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Abstract. Mixtures of truncated exponential (MTE) networks are a
powerful alternative to discretisation when working with hybrid Bayesian
networks. One of the features of the MTE model is that standard propa-
gation algorithm can be used. In this paper we propose an approximate
propagation algorithm for MTE networks which is based on the Penni-
less propagation method already known for discrete variables. The per-
formance of the proposed method is analysed in a series of experiments
with random networks.

1 Introduction

A Bayesian network is an efficient representation of a joint probability distribu-
tion over a set of variables, where the network structure encodes the indepen-
dence relations among the variables. Bayesian networks are commonly used to
make inferences about the probability distribution on some variables of interest,
given that the values of some other variables are known. This task is usually
called probabilistic inference or probability propagation.

Much attention has been paid to probability propagation in networks where
the variables are discrete with a finite number of possible values. Several exact
methods have been proposed in the literature for this task [8, 13, 14, 20], all of
them based on local computation. Local computation means to calculate the
marginals without actually computing the joint distribution, and is described
in terms of a message passing scheme over a structure called join tree. Also,
approximate methods have been developed with the aim of dealing with complex
networks [2, 3, 4, 7, 18, 19].

In mixed Bayesian networks, where both discrete and continuous variables
appear simultaneously, it is possible to apply local computation schemes sim-
ilar to those for discrete variables. However, the correctness of exact inference
depends on the model.

This problem was deeply studied before, but the only general solution is the
discretisation of the continuous variables [5, 11] which are then treated as if they
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were discrete, and therefore the results obtained are approximate. Exact propa-
gation can be carried out over mixed networks when the model is a conditional
Gaussian distribution [12, 17], but in this case, discrete variables are not allowed
to have continuous parents. This restriction was overcome in [10] using a mixture
of exponentials to represent the distribution of discrete nodes with continuous
parents, but the price to pay is that propagation cannot be carried out using
exact algorithms: Monte Carlo methods are used instead.

The Mixture of Truncated Exponentials (MTE) model [15] provide the advan-
tages of the traditional methods and the added feature that discrete variables with
continuousparents are allowed.Exact standardpropagationalgorithms canbeper-
formed over them [6], as well as approximate methods. In this work, we introduce
an approximate propagation algorithm for MTEs based on the idea of Penniless
propagation [2], which is actually derived from the Shenoy-Shafer [20] method.

This paper continues with a description of the MTE model in section 2. The
representation based on mixed tress can be found in section 3. Section 4 contains
the application of Shenoy-Shafer algorithm to MTE networks, while in section
5 the Penniless algorithm is presented, and is illustrated with some experiments
reported in section 6. The paper ends with conclusions in section 7.

2 The MTE Model

Throughout this paper, random variables will be denoted by capital letters,
and their values by lowercase letters. In the multi-dimensional case, boldfaced
characters will be used. The domain of the variable X is denoted by ΩX. The
MTE model is defined by its corresponding potential and density as follows [15]:

Definition 1. (MTE potential) Let X be a mixed n-dimensional random vector.
Let Y = (Y1, . . . , Yd) and Z = (Z1, . . . , Zc) be the discrete and continuous parts
of X, respectively, with c + d = n. We say that a function f : ΩX 7→ R

+
0 is a

Mixture of Truncated Exponentials potential (MTE potential) if one of the next
conditions holds:

i. Y = ∅ and f can be written as

f(x) = f(z) = a0 +

m
∑

i=1

ai exp







c
∑

j=1

b
(j)
i zj







(1)

for all z ∈ ΩZ, where ai, i = 0, . . . ,m and b
(j)
i , i = 1, . . . ,m, j = 1, . . . , c

are real numbers.
ii. Y = ∅ and there is a partition D1, . . . , Dk of ΩZ into hypercubes such that

f is defined as
f(x) = f(z) = fi(z) if z ∈ Di ,

where each fi, i = 1, . . . , k can be written in the form of (1).
iii. Y 6= ∅ and for each fixed value y ∈ ΩY, fy(z) = f(y, z) can be defined as in ii.
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Definition 2. (MTE density) An MTE potential f is an MTE density if

∑

y∈ΩY

∫

ΩZ

f(y, z)dz = 1 .

In a Bayesian network, we find two types of densities:

1. For each variable X which is a root of the network, a density f(x) is given.

2. For each variable X with parents Y, a conditional density f(x|y) is given.

A conditional MTE density f(x|y) is an MTE potential f(x,y) such that
fixing y to each of its possible values, the resulting function is a density for X.

3 Mixed Trees

In [15] a data structure was proposed to represent MTE potentials: The so-
called mixed probability trees or mixed trees for short. The formal definition is
as follows:

Definition 3. (Mixed tree) We say that a tree T is a mixed tree if it meets the
following conditions:

i. Every internal node represents a random variable (either discrete or contin-
uous).

ii. Every arc outgoing from a continuous variable Z is labeled with an inter-
val of values of Z, so that the domain of Z is the union of the intervals
corresponding to the arcs Z-outgoing.

iii. Every discrete variable has a number of outgoing arcs equal to its number of
states.

iv. Each leaf node contains an MTE potential defined on variables in the path
from the root to that leaf.
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Fig. 1. A mixed probability tree representing an MTE potential
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Mixed trees can represent MTE potentials defined by parts. Each entire
branch in the tree determines one sub-region of the space where the poten-
tial is defined, and the function stored in the leaf of a branch is the definition
of the potential in the corresponding sub-region. An example of a mixed tree is
shown in Fig. 1.

The operations required for probability propagation in Bayesian networks
(restriction, marginalisation and combination) can be carried out by means of
algorithms very similar to those described, for instance in [11, 18].

4 Shenoy - Shafer Propagation Algorithm with MTEs

In [15] it was shown that MTE networks can be solved using Shenoy-Shafer algo-
rithm [20]. This algorithm requires an adequate order of elimination of the vari-
ables to get the join tree, since different orders may result in join trees of distinct
sizes, and the efficiency of probability propagation depends on the complexity of
the join tree. This problem has been widely studied for discrete networks [1, 9],
but not yet for MTE models. Here we propose a one-step lookahead strategy to
determine the elimination order. We will choose the next variable to eliminate
according to the size of the potential associated with the resulting clique.

Definition 4. (Size of an MTE potential) The size of an MTE potential is
defined as the number of exponentials terms, including the independent term,
out of which the MTE potential is composed.

Example 1. The potential represented in Fig. 1 has size equal to 16, because it
has 8 leaves, and in each one an independent term, and one exponential term,
so 8 × (1 + 1) = 16.

The decision on which variable to select next time, requires the knowledge
about the size of the clique that would result from combining all the potentials
defined for the variable. In the case of some MTE networks, it is possible to
estimate it beforehand. If the MTE potentials are such that for each of them,
the number of exponential terms in each leaf is the same, and the number of
splits of the domain of the continuous variables also coincides, and only one
variable appears in the MTE functions stored in the leaves of the mixed tree
(the rest of the variables are used just to split the domain), as in [15] and [16],
then there is an upper bound on the potential size:

Proposition 1. Let T1, . . . , Th be h mixed probability trees, Yi, Zi the discrete
and continuous variables of each of them, and ni the number of intervals into
which the domain of the continuous variables of Ti is split. Let ΩYi

be the set of
possible values of the discrete variable Yi. The size of the tree T = T1×T2×. . .×Th

is lower than








∏
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where tj is the number of exponential terms in each leaf of Tj, and kj is the
number of continuous variables in Tj.

5 Penniless Propagation with MTEs

Using the algorithm cited above, it is usual in large discrete networks that the size
of the potentials involved grow so much that the propagation becomes infeasible.
In the case of MTE networks, the complexity is higher, since the potentials are
larger in general.

To overcome this problem in the discrete case, the Penniless propagation
algorithm was proposed [2]. This propagation method is based on the Shenoy-
Shafer method, but modifying it so that the results are approximations of the
actual marginal distributions in exchange of lower time and space requirements.

The Shenoy-Shafer algorithm operates over the join tree built from the orig-
inal network using a message passing scheme between adjacent nodes. Between
every pair of adjacent nodes Ci and Cj there is a mailbox for the messages from
Ci to Cj and another one for the messages from Cj to Ci. Sending a message
from Ci to Cj can be considered as transfering the information contained in Ci

that is relevant to Cj . Messages stored in both mailboxes are potentials defined
for Ci ∩ Cj . Initially these mailboxes are empty and once a message is stored it
is full. A node Ci is allowed to send a message to its neighbor Cj if and only if
every mailbox for messages arriving to Ci is full except the one from Cj to Ci.

The propagation is organised in two steps: in the first one messages are sent
from leaves to a previously selected root node, and in the second one the messages
are sent from the root to the leaves.

The message from Ci to Cj is recursively defined as follows:

φCi→Cj
=

{

φCi
·

(

∏

Ck∈ne(Ci)\{Cj}

φCk→Ci

)}↓Ci∩Cj

, (2)

where φCi
is the original potential defined over Ci, ne(Ci) is the set of adjacent

nodes of Ci and superscript ↓ Ci ∩ Cj indicates the marginal over Ci ∩ Cj .
The main feature of the Penniless algorithm is that the messages sent are

approximated, decreasing their size. This approximation [2, 4] is performed after
every combination and marginalisation in (2), and also when obtaining the pos-
terior marginals. It consists of reducing the size of the probability trees used to
represent the potentials by pruning some of their branches (namely, those that
are more similar). The same approach can be taken within the MTE framework,
with the difference that this time, instead of probability trees, the potentials are
represented as mixed trees. Let us consider now how the pruning operation can
be carried out over mixed trees.

5.1 Pruning a Mixed Tree

The size of an MTE potential (and consequently the size of its corresponding
mixed tree) is determined by the number of leaves it has and the number of
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exponential terms in each leaf. Thus, a way of decreasing the size of the MTE
potentials is decreasing each one of these two quantities.

But every pruning has an error associated with it. This error will be measured
in terms of divergence between the mixed trees before and after the pruning.

Definition 5. (Divergence between mixed trees) Let T be a mixed tree repre-
senting an MTE potential φ defined for X = (Y,Z). Let T ∗ be a subtree of T
with root Z ∈ Z where every child of Z is an MTE potential. Let φ1 be the
potential represented by T ∗. Let T ∗

P be a tree obtained from T ∗ replacing φ1 by
the potential φ2 for which it holds that

∫

ΩZ

φ1dz =
∫

ΩZ

φ2dz. The divergence
between T ∗ and T ∗

P is defined as

D(T ∗, T ∗
P ) = Eφ∗

1
[(φ∗

1 − φ∗
2)

2] =

∫

ΩZ

φ1(z)

∆
(
φ1(z)

∆
−

φ2(z)

∆
)2dz,

where φ∗
i is the normalisation of φi and ∆ is the total weight of φ:

∆ =
∑

Y

∫

ΩZ

φ(y, z)dz.

We have considered three different kinds of pruning that are described in the
next subsections.

Removing Exponential Terms. In each leaf of the mixed tree, the exponen-
tial terms that have little impact on the density function could be removed and
the resulting potential would be rather similar to the original one.

Let f(z) = k+
n

∑

i=1

aie
biz be the potential stored in a leaf. The goal is to detect

those exponential terms aie
biz having little influence on the entire density. We

define the weight of each term as:

pi =

∫

ΩZ

aie
bizdz.

We think that two sensible criteria to remove terms in an MTE potential are
the following:

1. A threshold α is established and the terms whose absolute weight, |pi|, is
lower than α are removed.

2. A maximum potential size is fixed and then the terms with lower absolute
weight are removed until the size of the potential lies below the established
maximum.

Once a term has been removed, the resulting potential is updated as follows :

- The maximum value of the term is computed , m = max
z∈Z

{aie
biz}, and added

to the independent term, k∗ = k + m.
- The potential is normalised in order to make it integrate up to the total

weight of the original potential.

The reason why the maximum of the potential is added to the independent term
is to avoid negative points in the resulting potential.



Penniless Propagation with Mixtures of Truncated Exponentials 45

Joining MTE Functions. Let T be a mixed tree whose root node, X, is
continuous, and its children are MTE functions. The domain of X is divided into

intervals, Ij , and for each of those intervals, a potential fj(z) = kj +
n
∑

i=1

a
j
ie

b
j

i
z is

defined. It may be that these potentials are very similar in the different intervals,
Ij , and therefore some of them could be joined with little loss of information.
Two intervals Ij1 and Ij2 are joined by replacing the potentials fj1(z) and fj2(z)
by another potential f(z), defined for over Ij1 ∪ Ij2 .

We propose to compute f(z) as follows. Let

pj1 =

∫

ΩZ

fj1(z)dz and pj2 =

∫

ΩZ

fj2(z)dz

be the weights of fj1(z) and fj2(z) respectively, the replacing function is pro-
portional to

f(z) =
pj1fj1(z) + pj2fj2(z)

pj1 + pj2

.

Since both functions must integrate up to the same quantity over Ij1 ∪ Ij2 , a
constant K must be found such that

∫

ΩZ

Kf(z)dz = p1 + p2 ,

which implies that K =
p1 + p2

∫

ΩZ

f(z)dz
.

Let T be the tree corresponding to the original potential, and TP the one
resulting from replacing fj1(z) and fj2(z) by f(z), then the error D(T , TP) is
computed, and if it is lower than a fixed parameter, we replace T by TP .

Discrete Pruning. In this particular MTE networks, the values of the dis-
crete variables are used only when splitting the domain of the potential, so
marginal potentials defined for discrete variables are equivalent to probability
tables.

If Y is a discrete variable in a mixed tree node, and its children are MTE
functions, then the tree can be pruned as defined in [18] (due to space limitations
we do not provide the details here).

6 Experimental Evaluation of the Algorithm

In order to test the performance of the Penniless algorithm over MTE networks,
we have carried out a simulation study, in which the algorithm is run over some
MTE networks, using different levels of pruning.

Three different artificial networks have been created following these restric-
tions:

1. Given a variable, its number of parents is a Poisson distribution with mean
0.8 and its parents are chosen at random.
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Table 1. Networks studied

Net Number of nodes Number of discrete nodes

Net1 42 3
Net2 77 8
Net3 86 11

Table 2. Probability distribution for the number of states of the discrete variables, the
number of splits of the domain of continuous variables and the number of exponential
terms of MTE functions

No. states 2 3 4

Probability 1/3 1/3 1/3

No. splits 1 2 3

Probability 0.2 0.4 0.4

No. exp. terms 0 1 2

Probability 0.05 0.75 0.20

2. Discrete variables:

(a) Its number of states is simulated from the distribution showed in Table
2.

(b) The probability value of each state is simulated from an Exponential
distribution with mean 0.5.

3. Continuous variables:

(a) The number of splits of the variable in a potential is simulated from the
distribution showed in Table 2.

(b) Every MTE potential has an independent term which is simulated from
an Exponential distribution with mean 0.01 and a number of exponential
terms determined by the distribution showed in Table 2.

(c) In every exponential term, a exp{bx} the coefficient a is a real number
following an Exponential distribution with mean 1, and the exponent b

is a real number determined by a standard Normal distribution (mean 0
and standard deviation 1).

After simulating the parameters of the potentials, they are normalised in order
to guarantee that the potentials are density functions.

For each network, the 30% of its variables are observed at random. The
corresponding evidence is inserted in the network by restricting the potentials
to the observed values.

The Penniless propagation is carried out over each of these networks, with
different parameters of pruning. For discrete pruning and for joining intervals,
some parameters are chosen, and the exponential terms in every potential are
removed until there are only two terms remaining (i.e. the maximum number of
terms per potential leaf in a mixed tree is set to 2).

Since the MTE framework is mainly an alternative to discretisation, the re-
sults of the propagation are compared with the results of applying Shenoy-Shafer
propagation to the discretisation obtained by replacing every MTE function

f(z) = k +
n

∑

i=1

aie
biz by a constant function f∗(z) = k∗ so that
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∫

ΩZ

f(z)dz =

∫

ΩZ

f∗(z)dz .

After each propagation, the following quantites are computed:

1. The maximum size of the potential needed to compute the marginal distri-
bution. It is achieved after combining all the messages sent to the clique that
contains the variable in the join tree.

2. The error attached to it, according to definition 5.

For each network, the mean of these quantities is computed for all the vari-
ables that do not appear in the evidence. The summary of the obtained results are
shown in Figs. 2 to 4, where the notation for the pruning parameters is shown in
Table 3. The ”Join parameter” is the maximum error allowed for joining two in-
tervals, while the ”Discrete parameter” indicates that discrete distributions that
differ less than the value of the parameter with respect to a uniform distribution,
in terms of entropy, are pruned. The foundations of this discrete parameter are
explained in [18].

The results of the experiments show that the use of MTEs instead of discreti-
sations provides more accurate results. It is not surprising, since the discretisa-
tion is just a particular case of the MTE framework (a discretised density is an

Fig. 3. Errors and sizes for Net2
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Fig. 2. Errors and sizes for Net1
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Fig. 4. Errors and sizes for Net3

Table 3. Different pruning parameters evaluated

Prune Join parameter Discrete parameter

A 0 0
B 0.005 0
C 0.005 0.01
D 0.05 0
E 0.05 0.01

MTE density with one independent term an zero exponential terms). However,
it is important to point out that the increase in space required by the MTEs
is significantly lower than the gain in accuracy, which means that the tradeoff
space/accuracy, according to the evidence provided by the experiments reported
here, is favourable to the MTE.

7 Conclusions

Some propagation methods have been successfully applied to MTE networks,
as for example Shenoy-Shafer propagation [6], but so far they were not able
to overcome the problem of the exponential increase of the sizes of the poten-
tials involved in the propagation, specially when evidence is entered. In this
paper we have presented a method to apply Penniless propagation to MTE net-
works, so that the sizes of the potentials are reduced because of the pruning
operation.

The performance of the method has been tested on three artificial networks.
The results of the experiments suggest that the Penniless algorithm is appropri-
ate for MTE models, since the tradeoff between space requirements and accuracy
is better than the one obtained with the discretisation.

The ideas contained in this paper can be extended to other propagation
methods, specially the Lazy propagation and the class of Importance Sampling
propagation algorithms, since these methods can take advantage of the reduction
of the sizes of the potentials after pruning.
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