’ ; run z. Of course, program

1344 B. Reus and T. Streicher

(A)
{‘run x’ " ‘run x’} x := ‘run x’ {x " ‘run x’}

(W)
{true} x := ‘run x’ {x " ‘run x’}

(H)
{x " q} q {false} � {x " q} run x {false}

(μ)
{x " ‘run x’} run x {false}

(S)
{true} x := ‘run x’; run x {false}

Fig. 3. Derivation for Example 1

variable z is not supposed to occur in C. When doing the proof it becomes clear
that it is enough that z is not altered by C. The standard rule for while and its
derived equivalent for the encoding in L read as follows:

{B ∧ I}C {I}
{I}whileB doC od {¬B ∧ I}

{B ∧ I ∧ z ≤ p}C {I ∧ z ≤ p}
{I}whileB doC od {¬B ∧ I}

The encoded form has to state that z is invariant, i.e. that the content of this
cell is not changed by the body of the while statement. This is expressed using
an auxiliary variable p ∈ AuxVar.

For the proof assume that (∗) {B ∧ I ∧ z ≤ p}C {I ∧ z ≤ p} and let IF
abbreviate the expression (of command type) ‘if B thenC; run z else nop’. The first
part of the derivation is straightforward (see Fig. 4). The remaining open goal
{I ∧ z ≤ IF} run z {¬B ∧ I} is then derived in (β) in the second prooftree of
Fig. 4. The application of the recursion rule (μ) will introduce the hypothesis
(†) {I ∧ z ≤ p} p {¬B ∧ I} to be used at the top of subtree (β).

(A)
{I ∧ IF ≤ IF} z := IF {I ∧ z ≤ IF}

(W)
{I} z := IF {I ∧ z ≤ IF}

(β)
(R)

{I ∧ z ≤ IF} run z {¬B ∧ I}
(S)

{I} z := IF ; run z {¬B ∧ I}

where (β) is the following prooftree

(∗)
{B ∧ I ∧ z ≤ p}C {I ∧ z ≤ p}

(†)
{I ∧ z ≤ p} p {¬B ∧ I}

(H)
{I ∧ z ≤ p} run z {¬B ∧ I}

(S)
{B ∧ I ∧ z ≤ p}C; run z {¬B ∧ I}

(N)
{¬B ∧ I} nop {¬B ∧ I}

(W)
{¬B ∧ I ∧ z ≤ p} nop {¬B ∧ I}

(I)
{I ∧ z ≤ p} if B thenC; run z else nop {¬B ∧ I}

(μ)
{I ∧ z ≤ IF}iteBC; run znop {¬B ∧ I}

(R)
{I ∧ z ≤ IF} run z {¬B ∧ I}

Fig. 4. Derivation for Example 2

About Hoare Logics for Higher-Order Store 1345

Table 6. Semantics of Triples

(η,σ) |= {P}C {Q} ⇔ ∀σ′∈St. (|P |) η σ ∧ [[C]] σ = σ′ ⇒ (|Q|) η σ′

(η,σ) |= {P} p {Q} ⇔ ∀σ′∈St. (|P |) η σ ∧ η(p)(σ) = σ′ ⇒ (|Q|) η σ′

|= {P1} p1 {Q1}, . . . , {Pn} pn {Qn} ⇔ ∀η∈Env.(∀σ∈St.
∧

1≤i≤n(η,σ) |= {Pi} pi {Qi})
* {P}C {Q} ⇒ ∀σ∈St. (η,σ) |= {P}C {Q}

Example 3. This example shows how procedures can modify themselves so that
different invocations of x behave differently. Let

S ≡ ‘if z=0 then nop else (y := y + z; z := z−1; run x)’

and consider the program x := ‘y := y+1;x := S’; run x; runx for which we can
derive the following annotations:

{y = n ∧ z = m}
x := ‘y := y+1;x := S’ (A),(W)
{y = n ∧ z = m ∧ x ≤ ‘y := y+1;x := S’}
runx (R),(A),(S),(W)
{y = n+1 ∧ z = m ∧ x ≤ S}
runx (R),(μ),(I),(S),(A),(W),(ε)
{y = n+1 +

∑m
1 i ∧ z = 0 ∧ x ≤ S}

6 Soundness

Pre-condition P and post-condition Q of Hoare triples do not only depend on
the store but also on the values for the auxiliary variables in environment Env.
We write (η,σ) |= {P}C {Q} meaning that {P}C {Q} is valid in σ and η.

Definition 1. The semantics of Hoare triples for commands, for closure vari-
ables, and for commands in context, resp., is given in Table 6. Note that triples
express partial correctness.

Now we are in a position to formally prove the soundness of the new rules.2

Theorem 1. The (run-)rules (R) and (H) are sound.

Proof. Let C be a command. Assume that (1) |= {P ∧x ≤ ‘C’}C {Q}. We have
to show |= {P ∧ x ≤ ‘C’} run x {Q}. Therefore, assume that η ∈ Env, and σ ∈ St
such that (2) (|P ∧ x ≤ ‘C’|) η σ and that (3) [[run x]]σ = σ′. It remains to show
that (|Q|) η σ′. Define (4) σ′′ := [[C]]σ. From (1), (2) and (4) we obtain (|Q|) η σ′′.
Since (|Q|) is downward-closed by Lemma 1(2) and Q ∈ DClAsrt, it suffices to
prove that σ′ , σ′′. But

σ′ =(3) [[run x]]σ = σ(x)(σ) ,(2) [[C]]σ =(4) σ
′′ .

2 Soundness of the old rules is standard.

1346 B. Reus and T. Streicher

The proof for (H) is carried out analogously.

In the next proof we will make use of a binary operation + : Env × ClA → Env
that represents “overwriting of environments” where A ⊆ AuxVar. Accordingly,
(η+δ)(n) = η(n) if n ∈ A and δ(n) otherwise.

Theorem 2. The rule (μ) is correct.

Proof. Let (|Pi|), (|Qi|) ⊆ Env×St for 1≤i≤n be the denotations of the predicates
in the assertions of (μ). We basically follow the ideas of [16] where similar argu-
ments were used to prove the correctness of the object introduction rule of [2].
For arbitrary η ∈ Env let Aη ⊆ Cl{p1,...,pn}×Cl{p1,...,pn} be defined as follows:

Aη(ψ,φ) ≡ ∀1≤j≤n. ∀σ∈St.
(|Pj |) (η+ψ)σ ∧ φ(pj)(σ)↓ ⇒ (|Qj |) (η+ψ) (φ(pj)(σ))

Let pi !→ [[Ci]] be the environment in Cl{p1,...,pn} that assigns [[Ci]] to pi for
1≤i≤n. Then verifying rule (μ) amounts to showing that for arbitrary η ∈ Env:

(†) ∀φ∈Cl{p1,...,pn}. Aη(φ,φ) ⇒ Aη(φ, pi !→ [[Ci]])
implies

Aη(pi !→ [[Ci]], pi !→ [[Ci]])

since in general ∀φ∈Env. R φ is equivalent to ∀φ∈Env.∀ψ∈Cl{p1,...,pn}. R (φ+ψ).
Let S be a predicate on Cl{p1,...,pn} such that for all φ ∈ Cl{p1,...,pn}

(1) S(φ) ⇐⇒ ∀ψ∈Cl{p1,...,pn}. S(ψ) ⇒ Aη(ψ,φ)

from which it follows that for any φ

(2) S(φ) ⇒ Aη(φ,φ).

Now from (2) and assumption (†) it follows that

(3) S(φ) ⇒ Aη(φ, pi !→ [[Ci]])

i.e. S(pi !→ [[Ci]]) due to (1) as φ was arbitrary such that by (1) again we obtain
Aη(pi !→ [[Ci]], pi !→ [[Ci]]) as desired. The existence of an appropriate S in (1) is
shown in Lemma 2.

Lemma 2. There is a S ⊆ Env such that S(φ) ⇐⇒ ∀ρ∈Env. S(ρ)⇒Aη(ρ,φ)
for any η ∈ Env.

Proof. Let L denote the admissible subsets of Cl{p1,...,pn} ordered by ⊆ and

Φ : Lop→L : S !→ {φ∈Cl{p1,...,pn} | ∀ρ∈Cl{p1,...,pn}. S(ρ)⇒Aη(ρ,φ) }

for which it is necessary that Aη(ρ,−) specifies an admissible subset of Cl{p1,...,pn}

for all ρ ∈ Cl{p1,...,pn} which follows from Lemma 1(1). For guaranteeing existence
(and uniqueness) of such an S by Pitts’ Theorem [13] we have to show that
e : S1 ⊆ S2 implies F (e, e) : Φ(S2) ⊆ Φ(S1) for all (idempotent) e , idCl where
for X,Y ⊆ Cl{p1,...,pn} one defines e : X ⊆ Y iff ∀x∈X. ê(x)↓ ⇒ ê(x)∈Y . Suppose
e , idCl with e : S1 ⊆ S2 and Φ(S2)(φ). We have to show Φ(S1)(F̂ (e, e)(φ)). For
this to be possible we need that (|Pj |) and (|Qj |) satisfy all three properties of
Lemma 1.

About Hoare Logics for Higher-Order Store 1347

7 Loose Ends and Related Work

Our programming language L contains only constant command expressions. Self-
modifying programs would also modify commands, in other words, use operations
on commands.

Consider, for example, an operation make com that concatenates two com-
mands returning a new one, such that modifications like x := make com(x, y)
become possible. To allow for such expressions one needs to axiomatise make com
algebraically, i.e. the underlying first-order logic on data types needs to be en-
riched by axioms like make com(‘s1’, ‘s2’) = ‘s1; s2’ and a monotonicity axiom
for make com w.r.t. ≤com.

Procedures with parameters have not been discussed here but are certainly an
issue. We expect, however, that they are not more difficult to cope with than in
ordinary Hoare-calculus with recursive procedures. In particular, if parameters
are passed by value.

The logic presented is not modular as all code must be known in advance and
must be carried around in assertions. In [5], a calculus for objects was suggested
that uses nested Hoare triples in order to state properties of programs in the
store rather than referring to their explicit code without a hint on a denotational
semantics nor a soundness proof. The meaning of such a “specification” triple in
our setting would be a recursively defined predicate:

(σ, η) |= {P}x {Q} ⇔ ∀σ′,σ′′∈St.
(σ′, η) |= {P}x {Q} ∧ (|P |)σ′ ∧ σ(x)(σ′)=σ′′ ⇒ (|Q|)σ′′

Unfortunately, such a recursively defined semantics of triples, |=, does not allow
for a separate specification for mutual recursive procedures (there is no “Bekic
Lemma”). This suggests that it is highly unlikely that there is a modular logic
for L. On the other hand, in [2, 15] it has been shown that modularity can
be achieved for Abadi and Leino’s object logic in a setting where assignments
to procedure variables are disallowed. It is unclear yet, to which extent this
restriction can be relaxed. In [17] we have discussed an idea for a relaxation
but it will have to be tested on a fully-fledged soundness proof where frame
properties are to be shown.

Alternative models for higher-order store have been suggested by [3, 10, 11]
using games or locally boolean domains. It might be worthwhile to consider the
domain equation for Cl within such locally boolean domains (or equivalently the
category of sequential algorithms). This would already provide us with a fully
abstract model for higher-order store in the sense of Idealized Algol.

Another open question is relative completeness of our logic. It is no problem
to express weakest liberal preconditions, at least when extending the assertion
language such that it can express arbitrary inductively defined predicates. The
hard problem is to show, by induction on S, that {wlp(C,P)}C {P} is derivable
for all post-conditions P .

The results of this paper, however, are the first step to get a grip on higher-
order store from a programming logic point of view.

1348 B. Reus and T. Streicher

Acknowledgements. Wewould like to thankCristianoCalcagno,PeterO’Hearn,
and Jan Schwinghammer for discussions and comments on this work. We are
grateful to the anonymous referees for their suggestions to improve readability.

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Springer Verlag, 1996.
2. M. Abadi and K. R. M. Leino. A logic of object-oriented programs. In Nachum

Dershowitz, editor, Verification: Theory and Practice, pages 11–41. Springer, 2004.
3. S. Abramsky, K. Honda, and G. McCusker. A fully abstract game semantics for

general references. In LICS ’98: Proceedings of the 13th Annual IEEE Symposium
on Logic in Computer Science, page 334. IEEE Computer Society, 1998.

4. K.R. Apt. Ten Years of Hoare’s Logic: A Survey – Part I. TOPLAS, 3(4):431–483,
1981.

5. C. Calcagno and P.W. O’Hearn. A logic for objects. Slides of a Talk, 2001.
6. A.V. Hense. Wrapper semantics of an object-oriented programming language with

state. In Proceedings Theoretical Aspects of Computer Software, volume 526 of
Lecture Notes in Computer Science, pages 548–568, Berlin, 1991. Springer.

7. C.A.R. Hoare. An axiomatic basis for computer programming. Comm. ACM,
12:576–583, 1969.

8. K. Honda, N. Yoshida, and M. Berger. An observationally complete program
logic for imperative higher-order functions. In 20th Symp. on Logics in Computer
Science, LICS. To appear in IEEE, 2005.

9. S.N. Kamin and U.S. Reddy. Two semantic models of object-oriented languages.
In Carl A. Gunter and John C. Mitchell, editors, Theoretical Aspects of Object-
Oriented Programming: Types, Semantics, and Language Design, pages 464–495.
The MIT Press, 1994.

10. J. Laird. A categorical semantics of higher-order store. Electronic notes in Theo-
retical Computer Science, 69, 2002.

11. J. Laird. Locally boolean domains. 2004. Submitted.
12. P.W. O’Hearn, J.C. Reynolds, and H. Yang. Local reasoning about programs that

alter data structures. In CSL, volume 2142 of Logic in Computer Science, pages
1–19, Berlin, 2001. Springer.

13. A. M. Pitts. Relational properties of domains. Information and Computation,
127:66–90, 1996.

14. B. Reus. Modular semantics and logics of classes. In Computer Science Logic,
volume 2803 of Lecture Notes in Computer Science, pages 456–469, Berlin, 2003.
Springer.

15. B. Reus and J. Schwinghammer. Denotational semantics for Abadi and Leino’s
logic of objects. In Mooly Sagiv, editor, European Symposium on Programming,
volume 3444 of Lecture Notes in Computer Science, pages 263–278, Berlin, 2005.
Springer.

16. B. Reus and Th. Streicher. Semantics and logics of objects. In Proceedings of the
17th Symp. Logic in Computer Science, pages 113–122, 2002.

17. B. Reus and Th. Streicher. Semantics and logic of object calculi. TCS, 316:191–213,
2004.

The Polyranking Principle�

Aaron R. Bradley, Zohar Manna, and Henny B. Sipma

Computer Science Department,
Stanford University,

Stanford, CA 94305-9045
{arbrad, zm, sipma}@theory.stanford.edu

Abstract. Although every terminating loop has a ranking function, not
every loop has a ranking function of a restricted form, such as a lexico-
graphic tuple of polynomials over program variables. The polyranking
principle is proposed as a generalization of polynomial ranking for ana-
lyzing termination of loops. We define lexicographic polyranking functions
in the context of loops with parallel transitions consisting of polynomial
assertions, including inequalities, over primed and unprimed variables.
Next, we address synthesis of these functions with a complete and auto-
matic method for synthesizing lexicographic linear polyranking functions
with supporting linear invariants over linear loops.

1 Introduction

Guaranteed termination of program loops is necessary in many settings, such
as embedded systems and safety critical software. Additionally, proving gen-
eral temporal properties of infinite state programs requires termination proofs,
for which automatic methods are welcome [13, 9, 11]. We propose a termination
analysis based on lexicographic polynomial polyranking functions, which sub-
sume lexicographic polynomial ranking functions.

Although every terminating loop has a ranking function, not every termi-
nating loop has a ranking function of a restricted form, such as a lexicographic
tuple of polynomials over program variables. In [2], we present a method for
identifying bounded expressions that are eventually negative over loops with
parallel transitions expressed as simultaneous assignments of polynomial expres-
sions to variables. For showing termination, a function that eventually ranks is
as good as a function that always ranks. That transitions are only assignments
allows an efficient analysis based on finite difference expressions with respect to
transitions. In this paper, we generalize our approach to loops with assertional
transition relations, rather than just assignments. Including assertional transi-
tion relations in a loop abstraction language makes it more widely applicable for

� This research was supported in part by NSF grants CCR-01-21403, CCR-02-20134,
CCR-02-09237, CNS-0411363, and CCF-0430102, by ARO grant DAAD19-01-1-
0723, and by NAVY/ONR contract N00014-03-1-0939. The first author was ad-
ditionally supported by a Sang Samuel Wang Stanford Graduate Fellowship.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 1349–1361, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1350 A.R. Bradley, Z. Manna, and H.B. Sipma

modeling infinite state systems. The main idea for analyzing these loops is to
identify eventually decreasing expressions that upper bound differences.

In [1], we show how to synthesize lexicographic linear ranking functions with
supporting linear invariants over loops with linear assertional transition rela-
tions. We extend the machinery in this paper to synthesize lexicographic linear
polyranking functions with supporting linear invariants over linear loops. This
extension requires solving complex structural constraints induced by the recur-
sive definition of polyranking functions. The synthesis method solves efficiently
a combination of structural and numerical constraints. It searches a space of
partial structures, solving induced constraint systems to guide the search. These
partial structures represent sets of complete structures so that an infeasible in-
duced constraint system excludes entire sets. For our application, the induced
constraint systems are numerical. We believe that the general strategy is appli-
cable to other problem domains.

Termination of loops has received a fair amount of attention recently. Syn-
thesis of linear ranking functions over linear loops with multiple paths and asser-
tional transition relations is accomplished via polyhedral manipulation in [4, 5].
In [10], Podelski and Rybalchenko specialize the technique to single-path linear
loops without an initial condition, providing an efficient and complete synthesis
method for linear ranking functions based on linear programming. We general-
ize these results in [1]. Cousot shows how polynomial ranking functions can be
synthesized over nonlinear loops using nonlinear convex optimization [6]. Tiwari
proves that the termination of a class of single-path loops with linear guards
and assignments is decidable [14]. Related efforts on verification diagrams [9]
and transition invariants [11] (see also [7, 8, 3]) use automatic termination anal-
ysis. These frameworks either abstract the state-space or the transition relation
to isolate a finite number of different forms of infinite behavior. Termination
analysis can then find the reason for termination of each isolated behavior.

The rest of the paper is organized as follows. Section 2 introduces our loop
abstraction and basic concepts. Section 3 describes the polyranking principle.
Sections 4 and 5 describe our synthesis technique. Section 6 concludes.

2 Preliminaries

We define our abstraction of loops, present several basic concepts, and recall
Farkas’s Lemma, a mathematical result that we employ in synthesis.

Definition 1 (Polynomial Assertion). A real variable is a variable x that
ranges over the reals, R. A polynomial term has the form c

∏
i xdi

i for constant
c ∈ R, real variables xi, and degrees di ∈ N ranging over the nonnegative integers.
A polynomial expression P is the sum of polynomial terms. A polynomial atom is
the comparison P1)* P2 of two polynomial expressions, for)*∈ {<,≤,=,≥, >}.
A polynomial assertion is the conjunction of polynomial atoms.

Definition 2 (Polynomial Loop). A polynomial loop L : 〈V, θ, T 〉 consists of
variables V, initial condition θ, and set of transitions T . θ(V) is a polynomial

The Polyranking Principle 1351

assertion over V expressing what is true before entering the loop. A transition
τ(V,V ′) over variables V∪V ′ is a polynomial assertion over unprimed and primed
variables, where a primed variable x′ represents the next-state value of x.

Definition 3 (Linear Loop). A linear loop is a polynomial loop in which all
assertions and expressions are affine.

When discussing affine expressions, assertions, and loops, we use the notation
ctx ≥ 0 to mean a linear atom, where x = (x1, x2, . . . , xm, 1)t is a homoge-
nized vector corresponding to the variables V. A linear assertion is then Ax ≥ 0,
for homogenized matrix A. By τ(xx′) ≥ 0, we mean the linear assertion cor-
responding to τ ’s transition relation, where (xx′) stands for the homogenized
vector corresponding to V ∪ V ′: (xx′) = (x1, x2, . . . , xm, x′1, x

′
2, . . . , x

′
m, 1)t.

Definition 4 (Loop Satisfaction). A loop L : 〈V, θ, T 〉 satisfies an assertion
ϕ, written L |= ϕ, if ϕ holds in all reachable states of L.

Definition 5 (Infinitely Often). For infinite computation σ of loop L :
〈V, θ, T 〉, io(σ) ⊆ T is the set of transitions that occur infinitely often in the
computation.

Definition 6 (Lexicographic Polynomial Ranking Function). A lexico-
graphic polynomial ranking function for a loop L : 〈V, θ, T 〉 is an n-tuple of
polynomial expressions 〈r1(V), . . . , rn(V)〉 such that for some ε > 0 and for
each τ ∈ T , for some i ∈ {1, . . . , n},

(Bounded) L |= τ(V,V ′) → ri(V) ≥ 0,
(Ranking) L |= τ(V,V ′) → ri(V ′)− ri(V) ≤ −ε;
(Unaffecting) for j < i, L |= τ(V,V ′) → rj(V ′)− rj(V) ≤ 0.

If n = 1, then the result is simply a polynomial ranking function.
For some loops, invariants are necessary to show that a ranking function

(and, more generally, a polyranking function) is bounded in the loop; we say
such invariants are supporting invariants.

Definition 7 (Polynomial Inductive Invariant). A formula ϕ is an invari-
ant of a loop L : 〈V, θ, T 〉 if it satisfies the following conditions:

(Initiation) θ(V) → ϕ(V), and
(Consecution) for every τ ∈ T , ϕ(V) ∧ τ(V,V ′) → ϕ(V ′).

Example 1. Consider the loop simple in Figure 1. Initially, x+y is nonnegative.
Transitions τ1 and τ2 are both guarded by x ≤ N . Termination is relatively
straightforward: τ2 at least increments x, while τ1 increases x if x + y > 0 and
always increases y. Discovering the invariant x + y ≥ 0 shows that incrementing
y makes x + y > 0. However, a linear ranking function over {x, y,N} cannot
prove termination, as, for example, τ1 does not change x when x = −y < 0.

1352 A.R. Bradley, Z. Manna, and H.B. Sipma

θ : {x + y ≥ 0}
τ1 : {x ≤ N} ⇒ {x′ ≥ 2x + y, y′ ≥ y + 1, N ′ = N}
τ2 : {x ≤ N} ⇒ {x′ ≥ x + 1, y′ = y, N ′ = N}

Fig. 1. Program simple, written as a loop

θ : {p ≥ 0, q ≥ 1, x = 0, y = 0}

τ1 : {x + y ≤ N} ⇒

⎧⎪⎪⎨⎪⎪⎩
x + e− q ≤ x′ ≤ x + e + q,
y + n− q ≤ y′ ≤ y + n + q,

n + e + 1 ≤ n′ + e′ ≤ n + e + p,
p′ = p, q′ = q, N ′ = N

⎫⎪⎪⎬⎪⎪⎭
τ2 : {x + y ≤ N, n + e ≥ 2q + 1} ⇒

⎧⎨⎩
x + e− q ≤ x′ ≤ x + e + q,
y + n− q ≤ y′ ≤ y + n + q,

n′ = n, e′ = e, p′ = p, q′ = q, N ′ = N

⎫⎬⎭
τ3 : {p ≥ 0} ⇒

⎧⎨⎩
n′ + e′ ≤ −(n + e),
p′ = p− 1, q′ = 1

2
q,

x′ = x, y′ = y, N ′ = N

⎫⎬⎭
Fig. 2. Description of the erratic robot as the program erratic

Example 2. Consider the program in Figure 2, written as a loop. It defines the
behavior of an erratic robot on a partially-bounded plane. Its current position
is given by (x, y); its tendency to move north is given by n (which may be
negative), while its tendency to move east is given by e (which may also be
negative). In τ1 and τ2, the robot’s next position is determined by its current
position and (e, n), along with an error parameter q. In τ1, n and e change so that
their new sum is at least one greater than previously, but in τ2, n and e remain
constant. Finally, τ3 adjusts parameters p and q and makes n + e potentially
negative (countering τ1), but it does not change the robot’s position.

Does the robot’s program eventually halt? Intuitively, τ3 may only be taken
a finite number of times, while τ1 and τ2 eventually make x + y only increase.

Finally, for synthesis, Farkas’s Lemma [12] will serve both as a device for
generating constraint systems and as the foundation for completeness claims.

Theorem 1 (Farkas’s Lemma). Consider the following system of linear in-
equalities over real variables V = {x1, . . . , xm}:

S :

⎡⎢⎣ A1,1x1 + · · · + A1,mxm + A1,m+1 ≥ 0
...

...
...

An,1x1 + · · · + An,mxm + An,m+1 ≥ 0

⎤⎥⎦
If S is satisfiable, it entails linear inequality c1x1 + · · · + cmxm + cm+1 ≥ 0 iff
there exist real numbers λ1, . . . ,λn ≥ 0 such that

c1 =
n∑

i=1

λiAi,1 · · · cm =
n∑

i=1

λiAi,m cm+1 ≥
(

n∑
i=1

λiAi,m+1

)
.

The Polyranking Principle 1353

(Negative) E(V) is bounded: L |= E(V) ≤ −ε for some ε > 0
(Eventually Negative) For each τ ∈ T , one of the following conditions holds:

(Nonincreasing) τ ∈ T −A and τ does not increase E(V):
1. τ ∈ T −A
2. L |= τ(V,V ′)→ E(V ′)− E(V) ≤ 0

(Eventually Decreasing) τ does not increase E(V) by more than some
eventually negative F (V):
1. L |= τ(V,V ′)→ E(V ′)− E(V) ≤ F (V)
2. F (V) is eventually negative by {τ} ⊆ T

Fig. 3. E(V) is eventually negative by A ⊆ T on loop L : 〈V, θ, T 〉

Furthermore, S is unsatisfiable iff S entails −1 ≥ 0.

3 The Polyranking Principle

The polyranking principle is based on the following recursive definition of what
it means for an expression E(V) to be eventually negative.

Definition 8 (Eventually Negative by A ⊆ T). Given loop L : 〈V, θ, T 〉
over V, an expression E(V) is eventually negative by A ⊆ T (⊆ T), for A �= ∅, if
either case Negative or case Eventually Negative holds in Figure 3. For case
Eventually Negative to hold, the recursion must have finite depth.

Intuitively, transitions in A should make progress toward decreasing E(V), while
transitions in T should not interfere counterproductively.

We represent an application of this definition as a tree of expressions, called
an EN-tree. E(V) is the root; the Negative case introduces the −ε expressions as
leaves; the Nonincreasing case introduces 0-leaves; and the Eventually De-
creasing case introduces F (V) expressions as inner nodes. Branches are labeled
by transitions.

Example 3. Figure 4 shows three examples of EN-trees. The tree in Figure 4(a)
for simple represents the property thatN−x is eventually negative by {τ1, τ2} ⊆
{τ1, τ2}. The first difference of N − x by τ1 is at most −x − y, which is itself
eventually negative. The supporting invariant x + y ≥ 0 is required for proving
that the first difference of −x− y by τ1 is at most −1.

Lemma 1. If for loop L : 〈V, θ, T 〉, E(V) is eventually negative by A ⊆ T (⊆
T), then on any nonterminating computation of L, γ, such that io(γ) ⊆ T and
io(γ) ∩ A �= ∅, eventually henceforth E(V) ≤ −ε for some ε > 0.

Proof. We proceed by induction on the structure of Definition 8 and the depth
of the recursion, which we know is finite. As the base case, consider when Neg-
ative applies to E(V); then the conclusion is immediate. For the inductive case,

1354 A.R. Bradley, Z. Manna, and H.B. Sipma

Eventually Negative applies. Consider τ ∈ T . If τ �∈ io(γ), then we can,
without loss of generality, assume that τ is never taken in γ — just skip a fi-
nite prefix — so that τ has no effect on E(V). Otherwise, τ ∈ io(γ). There are
two cases. If τ �∈ A and Nonincreasing applies to τ , then τ does not increase
E(V). Otherwise, Eventually Decreasing applies to τ , so that τ increases
E(V) by at most F (V), while F (V) is eventually negative by {τ} ⊆ T . Since
io(γ)∩{τ} �= ∅, we have by induction that eventually henceforth F (V) ≤ −ε for
some ε > 0. By assumption, there is at least one τ ∈ A ∩ io(γ). Once each of
these τ ’s F (V) is henceforth negative, E(V) is decreased by at least some ε > 0
infinitely many times. Since no other transition can increase E(V), eventually
henceforth E(V) ≤ −ε.

Example 4. simple always terminates because the expression N −x is bounded
from below by 0 in the loop and eventually negative, as shown in Figure 4(a).

Definition 9 (Lexicographic Polyranking Function). The
-tuple of func-
tions 〈r1(V), r2(V), . . . , r
(V)〉 is a lexicographic polyranking function of loop
L : 〈V, θ, T 〉 if for some π : T → {1, . . . ,
},
(Bounded) for τ ∈ T , L |= τ(V,V ′) → rπ(τ)(V) ≥ 0;
(Polyranking) ri(V) is eventually negative by {τ : π(τ) = i} ⊆ {τ : π(τ) ≥ i}

for i ∈ {1, . . . ,
}.

Theorem 2. If loop L : 〈V, θ, T 〉 has a lexicographic polyranking function, then
it always terminates.

Proof. Suppose L does not always terminate, yet 〈r1(V), r2(V), . . . , r
(V)〉 with
map π : T → {1, . . . ,
} is a lexicographic polyranking function for L. Let γ be an
infinite computation, and let i ∈ {1, . . . ,
} be the lexicographic index such that
i = minτ∈io(γ) π(τ). By Definition 9, ri(V) is eventually negative by {τ : π(τ) =
i} ⊆ {τ : π(τ) ≥ i}. Moreover, by selection of i, {τ : π(τ) = i} ∩ io(γ) �= ∅; and
by selection of i and Definition 9, io(γ) ⊆ {τ : π(τ) ≥ i}. Then by Lemma 1,
ri(V) eventually becomes negative and stays negative, disabling transitions in
{τ : π(τ) = i} and thus increasing i for the remaining computation. Repeating
this argument at most
 times proves that all transitions are eventually disabled,
a contradiction.

N − x
����

����
−x− y
���

���
−1

−1 0

τ1 τ2

τ1 τ2

N − x− y
����

����
−e− n + 2q

���
���

−1

−1 0

τ1 τ2

τ1 τ2

p
����

����
0 0 −1

τ1 τ2
τ3

{τ1, τ2} ⊆ {τ1, τ2} {τ1, τ2} ⊆ {τ1, τ2} {τ3} ⊆ {τ1, τ2, τ3}

(a) (b)

Fig. 4. EN-trees for (a) simple and (b) erratic

The Polyranking Principle 1355

I :
Θx ≥ 0

Ix ≥ 0
Di :

Ix ≥ 0
τi(xx′) ≥ 0

−1 ≥ 0
Ci :

Ix ≥ 0
τi(xx′) ≥ 0

Ix′ ≥ 0

Bij :

Ix ≥ 0
τi(xx′) ≥ 0

cj
tx ≥ 0

Rij :

Ix ≥ 0
τi(xx′) ≥ 0

cj
tx− cj

tx′ − ε ≥ 0

Uij :

Ix ≥ 0
τi(xx′) ≥ 0

cj
tx− cj

tx′ ≥ 0

D�
ijk :

Ix ≥ 0
τi(xx′) ≥ 0

ck
tx + cj

tx− cj
tx′ ≥ 0

Fig. 5. Farkas’s Lemma specializations

Example 5. erratic has lexicographic linear polyranking function 〈p, N−x−y〉
where π : {τ1 !→ 2, τ2 !→ 2, τ3 !→ 1}. Clearly, N − x− y is bounded from below
by 0 by both τ1 and τ2, while p is bounded from below by 0 by τ3. Figure
4(b) presents the EN-trees representing the proofs that N − x− y is eventually
negative by {τ1, τ2} ⊆ {τ1, τ2} and p is eventually negative by {τ3} ⊆ {τ1, τ2, τ3}.
No supporting invariants are required.

4 Constraint Generation

The remainder of this paper focuses on a complete method of synthesizing lexico-
graphic linear polyranking functions with supporting linear invariants for linear
loops. We adapt the machinery of [1] to this more general setting. The main
idea is to invoke a set of Farkas’s Lemma specializations on a loop and a set of
template ranking functions and invariants.

Definition 10 (Template Expression). A template expression over V is a
linear expression ctx, with unknown coefficients c. A template assertion is a
linear assertion Cx ≥ 0 with matrix of unknown coefficients C.

Farkas’s Lemma takes a system of linear assertions and templates and re-
turns a dual numeric constraint system over the λ-multipliers and the unknown
template coefficients. Given a loop L : 〈V, θ, T 〉, the supporting invariant tem-
plate Ix ≥ 0, and template expressions {c1

tx, . . . , cn
tx}, the following Farkas’s

Lemma specializations are applied to encode the appropriate conditions.

Definition 11 (Farkas’s Lemma Specializations). See Figure 5.

– I (Initiation): The supporting invariant includes the initial condition.
– Di (Disabled): Transition τi ∈ T and the invariant may contradict each other,

indicating “dead code.”
– Ci (Consecution): For transition τi ∈ T , if the invariant holds and the tran-

sition is taken, then the invariant holds in the next state.

1356 A.R. Bradley, Z. Manna, and H.B. Sipma

Decreasingc1����
����

Decreasingτ1
c2���

���
Rankingτ1 Unaffectingτ2

Rankingτ2

Decreasingc1
⇒ (D1 ∨ B1,1) ∧ (D2 ∨ B2,1)

Decreasingτ1
c2
⇒ D1 ∨ D�

1,1,2

Rankingτ1 ⇒ D1 ∨ R1,2

Unaffectingτ2 ⇒ D2 ∨ U2,2

Rankingτ2 ⇒ D2 ∨ R2,1

(a) (b)

Fig. 6. (a) Template tree. (b) Generating tree constraints

– Bij (Bounded): For transition τi ∈ T and template expression cj
tx, the

invariant and transition imply the nonnegativity of the expression.
– Rij (Ranking): For transition τi ∈ T and template expression cj

tx, taking
the transition decreases the value of the expression by at least some positive
amount (ε > 0).

– Uij (Unaffecting): For transition τi ∈ T and template expression cj
tx, tak-

ing the transition does not increase the value of the expression.
– D�

ijk (Decreasing): For transition τi ∈ T and template expressions cj
tx and

ck
tx, the first difference of cj

tx over τi is upper bounded by ck
t.

All specializations except D�
ijk are used in [1] for synthesizing linear ranking

functions, and thus explained in greater depth there. D�
ijk is the key specialization

for polyranking function synthesis. It allows us to express the condition that the
difference cjx′ − cjx is upper bounded by the expression ckx, which in turn is
constrained to be eventually negative.

Applying a set of specializations to a loop and a set of template expressions
induces a numeric constraint system. However, we must define how to apply the
specializations. For now, we assume that we are given a tuple of template trees
and a map π mapping transitions to tuple components. The ith template gives
the form of an EN-tree for the property that the root expression is eventually
negative by {τ : π(τ) = i} ⊆ {τ ′ : π(τ ′) ≥ i}.

Definition 12 (Template Tree). A template tree for loop L : 〈V, θ, T 〉 and
A ⊆ T gives the form of an EN-tree for the property that the root expression is
eventually negative by A ⊆ T . The root node and inner nodes are Decreasing
nodes (corresponding to the root expression and Eventually Decreasing case
of Definition 8, respectively) labeled with template expressions, while leaves are
Ranking nodes (the Negative case) or Unaffecting nodes (the Nonincreas-
ing case). Non-root nodes are also labeled with some τ ∈ T . Each inner node
has |T | children.

Definition 8 indicates when a leaf node must be Rankingτ or Unaffectingτ .
Specifically, if the node is a child of the root and τ ∈ A, or if its parent is a node
labeled by τ , then the node is Rankingτ ; otherwise, it is Unaffectingτ .

Example 6. The template tree for {τ1, τ2} ⊆ {τ1, τ2} of simple in Figure 6(a)
includes the EN-tree in Figure 4(a).

The Polyranking Principle 1357

Definition 13 (Tree Constraints). Given a loop L : 〈V, θ, T 〉 and a template
tree for A ⊆ T , the tree constraints are generated by applications of the Farkas’s
Lemma specializations as follows:

Parent is Decreasing∗cj
and node is . . .

. . . Rankingτi ⇒ Di ∨ Rij

. . . Unaffectingτi ⇒ Di ∨ Uij

. . . Decreasingτi
ck

⇒ Di ∨ D�
ijk

Node is root and Decreasingcj
⇒ Di ∨ Bij for each τi ∈ A

Example 7. The tree constraints of the template tree in Figure 6(a) are gen-
erated as in Figure 6(b). The disabled cases are often ignored in practice, so
the template tree induces numerical constraints corresponding to B1,1 ∧ B2,1 ∧
D�

1,1,2 ∧ R1,2 ∧ U2,2 ∧ R2,1.

We use template trees and tree constraints to formalize the synthesis of lexi-
cographic linear polyranking functions. This theorem mimics Definition 9 in the
context of synthesis.

Theorem 3. Loop L : 〈V, θ, T 〉 has an
-lexicographic linear polyranking func-
tion supported by an n-conjunct linear inductive invariant iff there exists a map-
ping π : T → {1, . . . , |T |} and an
-tuple of template trees 〈T1, T2, . . . , T
〉 such
that (1) the ith template tree is for {τ : π(τ) = i} ⊆ {τ ′ : π(τ ′) ≥ i}, and (2) the

 numeric constraint systems induced by

I ∧
∧
τi∈T

(Di ∨ Ci) ∧ tree constraints(Tj) for j ∈ {1, . . . ,
}

are satisfiable.

5 Synthesis

Theorem 3 applies to a given tuple of template trees. But in practice, we must
find this tuple of templates. This section addresses this issue with an effective
search, which seeks a tuple of trees such that the root expressions form a lexico-
graphic linear polyranking function for a loop L : 〈V, θ, T 〉. Three different forms
of constraints are handled by the full algorithm. The lexicographic constraints
induce the transition sets A and T for each component tree. These transition
sets plus the well-formedness constraints from the definition of EN-trees induce
a numeric constraint system via the tree constraints. Only when the two sets
of structural constraints and the induced numeric constraints are satisfied is a
solution found.

The first algorithm searches for EN-trees. Its input is a loop; an n-conjunct
invariant template; the two sets of transitions, A and T ; and a maximum tree
height. It returns whether an EN-tree exists of at most the maximum height,
possibly supported by an n-conjunct invariant. Its search strategy consists of

1358 A.R. Bradley, Z. Manna, and H.B. Sipma

let exists tree A T =
let initial tree =

Decreasingc1

(
{ShouldRankτ : τ ∈ A} ∪
{ShouldUnaffectτ : τ ∈ T −A}

)
in

let sat en = num sat (inv cts ∧ (tree cts en)) in

let next tree en extend = . . . in

let rec search en =
height en ≤ max height

and sat en

and

⎛⎝ complete (en)
or search (next tree en false)
or search (next tree en true)

⎞⎠
in

search initial tree

Fig. 7. (exists tree A T) searches for an EN-tree proving that there is a bounded
expression E(x) that is eventually negative by A ⊆ T

incrementally building partial template trees. A partial template tree induces
a numeric constraint system that is satisfiable if some completion of the tree
induces a satisfiable constraint system. Thus, solving partial constraint systems
guides the search. If a complete template tree is found that induces a satisfiable
constraint system, the algorithm reports success.

Partial template trees are represented as in Section 4, except that two ad-
ditional nodes are introduced. ShouldRank and ShouldUnaffect nodes are
directions for making a partial template tree complete. In a complete template
tree, all such nodes are replaced by one of the three original nodes. Indeed,
complete trees must have a form obeying Definition 12. The definition of tree
constraints is extended to the new nodes by simply ignoring them: ShouldRank
and ShouldUnaffect nodes do not induce constraints. In this section, we rep-
resent the children of Decreasing nodes as a set labeling the node, rather than
as figures like Figure 6(a).

Figure 7 describes the procedure as the function exists tree. It searches for an
EN-tree of at most the specified maximum height, max height , corresponding to
the property that the root expression is eventually negative by A ⊆ T . It defines
the initial tree, initial tree, as a Decreasing node with ShouldRankA children
and ShouldUnaffect T − A children. The function sat builds the numerical
constraint system induced by the given tree en and returns its satisfiability. The
constraints include those on the template invariant (inv cts).

The search proceeds by exploring the space of partial template trees via
next tree. For current tree en and boolean extend , (next tree en extend) returns
the next tree in the search space. The next tree is constructed by replacing some
ShouldRankτ (ShouldUnaffectτ) node with a Rankingτ (Unaffectingτ)
or a Decreasingτck

node. The choice is controlled by extend . When extend
is true, the tree is “extended” by replacing the node with a Decreasingτck

The Polyranking Principle 1359

node, which has a fresh template expression ck and a set of ShouldRankτ ′
and

ShouldUnaffectτ
′
children, where a child is ShouldRankτ ′

only if τ = τ ′.

Example 8. Consider erratic with a linear transition order τ3 ≺ τ1 ≺ τ2. The
initial partial template trees for the lexicographic components of τ1, τ2, and τ3
are the following:

τ1 : Decreasingc1
{ShouldRankτ1 ,ShouldUnaffectτ2}

τ2 : Decreasingc2
{ShouldRankτ2}

τ3 : Decreasingc3
{ShouldUnaffectτ1 ,ShouldUnaffectτ2 ,ShouldRankτ3}

The next tree for τ1, without extending the tree, could be

Decreasingc1
{Rankingτ1 ,ShouldUnaffectτ2};

however, the corresponding numeric constraint system is unsatisfiable. Therefore,
with extension, the next tree is

Decreasingc1

{
Decreasingτ1c4

{ShouldRankτ1 ,ShouldUnaffectτ2},
ShouldUnaffectτ2

}
.

Finally, the search runs as follows. It checks that the given template tree, en,
has a height at most max height and that the numeric constraint system induced
by en is feasible. If the system is infeasible, then no extension of en can induce
a feasible constraint system, so the search halts on the branch. If both checks
are satisfied and the tree is complete, then a satisfying tree has been found, so
the search returns true. If the tree is still incomplete, it recurses on the next
tree, first without extension and then with extension. Each of the two calls to
next tree should modify the same node.

Lemma 2. If num sat is a decision procedure, (exists tree A T) returns true
iff there is an expression E(x) and an n-conjunct supporting linear invariant
Ix ≥ 0 such that (1) E(x) is lower bounded by 0 by each τ ∈ A relative to
Ix ≥ 0, and (2) E(x) is eventually negative by A ⊆ T relative to Ix ≥ 0, and
the associated EN-tree has height at most max height.

Example 9. After several more iterations for each template tree in Example
8, each ShouldRank (ShouldUnaffect) node is replaced by a Ranking
(Unaffecting) node. One possible solution is discussed in Example 4, where
the trees for τ1 and τ2 have been merged into one tree.

The second algorithm, lex , adapted from [1], works on top of the first to find
a lexicographic function. It associates with each transition τ ∈ T a template
expression T (τ). It seeks a linear order among the transitions by incrementally
searching over partial orders. A partial order ≺ over T induces a set of con-
straints: for each τ , T (τ) must be eventually negative by {τ} ⊆ {τ ′ : τ ′ ≺ τ∨τ ′ =
τ}; and T (τ) must be lower bounded by 0 when τ is enabled. These constraints

1360 A.R. Bradley, Z. Manna, and H.B. Sipma

are checked by the first algorithm. If ≺ induces an unsatisfiable constraint sys-
tem, then no linear extension can induce a satisfiable constraint system. Thus,
solving partial constraint systems guides this search, as well. If a linear order
is found that induces a satisfiable constraint system, the second algorithm has
found a lexicographic polyranking function.

Proposition 1. Consider loop L : 〈V, θ, T 〉, an n-conjunct template invariant,
and maximum tree height max height. (lex L) returns true iff L has a lexico-
graphic linear polyranking function such that the associated EN-trees have height
at most max height and are each supported by an n-conjunct linear invariant.

6 Conclusion

We implemented the lexicographic linear polyranking approach to proving ter-
mination of linear loops in our tool, linsys. The implementation found the
polyranking function and supporting invariant described in Example 4 in about
2 seconds and the lexicographic polyranking function described in Example 5
in about 1 second. The primary challenge in scaling our synthesis method to
assertional polynomial loops is solving the polynomial constraint systems. Ap-
proximation methods like in [6] may address scalability.

We believe that two ideas from this paper are useful in domains other than
termination analysis. First, the recursive definition of an eventually negative
expression may be of interest for hybrid system analysis and control theory.
Second, the form of our synthesis method for solving structural and numeric
constraints should be applicable to other constraint solving and synthesis tasks.

Acknowledgments. We thank the reviewers for their insightful comments.

References

1. Bradley, A. R., Manna, Z., and Sipma, H. B. Linear ranking with reachability.
In CAV (2005).

2. Bradley, A. R., Manna, Z., and Sipma, H.B. Termination of polynomial pro-
grams. In VMCAI (2005), pp. 113–129.

3. Codish, M., Genaim, S., Bruynooghe, M., Gallagher, J., and Vanhoof,
W. One lop at a time. In WST (2003).

4. Colón, M., and Sipma, H. B. Synthesis of linear ranking functions. In TACAS
(2001), pp. 67–81.

5. Colón, M.A., and Sipma, H. B. Practical methods for proving program termi-
nation. In CAV (2002), pp. 442–454.

6. Cousot, P. Proving program invariance and termination by parametric abstrac-
tion, lagrangian relaxation and semidefinite programming. In VMCAI (2005),
pp. 1–24.

7. Dershowitz, N., Lindenstrauss, N., Sagiv, Y., and Serebrenik, A. A general
framework for automatic termination analysis of logic programs. Applicable Algebra
in Engineering, Communication and Computing 12 (2001), 117–156.

The Polyranking Principle 1361

8. Lee, C.S., Jones, N. D., and Ben-Amram, A.M. The size-change principle for
program termination. In POPL (2001), pp. 81–92.

9. Manna, Z., Browne, A., Sipma, H. B., and Uribe, T. E. Visual abstractions for
temporal verification. In Algebraic Methodology and Software Technology (1998),
pp. 28–41.

10. Podelski, A., and Rybalchenko, A. A complete method for the synthesis of
linear ranking functions. In VMCAI (2004), pp. 239–251.

11. Podelski, A., and Rybalchenko, A. Transition invariants. In LICS (2004),
pp. 32–41.

12. Schrijver, A. Theory of Linear and Integer Programming. Wiley, 1986.
13. Sipma, H. B., Uribe, T. E., and Manna, Z. Deductive model checking. In CAV

(1996), pp. 209–219.
14. Tiwari, A. Termination of linear programs. In CAV (2004), pp. 70–82.

Approximate Guarding of Monotone and

Rectilinear Polygons

Bengt J. Nilsson

Technology and Society, Malmö University College,
SE-205 06 Malmö, Sweden
Bengt.Nilsson@ts.mah.se

Abstract. We show a constant factor approximation algorithm for inte-
rior guarding of monotone polygons. Using this algorithm we obtain an
approximation algorithm for interior guarding rectilinear polygons that
has an approximation factor independent of the number of vertices of
the polygon. If the size of the smallest interior guard cover is OPT for a
rectilinear polygon, our algorithm produces a guard set of size O(OPT 2).

1 Introduction

The art gallery problem is perhaps the best known problem in computational
geometry. It asks for the minimum number of guards to guard a space having
obstacles. Originally, the obstacles were considered to be walls mutually con-
nected to form a closed Jordan curve, hence, a simple polygon. Tight bounds
for the number of guards necessary and sufficient were found by Chvátal [7] and
Fisk [14]. Subsequently, other obstacle spaces, both more general and more re-
stricted than simple polygons have also been considered for guarding problems,
most notably, polygons with holes and simple rectilinear polygons [16, 22].

Art gallery problems are motivated by applications such as line-of-sight trans-
mission networks in polyhedral terrains, e.g., signal communications and broad-
casting, cellular telephony, and other telecommunication technologies as well as
placement of motion detectors and security cameras.

We distinguish between two types of guarding problems. Vertex guarding
considers only guards positioned at vertices of the polygon, whereas interior
guarding allows the guards to be placed anywhere in the interior of the polygon.

The computational complexity question of guarding simple polygons was set-
tled by Aggarwal [1] and Lee and Lin [19] independently when they showed that
the problem is NP-hard for both vertex guards and interior guards. Further
results have shown that already for very restricted subclasses of polygons the
problem is still NP-hard [3, 21]. Also, Chen et al. [5] claim that vertex guarding
a monotone polygon is NP-hard, however the details of their proof are omitted
and still to be verified.

The approximation complexity of guarding polygons has been studied by
Eidenbenz and others. Eidenbenz [13] shows that polygons with holes cannot be
efficiently guarded by fewer than Ω(log n) times the optimal number of interior

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 1362–1373, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Approximate Guarding of Monotone and Rectilinear Polygons 1363

or vertex guards, unless P=NP, where n is the number of vertices of the polygon.
Brodén et al. and Eidenbenz [3, 12] independently prove that interior guarding
simple polygons is APX-hard, thus showing that, unless P=NP, no PTAS is
possible for this problem.

Any polygon (with or without holes) can be efficiently vertex guarded with
logarithmic approximation factor in the number of vertices of the polygon. The
algorithm is a simple reduction to set cover and goes as follows [15]: compute
the arrangement produced by the visibility polygons of the vertices. Next, let
each vertex v correspond to a set in the set cover instance consisting of elements
corresponding to the faces of the arrangement that lie in the visibility polygon of
v. The greedy algorithm for set cover will then produce a guard cover having
logarithmic approximation factor.

The above result can be improved for simple polygons using randomization,
giving an algorithm with expected running time O(nOPT 2 log4 n) that produces
a vertex guard cover with approximation factor O(log OPT) with high proba-
bility, where n is the size of the polygon and OPT is the smallest vertex guard
cover for the polygon [11].

Recently, interesting constant factor approximation algorithms have been de-
veloped for the special case of one-dimensional terrains [2, 8]. A terrain is a
two-dimensional region above a monotone chain.

We prove polynomial time approximation algorithms for interior guarding of
monotone and rectilinear polygons. As mentioned, vertex guarding of monotone
polygons is believed to be NP-hard, and furthermore, it is known that covering
rectilinear polygons with the minimum number of convex pieces (rectangles) is
NP-hard [9]. This suggests that interior guarding these two classes of polygons
is difficult and provides the basis for our interest in approximation algorithms
for these problems.

The next section contains some useful definitions and an Sections 3 and 4 we
describe the algorithms for monotone and rectilinear polygons respectively.

2 Definitions

A polygon P is l-monotone if there is a line of monotonicity l such that any line
orthogonal to l has a simply connected intersection with P. When we talk about
monotone polygons, we will henceforth assume that they are x-monotone, i.e.,
the x-axis is the line of monotonicity for the polygons we consider.

The boundary of a monotone polygon P can be subdivided into two chains,
the upper chain U and the lower chain D. Let s and t be the leftmost and
rightmost vertices of P respectively. The chain U consists of the boundary path
followed from s to t in clockwise direction, whereas D is the boundary path
followed from s to t in counterclockwise direction.

A polygon P is rectilinear if the boundary of P consists of axis parallel line
segments. Hence, at all vertices, the interior angle between segments are either
90 or 270 degrees; see Figure 1(a).

1364 B.J. Nilsson

ts

monotone rectilinear
(a)

p
SP (p, t)

r′
t

r

r

r′q

(b)

Fig. 1. Illustrating definitions and Lemma 1

Let VP(p) denote the visibility polygon of P from the point p, i.e, the set of
points in P that can be connected with a line segment to p without intersecting
the outside of P.

Consider a partial set of guard points g1, . . . , gm in P and the union of their
visibility polygons

⋃m
i=1 VP(gi), the set P \

⋃m
i=1 VP(gi) is the region of P not

seen by the points g1, . . . , gm. This region consists of a set of simply connected
polygonal regions called pockets bounded by either the polygon boundary or the
edges of the visibility polygons.

The following definitions are useful for monotone polygons. Let q be a point
in VP(p) that lies to the right of p. We denote by VPR(p, q) the part of VP(p)
that lies to the right of q. Also, VPR(p) = VPR(p, p).

A pocket in a monotone polygon P is an upper pocket if it is adjacent to
the upper boundary U of P, otherwise it is a lower pocket. Note that an upper
pocket can be adjacent to D whereas a lower pocket is never adjacent to U .

Let SP (p, q) denote the shortest (Euclidean) path between points p and q
inside P.

Lemma 1. If q is a point on SP (p, t) inside a monotone polygon P, then
VPR(p, q) ⊆ VPR(q).

Proof. Let r be a point to the right of q in P that is visible from p. To prove that
r is seen from q consider the vertical line through r and its intersection point r′

with SP (p, t). The three points p, r, and r′ define a polygon in P having three
convex vertices and possibly some reflex vertices on the path SP (p, r′). Since r
sees both p and r′, r sees all of the path SP (p, r′) and hence also the point q;
see Figure 1(b). ��

3 Interior Guarding Monotone Polygons

Our algorithm for guarding a monotone polygon P will incrementally guard P
starting from the left and moving right. Hence, we are interested in the structure
of the pockets that occur when guarding is done in this way. We first define
kernel expansions of the pockets given a partial guard cover Gp, and then taking
maximal nonempty intersection of these we produce the main region that we
will be interested in. This region is called a spear and with this we can define
a well behaved guard cover G∗ that has small size. We finally prove that our
incremental algorithm produces a guard cover at most a constant times larger
than G∗.

Approximate Guarding of Monotone and Rectilinear Polygons 1365

Assume that we have a partial guard cover Gp in P and that everything to
the left of the rightmost guard is seen. Consider the upper pockets resulting
from this guard cover and enumerate them pU

1 , . . . from left to right. The lower
pockets are enumerated from left to right pD

1 , . . . in the same way; see Figure 2.

s t

D

visibility polygon

U

pockets

kernel expansions

Fig. 2. Illustrating pockets and kernel expansions

Let pU be an upper pocket. The kernel expansion ke(pU) consists of all the
points in P that see everything in pU to the left of themselves. For the lower
pockets we define the kernel expansion symmetrically. The definition of kernel
expansion is valid also when no guards have as yet been placed in the polygon.
In this case, we take all of the polygon P to be an upper pocket.

Let k be the largest index so that
⋂k

i=1 ke(pU
i) is nonempty. This nonempty

intersection of kernel expansions is called the upper spear, also denoted spU .
We can in the same way define the lower spear spD as the maximal nonempty
intersection of the kernel expansions for the lower pockets.

Given the partial guard cover Gp the upper spear spU can be computed in
linear time as follows. Let rU

1 be the leftmost point of pU
1 . An edge e of the pocket

that is also part of U is defined to have the same direction as when it is traversed
during a traversal of U from s to t. Following the boundary of the upper pockets
starting at rU

1 , for each edge e of the pocket that is also an edge of U , we issue a
half line from e having the same direction as e. When the traversal of a pocket
pU
i reaches the last edge we establish the last point qU

i of the edge not seen by
Gp and we extend the directed half line issuing from qU

i toward the vertex v on
U between qU

i and rU
i+1 so that this half line has minimum interior angle and

does not intersect the exterior of P above U . Using these half lines in the order
they were computed we incrementally find their right half plane intersection in
the same way as is done to compute the kernel of a polygon [17, 18]. This gives
us the upper boundary of the spear.

To compute the lower boundary of the spear we follow the lower boundary D
of P from the point having the same x-coordinate as rU

1 toward t and maintain
the half lines issuing from rU

1 having maximal interior angle to U and such that
they do not intersect the exterior of P below D; see Figure 3. The intersection
point between the upper and lower boundary of the spear is called the upper
spear tip and we denote it uU .

In a similar manner we can compute the lower spear spD and its lower spear
tip uD.

To every spear sp we also associate a region called the shadow of the spear,
denoted shd(sp). If the spear tip lies on the lower boundary D the shadow is

1366 B.J. Nilsson

qU
1

qU
2

spU

rU
1 rU

2

shd(spU)

uU

v

Fig. 3. Computing the upper spear and the shadow

the empty set. If the spear tip lies in the interior of P, the shadow of the spear
is the region to the right of the spear tip between the two half lines bounding
the spear that intersect at the spear tip; see Figure 3.

The upper and lower spears are dependent on the placement of the previously
placed guards so we will henceforth refer to them as spU(Gp) and spD(Gp) given
the partial guard set Gp. For each spear, spU(Gp) and spD(Gp) we denote the
upper spear tip uU(Gp) and the lower spear tip uD(Gp). If Gp = ∅, the upper
spear spU(∅) and the upper spear tip uU(∅) are well defined.

We prove the following two lemmas.

Lemma 2. If Gp and G′p are two partial guard covers of P such that spU(Gp)
and spU(G′p) do not intersect, then shd(spU(Gp)) ∩ shd(spU(G′p)) = ∅.

Proof. We make a proof by contradiction and assume that the two shadows
intersect. Assume that spU(Gp) lies to the left of spU(G′p) and let p be a point
in the intersection of the two shadows. We can connect p to uU(Gp) with a line
segment and then follow the line segment from uU(Gp) back to its starting point
rU
1 at the leftmost point of the first upper pocket associated to spU(Gp). From rU

1

we follow the upper boundary of the pocket to the rightmost point qU
k of the last

upper pocket associated to spU(G′p), from this point on to uU(G′p), and then back
to p. This traversal bounds a polygon interior to P that contains completely the
lower boundary segment of spU(G′p). However, this is not possible because by
construction this segment must intersect the lower boundary D of P, giving us
a contradiction; see Figure 4. ��

At this point, it is important to note that a single guard placed in a spear will
guard all pockets associated to the spear. However, these pockets can also be
guarded by placing one guard above and below the shadow and possibly one or
more guards inside the shadow. Now, we are interested in bounding from below
the number of guards needed to the right of a spear for the case that no guard
is in the spear.

Approximate Guarding of Monotone and Rectilinear Polygons 1367

qU
k

uU(G′p)rU
1

p

spU(G′p)

spU(Gp)uU(Gp)

Fig. 4. Illustrating the proof of Lemma 2

Let G be any guard cover for P and let Gp ⊂ G be a possibly empty partial
guard cover. If Gp is nonempty assume that it has g as its rightmost guard and
assume further that all of P to the left of g is guarded by Gp. Let Gf = G \ Gp
and define the following sets recursively.

G0 = Gp
Gi = Gi−1 ∪ {uU(Gi−1)} for i > 0

Lemma 3. Let Gf and G0, . . . ,Gk be sets as defined above. If all guards of Gf

lie to the right of uU(Gk), then Gf contains at least k + 2 guards.

Proof. By the construction of the sets Gi, we know that their corresponding
spears do not intersect, and hence, from Lemma 4 their shadows do not intersect
either. Let g be the rightmost guard of Gp = G0.

If some shadow shd(spU(Gi)) does not intersect the vertical line through
uU(Gk) then at least one guard is needed in the interval between g and uU(Gk),
contradicting that G is a guard cover for P. Hence, all shadows intersect this ver-
tical line. Now, assume that Gf contains at most k+1 guards. By the pigeon-hole
principle there are two consecutive shadows shd(spU(Gi)) and shd(spU(Gi+1))
such that at least one of them and the region between them does not contain any
guard, i.e., all guards of Gf lie either above the upper boundary of shd(spU(Gi))
and below the upper boundary of shd(spU(Gi+1)) or above the lower boundary
of shd(spU(Gi)) and below the lower boundary of shd(spU(Gi+1)). In both cases
this means that there are points of the last pocket associated to spU(Gi) that
are not seen by G, giving us a contradiction; see Figure 5. ��

shd(spU(Gi))
spU(Gi+1)

spU(Gi)

shd(spU(Gi+1))
uU(Gk)

Fig. 5. Illustrating the proof of Lemma 3

1368 B.J. Nilsson

We say that a guard belongs to a shadow shd(spU(Gi)), if it lies in the interior
of shd(spU(Gi)) or it lies below shd(spU(Gi)) but above all other shadows lying
below shd(spU(Gi)).

We can, of course, prove similar results as those in Lemmas 2 and 3 for the
shadows of lower spears.

A guard cover is called serial, if the following invariant condition holds when
we incrementally place the guards of the cover in P one by one in order from
left to right.

If gm is the mth guard placed in the order, then gm either lies in the
upper spear or the lower spear of the guards g1, . . . , gm−1.

The next lemma shows that there is a serial guard cover of small size.

Lemma 4. If G is a guard cover for the monotone polygon P, then there is a
serial guard cover G∗ for P such that |G∗| ≤ 3|G|.

Proof. Given a guard cover G we transform it to be serial as follows. Order the
guards of G = {g1, . . . , gm} from left to right. The transformation incrementally
adds guards moving from left to right into two sets GU and GD ensuring that
the next guard place lies in a spear. To make the constructed guard set serial we
employ a plane sweep approach moving from left to right. As soon as the sweep
line reaches a guard, the guard is attached to the sweep line and moves along
it following the shortest path to t. By Lemma 1 this does not decrease visibility
to the right. Now, as the sweep proceeds one of two things happen. Either a
guard becomes the last guard to leave a spear (with respect to the previously
released guards) and it is then released from the sweep line or the sweep reaches
the spear tip without having released a guard. In this case, the spear has been
completely empty of guards. In this latter case, we add a guard at the spear
tip, placing it in GU if the spear is an upper spear and in GD if the spear is a
lower spear. When the sweep line reaches t, those guards still attached to it are
removed (except for possibly one) giving us the serial guard cover G∗.

To count the number of extra guards placed by this process we can associate
each new guard placed at a spear tip with one belonging to the shadow of the
associated spear. From Lemma 3 we have that a guard belonging to an upper
(lower) shadow can at worst belong also to a lower (upper) shadow. Hence,
|GU | ≤ |G| and |GD| ≤ |G| giving us that |G∗| ≤ |G|+ |GU |+ |GD| ≤ 3|G|. ��

We can now give the details of the incremental algorithm, displayed in Fig-
ure 6, and prove its correctness, approximation factor and time complexity.

To prove the complexity of the algorithm we note that the loops of Steps 2
and 3 are performed O(n) times. Computing the spear and its spear tip can be
done in linear time as we showed before. Hence, it remains to show how to do
Step 2.4 efficiently. Let VP(G) be the part of the polygon seen so far. We begin
by placing g′ at the top of the line segment l and compute the upper spear with
g′ in the guard set. Then, we slide g′ along l continuously updating the point
uU(G ∪ {g′}) as we go along. The structural changes of spU(G ∪ {g′}) occur at
certain key points on l. These are

Approximate Guarding of Monotone and Rectilinear Polygons 1369

Algorithm Guard-Monotone-Polygons

Input: A monotone polygon P

Output: A guard cover for P

1 Let G := ∅
2 while not all upper pockets are guarded do

2.1 Compute spU(G) and uU(G)
2.2 Place a guard g at uU(G); G := G ∪ {g}
2.3 Compute

⋃
g∈G VP(g), let pU be the first upper pocket in P, and let l

be the vertical line segment through the leftmost boundary point of pU

2.4 Place a guard g′ on l so that uU(G ∪ {g′}) lies as far to the right as
possible; G := G ∪ {g′}

endwhile

3 Repeat Step 2 for the lower pockets to guard these

return G
End Guard-Monotone-Polygons

Fig. 6. The algorithm for monotone polygons

1. when the convex vertex of VP(G)∪VP(g′) on an edge adjacent to an upper
pocket becomes incident to a vertex of the polygon boundary U .

2. when an edge of the boundary of spU(G ∪ {g′}) becomes incident to two
vertices of the upper boundary U .

3. when three consecutive half lines issuing from pockets intersect at the same
point.

The key points occur at an at most cubic number of discrete points on l. (The
maximum number of possible common intersection points between three lines
among n lines.) Moving g′ in between the key points will make uU(G ∪ {g′})
move monotonically to the right or to the left. Hence, by computing the key
points, which can be done incrementally in at most linear time, we can find the
point on l where uU(G ∪ {g′}) lies as far to the right as possible; see Figure 7.

g

g′

l

qU
1

qU
2

Fig. 7. Computing the rightmost spear tip

1370 B.J. Nilsson

We have the following theorem.

Theorem 1. The algorithm Guard-Monotone-Polygons computes a guard cover
for a monotone polygon P of size at most 12OPT in polynomial time, where
OPT is the size of the smallest guard cover for P.

Proof. To prove correctness, the algorithm incrementally guards everything to
the left of the rightmost guard, hence, it will completely guard the polygon.

To prove the approximation factor, consider any serial guard cover G∗ =
{g∗1 , . . . , g∗m} ordered from left to right in the polygon. We prove by induction
that after the ith iteration of the loop at Step 2, the last guard placed thus far
lies further to the right than g∗i . For the base case, after the first iteration of the
loopi, note that the algorithm places a guard at the first spear tip, the rightmost
point of the first spear, and hence, to the right of g∗1 . Assume now that after the
ith iteration of the loop, the guard g lies to the right of g∗i . Since we place g′ so
that the rightmost point uU(G ∪ {g′}) of spU(G ∪ {g′}) lies as far to the right
as possible it has to lie at least as far to the right as g∗i+1. Associating g and g′

during the ith iteration to g∗i we see that the loop will place at most 2|G∗| guards
in the polygon. Thus, a total of at most 4|G∗| guards are placed. By Lemma 4
we can choose G∗ as the smallest serial guard cover which in turn is bounded
by 3OPT .

The complexity of the algorithm follows from the previous discussion. ��

4 Interior Guarding Rectilinear Polygons

The algorithm for computing a guard cover in a simple rectilinear polygon con-
sists of two main steps. First, we find a subdivision of the polygon into monotone
pieces, second, we use the previously given algorithm to compute a guard cover
in each monotone piece.

Consider a simple rectilinear polygon P. To every reflex vertex v we can
associate two extensions, i.e., the two maximal line segments in P through v
and collinear to the two edges adjacent to v. We associate a direction to an
extension e collinear to an edge ev by giving e the same direction as ev gets
when P is traversed in counterclockwise order. This allows us to refer to the
regions to the left and right of an extension, meaning to the left or right of e if
e is directed upward.

Given two extensions e and e′, we say that e dominates e′, if all points in
P to the left of e are also to the left of e′. Using the algorithm of Chin and
Ntafos [6] in conjunction with Chazelle’s triangulation algorithm [4], we can in
linear time compute the most dominant extensions that we call the essential
extensions. Assume that this computation gives us k essential extensions. An
essential extension ei is collinear to an edge with one reflex and one convex
vertex. Let vi denote the convex vertex. This gives us k convex vertices and
we choose one of them, say vk, as root in a shortest rectilinear path tree TR

to each of the other vertices vi, for 1 ≤ i < k, that can be computed in linear

Approximate Guarding of Monotone and Rectilinear Polygons 1371

time [10]. The shortest rectilinear path tree consists of paths that are shortest
in the L1-metric connecting vk to all the other vertices vi, for 1 ≤ i < k.

To each rectilinear path SPR(vi, vk) connecting vi with vk we define a vertical
and a horizontal histogram expansion. The horizontal histogram expansion HH

i

consists of those points in P that can be connected to the path SPR(vi, vk) with
vertical line segments contained in P. We define the vertical histogram expansion
HV

i in a similar manner. A histogram expansion can be computed in linear time
using an algorithm by Levcopoulos [20]. Each horizontal histogram expansion
consists of a number of x-monotone polygons with the property that no guard
in one monotone polygon can see anything in any of the others. Similarly a
vertical histogram expansion subdivides into y-monotone pieces with the same
property; see Figure 8.

v1

v2

v3

v7 v8

v6

v4

v5

HV
3HH

3

Fig. 8. Illustrating the algorithm

Lemma 5. If P can be guarded with OPT guards, then a histogram expansion
can also be guarded with at most OPT guards interior to the region.

Proof. Let p be a point that sees into a monotone piece R of a histogram ex-
pansion. Assume that R is x-monotone and that p lies in a region adjacent to
the lower boundary D of R. Let l be the line segment that separates R from
the piece containing p. Consider the intersection VP(p) ∩ R. The intersection
subdivides R into left pockets and right pockets. Traversing the boundary of
VP(p) clockwise starting at a point outside R will first reach the edges that are
incident to left pockets, then a boundary chain C of R, and finally the edges
that are incident to right pockets of R. Take any point q of C and let p′ be the
intersection of the line segment between p and q with l. Any point in R seen by
p will also be seen by p′, which proves the lemma. ��

We use the Guard-Monotone-Polygon algorithm of the previous section to
guard each monotone piece with at most 12m guards, where m is the smallest
guard cover for the monotone piece. From Lemma 5 we know that each histogram
expansion can be guarded with OPT guards interior to the histogram expansion,
and hence, our algorithm guards it with at most 12OPT guards.

Furthermore, one guard can see at most two of the vertices vi, for 1 ≤ i ≤ k,
hence, k/2 ≤ OPT . Since we construct a total of 2k horizontal and vertical
histogram expansions, the union

⋃k−1
i=1 HH

i ∪ HV
i can be guarded by at most

48OPT2 guards.

1372 B.J. Nilsson

U

D
p′

q
C

lp

VP(p)

R

Fig. 9. Illustrating the proof of Lemma 5

The set P \ (
⋃k−1

i=1 HH
i ∪HV

i) partitions into a number of connected regions.
These extra pieces; see Figure 10; are monotone with respect to both the x- and
the y-axis and we can guard each of them with one extra guard. An extra piece
is also adjacent to one horizontal and one vertical histogram expansion and each
monotone piece in a histogram expansion can be adjacent to at most two extra
pieces. Hence, to count the number of extra pieces, i.e., the number of additional
guards we place, we associate each extra piece with the horizontal or vertical
monotone piece of a histogram expansion that is closer to vk. Thus, the number
of guards placed to see all of P has at most doubled.

vk
vi

Fig. 10. Handling the extra pieces

We have proved the following theorem.

Theorem 2. There is a polynomial time algorithm that computes a guard cover
of size 96OPT2 in a rectilinear polygon P, where OPT is the size of the smallest
guard cover for P.

5 Conclusions

We have proved polynomial time algorithms for approximate interior guarding of
monotone and rectilinear polygons. Our contribution is that the approximation
factors for both algorithms is independent of the size of the polygon. Interesting
open problems are to improve the approximation bounds for monotone and rec-
tilinear polygons, to find approximation algorithms for other classes of polygons,
and ultimately approximate guarding of the general class of simple polygons.

Approximate Guarding of Monotone and Rectilinear Polygons 1373

References

1. A. Aggarwal. The Art Gallery Theorem: Its Variations, Applications and Algo-
rithmic Aspects. PhD thesis, Johns Hopkins University, 1984.

2. B. Ben-Moshe, M.J. Katz, J.S.B. Mitchell. A Constant-Factor Approxima-
tion Algorithm for Optimal Terrain Guarding. In Proc. 16th ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA’05, 2005.

3. B. Brodén, M. Hammar, B.J. Nilsson. Guarding Lines and 2-Link Polygons
is APX-hard. In Proc. 13th Canadian Conference on Computational Geometry,
CCCG’01, pages 45–48, 2001.

4. B. Chazelle. Triangulating a Simple Polygon in Linear Time. In Proc. 31st
Symposium on Foundations of Computer Science, pages 220–230, 1990.

5. D.Z. Chen, V. Estivill-Castro, J. Urrutia. Optimal Guarding of Polygons
and Monotone Chains. In Proc. 7th Canadian Conference on Computational Ge-
ometry, CCCG’95, pages 133–138, 1995.

6. W. Chin, S. Ntafos. Optimum Watchman Routes. Information Processing Let-
ters, 28:39–44, 1988.

7. V. Chvátal. A Combinatorial Theorem in Plane Geometry. Journal of Combi-
natorial Theory B, 13(6):395–398, 1975.

8. K.L. Clarkson, K. Varadarajan. Improved Approximation Algorithms for Geo-
metric Set Cover. In Proc. 21st ACM Symposium on Computational Geometry, 2005.

9. J.C. Culberson, R.A. Reckhow. Covering Polygons is Hard. In Proc. 29th
Symposium on Foundations of Computer Science, pages 601–611, 1988.

10. M. de Berg. On Rectilinear Link Distance. Computational Geometry: Theory
and Applications, 1(1):13–34, 1991.

11. A. Efrat, S. Har-Peled. Locating Guards in Art Galleries. In Proc. 2nd IFIP
International Conference on Theoretical Computer Science, 2002.

12. S. Eidenbenz. Inapproximability Results for Guarding Polygons without Holes.
In Proc. 9th Annual International Symposium on Algorithms and Computation,
pages 427–436, 1998.

13. S. Eidenbenz. Inapproximability of Visibility Problems on Polygons and Terrains.
PhD thesis, ETH, Zurich, 2000.

14. S. Fisk. A Short Proof of Chvátal’s Watchman Theorem. Journal of Combinatorial
Theory B, 24:374, 1978.

15. S.K. Ghosh. Approximation Algorithms for Art Gallery Problems. In Proceedings
of the Canadian Information Processing Society Congress, 1987.

16. F. Hoffmann, M. Kaufmann, K. Kriegel. The Art Gallery Theorem for Poly-
gons with Holes. In Proc. 32nd IEEE Symposium on the Foundations of Computer
Science, pages 39–48, 1991.

17. B. Joe, R.B. Simpson. Correction to Lee’s Visibility Polygon Algorithm. BIT,
27:458–473, 1987.

18. D.T. Lee. Visibility of a Simple Polygon. Computer Vision, Graphics, and Image
Processing, 22:207–221, 1983.

19. D.T. Lee, A.K. Lin. Computational Complexity of Art Gallery Problems.
IEEE Transactions on Information Theory, IT-32:276–282, 1986.

20. C. Levcopoulos. Heuristics for Minimum Decompositions of Polygons. PhD
thesis, University of Linköping, Linköping, Sweden, 1987.

21. B.J. Nilsson. Guarding Art Galleries — Methods for Mobile Guards. PhD thesis,
Lund University, 1995.

22. J. O’Rourke. Art Gallery Theorems and Algorithms. Oxford University Press,
1987.

Linear Time Algorithms for Clustering Problems
in Any Dimensions

Amit Kumar1, Yogish Sabharwal2, and Sandeep Sen3

1 Dept of Comp Sc & Engg, Indian Institute of Technology,
New Delhi-110016, India
amitk@cse.iitd.ernet.in

2 IBM India Research Lab, Block-I, IIT Delhi, Hauz Khas,
New Delhi-110016, India
ysabharwal@in.ibm.com

3 Dept of Comp Sc & Engg, Indian Institute of Technology,
Kharagpur, India

ssen@cse.iitkgp.ernet.in

Abstract. We generalize the k-means algorithm presented by the au-
thors [14] and show that the resulting algorithm can solve a larger class
of clustering problems that satisfy certain properties (existence of a ran-
dom sampling procedure and tightness). We prove these properties for
the k-median and the discrete k-means clustering problems, resulting in

O(2(k/ε)O(1)
dn) time (1 + ε)-approximation algorithms for these prob-

lems. These are the first algorithms for these problems linear in the size
of the input (nd for n points in d dimensions), independent of dimensions
in the exponent, assuming k and ε to be fixed. A key ingredient of the
k-median result is a (1 + ε)-approximation algorithm for the 1-median

problem which has running time O(2(1/ε)O(1)
d). The previous best known

algorithm for this problem had linear running time.

1 Introduction

The problem of clustering a group of data items into similar groups is one of the
most widely studied problems in computer science. Clustering has applications
in a variety of areas, for example, data mining, information retrieval, image
processing, and web search ([5, 7, 16, 9]). Given the wide range of applications,
many different definitions of clustering exist in the literature ([8, 4]). Most of
these definitions begin by defining a notion of distance (similarity) between two
data items and then try to form clusters so that data items with small distance
between them get clustered together.

Often, clustering problems arise in a geometric setting, i.e., the data items
are points in a high dimensional Euclidean space. In such settings, it is natural
to define the distance between two points as the Euclidean distance between
them. Two of the most popular definitions of clustering are the k-means clus-
tering problem and the k-median clustering problem. Given a set of points P ,

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 1374–1385, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Linear Time Algorithms for Clustering Problems in Any Dimensions 1375

the k-means clustering problems seeks to find a set K of k centers, such that∑
p∈P d(p,K)2 is minimized, whereas the k-median clustering problems seeks to

find a set K of k centers, such that
∑

p∈P d(p,K) is minimized. Note that the
points in K can be arbitrary points in the Euclidean space. Here d(p,K) refers
to the distance between p and the closest center in K. We can think of this as
each point in P gets assigned to the closest center. The points that get assigned
to the same center form a cluster. These problems are NP-hard for even k = 2
(when dimension is not fixed). Interestingly, the center in the optimal solution to
the 1-mean problem is the same as the center of mass of the points. Howvever,
in the case of the 1-median problem, also known as the Fermat-Weber problem,
no such closed form is known. We show that despite the lack of such a closed
form, we can obtain an approximation to the optimal 1-median in O(1) time
(independent of the number of points). There exist variations to these clustering
problems, for example, the discrete versions of these problems, where the centers
that we seek are constrained to lie on the input set of points.

1.1 Related Work

A lot of research has been devoted to solving these problems exactly (see [11] and
the references therein). Even the best known algorithms for the k-median and the
k-means problem take at least Ω(nd) time. Recently, some work has been devoted
to finding (1 + ε)-approximation algorithm for these problems, where ε can be
an arbitrarily small constant. This has led to algorithms with much improved
running times. Further, if we look at the applications of these problems, they
often involve mapping subjective features to points in the Euclidean space. Since
there is an error inherent in this mapping, finding a (1+ε)-approximate solution
does not lead to a deterioration in the solution for the actual application.

The following table summarizes the recent results for the problems, in the
context of (1 + ε)-approximation algorithms. Some of these algorithms are ran-
domized with the expected runing time holding good for any input.

Problem Result Reference

1-median O(n/ε2) Indyk [12]

k-median O(nO(1/ε)+1) for d = 2 Arora [1]

O(n + �kO(1)logO(1)n) (discrete also) Har-Peled et al. [10]

where � = exp[O((1 + log1/ε)/ε)d−1]

O(2(k/ε)O(1)
dO(1)nlogO(k)n) Badoiu et al. [3]

discrete k-median O(�nlognlogk) Kolliopoulos et al. [13]

k-means O(n/εd) for k = 2 Inaba et al. [11]

O(nε−2k2dlogkn) Matousek [15]

O(g(k, ε)nlogkn) de la Vega et al. [6]
g(k, ε) = exp[(k3/ε8)(ln(k/ε)lnk]

O(n + kk+2ε−(2d+1)klogk+1nlogk 1
ε
) Har-Peled et al. [10]

O(2(k/ε)O(1)
dn) Kumar et al. [14]

1376 A. Kumar, Y. Sabharwal, and S. Sen

1.2 Our Contributions

In this paper, we generalize the algorithm of authors [14] to a wide range of clus-
tering problems. We define a general class of clustering problems and show that
if certain conditions are satsified, we can get linear time (1 + ε)-approximation
algorithms for these problems. We then use our general framework to get the
following results. Given a set of n points P in >d, we present

1. a randomized algorithm that generates a candidate center set of size
O(21/εO(1)

), such that at least one of the points in this set is a (1 + ε)-
approximate 1-median of P with constant probability. The running time of
the algorithm is O(21/εO(1)

d), assuming that the points are stored in a suit-
able data structure such that a point can be randomly sampled in constant
time. This improves on the algorithm of Badoiu et al. [3] which generates a
candidate center set of size O(21/ε4

log n) in time O(d21/ε4
log n).

2. a randomized (1 + ε)-approximation algorithm for the 1-median problem
which runs in time O(21/εO(1)

d), assuming that the points are stored in
a suitable data structure such that a point can be randomly sampled in
constant time.

3. a randomized (1 + ε)-approximation algorithm for the k-median problem
which runs in O(2(k/ε)O(1)

nd) time.
4. a randomized (1+ε)-approximation algorithm for the discrete k-means clus-

tering which runs in O(2(k/ε)O(1)
nd) time.

All our algorithms yield the desired result with constant probability (which
can be made as close to 1 as we wish by a constant number of repetitions). As
mentioned earlier, we generalize the result of the authors in [14] to solve a larger
class of clustering problems satisfying a set of conditions (c.f. section 2). We then
show that the k-median problem and the discrete k-means problem fall in this
class of clustering problems. One important condition that the clustering prob-
lems must satisfy is that there should be an algorithm to generate a candidate
set of points of size independent of n, such that at least one of these points is
a close approximation to the optimal center when we desire only one cluster.
Armed with such a subroutine, we show how to approximate all the centers in
the optimal solution in an iterative manner.

It is easy to see that our algorithms for the k-median and the discrete k-
means problems have better running time than the previously known algorithms
for these problems, specially when d is very large. In fact, these are the first algo-
rithms for the k-median and the discrete k-means clustering that have running
time linear in the size of the input for fixed k and ε.

For the 1-median problem, the candidate center set generation and the actual
approximation algorithm have better running time than all previously known
algorithms. The algorithms in this paper have the additional advantage of sim-
plicity inherited from generalizing the approach of Kumar et al. [14].

The remaining paper is organized as follows. In Section 2, we describe a
general approach for solving clustering problems efficiently. In the subsequent

Linear Time Algorithms for Clustering Problems in Any Dimensions 1377

sections we give applications of the general method by showing that this class of
problems includes the k-median, the k-means and the discrete k-means problems.
In section 4.3, we also describe an efficient approximation algorithm for the 1-
median problem.

2 Clustering Problems

In this section, we give a general definition of clustering problems. Our algorithms
will work on any of these problems provided certain conditions are satisfied. We
will state these conditions later in the section.

We shall define a clustering problem by two parameters – an integer k and
a real-valued cost function f(Q, x), where Q is a set of points, and x is a point
in an Euclidean space. We shall denote this clustering problem as C(f, k). The
input to C(f, k) is a set of points in a Euclidean space.

Given an instance P of n points, C(f, k) seeks to partition them into k sets,
which we shall denote as clusters. Let these clusters be C1, . . . ,Ck. A solution
also finds k points, which we call centers, c1, . . . , ck. We shall say that ci is the
center of cluster Ci (or the points in Ci are assigned to ci). The objective of the
problem is to minimize the quantity

∑k
i=1 f(Ci, ci).

This is a fairly general definition. Let us see some important special cases.

– k-median : f(Q, x) =
∑

q∈Q d(q, x).
– k-means : f(Q, x) =

∑
q∈Q d(q, x)2.

We can also encompass the discrete versions of these problems, i.e., cases
where the centers have to be one of the points in P . In such problems, we can
make f(Q, x) unbounded if x /∈ Q.

As stated earlier, we shall assume that we are given a constant ε > 0, and we
are interested in finding (1 + ε)-approximation algorithms for these clustering
problems.

We now state the conditions the clustering problems should satisfy. We begin
with some definitions first. Let us fix a clustering problem C(f, k). Although we
should parameterize all our definitions by f , we avoid this because the clustering
problem will be clear from the context.

Definition 1. Given a point set P , let OPTk(P) be the cost of the optimal solu-
tion to the clustering problem C(f, k) on input P .

Definition 2. Given a constant α, we say that a point set P is (k, α)-irreducible
if OPTk−1(P) ≥ (1+150α)OPTk(P). Otherwise we say that the point set is (k, α)-
reducible.

Reducibility captures the fact that if P is (k, α)-reducible for a small constant
α, then the optimal solution for C(f, k − 1) on P is close to that for C(f, k) on
P . So if we are solving the latter problem, it is enough to solve the former one.
In fact, when solving the problem C(f, k) on the point set P , we can assume

1378 A. Kumar, Y. Sabharwal, and S. Sen

that P is (k, α)-irreducible, where α = ε/1200k. Indeed, suppose this is not
the case. Let i be the highest integer such that P is (i, α)-irreducible. Then,
OPTk(P) ≤ (1 + 150kα)k−iOPTi(P) ≤ (1 + ε/4)OPTi(P). Therefore, if we can
get a (1 + ε/4)-approximation algorithm for C(f, i) on input P , then we have
a (1 + ε)-approximation algorithm for C(f, k) on P . Thus it is enough to solve
instances which are irreducible.

The first property that we want C(f, k) to satisfy is a fairly obvious one – it
is always better to assign a point in P to the nearest center. We state this more
formally as follows :

Closeness Property : Let Q and Q′ be two disjoint set of points, and let
q ∈ Q. Suppose x and x′ are two points such that d(q, x) > d(q, x′). Then
the cost function f satisfies the following property

f(Q, x) + f(Q′, x′) ≥ f(Q− {q}, x) + f(Q′ ∪ {q}, x′).
This is essentially saying that in order to find a solution, it is enough to find

the set of k centers. Once we have found the centers, the actual partitioning of
P is just the Voronoi partitioning with respect to these centers. It is easy to see
that the k-means problem and the k-median problem (both the continuous and
the discrete versions) satisfy this property.

Definition 3. Given a set of points P and a set of k points C, let OPTk(P,C)
be the cost of the optimal solution to C(f, k) on P when the set of centers is C.

We desire two more properties from C(f, k). The first property says that if we
are solving C(f, 1), then there should be a simple random sampling algorithm.
The second property says that suppose we have approximated the first i centers
of the optimal solution closely. Then we should be able to easily extract a large
number of points in P which get assigned to these centers. We describe these
properties in more detail below :

– Random Sampling Procedure : There exists a procedure A that takes a
set of points Q ∈ >d and a parameter α as input. A first randomly samples
a set R of size

(
1
α

)O(1) points from Q. Starting from R, A produces a set

of points, which we call core(R), of size at most 2(1
α)O(1)

. A satisfies the
condition that with constant probability there is at least one point c ∈
core(R) such that OPT1(Q, {c}) ≤ (1 + α)OPT1(Q). Further the time taken

by A to produce core(R) from R is at most O(2(1
α)O(1)

· dn).

– Tightness Property : Let P be a set of points which is (k, α)-irreducible
for some constant α. Consider an optimal solution to C(f, k) on P – let
C = {c1, . . . , ck} be the centers in this solution. Suppose we have a set
of i points C ′i = {c′1, . . . , c′i}, such that OPTk(P,C ′) ≤ (1 + α/k)iOPTk(P),
where C ′ = {c′1, . . . , c′i, ci+1, . . . , ck}. Let P ′1, . . . ,P

′
k be the partitioning of

P if we choose C ′ as the set of centers (in other words this is the Voronoi
partitioning of P with respect to C ′). We assume w.l.o.g. that P ′i+1 is the
largest cluster amongst P ′i+1, . . . ,P

′
k. Then there exists a set of points S such

that the following conditions hold :

Linear Time Algorithms for Clustering Problems in Any Dimensions 1379

(a) S is contained in P ′1 ∪ . . . ∪ P ′i .
(b) Let x ∈ S, x′ ∈ P − S. Then, d(x, {c′1, . . . , c′i}) ≤ d(x′, {c′1, . . . , c′i}).
(c) P − S contains at most |P ′

i+1|
αO(1) points of P ′1 ∪ . . . ∪ P ′i .

3 A General Algorithm for Clustering

We can show that if a clustering problem C(f, k) satisfies the conditions stated in
the previous section, then there is an algorithm which with constant probability
produces a solution within (1+ε) factor of the optimal cost. Further the running

time of this algorithm is O(2(k
ε)O(1)

· dn). The techniques are very similar those
in [14] and are omitted. We now give applications to various clustering problems.
We show that these clustering problems satisfy the tightness property and admit
a random sampling procedure as described in the previous section.

4 The k-Median Problem

As described earlier, the clustering problem C(f, k) is said to be the k-median
problem if f(Q, x) =

∑
q∈Q d(q, x). We now exhibit the two properties for this

problem.

4.1 Random Sampling Procedure

Badoiu et al. [3] showed that a small random sample can be a used to get a
close approximation to the optimal 1-median solution. Given a set of points P ,
let AvgMed(P) denote OPT1(P)

|P | , i.e., the average cost paid by a point towards the
optimal 1-median solution.

Lemma 1. [3] Let P be a set of points in >d, and ε be a constant between
0 and 1. Let X be a random sample of O(1/ε3log1/ε) points from P . Then
with constant probability, the following two events happen: (i) The flat span(X)
contains a point x such that OPT1(P, {x}) ≤ (1+ ε)OPT1(P). and (ii) X contains
a point y at distance at most 2AvgMed(P) from x.

We now show that if we can upper and lower bound AvgMed(P) upto constant
factors, then we can construct a small set of points such that at least one of these
is a good approximation to the optimal center for the 1-median problem on P .

Lemma 2. Let P be a set of points in >d and X be a random sample of size
O(1/ε3log1/ε) from P . Suppose we happen to know numbers a and b such that
a ≤ AvgMed(P) ≤ b. Then, we can construct a set Y of O(2(1/ε)O(1)

log(b/εa))
points such that with constant probability there is at least one point z ∈ X ∪ Y
satisfying OPT1(P, {z}) ≤ (1 + 2ε)OPT1(P). Further, the time taken to construct
Y from X is O(2(1/ε)O(1)

d).

1380 A. Kumar, Y. Sabharwal, and S. Sen

Proof. Our construction is similar to that of Badoiu et al. [3]. We can assume
that the result stated in Lemma 1 holds (because this happens with constant
probability). Let x and y be as in Lemma 1.

We will carefully construct candidate points around the points of X in span(X)
in an effort to get within close distance of x.

For each point p ∈ X, and each integer i in the range [�log ε
4a�,
logb�] we

do the following – let t = 2i. Consider the grid Gp(t) of side length εt/(4|X|) =
O(tε4log(1/ε)) in span(X) centered at p. We add all the vertices of this grid
lying within distance at most 2t from p to our candidate set Y . This completes
the construction of Y . It is easy to see that the time taken to construct Y from
X is O(2(1/ε)O(1)

d).
We now show the existence of the desired point z ∈ X ∪ Y . Consider the

following cases:

1. d(y, x)≤εAvgMed(P) : Using triangle inequality, we see that

f(P, y) ≤ f(P, x) + |P |d(y, x) ≤ (1 + 2ε)OPT1(P).

Therefore y itself is the required point.
2. d(y, x) > εAvgMed(P) : Consider the value of i such that 2i−1≤AvgMed(P, 1)
≤2i – while constructing Y , we must have considered this value of i for all
points in X. Let t = 2i. Clearly, t/2≤AvgMed(P)≤t.
Observe that d(y, x)≤2AvgMed(P)≤2t. Therefore, by the manner in which
we have constructed Gy(t), there must be a point p ∈ Gy(t) fow which
d(p, x) ≤ εt/2 ≤ εAvgMed(P). This implies that

f(P, p) ≤ f(P, x) + |P |d(x, p) ≤ (1 + 2ε)OPT1(P).

Therefore p is the required point.

This completes the proof of the lemma.

We now show the existence of the random sampling procedure.

Theorem 1. Let P be a set of n points in >d, and let ε be a constant, 0 < ε <
1/12. There exists an algorithm which randomly samples a set R of O((1

ε)O(1))
points from P . Using this sample only, it constructs a set of points core(R) such
that with constant probability there is a point x ∈ core(R) satisfying f(P, x) ≤
(1 + O(ε))OPT1(P). Further, the time taken to construct core(R) from R is
O(2(1/ε)O(1)

d).

Proof. Consider the optimal 1-median solution for P – let c be the center in this
solution. Let T denote AvgMed(P). Consider the ball B1 of radius T/ε2 around c.
Let P ′ be the points of P contained in B1. It is easy to see that |P ′| ≥ (1−ε2)n.

Sample a point p at random from P . With constant probability, it lies in P ′.
Randomly sample a set Q of 1/ε points from P . Again, with constant probability,
these points lie in P ′. So we assume that these two events happen. Let v =∑

q∈Q d(q, p). We want to show that v is actually close to AvgMed(P).
Let B2 denote the ball of radius εT centered at p. One of the following two

cases must happen :

Linear Time Algorithms for Clustering Problems in Any Dimensions 1381

– There are at least 2ε|P ′| points of P ′ outside B2 : In this case, with constant
probability, the sample Q contains a point outside B2. Therefore, v ≥ εT .
Also notice that any two points in B1 are at distance at most 2T/ε2 from
each other. So, v ≤ 2T |Q|/ε2. We choose a = vε2

2|Q| and b = v/ε. Notice that
b/a is O(1/εO(1)). We can now use the Lemma 2 to construct the desired
core set.

– There are at most 2ε|P ′| points of P ′ outside B2 : Suppose d(p, c) ≤ 4εT .
In this case f(P, p) ≤ (1 + O(ε))OPT1(P) and we are done. So assume this
is not the case. Note that the number of points outside B2 is at most |P −
P ′| + 2ε|P ′| ≤ ε2n + 2ε(1 − ε2)n ≤ 3εn. Now suppose we assign all points
of P from c to p. Let us see the change in cost. The distance the points in
B2 have to travel decreases by at least d(c, p) − 2εT . The increase in the
distance for points outside B2 is at most d(c, p). So the overall decrease in
cost is at least

|B2|(d(c, p)− 2εT)− (n− |B2|)d(c, p) > 0

if we use |B2| ≥ n(1 − 3ε) and d(c, p) ≥ 4εT . This yields a contradiction
because c is the optimal center. Thus we are done in this case as well.

4.2 Tightness Property

We now show the existence of tightness property. We will use the same notation
as used while defining the tightness property in Section 2. We need to show the
existence of the desired set S.

Consider the closest pair of centers between the sets C ′\C ′i and C ′i – let these
centers be cl and c′r respectively. Let t = d(cl, c′r). Let S be the set of points
B(c′1, t/4) ∪ · · · ∪ B(c′i, t/4), i.e., the points which are distant at most t/4 from
C ′i = {c′1, . . . , c′i}.

Clearly, S is contained in P ′1 ∪ · · · ∪ P ′i . This shows (a). Also, for any x ∈
S, x′ ∈ P − S, d(x, {c′1, . . . , c′i}) ≤ d(x′, {c′1, . . . , c′i}). This proves (b).

Suppose P − S contains more than |Pl|/α points of P ′1 ∪ · · · ∪ P ′i . In that
case, these points are assigned to centers at distance at least t/4. It follows that
OPTk(P,C ′) is at least t|Pl|

4α . This implies that t|Pl| ≤ 4αOPTk(P,C ′). But then if
we assign all the points in Pl to c′r, the cost increases by at most

|Pl|t ≤ 4αOPTk(P, C′) ≤ 4α(1 + α/k)i
OPTk(P) ≤ 4α(1 + α/k)k

OPTk(P) ≤ 12αOPTk(P).

But this contradicts the fact that P is (k, α)-irreducible.

4.3 Applications to the 1-Median Problem

In this section, we present an algorithm for the 1-median problem. Given a set
of n points in >d, the algorithm with constant probability produces a solution
of cost at most (1 + ε) of the optimal cost for any constant ε > 0. The running
time of the algorithm is O(21/εO(1)

d), assuming that it is possible to randomly
sample a point in constant time.

Our algorithm is based on the following idea presented by Indyk [12].

1382 A. Kumar, Y. Sabharwal, and S. Sen

Lemma 3. [12] Let X be a set of n points in >d. For a point a ∈ >d and
a subset Q ⊆ X, define SQ(a) =

∑
x∈Q d(a, x) and S(a) = SX(a). Let ε be a

constant, 0 ≤ ε ≤ 1. Suppose a and b are two points such that S(b) > (1+ε)S(a).
Then,

P r

⎛⎝∑
x∈Q

d(a, x)≥
∑
x∈Q

d(b, x)

⎞⎠ < e−ε2|Q|/64.

We now show the existence of a fast algorithm for approximating the optimal
1-median solution.

Theorem 2. Let P be a set of n points in >d, and let ε be a constant, 0 < ε < 1.
There exists an algorithm which randomly samples a set R of O((1

ε)O(1)) points
from P . Using this sample only, it finds a point p such that f(P, x) ≤ (1 +
O(ε))OPT1(P) with constant probability (independent of ε). The time taken by
the algorithm to find such a point p from R is O(2(1/ε)O(1)

d).

Proof. We first randomly sample a set R1 of O((1
ε)O(1)) points from P and

using Theorem 1, construct a set core(R1) of O(2(1/ε)O(1)
) points such that

with constant probability, there is a point x ∈ core(R1) satisfying f(P, x) ≤
(1 + O(ε))OPT1(P).

Now we randomly sample a set R2 of O((1/ε)O(1)) points and find the point
p ∈ core(R1) for which SR2(p) = f(R2, p) is minimum. By Lemma 3, p is with
constant probability a (1 + O(ε))-approximate median of P .

Clearly, the time taken by the algorithm is O(2(1/ε)O(1)
d).

Also note that we can boost the success probability to an arbitrarily small
constant by selecting a large enough (yet constant) sample R.

5 k-Means Clustering

In this problem, f(Q, x) =
∑

q∈Q d(q, x)2. The two properties for the k-means
problem were shown by the authors in [14]. For a set of points T , let c(T) denote
their centroid. The random sampling property follows from the following fact
showed by Inaba et al. [11].

Lemma 4. [11] Let T be a set of m points obtained by independently sampling
m points uniformly at random from a point set P . Then, for any δ > 0,

f(S, c(T)) <

(
1 +

1
δm

)
OPT1(P)

holds with probability at least 1− δ.

The proof of tightness property is similar to that for the k-median problem.

Linear Time Algorithms for Clustering Problems in Any Dimensions 1383

6 Discrete k-Means Clustering

This is same as k-means problem with the extra constraint that the centers must
be from the input point set only. We now show the two properties here.

6.1 Random Sampling Procedure

We first show that given a good approximation to the center of the optimal
(continuous) 1-means problem, we can get a good approximation to the center
of the optimal discrete 1-means problem. Let us have some notation first. Let
P be a set of n points in >d. Let c be the center of the optimal solution to the
(continuous) 1-means problem on P .

Lemma 5. Let α be a constant, 0 < α < 1, and c′ be a point in >d such that∑
p∈P d(p, c′)2 ≤ (1 + α)

∑
p∈P d(p, c)2. Let x′ be the point of P closest to c′

Then OPT1(P, {x′})≤(1 + O(
√

α))OPT1(P).

Proof. Let x be the center of the optimal discrete 1-means solution, i.e., OPT1

(P, {x}) = OPT1(P). Let T be the average cost paid by the points of P in the

optimal 1-means solution, i.e., T =
∑

p∈P d(p,c)2

|P | .
Then OPT1(P) = |P |(T + d(c, x)2) and OPT1(P, {x′}) = |P |(T + d(c, x′)2).

From the definition of c′, we know that d(c, c′)2≤αT . Notice that

d(c, x′)≤d(c, c′) + d(c′, x′)≤d(c, c′) + d(c′, x)≤2d(c, c′) + d(c, x).

We know that f(P, x) = |P |(T + d(c, x)2) and f(P, x′) = |P |(T + d(c, x′)2). So

f(P, x′)− f(P, x) = |P |(d(c, x′)2 − d(c, x)2) ≤ |P |
(
(2d(c, c′) + d(c, x))2 − d(c, x)2)

)
≤ 4|P |

(
d(c, c)2 + d(c, c′)d(c, x)

)
≤ 4|P |

(
αT +

√
αTd(c, x)

)
≤ 4|P |

(
αT +

√
α(T + d(c, x)2)

)
≤ O(

√
α)OPT1(P).

We now show the existence of the random sampling procedure.

Theorem 3. Let α be a constant, 0 < α < 1. There exists an algorithm which
randomly samples a set R of O

(
1
α

)
points from P . Using this sample, it finds a

singleton set core(R) such that with constant probability the point x ∈ core(R)
satisfies f(P, x) ≤ (1 + O(

√
α))OPT1(P). Further, the time taken to construct

core(R) from R is O((1
α + n)d).

Proof. Using Lemma 4, we can get a point c′ such that
∑

p∈P d(p, c′)2 ≤ (1 +
α)
∑

p∈P d(p, c)2. As mentioned in the lemma, we do this by by taking the cen-
troid of a random sample of O(1/α) points of P . This takes time O(1

α · d).
The rest follows from the previous lemma.

6.2 Tightness Property

We now show the existence of tightness property. We will use the same notation
as used while defining the tightness property in Section 2. We need to show the
existence of the desired set S.

1384 A. Kumar, Y. Sabharwal, and S. Sen

Consider the closest pair of centers between the sets {c′1, . . . , c′i} and
{ci+1, . . . , ck} – let these centers be c′r and cl respectively. Let t = d(cl, c′r).
Let S be the set of points B(c′1, t/4) ∪ · · · ∪ B(c′i, t/4), i.e., the points which are
distant at most t/4 from C ′i = {c′1, . . . , c′i}.

Clearly, S is contained in P ′1 ∪ · · · ∪ P ′i . This shows (a). Also, for any x ∈
S, x′ ∈ P − S, d(x, {c′1, . . . , c′i}) ≤ d(x′, {c′1, . . . , c′i}). This proves (b).

Suppose P − S contains more than |Pl|/α2 points of P ′1 ∪ · · · ∪ P ′i . In that
case, these points are assigned to centers at distance at least t/4. It follows that
OPTk(P,C ′) is at least t2|Pl|

16α2 . This implies that t2|Pl| ≤ 16α2OPTk(P,C ′).
Let ml and m′

r be the centers of the optimal (continuous) 1-means solution of
Pl and P ′r respectively. Let Tl and T ′r be the average cost paid by Pl and P ′r in this

optimal solution respectively, i.e., Tl =
∑

p∈Pl
d(p,ml)

2

|Pl| and T ′r =
∑

p∈P ′
r

d(p,m′
r)2

|P ′
r|

.
Observe that f(Pl, cl) = |Pl|(Tl+d(cl,ml)2) and f(Pl, c′r) = |Pl|(Tl+d(c′r,ml)2).
Therefore, if we assign the points in Pl from cl to c′r, the increase in cost is

|Pl|
(
d(c′r,ml)2 − d(cl,ml)2

)
≤ |Pl|

(
(d(c′r, cl) + d(cl,ml))2 − d(cl,ml)2

)
≤ |Pl|

(
t2 + 2td(cl,ml)

)
We know that the first term above, i.e., |Pl|t2 is at most 16α2OPTk(P,C ′).

We now need to bound the second term only. We consider two cases

– t ≤ αd(cl, cm) : In this case, |Pl|·2td(cl,ml) ≤ 2αd(cl,ml)2|Pl| ≤ 2αf(Pl, cl) ≤
2αOPTk(P,C ′).

– t > αd(cl, cm) : In this case, |Pl| · 2td(cl,ml) ≤ 2t2|Pl|
α ≤ 32αOPTk(P,C ′).

Thus, in either case, the cost increases by at most

48αOPTk(P,C ′) ≤ 48α(1+α/k)iOPTk(P) ≤ 48α(1+α/k)kOPTk(P) ≤ 144αOPTk(P).

But this contradicts the fact that P is (k, α)-irreducible.

7 Concluding Remarks

The framework in this paper can be extended to handle the situation when
each of the points has an associated (integral) weight. The solution to the above
clustering problems for the weighted version is the same as the solution to the
unweighted version where a point p with weight w is replaced by w points of
unit weight. It can be verified that for handling the weighted case: the closeness
property remains unchanged; in condition (c) for the tightness property, the size
of the set gets replaced by the weight of the set; The random sampling procedure
requires time at most linear in n (number of remaining distinct points) in order
to perform the required weighted sampling.

The running time thus obtained for the algorithm in the weighted case is
O(2(k/ε)O(1)

n · dlogk W) where W is the sum of all the weights.

Linear Time Algorithms for Clustering Problems in Any Dimensions 1385

References

1. Arora, S.: Polynomial time approximation schemes for Euclidean TSP and other
geometric problems. Proceedings of the 37th Annual Symposium on Foundations
of Computer Science (1996) 2–11

2. Arora, S., Raghavan, P., Rao, S.: Approximation schemes for Euclidean k-medians
and related problems. Proceedings of the thirtieth annual ACM symposium on
Theory of computing (1998) 106–113

3. Badoiu, M., Har-Peled, S., Indyk, P.: Approximate clustering via core-sets. Pro-
ceedings of the thiry-fourth annual ACM symposium on Theory of computing
(2002) 250–257

4. Bern, M., Eppstein, D.: Approximation algorithms for geometric problems. Ap-
proximating algorithms for NP-Hard problems. PWS Publishing Company (1997)
296–345

5. Broder, A., Glassman, S., Manasse, M., Zweig, G.: Syntactic clustering of the Web.
Proc. of 6th International World Wide Web Conference (1997) 391–404

6. de la Vega, W. F., Karpinski, M., Kenyon, C., Rabani, Y.: Approximation schemes
for clustering problems. Proceedings of the thirty-fifth annual ACM symposium on
Theory of computing (2003) 50–58

7. Deerwester, S., Dumais, S. T., Landauer, T. K., Furnas, G. W., Harshman, R.
A.: Indexing by latent semantic analysis. Journal of the American Society for
Information Science 41(6) (1990) 391–407

8. Duda, R. O., Hart, P. E., Stork, D. G.: Pattern Classification. Wiley-Interscience,
New York, 2nd edition (2001)

9. Faloutsos, C., Barber, R., Flickner, M., Hafner, J., Niblack, W., Petkovic, D.,
Equitz, W.: Efficient and effective querying by image content. Journal of Intelligent
Information Systems 3(3) (1994) 231–262

10. Har-Peled, S., Mazumdar, S.: On coresets for k-means and k-median clustering.
Proceedings of the thirty-sixth annual ACM symposium on Theory of computing
(2004) 291–300

11. Inaba, M., Katoh, N., Imai, H.: Applications of weighted Voronoi diagrams and
randomization to variance-based k-clustering. Proceedings of the tenth annual sym-
posium on Computational Geometry (1994) 332–339

12. Indyk, P.: High Dimensional Computational Geometry. Ph.D. Thesis. Department
of Computer Science, Stanford University (2004)

13. Kolliopoulos, S., Rao, S.: A nearly linear time approximation scheme for the Eu-
clidean k-medians problem. Proceedings of the 7th European Symposium on Al-
gorithms (1999) 362-371

14. Kumar, A., Sabharwal, Y., Sen, S.: A simple linear time (1 + ε)-approximation
algorithm for k-means clustering in any dimensions. Proceedings of the 45th Annual
Symposium on Foundations of Computer Science (2004) 454–462

15. Matousek, J.: On approximate geometric k-clustering Discrete and Computational
Geometry 24 (2000) 61–84

16. Swain, M. J., Ballard, D. H.: Color indexing. International Journal of Computer
Vision (1991) 11–32

Dynamic Diffusion Load Balancing

Petra Berenbrink1, Tom Friedetzky2, and Russell Martin3,�

1 School of Computing Science, Simon Fraser University,
Burnaby, B.C., Canada

2 Department of Computer Science, University of Durham,
Durham, UK

3 Department of Computer Science, University of Warwick,
Coventry, UK

Abstract. We consider the problem of dynamic load balancing in ar-
bitrary (connected) networks on n nodes. Our load generation model is
such that during each round, n tasks are generated on arbitrary nodes,
and then (possibly after some balancing) one task is deleted from every
non-empty node. Notice that this model fully saturates the resources of
the network in the sense that we generate just as many new tasks per
round as the network is able to delete. We show that even in this situ-
ation the system is stable, in that the total load remains bounded (as a
function of n alone) over time. Our proof only requires that the underly-
ing “communication” graph be connected. (It of course also works if we
generate less than n new tasks per round, but the major contribution of
this paper is the fully saturated case.) We further show that the upper
bound we obtain is asymptotically tight (up to a moderate multiplicative
constant) by demonstrating a corresponding lower bound on the system
load for the particular example of a linear array (or path). We also show
some simple negative results (i.e., instability) for work-stealing based
diffusion-type algorithms in this setting.

1 Introduction

The use of parallel and distributed computing is established in many areas of
science, technology, and business. One of the most crucial parameters of parallel
machines is the efficient utilization of resources. Of greatest importance here is
an even distribution of the workload among the processors. In particular appli-
cations exposing some kind of “irregularity” require the use of a load balancing
mechanism.

A well known and much studied load balancing approach is the so-called
diffusion load balancing, first introduced by Cybenko and Boillat ([11], [10]).
The algorithm works in synchronized rounds. The basic idea is that in every

� A portion of this work was performed during a visit to the School of Computing
Science at Simon Fraser University. Supported in part by the EPSRC grant “Dis-
continuous Behaviour in the Complexity of Randomized Algorithms”.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 1386–1398, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Dynamic Diffusion Load Balancing 1387

round, every processor p balances load with all its neighbors (independently, i.e.,
pair-wise). Let
p be the load of p,
q the load of some of p’s neighbor q, and let
Δ denote the maximum degree of the underlying graph. In the discrete setting,
p transfers max{0, �(
p −
q)/(Δ + 1)�} tasks to q. Some of many advantages
of diffusion-type algorithms are the locality (no global knowledge regarding the
overall load situation, or, in fact, anything except the strict neighborhood of any
vertex is needed), its simplicity, and its neighborhood preservation (tasks tend
to stay close to the processors where they are generated, which may help to
maintain small communication overhead).

The diffusion load balancing algorithm has been thoroughly analyzed for
static scenarios, where each processor has some initial number of tasks, and
the objective is to distribute this load evenly among the processors as quickly as
possible. Much work has been done under the assumption that every edge is only
allowed to forward one task per round [16, 17, 19] or when a constant number
of tasks can be passed by each processor [15]. We refer to these scenarios as
token distribution problems. In addition [12, 13, 14] have studied the diffusion
algorithm where tasks can be split arbitrarily.

In contrast to the static case of load balancing and token distribution, in
the dynamic setting during each time step new tasks are generated (in some
manner) on the set of processors, load is balanced amongst neighbors, then
tasks are deleted from non-empty processors.

Much of the past work has studied the dynamic token distribution problem.
Muthukrishnan and Rajaraman [18] studied a dynamic version where processors
can forward a single task in each round. They assume an adversarial load gener-
ation model. The adversary is allowed to generate and to delete tokens from the
network in every round. The simple and elegant algorithm they consider is due
to [2]: A node sends a task to its neighbor if the load difference between them is
at least 2Δ+ 1. They show that the system is stable if the load change in every
subset S of the nodes minus a|S| is at most (1 − ε)e(S) for ε > 0. Here e(S) is
the number of outgoing edges of S and a is the change in the average load. Their
system is said to be stable if the deviation of the load of any processor from
the average load can be bounded. Muthukrishnan and Rajaraman left open the
question whether the system is also stable for ε = 0.

Anshelevich, Kempe, and Kleinberg [4] gave a positive result for token dis-
tribution when ε = 0. They showed that under the above load generation model
no processor has more than average load ±(2Δ+ 1) · n. Anshelevich, et al. also
showed how their result can be generalized for edges that can forward c tokens
per time step. A node sends min{c, ρ} tasks to its neighbor if the load difference
is at least 2Δc + ρ. In this setting no processor has more than average load
±(2Δ+ 1)c · n as long as the load change in every subset S of the nodes minus
a|S| is at most c · e(S). Additionally, they showed that a generalization of the
algorithm is stable for two distinct types of jobs, and they extended their results
to related flow problems.

In [6, 7] Awerbuch and Leighton use a variant of the token distribution model
under the assumption that tokens can be split into arbitrarily sized parts. They

1388 P. Berenbrink, T. Friedetzky, and R. Martin

use a “balancing” algorithm to approximate the multi-commodity flow problem
with capacitated edges. Their method is an iterative approach where flow is
queued at the vertices of the graph. In each step, the commodity which has
the largest excess is shipped from one vertex to another, and then new flow is
injected into the system. In this balancing process, edge capacities must always
be respected. These edge capacities are analogous to the restrictions on the
number of tasks that can be passed over any single edge in the token distribution
problems. Furthermore, their model does not actually allow full use of those edge
capacities, which is similar to the case in [18] where ε > 0 was required to ensure
stability. The work in [1] and [5] expands the results of Awerbuch and Leighton
for packet routing, but again in these cases only a constant number of tasks can
be moved across any edge in a single time step.

Clearly the condition that processors can forward only a single task (or a
constant number) per edge in each round significantly restricts the number and
distribution of tasks that can be generated on (or deleted from) processors in each
round and still obtain a stability result. Thus, in the results of [18] and [4] some
dependence on the quantity e(S) (or some measure of the “edge expansion”) is
to be expected.

Anagnostopoulos et al. [3] consider the setting where there are no restrictions
on the number of tasks balanced between processors in a time step, and they allow
a broad range of injection models. Their protocol is similar to that studied in [15]
for a static setting, but is not the typical diffusion load balancing procedure. In
their setting, in each step nodes are matched randomly with adjacent neighbors
and matched nodes equalize their load. Hence, every processor is only involved
in a single load balancing action. They show that the system is stable as long as
at most wnλ tasks (in expectation) are generated in a time interval of length w,
where λ < 1. Their proof method unfortunately cannot be generalized to the case
of full saturation when λ = 1, which is the main focus of this paper.

1.1 Our Results

In this paper we present the first analysis of the simple diffusion scheme for the
dynamic load balancing problem that allows full saturation of the resources. We
assume that n new tasks are generated per round and, after load balancing, every
non-empty processor deletes one task each round. (With small modifications our
proofs will carry through to the case when we generate at most n tasks per
round.) In contrast to [4] and [18], the newly generated tasks may be arbitrarily
distributed among the nodes of the network, regardless of any “edge expansion”
type of condition as in those models. For example, the tasks may always be
generated on the same processor, or all tasks may be generated on one processor
but the processor can change from round to round, or alternatively, the tasks
may be allocated at random each round. Note that, obviously, without load
balancing the total number of tasks in the system may grow unboundedly with
time (in the worst case, we generate n new tasks per step but delete only one).

We show that the system of processors is stable under the diffusion load
balancing scheme and the generation model described above. By stable, we mean

Dynamic Diffusion Load Balancing 1389

that the total load in the system does not grow with time. In particular, we
show that the total system load can be upper-bounded by O(Δn3), where Δ
denotes the maximum degree of the network. Furthermore, we present a simple,
asymptotically matching lower bound when the network is a path.

Our technique also captures a different scenario, similar to that in [4, 18],
where stability is defined in terms of deviation of any processor’s load from the
average. In this scenario we have two separate phases, the first where tasks are
generated on and/or deleted from nodes, and the second where tasks are then
balanced amongst nodes. Let L̄t(S) denote the total load of the nodes in the set
S after the task generation/deletion phase, and Lt(S) denote the total load of
S after the balancing step at time t. Assume that the generation/deletion phase
satisfies the following condition:

(L(S)t − L̄(S)t−1) ≤ (avg(t)− avg(t− 1)) · |S|+ ρ,

where avg(t) denotes the average system load in step t. Then the total load of
S can be bounded by |S| · avg(t) + 5Δnρ.

For both proofs of our results we use a potential function. Although the
potential function we use looks similar to the one used in [4], the proof technique
is very different. The proof method in [4] very much relies upon the restriction of
their generation/deletion model, where the number of tasks inserted into/deleted
from a set S is bounded by a function of e(S), the number of edges that join the
set S to its complement S̄. This, together with the bounded capacities on the
edges of the graph, allows for a direct analysis of how the loads of sets might
change in a single step of their process. The arbitrary distribution of tasks in
our generation model and the unrestricted capacity of the edges in our network
(i.e. unknown bounds on load transferred into a set S in a single step) does not
allow us to directly obtain similar results, so we need a different proof to show
stability under our model.

Another approach to show our results would be to demonstrate an upper
bound on the number of tasks that can be moved over a single edge during any
time step of our algorithm. If this is possible, the results in [4] could then be
used to prove stability under either model that we have described. However, the
authors of this paper feel that showing this result is not easier than the proof
method we used, especially in the second model where the number of tasks
inserted into the system at any time can be unbounded.

In the final part of our paper we discuss a different method of load balancing,
one which is commonly referred to as work stealing. In this framework, processors
that are empty after task generation will balance with processors that are not
empty, but no other balancing actions are permitted.

We show that for this work-stealing protocol there are graphs for which the
system cannot be stable for a significant class of generation parameters. These
results show that restricting balancing actions to empty processors is not suffi-
cient in general.

In contrast, Berenbrink, Friedetzky, and Goldberg [8] showed stability of a
work stealing algorithm under a load generation model that is similar to many

1390 P. Berenbrink, T. Friedetzky, and R. Martin

of those already mentioned. They consider a flexible distribution of n generators
among the nodes of the network, where each generator is allowed to generate
a task with probability strictly smaller than one. In this setting a very simple,
parameterized work-stealing algorithm achieves stability (in our sense) for a wide
range of parameters. The important point to note is that their model applies only
when the set of processors (and their communication linkages) forms a complete
graph, and their results only hold for the case where strictly less than n tasks
(in expectation) are generated during any time step.

Our model is defined in the next section, and the formal definition of the
diffusion approach to load balancing is given following that.

1.2 Our Model

Our parallel system is modeled by a connected graph G = (V,E). The nodes V
of the graph model our processors P = {P1, . . . ,Pn} , and the edges E model the
underlying communication structure. If two nodes are connected with each other,
this means that the processors modeled by the nodes can communicate directly.
For us, this means that they are allowed to exchange tasks. Nodes not connected
by an edge have to communicate via message passing. Furthermore, let Δ be the
maximum degree of the graph. We assume that each processor maintains a queue
in which yet-to-be-processed tasks are stored. One round looks as follows:
1. n generators are arbitrarily distributed over the processors, and each gener-

ator generates one task at the beginning of every time round. For 1 ≤ i ≤ n,
let kt

i = j if generator i is allocated to processor Pj in round t, and kt
i = 0

if the generator is not allocated to any processor in that round.
2. Every processor balances its load with some or all its neighbors in the net-

work (according to a well-defined scheme for doing this operation).
3. Every non-empty processor deletes one task.

Let
̂ti be the load of Pi directly after the load deletion phase in round t. A
system is called stable if the number of tasks L̂t(P) =

∑n
i=1
̂

t
i that are in the

system at the end of round t does not grow with time, i.e. the total load L̂t(P)
is bounded by a number that might depend on n, but not on the time t.

We will mainly focus on one load balancing method called the diffusion ap-
proach. Every processor is allowed to balance its load with all its neighbors. As
mentioned previously, we briefly consider a second approach in Section 4 where
only empty processors are allowed to take load from their non-empty neighbors.
We call this second method the work stealing approach.

Diffusion approach. We begin with a detailed description of the first approach,
an integral variant of the First Order Diffusion scheme. Let
̄ti be the load of
processor Pi directly before the load balancing phase, and
ti the load directly
after the load balancing phase. Let αt

i,j be the load that is to be sent from Pi to
Pj in round t for (i, j) ∈ E (αt

i,j = 0 otherwise). Then αi,j and
i are calculated
as follows:

Dynamic Diffusion Load Balancing 1391

αt
i,j := max

{
0,
⌊
(
̄ti −
̄tj)/2Δ

⌋}

ti :=
̄ti −

∑
(i,j)∈E

αt
i,j +

∑
(j,i)∈E

αt
j,i.

To compute
̂ti, the load of processor Pi after load deletion, it remains to sub-
tract one if
ti > 0, thus
̂ti := max{0,
ti − 1}. Note that the “standard” diffusion
approach divides
̄ti −
̄tj by Δ+ 1 instead of 2Δ. We need the 2Δ for our anal-
ysis.

Our main contributions are as follows. In Section 2, we prove Theorem 1,
which states that we can upper-bound the total system load by 3Δn3. This
generalizes the results of [4] to the case of unbounded edge capacities and, hence,
analyzes the standard diffusion approach. Theorem 8 in Section 3 provides an
asymptotically matching lower bound, showing that our upper bound is tight, up
to a multiplicative constant. In Section 4 we discuss the problem of combining
the diffusion-approach with the work-stealing approach and show that certain
assumptions necessarily lead to instability.

2 Analysis of the Dynamic Diffusion Algorithm

In this section we will show that the diffusion approach yields a stable system.
Moreover, we are able to upper bound the maximum load that will be in the
system by O(Δn3). Throughout, we assume that n ≥ 2 and Δ ≥ 2. Apart from
what has been defined above, we will also use notation like L̄t(S) =

∑
i:Pi∈S
̄

t
i

for a subset S ⊆ P, with similar definitions for Lt(S) and L̂t(S). Our main result
about the diffusion approach to load balancing is

Theorem 1. Let n ≥ 2 denote the number of processors in the system, and
an upper bound on the number of tasks that are generated during each time
round. Let Δ ≥ 2 denote the maximum degree of the graph G that specifies the
communication linkages in the network. Then, starting with an empty system,
for all t ≥ 1 we have L̂t(P) =

∑n
i=1
̂

t
i ≤ 3Δn3.

We will prove this theorem by first giving a series of preliminary results. The
proof of Theorem 1 uses a similar potential function as the one that was used
in [4] (though what follows is very different). This idea is to prove an invariant
that for all t ≥ 1, every subset S ⊆ P satisfies the following inequality:

L̂t(S) ≤
n∑

i=n−|S|+1

i · (4Δ) · n. (1)

Then, Inequality (1) will immediately imply Theorem 1 (by taking S = P). We
will often have occasion to refer to the right hand side of Inequality (1) for many
sets, so to make our proofs that follow easier to read, we define the following
function f : {1, . . . , n} → N in this way

f(k) =
n∑

i=n−k+1

i · (4Δ) · n. (2)

1392 P. Berenbrink, T. Friedetzky, and R. Martin

Definition 2. In what follows, we will refer to sets as being bad after load gen-
eration in round t, or after the load balancing phase of round t, etc., meaning
that the load of the set at that particular time violates Inequality (1). For exam-
ple, if we say that a set S is bad after load generation in round t, we mean that
L̄t(S) > f(|S|).

Conversely, we will also refer to a set as being good (after load generation,
or load balancing, etc.) if it satisfies Inequality (1) (at the time in question).

The first lemma states that if we consider any (non-empty) set S at the
end of round t, there must have existed a set S′ so that the load of S′ before
load balancing was at least as large as the load of S after load balancing, i.e.
L̄t(S′) ≥ Lt(S) ≥ L̂t(S). The fact that might not be obvious is that we can assert
that the two sets contain the same number of processors. This is the statement
of the following lemma.

Lemma 3. Let ∅ �= S ⊆ P denote an arbitrary subset of processors. There exists
a set |S′| such that

1. |S′| = |S|, and
2. L̄t(S′) ≥ Lt(S).

Proof. The claim is clear if S = P, since in this case we have Lt(P) ≥ L̂t(P) and
L̄t(P) = Lt(P). Taking S′ = P then satisfies the conclusions of the theorem.

So we suppose that S is not the entire set of processors. Then let Sin =
{v : v ∈ S and ∃w �∈ S with αt

wv > 0)}. In other words, Sin is the subset of
S consisting of processors that received tasks from outside of S during load
balancing.
Case 1: Sin = ∅. This case is essentially the same as when S = P. Since no
processors in S received load from outside of S, the elements of S can only
exchange load among themselves or send load to processors outside of S. Then
it is clear that L̄t(S) ≥ Lt(S), so taking S′ = S again satisfies the desired
conclusions.
Case 2: Sin �= ∅. Let R = {w : w �∈ S and ∃v ∈ Sin with αt

wv > 0}. In other
words, R is the set of nodes not in S that pushed tasks into S during load
balancing. The main idea of what follows is that we are going to swap some
elements of R for elements of Sin on a one-for-one basis to find the set S′ we
desire. More formally, let Lin =

∑
w∈R,v∈Sin

αt
wv denote the total flow from R

to S during load balancing. We aim to find sets R1 ⊆ R and S1 ⊆ Sin with
(i) |R1| = |S1|, and (ii) L̄t(R1) ≥ Lt(S1) + Lin + (flow from S1 to S\S1). Then
we will take S′ = S\S1 ∪ R1. Our choice of the set R1 guarantees that S′ will
satisfy L̄t(S′) ≥ Lt(S), since the elements of R1 account for all flow that enters S
during load balancing, plus all flow that passes from elements in S1 to elements
in S\S1 as well.

To do this, let E1 = {(w, v) : w ∈ R, v ∈ Sin, αt
vw > 0}. Consider an edge

e1 = (w1, v1) ∈ E0 where αt
e1 is largest. Then, from the definition of αt

wv, we
see that
̄tw1

≥ 2Δαt
w1v1

+
̄tv1
. The key observation is that by choosing the

largest edge, the expression
̄tw1
accounts for all possible load that v1 could

Dynamic Diffusion Load Balancing 1393

have received during load balancing, and all tasks that w1 pushes into the set
S too (and any tasks that v1 might happen to pass to other elements in S,
since this is counted in the term
̄tv1

). We set R1 := {w1} and S1 := {v1}, and
E2 = E1\ ({(w1, v

′) : v′ ∈ Sin} ∪ {(w′, v1) : w′ ∈ R}).
Then, we iteratively apply this argument, i.e., take a largest edge e2 =

(w2, v2) ∈ E2. (Note that w2 �= w1 and v2 �= v1.) The choice of largest edge
then allows us to swap w2 for v2, again accounting for all tasks that w2 pushes
into S during load balancing, all tasks that v2 receives, and any tasks that v2
passes to other elements in S. Then, we add w2 to R1, i.e. R1 := R1∪{w2}, add
v2 to S1, so S1 := S1 ∪ {v2}, and delete the appropriate set of edges from E1.
Thus, E2 = E1\ ({(w2, v

′) : v′ ∈ Sin} ∪ {(w′, v2) : w′ ∈ R}).
We continue to iterate this procedure, selecting an edge with largest αt

wv

value, and performing an exchange as before, until we finish step k with a set
Ek = ∅. It is possible that this procedure terminates at a step when R1 = R
or S1 = Sin (or both), or with one or both of R1,S1 being proper subsets of
their respective sets. In any case, we have constructed sets R1 and S1 (each with
k ≤ min{|Sin|, |R|} elements), so that by taking S′ = (S\S1) ∪ R1, this set S′

satisfies the two conditions of the theorem.

From the previous lemma, we see that we have proven an inequality about
the load of the sets of highest loaded processors, before and after load balancing
(which, of course, need not be equal to each other). Thus we can conclude the
following result:

Corollary 4. For i ∈ [n], let M̄ t
i denote a set of i largest loaded processors

before load balancing (in round t). Also let M t
i denote a corresponding set of i

largest loaded processors after load balancing. Then L̄t(M̄ t
i) ≥ Lt(M t

i).

We also conclude another result from Lemma 3.

Corollary 5. Fix i ∈ {1, . . . , n}. Suppose that every subset with i processors is
good after the load generation phase of round t. Then, after the load balancing
phase (and thus after the task deletion phase), every subset with i processors is
still good. (Of course, provided that M̄ t

i is good after load generation, we actually
get the same conclusion from Corollary 4.)

Our next result tells us that if a set is made bad by load generation, then the
load balancing and deletion phases are sufficient to make that set good again.
The proof is omitted due to space limitations.

Lemma 6. Suppose that at the end of round t, every set S ⊆ P satisfies (1).
Further, suppose that after the load generation phase in round t + 1, there is
some set S ⊆ P such that L̄t+1(S) > f(|S|). Then, at the end of round t + 1, S
again satisfies Inequality (1).

Lemma 6 tells us that if a set is made bad by the load generation phase, then
the load balancing and deletion phases are sufficient to make this set good. The
essential task that remains to be shown is that load balancing cannot, in some

1394 P. Berenbrink, T. Friedetzky, and R. Martin

way, change a good set into a bad one. Corollary 5 tells us half the story. We
need a little more to cover all possible sets. The proof of the following lemma is
omitted due to space limitations.

Lemma 7. Suppose that all sets are good at the end of round t, but that after
load generation in round t + 1, there exists a bad set S with |S| = i. Then after
load balancing and deletion, there exists no bad set with i processors.

Now we are prepared to prove our main result.

Proof. [Theorem 1] We prove this theorem by induction on t. Inequality (1)
holds when t = 1, for however we inject the first n tasks into the system, all
sets are good at the end of the first round. So assume that at the end of round
t, all sets are good. Fix i ∈ {1, . . . , n}. If all sets of i processors are good after
the load generation phase, then from Corollary 5 they are all good at the end of
round t + 1. If there is some bad set of i processors after load generation, then
Lemmas 6 and 7 show that all sets of size i are still good at the end of round
t+1. Finally, it is not possible that during load balancing a (good or bad) set of i
processors will lead to the creation of a bad set of j(�= i) processors. For suppose
there is some bad set of j(�= i) processors at the end of round t + 1. Lemma 3
tells us that there must exist a set of j processors that was bad before the load
balancing phase, but then Lemmas 6 and 7 again tell us that there is no bad set
of j processors at the end of round t+1, a contradiction to our assumption that
there was a bad set of j processors at the end of the round.

On the first glance it might look as if the our proof strategy is overly com-
plicated and that there is a much simpler proof. In the course of proving our
result, we show that there is a gap of 4nΔ tasks between a processor in the bad
set S and a processor outside of the bad set before balancing whenever S is bad
after balancing. Hence, at least n tasks were sent away from S in this step and
the invariant could not have been violated by S. But unfortunately it is possible
to create a different bad set of processors during load balancing (possibly with
a different number of processors), and we have to discount this case too. Hence,
we have to show that if we can find a bad set after load balancing, then there
was another bad set S′ before load balancing, which leads us to a contradiction
through our series of lemmas above.

3 A Matching Lower Bound

In this section we provide a simple example that asymptotically matches the
upper bound from Section 2. Consider the linear array G = (V,E) with V =
{P0, . . . ,Pn−1} and E = {(Pi,Pi+1)|0 ≤ i < n− 1}. Furthermore, suppose that
during every time step, n new tasks are generated on processor Pn−1.

Theorem 8 below implies that the preceding analysis of our algorithm is tight
up to a multiplicative constant, because the line graph has maximum degree
Δ = 2, and thus we have an upper bound of O(n3) on the system load. The
proof is omitted due to space constraints.

Dynamic Diffusion Load Balancing 1395

Theorem 8. The system described above on the linear array is stable with a
total steady-state system load of Θ(n3).

4 Some Instability Results for Work Stealing

In this section we will consider a variation of our load balancing process where
we may transfer tasks to empty processors only. This method is usually referred
to as work stealing. It is similar to the diffusion approach, only the computation
of the αt

i,j is different. The value of αt
i,j , the load that is sent from Pi to Pj , is

larger than zero iff Pj is empty (and Pi non-empty). A frequently used transfer
function is αt

i,j = �
̄t
i

Δ+1� and αt
i,j = 0 otherwise. Note that the result below

also hold when we divide by 2Δ instead of Δ + 1. We use the above definition
as worst case assumption. In [8] the authors showed that simple work stealing
yields a stable system. They assumed that there are at most (1− ε)n new tasks
generated per round, for some ε ∈ (0, 1]. The important point to note is that
in [8], the processor communication links correspond to a complete graph on n
vertices. Here we will see that the work stealing method can fail (in the sense
that the total load is unbounded over time) if the graph is no longer the complete
graph. We consider the line network, i.e., nodes P1, . . . ,Pn and edges between
nodes Pi and Pi+1 for 1 ≤ i ≤ n − 1. Hence, the maximum degree is 2. Due to
space limitations, we state the following observation without proof.

Observation 9. Assume we have n processors connected as a line and n gen-
erators are all on processor 1. Then the diffusion work stealing system is not
stable.

In a similar manner, under adversarial injection schemes, it is easy to show
that the work stealing protocol will not be stable for many classes of graphs,
even under a probabilistic injection pattern. For example, we can simply define
the process in a way such that the expected load of a processor increases between
two load balancing actions.

5 A Different Model for Task Generation/Deletion

In this section we define a load generation model similar to [18] and [4]. Rather
than bounding the total number of tasks that are generated per round, we bound
the load change in any subset of the processors. During each round, tasks can
be added or deleted from processors, subject to the restriction in Inequality (3)
below. The processors then balance load amongst themselves as before.

In the following,
̄ti (respectively, L̄t(S)) denotes the load of processor Pi

(resp. the total load of all processors in set the S) after we have generated and
deleted tasks, and
ti (resp. Lt(S)) is the load of processor Pi (resp. the total
load of all processors in the set S) immediately after the load balancing phase.
Let avg(t) be the average load of the processors in round t after load generation

1396 P. Berenbrink, T. Friedetzky, and R. Martin

and deletion, i.e. avg(t) = 1
n ·
∑n

i=1
̄
t
i. Again, Lt(P) denotes the total system

load at the end of step t. One round looks now as follows:

1. Tasks are generated and deleted according to the following generation re-
striction:

L̄t(S)− Lt−1(S) ≤ |S| · (avg(t)− avg(t− 1)) + n. (3)

2. Every processor balances its load with some or all its neighbors in the net-
work using the diffusion operation defined in Section 1.2.

We can show the following result, the proof of which is not included in this
extended abstract due to space constraints.

Theorem 10. Let n ≥ 2 denote the number of processors in the system. Let Δ ≥
2 denote the maximum degree of the graph G that specifies the communication
linkages in the network. Assume the load generation and deletion fulfills the
generation restriction in (3). Then, starting with an empty system, for all t ≥ 1
and all S ⊆ P we have Lt(S) ≤ |S| · avg(t) + 5Δn3. Furthermore, the maximum
number of tasks per processor is avg(t) + 5Δn2.

5.1 Further Extensions

We can easily generalize our results to other load generation processes, and the
proofs of the following results are much like those of Theorem 10 and are omitted
due to space limitations.

Theorem 11. Let n ≥ 2 denote the number of processors in the system. Let Δ ≥
2 denote the maximum degree of the graph G that specifies the communication
linkages in the network. Assume the load generation and deletion fulfills the
generation restriction L̄t(S) − Lt−1(S) ≤ |S| · (avg(t) − avg(t − 1)) + K.Then,
starting with an empty system, for all t ≥ 1 and all S ⊆ P we have Lt(S) ≤
|S| · avg(t) + 5ΔnK. Furthermore, the maximum number of tasks per processor
is avg(t) + 5ΔnK.

Furthermore, we can improve our results to a load generation model where
the imbalance that we allow to be generated in any set depends on the number
of outgoing edges.

Theorem 12. Let n ≥ 2 denote the number of processors in the system. Let
Δ ≥ 2 denote the maximum degree of the graph G that specifies the commu-
nication linkages in the network. Let e(S) be the number of outgoing edges of
the set S. Assume the load generation and deletion fulfills the generation re-
striction L̄t(S) − Lt−1(S) ≤ |S| · (avg(t) − avg(t − 1)) + K · e(S). Then, start-
ing with an empty system, for all t ≥ 1 and all S ⊆ P we have Lt(S) ≤
|S| · avg(t) + 5ΔnK. Furthermore, the maximum number of tasks per proces-
sor is avg(t) + 5ΔnK.

Dynamic Diffusion Load Balancing 1397

References

1. W. Aiello, E. Kushilevitz, R. Ostrovsky, and A. Rosen. Adaptive packet routing
for bursty adversarial traffic. J. Computer and Systems Sciences 60 (2000), pp.
482–509.

2. W. Aiello, B. Awerbuch, B. Maggs, and S. Rao. Approximate load balancing
on dynamic and asynchronous networks. Proceedings of the 25th Annual ACM
Symposium on Theory of Computing (STOC 1993), pp. 632–641.

3. A. Anagnostopoulos, A. Kirsch, and E. Upfal. Stability and efficiency of a random
local load balancing protocol. Proceedings of the 44th Annual IEEE Symposium
on Foundations of Computer Science (FOCS 2003).

4. E. Anshelevich, D. Kempe, and J. Kleinberg. Stability of load balancing algo-
rithms in dynamic adversarial systems. Proceedings of the 34th Annual ACM
Symposium on Theory of Computing (STOC 2002), pp. 399–406.

5. B. Awerbuch, P. Berenbrink, A. Brinkmann, and C. Scheideler. Simple routing
strategies for adversarial systems. Proceedings of the 32nd Annual ACM Sympo-
sium on Theory of Computing (STOC 2001), pp. 158–167.

6. B. Awerbuch and T. Leighton. A simple local control algorithm for multi-
commodity flow. Proceedings of the 34th IEEE Symposium on Foundations of
Computer Science (FOCS 1993), pp. 459–468.

7. B. Awerbuch and T. Leighton. Improved approximation algorithms for the multi-
commodity flow problem and local competitive routing in dynamic networks.
Proceedings of the 26th Annual ACM Symposium on Theory of Computing (STOC
1994), pp. 487–496.

8. P. Berenbrink, T. Friedetzky, and L.A. Goldberg. The natural work-stealing
algorithm is stable. SIAM Journal of Computing, SICOMP 32 (2003), pp. 1260–
1279.

9. P. Berenbrink , T. Friedetzky , and E. W. Mayr. Parallel continuous randomized
load balancing. Proceedings of the 10th Annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA’98), 1998, pp.192-201 .

10. J.E. Boillat. Load balancing and Poisson equation in a graph. Concurrency:
Practice and Experiences 2 (1990), pp. 289–313.

11. G. Cybenko. Load balancing for distributed memory multiprocessors. J. Parallel
and Distributed Computing 7 (1989), pp. 279–301.

12. R. Diekmann, A. Frommer, and B. Monien. Efficient schemes for nearest neighbor
load balancing. J. Parallel Computing 25 (1999), pp. 789–812.

13. R. Elsässer and B. Monien. Load balancing of unit size tokens and expansion
properties of graphs. Proceedings of the 15th Annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA 2003), pp. 266–273.

14. R. Elsässer, B. Monien, and R. Preis. Diffusion schemes for load balancing on
heterogeneous networks. Theory of Computing Systems 35 (2002), pp. 305–320.

15. B. Gosh and S. Muthukrishnan. Dynamic load balancing by random matchings.
J. Computer and Systems Science, 53 (1996), pp. 357-370.

16. B. Ghosh, F.T. Leighton, B.M. Maggs, S. Muthukrishnan, C.G. Plaxton, R. Ra-
jaraman, A.W. Richa, R.E. Tarjan, and D. Zuckerman. Tight analyses of two local
load balancing algorithms. Proceedings of the 27th Annual ACM Symposium on
Theory of Computing (STOC 1995), pp. 548–558.

17. F.M. auf der Heide, B. Oesterdiekhoff, and R. Wanka. Strongly adaptive token
distribution. Algorithmica 15 (1996), pp. 413–427.

1398 P. Berenbrink, T. Friedetzky, and R. Martin

18. S. Muthukrishnan and R. Rajaraman. An adversarial model for distributed load
balancing. Proceedings of the 10th Annual ACM Symposium on Parallel Algo-
rithms and Architectures (SPAA 1998), pp. 47–54.

19. D. Peleg and E. Upfal. The token distribution problem. SIAM J. Computing 18
(1989), pp. 229–243.

20. Y. Rabani, A. Sinclair, and R. Wanka. Local divergence of Markov chains and
the analysis of iterative load-balancing schemes. Proceedings of the 39th IEEE
Symposium on Foundations of Computer Science (FOCS 1998), pp. 694–703.

On the Power of Random Bases in Fourier Sampling:
Hidden Subgroup Problem in the Heisenberg Group

Jaikumar Radhakrishnan1, Martin Rötteler2, and Pranab Sen2

1 School of Technology and Computer Science,
Tata Institute of Fundamental Research, Mumbai, India and

Toyota Technological Institute, Chicago, USA
jaikumar@tifr.res.in

2 NEC Laboratories America, Inc.
4 Independence Way, Princeton, NJ 08540, USA
{mroetteler, pranab}@nec-labs.com

Abstract. The hidden subgroup problem (HSP) offers a unified framework to
study problems of group-theoretical nature in quantum computing such as order
finding and the discrete logarithm problem. While it is known that Fourier sam-
pling provides an efficient solution in the abelian case, not much is known for gen-
eral non-abelian groups. Recently, some authors raised the question as to whether
post-processing the Fourier spectrum by measuring in a random orthonormal ba-
sis helps for solving the HSP. Several negative results on the shortcomings of this
random strong method are known. In this paper however, we show that the ran-
dom strong method can be quite powerful under certain conditions on the group
G. We define a parameter r(G) and show that O((log |G|/r(G))2) iterations of
the random strong method give enough classical information to solve the HSP.
We illustrate the power of the random strong method via a concrete example of
the HSP over finite Heisenberg groups. We show that r(G) = Ω(1) for these
groups; hence the HSP can be solved using polynomially many random strong
Fourier samplings followed by a possibly exponential classical post-processing
without further queries. The quantum part of our algorithm consists of a poly-
nomial computation followed by measuring in a random orthonormal basis. As
an interesting by-product of our work, we get an algorithm for solving the state
identification problem for a set of nearly orthogonal pure quantum states.

1 Introduction

The hidden subgroup problem (HSP) is defined as follows: We are given a function f :
G → S from a group G to a set S with the promise that there exists a subgroup H ≤ G
such that f is constant on the left cosets ofH and takes distinct values on distinct cosets.
Here, f is given via a black box. The task is to find a set of generators for H while
making as few queries to f as possible. The abelian HSP (i. e. G is abelian) encompasses
several interesting problems such as finding the order of an element in a group and the
discrete logarithm problem. Factoring an integer n can be reduced to order finding in
the group Z∗n. The problems of graph isomorphism and graph automorphism can be
cast as hidden subgroup problems over the non-abelian group Sn.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 1399–1411, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

1400 J. Radhakrishnan, M. Rötteler, and P. Sen

Given the success of Fourier sampling in solving the abelian HSP, one can similarly
ask whether Fourier sampling over the non-abelian group G helps in solving the HSP
over G. The Fourier transform over a (in general, non-abelian) group G gives us a su-
perposition over (ρ, i, j) where ρ is an irreducible unitary representation of G and i, j
are the row and column indices of the matrix ρ. The choice of basis for ρ gives us a
degree of freedom in defining the Fourier transform over G. This is in contrast to the
abelian case, where all representations are one-dimensional and hence only their names
ρ matter. Exploiting the symmetries in the above quantum state, one can show that (see
e.g. [Kup03], [Ip03], [MRS05]) the optimal measurement to recover the hidden sub-
group from a coset state consists of applying the Fourier transform to the first register,
measuring the name of an irreducible representation ρ, followed by a POVM on the col-
umn space of the resulting state. By strong Fourier sampling, we usually mean that we
measure the column space using some orthonormal basis instead of a general POVM.
In weak Fourier sampling, one measures the names ρ of the representations only, and
ignores the row and column indices (i, j).

Hallgren, Russell and Ta-Shma [HRTS03] showed that polynomially many itera-
tions of weak Fourier sampling give enough information to reconstruct normal hid-
den subgroups. More generally, they show that the normal core of the hidden sub-
group can be reconstructed via the weak method. Grigni, Schulman, Vazirani and Vazi-
rani [GSVV04] and Gavinsky [Gav04] extend the weak method to some more cases of
group/subgroup pairs. The main shortcoming of the weak method is that it gives exactly
the same probability distribution if the hidden subgroup is H or a conjugate gHg−1 of
H . This leads us to consider the strong method where we measure both representation
names as well as column indices (ρ, j). The amount of additional information about
the hidden subgroup H that can be extracted by measuring j depends in general on
the basis used for ρ. In a recent paper, Moore, Russell and Schulman [MRS05] showed
that for the symmetric group Sn, for any choice of bases for the representations, there
are order two subgroups that require exponential number of Fourier samplings in order
to distinguish them from the identity subgroup. Grigni, Schulman, Vazirani and Vazi-
rani [GSVV04] study the random strong method where a random basis is used for each
representation ρ. They define a group-theoretic parameter α depending on G and H
and show that if α is exponentially large, the additional advantage of the random strong
method over the weak method is exponentially small. In particular, this is case when
G = Sn and H ≤ Sn, |H| = 2O(n log n).

Our contributions. In this paper, we analyze the power of the random strong method
and show, for the first time, that under certain (different) general conditions on G poly-
nomially many iterations of the random strong method do give enough classical in-
formation to identify H . We illustrate the power of the random strong method via a
concrete example of the HSP over finite Heisenberg groups Hp of order p3, p prime.
Hp is defined as the following set of upper triangular matrices:

Hp :=

⎧⎨⎩
⎛⎝1 x z

0 1 y
0 0 1

⎞⎠ : x, y, z ∈ Fp

⎫⎬⎭ . (1)

On the Power of Random Bases in Fourier Sampling 1401

A convenient encoding for the elements of Hp is to write (x, y, z), where x, y, z ∈
Fp match the components in equation (1). It is easy to see that the classical randomised
query complexity of the HSP on Hp is Θ(p). The generic quantum algorithm of Et-
tinger, Høyer and Knill [EHK04] achieves O(log p) query complexity, but at the ex-
pense of pO(log p) quantum operations. An algorithm with 2Θ(

√
log p) quantum opera-

tions can be obtained by using the orbit coset reduction of [FIM+03] together with
the algorithm of [Kup03] to solve orbit coset over the group Zp. However, the query
complexity of this algorithm is also 2Θ(

√
log p). It seems non-trivial to design a quan-

tum algorithm with (log p)O(1) query complexity and total running time pO(1). Various
existing methods for non-abelian HSP fail to achieve this goal. We show how the ran-
dom strong method attains this goal, illustrating the power of random bases in Fourier
sampling.

It can be shown thatHp is a semidirect product of the form Zp � (Zp ×Zp), where
the normal subgroup is given by N∞ := {(0, y, z) : y, z ∈ Fp} and the comple-
ment by A0,0 := {(x, 0, 0) : x ∈ Fp}. The commutator subgroup of Hp is given by
[Hp,Hp] = {(0, 0, z) : z ∈ Fp}, which is also the centre ζ(Hp). The commutator
subgroup is isomorphic to Zp; hence it is abelian but not smoothly abelian [FIM+03].
The Baer subgroup [GSVV04] turns out to be ζ(Hp). Thus, the methods of [Gav04,
IMS03, FIM+03] are not applicable in order to solve the HSP for Hp efficiently. For
more details about the Heisenberg group, see Section 2.

The chief obstacle to finding hidden subgroups in Hp arises from the order p sub-
groups ofHp other than its centre. There are (p2 + p) such order p subgroups; we shall
call them Ai,j , i ∈ Fp ∪ {∞}, j ∈ Fp. The forgetful abelian method (i. e. Fourier
sampling over the abelian group Zp × (Zp × Zp) instead of the non-abelian group
Hp

∼= Zp � (Zp ×Zp)), weak Fourier sampling, strong Fourier sampling in the natural
representation basis of Hp (i. e. the representation basis adapted to the distinguished
subgroup tower {1}�N∞ �Hp) as well as strong Fourier sampling in the Zp-Fourier
transform of the natural representation basis give exponentially small information about
the index i of Ai,j . The details are left for the full version of the paper. For now, we
give an intuitive description of the main difficulty posed by these subgroups. Suppose
the hidden subgroup is Ai,j for some i ∈ Fp ∪ {∞}, j ∈ Fp. With exponentially high
probability, Fourier sampling over Hp gives us a representation uniformly at random
from one of the (p− 1) irreducible representations ρk of degree p for k = 1, . . . , p− 1
ofHp. Suppose one such representation ρk shows up. The state essentially collapses to
a vector |ψk,i,j〉 ∈ Cp, i. e., (Hp, Ai,j) is a Gelfand pair for all i,j (see also [MR05] for
Gelfand pairs in the context of the HSP). The vectors |ψk,i,j〉 have the property that

|〈ψk,i,j |ψk,i′,j′〉| =
{

1√
p : i �= i′, for all j, j′,

δj,j′ : i = i′,

i. e., they form a set of (p + 1) mutually unbiased bases of Cp [WF89]. The main diffi-
culty is that it is not clear a priori that there is any orthonormal basis that can pairwise
distinguish between these (p2 + p) vectors with inverse polynomial probability. Note
that the so-called hidden conjugate problem [MRRS04] is easy to solve information-
theoretically for Hp; the conjugacy classes of the order p groups are defined by i and
the above property says that {|ψk,i,j〉}j is an orthonormal basis of Cp, so given the

1402 J. Radhakrishnan, M. Rötteler, and P. Sen

conjugacy class i one can measure in this orthonormal basis to determine the actual
hidden subgroup Ai,j . In view of this, the main challenge in solving the HSP for Hp is
to identify the conjugacy class i.

In this paper however, we show that a random representation basis for ρk does in
fact pairwise distinguish between |ψk,i,j〉 with constant probability. In fact, we refine
the method of random measurement bases to distinguish between families of nearly
orthogonal subspaces. We combine the geometric ideas of random measurement bases
together with representation-theoretic techniques and exhibit a parameter r(G) of a
group G and show that it is a lower bound on the total variation distance between the
distributions on pairs (ρ, j) of representation names and column indices obtained by the
random strong method for possible candidate hidden subgroupsH . The parameter r(G)
is defined in terms of the ranks and overlaps of the projectors obtained by averaging

representations ρ over various subgroups H . We show that O
(

log s(G)
r2(G)

)
iterations of

the random strong method give sufficient classical information to identify the hidden
subgroup H , where s(G) denotes the number of distinct subgroups of G. Note that
s(G) ≤ 2log2 |G| for any group G.

We will see later in Section 2 that s(Hp) = O(p2). In Section 4, we show that
r(Hp) = Ω(1), implying that O(log p) iterations of the random strong method give
sufficient information to extract the hidden subgroup inHp. This gives us an algorithm
solving the HSP over Hp with O(log p) query complexity, O(log3 p) quantum opera-
tions for implementing the non-abelian Fourier transforms, Õ(p2) quantum operations
to measure in a random basis, and Õ(p4) classical post-processing operations. This
gives the first example of a group where random representation bases do help in solv-
ing the HSP and for which no explicit representation bases are known that solve the
problem with (log p)O(1) Fourier samplings.

As an interesting by-product of our work, we get an algorithm for solving the fol-
lowing quantum state identification problem: Consider a set of pure quantum states
{|ψ1〉, . . . , |ψm〉} ∈ Cn with the property that |〈ψi|ψj〉| ≤ δ for all i �= j, where δ is a
sufficiently small constant (and typically m (n). We are given t independent copies
of |ψi〉. The task is to identify the index i. We show that t = O(log m) independent
random complete von Neumann measurements in Cn suffice to identify i with high
probability.

Relation to other work. Moore, Rockmore, Russell and Schulman [MRRS04] use non-
abelian strong Fourier sampling to give an efficient algorithm for the HSP over the q-
hedral group Zq � Zp when p, q are prime, q | (p − 1) and (p − 1)/q = (log p)O(1).
Our techniques show that for p, q prime, q | (p − 1), q = Ω(

√
p), r(Zq � Zp) =

Ω(1), which proves that polynomially many random strong Fourier samplings suffice
to find an arbitrary hidden subroup of Zq � Zp in this case. For prime p, q | (p − 1),
q = Ω(p3/4), subgroups H1,H2 conjugate to Zq ≤ Zp−1, our techniques show that

r(Zp−1 � Zp;H1,H2) = Ω
(√

q
p

)
. Moore et al. [MRRS04] prove a nearly matching

upper bound of r(Zp−1�Zp;H1,H2) = O
(√

q
p log p

)
. Thus, a polynomial amount of

random strong Fourier sampling can solve the hidden conjugate problem for subgroup
Zq ≤ Zp−1 of the affine group Zp−1 � Zp if and only if p/q = (log p)O(1).

On the Power of Random Bases in Fourier Sampling 1403

In this paper, we confine ourselves to random strong Fourier sampling. Our quantum
operations always factor into a tensor product over the coset states obtained by querying
the function oracle. This distinguishes the Heisenberg group from the symmetric group
for which Moore, Russell and Schulman [MRS05] show that single register Fourier
sampling is not sufficient to solve the HSP. The quantum part of our algorithm consists
of a polynomial computation followed by measuring in a random orthonormal basis. In
fact, if a suitable kind of pseudo-random unitary transformation can be generated and
implemented efficiently, then the quantum part of the algorithm can be made fully poly-
nomial. Various notions of pseudo-random unitary transformations have been studied
(see e.g. [EWS+03], [Eme04]), but it has to be investigated whether they are sufficient
for our purposes.

Very recently, Bacon, Childs, and van Dam [BCvD05] have given a fully polyno-
mial time quantum algorithm for the HSP in the Heisenberg group. Their algorithm
is based on the square root measurement (also known as “pretty good measurement”)
on a pair of registers as opposed to the single register experiments considered in this
paper.

2 Heisenberg Groups over Zp

Subgroup Lattice. Since the order of Hp is p3 we can expect to find subgroups of
order p and p2 besides the trivial subgroup {1} and Hp. The centre of Hp is given
by ζ(Hp) = 〈(0, 0, 1)〉 = {(0, 0, z) : z ∈ Fp}. Note that |ζ(Hp)| = p. There are
p + 1 subgroups Ni of order p2, where i ∈ Fp ∪ {∞}. They are given by Ni :=
〈(1, i, 0), (0, 0, 1)〉 = {(x, xi, z) : x, z ∈ Fp}, ∀i ∈ Fp. The group N∞ is given by
N∞ := 〈(0, 1, 0), (0, 0, 1) = {(0, y, z) : y, z ∈ Fp}. It is easy to see that for all
i ∈ Fp ∪ {∞}, ζ(Hp) �Ni. Furthermore the Ni are normal subgroups, Ni �Hp and
Ni
∼= Zp × Zp. For each i ∈ Fp ∪ {∞}, we have that Ni contains p subgroups Ai,j

for j ∈ Fp. The subgroups Ai,j satisfy |Ai,j | = p, whence Ai,j
∼= Zp. For i, j ∈ Fp

we have the following explicit desciption of the elements of Ai,j : Ai,j := 〈(1, i, j)〉 =
{(μ,μi,

(
μ
2

)
i + μj) : μ ∈ Fp}. For i = ∞, j ∈ Fp we obtain A∞,j := 〈(0, 1, j)〉 =

{(0,μ,μj) : μ ∈ Fp}. It is easy to see that Ai,j �≤ Ni′ if i �= i′, and their normalizer
in Hp is given by NHp

(Ai,j) = Ni. The above groups form a complete list of distinct
subgroups ofHp.

The Irreducible Representations ofHp. Since we want to perform Fourier analysis on
the groups Hp we have to determine the irreducible representations of Hp. The reader
not familiar with the standard notations of representation theory is referred to standard
references like [CR62] or [Ser77]. Observe thatHp = A0,0 �N∞ ∼= Zp � (Zp × Zp).
This semidirect product structure can be used to construct the irreducible representa-
tions of Hp. First, there are p2 one-dimensional representations χa,b for a, b ∈ Fp

which come from the factor group Hp/ζ(Hp) ∼= Z2
p. In the following, let ω denote a

fixed pth root of unity in the complex numbers. Then the one-dimensional irreducible
representations ofHp are given by χa,b((x, y, z)) := ωax+by a, b ∈ Fp.

Let F∗p denote the group of non-zero elements of Fp under multiplication. There
are p − 1 irreducible representations ρk, k ∈ F∗p of degree p. They are obtained in the

1404 J. Radhakrishnan, M. Rötteler, and P. Sen

following way: Take a nontrivial character of the centre ζ(Hp), extend it to the abelian
group N∞, and induce it toHp. Explicitly, we obtain the following representations: For
each k ∈ F∗p, we have a nontrivial character φk of ζ(Hp) given by φk((0, 0, z)) := ωkz .
Since ζ(Hp) �N∞ and N∞ is abelian, we can extend φk to a character φk of N∞ by
simply defining φk((0, y, 0)) := 1. We choose the elements of A0,0 as transversals for
N∞ inHp. Then ρk is defined to be the induction ρk := φk ↑A0,0 Hp. On the generators
of Hp, we find that ρk takes the following values: ρk((1, 0, 0)) =

∑
a∈Fp

|a〉〈a + 1|,
ρk((0, 1, 0)) =

∑
a∈Fp

ωka|a〉〈a| and ρk((0, 0, 1)) = ωk11p, where 11p denotes the
identity operator in Cp. Since (x, y, z) = (0, 0, z)(0, y, 0)(x, 0, 0) for all x, y, z ∈ Fp,
we obtain that ρk((x, y, z)) = ωkz

∑
a∈Fp

ωkya|a〉〈a + x|. It can be readily checked
that the χa,b, for a, b ∈ Fp and ρk, for k ∈ F∗p form a complete set of inequivalent
irreducible representations ofHp.

Calculating Rank and Overlap of the Projectors. Define the projector Pk;i,j :=
1
p

∑
a∈Ai,j

ρk(a). In order to calculate the parameter r(Hp) (see Section 4 for the de-
tails of the calculation) we have to compute the ranks of Pk;i,j and pairwise overlaps
‖Pk;i,jPk;i′,j′‖ (the reason for the nomenclature of overlap will become clear later).

For i, j ∈ Fp, we obtain that Pk;i,j = 1
p

∑
μ,ν∈Fp

ω
k((μ

2)i+μj−(ν
2)i−νj)

p |ν〉〈μ|. Hence,

Pk;i,j = |ψk;i,j〉〈ψk;i,j |, where |ψk,i,j〉 = 1√
p

∑
μ∈Fp

ω−k((μ
2)i+μj)|μ〉, i, j ∈ Fp, k ∈

F∗p. In the case i = ∞, j ∈ Fp, we get Pk;∞,j = |ψk;∞,j〉〈ψk;∞,j |, where |ψk;∞,j〉 =
| − j〉 j ∈ Fp, k ∈ F∗p. Thus for all k ∈ F∗p, i ∈ Fp ∪ {∞}, j ∈ Fp, rank(Pk;i,j) = 1
and Pk;i,j is an orthogonal projection onto |ψk;i,j〉. For j, j′ ∈ Fp, ‖Pk;∞,jPk;∞,j′‖ =
δj,j′ . For i, i′, j′ ∈ Fp, we get ‖Pk;i,jPk;∞,j′‖ = 1√

p . For i, i′, j, j′ ∈ Fp, we get

‖Pk;i,jPk;i′,j′‖ = |〈ψk;i,j |ψk;i′,j′〉| = 1
p

∑
μ∈Fp

ωk((μ
2)(i−i′)+μ(j−j′)). To evaluate the

last term above, we need the following fact about quadratic Weil sums in Fp.

Fact 1 ([LN94–Theorem 5.37]). Let h(X) ∈ Fp[X] be a degree two polynomial.

Then,
∣∣∣∑x∈Fp

ωh(x)
∣∣∣ = √

p.

By Fact 1, if i �= i′, |〈ψk;i,j |ψk;i′,j′〉| = 1√
p irrespective of j and j′. If i = i′, it is easy

to see that |〈ψk;i,j |ψk;i′,j′〉| = δj,j′ . To summarise, we have shown the following result:

Lemma 1. Suppose p is an odd prime. Let i, i′ ∈ Fp ∪{∞}, j, j′ ∈ Fp and Ai,j , Ai′,j′

be two order p subgroups of Hp other than the centre ζ(Hp). Let ρk, where k ∈ F∗p,
be an irreducible representation of Hp of degree p. Let Pk;i,j be defined by Pk;i,j :=
1
p

∑
a∈Ai,j

ρk(a) and let Pk;i′,j′ be defined similarly. Then Pk;i,j , Pk;i′,j′ are rank one
orthogonal projections, and their overlap is given by

‖Pk;i,jPk;i′,j′‖ =

{
1√
p : i �= i′, for all j, j′,

δj,j′ : i = i′.

Thus, for any k ∈ F∗p, the vectors |ψk;i′,j′〉 form a set of (p + 1) mutually unbiased
bases for Cp.

On the Power of Random Bases in Fourier Sampling 1405

3 Random Bases and Fourier Sampling

Nearly orthogonal vectors. In this subsection, we state some results about sets of
nearly orthogonal unit vectors in a Hilbert space. We use ‖·‖ to denote the
2-norm
of vectors as well as the
2-induced operator norm of matrices. We use ‖v‖1 to denote
the
1-norm of a vector v. We let ‖M‖tr = Tr

√
M†M denote the trace norm of a

matrix M . For subspaces V1, V2 having trivial intersection, their overlap is defined as
ovlap(V1, V2) = maxv1,v2 |〈v1|v2〉|, where vi range over unit vectors in Vi. Let Πi de-
note the orthogonal projection operator onto Vi. It is easy to see that ovlap(V1, V2) =
‖Π1Π2‖.

Proposition 1. Let V1, V2 be subspaces of a Hilbert space having trivial intersection.
Let σ2 denote the totally mixed state in V2. Let V ′

2 denote the orthogonal complement
of V1 in V1 + V2 and σ′2 denote the totally mixed state in V ′

2 . Let δ = ovlap(V1, V2).
Then, ‖σ2 − σ′2‖tr ≤ 2δ1/2(1− δ2)−1/4.

Proposition 2. Let v′1, . . . , v
′
n be unit vectors in a Hilbert space. Let 0 ≤ δ < 1

2n .
Suppose for all i, j, i �= j, |〈vi|vj〉| ≤ δ. Let v1, . . . , vn be unit vectors obtained by
Gram-Schmidt orthonormalising v′1, . . . , v

′
n. Then ‖|vi〉〈vi| − |v′i〉〈v′i|‖tr < 2

√
6·δ
√

n,
for any i, 1 ≤ i ≤ n,

The proofs of the above propositions are left to the full version of the paper.

Random orthonormal vectors. In this subsection, we state some facts about random
orthonormal sets of vectors in Cd. One way of generating a random unit vector in Cd

is as follows: Consider (y1, . . . , y2d) ∈ R2d, where each yi is independently chosen
according to the one dimensional Gaussian distribution with mean 0 and variance 1 (i. e.
yi is a real valued random variable with probability density function 1√

2π
exp(−y2/2)).

Normalise to get the unit vector (x1, . . . , x2d), where xi = yi√
y2
1+···+y2

2d

(note that any

yi = 0 with zero probability). We thus get a random unit vector in R2d. Identifying
a pair of real numbers with a single complex number, we get a random unit vector
(z1, . . . , zd) in Cd. To generate a random orthonormal ordered set {v1, . . . , vm} of
vectors in Cd, we can first sample m unit vectors {v′1, . . . , v′m} in Cd and then do Gram-
Schmidt orthonormalisation on them to get {v1, . . . , vm} (note that with probability 1,
{v′1, . . . , v′m} are linearly independent).

The following fact follows by combining Theorem 14.3.2 and Proposition 14.3.3 of
[Mat02–Chapter 14] and using the concavity of the square-root function.

Fact 2. Let t > 0, and |v〉, |w〉 independent random unit vectors in Cd. Then,

Pr
[
|〈v|w〉| > t +

10√
d

]
≤ 2 exp(−t2d).

We will require the following upper and lower bounds on the tails of the chi-square
distribution (the chi-square distribution with d degrees of freedom is the sum of squares
of d independent Gaussians with mean 0 and variance 1).

1406 J. Radhakrishnan, M. Rötteler, and P. Sen

Fact 3. Let (X1, . . . , Xd) be independent random variables such that Xi is Gaussian
with mean 0 and variance 1. Let X2 = X2

1 + · · ·+ X2
d . Let 0 ≤ ε < 1/2. There exists

a universal constant γ > 0 such that

1. Pr[|X2 − d| > dε] < 2 exp(−dε2/6),
2. Pr[X2 > d +

√
d] > γ, Pr[X2 < d−

√
d] > γ.

The following result follows easily from Fact 3. A similar result appears as Lemma 5.1
in [MRRS04].

Fact 4. Let V = {a1, . . . , ap} be a random orthonormal set of p vectors in Cd. Let
ai

j denote the jth coordinate of vector ai. Define the d-dimensional probability vector
S as follows: Sj = 1

p

∑p
i=1 |ai

j |2. Let 0 ≤ ε < 1/2. Suppose p = Ω(ε−2 log d). Let
U denote the uniform probability distribution on {1, . . . , d}. Then, with probability at
least 1− exp(−Ω(ε2p)) over the choice of V , ‖S − U‖1 ≤ ε.

We will also need the following Chernoff upper bounds on the tail of the sum of d
independent identically distributed binary random variables.

Fact 5 ([AS00–Cor. A.7, Theorem A.13]). Suppose (X1, . . . , Xd) are independent bi-
nary random variables such that Pr[Xi = 1] = p. Let X = X1 + · · · + Xd. Let
0 ≤ ε < 1/2. Then,

1. Pr
[∣∣X

d − p
∣∣ > ε

]
< 2 exp(−2ε2d),

2. Pr[X < dp
2] < exp(−dp/8).

Hidden subgroup problem and Fourier sampling. In this subsection, we recall the
standard approach to solving the hidden subgroup problem based on Fourier sampling.
The quantum Fourier transform over G, QFTG, is the C-linear map defined as follows:

|g〉 !→
∑
ρ

√
dρ
|G|

dρ∑
i,j=1

ρij(g)|ρ, i, j〉,

where ρ runs over inequivalent irreducible unitary representations of G, dρ denotes the
dimension of ρ and i, j run over the row and column indices of ρ. For a subset T ⊆ G,
define |T 〉 = 1√

|T |

∑
t∈T |t〉 to be the uniform superposition over elements of T . For a

representation ρ, define the matrix ρ(T) = 1√
|T |

∑
t∈T ρ(t). IfH ≤ G, it can be shown

(see e.g. [HRTS03]) that 1√
|H|

ρ(H) is an orthogonal projection onto the subspace V ρ
H

of the representation space of ρ consisting of all vectors |v〉 such that ρ(h)|v〉 = |v〉 for
all h ∈ H . Thus, rank(ρ(H)) = dimV ρ

H .
In the standard Fourier sampling method for the hidden subgroup problem, we be-

gin by forming the uniform superposition 1√
|G|

∑
g∈G |g〉|0〉 and then query f to get

the superposition 1√
|G|

∑
g∈G |g〉|f(g)〉. We then measure the second register to get

a uniform mixture over vectors |gH〉 in the first register. Assuming the first register
is in state |gH〉 for some particular g ∈ G, its state after the application of QFTG

On the Power of Random Bases in Fourier Sampling 1407

becomes 1√
|G||H|

∑
ρ,i,j

√
dρ
∑

h∈H ρij(gh)|ρ, i, j〉. If we now measure the represen-

tation name and column index, we sample (ρ, j) with probability

PG
H (ρ, j) =

dρ
|G|
∑

i

|ρij(gH)|2 =
dρ
|G| ‖ρ(gH)|j〉‖2 =

dρ
|G| ‖ρ(H)|j〉‖2.

The third equality above follows from the fact that ‖ρ(gH)|j〉‖ = ‖ρ(g)ρ(H)|j〉‖ =
‖ρ(H)|j〉‖, since ρ(g) is unitary. Thus, as long as we measure just the representation
name and column index (ρ, j), the probabilities are independent of the actual coset gH
that we find ourselves in. This fact can be viewed as the non-abelian generalisation of
the fact that in abelian Fourier sampling the probability distribution on the characters
is independent of the actual coset that we land up in. Also, it can be shown that (see
[GSVV04])

PG
H (ρ) =

dρ∑
j=1

dρ
|G| ‖ρ(H)|j〉‖2 =

dρ|H|
|G| rank(ρ(H)) =

dρ|H|
|G| dim V ρ

H .

In weak Fourier sampling, we only measure the names ρ of the representations and
ignore the column indices j. It can be shown (see e.g. [HRTS03]) that for normal hidden
subgroups H , no more information about H is contained in the column space of the
resulting state after the measurement of ρ. Thus, weak Fourier sampling is the optimal
measurement to recover a normal hidden subgroup starting from the uniform mixture
of coset states.

Define a distance measure w(G;H1,H2) =
∑

ρ |PG
H1

(ρ) − PG
H2

(ρ)| between sub-
groups H1,H2 ≤ G. Hence, w(G;H1,H2) is the total variation distance between
the probability distributions, when the hidden subgroup is H1 or H2, on the names
of the representations obtained via weak Fourier sampling. Hallgren, Russell and Ta-
Shma [HRTS03] showed that O(log |G|) weak Fourier samplings suffice to reconstruct
the normal core c(H) of the hidden subgroup H , where c(H) is the largest normal sub-
group of G contained in H . Adapting their arguments, we prove the following result.

Proposition 3. Let H1,H2 ≤ G, c(H1) �= c(H2). Then, w(G;H1,H2) ≥ 1/2.

The proof is left to the full version of the paper. For a normal subgroup N � G, define
the normal core family of N , ncf(N) = {H : H ≤ G, c(H) = N}. In view of
Proposition 3, the remaining challenge is to distinguish between subgroups H1,H2

from the same normal core family.
The success of strong Fourier sampling depends on how much statistical information

about H is present in the probability distribution PG
H (ρ, j). The amount of information,

in general, depends on the choice of basis for each representation ρ, i. e., on the choice
of basis for j; see [MRRS04] for more details. Grigni et al. [GSVV04] show that under
certain conditions on G and H , the random strong Fourier sampling method, where
a random choice of basis is made for each representation, gives exponentially small
information about distinguishing H from the identity subgroup. In the next section,
we prove a complementary result viz. under different conditions on G, (log |G|)O(1)

random strong Fourier samplings do give enough information to reconstruct the hidden
subgroup H with high probability.

1408 J. Radhakrishnan, M. Rötteler, and P. Sen

4 Power of the Random Strong Method

We now define a parameter r(G) for a group G which, if at least (log |G|)−O(1), suf-
fices for the random strong method to identify the hidden subgroup with (log |G|)O(1)

Fourier samplings. Let H1,H2 ≤ G. We first define a distance measure r(G;H1,H2)
between H1,H2. In what follows, we use the notation of Section 3.

Definition 1 (r(G;H1,H2; ρ)). Suppose ρ is an irreducible dρ-dimensional unitary
representation of G. Let Πi denote the orthogonal projection onto V ρ

Hi
i.e. Πi =

1
|Hi|
∑

h∈Hi
ρ(h). Let Π1,2 denote the orthogonal projection onto V ρ

H1
∩V ρ

H2
. It is easy

to check that V ρ
H1
∩V ρ

H2
= V ρ

〈H1,H2〉, where 〈H1,H2〉 denotes the subgroup of G gener-

ated byH1 andH2. Thus,Π1,2 = 1
|〈H1,H2〉|

∑
h∈〈H1,H2〉 ρ(h). DefineΠ ′

i = Πi−Π1,2.
Π ′

i is the orthogonal projection onto the subspace V ′
i defined as the orthogonal comple-

ment of V ρ
H1
∩ V ρ

H2
in V ρ

Hi
. V ′

1 and V ′
2 have trivial intersection. Define ri = rank(Πi)

and r′i = rank(Π ′
i). Define ĥ = max{|H1|r1, |H2|r2}, h̃ = |(|H1|r1 − |H2|r2)| and

δ = ‖Π ′
1Π

′
2‖. Recall that δ = ovlap(V ′

1 , V ′
2). Consider the following three cases:

1. When
√

dρ

log |G| = Ω((r1 + r2)3/2). Loosely speaking, r1, r2 are both small. In this
case, define

r(G;H1,H2; ρ) = max

{
ĥ

2

(
Ω

(√
r′1

r1
+

√
r′2

r2

)
− 2δ1/2(1− δ2)−1/4

)
, h̃

}
.

2. When
√

dρ

log |G| = Ω(r1) and r2
r1

= Ω(log2 |G|). Loosely speaking, r1 is small and r2

is relatively large with respect to r1. In this case, define

r(G;H1,H2; ρ) = max

{
ĥ

2
·Ω
(

1√
r1

)
, h̃

}
.

3. Otherwise, define r(G;H1,H2; ρ) = h̃.

Definition 2 (r(G;H1,H2), r(G)). LetH1,H2 ≤ G. Define r(G;H1,H2) =
∑

ρ
dρ

|G| ·
r(G;H1,H2; ρ) and r(G) = minH1,H2 r(G;H1,H2).

Definition 3 (PG
H,B). Let B be a set of orthonormal bases for the irreducible unitary

representations of G. Suppose H ≤ G. PG,B
H denotes the probability distribution on

the representation names and column indices (ρ, j) got by strong Fourier sampling the
state |H〉 according to B.

The significance of r(G;H1,H2) arises from the following theorem.

Theorem 1. With probability at least 1−exp(−Ω(log2 |G|)) over the choice of random
representation bases B for Fourier sampling, ‖PG,B

H1
− PG,B

H2
‖tr ≥ r(G;H1,H2).

Using this theorem, we can apply a ‘minimum-finding-like’ algorithm to identify the
hidden subgroup.

On the Power of Random Bases in Fourier Sampling 1409

Corollary 1. Let s(G) denote the number of distinct subgroups of G. With probability

at least 2/3 over the choice of random bases for representations of G, O
(

log s(G)
r2(G)

)
random strong Fourier samplings give enough classical information to identify a hidden

subgroup in G. In particular, O

((
log |G|
r(G)

)2
)

random strong Fourier samplings suffice.

The proof is left to the full version of the paper. The rest of the section is devoted to
proving Theorem 1. We first state some necessary technical lemmas.

Lemma 2. Let W = {a1, . . . , ap}∪{b1, . . . , bq}∪{c1, . . . , cr} be a random orthonor-
mal set of p+ q + r vectors in Cd. Let ai

j denote the jth coordinate of vector ai; similar
notations will be used for the vectors bi, ci too. Define two d-dimensional probability
vectors S, T as follows:

Sj =
1

p + r

(
p∑

i=1

|ai
j |2 +

r∑
i=1

|ci
j |2
)

, Tj =
1

q + r

(
q∑

i=1

|bi
j |2 +

r∑
i=1

|ci
j |2
)
.

Then there exists δ = Θ((p + q + r)−3/2) such that the following holds: Define
α = dδ2 − 2 log(p + q + r). Suppose α = Ω(1). Then, with probability at least

1− exp(−Ω(α)) over the choice of W , ‖S − T‖1 = Ω
(√

p

p+r +
√
q

q+r

)
.

Lemma 3. Let W = {a1, . . . , ap} be a random orthonormal set of p vectors in Cd.
Let ai

j denote the jth coordinate of vector ai. Define the d-dimensional probability
vector S as follows: Sj = 1

p

∑p
i=1 |ai

j |2. Then there exists δ = Θ(p−1) such that the

following holds: Define α = dδ2−2 log p. Suppose α = Ω(1). LetU denote the uniform
probability distribution on {1, . . . , d}. Then, with probability at least 1− exp(−Ω(α))
over the choice of V , ‖S − U‖1 = Ω(p−1/2).

We are now in a position to finally prove Theorem 1.

Proof. (of Theorem 1, sketch) Note that h̃ describes the efficiency of the weak stan-
dard method, and so the total variation distance between the probability distributions
PG
H1

(ρ, j) and PG
H2

(ρ, j) is always lower bounded by w(G;H1,H2). When case 1
of Definition 1 applies, we use Lemma 2, Proposition 1 and symmetry arguments to
prove the lower bound on the total variation distance. When case 2 of Definition 1
applies, we use Lemma 3, Fact 4 and symmetry arguments. For each representation
ρ, the confidence bound in applying the above random basis arguments is at least
1 − exp(−Ω(log2 |G|)). Since there are at most |G| representations, the total confi-
dence bound is at least 1− exp(−Ω(log2 |G|)).

We now have all the tools to prove that r(Hp) = Ω(1). In fact, we can now prove
the following theorem. The proof is left for the full version of the paper.

Theorem 2. The random strong method is sufficient to solve the hidden subgroup prob-
lem in the Heisenberg group Hp. The query complexity of this algorithm is O(log p).
The quantum part of the algorithm consists of a circuit of size O(log4 p) followed by
a circuit of size Õ(p2) for implementing the measurement in a random orthonormal
basis. The classical post-processing does not make any queries and has a running time
of Õ(p4).

1410 J. Radhakrishnan, M. Rötteler, and P. Sen

Acknowledgements

We thank Frédéric Magniez, Leonard Schulman, Cris Moore, Alex Russell, and Avery
Miller for useful discussions. This work was carried out while M. R. and P. S. were with
the Institute for Quantum Computing, University of Waterloo.

References

[AS00] N. Alon and J. Spencer. The probabilistic method. John Wiley and Sons, 2000.
[BCvD05] D. Bacon, A. Childs, and W. van Dam. From optimal measurement to efficient

quantum algorithms for the hidden subgroup problem over semidirect product
groups. ArXiv preprint quant–ph/0504083, 2005.

[CR62] W. C. Curtis and I. Reiner. Representation Theory of Finite Groups and Algebras.
Wiley and Sons, 1962.

[EHK04] M. Ettinger, P. Høyer, and E. Knill. The quantum query complexity of the hidden
subgroup problem is polynomial. Information Processing Letters, 91(1):43–48,
2004. See also ArXiv preprint quant–ph/0401083.

[Eme04] J. Emerson. Random quantum circuits and pseudo-random operators: theory and
applications. ArXiv preprint quant–ph/0410087, 2004.

[EWS+03] J. Emerson, Y. Weinstein, M. Saraceno, S. Lloyd, and D. Cory. Pseudo-Random
unitary operators for quantum information processing. Science, 302:2098–2100,
2003.

[FIM+03] K. Friedl, G. Ivanyos, F. Magniez, M. Santha, and P. Sen. Hidden translation and
orbit coset in quantum computing. In Proceedings of the Symposium on Theory of
Computing (STOC), pages 1–9, 2003.

[Gav04] D. Gavinsky. Quantum solution to the hidden subgroup problem for poly-near-
Hamiltonian groups. Quantum Information and Computation, 4(3):229–235, 2004.

[GSVV04] M. Grigni, L. Schulman, M. Vazirani, and U. Vazirani. Quantum mechanical algo-
rithms for the nonabelian hidden subgroup problem. Combinatorica, pages 137–
154, 2004.

[HRTS03] S. Hallgren, A. Russell, and A. Ta-Shma. The Hidden Subgroup Problem and
Quantum Computation Using Group Representations. SIAM Journal on Comput-
ing, 32(4):916–934, 2003.

[IMS03] G. Ivanyos, F. Magniez, and M. Santha. Efficient quantum algorithms for some
instances of the non-abelian hidden subgroup problem. International Journal of
Foundations of Computer Science, pages 723–740, 2003.

[Ip03] L. Ip. Shor’s algorithm is optimal. Unpublished manuscript, 2003.
[Kup03] G. Kuperberg. A subexponential-time quantum algorithm for the dihedral hidden

subgroup problem. ArXiv preprint quant–ph/0302112, 2003.
[LN94] R. Lidl and H. Niederreiter. Introduction to finite fields and their applications.

Cambridge University Press, 2nd edition, 1994.
[Mat02] J. Matoušek. Lectures on Discrete Geometry. Graduate Texts in Mathematics.

Springer-Verlag, 2002.
[MR05] C. Moore and A. Russell. For distinguishing conjugate hidden subgroups, the pretty

good measurement is as good as it gets. ArXiv preprint quant–ph/0501177, 2005.
[MRRS04] C. Moore, D. Rockmore, A. Russell, and L. Schulman. The power of basis selection

in Fourier sampling: hidden subgroup problems in affine groups. In Proceedings of
the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’04),
pages 1113–1122, 2004. ArXiv preprint quant–ph/0503095.

On the Power of Random Bases in Fourier Sampling 1411

[MRS05] C. Moore, A. Russell, and L. Schulman. The symmetric group defies strong Fourier
sampling: Part I. ArXiv preprint quant–ph/0501056, 2005.

[Ser77] J. P. Serre. Linear Representations of Finite Groups. Springer, 1977.
[WF89] W. Wootters and B. Fields. Optimal state-determination by mutually unbiased mea-

surements. Ann. Physics, 191(2):363–381, 1989.

On the Hardness of Embeddings Between
Two Finite Metrics

Matthew Cary, Atri Rudra, and Ashish Sabharwal

Computer Science and Engineering,
University of Washington, Box 352350,

Seattle, WA 98195-2350, U.S.A.
{cary, atri, ashish}@cs.washington.edu

Abstract. We improve hardness results for the problem of embedding
one finite metric into another with minimum distortion. This problem
is equivalent to optimally embedding one weighted graph into another
under the shortest path metric. We show that unless P = NP, the min-
imum distortion of embedding one such graph into another cannot be
efficiently approximated within a factor less than 9/4 even when the two
graphs are unweighted trees. For weighted trees with the ratio of maxi-
mum edge weight to the minimum edge weight of α2 (α ≥ 1) and all but
one node of constant degree, we improve this factor to 1+α. We also ob-
tain similar hardness results for extremely simple line graphs (weighted).
This improves and complements recent results of Kenyon et al. [13] and
Papadimitriou and Safra [18].

1 Introduction

For two n-point metric spaces (X, ρ) and (Y,σ), the expansion of a bijection
ϕ : X → Y is defined as exp(ϕ) = maxa�=b∈X

σ(ϕ(a),ϕ(b))
ρ(a,b) . The distortion of ϕ,

denoted dist(ϕ), is the product of exp(ϕ) and exp(ϕ−1). The expansion of ϕ−1

is also referred to as the contraction of ϕ and denoted con(ϕ). The distortion
between X and Y , denoted dist(X,Y), is the minimum distortion over all such
bijections and may be thought of as a difference measure between these met-
ric spaces. This paper addresses the computational hardness of the problem of
embedding one finite metric space into another with minimum distortion.

The notion of distortion was originally studied for infinite metrics [12] in the
analysis of Banach spaces. More recently the embedding of finite metrics into
Euclidean and other Lp metrics has been very successful for applications in theo-
retical computer science, including approximation, learning, on-line algorithms,
high-dimensional geometry, and others [6, 17, 16, 11]. This notion has been ex-
tended in such directions as embedding a finite metric into a distribution of
metrics which has again found great success in approximation algorithms [1, 8].
This continues to be an active area of research [2, 15].

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 1412–1423, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On the Hardness of Embeddings Between Two Finite Metrics 1413

We point out that the problems addressed in the works mentioned above are
combinatorial in nature– that is, they are concerned with embedding a finite
metric into another class of metrics and the focus is on providing bounds for
the distortion itself. However, we are interested in the algorithmic problem of
embedding a specific metric into another specific metric– i.e. we are interested in
the worst case ratio of the distortion obtained by the algorithm under considera-
tion and the best possible distortion. This problem was introduced by Kenyon et
al. [13]. The recent work of Bădoiu et. al. [3] considers the algorithmic question
of finding embeddings of a specific metric into a class of metrics.

In addition to the fact that the problem of finding low-distortion embeddings
between two finite metrics is a very natural question that by itself merits in-
vestigation, the problem is also likely to have much wider use than theoretical
computer science. To mention three examples, theorem proving and symbolic
computation [20], database problems such as queries over heterogeneous struc-
tured databases [21], and matching gels from electrophoresis [10] can all be ex-
pressed as tree embedding problems. The problem has several other applications
as well [13].

We note a basic fact that any n-point metric may be realized as the shortest
path metric of a weighted undirected graph over n nodes, for example by making
a complete graph whose adjacency matrix is the matrix of metric distances. Due
to this correspondence, we will exclusively focus on the problem of optimally
embedding one graph into another. We will implicitly identify a graph with the
metric given by shortest paths on that graph. For a set of weighted graphs, their
weight ratio is the ratio of the maximum to the minimum weights of edges in
the graphs.

1.1 Previous Results

The only upper bounds on this problem known to us are by Kenyon et al. [13].
Given two point sets on the real line with the L1 distance metric that have
distortion less than 3 + 2

√
2, there is a polynomial time algorithm to find an

embedding with the minimum distortion. Their second result finds the minimum
distortion between an arbitrary graph and a tree, in polynomial time if the degree
of the tree and the distortion are constant. Their algorithm is exponential in the
degree of the tree and doubly-exponential in the distortion. Both algorithms
are based on dynamic programming; the latter is similar to those based on tree
decompositions of graphs.

The situation for hardness results is a little more clear. Determining if there
is an isometry—a distortion 1 embedding—between two graphs is the graph
isomorphism problem, which is not known to be in P but which is probably not
NP-hard either. Kenyon et al. [13] show the problem is NP-hard to approximate
within a factor of 2 for general graphs and a factor of 4/3 in the case where one of
the graphs is an unweighted tree and the other is a weighted graph with weights
1/2 or 1. Papadimitriou and Safra [18] show that it is NP-hard to approximate
within a factor of 3 the distortion between any two finite metrics realized as
point sets in R3 where the distance metric is the L2 norm.

1414 M. Cary, A. Rudra, and A. Sabharwal

1.2 Our Results

Unweighted Trees (Section 3.3) The problem is NP-hard to approximate within
a factor less than 9/4 for unweighted trees. As far as we know, this is the
first hardness result for embedding an unweighted graph into another. It also
improves the factor of 2 result for general graphs [13] even when the graphs
are unweighted.

Weighted Trees (Section 3.2) The problem is NP-hard to approximate within
a factor less than 1 + α for any α ≥ 1 and tree graphs with weight ratio
Ω(α2). This is the first hardness result for embedding trees into trees and
improves the bound of 2 for general graphs [13] at the expense of a larger
weight ratio. Our result also holds when all but one node of the underlying
graphs have degree ≤ 4; the problem is known to be easy in the unweighted
case when all nodes have constant degree and the distortion is small [13].
This result also improves the bound of 3 by Papadimitriou and Safra [18].

Weighted Line Graphs (Section 4) The problem is NP-hard to approximate
within a factor of α for any α > 1 and line graphs with weight ratio Ω(α2n4),
where n is the number of nodes in the two graphs. This is the only bound
known for graphs with constant degrees and large weights.

2 Preliminaries

We begin with some basic properties of the distortion resulting from embedding
a weighted undirected graph G into another such graph H. Let [m] denote the
set of integers from 1 to m. Let dG and dH denote the shortest path distances in
G and H, respectively. Fix a bijection ϕ : G → H. We state the following results
for exp(ϕ). Analogous results hold for con(ϕ) which is nothing but exp(ϕ−1).

Lemma 1 ([13]). ϕ achieves its maximum expansion at some edge in G, i.e.,
exp(ϕ) = max{a,b}∈E(G)

dH(ϕ(a),ϕ(b))
dG(a,b) .

Corollary 1. If G and H are unweighted then exp(ϕ) is an integer.

Lemma 2. If G and H are unweighted and H has no edge-subgraph that is
isomorphic to G then exp(ϕ) ≥ 2.

Proof. Let u and v be nodes of G such that (u, v) ∈ E(G) but (ϕ(u),ϕ(v)) �∈
E(H). Such nodes must exist because H has no edge-subgraph isomorphic to G.
dG(u, v) = 1 and dH(ϕ(u),ϕ(v)) ≥ 2, implying an expansion of at least 2. �

We now state the problem we use in the reductions for our NP-hardness
proofs. It is a generalization of the Hamiltonian cycle problem [9]. Let G = (V,E)
be a directed graph over n vertices. G has a disjoint cycle cover if there is a
collection of vertex-disjoint cycles in G that contain every node in V , i.e., there
exists a permutation σ : [n] → [n] such that for all i ∈ [n], (vi, vσ(i)) ∈ E. G

On the Hardness of Embeddings Between Two Finite Metrics 1415

has a loose disjoint cycle cover if it has a disjoint cycle cover after adding two
arbitrarily chosen edges to E.

The loose directed disjoint cycle cover testing problem is a property testing
problem defined as follows. Given a directed graph G, output 1 if G has a disjoint
cycle cover and 0 if G does not even have a loose disjoint cycle cover. Note that
in the remaining scenario, one is allowed to output anything.

Lemma 3. The loose directed disjoint cycle cover testing problem is NP-hard
for graphs with indegree ≤ 4 and outdegree = 3.

Proof. This can be shown by an extension of the ideas used in the NP-completeness
proof of the directed disjoint cycle cover problem in an earlier paper by the au-
thors [5] using in addition the fact that the Vertex Cover problem is hard to
approximate [7]. We omit the details. �

Finally, we mention a combinatorial result about sum-free sequences that is
used in one of our constructions. A sequence of n integers is k-way sum-free if
all nk sums of k integers (not necessarily distinct) in it are distinct. Khanna et
al. [14] suggest a greedy algorithm to construct 3-way sum-free sequences. Their
result can be generalized to the following.

Lemma 4. There exists a strictly increasing sequence of size n in [n2k−1] that
is k-way sum-free and is computable in time O(n2k−1).

3 Hardness of Embeddings Between Tree Graphs

Consider the problem of finding a minimum distortion embedding between two
given undirected tree graphs. We give reductions from the loose directed disjoint
cycle cover testing problem to the decision version of this embedding problem
on weighted as well as unweighted trees. The result for the weighted case holds
even for graphs with all but one node of degree at most 4. We begin with a
general construction that will be used in both reductions.

Given a directed graph G with outdegree = 3 and indegree ≤ 4, we will
construct a source tree S and a destination tree D with the property that there
exist 0 < a < b such that

1. if G has a disjoint cycle cover then dist(S,D) ≤ a, and
2. if G has no loose disjoint cycle cover then dist(S,D) ≥ b.

It follows from Lemma 3 that it is NP-hard to approximate dist(S,D) within a
factor less than b/a.

3.1 The Construction

We describe in this section the construction of S and D from G. Let Z+ denote
the set of positive integers and s : Z+ → Z+ be a strictly increasing monotonic
function. Let v1, . . . , vn be the vertices of G.

1416 M. Cary, A. Rudra, and A. Sabharwal

We will need two types of gadgets, a center gadget and for each i ∈ [n], a
size gadget Ti. The center gadget is a rooted tree consisting of n leaves, all at
depth 1. All edges in this gadget have weight y ∈ Z+. Its root is denoted by cr

and leaves by c
. The size gadget Ti is a rooted tree consisting of s(i) leaves, all
at depth 1. All edges in Ti have weight 1. The root of Ti is denoted by gr and
the leaves by g
.

The source tree S is constructed as follows (see Fig. 1). Start with a copy
of the center gadget and associate with each c
 node of it a distinct vertex vi

of G. For any i ∈ [n], let the successors of vi in G be the vertices vi1 , vi2 , and
vi3 . Attach to the c
 node corresponding to vi copies of the three size gadgets
Ti1 , Ti2 , and Ti3 by adding edges with weight x ∈ Z+ to the gr nodes of these
gadgets. Copies of any size gadget Ti in S will henceforth be denoted by Si.

v2

v3

v1

v4

Graph G

xx

v1

x
x x

v3
v2 v4

y y yy

x

Tree S

⎫⎪⎬⎪⎭Si

⎫⎪⎬⎪⎭Di

⎫⎪⎬⎪⎭Di

zz

xx

y y y

x

y

x

Tree D

Fig. 1. A directed graph and the source and destination trees corresponding to it. For
simplicity of depiction, s(i) = i. Unmarked edges have a weight of 1

The destination tree D is constructed similarly. As before, start with a copy
of the center gadget. Fix an arbitrary ordering of its c
 nodes. For all i ∈ [n],
attach to the ith c
 node a copy of the size gadget Ti by adding an edge of weight
x to its gr node. These n size gadgets are called non-spare size gadgets. Now let
P be the multi-set {i | gadget Ti is used in S}. We may assume that P ⊇ [n],
otherwise a disjoint cycle cover cannot exist. For each i ∈ P \ [n], attach a copy
of the size gadget Ti directly to the cr node by adding edges of weight z ∈ Z+

to their gr node. These are called spare size gadgets. Copies of any size gadget
Ti in D will henceforth be denoted by Di.

Note that both S and D have the same number of nodes and for every i ∈ [n],
the same number of copies of the size gadget Ti. Further, S and D each have
exactly one cr node, n c
 nodes, and 3n g
 nodes (recall the outdegree of every
vertex of G is 3). Consider a mapping ϕ from S to D. Let A and B be sets of
nodes in S and D, respectively. ϕ fully maps A to B if {ϕ(u) | u ∈ A} = B.
ϕ maps A exactly to B if A and B are size gadgets with gr nodes a and b,
respectively, ϕ fully maps A to B, and ϕ(a) = b.

The basic idea of the construction is that S encodes the input graph G while
D is setup so that the relationships between the c
 nodes and the non-spare size

On the Hardness of Embeddings Between Two Finite Metrics 1417

gadgets induce (via a low distortion embedding) a permutation on the vertices
of G. This construction balances two conflicting desires. On one hand, it must be
possible to match unused size gadgets to the spare gadgets with small distortion
when a disjoint cycle cover exists. Thus, the spare gadgets cannot be too far
from the successor-selection part D. On the other hand, a node corresponding
to a vertex in G must be far enough from size gadgets not corresponding to its
own successors so that choosing a predecessor incorrectly gives large distortion.

Lemma 5. If G has a disjoint cycle cover then dist(S,D) ≤ (y+z)(x+y)/(xz).

Proof. As G has a disjoint cycle cover, there is a permutation σ : [n] → [n] such
that for all i ∈ [n], (i,σ(i)) is an edge in G. We construct a small distortion
embedding ϕ of S into D. Consider any i ∈ [n]. By the definition of σ, an Si

gadget A is attached to the c
 node u corresponding to vσ(i) in S. Let ϕ map A
exactly to the non-spare Di gadget B of D and u to the c
 node attached to B.
This leaves 2n size gadgets of S not yet mapped. Map each of these exactly to
spare size gadgets of D. Finally, let ϕ map the cr node of S to the cr node of D.

We claim that exp(ϕ) = (y + z)/x. By Lemma 1, we only need to consider
the expansion of the edges of S. The (gr, g
) and (cr, c
) edges in S have an
expansion of 1. A (gr, c
) edge in S has an expansion of 1 if the corresponding Si

gadget is mapped to a non-spare Di gadget and (y+z)/x otherwise. This proves
the claim. We further claim that exp(ϕ−1) = (x + y)/x. Again using Lemma 1,
the only edges in D that have expansion different from 1 are the (cr, gr) edges
in D that give an expansion of (x + y)/z. This completes the proof. �

Let ϕ be any embedding of S into G. Since both S and D contain edges of
weight 1 and all edge weights are in Z+, we have the following.

Proposition 1. exp(ϕ) ≥ 1 and con(ϕ) ≥ 1.

Lemma 6. If G has no disjoint cycle cover and ϕ fully maps every non-spare
Di gadget from an Si gadget and c
 nodes from c
 nodes, then both exp(ϕ) and
con(ϕ) are at least 1 + 2y/x.

Proof. For i ∈ [n], consider the Si gadget Ai that maps to the non-spare Di

gadget Bi of D. Let Ai be attached to the c
 node uj of S corresponding to
vertex vj of G. Let Bi be attached to the c
 node wi of D. If uj maps to wi and
(vj , vi) ∈ E(G), think of vertex vi being chosen as the successor of vertex vj in
G. Since G does not have a disjoint cycle cover, there must exist i ∈ [n] such that
uj , as defined above, does not map to wi. Fix such i and j. Let ϕ(uj) = wk1 and
ϕ(uk2) = wi, where k1 �= i and k2 �= j. Let r be the gr node of Ai and r′ be that
of Bi. The edge (uj , r) in S gives an expansion of at least (x+ 2y)/x = 1+ 2y/x
because ϕ maps uj to wk1 and r to a node within Bi. Similarly, the edge (wi, r

′)
in D gives a contraction of at least 1 + 2y/x because ϕ−1 maps wi to uk2 and r′

to a node within Ai. �

Lemma 7. If G has no loose disjoint cycle cover and ϕ fully maps every Si

gadgets to a Di gadget, then both exp(ϕ) and con(ϕ) are at least 1 + 2y/x.

1418 M. Cary, A. Rudra, and A. Sabharwal

Proof. Since every Si gadget fully maps to a Di gadget, the center gadget of S
fully maps to the center gadget of D. We first consider the case when ϕ maps
the cr node of S to the cr node in D. Every c
 node of S must then map to a c

node of D and Lemma 6 completes the proof.

Now suppose that ϕ maps the cr node of S to a c
 node wi of D. As all
gadgets are fully mapped, there is a c
 node uj of S corresponding to vertex
vj of G be mapped to the cr node of D. Let Bi be the Di gadget attached to
wi. From the arguments we made above, it follows that if we want at least one
of exp(ϕ) and con(ϕ) to be strictly less than 1 + 2y/x, then only one of two
things can happen. First, a size gadget Ai in S that does not correspond to a
successor of vj is mapped to Bi and every other size gadget maps correctly w.r.t.
the successor relationship in G. In this case, exp(ϕ) ≥ 1+2y/x while con(ϕ) may
be at most 1 + y/x. However, if Ai corresponds to vertex vi, by adding the edge
(vj , vi), we have a disjoint cycle cover, contradicting the absence of a loose cycle
cover. Second, Bi and at most two other non-spare size gadgets Bk and B
 in D
are mapped from size gadgets in S that correspond to successors vi, vk and v
 of
vj , and every other size gadget maps correctly w.r.t. the successor relationship
in G. In this case, con(ϕ) ≥ 1 + 2y/x while exp(ϕ) may be at most 1 + y/x. The
successor of vj is well-defined in this case, but vk and v
 may not be successors
of the c
 nodes in S mapped to the c
 nodes of Bk and B
. If those nodes are
vs and vt, by adding edges (vs, vk) and (vt, v
), we have a disjoint cycle cover,
again contradicting the absence of a loose cover. �

3.2 Hardness for Weighted Trees

We first consider general weighted trees with unbounded degree and then modify
the reduction so that exactly one node in both S and D has non-constant degree.
Let ϕ be an embedding of S into D. We begin by showing that for suitably
weighted S and D, the distortion is large if ϕ does not map size gadgets correctly.

Lemma 8. If s(1) > n and ϕ does not fully map every Si gadget to a Di gadget,
then dist(ϕ) ≥ x ·min{x, z}.

Proof. Suppose exp(ϕ) < min{x, z}. For i ∈ [n], s(i) ≥ s(1) > n. Since the
center gadgets have only n + 1 nodes, every size gadget in S must have at least
one node that ϕ maps to a size gadget in D. Recall that all edges within size
gadgets in S have weight 1 while every edge going out of size gadgets in D has
weight min{x, z}. To keep exp(ϕ) < min{x, z}, every node of any size gadget
in S must map within a single size gadget in D. Since for all i ∈ [n], S and D
have the same number of Si and Di gadgets, respectively, this can happen only
if every Si gadget fully maps to a Di gadget. A similar argument shows that
exp(ϕ−1) < x only if every Di gadget fully maps to an Si gadget. �

Theorem 1. For α ≥ 1, it is NP-hard to approximate the distortion between
two trees with weight ratio O(α2) within a factor less than 1 + α.

On the Hardness of Embeddings Between Two Finite Metrics 1419

Proof. Let G, S, and D be as in Section 3.1 with x = α + 1, y = α(α + 1)/2,
z = x + y = (α + 1)(α + 2)/2, and s(i) = i + n for i ∈ [n]. The weight ratio
of {S,D} is (α + 1)(α + 2)/2. If G has a disjoint cycle cover then by Lemma 5
dist(S,D) ≤ 1 + 2y/x = 1 + α. If G does not have a loose disjoint cycle cover
then by Lemmas 7 and 8, dist(S,D) ≥ min{x ·min{x, z}, (1 + 2y/x)2}, which is
(1 + α)2. The result follows from Lemma 3. �

Let N be the number of nodes in S (and D). In the above construction,
N = Θ(n2). The cr nodes of S and D have degrees n and 3n, respectively, which
is Θ(

√
N). The c
 nodes have degrees 4 and 2, respectively. The gr nodes have

degrees between n = Θ(
√
N) and 2n, while the g
 nodes have degree 1. By

replacing each Si and Di gadget with a line graph, we can show the following
theorem. The complete proof may be found in the full version of the paper [4].

Theorem 2. For 0 < ε ≤ 1/2 and α ≥ 1, it is NP-Hard to approximate the
distortion between two trees with N nodes, weight ratio Ω(α2), exactly one node
of degree Θ(N ε), and all other nodes of degree ≤ 4 within a factor less than
1 + α.

3.3 Hardness for Unweighted Trees

The construction from Section 3.1 needs slight modification in order to obtain
hardness results for the unweighted case. Let G, S, and D be as in Section 3.1
with x = y = z = 1 and s(i) = 2c ·

(
f(i) + 2n5

)
, where c = 4n + 2 and f

is a strictly increasing 3-way sum-free sequence of size n in [n5] guaranteed by
Lemma 4. These parameters imply six useful properties of s, namely, s(·) is
even, s(·) is a multiple of c, 2s(1) (s(n), 2s(n) < 3s(1), |s(i)− s(j)| is large for
i �= j, and s(1), s(2), . . . , s(n) is a strictly increasing 3-way sum-free sequence.
Furthermore, we have that c > |Edges(G)| = 3n. We will repeatedly use the fact
that S and D each have n + 1 center gadget nodes and 3n gr nodes.

The only change to the construction is to modify the non-spare size gadgets
in D. Instead of being depth one trees with s(i) leaves, they are now depth two
trees with s(i)/2 nodes at depth one, each of which has a single depth two leaf.
The root and depth one nodes are denoted by gr and g
 as before, the depth
two leaves are denoted by g′
, and the depth one and two nodes are together
denoted by g
. All other notation is unchanged. Like the original construction,
both S and D have the same number of nodes and for each Si gadget there is a
corresponding Di gadget with the same number of nodes.

Let ϕ be any embedding of S into D. We will prove the following lemmas in
the rest of this section using Propositions 2 and 3, respectively.

Lemma 9. If G has no disjoint cycle cover and ϕ does not fully map every Si

gadget to a Di gadget, then exp(ϕ) ≥ 3.

Lemma 10. If G has no disjoint cycle cover and ϕ does not fully map every Si

gadget to a Di gadget, then either con(ϕ) ≥ 3 or exp(ϕ) ≥ 5.

1420 M. Cary, A. Rudra, and A. Sabharwal

Theorem 3. It is NP-Hard to approximate the distortion between two unweighted
trees within a factor less than 9/4.

Proof. If G has a disjoint cycle cover then by an argument similar to Lemma 5,
dist(S,D) ≤ 4. Assume that G does not have a loose disjoint cycle cover (and
hence no disjoint cycle cover either). If ϕ fully maps every Si gadget to a Di

gadget then by an argument similar to Lemma 7, dist(ϕ) ≥ 9. If it does not then
Lemmas 2, 9, and 10 imply dist(ϕ) ≥ 9. The result follows from Lemma 3. �

Proposition 2. If any of the following fail, exp(ϕ) ≥ 3.

1. No size gadget in S maps to the g
 nodes of two distinct size gadgets in D.
2. Nodes of no two size gadgets in S are both mapped to the g
 nodes of a single

size gadget in D.
3. No node of an Si gadget maps to a g
 node of a Dj gadget for j �= i.
4. The gr node of any Si gadget A maps within the unique Di gadget B whose

g
 nodes A maps to, or possibly to the cr node of D if B is a spare gadget.
5. The cr node of S is not mapped to a non-spare gadget or the g
 nodes of a

spare gadget in D.
6. No c
 node in S is mapped to a non-spare gadget or the g
 nodes of a spare

gadget in D.

Proof. Suppose (1) fails and a size gadget A in S maps to the g
 nodes of two
distinct size gadgets B and C in D. Any g
 node of B is at least distance 5 away
from any g
 node of C, while all nodes in A are within distance 2 of each other.
Hence, exp(ϕ) ≥ 5/2. By Corollary 1, exp(ϕ) ≥ 3.

Suppose (2) fails with an Si gadget A and an Sk gadget C mapping to the g

nodes of a single Dj gadget B. A and C together have at least s(i)+s(k)−s(j) ≥
2s(1)− s(n) ≥ 2c(2 + n5) nodes mapped outside B. Since there are only 4n + 1
non-g
 nodes in D (n + 1 in the center gadget and 3n gr nodes), a node of A or
C must map to a g
 node of a size gadget in D other than C. This violates (1).

The proofs of the remaining cases are similar and may be found in [4]. �
Proof of Lemma 9. By Proposition 2 (1), (4), (5), and (6), no node other than
that of a unique Si gadget can be mapped to any non-spare Di gadget or the
g
 nodes of a spare Di gadget. It follows that all non-spare gadgets are fully
mapped. We further claim that all c
 nodes of S are mapped to c
 nodes of D,
in which case the proof is complete by Lemma 6. The claim holds because of the
following. Observe that since all non-spare gadgets are fully mapped, all c
 nodes
of S must map within the center gadget of D to ensure exp(ϕ) ≤ 2. Further, by
the assumption in the lemma, at least one spare gadget B is partially mapped
from a gadget A in S. By (4), the gr node of A must map to the cr node of D,
making the latter unavailable for the c
 nodes of S. �

We begin the contraction argument by stating a straightforward but crucial
property of the g′
 nodes of the size gadgets in D.

On the Hardness of Embeddings Between Two Finite Metrics 1421

Observation 1 If a g′
 node of a size gadget B in D does not have as its image
under ϕ−1 in S a node with neighbors only those nodes that are images of nodes
of B, the c
 node attached to B, or the cr node of D, then exp(ϕ) ≥ 5.

Define the successor cluster X corresponding to a vertex v of G to be the
c
 node u of S corresponding to v and the three size gadgets AiX

, AjX
, and

AkX
attached to it. Let Qϕ

X ⊆ {1, . . . , n} be the multi-set defined by Qϕ
X = {r |

some non-g′
 node of a Dr gadget maps under ϕ−1 to a non-c
 node of X}. The
multiplicity of r in Qϕ

X is the number of Dr’s that map in this way to X. Since
the number of center gadget nodes in D is only n + 1, sϕX =

∑
r∈Qϕ

X
s(r) can be

less than sX = s(iX) + s(jX) + s(kX) by at most n + 1. However, since sϕX and
sX are both multiples of c > n + 1, sϕX ≥ sX .

Proposition 3. If any of the following fail, con(ϕ) ≥ 3 or exp(ϕ) ≥ 5.

1. Qϕ
X = {iX , jX , kX}.

2. The gr node of any Di gadget B is mapped within the unique successor cluster
X to which B’s non-g′
 nodes map.

3. The cr node of D maps to the cr node of S.
4. The g
 nodes of S are occupied only by the size gadget nodes of D.
5. If a c
 node of D is mapped to a node of a successor cluster X, then nodes

from exactly three size gadgets of D map into X. (X may have other c
 nodes
of D mapped into it as well.)

6. If a c
 node of D is mapped to the c
 node of a successor cluster X, then
three size gadgets of D fully map to the non-c
 nodes of X.

7. If no c
 node of D is mapped to a node of a successor cluster X, then nodes
from exactly three size gadgets of D map into X and the c
 node of X is
occupied by a node from a fourth size gadget of D.

8. Every successor cluster in S is fully mapped from exactly one c
 node and
three size gadgets of D.

9. If a c
 node v in D is mapped to a successor cluster X, then the root r of
the size gadget B attached to v is mapped to X.

Proof. Unless mentioned otherwise the mapping under consideration in this proof
is ϕ−1. We refer the reader to the full version [4] for most cases of the proof.

If (5) fails, let v be a c
 node of D that is mapped to a node u of X. By (4),
u is either a c
 node or a gr node. Suppose first that it is a c
 node. Since (5)
fails, there is a size gadget B in D that has a node mapping to X and another
adjacent node mapping outside X. Then B contains two nodes that are mapped
at least distance 3 apart because they cannot map to the c
 node of X or to the
cr node of S.

Suppose on the other hand that u is the gr node of size gadget A in X.
Consider the set Z of size gadgets in D that have a node mapping to a g
 node
of A. Since the size of each gadget in Z is 1 mod c, the number of g
 nodes of A
is 0 mod c, and |Z| ≤ |Edges(G)| = 3n < c, there exists a size gadget B ∈ Z that
also maps outside A. In particular, B must have a node mapped to the c
 node
of X which is the only node of S outside A within distance 2 of the g
 nodes

1422 M. Cary, A. Rudra, and A. Sabharwal

of A. Since by (4) the cr node of S is already occupied by the cr node of D, no
size gadget (other than possibly B) mapping to a node outside X can also map
within X without causing exp(ϕ−1) ≥ 3. (5) now follows from (1). �
Proof of Lemma 10. From Proposition 3 (8) and (9), any non-spare size gadget
in D and the c
 node of D it is attached to must map within the same successor
cluster in S under ϕ−1. Consequently, Proposition 3 (8) can be strengthened to
say that every successor cluster in S corresponding to a node v is fully mapped
from exactly one c
 node in D, the size gadget B attached to it, and two spare
size gadgets. As s(·) is sum-free, B must correspond to a successor of v. Since
there are exactly n c
 nodes in D, this assigns a unique successor to each node
v, establishing a disjoint cycle and the contradiction which proves the lemma. �

4 Hardness of Embeddings Between Line Graphs with
Large Weights

A line graph is an acyclic connected graph of maximum degree two, that is, a
line of vertices. We have the following result whose proof appears in the full
version of the paper [4].

Theorem 4. Given two line graphs with n nodes and weight ratio Ω(b2), for
any k > 1 and b with b = Ω(kn2), it is NP-hard to determine if the distortion
between them is less than b/k or at least b.

Corollary 2. For α > 0, it is NP-hard to approximate the distortion between
two line graphs with n nodes and weight ratio Ω(α2n4) within a factor of α.

5 Conclusion

We have shown that the problem of finding a minimum distortion embedding
between two metrics is hard to approximate within constant factors on even
extremely simple graphs, such as weighted lines or unweighted trees. While our
constants improve previous results, we believe they are still far from the true
story: it seems likely that even approximating distortion in unweighted graphs
is much harder than what we know.

One natural relaxation to the graph embedding problem is to find the dis-
tortion of embedding a constant fraction of one graph to another. While this
quantity will in general be far from the true distortion, it may provide a good
enough measure of graph difference for certain applications. Other notions of dis-
tortion may also be useful. Rabinovich [19] has used average distortion to study
the MinCut-MaxFlow gap in uniform-demand mulitcommodity flow. Other pos-
sibly interesting measures are max-distortion, which is the maximum of expan-
sion and contraction rather than the product, and Gromov-Hausdorff distance,
which has applications in analysis. The problem remains open in all these sce-
narios.

On the Hardness of Embeddings Between Two Finite Metrics 1423

References

1. Y. Bartal. Probabilistic approximation of metric spaces and its algorithmic appli-
cations. In FOCS, pages 184–193, Burlington, VT, 1996.

2. M. Bădoiu, E. Demaine, M. Farach-Colton, M. Hajiaghayi, and A. Sidiropoulos.
Ordinal embeddings of minimum relaxation: General properties, trees, and ultra-
metrics. In SODA, pages 650–659, Vancouver, BC, Jan. 2005.

3. M. Bădoiu, K. Dhamdhere, A. Gupta, Y. Rabinovich, H. Raecke, R. Ravi, and
A. Sidiropoulos. Approximation algorithms for low-distortion embeddings into
low-dimensional spaces. In SODA, pages 119–128, Vancouver, BC, Jan. 2005.

4. M. Cary, A. Rudra, and A. Sabharwal. On the hardness of embeddings between two
finite metrics. Technical Report UW-CSE-TR-2005-04-02, Univ. of Washington,
2005.

5. M. Cary, A. Rudra, A. Sabharwal, and E. Vee. Floodlight illumination of inifinite
wedges. In 14th Annual Fall Workshop on Comp. Geom., Boston, MA, Nov. 2004.
Technical Report UW-CSE-2004-10-4, University of Washington.

6. M. Deza and M. Laurent. Geometry of Cuts and Metrics, volume 15 of Algorithms
and Combinatorics. Springer, 1997.

7. I. Dinur and S. Safra. The importance of being biased. In STOC, pages 33–42,
Montreal, Canada, May 2002.

8. J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating ar-
bitrary metrics by tree metrics. In STOC, pages 448–455, San Diego, CA, June
2003.

9. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, NY, 1979.

10. F. Hoffmann, K. Kriegel, and C. Wenk. Matching 2d patterns of protein spots. In
Proc. 14th Ann. Symp. on Comp. Geom., pages 231–239, 1998.

11. P. Indyk. Algorithmic aspects of geometric embeddings, Oct. 2001. FOCS ’01
tutorial. Available at http://thoery.lcs.mit.edu/∼indyk/tut.html.

12. W. B. Johnson and H. Lindenstrauss, editors. Handbook of the Geometry of Banach
Spaces. North-Holland, 2003.

13. C. Kenyon, Y. Rabani, and A. Sinclair. Low distortion maps between point sets.
In STOC, pages 272–280, Chicago, IL, June 2004.

14. S. Khanna, N. Linial, and S. Safra. On the hardness of approximating the chromatic
number. Combinatorica, 20(3):393–415, 2000.

15. J. Lee. On distance scales, embeddings, and efficient relaxations of the cut cone.
In SODA, pages 92–101, Vancouver, BC, Jan. 2005.

16. N. Linial. Finite metric spaces – combinatorics, geometry and algorithms. In Proc.
Int. Congress of Math. III, pages 573–586, Beijing, China, 2002.

17. J. Matsous̆ek. Lectures on Discrete Geometry, volume 212 of Graduate Texts in
Mathematics. Springer, 2002.

18. C. Papadimitriou and S. Safra. The copmlexity of low-distortion embeddings be-
tween point sets. In SODA, pages 112–118, Vancouver, BC, Jan. 2005.

19. Y. Rabinovich. On average distortion of embedding metrics into the line and into
l1. In STOC, pages 456–462, San Diego, CA, June 2003.

20. R. Ramesh and I. V. Ramakrishnan. Nonlinear pattern matching in trees. Journal
of the ACM, 39(2):295–316, 1992.

21. T. Schlieder and F. Naumann. Approximate tree embedding for querying XML
data. In ACM-SIGIR Work., XML and Info. Retrieval, Athens, Greece, July 2000.

Improved Lower Bounds for Locally Decodable
Codes and Private Information Retrieval

Stephanie Wehner� and Ronald de Wolf�

CWI, Kruislaan 413, 1098 SJ, Amsterdam, the Netherlands
{wehner, rdewolf}@cwi.nl

Abstract. We prove new lower bounds for locally decodable codes and
private information retrieval. We show that a 2-query LDC encoding n-
bit strings over an �-bit alphabet, where the decoder only uses b bits of

each queried position, needs code length m = exp

(
Ω

(
n

2b
∑b

i=0
(�

i)

))
.

Similarly, a 2-server PIR scheme with an n-bit database and t-bit queries,
where the user only needs b bits from each of the two �-bit answers, un-

known to the servers, satisfies t = Ω

(
n

2b
∑b

i=0
(�

i)

)
. This implies that

several known PIR schemes are close to optimal. Our results generalize
those of Goldreich et al. [8], who proved roughly the same bounds for lin-
ear LDCs and PIRs. Like earlier work by Kerenidis and de Wolf [12], our
classical bounds are proved using quantum computational techniques. In
particular, we give a tight analysis of how well a 2-input function can be
computed from a quantum superposition of both inputs.

1 Introduction

1.1 Locally Decodable Codes

Error correcting codes allow reliable transmission and storage of information in
noisy environments. Such codes often have the disadvantage that one has to read
almost the entire codeword, even if one is only interested in a small part of the
encoded information. A locally decodable code C : {0, 1}n → Σm over alphabet
Σ is an error-correcting code that allows efficient decoding of individual bits of
the encoded information: given any string y that is sufficiently close to the real
codeword C(x), we can probabilistically recover any bit xi of the original input
x, while only looking at k positions of y. The code length m measures the cost of
the encoding, while k measures the efficiency of decoding individual bits. Such
codes have had a number of applications in recent computer science research,
including PCPs and worst-case to average-case reductions. One can also think
of applications encoding a large chunk of data in order to protect it from noise,
where we are only interested in extracting small pieces at a time. Imagine for

� Supported by EU project RESQ IST-2001-37559 and NWO Vici grant 2004-2009.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 1424–1436, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Improved Lower Bounds for Locally Decodable Codes 1425

example an encoding of all books in a library, where we would like to retrieve
only the first paragraph of this paper.

The main complexity question of interest is the tradeoff between m and
k. With k = polylog(n) queries, the code length can be made polynomially
small, even over the binary alphabet Σ = {0, 1} [3]. However, for fixed k,
the best upper bounds are superpolynomial. Except for the k = 2 case with
small alphabet Σ, no good lower bounds are known. Katz and Trevisan [10]
showed superlinear but at most quadratic lower bounds for constant k. Goldre-
ich et al. [8] showed an exponential lower bound for linear codes with k = 2
queries and constant alphabet, and Kerenidis and de Wolf [12] extended this
to all codes, using techniques from quantum computing. For Σ = {0, 1}
 they
prove m = 2Ω(n/25�). They also slightly improved the polynomial bounds of [10]
for k > 2.

Clearly the above lower bound becomes trivial if each position of the code-
word has
 ≥ log(n)/5 bits. In this paper we analyze the case where
 can be
much larger, but the decoder uses only b bits out of the
 bits of a query answer.
The b positions that he uses may depend on the index i he is interested in and on
his randomness. This setting is interesting because many existing constructions
are of this form, for quite small b. Goldreich et al. [8] also analyzed this situation,

and showed the following lower bound for linear codes: m = 2Ω(n/
∑b

i=0 (�
i)). Here

we prove a slightly weaker lower bound for all codes: m = 2Ω(n/2b
∑b

i=0 (�
i)). In

particular, if b =
 (so the decoder can use all bits from the query answers) we
improve the bound from [12] to m = 2Ω(n/22�). We lose a factor of 2b compared
to Goldreich et al. This factor can be dispensed with if the decoder outputs the
parity of a subset of the bits he receives. All known LDCs are of this type.

Our proofs are completely different from the combinatorial approach of Gol-
dreich et al. Following [12], we proceed in two steps: (1) we reduce the two clas-
sical queries to one quantum query and (2) show a lower bound for the induced
one-quantum-query-decodable code by deriving a random access code from it.
The main novelty is a tight analysis of the following problem. Suppose we want
to compute a Boolean function f(a0, a1) on 2b bits, given a quantum superposi-
tion 1√

2
(|0, a0〉+|1, a1〉) of both halves of the input. We show that any Boolean f

can be computed with advantage 1/2b+1 from this superposition, and that this is
best-achievable for the parity function. This may be of independent interest. In
fact, Kerenidis [11] recently used it to exhibit an exponential quantum-classical
separation in multiparty communication complexity, and in an interesting new
approach to improve depth lower bounds for classical circuits.

1.2 Private Information Retrieval

There is a very close connection between LDCs and the setting of private infor-
mation retrieval. In PIR, the user wants to retrieve some item from a database
without letting the database learn anything about what item he asked for. In the
general model, the user retrieves the ith bit from an n-bit database x = x1 . . .xn

that is replicated over k ≥ 1 non-communicating servers. He communicates with

1426 S. Wehner and R. de Wolf

each server without revealing any information about i to individual servers, and
at the end of the day learns xi. This is a natural cryptographic problem that
has applications in systems where privacy of the user is important, for example
databases providing medical information. Much research has gone into optimiz-
ing the communication complexity of one-round PIR schemes. Here the user
sends a t-bit message (“query”) to each server, who responds with an
-bit mes-
sage (“answer”), from which the user infers xi. A number of non-trivial upper
bounds have been found [7, 1, 4, 6], but, as in the LDC case, the optimality of
such schemes is wide open. In fact, the best known constructions of LDCs with
constant k come from PIR schemes with k servers. Roughly speaking, concate-
nating the servers’ answers to all possible queries gives a codeword C(x) of length
m = k2t over the alphabet Σ = {0, 1}
 that is decodable with k queries. The
privacy of the PIR scheme translates into the error-correcting property of the
LDC: since many different sets of k queries have to work for recovering xi, we
can afford some corrupted positions. Conversely, we can turn a k-query LDC into
a k-server PIR scheme by asking one query to each server (so t = log m). The
privacy of the resulting PIR scheme follows from the fact that an LDC can be
made to have a “smoothness” property, meaning that most positions are about
equally likely to be queried, independent of i.

Here we restrict attention to 2 servers, which is probably the most interest-
ing case. The paper by Chor et al. [7] that introduced PIR, gave a PIR scheme
where both the queries to the servers and the answers from the servers have
length Θ(n1/3) bits. Later constructions gave alternative ways of achieving the
same complexity, but have not given asymptotic improvements for the 2-server
case (in contrast to the case of 3 or more servers [6] and the case of 2 quan-
tum servers [12]). Though general lower bounds for 2-server PIRs still elude us,
reasonably good lower bounds can be proved for schemes that only use a small
number b of bits from each possibly much longer answer string. This b is some-
times called the probe complexity of the scheme. As stated in [5], small probe
complexity is a desirable property of a PIR scheme for a number of reasons:
the user needs less space; the schemes can be more easily applied recursively as
in [6]; and such PIR schemes induce locally decodable codes where the code-
length m is relatively small while the codeword entries are allowed to have many
bits each, but the decoder needs only few bits from each codeword entry it
read.

As was implicitly stated by Katz and Trevisan [10] and formalized by Gol-
dreich et al. [7], it is possible to translate 2-server PIRs to 2-query LDCs,
where the property of only using b bits from each
-bit string carries over.
Combining this lemma with our LDC lower bounds gives the following bound
for 2-server PIRs with t-bit queries,
-bit answers, and probe complexity b:
t = Ω(n/2b

∑b
i=0

(

i

)
). In particular, for fixed b the overall communication is

C = 2(t +
) = Ω(n1/(b+1)). This is tight for b = 1 (we describe an O(
√

n)
scheme in Section 2) and close to optimal for b = 3, since a small variation
of the Chor et al. scheme achieves C = O(n1/3) using only 3 bits from each

Improved Lower Bounds for Locally Decodable Codes 1427

answer 1, while our bound is Ω(n1/4). Similar results were established for lin-
ear PIR schemes by Goldreich et al., but our results apply to all PIR schemes.
They imply that in improved 2-server PIR schemes, the user needs to use more
bits from the servers’ answers. For general schemes, where b =
, we obtain
t = Ω(n/22
). This improves the n/25
 bound from [12]. It implies a lower
bound of 5 log n on the total communication C = 2(t +
). This is incredibly
weak, but without any assumptions on how the user handles the answers, and
still improves what was known [13, 12].

2 Preliminaries

We use a|S to denote the string a restricted to a set of bits S ⊆ [n] = {1, . . . , n},
e.g., 11001|{1,4,5} = 101. We identify a set S ⊆ [n] with n-bit string S = S1 . . . Sn,
where i ∈ S if and only if the ith bit Si = 1. We use ei for the n-bit string
corresponding to the singleton set S = {i}. If y ∈ Σm where Σ = {0, 1}
, then
yj ∈ Σ denotes its jth entry, and yj,i with i ∈ [
] is the ith bit of yj . We assume
general familiarity with the quantum model [15]. Our proofs depend heavily on
the notion of a quantum query. We consider queries with
-bit answers, where

 ≥ 1. For Σ = {0, 1}
, a quantum query to a string y ∈ Σm is the unitary map
|j〉|z〉 !→ |j〉|z ⊕ yj〉, where j ∈ [m], z ∈ {0, 1}
 is called the target register, and
z ⊕ yj is the string resulting from the xor of the individual bits of z and yj , i.e.
z ⊕ yj = (z1 ⊕ yj,1) . . . (z
 ⊕ yj,
). It is convenient to get the query result in the
phase of the quantum state. To this end, define |zT 〉 = 1√

2�

⊗

i=1(|0〉+(−1)Ti |1〉)

where Ti is the ith bit of the
-bit string T . Since |0⊕ yj,i〉+ (−1)Ti |1⊕ yj,i〉 =
(−1)Ti·yj,i(|0〉+ (−1)Ti |1〉), a query maps |j〉|zT 〉 !→ |j〉(−1)T ·yj |zT 〉.

A locally decodable code is an error-correcting code that allows efficient de-
coding of individual bits.

Definition 1. C : {0, 1}n → Σm is a (k, δ, ε)-locally decodable code (LDC), if
there exists a classical randomized decoding algorithm A with input i ∈ [n] and
oracle access to a string y ∈ Σm such that

1. A makes k distinct queries j1, . . . , jk to y, non-adaptively, gets query answers
a1 = yj1 , . . . , ak = yjk

and outputs a bit f(a1, . . . , ak), where f depends on i
and A’s randomness.

2. For every x ∈ {0, 1}n, i ∈ [n] and y ∈ Σm with Hamming distance d(y,C(x))
≤ δm we have Pr[f(a1, . . . , ak) = xi] ≥ 1/2 + ε.

Here probabilities are taken over A’s internal randomness. For Σ = {0, 1}
,
we say the LDC uses b bits, if A only uses b predetermined bits of each query
answer: it outputs f(a1|S1 , . . . , ak|Sk

) where the sets S1, . . . ,Sk are of size b each
and are determined by i and A’s randomness.

1 A polynomial-based O(n1/3)-scheme from [4] does not have this “small b”-property.

1428 S. Wehner and R. de Wolf

In our arguments we will use smooth codes. These are codes where the de-
coding algorithm spreads its queries “smoothly” across the codeword, meaning
it queries no code location too frequently.

Definition 2. C : {0, 1}n → Σm is a (k, c, ε)-smooth code (SC) if there is a
randomized algorithm A with input i ∈ [n] and oracle access to C(x) s.t.

1. A makes k distinct queries j1, . . . , jk to C(x), non-adaptively, gets query
answers a1 = C(x)j1 , . . . , ak = C(x)jk

and outputs a bit f(a1, . . . , ak), where
f depends on i and A’s randomness.

2. For every x ∈ {0, 1}n and i ∈ [n] we have Pr[f(a1, . . . , ak) = xi] ≥ 1/2 + ε.
3. For every x ∈ {0, 1}n, i ∈ [n] and j ∈ [m], Pr[A queries j] ≤ c/m.

The smooth code uses b bits, if A only uses b predetermined bits of each answer.

Note that the decoder of smooth codes deals only with valid codewords C(x).
The decoding algorithm of an LDC on the other hand can deal with corrupted
codewords y that are still sufficiently close to the original. Katz and Trevisan [10–
Theorem 1] showed that LDCs and smooth codes are closely related:

Theorem 1 (Katz & Trevisan). If C : {0, 1}n → Σm is a (k, δ, ε)-LDC, then
C is also a (k, k/δ, ε)-smooth code (the property of using b bits carries over).

The following definition of a one-query quantum smooth code is rather ad
hoc and not the most general possible, but sufficient for our purposes.

Definition 3. C : {0, 1}n → Σm is a (1, c, ε)-quantum smooth code (QSC), if
there is a quantum algorithm A with input i ∈ [n] and oracle access to C(x) s.t.

1. A probabilistically picks a string r, makes a query of the form

|Qir〉 =
1√
2

⎛⎝|j1r〉
1√
2b

∑
T⊆S1r

|zT 〉+ |j2r〉
1√
2b

∑
T⊆S2r

|zT 〉

⎞⎠
and returns the outcome of some measurement on the resulting state.

2. For every x ∈ {0, 1}n and i ∈ [n] we have Pr[A outputs xi] ≥ 1/2 + ε.
3. For every x, i, j, Pr[A queries j with non-zero amplitude] ≤ c/m.

The QSC uses b bits, if the sets S1r,S2r have size b.

PIR allows a user to obtain the ith bit from an n-bit database x, replicated
over k ≥ 1 servers, without revealing anything about i to individual servers.

Definition 4. A one-round, (1 − η)-secure, k-server private information re-
trieval (PIR) scheme for a database x ∈ {0, 1}n with recovery probability 1/2+ε,
query size t, and answer size
, consists of a randomized algorithm (user) and k
deterministic algorithms S1, . . . ,Sk (servers), such that

1. On input i ∈ [n], the user produces k t-bit queries q1, . . . , qk and sends these
to the respective servers. The jth server returns
-bit string aj = Sj(x, qj).
The user outputs a bit f(a1, . . . , ak) (f depends on i and his randomness).

Improved Lower Bounds for Locally Decodable Codes 1429

2. For every x ∈ {0, 1}n and i ∈ [n] we have Pr[f(a1, . . . , ak) = xi] ≥ 1/2 + ε.
3. For all x ∈ {0, 1}n, j ∈ [k], and any two indices i1, i2 ∈ [n], the two distri-

butions on qj (over the user’s randomness) induced by i1 and i2 are η-close
in total variation distance.

The scheme uses b bits if the user only uses b predetermined bits from each ai.

If η = 0, then the server gets no information at all about i. All known non-
trivial PIR schemes have η = 0, perfect recovery (ε = 1/2), and one round of
communication. We give two well-known 2-server examples from [7].

Square scheme. Arrange x = x1 . . .xn in a
√

n ×
√

n square, then index i is
given by two coordinates (i1, i2). The user picks a random string A ∈ {0, 1}

√
n,

and sends
√

n-bit queries q1 = A and q2 = A⊕ei1 to the servers. The first returns√
n-bit answer a1 = q1 ·C1, . . . , q1 ·C√n, where q1 ·Cc denotes the inner product

mod 2 of q1 with the cth column of x. The second server sends a2 analogously.
The user selects the bit q1 · Ci2 from a1 and q2 · Ci2 from a2 and computes
(A · Ci2)⊕ ((A⊕ ei1) · Ci2) = ei1 · Ci2 = xi. Here t =
 =

√
n and b = 1.

Cube scheme. A more efficient scheme arranges x in a cube, so i = (i1, i2, i3).
The user picks 3 random strings T1, T2, T3 of n1/3 bits each, and sends queries
q1 = T1, T2, T3 and q2 = (T1⊕ei1), (T2⊕ei2), (T3⊕ei3). The first server computes
the bit a = bT1T2T3 =

⊕
j1∈T1,j2∈T2,j3∈T3

xj1,j2,j3 . Its answer a1 is the n1/3 bits
bT ′

1T2T3 ⊕ a for all T ′1 differing from T1 in exactly one place, and similarly all
bT1T ′

2T3 ⊕ b and bT1T2T ′
3
⊕ a. The second server does the same with its query q2.

The user now selects those 3 bits of each answer that correspond to T ′1 = T1⊕ei1 ,
T ′2 = T2⊕ei2 , T ′3 = T3⊕ei3 respectively, and xors those 6 bits. Since every other
xj1,j2,j3 occurs exactly twice in that sum, what is left is xi1,i2,i3 = xi. Here
t,
 = O(n1/3) and b = 3.

3 Computing f(a0, a1) from Superposed Input

To prove the lower bound on LDCs and PIRs, we first construct the following
quantum tool. Consider a state |Ψa0a1〉 = 1√

2
(|0, a0〉 + |1, a1〉) with a0, a1 both

b-bit strings. We show that we can compute any Boolean function f(a0, a1) with
bias 1/2b+1 given one copy of this state. After that we show that bias is optimal
if f is the 2b-bit parity function. The key to the algorithm is the following:

Lemma 1. For every f : {0, 1}2b → {0, 1} there exist non-normalized states
|ϕa〉 such that U : |a〉|0〉 → 1

2b

∑
w∈{0,1}b(−1)f(w,a)|w〉|0〉+ |ϕa〉|1〉 is unitary.

Proof. Let |ψa〉 = (1/2b)
∑

w∈{0,1}b(−1)f(w,a)|w〉|0〉 + |ϕa〉|1〉. It is easy to see
that U can be extended to be unitary if and only if 〈ψa|ψa′〉 = δaa′ for all a, a′. We
will choose |ϕa〉 to achieve this. First, since 〈w|w′〉 = δww′ and 〈w, 0|ϕa, 1〉 = 0:

〈ψa|ψa′〉 =
1

22b

∑
w∈{0,1}b

(−1)f(w,a)+f(w,a′) + 〈ϕa|ϕa′〉.

1430 S. Wehner and R. de Wolf

LetC be the 2b×2b matrixwith entriesCaa′ = (1/22b)
∑

w∈{0,1}b(−1)f(w,a)+f(w,a′)

where the indices a and a′ are b-bit strings. From the definition of Caa′ we have
|Caa′ | ≤ 1/2b. By [9–Corollary 6.1.5], the largest eigenvalue is

λmax(C) ≤ min

⎧⎨⎩max
a

∑
a′∈{0,1}b

|Caa′ |,max
a′

∑
a∈{0,1}b

|Caa′ |

⎫⎬⎭ ≤ ∑
a∈{0,1}b

1
2b

= 1.

However, λmax(C) ≤ 1 implies that I − C is positive semidefinite and hence,
by [9–Corollary 7.2.11], I −C = A†A for some matrix A. Now define |ϕa〉 to be
the ath column of A. Since the matrix C + A†A = I is composed of all inner
products 〈ψa|ψa′〉, we have 〈ψa|ψa′〉 = δaa′ and it follows that U is unitary. ��

Theorem 2. Suppose f : {0, 1}2b → {0, 1} is a Boolean function. There exists
a quantum algorithm to compute f(a0, a1) with success probability exactly 1/2 +
1/2b+1 using one copy of |Ψa0a1〉 = 1√

2
(|0, a0〉+ |1, a1〉), with a0, a1 ∈ {0, 1}b.

Proof. First we extend the state |Ψa0a1〉 by a |0〉-qubit. Let U be as in Lemma 1.
Applying the unitary transform |0〉〈0| ⊗ I⊗b+1 + |1〉〈1| ⊗ U to |Ψa0a1〉|0〉 gives

1√
2

⎛⎝|0〉|a0〉|0〉+ |1〉

⎛⎝ 1
2b

∑
w∈{0,1}b

(−1)f(w,a1)|w〉|0〉+ |ϕa1〉|1〉

⎞⎠⎞⎠ .

Define |Γ 〉 = |a0〉|0〉 and |Λ〉 = 1
2b

∑
w (−1)f(w,a1)|w〉|0〉+|ϕa1〉|1〉. Then 〈Γ |Λ〉 =

1
2b (−1)f(a0,a1) and the above state is 1√

2
(|0〉|Γ 〉+ |1〉|Λ〉). We apply a Hadamard

transform to the first qubit to get 1
2 (|0〉(|Γ 〉+ |Λ〉) + |1〉(|Γ 〉 − |Λ〉)) . The prob-

ability that a measurement of the first qubit yields a 0 is 1
4 〈Γ + Λ|Γ + Λ〉 =

1
2 + 1

2 〈Γ |Λ〉 = 1
2 + (−1)f(a0,a1)

2b+1 . Thus by measuring the first qubit we obtain
f(a0, a1) with bias 1/2b+1. ��

To prove that this algorithm is optimal for the parity function, we need to
consider how well we can distinguish two density matrices ρ0 and ρ1, i.e., given
an unknown state determine whether it is ρ0 or ρ1. Let ‖ A ‖tr denote the trace
norm of matrix A, which equals the sum of its singular values.

Lemma 2. Two density matrices ρ0 and ρ1 cannot be distinguished with prob-
ability better than 1/2 + ‖ ρ0 − ρ1 ‖tr/4.

Proof. The most general way of distinguishing ρ0 and ρ1 is a POVM [15] with
two operators E0 and E1, such that p0 = tr(ρ0E0) ≥ 1/2+ε and q0 = tr(ρ1E0) ≤
1/2− ε. Then |p0 − q0| ≥ 2ε and likewise, |p1 − q1| ≥ 2ε, for similarly defined p1

and q1. By [15–Theorem 9.1], ‖ ρ0 − ρ1 ‖tr = max{E0,E1}(|p0 − q0|+ |p1 − q1|)
and thus ‖ ρ0 − ρ1 ‖tr ≥ 4ε. Hence ε ≤ ‖ ρ0 − ρ1 ‖tr/4. ��

Theorem 3. Suppose that f is the parity of a0a1. Then any quantum algorithm
for computing f from one copy of |Ψa0a1〉 has success probability ≤ 1/2+1/2b+1.

Improved Lower Bounds for Locally Decodable Codes 1431

Proof. Define ρ0 and ρ1 by ρc = 1
22b−1

∑
a0a1∈f−1(c) |Ψa0a1〉〈Ψa0a1 |, with c ∈

{0, 1}. A quantum algorithm that computes parity of a0a1 with probability
1/2 + ε can be used to distinguish ρ0 and ρ1. Hence by Lemma 2: ε ≤
‖ ρ0 − ρ1 ‖tr/4. Let A = ρ0 − ρ1. It is easy to see that the |0, a0〉〈0, a0|-
entries are the same in ρ0 and in ρ1, so these entries are 0 in A. Similarly,
the |1, a1〉〈1, a1|-entries in A are 0. In the off-diagonal blocks, the |0, a0〉〈1, a1|-
entry of A is (−1)|a0|+|a1|/22b. For |φ〉 = 1√

2b

∑
w∈{0,1}b(−1)|w||w〉 we have

|φ〉〈φ| = 1
2b

∑
a0,a1

(−1)|a0|+|a1||a0〉〈a1| and A = 1
2b (|0,φ〉〈1,φ|+ |1,φ〉〈0,φ|). Let

U and V be unitary transforms such that U |0,φ〉 = |0, 0b〉, U |1,φ〉 = |1, 0b〉
and V |0,φ〉 = |1, 0b〉, V |1,φ〉 = |0, 0b〉, then UAV † = 1

2b (U |0,φ〉〈1,φ|V † +
U |1,φ〉〈0,φ|V †) = 1

2b (|0, 0b〉〈0, 0b|+ |1, 0b〉〈1, 0b|). The two nonzero singular val-
ues of UAV † are both 1/2b, hence ‖ ρ0 − ρ1 ‖tr = ‖ A ‖tr = ‖ UAV † ‖tr = 2/2b.
Therefore ε ≤ ‖ ρ0 − ρ1 ‖tr/4 = 1/2b+1. ��

4 Lower Bounds for LDCs That Use Few Bits

We now make use of the technique developed above to prove new lower bounds for
2-query LDCs over non-binary alphabets. First we construct a 1-query quantum
smooth code (QSC) from a 2-query smooth code (SC), and then prove lower
bounds for QSCs. In the sequel, we will index the two queries by 0 and 1 instead
of 1 and 2, to conform to the two basis states |0〉 and |1〉 of a qubit.

Theorem 4. If C : {0, 1}n → ({0, 1}
)m is a (2, c, ε)-smooth code that uses b
bits, then C is a (1, c, ε/2b)-quantum smooth code that uses b bits.

Proof. Fix index i ∈ [n] and encoding y = C(x). The 1-query quantum decoder
will pick a random string r with the same probability as the 2-query classical
decoder. This r determines two indices j0, j1 ∈ [m], two b-element sets S0,S1 ⊆
[
], and a function f : {0, 1}2b → {0, 1} such that Pr[f(yj0|S0 , yj1|S1) = xi] = p ≥
1
2 + ε, where the probability is taken over the decoder’s randomness. Assume for
simplicity that j0 = 0 and j1 = 1, and define a0 = yj0|S0 and a1 = yj1|S1 . We now
construct a 1-query quantum decoder that outputs f(a0, a1) with probability
1/2 + 1/2b+1, as follows. The result of a quantum query to j0 and j1 is

1√
2

⎛⎜⎝ |0〉︸︷︷︸
j0

1√
2b
∑

T⊆S0

(−1)a0·T |zT 〉+ |1〉︸︷︷︸
j1

1√
2b
∑

T⊆S1

(−1)a1·T |zT 〉

⎞⎟⎠ .

Note that we write a0 · T instead of yj0 · T , since T ⊆ S0 and therefore the
inner product will be the same. We can unitarily transform this to 1√

2
(|0〉|a0〉+

|1〉|a1〉). By Theorem 2, we can compute an output bit o from this such that
Pr[o = f(a0, a1)] = 1/2 + 1/2b+1. The probability of success is then given by
Pr[o = xi] = Pr[o = f(a0, a1)] Pr[xi = f(a0, a1)] + Pr[o �= f(a0, a1)] Pr[xi �=
f(a0, a1)] = (1/2 + 1/2b+1)p + (1/2 − 1/2b+1)(1 − p) ≥ 1/2 + ε/2b. Since no j

1432 S. Wehner and R. de Wolf

is queried with probability more than c/m by the classical decoder, the same is
true for the quantum decoder. ��

Our lower bound for 2-query LDCs uses the following notion, due to [2].

Definition 5. A quantum random access code is a mapping x !→ ρx of the n-bit
strings x into m-qubit states ρx, such that any bit xi can be recovered with some
probability p ≥ 1/2 + ε from ρx

Note that we need not be able to recover all xi’s simultaneously from ρx, just
any one xi of our choice. Nayak [14] proved a tight bound on m:

Theorem 5 (Nayak). Every quantum random access code has m ≥ (1 −
H(p))n.

The main idea of our proof is to show how the following state |U(x)〉 induces
a quantum random access code. For u =

∑b
i=0

(

i

)
define the pure states

|U(x)j〉 =
1√
u

∑
|T |≤b

(−1)T ·C(x)j |zT 〉 and |U(x)〉 =
1√
m

m∑
j=1

|j〉|U(x)j〉.

Lemma 3. Suppose C : {0, 1}n → ({0, 1}
)m is a (1, c, ε)-quantum smooth code
that uses b bits. Then given one copy of |U(x)〉, there is a quantum algorithm
that outputs ‘fail’ with probability 1 − 2b+1/(cu) with u =

∑b
i=0

(

i

)
, but if it

succeeds it outputs xi with probability at least 1/2 + ε.

Proof. Let us fix i ∈ [n]. Suppose the quantum decoder of C makes query |Qir〉
to indices j0r and j1r with probability pr. Consider the following state

|Vi(x)〉 =
∑

r

√
pr|r〉

1√
2

(|j0r〉|U(x)j0r
〉+ |j1r〉|U(x)j1r

〉) .

We first show how to obtain |Vi(x)〉 from |U(x)〉 with some probability. Rewrite
|Vi(x)〉 =

∑m
j=1 αj |φj〉|j〉|U(x)j〉, where the αj are nonnegative reals, and

α2
j ≤ c/(2m) because C is a QSC (the 1/2 comes from the amplitude 1/

√
2).

Using the unitary map |0〉|j〉 !→ |φj〉|j〉, we can obtain |Vi(x)〉 from the state
|V ′

i (x)〉 =
∑m

j=1 αj |j〉|U(x)j〉. We thus have to show that we can obtain |V ′
i (x)〉

from |U(x)〉. Define operator M =
√

2m/c
∑m

j=1 αj |j〉〈j| ⊗ I and consider
a POVM with operators M†M and I − M†M . These operators are positive
because α2

j ≤ c/2m. Up to normalization, M |U(x)〉 = |V ′
i (x)〉. The prob-

ability that the measurement succeeds (takes us from |U(x)〉 to |V ′
i (x)〉) is

〈U(x)|M†M |U(x)〉 = 2m
c 〈U(x)|

(∑
j α2

j |j〉〈j| ⊗ I
)
|U(x)〉 = 2

c

∑
j α2

j = 2
c . Now

given |Vi(x)〉 we can measure r, and then project the last register onto the sets
S0r and S1r that we need for |Qir〉, by means of the measurement operator
|j0r〉〈j0r| ⊗

∑
T⊆S0r

|T 〉〈T |+ |j1r〉〈j1r| ⊗
∑

T⊆S1r
|T 〉〈T |. This measurement suc-

ceeds with probability 2b/u, but if it succeeds we have the state corresponding

Improved Lower Bounds for Locally Decodable Codes 1433

to the answer to query |Qir〉, from which we can predict xi. Thus, we succeed
with probability (2b/u) · (2/c), and if we succeed, we output xi with probability
1/2 + ε. ��

We can avoid failures by taking many copies of |U(x)〉:

Lemma 4. If C : {0, 1}n → ({0, 1}
)m is a (1, c, ε)-quantum smooth code, then
|W (x)〉 = |U(x)〉⊗cu/2b+1

is a cu(log(m)+log(u))/2b+1-qubit random access code
for x with recovery probability 1/2 + ε/2 where u =

∑b
i=0

(

i

)
.

Proof. We do the experiment of the previous lemma on each copy of |U(x)〉
independently. The probability that all experiments fail simultaneously is (1 −
2b+1/(cu))cu/2b+1 ≤ 1/2. In that case we output a fair coin flip. If at least one
experiment succeeds, we can predict xi with probability 1/2+ε. This gives overall
success probability at least 1/2(1/2 + ε) + (1/2)2 = 1/2 + ε/2. ��

The lower bound for 2-query SCs and LDCs over non-binary alphabets is then:

Theorem 6. If C : {0, 1}n → Σm = ({0, 1}
)m is a (2, c, ε)-smooth code where
the decoder uses only b bits of each answer, then m ≥ 2dn−log(u) for d = (1 −
H(1/2 + ε/2b+1))2b+1/(cu) = Θ(ε2/(2bcu)) and u =

∑b
i=0

(

i

)
. Hence m =

2Ω(ε2n/(22�c)) if b =
.

Proof. Theorem 4 implies that C is a (1, c, ε/2b)-quantum smooth code. Lemma 4
gives us a random access code of cu(log(m) + log(u))/2b+1 qubits with recovery
probability p = 1/2 + ε/2b+1. Finally, the random access code lower bound,
Theorem 5, implies cu(log(m) + log(u))/2b+1 ≥ (1 −H(p))n. Rearranging and
using that 1−H(1/2 + η) = Θ(η2) gives the result. ��

Since a (2, δ, ε)-LDC is a (2, 2/δ, ε)-smooth code (Theorem 1), we obtain:

Corollary 1. If C : {0, 1}n → Σm = ({0, 1}
)m is a (2, δ, ε)-locally decodable
code, then m ≥ 2dn−log(u) for d = (1 −H(1/2 + ε/2b+1))δ2b/u = Θ(δε2/(2bu))
and u =

∑b
i=0

(

i

)
. Hence m = 2Ω(δε2n/22�) if b =
.

In all known non-trivial constructions of LDCs and SCs, the decoder outputs
the parity of the bits that he is interested in. Then, we can prove:

Theorem 7. If C : {0, 1}n → Σm = ({0, 1}
)m is a (2, c, ε)-smooth code where
the decoder outputs f(g(a0|S0), g(a1|S1)), with f, g : {0, 1}2 → {0, 1} fixed func-
tions, then m ≥ 2dn−log(
′) for d = Ω(ε2/(c
′)) and
′ =

(

b

)
.

Proof. Transform C into a smooth code C ′ : {0, 1}n → ({0, 1}
′)m with
′ =
(

b

)
by defining C ′(x)j to be the value of g on all

(

b

)
possible b-subsets of the original

 bits of C(x)j . We need only 1 bit of each C ′(x)j , and can apply Theorem 6. ��

1434 S. Wehner and R. de Wolf

5 Lower Bounds for Private Information Retrieval

Here we derive improved lower bounds for 2-server PIRs from our LDC bounds.
We use the following [8–Lemma 7.1] to translate PIR schemes to smooth
codes:

Lemma 5 (GKST). Suppose there is a one-round, (1− η)-secure PIR scheme
with two servers, database size n, query size t, answer size
, and recovery prob-
ability at least 1/2 + ε. Then there is a (2, 3, ε − η)-smooth code C : {0, 1}n →
({0, 1}
)m, where m ≤ 6 · 2t. If the PIR scheme uses only b bits of each server
answer, then the resulting smooth code uses only b bits of each query answer.

We now combine this with Theorem 6 to slightly improve the lower bound given
in [12] and to extend it to the case where we only use b bits of each server reply.

Theorem 8. A classical 2-server (1− η)-secure PIR scheme with t-bit queries,

-bit answers that uses b bits and has recovery probability 1/2 + ε satisfies t =
Ω
(

n(ε−η)2

2bu

)
with u =

∑b
i=0

(

i

)
. In particular, if b =
, then t = Ω(n(ε−η)2/22
).

Proof. Using Lemma 5 we turn the PIR scheme into a (2, 3, ε− η)-smooth code
C : {0, 1}n → ({0, 1}
)m that uses b bits of
 where m ≤ 6 · 2t. From Theorem 6
we have m ≥ 2dn−log(u) with d = Θ((ε− η)2/(2bu)). ��

If b is fixed, ε = 1/2 and η = 0, this bound simplifies to t = Ω(n/
b), hence

Corollary 2. A 2-server PIR scheme with t-bit queries and
-bit answers has
communication C = 2(t +
) = Ω

(
n1/(b+1)

)
.

For b = 1 this gives C = Ω(
√

n), which is achieved by the square scheme of
Section 2. For b = 3 we get C = Ω(n1/4), which is close to the C = O(n1/3) of the
cube scheme. As in Theorem 7, we can get the better bound t = Ω(n(ε−η)2/

(

b

)
)

for PIR schemes where the user just outputs the parity of b bits from each answer.
All known non-trivial PIR schemes have this property.

The previous lower bounds on the query length of 2-server PIR schemes were
significant only for protocols that use few bits from each answer. Here we slightly
improve the best known bound of 4.4 log n [12] on the overall communication
complexity of 2-server PIR schemes, by combining our Theorem 8 and Theorem 6
of Katz and Trevisan [10]. We restate their theorem for the PIR setting, assuming
for simplicity that ε = 1/2 and η = 0.

Theorem 9 (Katz & Trevisan). Every 2-server PIR with t-bit queries and

-bit answers has t ≥ 2 log(n/
)−O(1).

We now prove the following lower bound on the total communication C =
2(t +
) of any 2-server PIR scheme with t-bit queries and
-bit answers:

Improved Lower Bounds for Locally Decodable Codes 1435

Theorem 10. Every 2-server PIR scheme has C ≥ (5− o(1)) log n.

Proof. We distinguish three cases, depending on the answer length. Let δ =
log log n/ log n.

case 1:
 ≤ (0.5− δ) log n. Theorem 8 implies C ≥ t = Ω(n2δ) = Ω((log n)2).
case 2: (0.5− δ) log n <
 < 2.5 log n. Then from Theorem 9 we have
C = 2(t+
) > 2 (2 log(n/(2.5 log n))−O(1) + (0.5− δ) log n) = (5− o(1)) log n.
case 3:
 ≥ 2.5 log n. Then C = 2(t +
) ≥ 5 log n. ��

6 Conclusion and Future Work

Here we improved the best known lower bounds on the length of 2-query locally
decodable codes and the communication complexity of 2-server private informa-
tion retrieval schemes. Our bounds are significant whenever the decoder uses only
few bits from the two query answers, even if the alphabet (LDC case) or answer
length (PIR case) is large. This contrasts with the earlier results of Kerenidis
and de Wolf [12], which become trivial for logarithmic alphabet or answer length,
and those of Goldreich et al. [8], which only apply to linear schemes.

Still, general lower bounds without constraints on alphabet or answer size
completely elude us. Clearly, this is one of the main open questions in this area.
Barring that, we could at least improve the dependence on b of our current
bounds. For example, a PIR lower bound like t = Ω(n/
�b/2�) might be feasible
using some additional quantum tricks. Such a bound for instance implies that
the total communication is Ω(n1/3) for b = 3, which would show that the cube
scheme of [7] is optimal among all schemes of probe complexity 3. Another
question is to obtain strong lower bounds for the case of k ≥ 3 queries or servers.
For this case, no superpolynomial lower bounds are known even if the alphabet
or answer size is only one bit.

References

1. A. Ambainis. Upper bound on communication complexity of private information
retrieval. In Proceedings of the 24th ICALP, volume 1256 of Lecture Notes in
Computer Science, pages 401–407, 1997.

2. A. Ambainis, A. Nayak, A. Ta-Shma, and U. Vazirani. Dense quantum coding and
a lower bound for 1-way quantum automata. In Proceedings of 31st ACM STOC,
pages 697–704, 1999.

3. L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking computations in poly-
logarithmic time. In Proceedings of 23rd ACM STOC, pages 21–31, 1991.

4. A. Beimel and Y. Ishai. Information-theoretic private information retrieval: A
unified construction. In Proceedings of 28th ICALP, pages 912–926, 2001.

5. A. Beimel, Y. Ishai, and E. Kushilevitz. General constructions for information-
theoretical Private Information Retrieval. Manuscript, available on Amos Beimel’s
homepage. Includes [4], 2004.

1436 S. Wehner and R. de Wolf

6. A. Beimel, Y. Ishai, E. Kushilevitz, and J. Raymond. Breaking the O(n1/(2k−1))
barrier for information-theoretic Private Information Retrieval. In Proceedings of
43rd IEEE FOCS, pages 261–270, 2002.

7. B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval.
Journal of the ACM, 45(6):965–981, 1998. Earlier version in FOCS’95.

8. O. Goldreich, H. Karloff, L. Schulman, and L. Trevisan. Lower bounds for linear
locally decodable codes and private information retrieval. In Proceedings of 17th
IEEE Conference on Computational Complexity, pages 175–183, 2002.

9. R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge Univ. Press, 1985.
10. J. Katz and L. Trevisan. On the efficiency of local decoding procedures for error-

correcting codes. In Proceedings of 32nd ACM STOC, pages 80–86, 2000.
11. I. Kerenidis. Quantum multiparty communication complexity and circuit lower

bounds. Apr 12, 2005. quant-ph/0504087.
12. I. Kerenidis and R. de Wolf. Exponential lower bound for 2-query locally decod-

able codes via a quantum argument. Journal of Computer and Systems Sciences,
69(3):395–420, 2004. Earlier version in STOC’03. quant-ph/0208062.

13. E. Mann. Private access to distributed information. Master’s thesis, Technion -
Israel Institute of Technology, Haifa, 1998.

14. A. Nayak. Optimal lower bounds for quantum automata and random access codes.
In Proceedings of 40th IEEE FOCS, pages 369–376, 1999. quant-ph/9904093.

15. M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, 2000.

Preservation Under Extensions
on Well-Behaved Finite Structures

Albert Atserias1,�, Anuj Dawar2, and Martin Grohe3

1 Universitat Politècnica de Catalunya, Barcelona, Spain
2 University of Cambridge, Cambridge, UK

3 Humboldt Universitat zu Berlin, Berlin, Germany

Abstract. A class of relational structures is said to have the extension preser-
vation property if every first-order sentence that is preserved under extensions
on the class is equivalent to an existential sentence. The class of all finite struc-
tures does not have the extension preservation property. We study the property
on classes of finite structures that are better behaved. We show that the property
holds of classes of acyclic structures, structures of bounded degree and more gen-
erally structures that are wide in a sense we make precise. We also show that the
preservation property holds for the class of structures of treewidth at most k, for
any k. In contrast, we show that the property fails for the class of planar graphs.

1 Introduction

The subject of model theory is concerned with the relationship between syntactic and
semantic properties of logic. Among classical results in the subject are preservation the-
orems which relate syntactic restrictions on first-order logic with structural properties
of the classes of structures defined. A key example is the Łoś-Tarski Theorem which
asserts that a first-order formula is preserved under extensions on all structures if, and
only if, it is logically equivalent to an existential formula (see [7]). One direction of
this result is easy, namely that any formula that is purely existential is preserved under
extensions, and this holds on any class of structures. The other direction, going from
the semantic restriction to the syntactic restriction makes key use of the compactness of
first-order logic and hence of infinite structures.

In the early development of finite-model theory, when it was realized that finite
structures are the ones that are interesting from the point of view of studying compu-
tation, it was observed that most classical preservation theorems from model theory
fail when only finite structures are allowed. In particular, the Łoś-Tarski theorem fails
on finite structures [9, 6]. These results suggest that the class of finite structures is not
well-behaved from the point of view of model theory. However, when one considers the
computational structures that arise in practice and are used as interpretations for log-
ical languages (for instance, program models interpreting specifications or databases
interpreting queries), in many cases they are not only finite but satisfy other structural

� Supported in part by CICYT TIN2004-04343 and by the European Commission through the
RTN COMBSTRU HPRN-CT2002-00278.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 1437–1449, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

1438 A. Atserias, A. Dawar, and M. Grohe

restrictions as well. This motivates the study, not just of the class of finite structures,
but of well-behaved subclasses of this class.

There are certain structural restrictions that have proved especially useful from an
algorithmic point of view. For instance, many intractable computational problems be-
come tractable when restricted to planar graphs or structures of bounded treewidth [2].
This is also the case in relation to evaluation of logical formulas [5]. A common gen-
eralization of classes of bounded treewidth and planar graphs are classes of structures
that exclude a minor which have also been extensively studied.

A study of preservation properties for such restricted classes of finite structures
was initiated in [1]. There, the focus was on the homomorphism preservation theorem,
whose status on the class of finite structures was open. It was shown that this preser-
vation property holds on any class of structures of bounded degree, bounded treewidth
or that excludes some minor (and has certain other closure properties). In the present
paper, we investigate the Łoś-Tarski extension preservation property on these classes
of finite structures. Note that the failure of the property on the class of all finite struc-
tures does not imply its failure on subclasses. If one considers the non-trivial direction
of the preservation theorem on a class C, it says that any sentence ϕ that is preserved
under extensions on C is equivalent on C to an existential sentence. Thus, restricting
to a subclass C′ of C weakens both the hypothesis and the consequent of the state-
ment.

We show that the extension preservation theorem holds on any class of finite struc-
tures closed under substructures and disjoint unions that is also wide in the sense that
any sufficiently large structure in the class contains a large number of elements that are
far apart. This includes, for instance, any class of structures of bounded degree. While
classes of structures of bounded treewidth are not wide, they are nearly so in that they
can be made wide by removing a small number of elements. We use this property and
show that it implies the extension preservation theorem for the class Tk—the class of
structures of treewidth k or less (note this is not as general as saying that the property
holds for all classes of bounded treewidth). Finally, we show that the construction does
not extend to classes defined by excluded minors. Indeed, the extension preservation
theorem does not hold for the class of planar graphs, as we show through a counterex-
ample. This contrasts with the results obtained for the homomorphism preservation
property in [1] as this property was shown to hold on all classes excluding a graph
minor and closed under substructures and disjoint unions.

The main methodology in establishing the preservation property for a class of struc-
tures C is to show an upper bound on the size of a minimal model of a first-order sen-
tence ϕ that is preserved under extensions on C. The way we do this is to show that for
any sufficiently large model A of ϕ, there is a proper substructure of A and an extension
of A that cannot be distinguished by ϕ. In Section 3 we establish this for the relatively
simple case of acyclic structures by means of a Hanf locality argument. Section 4 con-
tains the main combinatorial argument for wide structures which uses Gaifman locality
and an iterated construction of the substructure of A. In Section 5, the combinatorial
argument is adapted to the classes Tk. Finally, in Section 6 we conclude and discuss the
existence of a counterexample in the case of planar graphs. We begin in Section 2 with
some background and definitions.

Preservation Under Extensions on Well-Behaved Finite Structures 1439

2 Preliminaries

Our notation and terminology is standard (see [3]).

Relational structures. A relational vocabulary σ is a finite set of relation symbols,
each with a specified arity. A σ-structure A consists of a universe A, or domain, and
an interpretation which associates to each relation symbol R ∈ σ of some arity r, a
relation RA ⊆ Ar. A graph is a structure G = (V,E), where E is a binary relation that
is symmetric and anti-reflexive. Thus, our graphs are undirected, loopless, and without
parallel edges.

A σ-structure B is called a substructure of A if B ⊆ A and RB ⊆ RA for every
R ∈ σ. It is called an induced substructure if RB = RA ∩ Br for every R ∈ σ of
arity r. Notice the analogy with the graph-theoretical concept of subgraph and induced
subgraph. A substructure B of A is proper if A �= B. If A is an induced substructure
of B, we say that B is an extension of A. If A is a proper induced substructure, then
B is a proper extension. If B is the disjoint union of A with another σ-structure, we
say that B is a disjoint extension of A. If S ⊆ A is a subset of the universe of A,
then A ∩ S denotes the induced substructure generated by S; in other words, the uni-
verse of A ∩ S is S, and the interpretation in A ∩ S of the r-ary relation symbol R is
RA ∩ Sr.

The Gaifman graph of a σ-structure A, denoted by G(A), is the (undirected) graph
whose set of nodes is the universe of A, and whose set of edges consists of all pairs
(a, a′) of elements of A such that a and a′ appear together in some tuple of a relation in
A. The degree of a structure is the degree of its Gaifman graph, that is, the maximum
number of neighbors of nodes of the Gaifman graph.

Neighborhoods and treewidth. Let G = (V,E) be a graph. Moreover, let u ∈ V be
a node and let d ≥ 0 be an integer. The d-neighborhood of u in G, denoted by NG

d (u),
is defined inductively as follows:

1. NG
0 (u) = {u};

2. NG
d+1(u) = NG

d (u) ∪ {v ∈ V : (v, w) ∈ E for some w ∈ NG
d (u)}.

If A is a σ-structure, a is a point in A, and G is the Gaifman graph of A, we let NA
d (a)

denote the d-neighborhood of a in G. Where it causes no confusion, we also write
NA

d (a) for the substructure of A generated by this set.
A tree is an acyclic connected graph. A tree-decomposition of G is a labeled tree T

such that

1. each node of T is labeled by a non-empty subset of V ;
2. for every edge {u, v} ∈ E, there is a node of T whose label contains {u, v};
3. for every u ∈ V , the set X of nodes of T whose labels include u forms a connected

subtree of T.

The width of a tree-decomposition is the maximum cardinality of a label in T minus
one. The treewidth of G is the smallest k for which G has a tree-decomposition of
width k. The treewidth of a σ-structure is the treewidth of its Gaifman graph. Note that
trees have treewidth one.

1440 A. Atserias, A. Dawar, and M. Grohe

First-order logic, monadic second-order logic, and types. Let σ be a relational vo-
cabulary. The atomic formulas of σ are those of the form R(x1, . . . , xr), where R ∈ σ
is a relation symbol of arity r, and x1, . . . , xr are first-order variables that are not nec-
essarily distinct. Formulas of the form x = y are also atomic.

The collection of first-order formulas is obtained by closing the atomic formulas
under negation, conjunction, disjunction, universal and existential first-order quantifica-
tion. The collection of existential first-order formulas is obtained by closing the atomic
formulas and the negated atomic formulas under conjunction, disjunction, and existen-
tial quantification. The semantics of first-order logic is standard.

The collection of monadic second-order formulas is obtained by closing the atomic
formulas under negation, conjunction, disjunction, universal and existential first-order
quantification, and universal and existential second-order quantification over sets. The
semantics of monadic second-order logic is also standard.

The quantifier rank of a formula, be it first-order or monadic second-order, is the
maximum nesting of quantifiers of its subformulas.

Let A be a σ-structure, and let a1, . . . , an be points in A. If ϕ(x1, . . . , xn) is a for-
mula with free variables x1, . . . , xn, we use the notation A |= ϕ(a1, . . . , an) to denote
the fact that ϕ is true in A when xi is interpreted by ai. If m is an integer, the first-order
m-type of a1, . . . , an in A is the collection of all first-order formulas ϕ(x1, . . . , xn) of
quantifier rank at most m, up to logical equivalence, for which A |= ϕ(a1, . . . , an).
The monadic second-order m-type of a1, . . . , an in A is defined analogously.

Preservation under extensions and minimal models. Let C be a class of finite σ-
structures that is closed under induced substructures. Let ϕ be a first-order sentence.
We say that ϕ is preserved under extensions on C if whenever A and B are structures
in C such that B is an extension of A, then A |= ϕ implies B |= ϕ. We say that A is a
minimal model of ϕ if A |= ϕ and every proper induced substructure A′ of A is such
that A′ �|= ϕ. The following Lemma states that the existential sentences are precisely
those that have finitely many minimal models. Its proof is part of the folklore:

Lemma 1. Let C be a class of finite σ-structures that is closed under induced substruc-
tures. Let ϕ be a first-order sentence. Then, the following are equivalent:

1. ϕ is equivalent on C to an existential sentence,
2. ϕ has finitely many minimal models in C.

In the rest of the paper, we use several times the implication from 2. to 1. Just for
completeness, this is proved by taking the disjunction of the existential closure of the
atomic types of the finitely many minimal models.

3 Acyclic Structures

We begin with the simple case of acyclic structures, by which we mean structures whose
Gaifman graph is acyclic. We show that any class of such structures satisfying cer-
tain closure properties admits the extension preservation property. Note, for structures
whose Gaifman graphs are acyclic, there is no loss of generality in assuming that the
vocabulary σ consists of unary and binary relations only.

Preservation Under Extensions on Well-Behaved Finite Structures 1441

The proof is based on Hanf locality and will be presented in detail in the journal
version of the paper. Here we only present an overview. We begin by considering struc-
tures whose Gaifman graph consists of a simple path. In a large enough structure A of
this type, we can find a segment C of the path such that the structure A′ obtained by
removing C and the structure B = A⊕C are equivalent under ≡m.

Lemma 2. For every vocabulary σ and every m > 0 there is a p such that if A is a
σ-structure whose Gaifman graph is connected, acyclic and of degree at most 2 and
|A| > p, then there is a disjoint extension B of A and a proper substructure A′ of A
such that A′ ≡m B.

A reduction extends this result to acyclic structures without a degree bound.

Lemma 3. For every vocabulary σ and every m > 0 there is a p such that if A is a
structure whose Gaifman graph is connected and acyclic and which contains a path
with more than p elements, then there is a disjoint extension B of A and a proper
substructure A′ of A such that A′ ≡m B.

This lemma covers the key case in the proof of the main theorem of this section.

Theorem 4. Let C be a class of acyclic finite structures, closed under substructures and
disjoint unions. Then, on C, every first-order sentence that is preserved under extensions
is equivalent to an existential sentence.

4 Wide Structures

This section will focus on structures that are wide, meaning that they contain many
points that are pairwise far apart from each other. The goal is to show that the preserva-
tion under extensions property holds for classes of such structures. The precise defini-
tion will be introduced later on in this section. At this point let us just mention that an
interesting particular case is the class of all structures of degree bounded by a constant.

Unfortunately, the techniques and arguments of Section 3 based on Hanf locality
will not be enough for our current purpose. Instead, we will have to resort to Gaifman
locality, for which we provide the necessary background first.

For every integer r ≥ 0, let δ(x, y) ≤ r denote the first-order formula expressing
that the distance between x and y in the Gaifman graph is at most r. Let δ(x, y) > r
denote the negation of this formula. A basic local sentence is a sentence of the form

(∃x1) · · · (∃xn)

⎛⎝∧
i�=j

δ(xi, xj) > 2r ∧
∧
i

ψNr(xi)(xi)

⎞⎠ , (1)

where ψ is a first-order formula with one free variable. Here, ψNr(xi)(xi) stands for
the relativization of ψ to Nr(xi); that is, the subformulas of ψ of the form (∃x)(θ)
are replaced by (∃x)(δ(x, xi) ≤ r ∧ θ), and the subformulas of the form (∀x)(θ) are
replaced by (∀x)(δ(x, xi) ≤ r → θ). The locality radius of a basic local sentence is r.
Its width is n. Its local quantifier rank is the quantifier rank of ψ. We will use the fact

1442 A. Atserias, A. Dawar, and M. Grohe

that basic local sentences are preserved under disjoint extensions. Note, however, that
they may not be preserved under plain extensions since in that case the neighborhoods
can grow.

The main result about basic local sentences is that they form a building block for
first-order logic. This is known as Gaifman’s Theorem (for a proof, see, for example,
[3–Theo. 2.5.1]):

Theorem 5 (Gaifman Locality). Every first-order sentence is equivalent to a Boolean
combination of basic local sentences.

We reach now the main technical part of the paper. Let us say that a set of points
B in a σ-structure A is d-scattered if for every pair of distinct a, b ∈ B we have
NA

d (a) ∩ NA
d (b) = ∅. We say that a class of finite σ-structures C is wide if for every

d and m there exists an N such that every structure in C of size at least N contains a
d-scattered set of size m.

Theorem 6. Let C be a class of finite σ-structures that is wide and closed under sub-
structures and disjoint unions. Then, on C, every first-order sentence that is preserved
under extensions is equivalent to an existential sentence.

Proof. Let ϕ be a first-order sentence that is preserved under extensions on C. By Gaif-
man’s Theorem we may assume that ϕ =

∨
i∈I τi, with

τi =
∧

j∈Ji

θi
j ∧

∧
k∈Ki

¬θi
k, (2)

where each θi
h is a basic local sentence. Now we define a list of parameters that we need

in the proof (the reader may skip this list now and use it to look up the values when they
are needed):

– r is the maximum of the locality radii of all θi
h,

– s is the sum of all widths of all θi
h,

– m is the maximum of the local quantifier ranks of all θi
h,

–
 is the number of disjuncts in ϕ, so
 = |I|.
– n = (
+ 2)s,
– M = m + 4r + 1,
– d = 2(r + 1)(
+ 1)s + 6r + 2,
– q is the number of monadic second-order M -types with one free variable,
– N is such that every structure in C of size at least N contains a (4dq + 2r + 1)-

scattered set of size (n− 1)q + s +
s + 1.

Our goal is to show that the minimal models of ϕ have size less than N . Suppose on the
contrary that A is a minimal model of ϕ of size at least N . The type of a point a ∈ A
is the monadic second-order M -type of a in A∩Nd(a). We say that a realizes its type.
The reason we consider monadic second-order types, instead of first-order types, will
become clear later in the proof. Let t1, . . . , tq be all possible types. We need a couple
of definitions. Let C be a subset of A and t a type. We say that t is covered by C if for
all realizations a of t we have Nd(a) ⊆ C. We say that t is free over C if there are at
least n realizations a1, . . . , an of t such that Nd(ai) and Nd(aj) are pairwise disjoint
and do not intersect C.

Preservation Under Extensions on Well-Behaved Finite Structures 1443

Claim 1. There exists a radius e ≤ 2dq and a set D of at most (n − 1)q points in A
such that all types are either covered by Ne(D) or free over Ne(D).

Proof. We define D and e inductively. Let D0 = ∅ and e0 = 0. Suppose now that Di

and ei are already defined. Let C = Nei
(Di). If all types are either covered by C or

free over C, then let D = Di and e = ei. Otherwise, let j be minimal such that type tj
is neither covered by C nor free over C. We define a set E inductively as follows. Let
E0 = ∅. Suppose now that Et is already defined. If there is no realization of tj outside
N2d(C ∪Et), then let E = Et and we are done with the construction of E. Otherwise,
let at+1 be a realization of tj outside N2d(C ∪ Et) and let Et+1 = Et ∪ {at+1}. Note
that this iteration cannot continue beyond n− 1 steps since otherwise tj would be free
over C. This means that the iteration stops, and when it does |E| ≤ n − 1 and tj is
covered by any set that contains N2d(C ∪ E), and in particular by Nei+2d(Di ∪ E).
Let Di+1 = Di ∪ E and ei+1 = ei + 2d. The construction stops after at most q
steps because at each step one new type is covered and remains covered for the rest
of the construction. This shows that |D| ≤ (n − 1)q and e ≤ 2dq, which proves the
claim.

��
In the following, we fix e and D according to Claim 1. We say that a type t is frequent
if it is not covered by Ne(D). Otherwise we say that t is rare.

We shall build a finite sequence of sets S0 ⊆ S1 ⊆ . . . ⊆ Sp ⊆ A, with p ≤
, so
that the last set Sp in the sequence will be such that the substructure of A induced by
Sp is a proper substructure of A that satisfies ϕ. This will contradict the minimality of
A and will prove the theorem. The sequence Si is constructed inductively together with
a second sequence of sets C0 ⊆ C1 ⊆ · · · ⊆ Cp ⊆ A called the centers, and a sequence
of sets of indices I0 ⊆ I1 ⊆ · · · ⊆ Ip ⊆ I (recall that ϕ is the disjunction of the
formulas τi from (2) for i ∈ I). Moreover, the following conditions will be preserved
by the inductive construction for every i < p.

(a) The type of each a ∈ Ci is frequent.
(b) Si ⊆ Nr(Ci).
(c) |Ci| ≤ is.
(d) No disjoint extension of A ∩ Si satisfies

∨
j∈Ii

τj .
(e) Ne(D) and Nd(Ci) are disjoint.
(f) |Ii| = i.

Let S0 = C0 = I0 = ∅, and let us assume that Si, Ci and Ii have already been
defined with the properties above. We construct Si+1, Ci+1, and Ii+1. Let B be the
disjoint union of A with a copy of A ∩ Si.

Since B is an extension of A, it satisfies ϕ. (3)

Therefore, there exists an i′ ∈ I such that B satisfies τi′ . By (d), since the extension is
disjoint, we know that i′ �∈ Ii. Let Ii+1 = Ii ∪ {i′}. For the rest of the proof, the index
i′ will be fixed so we drop any reference to it. For example, we will write τ instead of
τi′ and θh instead of θi′

h . Recall that

1444 A. Atserias, A. Dawar, and M. Grohe

τ =
∧
j∈J

θj ∧
∧

k∈K
¬θk.

Since B satisfies τ , in particular it satisfies the positive requirements: B |=
∧

j∈J θj .
Let Wj be a minimal set of witnesses in B for the outermost existential quantifiers in
θj , and let W =

⋃
j∈J Wj . We have |W | ≤ s. Some of these witnesses may be in A

and some may be in the disjoint copy of A ∩ Si in B. Let WA ∪WB = W be such a
partition, with WA being the witnesses in A. The following claim shows that WA can
be chosen far from Ci. This will be needed later.

Claim 2. There is a set W of witnesses such that Nr+1(Ci) ∩Nr(WA) = ∅.

Proof. Fix a set W of witnesses so that the number of points b in WA for which
Nr+1(Ci) and Nr(b) are not disjoint is minimal. Suppose that this number is not zero,
and let b ∈ WA with Nr+1(Ci) ∩ Nr(b) �= ∅. Let a ∈ Ci be such that Nr+1(a) ∩
Nr(b) �= ∅. Then Nr(b) ⊆ N3r+1(a) ⊆ Nd(a). By property (a), the type t of a is
frequent. So let a′ be a realization of t such that Nr+1(W ∪Ci) and N3r+1(a′) are dis-
joint. Such an a′ exists because t is frequent and thus, by Claim 1, is free over Ne(D)
and thus has

n > (
+ 1)s = |W ∪ Ci|
realizations whose d-neighborhoods are pairwise disjoint and disjoint from Ne(D).

Now, since Nd(a) and Nd(a′) have the same monadic second-order M -type and
Nr(b) ⊆ N3r+1(a) ⊆ Nd(a), there must exist a b′ such that Nr(b′) ⊆ N3r+1(a′) ⊆
Nd(a′) such that b and b′ have the same first-order m-type on A∩Nr(b) and A∩Nr(b′)
respectively. Here we use M = m + 4r + 1 and the fact that we considered second-
order types; this has the effect that every subset of Nd(a) has an equivalent subset in
Nd(a′). But then b′ can replace b as a witness in WA, and since Nr+1(W ∪ Ci) and
N3r+1(a′) are disjoint, so are Nr+1(Ci) and Nr(b′). This contradicts the minimality
of W . ��

In the following, we fix a set W of witnesses such that Nr+1(Ci) ∩Nr(WA) = ∅.
We let C be the substructure of A induced by Ne(D) ∪ Nr(WA) ∪ Si. We claim that
C satisfies the positive requirements of τ :

Claim 3. C is a substructure of A such that C |=
∧

j∈J θj .

Proof. It is obvious that C is a substructure of A. The point, however, is that C is
in fact the disjoint union of the substructure induced by Ne(D) ∪ Nr(WA) and the
substructure induced by Si. This is because Si ⊆ Nr(Ci) and Nr+1(Ci) is disjoint
from Ne(D) by property (e) and also disjoint from Nr(WA) by Claim 2. It follows
that the witnesses from B in WB can also be found in C. Obviously, also the wit-
nesses from B in WA can be found in C. This proves that C satisfies the positive
requirements of τ . ��

Consider ϕ on C. If C is a model of ϕ, let Sp = Ne(D) ∪ Nr(WA) ∪ Si and we
are done. Notice that C is a proper substructure of A because A contains (n − 1)q +
s +
s + 1 points that are (4dq + 2r + 1)-scattered, but Sp ⊆ N2dq+r(D ∪WA ∪ Ci)
and

|D ∪WA ∪ Ci| ≤ (n− 1)q + s +
s.

Preservation Under Extensions on Well-Behaved Finite Structures 1445

If C is not a model of ϕ it cannot satisfy τ . However, by Claim 3, C satisfies the pos-
itive requirements

∧
j∈J θj . Therefore, C does not satisfy

∧
k∈K ¬θk. Let k ∈ K such

that C |= θk. In the next claim we find a substructure of A that extends A ∩ Si and
forces all its disjoint extensions to satisfy θk.

Claim 4. There exist Ci+1 ⊇ Ci and Si+1 ⊇ Si as required by conditions
(a)–(e).

Proof. We have C |= θk. Let V be a minimal set of witnesses in C for the outermost
existential quantifiers in θk. We have |V | ≤ s.

Necessarily, the type t of some a ∈ V is frequent. OtherwiseNr(V) ⊆ Ne(D) ⊆ A,
so A |= θk, and thus B |= θk, because B is a disjoint extension of A. However, this is
impossible because B |= τ .

So let a ∈ V have frequent type t. Let Z be a set of s realizations of t such
that

(i) Nd(b) ∩Nd(b′) = ∅ for every pair of distinct b, b′ ∈ Z,
(ii) Ne(D) ∩Nd(Z) = ∅,

(iii) Nr+1(Ci) ∩Nr(Z) = ∅.
Such a set Z exists because t is frequent, n = (
 + 2)s, and |Ci| ≤
s by prop-
erty (c).

Now, let F = Nr(a) ∩ C be the subset of Nr(a) that actually appears in C. Note
that a ∈ F . Since each b ∈ Z has the same monadic second-order M -type as a, for
every Nr(b) there exists a set Fb ⊆ Nr(b), equivalent to F in Nr(a), so that a and b
have the same first-order m-type in A ∩ F and A ∩ Fb respectively. This is the other
place we use monadic second-order types. Define Ci+1 = Ci ∪ Z and

Si+1 = Si ∪
⋃
b∈Z

Fb.

Let us prove that Ci+1 and Si+1 satisfy the properties (a), (b), (c), (d), and (e). Property
(a) is clear since the type of each b ∈ Z is t, and t is frequent. Property (b) is also clear
since Fb ⊆ Nr(b). For property (c) we have |Ci+1| = |Ci|+ s = (i + 1)s. Property (e)
is satisfied by (ii) in our choice of Z.

Finally, for property (d) we argue as follows. First note that A ∩ Si+1 is a dis-
joint extension of A ∩ Si because Nr+1(Ci) ∩ Nr(Z) = ∅ by (iii) and Si ⊆ Nr(Ci)
by (c). Therefore, no disjoint extension of A ∩ Si+1 satisfies τj for any j ∈ Ii. It
remains to show that no disjoint extension of A ∩ Si+1 satisfies τ . However, this is
clear from the construction because every disjoint extension of A ∩ Si+1 will contain
witnesses for the outermost existential quantifiers in θk; namely any subset of Z of
size |V |. ��

Note that Ii+1 is constructed to satisfy property (f) as well. This completes the def-
inition of the inductive construction. All it remains to see is that the construction stops
in at most
 steps. Because suppose for contradiction that we have constructed S
, C
,
and I
 satisfying (a)–(f). Then I
 = I by (f), and by (d), no disjoint extension of A∩S

satisfies ϕ =

∨
i∈I τi. However,

the disjoint union B of A ∩ S
 with A is an extension of A and hence
does satisfy ϕ.

(4)

This is a contradiction. ��

1446 A. Atserias, A. Dawar, and M. Grohe

As a direct application of Theorem 6, let us consider the class Dr of all finite σ-
structures of degree bounded by r. Clearly, this class is both wide and closed under
substructures and disjoint unions.

Theorem 7. Let r be an integer. Then, on Dr, every first-order sentence that is pre-
served under extensions is equivalent to an existential sentence.

In the following section we show how the argument of Theorem 6 can be extended, in
some cases, to classes of structures that are almost wide.

5 Bounded Treewidth Structures

The goal of this section is to show that the preservation under extensions property holds
for the class Tk of all finite σ-structures of treewidth less than k. In other words, we
want to prove the following result:

Theorem 8. Let k be an integer. Then, on Tk, every first-order sentence that is pre-
served under extensions is equivalent to an existential sentence.

The proof of this result requires three ingredients. The first ingredient is a generalization
of the disjoint union operation on structures by allowing some non-empty intersection.
Let A and B be σ-structures, and letC ⊆ A∩B be such that A∩C = B∩C. The union
of A and B through C, denoted by A ⊕C B is a new σ-structure defined as follows.
The universe of D = A⊕C B is A′∪B′∪C, where A′ is a disjoint copy of A−C and
B′ is a disjoint copy of B − C. The relations of D are defined in the obvious way: If
a1, . . . , ar are points in A and a′1, . . . , a

′
r are the corresponding points in A′ ∪ C, then

(a′1, . . . , a
′
r) ∈ RD if and only if (a1, . . . , ar) ∈ RA. Similarly, if b1, . . . , br are points

in B and b′1, . . . , b
′
r are the corresponding points in B′ ∪ C, then (b′1, . . . , b

′
r) ∈ RD if

and only if (b1, . . . , br) ∈ RB. Observe that this construction is precisely the disjoint
union of A and B when C = ∅.

The next Lemma is a straightforward generalization of the obvious fact that Tk is
closed under disjoint unions. The Lemma states, roughly, that Tk is closed under unions
through subsets of bags of tree-decompositions. More precisely:

Lemma 9. Let k be an integer. Let A and B be two σ-structures, let C ⊆ A ∩ B be
such that A∩C = B∩C, and let (T,L) and (T ′,L′) be tree-decompositions of width
k of A and B, respectively. Then, if there exists nodes u ∈ T and u′ ∈ T ′ such that
C ⊆ L(u) ∩ L′(u′), then the union of A and B through C has treewidth at most k.

Proof : The tree-decomposition of the union is (T ′′,L ∪ L′), where T ′′ = T ∪ T ′ with
a new tree edge joining u and u′. ��

The second ingredient is the fact that the class of structures of treewidth less than
k is almost wide, in the sense that there exists a small set of vertices whose removal
produces a large scattered set. Such a set is henceforth called a bottleneck. This was
proved in [1] but here we state the stronger claim that the bottleneck can be found in
the bag of a tree-decomposition. The proof is the same as in [1].

Preservation Under Extensions on Well-Behaved Finite Structures 1447

Lemma 10. For every k, and for every d and m, there exists an N such that if A is a
σ-structure of size at least N and (T,L) is a tree-decomposition of A of width k, then
there exist u ∈ T and B ⊆ L(u) such that A−B contains a d-scattered set of size m.

The third ingredient in the proof is a first-order interpretation of a wide structure
inside an almost-wide structure. From now on we focus on graphs; the construction ex-
tends easily to the general case. Let P1, . . . ,Pk,Q1, . . . ,Qk be unary relation symbols
and σ = {E,P1, . . . ,Pk,Q1, . . . ,Qk}. For every graph G = (V,EG) and every tuple
a = (a1, . . . , ak) ∈ V k we define a σ-structure A = A(G,a) as follows:

1. A = V ,
2. EA = EG − {(a, b) ∈ A2 : {a, b} ∩ {a1, . . . , ak} �= ∅},
3. PA

i = {ai},
4. QA

i = {b ∈ A : (ai, b) ∈ EA}.

Let us call a σ-structure A derived if EA is a symmetric and anti-reflexive binary rela-
tion, and there are elements a1, . . . , ak ∈ A such that PA

i = {ai} for 1 ≤ i ≤ k and
ai is isolated in the graph underlying A; that is, for 1 ≤ i ≤ k there is no b such that
(ai, b) ∈ EA. Note that for every derived structure A there is a unique graph G(A)
and a unique k-tuple a(A) of vertices of G(A) such that

A = A(G(A),a(A)).

The point behind the construction of A = A(G,a) is that if B = {a1, . . . , ak} is a
bottleneck of G in the sense that G−B contains a large scattered set, then A itself has
a large scattered set and maintains all the information to reconstruct G. Indeed, G(A)
is first-order interpretable in A, and thus we get the following lemma:

Lemma 11. For every first-order sentence ϕ of vocabulary {E} there is a sentence ϕ̃
of vocabulary σ such that for all σ-structures A we have:

1. If A |= ϕ̃ then A is derived.
2. If A is derived, then A |= ϕ̃ if and only if G(A) |= ϕ.

This follows at once from a standard result on syntactical interpretations (cf., for
example, Theorem VIII.2.2 of [4]).

Equipped with these three ingredients we are ready for the main argument.

Proof (of Theorem 8). Let ϕ be a first-order sentence that is preserved under extensions
in Tk. It suffices to show that ϕ has finitely many minimal models. Let G = (V,EG)
be a graph in Tk that is a minimal model of ϕ. Suppose for contradiction that G is very
large. Let (T,L) be a tree-decomposition of width k of G, and let B = {b1, . . . , bk} ⊆
V be a bottleneck; that is, a set such that G − B contains a large scattered set. By
Lemma 10 we may assume that B ⊆ L(u) for some u ∈ T . Let A = A(G,b),
where b = (b1, . . . , bk). The idea is to work with A and ϕ̃ instead of G and ϕ and
proceed as in the proof of Section 4. The difference is that ϕ̃ is not preserved under
extensions. However, preservation under extensions is used only twice in the proof of

1448 A. Atserias, A. Dawar, and M. Grohe

Section 4 (in (3) and (4)), both times to prove that the disjoint union B of the struc-
ture A with A ∩ Si is a model of ϕ. Claim 5 shows that in both cases, B is a model
of ϕ̃.

Claim 5. Let C ⊆ A such that the type of each a ∈ C is frequent. Let S ⊆ Nr(C) and
let B be the disjoint union of A with a disjoint copy of A ∩ S. Then B is derived, G is
an induced subgraph of G(B), and G(B) belongs to Tk.

Proof. Note that B is derived because the bottleneck points are not in S since their
type is not frequent. Let H = G(B). Clearly, G is an induced subgraph of H. Thus
all we have to prove is that H belongs to Tk. Let A′ = A ∩ (S ∪ B), where B is the
bottleneck of G. Again, A′ is derived. Let G′ = G(A′). Clearly, G′ is an induced
subgraph of G. In particular, G′ is in Tk so it has a tree-decomposition of width k.
More importantly, since B ⊆ L(u), we can assume as well that B is a subset of some
bag of the tree-decomposition of G′. These two facts together imply that the union of
G and G′ through B, which is precisely H, is in Tk by Lemma 9. ��

This shows then that the B in (3) and (4) is a model of ϕ̃. The proof proceeds until
we construct a structure C that satisfies ϕ̃ and is a proper substructure of A. We claim
that C is derived. This is because all bottleneck points have rare type, so they belong
to D. Let H = G(C). Note now that H is the union of two subgraphs G1 and G2 of
G through the bottleneck B. Again B is a subset of a bag of the tree-decompositions
of G1 and G2, so H belongs to Tk by Lemma 9. Moreover H is a proper induced
subgraph of G and H |= ϕ by Lemma 11. This contradicts the minimality of G, which
concludes the proof. ��

6 Conclusions

The proof that the extension preservation theorem holds on the classes Tk is based on
somewhat different properties to the proof in [1] that the homomorphism preservation
theorem holds on all classes of bounded treewidth. Indeed, our proof requires stronger
closure conditions. A natural question is whether the result could extend, as in the case
of the homomorphism preservation theorem to all classes that are defined by excluding
a graph minor. It turns out this is not the case. We are able to construct a counterexample
that shows that the extension preservation does not hold on the class of planar graphs.
This construction will be presented in the journal version of the paper.

References

1. A. Atserias, A. Dawar, and Ph. G. Kolaitis. On preservation under homomorphisms and unions
of conjunctive queries. In Proc. 23rd ACM Symp. on Principles of Database Systems, pages
319–329, 2004.

2. R.G. Downey and M.R. Fellows. Parametrized Complexity. Springer-Verlag, 1999.
3. H-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 2 edition, 1999.
4. H-D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic. Springer, 2nd edition, 1994.

Preservation Under Extensions on Well-Behaved Finite Structures 1449

5. M. Grohe, J. Flum, and M Frick. Query evaluation via tree-decompositions. Journal of the
ACM, 49:716–752, 2002.

6. Y. Gurevich. Toward logic tailored for computational complexity. In M. Richter et al., edi-
tors, Computation and Proof Theory, pages 175–216. Springer Lecture Notes in Mathematics,
1984.

7. W. Hodges. Model Theory. Cambridge University Press, 1993.
8. L. Libkin. Elements of Finite Model Theory. Springer, 2004.
9. W. W. Tait. A counterexample to a conjecture of Scott and Suppes. Journal of Symbolic Logic,

24:15–16, 1959.

Unsafe Grammars and Panic Automata

Teodor Knapik1, Damian Niwiński2,�,
Pawe�l Urzyczyn2,��, and Igor Walukiewicz3,� � �

1 Université de la Nouvelle Calédonie
knapik@univ--nc.nc

2 Institute of Informatics, Warsaw University
{niwinski, urzy}@mimuw.edu.pl

3 CNRS LaBRI, Université Bordeaux-1
igw@labri.fr

Abstract. We show that the problem of checking if an infinite tree gen-
erated by a higher-order grammar of level 2 (hyperalgebraic) satisfies
a given μ-calculus formula (or, equivalently, if it is accepted by an al-
ternating parity automaton) is decidable, actually 2-Exptime-complete.
Consequently, the monadic second-order theory of any hyperalgebraic
tree is decidable, so that the safety restriction can be removed from
our previous decidability result. The last result has been independently
obtained by Aehlig, de Miranda and Ong. Our proof goes via a char-
acterization of possibly unsafe second-order grammars by a new variant
of higher-order pushdown automata, which we call panic automata. In
addition to the standard pop1 and pop2 operations, these automata have
an option of a destructive move called panic. The model-checking prob-
lem is then reduced to the problem of deciding the winner in a parity
game over a suitable 2nd order pushdown system.

1 Introduction

Context-free tree grammars constitute the basic level in an infinite hierarchy of
higher-order grammars introduced by W. Damm [8] (built on the earlier ideas
of [11]). Courcelle [6] proved decidability of the monadic second-order (MSO)
theory of any tree generated by an algebraic (context-free) tree grammar. Later
Knapik et al [13, 14] attempted to extend this decidability result to all levels of
the Damm hierarchy. This has been achieved partially, namely with an additional
syntactic restriction imposed on the grammars, called safety: the MSO theory
of any tree generated by a safe grammar of level n is decidable.

Higher-order grammars can be seen as program schemes, where functions
can take higher-order arguments. The tree generated by such a grammar de-
scribes completely the semantics of the program scheme. Thus decidability of

� Partly supported by KBN Grant 4 T11C 042 25.
�� Partly supported by KBN Grant 3 T11C 002 27.

� � � The 2nd and the 4th author were also supported by the EC Research Training
Network Games.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 1450–1461, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Unsafe Grammars and Panic Automata 1451

the MSO theory of such a tree implies decidability for a large class of properties
of behaviours of higher-order program schemes.

The safety requirement, roughly speaking, prevents the use of individual pa-
rameters in the functional arguments of higher-order functions. The concept of
safe (tree) grammars has been further justified by a characterization in terms
of higher-order pushdown automata originally introduced by Maslov [16]: the
trees generated by safe higher-order grammars of level n coincide with the trees
recognized (in suitable sense) by pushdown automata of level n [14]. See [5, 7]
for another characterization of this hierarchy.

Monadic second-order logic is extremely succinct, which yields the non-
elementary complexity of the MSO theories, even for regular trees. However,
over trees, the MSO logic has the same expressive power as the μ-calculus,
which is much better tractable algorithmically. Cachat [3] showed that the model-
checking problem for the μ-calculus and the trees recognized by the pushdown
automata of level n is in n-Exptime, actually n-Exptime-complete [4].

In this paper we show that for the level 2 (hyperalgebraic), the model checking
problem remains decidable, actually 2-Exptime-complete, also for grammars
without safety restriction.

To this end, we first find an automata-theoretic counterpart of unsafe hyper-
algebraic grammars, which is an extension of second-order pushdown automata
by a new destructive operation that we call panic. This operation allows us
to simulate the change of environment needed to evaluate parameters of un-
safe productions. We further introduce 2nd order pushdown systems with panic
(equipped with alternation and ranks), which can be viewed as a generaliza-
tion of pushdown systems studied in [20, 3]. The model-checking problem then
reduces to the problem of deciding the winner in a parity game over such a
system. The key step is a reduction of this game to a game over a 2nd order
pushdown system without panic, for which a 2-Exptimeprocedure is already
known [3].

An immediate consequence of our result is that the model checking problem
for the hyperalgebraic grammars is decidable also for the monadic second-order
logic, consequently the MSO theory of any hyperalgebraic tree is decidable.
This result has been recently independently obtained by Aehlig, de Miranda
and Ong [2], by a different proof, based on transformations of infinite lambda
terms. Compared to [2], the present paper has two new elements: (1) it gives
a characterization of unsafe grammars by panic automata, (2) the actual proof
yields an optimal decision procedure for the μ-calculus model checking.

At present we do not know if the safety requirement really restricts the gen-
erating power of the tree grammars. Recently, Aehlig, de Miranda and Ong have
studied the safety restriction [1]. They have shown that it is inessential for the
word grammars of level 2, where a grammar, as usual, can generate a set of
words. To simulate a non-safe grammar by a safe one, they use nondeterminism
in an essential way, hence their result is not directly applicable for trees.

Due to space limitations, many arguments are omitted or sketchy; they will
appear in the full paper (see [15] for a preliminary version).

1452 T. Knapik et al.

2 Trees

Types, terms, and trees. We fix the set of simple types τ constructed from
a unique basic type 0, by the rules τ ::= 0 | (τ1 → τ2). The level of a type is
defined by �(0) = 0, and �(τ1 → τ2) = max(1 + �(τ1), �(τ2)). Thus 0 is the only
type of level 0 and each type of level 1 is of the form 0n → 0 for some n > 0
(which abbreviates (0 → (0 → (· · · (0 → 0) . . .))), with n+ 1 occurrences of 0).

A typed alphabet is a set Γ of symbols, each γ in Γ given with its type, γ : τ .
We inductively extend Γ to the set T (Γ) of (applicative) terms over Γ ; if t :
τ1 → τ2 and s : τ1 then (ts) : τ2. As usual we abbreviate (· · · ((t0t1)t2) · · ·)tn by
t0t1 . . . tn. For terms t, t1, . . . , tm, and symbols z1, . . . , zm, of appropriate types,
term t[z1:=t1, . . . , zk:=tk] results from simultaneous replacement in t of zi by ti.

The set of natural numbers is denoted by ω. A tree (over a set X) is any
nonempty prefix-closed subset T of the free monoid X∗, with ε as the root. If
u ∈ T , x ∈ X , and ux ∈ T , then ux is a successor of u in T .

Now let Σ be a signature, i.e., a typed alphabet of symbols of level ≤ 1. A
Σ-tree is a mapping t : dom t → Σ, where dom t ⊆ ω∗ is a tree, and if t(w) is a
symbol of type 0k → 0 then w has exactly k successors, w1, . . . , wk (hence w is
a leaf if t(w) : 0). The set of Σ-trees is written T

∞
(Σ).

A limit of a sequence t0, t1, . . . of Σ-trees is defined, provided that for any k,
there is m = m(k), such that tn�k and tn′�k coincide, for all n, n′ ≥ m(k)
(where, in general, t�k is restriction of t to the set {w ∈ dom t : |w| ≤ k}). Then
lim tn ∈ T

∞
(Σ) is just the set-theoretical union of the functions tn�m(n).

Grammars. We fix an infinite typed alphabet of variables (or parameters), X .
A grammar is a tuple G = (Σ,N,S, E), where Σ is a signature, N is a finite
typed alphabet of nonterminals1, S ∈ N is a start symbol of type 0, and E is a
set of productions of the form

Fz1 . . . zm ⇒ w

where F : τ1 → τ2 · · ·→ τm → 0 is a nonterminal, zi a variable of type τi, and w
an applicative term in T (Σ ∪N ∪{z1 . . . zm}) of type 0. The level of a grammar
is the highest level of its nonterminals. Since we are interested in grammars as
generators of (single) Σ-trees, we assume that for each F , there is exactly one
production with F on the left-hand side.

The single-step reduction relation →G between terms over Σ ∪ N is defined
inductively by the following clauses.

1. Ft1 . . . tk →G t[z1:=t1, . . . , zk:=tk] if there is a production Fz1 . . . zk ⇒ t
with zi : ρi, and ti ∈ T (Σ ∪N), where ti : ρi, for i = 1, . . . , k.

2. If t →G t′ then (st) →G (st′) and (tq) →G (t′q), whenever the expressions in
question are applicative terms.

1 Without loss of generality, we assume that the types of nonterminals are homo-
geneous, i.e., 0 or τ1 → · · · → τn → 0, where if each τi is homogeneous and
�(τ1) ≥ �(τ2) ≥ . . . ≥ �(τn).

Unsafe Grammars and Panic Automata 1453

That is, t →G t
′ whenever t′ is obtained from t by replacing some occurrence

of a nonterminal F by the right-hand side of the appropriate production in which
all parameters are in turn replaced by the actual arguments of F .

In order to define the result of an infinite derivation, we extend Σ to Σ⊥ =
Σ ∪ {⊥}, with ⊥ : 0. With any term t over Σ ∪N , we inductively associate an
expression t⊥ over Σ⊥, by setting f⊥ = f (for f ∈ Σ), X⊥ = ⊥ (for X ∈ N),
and (st)⊥ = (s⊥r⊥) whenever s⊥ �= ⊥, otherwise (st)⊥ = ⊥. Then, we define
relation t
∞

G t′, where t is a term in T (Σ ∪N) and t′ a tree in T
∞
(Σ⊥), by

– t′ is finite, and there is reduction sequence t = t0 →G . . . →G tn = t′, or
– t′ is infinite, and there is an infinite reduction sequence t = t0 →G t1 →G . . .

such that t′ = lim t⊥n .

To define a unique tree produced by the grammar, we recall a standard approxi-
mation ordering on T

∞
(Σ⊥): t′ , t if dom t′ ⊆ dom t and, for each w ∈ dom t′,

t′(w) = t(w) or t′(w) = ⊥. Then the tree generated by G is defined by

[[G]] = sup{t ∈ T∞
(Σ⊥) : S
∞

G t}

It is easy to see that, by the Church-Rosser property of our grammar, the above
set is directed, and hence [[G]] is well defined since T

∞
(Σ⊥) with the approxima-

tion ordering is a cpo.
In this paper we only study grammars of level 2, which we call hyperal-

gebraic, as they constitute the next level above the algebraic (context-free)
grammars.

Parity games. A parity game is a perfect information game of possibly in-
finite duration played by two players, say Eve and Adam. We present it as a
tuple (V∃, V∀, E, p1, Ω), where V∃ and V∀ are (disjoint) sets of positions of Eve
and Adam, respectively, E ⊆ V × V is the relation of possible moves, with
V = V∃ ∪ V∀, p1 ∈ V is a designated initial position, and Ω : V → ω is the
ranking function.

The players start a play in the position p1 and then move the token accord-
ing to relation E (always to a successor of the current position), thus form-
ing a path in the graph (V,E). The move is selected by Eve or Adam, de-
pending on who is the owner of the current position. If a player cannot move,
she/he looses. Otherwise, the result of the play is an infinite path in the graph,
v0, v1, v2, . . . Eve wins the play if lim supn→∞Ω(vn), is even, otherwise Adam
wins.

Parity games, introduced by Emerson and Jutla [9, 17], have been recognized
as a combinatorial essence of many model checking problems. A crucial property
is the positional determinacy: any position is winning for one of the players, and
moreover a winning strategy of player θ can be made positional , i.e., represented
by a (partial) function σ : Vθ → V .2 We say simply that Eve wins the game G if

2 Positional strategy σ is winning for θ if every play p1 = q1, q2, . . . is won by θ,
provided that q� ∈ V∃ follows q�+1 = σ(q�).

1454 T. Knapik et al.

she has a winning strategy, the similar for Adam. We refer the reader to [19, 12]
for an introduction to parity games.

Model checking. The model checking problem in our consideration is to verify
if the tree generated by a given grammar G satisfies a property ϕ expressed in
some logical language, in symbols [[G]] |= ϕ. The most expressive logics consid-
ered in literature are the monadic second-order logic (MSO) or the μ-calculus;
both have the same expressive power over Σ-trees [18]. In this paper we avoid
a logical machinery by using an equivalent formalism of alternating parity au-
tomata (defined below). A polynomial-time translation from the μ-calculus to
alternating automata, ϕ �→ Aϕ, is known [9], such that, for any tree t, t |= ϕ iff
t is recognized by Aϕ.

An alternating parity tree automaton over signature Σ can be presented as
a tuple

B = 〈Σ,Q∃,Q∀, q1, δ, Ω〉
where Q∃ ∪Q∀ = Q is a finite set of states with the initial state q1, Ω : Q → ω
is a ranking function, and δ is a set of transitions of the form q → f(q1, . . . , qk),
where q, q1, . . . , qk ∈ Q and f ∈ Σ with type f : 0k → 0.

The acceptance of a tree t ∈ T∞
(Σ) by the automaton B can be presented by

a suitable parity game. We first define a the computation tree, r : dom r → Q
with dom r ⊆ (ω× ω)∗, such that, for any u ∈ dom r, the projection u↓1 on the
first component is a node in dom t. We let r(ε) = q1, and whenever r(u) = q
and t(u↓1) = f , then, for any transition of the form q → f(q1, . . . , qk), the node
u has a successor u(i, j) with r(u(i, j)) = qi, for some j, and i = 1, . . . , k. Now
consider a parity game Game(B, t) with V = dom r partitioned such that u ∈ V∃
iff r(u) ∈ Q∃, the initial configuration ε, and Ω(u) = Ω(r(u)). We let B accept
the tree t iff Eva wins this game.

The model checking problem addressed in this paper will be the following.

Problem 1. Given a 2nd order grammar G and an alternating parity tree au-
tomaton B. Does B accept [[G]] ?

3 Panic Automata

Classically the content of a pushdown store is just a word over the pushdown
alphabet. For our purpose, it is convenient to consider pushdown symbols with
“time stamps” (sort of). We let a level 1 pushdown store (or a 1-pds or 1-stack)
over an alphabet Γ be a non-empty word a1 . . . ak over Γ × ω. A level 2 pds
(2-pds , 2-stack) is a non-empty sequence s1 . . . sl of 1-pds’s, which may also be
written as [s1][s2] . . . [sl] or as s′[sl], where s′ stands for [s1][s2] . . . [sl−1]. The
1-stack si is called the i-th row of s. We assume that push-down stores grows to
the right , so that, for instance, the item (a,m) is on top of the 2-pds s′[w(a,m)].
By top(s) we denote the topmost Γ -symbol of s, i.e., top(s′[w(a,m)]) = a.

Unsafe Grammars and Panic Automata 1455

The following operations are possible on level 2 push-down stores.

push1〈a〉([s1][s2] . . . [sl][w]) = [s1][s2] . . . [sl][w(a, l)]
pop1(α[wξ]) = α[w]
push2(α[w]) = α[w][w]

pop2(α[v][w]) = α[v]
panic([s1][s2] . . . [sm] . . . [sl][w(a,m)]) = [s1][s2] . . . [sm]

skip(s) = s

The operation pop2 (resp. pop1) is undefined on a 2-stack s if it contains only
one row (resp. the top row of s has only one element).

Let⊥ be a symbol in Γ . It is easy to see that if a 2-pds [s1] . . . [sm] is generated
from [(⊥, 0)] by the above operations, and si = (ai,1,mi,1) . . . (ai,ki ,mi,ki) then
mi,j ≤ i−1, and j ≤ j′ follows mi,j ≤ mi,j′ . Intuitively, whenever a new symbol
a ∈ Γ is placed on the top of the stack, the second component registers the
number of the stack row which is directly below the current top row. Later the
symbol can be duplicated several times by subsequent executions of push2, but
the second component keeps record of the level when it has first appeared in the
stack. The panic operation returns to the 2-stack previous to the first appearance
of the actual top symbol.

Now let Σ be a signature, and let Σr ⊆ Σ be the set of symbols of type
0r → 0. A panic automaton is defined as a tuple

A = 〈Σ,Q, Γ, q1, δ,⊥〉,

where Q is a finite set of states , with an initial state q1, Γ is a stack alphabet,
with a distinguished bottom symbol ⊥, and δ : Q×Γ → I is a transition function,
where I is the set of possible instructions,

I ⊆ OpΓ ×Q ∪
⋃
r

Σr ×Qr,

where OpΓ = {push1〈a〉 : a ∈ Γ} ∪ {pop1, push2, pop2, panic, skip}.
A configuration of an automaton A as above is a pair (q, s), where q ∈ Q,

and s is a 2-stack (over Γ). The initial configuration is (q1, [(⊥, 0)]). We define
the relation →A on configurations as follows. Let s = [s1] . . . [sl][w(a,m)].

1. If δ(q, a) = 〈α, q′〉 with α ∈ OpΓ then 〈q, s〉→A 〈q′, α(s)〉.
2. If δ(q, a) = 〈f, p1, . . . , pr〉 then 〈q, s〉→A 〈pi, s〉, for all i = 1, . . . , r.

In the first case we write →◦
A instead of →A. The symbol →→◦

A stands for the
reflexive and transitive closure of →◦

A.
Let t : dom t → Σ be a Σ-tree. A partial run of A on t is a partial function

� from an initial segment of dom t to the set of all configurations, such that if
�(w) = 〈q, s〉, for some w ∈ dom t, then δ(q, a) = (f, p1, . . . , pr), where f = t(w)
and a = top(s). In addition 〈pi, s〉 →→◦

A �(wi), for each i = 1, . . . , r when �(wi)
is defined.

1456 T. Knapik et al.

If a partial run is a total function over dom t, we call it a run. As our au-
tomaton is deterministic, there can be at most one tree over which A has a run.
This is the tree recognized by A.

4 Automata vs Grammars

Theorem 4.1. For any panic automaton A, one can construct a hyperalgebraic
grammar GA, such that if the automaton recognizes a tree t in T

∞
(Σ) then t =

[[GA]]. Conversely, for a hyperalgebraic grammar G, one can construct a panic
automaton AG such that if the grammars generates a tree in T

∞
(Σ), this is the

(unique) tree recognized by AG. Both constructions can be realized in polynomial
time.

Here we only sketch the direction G �→ AG , which is essential for the upper
bound result.

Let ◦1, ◦2, . . . be fresh identifiers of type 0, which we call holes. The push-
down alphabet Γ of AG consists of subterms of the right-hand sides of the pro-
ductions of G, possibly applied to some holes, so that the result is of type 0.
More precisely, let u = F t1 . . . td be such a subterm, where F is an operator
(variable or nonterminal) of type τ1 → · · ·→ τd → 0k → 0. Then u◦1 . . . ◦k ∈ Γ .
In particular, if u : 0 then simply u ∈ Γ .

The holes ◦1, . . . , ◦k represent “missing arguments” of the operator F . Since
holes are new identifiers, one can safely identify F t1 . . . td ◦1 . . . ◦k with F t1 . . . td
if this is convenient.

The idea of our simulation is that the top of pds (an expression u) repre-
sents a variable-free expression u′ occurring in a derivation of G. Since the pds
alphabet must be finite, the term u can only be an “approximation” of u′. This
approximation is “evaluated” to yield an approximate representation of the next
step of reduction. The contents of the pds represents an environment in which
the evaluation takes place. The environment is searched if one needs to find the
meaning of a variable, or to find a missing argument.

The bottom pds symbol is S, the initial nonterminal. This is our approxima-
tion in the first step of reduction. The automaton then works in phases, each
phase beginning and ending in the distinguished state q1. We define automa-
ton informally, by describing the possible behaviour in a phase, beginning with
a configuration (q1, s).

T1 Let top(s) = Fu1 . . .un, where F is a nonterminal, and let the correspond-
ing production be Fx1 . . . xn ⇒ u. The automaton executes the instruction
δ(q1,Fu1 . . .un) = (push1〈u 〉, q1), so that our next approximation is u.

T2 If top(s) = ft1 . . . tr where f is a terminal, then the automaton executes the
instruction δ(q1, f t1 . . . tr) = (f, p1, . . . , pr), followed (at the i-th branch of
the run) by a pop1 and push1〈 ti 〉. Thus the next approximation at the i-th
branch is ti. (If f is a constant, there is no further step.)

T3 Let top(s) = x, where x is an (ordinary) variable of type 0. To “evaluate”
x, the automaton restores the environment where x was defined. It executes

Unsafe Grammars and Panic Automata 1457

pop1 and inspects the new top symbol. It should be of the form Ft1 . . . te,
where F is a nonterminal. In addition, the variable x should be one of the
formal parameters of F , say, the j-th one. The next approximation is tj ,
and it should be evaluated in the present environment (that of the caller).
Another pop1 is now executed, followed by a push1〈 tj 〉, and the machine
returns to state q1.

T4 Let top(s) = ϕu1 . . .uh where ϕ is a variable of type 0h → 0. If we now
executed a pop1 as above then the information about the actual parameters
u1, . . . ,uh would be lost. Instead, a push2 is executed, followed by a pop1. As
in the previous case, the top of the stack should be of the form Ft1 . . . te and
ϕ should be one of the formal parameters of F , say, the j-th one. However
now the new approximant tj is an expression of a functional type and we
actually place tj ◦1 . . . ◦h on the pds rather than tj .

T5 The last case is when top(s) is a hole, say ◦i. The automaton gets now into
a panic. After the panic move the top of the pds should be ψv1 . . . vl for
some variable ψ. The new approximation is vi. We execute in order pop1

and push1〈 vi 〉 and return to state q1.

To explain the last case let us first observe that holes (missing arguments)
are created when we attempt to evaluate a function variable (the fourth case).
Holes correspond to the arguments (actual parameters) of this function variable
that were “left behind” for a while. Later, a hole is found at top of the pds when
we need to evaluate such a missing argument of an operator. In order to do so,
we must restore the situation from the time of the call. The crucial thing is that
the “time stamp” of the topmost item points out to exactly the moment in the
past we need, namely to the stage when the hole was created.

5 Pushdown Systems

By now, we have considered panic automata as tree acceptors, with the aim to
characterize hyperalgebraic grammars. For the model-checking applications, it
is convenient to use a related concept of pushdown systems which do not take
inputs, but are equipped with ranks and alternation (c.f. [3, 20]).

A 2nd order pushdown system with panic (or 2-PPDS, for short) is a tuple
C = (P,P∃,P∀, Γ, p1,Δ, Ω) where P is a finite set of control locations partitioned
into P∃ and P∀, Γ is a finite store alphabet, p1 ∈ P is the initial location,
Ω : P → ω is the rank function, and Δ ⊆ P × Γ × P × OpΓ is the finite
set of (unlabeled) transition rules (where OpΓ is as in Sect. 3). A transition
(p, a, p′, α) ∈ Δ is often written by p, a →Δ p′, α.

A configuration of a 2-PPDS C is a pair (p, s) where p ∈ P and s is a 2-stack
over Γ . A 2-PPDS C induces a parity game Game(C) = (V∃, V∀, E, (p1, [⊥, 0]), Ω),
where

– V∃ is the set of configurations of C with a location from P∃, similarly for V∀;
– (p, s)E(p′, s′) iff ∃(p, a, p′, α) ∈ Δ, top(s) = a and s′ = α(s);
– Ω(p, s) = Ω(p).

1458 T. Knapik et al.

Problem 2. Given a 2-PPDS C, decide if Eva wins the game Game(C).

Proposition 5.2. Problem 1 and Problem 2 are polynomial-time equivalent.

Proof: (Sketch) By Theorem 4.1, we reduce Problem 1 to the question if a tree
recognized by a panic automatonA is accepted by an alternating tree automaton
B. Then a suitable 2-PPDS C is obtained by a standard product construction,
such that Eve wins Game(C) if and only if she wins Game(B, tA)

The converse transformation of Problem 2 to Problem 1 is also easy, after
introduction of a suitable functional signature Σ (depending on given C). ��

Before proceeding to the proof of our main result, we show a useful transfor-
mation of 2-PPDS’s, which will allow us to control the dynamics of ranks by the
topmost symbols on the pushdown store.

Let Tr(C) be the tree obtained by unfolding the graph of Game(C). That is,
the root of Tr(C) is labeled by the initial configuration, and a node labeled by
(p, s) has a successor labeled (p′, s′), whenever (p, s)E(p′, s′). Note that a node
of the tree determines a computation up to this node.

Definition 5.3 Let a node v of Tr(C) be labeled with 〈q, s〉 such that panic(s)
is defined. Let v′ be the closest to v ancestor of v labeled with 〈q′, panic(s)〉, for
some q′. We call v′ the panic ancestor of v. The panic rank of v is the maximal
rank of a state occurring between the panic ancestor of v and v, including the
rank of v and excluding the rank of the panic ancestor of v.

A 2-PPDS C is rank-aware iff there exists a function Rank : Γ → Rg(Ω) such
that the panic rank of every node v of Tr(C) labeled (q, s) is equal to Rank(top(s)).
That is, the panic rank is determined by the top of the stack.

Lemma 5.4. For every 2-PPDS C, one can construct in polynomial time a rank-
aware 2-PPDS C′, such that Eve wins Game(C′) iff she wins in Game(C).

Proof: (Idea) The stack alphabet of C′ is defined as Γ ′ = Γ ×{0, . . . , d}2, where
d is the highest rank in Rg(Ω). The construction ensures that if (a,mp,ml) is
currently on top of the stack, then mp is the panic rank of the node, and ml is
the highest rank of a state seen since the creation of the current top row.

The construction of transitions of C′ goes naturally case by case. The cor-
rectness proof is straightforward, but tedious. ��

6 Deciding the Winner in Game(C)

A 2nd order pushdown system (or 2-PDS, for short) is like a 2-PPDS defined in
section 5, but without panic, that is, Δ ⊆ P × Γ × P × (OpΓ − {panic}). Then
a level 1 pushdown store can be viewed just as a word over Γ (not Γ × ω). The
concepts of 2-pds , configuration, and Game(C) are simplified accordingly.

Unsafe Grammars and Panic Automata 1459

Games over such pushdown systems have been considered by Engelfriet [10],
Cachat [3], and others.

Lemma 6.5 ([10, 3, 4]). It is decidable if Eve wins Game(C) for a given 2nd-
order pushdown system C = (P,P∃,P∀, Γ, p1,Δ, Ω). There is an algorithm work-
ing in time3 2|Γ |2

O(|P |)
, moreover the problem is 2-Exptime-complete.

We now transform a rank-aware 2nd order pushdown system with panic C =
(P,P∃,P∀, Γ, p1,Δ, Ω) into a 2nd order pushdown system without panic C′ =
(P ′,P ′

∃,P
′
∀, Γ

′, p′1,Δ
′, Ω′), such that Eve wins Game(C) iff she wins Game(C′).

For technical convenience, we assume that a transition p, a →Δ p′, α with
α �= skip is possible only for p ∈ P∃. Clearly, we can always achieve this property
by duplicating locations and using skip operation.

Let Rank : Γ → Rg(Ω) = {0, . . . , d} be the function of Definition 5.3. We
introduce an ordering on ranks: m � n iff (−1)m ·m ≤ (−1)n ·n (e.g., for d = 6,
this yields an ordering 5, 3, 1, 0, 2, 4, 6).

We define the set of returns as

Ret = P
·→{0, . . . , d} .

The intention is that a partial function R ∈ Ret assigns to a location p the worst,
in �-order, panic rank still acceptable for the panic moves ending in position p.
We let

P ′
∃ =P∃ ∪ {⊥},

P ′
∀ =P∀ ∪ {ppush , pver , prank=i : p ∈ P, i ∈ {0, . . . , d}} ∪ {8} ∪ {ver} ∪ Aux
Γ ′ =Ret ∪ (Γ × Ret).

The rank function Ω′ is 0 for all the locations except for

Ω′(p) = Ω(p), Ω′(prank=i) = i; for all p ∈ P .

The transition rules Δ′ are defined by the following clauses.

– If p, a →Δ p′, skip then p, (a,R) →Δ′ p′, skip, for all R ∈ Ret .
– If p, a →Δ p′, push1〈a〉 then p, (a,R) →Δ′ p′ver , push1〈(a′,R′)〉, for all R,R′ ∈

Ret . Additionally we have p′ver , (a
′,R′) →Δ′ ver , skip, and p′ver , (a

′,R′) →Δ′

p′, skip.
– From the location ver the moves are defined in such a way that Eve wins iff

R in the top letter of the top-most 1-stack is the same as R at the top of
1-stack just below the top-most 1-stack.

– If p, a →Δ p′, push2 then p, (a,R) →Δ′ p′push , push1〈R′〉, for all R,R′ ∈ Ret .
Additionally we put in Δ′ the rules4 p′push ,R

′ →Δ′ p′, push2; pop1, as well as

3 The single exponential dependence on |Γ | is not made explicit in these references,
but it follows from the analysis of level 1 pushdown systems in [20].

4 Notation like p, a→Δ′ p′, α1; α2 clearly abbreviates two rules.

1460 T. Knapik et al.

p′push ,R
′ →Δ′ p′′rank=R′(p′′), pop1, and p′′rank=R′(p′′), (a,R) →Δ′ p′′, skip, for

all p′′ such that R′(p′′) is defined.
– If p, a →Δ p′, pop1 then p, (a,R) →Δ′ p′, pop1, for all R ∈ Ret .
– If p, a →Δ p′, pop2 then p, (a,R) →Δ′ p′, pop2; pop1, for all R ∈ Ret .
– If p, a →Δ p′, panic then p, (a,R) →Δ′ 8, skip if Rank(a) � R(p′), and we

have p, (a,R) →Δ′ ⊥, skip otherwise, i.e., when Rank(a) ≺ R(p′) or R(p′) is
undefined.

– There are no transitions from states 8 and ⊥. This implies that Eve wins in
8 and loses in ⊥.

Proposition 6.6. Eve wins in Game(C′) iff she wins in Game(C).

Proof: (Idea) The construction guarantees that a 2-pds in a reachable configu-
ration of C′ has a form v = [w1R1] . . . [wkRk][wk+1], where wi ∈ (Γ ×Ret)∗ and
Ri ∈ Ret . We say that v represents a 2-pds s = [s1] . . . [sk+1] of C if, for all i,
si ↓1= wi ↓1, and if si ↓2= � then wi ↓2= R�. Note that a possibly infinite domain
of “time stamps” (in C) is represented here by the finite set Ret . Both players
can ensure that the 2-stacks reachable in Game(C′) represent the 2-stacks of C.
Together with the mechanism of returns, this allows them to transfer the strate-
gies from Game(C) to Game(C′). ��

We are now ready to state our main result.

Theorem 6.7. The problem of checking if Eva wins Game(C), for a given 2nd
order pushdown system with panic C, is 2-Exptime-complete (Problem 2). Con-
sequently, so is the problem of checking if an alternating parity tree automaton
B accepts the tree [[G]] generated by an hyperalgebraic grammar G (Problem 1).

Proof: The 2-Exptime hardness result follows from Lemma 6.5, and Propo-
sition 5.2. To show the upper bound, let C be a 2-PPDS. By Lemma 5.4 we
can assume that C is rank-aware. To solve Game(C) we construct a 2-PDS C′
(without panic), as in Proposition 6.6. The system C′ has the number of stack
letters which is exponential in the size of C, but the number of locations of C′
is linear in the number of locations of C. By the first part of Lemma 6.5, the
winner in the game Game(C′) can be decided in time doubly exponential in the
number of states and singly exponential in the number of stack symbols, which
gives us the desired complexity. ��

By the relation between automata, μ-calculus, and monadic logic (cf. Sec-
tion 2), we obtain the following.

Corollary 6.8. It is 2-Exptime-complete to check if [[G]] |= ϕ, for a given 2nd
order grammar G, and a given μ-calculus formula ϕ. Consequently, the analogous
problem for the monadic second-order logic (MSO) is decidable, in particular the
MSO theory of any hyperalgebraic tree is decidable.

Unsafe Grammars and Panic Automata 1461

References

[1] Aehlig, K., de Miranda, J.G., and Ong, L., Safety is not a restriction at level 2 for
string languages. In: Proc. FOSSACS ’05, Springer LNCS 3441 (2005), 490–504.

[2] Aehlig, K., de Miranda J.G., and Ong, L., The monadic second order theory of
trees given by arbitrary level-two recursion schemes is decidable. In: Proc. TLCA
’05, Springer LNCS 3461 (2005), 39–54.

[3] Cachat, T., Higher Order Pushdown Automata, the Caucal Hierarchy of Graphs
and Parity Games. In: Proc. ICALP 2003, Springer LNCS 2719 (2003), 556–569.

[4] Cachat, T., Walukiewicz, I., The complexity of games on higher order pushdown
automata, manuscript, 2004.

[5] Caucal, D., On infinite terms having a decidable monadic second-order theory.
In: Proc. MFCS 2002, Springer LNCS 2420 (2002), 65–176.

[6] Courcelle, B., The monadic second-order theory of graphs IX: Machines and their
behaviours. Theoretical Comput. Sci., 151:125–162, 1995.

[7] Courcelle, B., Knapik, T., The evaluation of if first-order substitution is monadic
second-order compatible Theoretical Comput. Sci., 281(1-2):177–206, 2002.

[8] Damm, W., The IO- and OI-hierarchies. Theoretical Comput. Sci., 20(2):95–208,
1982.

[9] Emerson, E. A., Jutla, C. S., Tree automata, mu-calculus and determinacy. In:
Proceedings 32th Annual IEEE Symp. on Foundations of Comput. Sci., IEEE
Computer Society Press, 1991, pp. 368–377.

[10] Engelfriet, J., Iterated push-down automata and complexity classes. In: Proc. 15th
STOC , 1983, pp. 365–373.

[11] Engelfriet, J., Schmidt, E.M., IO and OI, J. Comput. System Sci. 15, 3, 1977,
pp. 328–353, and 16, 1, 1978, pp. 67–99.

[12] Grädel, E., Thomas, W., and Wilke, T., Editors, Automata, Logics, and Infinite
Games. A Guide to Current Research, LNCS 1500, Springer-Verlag, 2002.

[13] Knapik, T., Niwiński, D., and Urzyczyn, P., Deciding monadic theories of hy-
peralgebraic trees. In: Typed Lambda Calculi and Applications, 5th International
Conference, Springer LNCS 2044 (2001), 253–267.

[14] Knapik, T., Niwiński, D., Urzyczyn, P., Higher-order pushdown trees are easy. In:
Proc. FoSSaCS’02 , Springer LNCS 2303 (2002), 205–222.

[15] Knapik, T., Niwiński, D., Urzyczyn, P., Walukiewicz, I., Unsafe grammars and
panic automata, draft, http://www.mimuw.edu.pl/∼ niwinski/prace.html.

[16] Maslov, A.N., The hierarchy of indexed languages of an arbitrary level, Soviet
Math. Dokl., 15, pp. 1170–1174, 1974.

[17] A. W. Mostowski. Games with forbidden positions. Technical Report 78, Instytut
Matematyki, University of Gdansk, 1991.

[18] Niwiński, D., Fixed points characterization of infinite behaviour of finite state
systems. Theoret. Comput. Sci., 189:1–69, 1997.

[19] Thomas, W., Languages, automata, and logic. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Languages, volume 3, Springer-Verlag, 1997, pp. 389–
455.

[20] Walukiewicz, I., Pushdown processes: Games and model checking. Information
and Computation, 164(2):234–263, 2001.

Signaling P Systems and Verification Problems�

Cheng Li1, Zhe Dang1,��, Oscar H. Ibarra2, and Hsu-Chun Yen3

1 School of Electrical Engineering and Computer Science,
Washington State University, Pullman, WA 99164, USA

zdang@eecs.wsu.edu
2 Department of Computer Science,

University of California, Santa Barbara, CA 93106, USA
3 Department of Electrical Engineering,

National Taiwan University, Taipei, Taiwan 106, R.O.C.

Abstract. We introduce a new model of membrane computing system (or P sys-
tem), called signaling P system. It turns out that signaling systems are a form of
P systems with promoters that have been studied earlier in the literature. How-
ever, unlike non-cooperative P systems with promoters, which are known to be
universal, non-cooperative signaling systems have decidable reachability proper-
ties. Our focus in this paper is on verification problems of signaling systems; i.e.,
algorithmic solutions to a verification query on whether a given signaling system
satisfies some desired behavioral property. Such solutions not only help us under-
stand the power of “maximal parallelism” in P systems but also would provide
a way to validate a (signaling) P system in vitro through digital computers when
the P system is intended to simulate living cells. We present decidable and unde-
cidable properties of the model of non-cooperative signaling systems using proof
techniques that we believe are new in the P system area. For the positive results,
we use a form of “upper-closed sets” to serve as a symbolic representation for
configuration sets of the system, and prove decidable symbolic model-checking
properties about them using backward reachability analysis. For the negative re-
sults, we use a reduction via the undecidability of Hilbert’s Tenth Problem. This
is in contrast to previous proofs of universality in P systems where almost al-
ways the reduction is via matrix grammar with appearance checking or through
Minsky’s two-counter machines. Here, we employ a new tool using Diophantine
equations, which facilitates elegant proofs of the undecidable results. With mul-
tiplication being easily implemented under maximal parallelism, we feel that our
new technique is of interest in its own right and might find additional applications
in P systems.

1 Introduction

P systems [18, 19] are abstracted from the way the living cells process chemical com-
pounds in their compartmental structure. A P system consists of a finite number of

� The work by Cheng Li and Zhe Dang was supported in part by NSF Grant CCF-0430531.
The work by Oscar H. Ibarra was supported in part by NSF Grants CCR-0208595 and CCF-
0430945.

�� Corresponding author.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 1462–1473, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Signaling P Systems and Verification Problems 1463

membranes, each of which contains a multiset of objects (symbols). The membranes
are organized as a Venn diagram or a tree structure where a membrane may contain
other membranes. The dynamics of the P system is governed by a set of rules associ-
ated with each membrane. Each rule specifies how objects evolve and move into neigh-
boring membranes. In particular, a key feature of the model of P systems is that rules
are applied in a nondeterministic and maximally parallel manner. Due to the key fea-
ture inherent in the model, P systems have a great potential for implementing massively
concurrent systems in an efficient way that would allow us to solve currently intractable
problems (in much the same way as the promise of quantum and DNA computing).
It turns out that P systems are a powerful model: even with only one membrane (i.e.,
1-region P systems) and without priority rules, P systems are already universal [18, 22].
In such a one-membrane P system, rules are in the form of u → v, which, in a maxi-
mally parallel manner, replaces multiset u (in current configuration which is a multiset
of symbol objects) with multiset v.

Signals are a key to initiate biochemical reactions between and inside living cells.
Many examples can be found in a standard cell biology textbook [3]. For instance, in
signal transduction, it is known that guanine-nucleotide binding proteins (G proteins)
play a key role. A large heterotrimeric G protein, one of the two classes of G proteins,
is a complex consisting of three subunits: Gα, Gβ , and Gγ . When a ligand binds to a
G protein-linked receptor, it serves as a signal to activate the G protein. More precisely,
the GDP, a guanine nucleotide, bound to the Gα subunit in the unactivated G protein is
now displaced with GTP. In particular, the G protein becomes activated by being disso-
ciated into a Gβ-Gγ complex and a Gα-GTP complex. Again, the latter complex also
serves as a signal by binding itself to the enzyme adenylyl cyclase. With this signal, the
enzyme becomes active and converts ATP to cyclic AMP. As another example, apop-
tosis (i.e., suicide committed by cells, which is different from necrosis, which is the
result from injury) is also controlled by death signals such as a CD95/Fas ligand. The
signal activates caspase-8 that initiates the apoptosis. Within the scope of Natural Com-
puting (which explores new models, ideas, paradigms from the way nature computes),
motivated by these biological facts, it is a natural idea to study P systems, a molecular
computing model, augmented with a signaling mechanism.

In this paper, we investigate one-membrane signaling P systems (signaling systems
in short) where the rules are further equipped with signals. More precisely, in a sig-
naling system M , we have two types of symbols: object symbols and signals. Each
configuration is a pair consisting of a set S of signals and a multiset α of objects. Each
rule in M is in the form of s,u → s′, v or s,u → Λ, where s, s′ are signals and u, v
are multisets of objects. The rule is enabled in the current configuration (S, α) if s is
present in the signal set S and u is a sub-multiset of the multiset α. All the rules are
fired in maximally parallel manner. In particular, in the configuration as a result of the
maximally parallel move, the new signal set is formed by collecting the set of signals
s′ that are emitted from all the rules actually fired during the move (and every signal
in the old signal set disappears). Hence, a signal may trigger an unbounded number of
rule instances in a maximally parallel move.

We focus on verification problems of signaling systems; i.e., algorithmic solutions
to a verification query on whether a given signaling system does satisfy some desired

1464 C. Li et al.

behavioral property. Such solutions not only help us understand the power of the maxi-
mally parallelism that is pervasive in P systems but also would provide a way to validate
a (signaling) P system in vitro through digital computers when the P system is intended
to simulate living cells. However, since one-membrane P systems are Turing-complete,
so are signaling systems. Therefore, to study the verification problems, we have to look
at restricted signaling systems. A signaling system is non-cooperative if each rule is in
the form of s, a → Λ or in the form of s, a → s′, bc, where a, b, c are object symbols.
All the results can be generalized to non-cooperative signaling systems augmented with
rules s, a → s′, v. We study various reachability queries for non-cooperative signaling
systems M ; i.e., given two formulas Init and Goal that define two sets of configura-
tions, are there configurations Cinit in Init and Cgoal in Goal such that Cinit can reach
Cgoal in zero or more maximally parallel moves in M? We show that, when Init is a
Presburger formula (roughly, in which one can compare integer linear constraints over
multiplicities of symbols against constants) and Goal is a region formula (roughly, in
which one can compare multiplicities of symbols against constants), the reachability
query is decidable. Notice that, in this case, common reachability queries like halting
and configuration reachability are expressible. We also show that introducing signals
into P systems indeed increases its computing power; e.g., non-cooperative signaling
systems are strictly stronger than non-cooperative P systems (without signals). On the
other hand, when Goal is a Presburger formula, the query becomes undecidable. Our
results generalize to queries expressible in a subclass of a CTL temporal logic and to
non-cooperative signaling systems with rules S, a → S′, v (i.e., the rule is triggered
with a set of signals in S). We also study the case when a signal has bounded strength
and, in this case, non-cooperative signaling systems become universal.

Non-cooperative signaling systems are also interesting for theoretical investigation,
since the signaling rules are context-sensitive and the systems are still nonuniversal as
we show. In contrast to this, rules a → v in a non-cooperative P system are essen-
tially context-free. It is difficult to identify a form of restricted context-sensitive rules
that are still nonuniversal. For instance, a communicating P system (CPS) with only
one membrane [21] is already universal, where rules are in the form of ab → axby or
ab→ axbyccome in which a, b, c are objects (the c comes from the membrane’s external
environment), x, y (which indicate the directions of movements of a and b) can only be
here or out. Also one membrane catalytic systems with rules like Ca → Cv (where
C is a catalyst) are also universal. More examples including non-cooperative signaling
systems with promoters, which will be discussed further in this section, are also univer-
sal. Our non-cooperative signaling systems use rules in the form of s, a → s′, v, which
are in a form of context-sensitive rules, since the signals constitute part of the triggering
condition as well as the outcome of the rules.

At the heart of our decidability proof, we use a form of upper-closed sets to serve as
a symbolic representation for configuration sets and prove that the symbolic representa-
tion is invariant under the backward reachability relation of a non-cooperative signaling
system. From the studies in symbolic model-checking [7] for classic transition systems,
our symbolic representation also demonstrates a symbolic model-checking procedure
at least for reachability. In our undecidability proofs, we use the well-known result on
the Hilbert’s Tenth Problem: any r.e. set (of integer tuples) is also Diophantine. We

Signaling P Systems and Verification Problems 1465

note that, for P systems that deal with symbol objects, proofs for universality almost
always use the theoretical tool through matrix grammar with appearance checking [16]
or through Minsky’s two-counter machines. Here, we employ a new tool using Dio-
phantine equations, which facilitates elegant proofs of the undecidable results. With
multiplication being easily implemented under maximal parallelism, we feel that our
new technique is of interest in its own right and might find additional applications in P
systems.

Signaling mechanisms have also been noticed earlier in P system studies. For in-
stance, in a one-membrane P system with promoters [4], a rule is in the form of u→ v|p
where p is a multiset called a promoter. The rule fires as usual in a maximally par-
allel manner but only when objects in the promoter all appear in the current config-
uration. Notice that, since p may not be even contained in u, a promoter, just as a
signal, may trigger an unbounded number of rule instances. Indeed, one can show
that a signaling system can be directly simulated by a one-membrane P system with
promoters. However, since one-membrane non-cooperative P systems with promot-
ers are known to be universal [4], our decidability results on non-cooperative signal-
ing systems have a nice implication: our signals are strictly weaker than promoters
(and hence have more decidable properties). The decidability results also imply that,
as shown in the paper, non-cooperative signaling systems and vector addition systems
(i.e., Petri nets) have incomparable computing power, though both models have a de-
cidable configuration-to-configuration reachability. This latter implication indicates that
the maximal parallelism in P systems and the “true concurrency” in Petri nets are differ-
ent parallel mechanisms. Other signaling mechanisms such as in [2] are also promoter-
based.

2 Preliminaries

We use N to denote the set of natural numbers (including 0) and use Z to denote the
set of integers. Let Σ = {a1, · · · , ak} be an alphabet, for some k, and α be a (finite)
multiset over the alphabet. In this paper, we do not distinguish between different repre-
sentations of the multiset. That is, α can be treated as a vector in Nk (the components
are the multiplicities of the symbols in Σ); α can be treated as a word on Σ where we
only care about the counts of symbols (i.e., its Parikh map). For a σ ⊆ Σ, we use σ∗ to
denote the set of all multisets on σ.

A set S ⊆ Nk is a linear set if there exist vectors v0, v1, . . . , vt in Nk such that
S = {v | v = v0 + a1v1 + · · · + atvt, ai ∈ N}. A set S ⊆ Nk is semilinear if it is a
finite union of linear sets. Let x1, · · · , xk be variables on N. A Presburger formula is a
Boolean combination of linear constraints in the following form:

∑
1≤i≤k ti · xi ∼ n,

where the ti’s and n are integers in Z, and ∼∈ {>,<,=,≥,≤,≡m} with 0 �= m ∈ N.
It is known that a set of multisets (treated as vectors) is semilinear iff the set is definable
by a Presburger formula. Also, Presburger formulas are closed under quantification.

A signaling system is simply a P system [18] augmented with signals. Formally,
a (1-membrane) signaling system M is specified by a tuple 〈Σ,Sig,R〉, where Σ =
{a1, · · · , ak} is the alphabet, Sig is a nonempty finite set of signals, and R is a finite
set of rules. Each rule is in the form of s,u→ s′, v, where s, s′ ∈ Sig and u and v are

1466 C. Li et al.

multisets over alphabet Σ. (Notice that a rule like s,u → v (without emitting signal)
can be treated as a short hand of s,u→ sgarbage, v where sgarbage is a “garbage” signal
that won’t trigger any rules.) A configuration C is a pair consisting of a set S of signals
and a multiset α on Σ. As with the standard semantics of P systems [18, 19, 20], each
evolution step, called a maximally parallel move, is a result of applying all the rules in
M in a maximally parallel manner. More precisely, let si,ui → s′i, vi, 1 ≤ i ≤ m, be
all the rules in M . We use R = (r1, · · · , rm) ∈ Nm to denote a multiset of rules, where
there are ri instances of rule si,ui → s′i, vi, for each 1 ≤ i ≤ m. Rule si,ui → s′i, vi

is actually fired in R if ri ≥ 1 (there is at least one instance of the rule in R). Let
C = (S, α) and C ′ = (S′, α′) be two configurations. The rule multiset R is enabled
under configuration C if

– multiset α contains multiset ∪1≤i≤mri · ui (i.e., the latter multiset is the multiset
union of ri copies of multiset ui, for all 1 ≤ i ≤ m), and

– set S ⊇ {si : ri > 0, 1 ≤ i ≤ m} (i.e., for every rule actually fired in R, the signal
si that triggers the rule must appear in the set S of the configuration C).

(We say that a rule is enabled under configuration C if the rule multiset that contains
exactly one instance of the rule is enabled under the configuration.) The result C ′ =
(S′, α′) of applying R over C = (S, α) is as follows: set S′ is obtained by replacing
the entire S by the new signal set formed by collecting all the signals s′i emitted from the
rules that are actually fired in R, and, multiset α′ is obtained by replacing, in parallel,
each of the ri copies of ui in α with vi. The rule multiset R is maximally enabled
under configuration C if it is enabled under C and, for any other rule multiset R′ that
properly contains R, R′ is not enabled under the configuration. Notice that, for the
same C, a maximally enabled rule multiset may not be unique (i.e., M is in general
nondeterministic). C can reach C ′ through a maximally parallel move, written C →M

C ′, if there is a maximally enabled rule multiset R such that C ′ is the result of applying
R over C. We use C �M C ′ to denote the fact that C ′ is reachable from C; i.e., for
some n and C0, · · · ,Cn, we have C = C0 →M · · · →M Cn = C ′. We simply say that
C is reachable if the initial configuration C ′ is understood. We say that configuration C
is halting if there is no rule enabled in C.

When the signals are ignored in a signaling system, we obtain a 1-membrane P
system. Clearly, signaling systems are universal, since, as we have mentioned earlier,
1-membrane P systems are known to be universal. A non-cooperative signaling system
is a signaling system where each rule is either a split-rule in the form of s, a→ s′, bc or
a die-rule in the form of s, a→ Λ, where s, s′ ∈ Sig and symbols a, b, c ∈ Σ. The two
rules are called a-rules (since a appears at the LHS). Intuitively, the split-rule, when
receiving signal s, makes an a-object split into a b-object and a c-object with signal s′

emitted. On the other hand, the die-rule, when receiving signal s, makes an a-object die
(i.e., becomes null). In particular, for a configuration C, an a-object is enabled in C if
there is an enabled a-rule in C; in this case, we also call a to be an enabled symbol
in C. In the rest of the paper, we will focus on various reachability queries for non-
cooperative signaling systems.

Signaling P Systems and Verification Problems 1467

3 Configuration Reachability

We first investigate the configuration-reachability problem that decides whether one
configuration can reach another.

Given: a non-cooperative signaling system M and two configurations Cinit and Cgoal,
Question: Can Cinit reach Cgoal in M?
In this section, we are going to show that the problem is decidable. The proof performs
backward reachability analysis. That is, we first effectively compute (a symbolic repre-
sentation of) the set of all configurations C ′ such that C ′ �M Cgoal. Then, we decide
whether the initial configuration Cinit is in the set.

Before proceeding further, we first introduce the symbolic representation. Let C
be a set of configurations. We say that C is upper-closed if C = {(S, α) : α is the
multiset union of β and some multiset in σ∗}, for some S ⊆ Sig, multiset β and some
symbol-set σ ⊆ Σ. In this case, we use [S, β,σ∗] to denote the set C. We say that C is
m-bounded if |β| ≤ m. Let C be a finite union of upper-closed sets of configurations.
The pre-image of C is defined as P reM (C) = {C ′ : C ′ →M C ∈ C}. We use P re∗M (C)
to denote the set of all configurations C ′ such that C ′ � C for some C ∈ C. The main
result of this section is as follows.

Theorem 1. Let C be a finite union of upper-closed sets of configurations in M . Then,
P re∗M (C) can also be effectively represented as a finite union of upper-closed sets of
configurations in M .

The complex proof of Theorem 1 constructs an intermediate signaling system M̂ whose
P re∗

M̂
is easier to compute. The theorem can be established after we prove that P re∗M -

computation can be realized by P re∗
M̂

-computation and that P re∗
M̂

(C) can be effec-
tively represented as a finite union of upper-closed sets.

Now, we can show that the configuration-reachability problem for non-cooperative
signaling systems is decidable. This result implies that non-cooperative signaling sys-
tems are not universal (the set of reachable configurations is recursive). Notice that
C = {Cgoal} is an upper-closed set. Since, from Theorem 1, P re∗M (C) is effectively
a finite union of upper-closed sets, one can also effectively answer the reachability at
the beginning of this Section by checking whether Cinit is an element in one of the
upper-closed sets. Hence,

Theorem 2. The configuration reachability problem for non-cooperative signaling sys-
tems is decidable.

Reachability considered so far is only one form of important verification queries. In
the rest of this section, we will focus on more general queries that are specified in the
computation tree logic (CTL) [6] interpreted on an infinite state transition system [5].
To proceed further, more definitions are needed.

Let M be a non-cooperative signaling system with symbols Σ and signals Sig. We
use variables #(a), a ∈ Σ, to indicate the number of a-objects in a configuration and
use variable S over 2Sig to indicate the signal set in the configuration. A region formula
F (the word “region” is borrowed from [1]) is a Boolean combination of formulas in the
following forms: #(a) > n, #(a) = n, #(a) < n, S = sig, where a ∈ Σ, n ∈ N,
and sig ⊆ Sig. Region-CTL formulas f are defined using the following grammar:

1468 C. Li et al.

f ::= F | f∧f | f∨f | ¬f | ∃◦f | ∀◦f | f ∃U f | f ∀U f , where F is a region formula.
In particular, the eventuality operator ∃ # f is the shorthand of true ∃U f , and, its dual
∀� f is simply ¬ ∃ # ¬f . We use Region-CTL' to denote a subset of the Region-CTL,
where formulas are defined with: f ::= F | f∧f | f∨f | ¬f | ∃◦f | ∀◦f | ∃# f | ∀� f ,
where F is a region formula. Each f is interpreted as a set [f] of configurations that
satisfy f , as follows:

– [F] is the set of configurations that satisfy the region formula F ;
– [f1 ∧ f2] is [f1] ∩ [f2]; [f1 ∨ f2] is [f1] ∪ [f2]; [¬f1] is the complement of [f1];
– [∃ ◦ f1] is the set of configurations C1 such that, for some execution C1 →M

C2 →M · · ·, we have C2 ∈ [f1];
– [∀◦f1] is the set of configurations C1 such that, for any execution C1 →M C2 →M

· · ·, we have C2 ∈ [f1];
– [f1 ∃U f2] is the set of configurations C1 such that, for some execution C1 →M

C2 →M · · ·, we have C1, · · · ,Cn are all in [f1] and Cn+1 is in [f2], for some n;
– [f1 ∀U f2] is the set of configurations C1 such that, for any execution C1 →M

C2 →M · · ·, we have C1, · · · ,Cn are all in [f1] and Cn+1 is in [f2], for some n.

Below, we use P to denote a Boolean combination of Presburger formulas over the
#(a)’s and formulas in the form of S = sig, where sig ⊆ Sig. The Region-CTL
model-checking problem for non-cooperative signaling systems is to answer the fol-
lowing question:

Given: a non-cooperative signaling system M , a Region-CTL formula f , and a Pres-
burger formula P ,

Question: Does every configuration satisfying P also satisfy f?
It is known that the Region-CTL model-checking problem for non-cooperative P sys-
tems with rules a → b is undecidable [8]. From this result, one can show that the
Region-CTL model-checking problem for non-cooperative signaling systems is unde-
cidable as well.

Theorem 3. The Region-CTL model-checking problem for non-cooperative signaling
systems is undecidable.

In contrast to Theorem 3, the subset, Region-CTL', of Region-CTL is decidable for
non-cooperative signaling systems:

Theorem 4. The Region-CTL' model-checking problem for non-cooperative signaling
systems is decidable.

Using Theorem 4, the following example property can be automatically verified for a
non-cooperative signaling system M :

“From every configuration satisfying #a − #b < 6, M has some execution
that first reaches a configuration with #a > 15 and then reaches a halting
configuration containing the signal s1 and with #b < 16.”

Notice that, above, “halting configurations” (i.e., none of the objects is enabled) form a
finite union of upper-closed sets.

Signaling P Systems and Verification Problems 1469

4 Presburger Reachability

Let M be a non-cooperative signaling system and Cinit be a given initial configuration.
In this section, we are going to investigate a stronger form of reachability problems. As
we have mentioned earlier, a multiset α (over alphabet Σ with k symbols) of objects
can be represented as a vector in Nk. Let P (x1, · · · , xk) be a Presburger formula over
k nonnegative integer variables x1, · · · , xk. The multiset α satisfies P if P (α) holds. A
configuration (S, α) of the non-cooperative signaling systemM satisfies P if α satisfies
P . An equality is a Presburger formula in the form of xi = xj , for some 1 ≤ i, j ≤ k.
An equality formula, which is a special form of Presburger formulas, is a conjunction
of a number of equalities. The Presburger-reachability problem is to decide whether
a non-cooperative signaling system has a reachable configuration satisfying a given
Presburger formula:

Given: a non-cooperative signaling systemM , an initial configurationCinit, and a Pres-
burger formula P ,
Question: is there a reachable configuration satisfying P ?
In contrast to Theorem 2, we can show that the Presburger-reachability problem is un-
decidable. The undecidability holds even when M has only one signal (i.e., |Sig| = 1)
and P is an equality formula (i.e., the equality-reachability problem). In fact, what we
will show is a more general result that characterizes the set of reachable configurations
in M satisfying P exactly as r.e. sets. Notice that, for P systems that deal with symbol
objects, proofs for universality almost always use the theoretical tool through matrix
grammar with appearance checking [16]. Here, we employ a new tool using Diophan-
tine equations. Before we proceed further, we recall some known results on Diophantine
equations (the Hilbert’s Tenth Problem).

Let m ∈ N, Q ⊆ Nm be a set of natural number tuples, and E(z1, · · · , zm, y1, · · · ,
yn) be a Diophantine equation system. The set Q is definable by E if Q is exactly
the solution set of ∃y1, · · · , yn.E(z1, · · · , zm, y1, · · · , yn); i.e., Q = {(z1, · · · , zm) :
E(z1, · · · , zm, y1, · · · , yn) holds for some y1, · · · , yn}. An atomic Diophantine equa-
tion is in one of the following three forms: z = xy + 1

2x(x + 1), z = x + y, z = 1,
where x, y, z are three distinct variables over N. A conjunction of these atomic equa-
tions is called a Diophantine equation system of atomic Diophantine equations. It is
well known that Q is r.e. iff Q is definable by some Diophantine equation system [17].
From here, it is not hard to show the following:

Lemma 1. For any set Q ⊆ Nm, Q is r.e. iff Q is definable by a Diophantine equation
system of atomic Diophantine equations.

We now build a relationship between Diophantine equations and non-cooperative sig-
naling systems. Recall that Q is a subset of Nm. We say that Q is (M,Cinit,P)-
definable if there are designated symbols Z1, · · · , Zm in M such that, for any numbers
#(Z1), · · · ,#(Zm),

(#(Z1), · · · ,#(Zm)) is in Q iff there is a reachable configuration from Cinit

inM satisfying P and, for each i, the number of Zi-objects in the configuration
is #(Zi).

1470 C. Li et al.

When P is true and Cinit is understood, we simply say that Q is definable by M .
The non-cooperative signaling system M is lazy if, for any reachable configuration
and any number n, if the configuration is reachable from Cinit in n maximally parallel
moves, then it is reachable in t maximally parallel moves for any t ≥ n. We first show
that solutions to each atomic Diophantine equation can be defined with a lazy non-
cooperative signaling system M with only one signal.

Lemma 2. The solution set to each atomic Diophantine equation is definable by some
lazy non-cooperative signaling system M (starting from some Cinit) with only one sig-
nal.

Now, we can show the following characterization.

Theorem 5. For any set Q ⊆ Nm, Q is r.e. iff Q is (M,Cinit,P)-definable for some
non-cooperative signaling system M with one signal, some configuration Cinit, and
some equality formula P .

From Theorem 5, we immediately have

Theorem 6. The equality-reachability problem for non-cooperative signaling systems
with only one signal is undecidable. Therefore, the Presburger-reachability problem for
non-cooperative signaling systems is undecidable as well.

All the decidable/undecidable results presented so far can be generalized to the
case when non-cooperative signaling systems are augmented with rules in the follow-
ing forms: s, a → s′, v, where v is a multiset. From now on, we let non-cooperative
signaling systems contain these rules by default.

The results in Theorem 5 and Theorem 6 can be used to obtain a new result on non-
cooperative P systems M̂ where M̂ has only one membrane and each rule is in the form
of a → v, where v is a multiset. Notice that M̂ is very similar to a non-cooperative
signaling system M with only one signal. Indeed, one can easily show that they are
effectively equivalent in the following sense:

Lemma 3. For any set Q ⊆ Nm, Q is definable by some non-cooperative P system M̂
iff Q is definable by some non-cooperative signaling system M with only one signal.

It is known that M̂ is not a universal P system model; multisets generated from M̂
form the Parikh map of an ET0L language [15]. We now augment M̂ with a Presburger
tester that, nondeterministically at some maximally parallel move during a run of M̂ ,
tests (for only once) whether the current multiset satisfies a given Presburger formula P .
When P is an equality formula, the tester is called an equality tester. If yes, the tester
outputs the multiset and M̂ shuts down. Otherwise, M̂ crashes (with no output). Let
X1, · · · , Xm be designated symbols in M̂ . We say that Q ⊆ Nm is output-definable
by M̂ if Q is exactly the set of tuples (#(X1), · · · ,#(Xm)) in the output multisets.
Directly from Lemma 3 and Theorem 5, one can show that non-cooperative P systems
(as well as non-cooperative signaling systems with only one signal) with an equality
tester are universal:

Theorem 7. For any set Q ⊆ Nm, Q is r.e. iff Q is the output-definable by a non-
cooperative P system (as well as a non-cooperative signaling system with only one
signal) with an equality (and hence Presburger) tester.

Signaling P Systems and Verification Problems 1471

Hence,

Corollary 1. The equality-reachability problem for non-cooperative P systems is un-
decidable. Therefore, the Presburger-reachability problem is undecidable as well.

With the current technology, it might be difficult to implement the equality tester de-
vice to achieve the universality, which requires, e.g., external multiset evaluation during
an almost instantaneous chemical reaction process. As we already know, a more natu-
ral way to perform the evaluation is to wait until the system halts; i.e., none of the
objects in the current configuration is enabled. In this way, one can similarly formu-
late the halting-definability and the Presburger/equality-halting-reachability problems
for non-cooperative signaling systems as well as for non-cooperative P systems, which
concern halting and reachable configurations (instead of reachable configurations). We
first show that non-cooperative signaling systems with only one signal has semilinear
halting-definable reachability sets. This result essentially tells us that the number of
signals matters, as far as halting configurations are considered: non-cooperative signal-
ing systems with multiple signals are strictly stronger than non-cooperative signaling
systems with only one signal (as well as non-cooperative P systems). This is because
a non-semilinear set like {(n, 2n) : n ≥ 0} can be easily halting-definable by a non-
cooperative signaling system.

Theorem 8. For any Q ⊆ Nm, Q is a semilinear set iff Q is halting-definable by a
non-cooperative signaling system with only one signal (as well as by a non-cooperative
P system).

One can similarly augment M̂ as well as M̂ with a Presburger tester but only test and
output when a halting configuration is reached; i.e., a Presburger halting tester. The
following result shows that non-cooperative signaling systems with only one signal
and with a Presburger halting tester are not universal, while non-cooperative signaling
systems with two signals and with an equality halting tester are universal. That is, again,
the number of signals matters.

Theorem 9. For any Q ⊆ Nm, (1). Q is a semilinear set iff Q is output-definable by a
non-cooperative signaling system with only one signal (as well as a non-cooperative P
system) and with a Presburger halting tester. (2). Q is r.e. iff Q is output-definable by
a non-cooperative signaling system with two signals and with an equality (and hence
Presburger) halting tester.

From Theorem 9, we immediately have:

Theorem 10. (1). The halting Presburger reachability problem for non-cooperative
signaling systems with two signals is undecidable. (2). The halting Presburger reacha-
bility problem for non-cooperative signaling systems with only one signal is decidable.

5 Discussions and Future Work

In our set-up, a signal in a non-cooperative signaling systemM has unbounded strength;
i.e., it can trigger an unbounded number of instances of an enabled rule. If we restrict the

1472 C. Li et al.

strength of each signal in M to be B (where B is a constant), the resulting M is called
a B-bounded non-cooperative signaling system. A move in such M is still maximally
parallel. However, each signal can fire at most B instances of rules. From Theorem
2, we know that (unbounded) non-cooperative signaling systems are not universal. In
contrast to this fact, we can show that bounded non-cooperative signaling systems are
universal. The universality holds even when B = 2. The case for B = 1 is open.

There is an intimate relationship between some classes of P systems and VAS (vec-
tor addition systems, or, equivalently, Petri nets)[13, 14]. Though non-cooperative sig-
naling systems as well as VAS are not universal, they are incomparable in terms of
the computing power. This is because, the Presburger-reachability problem of VAS is
decidable [9] while, as we have shown, the same problem for non-cooperative signal-
ing systems is undecidable. On the other hand, the P re∗-image of a non-cooperative
signaling system is always upper-closed while this is not true for VAS.

In the definition of a non-cooperative signaling system, a rule is in the form of
s, a → s′, v, where s and s′ are signals. Now, we generalize the definition by allowing
rules in the form of S, a → S′, v where S and S′ are sets of signals (instead of signals).
The maximally parallel semantics of the rules can be defined similarly. The differences
are that the rule is enabled when every signal in S is in the current configuration and,
after the rule is fired, every signal in S′ is emitted. Hence, the rule now is triggered
by exactly all of the signals in S. Such a rule is called a multi-signal rule. Let M be
such a non-cooperative signaling system with multi-signal rules. The proof of Theorem
1 can be adapted easily for such an M . Therefore, Theorem 2 and Theorem 4 still hold
for non-cooperative signaling system with multi-signal rules. In fact, the results can be
further generalized as follows.

Our study of non-cooperative signaling system was restricted to one membrane. We
can generalize the model to work on multiple membranes (as in the P system), where
each membrane has a set of rules, and in each rule S, a → S′, v (we are using multi-
signal rules) we specify the “target” membranes where each object in v as well as each
signal in S′ are transported to. Notice that we do not use priority rules nor membrane
dissolving rules. We call this generalized model as a multimembrane non-cooperative
signaling system with multi-signal rules. Observe that multimembranes can be equiv-
alently collapsed into one membrane through properly renaming (signal and object)
symbols in a membrane. That is, each membrane is associated with a distinguished set
of symbols. Of course, in doing so, the number of distinct symbols and signals in the
reduced one-membrane system will increase as a function of the number of membranes
in the original system. Therefore, Theorem 2 and Theorem 4 can be further generalized
to multimembranes non-cooperative signaling systems with multi-signal rules.

It is known that there are nonuniversal P systems where the number of membranes
induces an infinite hierarchy in terms of computing power [12]. However, the above
generalization says that the hierarchy collapses for non-cooperative signaling systems.
Is there a hierarchy in terms of the number of membranes for a restricted and nonuni-
versal form of signaling systems (which is stronger than non-cooperative signaling sys-
tems)? We might also ask whether for one-membrane signaling systems, there is a hi-
erarchy in terms of the numbers of symbols and signals used (since the conversion
described above from multimembrane to one membrane increases the number of sym-

Signaling P Systems and Verification Problems 1473

bols and signals). As defined, a non-cooperative signaling system is a “generator” of
multisets. For a given configuration C, there may be many configurations C ′ that sat-
isfy C →M C ′. Hence, a (maximally parallel) move is nondeterministic. Can we define
an appropriate model of non-cooperative signaling system e.g., an “acceptor” of mul-
tisets (rather than a generator) such that the next move is unique (i.e., deterministic)?
Deterministic P systems have been found to have some nice properties [11].

References

1. R. Alur and D. L. Dill. A theory of timed automata. TCS, 126(2):183–235, April 1994.
2. Ioan I. Ardelean, Matteo Cavaliere, and Dragos Sburlan. Computing using signals: From

cells to P Systems. In Second Brainstorming Week on Membrane Computing, Sevilla, Spain,
February 2-7 2004, pages 60–73, Sevilla, Spain, February 2-7 2004.

3. W. M. Becker, L. J. Kleinsmith, and J. Hardin. The World of the Cell (5th Edition). Benjamin
Cummings (San Francisco), 2003.

4. P. Bottoni, C. Martin-Vide, Gh. Paun, and G. Rozenberg. Membrane systems with promot-
ers/inhibitors. Acta Informatica, 38(10):695–720, 2002.

5. T. Bultan, R. Gerber, and W. Pugh. Model-checking concurrent systems with un-
bounded integer variables: symbolic representations, approximations, and experimental re-
sults. TOPLAS, 21(4):747–789, 1999.

6. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concur-
rent systems using temporal logic specifications. TOPLAS, 8(2):244–263, April 1986.

7. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.
8. Z. Dang, O. H. Ibarra, C. Li, and G. Xie. On model-checking of P systems. 2005 (submitted).
9. Javier Esparza. Decidability and complexity of Petri net problems - an introduction. In Petri

Nets, pages 374–428, 1996.
10. R. Freund, L. Kari, M. Oswald, and P. Sosik. Computationally universal P systems without

priorities: two catalysts are sufficient. Available at http://psystems.disco.unimib.it, 2003.
11. R. Freund and Gh. Paun. On deterministic P systems. Available at http://psystems.

disco.unimib.it. 2003.
12. O. H. Ibarra. The number of membranes matters. In WMC’03, volume 2933 of Lecture

Notes in Computer Science, pages 218–231, Springer, 2004.
13. O. H. Ibarra, Z. Dang, and O. Egecioglu. Catalytic P systems, semilinear sets, and vector

addition systems. Theoretical Computer Science, 312(2-3):379–399, 2004.
14. O. H. Ibarra, H. Yen, and Z. Dang. The power of maximal parallelism in P systems. In

DLT’04, volume 3340 of Lecture Notes in Computer Science, pages 212–224, Springer,
2004.

15. M. Ito, C. Martin-Vide, and Gh. Paun. A characterization of Parikh sets of ET0L languages
in terms of P systems. In Words, Semigroups, and Transducers, pages 239–254. World Sci-
entific.

16. C. Martin-Vide and Gh. Paun. Computing with membranes (P systems): universality results.
In MCU’01, volume 2055 of LNCS, pages 82–101. Springer, 2001.

17. Y. V. Matiyasevich. Hilbert’s Tenth Problem. MIT Press, 1993.
18. Gh. Paun. Computing with membranes. JCSS, 61(1):108–143, 2000.
19. Gh. Paun. Membrane Computing: An Introduction. Springer, 2002.
20. Gh. Paun and G. Rozenberg. A guide to membrane computing. TCS, 287(1):73–100, 2002.
21. P. Sosik. P systems versus register machines: two universality proofs. In WMC’02, volume

2597 of LNCS, pages 371–382, Springer, 2003.
22. P. Sosik and R. Freund. P systems without priorities are computationally universal. In

WMC’02, volume 2597 of LNCS, pages 400–409. Springer, 2003.

Author Index

Abadi, Mart́ın 664
Abdulla, Parosh Aziz 1089
Alstrup, Stephen 78
Alur, Rajeev 1102
Ambühl, Christoph 1139
Asarin, Eugene 1031
Atserias, Albert 1437
Avin, Chen 677

Bădoiu, Mihai 866
Badouel, Eric 742
Baldamus, Michael 1202
Bao, Feng 459
Baudet, Mathieu 652
Béal, Marie-Pierre 397
Beame, Paul 1176
Beaudry, Martin 421
Berenbrink, Petra 1386
Bille, Philip 66
Borissov, Yuri 324
Borodin, Allan 943
Bradley, Aaron R. 1349
Braeken, An 324
Brodal, Gerth Stølting 576

Cary, Matthew 1412
Cashman, David 943
Castagna, Giuseppe 30
Catalano, Dario 298
Chan, Wun-Tat 614
Chatterjee, Krishnendu 878
Chattopadhyay, Arkadev 994
Chenou, Jules 742
Chevalier, Yannick 639
Chiniforooshan, Ehsan 179
Chlebus, Bogdan S. 347
Cohen, Reuven 335
Collins, Pieter 1031
Conforti, Giovanni 766
Cortier, Véronique 652
Czeizler, Eugen 410
Czumaj, Artur 866

Dalla Preda, Mila 1325
Dang, Zhe 1462

Datta, Anupam 16
Dawar, Anuj 1437
de Alfaro, Luca 878
De Nicola, Rocco 1226
de Wolf, Ronald 1424
Delzanno, Giorgio 1239
Deneux, Johann 1089
Derek, Ante 16
Di Crescenzo, Giovanni 216, 816
Diehl, Scott 982
Dietzfelbinger, Martin 166
Dimitrov, Nedialko B. 702
Donato, Debora 717
Droste, Manfred 513

Efthymiou, Charilaos 690
Eisenbrand, Friedrich 1151
Elbassioni, Khaled 1115
Elias, Isaac 1263
Englert, Matthias 627
Epstein, Leah 602
Ercal, Gunes 677
Etessami, Kousha 891

Fagerberg, Rolf 576
Farach-Colton, Martin 1251
Farzan, Arash 179
Fiala, Jǐŕı, 360
Fischlin, Marc 779
Fishkin, Aleksei V. 1115
Fokkink, Wan 755
Fomin, Fedor V. 191
Ford, Jeff 1163
Fraigniaud, Pierre 335
Franceschini, Gianni 90
Friedetzky, Tom 1386
Frisch, Alain 30

Gabbrielli, Maurizio 1239
Gairing, Martin 51, 828
Gál, Anna 1163
Galindo, David 791
Gastin, Paul 513
Gentry, Craig 803
Giacobazzi, Roberto 1325

1476 Author Index

G ↪asieniec, Leszek 347
Golovach, Petr A. 360
Gorla, Daniele 1226
Gørtz, Inge Li 66, 78
Grandoni, Fabrizio 191, 1151
Grohe, Martin 1076, 1437
Grossi, Roberto 90
Gu, Qian-Ping 373
Guillou, Goulven 742
Gupta, Anupam 1051

Hajiaghayi, MohammadTaghi 853
Haneda, Mitsuhiro 539
Hansen, Kristoffer Arnsfelt 994
Hast, Gustav 956
Henzinger, Thomas A. 878
Hermida, Claudio 1018
Hopper, Nicholas 311
Horvitz, Omer 128
Hromkovič, Juraj 385

Ibarra, Oscar H. 1462
Ilcinkas, David 335
Indyk, Piotr 866

Jain, Kamal 853
Jampala, Hema 563

Kaligosi, Kanela 103
Kao, Ming-Yang 1275
Karakostas, George 1043
Kari, Jarkko 410
Katz, Jonathan 128
Kavitha, Telikepalli 273
Kawazoe, Mitsuru 539
Kayal, Neeraj 551
Kempe, David 1127
Kiayias, Aggelos 216
Kiltz, Eike 434
Kleinberg, Jon 1127
Knapik, Teodor 1450
Koch, Christoph 1076
Koiran, Pascal 1287
Könemann, Jochen 930
Korman, Amos 335
Kovács, Annamária 840
Kowalski, Dariusz R. 347
Kowaluk, Miroslaw 241
Kratsch, Dieter 191
Kratochv́ıl, Jan 360
Kremer, Steve 652

Kumar, Amit 1374
Kumar, Viraj 1102
Kursawe, Klaus 204

Lagergren, Jens 1263
Laird, James 904
Lam, Tak-Wah 614
Landau, Gad M. 1251
Lemieux, François 421
Leonardi, Stefano 717, 930
Levy, Meital 602
Li, Cheng 1462
Libkin, Leonid 35
Lin, Henry 497
Lingas, Andrzej 241
Lipmaa, Helger 459
Lombardy, Sylvain 397
Lücking, Thomas 51

Macedonio, Damiano 766
Madhusudan, P. 1102
Magen, Avner 943
Magniez, Frédéric 1312
Makkai, Michael 1018
Manna, Zohar 1349
Martin, Russell 1386
Maurer, Ueli 472
Mehlhorn, Kurt 103
Mirzazadeh, Mehdi 179
Mislove, Michael W. 1006
Mitchell, John C. 16
Mityagin, Anton 434
Monien, Burkhard 51, 828
Moran, Tal 285
Moruz, Gabriel 576
Mousavi, Mohammad Reza 1214
Munro, J. Ian 103
Murawski, Andrezej S. 917
Mustafa, Nabil H. 1115

Nain, Sumit 755
Naor, Moni 285
Nayak, Ashwin 1312
Nesme, Vincent 1287
Nikova, Svetla 324
Nilsson, Bengt J. 1362
Niwiński, Damian 1450

Ong, Chin-Hao Luke 917
Oriolo, Gianpaolo 1151
Ouaknine, Joël 1089

Author Index 1477

Pál, Martin 1051
Pǎtraşcu, Corina E. 969
Pǎtraşcu, Mihai 969
Panjwani, Saurabh 434
Parrow, Joachim 1202
Peleg, David 335
Pemmaraju, Sriram V. 1064
Persiano, Giuseppe 228
Pitassi, Toniann 1176
Plaxton, C. Greg 702
Portier, Natacha 1287
Pous, Damien 730
Preneel, Bart 324
Pugliese, Rosario 1226

Radhakrishnan, Jaikumar 1399
Radzik, Tomasz 347
Raghavan, Barath 434
Raman, Rajiv 1064
Ramzan, Zulfikar 803
Rauhe, Theis 78
Reniers, Michel A. 1214
Reus, Bernhard 1337
Roditty, Liam 249, 261
Rötteler, Martin 1399
Roughgarden, Tim 497
Rudra, Atri 1412
Rusinowitch, Michaël 639

Sabharwal, Ashish 1412
Sabharwal, Yogish 1374
Sahinalp, S. Cenk 1251
Sakarovitch, Jacques 397
Sanders, Peter 103
Sanghi, Manan 1275
Sassone, Vladimiro 766
Schäfer, Guido 930
Schnitger, Georg 385
Schweikardt, Nicole 1076
Schweller, Robert 1275
Segerlind, Nathan 1176
Sen, Pranab 1399
Sen, Sandeep 1374
Shmatikov, Vitaly 16
Shoup, Victor 204
Sipma Henny B. 1349
Sitters, René, 1115
Sjödin, Johan 472
Skutella, Martin 1151
Sohler, Christian 866

Špalek, Robert 1299
Spirakis, Paul G. 690
Streicher, Thomas 1337
Szegedy, Mario 1299

Takahashi, Tetsuya 539
Talwar, Kunal 853
Tamaki, Hisao 373
Tamassia, Roberto 153
Tardos, Éva 497, 1127
Tesson, Pascal 526
Thorup, Mikkel 78, 261
Thérien, Denis 421, 526
Tiemann, Karsten 51
Triandopoulos, Nikos 153
Trolin, Mårten 446
Tsaparas, Panayiotis 717
Tsur, Dekel 1251
Turuani, Mathieu 16

Urzyczyn, Pawe�l 1450

Valiant, Leslie G. 1
van Breugel, Franck 1018
van Melkebeek, Dieter 982
van Zwam, Stefan 930
Victor, Björn 1202
Visconti, Ivan 228, 298, 816
Viswanathan, Mahesh 1102

Walkover, Asher 497
Walukiewicz, Igor 917, 1450
Wang, Guilin 459
Warinschi, Bogdan 664
Wee, Hoeteck 140
Wegener, Ingo 589
Wehner, Stephanie 1424
Weidling, Christoph 166
Westermann, Matthias 627
Wikström, Douglas 446, 1189
Woclaw, Andreas 828
Wong, Prudence W.H. 614
Worrell, James 1018, 1089

Yannakakis, Mihalis 891
Yen, Hsu-Chun 1462

Zeh, Norbert 563
Zhang, Li 485
Zimand, Marius 115
Zwick, Uri 78, 249, 261

	Frontmatter
	Invited Lectures
	Holographic Circuits
	Probabilistic Polynomial-Time Semantics for a Protocol Security Logic
	A Gentle Introduction to Semantic Subtyping
	Logics for Unranked Trees: An Overview
	Nash Equilibria, the Price of Anarchy and the Fully Mixed Nash Equilibrium Conjecture

	Data Structures I
	The Tree Inclusion Problem: In Optimal Space and Faster
	Union-Find with Constant Time Deletions
	Optimal In-place Sorting of Vectors and Records
	Towards Optimal Multiple Selection

	Cryptography and Complexity
	Simple Extractors via Constructions of Cryptographic Pseudo-random Generators
	Bounds on the Efficiency of ``Black-Box'' Commitment Schemes
	On Round-Efficient Argument Systems
	Computational Bounds on Hierarchical Data Processing with Applications to Information Security

	Data Structures II
	Balanced Allocation and Dictionaries with Tightly Packed Constant Size Bins
	Worst Case Optimal Union-Intersection Expression Evaluation
	Measure and Conquer: Domination -- A Case Study

	Cryptography and Distributed Systems
	Optimistic Asynchronous Atomic Broadcast
	Asynchronous Perfectly Secure Communication over One-Time Pads
	Single-Prover Concurrent Zero Knowledge in Almost Constant Rounds

	Graph Algorithms I
	LCA Queries in Directed Acyclic Graphs
	Replacement Paths and {\itshape k} Simple Shortest Paths in Unweighted Directed Graphs
	Deterministic Constructions of Approximate Distance Oracles and Spanners
	An {\itshape \~{O}}({\itshape m}<Superscript>2</Superscript>{\itshape n}) Randomized Algorithm to Compute a Minimum Cycle Basis of a Directed Graph

	Security Mechanisms
	Basing Cryptographic Protocols on Tamper-Evident Seals
	Hybrid Trapdoor Commitments and Their Applications
	On Steganographic Chosen Covertext Security
	Classification of Boolean Functions of 6 Variables or Less with Respect to Some Cryptographic Properties

	Graph Algorithms II
	Label-Guided Graph Exploration by a Finite Automaton
	On the Wake-Up Problem in Radio Networks
	Distance Constrained Labelings of Graphs of Bounded Treewidth
	Optimal Branch-Decomposition of Planar Graphs in {\itshape O}({\itshape n}<Superscript>3</Superscript>) Time

	Automata and Formal Languages I
	NFAs With and Without ϵ-Transitions
	On the Equivalence of ${\mathbb Z}$-Automata
	A Tight Linear Bound on the Neighborhood of Inverse Cellular Automata
	Groupoids That Recognize Only Regular Languages

	Signature and Message Authentication
	Append-Only Signatures
	Hierarchical Group Signatures
	Designated Verifier Signature Schemes: Attacks, New Security Notions and a New Construction
	Single-Key AIL-MACs from Any FIL-MAC

	Algorithmic Game Theory
	The Efficiency and Fairness of a Fixed Budget Resource Allocation Game
	Braess's Paradox, Fibonacci Numbers, and Exponential Inapproximability

	Automata and Logic
	Weighted Automata and Weighted Logics
	Restricted Two-Variable FO + MOD Sentences, Circuits and Communication Complexity

	Computational Algebra
	Suitable Curves for Genus-4 HCC over Prime Fields: Point Counting Formulae for Hyperelliptic Curves of Type {\itshape y}<Superscript>2</Superscript>={\itshape x}$^{\rm 2{\it k}+1}$+{\itshape ax}
	Solvability of a System of Bivariate Polynomial Equations over a Finite Field

	Cache-Oblivious Algorithms and Algorithmic Engineering
	Cache-Oblivious Planar Shortest Paths
	Cache-Aware and Cache-Oblivious Adaptive Sorting
	Simulated Annealing Beats Metropolis in Combinatorial Optimization

	On-line Algorithms
	Online Interval Coloring and Variants
	Dynamic Bin Packing of Unit Fractions Items
	Reordering Buffer Management for Non-uniform Cost Models

	Security Protocols Logic
	Combining Intruder Theories
	Computationally Sound Implementations of Equational Theories Against Passive Adversaries
	Password-Based Encryption Analyzed

	Random Graphs
	On the Cover Time of Random Geometric Graphs
	On the Existence of Hamiltonian Cycles in Random Intersection Graphs
	Optimal Cover Time for a Graph-Based Coupon Collector Process
	Stability and Similarity of Link Analysis Ranking Algorithms

	Concurrency I
	Up-to Techniques for Weak Bisimulation
	Petri Algebras
	A Finite Basis for Failure Semantics
	Spatial Logics for Bigraphs

	Encryption and related Primitives
	Completely Non-malleable Schemes
	Boneh-Franklin Identity Based Encryption Revisited
	Single-Database Private Information Retrieval with Constant Communication Rate
	Concurrent Zero Knowledge in the Public-Key Model

	Approximation Algorithms I
	A Faster Combinatorial Approximation Algorithm for Scheduling Unrelated Parallel Machines
	Polynomial Time Preemptive Sum-Multicoloring on Paths
	The Generalized Deadlock Resolution Problem
	Facility Location in Sublinear Time

	Games
	The Complexity of Stochastic Rabin and Streett Games
	Recursive Markov Decision Processes and Recursive Stochastic Games
	Decidability in Syntactic Control of Interference
	Idealized Algol with Ground Recursion, and DPDA Equivalence

	Approximation Algorithms II
	From Primal-Dual to Cost Shares and Back: A Stronger LP Relaxation for the Steiner Forest Problem
	How Well Can Primal-Dual and Local-Ratio Algorithms Perform?
	Approximating {\sc Max} {\itshape k}CSP -- Outperforming a Random Assignment with Almost a Linear Factor

	Lower Bounds
	On Dynamic Bit-Probe Complexity
	Time-Space Lower Bounds for the Polynomial-Time Hierarchy on Randomized Machines
	Lower Bounds for Circuits with Few Modular and Symmetric Gates

	Probability
	Discrete Random Variables over Domains
	An Accessible Approach to Behavioural Pseudometrics
	Noisy Turing Machines

	Approximation Algorithms III
	A Better Approximation Ratio for the Vertex Cover Problem
	Stochastic Steiner Trees Without a Root
	Approximation Algorithms for the Max-coloring Problem

	Automata and Formal Languages II
	Tight Lower Bounds for Query Processing on Streaming and External Memory Data
	Decidability and Complexity Results for Timed Automata via Channel Machines
	Congruences for Visibly Pushdown Languages

	Approximation Algorithms IV
	Approximation Algorithms for Euclidean Group TSP
	Influential Nodes in a Diffusion Model for Social Networks
	An Optimal Bound for the MST Algorithm to Compute Energy Efficient Broadcast Trees in Wireless Networks
	New Approaches for Virtual Private Network Design

	Algebraic Computation and Communication Complexity
	Hadamard Tensors and Lower Bounds on Multiparty Communication Complexity
	Lower Bounds for Lov\'{a}sz-Schrijver Systems and Beyond Follow from Multiparty Communication Complexity
	On the {\itshape l}-Ary GCD-Algorithm in Rings of Integers

	Concurrency II
	A Fully Abstract Encoding of the π-Calculus with Data Terms
	Orthogonal Extensions in Structural Operational Semantics
	Basic Observables for a Calculus for Global Computing
	Compositional Verification of Asynchronous Processes via Constraint Solving

	String Matching and Computational Biology
	Optimal Spaced Seeds for Faster Approximate String Matching
	Fast Neighbor Joining
	Randomized Fast Design of Short DNA Words

	Quantum Complexity
	A Quantum Lower Bound for the Query Complexity of Simon's Problem
	All Quantum Adversary Methods Are Equivalent
	Quantum Complexity of Testing Group Commutativity

	Analysis and Verification
	Semantic-Based Code Obfuscation by Abstract Interpretation
	About Hoare Logics for Higher-Order Store
	The Polyranking Principle

	Geometry and Load Balancing
	Approximate Guarding of Monotone and Rectilinear Polygons
	Linear Time Algorithms for Clustering Problems in Any Dimensions
	Dynamic Diffusion Load Balancing

	Concrete Complexity and Codes
	On the Power of Random Bases in Fourier Sampling: Hidden Subgroup Problem in the Heisenberg Group
	On the Hardness of Embeddings Between Two Finite Metrics
	Improved Lower Bounds for Locally Decodable Codes and Private Information Retrieval

	Model Theory and Model Checking
	Preservation Under Extensions on Well-Behaved Finite Structures
	Unsafe Grammars and Panic Automata
	Signaling P Systems and Verification Problems

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

