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Abstract. Alternative approaches to the widely known pignistic trans-
formation of belief functions are presented and analyzed. A series of
various probabilistic transformations is examined namely from the point
of view of their consistency with rules for belief function combination
and their consistency with probabilistic upper and lower bounds. A new
definition of general probabilistic transformation is introduced and a dis-
cussion of their applicability is included.
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1 Introduction

Belief functions are formalisms widely used for uncertainty representation and
processing. For combination of the beliefs the Dempster’s rule of combination
is used in the Dempster-Shafer theory. Besides, series of modifications of the
Dempster’s rule were suggested and alternative approaches were created: e. g.
Transferable Belief Model (TBM) using the so called non-normalized Dempster’s
rule [28], combination ’per elements’ [5] with its special case — minC combina-
tion, see [6], and others. Subsequently, numerous practical applications were
suggested and implemented in a wide range of domains.

What is common for their applications? It is an aim to transform the resulting
evidence representation by a general belief function to representation by prob-
ability for the purpose of easier decision making, resulting beliefs comparison
and ordering. Such a probability should be consistent with the original belief
function. In fact, we can consider it as a belief function of a special type, so
called Bayesian belief function. We call such a transformation as a probabilistic
transformation.

Frequently only a special case of probabilistic transformation – Pignistic
transformation — is used. In the last years several papers on alternative proba-
bilistic transformations have been published [2, 3, 10, 11, 31, 32], and a new jus-
tification of pignistic transformation has appeared [29, 30].

This paper summarizes and completes the study of probabilistic transforma-
tions presented in [10, 11, 13]. Besides the new original results, Baroni & Vicigs’s
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results from [2] and Cobb & Shenoy’s results [3], the present study includes also
Sudano’s transformations [31, 32] and Smets’ new results [29, 30].

Basic notions, both general, and those from [10] and [11] are introduced in
Section 2. Section 3 presents a series of probabilistic transformations from various
sources and it shows that some of them are equivalent to other one(s). Section
4 brings a summary of consistencies of the transformations. A new definition of
the general probabilistic transformation based on their analysis and a justifica-
tion of two main alternatives to pignistic transformation is presented in Section
5. A discussion about which transformation should be applied in applications
concludes the paper.

2 Preliminaries

2.1 Basic Notions

Let us first recall some basic notions from the theory of belief functions. Let us
consider an n-element frame of discernment1 Ω = {ω1, ω2, ...ωn}. A basic belief
assignment (bba) is a mapping m : P(Ω) −→ [0, 1] such that

∑
A⊆Ω m(A) = 1;

the values of the bba are called basic belief masses (bbm). If m(∅) = 0, we speak
about normalized bba. A belief function (BF) is a mapping bel : P(Ω) −→ [0, 1],
bel(A) =

∑
∅�=X⊆A m(X). P(Ω) is often denoted by 2Ω . Let us further recall a

plausibility function Pl(A) =
∑

∅�=A∩X m(X).
A focal element is a subset X of the frame of discernment, such that m(X) >

0. If all the focal elements are singletons (i.e. one-element subsets of Ω), then
we speak about a Bayesian belief function, it is a probability distribution on Ω
in fact. If all the focal elements are either singletons or whole Ω (i.e. |X| = 1 or
|X| = |Ω|), then we speak about a quasi-Bayesian belief function, it is something
like ’non-normalized probability distribution’.

To underline the cardinality of a frame of discernment, we use the left lower
indices, e.g. nDbel(X), 3Dm(X), etc., and we speak about nD BF bel, 3D bba
m, etc. Let 2D0 = (0, 0) and nD0 = (0, ..., 0) denote special BFs bel0 such that
m0(Ω) = 1, 2D0′ = (1

2 , 1
2 ) and nD0′ = ( 1

n , ..., 1
n , 0, ..., 0) denote special BFs bel0′

such that m0′(X) = 1
n for |X| = 1.

The Dempster’s (conjunctive) rule of combination is given as (m1⊕m2)(A) =∑
X∩Y =AKm1(X)m2(Y ) for A �= ∅,where K = 1/(1−∑

X∩Y =∅ m1(X)m2(Y )) =
1

1−κ , and m(∅) = 0, see [26]; putting K = 1 and m(∅) =
∑

X∩Y =∅m1(X)m2(Y ) =
κ we obtain the non-normalized conjunctive rule of combination ∩©, see e.g. [28].
The disjunctive rule of combination is given by the formula (m1 ∪©m2)(A) =∑

X∪Y =A m1(X)m2(Y ), see [19]. Bayes’ rule of probability combination is de-
fined as a normalized point-wise multiplication of probabilities of singletons.
(P1 ⊗ P2)(x) = P1(x)P2(x)∑

y∈Ω P1(y)P2(y) .

1 We use the classical Shaferian terminology. Besides, it is also possible to use the new
more user-friendly simplification of the terminology suggested by Dempster, see e.g.
[15], using a notion state space instead of a frame of discernment, and similarly.
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2.2 General Definition of Probabilistic Transformations

Let us consider the following very general definition now 2. A probabilistic trans-
formation (or briefly a probabilization) is a mapping T : BelΩ −→ ProbDistrΩ ,
Thus the probabilistic transformation assigns a Bayesian belief function (i.e.
probability distribution) to every general one. It is a reason why the trans-
formations of belief functions to probability distributions are sometimes called
also Bayesian transformations, see e.g. [33]. As we suppose finite frames of
discernments, we can compute (T (bel))(X) =

∑
A∈X(T (bel))(A) for any

X ⊆ Ω.
The fundamental well know example of a probabilistic transformation is the

pignistic transformation BetT and its resulting pignistic probability BetP 3 in-
troduced by Smets. We do not use the name pignistic transformation for the
other ones, and we use the general name probabilistic transformation, in accor-
dance with Philippe Smets’ wish not to mix new alternatives together with his
classical pignistic transformation. Moreover, it allows us to use a more general
definition with less assumptions.

2.3 ulb-Consistency and p-Consistency

Probabilistic transformation PT is ulb-consistent (upper and lower bound con-
sistent) if its resulting transformed probability TP satisfies the following consis-
tency condition: Bel(X) ≤ TP (X) ≤ Pl(X) = 1 − Bel(X). Probabilistic trans-
formation PT is p-consistent (or probabilistically consistent) if PT (m) = m for
any Bayesian bba m. In other words Bayesian BFs are fix points of p-consistent
PTs. p-consistency is in fact ulb-consistency on Bayesian BFs (i.e. weakening of
ulb-consistency) because bel(X) = Pl(X) for Bayesian BFs.

2.4 Combination Consistencies

A combination consistency of a PT is based on commutation of a combination
rule �© with PT, i.e. we obtain the same results if we combine beliefs bel1 and
bel2 using the combination rule �© and perform PT after it as in the case, where
we first compute probabilistic transformations of the both input beliefs bel1 and
bel2 and combine them with the combination rule �© after.

Probabilistic transformation PT is ⊕-consistent if it commutes with the
Dempster’s rule (with ⊕ combination). Analogically 4 PT is ∪©-consistent if it
commutes with ∪© ◦ u. Where u stands for the nD generalization of the original
2D homomorphism u: 2Du(a, b) = (a, b) ∪©( 1

a+b ,
1

a+b ) = ( a
a+b ,

b
a+b ), and its

2 For precision of the definition see Section 5.
3 We denote all transformations with suffix T and related probabilities with P .
4 It is possible to define analogically other combination consistencies w.r.t. to other

combination rules, see e.g. c©-consistency [11]. Due to the limitation of applicabil-
ity of the consensus operator c© [8, 24] to quasi-Bayesian BFs only [9], we omit a
presentation of c©-consistency in this text.
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nD generalization u(x1, ..., xn, xn+1, ..., x2n−1) = ( x1∑ n
i=1 xi

, ..., xn∑ n
i=1 xi

, 0, ..., 0),
see [7, 12].

3 Probabilistic Transformations

3.1 Pignistic Transformation

The pignistic transformation BetT distributes m(X) equally among all elements
of X. It was named and justified by Smets in [27] for Transferable Belief Model
(TBM), see [27, 28] in 1990. Nevertheless, the transformation based on the same
principle was used by Dubois & Prade [18] as ”equidistribution of the values of
bba” and by Williams [34] in 1982 already.

The pignistic transformation BetT projects BF bel given bba m to probability
BetP defined on the frame of discernment Ω as follows:

BetP (A) =
∑

A∈X⊆Ω

1
|X|

m(X)
1 − m(∅) .

It includes normalization and division of bbms assigned to focal elements by
their cardinality, non-normalized beliefs used in TBM are admissible.

The justification of the pignistic transformation is based on the assumption
of the so called linearity property, see e. g. [29, 30], i. e. on commutation of the
transformation with a convex combination of beliefs: T (αm1 + (1 − α)m2) =
αT (m1) + (1 − α)T (m2). 5 This property was originally derived from the so
called α-combinability of credibility spaces, see [27]. In correspondence with the
definition of combination consistencies we can call the linearity property assump-
tion as α-consistency. No justification of the transformation has been presented
by Dubois & Prade or by Williams.

From the definition and justification of the pignistic transformation, we can
immediately see that it is ulb-consistent and α-consistent. BetT is neither ⊕-
consistent nor ∪©-consistent.

3.2 Plausibility or Cautious Probabilistic Transformation

Let us introduce three different definitions of the main alternative to pignistic
probability in this subsection.

Widely known it the following one. The (normalized) plausibility probabilistic
transformation Pl T, see e.g. [2] or [3], is defined as a normalized plausibility of
singletons 6. Hence we have

Pl P (A) =
Pl(A)∑

B∈Ω Pl(B)
=

∑
A∈X⊆Ω m(X)

∑
B∈Ω

∑
B∈X⊆Ω m(X)

.

5 The special case of a convex combination of bbas for α = 1
2

was mentioned as
averaging of bbas in [11].

6 Despite of the fact that, Cobb and Shenoy introduce it as a new method [3] in 2003,
and Sudano also introduces it as PrNPl in 2003, it was known already in 1991 [1].
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This transformation is called ’the pignistic probability proportional to normalized
plausibility’ (PrNPl) by Sudano in [32]. 7

The cautious probabilistic transformation [10, 13] is defined as the Dempster’s
combination of a belief bel with 0′: CautT (bel) = bel ⊕ 0′. It is a generalization
of homomorphism h, which corresponds to Hájek & Valdés results on 2D belief
functions [21, 22]: 2DCautP (A) = 1−m(B)

2−m(A)−m(B) .
8 In the nD case we have:

Voorbraak’s Bayesian transformation (VBT)9 published in 1989, see [2] and
[33], is given by

V BP (A) =
∑

A∈X m(X)∑
Y ⊆Ω(m(Y ) · |Y |) .

Theorem1. The cautious and plausibility probabilistic transformationsandVoor-
braak’s Bayesian transformation are the same transformations of belief functions
to probabilistic distributions, i.e. it holds that CautP (A) = Pl P (A) = V BP (A).

For equality CautT ≡ Pl T see [13], and for equality Pl T ≡ V BT see [2].

Pl T is ⊕-consistent. It is neither ∪©-consistent nor α-consistent. Pl T is
neither ulb-consistent in general. It is ulb-consistent for quasi-Bayesian BFs only;
it implies p-consistency in general on nD and ulb-consistency on 2D BFs.

3.3 Belief or Disjunctive Probabilistic Transformation

In [10], the disjunctive probabilistic transformation DisjT has been presented
which has been defined on 2D frames so that it commutes with ∪©◦u, DisjP ({A})
= m({A})

m({A})+m(Ω−{A}) . Its nD generalization [13] is given by the following formula:

DisjP ({A}) =
m(A)∑

X∈Ω m(X)
.

A (normalized) belief probabilistic transformation Bel T [11] is defined as
a normalization of beliefs of singletons (bbms of singletons), i.e. by the same

7 This name does not correspond to Smets’ wish of using the name of the pignistic
transformation, besides it does not satisfy all assumptions required from Smets’
pignistic transformation, either the original [27, 28] or the recent ones [29, 30]. For
this reason we eliminate the word ’pignistic’ from the name of the transformation and
add a letter T (or P ) to abbreviation of the transformation (or resulting probability)
to obtain PrNPlT (or PrNPlP ) to be consistent with the other names. The same
holds also for the other Sudano’s transformations, see [31, 32].

8 This 2D transformation was used already in the Expert System Shell EQUANT-PC
in late 80’s, see [20].

9 Voorbraak proposed VBT not for decision making, but for approximation of BFs.
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formula. Thus it is evident that Bel T ≡ DisjT . We have to note that Bel T
is not defined if

∑
X∈Ω m(X) = 0; we can complete its definition analogically

to the proportional transformation, see later, but such a definition breaks the
∪©-consistency which was a motivation for definition of DisjT . Further, we have
to note that Bel T is significantly sensitive to the bbms of singletons because it
ignores completely the bbms of non-singleton focal elements.

Bel T is ∪©-consistent, it is not ⊕-consistent. It is neither α-consistent nor ulb-
consistent in general. It is ulb-consistent only for quasi-Bayesian BFs; it implies
p-consistency in general on nD and ulb-consistency on 2D BFs.

3.4 Proportional Probabilistic Transformations

Proportional transformations take bbm m(A) of a singleton A and add to it
proportional parts of m(X) for all its supersets A ⊂ X. From this assumption it is
obvious that these proportional probabilistic transformations are ulb-consistent.

If the proportionalization is computed with respect to the beliefs of singletons,
we speak about the proportional belief probabilistic transformation PropBelT , see
[11, 13]:

PropBelP (A) =
∑

A∈X⊆Ω

m(A)∑
B∈X m(B)

· m(X).

If
∑

B∈X m(B) = 0, then |X| is used instead of it and thus m(X) is relocated
per the same portions among all elements of X in such a case.

The equivalent proportional belief transformation PrBlT , see [31, 32], is based
on the same idea as PropBelT , also the formula for computing of PrBlP corre-
sponds to that for computing PropBelP . Hence PrBlT ≡ PropBelT .

In order to correct a statement from [11], we have to note that the equivalence
Bel T ≡ PropBelT holds on 2D and nD quasi-Bayesian BFs only, see [14].

PropBelP (A) is defined for all BFs, but similarly to Bel T it is also sig-
nificantly sensitive to the bbms of singletons. To improve it, the stepwise pro-
portional belief probabilistic transformation StPropBelT or simply stepwise belief
transformation StBel T has been defined in [11]. Bbms m(i−1)(X) for
|X| = (n + 1 − i) are proportionally relocated in the i-th step among m(i)(Y )
for Y ⊂ X, |Y | = (n − i). m(i)(Z) = m(i−1)(Z) = m(Z) for |Z| < n − i, and
m(i)(Z) = 0 for |Z| > n− i. If

∑
Y ⊂X,|Y |=|X| m(Y ) = 0 then |X| is used instead

of it, thus m(X) is relocated per the same portions among all Y in such a case.
If the proportionalization is computed with respect to the plausibilities of sin-

gletons, we speak about the proportional plausibility probabilistic transformation
PropPlT , see [11], which is defined by

PropPlP (A) =
∑

A∈X⊆Ω

Pl(A)∑
B∈X Pl(B)

· m(X).

The equivalent proportional plausibility transformation PrP lT [31, 32] is based
on the same idea as PropPlT , also the formula for computing of PrP l corre-
sponds to that for computing PropPlP . Hence PrP lT ≡ PropPlT .
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Two other probabilistic proportional transformations are defined by Sudano
in [31], see also [32]. Probability deficiency transformation PraP lT and iterative
proportional self-consistent probabilistic transformation PrScT .

PraP lP (A) = m(A) +
1 − ∑

B∈Ω m(B)∑
B∈Ω Pl(B)

· Pl(A).

P raP lT is equal to PrP lT and PropPlT on 2D and on nD qBBFs, but it does
not satisfy our introductive assumption of proportional probabilistic transfor-
mations. Moreover, it is not ulb-consistent in general, even if its ulb-consistency
is assumed and claimed in [31] 10. Nevertheless, PraP lT satisfies the weaker
p-consistency.

PrScP (A) =
∑

A∈X

PrScP (A)∑
B∈X PrScP (B)

· m(X).

P rScT transformation satisfies our assumption, thus it is really ulb-consistent.
Sudano’s hybrid pignistic probability transformation PrHybT [32] is also ulb-

consistent.

PrHybP (A) =
∑

A∈X

PraP lP (A)∑
B∈X PraP lP (B)

· m(X).

Analogically to starting a proportional transformation from the bbms or the
beliefs of singletons m(a) = bel(A) and adding some proportions of m(X) to it
for A ∈ X, we can start from Pl(A) and remove some proportions of m(X) from
it, see [11, 14].

4 Summary of Consistencies of Probabilistic
Transformations

The reason of defining the new transformations in [11] was an endeavour to find
a probabilistic transformation which is both ⊕-consistent and ulb-consistent or
∪©-consistent and ulb-consistent. This endeavour was unsuccessful, on contrary
it is possible to prove the following theorem.

Theorem 2. (i) Pl T is the only ⊕-consistent probabilistic transformation.
(ii) Bel T is the only ∪©-consistent PT which is also p-consistent.
(iii) BetT is the only α-consistent PT which is also p-consistent and satis-
fies Smets’ assumptions of Anonymity and of Impossible event, see Section 5
and [30].

10 A counter-example: m({a}) = m({b}) = m({c}) = 0.1, m({a, b}) = 0.7, we obtain
PrP l({a}) = PrP l({b}) = 0.4294 and PrP l({c}) = 0.1412 > 0.1 = Pl({c}).
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For proofs of (i) and (ii) see [14], (iii) follows Smets’ necessity of pignistic
transformation [30]. From Theorem 2 the following corollary immediately follows.

Corollary 1. (i) There does not exist any probabilistic transformation which
is both ⊕-consistent and ulb-consistent in full generality. The only exception is
normalized plausibility transformation Pl T on the domain of quasi-Bayesian
belief functions.
(ii) There does not exist any probabilistic transformation which is both ∪©-
consistent and ulb-consistent in full generality. The only exception is normal-
ized belief transformation Bel T on the domain of quasi-Bayesian belief
functions.
(iii) There does not exist any ⊕- or ∪©-consistent probabilistic transformation
which satisfies Smets’ assumptions of pignistic transformation.
(iv) The pignistic transformation is neither compatible with the Dempster’s rule
⊕ nor with the disjunctive rule of combination ∪©. (We mean compatibility in
the sense of combination of pignistic ).

Hence there is no need to look for another new probabilistic transformation.
We can summarize consistencies of probabilistic transformations in Table 1.

Table 1. Consistencies of probabilistic transformations

⊕-consistency ∪©-consistency α-consistency ulb-consistency p-consistency

Pl T ⊕-consistent no no 2D BFs yes
nD qBBFs

Bel T ∗ no ∪©I -consistent no 2D BFs yes
nD qBBFs

BetT no no α-consistent ulb-consistent yes

PropBelT no 2D BFs - (0, 0) no ulb-consistent yes
nD qBBFs - nD0

StBel T no 2D BFs - (0, 0) no ulb-consistent yes
nD qBBFs - nD0

PropPlT no no no ulb-consistent yes

PraP lT no no no 2D BFs yes
nD qBBFs

∗ Bel T is not defined for BFs such that
∑

A∈Ω m(A) = 0.
qBBFs stands for quasi Bayesian belief functions.
All these transformations are ⊕-, ∪©-, and α-consistent on nD Bayesian BFs.

We have to recall the following equivalencies: Pl T ≡ CautT ≡ V BT ≡
PrNPlT , Bel T ≡ DisjT , PropBelT ≡ PrBlT , and PropPlT ≡ PrP lT . On
2D BFs and on nD quasi-Bayesian BFs (qBBFs) it holds further Bel T ≡
PropBelT ≡ StBel T , and PropPlT ≡ PrP lT ≡ PraP lT . The equivalency
⊕ ≡ ∪© ◦ u ≡ ⊗ holds on general nD Bayesian BFs, see [12].

probabiliti se
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5 Justification of Probabilistic Transformations

The recent justification of pignistic transformation is presented in [29, 30]. Let
us make a general justification of the probabilistic transformations, which have
been studied in this text.

Let us assume that a general probabilistic transformation PT is a function
from the set of all belief functions to the Bayesian ones, i. e. to the set of
probabilistic distributions on Ω. PT (m) = P , where P (X) = PT (m)(X) =
m′(X). It includes Smets’ assumption of Credal-Pignistic Link, see Proposition
3.1 in [30]. Smets’ assumption of Efficiency, see Proposition 4.1 in [30], also holds
because P (Ω) =

∑
A∈Ω P (A) =

∑
A∈Ω m′(A) = bel′(Ω) = 1. All the studied

transformations are p-consistent, thus we can, without lost of generality, assume
this very natural assumption which requires that Bayesian BFs are transformed
back to themselves. It corresponds to the Smets’ Projectivity assumption, see
Proposition 3.2 from [30].

All our probabilistic transformations satisfy also the Smets’ assumption of
Anonymity, i.e. independence of the result of transformation on permutation
of elements of Ω, see Proposition 4.2 in [30], and the assumption of Impossible
event requiring probability of an impossible event equal to zero, see Proposition
4.3 in [30].

The Linearity assumption, see Proposition 1.1 in [30], i.e. α-consistency in our
terminology, is the only Smets’ assumption that we do not include in our general
assumptions. We can summarize our assumptions to the following definition.

Definition 1. A function PT from the set of all belief functions to the set of
the Bayesian ones is called probabilistic transformation of belief functions if it
satisfies:

(i) p-consistency, i. e. PT (bel) = bel for any Bayesian BF bel,
(ii) PT (bel)(X) = 0 for any impossible event X, i.e. for X such that Pl(X) = 0,
(iii) anonymity, i.e. TP (bel∗)(R(X)) = P ∗(R(X)) = P (X) = TP (bel)(X), for

any permutation R of elements of Ω and BF bel∗ given by m∗(R(X)) =
m(X).

Theorem 3. Let us assume all the assumptions from Definition 1. The follow-
ing holds:

(i) If we add an assumption (iv-a) of α-consistency, we obtain a justification
of the pignistic transformation BetT .

(ii) If we add an assumption (iv-c) of ⊕-consistency, we obtain a justification
of the normalized plausibility transformation Pl T .

(iii) If we add an assumption (iv-d) of ∪©-consistency, we obtain a justification
of the normalized belief transformation Bel T .

The proofs of the statements immediately follow Definition 1, Theorem 2, and
properties of the transformations. Note that both Cobb & Shenoy’s Invariance
with respect to combination and Idempotency [3] follow the assumption (iv-c) of
⊕-consistency.
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The addition of an assumption of the ulb-consistency does not justify any
unique probabilistic transformation. On the other hand, it excludes Pl T and
Bel T , hence we do not assume any ulb-consistency in our new definition of
probabilistic transformations.

6 Applicability of Probabilistic Transformations

Several probabilistic transformations have been presented and compared in this
text. None of them is the best of all in general. Thus a natural question arises:
Which probabilistic transformation should be used in our applications? As the
answer is not unique, we will discuss it in this section.

The answer depends on the reason why we want to compute the probabilistic
transformation and how we want to use it: Whether our goal is only to find the
most prospective element of the frame of discernment or whether we have some
specific assumptions to the result, and what operations we want to perform with
the resulting probability.

Let us assume that we have all our evidence represented with BFs, i.e. that
there is no other explicit nor implicit information about bbms assigned to multi-
element focal elements. If we want to use a transformed probability for betting,
we have to follow the Smets’ necessity of pignistic transformation and compute
pignistic probabilities. Nevertheless, we have to use them strictly on the pignistic
level and to keep in mind that we cannot handle pignistic probabilities like the
Bayesian BFs and combine them with the conjunctive or disjunctive rule of
combination and similarly.

If we assume that the belief corresponds to lower probability and the plausi-
bility to upper probability, we have to use some of the ulb-consistent probabilistic
transformations. Similarly as before, we have to keep in mind that we have left
the credal level and that we cannot handle probabilities as Bayesian BFs. If we,
moreover, assume the α-consistency, then it is the only possibility of the pignistic
probability again.

If we assume or want to be prepared for a combination of the resulting prob-
abilities with the conjunctive combination, we have to use ⊕-consistent transfor-
mation, i.e. Pl T . It is just the case of Cobb & Shenoy’s assumptions. Similarly,
if we assume disjunctive or α-combination of the resulting probabilities we have
to use ∪©- or α-consistent transformation, i.e Bel T or BetT respectively.

If we are interested in selection of the most plausible element we have to use
normalized plausibility transformation Pl T . For determining the most believ-
able element we have to use normalized belief Bel T or preferably its stepwise
version StBel T . In the case where ∪© rule and Bel T are used, we can han-
dle probability as a Bayesian belief and combine it with ∪©. While in the case
StBel T we have to keep in mind that the credal level was left.

In the case of general looking for the most prospective element of the frame
of discernment (without any other assumption) we can select a transformation
with regard to its interpretation, see [10, 13].
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If we have some other information on the domain, on the belief functions
which are transformed or some special requirements to the resulting probabilities,
we can use some special probabilistic transformation.

We assume that the evidence about application domain is represented with
belief functions. It is called the credal level by Smets. By applying the pignistic
transformation we leave this level and move us to the pignistic level. In the case
that we do not assume α-consistency and do not use the pignistic transforma-
tions, we cannot speak longer about the pignistic level than about the probabilis-
tic level or, more generally, about the decisional level of a representation and a
solution of the decisional task.

7 Conclusion

A series of probabilistic transformations of belief functions have been analyzed
and compared in this text, namely from the point of view of combination con-
sistencies. They have different pros and cons. It has been shown that there does
not exist a probabilistic transformation which is the best in general.

A new definition of probabilistic transformations which covers all the inves-
tigated transformations has been presented.

A particular discussion about which transformation should be applied in ap-
plications concludes the paper. It has been shown that both the Smets’ approach
of the necessity of the pignistic transformation and the Cobb & Shenoy’s neces-
sity of the normalized plausibility transformation are right within their assump-
tions which are mutually different. Besides, the other assumptions tend to other
alternative solutions.
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