
Approximate Factorisation of Probability Trees�

Irene Mart́ınez1, Seraf́ın Moral2, Carmelo Rodŕıguez3, and Antonio Salmerón3

1 Dept. Languages and Computation, University of Almeŕıa, Spain
irene@ual.es

2 Dept. Computer Science and Artificial Intelligence, University of Granada, Spain
smc@decsai.ugr.es

3 Dept. Statistics and Applied Mathematics, University of Almeŕıa, Spain
{crt, Antonio.Salmeron}@ual.es

Abstract. Bayesian networks are efficient tools for probabilistic rea-
soning over large sets of variables, due to the fact that the joint distri-
bution factorises according to the structure of the network, which cap-
tures conditional independence relations among the variables. Beyond
conditional independence, the concept of asymmetric (or context spe-
cific) independence makes possible the definition of even more efficient
reasoning schemes, based on the representation of probability functions
through probability trees. In this paper we investigate how it is possible
to achieve a finer factorisation by decomposing the original factors for
which some conditions hold. We also introduce the concept of approx-
imate factorisation and apply this methodology to the Lazy-Penniless
propagation algorithm.

1 Introduction

Bayesian networks have been successfully used as efficient tools for knowledge
representation and reasoning under uncertainty. The uncertainty is quantified in
terms of a probability distribution over the domain variables, and the reasoning
process conveys the computation of the posterior distribution for some variables
given that the value of other variables is known. This task is called probability
propagation.

There are several exact and approximate algorithms for probability propaga-
tion [2, 3, 6, 8, 10, 11], but the fact that it is an NP-hard problem [4, 5], justifies
investing effort in the study of new algorithms with the aim of enlarging the
class of affordable problems. The most recent advances in propagation have
come along with methods that incorporate the ability of dealing with factorised
representations of the potentials that represent the probabilistic information.
These algorithms are Lazy propagation [8] and Lazy-penniless propagation [3].

A particular feature of the Lazy-penniless algorithm is that it uses probability
trees [1] to represent probabilistic potentials. Probability trees are usually more

� This work has been supported by the Spanish Ministry of Science and Technology,
projects TIC2001-2973-C05-01,02, TIN2004-06204-C03-01 and by FEDER funds.

L. Godo (Ed.): ECSQARU 2005, LNAI 3571, pp. 51–62, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

52 I. Mart́ınez et al.

compact than probability tables and, what is more important, they provide a
flexible way to reduce the space required to store a probabilistic potential, by
pruning some of the branches of the trees. Of course, it can happen that the
resulting tree be just an approximation of the original potential.

2 Bayesian Networks and Probability Trees

We will use the concept of potential to represent any probabilistic information
in a Bayesian network (including ‘a priori’, conditional and ‘a posteriori’ distri-
butions and intermediate results of operations between them). A potential φ for
a set of variables X is a mapping φ : ΩX → R

+
0 , where R

+
0 is the set of non-

negative real numbers and ΩX is the set of possible cases of the set of variables
X. We will consider only discrete variables with a finite number of cases.

Probability propagation is usually carried out over an auxiliary structure
called join tree. A join tree is a tree where each node is a subset of the variables in
the network, and such that if a variable is in two distinct nodes, then it is also in
every node in the path connecting them. Every potential in the original Bayesian
network (i.e. every conditional distribution) is assigned to a node containing the
variables involved in the conditional distribution. A potential constantly equal
to 1 (unity potential) is assigned to nodes which did not receive any conditional
distribution. In this way, attached to every node V there will be a potential φV

defined over the set of variables V and which is equal to the product of all the
potentials assigned to it.

There are different ways to represent the potentials in the join tree (for in-
stance, probability tables and probability trees) and it is possible to keep the
potentials assigned to a node as a list instead of multiplying them initially [8, 3].
Probability propagation is carried out by a flow of messages through the edges
of the join tree. A message from one node Vi to one of its neighbours, Vj , is
a potential defined for the variables contained in Vi ∩ Vj , and is obtained as
the result of removing from the potentials attached to Vi all the variables not
in Vj . A variable is removed multiplying the potentials containing it and then
summing the variable out. This is precisely the step in which the complexity of
probability propagation arises: The domain of the potential resulting from the
product above mentioned may become so large that a huge amount of memory
would be necessary to store it. In this paper we are concerned with the represen-
tation of probabilistic potentials by means of probability trees. We will introduce
some factorisation techniques, either exact and approximate, that can help to
overcome this problem.

A probability tree [1, 10] is a directed labeled tree, where each internal node
represents a variable and each leaf node represents a probability value. Each
internal node has one outgoing arc for each state of the variable associated with
that node. Each leaf contains a non-negative real number. The size of a tree
T , denoted as size(T), is defined as its number of leaves. A probability tree T
on variables XI = {Xi|i ∈ I} represents a potential φ : ΩXI

→ R
+
0 if for each

xI ∈ ΩXI
the value φ(xI) is the number stored in the leaf node that is reached by

Approximate Factorisation of Probability Trees 53

starting from the root node and selecting the child corresponding to coordinate
xi for each internal node labeled with Xi.

A probability tree is usually a more compact representation of a potential
than a table. Furthermore, trees allow to obtain even more compact representa-
tions in exchange of loosing accuracy. This is achieved by pruning some leaves
and replacing them by the average value.

The basic operations (combination and marginalisation) over potentials re-
quired for probability propagation can be carried out directly over probability
trees. The combination is done recursively and basically consists of selecting an
initial node and multiplying each of its children by the other tree. A variable
is marginalised out from a probability tree by replacing it by the sum of its
children. We refer to [2] for the details.

3 Exact Factorisation of Probability Trees

Probability propagation basically relies on the combination and marginalisation
operations, but the complexity is mainly determined by the combination. For
instance, consider the situation in which we are going to delete a variable Xi in
order to send a message between two nodes of the join tree. The first step is to
combine the potentials (probability trees in this case) containing Xi. The result
will be, in the worst case, a potential of size equal to the product of the sizes of
the trees that took part in the combination. A gain in efficiency could be achieved
if we managed to decompose each tree containing Xi as a product of two trees
(factors) of lower size, one of them containing Xi and the other not containing
it [9]. Then, the product would be actually carried out over potentials (trees)
with reduced domains and therefore, the complexity of probability propagation
would decrease. Clearly, it would only be true if the next two conditions hold:

1. The product of the factors into which a tree is decomposed is equal to the
original tree, in order to keep the correctness of the results.

2. The propagation algorithm is able to deal with lists of potentials, instead of
single potentials in each node and separator of the join tree.

We will devote the rest of the paper to investigate situations in which the
probability trees can be decomposed preserving the first condition above, and
also situations in which that condition holds only approximately. In this case,
the results of the propagation will not be exact, but it is compensated for by
the fact that the reasoning can be carried out over very large networks. With
respect to the second condition, it is fulfilled by the Lazy [8] and Lazy-penniless
[3] algorithms.

We have found two main situations in which probability trees can be decom-
posed. One is achieved when the variable to marginalise out is only in a part of
the tree and the other one is met when some sub-trees of the original one are
proportional.

54 I. Mart́ınez et al.

X

Y W

W W

Z Z Z Z

Z Z

0.1 0.7 0.3 0.1 0.2 0.9 0.9 0.5

0.3 1 0.7 0.6

X

Y

W W

Z Z Z Z

X

W

Z Z

1 1

0.1 0.7 0.3 0.1 0.2 0.9 0.9 0.5

0.3 0.1 0.7 0.6

Fig. 1. A decomposition of a probability tree by splitting it with respect to Y

3.1 Tree Splitting

Assume that probability propagation is being carried out and that Y is the next
variable to marginalise out, and that it is contained in a potential represented
by the tree in the left side of Figure 1. Observe that Y is in the sub-tree corre-
sponding to the first case of variable X, but not in the sub-tree corresponding
to the second case. This is a very common situation in Lazy-penniless propaga-
tion, where it is possible that a variable disappears from a part of a tree after a
pruning operation carried out to reduce the size of a tree.

This fact allows to decompose the original tree as the product of two factors
of lower size, as displayed in Figure 1. The advantage of this decomposition is
that the second factor does not take part in the product previous to the deletion
of Y , because it does not contain Y , and the first factor is simpler than the
original tree; Therefore, the complexity of the deletion of variable Y is reduced
and thus the efficiency of Lazy propagation increased.

3.2 Proportional Sub-trees

Now assume that the next variable to marginalise out is X, and we find it in the
tree shown in the upper part of Figure 2. We can see that, within context W = 0,
all the children of X are proportional. In this case, it is possible to factorise the
tree as a product of two trees, where the size of each of the factors is lower than
the size of the original tree (see the lower part of Figure 2), in such a way that
one of the factor keeps the information regarding X and the other contains the
information irrelevant to X. More formally, trees able to be factorised in this
way can be characterised by the next definition.

Definition 1. Let T be a probability tree. Let (XC = xC) be a configuration
of variables leading from the root node in T to a variable X. We say that T is
proportional below X within context (XC = xC) if there is a xi ∈ ΩX such that
for every xj , xi �= xj ∈ ΩX , ∃αj > 0 such that

T R(XC=xC ,X=xi) = αj · T R(XC=xC ,X=xj) , (1)

where T R(XC=xC ,X=x) denotes the sub-tree of T reached following the path de-
termined by configuration (XC = xC ,X = x). The values α = {αj |j �= i} are
called proportionality factors.

Approximate Factorisation of Probability Trees 55

W

X

0

Y

0

0.1

0

0.2

1

0.2

2

0.5

3

Y

1

0.2

0

0.4

1

0.4

2

1.0

3

Y

2

0.4

0

0.8

1

0.8

2

2.0

3

X

1

0.4

0

0.1

1

0.5

2

W

X

0

1

0

2

1

4

2

X

1

0.4

0

0.1

1

0.5

2

⊗ W

Y

0

0.1

0

0.2

1

0.2

2

0.5

3

1

1

Fig. 2. A probability tree proportional below X for context (W = 0) and its decom-
position with respect to variable X

The following definition identify each one of the factors into which a tree
verifying definition 1 can be decomposed.

Definition 2. Let T be a probability tree which is proportional below X within
context (XC = xC), with proportionality factors α. We define the core term of
T , denoted by T (XC = xC ,X = xi,α) as the tree obtained from T by replacing
sub-tree T R(XC=xC ,X=xi) by constant 1 and any other sub-tree T R(XC=xC ,X=xj)

by constant αj. We define the free term of T , denoted by T (XC = xC ,X = xi)
as the tree obtained from T by replacing sub-tree T R(XC=xC) by T R(XC=xC ,X=xi)

and any other sub-tree T R(XD=xD) by a constant 1 for any context (XD = xD)
inconsistent with (XC = xC).

Observe that the core and free terms have size smaller than T . Furthermore,
the free term does not contain variable X. This, together with the result in the
next proposition, show that factorisation increases the efficiency of probability
propagation, in the sense that the amount of memory required is reduced.

Proposition 1. Let T be a probability tree proportional below X within context
(XC = xC), with proportionality factors α. It holds that

T = T (XC = xC ,X = x,α) × T (XC = xC ,X = x) . (2)

3.3 Partially Proportional Sub-trees

Still there is another situation in which some regularities can be found in a
probability tree that can be used to reduce the complexity of the operations
involved in the process of marginalising out a variable. The scenario is very
similar to the case of proportional sub-trees described above, but instead of all

56 I. Mart́ınez et al.

0.1 0.2 0.01 0.05 0.3 0.25 0.15 0.1 0.02 0.2 0.4 0.02 0.1 0.6 0.5 0.3 0.2 0.04 0.7 0.4 0.97 0.85 0.1 0.25 0.55 0.7 0.94

0
1

2

0
1

0
1

0
1

22 2

0 1 2 0 1 2 0
1

2 0
1

2 0
1

2 0
1

2 0
1

2 0

1
2 0

1

2

X

YYY

ZZZZZZZZZ

Fig. 3. A probability tree partially proportional below variable X

21

7 2 97 17 0.33 1 3.66 7 47

0.1 0.2 0.01 0.05 0.3 0.25 0.15 0.1 0.02

0

1

2

0

1

2

0
1 2 0

1
2 0

1

2

0
1

2 0
1

2 0
1

2

0

1

2
X Y

Y ZZZ

ZZZ

⊗

Fig. 4. Factorisation of the tree in figure 3

the children of the variable to delete, only some of them are proportional. This
situation is illustrated in the next example.

Example 1. Assume we have three variables X, Y and Z, each one of them taking
values on the set {0, 1, 2}. Consider the conditional distribution for X given Y
and Z represented by the probability tree in figure 3. Observe that the tree is not
proportional below X, because the sub-trees corresponding to X = 0 and X = 1
are proportional, but the sub-tree for X = 2 is not. However, even though the
conditions in definition 1 are not met in this case, the tree can be decomposed
in the way described in figure 4. Notice that the resulting factorisation is able
to represent the conditional distribution for X using just 20 numbers instead
of 27. �

Formally, a probability where this kind of proportionality occurs can be de-
fined as follows.

Definition 3. Let T be a probability tree. Let (XC = xC) be a configuration
of variables leading from the root node in T to a variable X. We say that T is
partially proportional below X within context (XC = xC) if there is a xi ∈ ΩX

and a set L ⊂ ΩX \ {xi} such that for every xj ∈ L, ∃αj > 0 such that

T R(XC=xC ,X=xi) = αj · T R(XC=xC ,X=xj) . (3)

In this setting, the concept of core term given in definition 2 must be modified
in order to guarantee that the product of the core and free terms is equal to the
original tree. However, the free term needs not be re-defined.

Approximate Factorisation of Probability Trees 57

Definition 4. Let T be a probability tree which is partially proportional below
X within context (XC = xC), with proportionality factors α and let xi and L
be as in definition 3. We define the partial core term of T , denoted by T (XC =
xC ,X = xi,α, L) as the tree obtained from T by replacing:

1. Sub-tree T R(XC=xC ,X=xi) by constant 1.
2. Any sub-tree T R(XC=xC ,X=xj), xj ∈ L, by constant αj.
3. Any sub-tree T R(XC=xC ,X=xk), xi �= xk /∈ L, by T R(XC=xC ,X=xk)/T (XC =

xC ,X = xi).

It can be shown that a partially proportional tree can be decomposed as the
product of its core and free terms.

4 Approximate Factorisation of Probability Trees

There are situations in which the ways of decomposing trees described in the
former section may be of interest, even if the conditions of proportionality or
partial proportionality are not met. For instance, assume that we have three
variables X,Y and Z, and that the actual distribution of X given Y and Z is
the one given in figure 3, but that, due to sampling error, the learnt distribution
is not exactly the same, but very close to it. Another scenario in which one could
be interested in decomposing a tree even if the exact factorisation is not possible
is when space limitations do not allow for exact probability propagation, and
then it is necessary to tradeoff accuracy for space requirements.

The problem of approximate factorisation can be stated as follows. Let T1 and
T2 be two sub-trees which are siblings for a given context (i.e. both sub-trees are
children of the same node), such that both have the same size and their leaves
contain only positive numbers. The goal of the approximate factorisation is to
find a tree T ∗

2 with the same structure than T2, such that T ∗
2 and T1 become

proportional, under the restriction that the potential represented by T ∗
2 must

be as close as possible to the one represented by T2. Then, T2 can be replaced
by T ∗

2 and the resulting tree that contains T1 and T ∗
2 can be decomposed, as it

would become proportional or partially proportional for the given context.
Approximate factorisation involves: (1) The determination of the propor-

tionality factor, α, and (2) Measuring the accuracy of the approximation. Both
issues are connected, since it seems sensible to select the proportionality factor
in such a way that the chosen divergence measure is minimised. In general, dif-
ferent divergence measures would result in different values for α. The problem
of approximate factorisation is formalised in the next definition.

Definition 5. We say that a probability tree T is δ-factorisable within context
(XC = xC), with proportionality factors α with respect to a divergence measure
D if there is an xi ∈ ΩX and a set L ⊂ ΩX \ {xi} such that for every xj ∈ L,
∃αj > 0 such that

D(T R(XC=xC ,X=xi), αj · T R(XC=xC ,X=xj)) ≤ δ .

Parameter δ > 0 is called the tolerance of the approximation.

58 I. Mart́ınez et al.

Observe that proportional and partially proportional trees for context (XC =
xC) are δ-factorisable, with δ = 0.

Now we will consider how to factorise δ-decomposable trees, analysing dif-
ferent divergence measures and computing the optimum α. We will impose the
next consistency restriction to all the approximate factorisation methods that
we will propose: A method is said to be consistent if it introduces no error when
the tree is proportional or partially proportional below the considered context
(see definitions 1 and 3).

4.1 Computing the Proportionality Factor

Consider a probability tree T . Let T1 and T2 be sub-trees of T below a variable
X, for a given context (XC = xc) with leaves P = {pi : i = 1, . . . , n; pi �= 0}
and Q = {qi : i = 1, . . . , n; } respectively. As we described before, approximate
factorisation is achieved by replacing T2 by another tree T ∗

2 such that T ∗
2 is

proportional to T1. It means that the leaves of T ∗
2 will be Q∗ = {αpi : i =

1, . . . , n; }, where α is the proportionality factor between T1 and T2. Let us
denote by {πi = qi/pi, i = 1, . . . , n; } the ratios between the leaves of T2 and T1.

We have considered several possibilities for computing the proportionality
factor, α. First we will derive the value of the proportionality factor under the
restriction of minimising different measures of divergence:

1. The χ2 divergence, defined as

Dχ(T2, T ∗
2) =

n∑
i=1

(qi − αpi)2

qi
,

is minimised for α equal to αχ =
∑ n

i=1 pi∑ n
i=1 pi/πi

. Instead of using Dχ, we can
consider its normalised version

Dχ∗(T2, T ∗
2) =

√
Dχ

Dχ + n
,

which takes values between 0 and 1 and is minimised for the same α.
2. The mean squared error

Dmse(T2, T ∗
2) =

1
n

n∑
i=1

(qi − αpi)2

is minimised for αmse =
∑ n

i=1 πip
2
i∑ n

i=1 p2
i

.

In case of using a weighted MSE as divergence measure, i.e.

Dwmse(T2, T ∗
2) =

n∑
i=1

hi(qi − αpi)2

Approximate Factorisation of Probability Trees 59

with {hi ≥ 0, i = 1, . . . , n;
∑

hi = 1}, the optimum proportionality factor is

αwmse =
∑n

i=1 hiπip
2
i∑n

i=1 hip2
i

.

A possible selection of the weights hi is hi = qi∑ n
i=1 qi

, in which case Dmse

would be the expected MSE with respect to T2 (actually, with respect to a
probability distribution proportional to the potential represented by T2).

3. The Kullback-Leibler divergence, defined as

Dkl(T2, T ∗
2) =

n∑
i=1

qi log
(

qi

αpi

)
,

reaches its minimum at αkl = 2
∑n

i=1 qi log(πi)∑n
i=1 qi . The problem of using Dkl is

that it requires that the sum of the values of its arguments coincide [7].
Otherwise, Dkl can take negative values. This renders this criterion useless
for our purposes.

But it is also possible to obtain the proportionality factor independently of
any divergence measure. For instance, one restriction could be to ensure that
the weight of the original and the approximate tree coincide, that is:

sum(T ∗
2) =

n∑
i=1

αpi =
n∑

i=1

qi = sum(T2) .

We will refer to this as the weight preserving method, and the proportionality
factor that corresponds to this restriction is

αwp =
∑n

i=1 qi∑n
i=1 pi

=
∑n

i=1 πipi∑n
i=1 pi

.

Perhaps the more straightforward way to obtain a value for α is the so-called
weighted average method, which computes it as a weighted average of the ratios
between the leaves of T1 and T2. The resulting proportionality factor is

αwa =
n∑

i=1

hiπi ,

with {hi ≥ 0, i = 1, . . . , n;
∑

hi = 1}. Observe that αwp and αmse are particular
cases of αwa with hi = pi∑ n

i=1 pi
and hi = p2

i∑ n
i=1 p2

i
respectively.

Besides, there may be other divergence measures that could be applied to our
problem but that cannot be minimised with respect to α. Of special interest is
the divergence measure computed as the maximum absolute difference between
the leaves of T2 and T ∗

2 , that we will use in the experiments:

Dmad(T2, T ∗
2) = max

1≤i≤n
|qi − αpi| .

60 I. Mart́ınez et al.

T1 :
X

0.1

0

0.2

1

0.2

2

0.5

3

T2 :
X

0.1999

0

0.4

1

0.4002

2

0.9999

3

Fig. 5. Almost proportional trees

Table 1. Divergences between the tree T2 in Fig. 5 and the different approximations
of it which are proportional to T1

αwp = αχ = αmse = αwmse = αkl = αwa =
2.0 1.9999998 1.9999412 1.9998733 2.0000001 2.0000002

Dmad 2E-4 2.00032E-4 2.11764E-4 2.25343E-4 1.99984E-4 1.99968E-4
Dχ 0.00039997005 0.00039997003 0.000402115 0.000409859 0.00039997005 0.00039997009
Dχ∗ 0.00019998502 0.00019998501 0.000201057 0.000204929 0.00019998503 0.00019998504
Dmse 0.000122474 0.000122467 0.000121267 0.000122872 0.000122477 0.000122481
Dwmse 5.91671E-5 5.91549E-5 5.56270E-5 5.41362E-5 5.91732E-9 5.91793E-5

Example 2. The trees in figure 5 are ”almost” proportional. It seems that they
could be considered as proportional and the corresponding factorisation would
not affect very much the results of the probability propagation algorithm. Table 1
shows the divergence between T2 and T ∗

2 using the different criteria for approx-
imate factorisation described in this section. It can be seen from the results in
that table how choosing αχ, αmse and αwmse minimises the corresponding di-
vergence measures with respect to which they were obtained. The maximum
absolute divergence (Dmad) is minimised, in this example, by choosing αwa as
proportionality factor.

If the trees in figure 5 are siblings below a given variable Y for a context
(XC = xC) of some tree T , it can be said that, according to definition 5 that
T is δ-factorisable within context (XC = xC) for any δ > 0.001, regardless the
selected α and the divergence measure used.

For δ ≤ 0.001, T would not always be considered δ-factorisable. For example,
if we selected a tolerance δ = 0.0002 and the divergence measure Dmad, T is δ-
factorisable within context (XC = xC) only for proportionality factors αwp, αwa

and αkl.

5 Experiments

In order to illustrate how the techniques above described can be used to tradeoff
accuracy for space requirements, we have tested the Lazy-penniless algorithm
[3] with the added feature of factorising the potentials before deleting a variable,
using different real networks. In order to analyse the impact of the factorisation,
we have used the simplest version of Lazy-penniless (no heuristic is used to select
the order of combination of the potentials), and the trees are not pruned. Due
to space limitations, we only report the results for two well known networks

Approximate Factorisation of Probability Trees 61

Table 2. Experimental results for network Munin1

Dχ divergence Weight Preserving
δ Mean MSE nAp Mean MSE nAp

0.025 27556.85 3.06E-6 3070 23704.26 1.49E-6 2788
0.050 27286.13 1.52E-4 3387 23609.30 2.68E-6 2982
0.075 26885.23 2.40E-4 3699 23300.01 1.33E-5 3443
0.1 26238.68 7.04E-4 4645 23499.51 1.42E-5 3655
0 31947.58 0 132 31947.58 0 132

Table 3. Experimental results for network Water

Dχ divergence Weight Preserving
δ Mean MSE nAp Mean MSE nAp

0.025 1884.80 1.93E-5 368 1884.54 1.93E-5 367
0.050 1735.47 2.23E-5 435 1737.91 2.22E-5 419
0.075 1692.30 9.88E-6 530 1693.14 1.02E-5 512
0.1 1581.15 3.28E-5 570 1581.74 3.35E-5 558
0 1733.23 0 2 1733.23 0 2

(Munin1 and Water) borrowed from the Decision Support Systems Group at
Aalborg University. The results are displayed in table 2 and table 3 respectively,
where the first column δ indicates the error allowed when factorising (tolerance in
terms of distance Dχ∗). The reason to use Dχ∗ is that it is easier to control, since
it is between 0 and 1. We have computed the mean of the sizes of the potentials
used during the propagation, the average mean squared error (MSE) for all
the unobserved variables after the propagation and the number of factorisations
actually carried out. In the experiments, we have only searched for proportional
subtrees which root is not located beyond half of the depth of the tree, in order
to avoid useless factorisations (for instance, factorising only the leaves). With
respect to the computing times, they are about a 20% higher compared with
the Lazy propagation (or exact Lazy-penniless), but the space requirements are
lower. The mean clique sizes for Lazy propagation are 31905.37 for Munin1 and
1733.2 for Water.

Even though the analysis is still rather preliminary, the results seem to indi-
cate that approximate factorisation is a valid method for controlling the space
requirements during propagation.

6 Conclusions

In this paper we have extended the factorisation technique presented in [9] by
introducing the possibility of decomposing the trees that are approximately pro-
portional. The results suggest that this method provides a valid tradeoff between
space requirements and approximation error, and that it can be controlled by
means of the δ parameter. A deeper experimental analysis is necessary to know
how far this technique can go, and which of the proposed distance measure
achieves the best results. Besides, we have not yet checked the joint behaviour
of factorising and splitting, but we believe that the results must significantly
improve. We are also implementing the use of factorisation in compilation time,

62 I. Mart́ınez et al.

in order to obtain smaller initial probability distributions for the propagation
phase.

References

1. C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller. Context-specific indepen-
dence in Bayesian networks. In E. Horvitz and F.V. Jensen, editors, Proceedings
of the 12th Conference on Uncertainty in Artificial Intelligence, pages 115–123.
Morgan & Kaufmann, 1996.

2. A. Cano, S. Moral, and A. Salmerón. Penniless propagation in join trees. Interna-
tional Journal of Intelligent Systems, 15:1027–1059, 2000.

3. A. Cano, S. Moral, and A. Salmerón. Lazy evaluation in Penniless propagation
over join trees. Networks, 39:175–185, 2002.

4. G.F. Cooper. The computational complexity of probabilistic inference using
Bayesian belief networks. Artificial Intelligence, 42:393–405, 1990.

5. P. Dagum and M. Luby. Approximating probabilistic inference in Bayesian belief
networks is NP-hard. Artificial Intelligence, 60:141–153, 1993.

6. F.V. Jensen, S.L. Lauritzen, and K.G. Olesen. Bayesian updating in causal proba-
bilistic networks by local computation. Computational Statistics Quarterly, 4:269–
282, 1990.

7. S. Kullback and R. Leibler. On information and sufficiency. Annals of Mathematical
Statistics, 22:76–86, 1951.

8. A.L. Madsen and F.V. Jensen. Lazy propagation: a junction tree inference algo-
rithm based on lazy evaluation. Artificial Intelligence, 113:203–245, 1999.

9. I. Mart́ınez, S. Moral, C. Rodŕıguez, and A. Salmerón. Factorisation of probability
trees and its application to inference in Bayesian networks. In J.A. Gámez and
A. Salmerón, editors, Proceedings of the First European Workshop on Probabilistic
Graphical Models, pages 127–134, 2002.

10. A. Salmerón, A. Cano, and S. Moral. Importance sampling in Bayesian networks
using probability trees. Computational Statistics and Data Analysis, 34:387–413,
2000.

11. P.P. Shenoy. Binary join trees for computing marginals in the Shenoy-Shafer ar-
chitecture. International Journal of Approximate Reasoning, 17:239–263, 1997.

	Introduction
	Bayesian Networks and Probability Trees
	Exact Factorisation of Probability Trees
	Tree Splitting
	Proportional Sub-trees
	Partially Proportional Sub-trees

	Approximate Factorisation of Probability Trees
	Computing the Proportionality Factor

	Experiments
	Conclusions

