Luis Caires

Giuseppe F. Italiano
Luis Monteiro
Catuscia Palamidessi
Moti Yung (Eds.)

Automata, Languages
and Programming

32nd International Colloquium, ICALP 2005
Lisbon, Portugal, July 2005
Proceedings

LNCS 3580

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3580

Luis Caires Giuseppe F. Italiano
Luis Monteiro Catuscia Palamidessi
Moti Yung (Eds.)

Automata, Languages
and Programming

32nd International Colloquium, ICALP 2005
Lisbon, Portugal, July 11-15, 2005
Proceedings

@ Springer

Volume Editors

Luis Caires

Universidade Nova de Lisboa, Departamento de Informatica
2829-516 Caparica, Portugal

E-mail: Luis.Caires @di.fct.unl.pt

Giuseppe F. Italiano

Universita di Roma “Tor Vergata”

Dipartimento di Informatica, Sistemi e Produzione
Via del Politecnico 1, 00133 Roma, Italy

E-mail: italiano @disp.uniroma?2.it

Luis Monteiro

Universidade Nova de Lisboa, Departamento de Informatica
2829-516 Caparica, Portugal

E-mail: Im@di.fct.unl.pt

Catuscia Palamidessi

INRIA Futurs and LIX, Ecole Polytechnique
rue de Saclay, 91128 Palaiseau, France
E-mail: catuscia@lix.polytechnique.fr

Moti Yung

RSA Laboratories and Columbia University
Computer Science Department

1214 Amsterdam Av., New York, NY 10027, USA
E-mail: moti@cs.columbia.edu

Library of Congress Control Number: 2005928673

CR Subject Classification (1998): F, D, C.2-3, G.1-2, 1.3, E.1-2

ISSN 0302-9743
ISBN-10 3-540-27580-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-27580-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11523468 06/3142 543210

Preface

The 32nd International Colloquium on Automata, Languages and Programming
(ICALP 2005) was held in Lisbon, Portugal from July 11 to July 15, 2005.
These proceedings contain all contributed papers presented at ICALP 2005, to-
gether with the papers by the invited speakers Giuseppe Castagna (ENS), Leonid
Libkin (Toronto), John C. Mitchell (Stanford), Burkhard Monien (Paderborn),
and Leslie Valiant (Harvard). The program had an additional invited lecture by
Adi Shamir (Weizmann Institute) which does not appear in these proceedings.

ICALP is a series of annual conferences of the European Association for
Theoretical Computer Science (EATCS). The first ICALP took place in 1972.
This year, the ICALP program consisted of the established track A (focusing on
algorithms, automata, complexity and games) and track B (focusing on logic,
semantics and theory of programming), and innovated on the structure of its
traditional scientific program with the inauguration of a new track C (focusing
on security and cryptography foundation).

In response to a call for papers, the Program Committee received 407 sub-
missions, 258 for track A, 75 for track B and 74 for track C. This is the highest
number of submitted papers in the history of the ICALP conferences. The Pro-
gram Committees selected 113 papers for inclusion in the scientific program.
In particular, the Program Committee for track A selected 65 papers, the Pro-
gram Committee for track B selected 24 papers, and the Program Committee
for track C selected 24 papers. All the work of the Program Committees was
done electronically.

ICALP 2005 was held in conjunction with the Annual ACM International
Symposium on Principles and Practice of Declarative Programming
(PPDP 2005). Additionally, the following workshops were held as satellite events
of ICALP 2005: the 2nd Workshop on Automated Reasoning for Security Proto-
col Analysis (ARSPA), the 1st International Workshop on Verification of COn-
current Systems with dynaMIC Allocated Heaps (COSMICAH), the 1st Inter-
national Workshop on New Developments in Computational Models (DCM), the
4th International Workshop on Parallel and Distributed Methods in Verification
(PDMC), the 4th International Workshop on Proof Theory, Computation, Com-
plexity (PCC), the Workshop on Structures and Deduction — The Quest for the
Essence of Proofs (DS), the 2nd Workshop on Structural Operational Semantics
(SOS), and the Workshop on Semigroups and Automata (WSA).

We wish to thank all authors who submitted papers for consideration, the
Program Committees for their hard work, as well as the external reviewers who
assisted the Program Committees in the evaluation process.

We thank the sponsors and the Gulbenkian Foundation of Lisbon for host-
ing ICALP 2005. We are also grateful to the Department of Informatics of the

VI Preface

Faculty of Sciences and Technology, New University of Lisbon, in particular the
administrative office and the technical support service.

Last but not least, we would like to thank Andrei Voronkov for providing the
conference management software EasyChair. It was of great help in handling the
submissions and the electronic PC meeting.

Luis Caires
Giuseppe F. Italiano
Luis Monteiro
Catuscia Palamidessi
Moti Yung

Organization

Program Committee

Track A

Lars Arge, Duke University, USA

Giorgio Ausiello, University of Rome “La Sapienza”, Italy

Surender Baswana, Max-Planck-Institut fiir Informatik, Saarbriicken,
Germany

Hans Bodlaender, University of Utrecht, The Netherlands

Véronique Bruyere, University of Mons-Hainaut, Belgium

Adam Buchsbaum, AT&T Labs Research, USA

Josep Diaz, Universitat Politecnica de Catalunya, Spain

David Eppstein, University of Irvine, USA

Andrew Goldberg, Microsoft, USA

Monika Henzinger, Google and ETH Lausanne, Switzerland

Giuseppe F. Ttaliano, University of Rome “Tor Vergata”, Italy (Chair)

Marios Mavronicolas, University of Cyprus, Cyprus

Peter Bro Miltersen, University of Aarhus, Denmark

Mike Paterson, University of Warwick, UK

Dominique Perrin, Université de Marne la Vallée, France

Seth Pettie, Max-Planck-Institut fiir Informatik, Saarbriicken, Germany

Yuval Rabani, Technion, Israel

Antonio Restivo, University of Palermo, Italy

José Rolim, University of Geneva, Switzerland

Dorothea Wagner, University of Karlsruhe, Germany

Tandy Warnow, University of Texas at Austin, USA

Christos Zaroliagis, CTT and University of Patras, Greece

Track B

Kenichi Asai, Ochanomizu University, Japan

Jos Baeten, Eindhoven University of Technology, The Netherlands

Peter Buneman, University of Edinburgh, UK

Zoltan Esik, University of Szeged, Hungary and Rovira University, Spain
Javier Esparza, University of Stuttgart, Germany

Marcelo Fiore, Christ’s College and University of Cambridge, UK
Manuel Hermenegildo, Universidad Politecnica de Madrid, Spain

Delia Kesner, Université Paris VII, France

Kim Guldstrand Larsen, University of Aalborg, Denmark

Gopalan Nadathur, University of Minnesota, USA

VIII Organization

Uwe Nestmann, EPFL, Switzerland

Catuscia Palamidessi, INRIA, France (Chair)

Amr Sabry, University of Indiana, USA

Davide Sangiorgi, Universita di Bologna, Italy

Roberto Segala, Universita di Verona, Italy

Harald Sgndergaard, University of Melbourne, Australia

Track C

David Basin, ETH Zurich, Switzerland

Christian Cachin, IBM Research, Switzerland
Alfredo De Santis, Universita di Salerno, Italy
Cynthia Dwork, Microsoft Research, USA

Matt Franklin, U.C. Davis, USA

Michael Goodrich, U.C. Irvine, USA

Andrew D. Gordon, Microsoft Research, UK
Roberto Gorrieri, Universita di Bologna, Italy
Yuval Ishai, Technion, Israel

Phil MacKenzie, DoCoMo Labs, USA

Tatsuaki Okamoto, NTT Labs, Japan

David Pointcheval, ENS Paris, France

Tal Rabin, IBM Research, USA

Omer Reingold, Weizmann Institute, Israel

Adi Rosen, Technion, Israel

Amit Sahai, UCLA, USA

Andre Scedrov, University of Pennsylvania, USA
Igor Shparlinski, Macquarie University, Australia
Nigel Smart, University of Bristol, UK

Moti Yung, Columbia University and RSA Laboratories, USA (Chair)

Organizing Committee

Luis Caires, Conference Co-chair

Luis Monteiro, Conference Co-chair
Antoénio Ravara, Workshops Co-chair
Vasco Vasconcelos, Workshops Co-chair
Margarida Mamede

Joao Costa Seco

José Pacheco

List of External Referees

Track A

Karen Aardal
Scott Aaronson
Saurabh Aggarwal
Marjan van den Akker
Cyril Allauzen
Jean-Paul Allouche
Luca Allulli

Carme Alvarez
Andris Ambainis
Marcella Anselmo
Sanjeev Arora
Albert Atserias
Vincenzo Auletta
Jose Balcazar
Jeremy Barbay
Amotz Bar-Noy
Tugkan Batu
Michael Baur
Marie-Pierre Béal
Luca Becchetti
Philip Bille
Yvonne Bleischwitz
Maria J. Blesa
Avrim Blum

Luc Boasson
Vincenzo Bonifaci
Paola Bonizzoni
Vasco Brattka
Gerth Stglting Brodal
Peter Buergisser
Harry Buhrman
Luciana S. Buriol
Costas Busch
Cristian S. Calude
Massimiliano Caramia
Jean Cardinal
Olivier Carton
Patrick Cegielski
Julien Cervelle
J.-M. Champarnaud
Sunil Chandran

Moses Charikar
Hubie Chen
Joseph Cheriyan
Janka Chlebikova
Bogdan Chlebus
Christian Choffrut
George Christodoulou
Serafino Cicerone
Julien Clément
Andrea Clementi
Eric de La Clergerie
Bruno Codenotti
Edith Cohen

Anne Condon

Pier Francesco Cortese
Stefano Crespi-Reghizzi
Peter Damaschke
Fabrizio d’Amore
Camil Demetrescu
Kedar Dhamdhere
Christoph Dorr
Petros Drineas
Christoph Durr
Stephan Eidenbenz
Amr Elmasry
Thomas Erlebach
Alex Fabrikant
Rolf Fagerberg
Jacques Farré
Lene Favrholdt
Rainer Feldmann
Stephen A. Fenner
Antonio Fernandez
Henning Fernau
Paolo Ferragina
Jiri Fiala

Irene Finocchi
Fedor Fomin
Lance Fortnow
Dimitris Fotakis
Paolo G. Franciosa

Organization X

Gudmund Frandsen
Alan Frieze

Andrea Frosini
Marco Gaertler
Martin Gairing
Emden Gansner
Naveen Garg
William Ian Gasarch
Leszek Gasieniec
Georgiadis Georgios
Kostis Georgiou
Arkadeb Ghosal
Dora Giammarresi
Raffaele Giancarlo
Aristides Gionis
Ashish Goel

Paul Golberg
Robert Gorke
Fabrizio Grandoni
Serge Grigorieff
Alexander Grigoriev
Joachim Gudmundsson
Rachid Guerraoui
Dan Gusfield

Gus Gutoski

M. Hajiaghayi
Magnus M. Halldorsson
Kristoffer Hansen
Sariel Har-Peled
Ramesh Hariharan
Herman Haverkort
Illya V. Hicks

Mika Hirvensalo
John Hitchcock
Martin Holzer

Han Hoogeveen
Peter Hoyer

Juraj Hromkovic
Cor Hurkens
Lucian Ilie

Costas Iliopoulos

X Organization

Piotr Indyk
Garud Iyengar
Kamal Jain

Petr Jancar

Klaus Jansen
Mark Jerrum
David Johnson
Adrian Johnstone
Marcin Jurdzinski
Erich Kaltofen
Juhani Karhuméki
Anna Karlin
Marek Karpinski
Claire Kenyon
Richard Kenyon
Tordanis Kerenidis
Leonid Khachiyan
Rohit Khandekar
Pekka Kilpelainen
Lefteris Kirousis
Ralf Klasing

Rolf Klein

Bettina Klinz
Adam Klivans
Pascal Koiran
Jochen Konemann
Spyros Kontogiannis
Guy Kortsarz

Arie Koster
Manolis Koubarakis
Elias Koutsoupias
Daniel Kral
Evangelos Kranakis
Dieter Kratsch
Michael Krivelevich
Ravi Kumar

Viraj Kumar
Dietrich Kuske
Shay Kutten
Gregory Lafitte
Jens Lagergren
Sophie Laplante
Michel Latteux
Luigi Laura

Van Bang Le

Thierry Lecroq
Stefano Leonardi
Pierre Leone
Xiang-Yang Li

Paolo Liberatore
Christian Liebchen
Michael Loizos
Thomas Luecking
George Lueker
Alejandro Maas
Marina Madonia
Malik Magdon-Ismail
Frederic Magniez
Mohammad Mahdian
Christos Makris
Sebastian Maneth
Alberto Spaccamela
Maurice Margenstern
Vangelis Markakis
Chip Martel
Giancarlo Mauri
Jacques Mazoyer
Pierre McKenzie
Frank McSherry
Steffen Mecke

Dieter van Melkebeek
Carlo Mereghetti
Wolfgang Merkle
Ramgopal Mettu
Ulrich Meyer
Dimitrios Michail
Christian Michaux
Filippo Mignosi
Vahab Mirrokni
Michael Mitzenmacher
Shuichi Miyazaki
Kousha MoaveniNejad
Mehryar Mohri
Burkhard Monien
Cris Moore

Shlomo Moran
Burkhard Morgenstern
Kenichi Morita
Gabriel Moruz
Thomas Moscibroda

Philippe Moser

Anca Muscholl
Umberto Nanni
Konstantinos Nedas
Mark-Jan Nederhof
Jaroslav Nesetril
Frank Neven

Sotiris Nikoletseas
John Noga

Rasmus Pagh

Jakob Illeborg Pagter
Rina Panigrahy
Anindya Patthak
Christian N.S. Pedersen
David Peleg

Sriram Pemmaraju
Giovanni Pighizzini
Jean-Eric Pin
Giuseppe Pirillo
Nadia Pisanti
Andrzej Proskurowski
J. Radhakrishnan
Harald Raecke
Mathieu Raffinot
Srinivasa Rao

David Rappaport
Jean-Francgois Raskin
S.S. Ravi

John Reif

Jan Reimann

Omer Reingold

Eric Rémila
Christophe Reutenauer
Michel Rigo

Adi Rosen

Martin Rotteler

Tim Roughgarden
Gilles Roussel
Alexander Russell
Jacques Sakarovitch
Peter Sanders
Pierluigi San Pietro
Miklos Santha
Martin Sauerhoff
Guido Schaefer

Thomas Schank
Christian Schindelhauer
Torsten Schlieder
Anita Schobel
Sylvain Schmitz
Etienne Schramm
Frank Schulz
Elizabeth Scott
Luc Segoufin
Helmut Seidl
Pranab Sen
Géraud Sénizergues
Maria Serna

Rocco Servedio
Jeffrey Shallit
Micha Sharir

Peter Shor
Riccardo Silvestri
Alistair Sinclair
Spiros Skiadopoulos
Martin Skutella
Roberto Solis-Oba
Robert Spalek
Klaus Ambos Spies

Track B

Elvira Albert
Thorsten Altenkirch
Rajeev Alur
Sergio Antoy
André Arnold
Benjamin Aziz
Brian Babcock
James Bailey
Vincent Balat
José Balcazar
Michael Baldamus
Jiri Barnat

Gerd Behrmann
Martin Berger
Jan Bergstra
Luca Bianco

Lars Birkedal
Frédéric Blanqui

Paul Spirakis
Venkatesh Srinivasan
Ludwig Staiger
Yannis Stamatiou
CIliff Stein

David Steurer
Leen Stougie
Howard Straubing
Martin Strauss
K.S. Sudeep

Peng Sun

Maxim Sviridenko
Mario Szegedy
Claude Tadonki
Kunal Talwar
Gerard Tel
Dimitrios Thilikos
Wolfgang Thomas
Karsten Tiemann
Luca Trevisan
Panayiotis Tsaparas
Kostas Tsichlas
Marc Uetz

Ugo Vaccaro

Benedikt Bollig
Johannes Borgstrom
Dragan Bosnacki
Debora Botturi
Ahmed Bouajjani
Patricia Bouyer
Julian Bradfield
Mario Bravetti
Franck van Breugel
Sébastien Briais
Geoffrey Brown
Glenn Bruns
Antonio Bucciarelli
Francisco Bueno
Nadia Busi

Luis Caires
Cristiano Calcagno
Manuel Campagnolo

Organization XI

Kasturi Varadarajan
Vijay V. Vazirani
S. Venkatasubramanian
Adrian Vetta

Eric Vigoda
Emanuele Viola
Rakesh V. Vohra
Heribert Vollmer
Nicolai Vorbjov
Osamu Watanabe
Pascal Weil

Klaus Wich

Peter Widmayer
Jef Wijsen

Gerhard Woeginger
Alexander Wolff
Deng Xiaotie
Hiroaki Yamamoto
Mihalis Yannakakis
Norbert Zeh

Li Zhang

Wieslaw Zielonka
Uri Zwick

Manuel Carro

D. Caucal

Witold Charatonik
Krishnendu Chatterjee
Chiyan Chen
James Cheney
Tom Chothia
Horatiu Cirstea
Rance Cleaveland
John Cochran
Thomas Colcombet
Andrea Corradini
Flavio Corradini
Alin Deutsch
Silvano Dal-Zilio
Vincent Danos
Alexandre David
Anuj Dawar

XII Organization

Soeren Debois
Yuxin Deng

M. Dezani-Ciancaglini
Volker Diekert
Rachid Echahed
Norm Ferns

Thomas Hildebrandt
Matthew Flatt
Cédric Fournet
Michael Franssen
Fabio Gadducci
Jacques Garrigue
Floris Geerts

Blaise Genest

Dan R. Ghica

Rob van Glabbeek
Patrice Godefroid
Jan Friso Groote
Sudipto Guha

Vesa Halava

James Harland

Russ Harmer

Tobias Heindel
Holger Hermanns
Thomas Hildebrandt
Kees Huizing

Hans Hiittel

Atsushi Igarashi
Jacob Illum Rasmussen
Anna Ingélfsdéttir
Radha Jagadeesan
Achim Jung

Marcin Jurdzinski
Yukiyoshi Kameyama
Deepak Kapur
Claude Kirchner
Christoph Koch
Simon Kramer
Antonin Kucera
Werner Kuich
Ruurd Kuiper

K. Narayan Kumar
Orna Kupferman
Marcos Kurban
Martin Kutrib

Barbara Konig
Salvatore La Torre
Daniel Leivant
Stéphane Lengrand
Michael Leuschel
Leonid Libkin
Didier Lime

Jim Lipton

Kamal Lodaya
Markus Lohrey
Pedro Loépez
Etienne Lozes
Michael Luttenberger
Bas Luttik
Angelika Mader

A. Maggiolo Schettini
Istvan Majzik

Luc Maranget

Julio Marino
Hidehiko Masuhara
Sjouke Mauw

Guy McCusker
Paul-André Mellies
Michael Mendler
Massimo Merro
Dale Miller

Kevin Millikin
Alexandre Miquel
Alberto Momigliano
Madhavan Mukund
Anca Muscholl
Anders Mgller
Francesco Zappa Nardelli
Damian Niwinski
Dirk Nowotka

Jan Obdrzalek
Martin Otto
Matthew Parkinson
Justin Pearson
Simon Peyton Jones
Frank Pfenning
Tain Phillips

Sophie Pinchinat

G. Michele Pinna
Frangois Pottier

Marc Pouzet

John Power
Germéan Puebla
Jean-Francois Raskin
Anders Ravn
Henrik Reif Andersen
Didier Rémy

Eike Ritter
Francesca Rossi
Wojciech Rytter
Jean-Paul Sansonnet
Vijay Saraswat
Stefan Schwoon
Géraud Senizergues
Natalia Sidorova
Petr Sosik

Jeremy Sproston
Jiri Srba

Graham Steel
Martin Steffen
Colin Stirling
Oldfich Strazovsky
Martin Strecker
Thomas Streicher
Martin Sulzmann
Stephanie Swerich
Paulo Tabuada
Vanessa Teague
P.S. Thiagarajan
Hayo Thielecke
Marc Tommasi
Lorenzo Tortora de Falco
Frank D. Valencia
Dirk Van Gucht
Daniele Varacca
Helmut Veith

Bob Veroff

Alicia Villanueva
Erik de Vink
Walter Vogler
Marc Voorhoeve
Jérome Vouillon
Roel de Vrijer
David S. Warren
Hiroshi Watanabe

Stephanie Weirich
Joe Wells

J. Winkowski
Anthony Wirth
James Worrell

Track C

Martin Abadi

Michel Abdalla
Alessandro Acquisti
Saurabh Agarwal
Alessandro Aldini
Giuseppe Ateniese
Michael Backes
Zuzana Beerliova
Kamel Bentahar
Carlo Blundo
Marcello Bonsangue
Xavier Boyen

Marzia Buscemi

Jan Camenisch
Marco Carbone

Dario Catalano

Qi Cheng

Jung Hee Cheon
Mika Cohen

Hubert Comon-Lundh
Scott Contini

Nicolas Courtois
Silvia Crafa

Paolo D’Arco
Stephanie Delaune
Giovanni Di Crescenzo
Pierpaolo Degano
Christophe Doche
Seiji Doi

Paul Hankes Drielsma
Claudiu Duma

Orr Dunkelman
Antonio Durante
Sandro Etalle

Pooya Farshim

Serge Fehr

Sebastian Fischmeister

Eric Van Wyk
Hongwei Xi
Alexander Yakhnis
Mihalis Yannakakis
Dachuan Yu

Riccardo Focardi
Pierre-Alain Fouque
Cédric Fournet
Jessica Fridrich
Martin Gagne
Steven Galbraith
Pierrick Gaudry
Rosario Gennaro
Craig Gentry

Rob Granger
Claudio Guidi
Shai Halevi

Amir Herzberg
Omer Horvitz
Markus Jakobsson
Marc Joye

Bruce Kapron
Hartmut Klauck
Ralf Kuesters
Sebastien Kunz-Jacques
Eyal Kushilevitz
Peeter Laud
Kristin Lauter
Peter Leadbitter
Shiyong Lu

Ben Lynn

Anna Lysyanskaya
Matteo Maffei
Toshiaki Makita
John Malone-Lee
Heiko Mantel
Barbara Masucci
Alexander May
Willi Meier

Phong Nguyen
Jesper Buus Nielsen
Kobbi Nissim

Organization XIIT

Hans Zantema
Marc Zeitoun
Wieslaw Zielonka
Pascal Zimmer

Dan Page

Enes Pasalic
Rafael Pass
Kenny Paterson
Manas Patra

Erez Petrank
Duong Hieu Phan
Krzysztof Pietrzak
Benny Pinkas
Alexander Pretschner
Zulfikar Ramzan
Oded Regev
Leonid Reyzin
Mike Roe

Alon Rosen
Sabina Rossi
Michael Scott
Andrei Serjantov
Ronen Shaltiel
Vitaly Shmatikov
Christoph Sprenger
Martijn Stam
Pante Stanica
Ron Steinfeld
Jacques Stern
Koutarou Suzuki
Tamir Tassa

Yael Tauman-Kalai
Luca Trevisan

A. Troina

Luca Vigano

Ivan Visconti
Bogdan Warinschi
Brent Waters
Diego Zamboni

X1V Organization

Sponsors

Fundagao para a Ciéncia e Tecnologia, Ministério da Ciéncia e Ensino Superior
Centro de Informética e Tecnologias da Informagao/FCT/UNL
Centro de Légica e Computacao/IST/UTL

Table of Contents

Invited Lectures

Holographic Circuits
Leslie G. Valiant e 1

Probabilistic Polynomial-Time Semantics for a Protocol Security Logic
Anupam Datta, Ante Derek, John C. Mitchell, Vitaly Shmatikov,
Mathieu TUTUGNT .. oot e e e 16

A Gentle Introduction to Semantic Subtyping
Giuseppe Castagna, Alain Frisch oo, 30

Logics for Unranked Trees: An Overview
Leonid Libkim o 35

Nash Equilibria, the Price of Anarchy and the Fully Mixed Nash
Equilibrium Conjecture

Martin Gairing, Thomas Liicking, Burkhard Monien,

Karsten Tiemann i 51

Data Structures I

The Tree Inclusion Problem: In Optimal Space and Faster
Philip Bille, Inge Li Gortzot 66

Union-Find with Constant Time Deletions
Stephen Alstrup, Inge Li Gortz, Theis Rauhe, Mikkel Thorup,
Uri Zwick 78

Optimal In-place Sorting of Vectors and Records
Gianni Franceschini, Roberto Grossi oo .. 90

Towards Optimal Multiple Selection
Kanela Kaligosi, Kurt Mehlhorn, J. Ian Munro, Peter Sanders 103

Cryptography and Complexity

Simple Extractors via Constructions of Cryptographic Pseudo-random
Generators
Marius Zimand 115

XVI Table of Contents

Bounds on the Efficiency of “Black-Box” Commitment Schemes
Omer Horvitz, Jonathan Katz

On Round-Efficient Argument Systems
Hoeteck Wee .. oo e e

Computational Bounds on Hierarchical Data Processing with
Applications to Information Security
Roberto Tamassia, Nikos Triandopoulos.............

Data Structures 11

Balanced Allocation and Dictionaries with Tightly Packed Constant
Size Bins
Martin Dietzfelbinger, Christoph Weidling

Worst Case Optimal Union-Intersection Expression Evaluation
Ehsan Chiniforooshan, Arash Farzan,

Mehdi Mirzazadeh

Measure and Conquer: Domination — A Case Study
Fedor V. Fomin, Fabrizio Grandoni, Dieter Kratsch

Cryptography and Distributed Systems

Optimistic Asynchronous Atomic Broadcast
Klaus Kursawe, Victor Shoup

Asynchronous Perfectly Secure Communication over One-Time Pads
Giovanni Di Crescenzo, Aggelos Kiayiascccoiuieon...

Single-Prover Concurrent Zero Knowledge in Almost Constant Rounds
Giuseppe Persiano, Tvan Visconti

Graph Algorithms I

LCA Queries in Directed Acyclic Graphs
Miroslaw Kowaluk, Andrzej Lingaso ..

Replacement Paths and & Simple Shortest Paths in Unweighted
Directed Graphs
Liam Roditty, Urt Zwick i

Table of Contents

Deterministic Constructions of Approximate Distance Oracles and
Spanners
Liam Roditty, Mikkel Thorup, Uri Zwick

An O(m?n) Randomized Algorithm to Compute a Minimum Cycle
Basis of a Directed Graph
Telikepalli Kavitha e

Security Mechanisms

Basing Cryptographic Protocols on Tamper-Evident Seals
Tal Moran, Moni NGOTo e

Hybrid Trapdoor Commitments and Their Applications
Dario Catalano, Tvan Visconti

On Steganographic Chosen Covertext Security
Nicholas Hopper e

Classification of Boolean Functions of 6 Variables or Less with Respect
to Some Cryptographic Properties
An Braeken, Yuri Borissov, Svetla Nikova, Bart Preneel

Graph Algorithms II

Label-Guided Graph Exploration by a Finite Automaton
Reuven Cohen, Pierre Fraigniaud, David Ilcinkas, Amos Korman,
David Peleg

On the Wake-Up Problem in Radio Networks
Bogdan S. Chlebus, Leszek Gasieniec, Dariusz R. Kowalski,

Tomasz Radzik ...

Distance Constrained Labelings of Graphs of Bounded Treewidth
Jiri Fiala, Petr A. Golovach, Jan Kratochvil

Optimal Branch-Decomposition of Planar Graphs in O(n?) Time
Qian-Ping Gu, Hisao Tamaki

Automata and Formal Languages 1

NFAs With and Without e-Transitions
Juraj Hromkovi¢, Georg Schnitger i ..

XVII

XVIII Table of Contents

On the Equivalence of Z-Automata
Marie-Pierre Béal, Sylvain Lombardy, Jacques Sakarovitch 397

A Tight Linear Bound on the Neighborhood of Inverse Cellular
Automata

FEugen Czeizler, Jarkko Kari. 410

Groupoids That Recognize Only Regular Languages
Martin Beaudry, Frangois Lemieux, Denis Thérien 421

Signature and Message Authentication

Append-Only Signatures
FEike Kiltz, Anton Mityagin, Saurabh Panjwani, Barath Raghavan 434

Hierarchical Group Signatures
Marten Trolin, Douglas Wikstrom 446

Designated Verifier Signature Schemes: Attacks, New Security Notions
and a New Construction

Helger Lipmaa, Guilin Wang, Feng Bao 459

Single-Key AIL-MACs from Any FIL-MAC
Ueli Maurer, Johan Sjodin 472

Algorithmic Game Theory

The Efficiency and Fairness of a Fixed Budget Resource Allocation Game

Lo Zhango 485
Braess’s Paradox, Fibonacci Numbers, and Exponential
Inapproximability

Henry Lin, Tim Roughgarden, Fva Tardos, Asher Walkover 497

Automata and Logic

Weighted Automata and Weighted Logics
Manfred Droste, Paul Gastin 513

Restricted Two-Variable FO +MOD Sentences, Circuits and
Communication Complexity
Pascal Tesson, Denis Thérien 526

Table of Contents

Computational Algebra

Suitable Curves for Genus-4 HCC over Prime Fields: Point Counting
Formulae for Hyperelliptic Curves of Type y? = 22**! + ax
Mitsuhiro Haneda, Mitsuru Kawazoe, Tetsuya Taokahashi

Solvability of a System of Bivariate Polynomial Equations over a

Finite Field
Neeraj Kayal e

Cache-Oblivious Algorithms and Algorithmic
Engineering

Cache-Oblivious Planar Shortest Paths
Hema Jampala, Norbert Zeh

Cache-Aware and Cache-Oblivious Adaptive Sorting
Gerth Stglting Brodal, Rolf Fagerberg, Gabriel Moruz

Simulated Annealing Beats Metropolis in Combinatorial Optimization
Ingo Wegener

On-line Algorithms

Online Interval Coloring and Variants
Leah Epstein, Meital Levy

Dynamic Bin Packing of Unit Fractions Items
Wun-Tat Chan, Tak-Wah Lam, Prudence W.H. Wong

Reordering Buffer Management for Non-uniform Cost Models
Matthias Englert, Matthias Westermann,

Security Protocols Logic

Combining Intruder Theories
Yannick Chevalier, Michaél Rusinowitch

Computationally Sound Implementations of Equational Theories
Against Passive Adversaries
Mathieu Baudet, Véronique Cortier, Steve Kremer

Password-Based Encryption Analyzed
Martin Abadi, Bogdan Warinschi

XIX

XX Table of Contents

Random Graphs

On the Cover Time of Random Geometric Graphs
Chen Avin, Gunes Ercal 677

On the Existence of Hamiltonian Cycles in Random Intersection
Graphs
Charilaos Efthymiou, Paul G. Spirakis....... 690

Optimal Cover Time for a Graph-Based Coupon Collector Process
Nedialko B. Dimitrov, C. Greg Plaxton 702

Stability and Similarity of Link Analysis Ranking Algorithms
Debora Donato, Stefano Leonardi, Panayiotis Tsaparas 717

Concurrency 1

Up-to Techniques for Weak Bisimulation
Damien Pous. 730

Petri Algebras
Eric Badouel, Jules Chenou, Goulven Guillow 742

A Finite Basis for Failure Semantics
Wan Fokkink, Sumit Nain, 755

Spatial Logics for Bigraphs
Giovanni Conforti, Damiano Macedonio, Vladimiro Sassone......... 766

Encryption and related Primitives

Completely Non-malleable Schemes
Mare Fischlin 779

Boneh-Franklin Identity Based Encryption Revisited
David Galindo 791

Single-Database Private Information Retrieval with Constant
Communication Rate
Craig Gentry, Zulfikar Ramzan 803

Concurrent Zero Knowledge in the Public-Key Model
Giovanni Di Crescenzo, Tvan Visconti 816

Table of Contents XXI

Approximation Algorithms I
A Faster Combinatorial Approximation Algorithm for Scheduling
Unrelated Parallel Machines
Martin Gairing, Burkhard Monien, Andreas Woclaw 828

Polynomial Time Preemptive Sum-Multicoloring on Paths
Annamadria Kovdcs.o 840

The Generalized Deadlock Resolution Problem

Kamal Jain, MohammadTaghi Hajiaghayi, Kunal Talwar 853
Facility Location in Sublinear Time

Mihai Badoiu, Artur Czumayj, Piotr Indyk, Christian Sohler 866
Games

The Complexity of Stochastic Rabin and Streett Games
Krishnendu Chatterjee, Luca de Alfaro, Thomas A. Henzinger 878

Recursive Markov Decision Processes and Recursive Stochastic Games
Kousha Etessami, Mihalis Yannakakis 891

Decidability in Syntactic Control of Interference
James Laird 904

Idealized Algol with Ground Recursion, and DPDA Equivalence
Andrzej S. Murawski, Chin-Hao Luke Ong, Igur Walukiewicz 917

Approximation Algorithms II

From Primal-Dual to Cost Shares and Back: A Stronger LP Relaxation
for the Steiner Forest Problem
Jochen Konemann, Stefano Leonardi, Guido Schdfer,
Stefan van Zwam 930

How Well Can Primal-Dual and Local-Ratio Algorithms Perform?
Allan Borodin, David Cashman, Avner Magen 943

Approximating MAX kCSP - Outperforming a Random Assignment
with Almost a Linear Factor
Gustav Hast oo 956

XXII Table of Contents

Lower Bounds

On Dynamic Bit-Probe Complexity

Corina E. Pdtrascu, Mihai Patrascucouiiinnenn .

Time-Space Lower Bounds for the Polynomial-Time Hierarchy on
Randomized Machines

Scott Diehl, Dieter van Melkebeeko, ..

Lower Bounds for Circuits with Few Modular and Symmetric Gates

Arkadev Chattopadhyay, Kristoffer Arnsfelt Hansen

Probability

Discrete Random Variables over Domains

Michael W. Mislove i

An Accessible Approach to Behavioural Pseudometrics
Franck van Breugel, Claudio Hermida, Michael Makkai,

James Worrell

Noisy Turing Machines

FEugene Asarin, Pieter Collins i ..

Approximation Algorithms 111

A Better Approximation Ratio for the Vertex Cover Problem

George Karakostas i

Stochastic Steiner Trees Without a Root

Anupam Gupta, Martin Pdl i

Approximation Algorithms for the Max-coloring Problem

Sriram V. Pemmaraju, Rajiv Raman oo,

Automata and Formal Languages 11

Tight Lower Bounds for Query Processing on Streaming and External
Memory Data

Martin Grohe, Christoph Koch, Nicole Schweikardt

Table of Contents

Decidability and Complexity Results for Timed Automata via Channel
Machines

Parosh Aziz Abdulla, Johann Deneux, Joél Ouaknine,

James Worrell

Congruences for Visibly Pushdown Languages
Rajeev Alur, Viraj Kumar, P. Madhusudan, Mahesh Viswanathan . ..

Approximation Algorithms IV

Approximation Algorithms for Euclidean Group TSP
Khaled FElbassioni, Aleksei V. Fishkin, Nabil H. Mustafa,
René STtters . .. oot

Influential Nodes in a Diffusion Model for Social Networks
David Kempe, Jon Kleinberg, Eva Tardos

An Optimal Bound for the MST Algorithm to Compute Energy
Efficient Broadcast Trees in Wireless Networks
Christoph AmbGRL.

New Approaches for Virtual Private Network Design
Friedrich Eisenbrand, Fabrizio Grandoni, Gianpaolo Oriolo,
Martin Skutella

Algebraic Computation and Communication
Complexity

Hadamard Tensors and Lower Bounds on Multiparty Communication
Complexity
Jeff Ford, Anna Gdl

Lower Bounds for Lovész-Schrijver Systems and Beyond Follow from
Multiparty Communication Complexity
Paul Beame, Toniann Pitassi, Nathan Segerlind

On the I-Ary GCD-Algorithm in Rings of Integers
Douglas WIkstrom e e

Concurrency 11

A Fully Abstract Encoding of the m-Calculus with Data Terms
Michael Baldamus, Joachim Parrow, Bjorn Victor

XXIII

1102

XXIV Table of Contents

Orthogonal Extensions in Structural Operational Semantics
Mohammad Reza Mousavi, Michel A. Reniers 1214

Basic Observables for a Calculus for Global Computing

Rocco De Nicola, Daniele Gorla, Rosario Pugliese 1226
Compositional Verification of Asynchronous Processes via Constraint
Solving

Giorgio Delzanno, Maurizio Gabbrielli 1239

String Matching and Computational Biology
Optimal Spaced Seeds for Faster Approximate String Matching
Martin Farach-Colton, Gad M. Landau, S. Cenk Sahinalp,
Dekel Tsur 1251

Fast Neighbor Joining
Isaac Elias, Jens Lagergren, 1263

Randomized Fast Design of Short DNA Words
Ming-Yang Kao, Manan Sanghi, Robert Schweller 1275

Quantum Complexity

A Quantum Lower Bound for the Query Complexity of Simon’s Problem
Pascal Koiran, Vincent Nesme, Natacha Portier 1287

All Quantu{n Adversary Methods Are Equivalent
Robert Spalek, Mario Szegedyouiiiiiiiiiiniinn.. 1299

Quantum Complexity of Testing Group Commutativity
Frédéric Magniez, Ashwin Nayak i, 1312

Analysis and Verification

Semantic-Based Code Obfuscation by Abstract Interpretation
Mila Dalla Preda, Roberto Giacobazzi.......... 1325

About Hoare Logics for Higher-Order Store
Bernhard Reus, Thomas Streicher............. .o .. 1337

The Polyranking Principle
Aaron R. Bradley, Zohar Manna, Henny B. Sipma 1349

Table of Contents XXV

Geometry and Load Balancing

Approximate Guarding of Monotone and Rectilinear Polygons
Bengt J. NilsSON ..o oo e 1362

Linear Time Algorithms for Clustering Problems in Any Dimensions
Amit Kumar, Yogish Sabharwal, Sandeep Sen 1374

Dynamic Diffusion Load Balancing
Petra Berenbrink, Tom Friedetzky, Russell Martin 1386

Concrete Complexity and Codes

On the Power of Random Bases in Fourier Sampling: Hidden Subgroup
Problem in the Heisenberg Group
Jaikumar Radhakrishnan, Martin Rétteler, Pranab Sen 1399

On the Hardness of Embeddings Between Two Finite Metrics
Matthew Cary, Atri Rudra, Ashish Sabharwal 1412

Improved Lower Bounds for Locally Decodable Codes and Private

Information Retrieval
Stephanie Wehner, Ronald de Wolf 1424

Model Theory and Model Checking

Preservation Under Extensions on Well-Behaved Finite Structures
Albert Atserias, Anuj Dawar, Martin Grohe 1437

Unsafe Grammars and Panic Automata
Teodor Knapik, Damian Niwiriski, Pawet Urzyczyn,

Igor Walukiewicz ... 1450

Signaling P Systems and Verification Problems
Cheng Li, Zhe Dang, Oscar H. Ibarra, Hsu-Chun Yen 1462

Author Index 1475

Holographic Circuits

Leslie G. Valiant*

Division of Engineering and Applied Sciences,
Harvard University, Cambridge,
MA 02138, USA

Abstract. Holographic circuits are defined here to be circuits in which
information is represented as linear superpositions. Holographic circuits
when suitably formulated can be emulated on classical computers in poly-
nomial time. The questions we investigate are those of characterizing the
complexity classes of computations that can be expressed by holographic
circuits.

1 Introduction

A holographic reduction [V04] between two computational problems is a reduc-
tion that preserves the sum of the solutions without preserving any correspon-
dences among the individual solutions. A polynomial time holographic algorithm
is an algorithm derived by applying a polynomial time holographic reduction to
a problem having a classical polynomial time algorithm. Such holographic algo-
rithms have been derived for several counting problems for which no polynomial
time algorithms had been known before. This previous work used the Fisher-
Kasteleyn-Temperley (FKT) algorithm for counting perfect matchings in planar
graphs as the starting classical algorithm, which itself may be viewed as a clas-
sical reduction to the problem of computing the Pfaffian of an antisymmetric
matrix.

This present paper develops holographic computation in two directions. First,
the object of evaluation is now a computation or circuit, rather than a combi-
natorial problem. Second, it uses the Pfaffian itself as the starting point, and
bypasses the FKT construction and the constraint of planarity.

2 Universal Operations Sets for Complexity Classes

Holographic circuits offer a new approach to computation in the following sense.
Suppose we view a conventional computation as an acyclic circuit embedded in
a plane. Then one possible listing of the atomic constituents of computation is:

* This research was supported in part by grants NSF-CCR-03-10882, NSF-CCR-98-
77049, NSF-CCF-04-27129 and by the National Security Agency (NSA) anad Ad-
vanced Research and Development Activity (ARDA) under Army Research Office
(ARO) contract DAAD19-01-1-0506.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 1-15, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

2 L.G. Valiant

i) Inputs of constants 0 or 1,
(ii) Boolean gates AND, OR, and NOT,
(iii) Fanout or replication,
(iv) Crossovers of wires in the planar embedding,

For nondeterministic computation we would add:

(v) Nondeterministic generation of 0 or 1 as inputs, and
(vi) Summation of circuit values over all generated input vectors.

In the holographic framework the sum (vi) over all possible computations of
a circuit will be, by design, computable in polynomial time. This becomes mean-
ingful if (v), or some similar nondeterministic operation, is available, since that
offers polynomial time simulation of nondeterministic computations. In classical
computation, of course, (i)—(iv) are trivial, while nondeterministic summation
(vi) appears highly problematic. In the holographic formulation, it is the other
way around: nondeterministic summation (vi) is easy but (i)—(iv), or (v), may be
problematic. As we shall show, we can realize various subsets of (i)—(v) consis-
tently. If all five could be so realized then P#P = P would follow. By consistently
we mean here that they can be realized with a common basis, as explained in
the following sections.

We note that there are numerous other possible listings of the atomic con-
stituents of computation besides the one above. For complexity classes X,Y we
define such a universal operations set for X with respect to Y, (or a UOS for X
with respect to Y) to be a list of operations such that if they can be realized in a
common basis then X =Y is implied. In this paper we shall restrict attention to
and assume the case that Y = NC2. It is clearly interesting then to investigate
such UOS’s for X = NP, X = @ P, and X = #P, among others.

The present paper is therefore oriented towards the simulation of computa-
tional circuits as opposed to the solution of particular combinatorial problems.
We have to emphasize that known algebraic relations, the matchgate indentities
[V02a, V02D, present obstacles to some of the more obvious attempts at encod-
ing general classes of computations, such as NP or BQP, in this manner at least
when using the smallest bases. However, the question of whether these obstacles
can be overcome, perhaps by means of larger bases, remains open.

3 Matchgates and Matchcircuits

We start with some standard graph-theoretic notions and their relation to the
Pfaffian of a matrix [BR91, M00]. We then go on to define the notions of Pfaffi-
anSum, matchgates, character matrices, and matchcircuits, closely following the
treatment in [V02a, V02b].

A weighted undirected graph, or simply a graph, G is a triple (V, E, W) where
V' is a set of vertices each represented by a distinct positive integer, F is a set
of edges or unordered pairs (i,) of the vertices i,5 € V, and W is the set of
weights, each weight w(i, j) corresponding to the edge (4,7j) € E.

Holographic Circuits 3

An n x n matrix B is skew-symmetric if for all i,7 (1 < 4,5 < n) B(i,j) =
—B(j,1). The matriz of the graph G = (V,E,W) where V = {1,2,...,n} is the
n X n matrix M (G) where the (i, §) entry M(G)(4,7) is defined to equal:

(i) w(i,j)ifi<j,

(il) —w(4,j) if i > j, and
(iii) O otherwise.
In the more general case that V' = {ky,ko,..., k,} where k1 < ko < ... < ky,
weight w(k;, k;) replaces w(s,j) in (i) and (11) in this definition. For brev1ty we
shall abbreviate M (G) by G whenever it is clear that a matrix is intended.

The Pfaffian of an n x n skew-symmetric matrix B is defined to be zero if n
is odd, one if n = 0, and if n is even with n = 2k and k& > 0 then it is defined as:

Z& w(iy, i2)w(iz, ia) . .. w(i2k—1,%2k)

where
(i) ™ = [i1, 12,193, .. .,42;] is a permutation on [1,2,...,n],
(ii) summation is over all such permutations 7 where further
11 < t9,03 < ig,...,%9%—1 < L2k, and

h <izg<ig<...<igk_1, and

(iii) e € {—1,1} is the sign of the permutation 7, i.e., it is —1 or +1 according to
whether the number of transpositions or swaps of pairs of distinct elements
i, ik, needed to reorder m to the identity permutation is odd or even. (An
equivalent definition in this context is that it is the sign or parity of the
number of overlapping pairs, where a pair of edges (ig,—1,19,), (i2s—1,%2s) iS
overlapping iff 1o, _1 < dos_1 < G9p < fgg OF Gog_1 < Gop_1 < G5 < Go.. NoOte
that it is implicit here that ig,._1 < ig, and igs_1 < is.)

A matching E* C E of G is a set of edges such that if (4, j), (r, s) are distinct
edges in E* then 4, j, r, s are all distinct vertices. In a graph with an even
number 2k of nodes a matching E* is perfect if it contains k edges. (Then every
i € V is an endpoint of, or is saturated by, some edge in E*.)

We shall use the following graph-theoretic interpretation of the Pfaffian. If B
is the matrix of the graph G then there is a one-to-one correspondence between
monomials in the Pfaffian of B and the perfect matchings in G. The monomial
w(iy, i) w(is,iq) ... w(iag—1,%2;) in Pf(G) corresponds to the perfect matching
{(i1,42), (i3,%4),- .., (i2k—1,%2x)} in G. The coefficient €, of this monomial will
be the parity of the numbers of overlapping pairs of edges, in the sense defined
above.

For an n X n matrix B and any set A = {iy,---,i.} C {1,---,n} we denote
by B[A] the (n —7) X (n — r) matrix obtained by deleting from B all the rows
and columns indexed by A. The following is from [V02a]:

Definition. The PfaffianSum of an n x n skew-symmetric matrix B is the poly-
nomial over indeterminates A1 ...\,

PfS(B Z(HA)Pf

A €A

4 L.G. Valiant

Summation here is over the various principal minors obtained from B by deleting
some subset A of the indices. In this paper we shall only need the instances in
which each)\; is fixed to be 0 or 1. The i for which A; = 0 can be thought of
as the unomittable indices, and those with \; = 1 as the omittable indices. Then
for this (0,1)-case the PfaffianSum is simply the sum of the Pf(B[A]) over those
A that contain only omittable indices.

We shall simulate each gate of a computation by what we call a matchgate.
A matchgate I' is a quadruple (G, X,Y,T) where G is a graph (V,E, W), X CV
is a set of input vertices, Y C V is a set of output vertices, and T' C V is a set
of omittable vertices such that (i) X, Y and T are all disjoint, and (ii) Vi € T if
j € X then j < i and if j € Y then j > i. A matchgate is an (m, n)-matchgate
if it has m input nodes and n output nodes. It is an input gate if n = 0 and an
output gate if m = 0. It is an even gate if it has no omittable nodes.

The matchings we consider will be those that saturate all the unomittable
nodes, i.e. V — T, and also some, possibly empty, subset of T. Whenever we
refer to the PfaffianSum of a matchgate fragment, such as G’ in the following
paragraph, we shall assume the substitutions \; = 1 if ¢ € T, and \; = 0
otherwise.

We call XUY the external nodes. For Z C X UY we consider the matchings of
a larger graph that contains G as a subgraph such that the Z nodes are matched
by edges external to GG, and the remaining elements of X UY by edges of G. We
define the character x(I', Z) of I" with respect to Z C X UY to be the product

u(I, Z)PS(G')

where: (a) G’ = (V — Z, E',W') where further F’ is the restriction of E to edges
with both endpoints in V' — Z, and W’ is the corresponding restriction of W, and
(b) the modifier u(I', Z) € {—1,1} counts the parity of the number of overlaps
between matched edges in E’ and matched external edges. We consider there to
exist one matched external edge from each node in X N Z and from each node in
Y N Z. The other endpoint of each of the former is some node of lower index than
any in V', and of each of the latter is some node of index higher than any in V.

The character of a matchgate, therefore, characterizes the contribution of G
to the PfaffianSum of a larger graph, and takes into account overlaps between
its internal edges and the external edges that link its external nodes to the rest
of the graph. The significance of condition (ii) in the definition of matchgates is
that it guarantees that the modifier u(I", Z) is always well defined: for any fixed
Z the external edges that arise are uniquely defined, but it has to be guaranteed
that the parity of the overlap of any one such external edge with every matching
of E’ that saturates all the unomittable nodes is the same. Condition (ii) ensures
this by not allowing an omittable node in the gate to be numbered intermediate
between the endpoints of an external edge. (That case might produce different
overlap parity for the given external edge and the various internal matchings
depending on whether the omittable node was in the matching.) To verify this,
note that if for i € X N Z there are r nodes j < ¢ where j € V — Z, then the
parity of the overlap of the external edge from 7 with the internal edges is the
parity of r.

Holographic Circuits 5

We define the character x(I') of I' as the 21XV values of x(I', Z) for the
various 2/XYY1 possible choices of Z. In particular, we think of the character
as a 21X x 2IY1 matrix where the rows represent the subsets of the inputs X,
and the columns the subsets of the outputs Y. Matchgates with | X| = |Y| =k
can then be regarded as matrix transformations defined by a square character
matrix. For example k = 1 corresponds to one-bit 2 x 2 matrix transformations,
and k = 2 corresponds to two-bit 4 x 4 transformations. In all cases we need to
specify a correspondence between subsets of X and the rows of the matrix, and
another correspondence between subsets of Y and the columns of the matrix. In
this paper we shall specify these correspondences as necessary. In general, here
as in [Va02a] and [Va02b] we assume what we call a normal ordering in which
both the rows and columns are in increasing order when the subsets of externally
matched nodes Z are represented in binary in the sense of the following example.
Suppose X = {1,2,3} and Y = {7,8,9}. Then the rows will be ordered 1,2,...,8,
as Z ranges over), {1}, {2}, {1,2}, {3}, {1,3}, {2,3}, {1,2,3}. The columns are
in the same order if 1 is identified with 9, 2 with 8, and 3 with 7. (N.B. The
definition for this in [Va02b] was inaccurate.)

We say that matchgate I' = (G, X,Y,T) with G = (V, E, W) has normal
numbering if the numbering of V is consecutive and X,Y have minimal and
maximal numbers respectively. Formally, V = {1,2,---,|V|} and Vi € X,Vj € Y
and Vk ¢ X UY it is the case that i < k < j.

We shall construct matchcircuits by composing normally numbered match-
gates in the manner of Figure 1. This is the same as in [V02a] except that we
are making the input and output gates more general. The purpose of the con-
struction is to ensure that the PfaffianSum properties of the circuit conform to
the composition of the corresponding properties of the individual matchgates,
without interfering sign effects. Then for any input vector generated by the in-

1

Fig. 1. An example of a matchcircuit composed of five input gates on the left, four
output gates on the right, and three intermediate gates G1, G2, G'3. The internal nodes
and edges in the gates are not shown. The nodes are numbered in increasing order from
left to right. The bold edges show an example of the edges in a perfect matching of the
circuit, excluding any matched edges internal to the individual gates

6 L.G. Valiant

put gates the remaining circuit will compute a wvalue equal to the composition
of the functions computed by the gates. The proof there of the Main Theorem
supports the following more general statement.

Main Theorem. Consider a matchcircuit I' composed of gates as shown in
Figure 1. Suppose that every gate is:

(i) a gate with diagonal character matriz,

(ii) an even gate applied to consecutive bits x;,x;y1,- - - Tiyj for some j >0,
(iii) an arbitrary gate applied to bits x1,---,x; for some j > 1, or
(iv) input or output gates on consecutive bits x;, Tix1,- - -, Tit; for some j > 0.

Then the PfaffianSum of I' equals the sum over all the input vectors generated
by the input gates of the value of the circuit defined by the remaining gates.

4 Bases

A basis b of size k is a set of distinct nonzero vectors of length 2% with entries from
a field F. In this paper the set will always consist of two vectors corresponding
to the Boolean 1 and 0, and denoted by p and n respectively. Each of the 2F
components of p or n is interpreted as corresponding to an element of {0,1}*,
where the 1’s represent the subset of the input or output nodes in a matchgate
that are to be matched by external edges. We denote the size k of b by | b |,
and a basis of size k is also called a k-basis. If ¢, r are two vectors of length [y, [5
we denote by s = g ® r their tensor product, which is of length /1/5 and in which
Silg4+j = qiTj for 0 <4 <y and 0 < j < ls.

The standard basis is the one with k = 1, p = (0,1),n = (1,0). An even basis is
one in which every component p; and n; is zero if ¢ corresponds to an odd number
of nodes being matched externally. Note that an even 2-basis has nonzero com-
ponents in p, n, only for the vector components representing 00 and 11. A special
case of an even 2-basis is the two-rail basis, in which the only nonzero component
in pis for 11, and the only nonzero component in 7 is for 00.

We shall seek to construct matchgates that perform various operations over
various bases. For example, we say that a 2-input 1-output matchgate performs
the AND operation over basis b if for the four combinations of inputs n ® n,
n®p, pRn, and p ® p, the outputs are n,n,n, and p, respectively. Also, we
shall use the name of an operation, such as AND, to represent the set of bases
for which there exists a matchgate to realize that operation. Further, we shall
denote by X* (e.g., AND* if the operation is AND) the set of bases for which
there is an even matchgate that realizes operation X.

5 Basis Classes

We shall seek to use matchgates to simulate Boolean circuits. Thus we shall
endeavor to simulate such basic functions as ”and”, ”swap”, ”fanout” and ”cnot”

Holographic Circuits 7

gates. In the definitions below we shall assume that b = (n,p) is a basis of size
k, and hence that n,p, are of length 2%.

We shall now define some basis classes that each correspond to something
that can be viewed as a primitive constituent of computation. Interspersed with
the definitions will be statements of some of their simpler properties.

(i) Generating Constants

Defn. GENO: Set of b such that there is a (0,|b|)-matchgate with x = n.
Defn. GEN1: Set of b such that there is a (0,|b|)-matchgate with x = p.
Defn. GENO1: Set of b such that there is a (0,|b|)-matchgate with y =n

and another with x = p. (Clearly GEN01 = GENO N GEN1.)

Defn. GENO+1: Set of b such that there is a (0,|b|)-matchgate with x = n + p.

Proposition 1. GEN0, GEN1, GENO1, GENO+1 each contain all the 1-bases
and 2-bases for any field.

Proof. This can be deduced from Proposition 1 in [V02a], or proved more di-
rectly as follows. For 2-bases consider the following matchgate where node 1 is
omittable, and the output nodes are {3,4}.

Suppose we wish to generate the 1x4 character matrix (ai, as, as, as) where or-
dering (0, {4}, {3}, {3,4}) is implied on the matrix columns. Then, by inspection,

a; = 2u — vy + Tw,

a2 = U,
az = —v,
aqs = XT.

For example, by the definition of the character matrix, agz is the Pfaffian of
the graph with node set {3} omitted, adjusted by the multiplicative modifier
@ = —1, since this is the overlap between the internal and external edges (i.e.
between the internal edge (2,4) and the external edge from 3.)

Clearly we can set as,as,aq to arbitrary values by setting u,v,x appropri-
ately. If at least one of ag,as, a4 is nonzero then we can also set a; arbitrarily
by setting z,y,w appropriately. In the special case that as = a3 = a4 = 0,
we modify the matchgate so that node 1 is not omittable and x = 0. This sets

8 L.G. Valiant

az = az = a4 = 0. Also a; = zu — vy can then be set arbitrarily. Finally, for
1-bases consider the output nodes to be just {4}. ad

(ii) Swapping

Defn. SWAP: Set of bases b such that there is a (2|b], 2|b|)-matchgate where
(pRp)x=p@p,(n@p)x=pn,(pRn)x=n®p,(Rn)x =nQn.

Proposition 2. Every even basis belongs to SWAP* for any field.

Proof. Suppose the basis is a k-basis. We imagine 2k parallel wires. The task is
to interchange the contents of the top k wires with the contents of the bottom
k wires. To do this we use the matrix

1000
0010
0-100
0001

as a “pseudoswap” for pairs of bits on adjacent wires. To implement a SWAP
gate between two sets of k& wires we have the two sets of k wires cross and place
a pseudoswap gate at all the k2 intersections. Since we have an even basis, in
every situation that contributes to the Pfaffian, an even number of the wires in
each group of k will have a 1 bit on it. Hence 1 values will need to be “inter-
changed” with 0 values an even number of times. Hence an even number of the
pseudoswap gates will have their -1 entry invoked, and hence the overall contri-
bution will always be +1. Finally note that this is realizable by a matchgate over
the standard basis by virtue of Proposition 4 in [V02a], and in particular by the
following matchgate with input ordering (0,{1},{2},{1,2}) and output ordering

(®’{4}7{3}7{374})- O

Proposition 3. Every basis over any field of characteristic 2 belongs to SWAP*,

Proof. Immediate. m]

Proposition 4. There is no independent 1-basis for SWAP for the complex
numbers.

Holographic Circuits 9

Proof. This can be deduced from the definition of SWAP by solving the set of
equations that define SWAP, together with the five matchgate identities [V02a],
using a polynomial solver such as Singular [GPS01]. o

(iii) Fanout

The replication of influence, or fanout, is a very basic constituent of compu-
tation.

Defn. FANOUT: Set of b such that there is a (|b|, 2|b|)-matchgate with nx =
n®n and px = p R p.
Perhaps surprisingly, there does exist a 1-basis for FANOUT.

Proposition 5. For any field with characteristic different from 2 there exists a
1-basis for FANOUT?*.

Proof. Consider the one bit basis n, p = (1,—1),(1,1). It can be verified that

1-1 1001y (1-1-11
11 0110/ \11 11
and that the second matrix is realized by the matchgate with V = {1,2,3,4},

with input {1}, outputs {3,4},and V = {(1,2),(2,3), (2,4), (3,4)} where all the
edges have weight one except for (2,4) which has weight —1. a

Proposition 6. There is no independent 1-basis of characteristic 2 for FANOUT.
Proof. From the matchgate identities. |

Propositions 4 and 6 show that for 1-bases SWAP N FANOUT = () for any
field. We therefore go on to consider notions of replication that are no stronger,
and possibly more restricted than fanout. These are GENEQ and GENOPP
which output pairs of equal or opposite values, but take no inputs.

Defn. GENEQ: Set of b such that there is a (0, 2|b|)-matchgate with x =
pAp+nn.

Defn. GENOPP: Set of b such that there is a (0, 2|b|)-matchgate with
X=p@®n+np.

Proposition 7. There is no independent even 2-basis for GENEQ* for any
field.

Proof. Consider an even 2-basis (a,0,0,b), (¢,0,0,d). Then any (0,4)-matchgate
for GENEQ has to generate the (1 x 16)-character matrix

(a® 4 ¢*,0,0,ab + cd, 0,0,0,0,0,0,0,0,ab + cd,0,0,b* + d?).

10 L.G. Valiant

But from this matchgate one can easily construct a (2,2)-matchgate with
(4 x 4) character matrix

a’?+c200ab+cd
0 00 O
0 00 O

ab+cd 00 b% + d?

The construction requires the creation of 2 new input nodes each connected
by chains of 2 edges to the first two output nodes, which are no longer considered
as output nodes.

But the first matchgate identity then implies that ad = bc, which contradicts
(a,0,0,b),(c,0,0,d) being idependent. O

Proposition 8. GENO+1 N FANOUT C GENEQ for any field.

Proof. If we append, in the manner of Figure 3 in [V02a], the matchgate for
FANOUT to one for GENO+1 we obtain one for GENEQ. a

Proposition 9. For any field GENEQ and GENOPP contain all 1-bases.

Proof. Immediate from Proposition 1 applied to 2-bases. O

Proposition 10. There is no independent even 2-basis for GENOPP* for any
field.

Proof. Similar to the proof of Proposition 7. O

(iv) Boolean operations

Defn. NOT: Set of b such that there is a (|b|, |b|)-matchgate with p = nyx
and n = pyx.
Defn. AND: Set of b such that there is a (2|b|, |b|)-matchgate where (p@p)x =
p,and (n@n)x = (n@p)x = (p@n)x = n.
Proposition 11. The standard basis does not belong to AND*, nor does any
independent 1-basis over a field of characteristic 2.

Proposition 12. There is a 1-basis for AND* over any field with characteristic

different from 2.
Proof. k=1:n,p=(1,1),(2,0),

The matchgate that realizes this is E) where V = {1,2,3,4}, the in-
puts are {1,2}, the output is {4}, F = {(1,2),(1,3),(2,3),(3,4)} with weights
1,-1/2,1/2,

1/2, respectively. O

Holographic Circuits 11

Defn. BOOL: Set of b such that there are AND, OR and NOT matchgates for b.

Defn. MON: Set of b such that there are AND and OR matchgates for b.
Various relations are immediate. For example BOOL O NAND N GENI1
since NOT can be obtained from NAND using GEN1, and OR can be obtained

from AND and NOT. Note that neither swap nor replication is needed in these
classical Boolean simulations.

Proposition 13. The 2-rail basis belongs to BOOL for any field.

Proof. We can realize AND using k = 2 : n,p = (1,0,0,0), (0,0,0,1). The match-
gate that realizes this is (V, E) where V = {1,2,3,4,5,6}, inputs are {1, 2, 3,4},
outputs are {5,6}, E = {(1,6), (2,5), (2,3), (3,6), (4,5)} all with weight 1. Simi-
larly NOT and hence OR are also realizable. a

(v) Universality in the sense of quantum computation

Defn. ONEBITUNIV: Set of b such that for all complex numbers «, 3,7, 9,
there is a (|b|,|b|)-matchgate with nxy = an + Bp, and px = yn + dp.

Proposition 14. The two rail basis belongs to ONEBITUNIV for any field.

(57)

in the two rail basis use the matchgate that realizes

a00p
0Oapo
0vy460
v004

Proof. For realizing the mapping

If § = 0 then by inverting the input or output we first move a nonzero entry to
the lower right position in the matrix. O

Defn: CNOT: Set of b such that there is a (2|b|, 2|b|)-matchgate where (n ®
nx=n®@n,(np)x=n@p,(pRn)x=p@p,(pOp)x =p@n.
Defn. ISWAP: Set of b such that there is a (2|b], 2|b|)-matchgate where
(m@n)x =n®n,(n@p)x =ip@n,(p@n)x =in®p,(p®p)x =p®p, where
1 is the square root of —1.
Defn. UNIV: Set of b over the complex numbers such that a universal set of
gates, in the sense of quantum computation, can be realized for b.

Note that CNOT [BBC+95,CN01] together with the set of all one-bit gates
form a universal set. The same holds for ISWAP [EWD+01] together with all
one-bitgates.

Proposition 15. There is no independent 1-basis for CNOT for the complex
numbers.

12 L.G. Valiant

Proposition 16. The standard basis can realize ISWAP for the complex num-
bers.

Proof. ISWAP over the standard basis requires a character matrix:

1000
00z 0
0200
0001

This can be realized by the matchgate (V, E) where V = {1,2, 3,4}, inputs are
{1,2}, outputs are {3,4}, E = {(1,3),(2,4)} with weights —i, —i respectively. O

(vi) Translations from and to the standard basis

Defn. ENCODE: Set of b such that there is a (1, |b|) -matchgate where the
first row of x is n and the second is p.

Proposition 17. There is no even 2-basis for ENCODE.
Proof. The matchgate identities preclude this. O

Defn. DECODE: Set of b such that there is a (|b|, 1)-matchgate with ny = (1,0)
and py = (0,1).

Proposition 18. ENCODE, DECODE each contain all the 1-bases.

Proof. Similar to proof of Proposition 1.]

6 Some Universal Operations Sets

There appear to be an enormous variety of interesting universal operations sets
with respect to NC2. Here we shall give examples for each of #P, &P, QBP,
and P.

Our first example shows that one does not need the general FANOUT op-
eration for universality over #P or @P. The ability to produce complementary
pairs of bits is sufficient.

Proposition 19. (i){ GENOPP, SWAP*, MON} over any field of infinite char-
acteristic is a universal operations set for #P, as is also {GENEQ, SWAP*,
MON}.

(1i)){ GENOPP, MON} over GF[2] is a universal operations set for @ P.

Proof. We need to establish that fanout, of the limited form of producing pairs
of opposite bits (GENOPP), is enough to give #P- and @P-completeness, as
is also GENEQ for #P-completeness. For this we shall need that the counting
and parity problems of read-twice Boolean formulae (i.e. where each variable
occurs twice) are #P- and @P-complete. For read-twice CNF formulae #P-
completeness was proved in the monotone case [BD97], and this will be sufficient

Holographic Circuits 13

for the GENEQ result. Also, for more general formulae consisting of A and V
gates #P- and @P-completeness can be proved if each variable occurs just once
positively and once negated [Va05]. This will give the GENOPP results. Let us
therefore consider formulae F' obtained in one of these two ways.

We now construct a matchcircuit to evaluate such a formula F'. The circuit
has no inputs and starts with the GENOPP/GENEQ gates on the left. There
will be k output nodes corresponding to the k bits of the output if the basis has
size k. Wires crossing are implemented by SWAP* gates, which exist over GF[2]
by virtue of Proposition 3. Finally the gates will be assembled in the manner of
Figure 1.

We view each GENOPP/GENEQ gate as assigning a value p@n or n®p /
p ® por n®n in the first instance. For each combination of assignments to the,
say m, GENOPP/GENEQ gates the Boolean gates will simulate the execution
of the formula being encoded, so that the final output will have n or p according
to whether the formula would have the Boolean value 0 or 1.

In the actual matchcircuit all 2 assignments are computed simultaneously
and added, so that if K of the assignments give value 1 and 2™ — K give value
0 then the PfaffianSum of the matchcircuit will be Kp + (2™ — K)n. Pick any
component, say 4, in which vectors n and p differ. There must be one since they
are distinct. Suppose that p; — n; = x. Now delete the i*" output node so as to
insist that the corresponding component has value 1, and make the remaining
output nodes omittable. Then the PfaffianSum of the matchcircuit must equal
2"™n; + Kx. The number K of solutions can be obtained then immediately. (Note
that the Pfaffian can be computed with the correct sign in polynomial time (e.g.
[GM94, LI7)).

This completes the proof except that for the case of infinite characteristic we
need to explain why even gates are not necessary for MON or GENOPP/GENEQ.
The main reason is that since we assume that we have even gates for SWAP*, we
can ensure that all other operations are done on consecutive bits x1,x2, -, Tk
so that the conditions of the Main Theorem are satisfied. We note that the
GENOPP/GENEQ gates have no inputs and can be placed at the left of the
circuit so that each one generates a consecutive sequence of bits (e.g. for 3-bases
the second such gate could generate x7,xg, -+, x12.) O

Next we observe that existing results in quantum computation are sufficient
to provide the following universal operations set for BQP.

Proposition 20. The set { GENO1, UNIV*, SWAP*} over the complex numbers
is a universal operations set for BQP. If GENO1 is replaced by GENO+1 then
it is a UOS for #P. We note that UNIV is a broad class. For example, it has
been shown that any entangling 2-bit transformation in conjunction with all 1-
bit transformations is in UNIV [BD+402, BB02]. A transformation is entangling
if it maps some tensor product of two one-bit vectors to something that cannot
be expressed as a tensor product of two one-bit vectors.
We can also formulate a question that corresponds to P=7NC2.

14 L.G. Valiant

Proposition 21. The sets {GEN01, FANOUT, BOOL, SWAP*} and { GENO1,
FANOUT* BOOL*} over any field are universal operations sets for P. If GENO1
is replaced by GENO+1 then over fields of characteristic zero they are UOS’s for
#P, and over characteristic two, for &P.

7 Interpretation

As described in the introduction, we can regard deterministic computation as the
composition of four components: Boolean operations, some form of fanout, swap,
and constant inputs. Nondeterministic computation is the composition of these
with the components of nondeterministic constant generation, and exponential
summation. In conventional models of computation the first four components
are trivial, and the last two appear to be problematic.

In our formulation each of the four components is achievable separately in
some basis, and also in many combinations together. Proposition 19 identifies the
three components MON, GENOPP, and SWAP as being sufficient for universal-
ity over #P. Our results show that common bases exist for some interesting pairs
of operations. The basis {(1,1),(2,0)} is common to AND and GENOPP, the 2-
rail basis{(1,0,0,0),(0,0,0,1)} is common to BOOL and SWAP, and the standard
basis {(1,0),(0,1)} over GF[2] is common to SWAP and GENOPP. Also, Propo-
sitions 20 and 21 give some distinct decompositions in terms of UNIV, and in
terms of BOOL and FANOUT, respectively. Numerous further such decomposi-
tions can be described.

Our approach therefore gives a new methodology for searching for exotic
algorithms for problems that are currently believed to be intractable. It is pos-
sible that such searches will fail but in that case there is some hope that our
model will serve as a useful “restricted” model of computation for which lower
bounds can be proved. If one fixes a field and the appropriate parameters then
the question of whether any of the set intersections considered is nonempty, is
equivalent to determining whether a fixed set of polynomial equations has a
common solution. Small instances of such problems can be solved mechanically
by computer algebra systems. We have shown that there is considerable richness
in the properties of nonstandard bases for some fundamental computational op-
erations, and therefore expect that exploring these further will be of interest
whatever the ultimate outcome.

References

[BBC+95] A. Barenco, et al., Elementary gates for quantum computation, Phys. Rev.
A52 (1995) 3457.

[BD97] R. Bubley and M. Dyer, Graph orientations with no sink and an approx-
imation for a hard case of #SAT, In Proceedings of the FEighth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 248-257, New Or-
leans, Louisiana a, 5-7 January 1997

[BD+02]

[BR92]

[BBO2]

[CNO1]
[EWD+01]
[GMY4]
[GPSO01]

[HS90]

[L97]
[MOO]

[P95]
[V02a]

[VO2b]
[V04]

[VO05]

Holographic Circuits 15

M.J. Bremmer, C.M. Dawson, J.L.. Dodd, A. Gilchrist, A.W. Harrow, D.
Mortimer, M.A. Nielsen, and T.J. Osborne, A Practical scheme for quan-
tum computation with any two-qubit entangling gate, Phys. Rev. Lett.,
89, 247902 (2002).

R.A. Brualdi and H.J. Ryser, Combinatorial Matrix Theory, Cambridge
University Press, Cambridge, 1991.

J.L. Brylinski and R. Brylinski, Universal quantum gates, in Mathemat-
ics of Quantum Computation, Chapman & Hall/CRC Press,Boca Raton,
Florida, 2002 (edited by R. Brylinski and G. Chen).

M. A. Chuang and I. L. Nielsen, Quantum Computation and Quantum
Information. Cambridge University Press, 2001.

P. Echternach, et al. Universal quantum gates for single Cooper pair
box bases quantum computing, Quantum Information and Computation,
(2001) 143-150. (Also quant-ph/0112025.)

G. Gallbiati and F. Malftioli, Discrete Applied Math. v51 (1994) 269-275.
G.-M. Greuel, G. Pfister, and H. Schonemann, Singular 2.0: A Computer
Algebra System for Polynomial Computations. Centre for Computer Al-
gebra, University of Kaiserslautern, (2001).

H.B. Hunt III and R.E. Stearns. The complexity of very simple boolean
formulas with applications. STAM J. Comput. 19:1 (1990) 44-70.

P.D. Lax, Linear Algebra, Wiley, New York, 1997.

K. Murota, Matrices and Matroids for Systems Analysis, Springer-Verlag,
Berlin, 2000.

C.H. Papadimitriou. Computational Complerity, Addison Wesley, 1995.
L. G. Valiant, Quantum circuits that can be simulated classically in poly-
nomial time. SIAM J. on Computing, 31:4 (2002) 1229-1254.

L. G. Valiant. Expressiveness of matchgates, Theoretical Computer Sci-
ence, 289:1(2002) 457-471.

L.G. Valiant. Holographic algorithms, Proc. 45th Annual IEEE Symp. on
Foundations of Computer Science (2004) IEEE Press, 306-315.

L.G. Valiant, Completeness for parity problems, manuscript, 2005.

Probabilistic Polynomial-Time Semantics for a
Protocol Security Logic*

Anupam Datta!, Ante Derek!, John C. Mitchell!,
Vitaly Shmatikov?, and Mathieu Turuani®

! Dept. Computer Science, Stanford University, Stanford, CA
2 Dept. Computer Science, University of Texas, Austin, TX
3 LORIA-INRIA Nancy, France

Abstract. We describe a cryptographically sound formal logic for prov-
ing protocol security properties without explicitly reasoning about prob-
ability, asymptotic complexity, or the actions of a malicious attacker.
The approach rests on a new probabilistic, polynomial-time semantics
for an existing protocol security logic, replacing an earlier semantics that
uses nondeterministic symbolic evaluation. While the basic form of the
protocol logic remains unchanged from previous work, there are some in-
teresting technical problems involving the difference between efficiently
recognizing and efficiently producing a value, and involving a reinterpre-
tation of standard logical connectives that seems necessary to support
certain forms of reasoning.

1 Introduction

Security analysis of network protocols is a successful scientific area with two im-
portant but historically independent foundations, one based on logic and sym-
bolic computation, and one based on computational complexity theory. The sym-
bolic approach, which uses a highly idealized representation of cryptographic
primitives, has been a successful basis for formal logics and automated tools.
Conversely, the computational approach yields more insight into the strength
and vulnerabilities of protocols, but it is more difficult to apply and it involves
explicit reasoning about probability and computational complexity. The pur-
pose of this paper is to suggest that formal reasoning, based on an abstract
treatment of cryptographic primitives, can be used to reason about probabilistic
polynomial-time protocols in the face of probabilistic polynomial-time attacks.

* This work was partially supported by NSF CyberTrust Grant 0430594, Collabora-
tive research: High-fidelity methods for security protocols, by the DoD University
Research Initiative (URI) program administered by the Office of Naval Research
under Grant N00014-01-1-0795, by OSD/ONR CIP/SW URI through ONR Grant
N00014-04-1-0725, by NSF CCR~0121403, Computational Logic Tools for Research
and Education, and by the NSF Cybertrust grant to the PORTIA project. M. Tu-
ruani’s activities at Stanford were also funded by a postdoctoral grant from INRIA.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 16-29, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Probabilistic Polynomial-Time Semantics for a Protocol Security Logic 17

We do this by proposing a new semantics for a variant of an existing logic. The
new semantics brings forward some interesting distinctions that were not avail-
able in the coarser symbolic model, and also raises some apparently fundamental
issues about the inherent logic of asymptotic probabilistic properties.

The Protocol Composition Logic [2,7,8,10] uses a modal operator similar
to Floyd-Hoare logic. Intuitively, the formula v [P]x ¢ means that if ¢ is true
at some point in the execution of a protocol (in the presence of a malicious
attacker), then ¢ will be true after agent X performs the sequence P of actions.
The pre- and post-conditions may describe actions taken by various principals
and characterize the information that is available to or hidden from them. The
semantics we explore in this paper recasts the methods of [15] in a logical setting,
and reflects accepted modelling approaches used in the field of cryptography,
particularly [5,17].

Our central organizing idea is to interpret formulas as operators on proba-
bility distributions on traces. Informally, representing a probability distribution
by a set of equi-probable traces (each tagged by the random sequence used to
produce it), the meaning of a formula ¢ on a set T of traces is the subset T/ C T
in which ¢ holds. This interpretation yields a probability: the probability that ¢
holds is the ratio |T”|/|T|. Conjunction and disjunction are simply intersection
and union. There are several possible interpretations for implication, and it is
not clear at this point which will prove most fruitful in the long run. In the
present paper, we interpret ¢ = 1 as the union of —¢ and the composition
of ¢ with ¢; the latter is also the conditional probability of ¢ given ¢. This
interpretation supports a soundness proof for a sizable fragment of the protocol
logic, and resembles the probabilistic interpretation of implication in [16]. Since
the logic does not mention probability explicitly, we consider a formula “true”
if it holds with asymptotically overwhelming probability.

In previous work [2,7,8,10] over a symbolic semantic model, the atomic for-
mula Has(X,m) means that m is in the set of values “derivable,” by a simple
fixed algorithm, from information visible to X . The simple fixed algorithm is cen-
tral to what is called the Dolev-Yao model, after [9] and much subsequent work
by others. In replacing the symbolic semantics with a computational semantics
based on probabilistic polynomial time, we replace the predicate Has with two
predicates, Possess and Indist. Intuitively, Possess(X,m) means that there is an
algorithm that computes the value of m with high probability from information
available to X, while Indist(X,m) means that X cannot feasibly distinguish m
from a random value chosen according to the same distribution. However, certain
technical problems discussed in Section 7 lead us to work with slightly simplified
semantics of these predicates that capture our intuition most strongly when the
possessing principal is assumed honest (in the sense of following the protocol)
and the predicate Indist only appears with positive polarity. Fortunately, these
syntactic conditions are met in many formulas expressing authentication and
secrecy properties.

Several groups of researchers have either formulated connections between
symbolic logic and feasible probabilistic computation, or developed relationships

18 A. Datta et al.

between symbolic and computational models. In particular, Abadi and Rogaway
[1] propose a logical characterization of indistinguishability by passive eavesdrop-
pers that has been studied by a number of others, and Kapron and Impagliazzo
suggest a formal logic for reasoning about probabilistic polynomial-time indis-
tinguishability [13]. Some semantic connections between symbolic and computa-
tional models have been developed by a team at IBM Zurich, e.g., [3], with other
connections explored in a series of related papers by Micciancio, Warinschi, and
collaborators [15, 18, 6]. Herzog [11, 12] shows that if a protocol attack exists in
a Dolev-Yao model, there is an attack in a computational model. More recent
related work also appears in [14, 6].

Section 2 presents the syntax for defining roles of a protocol, while the syntax
of the logic appears in Section 3. Some axioms and proof rules are described in
Section 4, followed by a short proof example in Section 5. Section 6 presents the
probabilistic polynomial-time execution and attacker model. The semantics of
the logic are given in Section 7, and concluding remarks in Section 8.

2 Protocol Syntax

We use a simple “protocol programming language” based on [10, 7, 8] to represent
a protocol by a set of roles, such as “Initiator”, “Responder” or “Server”, each
specifying a sequence of actions to be executed by a honest participant. The
syntax of terms and actions is given in Table 1.

Names, sessions and threads: We use X ,)A/, ... as names for protocol partic-
ipants. Since a particular participant might be involved in more than one session
at a time, we will give unique names to sessions and use (X s) to designate a
particular thread being executed by X. All threads of a participant X share
the same asymmetric key denoted by X. As a notational convenience, we will
sometimes write X for an arbitrary thread of X.

Terms, actions, and action lists: Terms name messages and their parts, such
as nonces, keys, variables and pairs. For technical reasons, we distinguish basic
terms from terms that may contain encryption. To account for probabilistic en-
cryption, encrypted terms explicitly identify the randomness used for encryption.

Table 1. Syntax of protocol terms and actions

Terms: Actions:

N ==X (name) an=

K =X (key) | newT,n

S =3 (session) | Vi=encT,t,K
n u=r (nonce) | V:i=decT,t,K
T == (N,S) (thread) | match T,¢/t
Vi=z (term variable) | send Tt

tg =V |K|T|N|n|(ts,ts) (basic term) | receive T,V

t u=tpl| {t}% |0 (term)

Probabilistic Polynomial-Time Semantics for a Protocol Security Logic 19

Specifically, {t}} indicates the encryption of ¢ with key K using randomness n
generated for the purpose of encryption. We write m C m’ when m is a subterm
of m’' € t.

Actions include nonce generation, encryption, decryption, pattern match-
ing, and communication steps (sending and receiving). An ActionList consists
of a sequence of actions that contain only basic terms. This means that en-
cryption cannot be performed implicitly; explicit enc actions, written as assign-
ment, must be used instead. We assume that each variable will be assigned
at most once, at its first occurrence. For any s € ActionList, we write s x
to denote the subsequence of s containing only actions of a participant (or a
thread) X.

Strands, roles, protocols and execution: A strand is an ActionList, con-
taining actions of only one thread. Typically we will use notation [ActionList] ¢
to denote a strand executed by thread X and drop the thread identifier from the
actions themselves. A role is a strand together with a basic term representing
the initial knowledge of the thread. A protocol is a finite set of Roles, together
with a basic term representing the initial intruder knowledge.

An ezecution strand is a pair EzecStrand ::= InitialState(T); ActionList
where 7 is a data structure representing the initial state of the protocol, as
produced by the initialization phase from Section 6. In particular, this includes
the list of agents and threads, the public/private keys and honesty/dishonesty
tokens of each agent, and the roles played by each thread.

3 Logic Syntax

The syntax of formulas is given in Table 2. Protocol proofs will usually use modal
formulas of the form ¥[P] ¢, as explained intuitively in the introduction of
the paper. Most formulas have the same intuitive meaning in the computational
semantics as in the symbolic model [7, 8], except for predicates Possess and Indist.
We summarize the meaning of formulas informally below, with precise semantics
in the next section.

Action Predicates:
a = Send(T,t) | Receive(T,t) | New(T, n)

Formulas:

¢ = a|t =t|Start(T) | Possess(T’, t) | Indist(T, t) | Fresh(T', t) | Honest(V) |
Start(7") | Contains(t, t) | ContainsOut(t, ¢, t) | DecryptsHonest(T', ¢) |
Source(T, t, t) | N ple V o|TVar.o|VWar.o|-o|le D ¢le = ¢

Modal formulas:
U = @ [Strand], ¢

Table 2. Syntax of the logic

20 A. Datta et al.

For every protocol action, there is a corresponding action predicate which
asserts that the action has occurred in the run. For example, Send(X,t) holds
in a run where the thread X has sent the term ¢. Fresh(X,¢) means that the
value of ¢ generated by X is “fresh” in the sense that no one else has seen any
messages containing t, while Honest(X) means that X is acting honestly, i.e.,
the actions of every thread of X precisely follows some role of the protocol. The
Source predicate is used to reason about the source of a piece of information,
such as a nonce. Intuitively, the formula Source(Y , u, {m}’y) means that the only
way for a thread X different from Y to know w is to learn u from the term {m},
possibly by some indirect path.

The predicate Fresh is definable by Fresh(X,v) = New(X,v) A —(Ju.
Send(X, u) A Contains(u,v)) and classical implication is definable by A D B =
-AV B.

In the symbolic model [7,8],the predicate Has states that a principal can
“derive” a message or its contents from the information gathered during protocol
execution. We use Possess(f(,t) to state that it is possible to derive ¢ by Dolev-
Yao rules from X’s view of the run and Indist(X, ¢) to state that no probabilistic
polynomial-time algorithm, given X’s view of the run, can distinguish ¢ from a
random value from the same distribution. Typically, we use Possess to say that
some honest party obtained some secret, and Indist to say that the attacker does
not have any partial information about a secret.

4 Proof System

The proof system used in this paper is based on the proof system developed
in [7,8,2]. Some example axioms and rules are given in Table 3; the full presen-
tation is deferred to the extended version of this paper. These axioms express
reasoning principles that can be justified using complexity-theoretic reductions,
information-theoretic arguments, and asymptotic calculations. However, the ad-
vantage of the proof system is that its justification using cryptographic-style
arguments is a one-time mathematical effort; protocol proofs can be carried out
symbolically using the proof system without explicitly reasoning about prob-
ability and complexity. Another advantage of the axiomatic approach is that
different axioms and rules rest on different cryptographic assumptions. There-
fore, by examining the axioms and rules used in a specific proof, we can identify
specific properties of the cryptographic primitives that are needed to guarantee
protocol correctness. This provides useful information in protocol design because
primitives that provide weaker properties often have more efficient constructions.

Axioms: Axioms AN2 and AN3 capture some of the properties of nonce gen-
eration. Informally, AN2 states that if a thread X generates a fresh nonce
and does not perform any additional actions, then z is indistinguishable from a
random value for all other threads. The soundness of this axiom is established by
a simple information-theoretic argument. The informal interpretation of axiom
S1 (also called the “Source” axiom) is that, unless a ciphertext is decrypted,
a thread which does not possess the decryption key cannot extract any par-

Probabilistic Polynomial-Time Semantics for a Protocol Security Logic 21

Axioms:
AN2 : T[new 7|3 Y # X = Indist(Y, z)
ANS3 : T[new x|z Fresh(X,z)
S1 : Source(Y, u, {m}) A ~DecryptsHonest(X, {m} VA Z # X ANZ #Y A
Honest(X) A Honest(Y) = Indist(Z, u)

Proof rules:

0[Plxp 020 ¢2¢' g OlPixp oPlxv gpq

0'[P]x¢’ 0[P Pa]x 1
¢ o= MP V‘L GEN
2 .

Table 3. Fragment of the proof system

tial information about the plaintext. The soundness of this axiom is proved by
a complexity-theoretic reduction. Specifically, we show that if an attacker can
break this property, then there is another attacker that can break the underlying
IND-CCA2 secure encryption scheme [4].

Inference rules: Inference rules include generic rules from modal logics (e.g.
G3), sequencing rule SEQ used for reasoning about sequential composition of
protocol actions and a rule (called the honesty rule) for proving protocol invari-
ants using induction. These rules are analogous to proof rules from our earlier
work [7,8].

First-order axioms and rules: We use two implications: a conditional impli-
cation =, discussed and defined precisely in section 7, and a classical implication
D with A D B = -AV B. While standard classical tautologies hold for classical
implication, some familiar propositional or first-order tautologies may not hold
when written using = instead of D. However, modus ponens and the gener-
alization rule above are sound. The soundness of modus ponens relies on the
simple asymptotic fact that the sum of two negligible functions is a negligible
function. In future work, we hope to develop a more complete proof system for
the first-order fragment of this logic.

5 Example
In this section, we present a simple protocol and state a secrecy property that can
be proved using the proof system. The interested reader is referred to [10,7, 8]

for further explanation and examples. The two protocol roles are:

Init = [new z; y := enc(z, X),Y; send X,Y,y])z
Resp = [receive z; match z/(X,Y,z’); 2" =dec 2, Y]y

22 A. Datta et al.

The initiator generates a new nonce and sends it encrypted to the responder.
The responder receives the message and recovers the nonce by decrypting the
ciphertext. We can prove that if X completes the protocol with Y, then x will
be a shared secret between them, provided both agents are honest. Formally,

Start(X)[Init] ; Honest(X) A Honest(Y) A (Z # X)A(Z #Y) = Indist(Z, z)

Since the meaning of Indist(Z, z) (formally defined in Section 7) is that Z can-
not distinguish the secret nonce z from a randomly chosen nonce, this formula
expresses a standard form of secrecy used in the cryptographic literature.

The axiomatic proof uses AN2, a variant of S1, and modus ponens MP.
The proof idea is that at the point the initiator produces the nonce z, by AN2,
it is indistinguishable from random to everyone else other than X and Y. It
continues to remain indistinguishable since it appears on the network under
encryption with a public key whose corresponding private key is not available to
the attacker. This part of the reasoning is codified by an axiom that is similar to
S1 and relies on the fact that the encryption scheme used is IND-CCA2 secure.
Modus ponens is used in the general first-order reasoning involved in the proof.

6 Protocol Execution

Given a protocol, adversary, and value of the security parameter, we define a
set of protocol traces, each associated with the random bits that produce this
sequence of actions and additional randomness for algorithms used in the se-
mantics of formulas about the run. The definition proceeds in two phases. In the
initialization phase, we assign a set of roles to each principal, identify a subset
which is honest, and provide all entities with private-public key pairs and random
bits. In the execution phase, the adversary executes the protocol by interacting
with honest principals, as in the accepted cryptographic model of [5].

Initialization: We fix the protocol @), adversary A, security parameter n, and
some randomness R of size polynomially bounded in 7. Each principal and each
thread (i.e., an instance of a protocol role executed by the principal) is assigned
a unique bitstring identifier. We choose a sufficiently large polynomial number
of bitstrings ¢ € I C {0,1}" to represent the names of principals and threads.
Randomness R is split into r; for each honest i € I (referred to as “coin tosses
of honest party i”) and R4 (referred to as “adversarial randomness”).

The adversary designates some of the principals as honest and the rest of the
principals as dishonest. Intuitively, honest principles will follow one or more roles
of the protocol faithfully. The adversary chooses a set of threads, and to each
thread it assigns a strand (a program to be executed by that thread), under the
restriction that all threads of honest principals are assigned roles of protocol Q.

The key generation algorithm /C of a public-key encryption scheme (K, &, D)
is run on 17 for each participant a using randomness r,, and producing a public-
private key pair (pk,, skq). The public key pk, is given to all participants and to
the adversary A; the private key is given to all threads belonging to this principal
and to the adversary if the principal is dishonest.

Probabilistic Polynomial-Time Semantics for a Protocol Security Logic 23

Generating Computational Traces: Following [5], we view an agent i trying
to communicate with agent j in protocol session s as a (stateful) oracle 117 ;. The
state of each oracle is defined by a mapping A from atomic symbols to bltstrmgs
(with variables and nonces renamed to be unique for each role) and a counter c.
Each oracle proceeds to execute a step of the protocol as defined by actions in
the corresponding role’s action list, when activated by the adversary.

We omit the details of communication between the adversary and the oracles,
and focus on computational interpretation of symbolic protocol actions. Let a.
be the current action in the ActionList defining some role of participant i in
session s, i.e., Thread = (i, s") where i = \(i'),s = A\(s').

If a. = (new (¢/,s),v), then update A\ so that A\(v) = NonceGen(R;),
where NonceGen is a nonce generation function(e.g., NonceGen simply ex-
tracts a fresh piece of R;). If a. = (v := enc (¢/,¢),j,u), then update A so
that A(v) = £(A(u), pk;, R;) where £(A(u), pk;, R;) is the result of executing the
public-key encryption algorithm on plaintext A(u) with public key pk; and fresh
randomness extracted from R;. For brevity, we omit computational interpreta-
tion of decryption and matching (pairing, unpairing, and equality-test) actions.
Sending a variable send (i, s’),v is executed by sending A(v) to the adversary,
and receiving receive (i’,s'),v is executed by updating A so that A(v) = m
where m is the bitstring sent by the adversary.

At any time during the protocol execution, the adversary A may record any
internal, private message on a special knowledge tape. This tape is not read by
any participant of the protocol. However, its content will be made available to the
test algorithms used to decide if a given security formula containing Indist(...)
is valid or not. Let K be [(i1,m1), .., (in, my,)] the list of messages my, written by
A on the knowledge tape, indexed by the number of actions i, already executed
when my, was written (position in the protocol execution). This index will be
useful to remember a previous state of the knowledge tape.

At the end of the protocol execution, the adversary A outputs a pair of
integers (p1,p2) on an output tape. When the security formula is a modal formula
O[P]xp, these two integers represent two positions in the protocol execution
where the adversary claims that the formula is violated, i.e. that 6 is true in p;
but ¢ is false in po, with P between p; and ps. Let O be this pair (p1,ps) of
integers written on the output tape.

The symbolic trace of the protocol is the execution strand e € ExecStrand
which lists, in the order of execution, all honest participant actions and the
dishonest participant’s send and receive actions. This strand contains two
parts: InitialState(Z) stores the initialization data, and the rest is an ordered
list of all exchanged messages and honest participants’ internal actions.

Definition 1. (Computational Traces) Given a protocol Q, an adversary A,
a security parameter n, and a sequence of random bits R € {0,1}p(’7) used
by the honest principals and the adversary, a run of the protocol is the tuple
(e,)\, 0, K, R) where e is the symbolic execution strand, X : Term(e) — {0, 1}7(M
maps the symbolic terms in e to bitstrings, O is the pair of integers written on

24 A. Datta et al.

the output tape, and K is the indexed list of messages written on the knowledge
tape. Finally, p(x) is a polynomial in x.

A computational trace is a run with two additional elements: Ry € {0, 1}P(")
a sequence of random bits used for testing indistinguishability, and o : FVar(p) —
{0, 1}1’(7’), a substitution that maps free variables in a formula to bitstrings. The
set of computational traces is

To(A,n) ={(e,\,O,K,R,Rr,0) | R, Ry chosen uniformly}.

Definition 2. (Participant’s View) Given a protocol Q, an adversary A, a se-
curity parameter n, a participant X and a trace t = (e,\,O,K,R,Ry,0) €
To(A,n), View;(X) represents X's view of the trace. It is defined precisely as
follows:

IfX' is honest, then View;(~) is the initial knowledge ofX a representation
of ¢ ¢ and A(z) for any variable x in ex- If X is dishonest, then View,(X)

is the union of the knowledge of all dishonest participants X' after the trace t
(where View,(X') is defined as above for honest participants) plus K, the mes-
sages written on the knowledge tape by the adversary.

The following three definitions are used in the semantics of the predicate
Indist(). Informally, based on some trace knowledge K, the distinguisher D tries
to determine which of two bitstrings is the value of a symbolic term. One of the
bitstrings will be the computational value of the term in the current run, while
the other will be a random bitstring of the same structure, chosen in a specific
way. The order of the two bitstrings presented to the distinguisher is determined
by an LR Oracle using a random selector bit.

Definition 3. (LR Oracle) The LR Oracle [4] is used to determine the order
in which two bitstrings are presented depending on the value of the selector bit,
i.e. LR(s0,51,b) = (Sp, S1-)-

Definition 4. (Distinguishing test input) Let u be a symbolic term and o be a
substitution that maps variables of u to bitstrings. We construct another bitstring
flu,o,7), whose symbolic representation is the same as uw. Here, r is a sequence
of bits chosen uniformly at random. The function f is defined by induction over
the structure of the term u.

— Nonceu : f(u,o,1) =7

Name/Key u : f(u,0,r) = o(u)

— Pair u = (ug,ug) : f({ur,us2),0,7r1;72) =
Encryption u = {v}5: f({v}y,o,r1;72)

ui, o, 7”1) f(U2707 7”2)>

(f(
=E&(f(v,0,71),0(K),12)

Definition 5. (Distinguisher) A distinguisher D is a polynomial time algorithm
which takes as input a tuple (K, t, (so, s1), R,n), consisting of knowledge K, sym-
bolic term t, two bitstrings so and s1, randomness R and the security parameter
n, and outputs a bit V.

Probabilistic Polynomial-Time Semantics for a Protocol Security Logic 25

The next definition is used while defining semantics of modal formulas. Given
a set T of traces and a strand P of actions executed by a thread X, the set Tp
includes only those traces from T which contain P. Pre(Tp) is obtained from Tp
by taking the initial segment of each trace upto the point where P starts. The
precondition of a modal formula is evaluated over this set. Post(Tp) is similarly
defined; the only difference is now the trace is cut at the point that P ends. The
postcondition of a modal formula is evaluated over this set. The begin and end
positions are determined by the component O in the trace.

Definition 6. (Splitting computational traces) Let T be a set of computational
traces and t = (e,\,O,K,R,Rp,0) € T. O = (p1,p2), e = InitialState(I); s,
and s = S1;82;83 with p1, pa the start and end positions of so in s. Given a
strand P executed by participant X, we denote by Tp the set of traces in T for
which there exists a substitution o’ which extends o to variables in P such that
0'(P) = sy 5). The complement of this set is denoted by T-p and contains all
traces which do not have any occurrence of the strand P. We define the set of
traces Pre(Tp) = {t[s <« s1,K «— K<p,,0 < o'] | t € Tp}, where K<, is the
restriction of the knowledge tape K to messages written before the position p. We
define the set of traces Post(Tp) = {t[s « s1; 82, K «— K<;,,0 < d'] |t € Tp}.

7 Computational Semantics

The semantics of a formula ¢ on a set T of computational traces is a subset 7" C
T that respects ¢ in some specific way. For many predicates and connectives, the
semantics is essentially straightforward. For example, an action predicate such
as Send selects a set of traces in which a send occurs. However, the semantics of
predicates Indist and Possess is inherently more complex.

Intuitively, an agent possesses the value of an expression (such as another
agent’s nonce or key) if the agent can compute this value from information it
has seen, with high probability. If an agent is honest, and therefore follows the
rules of the protocol, then it suffices to use a simple, symbolic algorithm for
computing values from information seen in the run of a protocol. For dishonest
agents, we would prefer in principle to allow any probabilistic polynomial-time
algorithm. However, quantifying over such algorithms, in a way that respects
the difference between positive and negative occurrences of the predicate in a
formula, appears to introduce some technical complications. Therefore, in the
interest of outlining a relatively simple form of computational semantics, we
will use a fixed algorithm. This gives a useful semantics for formulas where
Possess()z' ,u) is used under the hypothesis that X is honest. We leave adequate
treatment of the general case for future work.

Intuitively, an agent has partial information about the value of some expres-
sion if the agent can distinguish that value, when presented, from a random value
generated according to the same distribution. More specifically, an agent has par-
tial information about a nonce u if, when presented with two bitstrings of the
appropriate length, one the value of u and the other chosen randomly, the agent

26 A. Datta et al.

has a good chance of telling which is which. As with Possess, there are technical
issues associated with positive and negative occurrences of the predicate. For
positive occurrences of Indist, we should say that no probabilistic polynomial-
time algorithm has more than a negligible chance, where as for —Indist(...) we
want to say that there exists a probabilistic polynomial-time distinguisher. In
order to present a reasonably understandable semantics, and establish a useful
basis for further exploration of computational semantics of symbolic security
logics, we give an interpretation that appears accurate for formulas that have
only positive occurrences of Indist and could be somewhat anomalous for formu-
las that contain negative occurrences. This seems adequate for reasoning about
many secrecy properties, since these are expressed by saying that at the end of
any run of the protocol, a value used in the run is indistinguishable from random.

Conditional implication # = ¢ is interpreted using the negation of 6 and
the conditional probability of ¢ given . This non-classical interpretation of
implication seems to be essential for relating provable formulas to cryptographic-
style reductions involving conditional probabilities. In particular, the soundness
proof for the “source” axiom S1, not proved in this conference paper, uses the
conditional aspect of this implication in a fundamental way. On the other hand,
= coincides with D in formulas where Indist does not appear on the right hand
size of the implication.

We inductively define the semantics [¢] (T, D, €) of a formula ¢ on the set
T of traces, with distinguisher D and tolerance e. The distinguisher and toler-
ance are not used in any of the clauses except for Indist, where they are used to
determine whether the distinguisher has more than a negligible chance of distin-
guishing the given value from a random value. In definition 7 below, the tolerance
is set to a negligible function of the security parameter and T = Tg(A,n) is the
set of traces of a protocol @) with adversary A.

— ‘[Send(f(, u)] (T, D, ¢) is the collection of all (e, \,O, K, R, Rr,o0) € T such

that some action in the symbolic execution strand e has the form send Y, v

with A(Y) = o(X) and A(v) = o(u). Recall that o maps formula variables to

bitstrings and represents the environment in which the formula is evaluated.
— [a(-,)] (T, D,e) for other action predicates a is similar to Send(X, u).

— ‘[Honest(X) ” (T, D, €) is the collection of all (e, \, O, K, R, Ry,o) € T where
e = InitialState(T); s and o(X) is designated honest in the initial config-
uration Z. Since we are only dealing with static corruptions in this paper,
the resulting set is either the whole set T" or the empty set ¢ depending on
whether a principal is honest or not.

- ‘[Start(f() ” (T, D, ¢) includes all traces (e, \,O, K, R, Ry,o0) € T where e =

InitialState(Z); s and A(s),(x, = €. Intuitively, this set contains traces in

which X has executed no actions.

— [Contains(u,v) | (T, D, €) includes all traces (e, A\, O, K, R, Ry,0) € T such
that there exists a series of decryptions with {\(k) | k € Key} and projections
(m1,m2) constructing o(v) from o(u). This definition guarantees that the
result is the whole set T if v is a symbolic subterm of u.

Probabilistic Polynomial-Time Semantics for a Protocol Security Logic 27

— | ContainsOut(u, v, t)] (T, D, €) includes all traces (e, \,O, K, R, Ry,0) € T
such that there exists a series of projections (my,m2) and decryptions with
{\(k) |k € Key}, where o(t) is never decomposed, creating o(v) from o(u).
This definition ensures that the result is the whole set T' if v is a symbolic
subterm of u but is not a subterm of ¢.

—[0A@](T,D,e) = [0](T,D,e) N [¢] (T, D, 6

—[0Ve] (T,D,e) = [0](T,D,e) U [¢] (T,D,e)

— [~ (I,D.0) = T\ [¢] (T, D.c) .

— [3z. 0] (T, D,e) = Ug(le]l (T[x <], D, €)[z — o(x)])
with Tz «— 0] = {tlo[z — B]] | t = (¢, \,O,K,R,Ry,0) € T}, and 8 any
bitstring of polynomial size.

—[0=] (T,D,e) = [6] (T, D,e)Ul[¢] (T, D,e), where T’ = [0] (T, D,e).
Note that the semantics of ¢ is taken over the set T given by the semantics
of , as discussed earlier in this section.

— [u=v](T,D,e¢) includes all traces (e,\,O,K,R,Rp,0) € T such that
o(u) =o(v).

— ‘[DecryptsHonest (Y, {u}%) ” (T, D,e) = [¢] (T, D,€) with ¢ = Honest(X) A
Jv.v:=dec Y, {u}y.

= ‘[SOL.rce(f/, u, {m};)” (T,D,¢) = [Fv¥w.] (T,D,e) with :

¢ = New(Y,u) A Contains(m, u)
A Contains(v, {m}’y) A Send(Y,v)
ﬂContalnsOut(v u, {m}%)
A (v # w A Contains(w, u)) = —Send(Y, w)

— ‘[Possess()z, u)” (T, D, e) includes all traces t = (e, \,O,K,R,Rp,0) € T

such that o(u) can be built from View, (o (X)) with the Dolev-Yao deduction
rules.

_ ‘[Indist(f(, u)” (T,e, D) =T if

{D(View,(o(X)),u, LR(c(u), f(u,0,7),b), Rp,n) =b |t € T} 1 te
T

[\)

and the empty set ¢ otherwise. Here, the random sequence b;r; Rp = Rr,
the testing randomness for the trace ¢.

— [0[PI3] (T, D,e) = T-p U [-0] (Pre(Tp), D) U [¢] (Post(Tp), D, ¢)
with T_p, Pre(Tp), and Post(Tp) as given by Definition 6.

Definition 7. A protocol Q satisfies a formula @, written Q |= ¢, if VA provid-
ing an active protocol adversary, YD providing a probabilistic-polynomial-time
distinguisher, Yv giving a negligible function, AN, Vn > N,

el (T, D,vm) |/ [T = 1=v(n)

28 A. Datta et al.

where [¢] (T, D,v(n)) is the subset of T given by the semantics of ¢ and T =
Tq(A,n) is the set of computational traces of protocol Q generated using adver-
sary A and security parameter n, according to Definition 1.

Theorem 1. (Soundness) VQ, Vo, QFp = QE¢

8 Conclusion and Future Work

We propose a computational semantics for a variant of the Protocol Composi-
tion Logic presented in [2,7,8,10]. The associated soundness theorem implies
that it is possible to reason symbolically, and at a high level, about probabilistic
polynomial-time security properties. Although omitted from this conference pa-
per, the soundness proof uses a combination of information-theoretic arguments,
calculations about negligible functions, and cryptographic-style reductions in-
volving encryption. While the semantics given here has some imperfections, such
as an interpretation of indistinguishability that only seems appropriate for for-
mulas where Indist appears with positive polarity, the general approach seems
promising. We look forward to future efforts to lift certain restrictions on the
logic, explore the semantics and axiomatization of logical connectives over proba-
bilistic polynomial-time interpretations, and extend the approach suggested here
to additional cryptographic primitives, such as signatures and hash functions.
One interesting research direction might be to develop a version of this seman-
tics based on information-theoretic security, since that may provide some useful
insight into problems we encountered in developing the semantics.

Acknowledgments: Thanks to Bogdan Warinschi, Andre Scedrov, and Dan
Boneh for many insightful comments and suggestions.

References

1. M. Abadi and P. Rogaway. Reconciling two views of cryptography (the compu-
tational soundness of formal encryption). Journal of Cryptology, 15(2):103-127,
2002.

2. M. Backes, A. Datta, A. Derek, J. C. Mitchell, and M. Turuani. Compositional
analysis of contract signing protocols. In Proceedings of 18th IEEE Computer
Security Foundations Workshop. IEEE, 2005. To appear.

3. M. Backes, B. Pfitzmann, and M. Waidner. A universally composable crypto-
graphic library. Cryptology ePrint Archive, Report 2003/015, 2003.

4. M. Bellare, A. Boldyreva, and S. Micali. Public-key encryption in a multi-user
setting: Security proofs and improvements. In Advances in Cryptology - EURO-
CRYPT 2000, Proceedings, pages 259-274, 2000.

5. M. Bellare and P. Rogaway. Entity authentication and key distribution. In Pro-
ceedings of the 13th Annual International Cryptology Conference on Advances in
Cryptology (CRYPTO 793), pages 232-249. Springer-Verlag, 1994.

6. V. Cortier and B. Warinschi. Computationally sound, automated proofs for se-
curity protocols. In Proceedings of 14th European Symposium on Programming
(ESOP’05), Lecture Notes in Computer Science, pages 157-171. Springer-Verlag,
2005.

10.

11.

12.

13.

14.

15.

16.
17.

18.

Probabilistic Polynomial-Time Semantics for a Protocol Security Logic 29

A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. A derivation system for secu-
rity protocols and its logical formalization. In Proceedings of 16th IEEE Computer
Security Foundations Workshop, pages 109-125. IEEE, 2003.

A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. A derivation system and
compositional logic for security protocols. Journal of Computer Security, 2005. To
appear.

D. Dolev and A. Yao. On the security of public-key protocols. IEEE Transactions
on Information Theory, 2(29):198-208, 1983.

N. Durgin, J. C. Mitchell, and D. Pavlovic. A compositional logic for proving
security properties of protocols. Journal of Computer Security, 11:677-721, 2003.
J. Herzog. The Diffie-Hellman key-agreement scheme in the strand-space model. In
Proceedings of 16th IEEE Computer Security Foundations Workshop, pages 234—
247, 2003.

J. Herzog. Computational Soundness for Standard Assumptions of Formal Cryp-
tography. PhD thesis, MIT, 2004.

R. Impagliazzo and B. M. Kapron. Logics for reasoning about cryptographic con-
structions. In Proceedings of the 44th Annual IEEE Symposium on Foundations of
Computer Science (FOCS ’03), pages 372-383. IEEE, 2003.

R. Janvier, L. Mazare, and Y. Lakhnech. Completing the picture: Soundness of
formal encryption in the presence of active adversaries. In Proceedings of 14th
European Symposium on Programming (ESOP’05), Lecture Notes in Computer
Science, pages 172-185. Springer-Verlag, 2005.

D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence
of active adversaries. In Theory of Cryptography Conference - Proceedings of TCC
2004, volume 2951 of Lecture Notes in Computer Science, pages 133-151. Springer-
Verlag, 2004.

N. J. Nilsson. Probabilistic logic. Artificial Intelligence, 28(1):71-87, 1986.

V. Shoup. On formal models for secure key exchange (version 4). Technical Report
RZ 3120, IBM Research, 1999.

B. Warinschi. A computational analysis of the Needham-Schroeder(-Lowe) proto-
col. In Proceedings of 16th Computer Science Foundation Workshop, pages 248—
262. ACM Press, 2003.

A Gentle Introduction to Semantic Subtyping*

Giuseppe Castagna' and Alain Frisch?

LCNRS, Ecole Normale Supérieure de Paris, France
2INRIA, Rocquencourt, France

Abstract. Subtyping relations are usually defined either syntactically by a for-
mal system or semantically by an interpretation of types into an untyped denota-
tional model. This work shows how to define a subtyping relation semantically
in the presence of boolean connectives, functional types and dynamic dispatch
on types, without the complexity of denotational models, and how to derive a
complete subtyping algorithm. The presentation is voluntarily kept informal and
discursive and the technical details are reduced to a minimum since we rather
insist on the motivations, the intuition, and the guidelines to apply the approach.

1 Introduction

Many recent type systems rely on a subtyping relation. Its definition generally depends
on the type algebra, and on its intended use. We can distinguish two main approaches
for defining subtyping: the syntactic approach and the semantic one. The syntactic
approach—by far the more used—consists in defining the subtyping relation by ax-
iomatising it in a formal system (a set of inductive or coinductive rules); in the seman-
tic approach (for instance, [1,4]), instead, one starts with a model of the language and
an interpretation of types as subsets of the model, then defines the subtyping relation
as the inclusion of denoted sets, and, finally, when the relation is decidable, derives a
subtyping algorithm from the semantic definition.

The semantic approach has several advantages but it is also more constraining. Find-
ing an interpretation in which types can be interpreted as subsets of a model may be
a hard task. A solution to this problem was given by Haruo Hosoya and Benjamin
Pierce [9, 8,7] with the work on XDuce. The key idea is that in order to define the
subtyping relation semantically one does not need to start from a model of the whole
language: a model of the types suffices. In particular Hosoya and Pierce take as model
of types the set of values of the language. Their notion of model cannot capture func-
tional values. On the one hand, the resulting type system is poor since it lacks function
types. On the other hand, it manages to integrate union, product and recursive types and
still keep the presentation of the subtyping relation and of the whole type system quite
simple.

In [6, 5], together with Véronique Benzaken, we extended the work on XDuce and
reframed it in a more general setting: we show a technique to define semantic sub-

* Joint ICALP/PPDP 2005 keynote talk, short overview. The full article is included in the pro-
ceedings of PPDP *05 [3]

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 30-34, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

A Gentle Introduction to Semantic Subtyping 31

typing in the presence of a rich type system including function types, but also arbi-
trary boolean combinations (union, intersection, and negation types) and in the pres-
ence of lately bound overloaded functions and type-based pattern matching. The aim
of [6,5] was to provide a theoretical foundation on the top of which to build the lan-
guage CDuce [2], an XML-oriented transformation language. This motivation needed a
rather heavy technical development that concealed a side—but important—contribution
of the work, namely a generic and uniform technique (or rather, a cookbook of tech-
niques) to define semantic subtyping when straightforward set-theoretic interpretation
does not work, in particular for arrow types. Here we concentrate on this second as-
pect of the work: we get rid of many features (e.g. patterns and pattern matching,
full-fledged overloading, pattern variable type inference,...), skip many technical de-
tails, and focus on the basic intuition to gradually introduce our approach. This re-
sults in a presentation along which we explain the reader how to take her/his favourite
set of type constructors (e.g. arrows, but also records, lists, pointers, channels, etc.)
and add to it a complete set of boolean combinators: union, intersection and negation
types.

Our hope is that this work will provide the reader with enough intuition and a de-
tailed roadmap to decide whether it is possible/interesting to endow her/his favourite
language with a set-theoretically defined subtyping relation.

2 Overview of the Approach

Our objective is to define give a semantic definition of a subtyping relation by interpret-
ing types as sets and subtyping as set inclusion. We thus need to define a set-theoretic
model of types. This model is usually defined by starting from a model of the terms
of the object language. For a language with function types, we have to interpret the
duality of functions as terms and as functions on terms. This yields the need to solve
complicated recursive domain equations that hardly combines with a set-theoretic inter-
pretation of types, whence the introduction of restrictions in the definition of semantic
subtyping (e.g. no function types, no negation types, etc ...).

Note however that in order to define semantic subtyping all we need is a set-theoretic
model of types. The construction works even if we do not have a model of terms. The
definition of a semantic subtyping relation needs neither an interpretation for applica-
tions (that is, an applicative model) nor the solution of complicated domain equations.

The first key idea to generalise semantic subtyping is, then, to dissociate the model
of types from the model of terms and define the former independently from the latter. In
other words, the interpretation of types must not forcedly be based on an interpretation
of terms. More formally, what we do is first to define an interpretation function for types
[]: Types — P(D), where P denotes the powerset, and D is some domain (which may
not be expressive enough to interpret terms). Then, we define the subtyping relation as
follows:

s<t <L [s] C [t
The second key idea is that we do not need [| to state what types mean, but just to
describe how types are related. And to this end, all that matters is when [] is equal to
zero. Indeed,

32 G. Castagna and A. Frisch

s<t <= [§]C[t] = [s]N[t]=2 < [s]N[t]=2 < [sA~t]=2
where the overbar denotes complementation in D. Thus, we can concentrate our efforts
just on the [J-counterimage of the empty set and disregard the behaviour of [] on the
remaining types.

Types as Sets of Values. Nevertheless, to ensure type safety, the meaning of types has
to be somewhat correlated with the language. A classical solution is to interpret types
as sets of values, that is, as the results of well-typed computations in the language. More
formally, the values of a typed language are all the terms that are well-typed, closed, and
in normal form. Interpreting types a sets of values is much easier than interpreting them
as sets of terms: since a closed application usually denotes a redex, then by restricting
to the sole values we avoid the need to interpret application and, therefore, also the need
to solve complicated domain equations. This is the solution adopted by XDuce, where
values are XML documents and types are sets of documents.

But if we consider a language with arrow types, that is a language with higher order
functions, then the applications come back again: arrow types must be interpreted as
sets of function values, that is, as sets of well-typed closed lambda abstractions, and
applications may occur in the body of these abstractions. Here is where XDuce stops
and it is the reason why it does not include arrow types.

A Circularity to Break. Introducing arrow types is problematic because it slips ap-
plications back again in the interpretation of types. However this does not mean that
we need a semantic interpretation for application, it just implies that we must define
how application is typed. In particular, since functional values are well-typed lambda
abstractions, then to interpret functional types we must be able to type the applications
that occur in the body of lambda abstractions. Now this is not an easy task in our con-
text: in the absence of higher order functions the set of values of type constructors such
as products or records can be inductively defined from basic types without resorting to
any typing relation (this is why the Hosoya Pierce approach works smoothly). With the
arrow type constructor, instead, this can be done only by using a typing relation which
yields to a circularity: in order to define the subtyping relation we need an interpretation
of the types of the language; for this we have to define which are the values of an arrow
type; this needs that we define the typing relation for applications, which in turns needs
the definition of the subtyping relation.

Thus, if we want to define the semantic subtyping of arrow types we must find a
way the avoid this circularity. The simplest way to avoid it is to break it. We already
said that to define set-theoretic subtyping we must have a model of types; it is also clear
that the typing relation must use subtyping; on the contrary it is not strictly necessary
for our model to be based on the interpretation of values, this is just convenient since it
ties the types with the language the types are intended for. This is therefore the weakest
link and we can break it. So the idea is to start from a model (of the types) defined
independently (but not too much) from the language the types are intended for (and
therefore independently from its values), and then from that define the rest: subtyping,
typing, set of values.

A Gentle Introduction to Semantic Subtyping 33

For a given type algebra and a language, the approach can be summarised as follows:

1. First, we define a notion of set-theoretic model of the type algebra. In such a model,
set-theoretic connectives in the type algebra (that is union, intersection, and nega-
tion) must be interpreted in a set-theoretic way. Also, the notion of model must
capture the essence of the type constructors, and in particular of the function types.
For instance, in [6, 5], we show that an extensional interpretation of functions as
binary relations is suitable for a language with overloaded functions and dynamic
type dispatch.

2. There might be several models, each of them induces a specific subtyping relation
on the type algebra. We only need to prove that there exists at least one model, and
to pick one, which we call the bootstrap model. In [6, 5], we exhibit a model with
an universal property: it induces the largest possible subtyping relation.

3. Now we have a (hopefully) suitable subtyping relation available, we can focus again
on the language itself and consider its typing rules (which depend on the subtyping
relation). The rich set-theoretic structure of models helps us to carry out the meta-
theoretic study of the system, and to prove easily classical properties such as the
transitivity of subtyping, subsumption elimination, and so on.

4. The typing judgement for the language produces a new natural set-theoretic inter-
pretation of types: a type ¢ denotes the set of values of type ¢. This interpretation
induces a new subtyping relation, which might be different from the one we used
to define the type system. However, if the definition of the models and the typing
rules have been carefully chosen, then we can expect the two subtyping relations to
coincide. This is the case in [6, 5].

The last step is the most critical one. It consists in “closing the circle”: even if we have
used a detour to create a subtyping relation, in the end we obtain a consistent system
where types are interpreted as sets of values and subtyping is exactly set-inclusion of
types. The rest of the story is standard: we can define the operational semantics for
the language (we consider a language whose semantics is driven by types) and prove a
type preservation result by a classical syntactic argument. This proof requires a lot of
intermediate properties about the subtyping relation, which can be obtained easily using
the definition of model. Also, we can use set-theoretic reasoning to derive from this
definition an actual algorithm to compute the subtyping relation. As for the subtyping
relation, this algorithm obviously depends on the bootstrap model we have chosen.

In the full version [3] we show the details of this construction and hint at how it
can be applied to other type constructors such as product, lazy, reference, and channel

types.

References

1. A. Aiken and E. L. Wimmers. Type inclusion constraints and type inference. In Proc. of the
7th ACM Conference on Functional Programming and Computer Architecture, 1993.

2. V.Benzaken, G. Castagna, and A. Frisch. CDuce: an XML-friendly general purpose language.
In ICFP 03, 8th ACM International Conference on Functional Programming, 2003.

3. G. Castagna and A. Frisch. A gentle introduction to semantic subtyping. In Proc. of PPDP
’05, the 7th ACM Symposium on Principles and Practice of Declarative Programming, 2005.

34 G. Castagna and A. Frisch

4. F. Damm. Subtyping with union types, intersection types and recursive types II. Research
Report 816, IRISA, 1994.

5. Alain Frisch. Théorie, conception et réalisation d’un langage de programmation fonctionnel
adapté a XML. PhD thesis, Université Paris 7, December 2004.

6. A. Frisch, G. Castagna, and V. Benzaken. Semantic Subtyping. In Proc. of LICS "02, the 7th
Annual IEEE Symposium on Logic in Computer Science, pages 137-146, 2002.

7. H. Hosoya and B. Pierce. XDuce: A typed XML processing language. ACM Transactions on
Internet Technology, 3(2):117-148, 2003.

8. H. Hosoya. Regular Expression Types for XML. PhD thesis, University of Tokyo, 2001.

9. H. Hosoya and B. C. Pierce. Regular expression pattern matching for XML. In Proc. of
POPL 01, the 25th Annual ACM Symposium on Principles of Programming Languages, 2001.

Logics for Unranked Trees: An Overview

Leonid Libkin*

University of Toronto
libkin@cs.toronto.edu

Abstract. Labeled unranked trees are used as a model of XML documents, and
logical languages for them have been studied actively over the past several years.
Such logics have different purposes: some are better suited for extracting data,
some for expressing navigational properties, and some make it easy to relate
complex properties of trees to the existence of tree automata for those proper-
ties. Furthermore, logics differ significantly in their model-checking properties,
their automata models, and their behavior on ordered and unordered trees. In this
paper we present a survey of logics for unranked trees.

1 Introduction

Trees arise everywhere in computer science, and there are numerous formalisms in the
literature for describing and manipulating trees. Some of these formalisms are declar-
ative and based on logical specifications: for example, first-order logic, or monadic
second-order logic, or various temporal or fixed-point logics over trees. Others are pro-
cedural formalisms such as various flavors of tree automata, or tree transducers, or tree
grammars. All these formalisms have found numerous applications in verification, pro-
gram analysis, logic programming, constraint programming, linguistics, and databases.

Until recently, most logical formalisms for trees dealt with ranked trees [18, 58]: in
such trees, all nodes have the same fixed number of children (or, a bit more generally,
the number of children of a node is determined by the label of that node). Over the past
several years, however, the focus has shifted towards unranked trees, in which there are
no restrictions on the number of children a node can have. Although unranked trees
have been considered in the 60s and 70s, and are related to feature trees over an infinite
set of features that have been investigated by computational linguists, their systematic
study was initiated by the development of XML (eXtensible Markup Language). XML
is a data format which has become the lingua franca for information exchange on the
world wide web. XML data is typically modeled as labeled unranked trees [42].

This connection has led to a renewed interest in logical and procedural formalisms
for unranked trees: one uses logical formalisms for expressing declarative queries, and
procedural formalisms for evaluating them. Logics over unranked trees appeared in
large numbers over the past 7-8 years, and they come in many flavors in shapes. Com-
mon to them is a close connection to automata models, and quite often to temporal and
modal logics, especially when one describes properties of paths through a document.

* Complete version of this survey can be found at www.cs.toronto.edu/~libkin/publ.html.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 35-50, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

36 L. Libkin

Let us now review some of the parameters according to which logics for unranked
trees can be classified.

The yardstick logic. Most formalisms are “inspired” by either first-order logic (FO), or
monadic second-order logic (MSO) that extends FO by quantification over sets. Query
languages and schema formalisms for XML tend to use MSO as the yardstick: for ex-
ample, XML DTDs are (almost) equivalent to MSO sentences, and various language
for extraction of data from XML documents have the power of MSO unary queries.
On the other hand, navigational aspects of XML, in particular, logics capturing various
fragments of XPath, are usually related to FO and its fragments.

Arity of queries. Most commonly one considers Boolean or unary queries. Boolean
queries evaluate to true or false. Checking if an XML document conforms to a schema
specification is represented by a Boolean query. Unary queries correspond to formulae
in one free variable, and thus produce a set of nodes. E.g., extracting sets of nodes, or
evaluating XPath expressions relative to the root naturally give rise to unary queries.

Complexity of model-checking. The model-checking problem asks whether a tree 7" sat-
isfies a logical sentence . If is an MSO sentence ¢, it can be evaluated in linear time
in the size of T, by converting to a tree automaton. But there is a price to pay: in terms
of the size of ¢, the complexity becomes non-elementary. This type of trade-offs is one
of the central issues in dealing with logics over trees.

Ordered vs. unordered trees. In unranked XML trees, children of the same node are or-
dered by a sibling ordering. If such an order is present, we speak of ordered unranked
trees. In many cases, however, this ordering is irrelevant, and some models, such as
feature trees, do not impose any ordering on siblings. There is considerable difference
between the expressiveness of logics and automata models depending on the availabil-
ity of sibling ordering. The presence of ordering also affects the yardstick logic, since
without order often counting is needed to match the power of automata models [19].

The paper is organized as follows. After we give basic definitions in Section 2, we
review logics for ordered trees in Section 3. We start with MSO-related logics, including
syntactic restrictions of MSO, a datalog-based logic, and the pi-calculus. We then turn
to FO-related logics, present analogs of LTL and CTL” that have been studied for
expressing navigational properties, and also look at conjunctive queries over trees. In
Section 4 we turn to trees that lack the sibling ordering, and show that in many logics
some form of counting needs to be added to compensate for the missing ordering. In
Section 5 we look at the model-theoretic approach in the spirit of automatic structures.

2 Trees, Logics, and Automata

Tree domains, trees, and operations on trees. Nodes in unranked trees are elements of
N* — that is, finite strings whose letters are natural numbers. A string s = ngny ...
defines a path from the root to a give node: one goes to the ngth child of the root, then
to the n;th child, etc. We write s; - s5 for the concatenation of strings s; and ss.

We need some basic binary relations on N* — the child and next-sibling relations:

$<m s & s =s-i forsomei e N;
$=nss & s=3sp-i and s =5 (i+1) forsome sy € N* andi € N.

Logics for Unranked Trees: An Overview 37

We also use the first child relation: s <s. s - 0. We shall use * to denote the reflexive-
transitive closure of a relation. Thus, <7, is the descendant relation (including self),
and < is a linear ordering on siblings.

Definition 1 (Tree domain). A tree domain D is a finite prefix-closed subset of N* (i.e.,
if s € Dand s’ is a prefix of s, then s' € D) such that s -1 € D implies s - j € D for
all j <.

Let X' be a finite alphabet.

Definition 2 (X -trees). An ordered unranked X '-labeled tree 1" is a structure
T= <D7 '<:h7 —<rts’ (Pa)a62>>

where D is a tree domain, <7, and <} are the descendant relation and the sibling
ordering, and P,’s are interpreted as disjoint sets whose union is the entire domain D.
An unordered unranked tree is defined as a structure (D, <%, (Py)aex).

Thus, a tree consists of a tree domain together with a labeling on its nodes: if s € P,
then the label of s is a. In this case we write Ap(s) = a.

First-order and Monadic Second-Order Logic. We only consider relational vocabular-
ies: finite lists (R, ..., R,,) of relation symbols, each R; with an associated arity n;.
Over trees, relation symbols are binary (e.g., <ch, <ns, <4p,) Or unary (P;’s fora € X).

Formulae of first-order logic (FO) are built from atomic formulae x = 2/, and R(Z),
where xz, z’ are variables, and T is a tuple of variables, using the Boolean connectives
V, A, — and quantifiers 3 and V. If a formula ¢ has free variables Z, we shall write o (Z).

Formulae of monadic second-order logic (MSO) in addition allow quantification
over sets. We shall normally denote sets of nodes by upper case letters. Thus, MSO
formulae have the usual first-order quantifiers 3z and Vxp as well as second-order
quantifiers 3X ¢ and VX ¢, and new atomic formulae X (x), where X is a second-order
variable and z is a first-order variable. An MSO formula may have both free first-order
and second-order variables. If it only has free first-order variables, then it defines a
relation on the universe of the structure.

Note that relations <, and <, are definable, in FO, from <% and <} . In MSO
one can define <7, from <,; however, it is well-known that in FO this is not possible.
This is why we chose <7 and <, rather than <, and <, as our basic relations.

ns?

Definition 3 (Definability in logic). Given a logic L, we say that a set of trees T is
definable in L if there is a sentence ¢ of L such that T € T iff T |= . We say that
a unary query Q (that selects nodes from trees) is definable in L if there is a formula
Y(x) of L such that s € Q(T) iff T |= ¥(s), for every tree T and a node s in T.

Unranked Tree Automata. An nondeterministic unranked tree automaton, NUTA [56,
9], over X-labeled trees is a triple A = (Q, F, §) where @ is a finite set of states, F' C @
is the set of final states, and § is a mapping Q x X — 29" such that §(g, a) is a regular
language over () (normally represented by a regular expression over Q). A run of A
on a tree T with domain D is a function p4 : D — @ such that, if s is a node with n
children, and it is labeled a, then the string p4(s-0) - - - pa(s-(n—1))isin §(p4(s), a).

38 L. Libkin

In particular, if s is a leaf labeled a, then p 4(s) = ¢ implies that £ € (g, a). A run
is accepting if p () € F, that is, the root is in an accepting state. A tree T is accepted
by A if there exists an accepting run. We let L(.A4) denote the set of all trees accepted
by A. Such sets of trees will be called regular.

Binary trees and translations. A binary tree domain is a prefix-closed subset D of {0, 1}*
such that if s -4 € D, then s - (1 — i) € D (that is, a node is either a leaf, or both its
children are in D). A (binary) nondeterministic tree automaton, NTA, is a quadruple
Ay = (Q, qo, F, §) where Q and F are as before, ¢ is the initial state, and 0 is a func-
tion Q x Q x ¥ — 29. A run p.A, on abinary tree 7" with domain D is a function from
D to @ such that if s is a leaf labeled a, then p 4, (s) € §(qo, qo,a), and if s - 0,s - 1
belong to D, and s is labeled a, then pa,(s) € 6(pa,(s-0),p4,(s-1),a). Arunis
accepting if p4, (¢) € F, and L(Ay) is the set of all binary trees for which there exists
an accepting run. Such sets are called regular.

There is a well-known regularity-preserving translation between ranked and un-
ranked trees. It was used in [49] to show decidability of SwS (but here we shall apply it
only to finite tree domains). The idea of the translation is that the first successor in the
binary tree corresponds to the first child, and the second successor to the next sibling.
More precisely, we define a mapping R : N* — {0, 1}* such that R(g) = ¢, and if
R(s) = &', where s = sp -4, then R(s-0) = s -0and R(sg- (¢ + 1)) = s - 1.If D
is an unranked tree domain, we let R(D) be {R(s) | s € D} together with R(s) - 1
if s is a non-leaf last child, and R(s) - 0 if s a leaf, other than the last sibling (these
additions ensure that R (D) is a binary tree domain). We define R(T') to be a tree with
domain R (D), where R(s) has the same label as s, and the added nodes are labeled by
a symbol | ¢ X The following is a folklore result.

Lemma 1. For every NUTA A, there is an NTA Ay, such that L(A,) = {R(T) | T €
L(A)}, and for every NTA Ay, there is an NUTA A such that the above holds.

3 Ordered Trees

In this section we only deal with ordered unranked trees. We first survey MSO-based
logics, and then move to FO-based ones.

3.1 MSO and Its Relatives

As we mentioned already, MSO is often used as a yardstick logic for trees, because of
its close connection to regular languages. The following result belonged to folklore, and
was explicitly stated in [41].

Theorem 1. A set of unranked trees is regular iff it is definable in MSO.

When one considers binary trees, this result says that regular sets of binary trees are
precisely those MSO-definable, and if we look at strings, which may be viewed as trees
without branching, we obtain that regular languages are precisely those MSO-definable.
Of course these are well-known results by Biichi [10], and Thatcher, Wright [57].

There is also a close connection between automata, MSO, and a formalism for
describing XML schemas, called DTDs (which are essentially extended context-free

Logics for Unranked Trees: An Overview 39

grammars). A DTD d over an alphabet X' is a collection of rules a — e, where a € X
and e, is a regular expression over 2. We shall assume there is at most one such rule
for each a € Y. A Y -labeled tree T satisfies d, if for each node s of T" with n children,
and Ap(s) = a, the string Ap(s-0)--- Ap(s-(n —1)) is in the language denoted by e,.

Each DTD is easily definable by an unranked tree automaton: in fact its states just
correspond to labels of nodes. This, however, is too restrictive to capture full definability
in MSO, but a slight extension of DTDs does precisely that. An extended DTD over X
is a triple (X', d’, g) where X’ O X, with g being a mapping g : X’ — X, and d’ is
a DTD over X’. A X-labeled tree T satisfies (X7, d’, g) if there is a X’-labeled tree T”
that satisfies d’ such that ' = g(T"). The following was established in [56].

Proposition 1. A set of unranked trees is MSO definable iff it is the set of all trees
satisfying some extended DTD (X', d’, g).

Theorem 1 talks about MSO sentences, but it can be extended to unary MSO queries
using the concept of query automata [44]. A (nondeterministic) query automaton over
unranked X-labeled trees is a quadruple Q4 = (Q, F, 4, .5) where A = (Q, F, §) is an
UNTA, and S is a subset of () x 3. Such a query automaton defines a unary query Qoa
that selects nodes s in 7" such that (p.4(s), Ar(s)) € S for some accepting run p 4.

Theorem 2. (see [44,41,24]) A unary query Q on unranked trees is MSO-definable iff
it is of the form Qg for some query automaton.

One can also define the semantics universally ((p.4(s), Ar(s)) € S for all accept-
ing runs) and the result still holds. Query automata have a deterministic counterpart;
however, in the deterministic version, two passes over the tree are required; see [44].

Theorems 1 and 2 are constructive. In particular, every MSO sentence ¢ can be
effectively transformed into an automaton A, that accepts a tree 7" iff T' |= ¢. Since
tree automata can be determinized, this gives us a O(||T||) algorithm to check whether
T = o, if ¢ is fixed'. However, it is well-known that the size of A, (even for string
automata) cannot be bounded by an elementary function in ||| [55]. An even stronger
result of [23] says that there could be no algorithm for checking whether 7' |= ¢ that
runs in time O(f(||¢l|) - [|T]|), where f is an elementary function, unless PTIME=NP.

Nonetheless, these results do not rule out the existence of a logic £ that has the
same power as MSO and yet permits faster model-checking algorithms. Even looking
at a simpler case of FO on strings, where results of [23] also rule out O(f(||¢||) - |s])
algorithms for checking if a string s satisfies ¢, with f being an elementary function,
the logic LTL (linear-time temporal logic) has the same expressiveness as FO [33] and
admits model-checking algorithm with running time 2°0UI#ID . |5|,

Logic ETL. The first logic for unranked trees that has the power of MSO and model-
checking complexity matching that of LTL appeared in [43] and was called ETL (ef-
ficient tree logic). It was obtained by putting syntactic restrictions on MSO formulae,
and at the same time adding new constructors for formulae, which are not present in
MSO, but are MSO-definable.

! We use the notation ||T'||, ||| to denote the sizes of natural encodings of trees and formulae.

40 L. Libkin

The atomic formulae of ETL are the same as for MSO, except that we are allowed
to use both <, and <7, and are not allowed to use the next-sibling relation <} . ETL
is closed under Boolean combinations (which are required to be in DNF), guarded
quantification, and path formulae. The rules for guarded quantification are:

- if p(z,y,X) is an ETL formula, then 3y (x <cn y A) and Iy (x <%, y A) are
ETL formulae;

- if p(x, X) is an ETL formula, then 3X (z <¥, X A ¢) is an ETL formula. Here
x <%, X means that X only contains descendants of x. In this case ¢ cannot
contain vertical path formulae (defined below).

Path formulae are defined as follows:

— if e is a regular expression over ETL formulae v(u,v), then e!(z,y) is a (verti-
cal path) ETL formula. The semantics is as follows: T' = el (s, s') if there is a
child-relation path s = sg,$1,...,8, = s in T and a sequence of ETL formulae
Y;(u,v), ¢ < n — 1, such that T |= ;(s;,s;41) for each ¢ < n — 1, and the
sequence)y . . . ¥,,—1 matches e.

— if e is a regular expression over ETL formulae ¢ (u, X), then e~ (z, X) is a (hori-
zontal path) ETL formula. Then 7' |= e~ (s, X) if children s - i,7 < k of s can be
labeled with ETL formulae v;(u, X) such that T' |=);(s - i, X) for all i, and the
sequence 1y . . . ¥, matches e.

Theorem 3. (see [43]) With respect to Boolean and unary queries, ETL and MSO are
equally expressive. Furthermore, each ETL formula ¢ can be evaluated on a tree T in
time 2°Ul#1) |||

Monadic datalog. Another approach to obtaining the full power of MSO while keeping
the complexity low is based on database query language datalog (cf. [1]). A datalog
program is a sequence of rules H:—P;, ..., Py where H and all P;’s are atomic formu-
lae. The predicate H is called the head of the rule, and every variable that appears in [
is required to appear in one of the F;’s. Given a datalog program P, predicates which
appear as a head of some rule are called intensional, and other predicates are called
extensional. If all intensional predicates are monadic (of the form H(x)), then P is a
monadic datalog program. The semantics is a standard fixed-point semantics, see, €.g.,
[1]. An intensional unary predicate of a program P defines a unary query.

For extensional predicates, we shall need Leaf, LastChild, and Root. Given a tree
domain D, they are interpreted as Leaf = {s € D | =3s’ € D : s <, §'}, LastChild =
{s-i€eD]s-(i+1) ¢ D} and Root = {e}.

Theorem 4. (see [25]) A unary query over unranked trees is definable in MSO iff it
is definable in monadic datalog over extensional predicates <., <ns, Leaf, LastChild,
Root, and P,,a € X. Furthermore, each monadic datalog query (P, H) can be evalu-
ated on a tree T in time O(||P|| - || T|)).

pu-calculus. Yet another way of getting a logic equivalent to MSO is suggested by a
close connection between MSO and the modal p-calculus L, on ranked trees, which
can easily be extended to the unranked case by using the connection between ranked

Logics for Unranked Trees: An Overview 41

and unranked trees. It was shown in [22, 47] that every property of infinite binary trees
definable in MSO is also be definable in L. To deal with unranked trees, we shall define
L, over X-labeled structures that have several binary relations Ei, ..., E,,, cf. [2].
Formulae of L, [E1, ..., E,,] are given by

p=a(@a€eX) [X |[oVo|-p|O(E)p | pX o(X),

where in uX ¢(X), the variable X must occur positively in . Given a tree T' with
domain D, s € D, and a valuation v for free variables (each v(X) is a subset of D), we
define the semantics (omitting the rules for letters a € X' and Boolean connectives) by

- (T,v,s) E X iff s € v(X).

- (T,v,s) E O(E,)piff (T,v,s") = ¢ for some s’ with (s,s") € E,.

- (T,v,s) E uX o(X) iff s is in the least fixed point of the operator defined by .
An L, formula ¢ without free variables naturally defines a unary query on trees ({s |
(T, s) = ¢}) and a Boolean query on trees (by checking if (7', €) = ¢).

Using the translation into ranked trees, it is easy to show (see [3]):

Proposition 2. The class of Boolean MSO queries on unranked trees is precisely the
class of Boolean queries defined by L, [<tc, <ns].

It is also possible to characterize unary MSO queries over unranked trees in terms
of the full pi-calculus Lf}‘“ (cf. [59]) which adds backward modalities & (E;)¢ with the

semantics (T, s) = O(E; g iff (T, s") |= ¢ for some s’ such that (s', s) € E;.

Proposition 3. (see [3]) The class of unary MSO queries on unranked trees is precisely
the class of queries defined by Lff“[<ch, < ns)-

3.2 FO and Its Relatives

While much is known about FO on both finite and infinite strings, it has not been as
extensively studied for trees until recently. Recall that over strings — which we can
view as trees with only unary branching — FO defines precisely the star-free languages
(cf. [58]), and over both finite and infinite strings FO has exactly the power of LTL [33].

In contrast, the natural analog of star-free expressions over binary trees captures
not FO but MSO [48]. One well-known equivalent logical description of FO on binary
trees is Hafer-Thomas’s theorem [31] stating that over finite binary trees, FO = CTL*
(CTL" is a branching time temporal logic widely used in verification, cf. [16], and it
will be defined shortly). Actually, the result of [31] shows that CTL* is equivalent to
MSO with second-order quantification over paths only, but over finite trees this frag-
ment of MSO is equivalent to FO.

The interest in logics over unranked trees whose power is equal to or subsumed by
that of FO stems from the fact that navigational features of XPath can be described in
FO. XPath [17] is a W3C standard for describing paths in XML documents. Thus, it is
very natural to look for connections between XPath, FO on trees, and temporal logics,
which are designed to talk about properties of paths.

Logics introduced in the context of studying XPath, and more generally, naviga-
tional properties of XML documents, can be roughly subdivided into two groups. Firstly,
one may try to establish analogs of Kamp’s theorem (stating that FO = LTL over

42 L. Libkin

strings) for trees. Secondly, one can try extended Hafer-Thomas’s theorem (the equiva-
lence FO = CTL") from binary to unranked trees.

XPath and Temporal Logics. First, recall the syntax of LTL over alphabet J.:

0,0 =a,aeX | oV | mp | Xp | XTp | Uy | ¢Sy,

Formulae of LTL are interpreted over finite or infinite strings over X/. Given a string
s = apay . . ., the semantics is as follows: (s,4) = aiff a; = a, (s,7) E X¢ (“next”
©)iff (s, + 1) = ¢; (s,4) E X @iff (s,i — 1) E ¢; (5,1) E oUg’ (¢ “until” ¢’)
if there exists j > ¢ such that (s,j) = ¢’ and (s,k) | ¢ foralli < k < j, and the
semantics of the dual ¢Sy (¢ “since”) is that there exists j < i such that (s, j) = ¢’
and (s, k) | ¢ forall j < k < 4. (Note: it is possible to avoid X and X~ by defining a
strict semantics for U and S, without requiring ¢ to be true in (s, 7)).
A logic TL"™® (tree temporal logic) is a minor extension of LTL:

o =a,aeX | oV | mp | Xup | X7 | oULe’ | ¢S.¢,

where * is either 'ch’ (child) or ’'ns’ (next sibling). We define the semantics with respect
to a tree and a node in a tree: (7, s) = aiff Ap(s) = a; (T, s) = X if (T, s-1) = ¢
for some 4; (T, s) = X ¢ if (T, s") |= ¢ for the node s” such that s <q, s; (T, 5) |=
©Ugq' if there is a node s’ such that s <%, ', (T,s') = ¢/, and for all 5" # ¢
satisfying s <% s” <% s’ we have (T, s”) |= ¢. The semantics of S, is defined by
reversing the order in the semantics of Uy, and the semantics of X5, X, Uy, and Sy

ns?

is the same by replacing the child relation with the next sibling relation.
As L,,, the logic TL™ naturally defines unary and Boolean queries on trees.

Theorem 5. (see [38]) A unary or Boolean query over unranked trees is definable in
FO iff it is definable in TL"™.

In both CTL* and XPath formalisms there are two kinds of formulae: those eval-
uated in nodes of trees, and those evaluated on paths in trees (these are state and path
formulae of CTL* and filter and location path expressions of XPath).

We now look at XPath-inspired logics, and present them using a slight modification
of the syntax that keeps all the main XPath constructions and yet makes the connection
with temporal logics more visible. The language CXPath [38] (Conditional XPath) is
defined to have node formulae o and path formulae (3 given by:

a, o =a,a€X | ma | ava | ES

B,0 =" | step | (step/?a)t | B/3" | BV

where step is one of the following: <cn, <, <uns, OF <. Intuitively EQ states the
existence of a path starting in a given node and satisfying 3, 7« tests if « is true in the
initial node of a path, and / is the composition of paths.

Formally, given a tree T', we evaluate each node formula in a node s, and each path
formula in a pair of nodes (s, s’). The main semantic rules are:

- (T, s) = Eg iff there is s’ such that (T s, s') = 5;
- (T,s,8) Flaiff s = s and (T, s) = o

Logics for Unranked Trees: An Overview 43

- (T,s,s') = stepiff (s, s') € step;

- (T,s,s") = B/0 iff for some s” we have (T, s,s”) = fand (T,s",s') E 5';

- (T,s,s") = (step/?a)™ if there exists a sequence of nodes s = sg, 81,...,8k =
s', k > 0, such that each (s;, s;+1) is in step, and (T, ;1) = « foreach i < k.

T, s
T, s

)

The language Core XPath [26] is obtained by only allowing step™ as opposed to
(step/?a)* in the definition of path formulae. Notice that since step™ = (step/?true),
where true = \/ . s, a, we have Core_XPath C CXPath.

Core_XPath corresponds to XPath as defined by W3C [17], while CXPath represents
an addition to XPath proposed by [38]. Node formulae of either CXPath or Core_XPath
naturally define unary queries on trees. These can be characterized as follows.

Theorem 6. a) (see [38]) The node formulae of CXPath have precisely the power of
FO unary queries.

b) (see [39]) The node formulae of Core_XPath have precisely the power of unary
FO? queries (that is, FO with two variables) in the vocabulary <, =¥ <nss <ns-

A CTL*-Like Logic. CTL" is a branching time temporal logic used in verification of
reactive systems. Here we define it with past connectives, using the syntax close to that
of [35]. In CTL*, one also has node (normally called state) formulae and path formulae,
but path formulae are evaluated on paths, not on arbitrary pairs of nodes.

We define CTL;;ast node formulae «, and child and sibling path formulae 3., for
being ’ch’ or 'ns’, as follows:

a,d ==a(aeX) | ma | ava | Efu | Efns
ﬁ*aﬂ:« = a |6 | ﬂ*\/ﬂ; | XiBe | X B | B*U*ﬂi ‘ ﬂ*S*ﬂ;

The semantics is standard and omitted here. The following can be seen as an analog of
the equivalence FO = CTL* for finite binary trees [31].

Theorem 7. (see [3]) A unary or Boolean query over unranked trees is definable in FO
iff it is definable in CTL

past*

Conjunctive Queries Over Unranked Trees. Conjunctive queries are a very important
class of database queries: they correspond to the d, A-fragment of FO. These are the
same queries that can be expressed by selection, projection, and join in relational al-
gebra, and thus they form the core of database queries. The complexity of evaluating a
conjunctive query ¢ over a database D is in NP, in terms of both the size of ¢ and the
size of D. In fact, the problem is NP-hard, and there has been a large body of work on
classifying tractable cases (see, e.g., [28, 30]).

In the case of unranked trees, conjunctive queries are formulae of the form ¢(Z) =
3y R1 A ... A Ry, where each R; is either P,(z) or z < 2/, where z, 2’ are variables
among Z, ¥, and < is one of <ch, <%, <ns, OF <4 We write CQ(<1, ..., <) to de-
note the class of conjunctive queries over unranked trees in which only unary predicates
P, and binary predicates among <; can be used.

Theorem 8. (see [27]) The maximal tractable classes of queries CQ(<1, ..., <m),
where all <;’s are among {<cn, <%, <ns; <us}> are CQ(<ch, <ns, <hs) and CQ(<%,);
all others are NP-hard.

44 L. Libkin

4 Unordered Trees

In unordered trees, nodes can still have arbitrarily many children, but the sibling order-
ing <y is no longer available. Logics considered for unordered unranked trees typically
introduce some form of counting, see 3,19, 20,21,40,46,51,53, 54].

An explanation for this comes from a modified notion of automata for unordered
unranked trees. A counting nondeterministic unranked tree automaton is a tuple A, =
(@, F,0), where @ is a set of states, and F' C () is a set of final states. Let Vi, be the
set of variables {vfj | ¢ € Q,k > 0}. Then the transition function § maps each pair
(¢,a) € @ x X into a Boolean function over V. A run of A on an unordered tree T
with domain D is a mapping p_4, : D — Q such thatif p4_(s) = ¢ for anode s labeled
a, then the value of d(q, a) is 1, where each variable vgi is set to 1 if s has at least k
children s’ with p4,(s’) = ¢;, and to 0 otherwise. A run is accepting if p4.(¢) € F,
and the set of unordered trees accepted by A, is denoted by L, (.A.).

A counting query automaton QA is defined as (@, F, 4, S) where S C @ x X it
selects nodes s in a run p where (p.a.(s), Ar(s)) € S. The following appears not to
have been stated explicitly, although it follows easily from results in [41, 44, 53].

Theorem 9. a) A set of unordered unranked trees is MSO-definable iff it is of the form
L.,,(A.) for a counting nondeterministic unranked tree automaton A...

b) A unary query over unordered unranked trees is MSO-definable iff it is definable
by a counting query automaton QA..

MSO and FO Over Unordered Trees. Define the counting pi-calculus C,, (cf. [32]) as an
extension of L, with formulae &= (E)¢. The semantics of (T, s) = O2F(E)¢p is as
follows: there exist distinct elements 1, . .., s such that (s,s;) € E and (T, s;) = ¢
for every 1 < ¢ < k. The next result follows from [60], as was noticed in [32]:

Theorem 10. Over unordered unranked trees, MSO and C\,[<cn] have precisely the
same power with respect to Boolean queries.

For first-order logic, counting extensions of both the temporal logic TL" and
CTL* give us analogs of Kamp’s and Hafer-Thomas’s theorems. Define TL{.,, as a
version of TL™® in which only modalities for the child relation are used, but in addition
we have formulae X% ¢, with the semantics that (T, s) = X% ¢ iff there are at least k
children s’ of s such that (T, s") = .

We also extend CTL* to a logic CTLY,,,,,; in which we have new state formulae

EXX o, where o is a state formula, with the same semantics as above.

Theorem 11. (see [40,51]) Over unordered unranked trees, the classes of Boolean
queries expressed in FO, TLie. = and CTLY, .. over binary relation <.y, are the same.

‘count’ coun

For unary queries, the equivalence FO = TLI still holds [51], and FO can be

count
shown to be equivalent to an extension of CTL* with both counting and the past [3].

Extensions and More Powerful Counting. Consider now a scenario in which we deal
with unordered trees, but in our formulae we can refer to some arbitrary ordering on
siblings: after all, in any encoding of a tree, siblings will come in some order. Of course

Logics for Unranked Trees: An Overview 45

we do not want any particular order to affect the truth value, so we want our formulae,

even if they use an ordering, to be independent of a particular ordering that was used.
This is the standard setting of order-invariance, an important concept in finite model

theory, cf. [36]. We say that an MSO sentence ¢ over vocabulary including <}, and <}

ch
is <ps-invariant if for every unordered tree 7" and every two expansions 7’ ~<ns and T'=ne
with sibling-orderings <L, and <2_ we have T=» = ¢ < T=u = . A <yq-invariant
sentence defines a Boolean query on unordered trees.
We now define MSOy,0q [19] as an extension of MSO with modulo quantifiers: for
each set variable X, and k& > 1, we have set new formulae Q (X ') which are true iff the

cardinality of X is congruent to 0 modulo &.

Theorem 12. (see [20]) Over unordered unranked trees, <,s-invariant Boolean queries
are precisely the Boolean queries definable in MSOpq.

Further extensions in terms of arithmetic power have been considered [53, 54]. Re-
call that Presburger arithmetic refers to the FO theory of the structure (N, +). Define
Presburger MSO, or PMSO, as an extension of MSO over unordered trees with the
following rule: if ¢(Z,y, X) is a PMSO formula and () a Presburger arithmetic
formula with | X| = |o| = n, then [¢/a](Z,y, X) is a PMSO formula. Given valu-
ation 3, sg, S for free variables, with S = (S1,...,S,), let m; be the cardinality of
{s" | 50 <en 8" and 5" € S;}. Then [p/a](5, 50, S) is true iff a(my, ..., m,) is true.

It is easy to see that MSO C MSOy,0¢ & PMSO over unordered trees. Still, PMSO
is captured by a decidable automaton model.

Define Presburger unordered tree automata just as counting automata except that &
maps pairs from () x X into Presburger formulae over vy, for ¢ € Q). We interpret v,
as the number of children in state ¢, and a transition is enabled if the corresponding

Presburger formula is true in this interpretation.

Theorem 13. (see [53]) Presburger unordered tree automata and PMSO are equiva-
lent. Furthermore, both emptiness and universality are decidable for Presburger un-
ordered tree automata.

Further extensions with counting have been considered for fixed-point logics [54]
and the p-calculus with modulo-quantifiers [3].

Edge-Labeled Unordered Trees. There are several areas where edge-labeled trees play
a prominent and role, and traditionally logical formalisms have been designed for such
data. For example, there are feature logics, used extensively in computational linguistics
[15], or spatial logics used for describing networks and mobile agents [14]: in both cases
one deals with unordered edge-labeled trees.

In the setting of feature trees, one has an infinite set of features JF, and in an un-
ordered unranked tree every edge is labeled by an element f € F such that each node
s has at most one outgoing edge labeled f for each f € F. Furthermore, nodes may be
labeled by elements of some alphabet X, as before. It is thus natural to model feature
trees as structures (D, (Ey)¢er, (Py)acx) such that the union of all E¢’s forms the
child relation of a tree, and no node has two outgoing F;-edges. In the context of com-
putational linguistics, one commonly used [5] logic for feature trees is the propositional

46 L. Libkin

modal logic that, in the context of feature structures (not necessarily trees), is also often
supplemented with path-equivalence [50], as well as regular expressions [34].

Ambient logics are modal logics for trees that have been proposed in the context of
mobile computation [14] and later adapted for tree-represented data [12, 13]. One views
trees as edge-labeled and defines them by the grammar

T =A | TIT" | a[T), a€ X,

with the equivalences that | is commutative and associative, and that T'|A = T'. Here A
is the empty tree, | is the parallel composition, and a[T] adds an a-labeled edge on top of
T'. If we extend = to a congruence in the natural way, then every tree is equivalent to one
of the form a;[T1]|. .. |am[T)], which is viewed as a tree whose root has m outgoing
edges labeled ay, . . ., a,,, with subtrees rooted at its children being 77, . .., T;,.

There were several similar logics proposed in [11, 12, 13, 14,21]. Here we consider
the logic from [11] whose formulae are given by

o =L | Al Ny | ~p | ol | op¢’ | alg] | ¢Qa, a€ X.

The semantics is as follows: L is false; A is only true in a tree equivalent to A, T =
o1 iff T =Ty | Te with T; = i,0 = 1,2, T |= o> ¢ if for every T' |= ¢ we have
TIT = ¢ Tlalp| ff T =a[T"] with T’ = ¢, and T' |= ¢Qqa iff a[T] |= .

The study of ambient logics for trees took a different path compared to other logics
seen in this survey; in particular, the focus was on type systems for tree languages and
thus on proof systems for logics, rather than model-checking, its complexity, automata
models, and comparison with other logics.

However, the ambient logic above does not take us outside of the MSO expres-
siveness: this can be seen by going from edge-labeled trees to node-labeled ones. The
translation is simple: the label of each edge (z, y) becomes the label of y. The root will
have a special label Root that cannot occur as a label of any other node. The only mod-
ification in the logic is that now we have formulae A, for @ € X, which are true in a
singleton-tree labeled a. The resulting logic is easily translated into MSO. For example,
©|’ states that the children of the root can be partitioned into two sets, X and X', such
that the subtree that contains all the X -children satisfies ¢ and the subtree that contains
all the X'-children satisfies ¢’. For ¢ > ¢, one can consider —(¢ > ') saying that there
exists a tree 7" such that 77 |= ¢ and T|T” |= —¢’, and use nondeterministic counting
automata to guess this tree T”.

5 Automatic Structures

In this section we look at a different kind of logics for unranked trees, using the standard
approach of model theory. Let TREE(X) be the set of all X-labeled unranked trees.
We consider structures of the form 9t = (TREE(X'), 2) where (2 is a set of relation,
constant, and function symbols.

Let Def,, (90t) be the family of n-dimensional definable sets over : that is, sets of
the form {T € TREE(X)" | M | »(T)}, where ¢(x1, . ..,x,) is an FO formula in
the vocabulary 2. We shall be looking at structures 91 so that definable sets would be

Logics for Unranked Trees: An Overview 47

relations definable in MSO or other logics. In particular, such relations will be given by
automata, and thus structures 2t of this kind are called automatic structures.
Following known automatic structures for strings [4, 6], we introduce several predi-
cates on trees: the extension predicate, node tests, and domain equality. For two trees 7}
and 75 with domains D; and Dy, we say that 75 is an extension of Ty, written 17 = Tb,
if D1 C D, and the labeling function of T, agrees with the labeling function of T}
on D;. It will actually be more convenient to work with two extension relations: ex-
tension on the right <_, and extension down = . For 17 =<_, T3, we require that every
s € Dy — D1 be of the form s’ - ¢ when s’ - j € D; for some j < i. For T1 < T, we
require that every s € Dy — D1 have a prefix s’ which is a leaf of T}. Define L, to be
true in a tree 7 if the rightmost node is labeled a. Finally, T} ~4om 15 iff D1 = Ds.
Now we have the following structures:

Tuniv = (TREE(Y),

3 jia (La)a€27 %dom>
¥ = (TREE(X), L

» 2 (a)a62>

—
—

PPN

Theorem 14. (see [37]) a) For every n > 1, Def,,(Tuny) is precisely the class of regu-
lar n-ary relations over TREE(X).

b) Defy(T) = Defy (Zuniv) is the class of regular unranked tree languages, but for
everyn > 1, Def,, (%) C Def, (Tuniy)-

Working with €, makes it easy to write rather complicated properties of tree lan-
guages, and then Theorem 14 implies that those languages are regular. For example,
if X C TREE(Y) is regular, then the set of trees 7" such that all their extensions can
be extended on the right to a tree in X is regular. Indeed, this is easy to write in FO
over Ty, if we have a membership test for X, which is definable by Theorem 14.
Also, conversions from formulae to automata are effective for both ¥ and ¥y, which
implies decidability of their theories.

Other logics over unranked trees can be naturally represented over these structures:
for example, Boolean FO queries are precisely sets of trees definable over T if quantifi-
cation is restricted to single branches [37].

A Different View of Unranked Trees. We conclude by presenting a different view of un-
ranked trees and a different structure for them that makes it easy to talk about about their
extensions in which new children may be inserted between existing ones. For example,
if we have a tree T' with domain D = {e,0, 1}, and we want to add more children of
the root, they would have to be added on the right, e.g, we may have an extension with
domain {¢,0,1,2,3}. But what if we want to add a child on the left of 0, and two chil-
dren between 1 and 2? Intuitively, we need a new tree domain {e, —1, 0, %, %, 1} then.
We now capture this situation and present a different automatic structure that makes it
easy to derive that certain relations on trees are regular.

A rational unranked tree domain is a finite prefix-closed subset of Q*. Relation
<%, is defined for rational domains just as before, and relation <, is now given by

s-r <k s-r'iff r <1’ Then an unranked tree T" over a rational unranked tree domain
is, as before, a structure T' = (D, <%, <k, (Pa)aecx)-

ns?’

48 L. Libkin

Let TREEg(X) be the set of all unranked trees with rational unranked tree domains.
Note that different elements of TREEg(X') may be isomorphic as trees; we denote this
isomorphism relation by 2.

Define the extension relation < over trees in TREEg(X) as before. A branch is
atree T € TREEQ(Y) such that the set {I” | 77 < T} is linearly ordered by <.
It follows from the definition of rational unranked tree domains that the domain of a
branch consists of all the prefixes of some string s € Q*. Let L, (T) be true iff T is a
branch whose leaf is labeled a, and let 77 <jex 15 be true iff 77 and 75 are branches
with leaves s and sg, and s1 <jex S2. We then define the structure

T2, = (TREEQ(Y), =, <iexs Rdom; (La)acs)-

univ

Proposition 4. The structure Tgiv is interpretable in T niy. Furthermore, there is a

definable subset of the image of TREEq(X) that contains exactly one representative of
each =-equivalence class.

That is, under the mapping ¢ : TREEg(Y)/ =— TREE(Y), definable sets over
‘I&V become precisely the regular tree languages. Hence, expressing properties of un-
ranked trees in first-order logic over 7U_allows us to conclude easily that certain tree

univ

languages are regular, and thus MSO-definable.

6 Other Directions and Conclusions

We present very briefly some directions for future work (for more detailed discussion,
see the full version).

Among problems that need to be addressed are the following: (a) How does one
compare different logics over unranked trees? One way is in terms of their succinctness
[29]. (b) Connection between ambient logics and other logics presented there is not yet
adequately understood. (c) We do not know much about logics over string representa-
tions of trees (which occur naturally, for example, in streaming XML applications [52]).
(d) Nor do we know much about handling data values which are present in XML trees.
Some early results were reported in [45, 8], complemented recently by a nice decidabil-
ity result that works on strings with data values [7].

Acknowledgments. I am grateful to Cristiana Chitic, Christoph Koch, Maarten Marx,
Frank Neven, Joachim Niehren, Gerald Penn, Thomas Schwentick, and Luc Segoufin
for their comments.

References

1. S. Abiteboul, R. Hull, V. Vianu. Foundations of Databases, Addison Wesley, 1995.

2. A. Arnold, D. Niwinski. Rudiments of u-calculus. Elsevier, 2001.

3. P. Barceld, L. Libkin. Temporal logics over unranked trees. In LICS’05.

4. M. Benedikt, L. Libkin, T. Schwentick, L. Segoufin. Definable relations and first-order query
languages over strings. J. ACM, 50 (2003), 694-751.

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

217.

28.

29.

30.

31.

Logics for Unranked Trees: An Overview 49

. P. Blackburn. Structures, languages and translations: the structural approach to feature logic.

In Constraints, Language and Computation, AP, 1994, pages 1-27.

. A. Blumensath and E. Gridel. Automatic structures. In LICS 00, pages 51-62.
. M. Bojanczyk, C. David, A. Muscholl, T. Schwentick, L. Segoufin. Two-variable logic on

words with data. 2005.

. P. Bouyer, A. Petit, D. Thérien. An algebraic characterization of data and timed languages.

In CONCUR 2001, pages 248-261.

. A. Briiggemann-Klein, M. Murata, and D. Wood. Regular tree and regular hedge languages

over unranked alphabets: Version 1, 2001. HKUST Tech. Report.

J.R. Biichi. Weak second-order arithmetic and finite automata. Zeit. Math. Logik
Grundl. Math. 6 (1960), 66-92.

C. Calcagno, L. Cardelli, A. Gordon. Deciding validity in a spatial logic for trees.
J. Funct. Progr., to appear.

L. Cardelli. Describing semistructured data. SIGMOD Record 30 (2001), 80-85.

L. Cardelli, G. Ghelli. A query language based on the ambient logic. In ESOP 2001, pages
1-22.

L. Cardelli, A. Gordon. Anytime, anywhere: Modal logics for mobile ambients. In POPL
2000, pages 365-377.

B. Carpenter. The Logic of Typed Feature Structures. Cambridge, 1992.

E. Clarke, O. Grumberg, and D. Peled. Model Checking. The MIT Press, 1999.

J. Clark and S. DeRose. XML Path Language (XPath). W3C Recommendation, Nov. 1999.
www.w3.org/TR/xpath.

H. Comon et al Tree Automata: Techniques and Applications. Available at
www.grappa.univ-lille3.fr/tata. October 2002.

B. Courcelle. The monadic second-order logic of graphs I: Recognizable sets of finite graphs.
Inf.&Comput. 85 (1990), 12-75.

B. Courcelle. The monadic second-order logic of graphs V: On closing the gap between
definability and recognizability. TCS 80 (1991), 153-202.

S. Dal-Zilio, D. Lugiez, C. Meyssonnier. A logic you can count on. In POPL 2004, pages
135-146.

E. A. Emerson, C. Jutla. Tree automata, mu-calculus and determinacy. In FOCS 1991, pages
368-3717.

M. Frick, M. Grohe. The complexity of first-order and monadic second-order logic revisited.
In LICS 2002, 215-224.

M. Frick, M. Grohe, C. Koch. Query evaluation on compressed trees. In LICS 2003, pages
188-197.

G. Gottlob, C. Koch. Monadic datalog and the expressive power of languages for web infor-
mation extraction. J. ACM 51 (2004), 74-113.

G. Gottlob, C. Koch, R. Pichler, and L. Segoufin. The complexity of XPath query evaluation
and XML typing. J. ACM, 2005, to appear.

G. Gottlob, C. Koch, K. Schulz. Conjunctive queries over trees. In PODS 2004, pages
189-200.

G. Gottlob, N. Leone, and F. Scarcello. The complexity of acyclic conjunctive queries. J.
ACM, 48 (2001), 431-498.

M. Grohe, N. Schweikardt. Comparing the succinctness of monadic query languages over
finite trees. In CSL 2003, pages 226-240.

M. Grohe, T. Schwentick, and L. Segoufin. When is the evaluation of conjunctive queries
tractable? In STOC 2001, pages 657-666.

T. Hafer, W. Thomas. Computation tree logic CTL* and path quantifiers in the monadic
theory of the binary tree. ICALP 1987, pages 269-279.

39.
40.
41.
42.
43.
44.
45.
46.

47.
48.

49.
50.
51.

52.
. H. Seidl, Th. Schwentick, A. Muscholl. Numerical document queries. In PODS 2003, 155—

54.
55.
56.
57.
58.
59.

60.

L. Libkin

D. Janin, G. Lenzi. Relating levels of the mu-calculus hierarchy and levels of the monadic
hierarchy. In LICS 2001, pages 347-356.

. HW. Kamp. Tense Logic and the Theory of Linear Order. PhD Thesis, UCLA, 1968.

B. Keller. Feature Logics, Infinitary Descriptions and Grammar. CSLI Press, 1993.

. O. Kupferman, A. Pnueli. Once and for all. In LICS’95, pages 25-35.

L. Libkin. Elements of Finite Model Theory. Springer, 2004.

. L. Libkin, F. Neven. Logical definability and query languages over unranked trees. In LICS

2003, pages 178-187.

. M. Marx. Conditional XPath, the first order complete XPath dialect. In PODS 2004, pages

13-22.

M. Marx and M. de Rijke. Semantic characterizations of XPath. In TDM Workshop on XML
Databases and Information Retrieval, 2004.

F. Moller, A. Rabinovich. Counting on CTL*: on the expressive power of monadic path
logic. Information and Computation, 184 (2003), 147-159.

F. Neven. Design and Analysis of Query Languages for Structured Documents. PhD Thesis,
U. Limburg, 1999.

F. Neven. Automata, logic, and XML. In CSL 2002, pages 2-26.

F. Neven, Th. Schwentick. Expressive and efficient pattern languages for tree-structured
data. In PODS 2000, pages 145-156. Corrigendum at http://www.mathematik.uni-
marburg.de/ tick/

F. Neven, Th. Schwentick. Query automata over finite trees. Theor. Comput. Sci. 275 (2002),
633-674.

F. Neven, Th. Schwentick, V. Vianu. Towards regular languages over infinite alphabets. In
MFCS 2001, pages 560-572.

J. Niehren, A. Podelski. Feature automata and recognizable sets of feature trees. TAPSOFT
1993, pages 356-375.

D. Niwinski. Fixed points vs. infinite generation. In LICS 1988, pages 402—409.

A. Potthoff, W. Thomas. Regular tree languages without unary symbols are star-free. In FCT
1993, pages 396—405.

M. Rabin. Decidability of second-order theories and automata on infinite trees. Trans. AMS
141 (1969), 1-35.

W. C. Rounds, R. Kasper. A logical semantics for feature structures. In 24th Annual Meeting
of the Assoc. for Computational Linguistics, 1986, pages 257-266.

B.-H. Schlingloff. Expressive completeness of temporal logic of trees. Journal of Applied
Non-Classical Logics 2 (1992), 157-180.

L. Segoufin, V. Vianu. Validating streaming XML documents. In PODS 2002, pages 53—64.

166.

H. Seidl, Th. Schwentick, A. Muscholl, P. Habermehl. Counting in trees for free. In ICALP
2004, pages 1136-1149.

L. Stockmeyer and A. Meyer. Cosmological lower bound on the circuit complexity of a small
problem in logic. Journal of the ACM, 49 (2002), 753-784.

J.W. Thatcher. Characterizing derivation trees of context-free grammars through a general-
ization of finite automata theory. JCSS 1 (1967), 317-322.

J.W. Thatcher and J.B. Wright. Generalized finite automata theory with an application to a
decision problem of second-order logic. Mathematical Systems Theory, 2(1):57-81, 1968.
W. Thomas. Languages, automata, and logic. In Handbook of Formal Languages, Vol. 3,
Springer-Verlag, 1997.

M. Y. Vardi. Reasoning about the past with two-way automata. In ICALP 1998, pages
628-641.

I. Walukiewicz. Monadic second-order logic on tree-like structures. TCS 275 (2002), 311-
346.

Nash Equilibria, the Price of Anarchy and the Fully
Mixed Nash Equilibrium Conjecture*

Martin Gairing, Thomas Liicking,
Burkhard Monien, and Karsten Tiemann**

Department of Computer Science, Electrical Engineering and Mathematics,
University of Paderborn, Fiirstenallee 11, 33102 Paderborn, Germany
{gairing, luck, bm, tiemann}@uni-paderborn.de

1 Introduction

Motivation-Framework. Apparently, it is in human’s nature to act selfishly. Game
Theory, founded by von Neumann and Morgenstern [39, 40], provides us with strategic
games, an important mathematical model to describe and analyze such a selfish behav-
ior and its resulting conflicts. In a strategic game, each of a finite set of players aims for
an optimal value of its private objective function by choosing either a pure strategy (a
single strategy) or a mixed strategy (a probability distribution over all pure strategies)
from its strategy set. Strategic games in which the strategy sets are finite are called fi-
nite strategic games. Each player chooses its strategy once and for all, and all players’
choices are made non-cooperatively and simultaneously (that is, when choosing a strat-
egy each player is not informed of the strategies chosen by any other player). One of the
basic assumption in strategic games is that the players act rational, that is, consistently
in pursuit of their private objective function. For a concise introduction to contemporary
Game Theory we recommend [25].

One of the most widely used solution concepts for strategic games is the concept
of Nash equilibrium. It represents a stable state in which no player wishes to leave
unilaterally its own strategy in order to improve the value of its private objective func-
tion. A Nash equilibrium is called pure if all players choose a pure strategy, otherwise
mixed. Many algorithms have been developed to compute a Nash equilibrium (see [27]
for an overview). Though the celebrated results of Nash [30,31] ensure the existence
of a mixed Nash equilibrium, the complexity to compute such a Nash equilibrium is
widely unknown. Papadimitriou [32] advocates it to be “the most important concrete
open question on the boundary of P today”.

Rosenthal [33] introduced a special class of strategic games, now widely known as
congestion games. Here, the strategy set of each player is a subset of the power set of
given resources. The players share a private objective function, defined as the sum (over
their chosen resources) of functions in the number of players sharing this resource. In
his seminal work, Rosenthal [33] showed with help of a potential function that con-

* This work has been partially supported by the DFG-SFB 376 and by the European Union
within the 6th Framework Programme under contract 001907 (DELIS).
** International Graduate School of Dynamic Intelligent Systems.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 51-65, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

52 M. Gairing et al.

gestion games (in sharp contrast to general strategic games) always admit at least one
pure Nash equilibrium. Later, Milchtaich [28] considered two extensions of congestion
games, namely weighted congestion games in which the players have weights and
thus different influence on the congestion of the resources, and congestion games with
player-specific payoff-functions in which the players do not share a private objective
function.

Another class of (weighted) congestion games are (weighted) network congestion
games [8, 11] in which the strategy sets correspond to paths in a network. Koutsoupias
and Papadimitriou [21] considered a very simple member of this class, now known as
KP-model. The network consists of a single source and a single destination which are
connected by parallel /inks. Associated with each link is a capacity representing the
rate at which the link processes load, that is, the total weight of players assigned to this
link. Thus, the latency functions are linear. Each of the players selfishly routes from
the source to the destination by choosing a probability distribution over the links. The
private objective function of a player is defined as its expected latency.

Koutsoupias and Papadimitriou [21] were not only interested in the computational
complexity of Nash equilibria but also in the degradation of the social welfare of the
system due to the selfish behavior of the players. In order to measure this social wel-
fare, they introduced a global objective function, usually coined as social cost, which
is defined as the expected maximum latency on a link, where the expectation is taken
over all random choices of the players. The price of anarchy, also called coordination
ratio, measures the extent to which non-cooperation approximates cooperation. It is de-
fined as the worst-case ratio between the value of social cost in a Nash equilibrium and
that of some social optimum. So, the price of anarchy represents a rendezvous of Nash
equilibrium, a concept fundamental to Game Theory, with approximation, an ubiqui-
tous concept in Theoretical Computer Science today (see, e.g., [38]).

Mavronicolas and Spirakis [26] introduced the notion of a fully mixed Nash equi-
librium in which each player chooses every link with positive probability. Gairing et
al. [15] conjectured that, in case of its existence, the fully mixed Nash equilibrium
is the worst Nash equilibrium with respect to social cost. This so-called Fully Mixed
Nash Equilibrium Conjecture is simultaneously intuitive and natural. To support intu-
ition, observe that the fully mixed Nash equilibrium favors collisions between differ-
ent players (since each player assigns its item with positive probability to every link).
This increased probability of collisions should favor an increase to social cost. To sup-
port significance, note that the Fully Mixed Nash Equilibrium Conjecture identifies the
worst-case Nash equilibrium of all instances. We stress that, in sharp contrast, the price
of anarchy only determines the worst-case Nash equilibrium of worst-case instances.

Recently, the KP-model was extended to restricted strategy sets [2, 13] where the
strategy set of each player is a subset of the links. In addition, the KP-model was ex-
tended to general latency functions and studied with respect to different definitions of
social cost [1, 14]. Inspired by the arisen interest in the price of anarchy, the much older
Wardrop-model [3, 6,41] was re-investigated [35, 36]. In this weighted network conges-
tion game, weight can be split into arbitrary pieces. The social welfare of the system is
defined as the sum of the edge latencies. An equilibrium in the Wardrop-model can be
interpreted as a Nash equilibrium in a game with infinitely many players, each carrying

Nash Equilibria, the Price of Anarchy and the Fully Mixed Nash Equilibrium 53

an infinitesimal amount of weight. Finally, the price of anarchy found its way into con-
gestion games [4, 11].

In this paper, we give a thorough survey on the most exciting results on finite
(weighted) congestion games and the special classes mentioned above. In particular,
we review the findings on the existence and computational complexity of pure Nash
equilibria. Furthermore, we discuss results on the price of anarchy. Last but not least,
we survey known facts on fully mixed Nash equilibria.

Overview. The rest of this paper is organized as follows. After a formal definition of
(weighted) congestion games in Section 2, we turn our attention to the existence and
computational complexity of pure Nash equilibria in Section 3. In Section 4, we con-
sider the price of anarchy before we investigate fully mixed Nash equilibria in Section 5.
We conclude, in Section 6, with some open problems.

2 Definitions and Notations

For all integers k& > 0, we denote [k] = {1,...,k}.
A weighted congestion game I is a tuple

I'=(n, E, (0)iepn), (Si)iem), (fe)eck) -

Here, n is the number of players and E is the finite set of resources. For every player
i € [n], w; is the weight and S; C 2% is the strategy set of player i. Denote W =
Eie[n] w; and S = S7 X ... x S,. For every resource e € FE, the latency function
fe : RT — R describes the latency on resource e.

In a congestion game, the weights of all players are equal. Thus, the private cost
of a player only depends on the number of players choosing the same resources. A
congestion game is symmetric if the players share a strategy set.

2.1 Strategies and Assignments

A pure strategy for player i € [n] is some specific s; € S; whereas a mixed strategy
P, = (p(4,8i))s;es,; is a probability distribution over S;, where p(i,s;) denotes the
probability that player ¢ chooses the pure strategy s;.

A pure assignment is an n-tuple L = (s1, ..., s,) € S whereas a mixed assignment
P = (Py,...,P,)isrepresented by an n-tuple of mixed strategies. A mixed assignment
is fully mixed if p(i,s;) > 0 forall ¢ € [n] and s; € S;.

2.2 Private Cost

Fix any pure assignment L, and denote by lc (L) = >, c(,,; 5,5, Wi the load on resource

e € E. The private cost of player i € [n] is defined by
PC(L) =) fe(le(L) -
ecsij
For a mixed assignment P, the private cost of player i € [n] is

PC(P) = 3 p(L) - PC,(L).

LesS

54 M. Gairing et al.

2.3 Social Cost

Associated with a weighted congestion game " and a mixed assignment P is the social
cost as a measure of social welfare. We consider the following three definitions of social
cost:

— Sum of private costs SCsum(P) = Z PC;(P)
i€[n]
— Maximum of private costs SCuax(P) = mz[u]{ PC;(P)
i€n
— Expected maximum latency SCo(P) = Z p(L) - mz[l>]< PC;(L)
1€n
Les

Let * € {SUM, MAX, oo}. The optimum associated with a weighted congestion game
is defined by OPT,. = minp SC,(P).

2.4 Nash Equilibria and Price of Anarchy

We are interested in a special class of (mixed) assignments called Nash equilibria [30,
31] that we describe here. Given a weighted congestion game and an associated mixed
assignment P, a player ¢ € [n] is satisfied if it can not improve its private cost by uni-
laterally changing its strategy. Otherwise, player ¢ is unsatisfied. The mixed assignment
P is a Nash equilibrium if and only if all players ¢ € [n] are satisfied. Depending on the
type of assignment, we differ between pure, mixed and fully mixed Nash equilibria.

The mixed price of anarchy, also called coordination ratio and denoted PoA,;zed,
is the maximum value, over all instances I" and Nash equilibria P, of the ratio sg;g:) .
If we restrict to pure Nash equilibria, then we speak of the pure price of anarchy and
denote it by PoA, .

2.5 Selfish Steps

Fix any pure assignment L. In a selfish step, exactly one unsatisfied player is allowed
to change its pure strategy such that its private cost decreases. A selfish step is greedy if
the player chooses its best strategy. Clearly, selfish steps define a neighborhood of pure
assignments that can be reached from L. The assignment L has an empty neighborhood
if and only if L is a Nash equilibrium. Thus, a pure Nash equilibrium corresponds to a
local optimum. This stresses the close relationship of selfish steps on the one hand and
local search processes on the other hand.

2.6 Special Weighted Congestion Games

Weighted Network Congestion Games. In a weighted network congestion game the
strategies of a player correspond to paths from a source to a destination in a network.
Thus, this class of games can be interpreted as routing games. If the players share
the same source and destination, then we have a weighted single-commodity network
congestion game, otherwise a weighted multi-commodity network congestion game.
The underlying network of a weighted single-commodity network congestion game is
called [-layered if all paths from source to destination have length .

Nash Equilibria, the Price of Anarchy and the Fully Mixed Nash Equilibrium 55

KP-Model. Koutsoupias and Papadimitriou [21] considered a special weighted network
congestion game, now widely known as the KP-model. In this model, each of the n
players is allowed to use exactly one of m resources (here called links), that is, S; =
[m] for all ¢ € [n]. The players are called identical if all weights are equal, otherwise
arbitrary. Associated with each link j € [m] is a capacity c; representing the rate at
which link j processes load. Clearly, the latency on link j is f;(I;) = %, showing that
the latency functions are linear. If ¢y, . . ., ¢,,, are equal, then the resources are identical,
otherwise related. Denote C' = 3.\, 1 ¢;. In order to measure the social welfare of the
system, Koutsoupias and Papadimitriou [21] considered the expected maximum latency.

A natural goal is to identify a Nash equilibrium with worst social cost for a given
instance. For the model of related links, Gairing et al. [15] conjectured that, in case
of its existence, the fully mixed Nash equilibrium is the worst Nash equilibrium with
respect to social cost.

Fully Mixed Nash Equilibrium Conjecture ([15]). Consider the model of arbitrary
players and related links. Then, for any instance such that a fully mixed Nash equilib-
rium ¥ exists, and for any associated Nash equilibrium P, SC(P) < SC (F).

Routing Games on Parallel Links. We also consider variants of the KP-model to
which we refer as routing games on parallel links. In particular, we investigate re-
stricted strategy sets in which the players are only allowed to choose from a subset of
links, that is, S; C [m] for all i € [n].

2.7 Exact Potential Games

A function @ : (Sy X ... x Sp,) — Ris an exact potential function for a game I if for ev-
ery pure strategy profile L = (s1, ..., s,), for every player i € [n] and for every strategy
s, € 8;, PC;(L')—PC;(L) = &(L')—P(L), where L' = (81, ..., $i—1, 8}, Sit1, s Sn)-
In this case, I' is an exact potential game. Since all exact potential games admit a pure
Nash equilibrium (see e.g. [29]) these games are of interest in this paper.

3 Existence and Computation of Pure Nash Equilibria

Even though Nash was able to show that every finite game possesses a mixed Nash
equilibrium, the question which class of games admits a pure Nash equilibrium remains
open. In the case of its existence, it is of interest whether it is possible to compute a pure
Nash equilibrium in polynomial time. In this section, we give some positive and some
negative answers to both questions concerning the existence and the polynomial time
computation. We start in Section 3.1 with routing games on parallel links and continue
in Sections 3.2 and 3.3 with congestion games and weighted congestion games.

3.1 Routing Games on Parallel Links

We begin our survey with results on the KP-model. Afterwards we focus on games with
restricted strategy sets.

56 M. Gairing et al.

KP-model. We first turn our attention to the problem of computing a pure Nash equi-
librium. Basically, two different approaches can be found in the literature.

The first approach is to directly compute a pure Nash equilibrium. Fotakis et al. [10]
showed that the LPT algorithm, first explored by Graham [16], yields some pure Nash
equilibrium. Clearly, this holds for parallel links with arbitrary non-decreasing latency
functions. For related links, the social cost of the Nash equilibrium computed by LPT
approximates the social cost of an optimal assignment by a factor between 1.52 and
1.67 [12].

The second approach is to convert a given pure assignment into a Nash equilibrium
without increasing the social cost. This conversion process is called nashification. Since
selfish steps do not increase the social cost and any sequence of selfish steps eventu-
ally reaches a pure Nash equilibrium, selfish steps seem to be suitable for nashification.
However, we have to use them carefully since the number of selfish steps may be expo-
nential in the number of players before reaching a pure Nash equilibrium.

Theorem 1 ([7]). Consider the model of arbitrary players and identical links. Then,
there exists an instance and associated pure assignment for which the maximum length
of a sequence of greedy selfish steps is at least

()"

2(m —1)!

Though there exist sequences of greedy selfish steps of exponential length, it is
possible to use selfish steps to compute a Nash equilibrium in polynomial time if the
links are identical. In particular, always moving an unsatisfied player with maximum
weight to its best link requires at most n greedy selfish steps [15]. For related links, it
is unknown whether selfish steps can be used to implement nashification in polynomial
time. Feldmann ez al. [9] chose a different approach not only based on selfish steps.
Their algorithm relies on the following crucial observation.

Lemma 1 ([9]). Consider the model of arbitrary players and related links. Then, for
any pure assignment, a greedy selfish step of an unsatisfied player iy € [n] with weight
w;, from a link j1 € [m] to a link jo € [m] with ¢;, < c¢;j, makes no satisfied player
io € [n] with weight w;, > w;, unsatisfied.

The algorithm of Feldmann et al. [9] works in two phases. In the first phase, it fills
up links with small capacities with players with small weight as close to SCyax (L) as
possible (but without exceeding SCmax (L)), and it collects all these users in a set /. In
the second phase, the algorithm performs greedy selfish steps for unsatisfied players in
U in non-increasing order of the weights. Lemma 1 allows to show that this procedure
results in a pure Nash equilibrium. Implementing the algorithm in a proper way, we get:

Theorem 2 ([9]). Consider the model of arbitrary players and related links. Then, for
any pure assignment L, a pure Nash equilibrium L' with SC, (L) < SCoo (L) can be
computed using O(m?n) time.

Thus, we can apply the PTAS of Hochbaum and Shmoys [17] for scheduling jobs
on related machines and then convert the computed assignment into a pure Nash equi-
librium in polynomial time, and we get:

Nash Equilibria, the Price of Anarchy and the Fully Mixed Nash Equilibrium 57

Corollary 1. There is a PTAS for computing a best pure Nash equilibrium.

Restricted Strategy Sets. Gairing et al. [13] considered a variant of the routing game
on parallel links where there exists at least one player ¢ € [n] with S; C [m]. So, the
strategy sets of the players are restricted.

Gairing et al. [13] combined ideas from blocking flows and the generic PREFLOW-
PUSH algorithm to derive a nashification algorithm for games with restricted strategy
sets on identical links.

Theorem 3 ([13]). Consider the model of arbitrary players with restricted strategy sets
and identical links. Then, for any pure assignment L, a pure Nash equilibrium L' with
SCoo(L') < SCoo(L) can be computed from L using O(rmA(logW + m?)) time,

where 1 is the number of distinct weights and A =3, (1 |Si|.

Lenstra et al. [23] showed that an optimum assignment can be approximated within
a factor of 2. It is worth mentioning that the nashification algorithm of Gairing et al. [13]
improves this result since, for any given assignment L, it computes a pure Nash equilib-
rium L with SC (L) < (2 — w%) - OPT 4. Note that we can not hope to approximate

an optimum assignment with factor less than % unless P = NP [23].

3.2 Congestion Games

In his seminal paper, Rosenthal [33] proved that ®(L) = > .5 Zée:(%) fe(4) is an

exact potential function for congestion games. An immediate consequence follows:
Theorem 4 ([33]). Every congestion game possesses a pure Nash equilibrium.

Rosenthal’s argumentation implies that every congestion game is an exact potential
game. A result by Monderer and Shapley [29] shows that every exact potential game is
closely related to a congestion game.

Theorem 5 ([29]). Every finite exact potential game is isomorphic to a congestion
game.

Since every congestion game I" possesses a pure Nash equilibrium the natural ques-
tion arises whether it is possible to compute a pure Nash equilibrium for I" in polyno-
mial time. It is easy to see that this computational problem is in PLS. The class PLS
(polynomial-time /ocal search) introduced in [19] consists of local search problems for
which local optimality can be verified in polynomial time. Many local search prob-
lems were shown to be complete for this class (see e.g. [19,22,37]), including graph
partitioning, weighted satisfiability and traveling salesman problems. For none of these
PLS-complete problems an algorithm is known that is able to compute a local optimum
in polynomial time.

Using a sophisticated PLS-reduction Fabrikant et al. [8] proved that the computation
of a pure Nash equilibrium for symmetric congestion games and asymmetric network
congestion games is PLS-complete (see Figure 1). However, they showed that it is pos-
sible to calculate a pure Nash equilibrium for a symmetric network congestion game in
polynomial time by using a min-cost flow algorithm.

58 M. Gairing et al.

Symmetric Asymmetric

Congestion Games PLS-complete PLS-complete

Network Congestion Games | Polynomial time | PLS-complete

Fig. 1. Complexity of computing pure Nash equilibria in congestion games [8]

We now switch to the class of congestion games with player-specific payoff-functions
introduced by Milchtaich [28]. Here, a player always selects exactly one resource, that
is, S; = ... =S, = E. Furthermore, the private cost of a player ¢ € [n] on a resource
e € E is described by a load dependent non-increasing latency function f! : RT + R
that may be different from the latency function f? for another player j # i. Milch-
taich [28] considered these games with respect to pure Nash equilibria and sequences
of selfish step. He showed:

Theorem 6 ([28]). Every congestion game with player-specific payoff-function pos-
sesses a pure Nash equilibrium.

Theorem 7 ([28]). There exists a finite congestion game with player-specific payoff-
function that admits a cycle of selfish steps, that is, a sequence of selfish steps starting
and ending in the same assignment.

It follows from the last theorem that games with player-specific payoff-functions do
not admit an exact potential function.

3.3 Weighted Congestion Games

In this section we deal with weighted congestion games where the players may have
different weights. Fotakis ef al. [11] showed that there are such games that possess no
pure Nash equilibrium. Moreover, they were able to proof that there is a subclass of
games for which the existence of pure Nash equilibria is guaranteed.

Theorem 8 ([11]). There exist instances of weighted single-commodity network con-
gestion games for which there is no pure Nash equilibrium.

Theorem 9 ([11]). For any weighted multi-commodity network congestion game with
linear latency functions, at least one pure Nash equilibrium exists.

4 Price of Anarchy

The mixed price of anarchy, also known as coordination ratio, has been defined in the
seminal work by Koutsoupias and Papadimitriou [21] as a measure of the extent to
which non-cooperation approximates cooperation. Recall that it is defined as the worst-
case ratio between the value of social cost in a Nash equilibrium and that of a social

Nash Equilibria, the Price of Anarchy and the Fully Mixed Nash Equilibrium 59

optimum. We present results on the pure and the mixed price of anarchy for routing
games on parallel links in Section 4.1, for congestion games in Section 4.2, and for
weighted congestion games in Section 4.3.

4.1 Routing Games on Parallel Links

We start with results on the KP-model. We then focus on the extension of this model
to restricted strategy sets. Finally, we investigate routing games on parallel links with
social cost defined as the sum of the private costs of the players.

KP-model. In the KP-model, latency functions are linear, social cost is defined as the
expected maximum latency and the players may choose any link. For the case of iden-
tical links the pure price of anarchy is upper bounded by a constant. This does not hold
for related links or mixed Nash equilibria. The bounds for mixed Nash equilibria are
shown by first bounding the maximum expected load on a link and then applying a
Hoeffding inequality [18]. All bounds are summarized in Figure 2.

Pure Price of Anarchy Mixed Price of Anarchy
Identical Links | 2 — -2 sl | 6 (gees) 15,20

Related Links

[5] (5]

o) lz?g m 6 logm
log log m logloglogm

Fig. 2. Pure and mixed price of anarchy for the KP-model

Restricted Strategy Sets. In case of restricted strategy sets, even for identical links, the
pure price of anarchy cannot be bounded by a constant. This also holds if the weights
are identical. Figure 3 shows bounds on the pure price of anarchy. Note, that the bound
for identical players and related links is only tight if n = m. Awerbuch et al. [2] further
extended their result to mixed Nash equilibria.

Theorem 10 ([2]). Consider the model of arbitrary players with restricted strategy sets
and identical links. Then,

PoAmised = O [—28™) |
log log log m

Identical Players Arbitrary Players
Identical Links | © (p%62) [2,13] 6 (i) [2,13]
Related Links | O (%62) [13] | m—1<PoA,c<m [13]

Fig. 3. Pure price of anarchy for the KP-model with restricted strategy sets

60 M. Gairing et al.

Social Cost as Sum of Private Costs. Gairing et al. [14] considered another routing
game on parallel links. In contrast to the KP-model, social cost is defined as the sum of
the private costs of the players. This good natured definition of social cost makes the
analysis significantly simpler and allows the investigation of general non-decreasing
non-constant latency functions. For identical players, Gairing et al. [14] carried over an
upper bound on the pure price of anarchy from the Wardrop-model [35] to the discrete
setting.

Proposition 1 ([14]). Consider the model of identical players and arbitrary links with
non-decreasing and non-constant latency functions. If x f;j(x) < ay_;_, f;(t) for all
x € [n] and j € [m), then for any pure Nash equilibrium L, SCsym (L) < a- OPTsym.

Corollary 2 ([14]). Consider the model of identical players and arbitrary links. If the
latency functions are polynomials with non-negative coefficients and maximum degree
d, then the pure price of anarchy is bounded by d + 1.

In case that all links have the same latency function f(x) = x¢, one can show the

following bound on the mixed price of anarchy. By, is the k’th Bell number and counts
the number of ways that a set of k elements can be partitioned into non-empty subsets.

Theorem 11 ([14]). Consider the model of identical players and identical links with
latency function f(x) = 2% d € N. Then,

SCsum(P)

=B .
iug OPTsum ot

4.2 Congestion Games

Recently, the pure price of anarchy found its way into congestion games [1,4]. We
restrict to results of Christodoulou and Koutsoupias [4] since only the abstract of the
paper of Awerbuch et al. [1] was available (note that the latter paper also considers
weighted congestion games). For congestion games with linear latency functions, Fig-
ure 4 summarizes results (both upper and lower bounds) on the pure price of anarchy.
For the case of symmetric congestion games and social cost as the maximum of the
private costs there is still a gap between the upper and the lower bound.

Christodoulou and Koutsoupias [4] also considered polynomial latency functions of
degree d with non-negative coefficients. Figure 5 shows the corresponding bounds.

Both linear and polynomial latency functions were also considered in the Wardrop-
model. Recall that in this model the social welfare of the system is defined as the sum

SCsum SCwmax
Symmetric ot 32 < PoApure < 5
. 5
Asymmetric 5 O(v/n)

Fig. 4. Pure price of anarchy for congestion games with linear latency functions [4]

Nash Equilibria, the Price of Anarchy and the Fully Mixed Nash Equilibrium 61

SCsum SCmax
Symmetric d®@ d®@
Asymmetric | d°@ 2(n* @) O(n)

Fig. 5. Pure price of anarchy for congestion games with polynomial latency functions [4]

of the edge latencies. The pure price of anarchy for linear latency functions is % [35]
whereas the pure price of anarchy for polynomial latency functions of degree d turned

out to be @(logd) [34].

4.3 Weighted Congestion Games

The mixed price of anarchy was also studied in weighted congestion games. Fotakis et
al. [11] considered [-layered networks with identical edges each having the same linear
latency function and social cost defined as the expected maximum latency.

Theorem 12 ([11]). For weighted [-layered network congestion games with latency
function f.(x) = x for all e € E, the mixed price of anarchy for social cost as expected

. . logm
maximum latency is O (log Tog m)

This result is particularly interesting in comparison with the corresponding bound for
the parallel link network (see Figure 2). It shows that under all [-layered networks the
parallel link network has worst mixed price of anarchy.

S Fully Mixed Nash Equilibria for Routing Games on Parallel
Links

In routing games on parallel links, a fully mixed Nash equilibrium is a special Nash equi-
librium, where each player chooses each link with strictly positive probability. Such a
Nash equilibrium does not always exist. In this section, we give a characterization of in-
stances with a fully mixed Nash equilibrium, we show its uniqueness and we study the
Fully Mixed Nash Equilibrium Conjecture. We do this for two different routing games
on parallel links. We would like to point out that there exist routing games on parallel
links for which the Fully Mixed Nash Equilibrium Conjecture was disproved [24].

KP-model. Mavronicolas and Spirakis [26] were the first to consider fully mixed Nash
equilibria. They showed for the KP-model, that if a fully mixed Nash equilibrium exists,
it is unique and can be easily computed.

Theorem 13 ([26]). Consider the model of arbitrary players and related links. Then,
there exists a fully mixed Nash equilibrium ¥ if and only if

62 M. Gairing et al.

fij:(—ﬂ?)-(l—m_vz)%>+ge(0,1)

foralli € [n] and j € [m]. If F exists, then F is unique and ¥ = (fi;)ic[n] jcm)-

In particular, this implies that for the case of identical links the fully mixed Nash equi-
librium uniquely exists and has probabilities f;; = L, Vi € [n], j € [m].

In [15], the Fully Mixed Nash Equilibrium Conjecture was first explicitly stated for
the KP-model, where social cost is defined as the expected maximum latency. Here, the
ultimate settlement of this conjecture would reveal an interesting complexity-theoretical
contrast between the worst-case pure and the worst-case mixed Nash equilibria. On the
one hand, if the conjecture is valid, then the identification of the worst-case mixed Nash
equilibrium is immediate in the cases where the fully mixed Nash equilibrium exists.
On the other hand, Gairing et al. [15] showed that the worst-case pure Nash equilibrium

isnot (2 — miﬂ — ¢)-approximable even on identical links.

Theorem 14 ([15]). Consider the model of arbitrary players and identical links. If, for
any e with 0 < e < 1 — =5, the worst-case pure Nash equilibrium is (2- miﬂ —€)-
approximable, then P = NP.

This result also unfolds an interesting contrast between best and worst-case pure
Nash equilibria. For any £ > 0, a pure Nash equilibrium L with SCo (L) < (1 +¢) -
OPT can be computed in polynomial time whereas the computation of a pure Nash
equilibrium L’ with SC (L) > (1 +¢) - OPT is N'P-hard.

So far, the Fully Mixed Nash Equilibrium Conjecture has been proved only for
some special cases, namely, two players on identical links [15], two identical players
on related links and identical players on two identical links [24]. Furthermore, it was
shown up to a factor of 49.02 in case of identical players and related links [10] and up
to a factor of 2h(1 + ¢) for arbitrary players on identical links, if n = m sufficient large
[15], where h is the factor between the maximum and the average weight of the players.

On the other hand, Gairing et al. [15] proved that the private costs of all players in
a Nash equilibrium are upper bounded by their private costs in the fully mixed Nash
equilibrium. This directly implies:

Theorem 15 ([15]). Consider the model of arbitrary players and related links. If the

Sfully mixed Nash equilibrium F exists, then, for any mixed Nash equilibrium P, we have
SCsum (P) < SCSUM(F) and SCMAx(P) < SCMA)((F).

Social Cost as Sum of Private Costs. Fully mixed Nash equilibria were also consid-
ered for identical players and general non-decreasing and non-constant latency func-
tions with respect to social cost defined as the sum of the private costs [14]. In order to
characterize instances where the fully mixed Nash equilibrium exists, Gairing et al. [14]
introduced two classes of links, namely dead links and special links. They showed that
in any Nash equilibrium, none of the players is assigned to a dead link. Moreover, there
exists at most one player who is assigned to any of the special links. Availing these
results, they could give the following thorough characterization.

Nash Equilibria, the Price of Anarchy and the Fully Mixed Nash Equilibrium 63

Theorem 16 ([14]). Consider the model of identical players and links with non-de-
creasing and non-constant latency functions. Then, there exists a fully mixed Nash
equilibrium F if and only if there are no special and no dead links. If ¥ exists then
F is unique.

For every instance define the generalized fully mixed Nash equilibrium as the fully
mixed Nash equilibrium for the instance where the links are restricted to non-special
and non-dead links. If latency functions are non-decreasing, non-constant and convex,
then one can show, that the private cost of each player in a Nash equilibrium is up-
per bounded by its private cost in the generalized fully mixed Nash equilibrium. This
directly implies:

Theorem 17 ([14]). Consider the model of identical players and links with non-de-
creasing, non-constant and convex latency functions. Then, for any Nash equilibrium
P and generalized fully mixed Nash equilibrium F, SCsym(P) < SCsym(F) and
SCumax(P) < SCuax(F).

6 Open Problems

The flourishing interest in weighted congestion games resulted in a multitude of results
and methods, but raised even more questions remaining tantalizingly open. We only
state some of them:

— Although the results of Nash [30, 31] guarantee the existence of a Nash equilibrium
in strategic games, the computational complexity of computing a Nash equilibrium
is open even if only two players are involved.

— Which classes of symmetric weighted network congestions games possess a pure
Nash equilibrium? For which classes is it possible to compute such a pure Nash
equilibrium in polynomial time?

— It is impossible to approximate a worst-case pure Nash equilibrium within a factor
better than 2 — mi-ﬁ—l in the KP-model with identical links [15]. To which extent is it
possible to approximate a worst-case pure Nash equilibrium in the KP-model with
related links or in more general settings?

— Most of the known bounds on the price of anarchy for network congestion games
were shown with respect to social cost defined as sum or maximum of the private
costs of the players [1,4]. What is the price of anarchy if social cost is defined as
expected maximum latency?

— For the KP-model, Gairing et al. [15] showed that the private costs of all players
in a Nash equilibrium are bounded from above by their private costs in the fully
mixed Nash equilibrium. For which classes of network congestion games does this
property still hold?

— If the players are identical and the links are related, then the Fully Mixed Nash
Equilibrium Conjecture holds up to a factor of 2h(1 + &), where h is the factor
between the maximum and the average weight of the players [15]. Does there exist
an approximation factor independent of A?

64

M. Gairing et al.

References

1.

2.

10.

12.

13.

14.

15.

16.

17.

B. Awerbuch, Y. Azar, and A. Epstein. The Price of Routing Unsplittable Flow. In Proceed-
ings of the 37th Annual ACM Symposium on Theory of Computing (STOC’05), 2005.

B. Awerbuch, Y. Azar, Y. Richter, and D. Tsur. Tradeoffs in Worst-Case Equilibria. In
Proceedings of the Ist International Workshop on Approximation and Online Algorithms
(WAOA’03), LNCS 2909, pages 41-52, 2003.

M. Beckmann, C. B. McGuire, and C. B. Winsten. Studies in the Economics of Transporta-
tion. Yale University Press, 1956.

G. Christodoulou and E. Koutsoupias. The Price of Anarchy of Finite Congestion Games.
In Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC’05),
2005.

A. Czumaj and B. Vocking. Tight Bounds for Worst-Case Equilibria. In Proceedings of the
13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’02), pages 413-420,
2002. Also accepted to Journal of Algorithms as Special Issue of SODA’02.

S. C. Dafermos and F. T. Sparrow. The Traffic Assignment Problem for a General Network.
Journal of Research of the National Bureau of Standards, Series B, 73(2):91-118, 1969.

E. Even-Dar, A. Kesselmann, and Y. Mansour. Convergence Time to Nash Equilibria. In Pro-
ceedings of the 30th International Colloquium on Automata, Languages, and Programming
(ICALP’03), LNCS 2719, pages 502-513, 2003.

A. Fabrikant, C. H. Papadimitriou, and K. Talwar. The Complexity of Pure Nash Equilibria.
In Proceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC’04),
pages 604-612, 2004.

R. Feldmann, M. Gairing, T. Liicking, B. Monien, and M. Rode. Nashification and the
Coordination Ratio for a Selfish Routing Game. In Proceedings of the 30th International
Colloquium on Automata, Languages, and Programming (ICALP’03), LNCS 2719, pages
514-526, 2003.

D. Fotakis, S. Kontogiannis, E. Koutsoupias, M. Mavronicolas, and P. Spirakis. The Structure
and Complexity of Nash Equilibria for a Selfish Routing Game. In Proceedings of the 29th
International Colloquium on Automata, Languages, and Programming (ICALP’02), LNCS
2380, pages 123-134, 2002.

. D. Fotakis, S. Kontogiannis, and P. Spirakis. Selfish Unsplittable Flows. Accepted to Theo-

retical Computer Science.

D. K. Friesen. Tighter Bounds for LPT Scheduling on Uniform Processors. SIAM Journal
on Computing, 16(3):554-560, 1987.

M. Gairing, T. Liicking, M. Mavronicolas, and B. Monien. Computing Nash Equilibria for
Scheduling on Restricted Parallel Links. In Proceedings of the 36th Annual ACM Symposium
on Theory of Computing (STOC’04), pages 613-622, 2004.

M. Gairing, T. Liicking, M. Mavronicolas, B. Monien, and M. Rode. Nash Equilibria in
Discrete Routing Games with Convex Latency Functions. In Proceedings of the 31st Inter-
national Colloquium on Automata, Languages, and Programming (ICALP’04), LNCS 3142,
pages 645-657, 2004.

M. Gairing, T. Liicking, M. Mavronicolas, B. Monien, and P. Spirakis. Extreme Nash
Equilibria. In Proceedings of the 8th Italian Conference on Theoretical Computer Science
(ICTCS’03), LNCS 2841, pages 1-20, 2003. Also accepted to Theoretical Computer Science,
Special Issue on Game Theory Meets Theoretical Computer Science.

R. L. Graham. Bounds on Multiprocessing Timing Anomalies. SIAM Journal of Applied
Mathematics, 17(2):416-429, 1969.

D. S. Hochbaum and D. B. Shmoys. A Polynomial Approximation Scheme for Schedul-
ing on Uniform Processors: Using the Dual Approximation Approach. SIAM Journal on
Computing, 17(3):539-551, 1988.

18.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.
32.

33.

34.

35.

36.

37.

38.
39.

40.

41.

Nash Equilibria, the Price of Anarchy and the Fully Mixed Nash Equilibrium 65

W. Hoeftding. Probability Inequalities for Sums of Bounded Random Variables. American
Statistical Association Journal, 58(301):12-30, 1963.

. D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. How Easy is Local Search? Journal

of Computer and System Sciences, 37(1):79-100, 1988.

E. Koutsoupias, M. Mavronicolas, and P. Spirakis. Approximate Equilibria and Ball Fusion.
Theory of Computing Systems, 36(6):683—-693, 2003.

E. Koutsoupias and C. H. Papadimitriou. Worst-Case Equilibria. In Proceedings of the 16th
International Symposium on Theoretical Aspects of Computer Science (STACS’99), LNCS
1563, pages 404413, 1999.

M. W. Krentel. On Finding and Verifying Locally Optimal Solutions. SIAM Journal of
Computing, 19(4):742-729, 1990.

J. K. Lenstra, D. B. Shmoys, and E. Tardos. Approximation Algorithms for Scheduling
Unrelated Parallel Machines. Mathematical Programming, 46:259-271, 1990.

T. Liicking, M. Mavronicolas, B. Monien, M. Rode, P. Spirakis, and I. Vrto. Which is the
Worst-Case Nash Equilibrium? In Proceedings of the 28th International Symposium on
Mathematical Foundations of Computer Science (MFCS’03), LNCS 2747, pages 551-561,
2003.

A. Mas-Colell, M. D. Whinston, and J. R. Green. Microeconomic Theory. Oxford University
Press, 1995.

M. Mavronicolas and P. Spirakis. The Price of Selfish Routing. In Proceedings of the 33rd
Annual ACM Symposium on Theory of Computing (STOC’01), pages 510-519, 2001.

R. D. McKelvey and A. McLennan. Computation of Equilibria in Finite Games. In Hand-
book of Computational Economics, 1996.

I. Milchtaich. Congestion Games with Player-Specific Payoff Functions. Games and Eco-
nomic Behavior, 13(1):111-124, 1996.

D. Monderer and L. S. Shapley. Potential Games. Games and Economic Behavior,
14(1):124-143, 1996.

J. F. Nash. Equilibrium Points in n-Person Games. Proceedings of the National Academy of
Sciences of the United States of America, 36:48-49, 1950.

J. F. Nash. Non-Cooperative Games. Annals of Mathematics, 54(2):286-295, 1951.

C. H. Papadimitriou. Algorithms, Games, and the Internet. In Proceedings of the 33rd
Annual ACM Symposium on Theory of Computing (STOC’01), pages 749-753, 2001.

R. W. Rosenthal. A Class of Games Possessing Pure-Strategy Nash Equilibria. International
Journal of Game Theory, 2:65-67, 1973.

T. Roughgarden. The Price of Anarchy is Independent of the Network Topology. Journal of
Computer and System Sciences, 67(2):341-364, 2003.

T. Roughgarden and E. Tardos. How Bad Is Selfish Routing? Journal of the ACM, 49(2):236—
259, 2002.

T. Roughgarden and E. Tardos. Bounding the Inefficiency of Equilibria in Nonatomic Con-
gestion Games. Games and Economic Behaviour, 47(2):389—-403, 2004.

A. A. Schiffer and M. Yannakakis. Simple Local Search Problems that are Hard to Solve.
SIAM Journal of Computing, 20(1):56-87, 1991.

V. Vazirani. Approximation Algorithms. Springer Verlag, 2001.

J. von Neumann. Zur Theorie der Gesellschaftsspiele. Mathematische Annalen, 100:295—
320, 1928.

J. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior. Princeton
University Press, 1944.

J. G. Wardrop. Some Theoretical Aspects of Road Traffic Research. In Proceedings of the
Institute of Civil Engineers, Pt. I, Vol. 1, pages 325-378, 1956.

The Tree Inclusion Problem: In Optimal
Space and Faster

Philip Bille* and Inge Li Gortz

The IT University of Copenhagen,
Department of Theoretical Computer Science,
Rued Langgaards Vej 7, 2300 Copenhagen S, Denmark
{beetle, inge}@itu.dk

Abstract. Given two rooted, ordered, and labeled trees P and T the
tree inclusion problem is to determine if P can be obtained from T by
deleting nodes in 7. This problem has recently been recognized as an
important query primitive in XML databases. Kilpeldinen and Mannila
(STAM J. of Comp. 1995) presented the first polynomial time algorithm
using quadratic time and space. Since then several improved results have
been obtained for special cases when P and T have a small number of
leaves or small depth. However, in the worst case these algorithms still use
quadratic time and space. In this paper we present a new approach to the
problem which leads to a new algorithm which uses optimal linear space
and has subquadratic running time. Our algorithm improves all previous
time and space bounds. Most importantly, the space is improved by a
linear factor. This will make it possible to query larger XML databases
and speed up the query time since more of the computation can be kept
in main memory.

1 Introduction

Let T be a rooted tree. We say that T is labeled if each node is a assigned a
symbol from an alphabet X' and we say that T is ordered if a left-to-right order
among siblings in 7T is given. All trees in this paper are rooted, ordered, and
labeled. A tree P is included in T', denoted P C T, if P can be obtained from T’
by deleting nodes of T'. Deleting a node v in T' means making the children of v
children of the parent of v and then removing v. The children are inserted in the
place of v in the left-to-right order among the siblings of v. The tree inclusion
problem is to determine if P can be included in T and if so report all subtrees
of T' that include P.

Recently, the problem has been recognized as an important query primitive
for XML data and has received considerable attention, see e.g., [15,16,18,17].
The key idea is that an XML document can be viewed as an ordered, labeled

* This work is part of the DSSCV project supported by the IST Programme of the
European Union (IST-2001-35443).

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 66-77, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

The Tree Inclusion Problem: In Optimal Space and Faster 67

catalog_
R
book book T
author chapter author chapter chapter
N I 1~ i
john XML name title section title
john databases XML queries
(a) (b)
catalog_
.................. I -
book----"~""" - book - T
et TTTET s = ~—
author_ chapter _ _ _author chapter chapter
_________ | |
john XML. _ | _name title section title
el _ -john databases ~ “XML queries

()

Fig. 1. Can tree (a) be included in tree (b)? Yes. The embedding is given in (c)

tree and queries on this tree correspond to a tree inclusion problem. As an
example consider Fig. 1. Suppose that we want to maintain a catalog of books
for a bookstore. A fragment of the tree, denoted D, corresponding to the catalog
is shown in (b). In addition to supporting full-text queries, such as find all
documents containing the word ”John”, we can also utilize the tree structure of
the catalog to ask more specific queries, such as ”find all books written by John
with a chapter that has something to do with XML”. We can model this query
by constructing the tree, denoted @, shown in (a) and solve the tree inclusion
problem: is @ = D? The answer is yes and a possible way to include @ in D is
indicated by the dashed lines in (c). If we delete all the nodes in D not touched
by dashed lines the trees () and D become isomorphic. Such a mapping of the
nodes from @ to D given by the dashed lines is called an embedding (formally
defined in Sec. 3).

The tree inclusion problem was initially introduced by Knuth [11-exercise
2.3.2-22] who gave a sufficient condition for testing inclusion. Motivated by ap-
plications in structured databases [9, 12] Kilpeldinen and Mannila [10] presented
the first polynomial time algorithm using O(npnr) time and space, where np
and np is the number of nodes in a tree P and T, respectively. During the last
decade several improvements of the original algorithm of [10] have been sug-
gested [8,1,14,4]. The previously best known bound is due to Chen [4] who
presented an algorithm using O(Ipnr) time and O(lp min{dr, l7}) space. Here,
ls and dg denotes the number of leaves of and the maximum depth of a tree .S,
respectively. This algorithm is based on an algorithm of Kilpeldinen [8]. Note
that the time and space is still @(npnr) for worst-case input trees.

In this paper we improve all of the previously known time and space bounds.
Combining the three algorithms presented in this paper we have:

68 P. Bille and I.L. Ggrtz

Theorem 1. For trees T and P the tree inclusion problem can be solved in

O(min(ﬁzzﬁ I pnp,nplrloglognr)) time using optimal O(nr + np) space.

Hence, for worst-case input this improves the previous time and space bounds
by a logarithmic and linear factor, respectively. When P has a small number of
leaves the running time of our algorithm matches the previously best known time
bound of [4] while maintaining linear space. In the context of XML databases
the most important feature of our algorithms is the space usage. This will make
it possible to query larger trees and speed up the query time since more of the
computation can be kept in main memory.

Techniques. Most of the previous algorithms, including the best one [4], are
essentially based on a simple dynamic programming approach from the original
algorithm of [10]. The main idea behind this algorithm is following: Let v € V(P)
and w € V(T) be nodes with children vy,...,v; and wy,...,w;, respectively.
To decide if P(v) can be included T'(w) we try to find a sequence of numbers
1<z <zy <--- <a; <jsuch that P(vg) can be included in T'(w,,) for all
k, 1 <k <. If we have already determined whether or not P(vs) C T'(wy), for
all sand ¢, 1 < s < i, 1 <t < j, we can efficiently find such a sequence by
scanning the children of v from left to right. Hence, applying this approach in
a bottom-up fashion we can determine, if P(v) C T'(w), for all pairs (v,w) €
V(P) x V(T).

In this paper we take a significantly different approach. The main idea is
to construct a data structure on T supporting a small number of procedures,
called the set procedures, on subsets of nodes of T. We show that any such
data structure implies an algorithm for the tree inclusion problem. We consider
various implementations of this data structure which all use linear space. The
first simple implementation gives an algorithm with O(Ipny) running time. As
it turns out, the running time depends on a well-studied problem known as the
tree color problem. We show a general connection between data structures for the
tree color problem and the tree inclusion problem. Plugging in a data structure
of Dietz [5] we obtain an algorithm with O(nplr loglogny) running time.

Based on the simple algorithms above we show how to improve the worst-
case running time of the set procedures by a logarithmic factor. The general idea
used to achieve this is to divide T into small trees or forests, called micro trees
or clusters of logarithmic size which overlap with other micro trees in at most 2
nodes. Each micro tree is represented by a constant number of nodes in a macro
tree. The nodes in the macro tree are then connected according to the overlap of
the micro trees they represent. We can efliciently preprocess the micro trees and
the macro tree such that the set procedures use constant time for each micro

tree. Hence, the worst-case running time is improved by a logarithmic factor to
(iog o) . |
Our results rely on a standard RAM model of computation with word size

O(logn). We use a standard instruction set such as bitwise boolean operations,
shifts, and addition. Most of the proofs are omitted due to lack of space. They
can be found in the full version of the paper [3].

The Tree Inclusion Problem: In Optimal Space and Faster 69

2 Notation and Definitions

In this section we define the notation and definitions we will use throughout the
paper. For a graph G we denote the set of nodes and edges by V(G) and E(G),
respectively. Let T be a rooted tree. The root of T is denoted by root(T"). The
size of T, denoted by nr, is |[V(T)|. The depth of a node v € V(T), depth(v), is
the number of edges on the path from v to root(T) and the depth of T, denoted
dr, is the maximum depth of any node in T. The set of children of a node v
is denoted child(v). A node with no children is a leaf and otherwise an internal
node. The set of leaves of T is denoted L(T') and we define Ir = |L(T)|. We say
that T is labeled if each node v is a assigned a symbol, denoted label(v), from an
alphabet X and we say that T is ordered if a left-to-right order among siblings
in T is given. All trees in this paper are rooted, ordered, and labeled.

Let T'(v) denote the subtree of T rooted at a node v € V(T'). If w € V(T'(v))
then v is an ancestor of w, denoted v < w, and if w € V(T'(v))\{v} then v is a
proper ancestor of w, denoted v < w. If v is a (proper) ancestor of w then w is a
(proper) descendant of v. A node z is a common ancestor of v and w if it is an
ancestor of both v and w. The nearest common ancestor of v and w, nca(v, w), is
the common ancestor of v and w of largest depth. The first ancestor of w labeled
«, denoted fl(w,), is the node v such that v < w, label(v) = «, and no node on
the path between v and w is labeled «. If no such node exists then fl(w, o) = L,
where L ¢ V(T') is a special null node.

For any set of pairs U, let U|, and U|, denote the projection of U to the first
and second coordinate, that is, if (uq,u2) € U then u; € Ul and us € U],.

Lists. A list, X, is a finite sequence of objects X = [v1,...,v;]. The length of
the list, denoted | X|, is the number of objects in X. The ith element of X, X[i],
1 <4 < |X|is the object v; and v € X iff v = X[j] for some 1 < j < |X|. For any
two lists X = [v1,...,v,] and Y = [wy, ..., wg], the list obtained by appending
Y to X is the list X oY = [v1,..., 05, w1, ..., wg]. We extend this notation such
that for any object u, X ou denotes the list X o[u]. For simplicity in the notation
we will sometimes write [v; | 1 < i < k] to denote the list [vy,...,v]. A pair list
is a list of pairs of object Y = [(v1,w1), ..., (vg, wy)]. Here the first and second
element in the pair is denoted by Y[i]; = v; and Y[i]o = w;. The projection of
pair lists is defined by Y|, = [v1,...,v] and Y|, = [wy, ..., wg].

Orderings. Let T be a tree with root v and let vy,...,vx be the children of v
from left-to-right. The preorder traversal of T is obtained by visiting v and then
recursively visiting T'(v;), 1 < ¢ < k, in order. Similarly, the postorder traversal
is obtained by first visiting T'(v;), 1 < i < k, and then v. The preorder number
and postorder number of a node w € T'(v), denoted by pre(w) and post(w), is
the number of nodes preceding w in the preorder and postorder traversal of T,
respectively. The nodes to the left of w in T is the set of nodes u € V(T') such
that pre(u) < pre(w) and post(u) < post(w). If u is to the left of w, denoted by
u <1 w, then w is to the right of u. If u <w, u < w, or w < u we write u < w.
The null node L is not in the ordering, i.e., L 4 v for all nodes v.

70 P. Bille and I.L. Ggrtz

® =5
s
Vs ® =55
V1 U2 v7
V4 © =53
U3 V3 V4
(a) (b) @ =5,

Fig.2. In (a) we have mop(S1,S2,51,53,51) = {(vs,v7r)} and in (b) we have
mop(St, Sz, 51, 83, S4) = {(v1,v7), (vs,v9)}

Deep Sets. A set of nodes V- C V(T) is deep iff no node in V' is a proper ancestor
of another node in V.

Minimum Ordered Pair. For deep sets of nodes Vi,...,Vj let &(Vy,..., Vi)
(Vi x -+ x Vi), be the set such that (vq,...,v) € ®(Vi,..., Vi) iff v < --
vg. If (v1,...,05) € (V4,..., V) and there is no (vi,...,v}) € (Vi,..., Vi),
where either v1 < v} < v, < or vy <v] < v, < v then the pair (vi,vg) is
a minimum ordered pair. The set of minimum ordered pairs for Vi,...,Vj is
denoted by mop(Vi,..., V). Fig. 2 illustrates mop on a small example. The
following lemma shows that we can compute mop(Vi, ..., V}) iteratively by first
computing mop(Vi, V) and then mop(mop(Vi, Va)|,, V3) and so on.

-
<

Lemma 1. For any deep sets of nodes V..., Vi:(v1,v) € mop(Vi,..., Vi) iff
there exists a vi_1 such that (vy,vk—1) € mop(Vi,...,Vk—1) and (vk—1,v;) €
mop(mop(Vl, RN Vk71)|27 Vk)

3 Computing Deep Embeddings

In this section we present a general framework for answering tree inclusion
queries. As in [10] we solve the equivalent tree embedding problem. Let P and
T be rooted labeled trees. An embedding of P in T is an injective function
f:V(P)— V(T) such that for all nodes v,u € V(P),

(i) label(v) = label(f(v)). (label preservation condition)
(ii) v < wiff f(v) < f(u). (ancestor condition)
(iii) v Qu iff f(v) < f(u). (order condition)

Lemma 2 ([10]). For any trees P and T, P T T iff there exists an embedding
of PinT.

An example of an embedding is given in Fig. 1(c). We say that the embedding f
is deep if there is no embedding ¢ such that f(root(P)) < g(root(P)). The deep
occurrences of P in T, denoted emb(P,T') is the set of nodes,

emb(P,T) = {f(root(P)) | f is a deep embedding of P in T'}.

The Tree Inclusion Problem: In Optimal Space and Faster 71

Note that emb(P,T) must be a deep set in T. Furthermore, by definition the
set of ancestors of nodes in emb(P,T) is the set of subtrees T'(u) such that
P C T(u). Hence, to solve the tree inclusion problem it is sufficient to compute
emb(P,T) and then, using additional O(ny) time, report all ancestors (if any)
of this set.

The key idea in our algorithm for computing deep embeddings is to con-
struct a data structure that allows a fast implementation of the following pro-
cedures, called the set procedures. For all V- C V(T), U C V(T) x V(T), a € X
define:

PARENT7 (V). Return the set R := {parent(v) | v € V'}.

Ncar(U). Return the set R := {nca(uy,us) | (ug,us) € U}.

DEEP7 (V). Return the set R:= {v € V | fw € V such that v < w}.

Movrp(U,V). Return the set of pairs R such that for any pair (uq,us) € U,
(u1,v) € R iff (ug,v) € mop(Ul,, V).

Frr(V,a). Return the set R := {fl(v,a) | v e V}.

With the set procedures we can compute deep embeddings. The following pro-
cedure EMBr(v), v € V(P), recursively computes the set of deep occurrences of
P(v) in T. Fig. 3 illustrates how EMB works on a small example.

EMB7(v) Let v1,...,v; be the sequence of children of v ordered from left to
right. There are three cases:
1. k=0 (v is a leaf). Set R := DEEPy(FLp(L(T),label(v))).
2. k = 1. Recursively compute Ry := EMBp(v1).
Set R := DEEPy(FLp(DEEP; (PARENT(Ry)),label(v))).
3. k > 1. Compute Ry := EMBp(v1) and Uy := {(r,7) | » € Ry}. For i,
1 <4 <k, compute R; := EMBr(v;) and U; := Mopr(U;_1, R;).
Finally, compute R := DEEPr(FLp(DEEPr(NCAT(Uy)),label(v))).
If R = () stop and report that there is no deep embedding of P(v) in T.
Otherwise return R.

Lemma 3. For any two trees T and P, EMBr(v) computes the set of deep oc-
currences of P(v) in T.

Proof. By induction on the size of the subtree P(v). If v is a leaf we imme-
diately have emb(v,T) = DEEPy(FLy(L(T),label(v))). Suppose that v is an
internal node with children vy,...,vs, & > 1. We show that emb(P(v),T) =
EMBr(v).

If Kk =1, w € EMByr(v) implies label(w) = label(v) and there is a node
wy € EMBr(v1) such that fl(parent(w;),label(v)) = w, i.e., no node on the path
between w; and w is labeled label(v). By induction EMBr(v1) = emb(P(vy1),T)
and thus w is the root of an embedding of P(v) in T'. Since EMB7(v) is the deep
set of all such nodes we have w € emb(P(v),T'). Conversely, if w € emb(P(v),T)
then label(w) = label(v), there is a node wy; € emb(P(v1),T’) such that w <
wy, and no node on the path between w and w; is labeled label(v), that is,
fli(wq,label(v)) = w. Hence, w € EMB7(v).

72 P. Bille and I.L. Ggrtz

Fig. 3. Computing the deep occurrences of P into T depicted in (a) and (b) respectively.
The nodes in P are numbered 1-4 for easy reference. (c) Case 1 of EMB. Since 3 and
4 are leaves and label(3) = label(4) we have EMB7(3) = EMBr(4). (d) Case 2 of
EMB. Note that the middle child of the root(T) is not in the set since it is not a deep
occurrence. (e) Case 3 of EMB: The two minimal ordered pairs of the sets of (d) and
(c). (f) nca of the pairs in (e) both give the root node of T" which is the only (deep)
occurrence of P

Before considering case 3 we show that U; = mop(EMBr(v1), ..., EMBp(v;))
by induction on j, 2 < j < k. For j = 2 it follows from the definition of Mopy
that Uy = mop(EMBr(v1), EMBr(v2)). Hence, assume that j > 2. We have
U; = Mopr(Uj—1, EMBr(v;)) = MoPp(mop(EMB7(v1),. .., EMBr(vj_1)), R;).
By definition of MoPr, U; is the set of pairs such that for any pair (ri,r;_1) €
mop(EMBr(v1), ..., EMBr(v;_1)), we have (r1,r;) € U; if and only if (r;_1,7;) €
mop(mop(EMBr(v1), ..., EMBr(vj_1))],, R;). It now follows from Lemma 1 that
(r1,rj) € Uj iff (r1,7;) € mop(EMBr(v1),. .., EMBr(v;)).

Consider case 3. If & > 1, w € EMByp(v) implies label(w) = label(v) and
there are nodes (w1, wy) € mop(emb(P(v1),T),...,emb(P(vy),T)) such that
w = fl(nca(wy, wy),label(v)). Clearly, w is the root of an embedding of P(v)
in T. Assume for contradiction that w is not a deep embedding, i.e., w < u
for some node u € emb(P(v),T). Since w = fl(nca(wy,wy),label(v)) there
must be nodes u; < -+ < uyg, such that v; € emb(P(v;),T), 1 < i < k, and
u = fl(nca(uq, ug),label(v)). However, this contradicts the fact that (wy,wy) €
mop(emb(P(v1),T),...,emb(P(v),T)). If w € emb(P(v),T) a similar argu-
ment implies that w € EMBp(v). O

When the tree T is clear from the context we may not write the subscript 7" in
the procedure names. Note that since the EMBr(v) is a deep set we can assume
that PARENT, FL, NcA, and MoOP take deep sets as input.

The Tree Inclusion Problem: In Optimal Space and Faster 73

4 A Simple Tree Inclusion Algorithm

In this section we a present a simple implementation of the set procedures which
leads to an efficient tree inclusion algorithm. Subsequently, we modify one of the
procedures to obtain a family of tree inclusion algorithms where the complexities
depend on the solution to a well-studied problem known as the tree color problem.

Preprocessing. To compute deep embeddings efficiently we require a data
structure for 7" which allows us, for any v,w € V(T), to compute ncar(v,w)
and determine if v < w or v < w. In linear time we can compute pre(v) and
post(v) for all nodes v € V(T'), and with these it is straightforward to test the
two conditions. Using a data structure by Harel and Tarjan [7] we can answer
nearest common ancestor queries in O(1) time using O(nr) space and prepro-
cessing time. Hence, our data structure uses linear preprocessing time and space.

Implementation of the Set Procedures. To answer tree inclusion queries we
give an efficient implementation of the set procedures. The idea is to represent
the node sets in a left-to-right order. For this purpose we introduce some helpful
notation. A node list, X, is a list of nodes. If v; <Qv; 41, 1 < ¢ < |X| then X is
ordered and if v1 <v;11, 1 <7 < |X| then X is semiordered. A node pair list, Y,
is a list of pairs of nodes. We say that Y is ordered if Y|, and Y|, are ordered,
and semiordered if Y|, and Y|, are semiordered.

The set procedures are implemented using node lists and node pair lists. All
lists used in the procedures are either ordered or semiordered. As noted in Sec. 3
we may assume that the input to all of the procedures, except DEEP, represent
a deep set, that is, the corresponding node list or node pair list is ordered. We
assume that the input list given to DEEP is semiordered. Hence, the output of
all the other set procedures must be semiordered.

PARENT7(X). Return the list Z := [parent(X[i]) | 1 <i < |X]].

NcA(Y). Return the list Z := [nca(Y[i]) | 1 < i <|Y]].

DeEP7(X). Initially, set v := X[1] and Z := []. For each i, 2 < i < k, compare
vand X[i]: If v<a X[i] set Z := Zowv and v := X[i]. If v < X[i], set v := X[i]
and otherwise (X[i] < v) do nothing. Finally, set Z := Z o v and return Z.

Morp(X,Y). Initially, set Z := []. Find the minimum j such that X[1], < Y[j]

and set x := X[1];, y :=Y[j], and h := j. If no such j exists, stop.
Aslong as h < |Y| do the following: For each i, 2 < i < |X|, do: Set h := h+1
until X[i]e <Y[h]. Compare Y[h] and y: If y = Y[h] set © := X[i];. f y<Y[h]
set Z := Z o (x,y), x := X[i]1, and y := Y[h]. Finally, set Z := Z o (z,v)
and return Z.

Frr(X, o). Initially, set Y := X, Z := [], and S := []. Repeat until ¥V := []:
Fori=1,...,|Y] if label(Y[i]) = a set Z := INSERT(Y[i], Z) and otherwise
set S := S o parent(Y[i]). Set S := DEEP7(S), Y := DEEP}.(S,Z), S := [].
Return Z.

Procedure FL calls two auxiliary procedures: INSERT(v, Z) takes an ordered list
Z and insert the node v such that the resulting list is ordered, and DEEP*(S, Z)

74 P. Bille and I.L. Ggrtz

takes two ordered lists and returns the ordered list representing the set DEEP(SU
Z)Nn S, ie., DEEP*(S,Z) = [s € S|}z € Z : s < z]. Below we describe the
implementation of FL in more detail.

We use one doubly linked list to represent all the lists Y, S, and Z. For
each element in Y we have pointers Pred and Succ pointing to the predecessor
and successor in the list, respectively. We also have at each element a pointer
Next pointing to the next element in Y. In the beginning Next = Succ for all
elements, since all elements in the list are in Y. When going through Y in one
iteration we simple follow the Next pointers. When FL calls INSERT(Y [i], Z) we
set Next(Pred(Y7[i])) to Next(Y[i]). That is, all nodes in the list not in Y, i.e.,
nodes not having a Next pointer pointing to them, are in Z. We do not explicitly
maintain S. Instead we just save PARENT(Y[i]) at the position in the list instead
of Y[i]. Now DEEP(S) can be performed following the Next pointers and removing
elements from the doubly linked list accordingly to procedure DEEP. It remains
to show how to calculate DEEP* (.S, Z). This can be done by running through S
following the Next pointers. At each node s compare Pred(s) and Succ(s) with
s. If one of them is a descendant of s then remove s from the doubly linked list.

Using this linked list implementation DEEP* (S, Z) takes time O(|S]), whereas
using DEEP to calculate this would have used time O(|S| + |Z]).

Complexity of the Algorithm. For the running time of the node list im-
plementation observe that, given the data structure described above, all set
procedures, except FL, perform a single pass over the input using constant time
at each step. Hence we have,

Lemma 4. For any tree T there is a data structure using O(nr) space and
preprocessing which supports each of the procedures PARENT, DEEP, MoOP, and
NcA in linear time (in the size of their input).

The running time of a single call to FL might take time O(nr). Instead we will
divide the calls to FL into groups and analyze the total time used on such a
group of calls. The intuition behind the division is that for a path in P the calls
made to FL by EMB is done bottom up on disjoint lists of node in 7.

Lemma 5. For disjoint ordered node lists V1, ..., Vi and labels aq, . . ., i, such
that any node in Vi1 is an ancestor of some node in DEEP(FLp(V;, «;)), 2 <
i<k, all of FLp(Vi,a1),...,FLp(Vi, ax) can be computed in O(ny) time.

The proof is omitted due to lack of space. The basic idea in the proof is to show
that any node in T" can be in Y at most twice during all calls to FL.
Using the node list implementation of the set procedures we get:

Theorem 2. For trees P and T the tree inclusion problem can be solved in
O(lpnr) time and O(np + nr) space.

Proof. By Lemma 4 we can preprocess T in O(ny) time and space. Let g(n)
denote the time used by FL on a list of length n. Consider the time used by
EMB7(root(P)). We bound the contribution for each node v € V(P). From

The Tree Inclusion Problem: In Optimal Space and Faster 75

Lemma 4 it follows that if v is a leaf the cost of v is at most O(g(lr)). Hence,
by Lemma 5, the total cost of all leaves is O(Ipg(lr)) = O(lpnr). If v has a
single child w the cost is O(g(JEMBr(w)|)). If v has more than one child the
cost of Mop,Nca, and DEEP is bounded by >, pia(m) O(EMBr(w)]). Fur-
thermore, since the length of the output of MopP (and thus NcA) is at most
z = Milyecnild(v) |EMBr(w)| the cost of FL is O(g(z)). Hence, the total cost for
internal nodes is,

Z O(g(welcrhlilll(li(|[EMBr(w Z |[EMBp (w ZO (JEMBz(v)])).
veV (P)\L(P) chhlld(v) UGV(P)

Next we bound the sum }, ¢y p) O(g(|EMBr(v)])). For any w € child(v)
we have that EMBr(w) and EMBr(v) are disjoint ordered lists. Furthermore
we have that any node in EMBr(v) must be an ancestor of some node in
DEeEPr(FLp(EMBr(w),label(v))). Hence, by Lemma 5, for any leaf to root path
0 =wi,...,v in P, we have that) s g(|[EMBr(u)|) < O(nr). Let A denote
the set of all root to leaf paths in P. It follows that, >) 9(|[EMBr (v)]) <
> ope A 2auep 9([EMBr(u)]) < O(lpnr).

Since this time dominates the time spent at the leaves the time bound fol-
lows. Next consider the space used by EMBr(root(P)). The preprocessing of
described above uses only O(nr) space. Furthermore, by induction on the size
of the subtree P(v) it follows immediately that at each step in the algorithm at
most O(max,cy (py |EMBr(v)|) space is needed. Since EMBr(v) a deep embed-
ding, it follows that |[EMBr(v)| < Ir. O

veV (T

An Alternative Algorithm. In this section we present an alternative algo-
rithm. Since the time complexity of the algorithm in the previous section is
dominated by the time used by FL, we present an implementation of this pro-
cedure which leads to a different complexity. Define a firstlabel data structure
as a data structure supporting queries of the form fl(v,), v € V(T), a € X.
Maintaining such a data structure is known as the tree color problem, see e.g.,
[5,13]. With such a data structure available we can compute FL(X, «r) as the list
[f(XT[i],) [1 <d < |X][].

Theorem 3. Let P and T be trees. Given a firstlabel data structure using s(nr)
space, p(nr) preprocessing time, and q(nr) time for queries, the tree inclusion
problem can be solved in O(p(nr) +nply - q(nr)) time and O(np + s(ny) +nr)
space.

Proof. Constructing the firstlabel data structures uses O(s(nr)) space and time
O(p(nr)). As in the proof of Thm. 2 we have that the total time used by
EMBr(root(P)) is bounded by 3°, oy (p) 9(|EMBr(v)[), where g(n) is the time
used by FL on a list of length n. Since EMBr(v) is a deep embedding and
each fl takes g(nr) we have, }° v (py 9(IEMBr(v)]) < 3 cv(p) 9(lr) = nplr-
q(nr). 0

76 P. Bille and I.L. Ggrtz

Several firstlabel data structures are available, for instance, if we want to
maintain linear space, we can use a data structure by Dietz [5] that supports
firstlabel queries in O(loglogny) time using O(nr) space and O(nr) expected
preprocessing time. Plugging in this data structure we obtain,

Corollary 1. For trees P and T the tree inclusion problem can be solved in
O(nplrloglognr) time and O(np + nr) space.

Since the preprocessing time p(n) of the firstlabel data structure is expected
the running time of the tree inclusion algorithm is also expected. However, the
expectation is due to a dictionary using perfect hashing and we can therefore
use the deterministic dictionary of [6] with O(ng log nr) worst-case preprocessing
time instead. This does not affect the overall complexity of the algorithm.

5 A Faster Tree Inclusion Algorithm

In this section we present a new tree inclusion algorithm which has a worst-case
subquadratic running time. Due to lack of space we will only give a rough sketch
of the algorithm. A full description of the algorithm can be found in the full
version of the paper [3].

The first step is to divide T into small connected subgraphs, called micro trees
or clusters. Using a technique from [2] we can construct in linear time a cluster
partition of T, consisting of O(nr/logny) clusters each of size O(log nr), with
the property that any cluster shares at most two nodes with any other cluster.
FEach micro tree is represented by a constant number of nodes in a macro tree.
The nodes in the macro tree are then connected according to the overlap of the
micro trees they represent. Note that the total number of nodes in the macro
tree is O(ny/lognr).

In linear time of the tree T" we preprocess all the micro trees and the macro
tree such that the set procedures use constant time for each micro tree. Using
a compact node representation we can then implement all the set procedures in
O(nr/lognr) time.

Lemma 6. For any tree T there is a data structure using O(nr) space and
O(nr) expected preprocessing time which supports all of the set procedures in
O(nr/lognr) time.

The proof of the lemma and all details in the implementation of the set proce-
dures can be found in the full version of the paper. We can now compute the
deep occurrences of P in T using the procedure EMB of Sec. 3 and Lemma 6.
Since each node v € V(P) contributes at most a constant number of calls to set
procedures it follows that,

Theorem 4. For trees P and T the tree inclusion problem can be solved in

O(320T) time and O(np + nr) space.

Combining the results in Theorems 2, 4 and Corollary 1 we have the main result
of Theorem 1.

The Tree Inclusion Problem: In Optimal Space and Faster 77

Acknowledgments. We thank the reviewers for the many insightful comments.

References

1.

2.

3.

4.

5.

10.

11.

12.

13.

14.

15.

16.

17.

18.

L. Alonso and R. Schott. On the tree inclusion problem. In Proc. of Math. Foun-
dations of Computer Science, pages 211-221, 1993.

S. Alstrup, J. Holm, K. de Lichtenberg, and M. Thorup. Minimizing diameters of
dynamic trees. In Proc. of Intl. Coll. on Automata, Languages and Programming
(ICALP), pages 270-280, 1997.

P. Bille and 1. Ggrtz. The tree inclusion problem: In optimal space and faster.
Technical Report TR-2005-54, I'T University of Copenhagen, January 2005.

W. Chen. More efficient algorithm for ordered tree inclusion. J. Algorithms, 26:370—
385, 1998.

P. F. Dietz. Fully persistent arrays. In Proc. of Workshop on Algorithms and Data
Structures (WADS), pages 6774, 1989.

T. Hagerup, P. B. Miltersen, and R. Pagh. Deterministic dictionaries. J. Algo-
rithms, 41(1):69-85, 2001.

D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM J. Comput., 13(2):338-355, 1984.

P. Kilpeladinen. Tree Matching Problems with Applications to Structured Text
Databases. PhD thesis, University of Helsinki, Department of Computer Science,
1992.

. P. Kilpeladinen and H. Mannila. Retrieval from hierarchical texts by partial pat-

terns. In Proc. of Conf. on Research and Development in Information Retrieval,
pages 214-222, 1993.

P. Kilpeldinen and H. Mannila. Ordered and unordered tree inclusion. SIAM J.
Comp., 24:340-356, 1995.

D. E. Knuth. The Art of Computer Programming, Volume 1. Addison Wesley,
1969.

H. Mannila and K. J. Raiha. On query languages for the p-string data model.
Information Modelling and Knowledge Bases, pages 469-482, 1990.

S. Muthukrishnan and M. Miiller. Time and space efficient method-lookup for
object-oriented programs. In Proc. of Symp. on Discrete Algorithms, pages 42-51,
1996.

T. Richter. A new algorithm for the ordered tree inclusion problem. In Proc. of
Symp. on Combinatorial Pattern Matching (CPM), pages 150-166, 1997.

T. Schlieder and H. Meuss. Querying and ranking XML documents. J. Am. Soc.
Inf. Sci. Technol., 53(6):489-503, 2002.

T. Schlieder and F. Naumann. Approximate tree embedding for querying XML
data. In Proc. of Workshop On XML and Information Retrieval, 2000.

H. Yang, L. Lee, and W. Hsu. Finding hot query patterns over an xquery stream.
The VLDB Journal, 13(4):318-332, 2004.

L. H. Yang, M. L. Lee, and W. Hsu. Efficient mining of XML query patterns for
caching. In Proc. of Conference on Very Large Databases (VLDB), pages 69-80,
2003.

Union-Find with Constant Time Deletions

Stephen Alstrup', Inge Li Ggrtz', Theis Rauhe!,
Mikkel Thorup?, and Uri Zwick?

! Department of Theoretical Computer Science,
IT University of Copenhagen, Denmark
{stephen, inge, theis}@itu.dk
2 AT&T Research Labs, USA
mthorup@research.att.com
3 School of Computer Science, Tel Aviv University, Israel
zwick@cs.tau.ac.il

Abstract. A union-find data structure maintains a collection of disjoint
sets under makeset, union and find operations. Kaplan, Shafrir and Tar-
jan [SODA 2002] designed data structures for an extension of the union-
find problem in which elements of the sets maintained may be deleted.
The cost of a delete operation in their implementations is the same as
the cost of a find operation. They left open the question whether delete
operations can be implemented more efficiently than find operations. We
resolve this open problem by presenting a relatively simple modification
of the classical union-find data structure that supports delete, as well
as makeset and union, operations in constant time, while still support-
ing find operations in O(logn) worst-case time and O(a(n)) amortized
time, where n is the number of elements in the set returned by the find
operation, and a(n) is a functional inverse of Ackermann’s function.

1 Introduction

A union-find data structure maintains a collection of disjoint sets under the
operations makeset, union and find. A makeset operation generates a singleton
set. A union operation takes two sets and unites them, destroying the two orig-
inal sets. A find operation takes an element and returns a reference to the set
currently containing it. The union-find problem is one of the most fundamental
data structure problems. It has many applications in a wide range of areas. For
an extensive list of such applications, and for a wealth of information on the
problem and many of its variants, see the survey of Galil and Italiano [7].

An extremely simple union-find data structure (attributed by Aho et al. [1]
to Mcllroy and Morris), which employs two simple heuristics, union by rank and
path compression, was shown by Tarjan [12] (see also Tarjan and van Leeuwen
[13]) to be amazingly efficient. It performs a sequence of M find operations and N
makeset and union operations in O(N+M «(M, N)) total time. Here a(-, -) is an
extremely slowly growing functional inverse of Ackermann’s function. In other
words, the amortized cost of each makeset and union operation is O(1), while

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 78-89, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Union-Find with Constant Time Deletions 79

the amortized cost of each find operation is O(a(M + N, N)), only marginally
more than a constant. Fredman and Saks [6] obtained a matching lower bound
in the cell probe model of computation, showing that this simple data structure
is essentially optimal in the amortized setting.

The union by rank heuristics on its own implies that find operations take
O(logn) worst-case time. Here n is the number of elements in the set returned
by the find operation. All other operations take constant worst-case time. It is
possible to trade a slower union for a faster find. Smid [11], building on a result
of Blum [4], gives for any k a data structure that supports union operations in
O(k) time and find operations in O(log;, n) time. When k = log n/loglog n, both
the union and find operation take O(logn/loglogn) time. Fredman and Saks
[6] (see also Ben-Amram and Galil [3]) again show that this tradeoff is optimal,
establishing an interesting gap between the amortized and worst-case complex-
ities of the union-find problem. Alstrup et al. [2] present union-find algorithms
with simultaneously optimal amortized and worst-case bounds.

Local Amortized Bounds. As noted by Kaplan et al. [8], the standard amor-
tized bounds for find are global in terms of the total number N of elements ever
created whereas the worst-case bounds are local in terms of the number n of
elements in the current set we are finding. Obviously n may be much smaller
than N. To state more local amortized bounds, we need a non-standard param-
eterization of the inverse Ackermann function. For integers £ > 0 and j > 1,
define an Ackermann function Ag(j) as follows

, j+1 if k=0,
Ar(G) =37 ¢
k(7) { AU (G ik > 1

Here f()(z) is the function f iterated i times on x. Now, define the inverse of
the function @(j,), for integer 4, j > 0, as

a(j,i) = min{k > 2 | Ap(j) > i}.

(For a technical reason, a@(j,i) is defined to be at least 2 for every i,5 > 0.)
Relating to the standard definition of «, we have a(M, N) = O(a([M/N], N)).
Kaplan et al. [8] present a refined analysis of the classical union-find data struc-
ture showing that the amortized cost of find(x) operation is only O(a([(M +
N)/N1,n). Kaplan et al. [8] state their results equivalently in terms of a three pa-
rameter function that we will not define here. To get a purely local amortized cost
for find, we note that a([(M+N)/N1,n) < a(l,n) = O(a(n,n)) = O(a(n)).

Union-Find with Deletions. In the traditional version of the union-find prob-
lem elements are created using makeset operations. Once created, however, el-
ements are never destroyed. Kaplan et al. [8] consider a very natural extension
of the union-find problem in which elements may be deleted. We refer to this
problem as the union-find with deletions problem, or union-find-delete for short.

80 S. Alstrup et al.

Using relatively straightforward ideas (see, e.g., [8]) it is possible to design
a union-find-delete data structure that uses only O(N*) space, handles make-
set, union and delete operations in O(1) worst-case time, and find operations
in O(log N*) worst-case time and O(a(N*)) amortized time, where N* is the
current number of elements in the whole data structure. The challenge in the
design of union-find-delete data structures is to have the time of a find(x) op-
eration depend on n, the size of the set currently containing x, and not on N*,
the total number of elements currently contained in all the sets.

Using an incremental background rebuilding technique for each set, Kaplan et
al. [8] describe a way of converting any data structure for the classical union-find
problem into a union-find-delete data structure. The time bounds for makeset,
find and wnion operations change by only a constant factor, while the time
needed for a delete(x) operation is the same as the time needed for a find(x)
operation followed by a union operation with a singleton set. As a union opera-
tion is usually much cheaper than a find operation, Kaplan et al. [8] thus show
that in both the amortized and the worst-case settings, a delete operation is not
more expensive than a find operation. Combined with their refined amortized
analysis of the classical union-find data structure, this provides, in particular, a
union-find-delete data structure that implements makeset and union operations
in O(1) time, and find(x) and delete(x) operations in O(a(n)) amortized time
and O(logn) worst-case time. They leave open, however, the question whether
delete operations can be implemented faster than find operations.

Our Results. We solve the major open problem raised by Kaplan et al. [§]
and show that delete operations can be performed in constant worst-case time,
while still keeping the O(a([(M + N)/N],n)) = O(a(n)) amortized cost and
the O(log n) worst-case cost of find operations, and the constant worst-case cost
of makeset and union operations. We recall here that N is the total number
of elements ever created, M is the total number of find operations performed,
and n is the number of elements in the set returned by the find operation.
The data structure that we present uses linear space and is a relatively simple
modification of the classical union-find data structure. It is at least as simple as
the data structures presented by Kaplan et al. [8].

As a by-product we also obtain a very concise potential-based proof of the
O(a([(M + N)/N1,n)) bound, first obtained by Kaplan et al. [8], on the amor-
tized cost of a find operation in the classical setting. We believe that our potential-
based analysis is much simpler than the one given by Kaplan et al. [8].

Our Techniques. Our new union-find-delete data structure, like most other
union-find data structures, maintains the elements of each set in a rooted tree.
As elements can now be deleted, not all the nodes in these trees will contain
active elements. Nodes that contain elements are said to be occupied, while nodes
that do not contain elements are said to be vacant. When an element is deleted,
the node containing it becomes vacant. If proper measures are not taken, then
a tree representing a set may contain too many vacant nodes. As a result, the
space needed to store the tree, and the time needed to process a find operation

Union-Find with Constant Time Deletions 81

may become too large. The new data structure uses a simple collection of local
operations to tidy up a tree after each delete operation. This ensures that at
most half of the nodes in a tree are vacant. More importantly, the algorithm
employs local constant-time shortcut operations in which the grandparent, or
a more distant ancestor, of a node becomes its new parent. These operations,
which may be viewed as a local constant-time variant of the path compression
technique, keep the trees relatively shallow to allow fast find operations.

As with the simple standard union-find, the analysis is the most non-trivial
part. The analysis of the new data structure uses two different potential func-
tions. The first potential function is used to bound the worst-case cost of find
operations. Both potential functions are needed to bound the amortized cost of
find operations. The second potential function on its own can be used to ob-
tain a simple derivation of the refined amortized bounds of Kaplan et al. [8] for
union-find without deletions.

We end this section with a short discussion of the different techniques used
to analyze union-find data structures. The first tight amortized analysis of the
classical union-find data structure, by Tarjan [12] and Tarjan and van Leeuwen
[13], uses collections of partitions and the so-called accounting method. The re-
fined analysis of Kaplan et al. [8] is directly based on this method. A much more
concise analysis of the union-find data structure based on potential functions
can be found in Kozen [9] and Chapter 21 of Cormen et al. [5]. The amortized
analysis of our new union-find-delete data structure is based on small but crucial
modifications of the potential function used in this analysis. As a by product we
get, as mentioned above, a simple proof of the amortized bounds of Kaplan et al.
[8]. Seidel and Sharir [10] presented recently an intriguing top-down amortized
analysis of the union-find data structure. Our analysis is no less concise, though
perhaps less intuitive, and has the additional advantage of bounding the cost of
an amortized operation in terms of the size of the set returned by the operation.

2 Preliminaries

The Union-Find and Union-Find-Delete Problems. A classical union-find
data structure supports the following operations:

— make-set(x): Create a singleton set containing .
— union(A,B): Combine the sets A and B into a new set, destroying A and B.
— find(z): Return an identifier of the set containing .

The only requirement from the identifier, or name, returned by a find operation
is that if two elements x and y are currently contained in the same set, then the
calls find(z) and find(y) return the same identifier. Kaplan et al. [8] studied data
structures that also support delete operations:

— delete(x): Delete z from the set containing it.

A delete operation should not change the identifier attached to the set from
which the element was deleted. It is important to note that a delete operation

82 S. Alstrup et al.

does not receive a reference to the set currently containing x. It only receives the
element x itself. As mentioned, Kaplan et al. [8] essentially showed that delete
operations are not more expensive than find operations.

Standard Worst-Case Bounds for Union-Find. We briefly review here
the simple standard union-find data structure that supports makeset and union
operations in constant time and find operations in O(logn) time, as it forms the
basis of our new data structure for the union-find-delete problem.

The elements of each set A are maintained in a rooted tree T' = T'4. The
identifier of the set A is the root of 7. Fixing some terminology, the height of a
node v € T, denoted by h(v), is defined to be 0, if v is a leaf, and max{h(w)|
w is a child of v} + 1, otherwise. Let root(T") denote the root of T'. The height
of a tree is the height of its root. For a node v € T let p(v) denote the parent
of v. A node x € T is an ancestor of a node y € T if x is on the path from y to
the root of T—both y and the root included. A node = € T is a descendant of a
node y € T if y is an ancestor of x.

Each node v has an assigned integer rank rank(v). An important invariant
is that for the parent of a node always has a strictly higher rank than the node
itself. The rank of a tree is defined to be the rank of the root of the tree.

We implement the operations as follows.

find(x): Follow parent pointers from z all the way to the root. Return the root
as the identifier of the set.

make-set(z): Create a new node z. Let p(z) « x, rank(z) < 0.

union(A,B): Recall that A and B are root nodes. Assume w.l.o.g. that rank(A) >
rank(B). Make B a child of A. If rank(A)=rank(B), increase rank(A) by one.

Analysis. Trivially, makeset and union operations take constant time. Since
ranks are strictly increasing when following parent pointers, the time of a find
operation applied to an element in a set A is proportional to rank(A). We prove,
by induction, that rank(A) < log, |Al, or equivalently, that

|A| > ank(A)) (1)

When A is just created with make-set(x), it has rank 0 and 2° = 1 elements. If C
is the set created by union(A,B), then |C| = |A| + |B|. If C has the same rank
as A, or the same rank as B, we are trivially done. Otherwise, we have rank(A) =
rank(B) = k and rank(C) = k + 1, and then |C| = |A| + |B| > 2F + 2k = 2k+1,
This completes the standard analysis of union-find with worst-case bounds.

3 Augmenting Worst-Case Union-Find with Deletions

Each set in the data structure is again maintained in a rooted tree. In the
standard union-find data structure, reviewed in Section 2, the nodes of each
tree were identified with the elements of the set. In the new data structure,
elements are attached to nodes, not identified with them. Some nodes in a tree

Union-Find with Constant Time Deletions 83

are occupied, i.e., have an element attached to them, while others are vacant, i.e.,
have no element attached to them. An element can then be deleted by simply
removing it from the node it was attached to. This node then becomes vacant.
The name of a set is taken to be its root node. As the name of a set is a node,
and not an element, names do not change as a result of delete operations.

An obvious problem with this approach is that if we never remove vacant
nodes from the trees, we may end up consuming non-linear space. To avoid this,
we require our union-find trees to be tidy:

Definition 1. A tree is said to be tidy if it satisfies the following properties:

— Fvery vacant non-root node has at least two children,
— FEvery leaf is occupied and has rank 0.

It is easy to tidy up a tree. First, we remove vacant leaves. When a node becomes
a leaf, its rank is reduced to 0. Next, if a vacant non-root node v has a single
child w, we make the parent of v the parent of w and remove v. We call this
bypassing v. The following Lemma is now obvious.

Lemma 1. At most half of the nodes in a tidy tree may be vacant.

Tidy trees thus use linear space. However, tidyness on it own does not yield
a sublinear time bound on find operations. (Note, for example, that a path of
occupied nodes is tidy.) Our next goal would be to make sure that the depth of
a tree is logarithmic in the number of occupied nodes contained in it. Ideally, we
would want all trees to be reduced:

Definition 2. A tree is said to be reduced if it is either

— A tree composed of a single occupied node of rank 0, or
— A tree of height 1 with a root of rank 1 and occupied leaves of rank 0.

Naturally, we will not manage to keep our trees reduced at all times. Reduced
trees form, however, the base case for our analysis.

Keeping the Trees Shallow During Deletions. This section contains our
main technical contribution. We show how to implement deletions so that for
any set A,

|A] = (2/3)(6/5)"MA . (2)
Consequently, rank(A) < logg5(3|A|/2) = O(log |A|+1). As the rank of a tree is
always an upper bound on its height, we thus need to follow at most O(log |A|+1)
parent pointers to get from any element of A to the root identifier.

The key idea is to associate the following value with each node v:

Definition 3. The value val(v) of a node v is defined as

val(v) = (5/3)renkp(v)) if v is occupied,
(1/2)(5/3)7 k@) if 4 is vacant.

Here, if v is a root, p(v) = v. The value of a set A is defined as the sum the

values of all nodes in the tree Ta representing A: VAL(A) = 3, cp, val(v).

84 S. Alstrup et al.

The value 5/3 is chosen to satisfy Equation 2 and Lemma 2, 4, and 9 below. In
fact, we could have chosen any constant value in [(1 + v/5)/2,2). We are going
to implement deletions in such a way that

VAL(A) > 2rank(4) (3)

Since the tree representing a set A contains exactly |A| occupied nodes, each of
value at most (5/3)"*4) and at most |A| vacant nodes in T4, each of value at
most (5/3)7*4) /2 it will follow that
2rank(A)
(3/2)(5/3)rank(4

4] > = (2/3)(6/5)"",

so (3) will imply (2).

The essential operation used to keep trees shallow is to shortcut from a node v,
giving v a parent higher up over v in the tree. For example, path compression
shortcuts from all nodes in a search path directly to the root. Since ranks are
strictly increasing up through the tree, shortcutting from v increases the value
of v by a factor of at least 5/3. This suggests that we can make up for the loss of
a deleted node by a constant number of shortcuts from nearby nodes of similar
rank. Before proceeding, let us check that reduced trees satisfy (3).

Lemma 2. If the tree representing a set A is reduced then VAL(A) > 27emk(A)

Proof. Tf A is of height 0, then VAL(A) = (5/3)° =1 and 274 = 1. If A is
of height 1, then VAL(A) > (5/3)' 4+ (1/2)(5/3)' = 5/2 while 27"4) =2, O

Let us for a moment assume that we have an implementation of delete that
preserves, i.e., does not decrease, value, and let us check that the other operations
preserve (3). A makeset operation creates a reduced tree, so (3) is satisfied by
Lemma 2. Also, when we set C := union(A, B), we get VAL(C) > VAL(A) +
VAL(B), and hence (3) follows just like (1).

Paying for a Deletion via Local Rebuilding. We now show how we can
implement a delete operation in constant time, either without decreasing value
of the set from which the element is deleted, or ending up with a reduced tree
representing the set. Suppose we delete an element of A attached to a node wu.
As u becomes vacant, we immediately loose half its value. Before u was vacant
the tree was tidy, but now we may have to tidy the tree. If u is not a leaf, the
only required tidying up is to bypass u if it has a single child. If instead u was a
leaf, we first delete u. If p(u) is now a leaf, its rank is reduced to zero, but that
in itself does not affect any value. If p(u) is vacant and now has only one child,
we bypass p(u). This completes the tidying up.

Lemma 3. Let v be the parent of the highest node affected by a delete, including
tidying up. If rank(v) = k, then the mazimal loss of value is at most (9/10)(5/3)*.

Union-Find with Constant Time Deletions 85

Proof. Tt is easy to see that the worst-case is when v = p(p(u)), where u is a
deleted leaf and p(u) is bypassed. Now u lost at most (5/3)%~1 and p(u) lost
(5/3)% /2, while the other child of p(u) gained at least ((5/3)% — (5/3)F1)/2
from the bypass. Adding up, the total loss is (9/10)(5/3)*. O

Below we show how to regain the loss from a delete using a pointer to v from
Lemma 3. To find nearby nodes to shortcut from, we maintain two doubly linked
lists for each node v; namely C'(v) containing the children of v, and G(v) contain-
ing the children of v that themselves have children. Thus, to find a grandchild
of v, we take a child of a child in G(v). Both lists are easily maintained as chil-
dren are added and deleted: if a child u is added to v, it is added to C'(v). If u
is the first child of v, we add v to G(p(v)). Finally, we add u to G(v) if C(u) is
non-empty. Deleting a child is symmetric. Using these lists, we first prove

Lemma 4. In a tidy tree, if node x has rank k and grandchildren, we can gain
2((5/3)%) value in O(1) time.

Proof. Using G(z), find a child y of that have children. If y is occupied, we
can take any child z of y and shortcut to x. This increases the value of z by
at least (1/2)((5/3)F — (5/3)*=1) = (1/5)(5/3)*. We note that y may have rank
much lower than & — 1, but that would only increase our gain. If z is the last
child of y, we remove y from G(z). If, on the other hand, y is vacant, we have
two cases. First note that since the tree is tidy, |C(y)| > 2. If |C(y)| > 2, we can
just take any child z of y and shortcut to = as above. Otherwise C(y) = {z, z'}.
If both z and z’ are occupied, we shortcut both z and 2’ to z and remove y.
This gives a gain of at least 2((5/3)F — (5/3)%=1) — (1/2)(5/3)* = (3/10)(5/3)*.
Otherwise, one of them, say z is vacant. Tidyness implies that z has at least two
children. If more than two, any one of them can be shortcut to x gaining at least
(1/2)((5/3)%F — (5/3)F=2) = (8/25)(5/3)*. If exactly two, then one of them is
shortcut to y and the other to x while z is removed. The gain in value is at least
(1/2)((5/3)* +2(5/3)=2) = (7/50)(5/3)*. We note that all the above shortcuts
preserves tidyness. ad

The following lemma shows how we—using Lemma 4—can regain the value lost
due to a deletion.

Lemma 5. In a tidy tree with a pointer to a node v of rank k, we can increase
the value by t - (5/3)F or get to a reduced tree in O(t) time.

Proof. The proof is constructive. We set x = v and repeat the following until
either we have gained enough value, or reach the base case of a reduced tree:

1. While G(z) is non-empty and there is more value to be gained, apply Lemma 4.
2. If x is not the root, set x = p(z).

In case 1, we gain £2((5/3)*) per constant time iteration due to Lemma 4. We
cannot get to case 2 twice in a row without getting to case 1, since p(z) €
G(p(p())). Thus, in O(t) time, we either gain ¢ - (5/3)* in value, or we end
with = the root but with no grand children, that is, a tree of height at most 1.

86 S. Alstrup et al.

If we are in the base case with a tree of height 0 or 1, we set rank(x) to 0 or 1,
respectively. a

Combining Lemmas 2, 3, and 5 with ¢ = O(1), we implement a deletion in
constant time so that either we have no loss, meaning that (3) is preserved, or
obtaining a reduced tree that satisfies (3) directly. Thus we have proved

Theorem 1. In union-find with deletion we can implement each makeset, union,
and delete in constant time, and each find in O(logn) time.

4 Faster Amortized Bounds

We will now show that we can get much faster amortized bounds for find, yet
preserve the previous worst-case bounds. All we have to do is to use path com-
pression followed by tidying up operations. Path compression of a path from
node v € T to node v € T makes every node on the path a child of u. When we
perform a find from a node v, we compress the path to the root. Our analysis is
new and much cleaner analysis than was previously known even without deletes.

Before going further, we note that path compression consists of shortcuts
that increase value of the previous section, so intuitively, the path compression
can only help the deletions. Below, we first present our new analysis without the
deletions, and then we observe that deletions are only helpful.

Analysis. We assign a potential ¢(z) to each node x in the forest. To define the
potential we need some extra functions. Define Q@ = [2E¥] and o/ (n) = &(Q, n).
Note that @@ > 2 whenever M > 0. Our goal is to prove that the amortized cost
of find is O(a/(n)) where n is the cardinality of the set found. We also define
rank' (v) = rank(v) + Q.

Definition 4. For a non-root node x we define
level(z) = max{k > 0 | Ag(rank'(z)) < rank'(p(z))} ,

index(x) = max{i > 1| Al (rank (x)) < rank (p(x))} .

level(x)
We have
0 < level(x) < a(rank'(z), rank (p(x))) < o/ (rank' (p(x))) , (4)
1 < index(z) < rank' (z) . (5)

Definition 5. The potential ¢(x) of a node x is defined as

o (rank () - (rank' (z) + 1) if x root,
b(z) = (o' (rank (z)) — level(x)) - rank' (z) — index(z) + 1
if x not root and o/ (rank'(z)) = o (rank (p(x))),

0 otherwise.

Union-Find with Constant Time Deletions 87

The potential ®(x) of a set A is defined as the sum of the potentials of the nodes
in the tree Ta representing the set A: ®(A) =3 . ¢(x).

At first sight the potential function looks very similar to the standard one
from [5], but there are important differences. Using a(rank(x)) instead of a(N)
we get a potential function that is more locally sensitive. To get this change to
work, we use the trick that the potential of a node is only positive if o/ (rank’ (z)) =
o/ (rank (p(a))).

From (4) and (5) it immediately follows that the potential of a node = with
o (rank' (z)) = o (rank (p(z))) is strictly positive. We also note that the only
potentials that can increase are those of roots. All other nodes keep their ranks
while the ranks of their parents increase and that can only decrease the potential.

We will now analyze the change in potential due to the operations.

Lemma 6. The cost of makeset is amortized as a constant per makeset plus a
constant per find.

Proof. When we create a new set A with rank 0, it gets potential a(Q, Q)(Q +
1)=2(Q+1)=0((M+ N)/N). Over N makeset operations, this adds up to a
total increase of O(M + N). 0

Lemma 7. The operation union(A, B) does not increase the potential.

Proof. Suppose we make A the parent of B. If the rank of A is not increased,
there is no node that increases potential, so assume that rank’(A) is increased
from k to k + 1. Then k was also the rank of B. If o/(k+ 1) > o/(k), then B
gets zero potential along with any previous child of A. The potential of B is
reduced by o'(k) - (k+1). On the other hand, the potential of A is increased by
(/' (k)+1)-(k+2)—d'(k)-(k+1) = (k) +k+2, which is less than o/ (k)- (k+1),
as k > 2 and o/ (k) > 2. (Here we use the fact that a(j,7) > 2, for every 4,5 > 0.)

Finally, if o/(k 4+ 1) = o/(k), then the potential of A increases by (k) while
the potential of B decreases by at least o/ (k), since B was a root with potential
o/ (k) - (k4 1) and now becomes a child with potential at most o/(k) - k. O

Lemma 8. A path compression of length ¢ from a node v up to some node u
decreases the potential by at least £ — (2 - o (rank' (u)) + 1). In particular, the
amortized cost is at most O(c/ (rank' (u))).

Proof. The potential of the root does not change due to the path compression.
We will show that at least max{0,l — (2 - o/(rank’(u)) + 2)} nodes have their
potential decreased by at least one.

There are at most o’ (rank’(u)) nodes = on the path that had o (rank'(z)) <
o (rank (p(x))) before the operation. The potentials of these nodes do not change.

If node = had o/ (rank'(z)) = o/ (rank' (p(z))) < o’ (rank’(u)), then its poten-
tial drops to 0, and the decrease in x’s potential is therefore at least one.

It remains to account for the nodes with o' (rank'(z)) = o’ (rank(u)). Let
be a node on the path such that x is followed somewhere on the path by a node
y # u with level(y) = level(x) = k. There can be at most o/(rank’(u)) + 1 nodes

88 S. Alstrup et al.

on the path that do not satisfy these constraints: The last node before u, u, and
the last node on the path for each level, since level(y) < o/ (rank’(u)). Let = be a
node that satisfies the conditions. We show that the potential of x decreases by
at least one. Before the path compression we have rank'(p(y)) > Ay (rank' (y)) >
Ag(rank (p(x))) > Ak(AgndeX(z))(mnk’(ﬂﬂ))) = A,(cmdex(z)ﬂ)(mnk'(a:)). After the
path compression we have rank’ (p(x)) = rank' (p(y)) and thus rank’((p(z)) >
AU (k! (1)), since rank (x) does not change and rank (p(y)) does not
decrease. This means that either index(z) or level(z) must increase by at least
one. Thus ¢(x) decreases by at least one. O

We conclude that the amortized cost of find in a set A is
O(d (rank' (A))) = O(a(Q, rank(A) + Q + ¢)) = O(a(Q, rank(A))).

The last step follows because @ is defined to be at least 2. Recall that) = [W]
and that rank(A) < log, | A, so without deletions, this is the desired bound.

Deletion and Path Compression. We now combine the path compression
and amortized analysis with deletions. The potential used in the amortization is
identical for vacant and occupied nodes. It is clear that deletions and tidying up
can only decrease this potential, so they have no extra amortized cost. Likewise, a
path compression can only increase value as it only performs shortcuts. However,
after a path compression, there may be some cleaning to do if some vacant nodes
go down to 0 or 1 children. We start the path compression from a tidy tree where
each vacant node has at least two children, and the compression takes at most
one child from each node on the path. Hence the only relevant tidying up is to
bypass some of the nodes on the path. The tidying up takes time proportional
to the length of the path, so the cost of a find is unchanged.

The tidying up does decreases value, but the loss turns out less than the gain
from the compression.

Lemma 9. Path compression followed by tidying up operations does not de-
crease the value of a tree.

Proof. The path compression involves nodes vy, ..., vy starting in some occupied
node vy and ending in the root which has some rank k. After the compression,
all nodes vg, .., vp_1 are children of the root vy. If node v; is not bypassed when
tidying up, its value gain is at least ((5/3)7"F(v) — (5/3)renk(vi+1)) /2 If v; is
bypassed, then 0 < i < ¢, and v; is vacant, so the loss is (5/3)7"*(vi+1) /2. How-
ever, then v; has a child w; which gains at least ((5/3)7"(v) — (5/3)rank(vi)) /2
so the total change is

((5/3)'rank(’u) _ (5/3)mnk(vi+1) _ (5/3)T‘ank(vi))/2

Since ranks are strictly increasing along a path, this change is positive for all but
1 = £—1. On the other hand, the first node v is always occupied, and has a gain of
at least (5/3)7%(v) — (5/3)7 k(1) where 1 < £ — 1. We can use the value gained
by vg to pay for the value lost by bypassing both v, and v;_;. There are two cases.

Union-Find with Constant Time Deletions 89

If both v;_; and vy is bypassed we must have [> 4. Combining the changes
in potential for the nodes g, v1, and v;_; we get,(5/3)7* 1) — (5/3)rank(vy) _
(1/2)(5/3)7emM¥2) — (1/2)(5/3)m =) > 0.

If v; is not bypassed, we get that the total gain for vy and v;_; is at least,
(5/3)rank(v) _ (5/3)rank(v1) _ (1/2)(5/3)7" (") wwhich is always positive. Thus
the overall change in value is positive, or zero if the path has length 0 or 1 and
no compression happens.

O

Since our values and hence (3) are preserved, for any set A, we get rank(A)
O(log |A|). Thus our amortized cost of a find operation is O((Q,0(log |A|))
O(a([F2],|Al). Summing up, we have proved

Theorem 2. If we do a total of M find operations on a total of N makeset
operations, then the operation times can be amortized as follows. We pay only a
constant for each makeset, union, and delete, and for a find on an element in a
set A, we pay O(a([2T, | A]). Meanwhile, the worst-case bounds of Theorem 1
are preserved.

References

1. A.V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, 1974.

2. S. Alstrup, A. M. Ben-Amram, and T. Rauhe. Worst-case and amortised optimality
in union-find. In Proceedings of the Thirty-First Annual ACM Symposium on
Theory of Computing (STOC’99), pages 499-506, May 1999.

3. A. M. Ben-Amram and Z. Galil. A generalization of a lower bound technique due
to Fredman and Saks. Algorithmica, 30(1):34-66, 2001.

4. N. Blum. On the single-operation worst-case time complexity of the disjoint set
union problem. SIAM J. Comput., 15(4):1021-1024, 1986.

5. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. MIT Press, 2nd edition, 2001.

6. M. Fredman and M. Saks. The cell probe complexity of dynamic data structures. In
Proceedings of the 21st Annual Symposium on Theory of Computing (STOC ’89),
pages 345354, New York, May 1989. ACM Association for Computing Machinery.

7. Z. Galil and G. F. Italiano. Data structures and algorithms for disjoint set union
problems. ACM Computing Surveys, 23(3):319, Sept. 1991.

8. H. Kaplan, N. Shafrir, and R. E. Tarjan. Union-find with deletions. In Proc. of the
13th ACM-SIAM Symp. On Discrete Mathematics (SODA), pages 19-28, 2002.

9. D. L. Kozen. The Design and Analysis of Algorithms. Springer, Berlin, 1992.

10. R. Seidel and M. Sharir. Top-down analysis of path compression. STAM J. Comput.,
34(3):515-525, 2005.

11. M. Smid. A data structure for the union-find problem having good single-operation
complexity. ALCOM: Algorithms Review, Newsletter of the ESPRIT II Basic Re-
search Actions Program Project no. 8075 (ALCOM), 1, 1990.

12. R. E. Tarjan. Efficiency of a good but not linear disjoint set union algorithm.
Journal of the ACM, 22:215-225, 1975.

13. R. E. Tarjan and J. van Leeuwen. Worst-case analysis of set union algorithms.
Journal of the ACM, 31(2):245-281, Apr. 1984.

Optimal In-place Sorting of Vectors and Records

Gianni Franceschini and Roberto Grossi

Dipartimento di Informatica, Universita di Pisa,
Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
{francesc, grossi}@di.unipi.it

Abstract. We study the problem of determining the complexity of op-
timal comparison-based in-place sorting when the key length, k, is not
a constant. We present the first algorithm for lexicographically sorting
n keys in O(nk+mnlogn) time using O(1) auxiliary data locations, which
is simultaneously optimal in time and space.

1 Introduction

We study the computational complexity of the classical problem of comparison-
based sorting by considering the case in which the keys are of non-constant
length, k. We aim at minimizing simultaneously the time and space bounds under
the assumption that the keys are vectors 2 € X% of k scalar components over a
totally ordered, possibly unbounded set Y. Denoting the ith scalar component of
vector & by x(i) for 1 <14 < k, we indicate the vector’s chunks by (i, 7), which
are the contiguous portions of x cousisting of z(i), x(i + 1), ..., x(j), where
1 <4 < j < k. The lexicographic (or alphabetic) order, 2 < y, is defined in terms
of the scalar components: either z(1) < y(1) or recursively x(2,k) < y(2, k) for
2(1) = y(1). The model easily extends to k-field records in X x Xy X -+ x X,
but we prefer to keep the notation simple.

We are given a set ¥ C Xk of n vectors stored in n vectorial locations,
one vector of ¥ per location. We permit two kinds of operations on the vector
locations: (1) exchange any two vectors in O(k) time; (2) access the ith scalar
component of any two vectors for comparison purposes in O(1) time. Hence,
determining the lexicographic order of any two vectors from scratch takes O(k)
time. We are also given a number of auxiliary locations, each location storing one
integer of O(logn) bits. We employ the standard repertoire of RAM instructions
on the auxiliary locations, with O(1) time per operation.

The model resulting from the above rules naturally extends the comparison
model to keys of non-constant length. (We obtain the comparison model by fixing
k = 1.) We are interested in exploring algorithms using the minimal number of
auxiliary locations, referring to the model using just O(1) auxiliary locations as
the in-place model for vectors. This model is useful for studying, in an abstract
way, the complexity of in-place sorting and searching for a variety of keys: k-
length strings, k-field records, k-dimensional points, k-digit numbers, etc.

One significant example is how to perform in-place searching on a set ¥ of
n vectors. With sophisticated techniques for proving upper and lower bounds

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 90-102, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Optimal In-place Sorting of Vectors and Records 91

on the complexity of searching ¥ in lexicographic order, Andersson, Hagerup,
Hastad and Petersson have proved in [1] that it requires

Flog 1
loglog(4 4 =5 28%)

1
@(kloglogn +k—|—logn>

time. This bound is worse than ©(k+1logn), obtained by searching ¥ plus O(n)
auxiliary locations (e.g., Manber and Myers [18]). Using permutations other
than those resulting from sorting is a way to reach optimality: Franceschini and
Grossi [10] have shown that for any set ¥ of n vectors in lexicographic order,
there exists a permutation of them allowing for ©(k + logn) search time using
O(1) auxiliary data locations.

In-place sorting is an even more intriguing example in this scenario. Any op-
timal in-place sorting algorithm for constant-sized keys can be turned into an
O(nklogn)-time in-place algorithm for vectors, losing optimality in this way.
The lower bound of 2(nk 4+ nlogn) time easily derives from decision trees [14].
If the number of comparison is to be minimized, the best up-to-date result for
in-place sorting is nlogn + O(nklog™ n) scalar comparisons and nlogn + O(nk)
vector exchanges by Munro and Raman [20]. Since each vector exchange takes
O(k) time, the time complexity sums up to O(nk? + nklogn). For the same
reason, the multikey Quicksort analyzed by Bentley and Sedgewick [4] yields a
non-optimal algorithm of cost O(nklogn) when adapted to run in the in-place
model for vectors, since it requires O(nlogn) vector exchanges. The original
version of the algorithm takes O(nk 4+ nlogn) time since it can exploit O(n)
auxiliary locations to store the pointers to the vectors. It exchanges the point-
ers rather than the vectors, following the address table sorting suggested in
Knuth [14—p.74]. Recently, Franceschini and Geffert [9] have devised an optimal
in-place algorithm for constant-sized keys with O(n) data moves. Subsequent
results by Franceschini [7,8] have shown how to achieve cache-obliviousness
or stableness for in-place sorting. However, the O(k)-time cost of each vector
comparison makes these methods non-optimal in our setting. The bit encoding
for vectors in Franceschini and Grossi [10] cannot help either, as it assumes
that vectors are initially sorted while this is actually the major goal in this
paper.

The above discussion highlights the fact that the known algorithms, to the
best of our knowledge, are unable to simultaneously achieve time optimality and
space optimality for sorting vectors (in place). Our main result is that of obtain-
ing the first optimal bounds for sorting an arbitrary set of n vectors in place,
taking ©(nk + nlogn) time and using O(1) auxiliary locations. An implication
of our result is that we can provide optimal in-place preprocessing for efficient
in-place searching [1, 10, 11,12, 15] when the vectors are initially arranged in any
arbitrary order, with a preprocessing cost of O(nk+nlogn) time. Another impli-
cation is that sorting bulky records can be done optimally in place by exchanging
them directly without using the O(n) auxiliary locations required by Knuth’s
address table sorting.

92 G. Franceschini and R. Grossi

2 High-Level Description

We present our in-place sorting algorithm for vectors in a top-down fashion. We
describe how to reduce the original problem to a sequence of simpler sorting
problems to solve. In our description, we identify the n input vectors in ¥ with
their vectorial locations. At the beginning of the computation, ¥[i] represents
the ith vectorial location, for 1 < i < n, and contains the ith input vector. At the
end of the computation, ¥'[i] contains the vector of rank ¢ after the sorting (ties
for equal vectors are broken arbitrarily). During the intermediate steps, we solve
several instances of a general vector sorting problem, denoted GVSP{m,p,h}
(see Figure 1). Given n vectors in ¥/, we refer to GVSP{m,p, h} as the problem
of sorting a subset of m contiguous vectors in ¥, using
— O(1) auxiliary locations,
— p vectors as placeholders taken from a contiguous subsequence of p locations
in 7,
— h heavy bits suitably encoded by h pairs of vectors taken from two contiguous
subsequences, each consisting of h locations in 7,

under the requirement that m 4+ p + 2h < n and that the four subsequences of
h, p, m, and h vector locations, respectively, are pairwise disjoint as shown in
Figure 1. Placeholders and heavy bits are defined in the rest of the section.
The general notation of GVSP{m,p,h} is useful for expressing the various
sorting instances that we get by reducing our initial problem, GVSP{n, 0,0},
to simpler problems (with suitable values of m, p and k). Some basic instances
occur just a constant number of times in the reduction and are easy to solve.

Lemma 1. Any instance of GVSP{O(n/logn),0,0} takes O(nk) time.

Proof. We employ the in-place mergesort of [21] and pay a slowdown of O(k)
in the time complexity, since we run it on O(n/logn) vectors, each of length k.
The cost is O(k x (n/logn)log(n/logn)) = O(nk) time.

We now present the high-level structure of our reduction. In the following,
for any two vectors x and y, we denote the length of their longest common prefix
by lep(z,y) = max({0} U {1 <<k : 2(1,0) =y(1,0)}).

pairs of vectors encoding heavy bits

i placeholders vectors to sort l

O(1) aux. locations

h P m h

n vector locations

Fig. 1. An instance of GVSP{m,p, h}. Each of the n vector locations in ¥ contains
one vector. Each of the O(1) auxiliary locations contains one integer of O(logn) bits

Optimal In-place Sorting of Vectors and Records 93

Heavy Bits (Section 8). To begin with, we reduce an instance of GVSP{n,0,0}
to a suitable instance of GVSP{n—o(n),0,0(n/log®n)} plus a constant number
of instances of GVSP{O(n/logn),0,0}. We partition in place the sequence ¥
into contiguous subsequences &, .#, and Z, such that for each z € £, y € A
and z € #Z, we have x < y < z. Moreover, the number of vectors in .Z equals
that of #Z, namely, |.Z| = |Z| = O(n/logn). Assuming that max.¥ # min %
(otherwise sorting is trivial), we consider the pairs P = {({Z[i], Z[i]), for 1 <
i < |&|}. Note that for every pair (z,y) € P, vectors z and y are distinct
(z < y) and their first mismatching scalar component is at position lep(z,y) + 1.
Based on this observation we identify a subset H of the pairs in P satisfying two
constraints:

1. |H| = 2(n/log?n).
2. There exists an interval [I,7] C [1,k] of size max{l,k/logn}, such that
lep(x,y) + 1 € [l,r] for every pair (x,y) € H.

Under constraints 1-2, we can use the vectors in H for implicitly representing
O(n/log? n) bits, called heavy bits, so that decoding one heavy bit requires O(1+
k/logn) time while encoding it takes O(k) time. Let us see why do we need these
bits. When designing an optimal in-place algorithm, the constraint on using just
O(1) auxiliary locations, namely, O(logn) extra bits of information, is rather
stringent. Fortunately, permutations of the keys encode themselves further bits
of informations. Potentially, we are plenty of log h! bits by permuting h distinct
keys. Based on this idea, bit stealing [19] is a basic technique for implicitly
encoding up to h bits of information by pairwise permuting h pairs of keys. In
its original design, the technique encodes a bit with each distinct pair of keys
x and y, such that x < y. The bit is of value 0 if z occurs before y in the
permutation; it’s of value 1 if x occurs after y in the permutation. The main
drawback of this technique in our setting is that we need O(k) time for encoding
and decoding one bit since z and y are vectors. As we shall see, we will require
an amortized number of O(1) encoded bits and O(log n) decoded bits per vector,
so that we have to decrease the cost of decoding to O(1+k/logn) to stay within
the claimed bounds.

At this stage, sorting ¥ reduces to sorting .# as an instance of GVSP{n —
o(n),0,0(n/log?n)}. After that, it also reduces to sorting .# and Z as instances
of GVSP{O(n/logn),0,0} solved by Lemma 1.

Buffering and Session Sorting (Sect. 4). We solve GVSP{n — o(n),0,
O(n/log®n)} reducing to O(logn) instances of GVSP{O(n/logn),O(n/logn),
O(n/log® n)} and to O(1) instances of GVSP{O(n/logn),0,0} solved by Lemma
1. We logically divide .# into contiguous subsequences .41, ..., Ms_1, Ms,
where | #s| = - = |Ms_1| < | M| = O(n/logn) and s = O(logn). Moreover,
|.#1| = O(n/logn) has a sufficiently large multiplicative constant, so that .#
can host enough vectors playing the role of placeholders. With reference to Fig-
ure 1, we sort the m = O(n/logn) vectors in each individual .#;, i # 1, using
the p = O(n/logn) placeholders in .#; and the h = O(n/log?n) heavy bits
encoded by the pairs in H C % x %.

94 G. Franceschini and R. Grossi

Let us first give some motivation for using the placeholders while sorting.
Having just n vector locations, we cannot rely on a temporary area of vector
locations for efficiently permuting the vectors with a few moves. We therefore
exploit a virtual form of temporary area using the internal buffering technique of
Kronrod [16]. We designate the vectors in .# as placeholders for “free memory”
since we do not care to sort them at this stage. Hence, they can be scrambled
up without interplaying with the sorting process that is running on a given .,
1 # 1. When we need to move a vector of .#; to the temporary area, we simulate
this fact by exchanging the vector with a suitable placeholder of .#;. At the same
time, we should guarantee that this exchange is somehow reversible, allowing us
to put the placeholders back to the “free memory” in .#; without perturbing
the sorting obtained for .#;, i # 1.

Assuming to have obtained each of A, ..., #s_1, #s in lexicographic order,
we still have to merge them using the heavy bits in H and the placeholders in
1. Tt turns out that this task is non-trivial to be performed. Just to have a
rough idea, let us imagine to run the 2-way in-place mergesort for O(logs) =
O(loglogn) passes on them. This would definitively give a non-optimal time
cost for the vectors since the number of vector exchanges would be w(n), losing
optimality in this way. We introduce a useful generalization of the technique
in [7,16], thus obtaining what we call session sorting. Let us assume that the
vectors are distinct (we shall disregard this assumption in Section 4).

The main goal of session sorting is that of rearranging all the vectors in
Mo, ..., Ms_1, Mg, s0 that they are not too far from their final destination. If
any such vector has rank r» among all the other vectors in Ao M5 - Ms_1 M,
and occupies a position g > r after session sorting, we guarantee that g — r <
|-#;|. (Note that we do not claim anything regarding the case g < r.) Using
this strong property, we show that the sequence of 2-way in-place operations for
merging #; and A;q for i = 2,3,...,s — 1 (in this order) yields the sorted
sequence. (We remark that this is not generally true if we do not apply session
sorting.) As a result, the entire sequence Mo M3 - - - Ms_1.Ms is in lexicographic
order with a linear number of moves.

What remains to do is sorting ., .#1, and % individually as instances of
GVSP{O(n/logn),0,0} by Lemma 1. Merging them in place with the rest of
sorted vectors is a standard task giving ¥ in sorted order. Hence, we are left with
an instance of GVSP{O(n/logn),0(n/logn), O(n/log*n)}, which corresponds
to sorting a given .#;, i # 1, using the placeholders initially hosted in .#; and
the heavy bits encoded by the pairs in H.

Sorting Each #; Individually (Section 5). We describe this stage in general
terms. For a given ¢ # 1, let .#' = .#; and .#p = ./, for the instance of
GVSP{|.4'|,|-#5|,|H|} that we are going to solve with the heavy bits in H
(see Figure 1). Using #p as a “free memory” area, we simulate the sorting of
the m’ = |.#’| vectors by inserting them into a suitable structure that is incre-
mentally built inside .#g. Each insertion of a vector x € .#’ into the internal
structure of .#p exchanges x with a placeholder. After each such exchange we
permute some of the vectors inside .#g, so as to dynamically maintain a set of

Optimal In-place Sorting of Vectors and Records 95

O(m’/log? m') pivot vectors in the internal structure. The pivots have buckets
associated inside .#p for the purpose of distributing the non-pivot vectors in-
serted up to that point, like in distribution sort. Each bucket contain @(log2 m’)
vectors that are kept unsorted to minimize the number of vector exchanges
needed to maintain the internal structure of .#Zp.

The pivots inside .#p are kept searchable by a suitable blend of the tech-
niques in [10, 13, 18], requiring to decode O(logn) heavy bits per inserted vector
(which is fine since decoding takes O(1 + k/logn) time). In particular, we logi-
cally divide each vector z into a concatenation of O(logm’) = O(logn) equally
sized chunks. We only store the lcp information for the chunks considered as
“meta-characters,” thus obtaining an approximation of the lcp information for
the vectors. After that the distribution completes by inserting all the vectors
of .4’ into the internal structure of .#g, we sort the buckets individually by
using a constant number of recursive iterations of session sorting whose param-
eters are suitably adapted to the buckets’ size. The base case of the recursion
consists in solving GVSP{O(+/logm'), O(y/logm/),0}, for which we design an
optimal ad-hoc algorithm. After completing the individual sorting of the buck-
ets, which still reside in .#p, we exchange them with the placeholders that were
temporarily moved to .#’. We place back the sorted buckets and their pivots to
M’ according to their relative order, which means that the m’ vectors in .4’
are in lexicographic order. Since this stage is quite full of technicalities, we give
more details in the full paper.

Known Tools. We use a few optimal algorithmic tools for atomic keys: in-place
stable mergesort and in-place merge [21]; in-place selection for order statis-
tics [17]. We apply these algorithms to vectors in a straightforward way by
paying a slowdown of O(k) per elementary step in their time complexity. We
also use Hirschberg’s linear scanning method [11] for searching in place a set of
n vectors of length k, with the simple bound of O(k 4 n) time. We go through
the convention that the last lowercase letters—. . ., x, y, w, z—denote vectors and
the middle ones—... i, j, k, [, .. —are auxiliary indices or parameters.

3 Heavy Bits

We detail how to reduce the problem of sorting in place n vectors—an in-
stance of GVSP{n,0,0}—to an instance of GVSP{n — o(n),0,0(n/log*n)}
plus a constant number of instances of GVSP{O(n/logn),0,0}. (The nota-
tion for GVSP{m,p,h} is defined in Section 2 and illustrated in Figure 1.)
We recall that we partition in place the sequence ¥ into &, .#, and %, where
IZ| = |Z| = p = O(n/logn). We obtain this partition by performing order
statistics in place [17] so as to identify the pth and the (n — p + 1)st elements
of ¥ in O(nk) time. In the rest of the paper we assume that wy # wg; other-
wise, . is made up of all equal vectors and sorting is trivially solved by applying
Lemma 1 to £ and Z.

96 G. Franceschini and R. Grossi

Let us consider the set of pairs of vectors thus obtained, P = {(Z[i], Z[i]) :
1<i<p} CZ%XZ. Let us conceptually divide each of these vectors into chunks
of k/¢ = O(1 + k/logn) scalar components, where ¢ = min{k,logn}. We index
these chunks from 1 to ¢, in the order of their appearance inside the vector.
We assign an integer label j to each pair (Z[i], Z][i]), where 1 < j < ¢ and
1 < ¢ < p. Since Z[i] < Z[i] by construction, label j is the index of the chunk
containing the first mismatching position for Z[i] and Z[i]; that is, it satisfies
(=1 k/t <lep(Lli], Z]i]) < jk/¢. By the pigeon principle, there must exist
a value of j for which at least p/¢ = 2(n/log®n) pairs in P are labeled j. We
can identify that value by running at most ¢ in-place scans of .Z and Z#, with
an overall cost of O(¢ x pk) = O(nk) time. With a further scan of . and %, we
single out h = O(p/f) = @(n/log® n) pairs in P that have label j, moving them
in place at the beginning of .Z and Z, respectively. Consequently, we identify
these vectors in the first h locations in .Z and Z by a set of pairs, denoted H:

— H C Pand |H|=h=6(n/log’n);

— H = {{(Zi],Z]i]) : 1 <i < h} after the preprocessing;

— there exists j € [1,¢] such that (j — 1) k/¢ < lep(z,y) < jk/¢ for every pair
(x,y) € H.

We steal bits in H using the knowledge of j as follows. For 1 < i < h, we
encode the ith bit of value 1 by exchanging .Z[i] and Z[i] in O(k) time; namely,
Z|i] occupies now position ¢ inside #Z and Z[i] does it inside .Z. If the bit is 0,
we leave them at their position (no exchange). In order to decode the ith bit, we
only compare their jth chunk to find their mismatching position in the interval
[(—1) k/€+1, 7 k/€]. In this way, we can establish whether or not the two vectors
have been exchanged during encoding (and so we decode either 0 or 1). Decoding
performs at most k/¢ scalar comparisons and thus takes O(1 + k/logn) time.
The non-constant cost of bit stealing motivates our choice of referring to these
bits as heavy.

Lemma 2. We can encode h = ©(n/log?n) heavy bits by the pairwise per-
mutation of vectors in H C £ x %Z. Encoding one bit requires O(k) time while
decoding it requires O(1+k/logn) time. Preprocessing requires O(nk) time using
O(1) auziliary locations.

We keep .Z and # unsorted for encoding bits until the end of the algorithm.
At that point, we can in-place sort £ and # by Lemma 1, in O(nk) time.
Consequently we are left with the problem of sorting . .

Lemma 3. There exists an O(nk)-time reduction from GVSP{n,0,0} to
GVSP{n — o(n),0,0(n/log?n)}, using O(1) auziliary locations.

4 Buffering and Session Sorting

In this section, we detail how to sort the vectors in .#, which is an instance
of GVSP{n —o(n),0,0(n/log?n)}. We logically divide .# into contiguous sub-
sequences A1, ..., Ms—1, Ms, called blocks, where | Mo = -+ = | Ms—1| <

Optimal In-place Sorting of Vectors and Records 97

|.#s] = O(n/logn) and s = O(logn). In the following, we assume without
loss of generality that |.#;| = |.#s_1| (if not, we treat .#; differently, apply-
ing Lemma 1 to it). We remark that only a constant number of blocks can be
sorted with the bounds of Lemma 1. Hence we should proceed otherwise. We
designate the O(n/logn) vectors in ., for a sufficiently large multiplicative
constant, to act as placeholders [16]. In this way we obtain O(logn) instances
of GVSP{O(n/logn),O(n/logn),O(n/log?n)}, plus a constant number of in-
stances of GVSP{O(n/logn),0,0} solved by Lemma 1.

We are still missing a crucial part of the reduction performed at this stage,
namely, how to obtain all the vectors in #o.#5 - Ms_1.#s in lexicographic
order. We introduce the right-bounded permutations, since they rearrange the
vectors so that each vector cannot occupy a position beyond a bounded dis-
tance to the right of its final position in the sorted sequence. As we will prove,
the net effect of the right-bounded permutation is that we can simulate the
in-place merging scheme by the following scheme: IN-PLACE-MERGE(Ao, #3);
IN-PLACE-MERGE(. A3, M4); . . . ; IN-PLACE-MERGE (s _1, .#5). We describe this per-
mutation in general terms as it is of independent interest.

4.1 Right-Bounded Permutations

We are given three positive integers m, p, ¢, such that ¢ divides p and p divides
m, satisfying

(Z-1)xa-v<p 1)

Given a sequence % of m vectors, we logically divide it into m/q sub-blocks of
q vectors each, denoted .71,...,.%), /4. The sub-blocks are grouped into blocks
of p/q sub-blocks each, thus logically dividing % into m/p blocks of p vectors
each, denoted #1,...,%,,/,.- A right-bounded permutation is the arrangement
of the vectors in & resulting from steps P1-P2, with steps P3-P4 yielding the

sequence in lexicographic order:

P1. For j =1,...,m/p, sort each block %; individually.

P2. Sort stably the m/q sub-blocks .1, ..., 7, 4 according to their first vector
(i.e., comparisons are driven by the minimum vector in each sub-block, and
the rest of the vectors are considered as “satellite data”).

P3. For j =1,...,m/p, sort each block %; individually (note that the content
of the blocks changed!).

P4. For j = 1,...,m/p — 1, merge the vectors contained in blocks %, and

:%j+1.

Lemma 4. For each vector ABli], 1 < i < m, let g; be the number of vectors
Blj| > Bli] such that 1 < j < i right after steps P1-P2. Then

%<(Z—me—n.)

98 G. Franceschini and R. Grossi

Proof. Let us consider the arrangement of the vectors in £ right after steps P1-
P2. In order to prove equation (2), we need to consider the intermediate ar-
rangement of the vectors in & after step P1 and before step P2. Recall that
we logically divide £ into blocks and sub-blocks, indexing the blocks from 1
to m/p. We assign a unique type to each block based on its index, namely, block
Py is assigned type t, where 1 <t < m/p, since it is the ¢th block in 2. For the
intermediate arrangement above, we say that a vector has type t if it belongs to
P, (recall that %, is sorted). We can assign type ¢ to the sub-blocks of each %,
in the same manner, since each sub-block contains vectors of the same type t by
construction. Hence the type of a sub-block is well defined. We refer to the first
vector of each sub-block, which is also the minimum in it, as the header of the
sub-block.

Let us now resume the arrangement of the vectors in & right after steps P1—-
P2. Consider a generic vector 4|i| belonging to a sub-block, say .’ of type ¢/,
and let g; be defined as above. We give an upper bound to g; so as equation (2)
holds. Specifically, we count the maximum number of vectors contributing to g;.
Let us discuss them by their type. By the stability of the sorting process in
step P2, we know that the vectors of type ¢’ have maintained the relative order
they had in the intermediate arrangement (after step P1 and before step P2)
and so they cannot contribute to g;.

Let = be the header of the sub-block .’ containing £]i]. Let us evaluate the
contribution to g; for the vectors of type ¢ # t’. Consider all sub-blocks of type
t": we claim that at most one of them, say ./, can contain vectors contributing
to g;. Precisely, " is the sub-block of type t” having the largest header less than
or equal to z. Let y < x be the header of . and z be one of such contributing
vectors in ", Sub-block " is laid out before .’ by construction but z > Zi]
by definition of g;. Note that there can be at most ¢ — 1 such vectors z in .#”.
For any other sub-block of type ¢/, we show that its vectors cannot contribute to
gi. Since the block of type t” is sorted after step P1, there are two possibilities
for its sub-blocks ./ # .": (a) .’ contains all vectors that are less than or
equal to y <z (i.e., " is laid out before .#”"); they do not contribute to g; by
transitivity since z < A[i]. (b) /" contains all vectors that are greater than or
equal to z > HBli| > z (i.e., " is laid out after .#”); they do not contribute
because the header of " is strictly larger than z by transitivity and so "
is laid out after .. Summing up, the total contribution to g; for the vectors of
type t” # t' is at most ¢ — 1 (a subset of the vectors in .”’). Since there are
2 — 1 different types other than t', we obtain the upper bound for equation (2).

Theorem 1. After steps P1-P/, the sequence A is sorted.

Proof. We proceed by induction on the length of prefixes of blocks in Z. The
base case is obvious, as we know that % is sorted by step P3. Let us assume
that the jth prefix of blocks %1%, --%; is sorted by induction, for j > 1.
After step P3, the upper bound in equation (2) still holds for any vector v in
block #;41 (modulo the inner permutation due to the sorting of %;,). Indeed,
the number of vectors z > v that are laid out before v cannot increase; those

Optimal In-place Sorting of Vectors and Records 99

inside %, disappear after sorting it and so the upper bound in equation (2) is
anyway valid. By equation (1), we derive that p, the size of each block, is larger
than the upper bound of equation (2). As a result, the number of vectors z > v
that belong to the jth prefix of blocks cannot exceed p. Hence, they should be
contained in the last locations of block %; since p = |%;| and %1 %B; - - - B; is
sorted by induction. This allows us to conclude that after merging %; and %; 1,
the (j+41)st prefix of blocks %1% - - - #j+1 is sorted, thus proving the statement
of the theorem.

4.2 Session Sorting

We apply the steps stated in Theorem 1 to sorting the vectors in . into sessions.
We choose .2, of size O(n/logn) for the placeholders. We then fix ¢ = log®n,
p = qn/log*n = O(n/logn), and we pick m as the largest multiple of p such
that m < |.#| — |.#1]|. These values satisfy equation (1). We therefore obtain

the logical division of .# into blocks 1, ..., Ms_1, M5, as expected. We
comment on how to apply steps P1-P4 to 4o, ..., # (assuming w.l.o.g. that
\///8\ = ‘f///sle'

In steps P1 and P3, we have to solve a number of m/p = O(logn) instances
of GVSP{O(n/logn),O(n/logn),0(n/log?n)} (see Section 5).

In step P2, we have just m/q = O(n/log®n) vectors to sort, which are the
minimum in each sub-block. We refer to them as headers and to the rest of
the vectors as satellite data (with ¢ — 1 vectors each). We associate a unique
implicit index in the range from 1 to m/q with the satellite data in each sub-
block. We employ the heavy bits in H so as to form a sequence of m/q integers
hi,ha, ... hy, q of logn bits each, employed to encode a permutation of these
indexes. Note that we have direct access to any hj, 1 < j < m/q, in O(klogn)
time for encoding it and O(k + logn) time for decoding it by Lemma 2.

At the beginning of step P2, we set h; = j and exchange the jth header
with the jth placeholder in ., for 1 < j < m/q. We then apply the in-
place stable mergesort on the headers thus collected in .#;. Each comparison
cost is O(k) time while each exchange requires O(klogn) time. Indeed, when
exchanging two headers inside .4}, say at position j' and j”, we have also to
swap the values of h;; and hj~, involving their decoding and encoding in H.
Note that the satellite data is not exchanged but h; and h;» are correctly
updated to maintain the association of the headers with their satellite data in
the sub-blocks. At the end of the mergesort, we exchange the jth header in .#}
with the placeholder temporarily hosted in the h;th sub-block. The total cost is
O((m/q)log(m/q) x (klogn)) = O((n/log® n)logn x (klogn)) = o(nk).

We now have to permute the sub-blocks according to the values of h1, ..., by, /q
encoded in H. Specifically, the h;th sub-block must occupy the jth position
among the sub-blocks to reflect the stable sorting of their headers. We em-
ploy an additional sequence of integers r1,72,...,7y,/, encoded in H, initializing
r; = j if and only if h; = i. We proceed incrementally for j =1,2,...,m/q—1
(in this order), preserving the invariant that we have correctly placed the first
J — 1 sub-blocks, with hy,... hy e and 71,72, ..., 7 /4 suitably updated to re-

100 G. Franceschini and R. Grossi

flect the fact that one permutation is the inverse of the other (in particular,
hj = rj = j for 1 < j' < j, so the invariant is meaningful for the rest of
the indexes). Note that some of the sub-blocks may have exchanged in order
to place the first j — 1 sub-blocks. Hence, when we refer to the jth and the
hjth sub-blocks, they are taken from the current arrangement of sub-blocks. If
j = hj, the current sub-block is already correctly placed and the invariant is
trivially preserved. Otherwise, we exchange the jth and the h;th sub-blocks by
pairwise exchanging their ¢th vectors for i« = 1,2,...,¢. In order to preserve
the invariant, we simultaneously swap the values of h; and h,; and the val-
ues of r; and 74;, respectively, re-encoding them in H. Since the exchange of
sub-blocks requires the pairwise exchange of ¢ vectors plus the encoding and
decoding of O(1) values among hi,...,hy/q and r1,72,... 7 q, the cost is
O(qgk + klogn). When j = m/q — 1, the last two sub-blocks are placed cor-
rectly and we have performed a total of O(m/q) such exchanges. The final cost
is O(m/q x (qgk + klogn)) = O(n/log® n x klog®n) = O(nk). Hence, the total
cost of step P2 is O(nk).

Finally, in step P4, we use the in-place merging with comparison cost O(k).
As a result, we obtain a total cost of O(m/p x pk) = O(nk) for step P4 (and .#
is sorted).

Lemma 5. There is an O(nk)-time reduction from GVSP{n — o(n),0,
O(n/log?n)} to a number of O(logn) instances of GVSP{O(n/logn),
O(n/logn),O(n/log®n)}, using O(1) auziliary locations.

5 Sorting Each Block Individually

We have to solve an instance of GVSP{O(n/logn),O(n/logn),O(n/log*n)}
(see Figure 1). We reformulate it as GVSP{m’,O(m’),O(m’/logm')}, where
m’ = O(n/logn) vectors in .#’ should be sorted using a sufficiently large
number O(m’) of placeholders in .#p. We need to encode O(1) sequences of
integers of O(logm’) = O(logn) heavy bits each in H C ¥ x %, totalizing
O(m'/logm') heavy bits. We sort .#’ by repeatedly inserting its vectors in
an internal structure maintained inside .#Zp to mimic a distribution sort into
buckets of O(log®m’) vectors each. Each bucket is sorted by applying a con-
stant number of recursive calls to session sorting (Section 4.2). The base case is
an instance of GVSP{O(y/logm’), O(y/logm’),0}. We first rank the vectors by
linking them in a sorted list without moving the vectors (we mimic the inser-
tion sort in a list without moving vectors). The list pointers of O(loglogm')
bits each, however, are not encoded with heavy bits in this case. Since we
sort one bucket at a time and have O(y/logm’) such pointers, we can keep
the O(y/logm’ loglogm’) = o(logn) bits for all the pointers in one auxiliary
location. We can access any such pointer in constant time, and we can append
a new pointer to them within the same complexity by using RAM operations.
We apply Hirschberg’s linear scanning to add a new vector to the sorted list
and mimic insertion sort. Hence, the cost per vector is O(k + /logm/’). After

Optimal In-place Sorting of Vectors and Records 101

setting up the linked list that reflects the sorted order, we permute the vectors
using the temporary buffer of O(y/logm’) placeholders. Thus the time com-
plexity of GVSP{O(v/logm’), O(y/logm’),0} is bounded by O(k+/logn +logn).
We summarize the resulting bounds, leaving several technical details to the full
paper.

Lemma 6. An instance of GVSP{O(n/logn),O(n/logn),0(n/log®n)} takes
O(n + nk/logn) time using O(1) auxiliary locations.

Theorem 2. An arbitrary set of n vectors of length k can be sorted in place
optimally, taking O(nk + nlogn) time and using O(1) auxiliary locations.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

A. Andersson, T. Hagerup, J. Hastad, and O. Petersson. Tight bounds for searching
a sorted array of strings. SIAM Journal on Computing, 30(5):1552-1578, 2001.
L. Arge, P. Ferragina, R. Grossi, and J.S. Vitter. On sorting strings in external
memory. ACM STOC 97, 540-548, 1997.

M.A. Bender, E.D. Demaine, and M. Farach-Colton. Cache-oblivious B-trees. IEEE
FOCS ’00, 399-409, 2000.

. J.L. Bentley and R. Sedgewick. Fast algorithms for sorting and searching strings.

ACM-SIAM SODA ’97, 360-369, 1997.

. G.S. Brodal, R. Fagerberg, and R. Jacob. Cache oblivious search trees via binary

trees of small height. ACM-SIAM SODA ’02, 39-48. 2002.

T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algo-
rithms. MIT Press, 2001.

G. Franceschini. Proximity mergesort: Optimal in-place sorting in the cache-
oblivious model. ACM-SIAM SODA ’04, 284-292, 2004.

G. Franceschini. Sorting stably, in-place, with O(nlogn) comparisons and O(n)
moves. STACS ’05, to appear, 2005.

G. Franceschini and V. Geffert. An In-Place Sorting with O(nlogn) Comparisons
and O(n) Moves. IEEE FOCS ’03, 242-250, 2003.

G. Franceschini and R. Grossi. No Sorting? better Searching! IEEE FOCS ’04,
491-498, 2004.

D.S. Hirschberg. A lower worst-case complexity for searching a dictionary. Proc.
16th Allerton Conference on Comm., Control, and Computing, 50-53, 1978.

D.S. Hirschberg. On the complexity of searching a set of vectors. SIAM J. Com-
puting, 9(1):126-129, 1980.

A. Ttai, A.G. Konheim, and M. Rodeh. A sparse table implementation of priority
queues. ICALP ’81, 417-431, 1981.

D.E. Knuth. The Art of Computer Programming III: Sorting and Searching.
Addison—Wesley, 1998.

S.R. Kosaraju. On a multidimensional search problem. ACM STOC ’79, 67-73,
1979.

M.A. Kronrod. Optimal ordering algorithm without operational field. Soviet Math.
Dokl., 10:744-746, 1969.

T.W. Lai and D. Wood. Implicit selection. SWAT ’88, 1423, 1988.

102 G. Franceschini and R. Grossi

18. U. Manber and G. Myers. Suffix arrays: A new method for on-line string searches.
SIAM Journal on Computing, 22(5):935-948, 1993.

19. J.I. Munro. An implicit data structure supporting insertion, deletion, and search
in O(log? n) time. Journal of Computer and System Sciences, 33(1):66-74, 1986.

20. J.I. Munro and V. Raman. Sorting multisets and vectors in-place. 'WADS ’91,
473-480, 1991.

21. J. Salowe and W. Steiger. Simplified stable merging tasks. Journal of Algorithms,
8(4):557-571, 1987.

22. D.E. Willard. Maintaining dense sequential files in a dynamic environment. ACM
STOC ’82, 114-121, 1982.

Towards Optimal Multiple Selection

Kanela Kaligosi', Kurt Mehlhorn', J. Ian Munro?, and Peter Sanders?

! Max Planck Institut fiir Informatik, Saarbriicken, Germany
{kaligosi, mehlhorn}@mpi-sb.mpg.de
2 University of Waterloo, Ontario, Canada
imunro@uwaterloo.ca
3 Universitat Karlsruhe, Germany
sanders@ira.uka.de

Abstract. The multiple selection problem asks for the elements of rank
71, T2, ..., Tk from a linearly ordered set of n elements. Let B denote
the information theoretic lower bound on the number of element com-
parisons needed for multiple selection. We first show that a variant of
multiple quickselect — a well known, simple, and practical generaliza-
tion of quicksort — solves this problem with B + O(n) expected com-
parisons. We then develop a deterministic divide-and-conquer algorithm
that solves the problem in O(B) time and B + o(B) + O(n) element
comparisons.

1 Introduction

We consider the problem of determining the elements of rank rq, ry, ..., rg in
an ordered set S with n elements using as few comparisons as possible. The
problem has been studied extensively, primarily at its extreme ends, when one
either requires one or two order statistics (such as the median or the maximum
and minimum) or when all ranks are to be determined, and so the set is to be
sorted. The more general problem can be very helpful in statistical analyses,
providing a clean summary of the data by giving elements of a chosen set of
ranks. Multiple selection is also an ingredient of sample sort [1].
Let Aj:=r; —rj_1 where ro = 0 and 741 = n and let!

k+1 k+1 n
B:nlgn—;AjlgAj —O(n) :;AjlgA—j —O(n).

A comparison-based multi-selection algorithm identifies the A; smallest ele-
ments, the Ay next smallest elements, . .., and hence an additional) j Ajlg A+
O(n) comparisons suffice to sort the entire set. Thus B is a lower bound for the
number of comparisons needed by any multiselection algorithm, even in the ex-
pected case [5]. Note that this lower bound takes both the input size n and the
structure of the required ranks R into account.

! Throughout this paper, lgz stands for log, z.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 103-114, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

104 K. Kaligosi et al.

1.1 Background and Ancient History

The problem of sorting is one of the oldest and most heavily studied in com-
puting. “Interesting” sorting algorithms date back to the 1940’s, or earlier. The
information theoretic lower bound of lg(n!) = nlgn — nlge + O(lgn) compar-
isons is missed by only about n(lge — 1) comparisons by mergesort, when n is a
power of 2. Despite such an easy approach to optimality, even Ford-Johnson [9]
merge insertion and other very complex methods still leave a ©(n) gap (with an
admittedly small constant).

It seems that Charles Dodgeson (Lewis Carroll) was the first to point to
the unfairness of declaring the runner-up (the player losing to the last game to
the winner in a single knockout competition) to be the “second best”. Hoare
[8] proposed a simple O(n) expected case (median) selection algorithm as an
addendum to his original work on Quicksort. Close to a decade later Blum,
Floyd, Pratt, Rivest and Tarjan [2] provided the first median finding technique
with O(n) worst case behavior. The result was certainly a major surprise at the
time, although it is now often presented as a basic example of divide and conquer.
At essentially the same time, two of those authors, Floyd and Rivest [7], gave a
probabilistic method for selection using n 4+ min(ry,n — r1) + o(n) comparisons
in the expected case. This bound is optimal, at least up to o(n) terms, as shown
in [4]. We note that this lower bound exceeds that of the information theoretic
argument, above, for selecting the median by n/2. The difference is even greater
for selecting other ranks.

The contrast between the simple randomized techniques and the complex
worst case approach is striking. The development of the 3n + o(n) worst case
method of Schénhage et al. [14] and the (2.94---)n method of Dor and Zwick
[6] further amplifies

Multiple selection problems have received much less attention. Chambers [3]
proposed multiple quickselect — a natural generalization of quicksort: Pick a
pivot element m as an estimate for the median of S and partition S into two
sets S< = {s€S:s<m} and S5 = {s€S:s5>m}. Output m as the el-
ement of rank r,,:= |S<| if r,, € R. Recurse on (S<,{r € R:r <ry}) and
(Ss,{r —rm € R:r > ry}). The recursion can be broken when R = {.

Pohl [12] gave a slick deterministic algorithm for finding the maximum and
minimum of a set in the optimal number of [3n/2] — 1 comparisons. Cunto
and Munro [4] provided optimal and near optimal randomized techniques for
finding elements of two or three ranks. The “full blown” deterministic multise-
lection problem that we address appears to have first been considered by Dobkin
and Munro [5], who suggest a method based on median finding that solves the
problem using 3B + O(n) comparisons.

A quarter century after Chamber’s paper, there has been renewed interest in
the analysis of multiple quickselect. Prodinger [13] has given an exact formula
for the expected number of comparisons performed by multiple quickselect with
random pivot which can be written as 2B/lg(e) + O(n). Panholzer [11] has
derived very accurate bounds for the expected number of comparisons for the
case that the pivot is the median of 2¢ + 1 random sample elements and where R

Towards Optimal Multiple Selection 105

is a random k element subset of {1,...,n}. These bounds show that nlgk+O(n)
expected comparisons are sufficient if ¢t = 2 (Ign). Note that for general R the

lower bound B might be much smaller. For example, consider the set of ranks
R := {[n/i] : i <n}. Observe further that this set has k = ©(y/n) elements,

i, nlgk = O(nlgn). On the other hand, B ~ nY, "0t = O(n), ie.,
there is a logarithmic factor gap between Panholzer’s upper bound and the
lower bound B. It is a natural question whether multiple quicksort is still a
near optimal algorithm for inputs with nonuniformly spread ranks in R. For
example, it was initially not clear to us whether one should choose m such
that S is approximately halved, such that R is approximately halved, or some

compromise between these two strategies.

1.2 The Rest of the Paper

Section 2 introduces our basic proof technique by analyzing an idealized variant
of multiple quickselect that is given the exact median for free. This algorithm
needs at most nlgn— fill Ajlg Aj 41y —r1+2n comparisons. In Section 3 we
show that multiple quickselect with pivot selection based on random sampling
can closely approximate the idealized algorithm with respect to the expected
number of comparisons. The method is reasonably straightforward and so us-
able in practice: one uses about n comparisons to split S into elements above
and below a pivot value which, with high probability, is quite close to the me-
dian. Some care is required in sampling, but as long as one does not insist on
minimizing lower order terms too vigorously, this aspect of the analysis is fairly
straightforward. Handling the details of the splits is a bit trickier.

Section 4 deals with the deterministic algorithm. As in the deterministic
median algorithm of Blum et al. [2], we represent sets as collections of sorted
sequences. Each sequence has length about ¢ = lg(B/n). The number of se-
quences is about n/¢. We determine the median of the median of the sequences,
call it m, and partition each sequence at m using binary search. This has cost
O((n/0)1g¢) which is sublinear, if B = w(n). After partitioning, we have two
collections of sorted sequences on which we recurse. In each collection, we have
short sequences (length less than ¢) and long sequences (length between ¢ and
20). As long as we have two short sequences of the same length, we merge them
using an optimal number of comparisons. The key insight is that the amor-
tized cost of merging is nH («) where na is the rank of the pivot element and
H(a) = —alga — (1 — a)lg(l — a) is the binary entropy function. A simple
induction shows that the total cost of merging is B + o(B) + O(n) and that the
total cost of partitioning is o(B) + O(n).

2 An Idealized Algorithm

Consider multiple quickselect where we pick the exact median of the current
subproblem as a pivot. Let T'(n, R) denote the number of comparisons needed in
the partitioning steps, i.e., we disregard the cost needed for obtaining the pivot.

106 K. Kaligosi et al.

k+1
Theorem 1. T'(n,R) < nlgn — Z Ajlg Aj 4+ — 11 + 2n.

j=1
Proof: The proof is by induction. For n = 1 the claim 0 = T(n,R) <
0—0+41—-1+ 2 is true. Now let r; denote the largest element of R with
r; < m/2. For the induction step we distinguish two cases and substitute the
induction hypothesis for the subproblems in each case.

Case 0 < i < k:

n n n n
T(n7R) :n—1+T<§7{T1,...,7‘1'}> +T(§,{Ti+1—§,...,Tk—§}>
n k+1
Sn—1+nlg§—ZAjlgAj+ri—r1 +rg—riy1+2n
j=1

k+1
<nlgn — ZA]- lgAj —rp+71+2n
j=1
For the last estimate we have used n — 14+ nlg(n/2) = nlgn — 1 < nlgn and
Lemma 1 below with x =n/2 —r; and y = r;41 — n/2.
Case ¢ = k: (the case i = 0 is symmetric)

T(n, R) =n — 1+T(Q,R)

2
n.ono oo n
§n—1+§lg§—z:1AjlgAj +rk—r1+2§
j=

+ (n—r)lg(n —rg) — (g - rk) lg (g - rk)

Now we use n—1+2n/2 < 2n and, by Lemma 1,
(n—re)lgn—ri) — (% —ri)lg (2 —m) < 2lg % +n—r1p.

k+1

T(n,R) §nlg% — ZAjlgAj +ry—ri+2n+n—rg .
j=1
Finally, observe that nlg § +n — 1, =nlgn — 7, <nlgn. ad

Lemma 1. For z,y > 0 we have (x +y)lg(z +y) —zlgz —ylgy — (z+y) < 0.

Proof: Let s=x+y and z =~s, with 0 < < 1. Then
s(lgs —ylg(ys) — (1 =) 1g((1 —v)s) — 1)
=s(—7lg(y) = (1 =7)lg(l =) —1) =s(H(y) - 1) < 0. O

Towards Optimal Multiple Selection 107

3 The Randomized Algorithm

We now analyze a variant of quickselect where the pivot m is the median of
n3/* sample elements chosen uniformly at random from S with replacement. Let
T'(n, R) denote the expected number of comparisons needed to execute this of
multiple quickselect.

k+1
Theorem 2. T'(n,R) < nlgn — Z AjlgAj+ry—ri+2n+ O(k1/4n3/4>,
j=1

The remainder of this section outlines a proof for the above theorem. Most
probabilistic aspects of the problem are packaged in the following lemma:

Lemma 2. The rank of the pivot m is outside the range [n/2—n3/* n/2+n>/4]
with probability at most 1/n.

The proof is in the full paper. It is based on Chernoff bounds and very similar
to the proof used in the analysis of the Floyd Rivest algorithm [7] in [10].
Using Lemma 2 we can conclude that

1
T(n,R) <n —1+ (9(713/4) + ﬁT(n, R)

+-Y) max (TW,R)+TO"R")

n ‘%_n/‘énsﬂk

where R = {reR:r<n'}, R" ={r—n':reRr>n'} and n” =n —n'.
The term n — 1 stems from the comparisons of elements in S\ {m} with m. The
term (’)(n3/ 4) accounts for the expected cost of finding m in the sample using a
(randomized) linear time selection algorithm. The next term is the probability
1/n that m is an inaccurate estimate of the median times a conservative estimate
of the cost in this case — partitioning can never make the subproblems more
difficult than the original problem. Subtracting 7'(n, R)/n and dividing by 1—1/n
yields

T(nR) <n+0(n*)+ max (T, R)+T(" R")) (1

|5 —n/|<n3/4
We now use induction over n using the induction hypothesis

kt1
T(n,R) <nlgn— ZAj lg Aj + 715, — 71 + 20+ (ak* — b)n®/*
j=1

where a and b are constants whose value will be implied by constraints showing
up in the proof. First note that for any constant n we can make this work by
choosing a value for a that is sufficiently much larger than b.

For the induction step we will use the following two lemmata which encap-
sulate a number of calculations that we defer to the full paper.

108 K. Kaligosi et al.

Lemma 3. f(8) := (14 6)lg(1+0)+ (1 —8)1g(1 —) <262 for § € [-1,1].

Lemma 4. For 0<i<k and —1 <6 <1 we have

i1/4(1 + (5)3/4 + (kj _ i)1/4(1 _ 5)3/4 < 2(k/2)1/4

To simplify the max term in Eq. (1), consider a fixed value 0 < § < 2n~1/4

such that n' = (14 6)% (the case 6 < 0 is symmetric). Let r; denote the largest
element of R with r; < n’. We get three cases:

Case 0 < i < k: We use the abbreviation I(z) := zlgx.

k+1
T, R) +T(n", R") < I((1+0)5) + 1((1 = 9)5) = > 1(4))

j=1
+ I(Ai_,_l) — I(n' — Ti) - I(Ti-&-l - ’I’L/)

+ri =+ 20 + (ait/t = b)n?

+ 7 — Tiy1 + on” + (a(k — i)1/4 — b)n”3/4

k+1
:nlgnfn+2((1+5)+llf ZI

+I(Ais1) = I(n' —73) = I(ris1 —n)— (rig1—1i)
+ 2_3/4a(i1/4(1 + 5)3/4 + (k _ i)1/4(1 o 5)3/4)n3/4
273+ 83+ (1 =8t 4 vy — i 4 20

Now we can apply a number of estimates:

I(1+6)+1(1-0) <20 <2(2n~ Y42 = O(n~Y/?) (using Lemma 3). As in
the idealized case, Lemma 1 can be used to eliminate the I(z) terms not in
Zfill I(4;). Now it follows (using Lemma 4) that

iV (14634 (k=) /4 (1—6)3/* < 2(k/2)V/* = 23/4k1/4, Finally,

—(1+0)** — (1 —-6)%* < =2+ O(n~1/2) using calculus. So

k+1
<nlgn—n— ZI)+ O(\/ﬁ) + akM A3t = oM 3t 4 — iy + 20,
j=1

Substituting this back into Eq. (1) we obtain

k+1
T(n,R) <nlgn— ZI —l—(’)(3/4)—|—ak1/4n3/4—21/4bn3/4+rk—r1+2n .

Jj=1

Since 2'/* > 1 we can use the term b(2'/* — 1)n3/* to cancel the O(n3/4) term
by choosing a sufficiently large value for b.

Towards Optimal Multiple Selection 109

Case i = k: This case is a slight generalization of the reasoning from the ideal-
ized algorithm and from the case 0 < ¢ < k. Compared to the idealized case, we
get various O(n3/ 4) terms that we need to cancel. For this purpose we use the
term ak'/*((1 + 6)%)3/4 = 273/4qk/4n3/4 4 (’)(kl/4n1/2). Since 273/% < 1 we
can choose a sufficiently large to cancel all the unwanted lower order terms.

Case ¢ = 0: This case is similar to the case ¢ = k but “easier” because the non-
trivial recursion is on a smaller input. We therefore omit the detailed proof. [

4 The Deterministic Algorithm

In this section we present a deterministic algorithm for the multiple selection
problem. It performs B + o(B) + O(n) comparisons.

The algorithms sets ¢ = max(1, [lg(B/n)]) and is based on the recursive
procedure multiselect. The input to multiselect is a collection C' of non-empty
sorted sequences and a non-empty set R = {ry,...,7} of ranks. Each sequence
in the collection has length at most 2¢. The procedure returns the elements of
rank 7y, 72, ..., T in the input set. We solve the multiselection problem by
calling multiselect with a collection of n sequences of length one each and our
set R of desired ranks.

We call a sequence short if it has length less than £. A collection C satisfies
the length invariant if it contains no two short sequences of the same length.

Procedure multiselect works as follows: If the total number of elements in
the sequences of C is less than 4¢2, then solve the problem by sorting all the
elements and if R is empty, simply return. Otherwise, we first establish the length
invariant. As long as there are two short sequences of the same length, we merge
them into a single sequence. Recall that two sorted sequences of length s can be
merged using 2s — 1 comparisons. After the merge step, we have a collection D
of g sequences satisfying the length invariant. We determine the median of the
medians of the sequences in D, call it m, and split every sequence in D at m,
i.e., into the elements smaller than or equal to m and into the elements larger
than m. This gives us collections C’ and C” of size p’ and p”, respectively. We
have p’ < q, p” < q and p’ + p”" > ¢q. We also split the ranks and make one or
two recursive calls.

This ends the description of the algorithm. We turn to the analysis. For a
sequence ¢ we use |c| to denote its length. For a collection C of sorted sequences,
let I(C) = > .cclcl1gle| be the information content of the collection. Multi-
select generates a recursion tree T. We use v to denote an arbitrary node of
the recursion tree and introduce the following notation: I, = I(C) is the in-
formation content of the collection entering node v, p, = |C] is the number of
sequences in the collection and n,, =) . |c| is the total length of the sequences
in the collection. J, = I(D) is the information content of the collection after the
merging step and g, is the number of sequences in the collection. I/ = I(C")
and I/ = I(C") are the information content of the sequences resulting from the

110 K. Kaligosi et al.

partitioning step and p/, and p!, are the number of sequences in these collections,
respectively. Also, the total number of elements in C’ is a,n,. Finally, we use
C7" for the number of comparisons spent on merging in node v and C? for the
number of comparisons spent on computing the median and partitioning in node
v. The total number of comparisons in the calls with n, < 4¢? is O(nlg?), since
the calls are applied to disjoint sets of elements.

Lemma 5. C)' < J, — I, + ¢y, — po-

Proof: It takes at most 2s — 1 comparisons to merge two sequence of length s.
Also 2s1g(2s) — 2(slgs) +1—-2=2s— 1. O

Lemma 6. J, < I+ I + n,H(a,).
Proof: Let D = {di,...,d,} be the collection after the merging step and let
n = n, and o = a,. Each d; is split into two sequences d; and d} and C’ is

formed by the non-empty sequences in {dj,...,d;}. C" is defined analogously.
Define a; as a; = d;;/d;. We have (using 01g0 = 0)

Jo—I,— I/ = Y (dilgd; — djlgd} — d} 1gd]))
1<i<q

= > di(lgd; — a;lg(aids) — (1 — ;) lg((1 — a;)d;)

1<i<q

> diH ().

1<i<q

Next observe that > ., d;/n =1, ", a;d;/n =", d;/n = o. Thus). (d;/n)H (o)
is a convex combination of the values of H at the arguments «;. Since H is
convex this is bounded by the value of H at the corresponding combination
of the arguments, i.e., by the value at >,(d;/n)o;. Thus >, (d;/n)H(a;) <
H(;(di/n)a;) = H(a). U

Lemma 7. C" < n,H(ow) + I, + I — I, + pl, + pll — py.
Proof: This follows immediately from the two lemmas above and the inequality

qv < iy + D). O

The next Lemma shows that the splitting process is reasonably balanced. A
similar Lemma is used in the analysis of the deterministic median algorithm of
Blum et al.

Lemma 8. Ifn, > 4¢% then 1/16 < o, < 15/16 and H(ov,) > 1/4.

Proof: We count the number of elements that are smaller than or equal to the
median of the medians m after partitioning.

Towards Optimal Multiple Selection 111

After the merge step, we have a collection of g, sequences, each of length
at most 2¢. Therefore, ¢, > [n,/2¢]. Recall that by the invariant of the algo-
rithm there are no two sequences of the same length less than ¢. Or, in other
words, there can be at most one sequence for each of the lengths 1,...,¢ — 1.
Consider the sequences whose median is less than or equal to m. Their number is
[qv/2] > n,/4L. In the worst case this collection contains one sequence from each
of the lengths 1,...,¢ — 1. Thus, the number of non-short sequences is at least
n,/4¢ — (¢ — 1) and each of them has at least [¢/2] elements that are less than
or equal to m. Thus, in total they have at least (n,/4¢ — (£ — 1)) [£/2] > n,/8 —
£(¢ —1)/2 elements. Moreover, the number of elements contained in the short
sequences that are smaller than or equal to m are Zf; [1/2] > 1/2 Zl 11 =
£(¢ — 1)/4. Therefore, over all a,n, > n,/8 —£(¢ — 1)/4. Similarly, for the num-
ber of elements greater than m we can show that (1 —«,)n, > n,/8—4(¢ —1)/4
and the claim follows. a

Consider the recursion tree 1" generated by the algorithm. This is a binary tree.
The leaves correspond to calls with either n, < 4¢% or empty R,. Interior nodes
have n, > 4¢? and non-empty R,. The total cost of merging is

Zcm < Z noH (o) + I, + 1) — I, + pl, + pll — py).
veT veT

We first bound > 71y H ().

veT

Lemma 9. Let T(n,R) =) .pnoH(ay). Then

k1 k+1
T(n, R) <ZAlgA +rk—r1+16n—nlgn—2A IgAj 41, — 71+ 16n
j=1 j=1

whenever R is non-empty?.

Proof: We use induction. If n < 4/? and R is non-empty, T'(n, R) = 0 and
the right hand side is at least zero. If R is non-empty, we split into subprob-
lems (n/,R') and (n”,R"), with n’ =an,n”" = (1—a)n, R ={r:re Rr<
n'} and R = {r —n' : r € R,r > n’}. Then nH(«a) = nlgn — n’lgn’ —
n” lgn”. Let k' = |R’|. By symmetry, we may assume k' > 0. Let Af, ..., 4]

K41
and A7, ..., Al be the sequence of A’s for the two subproblems. Then
Al Ay Al AT AY L AL s the sequence of A’s in the original

problem. We need to distinguish cases.
Assume first £” > 0. Then we can apply the induction hypothesis to both
subproblems and obtain (writing for A}, ; and y for AY)

2 If Ris empty, k = 0 and 7, = 0 and r; = n. This will not make sense in the inductive
proof.

112 K. Kaligosi et al.

T(n,R) <nH(a)+Tn' , R)+Tn", R"

E'+1
<nlgn—n'lgn’ —n"lgn” +n'lgn’ — Z Allg AL 4 1y — 7y + 160
j=1
k41
+n"1gn” — Z AV1g A + 1y — rpgr + 160"
j=1
k+1
=nlgn— ZAj lg Aj + 1 — 71 + 160
j=1

+(@+y)lglr+y) —zlgr —ylgy — (rp41 — 1)

and we have established the induction step using Lemma 1 and x4y = rg/ 41 —rg.
Assume next k" = 0. We apply the induction hypothesis to the first subprob-
lem and obtain

T(n,R) <nH(a)+T(n', R

<nlgn—n'lgn’ —n"lgn” +n'lgn’ — Z Allg A + 1y — 71 + 160
1<j<k+1
=nlgn— Z AjlgA;+ry —r1 + 16n
1<j<k+1
+ (A1 + 1) 1g(Ag gy + 1) — Apyy1g Apyy —n"1gn” — 160

"

We have A}, +n"” < n < 16n” by Lemma 8. An application of Lemma 1
completes the induction step. a

Lemma 10. Y (I, + 1) — I, + p, + py — po) < nlg(20).

Proof: The sum telescopes to

2 : ! ’ § : " 17
_Iroot — Proot + (]v +pv) + (I'u +pv)
v € T and there is v € T and there is
no recursive call for C’ no recursive call for C”’

The collection entering the root consists of sequences of length 1 and hence
Lioot = 0 and proot = m. The collections for which there is no recursive call
are disjoint and hence their total length is n. Also no sequence is longer than
2{ and every sequence is non-empty. Thus their contribution is bounded by
nlg(20) + n. O

We next turn to the cost of computing the median of the medians and partition-
ing our sequences at the median of medians. We let 3 be a constant such that
the median of z elements can be computed with Sz comparisons.

Lemma 11. The total cost CP of computing the median of the medians and
partitioning is bounded by

Towards Optimal Multiple Selection 113

k1
w Z A;lg Ai + W(m —7r1) +0(n) + O(Bn) + O(nllgl).
=1 !

Proof: We split the cost for computing medians and partitioning into two parts:
the cost arising from non-short sequences and the cost arising from short se-
quences.

The first three terms refer to the cost of finding the median of medians and
partitioning arising from the non-short sequences. The median of each sequence is
known since they are sorted. At each node v the number of non-short sequences
is at most |n,/¢| < n,/¢ and hence the share of the non-short sequences is
Bn, /¢ comparisons in node v. In order to partition at m we perform binary
search on each sequence with cost at most lg 2¢, thus, the cost over all sequences
is at most n, lg2¢/¢. Therefore, the comparisons spent in node v for non-short
sequences is (g 2¢ + B)n, /€. Next observe that 1 < 4H(«,,) for any vertex v and
hence (1g2¢+ B)n, /¢ < 4(1g2¢ + B)H (cy)ny /€. The bound now follows from
Lemma 9.

The fourth term refers to the cost contributed by the short sequences for
computing the median of medians. Since we have at most ¢ — 1 short sequences
in each node, they contribute 5(¢ — 1) to the number of comparisons at each
node of the recursion tree. Hence, they contribute an O(8¢n) over all.

The last term refers to the cost of partitioning the short sequences at m. At
each node this cost is at most Zf;ll lgi < ¢lg ¥ and the bound follows. ad

Lemma 12. The total cost for the base case of the recursion is bounded by [Bn.

Proof: The collections for which there is no recursive call are disjoint and the
cost of selecting the median of s elements is 3s. ad

Theorem 3. The deterministic multi-selection algorithm uses B+ o(B)+ O(n)
COmparisons.

Proof: Summing the bounds in Lemmas 9, 10, 11,and 12 we obtain the follow-
ing upper bound:
B+ 0(n)+0O(nlgl) + O((1+1g¥)/¢) - B+ O(n) + O(ntlgl)

1 +1glg(B/n) | lg(B/n)lglg(B/n)
g(B/m) | B/n > B

_B+mm+0(

This is B + o(B) + O(n). O

5 Conclusion

We have shown that multiple quickselect performs an optimal number of com-
parisons up to a linear term. There are several ways to improve this linear term
which is particularly interesting when the lower bound is linear itself. For ex-
ample, when r, < n/2 (or 11 > n/2) it pays to choose the pivot such that its

114 K. Kaligosi et al.

rank is just a bit larger than r; (or a bit smaller than r1). It can then be shown
that the linear term is reduced from 2n to 3n/2. Also note that for k = 1 the
algorithm then becomes a special case of the optimal algorithm by Floyd and
Rivest [7]. Likewise, the lower bound could be further refined. However, since
there is even a remaining linear size gap between upper and lower bound for
sorting, completely closing the gap remains a distant possibility.

There is a long standing constant factor gap between the upper bounds for the
best deterministic selection algorithms and the lower bound. Our deterministic
algorithm shows that this gap becomes a lower order term for multiple selection.

Multiple quickselect is obviously highly practical. It might be quite com-
plicated to implement our deterministic algorithm efficiently but at the end it
might work quite well: Its cost is dominated by merging operations that are
known to be quite fast. Moreover, since the algorithm executes batches of many
small binary merging operations, one might execute them in parallel using mul-
tithreading or instruction parallelism. This approach might mitigate the impact
of data dependencies and branch mispredictions.

References

1. G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J. Smith, and
M. Zagha. A comparison of sorting algorithms for the connection machine CM-
2. In 8rd ACM Symposium on Parallel Algorithms and Architectures, pages 3-16,
1991.

2. M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tarjan. Time bounds
for selection. Journal of Computer and System Sciences, 7(4):448-461, 1973.

3. J. Chambers. Partial sorting (algorithm 410). Communications of the ACM,
14:357-358, 1971.

4. W. Cunto and J. I. Munro. Average case selection. J. ACM, 36(2):270-279, 1989.

5. D. P. Dobkin and J. I. Munro. Optimal time minimal space selection algorithms.
Journal of the ACM, 28(3):454-461, 1981.

6. D. Dor and U. Zwick. Selecting the median. In SODA: ACM-SIAM Symposium
on Discrete Algorithms, 1995.

7. R. W. Floyd and R. L. Rivest. Expected time bounds for selection. Commun.
ACM, 18(3):165-172, 1975.

8. C.A.R. Hoare. Find (algorithm 65). Communications of the ACM, 4(7):321-322,
1961.

9. L. R. Ford Jr. and S. B. Johnson. A tournament problem. AMM, 66(5):387—389,
1959.

10. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

11. A. Panholzer. Analysis of multiple quickselect variants. Theor. Comput. Sci.,
302(1-3):45-91, 2003.

12. 1. Pohl. A sorting problem and its complexity. Commun. ACM, 15(6):462-464,
1972.

13. H. Prodinger. Multiple quickselect - Hoare’s find algorithm for several elements.
Information Processing Letters, 56:123-129, 1995.

14. A. Schonhage, M. Paterson, and N. Pippenger. Finding the median. J. Comput.
Syst. Sci., 13:184-199, 1976.

Simple Extractors via Constructions of
Cryptographic Pseudo-random Generators

Marius Zimand

Department of Computer and Information Sciences,
Towson University, Baltimore
http://triton.towson.edu/ mzimand

Abstract. Trevisan has shown that constructions of pseudo-random
generators from hard functions (the Nisan-Wigderson approach) also
produce extractors. We show that constructions of pseudo-random gen-
erators from one-way permutations (the Blum-Micali-Yao approach) can
be used for building extractors as well. Using this new technique we build
extractors that do not use designs and polynomial-based error-correcting
codes and that are very simple and efficient. For example, one extractor
produces each output bit separately in O(log® n) time. These extractors
work for weak sources with min entropy An, for arbitrary constant A > 0,
have seed length O(log®n), and their output length is ~ n*/3.

1 Introduction

This paper puts forward a new framework for constructing extractors based on
a new connection between extractors and pseudo-random generators. A pseudo-
random generator takes as input a short random string called the seed and
outputs a long string that cannot be distinguished from a truly random string
by any test that is computable by circuits of bounded size. An extractor has
two inputs: (a) The first one comes from an imperfect (i.e., with biased bits
and correlations among bits) distribution on binary strings of some length and
it is called the weakly-random string; (b) the second one is a short random
seed. The output is a long string that cannot be distinguished from a truly
random string by any test. One difference between pseudo-random generators
and extractors is the number of inputs (one versus two). From a technical point
of view this difference is minor because the known constructions of pseudo-
random generators implicitly do use an extra input which is a function that
in some sense is computationally hard. The fundamental difference is in the
randomness requirement for the output. Thus, while the output of a pseudo-
random generator looks random in a complexity-theoretic way, the output of
an extractor is random (or very close to random) in an absolute information-
theoretic way. Consequently pseudo-random generators and extractors appear
to belong to two very different worlds, and, for many years, the developments in
the construction of pseudo-random generators and extractors went along distinct
research lines.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 115-127, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

116 M. Zimand

Trevisan [Tre01] has made a breakthrough contribution in this area by observ-
ing that the (apparently superficial) similarity between extractors and pseudo-
random generators extends to some of the methods to build the two kind of
objects. For the reasons mentioned above, Trevisan’s result has been extremely
surprising. It has also been an isolated example of a transfer from the complex-
ity theory standard arsenal of techniques to the information theoretical area.
In this paper we extend Trevisan’s observation and establish that, as far as
construction methods are concerned, there is a truly close relationship between
pseudo-random generators and extractors. Specifically, we show that the other
major route (than the one followed by Trevisan) that leads to pseudo-random
generators (of a somewhat different kind) can also be used to construct ex-
tractors. Some explanations are in order at this point. There are two known
approaches for constructing pseudo-random generators. One approach uses as a
building block a hard function f and, in one typical setting of parameters, for
any given k € N, builds a pseudo-random generator g with outputs of length
n that is secure against adversary tests computable in time n*. The running
time to compute g(z) is n*', for some k' > k. This kind of pseudo-random
generators can be used for derandomizing BPP computations. They cannot be
used in cryptography, because in this setting, it is unwise to assume that the
adversary is endowed with less computational power (n*) than the legitimate
users (nk/). Henceforth we will call this type of pseudo-random generator a “de-
randomization pseudo-random generator” (also known as a Nisan-Wigderson
pseudo-random generator). The second approach uses as a building block a hard
object of a more sophisticated type, namely a one-way function (the hardness
of such a function f consists in the difficulty to invert it, but f must satisfy
an additional property, namely, it should be easy to calculate f(z) given z).
It is known that given a one-way function, one can construct a pseudo-random
generator [HILL99]. An easier construction produces a pseudo-random generator
from any one-way length-preserving permutation. This second approach has the
disadvantage that is using as a building block a more demanding type of object.
The advantage of the method is that a pseudo-random generator g constructed
in this way can be used in cryptography because g(z) can be calculated in time
significantly shorter than the time an adversary must spend to distinguish g(z)
from a truly random string. Henceforth we will call this type of pseudo-random
generator a “crypto pseudo-random generator” (also known as a Blum-Micali-
Yao pseudo-random generator).

Trevisan has shown that the known methods for constructing derandomiza-
tion pseudo-random generators also produce extractors. More precisely, he has
shown that the constructions of pseudo-random generators from hard functions
given by Nisan and Wigderson [NW94] and Impagliazzo and Wigderson [IW97]
can be used almost directly to produce extractors. His method has been extended
in a number of papers to build extractors with increasingly better parameters
(see the survey paper by Shaltiel [Sha02]). In the paper [Tre99], the conference
version of [Tre01], Trevisan has suggested that the methods to construct crypto
pseudo-random generator cannot be used to build extractors. We show that in

Simple Extractors via Cryptographic Pseudo-random Generators 117

fact they can, at least for a combination of parameters that, even though not
optimal, is not trivial. Moreover, we show that the extractors constructed in this
way are very simple and efficient. The first extractor built in this paper follows
almost directly the classical construction of a pseudo-random generator from a
one-way permutation. It runs in O(nlogn) time (in the standard RAM model)
and is very simple. The following is a complete description of it. The input con-
sists of the weakly-random string X, of length n = 72" for some integer 7, and of
the seed ((x1,...,2¢),r), with |z;| = n, £ = O(7), and |r| = ¢n. We view X as a
function X : {0,1}" — {0,1}", and, using the standard procedure, we transform
X into a circular permutation R : {0, 1} — {0,1}". For i = 0 to m —1 = n*(1),
we calculate b; as the inner product modulo 2 of r and (R'(x1) ... R'(z¢)). The
output is by ...b,—1. A type of efficiency which has received a lot of attention
recently is that of sublinear time. It may be the case that in some applications
we only need the i-th bit from the sequence of random bits that are extracted
from the weakly-random string. We would like to obtain this bit in time poly-
nomial in the length of the index 4, which typically means polylog time in the
input length (under the assumption that each input bit can be accessed in one
time unit). By analogy with the case of list-decodable codes, we call an extractor
with this property, a bitwise locally computable extractor.! The second extractor
that we build is of this type. It relies on the same basic method used in the
construction of the first extractor, combined with the idea of taking consecu-
tive inputs of the hard function as in the extractor of Ta-Shma, Zuckerman and
Safra [TSZS01]. This second extractor is even simpler and its complete descrip-
tion is as follows. The input consists of the weakly-random string X of length
n = i - 2", for some natural number 7, and of the seed ((x1,...,x¢),r), with
|z;| = 7, for all 4, £ = O(n), and |r| = ¢n. We view X as the truth-table of a
function X : {0,1}" — {0,1}". For i = 0 to m—1 = n*(M) we calculate b; as the
inner product modulo 2 of r and (X (x1 +14),..., X (x¢ + 1)), where the addition
is done modulo 2™. The output is by . . . by_1.

The parameters of the extractors constructed in this paper are not optimal.
Both extractors that have been described above work for weak sources having
min-entropy An, for arbitrary constant A > 0, use a random seed of length
O(log2 n), and the output length is approximately n*/3. A variant of the second
extractor has seed length O(logn) (here, for simplicity, we assume that the
extractor’s error parameter € is a constant), but the output length reduces to
90(VIogn)

Lu’s extractor [Lu04] coupled with the constructions of designs from the
paper of Hartman and Raz [HRO03] can be seen to be also a bitwise locally
computable extractor with parameters similar to those of our second extractor
(note that the designs in [HRO3] appear to imply extractors with seed length
2(log? n)). Lu’s extractor is using expander graphs and the designs from [HRO03]

! The simpler name locally computable extractor is already taken by a different kind of
efficient extractors, namely by extractors computable in space linear in the output
length, see [Vad04], [Lu04].

118 M. Zimand

need somewhat unwieldy algebraic objects. It seems to us that the extractors
presented in this paper are simpler than all the extractors from the literature.?
At the highest level of abstraction, our extractors follow the “reconstruction
paradigm” (see [Sha02]) typical to Trevisan’s extractor and to its improve-
ments [RRV99, TSZS01,SUO01]. The major differences are that our extractors
avoid (1) the use of designs (in this respect they are similar to the extractors
in [TSZS01] and [SUO01]), and, perhaps more strikingly, (2) the encoding of the
weakly-random string with an error-correcting code having a good list-decoding
property. Our extractors can be implemented very easily and are thus suitable
for practical applications. For example, they can be utilized to generate one-time
pad keys in cryptosystems based on the bounded-storage model (see the papers
of Lu [Lu04] and Vadhan [Vad04]), or for constructions of error-correcting codes
using the scheme in [TSZ01] (the extractors built in this paper are actually
strong extractors—for definition see, for example [Sha02]—as required by this
scheme). They may also have theoretical applications in situations where the
kind of efficiency achieved by our extractors is essential.

1.1 Definitions

Notations: ® y denotes the concatenation of the strings x and y, |z| denotes
the length of the string z, and ||A|| denotes the cardinality of the set A. For
two binary strings x and r of the same length, b(x,r) denotes the inner prod-
uct of z and r viewed as vectors over the field GF(2). Let n € N. Let X,,, Y,
be two distributions on X™. The statistical distance between X,, and Y,, is de-
noted Agtat(Xy,Yy) and is defined by Agtat(Xn, Ys) = maxscqo,13n [Prob(X,, €
A) — Prob(Y,, € A)|. The computational distance between X,, and Y, rela-
tive to size S is denoted Acomp,s(Xn,Yr) and is defined by Acomp,s(Xn,Y,) =
max |[Prob(C(X,,) = 1) — Prob(C(Y,,) = 1)|, where the maximum is taken over
all circuits C of size < S. Abusing notation, we identify a circuit C' with the
set of strings = for which C(z) = 1. Thus, z € C is equivalent to C(x) = 1.
The min-entropy of a random variable taking values in {0,1}" is given by

min{logm a € {0,1}",Prob(X = a) # 0}. For each n € N, let

U,, denote the uniform distribution over {0,1}".

Definition 1.1. (Extractor) The values n,k,d, m are integer parameters, and
e > 0 is a real number parameter. A function E: {0,1}" x {0,1}¢ — {0,1}™
is a (k,€)-extractor if for every distribution X on {0,1}™ with min-entropy at
least k, the distribution E(X,Uy) is e-close to the uniform distribution U,, in
the statistical sense, i.e., Agtat(E(X,Uy),Up) < e.

We fix parameters n, d, m and € and a function E: {0,1}" x {0,1}¢ — {0, 1}™.
Let us consider an arbitrary set W C {0,1}"™ and a string = € {0,1}". We say

2 We note that Dziembowski and Maurer [DMO04] give a similarly simple construction
of an object that is related to extractors.

Simple Extractors via Cryptographic Pseudo-random Generators 119

: . ; o [I{E@y)lye{0,3n W] W]
that x hits W e-correctly via E if {0179 “{071}m|‘ < €. The
folowing lemma has appeared more or less explicitly in the literature (see, for

example, [Sha02]).

Lemma 1.2. Let E: {0,1}" x {0,1}? — {0,1}™ and € > 0. Suppose that for
every W C {0,1}™, the number of x € {0,1}" that do not hit W e-correctly via
E is at most 2, for some t. Then E is a (t + log(1/€), 2¢)-extractor.

1.2 Overview and Comparison with Trevisan’s Approach

Trevisan’s method is based on the constructions of pseudo-random generators
from hard functions given in [NW94] and in [IW97]. These constructions use a
function f as a block-box and construct from it a function g that stretches the
input (i.e., |gf(x)| >> |z|) and which has the following property. If there exists a
circuit D that distinguishes gy(z), when « is randomly chosen in the domain of
gy, from the uniform distribution, then there is a small circuit A, which uses D as
a subroutine, such that A calculates f (or an approximation of f, depending on
whether we are using the method in [IW97] or the one in [NW94]). Therefore if f
is a hard function, there can be no circuit D as above of small size and thus g is
a pseudo-random generator. Trevisan has observed that (1) the truth-table of f
can be viewed as a string produced by a weak source that can serve as an extra
input of the pseudo-random generator, and (2) the circuit A invoking D can
be considered as a special type of a circuit that is endowed with D-gates. By a
standard counting argument, it can be shown that, for any circuit D, regardless of
its size, the set of functions that can be calculated by small circuits with D-gates
is small. A circuit D can be viewed statically as a statistical test (more exactly,
the statistical test associated to the circuit D is the set of strings accepted by
D). In the new terminology, the fact that D distinguishes the distribution of
gy(z) from the uniform distribution with ¢ bias can be restated as “f does not
hit D e-correctly via g.” The main property mentioned above can be restated as
saying that the set of functions f that do not hit D e-correctly is included in the
set of functions computable by small circuits with D-gates. Since the latter set is
small, the former set is small as well, and thus, by Lemma 1.2, the construction
yields an extractor. In a nutshell, Trevisan’s method replaces hard functions (a
complexity-theoretic concept) with random functions (an information-theoretic
concept) and takes advantage of the fact that a random function is hard and
thus the construction carries over in the new setting.

We would like to follow a similar approach for the construction of crypto
pseudo-random generators from one-way permutations. Those constructions do
use a one-way permutation R as a black box to construct a pseudo-random
generator gg, and thus a truth-table of R can be considered as an extra input
of the pseudo-random generator. Also, the proof is a reduction that shows that
if a circuit D distinguishes gr(z) from the uniform distribution, then there is
a small circuit A, invoking the circuit D, that inverts R on a large fraction of
inputs. To close the proof in a similar way to Trevisan’s approach, we would

120 M. Zimand

need to argue that the vast majority of permutations are one-way. It seems that
we hit a major obstacle because, unlike the case of hard functions, it is not
currently known if even a single one-way function exists (and we are seeking an
unconditional proof for the extractors that we build). We go around this obstacle
by allowing algorithms to have oracle access to the function they compute. Thus,
in the above analysis, the circuit A, in addition to invoking the circuit D, will
also have oracle access to the permutation R. In this setting all permutations are
easy to compute because, obviously, there is a trivial constant-time algorithm
that, for any permutation R : {0,1}™ — {0, 1}", given the possibility to query R,
calculates R(x). We need to argue that only few permutations R are invertible
by algorithms that can query R in a bounded fashion. More precisely we need
to estimate the size of the set of permutations R : {0,1}" — {0,1}" that can be
inverted on a set of T elements in {0, 1}™ by circuits that can pose @) queries to
R. This problem has been considered by Impagliazzo [Imp96] and by Gennaro
and Trevisan [GT00]. Their techniques seem to work for the case T'-Q < 2™ and
lead to extractors that work only for sources with high min-entropy.?

We obtain better parameters by restricting the type of one-way permuta-
tions and the type of circuits that attempt to invert them. A closer look at
the standard construction of Blum-Micali-Yao pseudo-random generators re-
veals that the circuit A with D-gates manages to determine x using only the
values R(x), R%(z),..., R™(x) (where m is the generator’s output length). It is
thus enough to consider only circuits that use this pattern of queries to the per-
mutation R. Intuitively, for a random permutation R, the value of x should be
almost independent of the values of R(z), R%(z),..., R™(z), and thus, a circuit
A restricted as above cannot invert but a very small fraction of permutations.
If we take R to be a random circular permutation, the above intuition can be
easily turned into a proof based on a Kolmogorov-complexity counting argu-
ment. A circular permutation R : {0,1}" — {0,1}" is fully specified by the
sequence (R(1), R%(1),..., R¥=1(1)), where N = 2". If a circuit A restricted as
above inverts R(z) for all , then the permutation R is determined by the last
m values in the above sequence, namely RN=™(1), RN=(m=1 (1) ... RN~1(1).
Indeed, given the above values, the circuit A can determine RVN~™71(1), which
is R7Y(RN—™(1)), and then RN~™72(1), and so on till R(1) is determined.
Therefore such a permutation R, given the circuit A, can be described concisely
using only m - n bits (for specifying, as discussed, the last m elements in the
above sequence). In fact, in our case, the circuit A does not invert R(z) for all
x € {0,1}", and, therefore, the values of R at the points where the inversion
fails have to be included in the description. A further complication is that even
for the successful cases, the circuit A only list-inverts R(z), which means that
A on input R(x) produces a relatively short list of elements, one of which is
x. Thus, one also has to include in the description of R the rank of z in the

3 On the other hand, these extractors have the interesting property that their output
looks random even to statistical tests that have some type of access to the weakly-
random string. These results will be reported in a separate paper.

Simple Extractors via Cryptographic Pseudo-random Generators 121

list produced by A. The quantitative analysis of the standard construction of a
crypto pseudo-random generator shows that if the permutation R does not hit
D e-correctly, then the circuit A with D-gates is only able to produce for an
e/m fraction of R(x),z € {0,1}", a list with m?/e*> elements one of which is
x. For interesting values of m (the pseudo generator’s output length), the e/m
fraction is too small and needs to be amplified to a value of the form (1 — ¢),
for a small constant §. This can be done by employing another technique that is
well-known in the context of one-way functions. Namely, we use Yao’s method of
converting a weak one-way function into a strong one-way function by taking the
direct product. In other words, we start with a circular permutation R, define
(the direct product) R(x1,...,2¢) = R(z1) ®...® R(x,) (where ® denotes con-
catenation), for some appropriate value of £, and use R in the definition of the
extractor (instead of R in our tentative plan sketched above). It can be shown
that, for ¢ = O((1/9)log(1/7v)), if a circuit A list-inverts (yi,...,y¢), with list
size T = m?/e2, for a v = ¢/m fraction of (-tuples (y1,...,y¢) € ({0,1}"),
then there is a probabilistic algorithm A’ that list-inverts R(z) with list size
O(n-T-(1/8)-(1/v) -log(1/v)) for a (1 — §) fraction of z € {0,1}". By fixing
the random bits and the queries that depend on these random bits, we can ob-
tain a brief description of R as in our first tentative plan. It follows that only
few permutations R can hit D e-incorrectly and, therefore, by Lemma 1.2, we
have almost obtained an extractor (we also need to convert an arbitrary function
X : {0,1}" — {0,1}"™ into a circular permutation R : {0,1}" — {0,1}", which
is an easy task).

The second extractor starts from this idea and the observation that, for the
sake of building an extractor, we can work with a function X (i.e., not necessarily
a permutation) and consider consecutive values X (%), X (Z + 1),..., X (T +m),
as in the extractor of Ta-Shma, Zuckerman, and Safra [TSZS01]. That extractor
(as well as all the extractors using the “reconstruction paradigm”) takes X to be
the encoding of an arbitrary function X with a good list-decoding property and
some other special algebraic properties. This is necessary, among other things,
for the same type of amplification as in our discussion above. We use instead
a direct-product construction that is much simpler to implement (however, the
cost is a longer seed length).

Because of the space constraints, most of the proofs are omitted. A full version
of the paper is available [Zim05].

2 An Extractor from a Crypto Pseudo-random
Generator

Restricted permutations, restricted circuits

The space from where we randomly choose permutations consists of permu-
tations of a special form. First we consider the set CIRC of all circular per-
mutations R : {0,1}" — {0,1}". Next, for some parameter £ € N, we take
the ¢-direct product of CIRC. This means that for any R € CIRC, we define

122 M. Zimand

Ry :{0,1} — {0,1}" by Ry(#1 022 ®...0x¢) = R(z1) O R(22) © ... O R(zy).
We let PERM; be the set {R; | R € CIRC}. We will drop the subscript ¢ when
its value is clear from the context or when it is not relevant in the discussion.

We want to argue that no circuit that queries R in a restricted way can
invert a “large” fraction of R(Z) except for a “small” fraction of permutations
R in PERM. In order to obtain adequate values for “large” and “small” we will
impose the following restriction on the pattern of queries that the circuit can
make.

Definition 2.1. An oracle circuit C' on inputs of length at least £ - n is L-
restricted if on any input x and for all oracles R € PERMy, C only queries
- - —L— . . L.
Zhirst, B(Thrst), RQ(xﬁrSt), ...,R 1(xﬁrst), where Tgest 18 the string consisting of

the first £ -n bits of x.

We will allow the circuits to attempt to invert R in a weaker form: On input
R(z), CE outputs a small list of strings one of which (in case C' succeeds) is T.
When this event happens, we say that CR list-inverts 7. We are interested in
estimating the number of permutations R € PERM so that C® list-inverts R(Z)
for a large fraction of Z.

Definition 2.2. Let C be an oracle circuit. Agermutation R is (y,T)-good for
C if for at least a v fraction of T € {0,1}", C® on input R(T) outputs a list of
T elements that contains T.

The next lemma shows that a permutation that is (y,7)-good for a restricted
circuit C admits a short description conditioned by C' being given.

Lemma 2.3. Lety>0,n€ N, LN, andT € N. Let N =2". Let 6 > 0 and
let £ = {% - log (%)] Assume 6 > 2e ™ and { < L+ 1. Let C be an L-restricted

circuit, having inputs of length fn, and let R € PERM, be a permutation that is
(v, T)-good for C. Then, given C and £, R can be described using a number of bits
that is bounded by 20 Nn—+ Ln+ N log n+ (log 6) N+ N log(1/6)+ N loglog(2/v)+
Nlog(1/y) + NlogT +18n - L 1 - (1)*(log 2)*.

The above lemma allows us to estimate the number of permutations that are
(v, T)-good for some L-restricted circuit C'. We state the result for a particular
combination of parameters that will be of interest in our application.

Lemma 2.4. Let n € N;m € N,e > 0,0 > 0. Let N = 2". Consider v = ¢/m
and T = m? - (1/€?). Let £ = [(3/8)log(2/7)]. Assume that § = O(1) and
m? - (1/e) = o(N/n*). Let C be an m-restricted circuit, with inputs of length
In. Then the number of permutations R in PERM, that are (v, T)-good for C' is
bounded by 2", where h = 35 - N - n + 3N logm + 3N log(1/e).

Analysis of the construction of pseudo-random generators from one-
way permutations

We recall the classic construction (Blum and Micali [BM84] and Yao [Yao82]) of
a pseudo-random generator from a one-way permutation.

Simple Extractors via Cryptographic Pseudo-random Generators 123

The function Gz(7,r) is defined by the following algorithm.

Input: R a permutation of {0,1}, T e {0,1}*", r € {0,1}".

For i=0 to m—1, b= b(r,ﬁi(f)).

Output by © b1 © ... O byp—1.

The following lemma (whose proof follows closely the classical proof — see for

example [Zim04]- and, in addition, analyzes the pattern of queries) establishes
the properties of the above function in an information-theoretic context.

Lemma 2.5. Let Cy be a circuit. Then there are 2™tY — 4 circuits
Ci1,...,Cq gme1_y such that

(1) If R is a permutation with |Probg ,(Gx(Z,r) € Cy) — Prob(U,, € Cy)| > e,
(i.e., R does not hit Cy e-correctly via G), then there is some circuit Ci;
such that for at least a fraction - of T, Cfi on input R(T) outputs a list of

2. (%)2 strings that contains T (i.e., R is (¢/m,m?/e?)-good for C1 ;).

(2) All the circuits C1; are (m — 2)-restricted.

The extractor

We first build a special type of extractor in which the weakly-random string is
the truth-table of a permutation in PERM.

The following parameters will be used throughout this section. Let € > 0, >
0, and n,m € N be parameters. Let N = 2". Let ¢ = [(3/60)log(2m - (1/€))].
We consider the set of permutations PERM,;. We assume that § = O(1) and
m? - (1/€) = o(N/n*). Let G : PERM, x ({0,1}*" x {0,1}*") — {0,1}™ be the
function defined by the following algorithm (the same as the algorithm for G
from the previous section).

Parameters: (€ N,m € N.

Input: R € PERMy, (z,7) € {0,1}" x {0,1}".

For i=0 to m—1, b;=b(r,R'(T)).

Output bo b1 ®...O0by_1.

The following lemma, in view of Lemma 1.2, shows that G is an extractor for

the special case of weakly-random strings that are truth-tables of permutations
in PERM,.

Lemma 2.6. Let Cy be a test for strings of length m (i.e., Cy C {0,1}™).
Let GOOD(Cy) = {R € PERM; | R does not hit Cy e-correctly via G}. Then
|[GOOD(Cy)| < 2m*+h+1 where h = 36 Nn + 3N logm + 3N log(1/¢).

Proof. Let Cy1,...,C1 am+1_4 be the 2m+1 _ 4 circuits implied by Lemma, 2.5 to
exist (corresponding to the test Cy). Let R be in GOOD(Cy). Then Lemma 2.5
shows that there is a circuit C;; from the above list having the following prop-
erty: For at least a fraction v = ¢/m of strings # € {0,1}*", C’E on input
R(ZT) returns a list having T = m? - (1/€?) strings, one of which is Z. Thus,
R is (v,T)-good for Cy,; (recall Definition 2.2). It follows that the set of per-
mutations R € PERM, that do not hit Cj e-correctly via G is included in

124 M. Zimand

? " _4{R € PERM; | R is (v,T)-good for C ;}. Lemma 2.4 shows, that, for
each i€ {l,...,2m* —4} |{R € PERM; | R is (v, T)-good forCy ;}|| < 2" O

In order to obtain a standard extractor (rather than the special type given by
Lemma 2.6), the only thing that remains to be done is to transform a random
binary string X into a permutation R € CIRC, which determines R € PERM,
that is used in the function G given above. Note that a permutation R € CIRC
is specified by (R(1), R*(1),..., RN~1(1)), which is an arbitrary permutation of
the set {2,3,..., N}. Consequently, we need to generate permutations of the set
{1,2,..., N — 1} (which can be viewed as permutations of {2,3,..., N} in the
obvious way). We can use the standard procedure that transforms a function
mapping [N — 1] to [N — 1] into a permutation of the same type. To avoid some
minor truncation nuisances, we actually use a function X : [N] — [N].

Input: X :[N]— [N].
Loop 1: for i=1 to N—1, R(i)=1.
Loop 2: for i=1to N—1, Y(i) =1+ (X (i) mod 7).
Loop 3: for i=1 to N —1, swap R(i) with R(Y(4)).
Output: permutation R:[N —1] — [N —1].

It is easy to see that the number of functions X : [N] — [N] that map via
the above procedure into a given permutation R : [N — 1] — [N — 1] is bounded
by 22V,

We can now present the (standard) extractor. We choose the parameters as
follows. Fix n € N and let N = 2" and N = n-2". Let A € (0,1) be a constant.
Let a > 0,3 > 0 be constants such that a < A\/3, 8 < (A — 3a)/4. Let ¢ > N8
and m < N®. Take 6 = (A — 48 —3a)/4 and £ = [(3/6) log(2m - (1/¢€))].

Parameters: n € NN e N, A>0,e >0, £ N,m €N, satisfying
the above requirements.

Inputs: The weakly-random string X € {0,1}", viewed as the
truth-table of a function X : [N] — |[N]; the seed y = (T,r) €
{0,1}% x {0,1}*".

Step 1. Transform X into a permutation Ry € PERM;. The
transformation is performed by the above procedure which yields a
permutation R € CIRC, and, next, Rx is the /-direct product
of R.

Step 2. Run G on input Rx, (T,7).

We have defined a function E : {0,1}Y x {0,1}2" — {0, 1}”‘ Note that the
seed length 2¢n is O(log? N) and the output length m is N, for an arbitrary
a < A/3.

Theorem 2.7. The function E is a (AN, 2¢)-extractor.
Proof. Let Cy be a subset of {0,1}™. Taking into account Lemma 1.2, it is

enough to show that the number of strings X € {0, 1y that do not hit Cy
e-correctly via E is at most 2"V108(1/9) Tet X € {0,1}Y be a string that

Simple Extractors via Cryptographic Pseudo-random Generators 125

does not hit Cj e-correctly via E. By the definition of F, it follows that Rx
does not hit Cy e-correctly via G. By Lemma 2.6, there are at most 2mTh+1
permutations R € PERM, that do not hit C, e-correctly via G, where h =
30Nn + 3N logm + 3N log(1/e€). Since the number of functions X : [N] — [V]
that map into a given permutation R € PERM; is at most 22V, it follows that
[{X € {0,1}¥ | X does not hit Cy e-correctly}|| < 22N .2m+h+1 < 9AN—log(1/e)
where the last inequality follows from the choice of parameters. a

3 A Bitwise Locally-Computable Extractor

We present a bitwise locally-computable extractor: Each bit of the output string
can be calculated separately in O(log? N), where N is the length of the weakly-
random string. The proof uses the same plan as for the extractor in Section 2,
except that the weakly-random string X is viewed as the truth-table of an ar-
bitrary function (not necessarily a permutation) and the “consecutive”’ values
that are used in the extractor are X (%), X (T + 1),..., X(T +m — 1) (instead of
R@),R@),...,B" " (7) used in Section 2).

The parameter n € N will be considered fixed throughout this section. We
denote N = 2" and N = n - N. The parameter m € N will be specified later
(it will be a subunitary power of N). The weakly-random string X has length
N, and is viewed as the truth-table of a function X : {0,1}" — {0,1}". For
some ¢ € N that will be specified later we define X : {0,1}*® — {0,1}** by
X(71©...0x0) = X(21) ®...® X(), i.e., X is the (-direct product of X.
We also denote T = 21 ® ... ® x¢. The seed of the extractor will be (Z,r) €
{0,1}" x {0,1}*". We defineT+1 = (21 +1)®...® (2, +1) (where the addition
is done modulo 2™) and inductively, for any k € N, T+ k+1= (T+k)+ 1. The
extractor is defined by

EX,(x,r)=bX@),r)obXZT+1),r)e...0X@T+m—-1),r). (1)

It can be shown that, for any constants A > 0 and a < A/3, for m < N and
e > N(=(A=32)/1) “for some £ = O(n), F is a (AN, 2¢)-extractor. The proof shows
that if some X € {0,1}" does not hit e-correctly some test D C {0,1}™ via E,
then for “many” z € {0,1}", X(x) can derived from X(x —m+1),...,X(z—1)
and from the value of X in a few additional points that do not depend on x. It
is then shown that less than 22N ~-1°8(1/€) elements X € {0,1}" can have such a
property. The conclusion follows from Lemma 1.2.

The construction scheme of the extractor given in Equation (1) allows some
flexibility in the choice of parameters. We can obtain a quite simple extractor
that has seed length O(log(N)), is capable to extract from sources with min-

entropy AN, for arbitrary constant A > 0, and has output length ~ 2(1/3)v log(N)
This extractor has a good seed length, however the output length is much smaller
than the min-entropy of the source.

126 M. Zimand

Acknowledgments

I am grateful to Luca Trevisan for his insightful comments on an earlier draft of

this work.

References

[BM84]

[DMO04]

[GT00]

[HILL9Y]

[HRO3)]

[Imp96]

[TW97]

[Lu04]
[NW94]

[RRV99]

[Sha02]

[SU01]

[Tre99]

[Tre01]
[TSZ01]

[TSZS01]

Manuel Blum and Silvio Micali. How to generate cryptographically strong
sequences of pseudo-random bits. SIAM Journal on Computing, 13(4):850—
864, November 1984.

Stefan Dziembowski and Ueli Maurer. Optimal randomizer efficiency in the
bounded-storage model. Journal of Cryptology, 17(1):5-26, January 2004.
(Conference version appeared in Proc. of STOC’02.).

R. Gennaro and L. Trevisan. Lower bounds on the efficiency of generic
cryptographic constructions. In Proceedings of the 41st IEEE Symposium
on Foundations of Computer Science, 2000.

J. Hastad, R. Impagliazzo, L. Levin, and M. Luby. Construction of a pseudo-
random generator from any one-way function. SIAM Journal on Computing,
28(4), 1999.

T. Hartman and R. Raz. On the distribution of the number of roots of poly-
nomials and explicit logspace extractors. Random Structures € Algorithms,
23(3):235-263, Oct. 2003.

R. Impagliazzo. Very strong one-way functions and pseudo-random gener-
ators exist relative to a random oracle. (manuscript), January 1996.
Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential
circuits: Derandomizing the XOR lemma. In Proceedings of the 29th Annual
ACM Symposium on the Theory of Computing (STOC ’97), pages 220-229,
New York, May 1997. Association for Computing Machinery.

C.J. Lu. Encryption against storage-bounded adversaries from on-line
strong extractors. Journal of Cryptology, 17(1):27-42, January 2004.

N. Nisan and A. Wigderson. Hardness vs. randomness. Journal of Computer
and System Sciences, 49:149-167, 1994.

R. Raz, O. Reingold, and S. Vadhan. Extracting all the randomness and
reducing the error in trevisan’s extractor. In Proceedings of the 30th ACM
Symposium on Theory of Computing, pages 149-158. ACM Press, May 1999.
R. Shaltiel. Recent developments in explicit constructions of extractors.
Bulletin EATCS, 77:67-95, June 2002.

R. Shaltiel and C. Umans. Simple extractors for all min-entropies and a new
pseudo-random generator. In Proceedings of the 42nd IEEE Symposium on
Foundations of Computer Science, 2001.

L. Trevisan. Constructions of near-optimal extractors using pseudo-random
generators. In Proceedings of the 30th ACM Symposium on Theory of Com-
puting, pages 141-148. ACM Press, May 1999.

L. Trevisan. Extractors and pseudorandom generators. Journal of the ACM,
48(4):860-879, 2001.

A. Ta-Shma and D. Zuckerman. Extractor codes. In Proceedings of the 33rd
ACM Symposium on Theory of Computing, pages 193-199, 2001.

A. Ta-Shma, D. Zuckerman, and S. Safra. Extractors from Reed-Muller
codes. In Proceedings of the 42nd IEEE Symposium on Foundations of
Computer Science, 2001.

[Vad04]

[Yao82]

[Zim04]

[ZimO05]

Simple Extractors via Cryptographic Pseudo-random Generators 127

S. Vadhan. On constructing locally computable extractors and cryptosys-
tems in the bounded-storage model. J. of Cryptology, 17(1):43-77, January
2004.

A. Yao. Theory and application of trapdoor functions. In Proceedings of the
23rd IEEE Symposium on Foundations of Computer Science, pages 80-91,
1982.

Marius Zimand. Computational Complexity: A Quantitative Perspective.
North-Holland Mathematics Studies. vol. 196. Elsevier, 2004.

Marius Zimand. Simple extractors via constructions of crypto-
graphic pseudo-random generators. Technical Report 0501075,
Computing Research Repository, January 2005. Available at

http://arxiv.org/abs/cs.CC/0501075.

Bounds on the Efficiency of “Black-Box”
Commitment Schemes

Omer Horvitz* and Jonathan Katz**

Department of Computer Science,
University of Maryland, College Park, MD 20742
{horvitz, jkatz}@cs.umd.edu

Abstract. Constructions of cryptographic primitives based on general
assumptions (e.g., the existence of one-way functions) tend to be less
efficient than constructions based on specific (e.g., number-theoretic) as-
sumptions. This has prompted a recent line of research aimed at inves-
tigating the best possible efficiency of (black-box) constructions based
on general assumptions. Here, we present bounds on the efficiency of
statistically-binding commitment schemes constructed using black-box
access to one-way permutations; our bounds are tight for the case of
perfectly-binding schemes. We present the bounds in an extension of the
Impagliazzo-Rudich model; that is, we show that any construction beat-
ing our bounds would imply the unconditional existence of a one-way
function (from which a commitment scheme could be constructed “from
scratch”). Our analysis is the first in the area to pertain directly to an
information-theoretic component of the security notion.

1 Introduction

A central goal of modern cryptography has been to characterize the minimal as-
sumptions needed to construct cryptographic tools and protocols. For example,
we now know that one-way functions are sufficient for constructing pseudoran-
dom generators (PRGs) [2, 18, 8, 9], universal one-way hash functions (UOWHESs)
and digital signature schemes [14,16], private-key encryption schemes [6] and
commitment schemes [13]. In each of these cases, one-way functions are also
known to be necessary [10, 16], making the characterization exact. While impor-
tant from a theoretical point of view, the above constructions have had limited
practical impact due to their inefficiency. In practice, more efficient construc-
tions based on stronger assumptions tend to be used. Moreover, for all of the
examples listed above, no constructions from general assumptions that improve
on the efficiency of the original solutions are known.

The tension between general and efficient constructions has motivated a re-
cent line of research, aimed at understanding the minimal assumptions needed
for efficient constructions of various primitives. Put another way, we ask what is

* Supported by U.S. Army Research Office award DAAD19-01-1-0494.
** Supported by NSF CAREER award #0447075.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 128-139, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Bounds on the Efficiency of “Black-Box” Commitment Schemes 129

the best possible efficiency that can be achieved (for a particular primitive of in-
terest) if we limit ourselves to constructions based on the weakest cryptographic
assumptions. Initial work by Kim, Simon, and Tetali [12] demonstrated (non-
tight) bounds on the efficiency of constructing universal one-way hash functions
from one-way permutations. Extending their results, Gennaro, Gertner, Katz,
and Trevisan [4] showed that known constructions of UOWHFs based on one-
way permutations are in fact optimal; they also show efficiency bounds for the
case of PRGs, private-key encryption schemes, and digital signatures based on
one-way permutations, as well as for the case of public-key encryption schemes
based on trapdoor permutations.

It is noted that in all the above bounds, analysis pertains directly to a compu-
tational aspect of the security notion at hand: for PRGs, it is the indistinguisha-
bility of the output from random; for UOWHFs — the computational hardness
of finding a collision with a given element for a random member of the family;
for encryption — the computational indistinguishability of encryptions of dis-
tinct messages; and for signatures — the computational hardness of generating a
forgery. For commitment schemes, appealing to computational formulations of
both the hiding and binding properties resists similar analysis. Taking either of
the properties as information-theoretic introduces new challenges. Indeed, find-
ing lower bounds on the efficiency of commitments from one-way permutations
is left as an open problem in [4].

Our results. Here, we prove lower bounds on the efficiency of (black-box) con-
structions of statistically-binding, interactive commitment schemes based on one-
way permutations. A commitment scheme for m-bit messages is an interactive
protocol between a sender S and a receiver R, where S takes as input a message
M € {0,1}"™. Call the view of R during an interaction with S the commitment.
Informally, a statistically-binding commitment scheme satisfies two properties
(defined more formally in Section 2.2): (1) Hiding: the distribution over com-
mitments to M is computationally indistinguishable from the distribution over
commitments to My, for any My, My and a possibly malicious receiver; and
(2) (statistical) Binding: the probability (over coin tosses of the honest receiver
R) that there exist different M, M’ and coins s,s" for S such that the corre-
sponding commitments to M, M’ are identical is at most &,. When &, = 0 we
say the scheme is perfectly binding. A permutation 7 : {0,1}" — {0,1}™ is one-
way with security S if any circuit of size < S inverts 7 on a fraction < 1/5 of
its inputs.

We show that any black-box construction® of a statistically-binding commit-
ment scheme based on one-way permutations must have the sender query its
oracle 2((m —log(1+2™ -e3))/log S) times. For perfectly-binding schemes, the
bound translates to 2(m/logS); for non perfectly-binding schemes, the bound
becomes 2(loge, ' /log S) when m > loge; ', and is essentially £2(m/log S) oth-
erwise. We prove our bounds in the model of Gennaro, et al. [4] which, in turn,

! Using the terminology of [17] (see also [4]), our bounds hold for weak black-box
constructions and thus rule out stronger types of black-box constructions as well.

130 O. Horvitz and J. Katz

extends the model of Impagliazzo and Rudich [11, 15] (see [4] for a detailed com-
parison). In particular, we show that the existence of a construction beating our
efficiency bound would imply the unconditional existence of a one-way function
(and hence P # NP).

For the case of perfectly-binding schemes constructed from one-way per-
mutations, our bound matches the efficiency achieved by the construction of
Blum [1] as extended by Goldreich and Levin [8] (see also [5]). For statistically-
binding schemes, our bound matches the efficiency achieved by the construction
of Naor [13] for single-bit messages (setting &, = 27°). Closing the gap for the
case of longer messages remains an interesting open problem.

2 Preliminaries

2.1 One-Way Functions and Permutations

Let Af denote a circuit A with oracle access to the function f. We say that a
function f: {0,1}" — {0,1}" is (S, €)-one-way if for every circuit A of size < S
we have

Pr[AT(f(x)) € fH(f(x)] <.

To reduce the number of parameters, we will call a function S-hard if it is
(S,1/5)-one way.
Let II; denote the set of all permutations over {0,1}". Then:

Theorem 1 ([4]). For sufficiently large t, a random m € II, is 2/°-hard with
probability at least 1 — 92,

Let a||b denote the concatenation of strings a and b. For ¢t < n, let II; ,, denote
the subset of IT,, such that = € II,,, iff w(al|b) = 7(a)||b for some & € II,. A
corollary to Theorem 1 is that if ¢t = 5log S, then for n > ¢, a randomly chosen
m € Il; , is Sp-hard with high probability.

Corollary 1 ([4]). For sufficiently large t and n > t, a random © € Il ,, is
24/5_hard with probability at least 1 — 2-2".

2.2 Commitment Schemes

A commitment scheme for m-bit messages is defined by a pair of probabilis-
tic, interactive algorithms (S,R). The inputs to S, the sender, are a message
M € {0,1}"" and randomness s, while the input to R, the receiver, is random-
ness 7. Let (S(M;s),R(r)) denote the receiver’s view of an interaction with
the sender on the specified inputs; this view simply consists of the receiver’s
randomness and the messages it receives from the sender during the interaction
(when the receiver makes queries to an oracle, the view additionally includes
the answers it receives from the oracle). We call (S(M; s), R(r)) a commitment.
A decommitment consists of a message and sender randomness. We say that a

Bounds on the Efficiency of “Black-Box” Commitment Schemes 131

commitment C' = (S(M;s), R(r)) can be decommitted to a message M’ if there
exists a string s’ such that (S(M’;s"), R(r)) = C. For a message M, let

(S(M),R) € L0 & 40,1} (S(M;), R(1) }

We say that two distributions X,) are (S, ¢)-indistinguishable, and write
S,
X (%E) Y, if for every circuit A of size < S, we have

TEX ey

Pr [A(z) =0] — Pr[A(z) = 0}‘ <e.

Definition 1. Let (S,R) be a commitment scheme for m-bit messages. We
say that (S, R) is (Sp,ep)-hiding if for every circuit R* of size < Sy, for all
Moy, My € {0,1}™, we have

(Sh,en)

(8(Mo), R™) (§(My), RY).

We say that (S, R) is ep-binding if

Pr

T

[IM, M’ € {0,1}",s,s" s.t.]<€
(S(M;8),R(r)) =(S(M';s"),R(r)) | = b

We say that (S, R) is &,-binding for an honest sender if for all M € {0,1}", we
have
IM’ #£ M, s s.t.
P (5019 () = 810750, RO) <

If e, = 0 we say the scheme is perfectly-binding. Finally, we say that (S,R) is
(Sh,€n,ep)-secure (resp., secure for an honest sender) if (S, R) is (S, €n)-hiding
and ep-binding (resp., binding for an honest sender).

A construction of a commitment scheme for m-bit messages (based on one-
way permutations) is a pair of oracle algorithms (S©),R")) such that, for all
m € I, (ST, R™) is a commitment scheme for m-bit messages. We say that
(SO, RO ds (S, Sh,en, ep)-secure (resp., secure for an honest sender) if for
every w € II,, that is Sp-hard, (ST, R™) is (Sh,ep)-hiding and for every m € II,
(even those not S,-hard), (ST, R™) is €p-binding (resp., binding for an honest
sender). O

We note that, in the terminology of [17], our definitions of security for com-
mitment constructions fall in the category of weak black-bozx constructions. This
is evident in that in the definition of the hiding property, the distinguishing al-
gorithm is not given oracle access to m. As we prove lower bounds, our results
apply to stronger notions of black-box constructions as well, and in particular
to semi- and fully black-box constructions (see [17] for further details.)

132 O. Horvitz and J. Katz

2.3 Pairwise-Independent Hashing

Let H be a family of functions mapping m-bit strings to m/-bit strings. We
assume that the following can be done in time polynomial in m: (1) selecting
a function h € H uniformly at random; (2) given h € H and z € {0,1}"™,
evaluating h(x); and (3) given h*, deciding whether h* € H or not. We say
that H is a pairwise-independent hash family (following [3]) if for any distinct

21,79 € {0,1}™ and any yy,y2 € {0, 1}m/ we have:

P = = :2_2m,_
P [h(a1) = 31 A () = 1]

3 The Lower Bound

Let (S©),R)) be an (S,, Si, en, £)-secure construction of a commitment scheme
for m-bit messages (based on one-way permutations). We prove that unless S
queries its oracle at least 2((m — log(1 4+ 2™ - ¢3))/log S,) times, there exists
(constructively) a commitment scheme (S, R) secure for an honest sender which
does not require access to any oracle (i.e., the scheme is secure unconditionally).
Strengthening a result of Impagliazzo and Luby [10] (cf. Lemma 1), this implies
the unconditional existence of a one-way function.

We describe here the intuition behind our proof, assuming for ease of expo-
sition that (S,R) is a non-interactive, perfectly-binding scheme. As in [4], our
starting point is that a random = € I, ,, (for ¢t = O(log S,)) is Sp-hard with all
but negligible probability (cf. Corollary 1). So, consider a scheme in which the
sender 8’ simulates a random 7 € II;,, for S, using independent random coins?
y. Note that decommitment here consists of both s and y.

It is quite straightforward to show that the resulting scheme still satisfies
hiding. Binding, however, is another matter. Note first that we need only show
binding for an honest sender. That is, we may assume that s and y have been
chosen honestly (i.e., uniformly at random) by &’. Letting P denote the pairs
of t-bit prefixes of oracle queries made by S’ during the computation and ¢-bit
prefixes of corresponding answers, the question then is whether there exist s, 1’
(with associated query/answer prefixes P’) that form a decommitment of C' to
a different message. We first observe, informally, that having P’ = P will not
help: this is because the original scheme is binding for any choice of 7. In fact,
this further implies that for any choice of P’ there exists at most one message
to which C' can be decommitted. Said another way, this means that C' can be

decommitted to at most
221‘/‘P| — 22tq

different messages (where ¢ is the number of oracle queries made by the original
sender). Although this clearly violates binding, it does limit the space of possible

2 This can easily be done by selecting random t-bit answer-prefixes to new t-bit query-
prefixes, as needed.

Bounds on the Efficiency of “Black-Box” Commitment Schemes 133

messages somewhat as long as 229 < m. We now show how to “bootstrap” this
to achieve “full” binding with noticeable probability.

The idea is to modify the scheme as follows: the sender S now chooses a func-
tion h uniformly at random from a pairwise-independent hash family mapping
m-bit strings to m-bit strings. On message M, S now runs S’ twice (simulating
a random 7 as before), first on input M and then on input h(M). The com-
mitment also includes h. Hiding for the derived scheme follows easily, as before.
As for binding, denote the two sub-commitments of S by C; and C,. We have
said already that for each of these commitments there are sets Sy, Ss, each of
size at most 22171 < 2 such that C; might potentially be decommitted to any
message from S and similarly for Cs, Ss. But now the commitment Cyl||Cs|lh
can only be decommitted as a different message if there exists an M’ € S; (with
M’ # M) for which h(M’) € Sy. The crux of our proof is to show that, with
constant probability over choice of h (and for certain values of |P|), such an
M’ does not exist. This immediately implies that binding holds with constant
probability.

3.1 A Technical Lemma

We begin by showing that the existence of a commitment scheme secure for
honest senders implies the existence of a one-way function. Although the result
can be derived from [10], we give a simple and more direct proof here.

Lemma 1. Let (S,R) be a commitment scheme for m-bit messages which is
(Sh,en,ep)-secure for an honest sender. Let Ss,Sr be the sizes of the circuits
computing S, R, respectively. Then for any € € N, there exists an (S, — £(Ss +
SR), ley, + 2€t)-one-way function.

Proof. Via a standard hybrid argument, running ¢ independent interactions be-
tween S and R on the same, fixed message yields an (S, ley, f)-secure com-

mitment scheme for m-bit messages. Let (S¢, R¢) denote this scheme.

Let f(M,s,r) o (Se(M;s),Re(r)). We claim that f is (S, —€(Ss+Sr), len+

2¢})-one-way. Assume the contrary. Then there exists a circuit B of size at most
Sh — £(Ss + Sr) such that

Succqy, Pr [B(f(M,s,r) € [(f(M,5,7))] > ley, + 225,

We use B to construct a circuit A that violates the hiding property of (Sg, Ry¢).
On input (My, M;,C), A computes (M’ s',r") «— B(C), and checks whether

fF(M', s) Z ¢ and whether M’ = M. If both hold, A outputs 0; otherwise,

it outputs 1. Note that |A| = |B| + £(Ss + Sgr) < Sh.
Let Bad © {(M, s,7)|3M’ # M, s" : (Sp(M;s), Re(r)) = (Se(M';8"), Re(r))}.
In what follows, note that if (M’,s',7") € f=*(f(M,s,r)) then v’ = r, as r is

included in the receiver’s view. We have:

134 O. Horvitz and J. Katz

Pr [A(My,M,,C) = 0]
Mo, M,
Ce(s (Mo),R)

_ pr (M, 8", r") — B(f(My,s,r)) :]
Moy | (M',s" ") € f=H(f(Mo,s,7)) A\M' = M,

Y

(M, 8", r") «— B(f(My, s,r)) : }
ef 1(f(MOa5 T))/\(Mo,S,?”) ¢ Bad

B(f(Mo, s, 7)) :]

“Hf (Mo, s,7))

M' s r") «— B(f(My,s,r)) :
Mg,ﬁﬁ [(M’75/7r/) c f—l(f(MO,S,T)> /\(MO,S,’I“> c Bad]

(M',s',1") = B(f(Mp, s,7)) :

> —

- MEer |:(M)8 ’T) 1((M(),S,T)) MEer[(MO’S’T) = Bad]
> Succltl —cf > lentel,

Furthermore, we have:

Pr [A(Mg, M1,C) = 0]
Mo, M,
Cce(S (M1),R)
(M s’ T)(_B(f(M]_,S,’I">) :

ﬁh[(s € <<M1,sr>>/\M'=MJ

ENG

(M',s",1") — B(f(Mi,s,r)):
SM§£\41 [(M s r")e f ((M, s, r))/\(Ml,s,r)eBad]

Putting everything together, we have:

MEer [A(Mo,Ml,C) :0] — MEYJ\/Il [A(M(),Ml,C) :O] > Lley,.
Ce(S (Mo),R) Ce(s (M1),R)

But this implies that there exist two messages My, M; for which A can distin-
guish (S¢(My), Re) from (S¢(My), Re) with probability > ey, contradicting the
hiding property of (Sg, Re). |

3.2 Main Result

Theorem 2. Let (SO, R0 be an (S,, Sh,en, ep)-secure construction of a com-
mitment scheme for m-bit messages that expects an oracle m € II,,. Let t =
5log Sp. If S makes qs < (m — 2 —log(1 + 2™+ - g,)) /4t queries to its oracle,
and g, < 1/8 — 275 then there exists a commitment scheme for m-bit mes-
sages which is (Sp,1/4,1/4)-secure for an honest sender (without access to any
oracle).

Bounds on the Efficiency of “Black-Box” Commitment Schemes 135

Applying Lemma 1, this implies the existence of a one-way function (without
access to any oracle).

Proof. We construct non-interactive commitment scheme (S, R) for m-bit mes-
sages. The construction makes use of a procedure STM that simulates a ran-
dom permutation in I, as follows [4]: STM takes as input a list L. On a
query z|’, where |z| = t, SIM checks whether there exists a y such that
(z,y) € L. If so, STM returns y||a’. Otherwise, it picks uniformly at random a
y e {0,1}'\ {§| 32 : (&49) € L}, adds (z,y) to L, and returns y||z’. As usual,
we let STM(L;y) denote an execution of SZM on input L and randomness y.
We let STM,, denote STM(0;y).

Let H be a pairwise-independent family of functions from m-bit strings to
m-bit strings. Define S as follows. On input a message M € {0,1}", S chooses
uniformly at random h € H and values s1, 71, Y1, S2, T2, y2. It then computes C; =
(SSTMy1 (M 51), RSTMvi (r)) and Oy = (STMva (h(M); 53), RSTMv2 (ry)). The
resulting commitment is Cy||Ca||h.® Decommitment consists of all the random
coins used by S. We claim that (S,R) is (Sk,1/4,1/4)-secure for an honest
sender. This follows from the following two lemmata.

Lemma 2. (S, R) is (Sy, 1/4)-hiding.

Proof (of lemma). The hiding property of (S),R()) guarantees that for any
m € II,, that is Sp-hard, for any circuit B of size < S}, and for any My, M; €
{0,1}™, we have

Pr B(C)=0] - Pr
CG(S"(M()),RT[> CG(ST[(]Wl),RT[>

B(C) = 0]\ <en

A straightforward hybrid argument shows that for any w1, 79 € II, that are
Sp-hard, for any circuit B of size < Sy, and for any My, M; € {0,1}", we have

P = _— —
P BCC]h) =0 P BCClh) =0
C1€(S™ (Mo),R™) C1E(S™ (My),R™)
C2€(8™2 (h(Mo)),R™2) C2€(8™2 (h(M1)),R™2)

§ 25h~

Corollary 1 shows that a random 7 € I1; ,, is Sp-hard except with probability at

most 25" < 2% Using the union bound and a simple averaging argument,
we get that for any circuit B of size < S}, and for any My, M; € {0,1}™,

3 The permutations simulated by SZM in the computations of C;, Cy may be different.
The theorem can be strengthened (improving the bounds on e) by having STM
provide a consistent simulation for both computations. We forgo this for simplicity.

136 O. Horvitz and J. Katz

Pr B(C1||Cs||h) = 0] — Pr B(C4]|Ca|lh) =0

’ P B@GIGIN =0~ Pro [B(CCa) =0
heH heH

C1e(8™ (Mo),R™) C1e(S™ (My),R™)

C26(8™ (h(Mo)),R™2) C2€(8™2 (h(M1)),R™2)

< 2ep, + 2175k,

Since STM perfectly simulates a random 7 € I1; ,,, we have

Y1,Y2
heH

€
C1E(STFMYL (M), REFTMY1)
026<S-SZMy2 (h(juo))’RSIMyQ)

’ Pr [B(C1]|Ce]|h) = 0]

— Pr [B(C1]|Cal|h) = 0]] < 2ep, + 215,

Y1,Y2
heH

CrLe(SSTMYT (M), RSTMy1)
Coe(SSTMY: (h(M,)),RSTMy2)

But that precisely means that

Pr [B(C)=0] — Pr [B(C) =0]

B} <2+ 2175 < 1/4
Ce(S(Mp),R*) Ce(S(M1),R*)

for any R* and any B of size < Sp,, where the last inequality uses the assumption
that £, < 1/8 — 279 The hiding property therefore holds as claimed. O

Lemma 3. (S,R) is 1/4-binding for an honest sender.

Proof (of lemma). (See also Fig. 1.) Fix an arbitrary M € {0,1}". Define
C(M, 5,7,y) € (ST (M;), R (1)),

Since (S,R) is non-interactive, we are interested in the following probability:

AM' # M, s}, yy, sh, yh s.t.

NoBind ' Pr (M, s}, y0) = C(M, 51,71, 1),
gé,i’z; C(h(M'),s/z,Tg,yé) = C(h(M)7S2,7“27y2)

(here, we use the fact that 1, o and h are explicit in the receiver’s view).

Let Perm! denote the set of injective functions from ¢-bit strings to ¢-bit
strings over domains of size q. Let queriesg(M, s,r,y) € Perm{® denote the ¢-bit
prefixes of the queries/answers made by S to its oracle during the execution of
C(M,s,r,y) (i.e., an oracle query al|a’ by S is answered with b||a’ in C(M, s, r,y)
iff (a,b) € queriesg(M, s,r,y)). Letting gr denote the number of queries R makes
to its oracle, we define queriesg (M, s,7,y) € Perm{™ similarly.

Bounds on the Efficiency of “Black-Box” Commitment Schemes 137

{0, 13

{0, 13"

(Y

Fig.1. S uses the given scheme to generate commitments C; to M and Ca to
M, = h(M) (simulating random permutations for (S,R), as needed). Ci (resp.,
C2) may be decommitted to any of the messages in the set S(M,s1,71,y1) (resp.,
S(h(M), s2,72,y2)). But for a small number of sender oracle-queries, the sizes of these
sets are small, and the probability that a random h maps a message from one to the
other can be shown to be less than a constant

Say C(M,s,r,y) is good for P € Perm{® if there do not exist distinct values
M', M" along with s’,s”,y’,y" such that

-COM', s, ry)y=C(M",s" ry")=C(M,s,ry) ; and
— queriesg(M', s',r,y") = queriesg(M",s",r,y") = P.

Say C(M,s,r,y) is good if it is good for all P € Perm$®. Now, if C'(M, s,r,y) is
not good for some P, and M’ , M" s',s",y',y" are the witnesses, then it is also
the case that

queriesy (M',s',r,y") = queriesi (M",s" r,y") = queriesy (M, s,7,y),

as queries/answers of the receiver to its oracle are explicit in the receiver’s view.
Furthermore, PUqueriesy (M, s,7,y) may be extended to a permutation in I7; ,,.
Therefore, for any M, s,y and P, we have

Pr[C(M, s,r,y) is not good for P)

dr € II; ,, extending PUqueriesg (M, s, 7, y)
<Pr AM’ M8 8" st < &,
DLST(M), R (r)) = (ST(M";87), R™(r))

following the binding property of (S,R). Applying the union bound over all
(3;) . Hgﬁgl(? — i) < 2%14s permutations in Perm{®, we obtain, for any M, s, y:

Pr[C(M, s, r,y) is not good] < 2%19s¢,.

138 O. Horvitz and J. Katz

Assume ¢ & C(M,s,r,y) is good. Then there are at most 229 possi-
ble messages to which C' may be decommitted. This is because for any P €
Permls if C(M',s',r,y') = C(M",s",r,y") = C and queriesg(M’,s',r,y’) =
querlesS(M”,s”,r,y”) = P, then it must be the case that M’ = M". Let
S(M, s,r,y) denote this set.

Viewed this way, we have:

AM’ # M s.t. C(M,Sl,’l“l,yl)7
NoBind < Pr M e S(M,s1,7m1,91) C(h(M), s9,79,y0) | +2%195T1.gy
s h(M") € S(h(M), s2,72,y2) are good

$2,72,Y2

where the right term represents the probability that either of C(M, s1,71,y1) or
C(h(M), s2,72,y2) is not good. Continuing with the left term, we have:

LeftTerm
ElM/ €S<M SlaTlayl)\M C(M,Sl,’/‘l,yl),
= hPII‘-I EMé S S(() 527T27y2) s.t. C(h(M)752,7'2,y2)
s1 Tyt h(M'") = M} are good
52,72,Y2

HMIES(Mvslarlayl)\M C(Maslvrhyl)a
= Z hfg{ M3 € S(Mz, s2,72,y2) s.t. | C(Mz, s2,72,Y2)

Ms syman | h(M') = M5, h(M) = M, are good
52,72,Y2
81:§17T1:7‘A17y1:g1 O(M,Sl,'l"l,yl),
< E hlzgq Sy = 89,13 = To,y2 = Yo | C(Ma,s2,72,Y2)
M st | R(M') = MY, h(M) = My are good
31,71,71 s.t. 52,72,Y2
C(M sl,rl,yl) good,
82,72,92 s.t.
C(Mz,382,72,92) good,
MIES(M,§1,f1,Q1)
MLES(M2,32,72,92)
51 = §1 r o= 7@1 yp = Z)l C(M75177’17y1)7
—2m § -) -) -
=2 ' 51211‘3/1 S :§ T :’F Y :g C<M2’S27r27y2) ’
M, s2ralyn | 72 272 292 2 are good

31,71,91 s.t.
C(M,31,71,91) good,
32,72,72 s.t.
C(M32,32,72,92) good,
M'eS(M,31,71,41)
MyeS(M2,32,72,92)
using the pairwise independence of H. Since |S(M, s, r,y)| < 2219 we obtain
LeftTerm < 272m . 2m . 24t4s < gitas—m,
Putting it together, we have
NoBind < 2#fas—m 4 92tastl. o < 9¥tds . (7™ 1 9¢,) < 1/4,

where the last inequality is due to the assumption that gs < (m — 2 — log(1 +
2mtl . gy)) /4t O
|

This completes the proof of the theorem.

Bounds on the Efficiency of “Black-Box” Commitment Schemes 139

Acknowledgments. We thank Virgil Gligor and Chiu-Yuen Koo.

References

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

M. Blum. Coin Flipping by Phone. In 24th IEEE Computer Conference (Comp-
Con), pp. 133-137, 1983. (See also SIGACT News, vol. 15(1), 1983.)

M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of
Pseudo-Random Bits. In STAM J. Computing, vol. 13(4), pp. 850-864, 1984.

J. Carter and M. Wegman. Universal Classes of Hash Functions. In Journal of
Computer and System Sciences, vol. 18, pp. 143-154, 1979.

. R. Gennaro, Y. Gertner, J. Katz, and L. Trevisan. Bounds on the Efficiency of

Generic Cryptographic Constructions. SIAM J. Computing, to appear.

O. Goldreich. Foundations of Cryptography, vol. 1: Basic Tools. Cambridge Uni-
versity Press, 2001.

O. Goldreich, S. Goldwasser, and S. Micali. On the Cryptographic Applications of
Random Functions. In Advances in Cryptology — CRYPTO 84, LNCS vol. 263,
Springer-Verlag, pp. 276-288, 1985.

O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Functions.
In J. ACM, vol. 33(4), pp. 792-807, 1986.

O. Goldreich and L. Levin. Hard-Core Predicates for any One-Way Function. In
21st ACM Symposium on Theory of Computing (STOC), ACM, pp. 25-32, 1989.
J. Hastad, R. Impagliazzo, L. Levin, and M. Luby. A Pseudorandom Generator
From any One-Way Function. In STAM J. Computing, vol. 28(4), pp. 13641396,
1999.

R. Impagliazzo and S. Luby. One-Way Functions are Essential for Complexity-
Based Cryptography. In 30th IEEE Symposium on Foundations of Computer Sci-
ence (FOCS), IEEE, pp. 230-235, 1989.

R. Impagliazzo and S. Rudich. Limits on the Provable Consequences of One-Way
Permutations. In 21st ACM Symposium on Theory of Computing (STOC), ACM,
pp. 44-61,1989.

J.H. Kim, D.R. Simon, and P. Tetali. Limits on the Efficiency of One-Way
Permutation-Based Hash Functions. In 40th IEEE Symposium on Foundations of
Computer Science (FOCS), IEEE, pp. 535-542, 1999.

M. Naor. Bit Commitment Using Pseudorandomness. In J. Cryptology, vol. 4(2),
pp. 151-158, 1991.

M. Naor and M. Yung. Universal One-Way Hash Functions and their Cryptographic
Applications. In 21st ACM Symposium on Theory of Computing (STOC), ACM,
pp. 33-43, 1989.

S. Rudich. Limits on the Provable Consequences of One-Way Functions. Ph.D.
thesis, University of California at Berkeley, 1988.

J. Rompel. One-Way Functions are Necessary and Sufficient for Secure Signatures.
In 22nd ACM Symposium on Theory of Computing (STOC), ACM, pp. 387-394,
1990.

O. Reingold, L. Trevisan, and S. Vadhan. Notions of Reducibility Between Cryp-
tographic Primitives. In 1st Theory of Cryptography Conference, LNCS vol. 2951,
Springer-Verlag, pp. 1-20, 2004.

A.C.-C. Yao. Theory and Application of Trapdoor Functions. In 23rd [EEE Sym-
posium on Foundations of Computer Science (FOCS), IEEE, pp. 80-91, 1982.
A.C.-C. Yao. How to Generate and Exchange secrets. In 27th IEEE Symposium on
Foundations of Computer Science (FOCS), IEEE, pp. 162-167, 1986.

On Round-Efficient Argument Systems

Hoeteck Wee*

Computer Science Division, UC Berkeley
hoeteck@cs.berkeley.edu

Abstract. We consider the problem of constructing round-efficient
public-coin argument systems, that is, interactive proof systems that are
only computationally sound with a constant number of rounds. We focus
on argument systems for NTime(7'(n)) where either the communication
complexity or the verifier’s running time is subpolynomial in 7'(n), such
as Kilian’s argument system for NP [Kil92] and universal arguments
[BG02,Mic00]. We begin with the observation that under standard
complexity assumptions, such argument systems require at least 2
rounds. Next, we relate the existence of non-trivial 2-round argument
systems to that of hard-on-average search problems in NP and that of
efficient public-coin zero-knowledge arguments for NP. Finally, we show
that the Fiat-Shamir paradigm [F'S86] and Babai-Moran round reduction
[BMSS] fails to preserve computational soundness for some 3-round and
4-round argument systems.

1 Introduction

1.1 Background and Motivation

Argument systems are like interactive proof systems, except we only require
computational soundness, namely that it is computationally infeasible (and not
impossible) for a prover to convince the verifier to accept inputs not in the
language. The relaxation in the soundness requirement was used to obtain
protocols for NP that are perfect zero-knowledge [BCCS88]|, or constant-round
with low communication complexity [Kil92], and in both cases, seems to also be
necessary [For89, GH9S|.

In this paper, we focus on the study of round-efficient argument systems for
NTime(T(n)) that do not necessarily satisfy any notion of secrecy, such as witness
indistinguishability (WT), or zero-knowledge (although we do indulge in the
occasional digression). We will however require that either the communication
complexity or the verifier’s running time be subpolynomial in 7'(n) which is
necessary in some applications, and to rule out the trivial one-round proof
system. Argument systems of the latter type with bounded verifier’s running time
are a crucial component in the use of non-black-box techniques in cryptography
[CGH98, Bar(01, Bar04, GK03].

* Work supported by US-Israel BSF Grant 2002246.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 140-152, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

On Round-Efficient Argument Systems 141

The study of round-efficient argument systems was initiated by Kilian [Kil92],
who constructed a 4-round public-coin argument system for NP with poly-
logarithmic communication complexity based on a probabilistically checkable
proof (PCP) system for NP. Micali [Mic00] introduced CS Proofs, an argument
system for NEXP satisfying a relatively efficient prover condition and wherein
the verifier runs in polynomial time (much less than the time needed to verify
an NEXP relation). In addition, he provided a non-interactive construction in
the random oracle model, which is essentially derived from scaling up and
then applying the Fiat-Shamir transformation to Kilian’s argument system.
Barak and Goldreich [BG02] adapted Kilian’s construction to obtain universal
arguments (of knowledge), which is a single argument system for any language
in NP, and in addition, satisfies a weak proof-of-knowledge property. We stress
that in a universal argument, the communication complexity and the verifier’s
running time is bounded by an a-priori fixed polynomial in the input length,
whereas the length of the witness may be any arbitrary polynomial in the length
of the input. Both of the constructions in [Kil92] and in [BG02] rely on the
existence of collision-resistant function ensembles.

In this work, we initiate a systematic study of round-efficient argument
systems.

— What is the minimal round complexity of argument systems with bounded
communication complexity or verifier’s running time?

— What are the minimal assumptions and cryptographic primitives needed
for the existence of such argument systems? Are collision-resistant function
ensembles really necessary? What kind of security parameters do we require
from these primitives (possibly as a function of communication complexity)?

— How useful is improving the round efficiency of argument systems for the
construction of round-efficient cryptographic protocols?

— Is there an efficient function ensemble with which we could securely realize
the Fiat-Shamir transformation for the 4-round argument systems in [Kil92]
and [BGO02] (as conjectured by Micali in [Mic00])? More generally, is
there some generic round reduction technique that preserves computational
soundness?

We provide partial answers for all of these questions in this paper.

1.2 Our Results

We begin with the observations (possibly known in “folklore”) that under
standard complexity assumptions, the argument systems we are interested in
require at least 2 rounds, and anything provable with such an argument system
can be proven in 4 rounds. Refer to Sec 3 for the precise statements.

Necessity of Hardness Assumptions. We show that under standard com-
plexity assumptions, the existence of 2-round argument systems for NP with
subpolynomial communication complexity implies the existence of hard-on-
average search problems in NP, that is, there is samplable distribution over

142 H. Wee

CSAT instances (circuit satisfiability, namely given a circuit, decide whether
the circuit has a satisfying assignment) with the property that most instances
(say a constant fraction) are satisfiable, but any nonuniform polynomial-time
algorithm on input a random instance from the distribution succeeds in finding
a satisfying assignment for that instance with only negligible probability. Note
that the existence of hard-on-average search problems in NP is possibly weaker
than that of one-way functions and collision-resistant function ensembles.

Zero-Knowledge and 2-Round Argument Systems. We note that the
existence of a 2-round public-coin universal argument of knowledge secure
against subexponential-sized circuits yields a 4-round public-coin zero-knowledge
argument for NP with negligible soundness error; this follows readily from the
work of Barak et al. [Bar01, BLV04]. Such an argument system is almost round-
optimal, as there is no 2-round zero-knowledge argument system for languages
outside of BPP [GO94]. We also relate the existence of non-interactive zero-
knowledge arguments to that 2-round witness-indistinguishable arguments for
NP where the length of the common reference string, messages and proofs
are subpolynomial in the input length. This follows readily from a similar
characterization in [DN0O].

Insecurity of the Fiat-Shamir Transformation. We observe that the
constructions of Goldwasser and Kalai [GK03] demonstrating the insecurity of
the Fiat-Shamir transformation as applied to identification schemes also yield
a 4-round argument system such that the instantiation of the Fiat-Shamir
transformation with any efficiently computable function results in a 2-round
protocol that is no longer computationally sound. Note that Barak’s zero-
knowledge argument system [Bar01] already yields a 6-round argument system
for which the Fiat-Shamir transformation is insecure [DNRS03]. We also prove
that there exists a 4-round universal argument of knowledge for which the Fiat-
Shamir transformation fails to preserve the weak proof-of-knowledge property.

Insecurity of Babai-Moran Round Reduction. Babai and Moran [BM8§]
used a round reduction procedure to prove that any language having a constant-
round public-coin interactive proof system also has a 2-round public-coin proof
system. In particular, the round reduction procedure preserves soundness of
proof systems. Here, we construct 3-round and 4-round argument systems
for which the round reduction procedure fails to preserve computational
soundness.

A Note on Presentation: We state our results for argument systems with
either bounded communication complexity or bounded verifier’s running time,
depending on which of the two leads to a cleaner statement. In most cases,
an analogous statement can be deduced for the other set-up. Note that a
subpolynomial bound on verifier’s running time must necessarily imply a
subpolynomial bound on the communication complexity.

On Round-Efficient Argument Systems 143

1.3 Additional Related Work

Dwork et al. [DLNT04] investigated the possibility of constructing 2-round
argument systems for NP with poly-logarithmic communication complexity
based on a suggestion of Aiello, Bhatt, Ostrovsky and Rajagopalan, namely,
to compose a PCP system for NP with computational private information
retrieval scheme; their results are mostly negative. Goldreich and Hastad
[GH98] proved that NP does not have constant-round public-coin proof systems
with subpolynomial communication complexity, unless NP has probabilistic
subexponential time algorithms. Barak et al. [BLV04] proved that the Fiat-
Shamir transformation is in fact secure for proof systems under a non-standard
but very plausible and concrete assumption.

2 Definitions and Setup

Due to space limitations, we refer the reader to [Gol0l] to definitions of
interactive protocols, zero-knowledge and witness-indistinguishability.

2.1 Interactive Proofs and Argument Systems

For a relation R C {0,1}* x {0,1}*, the language associated with R is Lr = {x :
3y (z,y) € R}.

Definition 1 (interactive proof system). An interactive protocol (P, V) is
an interactive proof system for a language L if there is a relation R such that
L = Lg, and functions ¢,s : IN — [0,1] such that 1 — ¢(n) > s(n) + 1/poly(n)
and the following holds:

— (efficiency): the length of all the messages are polynomially-bounded, and V
18 computable in probabilistic polynomial time.

— (completeness): If (z,w) € R, then V accepts in (P(w),V)(z) with
probability at least 1 — c(|z|),

— (soundness): If x ¢ L, then for every P*, V accepts in (P*,V)(x) with
probability at most s(|xl).

We call ¢(-) the completeness error and s(-) the soundness error. We say
that (P, V) has negligible error if both ¢ and s are negligible. We say that it
has perfect completeness if ¢ = 0. P is an efficient prover if P(w) is computable
by a probabilistic polynomial-time algorithm when w € R,. The communication
complexity of the proof system is the total length of all the messages exchanged by
both parties. For a public-coin protocol (P, V'), view(V (z)) is the set of accepting
transcripts on common input z. We also use AM, s(m(n)) to denote constant-
round public-coin interactive proof systems with completeness error ¢, soundness
s and communication complexity bounded by m(n).

Definition 2 (argument system). An argument system (P, V) is defined in
the same way as an interactive proof system, with the following modification:

144 H. Wee

— The soundness condition is replaced with computational soundness: For
every nonuniform PPT P* and for all sufficiently long x ¢ L, the verifier V
accepts in (P*,V)(x) with probability at most s(|x|).

2.2 Universal Arguments

We begin with the universal language Ly : the tuple (M, x,t) (where t is specified
in binary) is in Ly is M is a non-deterministic Turing machine that accepts x
within ¢ steps. We use Ry to denote the associated relation.

Definition 3 (universal argument). A universal argument for NTime(7'(n))
is an argument system (P, V) for Ly N NTime(T'(n)) that satisfies the following
properties:

— (completeness by a relatively-efficient prover) For every ((M,x,t),w) € R,
with (M, xz,t) € NTime(T(n)),

Pr[V accepts (P(w),V)(M,z,t)] =1

Furthermore, there exists a polynomial p such that the total time spent by
P(w), on common input (M, xz,t), is at most p(Tpr(x,w)) < p(t).

— (computational soundness) For every nonuniform PPT P*, there exists a
negligible function e(n) such that for every n and every (M,z,t) € {0,1}™\
Ly, the verifier V accepts in (P*,V)(M,x,t) with probability at most e(n).

In addition, we call (P, V') a universal argument of knowledge if it satisfies the
weak proof-of-knowledge property [BG02]. Informally, this means that there is
an efficient oracle machine (the knowledge extractor) that given oracle access to a
cheating prover that convinces the verifier with inverse polynomial probability,
outputs an implicit description of a witness. Both the running time and the
success probability of the knowledge extractor are allowed to depend on the
success probability of the cheating verifier.

Theorem 1 ([BGO02]). The existence of (standard) collision-resistant function
ensembles implies the existence of a 4-round public-coin universal argument
of knowledge (P,,, Via) for NTime(n!°®™). In addition, if the collision-resistant
function ensemble is secure against circuits of size 2™ for some € > 0, then
(Pua, Via) is a universal argument of knowledge against circuits of size 20(n)

3 Simple Bounds on Round Complexity

The results in this section are probably known in “folklore”. As pointed out in
[BP04], non-interactive (one-round) arguments are equivalent to non-interactive
(one-round) proof systems, since if there exists a prover message that can
convince the verifier of a false statement, the non-uniform prover that has this
message “hard-wired into it”. This essentially rules out non-interactive argument
systems for NP with subpolynomial communication complexity.

On Round-Efficient Argument Systems 145

Proposition 1. Unless NP C BPTime(Z”O(l)), non-interactive argument sys-
tems with subpolynomial communication complexity for NP do not exist.

In the context of efficient-prover argument systems, we have a collapse to 4
rounds (as pointed out to us by Salil Vadhan).

Proposition 2. Suppose there exists collision-resistant function ensembles se-
cure against 2" -sized circuits for some € > 0 and a language in E with 2% cir-
cuit complexity. Then, any language L with an efficient-prover argument system
has a 4-round, public-coin, efficient-prover argument system with subpolynomial
(in fact, poly-logarithmic) communication complexity.

This follows from the observation in [BLVO04] that any language with an
efficient-prover argument system is contained in MA, which collapses to NP
under the given derandomization assumption. The proposition then follows from
Kilian’s protocol [Kil92].

4 Necessity of Hardness Assumptions

We present hardness assumptions that are necessary for 2-round argument sys-
tems for NP with subpolynomial communication complexity. Under complexity
assumptions, such a protocol cannot be a proof system [GH98]. Hence, there
exists infinitely many NO instances that are merely “computationally sound”,
from which we may construct hard-on-average search problems in NP.

Note that we may assume the 2-round argument system has negligible
soundness error, which can be achieved with w(log n) parallel repetitions [BIN97].
Parallel repetition blows up the communication complexity by a w(logn)
multiplicative factor, but preserves prover’s complexity, perfect completeness
and public-coin property.

Lemma 1. Suppose a promise problem II = (IIy,Iy) has a 2-round public-
coin argument system (P,V) with communication complexity m(n), perfect
completeness and negligible soundness error. Then, there exists a subset I C Il
such that:

— Ignoring inputs in I, IT has a AMy ,5(m(n)) proof system. Formally,
(HY,HN \I) S AMl’l/Q(m(n)).

— When x € 1, the predicate V(x,-,-) induces a hard-on-average search
instances in NP. That is, for every x € I:

Pr3y: V(z,ry) =1] > 1/2,

but for every n, every x € I N{0,1}"™ and every nonuniform PPT A, there
exists a negligible function €(n) such that ,

Prr[V(os,r,A(T)) =1] < €(n)

146 H. Wee

Remark 1. Note that we may boost the probability of generating a satisfying
assignment for the hard-on-average search instance to 1 — 1/poly(n) while
maintaining the same hardness parameters by taking the Or of O(logn)
independent copies of V(x, -,).

Theorem 2. Suppose NP has a 2-round public-coin argument system (P,V)
with communication complexity n®Y , perfect completeness and negligible sound-
ness error. Then, at least one of the following is true:

— NP C AM, 4 jo(n°®)

— There exists an infinite set I such that for all x € I, the predicate V(x,-,-)
induces a hard-on-average search instance in NP (as formalized in Lemma 1).
This yields an auziliary-input samplable distribution over search instances in
NP that is infinitely-often hard on average.

Remark 2. The first statement is unlikely to be true as it would imply that
NP C BPTime(Q”O(l)) [GH98]. On the other hand, the latter is possibly weaker
than the existence of (auxiliary input, i.0.) one-way functions. However, it does
imply that there is no probabilistic polynomial-time algorithm for the circuit
satisfiability problem where the number of variables is bounded by n°(!).

Remark 3. Salil Vadhan pointed out that if there exists a hard-on-average deci-
sion problem in NP where the instances and witnesses have length bounded by
m(n), then every language has a 2-round argument system with communication
complexity m(n). However, the argument system does not satisfy the efficient
prover constraint, though the constraint is (trivially) satisfied if we consider the
empty language. This shows that the conclusion in Theorem 2 is essentially the
strongest we can hope for without making additional assumptions about the
argument system, for instance, that it has an efficient prover, that it is WI, or
that it is an argument of knowledge.

5 Zero-Knowledge and 2-Round Argument Systems

Barak et. al [BLV04] constructed a 2-round argument for NP that is zero-
knowledge against cheating verifiers of bounded non-uniformity assuming the
existence of a 2-round universal argument secure against 2™ -sized circuits.
We observe that if we strengthen the soundness requirement on the universal
argument to an argument of knowledge, it follows readily from [Bar01, BLV04]
that there exists a 4-round zero-knowledge argument for NP. The idea is to
convert the universal argument of knowledge into a WI universal argument
of knowledge (with a subexponential-time knowledge extractor) without any
overhead in the number of rounds. To accomplish this, we encrypt the messages of
the universal argument using a weak commitment scheme and prove correctness
using a WT proof for NP [DN0O].

On Round-Efficient Argument Systems 147

Theorem 3 ([Bar01, BLV04]). Suppose there exist 2-round public-coin wni-
versal argument of knowledge for NTime(f(n)) for some super-polynomial
f : IN — IN, enhanced trapdoor permutations and collision-resistant function
ensembles secure against 2™ -sized circuits for some constant € > 0. Then, there
exists a 4-round public-coin (auziliary-input) zero-knowledge argument system
for NP, with perfect completeness, negligible soundness error, an efficient prover
and a simulator that runs in strict polynomial time.

Another open problem is whether there exists non-interactive zero-knowledge
(NIZK) arguments or 2-round WI arguments for NP with subpolynomial
communication complexity and randomness [FLS99, KP98, DLN"04]. We do not
know how to construct either primitive starting from an argument system for
NP with subpolynomial communication complexity, but it follows from the
characterization of zaps (a 2-round public-coin WI proof system for NP) in
[DNO0O] that they are almost equivalent:

Theorem 4 ([FLS99, DNO00]). Suppose there exist one-way functions secure
against 2™ -sized circuits for some constant € > 0. Then, the following statements
are equivalent:

— There exists a 2-round public-coin efficient-prover honest-verifier WI argu-
ment for NP with subpolynomial communication complezity.

— There exists an efficient-prover NIZK argument for NP where the length of
the common reference string and the proof are subpolynomial in the length
of the input.

Theorem 4 is weaker than the characterization of zaps in [DN00] in that
we can only deduce the existence the existence of honest-verifier WI (but
not cheating-verifier WI) arguments for NP from NIZK. This is because the
construction of zaps from NIZK protocols requires that the underlying NIZK
protocol be a proof system in order to preserve soundness. On the other hand,
we observe that honest-verifier WI is sufficient for the construction of a NIZK
argument for NP.

6 Insecurity of the Fiat-Shamir Transformation

Goldwasser and Kalai [GKO03] proved the existence of a (secure) 3-round
public-coin identification scheme for which any instantiation of the Fiat-Shamir
transformation with an efficiently computable function ensemble yields an
insecure signature scheme. As both the identification scheme and the signature
scheme are defined in the public-key model, there is a fairly natural interpretation
of the construction as obtaining a 2-round argument system from a 4-round
argument system via the Fiat-Shamir transformation. The main (albeit minor)
technical difference is in handling auxiliary inputs inherent to argument systems,
as the set-up in [GKO03] is inherently uniform (there, the variable is the security

148 H. Wee

parameter, and messages to be signed are thought of as having constant size®).
We also feel that viewing the constructions of [GKO03] in the context of argument
systems yields a clearer and simpler presentation of their constructions and
results. The following result has been independently observed by the authors
of [GK03] (but was not explicitly mentioned in [GK03]):

Theorem 5 ([GKO03]). Suppose there exists (standard) collision-resistant func-
tion ensembles. Then, there exists a 4-round public-coin argument system with
negligible soundness error, but for which the instantiation of the Fiat-Shamir
transformation with any efficiently function ensemble yields a 2-round protocol
that is not computationally sound (that is, it has a polynomial-sized cheating
prover that succeeds with non-negligible probability).

Remark 4. The cheating prover in the proof of Theorem 5 succeeds with only
a non-negligible probability. It is therefore conceivable while the Fiat-Shamir
paradigm does not in general preserve soundness of 4-round argument systems,
the Fiat-Shamir paradigm along with parallel repetition does preserve soundness
of 4-round argument systems (since parallel repetition does reduce the soundness
error for 2-round argument systems to a negligible quantity [BIN97]).

We also observe that the Fiat-Shamir transformation fails to preserve the
weak proof-of-knowledge property. The proof goes via a case analysis similar to
that in [GKO3] (except a lot simpler). Suppose the statement holds for (P,a, V,a);
then we are done. Otherwise, we have a 2-round public-coin universal argument
of knowledge which combined with Barak’s non-uniform generation protocol
[Bar01] yields the desired argument system.

Theorem 6. Suppose there exists (standard) collision-resistant function ensem-
bles. Then, there exists a 4-round public-coin universal argument of knowledge,
but for which the instantiation of the Fiat-Shamir transformation with any
efficiently function ensemble yields a 2-round protocol that does not satisfy the
weak proof-of-knowledge property.

7 Insecurity of Babai-Moran Round Reduction

We start by describing Babai-Moran round reduction. For a public-coin proof
system IT = (P, V) of at most 4 rounds, this procedure has a simple description
and comprises two steps, for some parameter k = poly(n). First, the residual
protocol after the prover’s first message is repeated k times in parallel and the
new verifier accepts if all k repetitions are accepting. Next, second, the order
of the prover’s first message and the verifier’s next message are reversed. We
denote the new protocol by IT"*¥). For protocols with 3 or 4 rounds, the resulting
protocol has 2 rounds.

1 Alternatively, we may consider the forger as forging a family of uniformly computable
messages of length polynomial in the security parameter, infinitely often.

On Round-Efficient Argument Systems 149

Intuitively, Babai-Moran round reduction fails to preserve computational
soundness for the following reasons:

— Parallel repetition fails to reduce soundness error at an exponential rate
beyond 1/ poly(n) if we require a black-box proof of security [BIN97].

— A cheating prover can gain significant advantage upon round-switching,
wherein the verifier reveals his coin tosses before the prover sends his next
message.

We exploit the former reasoning in our construction of the 3-round argument
system, as the latter does not seem to apply in this case (made precise in Prop 3)
as the first message of a 3-round argument system is “unconditionally sound”.
For the 4-round argument system, we exploit the latter reasoning in an essential
manner so as to obtain a result that holds even with a non-black-box proof of
security.

Theorem 7 (Babai-Moran round reduction).

(i) Suppose there exists collision-resistant function ensembles secure against
nl°8" _sized circuits. Then, there exists a 4-round public-coin argument sys-
tem with negligible soundness error for which Babai-Moran round reduction
yields a 2-round argument system that is mot computationally sound.

(i) There exists a 3-round (relativized) public-coin argument system with negligi-
ble soundness error for which Babai-Moran round reduction yields a 2-round
argument system that is not computationally sound if limited to a black-box
proof of security.

In both constructions, the cheating prover succeeds with probability 1 — neg(n).
This means that even upon applying parallel repetition to the resulting 2-round
argument systems, we would not obtain a computationally sound protocol.

Both constructions are for the empty language Ly. The 4-round protocol,
specified in Fig 1, is a straight-forward simplification of the argument system in
[Kil92]. For 3-round argument systems, we only rule out the case with a black-
box proof of security. In this setting, it suffices to construct a relativized protocol,
wherein all parties (provers, cheating provers, verifier) have oracle access to a
permutation 7, as shown in Fig 2. It helps to think of 7 as a one-way permutation,
although we will require a stronger property that we only know how to prove in
a relativized setting:

Lemma 2 ([GTO00]). For all sufficiently large n, there exists a permutation 7
on {0,1}" such that for all oracle circuits A of size n'°8™,

1
Prlo — {0,1}"; A (o) = y; 7(y) = 0] < ~Togn
where I, is an oracle that on input o’ # o returns 7~*(o’), and L otherwise.

We note that overcoming the limitation to black-box proof of security for
3-round argument systems will require resolving a well-known open problem:

150 H. Wee

Common input: 1"

1. (V1) verifier sends a random h from H (collision-resistant function ensemble).

2. (P1) prover sends a Merkle-tree commitment to B, where B is an array of n'°"™
blocks of 0™.

3. (V2) verifier sends (at random from 1 to n

4. (P2) prover decommits to B[f].

1™ and v at random from {0, 1}™.

Verification: verifier accepts if B[3] decommits to 7.

1. (V1) verifier sends a random h from H, and fi,...,3 at random from 1 to
n'°¢™ and v1,...,7% at random from {0,1}".

2. (P1) prover sends a Merkle-tree commitment to B, which is an array of n
blocks of 0", and decommits to B[31], ..., B[Bk].

logn

Verification: verifier accepts if B[3;] decommits to v; for alli=1,... k.

Fig. 1. 4-round protocol I1; and 2-round protocol H;r(m for the empty language Ly

Common input: 1", oracle access to 7 (a permutation on {0,1}")

1. (P1) prover sends z € {0,1}".
2. (V1) verifier sends a random o in {0,1}".
3. (P2) prover sends y € {0,1}".

Verification: verifier accepts iff 7(y) = z @ o.

1. (V1) verifier sends random o1, ..., o0 in {0,1}".
2. (P1) prover sends z,y1,...,yr € {0,1}".

Verification: verifier accepts iff w(y;) =2z ® oy, foralli =1,... k.

Fig. 2. 3-round relativized protocol /T and 2-round protocol II7'® for L,

Proposition 3. Suppose parallel repetition on 2-round arqument systems can
reduce the computational soundness error exponentially fast to 2~ P°W (™) then
Babai-Moran round reduction yields a collapse of 3-round argument systems to
2-round argument systems.

8 Conclusion

We hope that the collection of observations, connections and results presented
in this paper (one that is perhaps better regarded as a survey) clarifies our
understanding of round-efficient argument systems and motivates further work
in this area, and perhaps a resolution of the main open problem — determining
the exact round complexity of non-trivial argument systems.

On Round-Efficient Argument Systems 151

Acknowledgments

I am very grateful to Yael Tauman Kalai, Luca Trevisan and Salil Vadhan for
their encouragement and insightful discussions on the subject; Salil also gave me
very valuable feedback on earlier versions of this paper. I thank Kobbi Nissim
for bringing [DLN'04] to my attention, and the anonymous referees for helpful
suggestions on the write-up.

References

[Bar01]
[Bar04]
[BCCSS]
[BGO2]

[BIN97]

[BLV04)

[BMSS]

[BPO4]
[CGHYS]

[DLN*04]

[DNOO]
[DNRS03]
[FLS99]
[For89)]
[FS86]
[GHOS]

[GKO3]

Boaz Barak. How to go beyond the black-box simulation barrier. In Proc.
42nd FOCS, 2001.

Boaz Barak. Non-Black-Box Techniques in Cryptography. Ph.D.,
Weizmann Institute of Science, January 2004.

Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure
proofs of knowledge. JCSS, 37(2):156-189, 1988.

Boaz Barak and Oded Goldreich. Universal arguments and their
applications. In Proc. CCC ’02, 2002.

Mihir Bellare, Russell Impagliazzo, and Moni Naor. Does parallel repetition
lower the error in computationally sound protocols? In Proc. 38th FOCS,
1997.

Boaz Barak, Yehuda Lindell, and Salil Vadhan. Lower bounds for non-
black-box zero knowledge. Cryptology ePrint Archive, Report 2004/226,
2004. Extended abstract in Proc. 44th FOCS, 2003.

Laszl6 Babai and Shlomo Moran. Arthur-Merlin games: a randomized
proof system, and a hierarchy of complexity class. JCSS, 36(2):254-276,
1988.

Boaz Barak and Rafael Pass. On the possibility of one-message weak zero-
knowledge. In Proc. 1st TCC, 2004.

Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle
methodology, revisited. In Proc. 30th STOC, 1998.

Cynthia Dwork, Michael Langberg, Moni Naor, Kobbi Nissim, and Omer
Reingold. Succint proofs for NP and spooky interactions. manuscript,
2004.

Cynthia Dwork and Moni Naor. Zaps and their applications. In Proc. 41st
FOCS, 2000.

Cynthia Dwork, Moni Naor, Omer Reingold, and Larry Stockmeyer. Magic
functions. JACM, 50(6):852-921, 2003.

Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple noninteractive zero
knowledge proofs under general assumptions. SICOMP, 29(1):1-28, 1999.
Lance Fortnow. The complexity of perfect zero-knowledge. Advances in
Computing Research, 5:429-442, 1989.

Amos Fiat and Adi Shamir. How to prove to yourself: practical solutions
to identification and signature problems. In Proc. Crypto ’86, 1986.
Oded Goldreich and Johan Hastad. On the complexity of interactive proofs
with bounded communication. IPL, 67(4):205-214, 1998.

Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the Fiat-
Shamir paradigm. In Proc. 44th FOCS, 2003.

152 H. Wee

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-
knowledge proof systems. J. Cryptology, 7(1):1-32, 1994.

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge
University Press, 2001.

[GT00] Rosario Gennaro and Luca Trevisan. Lower bounds on efficiency of generic
cryptographic constructions. In Proc. 41st FOCS, 2000.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In
Proc. 24th STOC, 1992.

[KP98| Joe Kilian and Erez Petrank. An efficient noninteractive zero-knowledge
proof system for NP with general assumptions. J. Cryptology, 11(1):1-27,
1998.

[Mic00] Silvio Micali. Computationally sound proofs. SICOMP, 30(4):1253-1298,
2000.

Computational Bounds on
Hierarchical Data Processing
with Applications to Information Security*

(Extended Abstract)

Roberto Tamassia and Nikos Triandopoulos

Department of Computer Science, Brown University
{rt, nikos}@cs.brown.edu

Abstract. We introduce hierarchical data processing (HDP) problems,
a class of computations over a collection of values associated with a set
of n elements, based on a directed acyclic graph (DAG). We present
an {2(logn) lower bound on various computational cost measures for
HDP problems and we develop an efficient randomized DAG scheme
for HDP problems. We apply our results to data authentication through
cryptographic hashing and multicast key distribution using key-graphs.
We show that both problems involve HDP and prove logarithmic lower
bounds on their computational and communication costs. Using our new
DAG scheme, we present a new efficient authenticated dictionary and a
new skip-list version with expected search complexity 1.25log, n+ O(1).

1 Introduction

In this paper, we present a unified analysis and design of algorithms and data
structures for two important, and seemingly unrelated, information security
problems: the authentication of membership queries in the presence of data repli-
cation at untrusted directories and the distribution of cryptographic keys by the
controller of a dynamic multicast group. For both problems, we provide logarith-
mic lower bounds on various time and space cost measures, develop new efficient
data structures and give an accurate analysis of their performance, taking into
account constant factors in the leading asymptotic term.

Our unified approach is based on the definition of the class of hierarchical data
processing (HDP) problems, where a directed acyclic graph (DAG) describes the
computation of a collection of output values from an input set of n elements. We
define structural cost measures for DAGs that express computational costs in an
HDP problem and prove {2(logn) lower bounds for them using a reduction from
the problem of searching by comparisons in an ordered set. We also design a new

* This work was supported in part by NSF grants CCF-0311510, I1S-0324846 and
CNS-0303577.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 153-165, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

154 R. Tamassia and N. Triandopoulos

efficient randomized DAG scheme for HDP problems, based on a variation of the
skip-list. Our results for the two information security problems are obtained by
showing that they can be modeled as an HDP problem and by appropriately
applying to their domain the general lower bounds and our new DAG scheme.
This extended abstract omits the details of our work. A full version is available
n [14]. Our contributions are summarized as follows.

Hierarchical Data Processing. In Section 2, we introduce the class of hierarchi-
cal data processing (HDP) problems and initiate their study. This class models
computations on a dynamic set of elements that share the following characteris-
tics. Associated with the elements is a structured collection of values, organized
according to a DAG. Update operations change elements and require adjusting
the values. Also, queries on elements are issued, where typically the answer to a
query is a subset of the associated values. The computational cost of an update
or query operation depends on certain structural properties of the underlying
DAG. In general, HDP provides an abstract model for problems where compu-
tations are performed sequentially and hierarchically according to a DAG and
their complexity depends on the structure of the DAG.

We define various structural cost measures for DAGs and we relate them to
the space and time complexity of queries and updates in an HDP problem. Using
a reduction from the problem of searching by comparisons in an ordered set, we
prove an £2(logn) lower bound on the space and time complexity of query and
update operations in an HDP problem of size n. We also show that with respect
to HDP problems, trees are optimal DAG structures compared with general
DAGs. In Section 3, we design and analyze a new randomized DAG scheme
for HDP problems, called multi-way skip-list DAG scheme, which is based on a
variation of the skip-list data structure [12]. Our DAG scheme has better cost
measures than previous DAG schemes based on the skip-list data structure.

Data Authentication. An authenticated data structure (ADS) is a distributed
model of data authentication, where a directory answers queries on a data struc-
ture on behalf of a trusted source and provides to the user a cryptographic proof
of the validity of the answer. In the important class of hash-based authenticated
data structures, a digest of the data set is computed by hierarchically applying
a cryptographic hash function over the data set and is digitally signed by the
source.

Early work on ADSs has focused on hash-based authenticated dictionaries,
where Merkle trees are used to authenticate answers to membership queries in-
curring logarithmic authentication cost. General techniques for hash-based query
authentication are presented in [6,7]. Beyond dictionaries, hash-based ADSs
have been developed for various type of queries, including connectivity queries
in graphs and range queries in two-dimensional point sets [3,6,7]. An alterna-
tive approach to the design of an authenticated dictionary, based on the RSA
accumulator (e.g.,[1]) is presented in [4]. Related to ADSs is also work on zero-
knowledge sets and consistency proofs [8,11]. All existing hash-based authen-
ticated dictionaries have logarithmic authentication cost. Naor and Nissim [10]
posed as an open problem the question of whether one can achieve sublogarith-

Computational Bounds on Hierarchical Data Processing 155

mic authentication cost for dictionaries. We answer this question negatively for
hash-based ADSs.

In Section 4, we present a detailed analysis of the cost of ADSs, focusing on
dictionaries. We show how a hash-based dictionary ADS can be modeled as an
HDP problem. We consider a general authentication technique where hashing
is hierarchically performed over the data set according to a DAG and multiple
digests can be digitally signed by the source. Applying our HDP framework
to this domain, we prove the first nontrivial lower bound on the authentication
cost for dictionaries: any hash-based authenticated dictionary of size n where the
source signs k digests of the data set has 2(log %) update cost, verification cost,
and communication cost in the worst case. We also present a new hash-based
dictionary ADS based on our new DAG scheme.

Multicast Key Distribution. Multicast key distribution refers to a model for real-
izing secrecy in multicast communications among a dynamic group of n users.
Users share secret keys and a common group-key with which they encrypt multi-
cast messages using secret-key encryption. When updates in the multicast group
occur, in order to preserve (forward/backward) security, the group-key needs to
be securely updated. A group controller is responsible for distributing an initial
set of keys to the users and for updating the keys accordingly. Costs associated
with this problem include the number of messages transmitted after an update
and the time spent for key encryptions by the controller. We focus on the widely
studied key-graph scheme (see, e.g., [15]), where possession of keys by users and
key updates are modeled through a DAG. Known constructions based on key-
trees achieve O(logn) communication cost for a group of size n. In [2], the first
lower bounds are given for a special class of key distribution protocols. In [13], an
amortized logarithmic lower bound is presented on the number of messages sent
after an update. A similar amortized logarithmic lower bound is shown in [9] for
a more general class of key distribution protocols, where one can additionally
employ a pseudorandom generator to extract (in a one-way fashion) two new
keys from one key and where multiple nested key encryptions can be used.

In Section 5, we show that the multicast key distribution problem using key-
graphs is an HDP problem and we apply our results to this domain. We perform
the first study of general key-graphs and show that trees are optimal structures.
Our new DAG scheme for multicast key distribution achieves costs closer to the
theoretical optimal. We also prove the first worst-case logarithmic lower bound
on both the communication cost and the computational cost of a single update
operation. We prove that for any instance of the problem of size n, there exists an
update whose communication cost is at least |log, n|. All previous lower bounds
are amortized, i.e., they refer to a sequence of updates such that the average
cost of an update in the sequence is logarithmic.

Skip-Lists. The skip-list [12] is an efficient randomized data structure for dic-
tionaries. A search in a skip-list with n elements takes 1.5logyn + O(1) ex-
pected comparisons. As an application of our improved DAG scheme to search
structures, in Section 6, we present a new version of the skip-list such that the
expected number of comparisons in a search is 1.25log, n + O(1).

156 R. Tamassia and N. Triandopoulos

2 Hierarchical Data Processing and Its Theoretical
Limits

In this section, we define structural cost measures for subgraphs of a DAG and
prove lower bounds on them. These cost measures are related to the computa-
tional complexity of operations in HDP problems, as will be shown in the next
sections.

DAG Scheme for HDP. We define here some graph notation. Let G = (V, E) be
a directed acyclic graph. For each node v of G, indeg(v) denotes the in-degree of
v and outdeg(v) denotes the out-degree of v. We denote with Vi, C V the set of
source nodes of G, i.e., nodes v such that indeg(v) = 0 and with V; C V the set
of sink nodes of G, i.e., nodes v such that outdeg(v) = 0. A subgraph H of G is
said to be weakly connected if it is connected when one ignores edge directions.
For any node v in a DAG G, we denote with G, the subgraph of G consisting
of the nodes that can be reached from v through directed paths.

Definition 1. A DAG scheme I is a quadruple (G, S,n, k), where G = (V, E)
is a directed acyclic graph without parallel edges, S C V is a set of special
nodes and n and k are integers such that: (i) |Vso| = n; (i) |V| is bounded by a
polynomial in n; and (iit) |S| =k, S D Vg and SN Vs, = 0.

We define three structural cost measures for a subgraph of a DAG and based on
them, we define three cost measures for a DAG scheme I'.

Definition 2. Let H = (Vy, Ex) be a weakly connected subgraph of a DAG G.
With respect to G: (i) The node size size(H) of H is the number of nodes in H,
ie., size(H) = |Vg|; (ii) the degree size indeg(H) of H is the sum of the in-
degrees (with respect to G) of the nodes of H, i.e., indeg(H) =, . indeg(v);
(7i1) the combined size comb(H) of H is the sum of its node and degree sizes,
i.e., comb(H) = size(H)+indeg(H); (iv) the boundary size bnd(H) of H is the
number of edges of G that enter nodes of H but are not in H.

Definition 3. Given a DAG scheme I' = (G, S,n, k), let s be a source node of
G. Let P! denote the set of directed paths connecting node s to node t in G.
The associated path ws of s is a directed path in G that starts at s, ends at
a node of S and has the minimum combined size among all such paths, i.e.,
comb(m) = minyes pe pu comb(p). We define the following cost measures for I':
(¢) the update cost U(I") of I isU(I") = maxsev,, comb(Gs); (ii) the query cost
Q(I") of I' is Q(I') = max,eve, comb(ms) (i.e., max, minyegs pe pu comb(p)); and
the sibling cost S(I") of I' is S(I") = maxsev,, bnd(7s).

Observe that if I' = (G, S,n, k) is a DAG scheme, H is a subgraph of G and p is
any directed path in G, then we have that (with respect to G): (i) comb(H) =
> ven(l 4+ indeg(v)) and bnd(p) = 1 + indeg(p) — size(p); (ii) comb(H) >
indeg(H) > size(H) and indeg(H) > bnd(H); (iii) U(T") > Q(I") > S(I).

Our motivation for introducing DAG schemes is that they model an abstract
class of computational problem where a DAG G holds a collection of n input

Computational Bounds on Hierarchical Data Processing 157

elements (stored at source nodes) and a collection of output values (stored at
non-source nodes) that are computed using the DAG. Query operations on ele-
ments return a collection of values. Update operations modify the DAG G and
the input elements, causing corresponding changes to the set of values. Compu-
tations are performed sequentially and hierarchically, according to the hierarchy
induced by the underlying DAG G. The computational cost (time, space, or
communication complexity) of query and update operations can be expressed as
the combined, degree or boundary size of a subgraph (usually G or 7, for a
source node s of GG), where every node v in the subgraph contributes an amount
proportional to indeg(v) to the cost. Generally, any computational cost measure
for a problem in this class is completely characterized by structural cost mea-
sures of subgraphs of DAG G. We refer to such problems (informally defined due
to space limitations) as hierarchical data processing (HDP) problems.

We study the cost measures of general DAG schemes, derive results that
explain the inherent computational limits that exist in any HDP problem and
characterize optimal DAG scheme structures for these problems. We first show
that the cost measures for a tree-based DAG scheme are related to the number of
comparisons for searching in an ordered set, by drawing a direct analogy between
the sibling cost of any tree-based DAG scheme and the number of comparisons
performed in a search tree corresponding to the DAG scheme. This result forms
the basis for a reduction from searching by comparisons to any computational
procedure of an HDP problem, with cost that is expressed by the sibling cost of
a tree-based DAG scheme. Using this reduction we get the following.

Theorem 1. Any DAG scheme A = (T,S,n,1) such that T is a directed tree
has 2(logn) update, query and sibling costs.

We show that among all possible DAGs, trees have optimal cost measures.

Theorem 2. Let I' = (G, S,n, 1) be a DAG scheme. There exists a DAG scheme
A= (T,S,n,1) such that T is a directed tree and U(A) <U(T"), Q(A) < Q(I'),
and §(A) < S(I).

The above result also applies to a general DAG scheme (G, S, n, k) with k special
nodes. In this case, there exists a forest of trees achieving better performance
with respect to the cost measures being considered. The following theorem sum-
marizes the results of this section with respect to the cost measures of any DAG
scheme.

Theorem 3. Any DAG scheme I' = (G, S,n, k) has 2(log %) update, query and
sibling costs.

The above results establish a reduction from searching by comparisons to compu-
tations related to HDP problems (computations performed sequentially and hi-
erarchically according to the hierarchy induced by the underlying DAG scheme)
and give us lower bounds on the costs of these computations. Also, the opti-
mality of tree-based DAG schemes over general graphs further characterizes the
optimal schemes for HDP problems. The connection between HDP problems and

158 R. Tamassia and N. Triandopoulos

DAG schemes is illustrated in Sections 4 and 5, where we model two informa-
tion security problems as HDP problems and translate the above results to their
domain.

3 A New DAG Scheme Based on Skip-Lists

In view of the logarithmic lower bounds and the optimality of tree structures for
DAG schemes, we present a new DAG scheme that is based on skip-lists. Our
multi-way skip-list DAG scheme A = (T,S,n,1) is based on the skip-list data
structure and achieves cost measures close to the theoretical optimal.

Skip-Lists and Bridges. A skip-list [12] with probability parameter p is a set of
lists Ly, ..., Ly, where Ly stores the element of a totally ordered set (X, <) of
size n (sorted according to <) and, for each ¢, each of the elements of list L;
is independently chosen to be contained in L;;; with probability p. Lists are
viewed as levels and we consider all elements of the same value that are stored
in different levels to form a tower. The level of a tower is the level of its top
element. Each node of a tower has a forward pointer to the successor element in
the corresponding list and a pointer to the element one level below it. A header
tower that stores sentinel element —oo is included in the skip-list as the left-most
tower of level one more than the maximum level of any other tower in the skip-
list. A node of the skip-list is a plateau node if it is the top node of its tower.
We introduce next the notion of a bridge and define related concepts.

Definition 4. In a skip-list: (i) a bridge b is a maximal sequence of towers
of the same level such that no higher tower lies between them and the plateau
nodes of the towers are all reachable in a sequence using forward pointers; (ii)
the size |b| of bridge b is the number of towers in the bridge and the bridge size
of a tower is the size of the bridge that the tower belongs to; (iii) a child bridge
of b is a bridge that is contained under b and to which a tower of b connects
through forward pointers; (iv) the plateau towers of a tower t are the towers
whose plateau nodes can be reached by a node of t using one forward pointer.

Directed Tree T. We now describe the multi-way skip-list DAG scheme A =
(T,r,n,1), where the directed tree T is defined with respect to a skip-list. By
list node we refer to a node of the skip-list and by DAG node to a node of tree T'.
An edge (v,u) in T is directed towards node u. If v, vq,...,v; are nodes in T,
then operation New(v,v1,...,v;) on existing DAG nodes creates in 7' new nodes
uy, ..., u; and new edges (v1,uz), ..., (v—1,u1), (v;,v), (u1,u2), ..., (u—1,u;) and
(uy,v), where DAG node u; becomes a new source node of T. The notion of a
bridge is essential in skip-list DAG T'. For each bridge b in the skip-list, a corre-
sponding node v(b) is created in T'. We call v(b) the DAG node of b. Node v(b) is
connected in T" with the DAG nodes of all the child bridges of b. Thus, DAG T
is defined in a recursive way with respect to a skip-list. First, all bridges in the
skip-list are identified and the DAG node for the outer bridge (header tower)
is created. Then, given that the DAG node v(b) of a bridge b is created, using

Computational Bounds on Hierarchical Data Processing 159

v(b).<\F
b i 1]
P 13)[1 17
’U(blz) < [jv(tf%)
m 0 K
K s
% 0 0
tl tll t12 t13 t31

(b)

Fig. 1. Multi-way skip-list DAG A, where circle nodes are DAG nodes (bridge DAG
nodes are solid) and square nodes are nodes of the skip-list. DAG node v(b) of bridge
b is recursively connected to the DAG nodes of the child bridges depending on the
following two cases: (a) |b| =1 and (b) |b] > 1

operation New(-), v(b) is connected with paths in T to the newly created DAG
nodes of the child bridges of b, as follows (see Figure 1).

If |b| = 1 (Figure 1(a)), let ¢y, ..., ¢; (in increasing level) be the plateau towers
of the tower ¢ of b . If plateau tower ¢; belongs to bridge b;, we perform operation
New(v(b),v(by),...,v(b;)) where v(b) is the DAG node of b.

If [b|] > 1 (Figure 1(b)), then let k& = |b| and let t1,...,¢; be the towers
of b. For each such tower t;, we create a new DAG node v(¢;), 1 <14 < k. For
tower ty, we consider its, say [, plateau towers 1, ..., tx; and perform operation
New(v(tg),v(bg1),...,v(bgi)), where bgy, ..., by are the child bridges of b that
plateau towers tg1, ..., tx; belong to. Moreover, for each tower ¢;, i < k, of, say
I 4+ 1, plateau towers, we consider its [lowest plateau towers t;1,...,%;, that
is, for ¢ < k, tower ;41 is omitted from this sequence. Let b;1,...,b; be the
child bridges of b that plateau towers t;1, ..., t;; belong in. For tower t;, i < k, we
perform operation New(v(t;),v(bi1),...,v(by)). Finally, we add k new edges in
T: edge (v(t;),v(b)) for 1 <i < k. By this construction, 7" is a directed tree, the
root of T" is the DAG node r of the header bridge, and T has exactly n leaves.

We can show that multi-way skip-list A achieves cost measures that are close
to the theoretical optimal value of |log, n| + 1.

Theorem 4. With respect to a skip-list with probability parameter p, the multi-
way skip-list DAG scheme A = (T,r,n,1) has the following expected cost mea-
sures for any fized source node s of T with corresponding source to root path ms:
1. Elsize(rs)] < 2(1 —p) log% n+ O(1);
2. Elindeg(r,)] < (1 —p)Mlog% n+0(1);
3. Elbnd(7s)] < %10&{1 n+ O(1); and
4. Elsize(T)] < (1 +pa® + pq + ;z55zy)n, where g =1—p

In particular, our multi-way skip-list DAG scheme A has better expected cost
measures than the DAG scheme of [5,12], also based on the skip-list, which we

160 R. Tamassia and N. Triandopoulos

Table 1. Comparison of three tree DAG schemes in terms of their cost measures

Elsize(ms)]||Elindeg(s)]||E[bnd(7s)]|| Elsize(T)]

red-black tree log, n 2log, n log, n 2n
standard skip-list|| 1.5log,n 3log,n|| 1.5logyn 2n
multi-way skip-list log, n|| 2.25log, n|| 1.25log, n 1.9n

call standard skip-list DAG scheme. Table 1 summarizes the comparison results
for probability parameter p = 1/2. The comparison between multi-way skip-list
scheme and red-black tree scheme shows an interesting trade-off on the perfor-
mance with respect to the cost measures we study.

4 Data Authentication Through Hashing

We apply our results of Sections 2 and 3 to data authentication through crypto-
graphic hashing. We focus on authenticated dictionaries, ADSs that authenticate
answers to membership queries. ADSs provide a model of computation, where
an untrusted directory answers queries issued by a user on a data structure on
behalf of a trusted source and provides a proof of the validity of the answer to the
user. In this model, authentication is achieved by having the data source signing
some digest of the data, where, for data authentication through hashing, a hash
function is systematically used to produce this digest. On any query, along with
the answer, the signed digest and some information that relates the answer to
this digest are given to the user and these are used for the answer verification.

Authenticated Dictionary. Let X be a data set owned by the source that evolves
through update operations insert and delete. Membership queries contains are
issued about X. A (multivariate extension of a) cryptographic hash function h
is used to produce a digest of set X which is signed by the source (see [6]). In our
study, we actually consider a more general model where several digests are pro-
duced and signed by the source. These digests are computed through a hashing
scheme over a DAG that has k signature nodes t1, . .., t; and stores the elements
of X at the source nodes. Each node u of G stores a label (hash value) L(u) such
that, if w is a source of G, then L(u) = h(es,...,ep), where e, ..., e, are ele-
ments of X, else (u is not a source of G) L(u) = h(L(w1),. .., L(w),e1,...,eq),
where (w1, u),...,(w;,u) are edges of G, e1,...,e, are elements of X and p, ¢
and [are some non negative integers. Without loss of generality, we focus our
study on the canonical case where p = 1 and ¢ = 0, noting that any general
hashing scheme is equivalent to a canonical one. We view the labels L(¢;) of the
signature nodes t; of G as the digests of X, computed via the above DAG G.
The authentication technique is based on the following general approach.
The source and the directory store identical copies of the data structure for
X and maintain the same hashing scheme on X. The source periodically signs
the digests of X together with time-stamps and sends the signed time-stamped
digests to the directory. When updates occur on X, they are sent to the directory

Computational Bounds on Hierarchical Data Processing 161

together with the new signed time-stamped digests. When the user poses a query,
the directory returns to the user some answer authentication information, which
consists of: (7) one signed time-stamped digest of X, (i¢) the answer to the query
and (#ii) a proof consisting of a small collection of labels from the hashing scheme
(or of data elements if needed) that allows the recomputation of the digest. The
user validates the answer by recomputing the digest, checking that it is equal to
the signed one and verifying the signature of the digest. Security against forgery
of proofs by the directory follows from the properties of the signature scheme
and the hash function.

Authentication Overhead. Now we study the performance overhead of computa-
tions related to authentication in an authenticated dictionary based on a hashing
scheme (the analysis is valid for any ADS). This authentication overhead consists
of time overhead for the (i) maintenance of the hashing scheme after updates,
(#1) generation of the answer authentication information in queries, and (i) ver-
ification of the proof of the answer; communication overhead, defined as the size
of the answer authentication information; storage overhead, given by the num-
ber of hash values used by the authentication scheme; and signature overhead,
defined as the number of signing operations performed at the source (and thus
the number of signatures sent by the source). The time for computing a hash
function is a few orders of magnitude larger than the time for comparing two
basic numerical types. Thus, the rehashing overhead dominates the update time
and the practical performance of an ADS is characterized by the authentication
overhead, which depends on the hash function A in use and the mechanism for
realizing a multivariate hash function from h.

Cryptographic Hash Functions. A collision-resistant hash function h(z) maps a bit
string x of arbitrary length to a hash value of fixed length, such that collisions are
hard to find. We refer to h simply as hash function. Generic constructions of hash
functions are modeled by iterative computations based on a compression function
f () that is applied iteratively on the input. For this class of hash functions, there
exist constants ¢; and co (which may depend on a security parameter) such that,
given an input string x, the computation h(x) takes time T'(z) = ¢1]z| + c2.
Moreover, without loss of generality, we extend h to a multivariate function
using string concatenation. We define h(zy,...,xq) = h(x1]]...||zq).

Cost of Data Authentication Through Hashing. Let G be any hashing scheme used
to implement a hash-based authenticated dictionary for set X of size n, where k
signature nodes store hash values signed by the source. Hashing scheme G along
with the signature nodes can be viewed as a DAG scheme I' = (G, S,n,k),
where special nodes are signature nodes and there are exactly n source nodes
in G storing elements in X. Each cost parameter of the authentication overhead
depends linearly on size(H) and indeg(H) for some subgraph H of G. The node
size corresponds to the number of performed hash operations and the degree size
to the total number of hash values that participate as operands in these hash
operations. In particular, the following holds.

162 R. Tamassia and N. Triandopoulos

Lemma 1. Let I' = (G, S,n,k) be any hashing scheme used to implement a
hash-based authenticated dictionary for set X, where special nodes are signature
nodes. Let s be a source node of G storing element x € X, G be the subgraph
of G that is reachable from s, and ws the associated path of s. We have: (i) an
update operation on element x has update time overhead that is lower bounded by
comb(Gy); (it) a query operation on element x has verification time overhead that
is lower bounded by comb(ws) and communication overhead that is lower bounded
by bnd(ms); (iii) the storage overhead is size(G). All involved computations are
performed according to the hierarchy induced by G.

Thus, hash-based authentication of membership queries is an HDP problem,
where operations insert/delete are related to the update cost and operation con-
tains is related to the query cost of the underlying DAG scheme. Our results on
DAG schemes indicate that signing multiple hash values does not help and that
tree structures are optimal.

Theorem 5. In the data authentication model through hashing, any hashing
scheme with k signature nodes that implements an authenticated dictionary of
size n has (i) 2(log %) worst-case update and verification time overheads; (i)
2(log %) worst-case communication overhead; and (iii) £2(k) signature overhead.

Theorem 6. An authenticated dictionary of size n implemented with a multi-
way skip-list DAG scheme with probability parameter p achieves the following
expected performance, where ¢; and co are constants that depend on the hash
function h in use and g =1—1p

1. the expected hashing overhead of an update or verification operation is at

most (1 — p) (26 + (Hp) cl) log1 n + O(1),
2. the expected communication cost is at most (1 —p) (1+p) log1 n+O0(1) and

3. the expected storage overhead is at most (1 + pg® + pg + W) n

5 Multicast Key Distribution Using Key-Graphs

In this section, we apply our results of Section 2 and 3 to multicast key distri-
bution.

Multicast Key Distribution. The problem refers to secure communication in mul-
ticast groups. A group consists of a set of n users and a group key controller.
Secret-key cryptography is used to transmit encrypted multicast messages among
users of the group. Messages are encrypted using a group key available to all the
current users of the group. The security problem arises when updates on the
group are performed through users addition to or deletions from the group. The
goal is to achieve confidentiality, i.e., only group members can decrypt messages,
and forward (backward) secrecy, i.e., users deleted from (added to) the group can
not decrypt messages transmitted in the future (past). In this model, the group
controller is responsible for distributing secret keys to the users and updating

Computational Bounds on Hierarchical Data Processing 163

them appropriately after user updates. The idea is that a set of keys, known to
the controller, is distributed to the users, so that a key is possessed by multiple
users and a user possesses multiple keys. In particular, any user is required to
have, except from the group key, a secret key that no other user knows. On
user updates, subsets of these keys need to be updated appropriately by the
controller.

Key-Graphs. Key-graphs (e.g., [15]) provide a framework to implement this idea.
A key-graph models the possession of keys by users and the computations (en-
cryptions at the controller, decryptions at the users) and message transmissions
that need to be performed after an update. A key-graph is a single-sink DAG G,
known by the group controller and the users, that facilitates key updates. The
source nodes of G correspond to users and store their individual secret keys.
The non-source nodes of G correspond to keys that are shared among subsets of
users. The user associated with a source node s of G possesses all and only the
keys that correspond to the subgraph Gy of G (i.e., the nodes reachable from s).
On any update of user s, the keys in G5 have to change to achieve forward and
backward secrecy. The group controller distributes each new key by sending it
encrypted with a previously distributed key.

Cost parameters. The cost parameters of a key distribution scheme using key-
graphs are defined as follows: (i) the encryption cost is the computational cost
at the controller for encrypting all new keys and thus producing the messages
for transmission; (i¢) the decryption cost is the computational cost at a user for
decrypting received messages and updating her keys; (i#i) the communication
cost is the number of transmitted messages; and (iv) the key-storage cost is the
total number of keys stored at the key controller and at the users.

We can view a key-graph G as DAG scheme I = (G, S, n, 1), where S consists
of the unique sink node of G, called group node, and the source nodes correspond
to the users. Each cost parameter of the key distribution scheme depends linearly
on size(H) and indeg(H), for some subgraph H of G. The node size corresponds
to keys stored at users, decryptions and key generations and the degree size
corresponds to the number of messages sent and the number of encryptions
performed during the update.

Definition 5. Let I' = (G, S,n,1) be a key-graph scheme and let v be a node
in G. The support Sup(v) of v is the set of users that possess the key stored at v,
i.e., s € Sup(v) if and only if v € Gs. Let U = {uy,...,ur} be a set of nodes of
G and let T C Vi, be a set of source nodes of G. We say that set U spans set
T if Uycick Sup(u;) = T. A node v is said to be safe if v is a source node or
if indeg(v) > 1 and any node set that spans Sup(v) and does not include v has
size at least indeg(v). Key-graph scheme I' is said to be reduced, if all nodes in
G are safe.

Lemma 2. Let I' = (G, S,n, 1) be a reduced key-graph scheme used for the mul-
ticast key distribution problem. Then we have: (i) an update operation on a user
that corresponds to a source node s has communication cost at least indeg(G)
and encryption cost at least comb(Gy); and (ii) the key-storage cost is size(Q).

164 R. Tamassia and N. Triandopoulos

All involved encryptions and decryptions are performed according to the hierar-
chy induced by G.

Multicast key distribution using reduced key-graphs is an HDP problem, where
the cost of an update in the group is related to the update cost of the underlying
DAG scheme. By studying more carefully reduced key-graph schemes and using
Theorems 1 and 2, we can prove the main result of the section.

Theorem 7. For a multicast key distribution problem of size n using key-graphs,
in the worst case, an update operation in the group requires at least |logyn|
communication cost and 2(logn) encryption cost. Also, key-tree structures are
optimal over general key-graphs.

6 A New Skip-List Version

From the relation of the sibling cost of any tree-based DAG scheme and the
number of comparisons performed in a search tree corresponding to the DAG
scheme and Theorem 4, we get a new version of the skip-list data structure with
an expected number of comparisons closer to the theoretical optimal |log, n|+1,
up to an additive constant term, than the one of the standard skip-list. The new
skip-list version can be viewed as a multi-way extension of the skip-list data
structure. We omit the details due to space limitations.

Theorem 8. There is a multi-way version of a skip-list for set X of size n and
probability parameter p, where the erpected number of comparisons performed

while searching in X for any fixed element is at most w logy n 4+ O(1),
2

plo %
or 1.25logyn+ O(1) forp = 1.

References

[1] J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to
efficient revocation of anonymous credentials. In Proc. CRYPTO, 2002.

[2] R. Canetti, T. Malkin, and K. Nissim. Efficient communication - storage tradeoffs
for multicast encryption. In Proc. EUROCRYPT, 1999.

[3] P. Devanbu, M. Gertz, C. Martel, and S. G. Stubblebine. Authentic data publi-
cation over the Internet. Journal of Computer Security, 11(3), 2003.

[4] M. T. Goodrich, R. Tamassia, and J. Hasic. An efficient dynamic and distributed
cryptographic accumulator. In Proc. ISC, 2002.

[5] M. T. Goodrich, R. Tamassia, and A. Schwerin. Implementation of an authen-
ticated dictionary with skip lists and commutative hashing. In Proc. DISCEX,
2001.

[6] M. T. Goodrich, R. Tamassia, N. Triandopoulos, and R. Cohen. Authenticated
data structures for graph and geometric searching. In Proc. RSA-CT, 2003.

[7] C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong, and S. G. Stubblebine.
A general model for authenticated data structures. Algorithmica, 39(1), 2004.

[8] S. Micali, M. Rabin, and J. Kilian. Zero-Knowledge sets. In Proc. FOCS, 2003.

(9]
[10]
[11]
[12]
[13]

[14]

[15]

Computational Bounds on Hierarchical Data Processing 165

D. Micciancio and S. Panjwani. Optimal communication complexity of generic
multicast key distribution. In Proc. EUROCRYPT, 2004.

M. Naor and K. Nissim. Certificate revocation and certificate update. In Proc.
USENIX Security, 1998.

R. Ostrovsky, C. Rackoff, and A. Smith. Efficient consistency proofs for general-
ized queries on a committed database. In Proc. ICALP, 2004.

W. Pugh. Skip lists: a probabilistic alternative to balanced trees. CACM, 33(6),
1990.

J. Snoeyink, S. Suri, and G. Varghese. A lower bound for multicast key distribu-
tion. In Proc. INFOCOMM, 2001.

R. Tamassia and N. Triandopoulos. Computational bounds on hierarchical data
processing with applications to information security. Manuscript, Brown Univer-
sity, 2005. Full version http://www.cs.brown.edu/cgc/stms/papers/cbhdp. pdf.
C. K. Wong, M. Gouda, and S. S. Lam. Secure group communications using key
graphs. IEEE/ACM Transactions on Networking, 8(1), 2000.

Balanced Allocation and Dictionaries with
Tightly Packed Constant Size Bins

(Extended Abstract)

Martin Dietzfelbinger!-* and Christoph Weidling?:**

1 Technische Universitit Ilmenau, 98684 Ilmenau, Germany
martin.dietzfelbinger@tu-ilmenau.de
2 sd&m AG, 63065 Offenbach am Main, Germany
christoph.weidling@sdm.de

Abstract. We study an aspect of the balanced allocation paradigm (also
known as the “two-choices paradigm”). Assume there are n balls and m =
(14 ¢)n/d bins of capacity d each, for a fixed d > 1. To each of the balls
two possible bins are assigned at random. We show that ¢ > (2/e)¢™*
is sufficient to guarantee that with high probability each ball can be
put into one of the two bins assigned to it, without any bin overflowing.
Further, it takes constant time on average for changing the arrangement
to accommodate a new ball, if & > ~ - 39, for some constants v > 0,
B < 1. The problem may also be described in data structure language.
Generalizing cuckoo hashing (Pagh and Rodler, 2001), we consider a hash
table with m positions, each representing a bucket of capacity d > 1. Key
x may be stored in bucket hi(z) or ha(z), for two fully random hash
functions h1 and hs. For arbitrary € > 0, we obtain an implementation
of a dynamic dictionary that accommodates n keys in m = (1 4+ €)n/d
buckets of size d = O(log(1/¢)). For a lookup operation only two hash
functions have to be evaluated and two contiguous segments of d memory
cells have to be inspected. The expected time for inserting a new key is
constant.

1 Introduction: Bounded Balanced Allocation,
d-Orientability, and Blocked Cuckoo Hashing

In this paper, we study a data allocation problem that can be described in
different terminologies. In the “balanced allocation paradigm” (also known
as the “two-choices paradigm”) we have n balls and m bins. To each ball two
bins are assigned at random. Each ball is to be placed into one of the two bins
assigned to it; the aim is to keep the maximum load in the bins small. Much
work has been devoted to analyzing the online version of this experiment, where
the balls arrive one after the other and are put into a bin upon arrival, and this

* Corresponding author.
** Affiliated with the Technische Universitit Ilmenau while this work was done.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 166-178, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Balanced Allocation and Dictionaries 167

placement can never be changed later. Not that much is known about the offline
version, where all balls with their two choices are given as input. However, it has
been known for quite a while that with high probability® for n = O(m) constant
bin size is enough to place all balls. Other authors have considered “dynamic”
situations in which the positions of balls may change in the course of a random
process.

In this paper, we ask how well we can utilize the space in the bins if we
fix the capacity of the bins to some number d > 1. That means, given n, we
wish to keep the space overhead ¢ = ¥m=" a5 small as possible and still be able
to place the balls w.h.p. We show that ¢ > (2/e)?~! is sufficient to guarantee
this. We also consider a dynamic version of the problem. Assume that n balls
are placed and a new ball arrives, with two randomly assigned bins. We show
that the expected time needed to rearrange the balls so that the new ball can
be accommodated as well is constant, as long as € > v - 3%, for some constants
v >0, 8 < 1. This implies that the expected time to place n balls is O(n). No
estimates for the density that can be achieved asymptotically for fixed bin size
d larger than some small constant have been known before.

The allocation problem with bounded bin size d is equivalent to a version
of the d-orientability problem [12] for random graphs. We say an undirected
graph G = (V, E) of m nodes and n edges is d-orientable if the edges can be
directed in such a way that every node has outdegree not larger than d. Given a
constant d, we ask for upper and lower bounds on the edge density - so that a
graph with n randomly placed edges (including loops and multiple edges) is d-
orientable w.h.p. Also, we ask how long it takes to adapt a given edge orientation
when a new random edge arrives.

Yet another formulation of the same problem can be given in data struc-
ture language. We wish to implement dynamic dictionaries so that constant
lookup time is guaranteed. Dynamic dictionaries store keys from a universe U
(possibly together with satellite data) and support the operations insert, delete,
and lookup. Pagh and Rodler’s “cuckoo hashing” method [17] assumes that
each one of n keys is assigned to two locations h(z) and ha(z) in a hash table of
size m, and can be stored in one of the two locations. Each location has capacity
1. We generalize this approach by considering buckets of capacity d, for some
arbitrary constant d > 1. Our construction results in the following. Assuming
that fully random hash functions are available, we obtain an implementation of a
dynamic dictionary that for given € > 0 stores n keys in space (1+¢)n in such a
way that a lookup for x requires evaluating two hash functions and probing two
contiguous blocks of d memory cells. The expected cost of inserting a new key
is (1/¢)OUoglog(1/€)) This compares favorably with the performance of “d-ary
cuckoo hashing”, a different generalization of cuckoo hashing by Fotakis, Pagh,
Sanders, and Spirakis [9]. There d = O(log(1/¢)) independent hash functions are
used to achieve a similar space utilization. The access procedure of our scheme is
more local and hence more suited for cache architectures. Experiments (see [7])

! abbreviated: “w.h.p.”, meaning “with probability 1 —

1 9
poly(n) -~

168 M. Dietzfelbinger and C. Weidling

support the hope that the new scheme is competitive with d-ary cuckoo hashing
[17] as far as space utilization is concerned, and allows faster accesses.

Remark 1. For reference, we describe the connection between the hashing for-
mulation and the d-orientability formulation from [2,12,19] in detail. Given is
a set S of n keys and two random hash functions hi, hy. We consider a ran-
dom (multi)graph G, = (V, E,) with labeled edges. The node set is V = [m] =
{0,...,m—1}, the set of labeled edges is E,, = E,(S, h1,h2) = {{h1(x), ha(z)} |
x € S}. We say that G, is d-orientable if the n edges in E,, can be directed in
such a way that each node has outdegree at most d. Assigning such directions
to edges is equivalent to storing the keys in a table with m blocks with maximal
load d, as follows: the edge {y,y'} = {h1(x), ha(z)} is directed from y to y' if and
only if x is stored in block y. Below, any directed version of G,, with outdegree
bounded by d will be called G = (V, E).

Terminology. In this paper, the algorithms and the analysis are described in
the language of a hash table with two functions. This also makes it possible to
describe a new workaround for the assumption that fully random hash functions
are available for free, see Section 2.3. However, all results readily translate into
the terminology of the balanced allocation paradigm or the graph orientation
paradigm.

1.1 Background and Related Work

Early contributions to the fixed sized bin allocation problem were made in con-
nection with the balanced allocation paradigm. (For a survey of this area, see
[14].) In the seminal paper [1] by Azar, Broder, Karlin, and Upfal it was noted
[10] (also see [2]) that if a set of n < 1.67m balls is allocated to m cells, with two
choices per ball, then with high probability the keys can be placed so that no bin
holds more than two balls. This immediately extends to a scheme for storing n
balls in m bins with a maximum load of d = 2 [n/(1.67m)] <2+ 1.2, which
for m,n large corresponds to a space overhead of € = 0.2 in our notation.

Simultaneously, observations concerning the existence of such placements
were made in papers on the simulation of parallel random access machines on
distributed memory machines by redundantly storing data (e.g., [3,13]). In par-
ticular, it was shown there that a maximum load of O(1 + n/m) is achievable
with high probability, even if for allocating the bins hash functions from classes
described in [22] are used.

Sanders et al. [20,21] studied the static allocation problem with fixed bin
sizes as the combinatorial abstraction of a scheme called “Randomized Duplicate
Allocation (RDA)”, used for storing data blocks on disks. In [21] it was shown
that with high probability a bin size of d = 1 + [n/m] is sufficient (this would
correspond to a bound d > 1 in our notation). In [20] the question was asked
how close n/m might be to d = [n/m] so that still block size d is sufficient. No
asymptotic relation between n/m and d was derived. In the analysis of the static
case we start with the condition (2) on d and ¢ that has been noted already in

Balanced Allocation and Dictionaries 169

In(1/¢e)
1-In2

[20]. The transformation of this condition into the general relation d > 1+
by means of calculus has escaped other researchers until this date.

In [2] the online version of the case of heavily loaded bins (i.e., 7+ — oo) was
studied. In [4] it was demonstrated that perfect balance (n = dm, with no slack
at all) is impossible w.h.p. if d < 71 Inn for a suitable constant v;, while perfect
balance is possible w.h.p. if d > 7 Inn for some larger constant 5. Further,
a randomized rebalancing procedure was described and analyzed, with running
time polynomial in n.

On the data structures side, the paper by Pagh and Rodler [17] showed that
m = (2 4 e)n cells are enough if each cell may have load 1 and a key = may
be stored in one of the locations given by two hash functions. It is easy to see
that space below 2n is not sufficient for cuckoo hashing in the simple form. As
a remedy for this situation, Fotakis et al. [9] suggested “d-ary cuckoo hashing”.
Their scheme amounts to the balanced allocation problem with bin size 1 and d
random targets for each ball. They show that with n balls and m = (14¢)n bins it
is sufficient to have d = O(log(1/¢)) for statically placing the balls and inserting
new balls in expected constant time, w.h.p. This leads to an implementation of
a dictionary for n keys in space (1 + &)n, where a lookup requires evaluating
d = O(log(1/¢)) hash values and probing d random locations in the worst case.
Inserting a key takes expected constant time. Our result leads to a comparable
space utilization, but has the advantage that only two hash functions have to
be evaluated and two contiguous blocks of d memory cells must be probed in a
search, which has advantages in architectures with caches. The basic structure
of our analysis for the dynamic case is the same as in [9]; however, quite a few
extra technical obstacles have to be overcome.

Recently, Panigrahy [18] studied the dynamic version of the allocation prob-
lem (in the formulation for dynamic hash tables with insertions) for two choices
and bin size d = 2. He established, by analyzing related branching processes,
that inserting keys is possible in expected constant time as long as n < 1.67m.

For lack of space, not all details of the analysis are given in this extended
abstract. They may be found in the technical report version [7].

2 The Results

2.1 The Static Case

A set S of n keys from the universe U is to be stored. We use an array T[0..m—1]
consisting of m = n(1+¢)/d blocks (subarrays) of d cells each. Inside each block
we store up to d keys sequentially. Given two hash functions hy, ho: U — [m],
we say that hq, ho are suitable for S and d if it is possible to store each key x
from S in one of the blocks hi(x), ha(x) without any block receiving more than
d keys. If the keys from S are stored according to hi, ho, a lookup procedure is
obvious, which involves evaluating two hash values and searching two blocks.
Our first result is the following theorem, whose proof is outlined in Section 3.

170 M. Dietzfelbinger and C. Weidling

Theorem 1. Let ¢ > 0 be arbitrary. Assume that d > 1+ % Let n be
sufficiently large, let S C U be an arbitrary set of n keys, and let T be a table with
m blocks of size d each, where dm > (1 + ¢)n. Further assume that hy,hy: U —
[m] are fully random hash functions. Then with probability 1 — O(1/m9=1) the

functions hy, hy are suitable for S and d.

2.2 Updates: The Cuckoo Insertion Procedure

Assume n keys are stored in the table T" according to hq, ho, with blocks of size
d. Inserting a new key = can best be described in terms of the directed graph G
from Remark 1. In G, find a directed path yo, y1, - . ., ye with yo € {h1(z), ho(x)}
and yy a node that is “free”, i.e., has outdegree smaller than d. (This means
that block yy contains an empty cell.) The edges that form the path correspond
to keys x1,...,xy such that x; is stored in y;_1, but may be stored in y;. After
moving x; from y;_1 to y;, for 1 < i < ¢ (this corresponds to flipping the edges
on the path), node (block) g is free, and hence we can store = there. We call a
path yo,y1,...,ye as described an “augmenting path” for G and =z.

It is very easy to see that if hy, ho are suitable for S U {z}, then there is an
augmenting path. So the problem is to find an augmenting path fast. As proposed
in [9], a simple approach for this is breadth-first-search (BFS) in G, starting from
{h1(z), ha(z)}. The time for this is proportional to the number of edges probed
before a free node is found. Since the nodes in the part of GG that is searched have
outdegree d, this number is not larger than 2(d + d? + - -- + d°) < 4d*, where ¢
is the length of a shortest path from {h(z), ha(z)} to a free node. Thus we will
have to analyze (the distribution of) the distance between {hq(z), ha(x)} and
the set of free nodes. The proof of the following theorem is outlined in Section 4.

Theorem 2. Let € > 0 be arbitrary. Assume that d > 90.1 - In(1/¢). Let n be
sufficiently large, let S an arbitrary set of n keys, let x € U — S, and let T
be a table with m blocks of size d each, where dm > (1 + ¢)n. Assume that
hi,ho: U — [m] are fully random hash functions, and that the keys from S
have been stored in T by an algorithm that is ignorant of hq(x), ha(z). Then the
expected time to insert x by the BFS procedure is (1/¢)00108).

The constants in the bound are certainly not optimal. In particular, the horren-
dous factor 90.1 is only an artefact of our proof. Numerical estimates suggest
that the approach we use could be tuned to get by with d > 41n(1/¢), for & very
small. — In this extended abstract, we do not address the issue of extra space
(up to O(n)) needed by the BFS, for the following reason: If the technique de-
scribed in Section 2.3 below is used, no more than n?/3 keys have to be handled
at any time, so the scratch space problem vanishes.

An alternative approach to insertion (also suggested in [9]) is to search an
augmenting path by a certain kind of random walk in G, as follows: Assume x
is to be inserted. Repeat the following, starting with z := x:

Calculate hi(z) and ho(z). If one of the two blocks hq(z) or ha(2) is not
full, store z in one such block, and stop. Ties are broken arbitrarily. If

Balanced Allocation and Dictionaries 171

both blocks are full, randomly choose one of the keys stored in these
blocks, call it 2/, kick 2z’ out from its block (this is the “cuckoo step”)
and insert z in its place. Let z := 2/, and start again.

Of course, some rules for stopping the loop have to be incorporated. The
implementations used in our experiments [7] are based on this random walk
idea, not on the BFS procedure. It is an intriguing open problem to provide an
analysis of the random walk insertion procedure. (The same question is open for
d-ary cuckoo hashing [9].)

2.3 Sharing Fully Random Hash Functions

For the analysis to carry through, we assume that the hash functions hq, ho
behave fully randomly on S. If in the course of inserting a key it turns out
that hq, ho are not suitable, we might want to rehash the whole set, using new
hash functions hi, ho. Although in the balanced allocation literature the full
randomness assumption is routinely used, this is not the case in the hashing
literature. Earlier work on hashing (e.g., [3,9, 13, 17]) has, very carefully, pointed
out ways of working around this problem, for example by using functions from
high-performance universal classes like in [22]. (This would not be sufficient for d-
ary cuckoo-hashing, though.) In [8, 16] it was demonstrated that full randomness
can be simulated by universal hashing at the cost of O(n) words of extra space.
However, using such a construction would be unsatisfactory in our context, since
we aim at getting by with en extra space.

We propose the following workaround, which might be helpful also in other
contexts. Let € > 0 and n be given. Using high-performance hash classes [6, 22]
we may choose a function h: U — [n'/3] so that with probability 1 — n=¢ (for
some constant ¢) the set S is split into n'/3 pieces S; = {x € S | h(z) = i}
of size < (1 + §)n%*?®. (There is no need that S is known or the pieces are
listed.) For each of the pieces S; we run cuckoo hashing with blocks of size d in
a separate table T; of size (1 + 5)n2/ 3. Tt is an easy exercise, using polynomial
hash functions and techniques described in [6], to provide a pair hj, hy of hash
functions that with high probability behaves fully randomly on a single S;, if
we are allowed to use space n°/¢ for storing h1, ho. Since the data structures for
the pieces S; do not interact, we may use the same hash function pair hy, ho
for all pieces S;, i = 0,...,n'/3 — 1. The overall space is O(n°/%) = o(n). The
algorithms described in the present paper then has to be applied to each of the
pieces separately. (For details see [7].)

3 Analysis for the Static Case: Proof of Theorem 1

In [20,21] it is shown that a set S of n keys can be stored in m = (1 + ¢)n/d
blocks of size d if and only if for every X C S it holds that |I'(X)| > 1| X|, where
I'(X) = {h1(x), ho(z) | € X}. (This may be seen directly: It is immediate that
S can be stored if and only if the bipartite graph (S, [dm], E), E = {(x,d-h;(z)+
J) |z € S,ie{l,2},0 <j < d} has a matching that covers all nodes in S. Hall’s

172 M. Dietzfelbinger and C. Weidling

marriage theorem [5, p. 31] implies that such a matching exists if and only if
II'(X)| > 3|X| for all X C S.) Thus, to prove Theorem 1 it is sufficient to
establish an upper bound on the probability F' of the event that there is some
X C S such that [I'(X)| < 3| X].

Lemma 1. Ife <0.25 and d > 1+ 1?(11/52) , then F = O(m'~9).

Proof (Outline). For 1 < j < m/(1+¢€), let F(j) be the probability that there
is a set Y of j blocks such that some set X C S, |X| = dj, satisfies I'(X) C Y.
Clearly, F' < 31 <<, (14) £'(J). Using the Chernoff-Hoeffding bound (13) and
the binomial bound (11), we get

o= (5) (4) ()
m(1+e—d)

< (o) T O iy

m-j(+e)
d 1+e

m2_j2

m—j(l+e¢)

()

which was already observed in [20,21]. We examine the expression on the right-
hand side of (1), which we abbreviate by f(j,), in different ranges of j. For j = 1
we find f(1,e) = O(m!=%). — For j, 2 < j < e~*m, we prove that f(j,¢) is a
decreasing function of €; thus, we can concentrate on the case ¢ = 0. The sequence
f(4,0), 5 =2,..., e *m] turns out to be geometrically decreasing; hence we get
docj<e—tm F(J) = O(m?~24). — The most involved calculation concerns the
range e~ *m < j < (1 —2¢)m. Here we read off from (1) by substituting j = am,
that f(j,e) = O(c™) for a constant ¢ < 1, if

alna+ (1 —a)ln(l —a) 9
a(lna —In(1 + ¢)) + {=eie)nl_o?) In(a(lte)) ’ ®

1+e

d>

for e7* < o < 1 — 2e. We prove that the right-hand side of (2) is bounded by

alna+ (1 —a)ln(l — «)

9(a) = alna+ (1 —a)ln(l + a)

(3)

By calculus we show that ¢ is an increasing function and that g(1 — 2¢) <

1— {85 — For the range j > (1 — 2¢)m, we observe that for each ¢ < 0.25 the

rlght hand side of (2) is decreasing in a, if 1 —2¢ <a <1/(1+¢). O

4 The Expected Insertion Time: Proof of Theorem 2

We want to examine the expected time of the BFS algorithm for inserting a new
key = in T', as described in Section 2.2 (also recall Remark 1). Just before x is
inserted, a set S of n keys is stored in 7. We assume that the directed graph

Balanced Allocation and Dictionaries 173

G determined by this placement is independent of the hash values hy(x), ho(x)
— this is the case if = was never inserted before. We start a BFS in G from
{hi1(x), ha(x)} with the aim of finding a shortest path to a node in Yy := {y €
V | y is free in G}. The time for the BFS in G is O(min{n,d’*'}), where ¢ is
the length of such a shortest path. Our aim is to see that the expectation of the
number of edges we have to inspect before a free node is found is O(1). For this,
we analyze the distribution of the number of nodes at different distances to Y.
(The analysis runs along the lines of that of [9], but we are dealing with quite a
different graph.) — Recursively define, for k > 1:

X = {l‘ es | hl(LE) €Y, 1 or hg(I) S Yk—l} and
Y :={y € [m] | 3z € Xj: x is stored in y}.

We say that the keys of X “hit” Yi_1. It is easy to see that Y} is the set of
nodes from which Yy can be reached in at most k steps in G. By the definitions,
Y1 C Y, for k = 1,2,.... Inserting a new key x has cost roughly O(d‘*!), if
¢ is minimal with hy(z) € Y; or ho(x) € Yy, The proof strategy is as follows.
We show that with high probability a large constant fraction of the nodes are in
Y« 1o+ for suitable constants k*, ¢*. (Lemmas 2, 3, 4, and 5). Beyond that, the
complements [m] — Y}, shrink at a rate of roughly d=2/% (Lemmas 6 and 7). If a
new key x arrives, with constant probability one of the values hq(x), ho(x) will
hit Yj«4 ¢ (causing constant cost). The probability that both hi(z) and hs(x)
hit nodes at a distance k* + £* 4+ j from Yj shrinks geometrically with growing
j, at a rate of (d*2/3)2 = d~*/3. This probability is small enough to compensate
the high cost of O(dk*“‘l*‘”) for reaching Y should this happen. Overall, the
expected insertion cost remains a constant (Lemma 8).

Lemma 2. Let € < 0.1 and d > 90.1 - ln(%). Then there is a constant 8 < 1
such that with probability 1 —O(mpB™) each set of blocks Y that satisfies T=m<

r=|Y| < 3m is hit by at least 3rd keys from S.

Proof (Outline). A set of blocks Y, |Y| = r, is hit by 3rd keys with hy or hy
if at most n — 4rd keys avoid Y with both hash functions hy and ho. Let F(r)
denote the probability that there is a set Y of size r such that there are more
than n — %rd keys that avoid Y with both hash functions. Employing (13):

2 "_%Td 2 %rd
= () ()
3 3

By n = dm/(1 + ¢), the binomial bound (11), and the substitution r = am we
observe that F'(r) < 8™ for a suitable 0 < 8 < 1, provided that

alna+ (1 —a)ln(l —a)
(%~ da) (2101 —a) 1o (1 - 1052)) 4 ey (3220)

d>

®)
)

174 M. Dietzfelbinger and C. Weidling

for all o between # and 5 . The right-hand side of (5) can be shown to be

bounded by 90.11n(1/¢), for0<5<01 and 152 < a < 3. 0

Lemma 3. If the digraph G induced by S being stored meets the conclusion of

Lemma 2, then there is some k* < 2 + log% (%)

Proof. Assume k > 1 and |Yi_1| < %m Consider the set X, of keys that
hit Y;_1. By the assumption, [X| > 5d[Yy_1]. By definition, all keys z € Xy
are stored in blocks in Yj. Only d|Y;_1| of them can be stored in Yj_i, so
at least fd|Yk 1| of them must be stored in Y — Yj_1, which implies that
‘Y% —-Y._ 1|:> 3|}ﬁ; 1| hence |Y%‘:> 4|}}; 1

Now let &’ be minimal with [Yi/| > Zm. By the above it is easy to see that
either |Yj/| > 2m (then we let k* = k:') or Y| > 3 - m > $m (then we let
E* =k +1). (ThlS holds even if 5m/13 < |Yj/| < m/2 since then we apply the
conclusion of Lemma 2 to a subset of Yy of size |5m/13].)

Because there are exactly en free cells in the table, we have |Yy| > %

1+sm Thus, |Yi| > ()k for 0 < k < k', whence we get k* < 1+ k' <
2+ [log% (5(11;;5)”.

Lemma 4. Let d > 8. Then there is some § < 1 such that with probability
O (B™) we have that each set Y of blocks with 2 < |Y| < m — 2% is hit by
at least n — 5d(m — |Y) keys.

1+s

O

Proof (Outline). Let Y = [m] —Y and r = |Y|. By (13) and (11) we find that
the probability that there is a set ¥ with r = m — |Y| in [2%, 2] such that
more than %dr keys hit Y with both hash functions is bounded by

rr(mrin:«)m—r (9(11—1(—)7:5)m> " ((1();0573?«(1 fi))m> %_%Td. (6)

We denote the expression in (6) by f(r,€). It is not hard to see that f(r,¢) is
decreasing in e, thus we can concentrate on the case ¢ = 0. After replacing ¢
by 0 in (6), and substituting o = r/m, an expression for a function g(a,d)™
results. For each fixed « the function g(a,d) is decreasing in d. A look at
a Maple plot reveals that g(c,8) does not exceed max{g(=rs,8),9(0.5,8)} =
9(z5,8) < 1. O

Lemma 5. If G meets the conclusions of Lemmas 2 and 4, and k* satisﬁes
|Yi| > %, then there is some £*, £* = O(logd) such that m — [Yi«1¢+| <

e4d3

Proof. The induction proof, which uses Lemma 4, is omitted. a

The following lemma states a standard expansion property of bipartite ran-
dom graphs, see [15, p. 109].

Balanced Allocation and Dictionaries 175

Lemma 6. Let d > 20, and v = 644d3. With probability 1 — O(m_d/z) we have

that each set X C S of keys with d < |X| < vdm hits more than A|X| different
blocks, where A = dl% + %.

Proof. The probability that there is a set X of j keys, d < j < vdm, that hits
no more than Aj blocks can be bounded by

O T (@ (@) @)@

Straightforward simplifications, using that d > 20 implies that A < %, lead to

J
the bound >~ ;<. 4m ((6/2)3/2 -d- \/j/m> for the right hand side in (7). For
j=d,d+1,...,|ydm] the terms in this sum are geometrically decreasing by a
factor smaller than 3, hence the sum is bounded by O(m~%/2). O

We conclude that for k£ > k* 4+ £* the complements of the sets Y} shrink fast.

Lemma 7. Assume that |[m]— Yi«40+| < ym and that the hash functions hq, ho
meet the conclusion of Lemma 6. Then the cardinalities a; = |[m] — Yi -4,
j=0,1,2,..., satisfy a; < d—2/3. aj—1 forj=1,2,3,.... Hence,

|[m] = Yee e 4] < vd=2Pm, for j =0,1,2,....
(In particular, there is some L with Vi« jo=4p 7# [M] = Yo 4041.)

Proof. Fix j > 1. If a; = 0, there is nothing to prove; thus assume a; > 1.
Then by the definitions, all a; nodes in [m] — Yy 44-4; are full. That means
that the set E; of edges in G with tails in [m] — Yj-4+4; has cardinality da,.
By the assumption that the conclusion of Lemma 6 is satisfied the edges in E}
touch at least Ada; = (d?/ + 1)a; nodes overall. Only a; of these nodes are in
[m] — Y+ 4¢+4;. By the definition of the sets Y}, no edge in G can run from a
node in [m] — Yy« -4 to a node in Yy« 4 (;—1). Hence the heads of the edges
in E; hit at least (d?/% 4+ 1)a; —a; = d*/3a; distinct nodes in [m] — Yy g+ 4 (j—1)s
which implies that a;_; > d?*/3a;. o

Lemma 8. Assume Yy, Y1, ..., Y, oo, Yieqpe, ..o, Yieqprpp are fized and ful-
fill the expansion properties from Lemmas 3, 5, and 7. Assume further that
hi(x), ho(x) are random values in [m]. Then the expected number of edges probed
in the BFS insertion procedure for x is (1/¢)00osd),

Proof. Let N, be the number of edges of G probed when z is inserted. Let
Ok = Y geney A < 2d*, for k > 0, and k, = min{k | hy(z) € Y}, or ha(z) € Yi}.
Then the number of edges of G probed when inserting « is not larger than 2oy, .
Thus, it is sufficient to estimate E(oy,). We have

E(ok,) = » Prob(oy, > q) = > Prob(k, > k) - d". (8)

q>1 k>1

176 M. Dietzfelbinger and C. Weidling

The last sum in (8) is estimated in two pieces. We have

> Prob(k, > k)-d¥ < (k" +£)d" T (9)
1<k<k*40*

For the rest of the sum in (8), we notice that by Lemma 7

> Prob(k, > k)-d*=d" . Y Prob(k, > k" +£* +j) - &’

k* 05 <k<k*+40*+L 1<;<L
<d" S Prob(h (@), ha(x) € [m] — Yie 1oy 1)) - &
1<5<L
< dk*Jrz* . Z (d72(j,1)/3)2 o < 2dk*+é*+1. (10)
1<5<L

The sum of the parts in (9) and (10) is bounded by (k* + ¢* + 2)d¥" +"+1 =
O(d)PUes(1/€) = (1/£)90ogd) This shows that the expected number of edges
probed in inserting z is bounded by (1/¢)?(gd), O

To prove Theorem 2 we note that with probability 1 — O(m~%/2) the graph
G satisfies the conclusions of Lemmas 2, 4, and 6. If this is the case, then the
expansion properties of Lemmas 3, 5, and 7 hold, and we may apply Lemma 8
to obtain the claimed bound on the expected insertion time. If G does not have
the expansion properties from Lemmas 3, 5, and 7, and Yj is reachable from
{h1(z), ha(z)}, the BFS will find an augmenting path in time O(n) — this gives
a contribution of O(m!'~%2) to the expected insertion time. In case Yj is not
reachable from {hy(z), ha(z)}, the functions hq, he are not suitable for S U {z},
and we must perform a total rehashing for all these keys. By Theorem 1 this
happens with probability O(m!~%). It is easily seen that even if we simply insert
the keys by the BF'S procedure, and rehash again if necessary, the expected time
for rebuilding the table is O(n). Hence, this last case contributes O(m?2~%) to
the expected insertion cost.

5 Conclusion

We obtained new results for a natural data allocation problem arising in dif-
ferent contexts: balanced allocation with two choices, edge orientation in ran-
dom graphs, dynamic dictionaries with worst case constant access time. It is
an intriguing open problem to analyze at least one variant of the random-
walk insertion procedure from Section 2.2, if possible establishing a bound of
O(In(1/€)) on the expected number of blocks probed, while maintaining the
bound d = O(log(1/¢)).

Acknowledgement. Remarks from several anonymous referees, which helped
in improving the exposition, are gratefully acknowledged.

Balanced Allocation and Dictionaries 177

References

1.

10.
11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. Balanced allocations. STAM J.
Comput., 29:180-200, 2000.

P. Berenbrink, A. Czumaj, A. Steger, and B. Vicking. Balanced allocations: The
heavily loaded case. In 82nd STOC, pp. 745-754. ACM, 2000.

. A. Czumaj, F. Meyer auf der Heide, and V. Stemann. Contention resolution in

hashing based shared memory simulations. SIAM J. Comput., 29:1703-1739, 2000.

. A. Czumaj, Ch. Riley, and Ch. Scheideler. Perfectly balanced allocation. In

RANDOM-APPROX, LNCS 2764, pp. 240-251. Springer, 2003.
R. Diestel. Graph Theory. Springer, New York, 1997.
M. Dietzfelbinger and F. Meyer auf der Heide. Dynamic hashing in real time.

In Buchmann, J., et al., editor, Informatik - Festschrift zum 60. Geburtstag von
Giinter Hotz, pp. 95-119. B. G. Teubner, 1992.

. M. Dietzfelbinger and C. Weidling. Balanced allocation and dic-

tionaries with tightly packed constant size bins. Technical Report,
http://wuw.tu-ilmenau.de/fakia/md-papers.html, 2005.

M. Dietzfelbinger and P. Woelfel. Almost random graphs with simple hash func-
tions. In 35th STOC, pp. 629-638. ACM, 2003.

D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis. Space efficient hash tables with
worst case constant access time. Theory of Computing Systems, 38:229-248, 2005.

A. Frieze. Personal communication in [1]. 1990.

T. Hagerup and Ch. Riib. A guided tour of Chernoff bounds. Inf. Process. Lett.,
33:305-308, 1990.

R. Karp. Random graphs, random walks, differential equations and the probabilis-
tic analysis of algorithms. In 15th STACS, LNCS 1373, pp. 1-2. Springer, 1998.
R. Karp, M. Luby, and F. Meyer auf der Heide. Efficient PRAM simulations on a
distributed memory machine. Algorithmica, 16:517-542, 1996.

M. Mitzenmacher, A. W. Richa, and R. Sitaraman. The power of two random
choices: A survey of techniques and results, vol. 1, pp. 255—-312. In Rajasekaran et
al., editor, Handbook of Randomized Computing. Kluwer Academic Press, 2001.
R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

A. Ostlin and R. Pagh. Uniform hashing in constant time and linear space. In
35th STOC, pp. 622-628. ACM, 2003.

R. Pagh and F. F. Rodler. Cuckoo hashing. J. Algorithms, 51:122—-144, 2004.

R. Panigrahy. Efficient hashing with lookups in two memory accesses. In 16th
SODA. ACM-SIAM, 2005.

P. Sanders. Fast priority queues for cached memory. In 1st Workshop ALENEX,
LNCS 1619, pp. 312-327. Springer, 1999.

P. Sanders. Reconciling simplicity and realism in parallel disk models. In 12th
SODA, pp.67-76. ACM-SIAM, 2001.

P. Sanders, S. Egner, and J. Korst. Fast concurrent access to parallel disks. In
11th SODA, pp. 849-858. ACM-SIAM, 2000.

A. Siegel. On universal classes of fast high performance hash functions, their time-
space tradeoff, and their applications. In 30th FOCS, pp.20-25. IEEE, 1989.

178 M. Dietzfelbinger and C. Weidling

A Some Inequalities

We will be using the following upper bounds for binomial coefficients:

n n" 1 "
< = f <k< 11
() < ot = (amggs) coroshsn

where p = k/n, and
n e-n\k
<k) <(57) (12)

Further, a standard version of the Chernoff-Hoeffding bounds is used repeatedly:
If Xq,...,X, are independent 0-1-valued random variables and X = X1 +---+
X, then for E(X) < a < n we have

Prob(X > a) < (E(X)>a ("E(X))M. (13)

¢ n—a

(For a proof, see e.g. [11].)

Worst Case Optimal Union-Intersection
Expression Evaluation

Ehsan Chiniforooshan, Arash Farzan, and Mehdi Mirzazadeh

School of Computer Science, University of Waterloo
{echinifo, afarzan, mmirzaza}@cs.uwaterloo.ca

Abstract. We consider the problem of evaluating an expression consist-
ing of unions and intersections of some sorted sets. Given the expression
and the sizes of the sets, we are interested in the worst-case complexity of
evaluating the expression in terms of the sizes of the sets. We assume no
set is repeated in the expression. We show a lower bound on this problem
and present an algorithm that matches the lower bound asymptotically.

1 Introduction

In this paper, we study the problem of evaluating a set expression consisting
of a number of union and intersection operators. Sets are known to be sorted
and we also assume that no set is repeated more than once in the input. While
the worst case complexity in terms of the size of the whole combined input is
straightforward, we measure the running time of algorithms as a function of the
sizes of the input sets; we are interested in a worst-case optimal algorithm.
The problem arises in the context of evaluating search queries in text database
systems; search engines maintain a set S(w) for each word w consisting of all doc-
uments that contain w [1,7,11]. Thus, answering to a query such as “Database
OR Search AND Engine”, requires evaluation of the expression S(Database) U
(S(Search) N S(Engine)). Note that the queries and their corresponding expres-
sions can become very complicated if the queries are automatically generated [6].
Different variations of the problem have been studied before. The simplest
case which is finding intersection or union of two sets is equivalent to the problem
of merging two ordered sets of sizes m and n, which was studied by Hwang and
Lin [5]. They present an algorithm that matches the information theoretic lower
bound ﬂog (m:”)] They choose sorted arrays as the format of the input and
a list of cross references (pointers) between arrays as the output format. Later
Brown and Tarjan [2, 3] and Pugh [9] showed how data structures such as AVL-
tree, B-tree, or skip-list can be used as the format of the input and output.
Later, Demaine, Lopez-Ortiz, and Munro [4], studied a somewhat more gen-
eral case in which the number of input sets can be more than two. The expressions
they looked at, though, consist of just one type of operand: they are either all
unions or all intersections. Their algorithm is adaptive; they do not focus on the
worst-case complexity of the problem. They define the difficulty of every possible

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 179-190, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

180 E. Chiniforooshan, A. Farzan, and M. Mirzazadeh

input I as a function D(I), which measures how complicated a proof for the in-
put [is; they focus on minimizing the maximum value of % among all inputs
I of size n, where f(I) is the running time of the algorithm on I. The adaptive
problem was generalized by Mirzazadeh [8] to general expressions consisting of
both union and intersection operators.

Neither of the algorithms that we mentioned work optimally in the worst
case in terms of the sizes of the input sets. In this paper, we consider the worst
case complexity as mentioned. We present a lower bound and then an algorithm
that matches the lower bound.

The rest of this paper is organized as follows: In Section 2 we give some
definitions and preliminary observations. In Section 3, Theorem 4, we present
our lower bound and finally, in Section 4, the optimal algorithm is explained.

2 Definitions and Preliminaries

We study the problem of evaluating a set expression when the inputs are ordered
sets and the output is required to be an ordered set as well. We formally define
an input as a pair (T, "), where T and I" are defined as follows. T is an union-
intersection tree representing the expression: every internal node v is assigned a
union or an intersection operator m(v) and each leaf v of T represents an input
set and is assigned an integer size(v). We call T the signature of the input I. Also,
I' is an assignment function that assigns an ordered set of size size(v) to each
leaf v. For an internal node v with k children w1, ..., ux, we denote the union or
intersection of I'(uy), I'(us2), ..., and I'(uy), depending on the operator assigned
to v, by I'(v). By the result of an input (T, I") we mean the set I'(Root(T)). We
denote the set of nodes of a tree T' and the set of leaves of T' by Vr and leaves(T),
respectively. Without loss of generality, we assume that every internal node has
at least two children, and that the operator assigned to every internal node other
than root differs from the operator assigned to its parent.

In this paper we focus on the comparison-based algorithms which are those
that, for any input I = (T, I"), use only comparisons in the input sets to compute
the result. In our model, the algorithm has oracle access to I', which means that
the algorithm reads the signature of the input and can later submit queries of
the form (z,y) to the oracle, where & and y are members of the input sets. Then,
the oracle informs the algorithm of the relative values of = and y, that is, the
algorithm is told whether x is less than, equal to, or greater than y according to
I'. In such situations we say = and y are touched by the algorithm. We show the
interaction between the algorithm A and the oracle O on the input (T,I") by
(A, 0(I'NY(T) = (q1,715- - qr, Tk, R) where ¢; is the ith query of the algorithm,
r; is the response of O to the ith query, and R = I'(Root(T')) is the result. We
expect the algorithm to specify ranges of input sets that appear in the result,
rather than to write all elements of the result. This allows us to generate the
output in sub-linear time if possible. More precisely, we define the output format
below. We use S[i] to denote the ith element of a sequence S.

Worst Case Optimal Union-Intersection Expression Evaluation 181

Definition 1. Consider an input I = (T,I") and a set S. A cross reference
representation of S is a sequence of triples (vy,b1,b}), ..., (vn, by, b)) where v;
is a leaf of T and 1 < b; < b; < size(v;), for every 1 < i < n, I'(vj)[bi] <

I'(vjy1)[bj41], for every 1 < j<mn, and S = U}, U;)'i:bi {T(vy)[J]}

A leaf v of an expression tree T is a shallow leaf if v is a child of Root(T") and
m(Root(T)) = U.

We define (Slvish)7 when s < Z?:l s; as the number of ways to select sets X7,
..., X, of sizes s1, ..., sy, respectively, such that X;’s are subsets of a given set
X of size s and U}_; X; = X. Note that this definitions matches definition of the
well known notation (, °) when 331, s; = s. Also for a union-intersection
tree, we define functions ¥* and 1) over the set of nodes of T" as follows: for a
leaf v we define ¥ (v) = size(v). If v is an internal node and uq, ..., ug is the list
of children of v, we define ¥)(v) = minf_, 1 (u;) when v is an intersection node,
and ¥(v) = Zle ¥(u;), otherwise. In fact ¢ (v) is the maximum potential size
of I'(v). Also, for every node v we define ¥*(v) = min ¢ (u), where the minimum
is taken over all ancestors u of v, including v itself. Note that the values of ¥
and 1* for all nodes of an expression tree T' can be evaluated in time O (|Vr|).

Observation 1. Suppose v is an internal node with k children uy, ..., ug.
Zle ¥*(u;) > ¥*(u) if u is a union node and Zle P*(u;) > 2¢9* (u), otherwise.

We present an algorithm such that for every signature 7', the maximum
running time of the algorithm, over all possible inputs with the signature T, is
minimum.

3 Lower Bounds

In this section, fixing an arbitrary union-intersection tree 7', we present a lower
bound on the maximum number of comparisons performed by any algorithm
when it is run on inputs with the signature T'. For this purpose, we design an
adversary B that for any given algorithm .4 and any signature 7', as the algorithm
A proceeds and compares members of the input, B fixes relative values of more
members and responds to A. In this way, an assignment function I is constructed
gradually and we make sure that there is at least one I" such that the responses
of B to A are consistent with I'. For two members z and y, if some certain
conditions (which will be defined later in this section) hold, we say = and y are
stmilar. We suppose that when a query (z,y) is submitted, in addition to relative
values of x and y, A is informed of whether x and y are similar or not. It is clear
that any lower bound for algorithms working in this new model is a lower bound
for algorithms working in the comparison model as well.

Considering a set O of size ¥*(Root(T)), B responds queries such that Or
becomes the result of the final input. We spread the elements of O down to
the nodes of T such that every vertex v is labeled by a subset of Or of size
¥*(v) in such a way that for every union (intersection) vertex v, the union (the
intersection) of labels of its children is the label of v. As a simple observation,

182 E. Chiniforooshan, A. Farzan, and M. Mirzazadeh

suppose that S is the set of leaves having a certain member s of O in their
“labels”. Then, if s appears in the set associated with every leaf in S, s will
appear in the result. Responses of B will be such that rather than appearing
in sets associated with all leaves in S, s will appear in the sets associated with
leaves in just a subset of S, yet still s will appear in the result of the input. This
subset will be determined based on the behavior of A.

Now we define the above labeling more formally. For convenience, rather
than using real numbers, we will use triples of integers for representing mem-
bers of our sets. Triples are compared to each other according to their lexico-
graphic order. We define the set Or as {(1,0,0),(2,0,0),...,(m,0,0)} where
m = ¢*(Root(T)). Given a triple z = (i, 4, k), we call 4, j, and k the first, the
second, and the third coordinates of x, respectively.

Definition 2. Given a signature T, A : Vi +— 29T is a proof labeling for T' if it
has the following properties: First, A(Root(T)) = Or. Second, for every vertex
v € Vp, |Aw)| = ¢*(v). Third, if v € Vi — leaves(T) and uq, ..., uy are children
of v, U A(u;) = A(v) if v is a union node; otherwise, A(u;) = A(v), for every
i,1<i<k.

B chooses a proof labeling A arbitrarily from all possible labellings. Then, B
divides the sequence of members of every leaf v of T into 1*(v) regions of sizes

Hff ((;’)) J or ﬁ;f ((;’)) —‘ . For a leaf v and integers 7 and a, if the ith biggest member

of A(v) is (a,0,0), then the ith region of v is called an a-region. For any a and
any a-region R, B sets the first coordinates of all members of R to a at the
beginning. Thus, given a member = of an a-region and a member y of a b-region
such that a # b, whenever a query (x,y) is submitted, B can answer the query
without knowledge on the second and the third coordinates.

For any region R, the second coordinate of exactly one element of R, which
is called the key member of R, will be zero. The strategy is to determine the
second coordinates of triples of a region R in such a way that A4 does not touch
the key member of R before touching log |[R| members of R where |R| denotes
the length of R. The second coordinates of members of a region are all distinct
and the third coordinates of non-key members are zero. Moreover, the third
coordinates of the key members are determined in such a way that A needs to
touch all key members (actually we will prove a stronger fact).

Next, we explain the strategy of determining second coordinates of the triples.
For every region R we consider a variable S storing a subsequence in R, initially
R. At any point, the following condition will hold: The second coordinate of
every member in R \ S is already fixed, the second coordinate of every member
of R placed before members of S is at most —|S|, and the second coordinate
of every member of R placed after members of S is at least |S|. Now whenever
a member s of S is touched, if s is the only member of S, B sets its second
coordinate to zero. Otherwise, depending on whether s is in the first half or in
the second half of S, B considers members of S placed after or before S, fixes
second coordinates of these members as explained in Figure 1, and deletes them
from S. Then, by touching each member of R the length of § is divided by at

Worst Case Optimal Union-Intersection Expression Evaluation 183

most two. Since the value of 0 is not assigned to the second coordinate of any
member unless |S| = 1, log|R| members of R have already been touched at the
time the key member of R is being touched. Whenever a member is touched
in which the second coordinate is not determined before, before attempting to
answer the query B, determines the second coordinate according to the method
we described here. Therefore, we have the following theorem.

Theorem 1. If all key members of L C leaves(T) are touched by A in (A, B)(T),

A has submitted at least Y ., ¥*(v) - lgflie((;})) + 17 queries.

From now on, when we talk about the strategy of B for responding a given
query (z,y), we assume second coordinates of z and y are determined.

if |S| =1 then
— set the second coordinate of s equal to zero;
— set S equal to the empty sequence;
else
suppose s is the ith member of R;
if i <|S| —i+1 then
— assign values —(|S| — 1), —(|S| — 2), ..., —(|S] — %) to the second
coordinates of the first ¢ members of S;

— Remove the first ¢ members of S from it;
else

— agsign values ¢ — 1, ¢, ..., |S| — 1 to the second coordinates of the last
|S| — 7+ 1 members of S;
— Remove the last |S| — ¢ + 1 members of S from it;

Fig.1. How to determine the second coordinates of members

Given a query (x,y) if and y are from two a-regions, for some a, and the
second coordinate of one of x or y is non-zero (that is at most one of = and y is
a key member), B has enough information to answer the query. We define two
members x and y to be similar if x and y are key members of two a-regions, for
some a. As noted before, A will be informed if x and y are similar. In Subsection
3.1 we show that B can respond to queries on similar members in such a way
that at the end for each member x, A knows which members are similar to x.

Theorem 2. For any signature T, and any deterministic comparison-based al-
gorithm A, if after an interaction (A, BY(T) = (q1,71,--+,qk, Tk, R), A knows
all sets of similar members, then k > %(Zl + logg l2) where Iy and ly are defined
below, L is the set of non-shallow leaves of T, and wu1,...,ux are children of v
in the expressions.

b= e, ¥ (v) 1g(25 4 1)
“(v)

B P
l? - Hvz‘n'(v)zu (w*(u1)’m,¢*(“k))

184 E. Chiniforooshan, A. Farzan, and M. Mirzazadeh

Proof. For any proof labeling A that B chooses, any key member of a non-
shallow leaf is similar to at least another member. Therefore, A has touched all
key members of non-shallow leaves of T in (A, B)(T'). Thus, by Theorem 1, we
have k > [;.

Also, for any member of the result R, A is aware of all similar members to
that member to that member. This means that .4 has enough information to
figure out what proof labeling B has chosen and thus A can be expressed as
a function of the sequence of responses of B, (r1,...,r). Hence, (r1,...,7%)
is different for different A’s. So, since r; can have only six different values and
the number of possible proof labellings is lo, we have k > logg lo. Putting this
upper bound for k together with the previous upper bound we conclude that
k> %(ll + logg I2). m|

3.1 The Game

In this part we fix an a and focus on answering queries on key members of a-
regions (which are similar). Let’s focus on the subtree of T' consisting of leaves
of T that contain a-regions and their ancestors, and ignore the rest of T. We
have a two player game here between A and B, in which A submits queries
between key members of a-regions until it knows weather a key member of an
a-region appears in the result; B aims to prevent the game from finishing before
A has enough information for calculating the set of members similar to a key
member of an a-regions. The configuration of the game at some specific point
is a tuple (7,G) where 7 is a union-intersection tree in which the root is not a
union node or has only one child and G is a graph defined on leaves of 7 storing
the history of queries submitted. Each leaf is representing only one member
(the key member of its a-region, in our application) and thus we can view a
query as a pair of leaves of 7. Moreover, each edge of G is labeled with one
of <, =, or >, demonstrating the respond to that query. A is supposed to not
submit a query twice during the game. v € leaves(7T) is G-identical to u €
leaves(7T) if there is a path from v to w in G such that labels of all edges in the
path are =.

The game finishes when the root in (7,G) has a witness where a witness of
a node v is a subset of nodes recursively defined as follows. The only witness of
aleaf v is {v}. A set S is a witness of a union node v if v € S and S\ {v} is a
witness of a child of v. For an intersection node v, S is a witness of v if v € §
and every child u of v has a witness W,, such that S = {v} UJ, W, and every
two leaves in S are G-identical. When a game finishes, B wins if G is connected
and the root has a witness; otherwise A is the winner. We prove that B has a
winning strategy.

Moreover, let component(u) be the set of all leaves of 7 that are connected
to u including w itself. By “(7,G) can be reduced to (7’,G’)” we mean that if
B has a wining strategy in (7’,G’), then B has a winning strategy in (7,3).
In addition, we say that a vertex of T is unfinished if either it is an internal
node or if it is the only version of its connected component in G. We define four
operations which can be used to reduce a game instance to a smaller one.

Worst Case Optimal Union-Intersection Expression Evaluation 185

Throwing away: A leaf u € leaves(T) can be thrown away if u is a child of
a union node and is unfinished. By this action, we remove u from 7T and G.
The resulted game is denoted by throw, (T, G).

Joining: A leaf u € leaves(T') can be joined to its sibling v € leaves(T) if u is
a child of an intersection node and v is G-identical to uw. By this action, we
remove v from T and G, and we denote the resulted game by join,,_,, (T, G).

Contracting: An internal node © € Vp — (leaves(T) U {Root(T")}) that is a
child of p € Vi can be contracted if it has only one child, say g € V. By this
action, we remove x from T and make q a child of p. Otherwise, we remove
both z and ¢ from T and make the children of ¢ children of p. We denote
the resulted game by contract, (T, G).

Dispersing: An internal node = € Vp — (leaves(T') U {Root(T')}) can be dis-
persed if all its children wy,...,u; are leaves, |component(u;)| > 1 for 1 <
it < k, and there is at least one child u; of = that is not G-identical to any
other leaf. Moreover, no vertex can be contracted or joined to another ver-
tex. By this action we remove u1,...,u; from T and G, and also, we remove
z from T'. The resulted game is denoted by disperse, (T, G).

The proof of the next lemma is omitted due to the lack of space.

Lemma 1. Consider a game (7,G) in which G has an edge between every two
leaves that are G-identical to each other. Then, if one of the above four operations
can be applied on (T,G) to obtain (T',G"), (T,G) can be reduced to (T',G").

Theorem 3. Suppose that (T, G) is a game. Then, if the following three condi-
tions hold B has a winning strategy.

1. Labels of all edges of G are =.
2. If x is an internal node of T with label U, then all its children are unfinished.
3. If x is an internal node of T with label N, then at least one of its children is

unfinished.

Proof. Suppose we have a game (7,G) such that the number of vertices of 7
plus the number of connected components of G is n. We can assume that 7
does not have any internal node that can be contracted and also no leaf can
be joined to another leaf in 7. Otherwise, we can reduce (7,G) to a smaller
game by either contraction or joining and because the smaller game will satisfy
all three properties, B has a winning strategy. In other words, 7 does not have
any internal node that has only one child. Also, no two children of an internal
node can be in the same connected component of G. Furthermore, without loss
of generality we can assume that G has an edge between every two leaves that
are G-identical to each other; otherwise, (7,G) can be reduced to a game that
has this property by adding more edges. Because of properties 2 and 3, (7,G)
has no witness, and thus, 4 has not won yet. Therefore, A must submit a query
(u,v) where u,v € leaves(T).

The strategy that B should follow to answer A is summarized in Table 1. In
the table, if a leaf u is labeled with “F”, “N”, or “L” it means that wu is a finished

186 E. Chiniforooshan, A. Farzan, and M. Mirzazadeh

Table 1. The strategy of B for answering

F(u) F(v)|u v|Response Justification
U x |[Nx| <> |[(7,6) is reduced to the smaller game throw,(7,G).
N n |FF = The number of components of G is reduced.
N N INF = The number of components of G is reduced.
N N INN = The number of components of G is reduced.
N n |Lx <> [(7,9)isreduced to the smaller game dispersep(,(7,9)-

leaf, an unfinished leaf that has another unfinished sibling, or an unfinished leaf
that does not have any other unfinished sibling, respectively. Note that those
cases which can be obtained from one of the cases in Table 3.1 by switching
and v are omitted due to the symmetry. ad

Having proved Theorem 3, we know the adversary can respond to queries on
key members of a-regions such that the algorithm knows all members similar to
the key member of each a-region, for every 1 < a < m, and also that (a,0,0) is
in the result of the root. Thus, Theorem 2 yields the next theorem.

Theorem 4. For any signature T' and any deterministic comparison-based algo-
rithm A, there is an input with the signature G such that A submits £2(11 +1gls)
queries where Iy and ly are defined as in Theorem 2.

4 The Worst-Case Optimal Algorithm

In this section, we present our algorithm that matches the lower bound in Section
3. First we study two special cases separately; these special problems come in
handy in solving the general problem.

The first special case has the form X; U X5, U...U Xj. This problem in case
when k = 2 has been studied before [5]; to compute AU B, tight lower and upper

bounds of © (lg (‘A“T‘Bl» exist. So suppose k > 2. Defining s; = | X;|, for 1 <i <

k and s = Zle si, w. 1. 0. g., we suppose s = max{si, S2,..., St }. The way we
compute this union of k sets is as follows: we temporarily ignore the first set (i.e.
X1) and compute the union of Uf:z X, in time O((s —s1) lg(k —1)) by using the
well-known k-way merging algorithm [10]. Then, we take the union of X; with
the result of the merge. The union can be found in time O (lg ()), as described

S
S1
by Hwang and Lin [5], but the result is in the cross reference format. It can be

proved that (s — s1)1lg(k —1) € O (Zf:2 Ig (SS.)) which is in O (lg (S1 ? Sk))
according to the following lemma (the proof is omitted).

Lemma 2. Ifs <> s, thenlg(, °_) >3>" g (:.) 0

81y---,8n
Lemma 3. A cross reference representation of the union of sets X1, Xa, ..., Xg
can be computed in time O <lg(y)) where s; = | X;| and s = Zle s;. O

81,-.+,5k

Worst Case Optimal Union-Intersection Expression Evaluation 187

The complete proof of Lemma 3 is omitted. In the end, we expand the ranges
of the output to have the union in the sorted list format again. The time this
takes is proportional to the size of the output, which is at most O(E:f:1 | X%|)-
This yields the following theorem:

Theorem 5. A sorted array representation of the union of sets X1, Xo,..., X,
can be computed in time O (s +1g (Sl 2 Sk)) where s; = | X;| and s = Zle | X5].
O

The second special case has the form YN(X;UXoU...UX}), given that |Y| >

| X;| for each 4. This problem for the case when k = 1 (i.e. computing Y N X) has
been studied before [5] and tight lower and upper bounds of © (|X |1g %)
already exist. To solve the problem for k& > 1, we first create a boolean array
B of size |Y|, so that each element y in Y has an associated element in the
array (B[y]). We initialize all the elements in it to false; we, then, compute

the intersection of each X; with Y separately: Y; = Y N X;. According to the

result just mentioned, this takes O (Zf;l |X:|1g %) time. When Y;’s are
all computed, we consider them one by one and for each Y3, for all y € Y;, we set
Bly] = true. Then we scan array B and return, as output, each element b iff B[b]
is true. It is clear that scanning through all Y;’s will take Zle |Y N X;| which
is less than the time consumed for all Y;’s. Also creating B in the beginning and

scanning it in the end takes time O(]Y]). Therefore:

Theorem 6. The result set of Y N(X;UXoU. .. UXy), given that |Y| > |X;]|, for

every 1 <1i <k, can be computed in O (|Y\ + Zle | Xi|lg %) time. O

We now turn to the general case and describe the algorithm. We generalize
the problem a little and define two types of problems: in the first type, we are
interested in computing I'(v) N U, for a given “universal set” U. In the second
type, we are solely asked to compute I'(v). The procedures COMPUTE (v, U) and
CoMPUTE(v) (Figure 2) are designed to solve these two types of problems. The
intuition behind the universal set U in COMPUTE (v, U) is the following: consider
an intersection node v with its children ug,...,u;. Suppose we somehow have
processed the subtree rooted at u; for some 7, and have obtained I'(u;). It makes
perfect sense to pass I'(u;) as a universal set to subtrees rooted at children of
v other than u; so that in reporting back elements, they confine themselves to
the universal set and ignore those that do not appear in the universal set. As
for COMPUTE(v) it turns out that, for some nodes v, the size of the possible
result of a node is less than any universal set we can possibly provide with in
advance. In these cases we do not pass any universal set as it will not save any
computation time.

Next, we investigate the correctness and the running time of the algorithm.
The following theorem can be proved easily by considering different calls to
procedures COMPUTE(v, U) and COMPUTE(v) in Algorithms 1 and 2.

Theorem 7. At each invocation of the procedure COMPUTE(v, U) in Algorithm
1, the precondition |U| < *(v) holds and the procedure computes I'(v) N U.

188 E. Chiniforooshan, A. Farzan, and M. Mirzazadeh

Procedure CoMPUTE(v, U); Procedure COMPUTE(v);
1 // precondition: [U| < 4" (v) 1 // precondition: ¢ (v) = ¢*(v)
begin begin
switch type of node v do switch type of node v do
2 case Leaf: return I'(v)NU ; 9 case Leaf: return I'(v) ;
case Union: case Union:
fore:aCh u; child of v do foreach wu; child of v do
if ¢ (u;) < |U| then
- 3 X; < Compute(u;)
3 X; « Compute(u;) "
else 4 return X; U X, U U Xy ;
X; + Compute(us,U) case Intersection:
return UN (X; UXo U U Xy) Jj « minindex(y(ui)) ;
case Intersection: 5 X Compw'fe(u]-) ;
X« U; for(?ac.h ui child of v do
foreach u; child of v do if ¢ # j then
6 X « Compute(U;, X) 6 X « Compute(U;, X)
return X return X
end end
Algorithm 1 Computing the inter- Algorithm 2 Computing the result
section of U with the result set of the set of the subtree rooted at v (i.e.
subtree rooted at v (i.e. I'(v) NU). I'(v)).

Fig. 2. The general algorithm

Also, at each invocation of that procedure COMPUTE(v) in Algorithm 2, the
precondition ¥(v) = ¥*(v) holds and the procedure computes I'(v). O

Next, we analyze the running times of the procedures by measuring the time
we spend at each node v of the tree, not taking into account the time we spend
in recursive calls. The total running time of the algorithm will be, of course,
the sum of such processing times in nodes of the tree. It is easy to see that no
computation is involved in intersection nodes. Here, we analyze two other types
of nodes (i.e. leaf and union) separately:

Processing Time in Union Nodes: Line 5 is the only one in Algorithm 1 on
which we spend some computing time. Also, in Algorithm 2, only line 4 involved
computation. These two are exactly the special cases we studied in the beginning
of this section. We can prove the following lemma.

Lemma 4. Processing time in a wunion mnode v takes time of

0] (Zle *(u;) + g (d}*(ul?i(_”i*(w))) where uy, . ..,us are children of v. O

We make a slight change in the algorithm to save time: in the case when the
root of the whole tree is of type union, we use the algorithm in Lemma 3 to
compute the union in the root node as opposed to the algorithm in Theorem 5.
That is, we do not expand the ranges in the result and we keep it in the cross
reference format. Then, in the case when v is the root and is a union node, we
can get a better result than Lemma 4.

Worst Case Optimal Union-Intersection Expression Evaluation 189

Lemma 5. If the root is a union node, processing time in the root takes time of

(0] (lg (W(uqf;(m:ﬁ(w))) where uy,...,u, are children of the root. |

Here we claim that the term Zle ¥*(u;) in Lemma 4 is negligible when it is
summed over all union nodes. In the sum, ©* of all the children of union nodes
are added together, which means the sum is over all the intersection nodes and
leaves. Now we argue that if S is the set of all intersection nodes of T'; we have
Y owes (V) <30 e ¥ (v) where L is the set of non-shallow leaves. This can be
proved by summing up together the inequalities of Observation 1 for all nodes
of the tree.

Theorem 8. Processing in union nodes and leaves takes time of
O+, @ +> g <¢*(ul),w*dzu(zg?---,w*(uk))) where L is the set of
nodes v

non-shallow leaves and t is the time we spend in non-shallow leaves. a

Processing Time in Leaf Nodes: If v is a leaf, in line 2 in Algorithm 1,
we compute the intersection of I'(v) and U. As a precondition, we know that
|U| < 9*(v) and also by definition that ¥*(v) < ¥(v) = size(v), so |U| <
size(v). In the first special case, we showed how to compute the intersection in
time O(|U|1g %) Since |U| < 9*(v) < size(v), the processing time is in
0 (" (v)1g LLepele)).

In line 2 of Algorithm 2, we simply return I'(v) which, by precondition, has
size 1*(v). In case v is a shallow leaf by the argument mentioned in Theorem 8,
we use a slightly different method to take the union at the root, and therefore we
do not spend any time in the shallow leaves (we do spend, however, some time
in the root for computing the union, which has been accounted for in Theorem
8.) Thus the following theorem holds:

Theorem 9. In Algorithms 1 and 2, the time spent in each non-shallow leaf is

@) (1/1*(1)) lg(jie((s)) + 1)) and we spend no time in shallow leaves. O

We conclude from Theorems 4, 9, and 8 that our algorithm is optimum.

5 Conclusion and Extensions

We studied the problem of evaluating an expression of sorted sets with union
and intersection operands. Complexity of algorithms were measured in terms of
the sizes of the input sets. We proved lower bounds on the worst case complexity
of algorithms that can solve this problem, and later presented an algorithm that
asymptotically matches the lower bound.

An immediate extension to this work is changing its format of input/output
to a more appropriate format. Our assumption for the format of the input is
lists of elements of sets, and the format of the output is a list of cross-references

190 E. Chiniforooshan, A. Farzan, and M. Mirzazadeh

which specify the ranges of the elements. However, with a little effort, the format
of both the input and the output can be changed to balanced search trees. More
specifically, we choose B-trees. Adapting the lower bounds is straightforward;
Theorem 4 will still hold without any modification. As for the upper bound, it
is sufficient to show that we can handle the two special cases in the beginning of
Section 4 with the same time complexity, since the general algorithm only uses
these two for computation. These two special cases can be dealt with in the same
way Demaine et al. [4] handled B-tree representations of their input sets. It is
easy to see that the extra work for assembling and disassembling the B-trees in
their scheme does not affect our bounds in Theorems 5 and 6.

As a future work, one can consider expressions that can have operands of
type complement besides those of type union and intersection.

Acknowledgments

The authors would like to thank Alex Lopex-Ortiz, Peyman Afshani, Reza Dorri,
Narges Simjour, and anonymous referees for their useful comments.

References

1. S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine.
In Proceedings of the seventh international conference on World Wide Web 7, pages
107-117. Elsevier Science Publishers B. V., 1998.

2. M.R. Brown and R.E. Tarjan. A fast merging algorithm. J. ACM, 26(2):211-226,
1979.

3. M.R. Brown and R.E. Tarjan. Design and analysis of a data structure for repre-
senting sorted lists. STAM Journal of Computing, 9(3):594-614, Aug. 1980.

4. E.D. Demaine, A. Lopez-Ortiz, and J.I. Munro. Adaptive set intersections, unions,
and differences. In Proc. of Eleventh ACM-SIAM Symposium on Discrete Algo-
rithms, SODA, pages 743-752, 2000.

5. F.K. Hwang and S. Lin. A simple algorithm for merging two disjoint linearly
ordered sets. SIAM Journal on Computing, 1(1):31-39, 1972.

6. G. Lee, M. Park, and H. Won. Using syntactic information in handling natural
language quries for extended boolean retrieval model. In Proceedings of the jth
international workshop on information retrieval with Asian languages, 1999.

7. Mauldin, M.I.Lycos Inc., and PA Pittsburgh. Lycos: design choices in an internet
search service. IEEE Expert, 12(1):8-11, 1997.

8. M. Mirzazadeh. Adaptive comparison-based algorithms for evaluating set queries.
Master’s thesis, School of Computer Science, University of Waterloo, 2004.

9. W. Pugh. A skip list cookbook. Technical Report CS-TR-2286.1, University of
Maryland, 1990.

10. Ronald L. Rivest and Charles E. Leiserson. Introduction to Algorithms. McGraw-
Hill, Inc., 1990.

11. I.H. Witten, T.C. Bell, and A. Moffat. Managing Gigabytes: Compressing and
Indexing Documents and Images. John Wiley & Sons, Inc., 1994.

Measure and Conquer:
Domination — A Case Study

Fedor V. Fomin'*, Fabrizio Grandoni?**, and Dieter Kratsch®

! Department of Informatics,
University of Bergen, N-5020 Bergen, Norway
fomin@ii.uib.no
2 Dipartimento di Informatica, Universita di Roma “La Sapienza”,
Via Salaria 113, 00198 Roma, Italy
grandoni@di.uniromal.it
3 LITA, Université de Metz, 57045 Metz Cedex 01, France
kratsch@sciences.univ-metz.fr

Abstract. Davis-Putnam-style exponential-time backtracking algorithms
are the most common algorithms used for finding exact solutions of NP-
hard problems. The analysis of such recursive algorithms is based on the
bounded search tree technique: a measure of the size of the subproblems
is defined; this measure is used to lower bound the progress made by the
algorithm at each branching step.

For the last 30 years the research on exact algorithms has been mainly
focused on the design of more and more sophisticated algorithms. How-
ever, measures used in the analysis of backtracking algorithms are usu-
ally very simple. In this paper we stress that a more careful choice of the
measure can lead to significantly better worst case time analysis.

As an example, we consider the minimum dominating set prob-
lem. The currently fastest algorithm for this problem has running time
0O(2°%%°™) on n-nodes graphs. By measuring the progress of the (same)
algorithm in a different way, we refine the time bound to O(2°-°9%™). A
good choice of the measure can provide such a (surprisingly big) improve-
ment; this suggests that the running time of many other exponential-time
recursive algorithms is largely overestimated because of a “bad” choice
of the measure.

Keywords: Algorithms and data structures, exponential-time exact
algorithm, NP-hard problem, dominating set.

1 Introduction

The interest in exact and fast exponential-time algorithms solving hard problems
dates back to the sixties and seventies [13, 25]. The last decade has led to much re-

* Supported by Norges forskningsrad project 160778/V30.
** Supported by Web-Minds project of the Italian Ministry of University and Research,
under the FIRB program.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 191-203, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

192 F.V. Fomin, F. Grandoni, and D. Kratsch

search in fast exponential-time algorithms. Examples of recently developed expo-
nential algorithms are algorithms for Maximum Independent Set [15, 23], (Max-
imum) Satisfiability [4,14,17,19,24,26], Coloring [2,3,6], Treewidth [8], and
many others (see the recent survey written by Woeginger [27] for an overview).

Most of the currently fastest exact algorithms for NP-hard problems are re-
cursive algorithms. In order to bound the total number of subproblems generated
by such algorithms, the bounded search tree technique is often used: one defines
a suitable measure of the size of the subproblems. This measure is used to lower
bound the “progress” made by the algorithm at each branching step.

Though the algorithms considered may be rather complicated, the measures
used in their analysis are usually very simple. In this paper we remark that a
more careful choice of the measure can lead to much tighter time bounds.

In order to show that, we consider one of the best known NP-hard problems:
the minimum dominating set problem. The currently fastest exact algorithm for
this problem is a recursive algorithm of running time O*(2°-%59") on n-nodes
graphs [10, 11]1. Here we present a refined analysis, based on a different measure
of the size of the subproblems generated and show that the same algorithm has
indeed running time O*(2°-5987). This surprisingly big improvement suggests
the possibility that the running times of many other exponential-time recursive
algorithms (including possibly the one presented here) are largely overestimated
because of a “bad” choice of the measure in their analysis. Despite the impor-
tance of the problem, only few works address this issue [2, 7].

Since the current tools do not seem to be strong enough to support an analy-
sis of exponential-time recursive algorithms providing tight running time upper
bounds, it is natural to ask for lower bounds (notice that we are concerned with
lower bounds on the complexity of a particular algorithm and not with lower
bounds on the complexity of an algorithmic problem). A lower bound may give
an idea of how far the analysis is from being tight. There are several results
known on lower exponential bounds for different branching algorithms for SAT
(see e.g. [1,18]) but we are not aware of lower bounds for existing exponential-
time recursive graph algorithms. One of the reasons to this could be that for
most of the graph problems the construction of good lower bounds is often dif-
ficult even for very simple algorithms. In this paper we prove a £2(2°-3337) lower
bound on the time complexity of our minimum dominating set algorithm. The
large gap between the upper bound and the lower bound suggests the possibility
that the analysis of the algorithm can be further refined (possibly by measuring
the size of the subproblems in a smarter way).

Previous results on dominating set. The minimum dominating set problem
(MDS) is a classic NP-hard graph optimization problem which fits into the broader
class of domination and covering problems on which hundreds of papers have
been written; see e.g. the survey [12] by Haynes et al. The dominating set problem

! Throughout this paper we use a modified big-Oh notation that suppresses all poly-
nomially bounded factors. For functions f and g we write f(n) = O*(g(n)) if
f(n) = O(g(n)poly(n)), where poly(n) is a polynomial.

Measure and Conquer: Domination — A Case Study 193

is also one of the basic problems in parameterized complexity [5]; it is W[2]-
complete and thus it is unlikely that the problem is fixed parameter tractable.
What are the best time complexities for the dominating set problem in n-node
graphs G = (V, E) that we can possibly hope for? It has been observed in [9)
that (unless some very unexpected things happen in computational complexity
theory) there is no sub-exponential time (i.e. of running time ¢°™ for some
constant ¢) algorithm solving dominating set problem. There is the trivial O*(2™)
algorithm that simply searches through all the 2™ subsets of V. Hence, we can
only hope for time complexities of the form O*(2¢"), with some small value ¢ < 1.
Although MDS is a natural and very interesting problem concerning the design
and analysis of exponential-time algorithms, no exact algorithm for MDS faster
than the trivial one had been known until very recently. In 2004 three different
sets of authors seemingly independently published algorithms breaking the trivial
“2"-barrier”. The algorithm of Fomin et al. [9] uses a deep graph-theoretic result
due to Reed [21], providing an upper bound on the domination number of graphs
of minimum degree three. The most time consuming part of their algorithm is an
enumeration of all subsets of nodes of cardinality at most 3n/8, thus the overall
running time is O*(2%-95°"). The algorithm of Randerath and Schiermeyer [20]
uses a very nice and cute idea (including matching techniques) to restrict the
search space. The most time consuming part of their algorithm enumerates all
subsets of nodes of cardinality at most n/3, thus the overall running time is
O*(20-9197) Finally, the fastest algorithm known prior to our work is due to
Grandoni [10, 11], who described a O*(2°-8°7) algorithm for MDS.

Our Results. We show that MDS can be solved in O*(2°:6107) time using poly-
nomial space. The running time of our algorithm can be reduced at the cost of
exponential space to O*(20-°8") which is a significant improvement of all known
results on MDS. To solve the problem we represent MDS as a set cover problem
which allows us to use a search tree based algorithm. This idea was first used
in [10,11]. To obtain running time O*(2%-19") we do not add more and more
sophisticated rules to existing algorithms which is a usual practice to improve on
the exponential base. Instead we give a simple and easy to implement algorithm
and observe how the careful choice of the measure changes the algorithm anal-
ysis dramatically. Our refined analysis leads to a multivariate recurrence. For a
general treatment of this type of recurrences we refer to Eppstein’s paper [7].
Since the analysis of our search tree based algorithms is so depended on the
choice of the measure, it is natural to ask for (exponential) lower bounds on the
running time of the algorithm. We prove that our algorithm requires £2(2°-3337)
steps.

2 Definitions and Basic Algorithm

Let G = (V, E) be an n-node undirected, simple graph without loops. The open
neighborhood of a node v is denoted by N(v) = {u € V : uv € E}, and the closed
neighborhood of v is denoted by N[v] = N(v) U {v}. A set A C E of edges of

194 F.V. Fomin, F. Grandoni, and D. Kratsch

G = (V,E) is an edge cover, if every node of G is incident to an edge of A; the
edge set A is a matching if no node of G is incident to two edges of A.

The minimum dominating set problem. Let G = (V, E) be a graph. A set
D C V is called a dominating set for G if every node of G is either in D, or
adjacent to some node in D. The domination number v(G) of a graph G is the
minimum cardinality of a dominating set of G. The Minimum Dominating Set
problem (MDS) asks to determine v(G).

The minimum set cover problem. In the Minimum Set Cover problem (MSC)
we are given a universe U of elements and a collection S of (non-empty) subsets
of . The aim is to determine the minimum cardinality of a subset S’ C S which
covers U, that is such that

Uses' S =U.

The frequency of u € U is the number of subsets S € S in which u is contained.
For the sake of simplicity, we always assume in this paper that S covers U:

U=US) = UsesS.

With this assumption, an instance of MSC is univocally specified by S.

We recall that, if all the subsets of S are of cardinality two, MSC can be solved
in polynomial time via the following standard reduction to maximum matching.
Consider the graph G which has a node u for each u € U, and an edge uv for
each subset S = {u,v} in S. Thus we have to compute a minimum edge cover of
G. To compute a minimum edge cover of G we compute a maximum matching
M in G. Then, for each unmatched node u, we add to M an arbitrary edge
incident to u (if no such edge exists, there is no set cover at all). The subsets
corresponding to M form a minimum set cover.

MDS can be naturally reduced to MSC by imposing 4 =V and S = {N[v]| v €
V'}. Note that N[v] is the set of nodes dominated by v, thus D is a dominating set
of G if and only if {N[v]| v € D} is a set cover of {N[v]| v € V'}. Thus every min-
imum set cover of {N[v]| v € V'} corresponds to a minimum dominating set of G.

At first view such a transformation from one NP-hard problem to another
seems to be completely useless: The only known exact algorithms for MSC are
brute force O*(2/51) and O*(2!) [9] dynamic programming algorithms. Both
algorithms result in an O*(2") algorithm for MDS and it seems that such an
approach is not interesting. Not at all! On second thought the transformation
from MDS to MSC becomes very helpful. It enables the use of a search tree based
algorithm to solve MSC, and thus also MDS.

Basic algorithm. We consider a simple recursive algorithm msc for solving MSC.
The algorithm is a slight modification of the algorithm from [11] and it makes
use of the following observation.

Lemma 1. For a given MSC instance S:

1. If there are two distinct sets S and R in S, S C R, then there is a minimum
set cover which does not contain S.

Measure and Conquer: Domination — A Case Study 195

int msc(S) {
if(|S| = 0) return 0;
if(3S,R € § : S C R) return msc(S\{S});
if(3u € U(S)3 a unique S € S : u € S) return 1+msc(del(S, S));
take S € S of maximum cardinality;
if(|.S| = 2) return poly-msc(S)
return min{msc(S\{S}), 1+msc(del(S, S))};

0O Ui WK -

Fig. 1. A recursive algorithm for minimum set cover

2. If there is an element u of U which belongs to a unique S € S, then S belongs
to every set cover.

Note that each subset of cardinality one satisfies exactly one of the properties
in Lemma 1.

A basic version of msc is described in Figure 1. If |S| = 0 (line 2), msc(S) = 0.
Otherwise (lines 3 and 4), the algorithm tries to reduce the size of the problem
without branching, by applying one of the Properties 1 and 2 of Lemma 1.
Specifically, if there are two sets S and R, S C R, we have msc(S) = msc(S\S).
If there is an element u which is contained in a unique set S, we have msc(S) =
1+ msc(del(S,S)), where del(S,S) = {Z|Z = R\S # 0, R € S} is the instance
of MSC which is obtained from S by removing the elements of S from the subsets
in S, and by eventually removing the empty sets obtained.

If none of the two properties above applies, the algorithm takes (line 5) a
set S € S of maximum cardinality. If |S| = 2 (line 6), the algorithm directly
solves the problem with the polynomial time algorithm poly-msc based on the
reduction to maximum matching. Otherwise (line 7), it branches on the two
subproblems S;y = del(S,S) (the case where S belongs to the minimum set
cover) and Soyr = S\ S (corresponding to the case S is not in the minimum set
cover). Thus

msc(S) = min{msc(S\{S}),1 + msc(del(S,S))}.

Notice that with simple modifications, the algorithm can also provide one mini-
mum set cover (besides its cardinality).

To emphasize the importance of the measure we sketch the analysis of the
algorithm with a simple measure (taken from [11]). Let us choose the following
measure k(S') of the size of a MSC instance &,

k(S") = |8+ U(S)]-

Let ¢(k) be the number of leaves in the search tree generated by the algorithm
to solve a problem of size k = k(S). If one of the conditions of lines 3 and 4
is satisfied, ¢(k) < £(k — 1). Let S be the set selected in line 5. If |S| = 2, the
algorithm directly solves the problem in polynomial time (¢(k) = 1). Otherwise
(IS] > 3), the algorithm branches on the two subproblems Soyr = S\{S}

196 F.V. Fomin, F. Grandoni, and D. Kratsch

and S;y = del(S,S). The size of Soyr is k — 1 (one set removed from S).
The size of S;y is at most k — 4 (one set removed from S and at least three
elements removed from U). This brings us to £(k) < ¢(k — 1) + £(k — 4). We
conclude that £(k) < o, where o = 1.3802... < 1.3803 is the (unique) positive
root of the polynomial (z* — 23 — 1). It turns out that the total number of
subproblems solved is within a polynomial factor from ¢(k). Moreover, solving
each subproblem takes polynomial time. Thus the complexity of the algorithm
is O*(U(k)) = O*(aF) = 0*(1.3803I5I1+1Ul) = O (20-465(ISI+IUl)),

In next section we will show how to refine the running time analysis to
O*(20-305(S1+1UD)) via a more careful choice of the measure k(S’) (without mod-
ifying the algorithm!).

3 Refined Analysis

In this section we show that algorithm msc has time complexity
O (20-305(IS |+ 1]}

Our result is based on the following observation. Removing a large set has a
different impact on the “progress” of the algorithm than removing a small one.
In fact, when we remove a large set, we decrease the frequency of many ele-
ments. Decreasing elements frequency pays of on long term, since the elements
of frequency one can be filtered out (without branching). A dual argument holds
for the elements. Removing an element of high frequency is somehow preferable
to removing an element of small frequency. In fact, when we remove an element
occurring in many sets, we decrease the cardinality of all such sets by one. This is
good on long term, since sets of cardinality one can be filtered out. Both phenom-
ena are not taken into account in the measure used in [10]. With that measure,
by removing one set (element), we decrease the size of the problem by one, no
matter which is the cardinality (frequency) of the set (element) considered.

This suggests the idea to give a different “weight” to sets of different car-
dinality and to elements of different frequency. In particular, let n; denote the
number of subsets S € S of cardinality ¢. Let moreover m; denote the number
of elements u € U of frequency j. We will use the following measure k = k(S) of

the size of S:
k(S) = sz n; + Zvj mj,
i>1 i>1

where the weights w;,v; € (0,1] will be fixed in the following. Note that k& <
|S| + [U]. The quantities

Aw, = Wi — Wi—1 %fz:23, and A, = v — Vi—1 ?fzzz?),
w2 ifi =2, Vg ifi =2,

turn out to be useful in the analysis. Intuitively, Aw; (Aw;) is the reduction of
the size of the problem corresponding to the reduction of the cardinality of a set
(of the frequency of an element) from i to i — 1. Note that this holds also in the

Measure and Conquer: Domination — A Case Study 197

case ¢ = 2. In fact, in that case the size of the problem first increases by 1 — wo
(1 —vg), but the new set of cardinality one (the new element of frequency one)
introduced is removed before the next branching, with a reduction of the size by
one. Thus one has an overall reduction by 1 — (1 —ws) = wy (1 — (1 —v2) = va).

Theorem 1. Algorithm msc solves MSC in time O*(20-305(UI+ISD),

Proof. The correctness of the algorithm is trivial. In order to simplify the
running time analysis, we will make the following assumptions:

e wy =v; =1 and w; =v; =1 for i > 6;
e 0 < Aw; < Aw;_q for i > 2.

Note that this implies w; > w;_; for every ¢ > 3 (excluding sets of cardinality
one, larger sets have larger weights). Moreover, Aw; = Av; =0 for i > 7.

Let Py (k) be the number of subproblems of size h, 0 < h < k, solved by
msc to solve a problem of size k. Clearly, Py(k) = 1. Consider the case h < k
(which implies |S| # 0). If one of the condition of lines 3 and 4 holds, one set S
is removed from S. Thus the reduction of the size of the problem is at least wo
(corresponding to the case |S| = 2) and Py (k) < Pp(k — ws). Otherwise, let S
be the subset selected in line 5. If |S| = 2, no subproblem is generated (P}, (k) =
0). Otherwise (]S| > 3), msc generates two subproblems Syy = del(S,S) and
Sour = S\S.

Consider the subproblem Soyr. The size of Soyr decreases by w)g| because
of the removal of S. Let r; be the number of elements of S of frequency i. Note
that there cannot be elements of frequency 1. Consider an element u € S of
frequency i > 2. When we remove S, the frequency of u decreases by one. As
a consequence, the size of the subproblem decreases by Aw;. Thus the overall
reduction of the size of Spyr due to the reduction of the frequencies is at least

6
Z’I“iA’Ui = ZriAvi~
i=2

i>2

Suppose that there is an element v € S of frequency 2. Let R # .S be the other
set containing u. When we remove S, we have to include R in the set cover.
Thus we reduce the size of the problem by at least ws (corresponding to the case
|R| =2). Also R\ S is not empty (otherwise condition of line 3 of the algorithm
is met) and thus all elements of R\ S are removed when we include R in the set
cover. This reduces the size by at least vy (corresponding to the case that the
frequency of z is 2). Therefore the overall reduction of the size of Spoyr due to
the removal of the sets R is at least ro wo + §(r3) v2, where d(r2) = 0 for ro = 0,
and d(re) = 1 otherwise.

Consider now the subproblem Sy . The size of Sy decreases by w|g| because
of the removal of S. Consider an element u € S of frequency ¢ (i > 2). The size
of S;y further decreases by v; because of the removal of w. Thus the overall
reduction due to the removal of the elements u of S is

6
E Tivi:E iV +T>7,
i=2

i>2

198 F.V. Fomin, F. Grandoni, and D. Kratsch

where r>; is the number of elements of S of frequency at least i. Let R be
a set sharing an element u with S. Note that |R| < |S]. By removing u, the
cardinality of R is reduced by one. This implies a reduction of the size of S;n
by Awr) > Awg|. Thus the overall reduction of S;y due to the reduction of
the cardinalities of the sets R is at least:

Aw‘s‘ Z(’L— 1)7“1' > Aw‘5| (Z(l— I)Ti+6-7“>7> .

i>2 i=2

Note that this quantity is 0 for |S| > 7. Putting all together, for all the possible
values of |S| > 3 and of the r; such that

6
Z’I“i +r>7 = |S‘,
=2

we have the following set of recursions
Py (k) < Po(k — Akour) + Pu(k — Akrn),
where

o Akoyr = wig| + 2?22 r; Av; + 1o we + §(1r3) v,
o Akin £ w)s| + Z?:Q iU+ T>7 +Aw|5| (Z?:Q(Z — 1) r; +6 - 7’27) .

Since Awg; = 0 for [S| > 7, we have that each recurrence with S| > 8 is
“dominated” by some recurrence with |S| = 7. For this reason, we restrict our
attention only to the cases 3 < |S| < 7. Thus we consider a large but finite
number of recurrences. For every fixed 8-tuple (ws, w3, wy, ws, va, V3, Vg, U5) the
number P, (k) is upper bounded by a*~" where « is the largest number from
the set of real roots of the set of equations

corresponding to different combinations of values |S| and r;. Thus the estimation
of Py (k) boils up to choosing the weights minimizing «. This optimization prob-
lem is interesting in its own and we refer to Eppstein’s work [7] on quasi-convex
programming for general treatment of such problems.

We numerically obtained the following values of the weights:

0.3774 ifi =2, 0.3996 if i =2,
0.7548 if i = 3, 0.7677 if i =3,
w; = _ and v; =)
0.9095 if i =4, 0.9300 if i =4,
0.9764 ifi =25, 0.9856 if i =5,

which yields o < 1.2352... < 1.2353. In Table 1 the values of |S| and r; of the
eight worst case recurrences are listed.

Measure and Conquer: Domination — A Case Study 199

Table 1. The eight worst case recurrences

|S| (7"2, T3,T4,7T5,7T6, 7”27)
6 (0,0,0,0,0,6)
5 (0,0,0,0,4,1)
5 (0,0,0,0,5,0)
4 (0,0,0,0,4,0)
4 (0,0,0,4,0,0)
3 (0,0,3,0,0,0)
3 (0,3,0,0,0,0)
3 (3,0,0,0,0,0)

Let K denote the set of the possible sizes of the subproblems solved. Note
that | K| is polynomially bounded. The total number P(k) of subproblems solved
satisfies:

P(k) <Y Pu(k) < Yo" " < |K|a".

heK heK
The cost of solving a problem of size h < k, excluding the cost of solving the

corresponding subproblems (if any), is a polynomial poly(k) of k. Thus the time
complexity of the algorithm is

O*(poly(k)|K|ak) — O*(1.2353\u|+\5|) — O*(20.305(\U\+\S|))_ O

As already observed, MDS can be reduced to MSC by imposing / =V and S =
{N[v]] v € V}. The size of the MSC instance obtained is at most 2n. By simply
combining this reduction with algorithm msc one obtains:

Corollary 1. There is a O*(20-30°2n)) = ©0*(29-619n) glgorithm for MDS.

3.1 An Exponential Space Algorithm

The time complexity of msc can be reduced at the cost of an exponential space
complexity via the memorization technique by Robson [22]. The general idea is
the following: The algorithm keeps the solutions of all the subproblems solved.
If the same subproblem turns up more than once, the algorithm is not to run
a second time, but the already computed result is looked up. Note that the
corresponding data structure can be implemented in such a way that the query
time is logarithmic in the number of solutions stored [22].

Theorem 2. Algorithm msc, modified as above, solves MSC in O*(20-299(ISI+1UD))
time.

Corollary 2. There is an algorithm which solves MDS in time O*(20-299(2n)) —
O* (20‘59871)‘

Due to space restrictions, the proof of Theorem 2 is omitted here.

200 F.V. Fomin, F. Grandoni, and D. Kratsch

4 An Exponential Lower Bound

By carefully measuring the size of the subproblems, we obtained a much tighter
running time bound. However the bound achieved might still be only a pes-
simistic estimation of the worst case running time of the algorithm. Therefore it
is natural to ask for lower bounds: A lower bound may give an idea of how far
is the bound computed from the real worst case running time.

Let us consider the O*(29:6107) polynomial-space MDS algorithm mds based
on the reduction to MSC and (the polynomial-space version of) algorithm msc.

Theorem 3. The worst case running time of mds is £2(2"/3) = £2(20:3331),

Proof. Consider the following input graph G,, (n > 1): the node set of G,, is
{a;,bi,¢; 1 < i < n}. The edge set of G, consists of two types of edges: for
each i = 1,2...,n, the vertices a;, b; and ¢; induce a triangle T;; and for each
i=1,2,...,n—1:{a;, a1}, {bi,bir1} and {c¢;, c;11} are edges.

Each node of the search tree corresponds to a subproblem of the MSC problem
with input (U; S = {S, : v € V}) where S, = N[v].

We give a selection rule for the choice of the vertices v (respectively sets S,)
to be chosen for the branching. Clearly the goal is to choose them such that the
number of nodes in the search tree obtained by the execution of algorithm msc
on graph G, is as large as possible.

In each round 4, i € {2,3,...,n — 1}, we start with a pair P = {x;,y;} of
nodes (belonging to triangle T;), where {z,y} C {a,b,c}. Initially P = {aq, b2}.
Our choice makes sure that for each branching node z the cardinality of its set
Sz is five in the current subproblem S, and that no other rules of the algorithm
will apply to a branching node than the one of line 5. Consequently, by line 7
of msc either the set .S, is taken into the set cover (S := del(S, Sy)), or S, is
removed (S :=8\S,).

For each pair P = {x;,y;} of nodes we branch in the following 3 ways
1) take S,

2) remove Sg;, and then take Sy,
3) remove Sy;, and then remove Sy,

The following new pairs of nodes correspond to each of the three branches:

1) Pr = {ait2,biv2, Ciya} \ Tit2
2) Py = {ait2,bit2, Civ2} \ Yito
3) Py = {zit1,Yi+1}

On each pair P; we recursively repeat the process. Thus of the three branches
of T; two are proceeded on T;,o and one is proceeded on T;41.

Let T'(k) be the number of leaves in the search tree when all triangles up to
T}, have been used for branching. Thus T'(k) = 2-T(k—2)+T(k—1), and hence
T(k) > 282, Consequently the worst case number of leaves in the search tree of
msc for a graph on n vertices is at least 27/3 ~2. O

The lower bound above can be easily improved by considering disconnected
graphs formed by several (disconnected) copies of a carefully chosen small sub-

Measure and Conquer: Domination — A Case Study 201

graph. We did not consider such lower bounds, since algorithm mds can be easily
modified in order to invalidate them (it is sufficient to solve each disconnected
subproblem separately, and then combine the partial solutions).

We may notice that there is a large gap between the O*(2%-619) yupper bound
and the §2(20-333") lower bound. This could suggest the possibility that the
analysis of algorithm mds can be further refined (possibly via a further refined
measure of the size of the MSC instances).

5 Conclusions

We investigated the impact of different measures of the size of the problem
in the analysis of exponential-time recursive algorithms. In particular, we con-
sidered the minimum dominating set problem. We showed how a more careful
choice of the measure leads to a much tighter running time bound on the fastest
know algorithm for the problem. Specifically, we reduced the time bound from
O*(20:850n) to O*(2°-598n) (without modifying the algorithm).

The impressive reduction of the running time achieved for minimum dom-
inating set, suggests the possibility that the time complexity of many other
exponential-time exact algorithms is largely overestimated because of a bad
choice of the measure. Indeed, this could be the case also for our refined analysis
of minimum dominating set. This possibility is somehow supported by the large
gap between the 0*(20-598") upper bound and the 2(2°-333") lower bound we
managed to prove.

Another natural problem to play with measure is Independent Set. The best
running time O*(2"/4) for this problem was claimed by Robson [23]. Though
Robson’s algorithm is extremely technical and complicated, the measure used in
its analysis is very simple (the number of nodes in the graph). Can we refine the
analysis of this algorithm via a different choice of the measure? Moreover, how
fast really are simple algorithms for Independent Set?

References

1. M. Alekhnovich, E.A. Hirsch, and D. Itsykon. Exponential lower bounds for the
running time of DPLL algorithms on satisfiable formulas. Proceedings of the
31st International Colloquium on Automata, Languages and Programming (ICALP
2004), Springer LNCS vol. 3142, 2004, pp. 84-96.

2. R. Beigel and D. Eppstein. 3-coloring in time O(1.3446™): a no-MIS algorithm.
Proceedings of the 36th IEEE Symposium on Foundations of Computer Science
(FOCS 1995), pp. 444-452.

3. J. M. Byskov. Enumerating maximal independent sets with applications to graph
colouring. Operations Research Letters, 32:547-556, 2004.

4. E. Dantsin, A. Goerdt, E. A. Hirsch, R. Kannan, J. Kleinberg, C. Papadim-
itriou, P. Raghavan, and U. Schoning. A deterministic (2 —2/(k + 1))" algorithm
for k-SAT based on local search. Theoretical Computer Science, 289(1):69-83,
2002.

202

5.

6.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

F.V. Fomin, F. Grandoni, and D. Kratsch

R. G. Downey and M. R. Fellows. Parameterized complexity. Springer-Verlag, New
York, 1999.

D. Eppstein. Improved algorithms for 3-coloring, 3-edge-coloring, and constraint
satisfaction. Proceedings of the 12th ACM-SIAM Symposium on Discrete Algo-
rithms (SODA 2001), pp. 329-337.

D. Eppstein. Quasiconvex analysis of backtracking algorithms. Proceedings
of the 15th ACM-SIAM Symposium on Discrete Algorithms (SODA 2004),
pp. 781-790.

F. V. Fomin, D. Kratsch, and I. Todinca. Exact algorithms for treewidth and min-
imum fill-in. Proceedings of the 31st International Colloquium on Automata, Lan-
guages and Programming (ICALP 2004), Springer LNCS vol. 3142, 2004, pp. 568—
580.

F. V. Fomin, D. Kratsch, and G. J. Woeginger. Exact (exponential) algorithms
for the dominating set problem. Proceedings of the 30th Workshop on Graph
Theoretic Concepts in Computer Science (WG 2004), Springer LNCS vol. 3353,
2004, pp. 245-256.

F. Grandoni. Ezact Algorithms for Hard Graph Problems. PhD thesis, Universita
di Roma “Tor Vergata”, Roma, Italy, Mar. 2004.

F. Grandoni. A note on the complexity of minimum dominating set. Journal of
Discrete Algorithms. To appear.

T. W. Haynes, S. T. Hedetniemi, and P. J. Slater. Fundamentals of domination in
graphs. Marcel Dekker Inc., New York, 1998.

M. Held and R.M. Karp. A dynamic programming approach to sequencing prob-
lems. Journal of SIAM, pages 196-210, 1962.

K. Iwama and S. Tamaki. Improved upper bounds for 3-SAT. Proceedings of the
15th ACM-SIAM Symposium on Discrete Algorithms (SODA 2004), p.328.

T. Jian. An O(2°3%%") algorithm for solving maximum independent set problem.
IEEE Transactions on Computers, 35(9):847-851, 1986.

E.L. Lawler. A note on the complexity of the chromatic number problem. Infor-
mation Processing Letters 5(3):66-67, 1976.

R. Niedermeier and P. Rossmanith. New upper bounds for maximum satisfiability.
Journal of Algorithms, 36(1):63-88, 2000.

P. Pudlak and R. Impaglazzio. A lower bound for DLL algorithms for k-SAT. A
lower bound for DLL algorithms for k-SAT (preliminary version). Proceedings of
the 11th ACM-SIAM Symposium on Discrete Algorithms (SODA 2000), pp. 128-
136

R. Paturi, P. Pudlak, M. E. Saks, and F. Zane. An improved exponential-time
algorithm for k-SAT. Proceedings of the 39th IEEE Symposium on Foundations
of Computer Science (FOCS 1998), pp. 628-637.

B. Randerath and I. Schiermeyer. Exact algorithms for MINIMUM DOMINATING
SET. Technical Report, zaik-469, Zentrum fiir Angewandte Informatik Koln, April
2004.

B. Reed. Paths, stars and the number three. Combinatorics, Probability and
Computing 5:277-295, 1996.

J. M. Robson. Algorithms for maximum independent sets. Journal of Algorithms,
7(3):425-440, 1986.

J. M. Robson. Finding a maximum independent set in time 0(2"/4). Technical
Report 1251-01, LaBRI, Université Bordeaux I, 2001.

24

25.

26.

27.

Measure and Conquer: Domination — A Case Study 203

U. Schoning. A Probabilistic Algorithm for k-SAT and Constraint Satisfaction
Problems. Proceedings of the 40th IEEE Symposium on Foundations of Computer
Science (FOCS 1999), pp. 410-414.

R. Tarjan and A. Trojanowski. Finding a maximum independent set. SIAM Journal
on Computing, 6(3):537-546, 1977.

R. Williams. A new algorithm for optimal constraint satisfaction and its im-
plications. Proceedings of the 31st International Colloquium on Automata,
Languages and Programming (ICALP 2004), Springer LNCS vol. 3142, 2004,
pp. 1227-1237.

G. J. Woeginger. Exact algorithms for NP-hard problems: A survey. Com-
binatorial Optimization — Eureka, You Shrink, Springer LNCS vol. 2570, 2003,
pp. 185-207.

Optimistic Asynchronous Atomic Broadcast

Klaus Kursawe! and Victor Shoup?

! KU Leuven
2 New York University

Abstract. This paper presents a new protocol for atomic broadcast
in an asynchronous network with a maximal number of Byzantine fail-
ures. It guarantees both safety and liveness without making any tim-
ing assumptions. Under normal circumstances, the protocol runs in an
extremely efficient “optimistic mode,” while in rare circumstances the
protocol may briefly switch to a less efficient “pessimistic mode.”

1 Introduction

Atomic broadcast is a fundamental building block in fault tolerant distributed
computing. By ordering broadcast requests in such a way that they are deliv-
ered in the same order to all honest recipients, a synchronization mechanism is
provided that deals with many of the most problematic aspects of asynchronous
networks. We present a new protocol for atomic broadcast in an asynchronous
network with a maximal number of Byzantine failures. It guarantees both safety
and liveness without making any timing assumptions or using any type of “fail-
ure detector,” and under normal circumstances is just as efficient as a simple
“Bracha broadcast.”

The FLP “impossibility” result [F+85] implies that there is no deterministic
protocol for Byzantine agreement (and hence, for atomic broadcast) that guar-
antees both safety and liveness. However, there are randomized protocols that
terminate quickly with very high probability.

A protocol for asynchronous Byzantine agreement may be used as a build-
ing block for atomic broadcast. Canetti and Rabin’s protocol [CR93] runs in
polynomial time, but is in fact, highly impractical. The protocol of Cachin et
al. [C+00] is a practical, polynomial-time protocol that makes use of public-
key cryptographic primitives that can be proven correct in the “random oracle”
model [BR93], assuming a computationally bounded adversary; this protocol
relies on a trusted dealer during system set-up, but after this, an arbitrary num-
ber of instances of the protocol can be executed. Building on [C+00], the paper
[C+01] presents a fairly practical protocol for atomic broadcast. However, this
protocol still uses a lot of fairly expensive, public-key operations, and may not
be fast enough for some applications.

Our protocol is inspired by the innovative work of Castro and Liskov [CL99b,
CL99a, C00]. Like their protocol, our protocol works in two phases: an optimistic
phase and a pessimistic phase. The optimistic phase is very “lightweight” —

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 204-215, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Optimistic Asynchronous Atomic Broadcast 205

each request is processed using nothing more than a “Bracha broadcast” [B84]
— in particular, no public-key cryptography is used (only message authentica-
tion codes, which are very cheap, are used). As long as the network is reasonably
behaved, the protocol remains in the optimistic phase — even if some number
of parties, barring a designated leader, are corrupted. If there are unexpected
network delays, or the leader is corrupted, several parties may “time out,” shift-
ing the protocol into the pessimistic phase. The pessimistic phase is somewhat
more expensive than the optimistic phase — both in terms of communication
and computational complexity. Nevertheless, it is still reasonably practical, al-
though certainly not as efficient as the optimistic phase. The pessimistic phase
cleans up any potential “mess” left by the current leader, re-synchronizing the
protocol, after which the optimistic phase starts again with a new leader.

The optimistic phase of our protocol is essentially the same as that of Castro
and Liskov. While [CL99b] relies extensively on expensive public-key crypto-
graphic operations, the optimized versions in [CL99a, C00] do not use on public-
key cryptography in the optimistic phase. Therefore, we expect that in practice,
our protocol is just as efficient as theirs. However, our pessimistic phase is quite
different. In the Castro/Liskov protocol, the new leader is responsible for re-
synchronizing the protocol; this re-synchronization may fail, either because the
new leader is corrupt or because of unexpected network delays, in which case yet
another leader must take on the task of re-synchronization. In contrast, in our
protocol, this re-synchronization is done using a distributed computation, based
on randomized Byzantine agreement, and is guaranteed to succeed, regardless
of the behavior of the corrupted parties and regardless of any network delays.

Castro and Liskov’s protocol is completely deterministic, and hence is sub-
ject to the FLP impossibility result. Indeed, although their protocol guarantees
safety, it does not guarantee liveness, unless one makes additional timing as-
sumptions. Our protocol guarantees both safety and liveness without making
any timing assumptions at all, while being just as efficient in practice as the
Castro/Liskov protocol. The trade-off, of course, is that our protocol is random-
ized and relies on more cryptographic assumptions; however, there is no practical
downside to this, in terms of either security or performance, and so it seems to
be a trade-off worth making.

Our work builds on the work of [C401] in two ways: we use the same defini-
tional framework as [C+01], and we make novel use of a protocol in [C401] for
multivalued Byzantine agreement.

Other Related Work. There is a rich literature on ordering broadcast channels,
including several implementations and a broad theoretical basis. However, most
work in the literature is done in the crash-failure model; much less work has been
done in the Byzantine failure model. Rampart [R94] and SecureRing [K+98]
directly transfer crash-failure protocols into the Byzantine setting by using a
modified failure detector along with digital signatures. The disadvantage of this
approach is that it is relatively expensive, as a large number of public-key cryp-
tographic operations need to be performed. Furthermore, there are attacks on
the failure detector [A+95] that can violate the safety of these protocols. Doudou

206 K. Kursawe and V. Shoup

et al. [D+00] take a similar approach to that of Castro and Liskov. However,
their protocol is described in a more abstract and modular way, leading to a
protocol that is somewhat less complex and easier to analyze.

2 System Model and Problem Statement

Our formal system model and definitions of security are the same as in [C400,
C+01], which models attacks by computationally bounded adversaries. We refer
the reader to [C+01] for complete details. We give only a brief summary here.
We assume a network of n parties Py, ..., P,, t of which are corrupted and fully
controlled by an adversary. We shall assume that ¢t < n/3. We also assume a
trusted dealer that is needed only at system set-up time. Informally, the adver-
sary also has full control over the network; the adversary may insert, duplicate,
and reorder messages at will.

More formally, at the beginning of the attack, the trusted dealer is run,
initializing the internal state of the honest parties; the initial state information
for the corrupted parties is given to the adversary. The attack then proceeds
in steps. In each step of the attack, the adversary delivers a single message to
an honest party, upon receipt of which the party updates its internal state and
generates one or more response messages. These response messages indicate their
origin and intended destination; however, the adversary is free to do with these
messages what he wishes: to deliver them when he wishes, in any order that he
wishes; he may also deliver them more than once, or not all. We do assume,
however, that the adversary may not modify messages or “fake” their origin.
This assumption is reasonable, since this property can be effectively enforced
quite cheaply using message authentication codes.

We assume that the adversary’s corruptions are static: the set of corrupted
parties is chosen once and for all at the very beginning of the attack. However,
it should be straightforward to prove that our protocol is secure in an adaptive
corruption model, assuming all underlying cryptographic primitives are secure
in this model.

Because we want to use cryptographic techniques, it does not make sense
to consider “infinite runs” of protocols, but rather, we only consider attacks
that terminate after some bounded amount of steps. The number of steps in the
adversary’s attack, as well as the computational complexity of the adversary, are
assumed to be bounded by a polynomial in some security parameter.

Our protocols are defined such that they are only guaranteed to make progress
to the extent to which the adversary actually delivers messages. To ensure that
such a protocol behaves well in practice, an implementation would have to re-
send messages until receiving (secure) acknowledgments for them. We do not
discuss any of these implementation details any further in this paper.

In our formal model, there is no notion of time. However, in making the
transition from the optimistic phase to the pessimistic phase of our protocol,
we need a way to test if an unexpectedly large amount of time has passed since
some progress has been made by the protocol. That is, we need a “time out”

Optimistic Asynchronous Atomic Broadcast 207

mechanism. This is a bit difficult to represent in a formal model in which there is
no notion of time. Nevertheless, we can effectively implement such a “time out”
as follows: to start a timer, a party simply sends a message to itself, and when
this message is delivered to that party, the clock “times out.” By representing
time outs in this way, we effectively give the adversary complete control of our
“clock.”

We define the message complexity of a protocol as the number of messages
generated by all honest parties. This is a random variable that depends on the ad-
versary and the value of the security parameter, and is denoted MC(ID), where
ID identifies a particular protocol instance. The term probabilistically uniformly
bounded is a technical term that we borrow from [C+01]. Let X be a random
variable associated with a run of a protocol that depends on the adversary and
the value of the security parameter. Informally, “X is probabilistically uniformly
bounded” means that X is distributed “very tightly” around a quantity Y, where
Y is bounded by a polynomial in the security parameter that is independent of
the adversary. See [C+01] for the formal definition.

Our definition of atomic broadcast comes directly from [C+01], with just
some minor notational changes. As we define it, an atomic broadcast primitive
offers one or several broadcast channels, each specified by some channel identi-
fier ID. Before a party can use a channel, it must be explicitly opened. Formally
speaking, this is done by the adversary. At any point, the adversary may deliver
the message (ID,in, a—broadcast,m) to some honest party, where m is an ar-
bitrary bit string (of bounded size); we say the party a-broadcasts the request m
at this point. At any point, an honest party may generate an output message
(ID,out, a-broadcast,m), which is given to the adversary; we say the party
a-delivers the request m at this point. We adopt the following terminological
convention: a “request” is something that is a-broadcast or a-delivered, while a
“message” is something that is sent or delivered in the implementation of the
protocol.

To give higher level protocols the option to block the atomic broadcast pro-
tocol, the delivering party waits for an acknowledgment after every a-delivery
of a request. That is, the number of a-delivered requests is equal to either the
number of acknowledgments or the number of acknowledgments plus one. This
is necessary so that higher-level protocols may satisfy a property analogous to
the efficiency property (see Definition 1 below). Without this ability to synchro-
nize protocol layers, a low-level atomic broadcast protocol could generate an
arbitrary amount of network traffic without a higher-level protocol ever doing
anything useful.

At any point in time, for any honest party P;, we define B®) to be the set
of requests that P; has a-broadcast, and we define D to be the set of requests
that P; has a-delivered. We say that one request in B() is older than another if
P; a-broadcast the first request before it a-broadcast the second request. At any
point in time, we also define D* = Uponest , DY.

In discussing the values of the sets B®), D) or D* at particular points
in time, we consider the sequence of events Fjy,..., Ey during the adversary’s

208 K. Kursawe and V. Shoup

attack, where each event but the last is either an a-broadcast or a-delivery by an
honest party, and the last event is a special “end of attack” event. The phrase
“at time 7,7 for 1 < 7 < k, refers to the point in time just before event E.
occurs.

Definition 1 (Atomic Broadcast). A protocol for atomic broadcast satisfies
the following conditions, for all channels ID and all adversaries, with all but
negligible probability.

Agreement: If some honest party has a-delivered m on channel ID, then all
honest parties a-deliver m on channel ID, provided the adversary opens chan-
nel ID for all honest parties, delivers all associated messages, and generates
acknowledgments for every party that has not yet a-delivered m on chan-
nel ID.

Total Order: Suppose one honest party has a-delivered my, ..., ms on channel
ID, and another honest party has a-delivered mf,...,m}, on channel ID
with s < s'. Then m; =mj for 1 <1 <s.

Validity: There are at most t honest parties P; with BUND* #£ (), provided
the adversary opens channel ID for all honest parties, delivers all associated
messages, and generates all acknowledgments.

Fairness: There exist a quantity A, which is bounded by a fixed polynomial in
the security parameter (independent of the adversary), such that the following
holds. Suppose that at some time 1, there is a set S of t + 1 honest parties,
such that for all P; € S, the set B(j)\D* 18 non-empty. Suppose that there
1s a later point in time 1o such that the size of D* increases by more than
A between times 71 and 2. Then there is some P; € S, such that the oldest
request in B(j)\D* at time 11 is in D* at 1.

Efficiency: At any point in time, the quantity MC(ID)/(|D*|+1) is probabilis-
tically uniformly bounded.

Integrity: Fvery honest party a-delivers a request m at most once on channel
ID. Moreover, if all parties follow the protocol, then m was previously a-
broadcast by some party on channel ID.

3 Protocol Conventions and Notations

At each step of an attack, the adversary delivers a message to an honest party,
and activates the honest party: the party performs some computations, updates
its internal state, generates messages, and then returns control to the adversary.
Messages delivered to a party are appended to the rear of an incoming message
queue. When activated, the party may examine this queue, and remove any
messages it wishes.

A party consists of one or more threads of execution. When a party is ac-
tivated, each thread is in a wait state, waiting for one of the corresponding
conditions to be satisfied. If the condition upon which any thread is waiting is
satsified, the corresponding thread is activated (if several threads could be ac-
tivated, one is chosen arbitrarily), and this thread runs until it reaches another

Optimistic Asynchronous Atomic Broadcast 209

wait state. This process continues until all threads are in wait states whose
conditions are not satisfied, and then control returns to the adversary.

Our protocol syntax is rather self explaining, with one exception. A wait
condition can either receive messages or detect them. In the former case, the
messages are deleted from the queue (and thus do not trigger any further condi-
tions) while in the latter, they remain in the queue. We also define an abstract
timeout mechanism, which allows a process to start or stop the timer or wait
for a timeout. In our model, this is implemented by the party simply sending a
message to itself. As the adversary has full control over message delivery, this
gives him full control over the timer, too.

4 Our New Protocol for Atomic Broadcast

The protocol operates in epochs, each epoch e = 0,1, 2, etc., consisting of an
optimistic and a pessimistic phase. In the optimistic phase, a designated leader
orders incoming requests by assigning sequence numbers to them and initiating a
Bracha broadcast [B84]; the optimistic phase guarantees the agreement and total
order properties, but not the validity or fairness properties; however, the protocol
can effectively determine if validity or fairness are potentially threatened, and
if so, switch to the pessimistic phase, which cleans up any “mess” left by the
current leader; then the optimistic phase starts again with a new leader.

4.1 Overview and Optimistic Phase

In the optimistic phase of epoch e, when a party a-broadcasts a request m, it
initiates the request by sending a message of the form (ID,initiate, e, m) to
the leader for epoch e. When the leader receives such a message, it 0-binds a
sequence number s to m by sending a message of the form (ID,0-bind, e, m, s)
to all parties. Sequence numbers start at zero in each epoch. Upon receiving a
0-binding of s to m, an honest party 1-binds s to m by sending a message of the
form (ID,1-bind, e, m,s) to all parties. Upon receiving n — ¢t such I-bindings
of s to m, an honest party 2-binds s to m by sending a message of the form
(ID,2-bind, e, m, s) to all parties. A party also 2-binds s to m if it receives ¢ + 1
2-bindings of s to m — this has the effect of “amplifying” 2-bindings, which is
used to ensure agreement. Upon receiving n — t such 2-bindings of s to m, an
honest party a-delivers m, provided all messages with lower sequence numbers
were already delivered, enough acknowledgments have been received, and m was
not already a-delivered.

A party only sends or reacts to 0-, I-, or 2-bindings for sequence numbers s in
a “sliding window” {w, ..., w+ WinSize — 1}, where w is the number of requests
already a-delivered in this epoch, and WinSize is a fixed system parameter.
Keeping the “action” bounded in this way is necessary to ensure efficiency and
fairness.

The number of requests that any party initiates but has not yet a-delivered
is bounded by a parameter BufSize: a party will not initiate any more requests

210 K. Kursawe and V. Shoup

once this bound is reached. We denote by Z the set of requests that have been
initiated but not a-delivered, and we call this the initiation queue. If sufficient
time passes without anything leaving the initiation queue, the party “times out”
and complains to all other parties. These complaints are “amplified” analogously
to the 2-bindings. Upon receiving n —t complaints, a party enters the pessimistic
phase of the protocol. This strategy will ensure validity. Keeping the size of 7
bounded is necessary to ensure efficiency and fairness.

Also to ensure fairness, a party keeps track of the “age” of the requests in
its initiation queue, and if it appears that the oldest request is being ignored,
i.e., many other requests are being a-delivered, but not this one, then the party
simply refuses to generate 1-bindings until the problem clears up. If ¢t + 1 parties
block in this way, they effectively prevent the remaining parties from making any
progress in the optimistic phase, and thus, the pessimistic phase will be entered,
where the fairness problem will ultimately be resolved.

We say that an honest party P; commits s to m in epoch e, if m is the
sth request (counting from 0) that it a-delivered in this epoch, optimistically or
pessimistically.

Now the details. The state variables for party P; are as follows.

Epoch number e: The current epoch number, initially zero.

Delivered set D: All requests that have been a-delivered by P;. It is required to
ensure that requests are not a-delivered more than once; in practice, however,
other mechanisms may be employed for this purpose. Initially, D is empty.

Initiation queue Z: The queue of requests that P; initiated but not yet a-
delivered. Its size is bounded by BufSize. Initially, 7 is empty.

Window pointer w: w is the number of requests that have been a-delivered
in this epoch. Initially, w = 0. The optimistic phase of the protocol only
reacts to messages pertaining to requests whose sequence number lies in the
“sliding window” {w, ..., w+ WinSize — 1}. Here, WinSize is a fixed system
parameter.

Echo index sets BIND, and BINDjy: The sets of sequence numbers which P;
has 1-bound or 2-bound, respectively. Initially empty.

Acknowledgment count acnt: Counts the number of acknowledgments re-
ceived for a-delivered requests. Initially zero.

Complaint flag complained: Set if P; has issued a complaint. Initially false.

Initiation time it(m): For each m € Z, it(m) is equal to the value of w at the
point in time when m was added to Z. Reset to zero across epoch boundaries.
These variables are used in combination with a fixed parameter Thresh to
ensure fairness.

Leader index [: The index of the leader in the current epoch; we simply set
I = (e mod n) + 1. Initially, [= 1.

Scheduled request set SR: Only maintained by the current leader. It con-
tains the set of messages which have been assigned sequence numbers in this
epoch. Initially, it is empty.

Next available sequence number scnt: Only maintained by the leader. Value
of the next available sequence number. Initially, it is zero.

Optimistic Asynchronous Atomic Broadcast 211

/* Initiate m. */
upon receiving a message (ID, in,a-broadcast,m) for some m such that
m ¢ ZTUD and |Z| < BufSize (note that we take the oldest such message
first):
Send the message (ID, initiate,e,m) to the leader.
Add m to Z; set it(m) «— w.
/* 0-bind scnt to m. */
upon receiving a message (ID, initiate, e, m) for some m, such that ¢ = [
and w < sent < w + WinSize and m ¢ DU SR:
Send the message (ID, 0-bind, e, m, scnt) to all parties.
Increment sent and add m to SR.
/* 1-bind s to m. */
upon receiving a message (ID,0-bind, e, m, s) from the current leader for
some m, s such that w < s < w + WinSize and s ¢ BIND; and ((Z = 0)
or (w < min{it(m): m € I} + Thresh)):
Send the message (ID, 1-bind, e, m, s) to all parties; add s to BIND;.
/* 2-bind s to m. */
upon receiving n —t messages of the form (ID, 1-bind, e, m, s) from distinct
parties that agree on s and m, such that w < s < w + WinSize and
s ¢ BINDs:
Send the message (1D, 2-bind, e, m, s) to all parties; add s to BIND-.
/* Amplify a 2-binding of s to m. */
upon detecting ¢+ 1 messages of the form (D, 2-bind, e, m, s) from distinct
parties that agree on s and m, such that w < s < w + WinSize and
s ¢ BIND:
Send the message (ID,2-bind, e, m, s) to all parties; add s to BIND-.
/* Commit s to m. */
upon receiving n —t messages of the form (ID, 2-bind, e, m, s) from distinct
parties that agree on s and m, such that s = w and acnt > |D| and
m ¢ D and s € BINDa:
Output (ID, out,a-deliver,m); increment w; add m to D, and re-
move it from Z (if present); stop timer.
/* Start timer. */
upon (timer not running) and (not complained) and (Z # 0) and (acnt > |D|):
start timer.
/* Complain. */
upon timeout:
if not complained: send the message (ID, complain,e) to all parties;
set complained < true.
/* Amplify complaint. */
upon detecting ¢ + 1 messages (ID, complain, e¢) from distinct parties, such
that not complained:
Send the message (ID, complain,e) to all parties; set complained «—
true; stop timer.
/* Go pessimistic. */
upon receiving n — t messages (ID, complain, e) from distinct parties, such
that complained:
Execute the procedure Recover below.

Fig. 1. The optimistic phase

212 K. Kursawe and V. Shoup

The protocol for party P; consists of two threads. The first is a trivial thread
that simply counts acknowledgments for a-delivered requests; it consists of an
infinite loop whose body is as follows:

wait until receiving an acknowledgment; increment acnt
The main thread is an infinite loop whose body is as follows:
case MainSwitch end case
where the MainSwitch is a sequence of upon clauses described in Figure 1.

4.2 Fully Asynchronous Recovery

The recovery protocol is invoked if the optimistic phase appears to not work
properly; this happens if either the leader is faulty or the network is too slow.
Its job is to synchronize the parties by a-delivering all broadcasts that any honest
party may have already a-delivered, and to guarantee the efficiency of the overall
protocol by assuring that some messages are a-delivered. Finally, it hands over
to a new leader to restart a new optimistic phase.

Validated Multivalued Byzantine Agreement. Our recovery-protocol
builds on top of validated multivalued Byzantine agreement (i.e., the agree-
ment is not restricted to a binary value), as defined and implemented in [C+01].
The final agreement value must be legal according to some validation function,
which guarantees that it is some “useful” value. The definition of the validation
function is clear from the context as the exact form of a valid proposal is defined
in the protocol description. In the atomic broadcast protocol, we use the phrase
“propose X; for multivalued Byzantine agreement on X ” to denote the invoca-
tion of a validated multivalued Byzantine agreement protocol, where X; is P;’s
initial proposal, and X the resulting agreement value.

Overview of the Recovery Procedure. We distinguish between three types
of requests: (i) requests for which it can be guaranteed that they have been
a-delivered by an honest party; (ii) requests that potentially got a-delivered by
an honest party; (iii) requests for which it can be guaranteed that they have
not been a-delivered by an honest party. For the first two kinds of requests,
an order of delivery might already be defined, and has to be preserved. The
other requests have not been a-delivered at all, so the recovery protocol has
complete freedom on how to order them. They can not be left to the next
leader, however, as an adversary can always force this leader to be thrown
out as well. To guarantee efficiency, the recovery procedure has to ensure that
some request is a-delivered in every epoch. This is precisely the property that
Castro and Liskov’s protocol fails to achieve: in their protocol, without im-
posing additional timing assumptions, the adversary can cause the honest par-
ties to generate an arbitrary amount of messages before a single request is a-
delivered. According to the three types of requests, the recovery protocol consists
of three parts.

Part 1: Requests whose sequence number is determined. A “watermark” 3§, is
jointly computed, which has the property that at least one honest party opti-

Optimistic Asynchronous Atomic Broadcast 213

mistically committed the sequence number §., and no honest party optimistically
committed a sequence number higher than §, +2- WinSize. After computing the
watermark, all parties “catch up” to the watermark, i.e., commit all sequence
numbers up to S, by simply waiting for ¢ 4+ 1 consistent 2-bindings for each se-
quence number up to the watermark. The work performed in this part constant,
and especially independent of the number of unfinished requests.

Part 2: Requests whose sequence number may be determined. Here, we deal with
the requests that might or might not have been a-delivered by some honest party
in the optimistic phase of this epoch. We have to ensure that if some honest
party has optimistically a-delivered a request, then all honest parties a-deliver
this request as well. The sequence numbers of requests with this property lie in
the interval §.+1 ... 5. +2- WinSize. Each party makes a proposal that indicates
what action should be taken for all sequence numbers in this critical interval.
Again, multivalued Byzantine agreement will be used to determine which of
possibly several valid proposals should be accepted. While this part is relatively
expensive, we can guarantee an upper bound of the number of requests processed
here, which is determined by the window-size parameter.

Part 3: Undetermined Requests. This part is the one that guarantees that some
messages are a-delivered in this epoch. We use a multivalued Byzantine agree-
ment protocol to agree on a certain set of additional requests that should be
a-delivered this epoch. We need to do this to ensure fairness and efficiency.

Terminology of the Recovery Procedure. For any party P;, and any mes-
sage «, we denote by {a}; a signed version of the message, i.e., a concatenated
with a valid signature under P;’s public key on «, along with P;’s identity.

For any s > —1, a strong consistent set X for s is a set of ¢t + 1 correctly
signed messages from distinct parties, each of the form {(ID, s-2-bind, e, s’)};
for some 7 and s’ > s.

A walid watermark proposal M is a set of n — t correctly signed messaged
from distinct parties, each of the form {(ID,watermark, e, X;,s;)}; for some j,
where X; is a strong consistent set of signatures for s;. The maximum value s;
appearing in these watermark messages is called the mazimum sequence number
of M.

For any s > 0, a weak consistent set X' for s is a set of n —t correctly signed
messages from distinct parties — each of the form {(/D,w-2-bind, e, s, m;)};
for some j — such that either all m; = L (indicating no 2-binding for s), or
there exists a request m and all m; are either m or L. In the former case, we
say X’/ defines L, and in the latter case, we say X’ defines m.

A walid recover proposal P is a set of n — t correctly signed messages from
distinct parties each of the form {(ID,recover-request,e, Q;)}; for some j,
where Q; is a set of at most BufSize requests.

The protocol for the pessimistic phase is presented in Figure 2.

A proof of security of the complete atomic broadcast protocol, as well as a
number of other details, can be found in the full version of this paper [KSO01].

214

K. Kursawe and V. Shoup

/* Part 1: Recover requests with a determined sequence-number */
Send a the signed message {(ID, s-2-bind, e, max(BIND; U {—1}))}; to all
parties.
wait until receiving a strong consistent set X; for w — 1.
Send the signed message {(ID,watermark, e, X;,w — 1)}; to all parties.
wait until receiving a valid watermark proposal M.
Propose M; for multivalued Byzantine agreement on a valid watermark pro-
posal M.
Set §. «+— § — WinSize, where § is the maximum sequence number of M.
while w < §. do:
wait until receiving ¢+1 messages of the form (ID, 2-bind, e, m, w)
from distinct parties that agree on m, such that acnt > |D].
Output (ID, out,a-deliver,m); increment w.
Add m to D, and remove it from Z (if present).

/* Part 2: Recover requests with a potentially determined sequence-
number */
For s < 8. + 1 to 8 + (2 - WinSize) do:
If P; sent the message (ID,2-bind, e, m) for some m, set m « m;
otherwise, set m «— L.
Send the signed message (ID,w-2-bind, e, s, m) to all parties.
wait until receiving a weak consistent set X} for s.
Propose X, for multivalued Byzantine agreement on a weak consis-
tent set X’ for s.
Let X' define m.
If (s > w and m € D) or m = L, exit the for loop and go to Part 3.
If m ¢ D: wait until acnt > |D|; output (ID,out,a-deliver,m);
increment w; add m to D, and remove it from Z (if present).

/* Part 3: Recover undetermined Requests */
If w =0 and Z # 0: send the message (ID,recover-help,e,Z) to all parties.
If w = 0 and Z = (: wait until receiving a message (1D, recover-help, e, Q),
such that Q is a non-empty set of at most BufSize requests, and QND = ().
Ifw#0orZ#0:set Q«—7T.
Send the signed message {(ID, recover-request, e, Q)}; to all parties.
wait until receiving a valid recover proposal P;.
Propose P; for multivalued Byzantine agreement on a valid recover proposal P.
Sequence through the request set of P in some deterministic order, and for
each such request m ¢ D, do the following:
wait until acnt > |DJ; output (ID,out,a-deliver,m); increment
w; add m to D, and remove it from Z (if present).

/* Start New Epoch */

Set e —e+1; 1« (emod n)+1; w « sent < 0; SR «— BIND < BINDy «—
0; complained < false.

For each m € Z: send the message (ID,initiate,e,m) to the leader; set
it(m) < 0.

Fig. 2. The pessimistic phase

Optimistic Asynchronous Atomic Broadcast 215

References

[A+95]

[BR93]

[B84]

[C00]

[C+01]

[C+00]

[CL99a]

[CL9b)]

[CRO3]

[D+00]

[F+85]

[K+98]

[KS01]

[R94]

E. Anceaume, B. Charron-Bost, P. Minet, and S. Toueg. On the formal
specification of group membership services. Tech. Rep. TR95-1534, Cornell
University, Computer Science Department, 1995.

M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In 1st ACM Conf. on Computer and Commu-
nications Security, pp. 62-73, 1993.

G. Bracha. An asynchronous [(n — 1)/3]-resilient consensus protocol. In
Proc. of the 8rd Ann. ACM Symp. on Principles of Distributed Computing,
pp- 154-162, 1984.

M. Castro. Practical Byzantine Fault Tolerance. PhD thesis, Massachusetts
Institute of Technology, 2000.

C. Cachin, K. Kursawe, F. Petzold, and V. Shoup. Secure and efficient
asynchronous broadcast protocols. In Advances in Cryptology—Crypto 2001,
pp. 524-541, 2001.

C. Cachin, K. Kursawe, and V. Shoup. Random Oracles in Constantinople:
Practical Asynchronous Byzantine Agreement using Cryptography. In ACM
SIGACT-SIGOPS Symp. on Principles of Distributed Computing, pp. 123—
132, 2000.

M. Castro and B. Liskov. Authenticated byzantine fault tolerance without
public-key cryptography. Tech. Memo MIT/LCS/TM-589, MIT Laboratory
for Computer Science, 1999.

M. Castro and B. Liskov. Practical Byzantine fault tolerance. In Proc. 3rd
Symp. Operating Systems Design and Implementation, 1999.

R. Canetti and T. Rabin. Fast asynchronous Byzantine agreement with
optimal resilience. In Proc. 25th Ann. ACM Symp. on Theory of Computing,
pp. 42-51, 1993.

Doudou, Guerraoui, and Garbinato. Abstractions for devising byzantine-
resilient state machine replication. In SRDS: 19th Symp. on Reliable Dis-
tributed Systems, 2000.

M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374-382, 1985.

K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith. The SecureRing
protocols for securing group communication. In 31st Hawaii International
Conference on System Sciences, pp. 317-326, 1998.

K. Kursawe, V. Shoup. Optimistic asynchronous atomic broadcast. Cryptol-
ogy ePrint Archive, Report 2001/022, http://eprint.iacr.org, 2001.

M. K. Reiter. Secure agreement protocols: Reliable and atomic group mul-
ticast in Rampart. In Proc. of the 2nd ACM Conference on Computer and
Communication Security, pp. 68-80, 1994.

Asynchronous Perfectly Secure

Communication over One-Time Pads*

Giovanni Di Crescenzo' and Aggelos Kiayias? **

! Telcordia, Piscataway, NJ, USA
giovanni@research.telcordia.com
2 CSE Dept., University of Connecticut, Storrs, CT, USA
aggelos@cse.uconn.edu

Abstract. The “One-Time Pad” is a fundamental cryptographic pro-
tocol as it represents the ideal in secure unidirectional communication
(i-e., in cases where there is a designated sender and a designated re-
ceiver) both in terms of security (in the presence of eavesdroppers) as
well as in terms of computational efficiency. Surprisingly, no modeling
and investigation of this protocol has been done in important practical
settings, as distributed and asynchronous ones. In this work we introduce
an asynchronous model for multidirectional and multi-player One-Time
Pad asynchronous communication protocols. In this model the random
pad is shared by all players, and there is no designated sender and re-
ceiver; in fact any participating player can act as a receiver at any given
time, players communicate in a totally asynchronous fashion and may
arbitrarily go off-line.

We define the problem of designing One-Time Pad asynchronous com-
munication protocols, where the goal is that of maximizing the amount
of the shared pad used before new randomness needs to be generated,
with the constraint of mantaining the security property under reasonable
adversarial assumptions on the relative behavior of the players and the
network. We present lower bounds and protocol solutions for this prob-
lem that significantly improve over the obvious scenario where parties
use an equal fraction of the pad. Our constructions are non-interactive
in the sense that they require no additional synchronizing communication
beyond the (usual) information that accompanies each ciphertext.

1 Introduction

The “One-Time Pad” is a well-known private-key encryption scheme, originally
invented by Vernam [14] in 1918. Assume Alice and Bob agree on a random key
K (arandom “pad”); then, they can communicate securely (that is, without the
eavesdropper Eve obtaining any information about their message) as follows:
On input message m, Alice computes the ciphertext ¢ = m @ [K] where [K]

* Copyright Telcordia.
** Research partly supported by NSF CAREER Award CNS-0447808.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 216-227, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Asynchronous Perfectly Secure Communication 217

denotes a substring of K of appropriate length and sends it to Bob. Given c,
Bob can recover message m, by decrypting ¢ as m = ¢ @ [K]. Here, ® is the
“exclusive OR” operator, and K is at least as large as m. What makes one-time
pad encryption remarkable is the following two facts (i) as shown by Shannon,
in [13], it holds that any provably-secure (in the information-theoretic sense)
encryption scheme must satisfy |K| > |m| and more specifically one-time pad
is optimally secure in the information theoretic sense. (ii) the encryption and
decryption operations are essentially optimal in terms of time-complexity (being
a mere exclusive-or operation). While the length of the key is inappropriate for
most practical cryptographic applications, one-time pads are widely utilized as
atomic components of more elaborate encryption systems by employing pseudo-
random generators to generate arbitrarily long sequences of pseudo-random bits
given only a short shared random seed (see e.g. [12,7]). In this case the resulting
pseudorandom sequence is used as a pad. The employment of such pseudorandom
generators allows the transmission of messages longer than the shared key and
security would rely solely on the unpredictability of the pseudo-random generator
(since one-time pad over a truly random pad is information theoretically secure).

Now consider the setting where Alice and Bob both wish to play the sender
or receiver role engaging in a conversation without a predetermined schedule
and in an asynchronous communication setting. In the obvious solution, both
players divide the pad K in two halves and each one uses a separate portion.
Nevertheless, it would be much preferable to allow players to dynamically balance
the pad portion they use depending on their need as this is determined by the
progress of their interaction. In this sense the protocol allowing | K|/2 maximum
total communication by each player individually loses a lot of the one-time pad
efficiency in terms of utilizing their private storage and computation power (we
stress that expanding the shared pad is an expensive operation and players
would wish to utilize the jointly generated pad as efficiently as possible). In
the bidirectional setting, a solution with more efficient pad utilization would
allow the segment that can be expended by Alice in some conversations to be
expended by Bob in others. Note that in the asynchronous setting we consider we
cannot rely on participants being online to execute synchronization steps (and in
this case even deterministic consensus decision is unattainable, [6]), while other
synchronization techniques employing e.g. randomization [2], are clearly quite
expensive in terms of communication for our setting.

The Problem. The problem we consider in this paper is then, as follows: Is
it possible for m > 2 players, sharing a one-time pad of a certain size, to com-
municate securely (that is, without re-using portions of the one-time pad) and
efficiently (that is, by using as much pad material as possible before re-generating
new randomness)? In particular we will seek answers to the above problem where
(i) the communication model is multidirectional and totally asynchronous; (ii)
players do not use additional messages to synchronize themselves; (iii) players
might arbitrarily go off-line or crash. Note that in order to satisfy these con-
straints we will opt for non-interactive protocol constructions: when a player
wishes to transmit a message he should make a decision based only on his local

218 G. Di Crescenzo and A. Kiayias

data on which pad to use next. The adversarial action that we will consider deals
with the relative behavior of the players and the possible delays/swaps that are
introduced during message transmission.

Our results. To describe the class of protocols solving the above problem we
introduce the notion of one-time pad asynchronous communication (OTPAC)
protocols. Our formal definition of secure OTPAC protocols considers an ad-
versary arbitrarily delaying messages and introduces an undelivery parameter d
meaning that, at any time, and for each sender, at most d messages were al-
ready sent by other players but have not been delivered to him yet. Note that
this adversarial behavior refers to the relative behavior of the participants rather
than properties of the network that is assumed to be totally asynchronous. The
adversarial behavior is formally defined by specifying some natural property of a
family of communication patterns (described as graphs) among the players. As
a consequence, protocols for secure communication in this model can be shown
to be secure according to this family of communication patterns.

In order to compare protocols in terms of the allowed flexibility in expending
the shared pad, we define a measure called the “efficiency ratio” that is associated
with each OTPAC protocol. Informally, the ratio is a metric for the maximum
number of random bits from the one-time pad that can be used by any player
before the pad needs to be refreshed. Under this metric, the protocol of the
unidirectional or the synchronous setting exhibits ratio 1 (thus, optimal), while
the protocol of m players equally splitting the pad has ratio 1/m.

We present concrete constructions of secure OTPAC protocols in the asyn-
chronous setting whose efficiency ratio is larger than 1/m and is expressed as a
function of the undelivery parameter d, the number of players m and the num-
ber of pads n. Our general approach for OTPAC protocol construction ensures
improved expendability of the pad by having players maintaining various types
of “logical clocks” [11]. We completely characterize the two party case, by ex-
hibiting a protocol achieving efficiency ratio 1 — d/n for d < [n/2], and a lower
bound that matches this protocol when d < |n/2] and the protocol of 2 players
equally splitting the pad otherwise. In the m-party case, we exhibit a proto-
col with efficiency ratio 1 — 1/poly(n) for typical parameter values, and a lower

Number of Proven Secure Other
Protocol players Efficiency Ratio for Constraints
A1 m % unconditional
As m 1 undelivery 0
As 2 1-4 undelivery d d<n/2
Ay m 1— %(L — 2)10gm*1 — W undelivery d d < nL'7le™

Fig. 1. Comparison of 4 Protocols. Note that in all cases we assume n > m. A;
refers to the protocol where players use disjoint pad segments, where Az refers to the
protocol where players employ a jointly maintained counter (players are synchronized).
These two protocols are listed for the sake of comparison. Our main constructions are
protocols Az, A4. L is a parameter of Ay

Asynchronous Perfectly Secure Communication 219

bound of 1 —d/n for d < |n(m—1)/m| and 1/m otherwise, the latter matching
the protocol of m players equally splitting the pad. Our upper bound results are
overviewed in figure 1. We note that we know of no previous work in the litera-
ture that considered one-time pads in the asynchronous communication setting.
The problem of designing OTPAC protocols relates to the Do-All (DA) problem
(see, e.g., [5,4,10]) and Write-All (WA) problem (see, e.g., [9,1,3,8]) from the
Distributed Computing literature. In fact, from this literature’s viewpoint, de-
signing OTPAC protocols can be thought of as solving a “Do/Write-Once” kind
of problem; this interrelationship will be further analyzed in upcoming work.

2 One-Time Pad Asynchronous Communication

In this section we present definitions for the communication model and protocols,
the security requirements as well as an efficiency metric, which we instantiate
through examples of basic protocols.

OTPAC Protocols. In our setting, m players Aj,..., A, wish to communi-
cate securely taking advantage of a shared random pad. Players are assumed
to communicate through a network that supports broadcast transmission and
each player can be a sender or a receiver in a certain communication. There is
no global clock that the players can use for synchronization and message de-
lays are unbounded; all messages are eventually delivered but their order is not
necessarily preserved by the network (such assumptions are typical in the Dis-
tributed Computing literature). Each player A; is initialized by executing an
Initialization procedure, and subsequently sequences of two events may happen
to A;: Send and Receive, according to the requests of sending messages that the
specific application environment demands from the players in the protocol. Each
player A; is assumed to have access to the same shared private random pad p
that can be written as the concatenation of n words py,...,p,, of k bits each,
k being the length of one message-block. The communication is driven by a se-
quence of send requests for the players (that can be thought to be adversarially
generated) and are ordered according to some (unknown to the players) global
notion of time; the send requests form the schedule of the protocol denoted by
s =((s1,t1), -, (Sp,ty)), where t; <ty <--- <, correspond to the time of the
send requests and each s, = (j,u) stands for the u-th request of the j-th player.
To achieve the highest possible generality we will assume that each execution of
the protocol takes as input a pad p and follows an arbitrary schedule s. Let us
denote by [n] = {1,...,n}. We can now proceed with a formal definition.

Definition 1. Let m,n be positive integers, let Head = [m] x [n], and let Conf
denote a set of possible configurations; at local time ¢ we denote the configuration
of player A; as II;[t] € Conf. We define a One-Time-Pad Asynchronous Com-
munication (OTPAC) protocol as a triple of polynomial-size circuits (I, S, R),
with the following functionality:

I:[m]— Conf S:[m]xConf — {L}U(Confx[n]) R:[m]xConfxHead — Conf

220 G. Di Crescenzo and A. Kiayias

The operation of an OTPAC protocol is as follows: initially every player A;
executes I(j) — II,[0] to set its initial configuration. Then the sequence of send
requests in the schedule s is sequentially scanned. Given a send request at time
t, player A; generates a Send event, by executing S(II;[t]) — (II;[t + 1],4) and
resulting in the transmission of the ciphertext (j,4,p; ® M), where M € {0,1}*
is the message that player A; wishes to transmit and (j,7) € [m] x [n] is the
ciphertext header (note that frequently we will write S(-) instead of S(j,-) if
the sending player is clear from the context; similarly for R(-)). If S(II;[t]) = L
player A; ceases to send messages. Every ciphertext has length logm +logn +k.
A Receive event is triggered by the arrival of a ciphertext (j/,4',C) at player A;
in time ¢. Player A; decrypts the message by computing py @ C' and updates
its configuration to II;[t + 1] « R(II;[t],j’,"). We assume that the S, R circuits
satisfy the property S(II;[t]) = L = S(R(II,[t], j,i)) = L for any (j,i) € Head.
An OTPAC protocol stops when all parties A; enter in a configuration I7;t]
such that S(II;[t]) = L. A particular execution of an OTPAC protocol (namely,
an execution of algorithms I, S, R, for fixed random tapes of all participants)
can be characterized as in the following definition.

Definition 2. A feasible asynchronous communication pattern (ACP) for an m-
player OTPAC protocol (I,.S, R) on input an n-word pad p and a schedule s is
a finite directed acyclic graph P so that the set of its nodes is a subset of IN x IN
and is partitioned into m subsets. Every node (j,t) is labeled by an element
of Conf, denoted by II;[t]. P includes the nodes (1,0),...,(m,0) labeled by
I(1),...,I(m) respectively, as well as the nodes (1,1 max); - - - » (M, tm max) such
that for any t > ¢ max, (j,t) € P. For any j,t < tjmax there is an edge from
(4,t) to (j,t') for some t' with ¢ < ¢’ and such that for all t* € {t+1,...,¢' — 1},
(j, t*) & P; the node (j,t') is the subsequent node of (j,t). The nodes of P and
their labels fall into either one of the following three categories:

— Send Nodes. It is a node (j,t) with S(II;[t]) # L that has m outgoing edges
to (1,t1),...,{(m,ty) s.t. t; = t + 1 and at most one incoming edge. The
label of (j,t+ 1) is equal to II where (II,%) «— S(II,]t]).

— Receive Nodes. It is a node (j,t) with one incoming edge coming from some
Send-node (j',t") j/ # j. The label of (j,t + 1) is equal to R(II,[t], ',)
where ¢’ is such that (II',4") — S(II;[t']).

— Idle Nodes. It is a node (j, t) that is neither a Send or Receive node. If ¢ > 0,
the node has one incoming and one outgoing edge to its subsequent node
(4,t') (recall ¢ > ¢); if (5,0) is idle then it has no incoming edge. The label
of (j,t') is equal to II;[t].

Any OTPAC protocol A := (I, S, C) for m players using a random pad p of n k-
bit words and a schedule s defines a family of feasible ACP’s denoted by fx’:.
(By fjf’" we denote the union, over all schedules s, of the family of feasible
ACP’s Fi'")

Security and efficiency of OTPAC protocols. We define the security of
OTPAC protocols by extending the security notion of the one-time pad from

Asynchronous Perfectly Secure Communication 221

the unidirectional synchronous setting (namely, that the same portion of the
pad should not be used twice) to the asynchronous setting considered here.

Let A be an OTPAC protocol, and F;"" be the set of feasible ACP’s. While
players Aq,..., A, are attempting to communicate, the adversary is capable of
controlling the network so to both choose a particular schedule of send requests
and swap or delay messages being sent. The goal of the adversary is to force the
re-use of some portion of the pad so that the “one-time” property is lost and
some information can be derived from the transcript. It follows that the only
mechanism available to players to protect the security of their communication
is to reach the L output of their Send-event state update function S, before the
adversary is capable of violating the one-time property. So given an OTPAC pro-
tocol A, the adversary selects a schedule s that is input to A, and furthermore
selects a pattern P € fx’g; the protocol is executed following the pattern P;
if P contains two Send events that use the same pad segment, then the adver-
sary wins. In conclusion, security of an OTPAC protocol would be argued for a
subfamily of F;"" for which no pad is used twice. Formally,

Definition 3. The Security Property. Let A := (I,5,C) be an OTPAC
protocol, let F ;""" the be family of feasible ACP’s for A on input schedule s and
let Fi) = U]:A . We say that A is insecure on P € F";" if P includes two
Send nodes (j,t) and (j/,t') so that if (II,i) — S(II i1t and (H’ iy — S [t')
it holds that ¢ = /. Let G = UgG, be a family of ACP’s, where for each s,
gs C Fx’:. We say that A is secure on family G, if there exists no schedule s
and no pattern P € G, such that A is insecure on P.

Naturally, for any given A it would be the most desirable that it is secure
for any P € F;"". Considering only such protocols though is very restrictive.
Instead, as it is standard in cryptography as well as in distributed systems theory,
we will opt to restrict the behavior of the adversary in meaningful ways and
consider protocols that can be proven secure in such adversarial setting.

Adversarial Setting: Undelivery. A communication pattern P € F"" ad-
mits various total orderings < between the vertices of P (topological sortlngs of
the graph P). One such sorting < corresponds to the actual “real global time”
(unknown to the participants). Such total orderings can also be called “runs” of
an asynchronous communication pattern P, following the standard terminology
in distributed systems. Note that, as it is common in distributed systems theory,
we assume that no two events happen at the same time, i.e. the total ordering < is
strict. A Send event (7, t) is said to have d undelivered messages w.r.t. a topologi-
cal sorting < of P, if there exist d Send events (j1,t1), ..., (Ja,ta), J & {j1,---,Jd}
for which it holds (js, t¢) < (j,t) for £ =1,...,d, and if (j, s1),..., (J, sq) are the
corresponding Receive events at player A; it holds that s, >t for £ =1,...,d.
For any schedule s, let U),";'; denote the subfamily of all ACP’s P € F min that
have no Send events with d undelivered messages w.r.t. any possible topologlcal
sorting of P. Also, let UA y =U UA,s,d

Note that undelivery does not describe any fixed property of the network.
More specifically, if an ACP contains a Send event that has d undelivered mes-

222 G. Di Crescenzo and A. Kiayias

sages this does not mean that the network delays messages by a fixed upper
time-bound that is proportional to d. Instead, the adversary controlled the mes-
sage delivery of the network and the random coin tosses of the players’ random
processes in such a way that one of the players initiated a Send-event before
having heard of d Send events of other players that happened concurrently. We
remark that if it was possible for the players to synchronize themselves (e.g., by
using a global clock) it would be easy to restrict the adversary to produce only
ACP’s that belong to UZ’T, i.e., if a player sends a message the other players
are silent until they receive it. Clearly in such a scenario designing an OTPAC
protocol is a trivial matter. Tackling the asynchronous case where the parameter
d > 1 is the motivation for our investigations.

Efficiency of OTPAC protocols. We introduce a natural metric of the effi-
ciency of an OTPAC protocol with respect to usage of the shared pad vector.

We start with some definitions. The message-count of an ACP P e F,"",
denoted by mc(P), is a tuple (Ny,..., Ny,) denoting the number of Send events
for each of the players Ay,..., A,,. Let G = UG5 be a family of ACP’s, where
for each s, G5 C .7-":4": Next we define the order of a family G C F"" as
N = ming minpeg, ., IV;. Intuitively, the order of G is the maximum number
of messages that all players can send using protocol A when, on input schedule
s, the communication pattern is drawn from G. Using this notion, we define our
main metric for OTPAC protocols, which we call the “efficiency ratio,” standing
for the maximum percentage of the pad all players are allowed to use.

Definition 4. The Efficiency Ratio. Let A be an OTPAC protocol with cor-
responding ACP family F;"" and let G = UsG,s be an ACP family such that for
each s, G5 C flﬁ’:. The efficiency ratio of algorithm A on family G is defined

as o = % where N is the order of family G.

Although it does not appear explicitly in the above definition, we stress that
this metric only makes sense for secure executions, as insecure executions can
always have efficiency ratio 1 or even greater. To understand the above notion
it is helpful to recall the two simple protocols described in figure 1: A; will be
the OTPAC protocol where all players use a disjoint segment in the pad and A,
will be the protocol that all players use the whole pad at the same time while
maintaining a joint counter. It is straightforward to show that A; has efficiency
ratio 1/m and can be proven secure for all feasible ACP’s }'le’", whereas As has
efficiency ratio 1, but can be proven secure only for L{Z’ﬁ, the family of ACP’s
that are effectively synchronous (no Send-event has an undelivered message). The
protocols Aj, Ao represent the two different ends of the spectrum: A; allows
arbitrary adversarial action but has very small efficiency ratio; on the other
hand Ay allows the highest efficiency ratio nevertheless it can only be proven
secure if we restrict the adversary so much that players communicate in an
effectively synchronous fashion. This motivates our investigations in the rest of
the paper, where we construct OTPAC protocols that trade adversarial action
for efficiency.

Asynchronous Perfectly Secure Communication 223

3 OTPAC Protocol Lower Bounds

In this section we prove lower bounds on the efficiency ratio of OTPAC protocols,
as a function of the number n of elements in the common pad, the number m
of players, and the undelivery parameter d. We start with OTPAC protocols
among 2 players, and then extend the analysis to any number m of players.

The Two-Player Case. Let A be an OTPAC protocol among 2 players. Recall
that we consider adversaries that can choose the request schedule s input to
protocol A and can arbitrarily delay messages, so to force any Send event to
have up to d undelivered messages, where d is an unrestricted parameter (in
particular, note that d > n is equivalent to assuming d = c0). We obtain the
following:

Theorem 1. Any OTPAC protocol A secure on Uj’ffi can achieve efficiency ratio
a such that:

—a<l-d/nifd<|n/2],

—a<1/2ifd> |n/2].

The proof of Theorem 1 starts by assuming, towards contradiction, that there
exists an OTPAC protocol A that can achieve efficiency ratio larger than the
claimed bound on the ACP family Z/{i’z; finally, it reaches contradiction by show-
ing that A is not secure on this family. An intuition on how the contradiction is
reached goes as follows. First, we show the existence of a schedule s; on which
the efficiency ratio larger than the claimed bound is achieved by portions of the
random pad only used by party P;. Then we show the existence of a schedule s;
with the analogue property for P,. Finally, we show the existence of a schedule
s and of an adversary, such that in an execution of A on input s the following
holds: at any time the adversary keeps up to d undelivered messages; the view
of Py is as if s = s1; and the view of P, is as if s = s5. As a consequence,
both parties use a large number of portions of the random pad, and at least one
portion is used by both parties, thus implying that the protocol is not secure.

The m-Player Case. We now consider an OTPAC protocol A among m players,
for m > 2. We note that in this case we count one undelivered message for each
player that has not received the message yet (that is, if there are 2 receivers that
have not received the same message, then the undelivery parameter satisfies
d = 2). The lower bound on the efficiency ratio of A is then obtained as an
appropriate generalization of the bound in the 2 player case.

Theorem 2. Let m < n. Any OTPAC protocol A secure on U} can achieve
efficiency ratio at most 1 — d/n if d < [n(m — 1)/m] or at most 1/m otherwise.

The above theorems imply that protocol A; (defined in figure 1) has optimal
efficiency ratio for values of d > n/2. Note that this range of values strictly
includes the range d > n, that, in turn, is equivalent to assuming d = oo; that
is, when no bound at all can be assumed on the undelivery parameter.

224 G. Di Crescenzo and A. Kiayias

4 OTPAC Protocol Constructions: Head-on Collision
Runs

In this section we present two protocol constructions that exhibit more refined
trade-offs between security and efficiency. To increase the efficiency ratio we
allow players to use common pad segments while at the same time maintaining
safe distance between the segments that are actively used during a conversation.
The manner with which players will be expending pad portions will resemble
a “head-on collision run” over the pad vector. We will start with the simpler
two-player case and then discuss the m-player setting.

4.1 The Two Player Setting

Informal Description of the As protocol. The two players initialize counters, each
one at the far end of the pad vector. Players expend pads in a “head-on collision
run” to each other while maintaining a “safety distance” from each other’s pad
segment. The safety factor is determined by a parameter d. A formal description
of the protocol will appear in the full version; a graphical representation is in
figure 2. In the lemma below we characterize the ACP’s for which the security
of A3 fails.

player 1 player 2
—

.......;OOOOOOOOOOOOOO...

Fig. 2. A head-on collision run: protocol A3

Lemma 1. Let P € .7:?;” for which As is insecure. Then, P has Send-event
with at least d + 1 undelivered messages.

Theorem 3. The OTPAC protocol As is secure for Z/li’:d -]—'i’sn The efficiency
ratio of As over Miﬁd equals 1 — d/n.

Because of Theorem 1, we obtain that protocol A3 has optimal efficiency ratio
over family L[i’:’dﬂ - .7-:24: for d < |n/2].

4.2 The Multi-player Setting

In this section we will generalize the OTPAC protocol A3 to the multi-player
setting. The protocol A4 is a multilayer recursive generalization of protocol As.
Refer to figure 3 for a graphical depiction of the four player setting.

Below we describe the protocol A, and we assume for simplicity that it
involves m = 27 players. Note that to avoid cluttering of notation and due to
lack of space we will only give an informal (but sufficiently detailed) description

Asynchronous Perfectly Secure Communication 225

_> <—
players 1,2 players 3,4

/

|
1
/ |
|
1

\
' \
\
/ U \
/ |
]

,'/ player 1 playﬁr_?:
," Q..OOQOOOOOOOOOOOO..OOQ..

Fig. 3. Multilayered head-on collision runs: protocol A4

\

\
Iplayer 3 player 4 AN
—>

of the algorithms (I, R, S). We give some notation first: every player is identified
by a d-bitstring id. For a string a we denote by [a]; the symbol in the j-th location.
It holds that a = [a]; ... [a]s if a is a 6-long string. If b is a bit, we denote by b its
complement. The neighbor set (res. native set) of degree j for a player id is a set of
bitstrings a so that (i) [a], = [id], for £ =1,...,j—1 (ii) [a]; = [id];, (respectively
: la]; = [id];), and (iii) [a], € {0,1} for all £ = j+1,...,d. The pad vector will
be divided into a number of sub-divisions using a parameter L (thought to be
a small function in n). The sub-division of degree ¢ for £ =1,...,6 — 1 will be
comprised of L' components. Finally in the sub-division of degree § we will have
actual pad segments of length s :=n/L°~!.

The main idea of the protocol is that at the J-subdivision we will have in-
dividual players implementing the two-player protocol in head-on collision run
fashion. Then, at the § — 1 subdivision we will have groups of 2 players operating
in head-on collision fashion, and so on.

A player id maintains a position variable for himself py € {1,..., L}~ x
{1,...,s}. Note that a position maps to a specific pad inside the n-long pad-
vector by specifying one of the LO~! sub-divisions of degree § — 1 as well as a
pad location inside this sub-division. Every player assumes an initial position
in the pad vector. In particular player id assumes the initial position p}git with
(PN, = 1([id], =2 0) + L([id]y =2 1) for £ =1,...,6 — 1 and [pi}*]s = 1([id], =2
0) + s([id]¢ =7 1). This pg = p'g't will be the first pad used by player id if
he wishes to send a message. The header of a ciphertext will be of the form

<|d) pid> .
Every player will maintain information about the movements of his neighbor-
ing subsets of users. In particular, player id will maintain § counters vq,...,vs

for the neighboring subsets of users. These counters are initialized as follows:
Vg = 1([Id]g =9 0) + L([Id]e =9 1) and v = 1([IC|]5 =9 0) + S([Id]g =9 1) If a
message is received that has header (id*, p*), player id will compute the function
a = afid,id*) = j € {1,...,8} such that [id], = [id*], for all £ < j; this « is
called the nativity degree between two players. Conceptually, for two players id
and id* the nativity degree specifies the highest level at which the two players are
facing each other in a head-on collision run (either by themselves, or as members
of larger groups).

226 G. Di Crescenzo and A. Kiayias

Upon receiving a message with header (id*, p*), player id takes the following
actions: (i) it computes the nativity degree «. (ii) for all the sub-divisions for
which player id moves together with id* as members of the same group, player id
must make sure that he advances together with his group. Player id belongs to the
same group of players with id* for all the subdivisions of degree £ € {1,...,a—1}
(note: if o = 1 this set is empty). If id is not “trailing” behind then it should hold
that [pia]e = [p*]e for all £ = 1,...,« — 1. In this case no further action would
be required. On the other hand, let j € {1,...,a — 1} be the smallest integer
such that [pgq]; # [p*];. Player id determines his movement direction within the
group at the subdivision of degree j, which is “to the right” if [id]; = 0 or “to the
left” if [id]; = 1. Then, in case the direction is to the right, the player performs
the operation: if [pg4]; < [p*]; set [pia]; = [p*];. In case the direction is to the
left, the player does instead: if [pia]; > [p*]; set [pa]; = [p*];. If one of the above
two modifications takes place and the value [pig]; is updated, then id resets the
remaining values of py4 as follows [pig]e = [pégit]g for £ =j5+1,...,6. The above
update allows to a player that is trailing behind on a certain level to “catch up”
with his native players; it follows that a player may change his position in the
pad vector because of the movement of his native players. (iii) Regarding the
neighboring players, one neighboring counter needs to be updated: v, ; to update
counter v, player id determines the movement direction of the neighboring set
of players at the a-level (to the right if [id*], = 0, or to the left if [id*], = 1) and
performs the update: if v, < [p*]o and [id*], = 0 then v, = [p*]a; if Vo > [p*]a
and [id*], = 1 then v, = [p*],. Note that player id will ignore any information
provided by p* and refers to a level greater to the nativity degree.

Having described the semantics of the counters we proceed now to see how
a player id having just used the pad at position pi4, advances to the next pad
that he can use. The player needs to determine the status of every level ¢ €
{1,...,6} among two possible states: stay and jump. The state computation for
level £ = 1,...,6 — 1 is as follows: the player checks whether |[pia]e — ve| > 2
and in this case assigns to level ¢ the state stay; for the d-th level the state
stay is assigned if |[pi]s — vs| > d where d is a given fixed parameter. If all
levels are assigned state stay then player id will use the adjacent pad, i.e., if
pid = l1la ... l5—1l5 the next pad will be at pif" = l1ly ... ls_1(ls + 1) if [id]s =0
(movement to the right) or pi™ = lily...ls—1({s — 1) if [id]s = 1 (movement
to the left). If all levels are assigned the state jump then player id terminates.
Now let j be the highest level that is assigned a stay state (and it holds that the
(+ 1)-th state is at the jump state). Then, player id will assume the position
pig* defined as (i) [pif¥]e = [piale for £=1,... 5, (ii) [Pff¥]j1 = [plg*]j+1 + 1 if
lid]j4+1 =0, or [pif"]j4+1 = [pig"]j+1 — L if [id];41 = 1; finally (iii) [pf5*]e = [pig"]e
for ¢ = j+2,...,6 (recall that pij* is the initial position of player id). In addition
to the above, player id must update all its neighbor counters v, for the levels
£ =j+1,...,6 to their initial position, as in the beginning of the protocol,
vy = 1([Id]g =9 O) + L([Id]g =9 1) and vs = 1([Id]5 =9 O) + 8([Id]5 = 1).

A formal description of the protocol will appear in the full version.

Asynchronous Perfectly Secure Communication 227

Lemma 2. Assume parameters L,d,§ = logm such that n/L°~" > d. Let P €
.7-';74" be an an asynchronous communication pattern for which protocol A4 is
insecure. Then, P has Send-event with at least d + 1 undelivered messages.

Theorem 4. The OTPAC protocol Ay is secure for U7 C]—'i’f The efficiency
ratio of Ay over U equals 1 —2(6 —2)/L — (L — 2)°=1d/n.

We note that in the typical case m = O(1),d = O(n®), € < 1, it is possible
to select the parameter L so that the efficiency ratio becomes 1 —1/poly(n), i.e.,
arbitrarily close to 1 for sufficiently large n.

Acknowledgement. The authors thank O. Kornievskaia and A. Shvartsman
for helpful discussions.

References

1. R. Anderson and H. Woll, Algorithms for the Certified Write-All Problem, in STAM
Journal on Computing, vol. 139(1), 1997, p. 1-16.
2. James Aspnes, Randomized protocols for asynchronous consensus, Invited survey
paper for Distributed Computing, PODC 20th anniversary issue. 2002.
3. J. Buss, P. Kanellakis, P. Ragde, and A. Shvartsman, Parallel Algorithms for Pro-
cess Failures and Delays, in Journal of Algorithms, vol. 20(196), 1997, p. 45-86.
4. R. De Prisco, A. Mayer and M. Yung, Time-Optimal Message-Efficient Work-
Performance in the Presence of Faults, in Proc. of PODC 94.
5. C. Dwork, J. Halpern and O. Waarts, Performing Work Efficiently in the Presence
of Faults, in SIAM Journal on Computing, vol. 27, 1998, p. 1457-1491.
6. Michael J. Fischer, Nancy A. Lynch and Mike Paterson, Impossibility of Distributed
Consensus with One Faulty Process, JACM 32(2): 374-382 (1985)
7. Oded Goldreich, The Foundations of Cryptography - Vol. 1, Cambridge University
Press, 2001.
8. J. Groote, W. Hesselink, S. Mauw, and R. Vermeulen, An Algorithm for the Asyn-
chronous Write-All Problem based on Process Collision, in Distributed Computing,
vol. 14(2), 2001, p. 75-81.
9. P. Kanellakis and A. Shvartsman, Efficient Parallel Algorithms Can Be Made Ro-
bust, in Distributed Computing, vol. 5(4), 1992, p. 201-217.
10. D. Kowalski and A. Shvartsman, Performing Work with Asynchronous Processors:
Message-Delay-Sensitive Bounds, in Proc. of PODC 2003, p. 265274
11. Leslie Lamport, Time, Clocks, and the Ordering of Events in a Distributed System
CACM 21(7): 558-565 (1978)
12. Michael Luby, Pseudorandomness and Cryptographic Applications, Princeton Uni-
versity Press, 1996.
13. C. E. Shannon, A Mathematical Theory of Communication, The Bell System Tech-
nical Journal 27, 1948, 379-423, 623-656.
14. G. Vernam, Secret Signaling Systems, US Patent, 1919.

Single-Prover Concurrent Zero Knowledge in
Almost Constant Rounds*

Giuseppe Persiano and Ivan Visconti

Dipartimento di Informatica ed Appl.,
Universita di Salerno, Italy
{giuper, visconti}@dia.unisa.it

Abstract. In this paper we study the round complexity of concurrent
zero-knowledge arguments and show that, for any function S(n) = w(1),
there exists an unbounded concurrent zero-knowledge argument system
with B(n) rounds. Our result assumes that the same prover is engaged
in several concurrent sessions and that the prover has a counter whose
value is shared across concurrent executions of the argument. Previous
constructions for concurrent zero knowledge required a (almost) loga-
rithmic number of rounds [Prabhakaran et al. - FOCS 2002] in the plain
model or seemingly stronger set-up assumptions.

Moreover, we construct two §(n)-round unbounded concurrent zero-
knowledge arguments that are mutually concurrent simulation sound for
any 3(n) = w(1). Here we assume that each party has access to a counter
and that the two protocols are used by the same two parties to play
several concurrent sessions of the two protocols.

1 Introduction

Since its introduction, the concept of a zero-knowledge proof system and the sim-
ulation paradigm have been widely used to prove the security of many protocols.
The notion of concurrent zero knowledge [2] formalizes security in a scenario in
which several verifiers access concurrently a prover and maliciously coordinate
their actions so to extract information from the prover. In [3] it has been showed
that in the black-box model 2(logn) round are necessary for concurrent zero
knowledge for non-trivial languages. The first concurrent zero-knowledge proof
system for NP has been given by [4] that showed that O(n€) are sufficient for
any € > 0. Poly-logarithmic round-complexity was achieved in [5] and, finally,
in [1] it is shown that O(logn) rounds are sufficient. The proof systems pre-
sented in [4, 5, 1] are black-box zero knowledge and the round-complexity of the
proof system of [1] is almost optimal in view of the lower bound proved in [3].
Thus unlike the stand-alone case, black-box concurrent zero knowledge cannot
be achieved in a constant number of rounds.

* Work supported by Network of Excellence ECRYPT under contract IST-2002-
507932.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 228-240, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Single-Prover Concurrent Zero Knowledge in Almost Constant Rounds 229

Different models have been presented in which round-efficient black-box con-
current zero knowledge is possible. In [2,6,7] constant-round concurrent zero-
knowledge proof systems have been presented by relaxing the asynchrony of
the model or the zero-knowledge property. In [8,9], constant-round concurrent
zero-knowledge proof systems have been presented assuming the existence of a
common reference string or a shared random string (i.e., a trusted third party)
while in [10] a constant-round concurrent zero-knowledge with concurrent sound-
ness argument system is shown by assuming that there exists a public reposi-
tory that contains the public keys of the verifiers. Furthermore, Pass [12] gave a
constant-round concurrent zero-knowledge argument with a super-polynomial-
time simulator. In [13], Barak presented a non-black-box constant-round bounded-
concurrent zero-knowledge argument system. The construction of [13] assumes
that the maximum number of concurrent sessions is known in advance.

Simulation-sound zero knowledge. Simulation-sound zero knowledge has been
introduced in [14] for the purpose of constructing cryptosystems secure against
adaptive chosen-ciphertext attacks. This concept is related to the concept of
non-malleability introduced in [15]. Indeed, both notions deal with an adversary
(called the man-in-the-middle) that simultaneously participates to many execu-
tions of two proof systems and acts as a prover in the former and as a verifier in
the latter. The adversary has complete control over the scheduling of the mes-
sages in the executions of the protocols. Informally, two zero-knowledge proof
systems are said mutually concurrent simulation sound if the information that
the man-in-the-middle adversary collects as a verifier from concurrent sessions
played with a simulated prover of the former proof system does not help him to
prove a false statement in the latter proof system and vice versa. Here the man-
in-the-middle can choose to see simulated proofs of true and false statements.

Simulation-sound zero knowledge plays an important role for proving the
security of protocols. Indeed, when the simulation paradigm is used to prove
the security of a protocol, the simulator could, in some cases, need to simulate
the proof of a false statement. Here simulation soundness is crucial since the
adversary could gain knowledge from such a proof in order to prove a false
statement in another protocol.

Our results. In this paper we show that, for any function § such that § = w(1),
there exists a 8(n)-round concurrent zero-knowledge argument system for any
language in AN'P. Our argument system assumes that: 1) the prover is equipped
with a counter that counts the total number of bits he has sent so far in all
sessions; 2) the argument system remains zero knowledge provided that one
single prover is engaged by the adversarial verifier in any polynomial number of
(unbounded) concurrent sessions.

We stress that our set-up assumptions seem no-stronger than the ones made
in [2,6,7,8,10]. Comparing our result with the bounded-concurrent result of
[13], we stress that our construction does not assume knowledge of an a-priori
bound on the number of concurrent sessions. On the other hand, our construc-
tion requires a super-constant number of rounds. Finally, we remark that the

230 G. Persiano and 1. Visconti

concurrent zero-knowledge property of our construction is obtained by means of
an efficient simulator.

Relying upon our construction of concurrent zero knowledge we present two
B(n)-round argument systems that are concurrent zero knowledge and mutually
concurrent simulation sound for any 8 = w(1). Here we require set-up assump-
tions inherited from the concurrent zero-knowledge argument on which they are
based: 1) each party is equipped with a counter that is used to keep track of the
total length of some of the messages sent; 2) the two protocols are played by the
same two players with roles inverted.

Comparison with known assumptions. In the past, round-efficient concurrent
zero knowledge has been achieved by making assumptions that decrease the
power of an adversarial concurrent verifier. For example timing assumptions
(used in [2,6,7]) limit the power of adversarially scheduling the communication
between prover and verifier (by imposing a bound on the delays experienced by
the messages), bounded concurrency (used in [13]) upper bounds the number of
concurrent sessions. When concurrent zero knowledge is obtained in presence of
a common reference string [8,9], the adversarial concurrent verifier is assumed
not to corrupt the party that generated a common reference string and that this
party securely preserves (or erases) any secret information about the string.

In contrast, our assumptions are quite different in nature. Let us discuss the
case of concurrent zero knowledge (the same discussion can be used for the two
arguments that are mutually concurrent simulation-sound and concurrent zero-
knowledge). First of all, we claim that the need of a counter for a prover is a
very weak assumption. Indeed, we only require that the adversarial concurrent
verifier cannot modify the value of the counter of the prover. Our results continue
to hold if the adversary is allowed to read the value of the counter.

Our second requirement forbids an adversarial concurrent verifier the ex-
ecution of concurrent sessions with different provers. In comparison with the
assumptions made in the literature, in our case the adversarial verifier can still
open any polynomial number of concurrent sessions with complete control on the
scheduling of the messages. There is no bound on the delay of the messages and
no trusted party is assumed. Instead, the zero-knowledge property concerns an
attack of an adversarial verifier that tries to gain knowledge from a given prover.
It is interesting that such a restriction allows the design of round-efficient and
concurrent-secure protocols.

Constant-round arguments. Our construction leaves as an open problem the con-
struction (even under our set-up assumptions) of a constant-round concurrent
zero-knowledge argument for all AP and of constant-round mutually concurrent
simulation-sound and concurrent zero-knowledge arguments. Indeed for the case
of zero knowledge one would like to prove the following informal statement.

Statement 1 (Open problem.). There exist a constant ¢ and an argument
system (P, V') such that for all constants k and all adversaries V* that open at
most n* concurrent sessions, (P, V) takes at most ¢ rounds and the view of V*
can be simulated in polynomial time.

Single-Prover Concurrent Zero Knowledge in Almost Constant Rounds 231

Instead we prove the following weaker statement which can be seen as an inter-
mediate result towards the proof of Statement 1.

Statement 2. There exists an argument system (P,V') such that for all con-
stants k and all adversaries V* that open at most n* concurrent sessions, there
exists a constant ¢ such that (P, V') takes at most ¢ rounds and the view of V*
can be simulated in polynomial time.

Indeed, in our construction the number of rounds depends on the degree of
concurrency. However, we show that a super-polynomial number of sessions are
needed in order to force a super-constant number of rounds. Statement 2 should
be contrasted with the following statement proved in [13] (corresponding to
bounded-concurrent zero knowledge).

Statement 3 ([13]). There exists a constant ¢ such that for all constants k
there exists an argument system (P,V') such that for all adversaries V* that
open at most n¥ of concurrent sessions, (P, V) takes at most ¢ rounds and the
view of V* can be simulated in polynomial time.

2 Concurrent Zero Knowledge

We now define the zero knowledge requirement that is of interest for this paper:
concurrent zero knowledge.

Definition 1. Let (P,V) be an interactive or argument system for a language
L. We say that a probabilistic polynomial-time adversarial verifier V* is a con-
current adversary if it concurrently runs a polynomial number of interaction
with a prover P, without any restrictions over the scheduling of the messages in
the different interactions with P. Moreover we say that the transcript of such a
concurrent interaction consists of the common inputs and the sequence of prover
and verifier messages exchanged during the interaction. We refer to viewl ()
as the random variable describing the content of the random tape of V* and the
transcript of the concurrent interactions between P and V*.

Definition 2. Let (P, V) be an interactive argument system for a language
L. We say that (P,V) is concurrent zero knowledge if, for each probabilistic
polynomial-time concurrent adversary V* there exists a probabilistic polynomial-
time algorithm Sy such that the ensembles {viewl (z)}ser and {Sv (v)}ser
are computationally indistinguishable.

The above definition (and our construction of a concurrent zero-knowledge
argument system) considers the case of a single prover that potentially runs
several sessions with the adversarial verifier. Such a definition can be extended
to a multi-prover setting in which the adversarial verifier concurrently runs a
polynomial number of sessions with possibly different provers. In the standard
model when a concurrent adversary is considered, the multi-prover setting and

232 G. Persiano and 1. Visconti

the single-prover setting coincide since a single-prover in each interaction is obliv-
ious of the existence of each other interaction. Instead in our settings, we rely
on the fact that the prover knows an upper bound on the length of the view of
the verifier he is interacting with and this is possible if there is only one prover.

We now present our construction of a concurrent zero-knowledge argument
system for any language in N'P. We start by describing the model in Section 2.1,
we give a high-level description of the protocol in Section 2.2, we describe its
main components in Section 2.3 and 2.4, and, finally, the protocol and the proofs
of its properties are presented in Section 2.5.

2.1 The Model

Our (unbounded) concurrent zero-knowledge argument system requires a model
richer than the standard plain model for concurrent zero knowledge used by
the previous unbounded-concurrent black-box zero-knowledge argument systems
of [4,1,5] and the bounded-concurrent non-black-box zero-knowledge argument
system of [13]. Indeed, our argument system is based on the following two set-up
assumptions.

1. The prover is equipped with a counter that counts the total number of bits
that he has sent in all the sessions. The counter can not be modified by the
adversarial verifier.

2. The argument system is zero knowledge provided that the same prover is
engaged by the adversarial verifier in any polynomial number of concurrent
sessions.

The first assumption requires that the prover is stateful as the counter is
shared by all concurrent sessions. Moreover, the adversarial verifier cannot mod-
ify this value. The fact that the adversarial verifier can run many concurrent
sessions against only one prover is a consequence of the first assumption since in
general a stateful prover behaves differently from another stateful prover when
their states are different. Obviously, this does not constitute an issue in the plain
model for concurrent zero knowledge where the prover is stateless.

2.2 A High Level Description

Our protocol follows the FLS paradigm [16] that has been used for the bounded-
concurrent zero-knowledge argument system of Barak [13]. An FLS-type pro-
tocol is composed of two subprotocols: a preamble subprotocol and a witness-
indistinguishable argument subprotocol. In an FLS-type protocol, the goal of the
preamble subprotocol is to allow prover and verifier that are interacting on input
a statement “z € L”, to create an augmented statement “(z € L) V (1 € A)” to
be proved later in the witness-indistinguishable argument subprotocol. In [13],
the auxiliary statement “7 € A” informally stands for “com is the commitment of
h(A) where A is a program that on input a sufficiently short string tr outputs r
in time bounded by a slightly super-polynomial function”. The simulator of [13]

Single-Prover Concurrent Zero Knowledge in Almost Constant Rounds 233

sets A equal to the description of the adversary and tr to its view. To guarantee
soundness it is enough that r is sufficiently longer than tr.

Since we want unbounded-concurrent zero knowledge, we cannot give a bound
on the length of the string tr. Instead, our preamble consists of several itera-
tions (corresponding to increasing values for the length of tr) in which the
prover asks the verifier for increasingly long strings r. The prover stops when
he receives a string r whose length is at least twice the length of the transcript
of all the concurrent sessions!. The prover maintains a counter to count the
length of the transcript of the concurrent sessions. Notice that since the number
of rounds of the preamble is not known at the beginning of the protocol, the
randomness owned by the verifier could be not sufficient to complete the proto-
col. Therefore, we assume that the verifier has at least an n-bit random string
that he stretches round by round of the preamble by means of a pseudorandom
generator.

A non-black-box simulator S, interacting with a concurrent adversary V* and
given access to the code of V*, commits to its code and randomness by setting
A = V*. Then in the argument subprotocol S proves that there exists a string
tr (the transcript of the interaction between the simulator and V*) for which
the machine whose code has been committed (that is V*) would give as output
r when receiving tr as input.

The statement is obviously true and S has a witness for it (i.e., the decommit-
ment, the description of the adversary and the sufficiently short transcript). S
finishes by running the prover’s program for the witness indistinguishable argu-
ment. Notice that the simulator runs the same number of sub-preambles played
by the prover.

For the round complexity of the protocol, it can be seen that for each con-
stant k there exists a constant c; such that, if the adversary starts at most n*
concurrent sessions, the protocols will take at most ¢; rounds. Thus, for any
function B(n) = w(1l), we can conclude that, for any polynomial number of
concurrent sessions, our protocol takes (for sufficiently large n) at most [G(n)
rounds.

2.3 The Preamble Subprotocol

Auziliary inputs. On input x of length n, prover P has a witness w for z € L
and a counter ¢ that is shared by all concurrent executions of P.

The preamble step by step. Let H = {hs} be an ensemble of collision-resistant
hash functions secure against n®(1°8™)_time adversaries. Each function of h, € H
maps any string to a string of length 3|«|. V randomly picks a hash function h
by randomly picking an n-bit string « and sends (a description of) h = h,, to P.
Moreover V picks a random seed s for the pseudorandom generator G and will
use the output of G on input s as a random tape.

! The transcript of a session that we consider here consists of all the messages sent by
the prover.

234 G. Persiano and 1. Visconti

Then the prover uses a statistically binding commitment scheme (G, Com, Dec)
to compute (com,dec) = Com(h(0™)), sends com to the verifier and increments ¢
by |com|.

Now the prover and the verifier repeat the following iteration, starting with
1 =1, until the preamble is declared completed:

1. at the i-th iteration, V randomly picks a 2n’-bit string r; and sends it to the
prover;

2. if ¢ < n? then the preamble is declared completed and P sends the bit “1”
to V to mark the end of the preamble; otherwise, P sends the bit “0” to ask
V' to perform iteration ¢ = i + 1. In both cases, P increments the counter ¢
by 1.

2.4 The Argument Subprotocol

The argument subprotocol consists in the execution of a witness-indistinguishable
universal argument for proving statement “(x € L)V (7 € A).” We stress that
during the execution of the argument subprotocol the prover increments ¢ to
keep track of the number of bits he has sent. Let us now describe the language
A and the string 7.

We say that (h,com,r) € A if (com,dec) = Com(h(A)) and there exists tr of
length |tr| < |r|/2 such that A, on input tr, outputs r in at most n'°glosn/2
steps.

The triple 7 = (h, com,r) used by the prover in the argument subprotocol
consists of the (description of the) collision-resistant hash function h picked
by the verifier, the commitment com sent by the prover and the last string r
sent by the verifier during the preamble protocol. Obviously, the prover runs the
witness indistinguishable universal argument subprotocol for Ntime(n!'°%1°8 ") for
proving statement “(x € L)V (7 € A)” using w such that (x,w) € Ry, as witness.
The simulator instead uses his knowledge of the code of the verifier to compute
(com,dec) = Com(h(V*)) in the preamble. Therefore, if V* in the i-th iteration
of the loop of the preamble subprotocol, on input a transcript tr of the messages
sent by the simulator such that [tr| < n?, outputs a 2n-bit message r, the triple
(dec, V*, tr) is a witness for (h, com,r) € A and therefore for “(z € L)V (1 € A)”.
Thus the simulator runs the code of the prover of the witness-indistinguishable
universal argument subprotocol using (dec, V*,tr) as witness.

2.5 The Concurrent Zero-Knowledge Argument System

Our concurrent zero-knowledge argument system for all languages in NP com-
bines the preamble subprotocol from Section 2.3 and the witness-indistinguishable
universal argument for Ntime(n'°81°8 ") from Section 2.4. By using the techniques
introduced in [17] our construction only needs the existence of collision-resistant
hash function ensembles that are secure with respect to polynomial-time algo-
rithms.

Single-Prover Concurrent Zero Knowledge in Almost Constant Rounds 235

Theorem 1. Assuming the existence of collision-resistant hash function ensem-
bles that are secure against polynomial-time algorithms, then there exists (con-
structively) a B(n)-round concurrent zero-knowledge arqument system for NP

for any B(n) = w(1).

The proof of Theorem 1, is omitted from this extended abstract.

3 Concurrent Simulation Soundness

In this section we show that the concurrent zero-knowledge argument system pre-
sented in Section 2 can be used to construct two mutually concurrent simulation-
sound and concurrent zero-knowledge argument systems. More precisely, in this
section we show that, under set-up assumptions similar to those used to con-
struct the concurrent zero-knowledge argument of Section 2, there exists (con-
structively) a pair of B(n)-round concurrent zero-knowledge argument systems
that are mutually concurrent simulation sound for any § = w(1).

Man-in-the-middle adversary. The strong notion of simulation-sound zero knowl-
edge deals with an adversary A that mounts a man-in-the-middle attack at two
arguments SSPy = (Py,Vp) and SSP; = (P;,Vi). The adversary A acts as
a verifier in an instance of protocol SSPy and as a prover in a (concurrently
played) instance of protocol SSP;. A has complete control of the communica-
tion channel and can decide the scheduling of the messages. Informally, SSP,
is simulation sound with respect to SSP; if the “simulated” proof of a (possibly
false) statement seen by A as a verifier of SSPy does not help him to prove a
false statement in SSP;. If SSPy = SSP; then we say that SSP, is self sim-
ulation sound. If SSP, is simulation sound with respect to SSP; and SSP; is
simulation sound with respect to SSF, then we say that SSFy, and SSP; are
mutually simulation sound.

A concurrent man-in-the-middle adversary A is allowed to play several con-
current instances of SSPy and SSP; (instead of just one for each protocol). In
this case, if the “simulated” proofs of both true and false statements in SSPy do
not help A to prove a false statement in SSP; we say that SSPy is concurrently
simulation sound with respect to SSP;. We will consider this stronger notion of
simulation soundness.

We denote by {outio,";?(ml, “ 5 Tpoly(n); T,

’xi)oly(n))} the distribution
of the output of V7 after a concurrent man-in-the-middle attack of A. We as-
sume that in SSP,, Sy simulates the proofs for both true and false statements
; g . (! /
(z1,..., xpoly(n)) and in SSP; A tries to prove statements (z7, ... ’xpoly(n))'
The output of V5 in such an experiment is therefore a vector of bits (by,...,
bpoly(n)> where b; = 1 means that V3 accepted the proof for x} while b; = 0
means that V; rejected the proof for z, for i = 1,...,poly(n).
We now give a formal definition of concurrent simulation soundness that we

use in our construction.

236 G. Persiano and 1. Visconti

Definition 3. Let SSPy = (Py, Vo) and SSPy = (Py, V1) be two argument sys-
tems for a language L. We say that SSPy is concurrently simulation-sound with
respect to SSPy if, for any concurrent man-in-the-middle adversary A, there
exists a probabilistic polynomial-time algorithm S 4 such the probability that the
i-th bit of {outi“f“’/f(xl,...,mpcly(n),m’l, ... ’xi)oly(n))} is 1 and z;, & L for
i€ {1,...,poly(n)} is negligible.

3.1 The Additional Assumptions of Our Model

We show in the next section a pair of mutually (unbounded) concurrent
simulation-sound and concurrent zero-knowledge arguments. For our construc-
tions we will need set-up assumptions very similar to the ones used for concur-
rent zero knowledge. As for the case of concurrent zero knowledge, we do not
assume the existence of any trusted third party nor of trusted sources of shared
randomness. Our protocol is based on the following two set-up assumptions.

1. Each party is equipped with a counter that gives at each step the total
number of bits he has sent so far in all sessions in which he acts as a prover
in both protocols and as a verifier in only one of the two protocols.

2. SSPy and SSP; are played by the same two players with roles inverted.

As in the previous construction, the first assumption makes the parties stateful
since they need to propagate the value of the counter across concurrent sessions.
The fact that we need to restrict the adversary to mount an attack against only
one player (although this single player is allowed to play both as a prover and
as a verifier in several concurrent sessions) is a consequence of our first set-up
assumption. Indeed for stateless parties, it does not make a difference whether
the prover and verifier that are interacting with the man-in-the-middle adversary
are the same or not.

We stress that in this model, the argument system of Section 2 is also con-
current non-malleable (we stress that non-malleability requires that proofs of
true statements do not help the adversary for proving a different statement) and
concurrent zero-knowledge. Indeed, the fact that we only have to deal with two
parties implies that the simulator controls both the prover and the verifier played
by the honest parties (in particular the simulator has access to the randomness
used by these algorithms) which makes things much easier. This approach does
not work for obtaining simulation soundness; in this case the adversary can
request to see the (simulated) proofs of polynomially many true and false state-
ments which makes the design of concurrent simulation-sound argument systems
more difficult. Let us now concentrate on simulation soundness.

3.2 The Mutually Concurrent Simulation-Sound Argument
Systems

In this section we describe the two argument systems that are mutually concur-
rent simulation-sound and concurrent zero knowledge, that is both are concur-
rent zero knowledge and each one is concurrently simulation sound with respect
to the other one.

Single-Prover Concurrent Zero Knowledge in Almost Constant Rounds 237

For our construction, we use some techniques introduced in [11], and there-
fore we need cryptographic primitives that are secure with respect to super-
polynomial-time adversaries.

Using an ensemble of collision resistant hash functions that is secure against
T(n)°M-adversaries, the universal argument presented in [17,13] is sound with
respect to adversaries running in time 7'(n). By plugging such a strengthened
universal argument in the concurrent zero-knowledge argument system of Sec-
tion 2, and assuming that even in the preamble such stronger hash functions are
used, we have that the resulting concurrent zero-knowledge argument systems is
sound against adversaries running in time 7'(n).

In order to obtain two mutually concurrent simulation-sound and concur-
rent zero-knowledge argument systems, we use the following approach. We show
a concurrent zero-knowledge argument system SSP; that has also a straight-
line simulator that by running in time n®(°8™) inverts a one-way permutation
(here we use the recent techniques of [12,11]). We then show a concurrent zero-
knowledge argument system SSPy that is sound with respect to n®(°e" ") ad-
versaries. Informally, concurrent simulation soundness of SSP; with respect to
SSPy is proved in the following way. An adversarial prover Py for SSP, that
proves a false statement while concurrently interacting in any polynomial num-
ber of sessions as a prover of SS P, and as a verifier of SSP; can be used to break
the stand-alone soundness of SSP,. We use here the existence of an n@(osn)_
time straight-line simulator for S'S Py, since it can be easily extended to play also
the role of verifier in SSP,2, therefore a relay strategy for the session in which
P; proves a false statement can be use to break in time n°(1°8™) the stand-alone
soundness of SSP that is assumed to work against nOUoe’ ") adversaries.

For proving the concurrent simulation soundness of SSP, with respect to
SSP; we use a different technique since the previous approach can not work in
both directions at the same time. The idea is that for proving the simulation
soundness of SS Py with respect to SS Py, it is necessary to consider an adversary
P} that plays both the role of prover in concurrent sessions of SSP; and the
role of verifier in concurrent sessions of SSFy. The zero-knowledge simulator of
S'S P, suffices here for simulation soundness but it has to consider the view of the
adversary P} that also includes the messages that he receives in SSP;. In case
P} has proved a false statement for SSP;, we get a contradiction with respect to
the stand-alone soundness of SSP;. This can be achieved by performing a relay
strategy with a real verifier V4. The original parameter (i.e., the counter) of the
concurrent zero-knowledge argument system of Section 2 includes in SSPy the
messages of the sessions of SS Py received by P;" when playing the role of verifier
and the messages of SSP; received by P when playing the role of prover. Since
the same does not hold for SSP; (where the prover only counts the bits sent as

2 This additional work does not damage the simulation of SSP; since such simulation
is not based on the knowledge of the code of the adversary and its input. Instead,
the simulation is based on the power of breaking a primitive that is assumed to be
hard for n°1°™)_time algorithms.

238 G. Persiano and 1. Visconti

a prover of SSP;), the communication complexity of SSP; is short enough to
allow the desired round complexity in SSP.

We now give the details of the two protocols while the formal proofs are
omitted from this extended abstract.

The first protocol. The first of the two mutually concurrent simulation-sound
and concurrent zero-knowledge arguments is referred to as SSP, and is the con-
current zero-knowledge protocol of Section 2 with the following modification.
First of all, SS P, is the strengthened concurrent zero-knowledge argument sys-
tem (as discussed above) that is sound against nOUog” n)_adversaries (i.e., we
set T(n) = n O (log® ™). For this reason, we assume the existence of an ensemble
of hash functions that are collision resistant with respect to algorithms run-
ning in time n°@°&” ") Moreover, the counter is incremented also by |m| when
a message m is sent as a verifier in some concurrent execution of SSP;. Obvi-
ously, when only concurrent zero knowledge is considered, this last case never
occurs. During the universal argument phase the prover proves the statement
“x € LV T = (h,com,7) € A” where h is the collision resistant hash function
selected by the verifier, com is the commitment sent by the prover and r is the
last message sent by the verifier during the preamble. It is easy to see that the
modified protocol is still concurrent zero knowledge and has the same round
complexity as the one discussed in Section 2. For proving (stand-alone) sound-
ness, notice that by the soundness and the weak proof of knowledge properties
of the witness indistinguishable universal argument, an extractor algorithm ob-
tains in time n@(°81967) the witness used by the adversarial prover for proving a
false statement. Therefore, in this case he obtains a triple (dec, M, tr) such that
M(tr) = r where [tr| < |r|/2, and M outputs r in at most n'°&!°8"/2 steps.

The second protocol. The second of the two mutually concurrent simulation-
sound arguments is referred to as SSP; and is the concurrent zero-knowledge
protocol of Section 2 with the following modifications. First of all, SSP; is the
strengthened concurrent zero-knowledge argument system (as discussed above)
that is witness indistinguishable with respect to n©°8™)_adversaries (i.e., we set
T(n) = n®U°8")), Then we assume the existence of a one-way permutation f such
that f is hard to invert with respect to algorithms running in time n©(cglogn)
but can be inverted in time n®1°€™) In the first round the verifier still chooses
an hash function. In addition, V picks a random string u in the domain of f
and sends v = f(u) to the prover. The language A is the same used for the
concurrent zero-knowledge argument system of Section 2: 7 = (h, com,r) € A if
com is a commitment of h(A) and there exists a string tr such that [tz| < |r|/2,
and M (tr) outputs r in at most ploglogn/2 gteng.

During the witness indistinguishable universal argument of knowledge the
prover proves knowledge of a witness y for either (x,y) € L or 7 = (h, com,r) € A
or such that f(y) =v.

It is easy to see that the modified protocol is still concurrent zero knowledge
and has the same round complexity as the original one. Only the (stand-alone)
soundness property is affected by this update. However, notice that the only

Single-Prover Concurrent Zero Knowledge in Almost Constant Rounds 239

difference with respect to soundness of the argument system of Theorem 1 is
that the extractor of the universal argument could also extract a witness y such
that f(y) = v. However, since the extractor runs in time nOUoglogn) e have
that the one-way permutation is inverted in time n°(°8™) that contradicts the
assumed hardness of f.

Protocol SSP; admits also a quasi-polynomial-time simulator that by run-
ning in time n?°¢™) inverts any polynomial number of one-way permutations
and therefore can simulate in a straight-line fashion any polynomial number of
session of SSP; without using knowledge of the description of the adversarial
verifier. Notice that such a simulator still has to run the algorithm of the prover
during the preamble, in order to maintain the same round complexity of the real
prover.

References

1. Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent Zero-Knowledge with Loga-
rithmic Round Complexity. In Proc. of FOCS ’02, IEEE Computer Society Press
366-375

2. Dwork, C., Naor, M., Sahai, A.: Concurrent Zero-Knowledge. In Proc. of STOC
98, ACM (1998) 409-418

3. Canetti, R., Kilian, J., Petrank, E., Rosen, A.: Black-Box Concurrent Zero-
Knowledge Requires w(logn) Rounds. In Proc. of STOC ’01, ACM (2001) 570-579

4. Richardson, R., Kilian, J.: On the Concurrent Composition of Zero-Knowledge
Proofs. Proceeding of Eurocrypt ’99. Vol. 1592 of LNCS, Springer-Verlag (1999)
415-431

5. Kilian, J., Petrank, E.: Concurrent and Resettable Zero-Knowledge in Poly-
Logarithmic Rounds. In Proc. of STOC ’01, ACM (2001) 560-569

6. Dwork, C., Sahai, A.: Concurrent Zero-Knowledge: Reducing the Need for Timing
Constraints. In Proc. of Crypto '98. Vol. 1462 of LNCS, Springer-Verlag (1998)
442-457

7. Goldreich, O.: Concurrent Zero-Knowledge with Timing, Revisited. In Proc. of
STOC 02, ACM (2002) 332-340

8. Damgard, I.: Efficient Concurrent Zero-Knowledge in the Auxiliary String Model.
In Proc. of Eurocrypt ’00. Vol. 1807 of LNCS, Springer-Verlag (2000) 418-430

9. Blum, M., De Santis, A., Micali, S., Persiano, G.: Non-Interactive Zero-Knowledge.
SIAM J. on Computing 20 (1991) 1084-1118

10. Di Crescenzo, G., Persiano, G., Visconti, I.: Constant-Round Resettable Zero
Knowledge with Concurrent Soundness in the Bare Public-Key Model. In Proc. of
Crypto ’04. Vol. 3152 of LNCS, Springer-Verlag (2004) 237-253

11. Pass, R., Rosen, A.: Bounded-Concurrent Secure Two-Party Computation in a
Constant Number of Rounds. In Proc. of FOCS 03, IEEE Computer Society
Press (2003)

12. Pass, R.: Simulation in Quasi-Polynomial Time and Its Applications to Protocol
Composition. In Proc. of Eurocrypt ’03. Vol. 2045 of LNCS, Springer-Verlag (2003)
160-176

13. Barak, B.: How to Go Beyond the Black-Box Simulation Barrier. In Proc. of FOCS
’01, IEEE Computer Society Press (2001) 106-115

240 G. Persiano and 1. Visconti

14. Sahai, A.: Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen-
Ciphertext Security. In Proc. of FOCS ’99, IEEE Computer Society Press (1999)
543-553

15. Dolev, D., Dwork, C., Naor, M.: Non-Malleable Cryptography. SIAM J. on Com-
puting 30 (2000) 391-437

16. Feige, U., Lapidot, D., Shamir, A.: Multiple Non-Interactive Zero Knowledge
Proofs Under General Assumptions. STAM J. on Computing 29 (1999) 1-28

17. Barak, B., Goldreich, O.: Universal Arguments and Their Applications. In: IEEE
Conference on Computational Complexity (CCC ’02), IEEE Computer Society
Press (2002)

LCA Queries in Directed Acyclic Graphs

Miroslaw Kowaluk'* and Andrzej Lingas?**

! Institute of Informatics, Warsaw University, Warsaw
kowaluk@mimum.edu.pl
2 Department of Computer Science, Lund University, 22100 Lund
Fax +46 46 13 10 21
Andrzej.Lingas@cs.lth.se

Abstract. We present two methods for finding a lowest common ances-
tor (LCA) for each pair of vertices of a directed acyclic graph (dag) on
n vertices and m edges.

The first method is surprisingly natural and solves the all-pairs LCA
problem for the input dag on n vertices and m edges in time O(nm). As
a corollary, we obtain an O(n?)-time algorithm for finding genealogical
distances considerably improving the previously known O(n2'575) time-
bound for this problem.

The second method relies on a novel reduction of the all-pairs LCA
problem to the problem of finding maximum witnesses for Boolean ma-
trix product. We solve the latter problem and hence also the all-pairs
LCA problem in time O(n2+ﬁ), where w = 2.376 is the exponent of
the fastest known matrix multiplication algorithm. This improves the
previously known O(nWTH
problem in dags.

) time-bound for the general all-pairs LCA

1 Introduction

The problem of finding a lowest common ancestor (LCA) in a tree, or more gen-
erally, in a directed acyclic graph (dag) is one of the basic algorithmic problems.
An LCA of vertices v and v in a dag is an ancestor of both v and v which has no
descendant that is an ancestor of v and v, see Fig. 1 for example. We consider the
problem of preprocessing a dag such that LCA queries can be answered quickly
for any pair of vertices. It has a variety of important applications, e.g., in object
inheritance in programming languages, analysis of genealogical data and lattice
operations for complex systems (see [2] for details and further references).

For trees, linear-time preprocessing is sufficient to answer LCA queries in
constant time [7]. For general dags, after an O(nWTH)—time preprocessing, LCA
queries can be answered in constant time [2] (where n is the number of vertices
and w = 2.376 is the exponent of the fastest known matrix multiplication algo-

* Research supported by KBN grant 4T11C04425.
** Research supported in part by VR grant 621-2002-4049.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 241-248, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

242 M. Kowaluk and A. Lingas

Fig. 1. The LCA of 8 and 9 are 1 and 5

rithm). A lower bound 2(n™) by reduction of the transitive closure problem to
all-pairs LCA in dags is also given in [2].

We present two methods of efficiently preprocessing a directed graph on n
vertices and m edges in order to answer an LCA query for any pair of vertices
in constant time, subsuming the previously known best results from [2].

The first method is surprisingly natural and solves the all-pairs LCA problem
for the input dag on n vertices and m edges in time O(nm). For sparse dags,
this method is optimal and substantially faster than the known O(nWTH)—time
general method from [2]. As a corollary, we obtain an O(n?)-time algorithm
for finding genealogical distances considerably improving the previously known
O(n?®7) time-bound for this problem [2].

The second method efficiently reduces the all-pairs LCA problem to the
problem of finding maximum (index) witnesses for Boolean matrix product.
We solve the latter problem and hence also the all-pairs LCA problem in time
O(n**7%). Since 2 + - ~ 2.616 and “f2 ~ 2.688, our result subsumes the

previously known O(nWTH) time-bound for the general all-pairs LCA problem in
dags [2].

The first and second methods are respectively described in Sections 2 and 3
whereas Section 4 presents the algorithm for finding genealogical distances. Our
paper concludes with final remarks.

2 Optimal Method for Sparse Dags

First, we shall describe preprocessing for answering queries about existence of a
common ancestor for arbitrary pair of vertices in constant time.

For the input dag, we shall denote by n and m its number of vertices and
edges, respectively. Also for a vertex v in the dag, indeg(v) and outdeg(v) stand
respectively for the in-degree and out-degree of v. If outdeg(v) = 0 then v is
called a terminal vertex and if indeg(v) = 0 then v is called a source vertes.

We may assume without loss of generality that the input dag is connected
since otherwise we can decompose it into connected components and solve the

LCA Queries in Directed Acyclic Graphs 243

problem for each component separately. For technical reasons, we shall also as-
sume that every vertex is its own ancestor.
The following lemma immediately follows from the definition of a dag.

Lemma 1. If two vertices have a common ancestor then there is a source vertex
that is their common ancestor.

In the first stage of the preprocessing, for each vertex of the input dag we form a
table containing its descendants. In other words, we create the transitive closure
of the dag which obviously can be done in time O(nm). For the sake of Section
4, we describe this stage in more details below.

We initialize the tables in time O(n?) and start from the terminal vertices,
filling their tables with single vertices in time O(n). Next we iterate the following
step: remove the vertices of out-degree 0 with incident edges and fill the tables
for the new vertices v of out-degree 0 by merging the information from the tables
associated with the removed direct descendants of v, and taking into account
the set of direct descendants of v. We also add v to its table. For each vertex
v such an operation takes time O(n) x outdeg(v). Thus, for the whole graph it
takes O(nm) time.

Lemma 2. The tables of descendants for all vertices can be formed in time

O(nm).

In the second stage of the preprocessing, we determine for each vertex v
the set of vertices which have a common ancestor with v. We proceed simi-
larly as in the first stage of preprocessing starting from source vertices instead
of the terminal ones. For the source vertices s, the sets are already computed,
they are just the sets of descendants of s. Next, we iterate the following step:
remove the vertices of in-degree 0 with incident edges and fill the tables for
the new vertices v of in-degree 0 by merging the information from the ta-
bles associated with the removed direct ancestors of v. For each vertex v such
an operation takes time O(n) x indeg(v). Thus, for the whole graph it takes
O(nm) time.

By the height of a vertex v in a dag, we shall mean the length of the longest
path from a source vertex to v in the dag.

Note that the set of vertices having a common ancestor with a vertex v is the
union of the sets of vertices having common ancestors with the ancestors of v
(recall that v is also an ancestor of itself). Hence, we obtain the following lemma
by induction on the height of v.

Lemma 3. For all vertices v, the tables of vertices having a common ancestor
with v can be computed in time O(nm).

In order to answer LCA queries we need to refine the preprocessing slightly. Dur-
ing the second descending phase of the preprocessing we additionally enumerate
the vertices in their visiting order. Since an ancestor is always visited before its
descendant, we obtain the following lemma.

244 M. Kowaluk and A. Lingas

Lemma 4. A vertex of a higher number cannot be an ancestor of a vertex of a
lower number.

For all vertices v, in the table keeping vertices w having a common ancestor with
v, we keep also the maximum of the numbers assigned to the common ancestors
of v and w. To achieve this, when we merge the information from the tables of
direct ancestors of v, we pick the maximum number of a common ancestor of a
direct ancestor of v and w. Clearly, the refinement can be accomplished within
the same asymptotic time O(mn). By induction, we obtain the following lemma.

Lemma 5. For all vertices v, the tables of vertices w having a common ancestor
with v with a pointer to a lowest common ancestor of v and w can be computed
in time O(nm).

Hence, we obtain immediately the following theorem.

Theorem 1. A dag on n vertices and m edges can be preprocessed for constant-
time LCA queries in time O(nm).

If m = O(n) then the preprocessing is optimal.

Corollary 1. The all-pairs LCA problem for a dag on n vertices and m edges
can be solved in time O(n(n + m)).

3 O(n2+ﬁ)-Time Method for General Dags

If an entry C[i,j] of the Boolean product of two Boolean matrices A and B is
equal to 1 then any index k such that A[i, k] and B[k, j] are equal to 1 is a
witness for C[i, j]. If k is the largest possible witness for C[i, j] then it is called
the mazimum witness for C[i, j].

In [3], Galil and Margalit presented an O(n®*)-time method for the problem
of computing witnesses for all positive entries of the Boolean product of two nxn
Boolean matrices. Their method (too involved to describe shortly) can be viewed
as a sequence of algorithms for a generalization of the problem. The first algo-
rithm corresponds to the straightforward cubic method testing all the n witness
possibilities for each positive entry of the product. The consecutive algorithms
partition the input into blocks. Next, they use the fast algorithm for Boolean
matrix product to compute the product of the blocks pairwise, and use the re-
sulting products to partition the problem into subproblems. In the subproblems,
for a row of the first input matrix and a column of the second input matrix,
only an unique index fragment induced by the block partition and containing
a witness is considered. The subproblems are solved recursively by permutting
rows and columns and using the previous algorithms from the sequence.

Only the first two algorithms in the sequence of algorithms constructed by
their recursive method do not rely on row and column permutations. Therefore,
the method does not seem adaptable to produce the maximum witnesses without
altering its asymptotic time.

LCA Queries in Directed Acyclic Graphs 245

Ad Ay 1A B | — 7o i
nl X Hn— V.yv vCrq

Fig. 2. The relationship between A;,s, B;,qs and C';qs

Our method for maximum witnesses of the Boolean product C of two n x n
Boolean matrices A and B can be viewed as a modification of the second of
the algorithms for witnesses of C' in the aforementioned sequence of algorithms
from [3].

Let [be a positive integer smaller than n. Partition the matrices A and B
into { x I sub-matrices A,q, Brq, where 1 <1, g < n/l, such that for 1 <r <n/I,
the sub-matrices A,4, 1 < ¢ < n/l, cover the rows (r — 1)l + 1 through rl of A
whereas for 1 < ¢ < n/l, the sub-matrices B,,, 1 < r < n/l, cover the columns
(¢ — 1)l 4+ 1 through ¢l of B.

For 1 <r,q <n/l, p=1,..,n/l, compute the Boolean product C%, of A,,
and By, using the fast algorithm. The following remark is straightforward.

rqs

Remark. Suppose that the (i, j) entry of the product matrix C is positive and
(r—Dl<i<rland (¢—1)l < j <gql. Let p’ be the maximum value of p such
that the entry of CF, which is the dot product of the row of A, corresponding
to the i-th row of A and the column of B,, corresponding to the j-th column
of B is 1. The maximum witness of the (7, j) entry of the Boolean product of A
and B belongs to the interval [(p/ — 1)l + 1, p/l].

By this remark, after computing all the products Ct,, 1 < p,r,q < n/l, we need
O(1) time per positive entry of C' to find the maximum witness. Thus, the total
time taken by our method for maximum witnesses is O((%)31“ 4+ n?l).

By solving the equation (%)?’l‘d = n?l, we conclude that for [= ni=e our

method achieves minimum worst-case time complexity at O(n?*7). Hence, we

obtain the following theorem.

Theorem 2. The mazimum witnesses for all positive entries of the Boolean
1
product of two n x n Boolean matrices can be computed in time O(n2+4—w).

The following obvious lemma leads to an efficient reduction of the problem of
all pairs LCA in a dag to that of determining maximum witnesses of the Boolean
product of two Boolean matrices.

Lemma 6. Let G be a dag and let G* be its transitive closure. For vertices u, v
in G, let w be its common ancestor of highest rank among all common ancestors

246 M. Kowaluk and A. Lingas

of u and v in the ordering resulting from a topological sort of G*. The vertexr w
is a lowest common ancestor of u and v.

Our algorithm for all pairs LCA in a dag is as follows.
Algorithm 1

1. Compute the transitive closure of the input dag G.

2. Topologically sort the vertices of G and number them by their ranks in the
resulting sorting order.

3. Form two Boolean n x n matrices A and B such that for i, k € {1,...,n}
the k-th coordinate of the i-th row of A and the i-th column of B is set to 1
if the k-th vertex is an ancestor of the i-th vertex, or k = 4, otherwise these
two coordinates are set to 0.

4. Find maximum witnesses for the Boolean product C' of A and B and for
each non-zero entry C[i, j| output the vertex whose number is the index of
maximum witness of C[i,j] as the lowest common ancestor of the i-th and
j-th vertices.

The correctness of the algorithm follows from Lemma 6. Step 1 can be imple-
mented in time O(n*). Steps 2 and 3 take O(n?) time. Finally, Step 4 requires

O(n2+ﬁ) time by Theorem 2. Hence, we obtain our second main result.

Theorem 3. For a dag on n wvertices, we can determine for each pair of ver-

tices having a common ancestor their lowest common ancestor in time
1

O(n*T5==),

4 Shortest Genealogical Distances

The authors of [2] discuss the so called pedigree graphs which are sparse dags
used to model human ancestor relations. Since each human has at most two
parents, a pedigree graph has maximum in-degree bounded by two. For the
fundamental applications of pedigree graphs in the identification of genes as-
sociated with genetic diseases the reader is referred to [4,6]. In these appli-
cations, computing the so called shortest ancestral distance between a pair of
vertices in a pedigree graph is important [2]. The shortest ancestral distance
between two vertices u and v in a dag is defined as the length of a shortest
path between u and v which passes through a common ancestor of w and v
(observe that the common ancestor is not necessarily the lowest one). Bender
et al. showed that the all-pairs shortest ancestral distances can be computed in
time O(n?57®) [2]. In this section, we show that the all-pairs shortest ancestral
distances can be optimally computed for sparse dags, in particular, pedigree
graphs.

! One can also consider the so called shortest ancestral lca distance where the common
ancestor is required to be lowest [2].

LCA Queries in Directed Acyclic Graphs 247

We can modify our first method to obtain an O(mn)-time algorithm to com-
pute the all-pairs shortest ancestral distances as follows. In the ascending phase,
for each vertex v, and for each descendent u of v, we additionally compute the
shortest directed distance between uw and v. This can be easily accomplished
within the same asymptotic time O(mn). At the beginning of the descending
phase, the previously computed shortest directed distances yield the shortest
ancestral distances between sources and their descendents. While descending
the shortest ancestral distances between the parents of the current vertex v and
each other vertex u are increased by one. Next, the minimum of them and the
shortest directed distance between v and w (it can be infinite) is taken as the
shortest ancestral distance between v and u. In this way for all pairs of vertices
v and u the shortest ancestral distance is computed.

Similarly, the so modified descending phase can be also implemented in time
O(mn). We conclude with the following theorem.

Theorem 4. For a dag on n vertices and m edges, the all-pairs shortest ances-
tral distances can be computed in time O(nm).

Corollary 2. For a pedigree graph on n vertices, the all-pairs shortest ancestral
distances can be computed in time O(n?).

5 Final Remarks

The problems of finding LCA are classical and central in the area of algorithms
and data structures [2,5,7]. In spite of the long history of studies devoted to
LCA problems, we have succeeded to design two quite natural methods for
finding LCA in dags considerably subsuming the previously known best re-
sults [2].

The problem of finding maximum witnesses of Boolean matrix product seems
to be of interest in its own rights. At first glance it seems that the recursive
O(n“*¢)-time method of Galil and Margalit [3] could be adapted to produce the
maximum witnesses by considering the fragments containing maximum witnesses
in the subproblems without substantially altering its asymptotic time. However,
the aforementioned method may permute rows or columns in recursive steps
which may disturb the search for maximum witnesses. Thus, the problem of
whether or not our O(n2+ﬁ)—time method is optimal is open.

It is also an interesting question whether or not the instances of the prob-
lem of finding maximum witnesses of Boolean matrix product occurring in our
reduction from the LCA problem in dags are computationally easier than the
general ones.

Acknowledgments

The authors are grateful to Pavel Sumazin for inspiration and to Leszek Gasieniec
for some discussions.

248 M. Kowaluk and A. Lingas

References

1. N. Alon and M. Naor. Derandomization, Witnesses for Boolean Matrix Multipli-
cation and Construction of Perfect hash functions. Algorithmica 16, pp. 434-449,
1996.

2. M.A. Bender, G. Pemmasani, S. Skiena and P. Sumazin. Finding Least Common
Ancestors in Directed Acyclic Graphs. Proc. the 12th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pp. 845-853, 2001.

3. Z. Galil and O. Margalit. Witnesses for Boolean Matrix Multiplication and Shortest
Paths. Journal of Complexity, pp. 417-426, 1993.

4. R.W. Cottingham Jr., R.M. Idury, and A.A. Shéffer. Genetic linkage computations.
American Journal of Human Genetics, 53, pp. 252-263, 1993.

5. M. Nykénen and E. Ukkonen. Finding lowest common ancestors in arbitrarily di-
rected trees. Inf. Process. Lett., 50(6), pp. 307-310, 1994.

6. A.A. Shéffer, S.K. Gupta, K. Shriram, and R.W. Cottingham Jr. Avoiding recom-
putation in linkage analysis. Human Heredity, 44, pp. 225-237, 1994.

7. R.E. Tarjan. Applications of path compression on balanced trees. Journal of the
ACM 26(4), pp. 690-715, 1979.

Replacement Paths and k Simple Shortest Paths
in Unweighted Directed Graphs

Liam Roditty and Uri Zwick

School of Computer Science,
Tel Aviv University, Tel Aviv 69978, Israel

Abstract. Let G = (V, E) be a directed graph and let P be a shortest
path from s to t in G. In the replacement paths problem we are required to
find, for every edge e on P, a shortest path from s to ¢ in G that avoids e.
We present the first non-trivial algorithm for computing replacement
paths in unweighted directed graphs (and in graphs with small integer
weights). Our algorithm is Monte-Carlo and its running time is O(m+/n).
Using the improved algorithm for the replacement paths problem we get
an improved algorithm for finding the k simple shortest paths between
two given vertices.

1 Introduction

Let G = (V,E) be a graph, let s,t € V be two vertices in G, and let P be a
shortest path from s to ¢ in G. In certain scenarios, edges in the graph G may
occasionally fail, and we are thus interested in finding, for every edge e on the
path P, the shortest path from s to ¢ in G that avoids e. This problem is refereed
to as the replacement paths problem.

The replacement paths problem for undirected graphs is a well studied prob-
lem. An O(m + nlogn) time algorithm for the problem was given by Malik et
al. [13]. A similar algorithm was independently discovered, much later, by Her-
shberger and Suri [7]. Hershberger and Suri [7] claimed that their algorithm also
works for directed graphs, but this claim turned out to be false (see Hershberger
and Suri [8]). Nardelli et al. [14] gave an O(ma(m,n)) time algorithm for the
undirected version of the problem using the linear time single source shortest
paths algorithm of Thorup [18].

All the results mentioned above for the replacement paths problem work
only for undirected graphs. This situation is partially explained by an 2(m/n)
lower bound for the replacement paths problem for directed graphs in the path-
comparison model of Karger et al. [10] given by Hershberger et al. [9)].

The replacement paths problem in directed graphs can be trivially solved in
O(|P|(m +nlogn)) = O(mn + n?logn) time by removing each edge on P from
the graph and finding a shortest path from s to ¢. No faster algorithm for the
problem was previously known.

The replacement paths problem in directed graphs is strongly motivated by
the following applications:

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 249-260, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

250 L. Roditty and U. Zwick

The fastest algorithm to compute a set of k simple shortest paths in a directed
graph uses in each iteration a replacement paths algorithm. This algorithm which
was given independently by Yen [20] and Lawler [12], has a running time of
O(kn(m + nlogn)). An o(mn) algorithm for the replacement paths problem
implies immediately on o(mn) algorithm for the k simple shortest paths problem.

The second motivation for studying replacement paths is the Vickrey pricing
of edges. Suppose we like to find the shortest path from s to t in a directed
graph G in which edges are owned by selfish agents. As noted by Nisan and
Ronen [15], a mechanism that offers to pay dgje=co(s,t) — dgje=0(s,t) to the
owner of edge e, for any edge e on the shortest path from s to ¢, and zero
otherwise, forces the edge owners to reveal their true cost. This kind of pricing
is called Vickrey pricing. Computing the first quantity for every edge in the
graph is equivalent to computing the replacement paths between s and ¢. (For
further details see Hershberger and Suri [7] and Demetrescu et al. [4]).

We present here the first non-trivial algorithm for the replacement paths
problem in directed graphs. It improves immediately the running time of the
two applications mentioned above. Our algorithm is randomized and its running
time is O(m+/n) time. This seemingly matches the lower bound of Hershberger et
al. [9]. Unfortunately, our algorithm works only for unweighted directed graphs,
or directed graphs with small integer weights, while the lower bound of [9] is for
generally weighted directed graphs.

One of the ingredients used in our algorithm for the replacement paths prob-
lem is a simple sampling technique used before to develop parallel algorithms
(Ullman and Yannakakis [19]), static algorithms (Zwick [21]) and dynamic al-
gorithms (Henzinger and King [6], Baswana et al. [1,2] Roditty and Zwick
[17,16]) for paths problems. This technique on its own, however, does not sup-
ply an improved algorithm for the replacement paths problems and other ideas
are needed.

Demetrescu and Thorup [3] considered the more general problem of finding,
for every pair of vertices u,v € V and every edge e € F, a shortest path from u
to v that avoids e. They devise a data structure of size O(n?logn) capable of
answering each such query in O(logn) time. The preprocessing time needed for
constructing this data structure is, however, O(mn?). The preprocessing time can
be reduced to O(mn'®) at the price of increasing the size of the data structure
to O(n?%). (For a recent improvement, see Demetrescu et al. [4].)

We also consider two variants of the replacement paths problem. Assume
again that G = (V, E) is a directed graph and that P is a shortest path from s
to t in G. In the restricted replacement paths problem, we are required to find,
for every edge e = (u,v) on the path P, a shortest path from w to ¢ in G that
avoids e. This corresponds to a scenario in which the failure of the edge e = (u, v)
is only detected at u (see Figure 1(b) for example). In the edge replacement
paths problem we are required to find, for every edge e = (u,v) on the path P, a
shortest path from u to v in G that avoids e, (see Figure 1(c) for example). Our
O(mn'/?) time algorithm for the replacement paths problem can be adapted to
solve these two versions of the problem.

Replacement Paths and k& Simple Shortest Paths 251

@s oS t

(b) SWW t

(c) SH”"""““@‘””"’"’H t

Fig. 1. Three detours and the auxiliary graph used to find short detours

We next turn our attention to the k shortest paths problem. Given a graph
G = (V,E), two vertices s,t € V and an integer k, we are required to find
the k shortest paths from s to ¢ in G. Eppstein [5], gave an O(m + nlogn +
k) time algorithm for the directed version of the problem. However, the paths
returned by Eppstein’s algorithm are not necessarily simple. i.e., they may visit
certain vertices more than once. In the k simple shortest paths problem, the
paths returned should all be simple. Katoh et al. [11] gave an O(k(m+nlogn))
time algorithm for solving the k& simple shortest paths problem for undirected
graphs. Yen [20] and Lawler [12] gave an O(kn(m +nlogn)) time algorithms for
solving the problem for directed graphs. It is interesting to note that, as for the
replacement paths problem, the directed version of the problem seems to be much
harder than the undirected version. Using our O(m\/ﬁ) time algorithm for the
replacement paths problem we obtain a randomized O(km\/ﬁ) time algorithm
for the k£ simple shortest paths problem for unweighted directed graphs and for
directed graphs with small integer weights.

We also show that computing the k simple shortest paths can be reduced to
O(k) computations of a second simple shortest path between s and ¢, each time
in a different subgraph of G. Thus, to obtain an o(kmn) time algorithm for the
k simple shortest paths problem it is enough to obtain an o(mn) time algorithm
for the second shortest path problem.

The rest of this extended abstract is organized as follows. In the next section
we describe our replacement paths algorithm and its adaption to the different
variants of the replacement paths problem mentioned above. In Section 3 we show
that the k simple shortest paths between two given vertices can be found by at
most 2k invocations of an algorithm for finding the second shortest path between
a given pair of vertices. As the second simple shortest path can be trivially
found by solving the replacement paths problem, we obtain an O(km./n) time
algorithm for the k simple shortest paths problem for unweighted graphs. We
end in Section 4 with some concluding remarks and open problems.

2 Replacements Paths

In this section we describe an algorithm for solving the replacement paths
problem for unweighted directed graphs and directed graphs with small inte-
ger weights. Let G = (V, E)) be a directed graph and let s and ¢ be two vertices
in the graph. Let P(s,t) = (ug,u1,...,us) be a shortest path from s = ug to
t = ug. Let PE(s,t) = ((ug,u1), (u1,uz), ..., (u_1,us)) be the set of edges of

252 L. Roditty and U. Zwick

this path. The objective of a replacement path algorithm is to find for every edge
e € PE(s,t) a shortest path P/(s,t) in the graph G, = (V, E \ {e}).
We start by defining detours:

Definition 1 (Detours). Let P(s,t) be a simple path from s to t. A simple
path D(u,v) is a detour of P(s,t) if D(u,v) N P(s,t) = {u,v} and u precedes v
on P(s,t).

Three detours of a shortest path from s to t are depicted in Figure 1. A
shortest path from s to ¢ that avoids the edge (u;,u;+1) of the shortest path

P(s,t) = (uo,u1,...,us) is composed of an initial portion (ug,u1,...,u;) of P,
where 0 < j <4, a detour D(uj,u;), where i +1 < j* < ¢, and then the final
portion (uj,...,ug) of P.

Let L be a parameter to be chosen later. A detour is said to be short if its
length is at most L. Otherwise, it is said to be long. (Note that we are considering
here only the length of the detour, not the total length of the resulting path
from s to t. For example, the detour in Figure 1(a) is longer than the one in
Figure 1(b), but the resulting paths may have the same length.)

We find separately the best short detours and the best long detours. The
short detours are found in Section 2.1 in O(mL) time. The long ones are found
in Section 2.2 in O(mn/L) time. Setting L = \/n, we get that the running time
of both algorithms is O(m\/ﬁ) By choosing for every edge the best short or long
detour, we obtain all the optimal replacement paths.

2.1 Finding Short Detours

We now describe an O(mL) time algorithm for finding the best detours of length
at most L. We can easily find the best detours that start in a given vertex
u on the shortest path P(s,t) by running the BFS algorithm from w in the
graph G — P¥. However, doing so from each vertex on P may require n BFS
computation which is too time consuming. The main observation made in this
Section is that if vg,v1,..., v, are vertices on P(s,t) that are at a distance of
at least 2L apart from each other, then the best short detours from all these
vertices can be found by one run of Dijkstra’s algorithm on a suitably modified
graph. Thus, O(L) runs suffice to find all short detours.

More specifically, to find the best detours from the vertices ug, usyp, - . ., Uskr,
were k = |57 |, we consider the graph G’ — PE to which we add a new source
vertex r and an edge (7, ug;1,) of weight ¢ L, for every 0 < ¢ < k. The weight of all
the edges of E — PF is set to 1. We denote the weight function of the auxiliary
graph with wt. Note that the weight assigned to the edge (r,u9;z,) is ¢L, and not
2iL as might have been expected. Also, note that even though we are interested
in detours that are of length at most L, the distance between every two selected
vertices should be at least 2L. The reason to that will become clear in the proof
of Theorem 1. The resulting auxiliary graph, which we denote by G4, is depicted
in Figure 1.

We claim that by running Dijkstra’s algorithm, from r, on G4 we find all the
best short detours that start in one of the selected vertices. We then run this

Replacement Paths and k& Simple Shortest Paths 253

algorithm ShortDet(P,b, L) algorithm ShortRepPath(P, L)
<u0,u17...7u4><—P <u0,u1,.“7uz><—P
Vi—Vu{r} for b+ 0 to 2L — 1
E — E\PF ShortDet (P, b, L)
for each e € E' do wt(e) « 1 Q<—¢
for i — 0 to [(£—b)/(2L)] fori—0tol—1
E' — E"U{(r,ugir4v)} for j «— i+ 1 to min{i + L, ¢}
wt(r, uzi4p) < iL Insert(Q, (i,§), RD[i,j —i] +i+4£—)
§' < Dijkstra(r, (V', E', wt)) for j «— max{i — L,0} to i — 1
for i «— 0 to (£ —b)/(2L)] Delete(Q, (4, 1))
g— 2L+ (a,b) — findmin(Q)
for j«—1to L len — RD[a,b—a]+a+{—b
if 8’ (r,ug+;) < (i + 1)L then RPJi] — (len, a, b)
RDlg, j] « &'(r,ugt;) — iL
else
RDig, j] «— o

Fig. 2. The algorithm for finding short detours and short replacement paths

algorithm 2L — 1 more times to find short detours emanating from the other
vertices of P(s,t). In the ¢-th run we find the short detours emanating from one
of the vertices u;, uaryi,- .., UakL+i-

We let 6(u,v) denote the distance from w to v in the graph G. We let 6~ (u, v)
denote the distance from u to v in the graph G — P, i.e., the graph G with the
edges of the path P removed. (The minus sign is supposed to remind us that
the edges of P are removed from the graph.) We let §(u, v) denote the distance
from wu to v in the auxiliary graph G*. We now claim:

Theorem 1. If §4(r, Ugir+j) < (1 + 1)L, where 0 <i <k and 1 < j <L, then
o~ (UQZ'L,’LL%L_H‘) = 5A(r, UQiLJ,.j) — L. Otherwise, 57(1627;[1, UQ»L‘LJ,.J') > L.

Proof. For brevity, let v; = ug;z, and v;; = ug;r+;. Assume at first that 54 (r, V) <
(i + 1)L. Consider a shortest path from r to v;; in G*. Let (r,v,) be the first
edge on the path. If ¢ < 4, then we have

5’4(7“,11”) =qL+ 6 (vg,vi5) > gL +2(t —q)L+j
=2i—-qL+j>0GE+1)L+j>(i+1)L,

a contradiction. Note that if the distance between any v; and v;11 was L instead
of 2L then for ¢ < i we do have 6 (r,v;;) < (i +1)L.

Similarly, if ¢ > i then we again have 6 (r,v;;) = gL +6~ (vq,vij) > (i +1)L.
Thus, we must have ¢ = i and 84 (r,v;;) = iL + 0~ (v, vi;), as required.

254 L. Roditty and U. Zwick

On the other hand, if 6~ (v;, v;;) < L, then clearly
64 (r, vij) < wt(r,v;) +6 (vi,v5) < iL+L = (i+1)L,
as required. O

A description of the resulting algorithm, which we call ShortDet is given
in Figure 2. By running the algorithm with the parameter b ranging from 0 to
2L — 1 we find, for every vertex on the path, the best short detours starting at
it. This information is gathered in the table RD.

The entry RD]i,j] gives us the length of the shortest detour starting at u;
and ending at w;4j, if that length is at most L. To find the shortest path from s
to ¢ that avoids the edge (u;,u;+1) and uses a short detour, we need to find
indices i — L <a <iand i <b<i+ L for which the expression

0(s,uq) + 0~ (g, up) + 6(up,t) = a+ RD[a,b—a]+ (£ —1D)

is minimized. An algorithm, called ShortRepPath, for finding such replacement
paths is given in Figure 2. Algorithm ShortRepPath uses a priority queue Q.
When looking for the shortest replacement path for the edge (u;,u;v1), the
priority queue) contains all pairs (a,b) such that i—L < a <iandi < b < i+L.
The key associated with a pair (a,b) is naturally a+ RD[a,b—a]+ ({—). In the
start of the iteration corresponding to the edge (u;,u;+1), we insert the pairs
(i,7), for i +1 < j < i+ L into @, and remove from it the pairs (j,4), for
i—L < j <i.A findmin operation on @ then returns the minimal pair (a,b). It
is easy to see that the complexity of this process is only O(nL). Thus, the total
running time of the algorithm is O(mL), as required. We have thus proved:

Theorem 2. Algorithm ShortRepPath finds all the shortest replacement paths
that use short detours. Its running time is O(mL).

2.2 Finding Long Detours

To find long detours, i.e., detours that are of length at least L, we use the
following simple sampling lemma. (To the best of our knowledge, it was not
used before in the context of finding replacement paths).

Lemma 1. Let Dy,Ds,...,Dy CV such that |D;| > L for1 <i<gq and|V|=
n. If R CV is a random subset obtained by selecting each vertex, independently,
with probability (clnn)/L, for some constant ¢, then with probability of at least
1—¢q-n"¢ we have D; N R # ¢ for every 1 <i <q.

For every pair of vertices u and v on the path P for which the shortest detour
from w to v is of length at least L, let D(u,v) be such a shortest detour. By the
lemma, if R is a random set as above, then with a probability of at least 1 —n?~¢
we have D(u,v) N R # ¢, for every such pair u and v. The choice of the random
set R is the only randomization used by our algorithm.

Replacement Paths and k& Simple Shortest Paths 255

Our algorithm for finding the best replacement paths that use long detours
starts by calling sample(V, (41lnn)/L) which selects a random set R in which
each vertex v € V is placed, independently, with probability (4lnn)/L. The
expected size of R is clearly O(%) We assume, throughout the section, that
D(u,v) N R # ¢, whenever |D(u,v)| > L.

For every sampled vertex r € R, the algorithm maintains two priority queues
Qin[r] and Quut[r] containing indices of vertices on P. When looking for a
replacement path for the edge (u;,u;y+1) we have Qn[r] = {0,1,...,i} and
Qoutlr] = {i+1,...,£}. The key associated with an element j € Qu,[r] is
Jj+06~ (uj,r). The key associated with an element j € Qoue[r] is 6~ (r, u;)+(£—7).

Recall that 6~ (u,v) is the distance from u to v in G — PF. The algorithm
computes 6~ (r,v) and §~ (v, r), for every r € R and v € V, by running two BFS’s
from 7, for each r € R, one in G— P¥ and one in the graph obtained from G — P¥
by reversing all the edges. (Only one of these BFS’s is explicitly mentioned
in LongRepPath.) The total running time of computing these distances is
O(mn/L).

To find the shortest replacement path for the edge (u;,u;1+1) that passes
through a given vertex r € R, the algorithm needs to find an index 0 < a < i
which minimizes the expression a + 6~ (ug,r), and an index i < b < ¢ which
minimizes the expression 0~ (r,up) + (¢ — b). The minimizing index a is found
by a findmin operation on Q;,[r] and the minimizing index b is found by a
findmin operation on Qoyt[r].

It is not difficult to check that the total running time of the algorithm is
O(mn/L), as required. We have thus proved:

Theorem 3. Algorithm LongRepPath finds, with very high probability, all the
shortest replacement paths that wuse long detours. Its running time is
O(mn/L).

2.3 The Replacement Paths Algorithm and Its Variants

The algorithms ShortRepPath and LongRepPath find the best short and
long replacement paths available to bypass every edge on a given shortest path.
By passing on their output and picking the minimal path found for every edge
we obtain the solution for the replacement paths problem as promised.

There are another two natural variants of replacement paths that can be
solved by our short and long detours detection.

Let G = (V,E) be a directed graph and let P be a shortest path from s
to ¢t in G. In the restricted replacement paths problem, we are required to find,
for every edge e = (u,v) on the path P, a shortest path from w to ¢ in G that
avoids e. This corresponds to a scenario in which the failure of the edge e = (u, v)
is only detected at u. In the edge replacement paths problem we are required to
find, for every edge e = (u,v) on the path P, a shortest path from u to v in G
that avoids e.

To solve the above two problems the main idea of short and long detours
remains unchanged. The only change is in the set from which we choose the best

256 L. Roditty and U. Zwick

detour to be used to bypass a given edge. This set is now updated according to
the structural restrictions given by the problem definition.

For the restricted replacement paths after finding the short detours by the
algorithm ShortDet we maintain the heap subject to the following constraint:
If we currently searching for a restricted replacement path to bypass the edge
(u;,ui4+1) the heap contains only detours that emanate from wu;.

In a similar manner, when searching for a restricted replacement path com-
posed from a long detour to bypass the edge (u;, u;1+1) we use only detours that
emanate from u;. Thus, we only need one heap for this process. A pseudo-code
of the algorithm will be given in the full version of this paper. We claim:

Theorem 4. Algorithm ResRepPath, with L = /n, finds, with very high
probability, all the restricted shortest replacement paths. Its running time is

Using similar constraints on the set from which paths are picked we can adapt
our ideas to solve also the edge replacement paths problem.

3 The k Simple Shortest Paths Problem

The k simple shortest paths problem (also known as the k shortest loopless
paths) is a fundamental graph theoretic problem. Let G = (V, E) be a directed
graph and let s and ¢t be two vertices of the graph. Let & be an integer. The
target is to find the k simple shortest paths from s to ¢. This version of the
problem is considered to be much harder than the general version in which non-
simple paths (i.e. paths that may contain a loop) are allowed to be among the
k shortest paths. The k shortest non-simple paths can be computed in time of
O(m + nlogn + k) using an algorithm of Eppstein [5]. In cases that a shortest
paths tree can be computed in O(m + n), Eppstein’s algorithm has a running
time of O(m + n + k). However, the running time of the restricted problem is
much worse. The best algorithm is due to Yen [20] and Lawler [12]. It has a
running time of O(kn(m + nlogn)).

In this section we show that for unweighted directed graphs (and for graphs
with small integer weights) the running time of O(kn(m + nlogn)) can be sig-
nificantly improved using our new replacement paths algorithm. We obtain a
randomized algorithm with running time of O(km+/nlogn).

We also reduce the problem of computing & simple shortest paths to O(k)
computations of a second shortest path each time in a different subgraph of G.
This reduction works in weighted graphs. Both Yen [20] and Lawler [12] use O(k)
computations of replacement paths. Our reduction implies that we can focus our
efforts in improving the second shortest path algorithm, which may turn out to
be an easier problem than the replacement paths problem. We only deal in this
section with simple paths thus we refer to a simple path simply by saying a path.

The algorithm for computing k shortest paths works as follow. It maintains
a priority queue @ of paths from s to t. The key attached with each path is
its length. The algorithm preforms k£ iterations. The priority queue is initialized

Replacement Paths and k& Simple Shortest Paths 257

I’ algorithm k-SimplePath(G(V, E),s,t,k)
. Py (s,t) + Dijkstra(G(V, E), s, t)
g T— P (S, t)

{ Insert(Q, (SP(G(V, E), Pi(s, 1)), 1))

% Y for i < 2 to k

1 I (Pi(s,t),5) — findmin(Q)
dr2Pi Make a copy of P;(v;,t) and hang it on u; in T
Pa P3 Insert(Q, (SP(G(V, E \ Eq(vi)), Pi(vi, t)),1))

Ps i [’I’LS@Tt(Q, (SP(G(V7 E \ Ed(”j))? P; (UJ" t))v]))

Pg

Fig. 3. A deviations tree and our k-simple shortest paths algorithm

with a second shortest path of a shortest path from s to ¢. In the i-th iteration
the algorithm picks from @ the path with the minimal length and remove it.
Let P;(s,t) = (s,u1,...up—1,t) be the i-th path picked by the algorithm. This
path is added to the output as the i-th shortest path. To describe the output
structure we need the following definition:

Definition 2 (Deviation edge and Deviations tree). For k =1 the devia-
tions tree is simply a copy of a shortest path from s to t. Suppose that the tree
already exists for i—1 paths. Let P;(s,t) = (s,u1,...,u;) be the i-th shortest path
to be output. Let P;(s,u;) be the longest subpath of P;(s,t) that was already part
of the output and thus part of the tree. We make a copy only from P;(uji1,t)
and hang it on the copy of u; in the tree. We say that the edge (uj,u;q1) is the
deviation edge of P;(s,t).

Note that by this definition a vertex may have more than one occurrence in
the deviations tree. However, there are at most k copies of each vertex in the
deviations tree, thus, the size of the tree is O(kn). An example of a deviations
tree is given in Figure 3. The deviation edges are in light color.

The main challenge is to quickly obtain the paths to be added to @ in each
iteration. Suppose we have extracted the i-th shortest path P;(s,t) from Q.
After having P;(s,t) in the deviations tree we need to find the new paths to be
added to Q. Let (u;,v;) be the deviation edge of P;(s,t). In Yen’s algorithm the
path P;(u;,t) = (wy,wa,...,w;), where w; = u; and w; = ¢, is scanned. For
each vertex w; € P;(u;,t), the algorithm finds a shortest path P'(wj;,t) from
w; to ¢t which does not use the edge (w;,w;+1). In the special case of wy the
path P’(wi,t) is obtained when all the edges emanate from the copy of w; in
the tree are forbidden to use. Each such a path is concatenated to P;(s,w;) and
added to @. This is essentially a restricted replacement paths problem for the
path P;(u;,t). Thus, we can claim the following:

Theorem 5. The algorithm of Yen combined with our restricted shortest paths
algorithm computes k simple shortest paths in O(km+/n) time.

258 L. Roditty and U. Zwick

However, this process generates many paths and most of them are not needed.
Many of these paths can be ruled out without being actually computed by mak-
ing just two computations of second shortest paths in the i-th iteration.

Recall that P;(s,t) is the i-th shortest path extracted from @ and (u;, v;) is its
deviation edge. Let E;(v;) be the set of deviation edges emanate from P;(v;,t).
We compute a second shortest path for the path P;(v;,t) in the graph G(V, E '\
E4(v;)), concatenate it to P;(s,v;) and add it to Q. This path is associated to
P;(s,t). Note that in the first computation of a second shortest path for P;(v;,t)
the set E4(v;) is empty by its definition. However, we are not done yet. The
extracted path Pi(s,t) is associated to some other path P;(s,t), where j < i.
Since we have extracted the path associated to P;(s,t) we need to find a new
path, other than P;(s,t), to associate to P;(s,t). Let (u;,v;) be the deviation
edge of P;(s,t). We compute a second shortest path for the path P;(v;,t) in the
graph G(V, E \ E4(v;)). By its definition the set E4(v;) contains in this stage
the deviation edge of P;(s,t), thus, the resulting second shortest path will be
other than P;(s,t). We concatenate this path to P;(s,v;) and add it to Q. The
algorithm is given in Figure 3. We assume that the deviation edge of the path
P;(s,t) if exists is (u;,v;). For the path Pji(s,t) we treat s as the head of a
deviation edge. We use the algorithm of Dijkstra to compute a shortest path
from s to ¢ and the algorithm SP to compute a second shortest path given a
shortest path.

Next, we justify why the extracted path is only associated to one other path
or more precisely why a path cannot be added to @ as a second shortest path
of two different paths.

Lemma 2. In any stage all paths in Q) are distinct.

Proof. To the purpose of the proof only we divide the paths of the graph into
disjoint sets. Each set is associated with a path which already was picked from Q.
The set C; is associated with the path P;(s,t). We prove that these sets exist
and any second shortest path in @ is associated to a different set. This implies
that all paths in) are distinct.

We set C'y to be all the paths in the graph. After finding a second shortest path
for the first time we divide C into two sets. Let (uq, v2) be the deviation edge of
Py(s,t) then Cy is set to be all the paths from C; that have the prefix Ps(s,v2)
and C is set to C1 \ Co. Obviously, Cy and C5 are disjoint. Now computing a
second shortest path for Py(ve,t) and concatenating it with Ps(s,vs) results in
a path from Cy and computing a second shortest path for the path P;(s,t) in
G(V, E\ Eq4(s)) results in a second shortest path in Cy. (Note that E4(s) contains
the edge (us2,v2).) Thus, the paths added to @ are from two disjoint sets. We
prove by induction that in general it also holds.

Suppose that right before the i-th extraction we have ¢ — 1 disjoint sets, such
that for any j < i — 1 the set C; is associated to P;(s,t) and a path composed
from the concatenation of P;(s,v;) and a second shortest path of P;(v;,t) in the
graph G(V, E'\ Eq(v;)) is the path in @ from C;. We show that right before the
i+1-th extraction this invariant still holds. Let P;(s,t) be the path picked from Q
in the i-th extraction. By the induction hypothesis we know that there is a set

Replacement Paths and k& Simple Shortest Paths 259

C};, disjoint from all the others, such that P;(s,t) € C; and P;(s,t) is associated
with C;. Let (u;,v;) be the deviation edge of P;(s,t). We divide C; into two sets
as follow, C; will have the paths from C; with the prefix P;(s,v;) and Cj is set
to C;\ C;. The resulted sets are disjoint. Now computing a second shortest path
for P;(v;,t) and concatenating it with P;(s,v;) results in a path from C; and
computing a second shortest path for the path P;(v;,t) in G(V, E\ E4(v;)) and
concatenating it with P;(s,v;) results in a second shortest path in C;. In this
process the two paths added to @) are from different disjoint sets and the above
invariant still holds. a

It follows that once a path is out of @) only two second shortest path compu-
tations have to be done. We now claim the correctness of the algorithm.

Lemma 3. The algorithm computes k simple shortest paths.

Proof. The proof is by induction. For ¢ = 1 the claim trivially holds. Suppose
that the ¢ — 1 first paths are found by our algorithm. We prove that the i-th
path is found also. Let W be the weight of the i-th shortest path. Let P;(s,t)
be an i-th shortest path. Let (u;, v;) be its deviation edge and let P;(s,t) be the
path P;(s,t) deviates from. We will show that the path P;(s,t) or other path of
the same length must be associated to P;(s,t).

Let (u’,v") be the closest deviation edge to (u;,v;) on the path P;(s,u;), if
exists, or let v/ = s otherwise. Consider the last time a second shortest path
computation was done for the path P;(v’,t) before the i-th extraction. The
weight of the path P obtained in this computation is at most W since all the
edges of P;(u;,t) are eligible to use. Suppose that the length of P is strictly less
than W then by the induction hypothesis the path P is extracted before the
i-th extraction. By our algorithm when P is extracted we recompute a second
shortest path for P;(v,t), the path that P was associated to. However, the
second shortest path computation that have added P was the last computation
done for P;(v’,t) before the i-th extraction, a contradiction. a

The following Theorem stems from Lemma 2 and Lemma 3.

Theorem 6. The algorithm described above computes correctly the k simple
shortest paths of a directed graph by O(k) computation of second shortest paths.

4 Concluding Remarks and Open Problems

We presented a randomized O(m+/n) time algorithm for the replacement paths
problem in unweighted graphs and in graphs with small integer weights. Many
problems are still open, however. In particular, is it possible to obtain an o(mn)
time algorithm for the replacement paths problem in weighted directed graphs?
Is it possible to obtain an o(mn) time algorithm for the second simple shortest
path in weighted directed graphs. A positive answer to one of these questions will
yield an o(kmn) time algorithm for finding the k simple shortest paths problem
in weighted directed graphs.

260

L. Roditty and U. Zwick

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

S. Baswana, R. Hariharan, and S. Sen. Improved decremental algorithms for tran-
sitive closure and all-pairs shortest paths. In Proc. of 34th STOC, pages 117-123,
2002.

S. Baswana, R. Hariharan, and S. Sen. Maintaining all-pairs approximate shortest
paths under deletion of edges. In Proc. of 14th SODA, pages 394—403, 2003.

C. Demetrescu and M. Thorup. Oracles for distances avoiding a link-failure. In
Proc. of 13th SODA, pages 838-843, 2002.

. C. Demetrescu, M. Thorup, R. Alam Chaudhury, and V. Ramachandran. Oracles

for distances avoiding a link-failure.

D. Eppstein. Finding the k shortest paths. SIAM Journal on Computing,
28(2):652—673, 1998.

M. Henzinger and V. King. Fully dynamic biconnectivity and transitive closure.
In Proc. of 36th FOCS, pages 664-672, 1995.

J. Hershberger and S. Suri. Vickrey prices and shortest paths: what is an edge
worth? In Proc. of 42nd FOCS, pages 252-259, 2001.

J. Hershberger and S. Suri. Erratum to “vickrey pricing and shortest paths: What
is an edge worth?”. In Proc. of 43rd FOCS, page 809, 2002.

J. Hershberger, S. Suri, and A. Bhosle. On the difficulty of some shortest path
problems. In Proc. of the 20th STACS, pages 343-354, 2003.

D.R. Karger, D. Koller, and S.J. Phillips. Finding the hidden path: time bounds
for all-pairs shortest paths. SIAM Journal on Computing, 22:1199-1217, 1993.

N. Katoh, T. Ibaraki, and H. Mine. An efficient algorithm for K shortest simple
paths. Networks, 12(4):411-427, 1982.

E.L. Lawler. A procedure for computing the K best solutions to discrete opti-
mization problems and its application to the shortest path problem. Management
Science, 18:401-405, 1971/72.

K. Malik, A. K. Mittal, and S. K. Gupta. The k most vital arcs in the shortest
path problem. Operations Research Letters, 8(4):223-227, 1989.

E. Nardelli, G. Proietti, and P. Widmayer. A faster computation of the most vital
edge of a shortest path. Information Processing Letters, 79(2):81-85, 2001.

N. Nisan and A. Ronen. Algorithmic mechanism design. Games and Economic
Behavior, 35:166—196, 2001.

L. Roditty and U. Zwick. Dynamic approximate all-pairs shortest paths in undi-
rected graphs. In Proc. of 45th FOCS, 2004. 499-508.

L. Roditty and U. Zwick. On dynamic shortest paths problems. In Proc. of 12th
ESA, 2004. 580-591.

M. Thorup. Undirected single-source shortest paths with positive integer weights
in linear time. Journal of the ACM, 46:362—-394, 1999.

J.D. Ullman and M. Yannakakis. High-probability parallel transitive-closure algo-
rithms. SIAM Journal on Computing, 20:100-125, 1991.

J.Y. Yen. Finding the K shortest loopless paths in a network. Management Science,
17:712-716, 1970/71.

U. Zwick. All-pairs shortest paths using bridging sets and rectangular matrix
multiplication. Journal of the ACM, 49:289-317, 2002.

Deterministic Constructions of
Approximate Distance Oracles and Spanners

Liam Roditty!, Mikkel Thorup?, and Uri Zwick!

L School of Computer Science, Tel Aviv University, Israel
2 AT&T Research Labs, USA

Abstract. Thorup and Zwick showed that for any integer £ > 1, it is possible to
preprocess any positively weighted undirected graph G = (V, E), with |[E| = m
and [V| = n, in O(kmn'/*) expected time and construct a data structure (a
(2k — 1)-approximate distance oracle) of size O(kn'T'/*) capable of return-
ing in O(k) time an approximation é(u,v) of the distance &(u,v) from u to v
in G that satisfies 6(u,v) < d(u,v) < (2k — 1)-6(u,v), for any two vertices
u,v € V. They also presented a much slower O(kmn) time deterministic algo-
rithm for constructing approximate distance oracle with the slightly larger size
of O(kn'**/*logn). We present here a deterministic O(kmn'/*) time algo-
rithm for constructing oracles of size O(k:nl“/ *). Our deterministic algorithm
is slower than the randomized one by only a logarithmic factor.

Using our derandomization technique we also obtain the first determinis-
tic linear time algorithm for constructing optimal spanners of weighted graphs.
We do that by derandomizing the O(km) expected time algorithm of Baswana
and Sen (ICALP’03) for constructing (2k — 1)-spanners of size O(kn'T'/*) of
weighted undirected graphs without incurring any asymptotic loss in the running
time or in the size of the spanners produced.

1 Introduction

Thorup and Zwick [16] showed that for any integer k > 1, any graph G = (V, E), with
V| = n and |E| = m, can be preprocessed in O(kmn'/*) expected time, producing
an approximate distance oracle of size O(kn'*1/*) capable of returning, in O (k) time,
a stretch 2k — 1 approximation of d(u,v), for any u,v € V. As discussed in [16],
the stretch-size tradeoff presented by this construction is believed to be optimal. The
approximate distance oracles of [16] improve previous results of [4] and [7]. For other
results dealing with approximate distances, see, [1],[6],[8],[10],[11] [12].

We present here two independent extensions of the result of [16]. The first extension
deals with situations in which we are only interested in approximate distances from
a specified set S C V of sources. We show that both the construction time and the
space requirements of the appropriate data structure can be reduced in this case. More
specifically, we show that if |S| = s, then the expected preprocessing time can be
reduced from O(mnl/ k) to O(msl/ ¥) and the space required can be reduced from
O(kn'*t'/%) to O(kns'/*). This is significant when s < n. We call the obtained data
structures source-restricted approximate distance oracles.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 261-272, 2005.
© Springer-Verlag Berlin Heidelberg 2005

262 L. Roditty, M. Thorup, and U. Zwick

We then move on to solve a major open problem raised in [16], namely the de-
velopment of deterministic algorithms for constructing approximate distance oracles
that are almost as efficient as the randomized ones. The deterministic construction in
[16] first computes exact APSP in O(mn) time, and then uses the complete distance
matrix to derandomize the randomized construction algorithm. In addition to being
much slower, the space used by the constructed stretch 2k — 1 oracles is increased to
O(kn”l/ *¥logn). Our new derandomization loses only a logarithmic factor in running
time and suffers no asymptotic loss in space. Thus we get a deterministic O(mnl/ k)
time algorithm for constructing stretch 2k — 1 approximate distance oracles of size
O(kn'*+1/%), solving the problem from [16]. For the source-restricted distance ora-
cles with s sources, the deterministic construction time and space is O(ms'/*) and
O(kns'/*), respectively.

The techniques we use to obtain the new deterministic algorithm can also be used to
derandomize the expected linear time algorithm of Baswana and Sen [5] for construct-
ing (2k — 1)-spanners of size O(kn'*'/¥), retaining the linear running time and the
O(kn1+1/ k) size of the spanners. Similarly, they can be used to improve the determin-
istic algorithm of Dor et al. [10] for the construction of 2-emulators (surplus 2 additive
spanners) of unweighted graphs. The size of the emulators produced is reduced by a
factor of O(y/Togn) to the optimal O(n3/2), with a similar improvement is obtained
in the running time. Furthermore, our techniques can be used to improve the the algo-
rithm of Baswana and Sen [6] for the construction of approximate distance oracles for
unweighted graphs and make it run, deterministically, in O(n?) time, which is optimal
in terms on n. (Due to lack of space we will not elaborate on this result here.)

The new deterministic algorithm uses two new ingredients that are of interest in
their own right and may find additional applications. They are both simple and im-
plementable. The first ingredient is an O(qm) time algorithm that given a weighted
directed graph G = (V, E), a subset U C V of sources, and an integer ¢, finds for
every vertex v € V the set of the ¢ vertices of U that are closest to v.

The second ingredient is a linear time deterministic algorithm for constructing close
dominating sets. For a definition of this concept, see Section 4.

The rest of this extended abstract is organized as follows. In the next Section we
present the construction of source-restricted approximate distance oracles. In Section 3
we present the algorithm for finding the nearest neighbors. In Section 4 we describe
the linear time algorithm for constructing close dominating sets. In Section 5 we then
present the main result of this paper, an efficient deterministic algorithm for construct-
ing approximate distance oracles. Due to lack of space we cannot describe here the
deterministic version of the linear time spanner construction algorithm of Baswana and
Sen [5]. This algorithm will appear in the full version of the paper.

2 Source-Restricted Approximate Distance Oracles
We present here an extension of the approximate distance oracle construction of [16].

Theorem 1. Let G = (V, E) be an undirected graph with positive weights attached to
its edges. Let k > 1 be an integer, and let S C 'V be a specified set of sources. Then, it is

Deterministic Constructions of Approximate Distance Oracles and Spanners 263

algorithm preprox(G,.S)

Ao — S 5 Ak — (b
fori —1tok —1
A; — sample(A;—1,|S|7*/*)
foreveryv € V
fori —Otok —1
let §(A;,v) < min{ §(w,v) | w € A;}
let p;(v) € A; be such that §(p;(v), v) = §(As,v)
(Aka)
let B(v)<—UZ o{we Ay — Air | §(w,v) < 8(Aig1,v)}
let H(v) < hash(B(v))

Fig.1. The randomized preprocessing algorithm

possible to preprocess G in O(km|S|'/*) expected time, and produce a data structure
of size O(kn|S|'/*), such that for any w € S and v € V it is possible to produce, in
O(k) time, an estimate &(u,v) of the distance §(u,v) from u to v in G that satisfies
5(u,v) < 0(u,v) < (2k — 1)-6(u, v).

Thorup and Zwick [16] prove Theorem 1 for the case S = V. The proof of The-
orem 1 is obtained by slightly modifying the construction of [16]. For the sake of
completeness, we give the full details. This also allows us to review the randomized
construction of [16] before presenting a deterministic version of it later in this paper.

Proof. A high level description of the preprocessing algorithm is given in Figure 1.
The algorithm starts by defining a hierarchy A9 2O A3 O Ay O --- D Ay of subsets
of S in the following way: We begin with Ag = S. Forevery 1 < i < k, we let A;
be random subset of A;_; obtained by selecting each element of A;_1, independently,
with probability |S|~1/¥. Finally, we let Ay, = ¢. The elements of A; are referred to as
i-centers. A similar hierarchy is used in [16]. There, however, we have Ay = V, and A;,
for 1 < i < k, is obtained by selecting each element of A;_; with probability n—1/%.
Interestingly, this is the only change needed with respect to the construction of [16].
Next, the algorithm finds, for each vertex v € V, and each 1 < 7 < k, the distance
0(A;,v) = min{d(w,v) | w € A;} and an i-center p;(v) € A, that is closest to v. (We
assume Aj_1 # ¢.) For every vertex v € V' it then defines the bunch B(v) as follows:

B(v) = U Bi(v) , Bi(v) = {we€ A;|(w,v) <(Ais1,v)}.

Note that B;(v) C A; — A;y1 asifw € A; 41 then §(A;41,v) < 6(w, v). We show later
that the centers p;(v) can be found in O(km) time and that the bunches B(v), and the
distances &(w, v), for every w € B(v), can be found in O (km|S|'/*) expected time.
Finally, for every vertex v € V' the preprocessing algorithm constructs a hash table
H (v) of size O(|B(v)|) that stores for each w € B(v) the distance é(w,v). The hash
table is constructed in O(|B(v)|) expected time using the algorithm of Fredman et al.

264 L. Roditty, M. Thorup, and U. Zwick

[13]. (For a deterministic version, see Alon and Naor [2].) For every w € V we can
then check, in O(1) time, whether w € B(v) and if so obtain §(w, v).

The total size of the data structure produced is O(kn + >, oy |B(v)|). We next
show that for every v € V we have E[|B(v)|] < k|S|'/*, and thus the expected size
of the whole data structure is O(kn|S|'/*).

Lemma 1. For every vertex v € V we have E[|B(v)|] < k|S|'/*.

Proof. We show that E[|B;(v)|] < |S|*/*, for 0 < i < k.Fori = k — 1 the claim
is obvious as By_1(v) C Ag_1, and E[|Ak_1]] = |S|1/k. Suppose, therefore, that
0 <14 < k — 1, and suppose that A; was already chosen, while A;,; is now about to
be chosen. Let wy, ws, ..., wy be the vertices of A; arranged in non-decreasing order
of distance from v. If w; € A, 1, then B;(v) C {wi,ws,...,wj_1}. Thus Prlw; €
B;(v)] < Priwi,wa,...,wj—1 & Ait1]. As each vertex of A; is placed in A, 1,
independently, with probability p = |S| /¥, we get that Pr[w; € B;(v)] < (1—p)’~*
and thus E[|B;(v)|] <>, (1—p)~ ' =p~' = |S|*/%, as required. O

The algorithm used to answer approximate distance queries is given in Figure 2.

Lemma 2. For every u € S and v € V, algorithm dist (u,v) runs in O(k) time and
returns an approximate distance 6(u, v) satisfying 6(u,v) < d(u,v) < (2k—1)d(u, v).

Proof. Let A = 6(u,v). We begin by proving, by induction, that at the start of each
iteration of the while loop we have w € A; and §(w, u) < ¢A. This clearly holds at the
start of the first iteration, when ¢ = 0, as w = u € S = Ag and 6(w,u) = 0. (Here
is were we use the assumption that v € S.) Suppose, therefore that the claim holds at
the start of some iteration, i.e., w € A; and §(w, u) < i A, and that the while condition,
ie., w & B(v), is satisfied. Let w’ = p;11(v) € A;y1. Asw & B(v), we get, by the
definition of B(v), that §(w’,v) = §(A;41,v) < §(w, v). We therefore have

S(w',v) < 8(w,v) < §(w,u) +0(u,v) <iA+A=(i+1)A.

Thus, by incrementing i, swapping v and v and letting w <« w’ we reestablish the
invariant condition. (The algorithm performs these operations in a slightly different
order.)

In each iteration of the while loop the algorithm performs only a constant number of
operations. (To check whether w € B(v) it uses the hash table H(v).) As B(v) 2 Ap—1
and w € Aj;, the algorithm performs at most k& — 1 iterations and hence the running time
is O(k).

When the while loop terminates, we have §(w,u) < iA, w € B(v)andi < k — 1.
The algorithm then returns the estimate 6 (u, v) = §(w, u) + 6(w, v) which satisfies

6(w,u) +6(w,v) < §(w,u)+ (6(w,u) +(u, v))
= 25(w,u) + A <2k —1)A+ A< (2k- 1A,

as required. O

Deterministic Constructions of Approximate Distance Oracles and Spanners 265

All that remain, therefore, is to explain how the preprocessing algorithm can be
implemented to run in O(km|S|'/*) time. Finding for each vertex v € V and every
0 < i < k the vertex p;(v) € A; closest to v is fairly easy. For every 0 < i < k we
add a new source vertex s; to the graph and connect it with zero weight edges to all
the vertices of A;. By running Dijkstra’s algorithm (see [9]) we compute the distances
from s; to all other vertices and construct a shortest paths tree rooted at s;. The distances
thus computed are exactly §(A;,v), for every v € V. Using the shortest paths tree it is
easy to identify for every v € V a vertex p;(v) € A; for which é(p;(v),v) = 6(A;,v).
The whole process requires only O(km) time.

We next describe an O(km|S|'/*) algorithm for constructing the bunches B(v), for
every v € V. Instead of computing the bunches directly, we compute their ‘duals’. For
every i-center w € A; — A; 11 we define the cluster C(w) as follows:

C’(w) = {U eV | 5(10,”0) < 5(141'_._1,1})} R for w € A1 — Ai+1 .

It is easy to see that v € C(w) if and only if w € B(v). We now claim:
Lemma 3. Ifv € C(w), and u is on a shortest path from w to v in G, then u € C(w).

Proof. Suppose that w € A; — A;pq1. If u € C(w), then §(A;11,u) < 0(w,u). But
then 6(A;4+1,v) < 0(Ait1,u) + 6(u,v) < 6(w,u) + §(u,v) = §(w,v), contradicting
the assumption that v € C(w). ad

It follows that the cluster C'(w) can be constructed using the modified version of
Dijkstra’s algorithm given in Figure 3. For the straightforward correctness proof, the
reader is referred to [16]. The running time of the algorithm, when Fibonacci heaps [14]

algorithm cluster(G,w, A)

diw] —0;C «— ¢
Q — ¢ ; insert(Q, w, d[w])
while QQ # ¢
u «— extract-min(Q)
C—CU{u}
for every (u,v) € E
d — d[u] + £(u,v)
ifd < §(A,v) then

algorithm disty(u,v)
(Assumption: u € S)

w—u;t<«—0

while w ¢ B(v)
i—i+1
(u,v) — (v,u)
w — pi(u)

return 6 (w, u) + 0(w, v)

ifv ¢ Q then

dv] « d; insert(Q, v, d[v])
else if d < d[v] then

d[v] < d; decrease-key(Q, v, d)

return C'

Fig. 2. Answering a distance query

Fig. 3. Constructing a cluster

266 L. Roditty, M. Thorup, and U. Zwick

(see also [9]) are used to implement the priority queue @, is O (M, + Ny logny,) =
O(myy +nyy log n), where ny, = |C(w)| and my, is the total number of edges touching
the vertices of C'(w). This is O(log n) time per vertex v in C'(w) and constant time per
edge touching such a vertex v. However, v € C(w) <= w € B(v) and E[|B(v)] <
ks'/¥ so the total expected running time needed for constructing all clusters is O((m+
nlogn)ks'/*), as required. The running time can be reduced to O(kms'/*) using the
techniques of Thorup [15]. This completes the proof of Theorem 1. O

3 A Deterministic Algorithm for Finding the g Nearest Centers

Let G = (V, E) be a weighted directed graph and let U C V be an arbitrary set of
sources, or centers. We start with a formal definition of the set U, (v) of the ¢ nearest
centers from U of a vertex v € V. We assume that all edge weights are positive. We
also assume, without loss of generality, that V' = {1,2... ,n}.

Definition 1 (Nearest centers from U). Let G = (V, E) be a directed graph with
positive edge weights assigned to its edges. Let U C 'V be an arbitrary set of sources,
and let 1 < g < |U| be an integer. For every v € V, the set U, (v) is defined to be the
set of the q vertices of U that are closest to v. Ties are broken in favor of vertices with
smaller indices. More precisely, for every v € V we have Uy(v) C U, |U,(v)| = ¢
and if w1 € Uy(v) while wy & Uy(v) then either 6(w1,v) < 6(ws,v) or 6(w1,v) =
0(wa,v) and wy < wa.

The following lemma, which is reminiscent of Lemma 1, is easily verfied.
Lemma 4. Ifu € U,(v) and w lies on a shortest path from wto v in G, then u € Ug(w).
We now claim:

Theorem 2. Let G = (V, E) be a directed graph with positive weights assigned to its
edges. Let U C 'V be an arbitrary set of sources, and let 1 < q < |U| be an integer.
Then, the sets U, (v), for every v € V, can be computed by performing q single-source
shortest paths computations on graphs with at most O(n) vertices and O(m) edges.

Proof. We begin by finding for every vertex v € V its nearest neighbor in U. This is
easily done by adding a new source vertex s to the graph, connecting it with 0 length
edges to all the vertices of U, and computing a tree of shortest paths in the resulting
graph. This gives us U; (v), for every v € V.

Suppose now that we have already computed U;_1 (v), for every v € V. We show
that U;(v), for every v € V can be obtained by finding a tree of shortest paths in
an auxiliary graph with O(n) vertices and O(m + n) edges. This auxiliary graph is
constructed as follows:

1. Add to G a new source vertex s and copies of all vertices of U. If u € U, we let @
denote the copy of u. Add a 0 length edges from s to u, for every u € U.

2. For every edge (v, w) € E:
(@) IfU;—1(v) = U;—1(w), keep the edge (v, w).

Deterministic Constructions of Approximate Distance Oracles and Spanners 267

(b) Otherwise, if U;—1(v) # U;—1(w) and w is the first vertex in U;_;(v) —
U;—1(w), replace the edge (v, w) by an edge (@, w) of length 6 (u, v) 4+ (v, w).

The auxiliary graph thus contains n + |U| + 1 vertices and m + |U| edges. It is not
difficult to check that u is the i-th nearest neighbor from U of all the vertices in the
subtree of u in the tree of shortest paths from s in this auxiliary graph. The proof is
fairly straightforward and is omitted due to lack of space. O

4 A Deterministic Construction of Close Dominating Sets

Instead of dealing directly with the close dominating sets from the introduction, it is
convenient first to consider a simpler case phrased in terms of a matrix. In that context,
we will talk about early hitting sets: Let M be an n x k matrix whose elements are taken
from a finite set S of size |\S| = s. We assume that the elements in each row of M are
distinct. A set A is said to be a hitting set of M if and only if every row of M contains
an element of A. A standard calculation shows that if each element of S is placed in A,
independently, with probability (c¢lnn)/k, for some ¢ > 1, then with a probability of at
least 1 — n'~¢ the resulting set A is a hitting set of M. The expected size of A is then
(cslnn)/k. We are interested in hitting sets of small size that hit the rows of M close
to their beginnings, at least on average.

Definition 2 (Hitting sums). Let M be an n x k matrix, let A be a set, and let P > 0
be a penalty. Let hit(M;, A) be the index of the first element of M,, the i-th row of M,
that belongs to A, or k + P, if no element of M; belongs to A. Let hit(M,A) =
S hat(M;, A) be the hitting sum of A with respect to M.

Note that a set A need not be a hitting set of M for the hitting sum hit (M, A) to be
defined. A penalty of P, plus the length of the row, is paid, however, for each row that is
not hit. Typically, the goal is to hit all rows avoiding all penalties. A set A with a small
hitting sum hit(M, A) is informally referred to as an early hitting set. The following
simple probabilistic lemma proves the existence of small early hitting sets.

Lemma 5. Let M be an n X k matrix whose elements are taken from a finite set S of
size |S| = s and let P > 0 be a penalty. Then, for every 0 < p < 1 there exists a set
A C S forwhich 3| Al + hit(M, A) < 2n/p+ (1 —p)* Pn. In particular, if pP > 3n
and pP(1 — p)* < 1 than all rows are hit with | A| < 3ps and hit(M, A) < 3n/p.

Proof. Let A be a random subset of S obtained by selecting each element of .S, inde-
pendently, with probability p. It is easy to see that

E[IA]] = ps,

k
E[hit(M;, A)] = > (1 - —-pkP < pt+ (1 -pkpP,

Jj=1

and thus B[5. [A[+ hit(M, A)] < 2% + (1 — p)* Pn. This proves the existence of
the required set

268 L. Roditty, M. Thorup, and U. Zwick

Concerning the last statement, the condition pP(1 — p)~* < 1 implies that the
right hand side is at most 3n/p. By the first condition, this corresponds to at most a
single penalty, but since we have other costs, we conclude that we pay no penalties. The
bounds on |A] and hit(M, A) follow because each term on the left hand size is non-zero
and strictly smaller than the right hand side. o

The main result of this section is a deterministic linear time algorithm for con-
structing early hitting sets that almost match the bounds of Lemma 5. Quite naturally,
the algorithm is based on the method of conditional expectations (see, e.g., Alon and
Spencer [3]). The challenge is to get a running time linear in the size of the matrix M.

Theorem 3. Let M be an n x k matrix whose elements are taken from a finite set S of
size |S| = s and let P > 0 be a penalty. Let 0 < p < 1. Then there is a deterministic
O(nk) time algorithm that finds a set A C S for which 3| A| + hit(M, A) < 3n/p +

(1 — p)* Pn. In particular, if pP > 4n and pP(1 — p)* § 1 then all rows are hit with
|A| < 3ps and hit(M,A) < 3n/p.

Proof. Let Ay, A1 C S be two disjoint sets. Define

hMM«%An=E§§m+mmmm|mgAgAm-

In other words, hit(M|Ap, A1) is the (conditional) expectation of the random variable
53 [Al + hit (M, A) where the set A is chosen in the following way: Each element of
Aj is placed in A. Each element of Ay is not placed in A. Each other element is placed
in A, independently, with probability p.

Lemma 5 states that hit(M, A) = hit(M | ¢,¢) < p = 2n/p+ (1 — p)*Pn. Our
goal it to deterministically find a set A C S such that hit(M | A¢, A) < u. Suppose that
we have already found two disjoint sets Ay, A; C .S such that hzt(M | Ag, A1) < p
and thate € § — (Ap U A;). We then have

hit(M ‘ Ao,Al) = p-hit(M | Ag, AU {8}) + (1 —p)'hit(M | Ap U {e},Al) .

Thus, at least one of the two conditional expectations appearing above is at least 1. We
choose it and then consider another element that was not yet placed in either Ay and A;.
Continuing in this way, we get two disjoint sets Ag, A1 C S such that Ay U A1 = S
and hit(M | Ao, A1) < p, as required. This is precisely the method of conditional
expectations.

The remaining question is the following: Given hit(M | Ap, A1) and an element
e € S — (ApU A;), how fast can we compute hit(M | Ag, A1 U {e}) and hit(M |
AgU{e}, A1)? Let us focus on the computation of the conditional expectations hit (M |
Ag, A1 U{e}) and hit(M; | Ap U {e}, A1) corresponding to the i-th row of M.

Let n; = n;(A1) be the index of the first element in M; that belongs to A;. If none
of the elements of M, belongs to A;, we let n;, = oo. Let n; ; = n; j(Ao) be the
number of elements among the first j elements of M; that do not belong to Ay. (We let
n;o0 = 0.) Itis easy to see that

min{nj,k} i 1
| o [PP it = oo
h t M A 7A — 1 _ Ni,j—1 _|_ .
it(M; | Ao, Ar) Z (1-p) { 0 otherwise

j=1

Deterministic Constructions of Approximate Distance Oracles and Spanners 269

Maintaining the penalty term (1 — p)™-kP is easy. To simplify the presentation we
therefore ignore this term. (In other words we assume that P = 0. The changes needed
when P > 0 are minimal.) Let

(L—p)mit ifj<n,,
Tij = .
0 otherwise .

With this notation, and with the assumption P = 0, we clearly have hit(M; | Ag, A1) =
2?21 x; j. We now consider the changes that should be made to the z; ;’s when an ele-
ment e is added to A or to A;. If e does not appear in M;, then no changes are required.
Assume, therefore, that M;, = e, i.e., the e is the r-th element in M;. If » > n;, then
again no changes are required. Assume, therefore, that r < n,.

If e is added to A, then the required operations are n; < r and x; ; < 0, for
r < j < k. If e is added to Ay, then the required operations are n; ; < n; ; — 1, for
r < j < k, and therefore z; ; < x; ;/(1 — p), again for » < j < k. In both cases, the
new conditional expectation is the new sum 2521 T

These operations can be implemented fairly efficiently using a data structure that
maintains an array « = (21, Z2, ..., Z4] of ¢ real numbers under the following update
operations: init(x) — initialize the array x; scale(i, j, a) — multiply the elements in
the sub-array [z;,...,z;] by the constant a; sum — return the sum Zle x;; and
undo — undo the last update operation. (The undo operation is required for tentatively
placing new elements in Ay and then in A;.) Using standard techniques it is not difficult
to implement such a data structure that can be initialized in O(k) time and that can
support each update operation in O(log k) time. However, the description of such a
data structure is not short, and the resulting algorithm would have an over all non-linear
running time of O(nklog k). Luckily, there is a simpler to implement, and a more
efficient, solution. Let us define the following variant of hitting sums:

Definition 3 (Dyadic hitting sums). Let M be an n X k matrix, let A be a set, and
let P > 0 be a penalty. Let hit(M;, A) = 2[1982 Mt(MiA) pe the smallest power of 2
greater or equal to the index of the first element of M; that belongs to A, or ¢+ P, if no
element of M, belongs to A. Let hit(M, A) = > hit(M;, A) be the dyadic hitting
sum of A with respect to M.

Clearly hit(M, A) < hit(M, A) < 2-hit(M, A). Thus, as in the proof of Lemma 5,
we get that B[5| A|+hit(M, A)] < 3n/p+(1 —p)*¥ Pn. The conditional expectation
hit(M | Ag, Ay) is defined in the obvious analogous way. Now define

k= [loga k], ni = [loggyn,], Nij = M;oi,

~ (L—p)ri—r ifj<n;, —~ i
T = , =14+ i 2
" { 0 otherwise . Yir ; w
With these definitions we have hit(M; | Ao, A1) = ¥ j_;1.
Each update now trivially takes O(k) = O(log k) worst-case time, even if we im-
plement the updates naively. Furthermore, we argue that the amortized cost of each
update is only O(1)!

270 L. Roditty, M. Thorup, and U. Zwick

procedure init(i) procedure update (i,) procedure update, (i, 1)
Tin—1-—p 7 — [log,] 7« [logy 7]
i — L+ Zin forj —7tok—1 forj—7+1ltok—1
forj—2tok—1 Zij — Ti; /(1 —p)) Zij < 0

Tij T _ g Yig—1 + T2 Uij — Yij—1

ij — Yij—1+ Ti 5271 || return gz, return y;

Fig. 4. Updating the conditional expectations

A complete description of procedures used to initialize and update the conditional
expectations is given in Figure 4. A call to inir(¢) initializes z; ; = (1 —]9)2171 and
i = 14307 2;5-27" for 1 <r <k —1. Calls to update (i,) and update, (i, j),
respectively, perform the necessary updates to the i-rows of the arrays x[i, j] and y[i, j]
as a result of adding the element e = M;,. to Ay, or to A1, and return the new value of
hit(M;| Ao, A1). The difference between the old and the new value of hit(M;| Ao, A1)
should also be applied to the global sum hit(M | Ag, A1) = > i, hit(M;| Ao, Ar).
It is easy to implement an undo(i) procedure that undos the last update performed on
the i-th row. We simply need to record the operations made and undo them in reverse
order. To obtain hit(M, Ag, A1), we simply sum hit(M;|Ag, A1) up, for 1 < i < n.
The correctness of the computation follows from the long discussion above.

All that remains is to analyze the complexity of the proposed algorithm. Each el-
ement e € S is considered once by the algorithm. For each appearance of e = M;
in M we need to call update,(i,r) and update, (i, r). The complexity of these calls is
O(k — 7+ 1) = O([logy k] — [logy 7] + 1). For every 2F=7 < p < 2F=7+1 where
1<57< k, the cost is O(j). Thus, the total cost of handling all the elements of the i-th
row is O(k 3 ;54 j277) = O(k). The total cost is therefore O(kn), as required. The
last statement of the theorem is derived like the last statement of Lemma 5. O

Theorem 4. A close dominating set of any given size can be found in linear time.

Proof. We now consider the closest dominating set problem from the introduction,
modifying our early hitting set algorithm to solve this problem. The first change is
to let each row M; to have an individual length k; < k. The total number of elements
is then m = Y. | k;. We also make the change that there is only a penalty P for not
hitting a full row M; with k; = k. It is straightforward to modify the previous early
hitting set algorithm for these variable length rows. Essentially, we just replace k and k
by k; and k;, and drop the penalty for the partial rows. We then get a deterministic al-
gorithm that in O(m) time finds a hitting set A with the same properties as those stated
in Theorem 3. In particular, if pP > 4n and pP(1 — p)¥ < 1 then all full rows are hit
with |A| < 3ps and hit(M, A) < 3n/p.

We now need to transform our bipartite graph G = (U, V, E) to the matrix form.
The set S of elements that are placed in the matrix is simply the set U. The matrix
constructed has a row for each vertex v € V. Ideally, the row M, would contain the

Deterministic Constructions of Approximate Distance Oracles and Spanners 271

neighboring centers u ordered according to the edge weights ¢(u, v). The list should
be truncated to only contain the k¥ = (s/h)(2 + Inn) nearest centers. The lists with k
centers are the full rows with a penalty P for not being hit. We use p = h/(3s) and
P =12ns/h. Then pP = 4n and

pP(1 —p)* < 4nexp(—(h/s)(s/h(2 +1nn)) < 4/e* < 1.

Since the conditions are satisfied, we get a set A hitting all full rows with |A| < 3ps = h,
and hit(M, A) < 3n/p = 9ns/h. This also means that A is a close dominating set.
Our only remaining problem is that we cannot sort neighboring centers according
to distance. However, thanks to the dyadic solution, it suffices to apply a linear time se-
lection algorithm (see, e.g., [9]). First, if a vertex v has more the k£ neighboring centers,
we apply selection to find the k nearest centers. Next, for » decreasing from |log, k; |
down to 0, we identify the 2" nearest centers. The total running time is linear, and this
provides a sufficient sorting for the diadic hitting sum algorithm. O

5 A Deterministic Construction of Approximate Distance Oracles

In this section we present a deterministic algorithm for constructing (source-restricted)
approximate distance oracles. The algorithm is slower than the randomized algorithm
of Theorem 1 by only a logarithmic factor. Obtaining such a deterministic algorithm is
one of the open problems mentioned in [16].

Theorem 5. Let G = (V, E) be an undirected graph with positive weights attached to
its edges. Let k > 1 be an integer, and let S C 'V be a specified set of sources. Then,
it is possible to preprocess G, deterministically, in O(km|S|'/*) time, and produce a
data structure of size O(kn|S|'/*), such that for any u € S and v € V it is possible to
produce, in O(k) time, an estimate §(u, v) of the distance &(u,v) from u to v in G that
satisfies 8(u,v) < 6(u,v) < (2k —1)-6(u, v).

algorithm detpre,(G,S)
Ap—S; A, 0
p— i\S|_1/k 10— 3|S)Y*Inn; P —n?
fori — 1tok —1
Nifl — near(G7 Ai71,£)
Create bipartite graph B from A;_; to V' with
an edge (u, v) of length d¢ (u, v) if u € N;—1[v].
A; — domset(B, s' /)
foreveryv € V
B(v) «— Ak_1
fori «— Otok — 2
B(v) — B)U{w € Nife] | (w,v) < 6(Ait1,v) }

Fig.5. The deterministic preprocessing algorithm

272 L. Roditty, M. Thorup, and U. Zwick

Proof. The deterministic preprocessing algorithm is given in Figure 5. It is composed
of k — 1 iteration. The i-th iteration constructs the set A;. We let s = |S| and £ =
[s'/%(2 4 Inn)], the iteration begins by finding for each vertex v € V the set N;[v]
of the /¢ vertices of A;_; that are nearest v, using algorithm near of Section 3. The
running time of the algorithm is O(msl/ k). Next we create a bipartite graph B from
A;—1 to V with an edge (u,v) of length d¢(u,v) if w € N;_1[v]. Using the algorithm
of Theorem 4, which we here call domset, we now find a close dominating subset A;
of size h; = s'~%/% = |A;_1|/s'/*. Since each vertex have at least s'/*(2 + Inn) =
|A;—1|/h;(2+1nn) neighboring centers, we know that A; hits all these neighborhoods.
The result is that in the original graph G, the sum of the number of centers in from A;
nearer than then nearest center in A; is at most 9| A;_1|/h; = O(ns'/*). It follows that
the total size of the bunches returned by the algorithm is in O(k:nsl/ k), as required. O

References

1. D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fast estimation of diameter and short-
est paths (without matrix multiplication). SIAM Journal on Computing, 28:1167-1181, 1999.
2. N. Alon and M. Naor. Derandomization, witnesses for Boolean matrix multiplication and
construction of perfect hash functions. Algorithmica, 16:434-449, 1996.
3. N. Alon and J.H. Spencer. The probabilistic method. Wiley-Interscience, 2nd edition, 2000.
4. B. Awerbuch, B. Berger, L. Cowen, and D. Peleg. Near-linear time construction of sparse
neighborhood covers. SIAM Journal on Computing, 28:263-277, 1999.
5. S.Baswana and S. Sen. A simple linear time algorithm for computing (2k — 1)-spanner of
O(n'*'/*) size for weighted graphs. In Proc. of 30th ICALP, pages 384-296, 2003.
6. S.Baswana and S. Sen. Approximate distance oracles for unweighted graphs in O(n? log n)
time. In Proc. of 15th SODA, pages 264-273, 2004.
7. E. Cohen. Fast algorithms for constructing ¢-spanners and paths with stretch ¢. SIAM Journal
on Computing, 28:210-236, 1999.
8. E. Cohen and U. Zwick. All-pairs small-stretch paths. Journal of Algorithms, 38:335-353,
2001.
9. T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to algorithms. The
MIT Press, 2nd edition, 2001.
10. D. Dor, S. Halperin, and U. Zwick. All pairs almost shortest paths. SIAM Journal on Com-
puting, 29:1740-1759, 2000.
11. M. Elkin. Computing almost shortest paths. In Proc. of 20th PODC, pages 53-62, 2001.
12. M.L. Elkin and D. Peleg. (14 ¢, 3)-Spanner constructions for general graphs. SIAM Journal
on Computing, 33(3):608-631, 2004.
13. M.L. Fredman, J. Komlds, and E. Szemerédi. Storing a sparse table with O(1) worst case
access time. Journal of the ACM, 31:538-544, 1984.
14. M.L. Fredman and R.E. Tarjan. Fibonacci heaps and their uses in improved network opti-
mization algorithms. Journal of the ACM, 34:596-615, 1987.
15. M. Thorup. Undirected single-source shortest paths with positive integer weights in linear
time. Journal of the ACM, 46:362-394, 1999.
16. M. Thorup and U. Zwick. Approximate distance oracles. Journal of the ACM, 52(1):1-24,
2005.

An O(m?n) Randomized Algorithm to Compute
a Minimum Cycle Basis of a Directed Graph

Telikepalli Kavitha*

Indian Institute of Science, Bangalore, India
kavitha@csa.iisc.ernet.in

Abstract. We consider the problem of computing a minimum cycle ba-
sis in a directed graph G. The input to this problem is a directed graph
whose arcs have positive weights. In this problem a {—1,0, 1} incidence
vector is associated with each cycle and the vector space over Q gener-
ated by these vectors is the cycle space of G. A set of cycles is called a
cycle basis of G if it forms a basis for its cycle space. A cycle basis where
the sum of weights of the cycles is minimum is called a minimum cycle
basis of G. The current fastest algorithm for computing a minimum cycle
basis in a directed graph with m arcs and n vertices runs in O~(m“’+1n)
time (where w < 2.376 is the exponent of matrix multiplication). If one
allows randomization, then an O(m3n) algorithm is known for this prob-
lem. In this paper we present a simple O(m2n) randomized algorithm
for this problem.

The problem of computing a minimum cycle basis in an undirected
graph has been well-studied. In this problem a {0,1} incidence vector
is associated with each cycle and the vector space over Fy generated by
these vectors is the cycle space of the graph. The fastest known algorithm
for computing a minimum cycle basis in an undirected graph runs in
O(m?n + mn®logn) time and our randomized algorithm for directed
graphs almost matches this running time.

1 Introduction

Let G = (V, A) be a directed graph with m arcs and n vertices. A cycle C in G
consists of forward arcs Ct and backward arcs C~ such that C = CT U C~ and
reorienting all arcs in C'~ results in a closed path. Associated with each cycle
is a {—1,0,1} vector, indexed on the arc set A. This vector, also called C, is
defined as follows. For each arc a € A

1 if a is a forward arc of C
C(a) = ¢ —1 if a is a backward arc of C
0 ifaé¢C

* This research was partially supported by a “Max Planck-India Fellowship” provided
by the Max Planck Society.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 273-284, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

274 T. Kavitha

The cycle space of G is the vector space over Q that is generated by the
incidence vectors of cycles in G. When G is connected, the cycle space has
dimension d = m — n + 1. A cycle basis of G is a basis of the cycle space
of G.

The arcs of G have positive weights assigned to them. A cycle basis where
the sum of the weights of the cycles is minimum is called a minimum cycle basis
of G. In this paper we consider the problem of computing a minimum cycle basis
in a given digraph.

Background. The problem of computing a minimum cycle basis in a graph is
well-studied. Apart from its interest as a natural question, it is motivated by
its use as a preprocessing step in several algorithms. That is, a cycle basis is
used as an input for a later algorithm, and using a minimum cycle basis instead
of any arbitrary cycle basis usually reduces the amount of work that has to
be done by this later algorithm. Such algorithms include algorithms for diverse
applications like structural engineering [4], cycle analysis of electrical networks
[5], and chemical ring perception [7]. And in many cases the network graphs of
interest are directed graphs.

Undirected graphs. In an undirected graph U = (N, E), with each cycle C' we
associate a {0, 1} incidence vector z, indexed on E, where z. = 1 if e is an edge
of C, . = 0 otherwise. The vector space over Fy generated by these vectors
is called the cycle space of U. A minimum cycle basis of U is a set of linearly
independent (over Fy) cycles that span the cycle space of U and whose sum of
weights is minimum.

For a directed graph GG, we obtain the underlying undirected graph of G by
removing the directions from the arcs. A set of cycles C1, ..., Cy of G projects onto
an undirected cycle basis, if by removing the orientations of the arcs in the cycles,
we obtain a cycle basis for the underlying undirected graph. If C = {C1, ..., Cy}
is a set of cycles in a directed graph G that projects onto an undirected cycle
basis, then C is a cycle basis of G. But the the converse is not true. Similarly,
a minimum cycle basis of a digraph need not project onto a cycle basis of the
underlying undirected graph. Such examples are given in [13,14]. In particular,
[14] contains an example of a directed graph, which is a generalized Petersen
graph, whose unique minimum cycle basis does not project onto a cycle basis of
the underlying undirected graph. The books by Deo [6] and Bollobés [3] have an
in-depth coverage of the subject of cycle bases.

Previous Results. Algorithms for computing a minimum cycle basis in an
undirected graph have been well-studied [2,5,8,9,11] and the current fastest
algorithm for this problem runs in O(m?n + mn?logn) time [11], where m is
the number of edges and n is the number of vertices. The first polynomial time
algorithm for computing a minimum cycle basis in a directed graph had a running
time of O(m*n) [10]. Liebchen and Rizzi [14] gave an O(m®“t'n) algorithm for
this problem, where w < 2.376 is the exponent of matrix multiplication. This is
the current fastest deterministic algorithm known for this problem. But faster

An O(m?n) Randomized Algorithm 275

randomized algorithms are known. Kavitha and Mehlhorn [10] gave an O(m?n)
Monte Carlo algorithm for this problem.

New Results. In this paper we present a simple O(m?nlogn) randomized
algorithm to compute a minimum cycle basis in a directed graph G with m
arcs and n vertices. This algorithm always returns a cycle basis and we show
that with high probability this cycle basis is a minimum cycle basis. We obtain
this algorithm through an effective use of randomization, which enables us to
work entirely over the finite field F,, for a randomly chosen prime p instead of
working over Q.

We recall here that the O(m?n) randomized algorithm given in [10] works by
sampling log? m random primes independently in each iteration of the algorithm.
Then the algorithm either uses at least logm suitable primes from this sample
to compute cycles in that iteration or it quits if there is no large enough subset
of suitable primes in this sample.

In Section 2.1 we first present a deterministic algorithm, whose correctness
is simple to show. But the numbers used in this algorithm grow very large and
so this algorithm is not interesting from an implementation point of view. How-
ever, the analysis of this algorithm leads to our efficient randomized algorithm.
Section 2.2 contains our randomized algorithm and its analysis.

A key step in our algorithm is a subroutine to compute a shortest cycle whose
inner product with a given vector is non-zero modulo p. Such a subroutine was
also used in [10] and we first review that method in Section 3.1. However that
subroutine is not good enough for us since using it would make the running time
of our algorithm O(m*n). Here we modify Dijkstra’s algorithm for this particular
problem and improve this subroutine. Section 3.2 contains this implementation.
This leads to an O(m3 +m?nlogn) randomized algorithm for computing a min-
imum cycle basis in a directed graph.

We can improve the running time even further. As mentioned earlier, the
current fastest algorithm for computing a minimum cycle basis in an undirected
graph has a running time of O(m?n +mn?logn). This running time is achieved
through the use of fast matrix multiplication to speed up certain operations on
vectors. In Section 4 we use the same technique to get rid of the m3 term in our
running time and we thus get an O(m?nlogn) algorithm.

2 An O(m?®) Randomized Algorithm

Our algorithm is broadly based on the approach used in [5,2,11,10] for com-
puting a minimum cycle basis. We are given a digraph G = (V, A), where
V| = n and |A| = m. There is no loss of generality in assuming that the
underlying undirected graph of G is connected. Then d = m — n + 1 is the
dimension of the cycle space of G. The notation (vy,v2) denotes the standard
inner product or dot product of the vectors v; and vy. First we will assume
that we have ordered the arcs in the arc set A so that the arcs ag41,...,am
form the edges of a spanning tree T' of the underlying undirected graph. This

276 T. Kavitha

means that in the incidence vector representation of cycles, the first d coordi-
nates correspond to arcs outside the tree T and the last n — 1 coordinates are
the arcs of T'.

Before we present our randomized algorithm, let us first consider the following
deterministic algorithm.

2.1 Deterministic-MCB

1. Initialize the vectors Si,...,S4 of Q™ to the first d vectors eq,...,eq of the
standard basis of Q™.
2. For i =1 to d do
— compute a shortest cycle C; such that (C;, S;) # 0.
—forj=i+1toddo

update S; as: §; =55 — Szigu?;
It can be easily shown that the set {Cy,...,Cq} is a minimum cycle basis.

We can also show the following lemma using induction.

Lemma 1. For 1 < i < d — 1 the above algorithm maintains the following
invariant: at the end of the i-th iteration the vectors Sit1,...,S4 are orthogonal
to the cycles C1,...,C;.

Let us now understand the structure of the vectors .S; in Deterministic-MCB.
The vector S; gets updated in each iteration till iteration j. Call the version of
S; at the beginning of iteration ¢ as S; And Sg is finally used in iteration j to
compute the cycle C;. (Let us denote the final version S; by Sj itself.) S} has
the form (ry,r9,...,7-1,0,...,0,1,0,...,0), where r1,...,7;,_1 are some rational
numbers and the 1 occurs in the j-th coordinate. Since S; is orthogonal to
C1,...,Ci_1, we have Cy, - (r1,...,7-1,0,...,1,0,..) T =0for k=1,...,i— 1.

Let the incidence vector of C be (ck1, - - -, Ckm) and let C}, be the restriction
of this vector to its first ¢ — 1 coordinates. Then (rq,...,7;_1) is a solution to

Cy - (z1, ...,xi,l)T =—cpjfork=1,...,i -1 (1)

We will show that this set of equations has a unique solution. Suppose the linear
combination

i—1
Zajé'j =0 (2)
j=1

and not all o; are 0. Then consider the largest ¢ such that oy # 0 and take the
inner product of both sides of Equation (2) with S;, where S; is the restriction
of the vector S; to its first 4 — 1 coordinates.

Then the left hand side is 22:1 ak(é’k, 5}) = 22:1 a(Ck, St) since S, has
all the non-zero entries of S; for each 1 < ¢ < ¢ — 1. This is equal to a;{(C, St)
since (C%, S¢) = 0 for k < t. Since (Cy, S;) # 0 and the right hand side is 0 we
get oz = 0 - a contradiction. Hence each oy, has to be 0 for 1 < k <i—1. So the
Cy’s are linearly independent. So we can conclude the following lemma.

An O(m?n) Randomized Algorithm 277

Lemma 2. For any i, the (i — 1) x (i — 1) matriz M; whose k-th row is the
vector Cy, for 1 <k <14i—1 is nonsingular.

Thus Equation (1) has a unique solution, which is (ry,...,7r;—1). By Cramer’s
rule, each 7; is of the form r; = y;/k;, where k; is the determinant of M; and y,
is the determinant of the matrix obtained by replacing the I-th column of M;
by the vector on the right hand side of Equation (1). So multiplying S]i. with
ki gives us an integral vector N; = (y1,...,¥i-1,0,...,k;,0,...). Since k; is the
determinant of an (—1) x (i—1) matrix whose entries are —1,0, 1, it follows from
Hadamard’s inequality that |k;| < (i—1) ‘2. Similarly, the absolute value of each
y1 is bounded from above by (i —1)'2 . So we have NG|l <i(i — = < d°s
since 7 < d. Let us denote each N Jj by Nj, respectively.

Definition 1. Call a prime p good if for each i =1,...,d: (C;, N;) # 0(modp).
Call a prime p bad if it is not good.

Lemma 3. Let P be a set of d2 primes, each of which is at least d>. Then at
least 3/4-th of the set P is good.

Proof. For any i, (C;,S;) # 0 is equivalent to (C;, N;) # 0 since N; = k;S;
and k; = det(M;) # 0 by Lemma 2. So for each 1 < ¢ < d, it holds that
(Ci, N;) # 0. Since C; is a {—1,0, 1} vector we also get that |(C;, N;)| < || Ni|l1-
So |(Ci, Ni)| < d5.

Since N1 = 51 = (1,0,...,0), the number (Cy, N7) is always 1. So no prime
can divide it. For i > 2, we will use 0 # [(Cy, N;)| < d“#" . Since each prime in P is
at least d?, at most (d+1)/4 elements in P can be divisors of (C;, N;). So the num-
ber of primes in P that can divide at least one of (Ca, N3), (C3, N3),...,{Cq, Ng)
is at most (d — 1)(d + 1)/4. Hence the fraction of bad primes in P is at most
(d—1)(d+1)/4d® < 1/4. O

Now we present the algorithm Randomized-MCB. This is similar to the al-
gorithm Deterministic-MCB. But here we work over the field IF,, for a randomly
chosen prime p from the set P, instead of working over Q.

2.2 Randomized-MCB

1. Compute a set P of d? primes pg, p1, . . . where each p; > d?. Choose a prime
p uniformly at random from this set.
2. Initialize the vectors Xi, ..., X4 of F}" to the first d vectors of the standard
basis eq,...,eq.
3. Fori=1toddo
— compute a shortest cycle B; such that (B;, X;) # 0(modp).
—forj=i+1toddo

B;, X
update X; (over the finite field) as: X; = X; — X,-M

(Bi, Xi)
(An analogue of Lemma 1 shows that X,11,..., X4 are now orthogonal

to Bi,...,B; over Fp.)

We will now show that {Bj,..., By} is always a cycle basis.

278 T. Kavitha

Lemma 4. The cycles By, ..., By are linearly independent.

Proof. We know that (B;, X;) = 0(mod p) for all j < 4. It is now easy to see that
B; is linearly independent of By, ..., B;—1 over F),. X, is a witness of this linear
independence since (B;, X;) = 0(modp) for each j < ¢, so the inner product of
X,; with any linear combination of Bi,...,B;_1 has to be zero modulo p but
(B;, X;) # 0(modp). Hence the whole set {Bj,..., By} is linearly independent
over [F,,, which means that it is linearly independent over Q. ad

We will next show that the set {B1,..., B4} is a minimum cycle basis with
probability at least 3/4. In the rest of this section, we will prove the following
theorem.

Theorem 1. When p is good, Randomized-MCB computes a minimum cycle
basis.

We will assume that the algorithm Deterministic-MCB breaks ties for the short-
est cycle in the same way as Randomized-MCB breaks them. That is, both the
algorithms use the same rule to determine the shorter cycle between two cycles
of equal weight. Then we can show the following.

Lemma 5. When p is good, B; = C;, for each 1 <i <d.

We will show this by induction. The vector X; = S; = (1,0,...,0). The inner
product of any cycle with (1,0,...,0) is =1 or 0. The inner product will be +1
if and only if the cycle contains the arc a;. Also, looking at the inner product
modulo p does not change a 1 or a —1 to 0. So B; is a shortest cycle that
contains the arc a;. C is also a shortest cycle that contains the arc a; and so by
our assumption that both these algorithms break ties identically, we have that
B]_ = Cl-

Let us now assume that B; = C; for j < i—1. Recall that V; is a vector in Z™
of the form (y1,...,yi—1, k:, 0, ...,0), where (y1,...,4:—1) is the unique solution to

4 —kicy;
: T = . (3)
6'7;71 _kfic(ifl)i

Recall that C'j is the incidence vector of cycle C restricted to its first 7 — 1
coordinates and k; = det(M;), where M, is the (i — 1) x (¢ — 1) matrix above
whose rows are C’s. Note that (y1,...,4,—1) mod p is a solution to this set of
equations in [Fy,.

X; is a vector in F)" of the form (t1,...,t;—1,1,0,...) for some t1,...,t;—1
in F, and X; is orthogonal to Bi,...,B;_1 in). Since B; = C; for j <1 —1,
this means that X; is orthogonal to Ci, ...,C;_1 in F,. So in Fp, (¢1,...,¢-1) is
a solution to 5

Ch —cii

Ci1 —Ci—1)i

An O(m?n) Randomized Algorithm 279

So k;(t1,...,t;—1) mod p is a solution to Equation (3) in F,. We would like to
prove that Equation (3) has a unique solution in F,.

Lemma 6. If (C;, N;) # 0(modp) for 1 < j <i—1, then k; # 0(modp).

Let us assume the above Lemma and complete the argument. Then we will
prove Lemma 6. Since det(M;) = k; # O(modp), Equation (3) should have
a unique solution in Fp,. So k;(t1,...,ti—1) modp = (y1,...,yi—1) mod p. In
other words, k;(t1,...,ti—1,1,0,...,0) mod p=(y1,...,%i—-1,%:,0,...,0) mod p.
That is,

ki - X; (modp) = N; (modp).

So N; is just a scalar multiple of X; when these vectors are viewed as ele-
ments of F}'. Hence for any cycle D, (D, N;) # 0(modp) if and only if (D, X;) #
0(modp). Since p is a good prime, (C;, N;) # 0(modp). So (C;, X;) # 0(modp).
This proves that C; is a candidate for a shortest cycle whose inner product with
X is non-zero modulo p. And every cycle that has non-zero inner product with
X; modulo p is also a candidate cycle of Deterministic-MCB in its i-th iteration.
Since C; was the shortest among all these candidate cycles for Deterministic-
MCB, we get that C; also has to be the shortest cycle for Randomized-MCB in
its i-th iteration. That is, B; = C;. This proves the induction step.

Proof of Lemma 6. We know that (Cy, N;) = 0 for k < [, so when we multiply
the (i — 1) x m matrix whose rows are C’s with the m x (i — 1) matrix whose
columns are N’s we get:

<Cl7N1> O 0 e O

Cl * <CQ;N2> O 0

(N LLNE) = * * (C3,N3) ... 0

Cim1 I : P :
* * * <Ci,1,Ni,1>

which is a lower triangular (i — 1) x (¢ — 1) matrix. Since each N; has only 0’s
after its j-th coordinate, we can restrict the matrix of N’s to its first ¢ — 1 rows
and the matrix of C’s to its first ¢ — 1 columns and we still have:

~ (CL,N) 0 0 0
e * (Cy, Ny) 0 0
e : : L :

* * * <Ci717Ni71>

where Nj is the restriction of N; to its first ¢ — 1 coordinates. Now all the
matrices are square matrices. The determinant of the matrix of C’s is k; and the
determinant of the matrix of Nj’s is an integer. So k; divides the determinant
on the right hand side, which is (Cy, N1) - - - (Ci—1, N;_1). Since none of (C;, N;)

280 T. Kavitha

is 0 modulo p for 1 < j <4 — 1, the prime p does not divide this product. So p
cannot divide k;. Hence k; # 0(modp). O

This also completes the proof of Lemma 5 which says that when p is good,
B; = C;, for 1 < i < d. This immediately implies Theorem 1 since {C1,...,Cqy}
is a minimum cycle basis. So the cycle basis computed by Randomized-MCB is
a minimum cycle basis with probability at least 3/4 (from Lemma 3).

3 Running Time of Randomized-MCB

The value of 7(r), the number of primes less than r, is given by r/6logr <
7(r) < 8r/logr [1]. So the elements in P can be bounded by 100d? logd. Using
sieving, we can compute the set of primes in the first 100d? log d numbers in
O(d?1og® d) time. So the set P can be determined in O(d? log® d) time.

3.1 Computing B;

Now we consider the problem of computing a shortest cycle in G whose inner
product with X; is non-zero modulo p. Let us first review the technique in [10]
and then we describe our improved algorithm for this problem. Using the digraph
G = (V,A) and the vector X;, an undirected graph U, can be constructed.
The graph U;, can be visualized as a graph with p layers. Call these layers
as layer 0,..., layer (p — 1). Each layer has a copy of every vertex v € V. Let
v; be the copy of vertex v in layer j. The edge set of U;, also consists of p
copies of each arc a € A. The edges corresponding to arc a = (u,v) are (u;,vx)
where k = (j + X;(a)) modulo p for each j = 0,1,...,p — 1. For example,
let @ = (u,v),X;(a) = 3 and p = 5. Then U, , has 5 copies of a which are
(uo,v3), (u1,v4), (u2,v0), (us, v1), (44, v2). Bach edge (u;,vg) in U; , inherits the
weight of its corresponding arc (u,v) of G.

The above construction gives us a well-defined map from the vertex set of
U, p to the vertex set of G and from the edge set of U; ;, to the arc set of G. We
can extend this map to paths of U; ,. Any path in U; , maps to a chain' in G by
mapping the vertices and edges in U;,, to their images in G. We say that path
(€o,...,er) in the graph U; , has repeated edges if e; and e; for some ¢ # j, map
to the same arc of G.

The following properties of U; , capture the essence of this graph.

— any (v, v¢) path in U; , maps to a closed chain in G.
— a (vo, ve) path in U; , with no repeated edges maps to a cycle in G.
— the inner product of such a cycle with X; is ¢ (in F,).

The following lemma from [10] is what we need. Its proof follows easily from
the above properties.

L a chain is an alternating sequence of vertices and arcs (zo, a1, z1, a2, ..., ar, Zr) such
that either ax, = (zr—1, k) or ax = (Tk, Tr—_1).

An O(m?n) Randomized Algorithm 281

Lemma 7. Let ¢ = min, mingo shortest (vo,ve) path in the graph U, ,. Then
q corresponds to a shortest cycle in G whose inner product with X; is non-zero
modulo p.

So B; can be computed by running Dijkstra’s algorithm from vg for each v in
V' and taking the minimum over v, of these shortest (vg,v¢),# # 0 paths. Since
Ui, has pn nodes and pm edges, Dijkstra’s algorithm takes O(pm + pnlogn)
time for each vg. Hence the total time taken to compute the cycle B; is O(n -
(pm + pnlogn)).

Now we will show that we can modify Dijkstra’s algorithm for this application
so that we take O(mlogn) time for each vy instead of O(pm + pnlogn) time.

3.2 Improved Implementation of Computing a Shortest
(vo,ve), £ # 0 Path

We will not build the graph U; ;, explicitly. Whenever we are at a vertex u;, we
know its neighborhood as follows. If there is an arc a between u and a vertex
w in G, then in U, ,, wy is a neighbor of u; where £ = (j + X;(a)) mod p if
a = (u,w) (directed from u to w), and k = (j — X;(a)) mod p if a = (w,u)
(directed from w to u).

The key observation here is that to compute minyo shortest (vo,ve) path, it
is enough to look at those intermediate vertices which are the closest or second
closest of their “type” to vg. That is, if u; is a vertex in ming»o shortest (v, v)
path, then u; is closest or second closest to vy among all of {ug, u1,...,up—1}. So
while running Dijkstra’s algorithm to determine mingo shortest (vo,ve) path,
we only explore neighborhoods of such vertices in the priority queue.

More formally, we will have distfu] = oo for each vertex u in U;, and the
priority queue @ contains all the nodes of U, ,, keyed by their dist values. Then
we start computing single-source shortest paths for each vertex in layer 0. Call
one such vertex as vg. This procedure runs as follows:

— set dist[vg] = 0.
— Maintain an array marked for the n vertices of G and initially marked[u] = 0
for each u € V.
— Repeat
e Extract the vertex x with the smallest dist value from Q.
If x is vy for some £ # 0, then store dist[vy] and the path computed to v,
and quit the Repeat loop.
Else let x = uy.
— if marked[u] < 2, then increment marked[u] and for each neighbor w do

dist[w] = min(dist[w], dist[x] + weight(z, w))

and update predecessor of w to x if necessary.
— else do nothing.
— For each vertex whose distance was made finite in our loop, set its dist back
to oo and insert back to @ the deleted vertices. (so that we can now run this
procedure for another vertex wy of layer 0)

282 T. Kavitha

Remark. There is always a (vg, v¢) path for some ¢ # 0 in the graph U, , for each
v € G. This is because X; on its last n — 1 coordinates (which are the arcs of the
spanning tree T') is 0 and X; # 0. So each layer of the graph U, , is connected
and there is at least one edge from layer 0 to some non-zero layer.

Running Time of the Above Algorithm. We look at neighborhoods of only
those vertices which are of the type u; such that u; is the first or second among
all the vertices in {ug,...,up—1} to be extracted from the priority queue. For
such vertices we make the dist value of their neighbors to be finite. The total
number of vertices whose distance is ever made finite in our loop is bounded by
> uee deg(uy) for all u; which are closest or second closest to vg among the “u”
vertices. Since deg(u;) = deg(u), we get the bound of 2 deg(u) = O(m). Let
us implement the priority queue as a binary heap so that each of the operations
needed above can be implemented in O(log(pn)) = O(logn) amount of time. In
the Repeat loop we charge the cost of extracting a vertex x to x’s predecessor
in shortest-path(wvg,). So for each vertex w; which is closest or second closest
among “u” vertices to vg, we do O(deg(u) -logn) amount of work. For the other
vertices we do no work. We take O(pn) time to build the binary heap. But we
do this just once in the entire algorithm, at the beginning of our first iteration.
Thereafter, we simply reset to infinity the dist value of only those vertices which
were made finite while running our procedure for the previous vertex. Also, we
insert the deleted vertices back into the heap. This takes O(mlogn) work.

In iteration 4, once we compute minyoshortest(vg, ve) path for all v € V, we
have determined B;. This takes time O(n - mlogn) given the priority queue Q
containing all the vertices with their dist values. So the total amount of time
to compute all the cycles By, ..., By given the vectors Xi,..., Xy is O(pn +
d(n - mlogn)) which is O(m?nlogn). All we need to show now is the following
lemma. The proof will be given in the full version of the paper.

Lemma 8. In order to compute ming.o shortest (v, v¢) path in U, p, it is enough
to look at vertices which are of the form: closest or second closest of their “type”
to vg.

The Overall Running Time of Randomized-MCB. Under the assump-
tion that arithmetic on O(logm) bits takes unit time, it follows that addition,
subtraction and multiplication in F, can be implemented in unit time since p
is O(d?logd). However we also need to implement division efficiently since the
update step of X; involves division. Once p is chosen, we will compute the mul-
tiplicative inverses of all elements in Z; by the extended Euclid’s ged algorithm
by solving az = 1(modp) for each a € Zj;. This takes time O(logp) for each
element and hence O(plog p) for all the elements. Thereafter, division in F,, gets
implemented as multiplication with the inverse of the divisor.

We need to account for the time taken to update the vectors X; 1, ..., Xy
in iteration i. Adding a scalar multiple of X; to a vector X; takes ©(i) time.
So the time taken by the update step in iteration i to update d — ¢ vectors is
O(i(d — 1)). So the entire time taken by the update steps of all the iterations is

An O(m?n) Randomized Algorithm 283

O(d3). So the total time taken by the algorithm Randomized-MCB is O(m3 +
m2nlogn).

4 Faster Implementation

Instead of spending ©(m?) time for the update step, using the technique in
[11] we can implement the update step in O(m*) time, where w < 2.376 is
the exponent of matrix multiplication. This then gives us an O(m?nlogn) ran-
domized algorithm for computing a minimum cycle basis. The algorithm FAST-
Randomized-MCB is described below.

— Compute a set P of d? primes po,p1, ... where each p; > d?. Choose a prime
p uniformly at random from this set.

— Call the procedure extend_cycle_basis({},{e1,...,eq},d), where ey,..., eq
are the first d vectors of the standard basis.

The procedure extend_cycle_basis takes as input a partial cycle basis, say,
{D1,...,D;} (denoted by D), a parameter k, and k vectors v;i1,...,0;4x of
)" which are orthogonal to {Ds,...,D;} over F, and computes k new cycles
D;i1,..., Diy) to extend the cycle basis. The role of v;y1,...,v;4 is identical
to the role played by the vectors X;i1, X;t2,... at the beginning of iteration
i+ 1 in the algorithm Randomized-MCB (Section 2.2). Just as the vectors X,
got updated in Randomized-MCB, the vectors v; get updated during the course
of extend_cycle_basis. But the difference is that we will update many v;’s with
respect to many cycles in one bulk update step called update. We describe below
the recursive procedure extend_cycle_basis. Note that all the arithmetic that we
do here is over the field F,. (For clarity we will sometimes use the notation vf
to denote the version of v; that is orthogonal to the cycles D1,...,D;_1.)

The procedure extend_cycle_basis(D, {vit1y...,Vitk}, k):

— if k =1, compute a shortest cycle D;11 such that (D;1,v;+1) # 0(modp).
— if k > 1, use recursion. Let t = | k/2].

1. call extend_cycle_basis(D,{vi41...,Vi++},t) to extend the current cycle
basis by t elements. That is, the cycles D;41, ..., D;y+ are computed in
a recursive manner.

2. call update({vig1,. .., Uittty {Vitt41, o, Vitr }). This updates {thH, .

viTi} en masse into the desired versions {vi{{f],...,v// "} that are

orthogonal to Dy, ..., Djt¢.

3. call extend_cycle_basis(D U {Dji1, .., Ditt},{Vittt1, - Vitkfr k — 1)
to extend the current cycle basis by k — t cycles. That is, the cycles
Diity1,..., Diyg will be computed recursively.

The key subroutine update can be implemented efficiently using fast ma-
trix multiplication. Then the running time of FAST-Randomized-MCB becomes

284 T. Kavitha

O(m* +m?2nlogn). We can assume that G is a simple graph, so m < n?. Then
m* < m?n and so the running time is O(m?nlogn). The running time analysis
and the analysis that the cycle basis computed here is the same as the cycle
basis computed by the algorithm Randomized-MCB follow directly from similar
analysis given in [11]. They will be presented in the full version of the paper. We
conclude with the following theorem.

Theorem 2. A minimum cycle basis of a directed graph, with positive weights
on its arcs, can be computed with high probability in time O(m?nlogn).

Acknowledgments. I am grateful to Kurt Mehlhorn for useful discussions and
his help in improving the presentation of the paper. I also wish to thank Jaikumar
Radhakrishnan for his helpful comments and the referee for bringing the example
in [14] to my attention.

References

1. T. M. Apostol. Introduction to Analytic Number Theory. Springer-Verlag, 1997.

2. F. Berger, P. Gritzmann, and S. de Vries. Minimum Cycle Bases for Network
Graphs. Algorithmica, 40(1): 51-62, 2004.

3. B. Bollobds. Modern Graph Theory, volume 184 of Graduate Texts in Mathematics,
Springer, Berlin, 1998.

4. A. C. Cassell and J. C. Henderson and K. Ramachandran. Cycle bases of minimal
measure for the structural analysis of skeletal structures by the flexibility method
Proc. Royal Society of London Series A, 350: 61-70, 1976.

5. J.C. de Pina. Applications of Shortest Path Methods. PhD thesis, University of
Amsterdam, Netherlands, 1995.

6. N. Deo. Graph Theory with Applications to Engineering and Computer Science.
Prentice-Hall Series in Automatic Computation. Prentice-Hall, Englewood Cliffs,
1982.

7. P. M. Gleiss. Short cycles: minimum cycle bases of graphs from chemistry and
biochemistry. PhD thesis, Universitdt Wien, 2001.

8. Alexander Golynski and Joseph D. Horton. A polynomial time algorithm to find
the minimum cycle basis of a regular matroid. In 8th Scandinavian Workshop on
Algorithm Theory, 2002.

9. J. D. Horton. A polynomial-time algorithm to find a shortest cycle basis of a graph.
SIAM Journal of Computing, 16:359-366, 1987.

10. T. Kavitha and K. Mehlhorn. A Polynomial Time Algorithm for Minimum Cycle
Basis in Directed Graphs In Proc. of STACS, LNCS 3404: 654-665, 2005.

11. T. Kavitha, K. Mehlhorn, D. Michail, and K. Paluch. A faster algorithm for
Minimum Cycle Basis of graphs. In Proc. of ICALP, LNCS 3142: 846-857, 2004.

12. Christian Liebchen. Finding Short Integral Cycle Bases for Cyclic Timetabling. In
Proc. of ESA, LNCS 2832: 715-726, 2003.

13. C. Liebchen and L. Peeters. On Cyclic Timetabling and Cycles in Graphs. Tech-
nical Report 761/2002, TU Berlin.

14. C. Liebchen and R. Rizzi. A Greedy Approach to compute a Minimum Cycle Basis
of a Directed Graph. Technical Report 2004/31, TU Berlin.

Basing Cryptographic Protocols on
Tamper-Evident Seals*

Tal Moran and Moni Naor**

Department of Computer Science and Applied Mathematics,
Weizmann Institute of Science, Rehovot, Israel

Abstract. In this paper we attempt to formally study two very intu-
itive physical models: sealed envelopes and locked boxes, often used as
illustrations for common cryptographic operations. We relax the security
properties usually required from locked boxes (such as in bit-commitment
protocols) and require only that a broken lock or torn envelope be iden-
tifiable to the original sender. Unlike the completely impregnable locked
box, this functionality may be achievable in real life, where containers
having this property are called “tamper-evident seals”. Another physical
object with this property is the “scratch-off card”, often used in lottery
tickets. We show that scratch-off cards can be used to implement bit-
commitment and coin flipping, but not oblivious transfer. Of particular
interest, we give a strongly-fair coin flipping protocol with bias bounded
by O(1/r) (where r is the number of rounds), beating the best known
bias in the standard model even with cryptographic assumptions.

1 Introduction

In this paper we consider the use of “tamper-evident seals” in cryptographic
protocols. A tamper-evident seal is a primitive based on very intuitive physical
models: the sealed envelope and the locked box. These are often used as illustra-
tions for a number of basic cryptographic primitives: For example, encryption
is often depicted as placing a message in a locked box (that cannot be opened
without a key), while bit commitment is usually illustrated as a sealed envelope.

In a bit-commitment protocol one party, Alice, commits to a bit b to Bob
in such a way that Bob cannot tell what b is. At a later time Alice can reveal
b, and Bob can verify that this is indeed the bit to which she committed. The
standard illustration used for a bit-commitment protocol is Alice putting b in a
sealed envelope, which she gives to Bob. Bob cannot see through the envelope
(so cannot learn b). When Alice reveals her bit, she lets Bob open the envelope
so he can verify that she didn’t cheat.

The problem with the above illustration is that a physical “sealed envelope”
is insufficient for bit-commitment: Bob can always tear open the envelope before

* This work was partially supported by the Minerva Foundation.
** Incumbent of the Judith Kleeman Professorial Chair.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 285-297, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

286 T. Moran and M. Naor

Alice officially allows him to do so. Even a locked box is unlikely to suffice; many
protocols based on bit-commitment remain secure only if no adversary can ever
open the box without a key. A more modest security guarantee seems to be more
easily obtained: an adversary may be able to tear open the envelope but Alice
will be able to recognize this when she sees the envelope again.

“Real” closures with this property are commonly known as “tamper evident
seals”. These are used widely, from containers for food and medicines to high-
security government applications. Another common application that embodies
these properties is the “scratch-off card”, often used as a lottery ticket. This
is usually a printed cardboard card which has some areas coated by an opaque
layer (e.g., the possible prizes to be won are covered). The text under the opaque
coating cannot be read without scratching off the coating, but it is immediately
evident that this has been done.

In this paper we attempt to clarify what it means to use sealed envelopes in a
cryptographic protocol. In particular, we study their applicability to coin flipping
(CF), zero-knowledge protocols, bit commitment (BC) and oblivious transfer
(OT), some of the most fundamental primitives in modern cryptography.

Our Results. In this paper we show that the sealed envelopes we consider can
be used to implement standard cryptographic protocols. We construct protocols
for “weakly fair” CF (in which the result is 0, 1 or invalid) and BC.

The existence of BC immediately implies the existence of a zero-knowledge
proof system for any NP language [16]. In the full version, we also show a non-
interactive zero knowledge proof system (with a preprocessing stage) for any NP
language that can be implemented using pre-printed scratch-off cards.

A possibly practical application of our model is the “cryptographic random-
ized response technique” (CRRT), defined by Ambainis et al. [2]. “Randomized
response” is a polling technique used when some of the answers to the poll
may be stigmatizing (e.g., “do you use drugs?”). The respondent lies with some
known probability, allowing statistical analysis of the results while letting the
respondent disavow a stigmatizing response. In a CRRT, there is the additional
requirement that a malicious respondent cannot bias the results more than by
choosing a different answer. The techniques described by Ambainis et al. achieve
this, but require “heavy” cryptographic machinery (such as OT), or quantum
cryptography. In the full version of the paper we give a simple protocol for CRRT
using scratch-off cards.

One of the most interesting results is a protocol for “strongly fair” CF (where
the result for an honest player must be either 0 or 1 even if the other player quits
before finishing the protocol) with bias bounded by O(1), where r is the number
of rounds. In the standard model, even with cryptographic assumptions, the best
known bias for a protocol with r rounds is O(#) (due to Cleve [8]). For a large
class of protocols (including any that rely on bit-commitment or weakly fair
coin flipping as a black-box), an unpublished result of Cleve and Impagliazzo [9]
shows this is the best possible bias.

An important contribution of this paper is the formal analysis for the models
and protocols we construct. We show that the protocols are Universally Com-

Basing Cryptographic Protocols on Tamper-Evident Seals 287

posable in the sense of Canetti [7]. This allows us to use them securely as “black-
boxes” in larger constructions.

On the negative side, we show that our protocol for strongly fair CF using
scratch-off cards is optimal: it is impossible to do better than O(1) bias (this
follows from a careful reading of the proof in [8]; the proof appears in the full
version). We show that OT cannot be implemented using scratch-off cards with-
out additional assumptions (note that we show the impossibility of any type of
OT, not just universally composable realizations).

Seals in Different Flavors. In the full version of the paper, we consider some ad-
ditional variants of tamper-evident seals. Roughly speaking, the difference arises
from whether or not a party can distinguish their own containers from those of
the other party without opening the seal, and whether or not an honest player
can “break” the seal. Scratch-off cards correspond to the distinguishable case
in which the honest party can break the seal. We show that in a distinguish-
able “weak-lock” model, where the honest party cannot break the seal, even BC
cannot be implemented (the proof is similar to the impossibility of OT , while
in the indistinguishable case it is possible to implement both BC and OT. Due
to space constraints, this paper will concentrate solely on the “distinguishable
envelope” (scratch-off card) model. Note that in the standard model of cryptog-
raphy, where the parties exchange messages and there is no access to outside
physical resources, we do not know how to implement any of these closures.

Related Work. To the best of our knowledge, this is the first attempt at us-
ing tamper evident seals for cryptographic protocols. Ross Anderson discusses
“packaging and seals” in the context of security engineering [3], however the use
of tamper-evidence does not extend to more complex protocols. Blaze gives some
examples of the reverse side of the problem: cryptanalysis of physical security
systems using techniques from computer science [4,5]. Using scratch-off cards
in the lottery setting can be described as a very weak form of CF, however we
do not believe this has ever been formally analyzed (or used in more complex
protocols).

On the other hand, basing cryptographic protocols on physical models is
a common practice. Perhaps the most striking example is the field of quantum
cryptography. One of the inspirations for this work was the idea of “Quantum Bit
Escrow” (QBE) [1], a primitive that is very similar to a tamper-evident seal and
that can be implemented in a quantum setting. There are, however, significant
differences between our definitions of tamper-evident seals and QBE. In particu-
lar, in QBE the adversary may “entangle” separate escrowed bits and “partially
open” commitments. Thus, while unconditionally secure bit-commitment is im-
possible in the pure quantum setting [19, 18], it is possible in ours.

Much work has been done on basing BC and OT on the physical properties
of communication channels, using the random noise in a communication channel
as the basis for security. Both BC and OT were shown to be realizable in the
Binary Symmetric Channel model [11,10], in which random noise is added to
the channel in both directions with some known, constant, probability. Later
work shows that they can also be implemented, under certain conditions, in the

288 T. Moran and M. Naor

weaker (but more convincing) Unfair Noisy Channel model [13,12], where the
error probability is not known exactly to the honest parties, and furthermore
can be influenced by the adversary. Our construction for 1-2 OT uses some of
the techniques and results from [13].

One of the motivations for this work was the attempt to construct crypto-
graphic protocols that are implementable by humans without the aid of comput-
ers. This property is useful, for example, in situations where computers cannot
be trusted to be running the protocol they claim, or where “transparency” to
humans is a requirement (such as in voting protocols). Many other examples
exist of using simple physical objects as a basis for cryptographic protocols that
can be performed by humans, some are even folklore: Sarah Flannery [15] re-
counts a childhood riddle that uses a doubly-locked box to transfer a diamond
between two parties, overcoming the corrupt postal system (which opens any
unlocked boxes) despite the fact that the two parties have never met (and can
only communicate through the mail). Fagin, Naor and Winkler [14] assembled
a number of solutions to the problem of comparing secret information without
revealing anything but the result of the comparison using a variety of different
physical methods. Schneier devised a cipher [21] that can be implemented by a
human using a pack of cards. In a lighter vein, Naor, Naor and Reingold [20] give
a protocol that provides a “zero knowledge proof of knowledge” of the correct
answer to the children’s puzzle “Where’s Waldo” using only a large newspa-
per and scissors. A common thread in these works is that they lack a formal
specification of the model they use, and a formal proof of security.

Organization of the Paper. In Section 2, we give a formal definition for
tamper-evident envelopes and the functionalities we attempt to realize using
them. In Section 3 we discuss the capabilities of this model, showing that OT
is impossible and giving protocols for BC and strongly-fair CF with bias 1/r.
Section 4 contains the discussion and some open problems.

2 The Model: Ideal Functionalities

Many two-party functionalities are easy to implement using a trusted third party
that follows pre-agreed rules. In proving that a two-party protocol is secure, we
often want to say that it behaves “as if it were performed using the trusted third
party”. A formalization of this idea is the “Universally Composable” model de-
fined by Canetti [7]. In the UC model, the trusted third party is called the
ideal functionality. The point of the model is that protocols that are secure in
the UC have very strong security properties, such as security under composi-
tion and security that is retained when the protocol is used as a sub-protocol
to replace an ideal functionality. This security guarantee allows us to simplify
many of our proofs, by showing separately the security of their component sub-
protocols.

Note that our impossibility results are not specific to the UC model: the
impossibility results for BC (in the full version of the paper), OT (Section 3)

Basing Cryptographic Protocols on Tamper-Evident Seals 289

and the lower bound for strongly fair CF (also in the full version) hold even for
the much weaker “standard” notions of these functionalities'.

In this section we formally define tamper-evident envelopes in terms of their
ideal functionalities. For completeness, we also give the definitions of the primi-
tives we are trying to implement (CF, BC, and OT). We restrict ourselves to the
two-party case, and to adversaries that decide at the beginning of the protocol
whether to corrupt one of the parties or neither.

Distinguishable Envelopes. This functionality models an opaque envelope
(or scratch-off card). Without opening the envelope it is impossible to determine
its contents. Any party can decide to rip open the envelope (breaking the seal),
but this will be evident to the envelope’s creator if the envelope is returned.

In succeeding sections, we assume we are given a realization of this function-
ality and attempt to construct a protocol for a “target” functionality (these are
described below)

Functionality Fpp contains an internal table that consists of tuples of the
form (id,value, creator, holder, state). The table represents the state and loca-
tion of the tamper-evident envelopes, and contains one entry for each existing
envelope, indexed by the envelope’s id. We denote value;q, creator;q, holder;q
and state;q the corresponding values in the table in row id (assuming the row
exists). The table is initially empty. The functionality is as follows, running with
parties Py,..., P, and adversary S:

Seal (id,value). On receiving this command from party P;, if this is the first
message with id id store the tuple (id,value, P;, P;,sealed) in the table (if
this is not the first message with id id, do nothing).

Send (id, P;). On receiving this command from party P;, the functionality
checks if an entry for envelope id appears in the table and that holder;q = P;.
If so, it outputs (Receipt, id, P;, P;) to P; and S and replaces the entry in the
table with (id, value,q, creator;q, P, state;q). Otherwise, it does nothing.

Open id. On receiving this command from P;, the functionality checks that an
entry for envelope id appears in the table, that holder;q = P;. If not, the
message is ignored. Otherwise, it sends (Opened, id, value;q, creator;q) to P;
and S. It then replaces the entry in the table with
(id, value;q, creator;q, holder;q, broken).

Verify id. On receiving this command from P;, the functionality checks that
an entry for envelope id appears in the table and that holder;q = P;. If not,
the message is ignored. If so, it considers state;q. If state;q = broken it sends
(Verified, id, broken) to P; and S. Otherwise, it sends (Verified, id, ok) to P;
and S.

A Note about Notation. In the interests of readability, we will often refer to par-
ties “preparing”, “verifying” and “opening” envelopes, instead of specifying that

1 'We do assume the “interface” supplied by the envelope primitives is the one defined
by the ideal functionality (e.g., we do not allow putting one envelope inside another).

290 T. Moran and M. Naor

they send the corresponding messages (Seal, Verify, Open) to the functionality
and wait for the appropriate response.

Weakly Fair Coin Flipping. This functionality models coin flipping in which
the result of the coin flip can be 0, 1 or L. The result of the flip ¢ should
satisfy: Prfc = 0] < £ and Pr[c = 1] < . This is usually what is meant when
talking about “coin flipping” (for instance, in Blum’s protocol [6]). The L result
corresponds to the case where one of the parties deviated from (or prematurely
aborted) the protocol. Under standard cryptographic assumptions (such as the
existence of one-way functions), weakly fair coin flipping is possible. Conversely,
in the standard model the existence of weakly fair coin flipping implies one-way
functions [17].

Functionality Fyycr is as follows, with parties Alice and Bob (in this defini-
tion we only allow Bob to trigger an invalid output):

Value. The sender of this command is called the initiator. The other party is
the receiver. When this command is received, the functionality chooses a
uniform value d € {0,1}. If the receiver is corrupted, the functionality then
outputs “approve d” to the receiver. In that case, the functionality ignores
all input until it receives either a Continue command or a Stop command
from the receiver. If the receiver is not corrupted, the functionality proceeds
as if he had sent a Continue command.

Stop. When this command is received from a corrupt receiver (in response
to an “approve d” message) the functionality outputs L to all parties and
halts.

Continue. When this command is received from the receiver (in response to
an “approve d” message), the functionality outputs “coin is d” to all parties
and halts.

Strongly Fair Coin Flipping with Bias p (Adapted from [7]). This func-
tionality models a coin flip between two parties with a bounded bias. If both
parties follow the protocol, they output an identical uniformly chosen bit. Even
if one party does not follow the protocol?, the other party outputs a random bit
whose bias towards 0 or 1 is at most p.

Functionality Fscop is as follows:

Value. When this command is received for the first time from any party, the
functionality chooses a value d € {0,1}. It then outputs “accept d?” to
the adversary. If the adversary responds with no, with probability p the
functionality outputs “value 1 —d” to all parties and with probability 1 — p
outputs “value d” to all parties. If the adversary responds with yes (or does
not respond), the functionality outputs “value d” to all parties.

2 In “not following the protocol” we include halting (failing to respond). The UC
model does not explicitly handle this behaviour, however we can treat it as a special
“halt” command that can be sent by the adversary.

Basing Cryptographic Protocols on Tamper-Evident Seals 291

Bit Commitment (Adapted from [7]). Functionality Fpc:

Commit b. The issuer of this command is called the sender, the other party
is the receiver. On receiving this command the functionality records b and
outputs “committed” to the receiver. It then ignores any other commands
until it receives the Open command from the sender.

Open. On receiving this command from the sender, the functionality outputs
“opened b” to the receiver.

2.1 Intermediate Functionalities

In order to simplify the presentation, in the following sections we will present
protocols that realize functionalities that are slightly weaker than the ones we
want. We then use standard amplification techniques to construct the “full”
functionalities from their weak version. In this section we define these inter-
mediate functionalities and give the amplification lemmas we use to construct
the stronger versions of these primitives. These definitions are in the spirit
of [13].

(p, @)-Weak Bit-Commitment. This functionality models bit commitment
where a corrupt sender can cheat with probability ¢ while a corrupt receiver can
cheat with probability p. The result of failing to cheat is asymmetric. In the case
of a corrupt receiver, an unsuccessful attempt to cheat causes the sender to be
notified, while a corrupt sender risks nothing in attempting to cheat. Note that
an (€, €)-WBC protocol is a regular bit-commitment protocol when e is negligible.
Formally, functionality F(, ,)—wpc proceeds as follows:

Commit b. The issuer of this command is called the sender, the other party
is the receiver. On receiving this command the functionality records b and
outputs “committed” to the receiver. It then ignores any other commands
until it receives an Open command from the sender, an OpenFlip command
from a corrupt sender or a Break command from a corrupt receiver.

Open b. On receiving this command from the sender, the functionality checks
that the sender previously sent a Commit b command. If so, or if the sender
is corrupt and previously sent a CanEquivocate command whose response
was “Can Equivocate”, the functionality outputs “opened b” to the receiver.
Otherwise the command is ignored.

CanEquivocate On receiving this command from a corrupt sender, choose a
value r uniformly in [0, 1]. If > ¢ send “No Equivocation” to the sender and
ignore further CanEquivocate messages. If r < ¢ send “Can Equivocate”
to the sender.

Break On receiving this command from a corrupt receiver, choose a value r
uniformly in [0, 1]. If » > p send “cheating receiver” to the sender and receiver
and then halt. Otherwise, send b to the receiver.

We can amplify any (p,q)-WBC protocol when p,¢q < 1, meaning that the
existence of such a protocol implies the existence of regular BC.

292 T. Moran and M. Naor

Theorem 1. Let P be a (p, q)-WBC protocol and p,q < 1. Then there exists an
(e,€)-WBC for any € > 0 using O (log2 (%)) invocations of P.

The proof for this theorem is straightforward, and will be given in the full version.

(p, 9)-Remotely Inspectable Seal (RIS). This functionality is used in our
protocol for strongly fair CF. It is a strengthened version of a tamper-evident
seal. With a tamper-evident seal, only its holder can interact with it. Thus,
either the sender can check if it was opened, or the receiver can verify that the
sealed contents were not changed, but not both at the same time. A remotely
inspectable seal is one that can be tested “remotely” (without returning it to
the sender). Unfortunately, we cannot realize the ideal version, and therefore
relax it somewhat: we allow a corrupt receiver to learn the committed bit during
the verification process, and only then decide (assuming he did not previously
break the seal) whether or not the verification should succeed. Our definition
is actually a further relaxation®: both sender and receiver may cheat with some
probability. A corrupt sender can cause the result of the Open command to be
a uniformly random value (instead of a specific value determined in the commit
stage). The receiver will catch the sender with probability at least 1—q. A corrupt
receiver who opens the commitment before the verify stage will be caught with
probability 1 — p.

Formally, the functionality maintains an internal state variable v = (v, vs)
consisting of the committed bit v, and a “seal” flag v,. It accepts the commands:

Commit b. The issuer of this command is called the sender, the other party is
the receiver. b can be either 0, 1 or (if the sender is corrupt) L. If b € {0,1}
(the sender did not try to cheat), the functionality sets v <« (b, sealed). If
b =1 (the sender tried to cheat) with probability ¢ (the sender cheated
successfully) v « (r,sealed) (where r is randomly chosen from {0,1}) and
with probability 1 — ¢ it sets v « (L,sealed) In any case the functional-
ity concludes by outputting “committed” to the receiver, and ignoring any
subsequent Commit commands.

Open. This command is sent by the receiver. If v, € {0,1} the functionality
outputs “opened b” to the receiver. Otherwise it outputs “invalid” to the
receiver. If vy = sealed, with probability 1 — p the functionality sets vy «
open

Verify. If vy # sealed, the functionality outputs “invalid” to the sender. Oth-
erwise (no opening was detected), the functionality outputs “verifying value
b” to the adversary and waits for a response. If the adversary responds with
ok, the functionality outputs “sealed” to the sender, otherwise it outputs
“invalid” to the sender. After receiving this command from the sender (and
responding appropriately), the functionality ignores any subsequent Verify
commands.

3 This second relaxation is only for convenience; we can remove it using amplification
as noted in Theorem 2.

Basing Cryptographic Protocols on Tamper-Evident Seals 293
A (p, q)-Remotely Inspectable Seal can be amplified for any p < 1 and ¢ < 1:

Theorem 2. Let P be a (p,q)-RIS protocol p < 1 and ¢ < 1. Then there exists
an (€, €)-RIS for any ¢ > 0 using O (log2 (1)) invocations of P

Note that the amplification works even if ¢ = 1: this is because the adversary
doesn’t have full control over the revealed bit but can only cause it to be a
random bit. The proof of this theorem will appear in the full version.

3 Capabilities of the Distinguishable Envelope Model

Oblivious Transfer is Impossible. Let Alice be the sender and Bob the re-
ceiver. Consider Alice’s bits ag and ap, as well as Bob’s input ¢, to be random
variables taken from some arbitrary distribution. Alice’s view of a protocol ex-
ecution can also be considered a random variable V4 = (ag,a1,74, N1, ..., Ny),
consisting of Alice’s bits, random coins (r4) and the sequence of messages that
comprise the transcript as seen by Alice. In the same way we denote Bob’s view
with Vg = (¢,r5, M1,..., M,), consisting of Bob’s input and random coins and
the sequence of messages seen by Bob.

The essence of oblivious transfer (whether universally composable or not) is
that Bob gains information about one of Alice’s bits, but Alice does not know
which one. We can describe the information Bob has about Alice’s bits using
Shannon entropy, a basic tool of information theory. The Shannon entropy of a
random variable X, denoted H(X) is a measure of the “uncertainty” that resides
in X. When X has finite support: H(X) = — " Pr[X = z|logPr[X = z].

Suppose Bob’s view of a specific protocol transcript is vg. What Bob learns
about a; (¢ € {0,1}) can be described by the conditional entropy of a; given
Bob’s view of the protocol. We write this H(a; | Vg = vp). If Bob knows a; at
the end of the protocol then H(a; | Vg = vp) = 0 since there is no uncertainty
left about the value of a; given Bob’s view. If Bob has no information at all
about a; then H(a; | Vg = vp) = 1, since there are two equally likely values of
a; given Bob’s view.

We show that in any protocol in the DE Model, Alice can calculate the
amount of information Bob has about each of her bits:

Theorem 3. For any protocol transcript where Vo = va and Vg = vp, both
H(ag | Vg =wvpg) and H(ay | VB = vp) are completely determined by v4.

In any OT protocol, Bob must have full information about a. (c is Bob’s “choice”
bit): H(a. | Vg = vp) = 0, and no information at all about aj_.: H(a. | Vg =
vp) = 1. The theorem states that in this case Alice can determine ¢, violating
the “obliviousness” requirement of the protocol.

Due to space considerations, we do not give the proof of Theorem 3 here. The
basic idea is that for any injection f and any random variable Y, the event Y =y
is identical to the event f(Y) = f(y). Therefore, for any two random variables
X and Y, it holds that H(X | Y =y) = H(X | f(Y) = f(y)). We show an

294 T. Moran and M. Naor

injection from Vg to Va,rpg,c. Since rg and ¢ must be independent of (ag, a;),
we can conclude that Alice can compute H(ag | Vg = vp) and H(a; | Vg = vp)
for any transcript. A similar argument holds for Bob.

A (%, %)-Weak Bit Commitment Protocol. We will show a weak bit com-
mitment protocol, and apply Theorem 1 to amplify the protocol and construct
a “standard” bit commitment protocol.

To implement Commit b:

1. Bob prepares four sealed envelopes, two containing a 0 and two a 1 in random
order. Bob sends the envelopes to Alice

2. Alice opens three envelopes (chosen randomly), and verifies that they are
not all the same. Let r be the value in the remaining (sealed) envelope. Alice
sends d = b @ r to Bob.

To implement Open:

1. Alice sends b and the sealed envelope to Bob.
2. Bob verifies that it is sealed, then opens it. He checks that d = b @ 7.

Intuitively, Bob can cheat only by sending three envelopes with the same bit in
the commit phase. However, Alice will catch him with probability i. Alice can
cheat by opening less than three envelopes (and guessing d). She will then be
caught in the open phase with probability at least % A proof of security will
appear in the full version.

A Strongly Fair Coin Flipping Protocol with Bias O(%) The construc-
tion uses remotely inspectable seals (defined in Sec. 2.1), which we then show
how to implement in the DE model. The idea is similar to the “standard” CF
protocol using BC: Alice commits to a random bit a. Bob sends Alice a random
bit b, after which Alice opens her commitment. The result is a & b.

The reason that this is not a strongly fair CF protocol is that Alice learns
the result of the toss before Bob, and can decide to quit before opening her
commitment. Using RIS instead of BC solves this problem, because Bob can
open the commitment without Alice’s help.

Ideally, we would like to replace BC with RIS (and have Alice verify that Bob
didn’t break the seal before sending b). This seems to work; If Bob quits before
verification, or if the verification fails, Alice can use a as her bit, because Bob
had to have decided to quit before seeing a. If Bob quits after verification (and
the verification passed), Alice can use a @ b, since Bob sent b before learning a.
This idea fails, however. The reason is that RIS allows Bob to see the committed
bit during verification. If he doesn’t like it, he can cause the verification to fail.

We can overcome the problem with probability 1 — % by doing the verification
in r rounds. The trick is that Alice secretly decides on a “threshold round”: after
this round a failure in verification won’t matter. Bob doesn’t know which is the
threshold round (he can guess with probability at most 1/r). If Bob decides to
stop before the threshold round, either he did not attempt to illegally open a

Basing Cryptographic Protocols on Tamper-Evident Seals 295

commitment (in which case his decision to stop cannot depend on the result of
the coin flip), or he illegally opened all the remaining commitments (opening
less than that gives no information about the result). In this case all subsequent
verifications will fail, so he may as well have simply stopped at this round (note
that the decision to open is made before knowing the result of the coin flip).
Clearly, anything Bob does after the threshold round has no effect on the result.
Only if he chooses to illegally open commitments during the threshold round
can this have an effect on the outcome (since in this case, whether or not the
verification fails determines whether Alice outputs a or a @ b). The full protocol
is as follows:
1. Alice chooses r random bits aq,...,a, and commits to each bit using the
RIS scheme (this is done in parallel). Denote a = a3 & - - - @ a,
2. Bob chooses a random bit b. If Alice quits before finishing the commit stage,
Bob outputs b. Otherwise, he sends b to Alice.
3. If Bob quits before sending b, Alice outputs a. Otherwise, Alice chooses a
secret index j € {1,...,r}.
4. The protocol now proceeds in r rounds. Round i has the following form:
(a) Alice verifies that Bob did not open the commitment for a;.
(b) Bob opens the commitment for a;.
5. If the verification is successful up to round j (and Bob didn’t quit up to
round j), Alice outputs a @ b. Otherwise, Alice outputs a.
6. Bob always outputs a @ b (If Alice quits before completing the verification
rounds, Bob opens the commitments without verification).

Implementation of Remotely Inspectable Seals. We start by giving a
(1,1)-RIS protocol. We can then apply Theorem 2 to amplify it to (e,)-RIS
for some negligible €. To implement Commit b:

1. Alice sends two envelopes to Bob, each containing the bit b.
To implement Verify:

1. Alice initiates a (weakly fair) coin flip with Bob.

2. Denote the result of the coin flip r. Bob returns envelope r to Alice.

3. Alice waits for the result of the coin flip and the envelope from Bob. If the
result is L, or if Bob does not return an envelope, Alice outputs “opened”.
Otherwise, Alice verifies that Bob returned the correct envelope, and that
it is still sealed. If both of these conditions are not satisfied, she outputs
“sealed”, otherwise she outputs “opened”.

To implement Open:

1. Bob randomly chooses one of the envelopes in his possession (if he already
returned one to Alice during the Verify stage then he opens the one he has
left). He outputs the contents of the envelope.

296 T. Moran and M. Naor

4 Discussion and Open Problems

The protocols we describe in this paper can be performed by unaided humans,
however they require too many “envelopes” to be practical for most uses. It
would be useful to construct protocols that can be performed with a smaller
number of envelopes or with a smaller number of rounds.

Another point worth mentioning is that the protocols we construct only re-
quire one of the parties to seal and verify envelopes. Thus, the binding property
is only used in one direction, and the tamper-evidence and hiding properties
in the other. This property is useful when we want to implement the protocols
in a setting where one of the parties may be powerful enough to open the seal
undetectably. (for instance, in the context of voting, where one of the parties
could be “the government” while the other is a private citizen)

In both the weakly and strongly fair CF protocols, only the first round re-
quires envelopes to be created, and their contents do not depend on communi-
cation with the other party. This allows the protocols to be implemented using
scratch-off cards (which must be printed in advance). In particular, the weakly
fair CF protocol can be implemented with a scratch-off card using only a small
number of areas to be scratched (this protocol is given in the full version).

In the case of BC, our protocol requires the powerful party to be the receiver.
It would be interesting to construct a BC protocol for which the powerful party
is the sender (i.e., only the sender is required to to seal and verify envelopes).

References

1. D. Aharonov, A. Ta-Shma, U. V. Vazirani, and A. C. Yao. Quantum bit escrow.
In STOC 00, pages 705-714, 2000.
2. A. Ambainis, M. Jakobsson, and H. Lipmaa. Cryptographic randomized response
techniques. In PKC ’04, volume 2947 of LNCS, pages 425-438, 2004.
3. R. J. Anderson. Security Engineering: A Guide to Building Dependable Distributed
Systems. John Wiley & Sons, Inc., 2001.
4. M. Blaze. Cryptology and physical security: Rights amplification in master-keyed
mechanical locks. IEEE Security and Privacy, March 2003.
5. M. Blaze. Safecracking for the computer scientist. U. Penn CIS Department
Technical Report, December 2004. http://www.crypto.com/papers/safelocks.pdf.
6. M. Blum. Coin flipping over the telephone. In Proceedings of IEEE COMPCON
’82, pages 133-137, 1982.
7. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000,/067, 2000.
8. R. Cleve. Limits on the security of coin flips when half the processors are faulty.
In STOC 86, pages 364-369, 1986.
9. R. Cleve and R. Impagliazzo. Martingales, collective coin flipping and discrete
control processes. http://www.cpsc.ucalgary.ca/ cleve/pubs/martingales.ps, 1993.
10. C. Crépeau. Efficient cryptographic protocols based on noisy channels. In Furo-
crypt ’97, volume 1233 of LNCS, pages 306-317, 1997.
11. C. Crépeau and J. Kilian. Achieving oblivious transfer using weakened security
assumptions. In FOCS 88, pages 42-52, 1988.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Basing Cryptographic Protocols on Tamper-Evident Seals 297

I. B. Damgard, S. Fehr, K. Morozov, and L. Salvail. Unfair noisy channels and
oblivious transfer. In TCC ’04, volume 2951 of LNCS, pages 355-373, 2004.

I. B. Damgéard, J. Kilian, and L. Salvail. On the (im)possibility of basing oblivious
transfer and bit commitment on weakened security assumptions. In Furocrypt ’99,
volume 1592 of LNCS, pages 5673, 1999.

R. Fagin, M. Naor, and P. Winkler. Comparing information without leaking it.
Commun. ACM, 39(5):77-85, 1996.

S. Flannery and D. Flannery. In Code: A Mathematical Journey. Algonquin Books
of Chapel Hill, 2002.

O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their
validity or all languages in NP have zero-knowledge proof systems. J. of the ACM,
38(3):691-729, July 1991.

R. Impagliazzo and M. Luby. One-way functions are essential for complexity based
cryptography. In FOCS ’89, pages 230235, 1989.

H.-K. Lo and H. F. Chau. Why quantum bit commitment and ideal quantum coin
tossing are impossible. In PhysComp 98, pages 177-187, 1998.

D. Mayers. Unconditionally secure quantum bit commitment is impossible. Phys.
Rev. Lett., (78):3414-3417, 1997.

M. Naor, Y. Naor, and O. Reingold. Applied kid cryptography or
how to convince your children you are not cheating, Mar. 1999.
http://www.wisdom.weizmann.ac.il/ naor/PAPERS/waldo.ps.

B. Schneier. The solitaire encryption algorithm, 1999. http://www.schneier.com/
solitaire.html.

Hybrid Trapdoor Commitments
and Their Applications*

1 2, %%

Dario Catalano” and Ivan Visconti
! CNRS-Ecole Normale Supérieure,
Laboratoire d’Informatique 45 Rue d’Ulm,
75230 Paris Cedex 05 - France
dario.catalano@ens.fr
2 Dip. di Informatica ed Appl. Universita di Salerno Via S. Allende n. 2,
84081 Baronissi (SA) - Italy

visconti@dia.unisa.it

Abstract. We introduce the notion of hybrid trapdoor commitment
schemes. Intuitively an hybrid trapdoor commitment scheme is a primi-
tive which can be either an unconditionally binding commitment scheme
or a trapdoor commitment scheme depending on the distribution of
commitment parameters. Moreover, such two distributions are computa-
tionally indistinguishable. Hybrid trapdoor commitments are related but
different with respect to mized commitments (introduced by Damgard
and Nielsen at Crypto 2002). In particular hybrid trapdoor commit-
ments can either be polynomially trapdoor commitments or uncondi-
tionally binding commitments, while mixed commitment can be either
trapdoor commitments or extractable commitments. In this paper we
show that strong notions (e.g., simulation sound, multi-trapdoor) of hy-
brid trapdoor commitments admit constructions based on the sole as-
sumption that one-way functions exist as well as efficient constructions
based on standard number-theoretic assumptions. To further stress the
difference between hybrid and mixed commitments, we remark here that
mixed commitments seems to require stronger theoretical assumptions
(and the known number-theoretic constructions are less efficient). The
main application of our results is that we show how to construct con-
current and simulation-sound zero-knowledge proof (in contrast to the
arguments recently presented in [1,2,3]) systems in the common refer-
ence string model. We crucially use hybrid commitment since we present
general constructions based on the sole assumption that one-way func-
tions exists and very efficient constructions based on number-theoretic
assumptions.

* Extended abstract. The full version of this paper can be found at
http://www.di.ens.fr/"catalano.

** Work partially done while Ivan Visconti was a post-doctoral fellow at the
Département d’Informatique of the Ecole Normale Supérieure in Paris, France.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 298-310, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Hybrid Trapdoor Commitments and Their Applications 299

1 Introduction

Commitment schemes are arguably among the most important and useful primi-
tives in cryptography. Intuitively a commitment scheme can be seen as the digital
equivalent of a sealed envelope. If a party A wants to commit to some message m
she just puts it into the sealed envelope, so that whenever A wants to reveal the
message, she opens the envelope. Clearly, such a mechanism can be useful only
if it meets some basic requirements. First of all the digital envelope should hide
the message: no party other than A should be able to learn m from the commit-
ment (this is often referred in the literature as the hiding property). Second, the
digital envelope should be binding, meaning with this that A cannot change her
mind about m, and by checking the opening of the commitment one can verify
that the obtained value is actually the one A had in mind originally (this is of-
ten referred as the binding property). These two properties make commitments
very useful in a wide range of cryptographic applications such as zero-knowledge
protocols, multi-party computation, digital auctions and electronic commerce.

A commitment scheme is a primitive to generate and open commitments.
More precisely a commitment scheme is a two-phase interactive protocol be-
tween two probabilistic polynomial time algorithms sender and receiver. In a
first stage (called the commitment phase) sender commits to a bit b using some
appropriate function Com which takes as input b and some auxiliary value r and
produces as output a value y. The value y is sent to receiver as a commitment
on b. In the second stage (called the decommitment phase) sender “convinces”
receiver that y is actually a valid commitment on b by revealing b and the aux-
iliary input r (if receiver is not convinced, it just outputs some special string).
The requirements that we make on a commitment scheme are the following ones.
First, if both sender and receiver behave honestly, then at the end of the de-
commitment phase receiver is convinced that sender had committed to bit b
with probability 1. This is often referred as the correctness requirement. Second
a cheating receiver cannot guess b with probability significantly better than
1/2. This is the so-called hiding property. Finally, a cheating sender should be
able to open a commitment (i.e., to decommit) with both b and 1 — b only with
very small (i.e., negligible) probability (this is the binding property). Each of the
last two properties (i.e., hiding and binding) can be satisfied unconditionally or
relatively to a computational assumption. In our context (i.e., where only two
parties are involved) this immediately implies that one cannot hope to build
a commitment scheme where both the hiding and the binding properties hold
unconditionally. Unconditionally binding commitment schemes have been con-
structed under the sole assumption that one-way functions exist [4] and in such
a construction an initial message of the receiver is required. It is known how to
construct non-interactive unconditionally binding commitment schemes by using
any one-way permutation [5]. Constant-round (actually 2-round) uncondition-
ally hiding commitment schemes have been constructed under the assumption
that collections of claw-free functions exist [5].

Since commitment schemes are very useful primitives they are often used as
building blocks to construct larger protocols. In this sense it is often the case

300 D. Catalano and I. Visconti

that the two basic requirements described above turn out to be insufficient. For
this reason commitment schemes with additional properties have been proposed.

A trapdoor commitment scheme (sometimes also called chameleon commit-
ment), is a commitment scheme with associated a pair of public and private
keys (the latter also called the trapdoor). Knowledge of the trapdoor allows the
sender to open the commitment in more than one way (this is often referred as
the equivocality property). On the other hand, without knowledge of the trap-
door, equivocality remains computationally infeasible. When the commitments
computed by means of a trapdoor are distributed exactly as real commitments
then the trapdoor commitment scheme is unconditionally hiding. Instead, the
equivocality property allows only computationally binding trapdoor commitment
schemes.

1.1 Our Contributions

In this paper we introduce the notion of hybrid trapdoor commitment schemes.
Informally an hybrid trapdoor commitment scheme is a general commitment
primitive that allows for two commitment parameters generation algorithms
HGen and HTGen. If the commitment parameters are obtained as the output
of HGen then the resulting scheme is an unconditionally binding commitment
scheme, while if the parameters are generated by HTGen the produced scheme is
actually a trapdoor commitment scheme. Moreover, as for mixed commitments,
no polynomially bounded adversary, taking as input only the (public) commit-
ment parameters, should be able to tell the difference between keys generated
from HGen and keys produced by HTGen.

Comparison with Mixed Commitments. Notice that the notion of hybrid
trapdoor commitment may look very similar to that of mixed commitment in-
troduced in [6]. There is a crucial difference however. Depending on the way
the parameters are generated a mixed commitment can be either an extractable
commitment or a trapdoor commitment. In our case, on the other hand, we re-
quire only that the commitment is either unconditionally binding or a trapdoor
commitment scheme. As mentioned before, mixed commitments have been intro-
duced to construct universally composable commitments and indeed Damgard
and Nielsen proved that it is possible to construct a universally composable com-
mitment from a mixed commitment where the number of E-keys (over the total
number of keys) is negligible and that the number of X-keys (over the total
number of keys) is only negligibly less than 1. Interestingly, a recent result by
Damgard and Groth [7] shows that universally composable commitments im-
ply key exchange and, when implemented in the shared random string model,
they imply oblivious transfer. Therefore it seems unlikely that universally com-
posable commitments (in the sense of [6]) can be implemented from one-way
functions only. In this paper, on the other hand, we show that hybrid trapdoor
commitments can be constructed from any one-way function.

Efficient Implementations. To improve on efficiency we then turn our at-
tention to specific number-theoretic constructions and in particular we propose

Hybrid Trapdoor Commitments and Their Applications 301

a very efficient implementations that relies on the Decisional Diffie-Hellmann
assumption (other constructions based on Paillier’s [8] Decisional Composite
Residuosity Assumption can be found in the full version of this paper).

Stronger Extensions. As a second major contribution of this paper, we study
some stronger extensions of hybrid trapdoor commitments. In particular we show
how to build hybrid simulation-sound trapdoor commitments (hybrid SSTC, for
short) and hybrid multi-trapdoor commitments from the sole assumption that
one-way functions exist. Note that for the case of multi-trapdoor commitments
their equivalence to one-way functions was not known. In this paper we show that
multi-trapdoor commitment schemes are actually equivalent to digital signatures
which are secure with respect to generic chosen message attack. Informally in a
generic chosen message attack the adversary can obtain signatures only on a list
of messages chosen before the public key of the signer is published. This is clearly
a weaker notion with respect to the standard one where the adversary is allowed
to choose the messages adaptively. Since SSTC’s are actually equivalent to stan-
dard secure signatures, from a practical point of view, our result further clarifies
why the known (practical) implementations of multi-trapdoor commitments are
more efficient than the corresponding implementations of SSTC.

Applications. We use the different variants of hybrid trapdoor commitments
for achieving the following applications. Using hybrid trapdoor commitments we
show how to construct 3-round concurrent zero-knowledge proof systems, in the
common reference string model, for all NP languages. We give a construction
based on the existence of any one-way function and an efficient construction
that is based on the DDH assumption. These results improves the computational
soundness achieved in a previous result by Damgard [1] in the sense that ours
are actually zero-knowledge proofs rather than zero-knowledge arguments. Using
either hybrid SSTC or hybrid multi-trapdoor commitments we show how to
construct an unbounded simulation-sound zero-knowledge proof system in the
common reference string model. This improves the recent results of [3, 2] where
similar results were presented for unbounded simulation-sound zero-knowledge
arguments (rather than proofs).

Proofs vs Arguments. A proof system has the following property: any adver-
sarial prover (regardless of his computing power) has negligible probability of
making a honest verifier accept a false statement. This strong notion of sound-
ness differs from the corresponding notion of soundness of an argument system,
where security for honest verifiers holds only against polynomial-time adversar-
ial provers. The notions of argument and proof differ dramatically when zero
knowledge is considered. For example, while it is known that any NP language
has a perfect zero-knowledge argument [9], if an A'P-complete language has a
perfect zero-knowledge proof then the polynomial hierarchy collapses to its sec-
ond level [10,11]. With respect to constant-round zero knowledge, the current
state of knowledge gives us a constant-round (computational) zero-knowledge
proof for NP under the assumption that collections of claw-free functions ex-

302 D. Catalano and I. Visconti

ist [5], while constant-round zero-knowledge arguments for NP are known to
exist under the assumption that one-way functions exist [12].

As discussed above, in this paper we show that our new notion of commitment
scheme can be used to obtain some strong variants of zero-knowledge proof
systems improving the current state-of-the art in which only arguments have
been shown.

2 Definitions

We now give some basic definitions that we will use in this paper. We use the
notation {1, ..., Bk : @} to specify the probability distribution of « after the se-
quential executions of events 31, ..., Bx. In general, we assume that an algorithm
A has access to some random (auxiliary) input even though this is not explicitly
specified. Moreover, if A is a probabilistic algorithm we denote with A(z) the
random variable describing the output of A on input z. We say that a function v
is negligible iff for all constants ¢ there exists ngy such that for all n > ng it holds
that 0 < v(n) < # A binary relation R is polynomially bounded if it is decid-
able in polynomial time and there exists a polynomial p such that for all pairs
(z,y) € R it holds that |y| < p(|x|). We denote by Lr = {z|Jy : (z,y) € R} the
N'P-language associated with R. For an N'P-language L we denote by Ry the
witness relation associate with L defined as ¢ € L < Jy : (x,y) € R. We now
give definitions for several notions of commitment schemes. For readability we
will use “for all ” to mean any possible string x of length polynomial in the se-
curity parameter. We start with the standard notion of commitment scheme with
its two main variants (i.e., unconditionally binding and unconditionally hiding).
Note that all definitions will use a commitment generator function that outputs
the commitment parameters. Therefore, such commitments have a straightfor-
ward implementation in the common reference string model where a trusted third
party generates a reference string that is later received as common input by all
parties. In some cases the commitment parameters generated by the commitment
generator function will be strings with uniform distribution; in such cases the
corresponding commitments can be implemented in the shared random string
model which is a set-up assumption weaker than the common reference string
model. For the sole sake of simplicity, in the following definitions, we consider
the case in which the commitment parameters are used for computing a single
commitment. However all the definitions can be extended so that the same com-
mitment parameters can be used for any polynomial number of commitments
(and actually all our results hold in this stronger setting).

Definition 1. (Gen, Com, Ver) is ¢ commitment scheme if:

- efficiency: Gen, Com and Ver are polynomial-time algorithms;
- completeness: for all v it holds that

Prob (crs — Gen(1"); (com, dec) « Com(crs, v) : Ver(crs, com, dec,v) = 1) =1

Hybrid Trapdoor Commitments and Their Applications 303

- binding: there is a negligible function v such that for any polynomial-time
algorithm sender it holds that

Prob (crs « Gen(1%); (com, vy, v1,decy, dec;) < sender(crs) :

Ver(crs, com,decg, vg) = Ver(crs, com,decy,v1) = 1) < v(k);

- hiding: for all crs generated with non-zero probability by Gen(1*), for all
vg, v1 where |vg| = |v1| the probability distributions:

{(como, deco) < Com(crs,vg) : comg} and {(com;,deci) < Com(crs,v1) : com }
are computationally indistinguishable.

If the binding property holds with respect to a computationally unbounded
algorithm sender, the commitment scheme is said unconditionally binding; if
instead, the hiding property holds with respect to a computationally unbounded
algorithm receiver, the commitment scheme is said unconditionally hiding.

We now give the definition of a trapdoor commitment scheme.

Definition 2. (Gen,Com, TCom, TDec,Ver) is a trapdoor commitment scheme
(TCS, for short) if Gen(1*) outputs a pair (crs,aux), Gencrs is the related algo-
rithm that restricts the output of Gen to the first element crs, (Gencrs, Com, Ver)
is a commitment scheme and TCom and TDec are polynomial-time algorithms such
that:

- trapdoorness: for all v the probability distributions:

{(crs, aux) < Gen(1%); (com,dec) « Com(crs,v) : (crs, com, dec,v)} and

{(crs, aux) «— Gen(lk); (com/, auxcom/) «— TCom(crs, aux); dec’ TDec(auxcom’, v') :
(crs, com’,dec’,v')}
are computationally indistinguishable.

The definitions of commitment and trapdoor commitment schemes presented
above can be extended by adding one more input to algorithms Com,Ver and
TCom that is, a label referred to as “tag”. In this case, algorithm Ver has an
additional constraint, it outputs 1 only if the same tag has been used as input
by algorithms Com or TCom. In particular, we will use such a tag-based definition
of commitment when we will consider the notion of simulation-sound trapdoor
commitment.

The definitions of multi-trapdoor commitment schemes and simulation-sound
trapdoor commitment schemes are deferred to the full version of this paper.
Now we are ready to introduce the notion of hybrid trapdoor commitment. As
sketched in the introduction, such a notion consider the existence of two commit-
ment generation functions whose outputs are computationally indistinguishable.
Still the properties of the two resulting commitment schemes are very different.
We start with the basic notion of hybrid trapdoor commitment scheme.

304 D. Catalano and I. Visconti

Definition 3. (HGen, HTGen, HCom, HTCom, HTDec,HVer) is an hybrid trapdoor
commitment scheme (HTCS, for short) if:

- binding: (HGen,HCom,HVer) is an wunconditionally binding commitment
scheme;

- trapdoorness:(HTGen, HCom, HTCom, HTDec, HVer) is a trapdoor commitment
scheme.

- hybridness: let HTGen' be an algorithm that restricts the output (crs, aux)
of HTGen(1%) to crs, then the following probability distribution are com-
putationally indistinguishable: {crsy « HGen(1*) : crso} and {crs; «
HTGen'(1%) : crs; }.

The notion given above can be extended to be a tag-based commitment
scheme (as for the case of standard trapdoor commitment schemes).

We now define the notions of hybrid multi-trapdoor and hybrid simulation-
sound trapdoor commitment schemes. We stress that for the latter we focus on
tag-based commitments (obtained by adding a label - the tag - as input to the
algorithms that compute and verify commitments).

Intuitively, since multi-trapdoor and simulation-sound trapdoor commitment
schemes define families of trapdoor commitment schemes, for the hybrid variant
of such primitives, we require that each scheme in the family is an hybrid trapdoor
commitment scheme.

Definition 4. (HGen, HTGen, HSel, HTkg, HCom, HTCom, HTDec, HVer) is an hybrid
multi-trapdoor commitment scheme (HMTCS, for short) if:

- multi trapdorness: (HTGen,HSel,HTkg, HCom, HTCom, HTDec, HVer) is a
multi-trapdoor commitment scheme;

- hybridness: let HGen'(1¥) (resp., HTGen') be an algorithm that outputs pk
(resp., (pk,tk)) if and only if (crs,aux) (resp., crs’,aux’) is the output
of HGen(1¥) (resp., HTGen(1%)) and pk (resp., (pk,tk)) is the output of
HSel(crs) (resp., HSel(crs’) and HTkg(aux’,HSel(crs’))); then it holds that
the following tuple of algorithms (HGen', HTGen’, HCom, HTCom, HTDec, HVer) is
an hybrid trapdoor commitment scheme.

Definition 5. (HGen,HTGen, HCom, HTCom, HTDec,HVer) is an hybrid simulation-
sound trapdoor commitment scheme (HSSTCS, for short) if:

- simulation soundness: (HTGen, HCom, HTCom, HTDec, HVer) is a simulation-
sound trapdoor commitment scheme;

- hybridness: (HGen, HTGen, HCom, HTCom, HTDec, HVer) is an hybrid trapdoor
commitment scheme.

3 Hybrid Trapdoor Commitments: Constructions

We now show that hybrid trapdoor commitment schemes exist under standard
assumptions. In particular, for each definition, we show both a construction based

Hybrid Trapdoor Commitments and Their Applications 305

on general primitives and a practical construction based on number-theoretic
assumptions. The constructions and therefore the proofs that we give under
complexity-based assumptions are modular, thus we only briefly discuss the ef-
ficient implementations. We start with a construction for an hybrid trapdoor
commitment scheme. The main idea of the proof is the following. The algorithm
that generates the reference string uses Naor’s commitment scheme (which is
based on the existence of one-way functions) to write in the reference string a
commitment com of the string 0. The commitment computed by the prover
is the first message a of the X-protocol for proving that com is a commitment
of 1¥. Since this is a false statement, there exists only one challenge m and a
third message z such that (a,m, z) is an accepting transcript. Therefore a is an
unconditionally binding commitment of message m. The sender can compute a
commitment a of m by running on input m the simulator of the honest-verifier
zero knowledge property, and obtains the pair (a,z) as output. The algorithm
that generates the fake reference string, instead, computes com as a commitment
of 1%. In this case, for each valid first message a, and any possible challenge m,
it is always possible to compute z such that (a, m, 2) is an accepting transcript.

Theorem 1. Under the assumption that one-way functions exist, there exists
an hybrid trapdoor commitment scheme.

Next, we — constructively — show how to construct an efficient scheme based
on the decisional Diffie-Hellman assumption. More details can be found in the
full version of this paper, here we only describe the basic idea underlying our
construction. The common reference string contains a quadruple (g, h, g™, h'"?)
which is either a Diffie-Hellman quadruple or a random one. Consider a X pro-
tocol V to prove equality of two discrete logarithms. We use V to prove that
g1 = ¢"* and h; = h"™ have the same discrete logarithm with respect to bases
g and h, respectively. If the quadruple is a random one the instance for the
JY-protocol is false. Consequently a commitment to a message m can be com-
puted only using the simulator of the X' protocol for obtaining an accepting
transcript (a,m, z) where a is the commitment key and (m, z) is the decommit-
ment key. On the other hand when the quadruple in the shared random string
is a Diffie-Hellman one, then knowledge of r; = r5 (the trapdoor) allows to send
a commitment key a that can later be opened as any possible message m. This
is because, by running the prover algorithm of the X-protocol on input r; = r
(as witness) and m (as challenge), it is always possible to find a z such that
(a,m, z) is an accepting transcript. The efficiency of this commitment scheme
directly follows from the efficiency of the considered X-protocol. This informal
discussion leads to the following theorem.

Theorem 2. Under the assumption that the Decisional Diffie-Hellman problem
is hard, there exists an efficient hybrid trapdoor commitment scheme.

A construction for hybrid multi-trapdoor (resp., simulation-sound trapdoor)
commitment schemes may seem, at first, much harder to achieve. After all, multi-
trapdoor commitments need more parameters (with respect to basic trapdoor

306 D. Catalano and I. Visconti

ones) and, to have an hybrid version of them, we need to make sure that these
parameters remain distributed in a way such that it should be hard to say which
of the two commitment generation algorithms was used to produce them.

Informally, we solve this problem by composing a multi-trapdoor (resp,
simulation-sound trapdoor) commitment scheme with an hybrid trapdoor com-
mitment scheme as the one described so far. The composition is made by con-
sidering the concatenation of both commitment parameters. Moreover all the op-
erations made by the committing and decommitting algorithms are performed
twice, once for each subscheme. Intuitively, using this technique, when a multi-
trapdoor (resp., simulation-sound trapdoor) commitment scheme is composed
with the hybrid trapdoor commitment scheme instantiated as a trapdoor com-
mitment scheme, the resulting scheme is still a multi-trapdoor (resp., simulation-
sound trapdoor) commitment scheme. On the other hand, if the hybrid trapdoor
commitment scheme is instantiated as an unconditionally binding commitment
scheme, then then resulting scheme is unconditionally binding. By the indistin-
guishability of the commitment parameters of the two instantiations we obtain
the desired result.

Theorem 3. Under the assumption that multi-trapdoor commitment scheme ex-
ist there exists an hybrid multi-trapdoor commitment scheme.

Note that, with the theorem above, we show how to construct hybrid multi-
trapdoor commitments from the hypothesis that multi-trapdoor commitments
exist. It is quite natural then to ask if is it possible to base the existence of multi-
trapdoor commitments on some weaker‘ assumption. Here we give a positive
answer to this question and in particular we show that multi-trapdoor commit-
ments exist if and only if secure signature against generic chosen message attack
exist. Notice that one-way functions are equivalent to secure signatures [13] in
the sense of [14], which, in turn, imply secure signature against generic chosen
message attack exist. This means that theorem 3 can be restated as follows.

Theorem 4. Under the assumption that one-way functions exist, there exists
an hybrid multi-trapdoor commitment scheme.

As for the case of hybrid trapdoor commitments we give an efficient imple-
mentation.

Theorem 5. Under the assumption that the strong RSA and DDH problems are
hard, (or under the assumption that the strong Diffie Hellman [15] and DDH
problems are hard), there exists an efficient hybrid multi-trapdoor commitment
scheme.

Similar results can be proved for the case of hybrid Simulation Sound trapdoor
commitments.

Theorem 6. Under the assumption that one-way functions exist, there exists
an hybrid simulation-sound trapdoor commitment scheme.

Hybrid Trapdoor Commitments and Their Applications 307

Theorem 7. Under the assumption that the DSA signature scheme is secure
and the DDH problem is hard, (or under the assumption that the Cramer-Shoup
signature scheme [16] is secure and the DDH problem is hard), there exists an
efficient hybrid simulation-sound trapdoor commitment scheme.

4 Hybrid Trapdoor Commitments: Applications

In this Section we describe some important applications of our primitive. In par-
ticular we show that hybrid trapdoor commitments can be used to construct
interactive protocols that achieve strong notions of zero knowledge [17]. More
precisely we improve the concurrent zero-knowledge arguments of [1] and both
the simulation-sound and the left-concurrent non-malleable zero-knowledge ar-
guments of [2, 3] by showing how to achieve zero-knowledge proofs (rather than
arguments). Therefore the security of our constructions holds even against com-
putationally unbounded provers. Moreover, our zero-knowledge proofs can be
based on the same complexity-theoretic assumptions used in [1,2,3]. The effi-
cient constructions also require the hardness of the DDH problem.

CONCURRENT ZERO-KNOWLEDGE PROOFS. In [1], 3-round concurrent zero-
knowledge arguments in the common reference string model are presented. More
precisely Damgard [1] presents a general protocol based on the existence of one-
way functions only and an efficient implementation based on number-theoretic
assumptions. In this section we improve on this result by showing the exis-
tence of 3-round concurrent zero-knowledge proof (in contrast to argument)
systems in the common reference string model. The first construction needs
the sole assumption that one-way functions exist, while the second, more effi-
cient, construction relies on the decisional Diffie-Hellman assumption. Interest-
ingly the first construction holds in the shared random string model as well.
In our construction we consider unbounded black-box zero-knowledge proofs
with a non-rewinding simulator (which, consequently, is also concurrent zero
knowledge).

Theorem 8. If one-way functions ezist, there exists a 3-round concurrent zero-
knowledge proof system in the common reference string model for any NP lan-
guage.

We remark here that, going through the details of the proof of Theorem 8 one
can easily verify that reference string used in the proof of Theorem 8 is uniformly
distributed. Thus we have the following corollary.

Corollary 1. If one-way functions exist, there exists a 3-round concurrent zero-
knowledge proof system in the shared random string model for any N'P language.

Theorem 9. Given an N'P-language L that admits an efficient X -protocol, then
under the DDH assumption there exists a 3-round concurrent zero-knowledge
proof system in the common reference string model for L.

308 D. Catalano and I. Visconti

SIMULATION-SOUND ZERO KNOWLEDGE. The notion of simulation soundness
has been used for the design of many secure cryptographic primitives (see for
instance [18]). Informally, a proof system is simulation sound if an adversary
that plays the role of verifier when the proofs are simulated for both true and
false instances, is not able to play as a prover another session of the protocol in
which he convinces an honest verifier of a false statement. In [3], MacKenzie and
Yang proposed 3-round unbounded simulation-sound zero-knowledge argument
systems in the common reference string model, in particular their arguments use
simulation-sound trapdoor commitment schemes, therefore they obtain efficient
argument systems based on the security of DSA [19] or the Cramer-Shoup [16]
signature schemes and argument systems based on the existence of one-way
functions. The multi-trapdoor commitments presented in [2] allow for more ef-
ficient constructions of unbounded simulation-sound zero-knowledge argument
systems. In this section we extend their results by showing the existence of
3-round unbounded simulation-sound zero-knowledge proof (in contrast to argu-
ment) systems in the common reference string model. We can achieve this result
either by using hybrid simulation-sound trapdoor commitments instead of non-
hybrid simulation-sound trapdoor commitments in the construction of [3] or by
using hybrid multi-trapdoor commitments instead of non-hybrid multi-trapdoor
commitments in the construction of [2]. For each of this two results we give a
first construction that needs the sole assumption that one-way functions exist.
Then we give a more efficient second construction that requires (on top of the
assumptions described for the efficient constructions of [3] and [2]) the decisional
Diffie-Hellman assumption.

Theorem 10. If one-way functions exist, there exists a 3-round unbounded
simulation-sound zero-knowledge proof system in the common reference string
model for any N'P language.

Theorem 11. Given an N'P-language L that admits an efficient X-protocol,
then under the assumption that DSA is a secure signature scheme and that the
DDH assumption hold (or that the Cramer-Shoup signature scheme is secure
and that the DDH assumption holds) there exists an efficient 3-round unbounded
simulation-sound zero-knowledge proof system in the common reference string
model for L.

We stress that the approach used to achieve simulation-sound zero-knowledge
proofs from hybrid simulation-sound trapdoor commitments (using the con-
struction of [3]) is quite general and can be used to build simulation-sound
zero-knowledge proofs from hybrid multi-trapdoor commitments (using the con-
struction of [2]). In the proof of Theorem 10 we show that, by replacing a (non-
hybrid) simulation-sound trapdoor commitment scheme with an hybrid one, an
unbounded simulation-sound zero-knowledge argument can be transformed into
an unbounded simulation-sound zero-knowledge proof. This same approach can
be used for the case of (non-hybrid) multi-trapdoor commitment schemes and
their application to unbounded simulation-sound zero-knowledge arguments [2]

Hybrid Trapdoor Commitments and Their Applications 309

(we stress that in [2] such a notion is referred to as left-concurrent non-malleable
zero-knowledge arguments).

Theorem 12. Given an N'P-language L that admits an efficient X -protocol,
if collision-resistant hash functions exist then under the sRSA and the DDH
assumption or the sDH and the DDH assumptions there exists an efficient 3-
round unbounded simulation-sound zero-knowledge proof system in the common
reference string model for L.

Acknowledgments

The authors would like to thank Pino Persiano for many useful discussions on
zero knowledge proofs in the shared random string model.

The work described in this paper has been supported in part by the Euro-
pean Commission through the IST Programme under Contract IST-2002-507932
ECRYPT.

References

1. Damgard, I.: Efficient Concurrent Zero-Knowledge in the Auxiliary String Model.
In: Advances in Cryptology — Eurocrypt '00. Volume 1807 of LNCS, Springer-
Verlag (2000) 418-430

2. Gennaro, R.: Multi-trapdoor Commitments and Their Applications to Proofs of
Knowledge Secure Under Concurrent Man-in-the-Middle Attacks. In: Advances in
Cryptology — Crypto ’04. Volume 3152 of LNCS, Springer-Verlag (2004) 220-236

3. MacKenzie, P., Yang, K.: On Simulation-Sound Trapdoor Commitments. In:
Advances in Cryptology — Eurocrypt ’04. Volume 3027 of LNCS, Springer-Verlag
(2004) 382-400

4. Naor, M.: Bit Commitment Using Pseudorandomness. Journal of Cryptology 4
(1991) 151-158

5. Goldreich, O., Kahan, A.: How to Construct Constant-Round Zero-Knowledge
Proof Systems for NP. Journal of Cryptology 9 (1996) 167-190

6. Damgard, I., Nielsen, J.B.: Perfect Hiding and Perfect Binding Universally Com-
posable Commitment Schemes with Constant Expansion Factor. In: Advances in
Cryptology - Crypto ’02. Volume 2442 of LNCS, Springer-Verlag (2002) 581-596

7. Damgard, 1., Groth, J.: Non interactive and reusable non-malleable commitments.
In: 35th ACM Symposium on Theory of Computing, ACM (2003) 426-437

8. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In Stern, J., ed.. EUROCRYPT ’99, Volume 1592 of LNCS, Springer-
Verlag (1999) 223-238

9. Brassard, J., Chaum, D., Crepéau, C.: Minimum Disclosure Proofs of Knowledge.
Journal of Computer and System Science 37 (1988) 156—189

10. Fortnow, L.: The Complexity of Perfect Zero-Knowledge. In: 19th ACM Sympo-
sium on Theory of Computing (STOC ’87). (1987) 204-209

11. Boppana, R., Hastad, J., Zachos, S.: Does co-NP Have Short Interactive Proofs?
Inf. Process. Lett. 25 (1987) 127-132

310

12.

13.

14.

15.

16.

17.

18.

19.

D. Catalano and I. Visconti

Bellare, M., Jakobsson, M., Yung, M.: Round-optimal zero-knowledge arguments
based on any one-way function. In Fumy, W., ed.: Advances in Cryptology —
Eurocrypt '97. Volume 1223 of LNCS, Springer-Verlag (1997) 280-305

Rompel, J.: One-Way Functions are Necessary and Sufficient for Digital Signa-
tures. In: 22nd ACM Symposium on Theory of Computing (STOC ’90). (1990)
12-19

Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against
adaptive chosen message attacks. In: SIAM J. on Computing. Volume 17-(2).
(1988) 281-308

Boneh, D., Boyen, X.: Short Signatures without Random Oracles. In: Advances in
Cryptology — Eurocrypt '04. Volume 3027 of LNCS, Springer-Verlag (2004) 56-73
Cramer, R., Shoup, V.: Signature Schemes Based on the Strong RSA Assumption.
In: 6th ACM Conference on Computer and Communications Security (CCS ’99),
ACM (1999)

Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive
Proof-Systems. SIAM J. on Computing 18 (1989) 186-208

Sahai, A.: Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen-
Ciphertext Security. In: 40th Symposium on Foundations of Computer Science,
(FOCS ’99), IEEE Computer Society Press (1999) 543-553

NIST: Digital Signature Standard (DSS). FIPS PUB 186 (1998)

On Steganographic Chosen Covertext Security

Nicholas Hopper

University of Minnesota, 4-192 EECS,
200 Union St SE, Minneapolis MN 55455
hopper@cs.umn.edu

Abstract. At TCC 2005, Backes and Cachin proposed a new and very
strong notion of security for public key steganography: secrecy against
adaptive chosen covertext attack (SS-CCA); and posed the question of
whether SS-CCA security was achievable for any covertext channel. We
resolve this question in the affirmative: SS-CCA security is possible for
any channel that admits a secure stegosystem against the standard and
weaker “chosen hiddentext attack” in the standard model of compu-
tation. Our construction requires a public-key encryption scheme with
ciphertexts that remain indistinguishable from random bits under adap-
tive chosen-ciphertext attack. We show that a scheme with this property
can be constructed under the Decisional Diffie-Hellman assumption. This
encryption scheme, which modifies a scheme proposed by Kurosawa and
Desmedt, also resolves an open question posed by von Ahn and Hopper
at Eurocrypt 2004.

1 Introduction

Suppose that Alice and Bob are prisoners, and that their prison warden has
foolishly allowed them to send “harmless messages” between their cells, so long
as he may listen to everything they say. Steganography is the study of techniques
that allow Alice and Bob to hide arbitrary messages — hiddentexts — in their
apparently harmless communications (normally, covertezts) so that the warden
cannot detect the presence of these messages. The case where the prisoners
share a secret key has been studied extensively in both information-theoretically
[5] and computationally secure settings [13,9]. Several recent papers have also
addressed the case in which one or both of the prisoners has a public key [1, 3,
17]. In this paper, we are only concerned with the bare public key scenario,
considered in [3], in which only Bob publishes a public key, and any prisoner can
send hidden information to Bob.

A recent paper by Backes and Cachin [3] considers the scenario where the
warden may also inject messages into the channel between Alice and Bob, and
observe Bob’s reaction to these messages. Roughly, [3] gives a formal model
of this scenario and defines a strong sense of security against this adversary:
a stegosystem is said to be steganographically secure against adaptive chosen
covertext attacks (SS-CCA) if, even in this case, the warden cannot tell whether
Alice’s messages contain hiddentexts. Analogously to the standard cryptographic

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 311-323, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

312 N. Hopper

notion of a chosen ciphertext attack, this seems to be the most general type of
attack possible on a system for steganography.

Backes and Cachin leave open the problem of constructing a stegosystem sat-
isfying SS-CCA, and instead address a relaxed notion of security, against adaptive
replayable chosen-covertext attacks (SS-PDR-CCA). Roughly, in this notion, the
warden is still allowed to inject messages into the channel between Alice and
Bob, except that he is now restricted from sending messages which are, in some
sense, replays of previous messages sent by Alice. Intuitively, two covertexts are
replays of each other with respect to a public key if they decode to the same
hiddentext. Backes and Cachin construct public-key stegosystems which satisfy
SS-PDR-CCA under a variety of assumptions.

While it is an important advancement to limit the adversary to replay attacks,
these attacks still constitute a serious threat against steganography. Imagine
that Alice sends Bob some message which prompts an “unusual” reaction; in a
replay attack, the warden can construct an apparently harmless covertext which
corresponds to the same hiddentext as Alice’s message, and send it to Bob.
If Bob has the same “unusual” reaction, in response to a different message, it
suggests to the warden that Alice’s covertext contained a hidden message.

In this paper, we show how the previously known schemes fail in defending
against replay attacks, and modify them to demonstrate the feasibility of the SS-
CCA security condition, for any efficiently sampleable channel. This is a stronger
assumption on the channel than in many previous works on steganography [1, 18,
9, 3], which assume only oracle access to the channel distribution. However, [14]
shows that any channel which admits a secure stegosystem at all (in the standard
model of computation) must be efficiently sampleable. Thus this construction
serves as a demonstration that the SS-CCA notion is feasible, even though our
particular construction may not always be practical to implement.

Our construction relies on the existence of public-key encryption schemes
which are pseudorandom against chosen-ciphertext attack, a nonstandard secu-
rity notion for encryption schemes. We also show that such encryption schemes
exist, without need of the random oracle assumption,' under the Decisional Diffie-
Hellman assumption. The existence of an encryption scheme satisfying this no-
tion was an open question posed by von Ahn and Hopper [1].

Related Work. In addition to the work of Backes and Cachin [3], which we
build on, Le and Kurosawa [17] and von Ahn and Hopper [1] have both proposed
notions of security against “chosen stegotext attack.” The notion proposed in
[17] seems to be equivalent to SS-CCA; however the construction proposed there
requires that the receiver know the sender’s public key in order to decode. Sim-
ilarly, the SS-CSA notion of [1] explicitly includes the public key of the sender;
it can be thought of as an “attacker-specific” notion of security. However, the
security model of [1] is also intended to prevent forgery by the warden, which is
not a concern in the present model.

! We note that several constructions in the random oracle model are known [4, 19].

On Steganographic Chosen Covertext Security 313

Both of these schemes require the sender to publish a public key. While this may
not be a concern for ordinary communication, it is undesirable for steganography.
This is because the aim of the sender in steganography is to avoid suspicion —
yet publishing a public key for a stegosystem may be inherently suspicious.

On the other hand, it is frequently the case, as [1] argue, that the receiver
of steganography need not avoid suspicion. This could be the case when, for
example, the receiver is a newspaper or government agency wishing to receive
whistle-blowing reports. Or when the receiver is a human-rights organization
that would like to receive reports from its volunteers in the field. Thus it is
important to have a construction which is secure in the bare public key model.

Other recent papers on foundations of steganography have focused on the
private key setting. Cachin [5] formulated a model for steganography in an
information-theoretic setting. Hopper et al [13] gave the first rigorous formulation
of steganography with computational security, and demonstrated the feasibility
of the notion with provably secure constructions. They also proposed the model
of communication which subsequent work has followed. Independently, Katzen-
beisser and Petitcolas [15] proposed a similar security condition. Dedié et al [9]
address bounds on communication rate for a generic stegosystem. Lysyanskaya
and Meyerovich [18] consider the possibility of an imperfect covertext oracle.

Anderson and Petitcolas [2] first proposed the possibility of public-key stegan-
ography and gave a heuristic construction. Craver [8] proposed a notion of public-
key steganography with heuristic security against removal of the hiddentext. von
Ahn and Hopper [1] were the first to formulate rigorous security definitions for
the public-key case and demonstrate that public-key steganography was feasible.

Notation. A function p: N — [0, 1] is said to be negligible if for every ¢ > 0, for
all sufficiently large n, u(n) < 1/n¢. We denote the length (in bits) of a string
or integer s by |s|. The concatenation of string s; and string s will be denoted
by s1]|s2. The assignment a||;b = ¢ means that a is the first { bits of ¢ and b is
the remaining |c| —{ bits of ¢. We assume the existence of efficient, unambiguous
pairing and un-pairing operations, so (s1, s2) is not the same as s1||ss.

We let Uy denote the uniform distribution on k& bit strings. If V denotes
an event in some probability space, we denote its complement by V. If D is a
probability distribution with finite support X, we define the minimum entropy
of D, by Hyo(D) = minge x{logy(1/Prp[z])}. For a probability distribution D,
we denote by x < D the action of drawing a sample x according to D. We denote
the statistical difference between distributions D and £, with finite support X,

by [D = €|l = 5 Xpex | Prole] — Prefz]|

2 Pseudorandomness Against Chosen-Ciphertext Attack

We will need to construct a public-key encryption scheme which satisfies a non-
standard security notion: indistinguishability from random bits under chosen-
ciphertext attack. A scheme satisfying this notion is also non-malleable [10]
and has pseudoranom ciphertexts [1]; the existence of a scheme simultaneously

314 N. Hopper

satisfying these latter notions without random oracles was an open question
posed by von Ahn and Hopper at Eurocrypt 2004 [1].

Let &€ be a public-key encryption scheme with message expansion function £.
We define a chosen-ciphertext attack against £ as a game played by an oracle
adversary A:

1. APs<(PK) outputs challenge message m* € {0,1}".
2. Ais given a challenge ciphertext c*, where either ¢ < Epg (m*) or ¢ < Up+y.

3. A continues to query Dgg subject to the restriction that A may not query
Dsk(c*). A outputs a bit.

We define A’s CCA advantage against £ by
AdvEy (k) = |Pr[APS<(PK, Epg(m*)) = 1] — Pr[APs< (PK,U,) = 1]| ,

where m* « APs<(PK) and (PK,SK) « G(1¥), and define the CCA inse-
curity of € by InSecg?(t,q,u,l*, k) = MAX A€ A(t,q,,41.1%) {Advcca (k)} , where
A(t, g, i, 1*) denotes the set of adversaries running in tlme t, that make g queries
of total length u, and issue a challenge message m* of length [*. Then & is
(t,q, p, U*, k, €)-indistinguishable from random bits under chosen ciphertext at-
tack if InSecg™(t,q, 1, 1*, k) < e. £ is called indistinguishable from random bits
under chosen ciphertext attack (IND$-CCA) if for every probabilistic polynomial
time (PPT) A, Advi% (k) is negligible in k.

We show a simple modification of an encryption scheme of Kurosawa and
Desmedt [16] (which itself is a modification of the original Cramer-Shoup en-
cryption scheme [7]) which satisfies IND$-CCA. The main modification to the
scheme is to use a dense encoding of the DDH subgroup and rejection sampling
to produce uniform k-bit strings.

Setup. We let py, Qi be large primes such that p = 2Q +1 and 2F+1 > Q > 2%,
We let g € Zy have order @, and define the maps Ir : (g) — Zq, qr : Zqg — (g)
such that Ir(v) = v if v < @Q and Ir(v) = —v mod p otherwise; and ¢r(u) = uif u
is a quadratic residue modulo p and ¢r(u) = p—u otherwise. Notice that grolr is
the identity map on the quadratic residues and lr ogr is the identity map on Zg.
We assume the Decisional Diffie Hellman (DDH) assumption: for any PPT A,
Advy o (k) = [Preycng[A(g%, g%, 9™) = 1] = Pryy .o a6[A(g", 9%, ¢7) = 1]]
is negligible.

We assume the existence of a family of target collision-resistant hash functions
H :{0,1}?* — Z¢,2 A universal family of hash functions A : Zg — {0,1}2',
an IND$-CPA symmetric-key encryption scheme E, D with k’-bit keys,® and a

% So for any PPT A, AdvY (k) = Pry—pu[h(A(h
3 8o for any PPT A, Adcha (k) = |Prg—u,, [A”
negligible.

— Zgq] is negligible.

() =
k(1K) = JPr[AU‘-wa’“’):lnis

)
(1

On Steganographic Chosen Covertext Security 315

pseudorandom function family F : {0,1}¥ x {0,1}* — {0,1}7.* Note that the
existence of all of these primitives is implied by the DDH assumption.

Key Generation. Choose random gl,gg € (g), and choose random x1,29,y1,y2 €
Zg. Compute the group elements ¢ = ¢g7'g52,d = g7" g5*. Choose hash functions
H, A. The public key is (g1, g2, ¢,d, H, A) and the prlvate key is (z1, T2, Y1, Y2).

Encryption. Given a message m € {0,1}*, repeat the following steps:

— Choose r «— Zj.
— Compute u; = Ir(g7), us = lr(g3)

Until uy,us are both at most 2¥. Then compute a = H(uy||lug), v = ¢"d"®,
(K,k) = A(v), e = Ex(m), T = F;(e). The ciphertext is uq||us]le||T.

Decryption. To decrypt the ciphertext uy ||us|le||T, first compute o = H (u1 [|uz)
and compute v = gr(ui)* 1%r(ug)*2 Y2 K|k = A(v). Test whether T =
F,;(e); if not output L, otherwise output D (e).

Theorem 1. If k > 4k’, then

nSecg"(t,q, 1,1, k) < 8InSecy (t, k) + nSec t) + 4InSecg (¢, 1,1,
InSecg™ I,k) < 8InSeci (t, k) + 12InSeci’ o (t) + 4InSec®* (t,1,1, k'

+ (16q + 4)InSech (¢, q, u, k') 4+ 8q(27 727K +1) 4 ok +4

The security proof appears in the full version and closely follows the security
proof for Kurosawa and Desmedt’s scheme given by Gennaro and Shoup [11].

3 Definitions

Channels. We follow previous work [13,17, 1, 9] in modeling the communication
between two parties by a channel. We define a channel C as a family of probability
distributions on documents from a set D, indexed by sequences h € D*. A
channel implicitly defines an indexed distribution on sequences of ¢ documents
— given index h, draw dy < Cp, d2 < Cip.q,); -+ de < C(n,dy,....a _,)- We call
the index h the history and label this distribution on sequences by Cf;. A history
h=(di,dz,...,dp) is called legal (denoted h € H) if for all 4, Pre, o [di] >
0. A channel is always informative if for every legal history h, Ho(Cr) = 02(£).

We will require that a channel be efficiently sampleable: there is an efficiently
computable algorithm channel such that channel(h, Uy) and Cp, are computation-
ally indistinguishable.® This is in contrast to the models of [13,9, 1, 3], where the

“So for any PPT A, Adv% (k) = |Prx_y,[AT<(1Y) = 1] -
Pry.0,13*—{o,137 [Af(llc) = 1]| is negligible.

® Some examples of widely used channels satisfying this notion include: scientific sim-
ulations, cryptography and security protocols, computer games, financial modeling,
weather forecasts, etc.

316 N. Hopper

channel is assumed to be accessible only via a probabilistic oracle. While results
in that model are in some sense more general, we refer the reader to [14] for a
proof that in the standard model of computation, sampleability is necessary for
secure steganography.

Since it is widely believed that all natural processes can be computed in
probabilistic polynomial time [12], we do not in theory rule out steganography
for any realistic channels by requiring the channel to be sampleable. On the
other hand, it is conceivable that there are channels which we can currently
sample physically but not computationally, and thus in practice it is still an
open problem to design a stegosystem which is SS-CCA secure for such channels.

Public-Key Stegosystem. A public-key stegosystem S is a triple of proba-
bilistic algorithms:

— S.Generate (abbreviated SG) takes as input a security parameter 1% and
generates a key pair (p,0) € PK x SK.

— S.Encode (abbreviated SF) takes as input a public key p € PK, a string
m € {0,1}" (the hiddentext), and a channel history h. SE(p,m, h) returns a
sequence of documents s, $a, ..., s; (the stegotext) from the support of CL-

— S.Decode (abbreviated SD) takes as input a secret key o € SK, a sequence
of documents s, $2,...,$;, and a channel history h. SD(o,s,h) returns a
hiddentext m € {0,1}*.

We require that a stegosystem is correct: for every polynomial p(k) there exists
a negligible v(k) such that for every m € {0,1}?®*) legal history h, and (p, o) €
[SG(1%)], Pr[SD(o,SE(p,m,h),h) =m] > 1 — v(k).

Chosen-Covertext Attack. In an adaptive chosen-covertext attack against a
public-key stegosystem S, a challenger draws a key pair (p, o) «— SG(1¥), and
an adversary W is given PK and allowed oracle access to SD,. The attacker
produces a challenge hiddentext m* and history h* and is given as a response a
sequence of documents s* € D™D After this, the attacker continues to query
SD with the restriction that he may not query SD(s*). (As always, W may
depend on the channel distribution C) At the conclusion of the attack, W must
guess whether s* « SE(p,m*, h*) or s* « Cf.. We define the (steganographic)
Chosen-Covertext Advantage of W against S with respect to C by

AdvES (k) = [Pr[WSPe(PK, SE(p,m*,h*)) = 1] — Pr[W5P*(p,C}.) = 1]

b

where (m*, h*) « W3P(p) and (p, o) « SG(1*). We define the sCCA insecurity
of § with respect to C by

InSecSG(t, q, pu, 1%, k) = max AdvES (k)
s,c(q,) WGW(t,q,u,l*){ s,c,w()}
where W(t, q, i1, 1*) denotes the class of all W running in time ¢ which make at

most ¢ oracle queries of p bits and submit a challenge hiddentext of length at
most [*.

On Steganographic Chosen Covertext Security 317

We say that S is (¢,q, u, 1, k, €) secure against chosen-covertext attack with
respect to C if InSec3¢(t,q, 11,1, k) < ¢, and that S is secure against chosen-
covertext attack with respect to C (SS-CCA) if Advs¢,y (k) is negligible for all

PPT W.

4 Previous Constructions

Both previously known constructions of (bare) public-key steganography [1, 3]
have a common structure. Let F denote a strongly universal family of hash
functions f : D — {0,1}. Let f < F be chosen as part of a public key, or fixed
as a “common reference string.” Then both constructions use the routine shown
in figure 1 to hide uniformly chosen bits in C.

Proposition 1. Let C be always informative and f «— F. Then for any h € 'H,

The proposition is a direct consequence of the leftover hash lemma. If the
channel is always-informative, sample can operate on samples from C’ff and in-
duce only a negligible statistical difference in its output distribution. The basic
construction of a stegosystem, HashRS, is shown in figure 2, where (G, E, D) is
a public-key cryptosystem which has pseudorandom ciphertexts.

Informally, the scheme works by transforming the hiddentext into a uniform-
looking ciphertext ¢ = Epx(m). The ciphertext bits are then used one at a time
(or w at a time, with sampling costs and statistical difference increased by a
factor of 2%) to select covertexts that hash (via f) to the bits of the ciphertext,

(f,sample(h, Uy, k) — (f,Cp)| < 27 H=(Cn)/2

Procedure sample:
Input: target ¢ € {0, 1}, history h, bound &
Let j =0
repeat:
sample s < Cj,, increment j
until f(s) =c OR (5 > k)
Output: s

Fig. 1. Sampling routine

Procedure Encode: Procedure Decode:
Input: m € {0,1}!, h, PK Input: s1,8o,...,5, SK
Draw c¢; -+ -¢g «— E(PK,m) fori=1...1do
fori=1...4do set ¢; = f(s;)

set s; = sample(c;, (h, 81,...i-1), k). set ¢ = c1|ca|[-+ [|er.
Output: sq,82,...,8¢ Output: D(K,¢)

Fig. 2. HashRS Stegosystem

318 N. Hopper

using sample. Since the ciphertext looks uniform, the covertexts thus selected will
be indistinguishable from samples from C;,. Decoding applies f to each covertext
document to recover the ciphertext ¢, and then decrypts this ciphertext using
SK to compute the hiddentext m = Dgk(c).

The Backes-Cachin construction instantiates HashRS with a public-key en-
cryption scheme which satisfies two properties. First, it must be PDR-CCA se-
cure, as defined by Canetti et al [6]. Second, the encryption scheme should have
pseudorandom ciphertexts: given the public key it was encrypted under, a ci-
phertext should be computationally indistinguishable from a random string of
the same length. When instantiated with a public-key cryptosystem satisfying
these properties, we call the resulting stegosystem BC.

Intuitively, the SS-PDR-CCA security of the BC scheme arises from the fact
that W is disallowed from submitting covertexts that decode to the same hidden-
text. Thus an attack W against BC can easily be turned into a PDR-CCA attack
A against the underlying encryption scheme. The main technical step is in simu-
lating decryption queries: whenever W queries the decoding oracle on a covertext
$ = $1,...,8¢, the PDR-CCA attacker computes a ciphertext ¢ = ¢1,...,¢¢ by
setting ¢; = f(s;). If the ciphertext c is a replay of the challenge ciphertext ¢*,
then the stegotext s is also a replay, so A responds to W with L. Otherwise A
queries his decryption oracle at ¢ and returns the result to W.

This standard simulation technique also hints at a CCA attack against the
BC stegosystem. We now formally describe the attack W. On input PK, W
uniformly picks a challenge message m* « U;-. On receiving the challenge
covertext s*, W computes ¢* by setting ¢f = f(s}). W computes a “replay”
covertext s’ « sample((h*, s*), c*, k). Finally, W queries the decryption oracle
on s'. If SDgk(s") = m*, W outputs 1 and otherwise W outputs 0. It is obvious
that when s* € SE(PK,m*, h*), then we will have that SD(SK,s',h*) = m*
except when encoding fails, since otherwise unique decryption requires that
Dsr(c*) = Dsi(Epr(m*)) = m*. On the other hand, when s* « Cf, then m*
and s* are chosen independently of each other, so Pr[Dgg (¢*) = m*] <27V |

Proposition 2. For every I*, there exists a negligible function v(k) such that
Adviige(k) > 1— 27" — (k)

Note that the “replay” covertext will be indistinguishable from a sample from
the channel, so the decoder would have no reason not to decode it and act on any
information contained in the hiddentext. Thus this attack is reasonable, in that
it could be applied in a realistic scenario, rather than being merely an artifact
of the model. Of course the adversary might further attempt to replay the exact
stegotext; this latter attack is, however, impossible to defeat.

5 Our Construction

Intuitively, the reason the attack in the previous section succeeds is that even
though the underlying ciphertext is non-malleable, there are many possible en-

On Steganographic Chosen Covertext Security 319

Procedure DEncode:
Input: bits cy, ..., ¢, history h, bound k, randomness rq, ...y, € {0,1}*
Let t=0;fori=1...1do
Let 5 = 0; repeat:
compute s; = channel((h, s1..;—1),7,); increment j,¢
until f(s;) =¢; OR (j > k)
Output: sq1,89,...,5;

Fig. 3. Deterministic Encode

Procedure Encode: Procedure Decode:

Input: m € {0,1}*, h, PK Input: sq,...,s;, h, SK

Choose r + Uy, Let ¢ = f(s1)]| - ||f(s1)

Letc:EpK(er) Let ’I"||km:DSK(C).

Let r = G(r) Set r = G(r).

Output: DEncode(c, h, k,7) | If s # DEncode(c, h, k,r) return L.
Output: m

Fig. 4. SCCA Stegosystem

codings of the ciphertext. This observation immediately suggests a possible im-
provement: design a sampling method such that each ciphertext corresponds
to exactly one stegotext. Indeed, the construction of [17] seems to have this
property, but this construction inherently requires a shared secret between the
encoder and the decoder. Likewise, the “attacker-specific” construction of [1]
seems to achieve a similar property, but validity of a stegotext is determined
by the sender’s public key. Our construction modifies this latter approach to
remove this dependence on the sender, and also removes the reliance on the
random oracle model from that construction.

We make use of the fact that we have an efficiently sampleable channel C,
and will make use of the “deterministic encoding” routine shown in figure 3.
This algorithm works in a similar manner to the HashRS.Encode algorithm, with
the exception that the randomness for sampling is an explicit argument. Thus
for a given sequence of [k random inputs, this routine has exactly one possible
encoding for any message ¢ € {0, 1}. Thus if an [-bit, non-malleable, ciphertext
can determine the [k bits of sampling randomness to be used in its encoding, we
can prevent replay attacks. One way to do this is to apply a random oracle to
the randomness used in producing the ciphertext; this approach was used by [1].
We instead use a pseudorandom generator to expand an k-bit seed into an lk-bit
sequence and then include this seed in the plaintext. Proving the security of this
approach requires some additional care, because now it is conceivable that the
sampling algorithm could leak information about the plaintext.

We now formally describe our construction. We will assume that £ is a public-
key IND$-CCA secure encryption scheme, and (PK,SK) « £.G(1¥). Further-
more, we assume that for any I, Pr[Dgk (U;) #1] < v(k) for some negligible
v. Thus, valid ciphertexts, which do not decrypt to L, have negligible density.
For convenience, we assume that for all m, |Epx(m)| = £(|m]), for some poly-

320 N. Hopper

nomial £. We will also assume that G : {0,1}* — {0, 1}**!* is a pseudorandom
generator. The final scheme SCCA is shown in Figure 4.

Theorem 2. Let f «— F and let € = maxpen {Q*Hw(clﬁ)/z} =2"9%) Then

InSecscea c(t, g, i, 1, k) < InSecg®(t', q, i, 1, k) +v (k) +£(l+k)e+InSecgs(t', k),
where t' <t + O(lk).

Proof. Choose an arbitrary W € W(t,q, u,1); let (PK,SK) « G(1*) and let
(m*,h*) «— WSPsk(PK). We will bound Advyi3ccac(k) by considering the
following sequence of hybrid distributions:

- D12 CZ(*H_IC)

- DQI DEncode(Ug(Hk), h*7 k, kalk)

- D3: DEncode(Ug(Hk), h*, k, G(Uk))

— Dy4: DEncode(Epg (r||m*), h*, k,G(r)), where r «— Uy,

Clearly D, perfectly simulates the stegotext distribution, and likewise D per-
fectly simulates the covertext distribution. For convenience, we will define the
quantity Advy, (k) = [Pr[WSP(PK, D;y1) = 1] — Pr[WSP(PK, D;) = 1]|, and
note that

Adviiiceac(k) = [Pr[WSP(PK, Dy) = 1] — Pr[W5P(PK, Dy) = 1]|
< Adviy (k) + Adviy (k) + Adviy, (k).

Thus we proceed to bound Adviy (k) for i € {1,2,3}.
Lemma 1. Adviy (k) < (1 + k)e

Proof. This follows because ||f(Cp) — Ui|| < ¢, and no (nonuniform) efficient
process can increase statistical distance.

Lemma 2. Advjy, (k) < InSecl®(t, k)

Proof. We will construct a PRG adversary A for G such that Advi%;(k) =

Advi, (k). A works as follows: first, A picks a key pair (PK,SK) «— G(1¥)
to use in responding to the queries W makes to SD. A is given as input a
string 7 € {0,1}**!* and asked to decide whether r « Uy i or r « G(Up).
Then A can achieve advantage precisely Adv%/V (k) by emulating W, responding
to its decoding queries using SK, and responding to the challenge hiddentext
(m*, h*) by drawing ¢ < Uyy) and giving the response s = DEncode(c, h, k,).
If r <+ Ukxik, then s « Dy, and if r + G(Uy), then s < Ds. Thus A’s advantage
in distinguishing G(Uy) and Ugx i is exactly:

AdviE, (k) = [Pr[A(G(Uy)) = 1] = Pr[A(Ugxx) = 1]|
= [Pr[W5P(Dy) = 1] — Pr[W*P(Dy) = 1]|
= Adv, (k)

On Steganographic Chosen Covertext Security 321

Lemma 3. Advi, (k) < InSeci®(t, q, u, k) + v(k)

Proof. We will construct an adversary A that plays the chosen-ciphertext attack
game against £ with advantage Advi’ (k) > Advi, (k).

A starts by emulating W to get a challenge hiddentext, responding to decod-
ing queries as follows: on query (s1,..., s, h), A computes ¢ = f(s1)| - ||f(s1);
A then uses its decryption oracle to compute 7||zm = Dgk(c). If ¢ #1 and
s = DEncode(c, h, k, G(r)), A returns m, otherwise A returns L.

When W generates challenge (m*, h*), A chooses r* « Uy and outputs
the challenge r*||m*. A is given the challenge ciphertext ¢* and returns s* =
DEncode(c*, h*, k, G(r*)) to W.

A continues to emulate W, responding to queries as before, except that on
decoding query (s1,..., s, h), A first checks whether f(s1)]|---||f(s:)) = ¢*; if so,
A returns L rather than querying Dgk (c*).

In other words, A simulates running SCCA.Decode with its Dg g oracle, except
that because A is playing the IND$-CCA game, he is not allowed to query Dgx
on the challenge value ¢*: thus a decoding query that has the same underlying
ciphertext ¢* must be dealt with specially.

Notice that when A is given an encryption of 7*||m*, he perfectly simulates
Dy to W, so that Pr[APs<(PK, Epg (r*|m*) = 1] = Pr[W*P(PK, D,) = 1].
This is because when ¢* = Eg (r*|jm*) then the test s = DEncode(c, h, k, G(r))
would fail anyways. Likewise, when A is given a random string, he perfectly
simulates D3 to W, given that c¢* is not a valid ciphertext. Let us denote the
event that ¢* is a valid ciphertext by V, and the event that a sample from Dj
encodes a valid ciphertext by U; notice that by construction Pr[U] = Pr[V]. We
then have that
Pr[AP(PK,U,)=1]

Pr[AP (PK,U;)=1|V| Pr[V]+Pr[AP(PK,U;) =1|V] Pr|V]

|P
1
1

[
< Pr[W5P(PK, D3) = 1|U] Pr[U] + Pr[V]
< Pr[WSP(PK,D3) = 1] + Pr|V]
< PrW3P(PK,D3) = 1] + v(k) ,

since Pr[V] < v(k) by assumption on £. Combining the cases, we find that

Adv%: (k) = Pr[APS<(PK, Epg (r*||m*) = 1] — Pr[APs<(PK,U,) = 1]
= Pr[WSP(PK, Dy) = 1] — Pr[APS< (PK,U,) = 1]
> Pr[W*P(PK, D,) = 1] — Pr[WSP(PK, D3) = 1] — v(k)

= Adviy (k) — v(k)

Remark. As described, the stegosystem SCCA requires the decoder to know the
algorithm channel used by the encoder to sample from C. This can be avoided by
changing the encoder to append a canonical encoding of this algorithm to the
hiddentext before encrypting; the decoder then recovers this algorithm before
running the final DEncode check. Since the length of the algorithm is constant,
the security bounds for the resulting scheme are essentially unchanged.

322 N. Hopper

6 Conclusion and Open Problems

We have argued for the importance of a SS-CCA-secure stegosystem in the bare
public key model, and given the first construction which meets this criterion.
This resolves an open question posed by Backes and Cachin [3]. Furthermore, our
construction relies on a public-key cryptosystem which is pseudorandom against
chosen-ciphertext attack in the standard model. The existence of a cryptosystem
satisfying this notion was an open problem posed by von Ahn and Hopper [1].
Because replay attacks are a realistic possibility, this represents an important
advance over previous work.

One interesting direction for future work is to investigate the relationship
between efficiently sampleable channels and the probabilistic channel oracle no-
tion of earlier work. Designing a SS-CCA stegosystem in this setting seems to
be a challenging problem. Another important notion of security against active
attacks is robustness — the property that an attacker is unable to “remove” the
hiddentext from a message. Hopper et al [13] define a weak notion of robustness
and give a robust construction in the private key case. To our knowledge, there is
no provably secure construction satisfying this definition in the public-key case.
It is interesting to note that SS-CCA and robustness are inherently contradic-
tory, since robustness requires that a replay attack is possible. Thus it is also
an interesting question whether some notion of robustness with decoding oracles
can be achieved, even in the private key case.

References

1. L. von Ahn and N. Hopper. Public-Key Steganography. In: Advances in Cryptology
— Proceedings of Eurocrypt 04, 2004.

2. R. J. Anderson and F. A. P. Petitcolas. On The Limits of Steganography. IFEE
Journal of Selected Areas in Communications, 16(4), pages 474-481, 1998.

3. M. Backes and C. Cachin. Public-Key Steganography with Active Attacks. In:
Proc. Second Theory of Cryptography Conference (TCC), 2005.

4. M. Bellare and P. Rogaway. Random Oracles are Practical. In: Proc. First ACM
Conference on Computer and Communications Security (CCS 1993), 1993.

5. C. Cachin. An Information-theoretic model of steganography. In: Information
Hiding, 2nd International Workshop, pages 306-318, 1998.

6. R. Canetti, H. Krawczyk, and J. Nielsen. Relaxing chosen-ciphertext security. In:
Advances in Cryptology — CRYPTO 2003, 2003.

7. R. Cramer and V. Shoup. A practical public-key cryptosystem provably secure
against adaptive chosen ciphertext attack. Advances in Cryptology: CRYPTO 98,
Springer LNCS 1462, pages 13-27, 1998.

8. S. Craver. On Public-key Steganography in the Presence of an Active Warden.
Proceedings of Second International Information Hiding Workshop, Springer LNCS
1525, pages 355-368, 1998.

9. N. Dedié, G. Itkis, L. Reyzin and S. Russell. Upper and lower bounds on black-box
steganography. In: Proc. Second Theory of Cryptography Conference (TCC), 2005.

10. D. Dolev and C. Dwork and M. Naor. Nonmalleable Cryptography. SIAM J.
Computing, 30(2), pages 391-437, 2000.

11

12.

13.

14.

15.

16.

17.

18.

19.

On Steganographic Chosen Covertext Security 323

R. Gennarro and V. Shoup. A Note on an Encryption Scheme of Kurosawa and
Desmedt. TACR e-print archive report 2004/194, 2004.

O. Goldreich. Foundations of Cryptography: volume 1 — Basic Tools. Cambridge
University Press, 2001.

N. J. Hopper, J. Langford, and L. Von Ahn. Provably Secure Steganography. In:
Advances in Cryptology — CRYPTO 2002, Springer LNCS 2442, pages 77-92, 2002.
N.J. Hopper. Toward a theory of steganography. Ph.D. The-
sis, Carnegie Mellon University, July 2004. Available online:
http://reports-archive.adm.cs.cmu.edu/anon/2004/abstracts/04-157 .html
S. Katzenbeisser and F. A. P. Petitcolas. Defining Security in Steganographic
Systems. In: Proceedings of the SPIE wvol. 4675, Security and Watermarking of
Multimedia Contents IV, pp. 50-56, 2002.

K. Kurosawa and Y. Desmedt. A New Paradigm of Hybrid Encryption Scheme.
In: Advances in Cryptology — Proceedings of CRYPTO 04, 2004.

T. V. Le and K. Kurosawa. Efficient public key steganography secure against
adaptive chosen stegotext attacks. TACR e-print archive report 2003/244, 2003.
A. Lysyanskaya and M. Meyerovich. Steganography with imperfect sampling. At:
CRYPTO 2004 Rump Session, August 2004.

B. Moller. A Public-Key Encryption Scheme with Pseudorandom Ciphertexts. In:
Computer Security — ESORICS 2004, 2004.

Classification of Boolean Functions of 6
Variables or Less with Respect to Some
Cryptographic Properties*

An Braeken!, Yuri Borissov?, Svetla Nikova'!, and Bart Preneel

! Department Electrical Engineering - ESAT/SCD/COSIC,
Katholieke Universiteit Leuven, Kasteelpark Arenberg 10,
B-3001 Leuven, Belgium
{an.braeken, svetla.nikova, bart.preneel}@esat.kuleuven.ac.be
2 Institute of Mathematics and Informatics,

Bulgarian Academy of Sciences,

8 G.Bonchev, 1113 Sofia, Bulgaria
yborisov@moi.math.bas.bg

Abstract. This paper presents an efficient approach to the classifica-
tion of the affine equivalence classes of cosets of the first order Reed-
Muller code with respect to cryptographic properties such as correlation-
immunity, resiliency and propagation characteristics. First, we apply
the method to completely classify with this respect all the 48 classes
into which the general affine group AGL(2,5) partitions the cosets of
RM(1,5). Second, after distinguishing the 34 affine equivalence classes
of cosets of RM(1,6) in RM (3,6) we perform the same classification for
these classes.

1 Introduction

Many constructions of Boolean functions with properties relevant to cryptogra-
phy are recursive. The efficiency of the constructions relies heavily on the use of
appropriate functions of small dimensions. Another important method for con-
struction is the random and heuristic search approach. As equivalence classes
are used to provide restricted input of such optimization algorithms, it is very
important to identify which equivalence classes obtain functions with desired
properties.

In this paper, we present an efficient approach (based on some group-
theoretical considerations) for the classification of affine equivalence classes of
cosets of the first order Reed-Muller code with respect to cryptographic prop-
erties such as correlation-immunity, resiliency, propagation characteristics and

* The work described in this paper has been supported in part by the European Com-
mission through the IST Programme under Contract IST-2002-507932 ECRYPT and
by Concerted Research Action GOA Ambiorix 2005/11 of the Flemish Government.
An Braeken is research assistent of the FWO.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 324-334, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Classification of Boolean Functions of 6 Variables 325

their combinations. We apply this method to perform a complete classification of
all the 48 orbits of affine equivalent cosets of RM(1,5) (classified by Berlekamp
and Welch [1] according to weight distributions), with respect to the above men-
tioned cryptographic properties. Partial results for this case on the existence
and their number have already been mentioned in [3,13,14,16]. In this paper,
we study this problem into more detail and show in which classes these functions
appear and how to enumerate them. The method also allows us, if necessary, to
generate all the Boolean functions of 5 variables that possess good cryptographic
properties. Our approach can also be extended for Boolean functions of higher
dimension. As an illustration we apply it to the cubic functions of 6 variables
using a proper classification of the cosets of RM(1,6) in RM(3,6).

The paper is organized as follows. In Sect. 2, we present some general back-
ground on Boolean functions. In Sect. 3, we describe our approach which will
be used in Sect. 4 for a complete classification of the affine equivalence classes
of the Boolean functions of 5 variables. In Sect. 5, we first show how to derive
the RM (3,6)/RM(1,6) equivalence classes together with their sizes. Using this
information we classify them according to the most important cryptographic
properties.

2 Background on Boolean Functions

A Boolean function f is a mapping from FZ into F3. It can be represented by
a truth table, which is a vector of length 2" consisting of its function values
(f(0),..., f(1)). Another way of representing a Boolean function is by means of
its algebraic normal form (ANF):

f@= @ hlar,....an) a8 2,

(a1,...an) EFY

where f and h are functions on Fy. The algebraic degree of f, denoted by deg(f),
is defined as the highest number of variables in the term z7* ... z%" in the ANF
of f.

Two Boolean functions f; and fo on F% are called equivalent if and only if

f(@) = fo(ZADa) oZB @ b, Vo € Fy, (1)

where A is a nonsingular binary n x n-matrix, b is a binary constant, and @, B
are n-dimensional binary vectors. If B,b are zero, the functions f; and f» are
said to be affine equivalent. A property is called affine invariant if it is invariant
under affine equivalence.

The study of properties of Boolean functions is related to the study of Reed-
Muller codes. The codewords of the r-th order Reed-Muller code of length 2™,
denoted by RM (r,n), are the truth tables of Boolean functions with degree less

or equal to r. The number of codewords is equal to 9210 (7) and the minimum
number of positions in which any two codewords @, v differ (denoted by d(w, 7))

326 A. Braeken et al.

is 277", The Hamming weight of a vector T is denoted by wt(v) and equals the
number of non-zero positions, i.e. wt(v) = d(v,0).

In 1972, Berlekamp and Welch classified all 226 cosets of RM(1,5) into 48
equivalence classes under the action of the general affine group AGL(2,5) [1].
Moreover for each equivalence class the weight distribution and the number of
cosets in that class has been determined.

Before describing the cryptographic properties that are investigated in this
paper, we first mention two important tools in the study of Boolean functions f
on Fy. The Walsh transform of f is a real-valued function over % that can be
defined as

Wi@) =Y (-1)/PT =" _out(fez-), (2)

TRy

where T &0 = To' = 21w ® Tows © -+ ® Tpwy is the dot product of T and
w. The nonlinearity Ny of the function f is defined as the minimum distance
between f and any affine function which can be expressed as Ny = 2771 —
 maxgepy [Wr(@)].

The autocorrelation function of f is a real-valued function over F4 that can
be defined as

@) = Y (-1)f@eIEE), (3)

Ty

For two equivalent functions f1 and f2 such that f1(Z) = fo(TA®a) o7B @b,
it holds that [15]:

Wi () = (1) T (@ e B) (AT ()
(@) = (<17, (wA). o)

A Boolean function is said to be correlation-immune of order ¢, denoted by
C1I(t), if the output of the function is statistically independent of the combination
of any t of its inputs. If the function is also balanced (equal number of zeros and
ones in the truth table), then it is said to be resilient of order ¢, denoted by
R(t). These definitions of correlation-immunity and resiliency can be expressed
by spectral characterization as given by Xiao and Massey [8].

Definition 1. [8] A function f(T) is CI(t) if and only if its Walsh transform
Wy satisfies Wy(w) = 0, for 1 < wt(w) < t. If also W;(0) = 0, the function is
called t-resilient.

A Boolean function is said to satisfy the propagation characteristics of degree
p, denoted by PC(p) if the function f(Z)® f(Z@w) is balanced for 1 < wt(w) < p.
If the function f(7)® f(T@w) is also t-resilient, the function f is called a PC(p)
function of order ¢. Or, by using the autocorrelation and Walsh spectrum, the
definition can also be expressed as follows:

Classification of Boolean Functions of 6 Variables 327

Definition 2. [14] A function f(Z) is PC(p) if and only if its autocorrelation
transform ry satisfies rp(0) = 0, for 1 < wt(@) < p. If also Wz)a f@ow) (@) =0
for all @ with 0 < wt(a) < t, the function f is said to satisfy PC(p) of order t.

If rp(@w) = £27, the vector @ is called a linear structure of the function f. It is
easy to prove that the set of linear structures forms a linear space [6].

We now present some known results which will be used in the rest of the
paper. First of all, we start with mentioning several trade-offs between the above
described properties of a Boolean function.

Theorem 1. (Siegenthaler’s Inequality [17]) If a function f on FY is CI(t),
then deg(f) <n —t. If f is t-resilient and t < n — 2, then deg(f) <n—t—1.

Theorem 2. [1}] If a function f on FY satisfies PC(p) of order t with 0 <t <
n—2, then deg(f) <n—t—1 for all p. If t = n— 2 then the degree of f is equal
to 2.

Theorem 3. [20] If a function f on FY is t-resilient and satisfies PC(p), then
pt+t<n—1.Ifp+t=n—1,thenp=n—1,n is odd and t = 0.

Another important result is the following divisibility theorem proven by Carlet
and Sarkar [4].

Theorem 4. If a coset of the RM (1,n) with representative Boolean function f
of degree d contains CI(t) (resp. t-resilient) functions, then the weights of the
functions in f + RM(1,n) are divisible by

n—t—2

o+ "= (resp. 9t 1+ J) (6)

From this Theorem together with Dickson’s theorem on the canonical representa-
tions of quadratic Boolean functions [11], we derive a classification of correlation-
immune (resp. resilient) quadratic functions in any dimension.

Proposition 1. If the coset of RM(1,n) with representative T12o®r324®- - - P
ZTop—1%an D € where € is an affine function of xop41 through x, and h < L%J
given by Dickson’s theorem contains CI(t) (resp. t-resilient) functions then

n—t—1

<qm_t_
h_nt{2

J—l(resp.hgn—t—L";QJ—Q).

Proof. The weight of the function equals (depending on the parameter h) [11]:

weight ‘2”—1 _9gn—h—1 gn—1 on—1 _ on—h-1
92h onFT _ 92hF1 52k

number ‘

The statement of the proposition follows from the divisibility theorem of Carlet
and Sarkar applied on the weights. a

Remark 1. Using Proposition 1 together with the bound h < %], we obtain
that the order of resiliency for quadratic functions is less or equal to [%] — 1
which was also stated in [18].

)

328 A. Braeken et al.

3 General Outline of Our Method

In this section we describe our main approach for the classification of equivalence
classes (also called orbits) of cosets of the first order Reed-Muller code RM (1,n)
with respect to cryptographic properties such as correlation-immunity, resiliency,
propagation characteristics and their combinations. For the sake of simplicity we
shall refer to such a property as a C'-property. For a given function f we denote by
ZCy the set of vectors which are mapped to zero by the transform corresponding
to the considered C-property (e.g. Walsh transform for correlation-immunity and
resiliency, autocorrelation for propagation characteristics) and call it a zero-set
of f with respect to this C-property. We also refer to any set of n linearly
independent vectors in Fy as a basis.

Our method employs the idea behind the “change of basis” construction as
previously used by Maitra and Pasalic [12], and Clark et al. [5].

Let R be a representative coset of a given orbit O under the action of the
general affine group AGL(2,n). R is partitioned into subsets consisting of affine
equivalent functions. Denote by 7 the family of these subsets. Let us fix one
T € T and a function f € T.

From equations (4) and (5) and the definition of the corresponding C-property,
it follows that for any function with this property, affine equivalent to f, a ba-
sis in ZC; with certain properties exists. Conversely, for any proper basis in
ZCy and a constant from 5 we can apply an invertible affine transformation
to f (derived by the basis and the constant) such that its image f possess the
C-property. Therefore the number Ny of functions affine equivalent to f and
satisfying a certain C-property can be determined by counting bases in ZCy.
Moreover it can be seen that this number does not depend on the specific choice
of f from T, since for two different functions f; and fy from T there exists one-
to-one correspondence between the sets of their proper bases in the zero-sets. It
is important to note that in case of Walsh transform we use the fact that vector
B defined in previous section is 0.

In the following theorem we prove the formula that gives the number N ¢ of
functions with C-property in the orbit O.

Theorem 5. Let R be a representative coset of a given orbit O under the action
of the general affine group AGL(2,n). Then the number N¢ of functions with
C-property in this orbit can be computed by the formula:

Ne =Ko Z By, (7)
fER

where By is the number of proper bases in ZCy and Ko = %

Proof. We will find the number of functions with C-property in the orbit O by
counting bases in zero-sets ZCy. But this way we count each function |S(f)| =
Sy times, where S(f) is the stabilizer subgroup of function f in AGL(2,n).
Therefore taking into account considerations preceding the theorem, the number

Classification of Boolean Functions of 6 Variables 329

N7 of functions equivalent to the functions from T and satisfying the C-property
is equal to

_ 2"n!By
=5,

Nr = Ny (8)

where By is the number of proper bases in ZCy. The factor n! appears since
any arrangement of a given basis represents different function. Let |O| be the

number of cosets in the orbit O. Then substituting Sy = % in (8) we get
2"n!|O|B#|T|

Np = ———— = KoBf|T 9

r = i = KoBjl]. o)

where Ko = % and GL(2,n) is the general linear group.
Therefore the number of all functions with C-property belonging to the orbit
O is:
Y Nr=Ko Y BlT|=Ko)y By. (10)

TeT TeT fER
O

In order to avoid difficulties when determining affine equivalent functions in
R we prefer to use the last expression of (10). Thus, to compute the number Mg
of functions with C-property in the orbit O we shall apply the following formula

Ne =KoY By. (11)

fER

4 Boolean Functions of Less Than 5 Variables

For the study of functions in n variables with n < 4, we refer to [3] and [14]. In |3,
Sect. 4.2], a formula is derived for the number of (n — 3)-resilient functions and
the number of balanced quadratic functions of n variables. In [14, Table 1], the
number of quadratic functions that satisty PC(l) of order k with k + 1 < n are
determined for n < 7. Consequently, taking into account the trade-offs mentioned
in Sect. 2, to cover all classes only the class with representative xixox3 © x124
with n = 4 should be considered in relation with its propagation characteristics.
It can be easily computed by exhaustive search that its size is 26 880 and that
it contains 2 816 PC(1) functions.

We now count the number of functions satisfying correlation-immunity, re-
siliency, propagation characteristics and their combinations in each of the 48
affine equivalence classes of RM(1,5) by using the method explained in Sect. 3.
Note that only the cosets with even weight need to be considered. Numerical
results can be found in tables 1 through 5. In the tables, the functions are rep-
resented by means of an abbreviated notation (only the digits of the variables)
and the sum should be considered modulo 2. We refer to the extended version
of the paper concerning details about the computation.

330 A. Braeken et al.

Table 1. The Number of functions satisfying 1-CI, 1-Resilient, 1-PC, 1-PC with
resiliency properties

Representative Neray [Nrwy | Neca) WrewynsaNremneraoWeea)nra)
2345 512 0 0 0 0 0
2345412 28160 0 163 840 71680 0 0
2345423 1790 0 0 0 0 0
2345423445 14 336 0 0 0 0 0
2345412434 1146 88 0 0 0 0 0
2345+123 6400 0 0 0 0 0
2345+123+12 76 800 0 0 0 0 0
2345+123+24 17280 0 645120 | 201600 0 0
2345+123+14 385400 0 737280 | 253440 640 0
23454123445 102400 0 1904640| 714240 0 0
2345+123+124-34 | 230400 0 0 0 0 0
2345+123+144-35 | 122880 0 11550720 2887680 0 0
2345+123+12+45 7680 0 0 0 0 0
2345+123424+35 0 0 3440640| 430080 0 0
2345+123+145 138240 0 276 480 77760 0 0
2345+12341454+45 | 27648 0 0 0 0 0
2345+4123+145+4-244-45/ 414 720 0 1966080 614400 4160 0
2345+4+123+1454+35+4-24{ 6144 0 2654208| 497664 384 0
123 16640 {11520 0 0 0
123+45 0 0 1310720 0 0 0

123+14 216000 133984 94720 65120 10560 5280
123414425 69120 |24960|1582080| 791040 19200 0
1234145 0 0 0 0 0 0
123+145+23 1029 1205637 600 0 0 0 0
123+145+24 0 0 0 0 0 0
1234+145+234-24+35 | 233472 |96 960 0 0 0 0
12 4840 | 4120 2560 2240 1120 840

12434 896 0 46 592 23296 896 0

Table 2. The Number of 2-C'I functions

Representative [Ncr2) [Nor@npcom)
1234-1454-23+244-35| 384 0
12 640 120

Table 3. The Number of functions satisfying PC(1) of order 1 and 2

Representative|N'pc (1) of ord 1|lNPC(1) of ord2

123+45 5120 0
123414 30720 0
12 2240 960

124-34 13952 704

Classification of Boolean Functions of 6 Variables 331

Table 4. The Number of functions satisfying PC/(2)

Representative Npce) Nec@neaNeo@ncr)(Neo@) of ora 1 |[Npc@) of ord2
2345+1234145+35+24| 12 288 2304 384 0 0
123+14+25 199 680 99 840 3840 0 0
12+34 28672 23296 896 1792 64

Table 5. The Number of functions satisfying PC(3) and PC(4)

Representative|Npc(s) [Npc) [Npo@)nBa (Npc@nBa Npc@) of ora1(Npc(a) of ord1
12434 10752 | 1792 5376 896 1792 64

5 Boolean Functions of 6 Variables and Degree 3

In this section first we show how to find the 34 affine equivalence classes of
RM (3,6)/RM(1,6), together with the orders of their size. Then we count in
each class the number of resilient and PC' functions.

5.1 Classification of RM(3,6)/RM (1, 6)

Table 1 in [9] presents the number of affine equivalence classes of RM (s, 6) in
RM(r,6) with —1 < s <r < 6. In RM(3,6)/RM (1,6) there are 34 equivalence
classes. In order to classify the affine equivalence classes in RM (3,6)/RM(1,6),
we use the 6 representatives f; @ RM (2,6) for 1 < i < 6 of the equivalence classes
of RM(3,6)/RM(2,6) as given in [10]: f; = 0, fo = 123, f3 = 123 + 245, f4 =
123 + 456, f5 = 123 + 245 + 346, fg = 123 + 145 4 246 + 356 + 456. For each
representative, we run through all functions consisting only of quadratic terms
and distinguish the affine inequivalent cosets of RM (1, 6) by using the frequency
distribution of absolute values of the Walsh and autocorrelation distribution as
affine invariants. These indicators suffice to distinguish all 34 affine equivalence
classes.

In order to employ the approach described in Sect. 3 we also need to know
the sizes of these orbits. They were computed during the classification phase
by multiplying the final results by the sizes of the corresponding orbits in
RM (3,6)/RM(2,6) given in [10]. To check these results in the cases of fa2, fi
and fg we obtained linear systems for unknown sizes by taking into account
the weight distributions of the cosets of RM(1,6) and the weight distribution
of the corresponding representative of RM (3,6)/RM (2, 6) to which these cosets
belong. Of course if f; = 0 one can use also [11, Theorem 1 and Theorem 2,
p.436]. The results obtained in these two ways coincide. We refer to Table 6 for
the sizes of the orbits.

Remark 2. The 150357 affine equivalence classes were classified for the first
time by Maiorana [7]. They also are mentioned on the webpage maintained by

332 A. Braeken et al.

Table 6. The number of resilient and PC functions in the classes of RM(3,6)/RM (1, 6)

Representative] Ng(1) Nri2)y [Npca)(x128)|Npe(2)(x128)[Number of Cosets
fi 12 51 800 14840 121 0 651
14423 569 696 0 13440 4900 18 228
16+-25+34 0 0 13 888 13 888 13 888
fo 0 532480 44 800 0 0 1395 x 8
14 19914720 826 560 17240 0 1395 x 392
24415 49257600 | 268 800 1249440 52080 1395 x 2352
16+25+34 0 0 1874 880 1874 880 1395 x 1344
45 0 0 929 280 0 1395 x 3584
1234+16+45 0 0 18744 320 1881 600 1395 x 25088
fs 0 0 0 0 0 54 684 x 32
13 416604 160 | 5174400 0 0 54684 x 320
14 0 0 0 0 54 684 x 480
16 0 0 21 396 480 0 54684 x 7680
26 0 0 33152 0 54684 x 32
26413 264 627040 | 1411200 4659200 47040 54 684 x 320
26414 0 0 14 058 240 1411200 54 684 x 480
13415426434 0 0 10499 328 10499 328 54684 x 192
34+16 0 0 0 0 54684 x 23040
34+13+15 |189807-10'° (82897920 1250304 0 54684 x 192
fa 0 0 0 0 0 357120 x 64
14 0 0 2486 400 0 357120 x 3136
15424 0 0 572315 -10'° 0 357120 x 64
34+25+16 0 0 505258 - 101° 1290240 357120 x 64
fs 0 0 0 0 0 468 720 x 448
12+13 0 0 3609 586 0 468 720 x 18
15 0 0 60211200 0 468 720 x 14 336
12413425 3287027 200| 8 601 600 0 0 468 720 x 2222
14425 0 0 75018 240 0 468 720 x 1344
35+26+25+12 0 0 6719569920 | 6719569920 | 468 720 x 14 336
25415416 0 0 1434240 0 468 720 x 64
fe 0 0 0 1326 080 0 166 656 x 3584
12+13 0 0 7956 480 0 166 656 x 21 504
23+15+14 0 0 37079040 0 166 656 x 7680

Fuller: http://www.isrc.qut.edu.au/people/fuller/ together with the de-
gree, nonlinearity, maximum value in autocorrelation spectrum and truth tables
of Boolean functions of dimension 6. Here we describe another approach for find-
ing the 34 affine equivalence classes of functions of degree 3. One reason for this
is that our method requires the sizes of the orbits, which are not given by Fuller.

5.2 Cryptographic Properties

In order to count the number of functions that satisfy certain cryptographic
properties, the same approach as used for n = 5 is applied on these 34 classes of
RM (3,6)/RM(1,6). In Table 6, we present the classes together with the numbers

Classification of Boolean Functions of 6 Variables 333

of functions in these classes that satisfy t-resiliency with ¢ < 2 and propagation
characteristics of degree less or equal to 2. The last columns represents the sizes
of the orbits.

By the Siegenthaler’s inequality, 3-resilient functions should have degree less
or equal to 2. Only the class with representative x1xo contains 3-resilient func-
tions and there are in total 1 120 3-resilient functions of dimension 6 (see also [3]).

For functions satisfying PC of higher degree, we have the following results.
Besides the bent functions which are PC(6), only the class with representative
124D xoxs contains PC(3) functions with a total of 128 x 420, as also computed
in [14].

6 Conclusions

In this paper, we present a complete classification of the set of Boolean functions
of 5 variables with respect to the most important cryptographic properties. Our
method can also be applied to Boolean functions of dimension 6. As an example,
we compute the 34 affine equivalence classes of RM(3,6)/RM(1,6) and deter-
mine the number of resilient and PC' functions belonging to each class. Moreover,
we show a practical way to find the affine equivalence classes of Boolean func-
tions. This method can be extended to dimension 7.

References

1. E. Berlekamp, L. Welch, Weight Distribution of the Cosets of the (32,6) Reed-
Muller Code, IEEE Transactions on Information Theory, Vol. 18, pp. 203-207,
1972.

2. E. Brier, P. Langevin, Classification of Boolean Cubic Forms of Nine Variables,
2003 IEEE Information Theory Workshop (ITW 2003), IEEE Press, pp. 179-182,
2003.

3. P. Camion, C. Carlet, P. Charpin, N. Sendrier, On Correlation-Immune Functions,
Crypto 1991, LNCS 576, Springer-Verlag, pp. 86-100, 1992.

4. C. Carlet, P. Sarkar, Spectral Domain Analysis of Correlation Immune and Re-
silient Boolean Functions, Finite Fields and Applications, Vol. 8 (1), pp. 120-130,
2002.

5. J. Clark, J.L. Jacob, S. Stepney, S. Maitra, W. Millan, Evolving Boolean Functions
Satisfying Multiple Criteria, Indocrypt 2002, LNCS 2551, Springer-Verlag, pp. 246-
259, 2002.

6. J. H. Evertse, Linear Structures in Block Ciphers, Furocrypt 87, LNCS 304,
Springer-Verlag, pp. 249266.

7. J. Maiorana, A Classification of the Cosets of the Reed-Muller Code
R(1,6),Mathematics of Computation, vol. 57, No. 195, July 1991, pp. 403-414.

8. X. Guo-Zhen, J. Massey, A Spectral Characterization of Correlation-Immune Com-
bining Functions, IEEE Transactions on Information Theory, Vol. 34 (3), pp. 569-
571, 1988.

9. X. -D. Hou, AGL(m,2) Acting on RM(r,m)/RM((s,m), Journal of Algebra,
Vol. 171, pp. 921-938, 1995.

334

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

A. Braeken et al.

X. -D. Hou, GL(m,2) Acting on R(r,m)/R(r — 1,m), Discrete Mathematics,
Vol. 149, pp. 99-122, 1996.

F. J. MacWilliams, N. J. A. Sloane, The Theory of Error- Correcting Codes, North-
Holland Publishing Company, 1977.

S. Maitra, E. Pasalic, Further Constructions of Resilient Boolean Functions with
Very High Nonlinearity, IEEE Transactions on Information Theory, Vol. 48 (7),
pp- 1825-1834, 2002.

E. Pasalic, T. Johansson, S. Maitra, P. Sarkar, New Constructions of Resilient and
Correlation Immune Boolean Functions Achieving Upper Bounds on Nonlinearity,
Workshop on Coding and Cryptography 2001, pp. 425-435, 2001.

B. Preneel, W. Van Leekwijck, L. Van Linden, R. Govaerts, J. Vandewalle, Propa-
gation Characteristics of Boolean Functions, Furocrypt 1990, LNCS 473, Springer-
Verlag, pp. 161-173, 1990.

B. Preneel, Analysis and design of cryptographic hash functions, PhD. Thesis,
Katholieke Universiteit Leuven, 1993.

P. Stanica, S.H. Sung, Boolean Functions with Five Controllable Cryptographic
Properties, Designs, Codes and Cryptography, Vol. 31, pp. 147-157, 2004.

T. Siegenthaler, Correlation-Immunity of Non-linear Combining Functions for
Cryptographic Applications, IEEE Transactions on Information Theory, Vol. 30
(5), pp. 776-780, 1984.

Y. Tarannikov, P. Korolev, A. Botev, Autocorrelation Coefficients and Correla-
tion Immunity of Boolean Functions, Asiacrypt 2001, LNCS 2248, Springer-Verlag,
pp- 460-479, 2001.

Y. Zheng, X. M. Zhang, GAC - the Criterion for Global Avalanche Characteristics
of Cryptographic Functions, Journal for Universal Computer Science, Vol. 1 (5),
pp. 316-333, 1995.

Y. Zheng, X. M. Zhang, On Relationship Among Avalanche, Nonlinearity, and
Propagation Criteria, Asiacrypt 2000, LNCS 1976, Springer-Verlag, pp. 470-483,
2000.

Label-Guided Graph Exploration
by a Finite Automaton

Reuven Cohen'*, Pierre Fraigniaud®**, David Ilcinkas®**,
Amos Korman', and David Peleg?

! Dept. of Computer Science, Weizmann Institute, Israel
{r.cohen, amos.korman, david.peleg}@ueizmann.ac.il
2 CNRS, LRI, Université Paris-Sud, France
{pierre, ilcinkas}@lri.fr

Abstract. A finite automaton, simply referred to as a robot, has to ex-
plore a graph, i.e., visit all the nodes of the graph. The robot has no a
priori knowledge of the topology of the graph or of its size. It is known
that, for any k-state robot, there exists a (k+1)-node graph of maximum
degree 3 that the robot cannot explore. This paper considers the effects
of allowing the system designer to add short labels to the graph nodes in
a preprocessing stage, and using these labels to guide the exploration by
the robot. We describe an exploration algorithm that given appropriate
2-bit labels (in fact, only 3-valued labels) allows a robot to explore all
graphs. Furthermore, we describe a suitable labeling algorithm for gen-
erating the required labels, in linear time. We also show how to modify
our labeling scheme so that a robot can explore all graphs of bounded
degree, given appropriate 1-bit labels. In other words, although there
is no robot able to explore all graphs of maximum degree 3, there is a
robot R, and a way to color in black or white the nodes of any bounded-
degree graph G, so that R can explore the colored graph G. Finally, we
give impossibility results regarding graph exploration by a robot with no
internal memory (i.e., a single state automaton).

1 Introduction

Let R be a finite automaton, simply referred to in this context as a robot, moving
in an unknown graph G = (V, E). The robot has no a priori information about
the topology of G and its size. To allow the robot R, visiting a node u, to
distinguish between its edges, the d = deg(u) edges incident to u are associated
to d distinct port numbers in {0,...,d — 1}, in a one-to-one manner. The port
numbering is given as part of the input graph, and the robot has no a priori
information about it. For convenience of terminology, we henceforth refer to

* Supported by the Pacific Theaters Foundation.
** Supported by the project “PairAPair” of the ACI Masses de Données, the project
“Fragile” of the ACI Sécurité et Informatique, and by the project “Grand Large” of
INRIA.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 335-346, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

336 R. Cohen et al.

“the edge incident to port number [at node u” simply as “edge [of u”. (Clearly,
if this edge connects u to v, then it may also be referred to as “edge I’ of v” for
the appropriate I’.) The robot has a transition function f, and a finite number of
states. If R enters a node of degree d through port i in state s, then it switches
to state s’ and exits the node through port ¢, where (s',¢') = f(s,i,d). The
objective of the robot is to explore the graph, i.e., to visit all its nodes.

The first known algorithm designed for graph exploration was introduced
by Shannon [8]. Since then, several papers have been dedicated to the feasi-
bility of graph exploration by a finite automaton. Rabin [6] conjectured that
no finite automaton with a finite number of pebbles can explore all graphs (a
pebble is a marker that can be dropped at and removed from nodes). The first
step towards a formal proof of Rabin’s conjecture is generally attributed to Bu-
dach [2], for a robot without pebbles. Blum and Kozen [1] improved Budach’s
result by proving that a robot with three pebbles cannot perform exploration of
all graphs. Kozen [5] proved that a robot with four pebbles cannot explore all
graphs. Finally, Rollik [7] gave a complete proof of Rabin’s conjecture, showing
that no robot with a finite number of pebbles can explore all graphs. The re-
sult holds even when restricted to planar 3-regular graphs. Without pebbles, it
was proved [4] that a robot needs ©(D log A) bits of memory for exploring all
graphs of diameter D and maximum degree A. On the other hand, if the class of
input graphs is restricted to trees, then exploration is possible even by a robot
with no memory (i.e., zero states), simply by DFS using the transition function
f(i,d) =i+ 1 mod d (see, e.g., [3]).

The ability of dropping and removing pebbles at nodes can be viewed alter-
natively as the ability of the robot to dynamically label the nodes. If the robot
is given k pebbles, then, at any time of the exploration, >, i |l.| < k where I,
is the label of node u and |l,,| denotes the size of the label in unary. This paper
considers the effects of allowing the system designer to assign labels to the nodes
in a preprocessing stage, and using these labels to guide the exploration by the
robot. The transition function f is augmented to utilize labels as follows. If R in
state s enters a node of degree d, labeled by [, through port 4, then it switches
to state s’ and exits the node through port ¢, where

(s',i") = f(s,i,d,1).

This model can be considered stronger than Rabin’s pebble model since labels
are given in a preprocessing stage, but it can also be considered weaker since,
once assigned to nodes, the labels cannot be modified.

In this paper, we consider settings where it is expected that the graph will be
visited by many exploring robots, and consequently, the system designer would
like to preprocess the graph by leaving (preferably small) road-signs, or labels,
that will aid the robots in their exploration task. As possible scenarios one may
consider a network system where finite automata are used for traversing the
system and distributing information in a sequential manner.

More formally, we address the design of exploration labeling schemes. Such
schemes consist of a pair (£,R) such that, given any graph G with any port

Label-Guided Graph Exploration by a Finite Automaton 337

Table 1. Summary of main results

Label size|Robot’s memory Time
(#Dits) (#Dbits) (#edge-traversals)
2 0(1) O(m)
1 O(log A) 0(A°Dm)

numbering, the algorithm £ labels the nodes of G, and the robot R explores G
with the help of the labeling produced by L. In particular, we are interested in
exploration labeling schemes for which: (1) the preprocessing time required to
label the nodes is polynomial, (2) the labels are short, and (3) the exploration
is completed after a small number of edge-traversals.

As a consequence of Rollik’s result, any exploration labeling scheme must use
at least two different labels. Our main result states that just three labels (e.g.,
three colors) are sufficient for enabling a robot to explore all graphs. Moreover,
we show that our labeling scheme gives to the robot the power to stop once
exploration is completed, although, in the general setting of graph exploration,
the robot is not required to stop once the exploration has been completed, i.e.,
once all nodes have been visited. In fact, we show that exploration is completed
in time O(m), i.e., after O(m) edge traversals, in any m-edge graph.

For the class of bounded degree graphs, we design an exploration scheme
using even smaller labels. More precisely, we show that just two labels (i.e.,
1-bit labels) are sufficient for enabling a robot to explore all bounded degree
graphs. The robot is however required to have a memory of size O(log A) to
explore all graphs of maximum degree A. The completion time O(A°™Mm) of
the exploration is larger than the one of our previous 2-bit labeling scheme,
nevertheless it remains polynomial.

All these results are summarized in Table 1. The two mentioned labeling
schemes require polynomial preprocessing time.

We also prove several impossibility results for 1-state robots, i.e., robots that
are oblivious. The behavior of 1-state robots depends solely on the input port
number, and on the degree and label of the current node. In particular, we prove
that for any d > 4 and for any 1-state robot using at most |logd| — 2 colors,
there exists a simple graph of maximum degree d that cannot be explored by
the robot. This lower bound on the number of colors needed for exploration can
be increased exponentially to d/2 — 1 by allowing loops.

2 A 2-Bit Exploration-Labeling Scheme

In this section, we describe an exploration-labeling scheme using only 2-bit (ac-
tually, 3-valued) labels. More precisely, we prove the following.

Theorem 1. There exists a robot with the property that for any graph G, it is
possible to color the nodes of G with three colors (or alternatively, assign each
node a 2-bit label) so that using the labeling, the robot can explore the entire

338 R. Cohen et al.

graph G, starting from any given node and terminating after identifying that the
entire graph has been traversed. Moreover, the total number of edge-traversals by
the robot is < 20m.

To prove Theorem 1, we first describe the labeling scheme £ and then the
exploration algorithm. The node labeling is in fact very simple; it uses three
labels, called colors, and denoted WHITE, BLACK, and RED. Let D be the diameter
of the graph.

Labeling L£. Pick an arbitrary node r. Node r is called the root of the labeling
L. Nodes at distance d from r, 0 < d < D, are labeled WHITE if d mod 3 = 0,
BLACK if d mod 3 = 1, and RED if d mod 3 = 2.

The neighbor set N (u) of each node u can be partitioned into three disjoint
sets: (1) the set pred(u) of neighbors closer to r than u; (2) the set succ(u)
of neighbors farther from r than w; (3) the set sibling(u) of neighbors at the
same distance from r as u. We also identify the following two special subsets of
neighbors:

— parent(u) is the node v € pred(u) such that the edge {u, v} has the smallest
port number at v among all edges leading to a node in pred(u).
— child(u) is the set of nodes v € succ(u) such that parent(v) = u.

For the root, set parent(r) = (). The exploration algorithm is partially based
on the following observations.

1. For the root r, child(r) = succ(r) = N (r).

2. For every node u with label £(u), and for every neighbor v € N(u), the label
L(v) uniquely determines whether v belongs to pred(u), succ(u) or sibling(u).

3. Once at node u, a robot can identify parent(u) by visiting its neighbors
successively, starting with the neighbor connected to port 0, then port 1,
and so on. Indeed, by observation 2, the nodes in pred(u) can be identified
by their label. The order in which the robot visits the neighbors ensures that
parent(u) is the first visited node in pred(u).

Remark. The difficulty of graph exploration by a robot with a finite memory is
that the robot entering some node u by port p, and aiming at exiting u by the
same port p after having performed some local exploration around w, has not
enough memory to store the value of p.

Exploration algorithm. Our exploration algorithm uses a procedure called
Check_Edge. This procedure is specified as follows. When Check_Edge(y) is ini-
tiated at some node u, the robot starts visiting the neighbors of u one by one,
and eventually returns to u reporting one of three possible outcomes: “child”,
“parent”, or “false”. These values have the following interpretation:

(¢) if “child” is returned, then edge j at u leads to a child of w;
(i7) if “parent” is returned, then edge j at u leads to the parent of w;

Label-Guided Graph Exploration by a Finite Automaton 339

(i13) if “false” is returned, then edge j at u leads to a node in A(u)\ (parent(u)U
child(u)).

The implementation of Procedure Check_Edge will be described later. Mean-
while, let us describe how the algorithm makes use of this procedure to perform
exploration.

Assume that the robot R is initially at the root r of the 3-coloring £ of the
nodes. R leaves r by port number 0, in state DOWN. Note that, by the above
observations, the node at the other endpoint of edge 0 of r is a child of 7.

Assume that R enters a node u via port number %, in state DOWN. Assume u
is of degree d; all arithmetic operations in the following description are modulo
d. R aims at identifying a child of w if one exists, or to backtrack along edge
i of u if none exists. To do so it executes Procedure Check Edge(j) for every
port number j = ¢+ 1,742, ... until the procedure eventually returns “child” or
“parent” for some port number j. R then sets its state to DOWN in the former
case and UP in the latter, and leaves u by port j.

Assume that R enters a node u via port number i, in state UP. Assume u
is of degree d; all arithmetic operations in the following description are modulo
d. R aims at identifying a child of v with port number j € {i +1,...,p — 1}
if one exists (where p is the port number of the edge leading to parent(u)), or
to carry on moving up to the parent of w if there is no such child. To do so,
R executes Procedure Check Edge(j) for every port number j =i+ 1,i+2,...
until the procedure eventually returns “child” or “parent” for some port number
j. R then sets its state to DOWN in the former case and UP in the latter, and
leaves u by port j.

If the robot does not start from the root r of the labeling £, then it first goes
to r by using Procedure Check_Edge to identify the parent of every intermediate
node, and by identifying 7 as the only node with pred(r) = 0.

Moreover, the robot can stop after the exploration has been completed. More
precisely, this can be done by introducing a slight modification of the robot
behavior when it enters a node u of degree d via port number d in state UP. In
this case, R first check whether u has a parent. If yes, then it acts as previously
stated (R does not need to store d since d is the node degree). If not, the robot
terminates the exploration.

Procedure Check Edge. We now describe the actions of the robot R when
Procedure Check_Edge(j) is initiated at a node w. The objective of R is to set
the value of the variable edge to one of {parent, child, false}. We denote by v
the other endpoint of the edge e with port number j at u. First, R moves to
v in state “check_edge”, carrying with it the color of node u. Let ¢ be the port
number of edge e at v. There are three cases to be considered.

(a) v € sibling(u): Then R backtracks through port ¢ and reports “edge =
false”.

(b) v € pred(u): Then R aims at checking whether v is the parent of u, that is,
whether « is a child of v. For that purpose, R moves back to u, and proceeds

340 R. Cohen et al.

as follows: R successively visits edges j—1,7—2, ... of v until either the other
endpoint of the edge belongs to pred(u), or all edges j — 1,5 —2,...,0 have
been visited. R then sets “edge=false” in the former case and “edge=parent”
in the latter. At this point, let k£ be the port number at u of the last edge
visited by R. Then R successively visit edge k + 1,k + 2, - - - until the other
endpoint belongs to pred(u). Then it moves back to v and reports the value
of edge.

(c) v € succ(u): Then R aims at checking whether u is the parent of v. For that
purpose, R proceeds in a way similar to Case (b), i.e., it successively visits
edges i — 1,7 — 2,... of v until either the other endpoint of the edge belongs
to pred(v), or all edges i — 1,4 — 2,...,0 have been visited. R then sets its
variable edge to “false” in the former case and to “child” in the latter. At
this point of the exploration, let k denotes the port number of the last edge
incident to v that R visited. Then R successively visits edges k+1,k+2, ...
until the other endpoint w of the edge belongs to pred(v). Then it moves to
w, and reports the value of edge.

This completes the description of our exploration procedure.

Proof of Theorem 1. Clearly, labeling all nodes by £ can be done in time linear
in m, the number of edges of the graph. Obviously, two bits are enough to encode
the label of each node. More specifically, using two bits for a color that is present
on at most one third of the nodes, and one bit for the two other colors, we obtain
a labeling with average label size 4/3. It remains to prove the correctness of the
exploration algorithm.

It is easy to check that if Procedure Check Edge satisfies its specifications,
then the robot R essentially performs a DFS traversal of the graph using edges
{u,v} where u = parent(v) or u € child(v). Thus, we focus on the correctness
of Procedure Check_Edge(j) initiated at node u. Let v be other endpoint of the
edge e with port number j at u, and let ¢ be the port number of edge e at v. We
check separately the three cases considered in the description of the procedure.
By the previous observations, comparing the color of the current node with the
color of u allows R to distinguish between these cases.

If v € sibling(u), then v is neither a parent nor a child of u, and thus reporting
“false” is correct. Indeed, R then backtracks to w via port i, as specified in
Case (a).

If v € pred(u), then v = parent(u) iff for every neighbor wj, connected to u by
an edge with port number k € {j—1,7—2,...,0}, wg ¢ pred(u). The robot does
check this property in Case (b) of the description, by returning to u, and visiting
all the wy’s. Hence, Procedure Check_Edge performs correctly in this case.

Finally, if v € succ(u), then v = child(u) iff for every neighbor z; connected
to v by an edge with port number [€ {i — 1,i — 2,...,0}, z ¢ pred(v). In
case (c), the robot does check this property by visiting all the z;’s. At this point,
it remains for R to return to u (obviously, the port number leading from v to
u cannot be stored in the robot memory since it has only a constant number of
states). Let k be the port number of the last edge incident to v that R visited

Label-Guided Graph Exploration by a Finite Automaton 341

before setting its variable edge to “false” or “child”. We have 0 < k < i — 1,
z1 ¢ pred(v) for all l € {k+1,...,i— 1}, and u € pred(v). Thus u is identified
as the first neighbor that is met when visiting all v’s neighbors by successively
traversing edges k + 1,k + 2,... of v. This is precisely what R does according
to the description of the procedure in Case (c). Hence, Procedure Check Edge
performs correctly in this case.

Hence Procedure Check Edge performs correctly in all cases and so does
the global exploration algorithm. It remains to compute the number of edge
traversals performed by the robot during the exploration (including the several
calls to Check_Edge).

We use again the same notations as in the description and the proof of Pro-
cedure Check Edge. Let us consider the Procedure Check Edge(j) initiated at
node u. Let v be other endpoint of the edge e with port number j at u, and let
1 be the port number of edge e at v. First observe that during the execution of
the Procedure Check_Edge only edges incident to v and v are traversed. More
precisely:

Case (a): v € sibling(u). Then edge e = {u, v} is traversed twice and no other
edges are traversed during this execution of Procedure Check_Edge.

Case (b): v € pred(u). Then R traverses only edges incident to u. Let k be
the greatest port number of the edges leading to a node in pred(u) and
satisfying k < j. If it does not exist, set £k = 0. R explores twice each edge
7,7 —1,...,k + 1 of u, then twice edge k, and finally again twice edges
k+1,...,57—1,5. To summarize, edge k of u is explored twice, and edges
k+1,...,5—1,7 of u are explored four times.

Case (c): v € succ(u). Then R traverses only edges incident to v. Let k& be
the greatest port number of the edges leading to a node in pred(v) and
satisfying k < 4. If it does not exist, set k = 0. R explores once edge j of u,
twice each edge i — 1,7 — 2,...,k + 1 of v, twice edge k, twice again edges
k+1,...,i—2,i—1, and finally once edge i of v (i.e., j of u). To summarize,
edge i of u and edge k of v are explored twice and edges k+1,...,i—2,71—1
of v are explored four times.

We bound now the number of times each edge e of the graph is traversed.
Edge e = {u, v} is labeled ¢ at u and j at v. Let us consider different cases:

(1) e = {u,v} with v = parent(u). The edge e is in the spanning tree, and
thus is explored twice outside any execution of the Procedure Check_Edge.
During Procedure Check_Edge(j) at v, edge e is explored twice. e is also
explored four times during Check Edge(i) at u, except if i = 0 where e is
only explored twice during Check _Edge(i) at u. If there exists an edge {u/, u}
labeled i’ at w and " at u’ such that i’ < ¢ and v’ € pred(u), then edge e is
explored twice during Procedure Check _Edge(i’') at u and twice again during
Procedure Check_Edge(i”) at u’. If there exists an edge {v’, v} labeled j’ at
v and j” at v’ such that j/ < j and v’ € pred(v), then edge e is explored four
times during Procedure Check Edge(j’) at v and four times again during

342 R. Cohen et al.

Procedure Check_Edge(j”) at v'. To summarize, edge e is explored at most
20 times during a DFS.

(2) e = {u,v} with v € pred(u) but v # parent(u). During Procedure
Check_Edge(j) at v, edge e is explored twice. e is also explored four times
during Check _Edge(i) at u. If there exists an edge {u',u} labeled i’ at u and
i’ at u' such that i < ¢ and «' € pred(u), then edge e is explored twice
during Procedure Check_Edge(i’) at u and twice again during Procedure
Check Edge(i”) at u'. If there exists an edge {v’, v} labeled 5/ at v and j” at
v’ such that j < j and v’ € pred(v), then edge e is explored four times dur-
ing Procedure Check_Edge(j’) at v and four times again during Procedure
Check_Edge(j”) at v’. To summarize, edge e is explored at most 18 times
during a DFS.

(3) e = {u,v} with v € sibling(v). During Procedure Check_Edge(j) at v, edge
e is explored twice. e is also explored twice during Check_Edge(i) at w. If
there exists an edge {u’,u} labeled i’ at w and ¢ at «' such that ¢/ <
i and u' € pred(u), then edge e is explored four times during Procedure
Check Edge(i') at v and four times again during Procedure Check Edge(i”)
at u’. If there exists an edge {v',v} labeled j' at v and j” at v’ such that
j' < jand v € pred(v), then edge e is explored four times during Procedure
Check_Edge(j’) at v and four times again during Procedure Check_Edge(j")
at v’. To summarize, edge e is explored at most 20 times during a DFS.

Therefore, our exploration algorithm completes exploration in time < 20|F)|
where |E| is the number of edges in the graph G. a

3 A 1-Bit Exploration-Labeling Scheme for Bounded
Degree Graphs

In this section, we describe an exploration labeling scheme using only 1-bit labels.
This scheme requires a robot with O(log A) bits of memory for the exploration
of graphs of maximum degree A. More precisely, we prove the following.

Theorem 2. There exists a robot with the property that for any graph G of de-
gree bounded by a constant A, it is possible to color the nodes of G with two
colors (or alternatively, assign each node a 1-bit label) so that using the labeling,
the robot can explore the entire graph G, starting from any given node and ter-
minating after identifying that the entire graph has been traversed. The robot has
O(log A) bits of memory, and the total number of edge-traversals by the robot is
O(A©D).

To prove Theorem 2, we first describe a 1-bit labeling scheme £ for G =

(V,E), i.e., a coloring of each node in black or white. Then, we will show how
to perform exploration using £'.

Labeling £’. As for L, pick an arbitrary node r € V, called the root. Nodes at
distance d from r are labeled as a function of d mod 8. Partition the nodes into
eight classes by letting

Label-Guided Graph Exploration by a Finite Automaton 343

C; ={u eV | distg(r,u) mod 8 =i}

for 0 < ¢ < 7. Node u is colored white if u € Cy U Cy U C3 U Cy4, and black
otherwise. Let ~
Cy = {u | distg(r,u) = 1}

C={r}U{ue Cy | distg(r,u) = 2 and N'(u) = C4 }.

Lemma 1. There is a local search procedure enabling a robot of O(log A) bits

of memory to decide whether a node u belongs to C and to C1, and to identify
the class C; of every node u ¢ C.

Proof. Let B (resp., W) be the set of black (resp., white) nodes which have all
their neighbors black (resp., white). One can easily check that the class C; and
the classes C, ..., C7 can be redefined as follows:

— u € (g < u € B and there is a node in W at distance < 3 from u;

—u € C7 & u ¢ Cg, u has a neighbor in Cg, and there is no node in W at
distance < 2 from u;

— u € C1 & w is black, u has no neighbor in B, and « has a white neighbor v

that has no neighbor in W.

u € C5 & u is black, and u ¢ Cy U Cs U Cr;

— u € (3 < ue W, and there is a node in C at distance < 2 from u;

— u € (4 & u has a neighbor in W, and there is no node in C at distance
< 2 from u.

Based on the above characterizations, the classes C; and Cs,...,C7 can be
easily identified by a robot of O(log A) bits, via performing a local search. More-
over, the sets C; and C' can also be characterized as follows:

—u € 01 < u € C7 and u has no node in C7 at distance < 2;
~ued & N(u) C C, and every node v at distance < 2 from u satisfies
[N (v) N Cyf < IN(u)].

Using this we can deduce:

—u€ C’O\C(:)ugé (UZ7 3C;) U Cy and v has a neighbor in C7;
—u € Cy \C Sué¢ C has a neighbor in C7, but has no neighbor in C7.

It follows that a robot of O(log A) bits can identify the class of every node except
for nodes in C. O

Proof of Theorem 2. The exploration algorithm for £’ follows the same strategy
as the exploration algorithm for £. Indeed, for u € C;, we have

pred() (U) N CZ 1 (mod 8)
succ(u) = N (u) N Cz+1 (mod 8)
sibling(u) = N'(u) N

344 R. Cohen et al.

Therefore, due to Lemma 1, all instructions of the exploration algorithm using
labeling £ can be executed using labeling L', but for the cases not captured in
Lemma 1, i.e., C.

To solve the problem of identifying the root, we notice that each of the nodes
in C can be used as a root, and all the others can be considered as leaves in Cs.
Thus, when leaving the root, the robot should memorize the port P by which
it should return to the root. When the robot arrives at a node u € C; through
a tree edge and is in the UP state, it leaves immediately through port P and
deletes the contents of P, then it goes down through the next unexplored port
if one is left. When the robot is in a node u € Cy and in the DOWN state, it will
skip the port P.

If the exploration begins at the root, then the above is sufficient. To handle
explorations beginning at an arbitrary node, it is necessary to identify the root.
Since every node in C' can be used as a root, it suffices to find one node of C by
going up and then start the exploration from it as described above. a

4 Impossibility Results

Theorem 3. For any d > 4, and for any I-state robot using at most d/2 — 1
colors, there exists a graph (with loops) with maximum degree d and at most d+1
vertices that cannot be explored by the robot.

Proof. Fix d > 4, and assume for contradiction that there exists a 1-state
robot exploring all graphs of degree d colored with at most d/2 — 1 colors.
Recall that when a 1-state robot enters a node v by port i, it will leave v
by port j where j is depending only on 4, d and the color ¢ of v. Thus for
fixed d, each color corresponds to a mapping from entry ports to exit ports,
namely, a function from {0,1,---,d —1} to {0,1,---,d — 1}. Partition the func-
tions corresponding to the colors of nodes of degree d into surjective functions
fi, f2, -+, ft and non-surjective functions gi,¢g2,---,¢g,. We have 0 < t +r <
d/2 — 1. Let ¢; be the color corresponding to f;, and ¢;4; be the color cor-
responding to g;. For each g;, choose p; to be some port number not in the
range of g;. Let pg € {0,1,---,d — 1} \ {p1,p2,---,pr} (it is possible because
d—r>1).

We will construct a family {Go,G1,- -+, Gt} of graphs such that, for every
ke{0,1,---,t}:

1. Gy, has exactly one degree-d vertex v (possibly with loops);

2. the other vertices of Gy, are degree-1 neighbors of v;

3. all edges are either loops incident to v, or edges leading from v to some
degree-1 node;

4. edges labeled py,pa, -+, p, at v (if any, i.e., if r > 0) are not loops (and thus
lead to degree-1 nodes);

5. the edge labeled pgy leads to some degree-1 node, denoted by uy;

Label-Guided Graph Exploration by a Finite Automaton 345

6. there exists a set X C {0,1,---,d — 1} such that {pg,p1,---,pr} C Xj and
d—|Xg| > 2(t — k), and for which, in G}, edges with port number not in Xj
lead to degree-1 vertices.

We will prove the following property for any k=0, -- -, ¢

Property Py. In Gy, if the color of v is in {e1,- -+, ¢k}, then the robot, starting
at ug € V(Gy), cannot explore Gj,. More precisely any vertex attached to v by
a port € X is not visited by the robot.

We prove Pj by induction on k. Let G be the star composed of one degree-d
vertex v and d leaf vertices. Let Xo = {po,p1,p2, -, pr}. Recall that ¢t + r <
d/2 — 1. Thus, t < d/2 — 1 and hence 2t + r + 1 < d — 1. Therefore, we have
d—|Xo|=d— (r+1) > 2t. By is trivially true.

Let k£ > 0, and let G_1 and Xj_1 be respectively a graph and a set satisfying
the induction property for k& — 1. Assume first that v is colored by color cg
and that the robot starts its traversal at ug. If the robot never visits vertices
attached to v by ports not in X;_; then the graph Gp_; and the set Xp_;
satisfy Pj. L.e., G, = Gx_1 and X = Xj_1. Otherwise, let p be the first port
not in Xj_1 that is visited by the robot at v, when starting at ug. For a port
i€ {0,1,---,d— 1}, set twin(i) = j if there exists a port j and a loop labeled
by i and j in Gi_1; Set twin(i) = i otherwise. Define a sequence of ports (i;);>1
as follows. Let 41 be the port in Xj_; such that fx(i;) = p. For all I > 2, let i,
be the port such that fx(¢;) = twin(é;—1). This sequence is well defined because
fx is surjective.

Observe that there exists some [such that 4; ¢ X;_;. Indeed, suppose, for
the purpose of contradiction, that i; € X;_; for all [. Since Xj_; is finite, there
exists some i; = 9;4,, for m > 1. Let 4; be the first port repeated twice in this
process. If I > 1, then we have fi(i;) = twin(i;—1) and fx(¢j4m) = twin(ij4m—1)-
Therefore twin(i;—1) = twin(i;1m—1), yielding 4;_1 = 44,1 by bijectivity of fg,
which contradicts the minimality of [. If [= 1, then we have i; = 41.,,, therefore
im = p, contradicting i; € X1 for all j.

From the above, let h be the smallest index such that i, ¢ X. Let ¢ = ip,. If
q = p, then set Gy, = Gx—1 and Xy = X;_1 U {p}. If ¢ # p, then connect ports
p and ¢ to create a loop, denote the new graph Gy and let X = X;_1 U {p,q}.

In G, if v is colored by color ¢, then by the choice of p, starting at ug, the
robot enters and exits v through ports in Xj_; until it eventually exits v through
port p. After that, the robot goes back to v by port q. Port ¢ was chosen so that
it causes the robot to continue entering v on ports i,_1,4n_o, - 11, after which
the robot exits v through port p, locking the robot in a cycle. Since the ports
of v occurring in this cycle are all from X}, the robot does not visit any of the
ports outside X, as claimed. By induction, we have d — | X;_1| > 2(t — (k — 1)).
By the construction of X}, from Xj_1, we have | Xi| < |Xk_1| + 2. Therefore
d — | Xg| > 2(t — k), which completes the correctness of Gy and Xj.

If the color of v in Gy, is in {¢1, -+, cx—1} then the robot is doomed to fail
in exploring G. Indeed since starting at ug in Gg_1 the robot does not traverse
any of the vertices corresponding to ports not in Xj_1, then in G too, the robot
does not traverse any of the vertices corresponding to ports not in X 2O Xi_1,

346 R. Cohen et al.

and thus fails to explore Gj, because d — |X}| > 1. This completes the proof of
P, and thus the induction.

In particular, G is not explored by the robot if the node v is colored with
a color in c1,co, -+, ¢ If v is colored c¢;q; with 1 < 4 < r, then assume that
the robot starts the traversal at vertex ug. Since the edge labeled p; leads to a
degree-1 vertex in Gy, this vertex will never be visited by the robot, by definition
of p;. Therefore the graph G; cannot be explored by the robot. a

The theorem above makes use of graphs with loops. For graphs without loops
we have the following theorem.

Theorem 4. For any d > 4 and for any I1-state robot using at most |logd| — 2
colors, there exists a graph of maximum degree d, without loops, that cannot be
explored by the robot.

5 Further Investigations

It was known that there is no 0-bit exploration-labeling scheme, even for bounded
degree graphs. We proved that there is a 2-bit exploration-labeling scheme for ar-
bitrary graphs, and that there is a 1-bit exploration-labeling scheme for bounded
degree graphs. It remains open whether or not there exists a 1-bit exploration-
labeling scheme for arbitrary graphs.

References

1. M. Blum and D. Kozen. On the power of the compass (or, why mazes are easier
to search than graphs). In 19th Symposium on Foundations of Computer Science
(FOCS), pages 132-142, 1978.

2. L. Budach. Automata and labyrinths. Math. Nachrichten, pages 195-282, 1978.

3. K. Diks, P. Fraigniaud, E. Kranakis, and A. Pelc. Tree Exploration with Little
Memory. In 13th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA), pages
588-597, 2002.

4. P. Fraigniaud, D. Ilcinkas, A. Pelc, G. Peer and D. Peleg. Graph Exploration by
a Finite Automaton. In Proc. 29th Int. Symp. on Mathematical Foundations of
Computer Science (MFCS), LNCS 3153, 451-462, 2004.

5. D. Kozen. Automata and planar graphs. In Fund. Computat. Theory (FCT), 243-
254, 1979. Fundamentals of Computation Theory (FCT), pages 243-254, 1979.

6. M.O. Rabin, Maze threading automata. Seminar talk presented at the University
of California at Berkeley, October 1967.

7. H.A. Rollik. Automaten in planaren Graphen. Acta Informatica 13:287-298, 1980
(also in LNCS 67, pages 266-275, 1979).

8. C. E. Shannon. Presentation of a maze-solving machine. In 8th Conf. of the Josiah
Macy Jr. Found. (Cybernetics), pages 173-180, 1951.

On the Wake-Up Problem in Radio Networks

Bogdan S. Chlebusll’*, Leszek Gasieniec?,
Dariusz R. Kowalski??**, and Tomasz Radzik*

! Department of Computer Science and Eng.,

UCDHSC, Denver, CO 80217, USA

2 Department of Computer Science,
University of Liverpool, Liverpool L69 7ZF, UK
3 Instytut Informatyki, Uniwersytet Warszawski,

Banacha 2, Warszawa, Poland

4 Department of Computer Science,

King’s College London, London WC2R, 2LS, UK

Abstract. Radio networks model wireless communication when pro-
cessing units communicate using one wave frequency. This is captured by
the property that multiple messages arriving simultaneously to a node
interfere with one another and none of them can be read reliably. We
present improved solutions to the problem of waking up such a network.
This requires activating all nodes in a scenario when some nodes start to
be active spontaneously, while every sleeping node needs to be awaken
by receiving successfully a message from a neighbor. Our contributions
concern the existence and efficient construction of universal radio syn-
chronizers, which are combinatorial structures introduced in [6] as build-
ing blocks of efficient wake-up algorithms. First we show by counting
that there are (n, g)-universal synchronizers for g(k) = O(klogklogn).
Next we show an explicit construction of (n, g)-universal-synchronizers
for g(k) = O(k? polylog n). By way of applications, we obtain an existen-
tial wake-up algorithm which works in time O(nlog® n) and an explicitly
instantiated algorithm that works in time O(n A polylog n), where n is
the number of nodes and A is the maximum in-degree in the network.
Algorithms for leader-election and synchronization can be developed on
top of wake-up ones, as shown in [7], such that they work in time slower
by a factor of O(logn) than the underlying wake-up ones.

1 Introduction

Radio networks model mobile wireless communication when processing units
communicate using one wave frequency. We consider networks that are syn-
chronous in the sense that there is a global time measured in rounds and local

* The work of this author is supported by the NSF Grant 0310503.
** Part of this work was done while the author was a postdoctoral fellow in Max-Planck-
Institut fiir Informatik, Saarbriicken, Germany. The work of this author is supported
by the KBN Grant 4T11C04425.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 347-359, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

348 B.S. Chlebus et al.

clocks at nodes are ticking at the same rate. Communication has the property
that multiple messages arriving at the same round to a node interfere with one
another and none can be reliably received. Radio networks are given as directed
graphs with ed