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Abstract. This paper proposes a new approach to the problem of ob-
taining the most probable explanations given a set of observations in
a Bayesian network. The method provides a set of possibilities ordered
by their probabilities. The main novelties are that the level of detail of
each one of the explanations is not uniform (with the idea of being as
simple as possible in each case), the explanations are mutually exclu-
sive, and the number of required explanations is not fixed (it depends on
the particular case we are solving). Our goals are achieved by means of
the construction of the so called explanation tree which can have asym-
metric branching and that will determine the different possibilities. This
paper describes the procedure for its computation based on information
theoretic criteria and shows its behaviour in some simple examples.

1 Introduction

Although the most common probabilistic inference in Bayesian networks (BNs) is
probability or evidence propagation [18, 1, 11], that is, computation of posterior
probability for all non-observed variables given a set of observations (XO = xO)
(the evidence), there are other interesting inference tasks. In this paper we are
concerned with the inference task that attempts to generate explanations for a
given evidence. Generating explanations in Bayesian networks can be understood
in two (main) different ways:

1. Explaining the reasoning process (see [12] for a review). That is, trying to
justify how a conclusion was obtained, why new information was asked, etc.

2. Diagnostic explanations or abductive inference (see [9] for a review). In this
case the explanation reduces to factual information about the state of the
world, and the best explanation for a given evidence is the state of the world
(configuration) that is the most probable given the evidence [18].

In this paper we focus on the second approach. Therefore, given a set of
observations or evidence (XO = xO or xO in short) known as the explanandum,
we aim to obtain the best configuration of values for the explanatory variables
(the explanation) which is consistent with the explanandum and which needs
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to be assumed to predict it. Depending on what variables are considered as
explanatory, two main abductive tasks in BNs are identified:

– Most Probable Explanation (MPE) or total abduction. In this case all the
unobserved variables (XU ) are included in the explanation [18]. The best

explanation is the assignment XU = x∗
U which has maximum a posteriori

probability given the explanandum, i.e.,

x∗
U = arg max

xU∈ΩXU

P (xU |xO). (1)

Searching for the best explanation has the same complexity (NP-hard [23])
as probability propagation, in fact the best MPE can be obtained by using
probability propagation algorithms but replacing summation by maximum
in the marginalisation operator [3]. However, as it is expected to have several
competing hypothesis accounting for the explanandum, our goal usually is
to get the K best MPEs. Nilsson [15] showed that using algorithm in [3]
only the first three MPEs can be correctly identified, and proposed a clever
method to identify the remaining (4, . . . ,K) explanations.
One of the main drawbacks of the MPE definition is that as it produces
complete assignments, the explanations obtained can exhibit the overspeci-

fication problem [21] because some non-relevant variables have been used as
explanatory.

– Maximum a Posteriori Assignment (MAP) or partial abduction [14, 21]. The
goal of this task is to alleviate the overspecification problem by considering
as target variables only a subset of the unobserved variables called the ex-

planation set (XE). Then, we look for the maximum a posteriori assignment
of these variables given the explanandum, i.e.,

x∗
E = arg max

xE

P (xE |xO) = arg max
xE

∑

xR

P (xE , xR|xO), (2)

where XR = XU \ XE . This problem is more complex than the MPE prob-
lem, because it can be NP-hard even for cases in which MPE is polynomial
(e.g., polytrees) [17, 5], although recently Park and Darwiche [16, 17] have
proposed exact and approximate algorithms to enlarge the class of efficiently

solved cases. With respect to looking for the K best explanations, exact and
approximate algorithms which combine Nilsson algorithm [15] with proba-
bility trees [19] has been proposed in [6].

The question now is which variables should be included in the explanation
set. Many algorithms avoid this problem by assuming that the explanation set is
provided as an input, e.g., given by the experts or users. Many others interpret
the BN as a causal one and only ancestors of the explanandum are allowed to
be included in the explanation set (sometimes only root nodes are considered)
[13]. However, including all the ancestors in the explanation set does not seem
to avoid the overspecification problem and even so, what happens if the network
does not have a causal interpretation?, e.g., it has been learnt from a data base
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or it represents an agent’s beliefs [2]. Shimony [21, 22] goes one step further
and describes a method which tries to identify the relevant variables (among
the explanandum ancestors) by using independence and relevance based criteria.
However, as pointed out in [2] the explanation set identified by Shimony’s method
is not as concise as expected, because for each variable in the explanandum all
the variables in at least one path from it to a root variable are included in the
explanation set. Henrion and Druzdzel [10] proposed a model called scenario-

based explanation. In this model a tree of propositions is assumed, where a path
from the root to a leaf represents a scenario, and they look for the scenario with
highest probability. In this model, partial explanations are allowed, but they are
restricted to come from a set of predefined explanations.

As stated in [2] conciseness is a desirable feature in an explanation, that is,
the user usually wants to know only the most influential elements of the complete
explanation, and does not want to be burdened with unnecessary detail. Because
of this, a different approach is taken in [4]. The idea is that even when only
the relevant variables to the explanandum are included in the explanation set,
the explanations can be simplified due to context-specific irrelevance. This idea
is even more interesting when we look for the K MPEs, because it allows us
to obtain explanations with different number of literals. In [4] the process is
divided into two stages: (1) the K MPEs are obtained for a given prespecified
explanation set, and (2) then they are simplified by using different independence
and relevance based criteria.

In this paper we try to obtain simplified explanations directly. The reason
is that the second stage in [4] requires to carry out several probabilistic prop-
agations and so its computational cost is high (and notice that this process is
carried out after -a complex- MAP computation). Another drawback of the pro-
cedure in [4] is that it is possible, that after simplification, the explanations are
not mutually exclusive, we can have even the case of two explanations such that
one is a subset of the other. Here, our basic idea is to start with a predefined
explanation set XE , and them we build a tree in which variables (from XE)
are added in function of their explanatory power with respect to the explanan-

dum but taken into account the current context, that is, the partial assignment
represented by the path obtained from the root to the node currently analysed.
Variables are selected based on the idea of stability, that is, we can suppose that
our system is (more or less) stable, and that it becomes unstable when some
(unexpected) observations are entered into the system. The instability of a vari-
able will be measured by its entropy or by means of its (im)purity (GINI index).
Therefore, we first select those variables that reduce most the uncertainty of the
non-observed variables of the explanation set, i.e., the variables better determin-
ing the value of the explanation variables. Of course, the tree does not have to be
symmetric and we can decide to stop the growing of a branch even if not all the
variables in XE have been included. In any case, our set of explanations will be
mutually exclusive, and will have the additional property of being exhaustive,
i.e., we will construct a true partition of the set of possible configurations or
scenarios of the values of the variables in the explanation set.
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The subsequent sections describe our method in detail and illustrate it by
using some (toy) study cases. Finally in Section 4 we present our conclusions
and outline future works.

2 How to Obtain an Explanation Tree

Our method aims to find the best explanation(s) for the observed variables that
do not necessarily have a fixed number of literals. The provided explanations
will adapt to the current circumstances. Sometimes that a variable X takes a
particular value it is an explanation by itself (Occam’s razor) and including other
variables to this explanation will not add any new information. We have then
decided to represent our solutions by a tree, the Explanation Tree (ET).

In the ET, every node will denote a variable of the explanation set and every
branch from this variable will indicate the instantiation of this variable to one
of its possible states. Each node of the tree will determine an assignment for the
variables in the path from the root to it: each variable equal to the value on
the edge followed by the path. This assignment will be called the configuration
of values associated to the node. In the explanation tree, we will store for each
leaf the probability of its associated configuration given the evidence. The set
of explanations will be the set of configurations associated to the leaves of the
explanation tree ordered by their posterior probability given the evidence. For
example, in Fig. 5.a we can see three variables A1, A2 and N2 that belong to the
explanation set, since they are nodes in the ET. In this particular example there
are four leaves nodes, i.e., four possible explanations. What this ET indicates
is that, given the observed evidence, A1 = f is a valid explanation for such
situation (with its probability). But if it is not the case then we should look into
other factors, in this case N2. For example, we can see that adding N2 = f to
the current path (A1 = ok) will be enough to provide an explanation. Otherwise,
when N2 = ok the node needs to be expanded and we will look for other involved
factors in order to find a valid explanation (in this example, by using A2).

Although the underlying idea is simple, how to obtain this tree is not so
evident. There are two major points that have to be answered:

– As the ET is created in a top-down way, given a branch of the tree, how to
select the next variable?

– Given our goals, i.e. allow asymmetry and get concise explanations, how to
decide when to stop branching?

To solve the two previous questions we have used information measures. For
the first one, we look for the variable that once instantiated the uncertainty of
the rest explanation variables is reduced at maximum. In other words, given the
context provided by the current branch, we identify the most explicative as the
one that helps to determine the values of the other variables as much as possible.

Algorithm 1 (Create-New-Node) recursively creates our ET. In this algo-
rithm we assume the existence of an inference engine that provides us with the
probabilities needed during tree growing. We comment on such engine in Section
2.1. The algorithm is called with the following parameters:
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1. The evidence/observations to be explained xO.
2. The path corresponding to the branch we are growing. In the first call to this

algorithm, i.e. when deciding the root node, this parameter will be null.
3. The current explanation set (XE). That is, the set of explanatory variables

already available given the context (path). In the first call XE is the original
explanation set. Notice also that if XE = XU in the first call, i.e., all non-
observed variables belong to the explanation set, then the method has to
select those variables relevant to the explanation without prior information.

4. Two real numbers α and β used as thresholds (on information and probability
respectively) to stop growing.

5. The final explanation tree that will be recursively and incrementally con-
structed as an accumulation of branches (paths). Empty in the initial call.

Algorithm 1. Creates a new node for the explanation tree

1: procedure Create new node(xO,path,XE ,α,β,ET )
2: for all Xj , Xk ∈ XE do

3: Info[Xj , Xk] = Inf (Xj , Xk|xO, path)
4: end for

5: X∗

j = arg maxXj∈XE

∑

Xk
Info[Xj , Xk]

6: if continue(Info[],X∗

j ,α) and P (path|xO) > β then

7: for all state xj of X∗

j do

8: new path ← path + X∗

j = xj

9: Create new node(xO,new path,XE \ X∗

j ,α,β,ET )
10: end for

11: else

12: ET ← ET ∪ <path,P (path|xO) > ⊲ update the ET adding path
13: end if

14: end procedure

In algorithm 1, for each variable in the explanation set, Xj , we compute
the sum of the amount of information that this variable provides about all
the current explanation variables conditioned to the current observations x∗

O.
We are interested in the variable that maximises this value. In our study we
have considered two classical measures: mutual information ( Inf (Xj , Xk|x

∗
O) =

∑

xj ,xk
P (xj , xk|x

∗
O) log

(

P (xj ,xk|x
∗

O)
P (xj |x∗

O
).P (xk|x∗

O
)

)

) and GINI index (Inf (Xj , Xk|x
∗
O) =

1 −
∑

xj ,xk
P (xj , xk|x

∗
O)2). Thus, there are different instances of the algorithm

depending on the criterion used as Inf.
Once we have selected the next variable to be placed in a branch, we have to

decide whether or not to expand this node. Again, we will use the measure Inf.
The procedure continue is the responsible to take this decision by considering
the vector Info[]. This procedure considers the list of values Info[X∗

j , Xk] for
Xk 6= X∗

j , then it computes the maximum, minimum, or average of them, de-
pending on the particular criterion we are using. If this value is greater than α it
decides to continue. Of course the three criteria give rise to different behaviour,
being minimum the most restrictive, maximum the most permissive and having
average and intermediate behaviour.
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Notice that when only two variables remain in the explanation set, the one
selected in line 5 is in fact that having greater entropy (I(X,X) = H(X)) if
mutual information is used. Also, when only one variable is left, it is of course the
selected one, but it is necessary to decide whether or not it should be expanded.
For that purpose, we use the same information measure, that is, I(X,X) or
GINI(X,X), and only expand this variable if it is at least as uncertain (unstable)
as the distribution [1/3, 2/3] (Normalising with more than two states). That is,
we only add a variable if it has got more uncertainty than a given threshold.

2.1 Computation

Our inference engine is (mainly) based on Shenoy Shafer running over a binary
join tree [20]. Furthermore, we have forced the existence of a single clique (being
a leaf) for each variable in XE , i.e. a clique which contains only a variable. We
use these cliques to enter as evidence the value to which an explanatory variable
is instantiated, as well as to compute its posterior probability.

Here we comment on the computation of the probabilities needed to carry out
the construction of the explanation tree. Let us assume that we are considering
to expand a new node in the tree which is identified by the configuration (path)
C = c. Let x∗

O be the configuration obtained by joining the observations XO =
xO and C = c. Then, we need to calculate the following probabilities:

– P (Xi, Xj |x
∗
O) for Xi, Xj ∈ XE \C. To do this we use a two stage procedure:

1. Run a full propagation over the join tree with x∗
O entered as evidence.

In fact, many times only the second stage (i.e., DistributeEvidence) of
Shenoy-Shafer propagation is needed. This is due to the single cliques
included in the join tree, because if only one evidence item (say X) has
changed1 from the last propagation, we locate the clique containing X,
modify the evidence entered over it and run DistributeEvidence by using
it as root.

2. For each pair (Xi, Xj) whose joint probability is required, locate the two
closest cliques (Ci and Cj) containing Xi and Xj . Pick all the poten-
tials in the path between Ci and Cj and obtain the joint probability
by using variable elimination [7]. In this process, we can take as basis
the deletion sequence implicit in the joint tree (but without deleting
the required variables) and then the complexity is not greater than the
complexity of sending a series of messages along the path connecting Ci

with Cj for each possible value of Xi. But, the implicit triangulation has
been optimized to compute marginal distributions for single variables,
and it is possible to improve it to compute the marginal of two variables
as in our case. The complexity of this phase is also decreased by us-
ing caching/hashing techniques, because some sub-paths can be shared
between different pairs, or even a required potential can be directly ob-
tained by marginalisation over one previously cached.

1 Which happens frequently because we build the tree in depth, and (obviously) the
create-node algorithm and the probabilistic inference engine are synchronised.
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– P (C = c|xO) = P (C=c,xO)
P (xO) . This probability can be easily obtained from

previously described computations. We just use P (xO) that is computed in
the first propagation (when selecting the variable to be placed in the root of
our explanation tree) and P (x∗

O) = P (C = c, xO) which is computed in the
current step (full propagation with x∗

O as evidence).

Though this method requires multiple propagations, all of them are carried
out over a join tree obtained without constraining the triangulation sequence,
and so it (generally) has a size considerably smaller than the join tree used for
partial abductive inference over the same explanation set [17, 5]. Besides, the
join tree can be pruned before starting the propagations [5].

3 Cases of Study: Explanation and Diagnosis

Because we are in an initial stage of research about the ET method, in order
to show how it works and the features of the provided explanations, we found
interesting to use some (toy) networks having a familiar meaning for us, to test
whether the outputs are reasonable. We used the following two cases:

1. academe network: it represents the evaluation for a subject in an academic
environment, let us say, university, for example. This simple network has
got seven variables, as Fig. 3 shows. Some of them are intermediate or aux-
iliary variables. What this network tries to model is the final mark for a
student, depending on her practical assignments, her mark in a theoretical
exam, on some possible extra tasks carried out by this student, and on other
factors such as behaviour, participation, attendance... We have chosen this
particular topic because the explanations are easily understandable from an
intuitive point of view.

In this network we consider as evidence that a student has failed the subject,
i.e., xO ≡{finalMark=failed}, and we look for the best explanations that
could lead to this fact. We use {Theory, Practice, Extra, OtherFactors} as
the explanation set. In this first approach we run our ET-based algorithm
with β = 0.0, α=0.05|0.07 and criterion = max|min|avg. Figure 3 summarises
the obtained results (variables are represented by using their initials).

2. gates network: this second net represents a logical circuit (Fig. 2.a). The
network (Fig. 2.b) is obtained from the circuit by applying the method de-
scribed in [8]. The network has a node for every input, output, gate and
intermediate output. Again, we use an example easy to follow, since the
original circuit only has got seven gates (two not-gates, two or-gates and
three and-gates) and the resulting network has 19 nodes.

In this case, we consider as evidence one possible input for the circuit
(ABCDE=01010) plus an erroneous output (given such input), KL=10. Notice
that the correct output for this case is KL=00, and also notice that from the
transformation carried out to build the network, even when some gates are
wrong the output could be correct (see [8]). So our evidence is ABCDEKL =
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Fig. 1. Case of study 1: academe network

Fig. 2. (a) Original logic circuit. (b) Network gates obtained from (a) by using the
transformation described in [8]

0101010 and we consider XE = {A1, A2, A3, O1, O2, N1, N2} as the expla-
nation set with the purpose of detecting which gate(s) is(are) faulty. Figures
4 and 5 show the trees obtained for MI and GINI respectively. The same
parameters as in the previous study case are used but β = 0.05.

3.1 Analysis of the Obtained Trees

The first thing we can appreciate from the obtained trees is that they are rea-

sonable, i.e., the produced explanations are those that could be expected.
Regarding the academe network, when a student is failed, it seems reasonable

that the most explicative variable is theory because of the probability tables
introduced in the network. Thus, in all the cases Theory is the root node, and
also in all the cases {theory=bad} constitutes an explanation by itself, being in
fact the most probable explanation (0.56).

The other common point for the obtained ETs is that the branch with theory

as good is always expanded. It is clear that being theory ok another reason must
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Fig. 3. Results for academe: (a) is the obtained tree for all MI cases except
(MI,α=0.05,min) which produces tree (b) together with all (gini,α=0.05) cases and
(gini,α=0.07,max). Finally it is necessary to remark that (gini,α=0.07,min|avg) leads
to an empty tree, ∅, that is no node is expanded. β is 0.0

Fig. 4. Results for gates and MI: (a) is the obtained ET for (MI,α=0.05,max|avg) and
also (MI,α=0.07,max); (b) is for (MI,α=0.07,avg). In both cases min prunes more the
tree than avg, so the dotted area would not be expanded. β is 0.05

explain the failure. On the other hand, the main difference between the two
ETs is that 3.(a) expands the branch {theory=average} and (b) does not. It is
obvious that a bigger α makes the tree more restrictive. If this tree is expanded,
as α=0.05 does, is because when theory is average it can be interesting to explore
what happens with the practical part of the subject.

It is possible that variables that are not part of an explanation and that
change their ’a priori’ usual value or that have an important change in its ’a
priori’ probability distribution could be added to the explanation as this could
be useful to the final user to fully understand some situations. An example can
be the case of academe network with {theory = good, practice = good}. This
branch is not expanded. The reason is that in this situation, the other variables
have small entropy: Extra should be ’no’ and OtherFactors ’-’, with high proba-
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Fig. 5. Results for gates and GINI: (a) represents the tree for all gini cases, except
(gini,α=0.05,max) which produces tree in part (b). β is 0.05

bility. This implies an important change with respect to ’a priori’ probabilities
for these values, and then these variables with their respective values could be
added to the explanation {theory = good, practice = good}, making its meaning
more evident.

We also used this case to show the influence of β. As β = 0.0 was used, we can
see that some branches represent explanations with a very low posterior proba-
bility (those in the dashed area in Fig. 3), and so they will not be useful. The
dashed areas in Fig. 3 represent the parts of the tree that are not constructed
if we use β ≃ 0.05, which apart of producing a simpler and more understand-
able tree is also of advantage to reduce the computational effort (probabilistic
propagations) required to construct the tree.

With respect to the resulting trees for the gates case, we can appreciate two
clear differences: (1) GINI produces simpler trees than MI, and (2) the most ex-
plicative variable is different depending on the used measure. Regarding this last
situation, we can observe in the circuit that there are many independent causes2

(faults) that can account for the erroneous output. Choosing the and gate A1
as GINI does is reasonable (as well as choosing A2) because and gates have (in
our network) greater a priori fault probability. On the other hand, choosing N2
as MI does is also reasonable (and perhaps closer to human behaviour) because
its physical proximity to the wrong output. If we were a technician this would
probably be the first gate to test. In this way, it seems that MI manages in some
way the fact that the impact a node has in the value of the remaining nodes is
attenuated with the distance in the graph.

Once the first variable has been decided, the algorithm tries to grow the
branches until they constitute a good explanation. In some cases, it seems that
some branches could be stopped early (i.e. once we know that N2=fault), but
these situations depend on the thresholds used and it is clear that studying how
to fix them is one of the major research lines for this work.

2 However, it is interesting to observe that applying probability propagation, the pos-
terior probability of each gate given the evidence, e.g. P(A1|xO), indicates that that
for all the gates it is more probable to be ok.
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Perhaps an interesting point is to think about why O1 is not selected by MI
when N2=ok as could be expected given the distance-based preference previously
noticed. But, if we look carefully the circuit, we can see that output L (which is
correct) also receives as input the output of gate O1, so it is quite probable that
O1 is working properly.

Of course, we get different explanations depending on the used measure, the
value of α or the criterion, but in general we can say that all the generated
explanations are quite reasonable. Finally, in all the trees there is a branch,
and so an explanation which indicates that a set of gates are ok. Perhaps this
cannot be understood as an explanation to a fault, but we leave it in the tree in
order to provide a full partitioning. Some advice about these explanations can
be given to the user by indicating for example if such explanations raise or not
the probability of the fault with respect to its prior probability.

4 Conclusions and Further Work

This paper has proposed a procedure providing explanations at different level of
complexity for the same evidence. The method gives a partition of the different
possible scenarios for the explanation variables. The partition can have different
levels of granularity depending on the values of the some variables.

We have shown that the results are reasonable in some simple examples
and that computations are feasible: though they involve several probabilistic
propagations, they are carried out in any junction tree associated to the original
Bayesian network, without any restriction. The complexity can be controlled
with two parameters (α and β) which at the same time will determine the level of
detail of the provided explanations. In fact, the number of explanations (number
of leaves in the explanation tree) is bounded by O(1/β). Also the expansion of
each node of the explanation tree can involve a quadratic number (with respect to
the size of the explanation set) of probabilistic propagations, but these are partial
propagations and usually we need far less computations than in a complete
propagation.

We are conscious that this is an initial step and that additional work is nec-
essary. In the future, we plan to test different criteria to select the variable to
branch and to stop branching, specially in the last point where we aim to inte-
grate the two parameters into a single one. Also, we want to make experiments
with large Bayesian networks and refine the algorithms to improve its perfor-
mance. We are studying different ways in which the results can be presented to
the user: for example it is possible that variables that are not part of an explana-
tion and that change their usual value (without evidence) could be added to the
explanation, as this can be useful to the final user. Finally, for the evaluation of
the different procedures it would be necessary a set of experiments in which final
users rank the solutions according to their degree of satisfaction with them.
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5. L.M. de Campos, J.A. Gámez, and S. Moral. On the problem of performing exact

partial abductive inference in Bayesian belief networks using junction trees. In
B. Bouchon, J. Gutierrez, L. Magdalena, and R.R. Yager, editors, Technologies for

Constructing Intelligent Systems 2: Tools, pages 289–302. Springer Verlag, 2002.
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