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Abstract. In a Bayesian network with continuous variables containing
a variable(s) that is a conditionally deterministic function of its contin-
uous parents, the joint density function does not exist. Conditional lin-
ear Gaussian distributions can handle such cases when the deterministic
function is linear and the continuous variables have a multi-variate nor-
mal distribution. In this paper, operations required for performing infer-
ence with nonlinear conditionally deterministic variables are developed.
We perform inference in networks with nonlinear deterministic variables
and non-Gaussian continuous variables by using piecewise linear approx-
imations to nonlinear functions and modeling probability distributions
with mixtures of truncated exponentials (MTE) potentials.

1 Introduction

An important class of Bayesian networks with continuous variables are those
that have conditionally deterministic variables (a variable that is a deterministic
function of its parents). Conditional linear Gaussian (CLG) distributions (Lau-
ritzen and Jensen 2001) can handle such cases when the deterministic function
is linear and variables are normally distributed. In models with nonlinear de-
terministic relationships and non-Gaussian distributions, Monte Carlo methods
may be required to obtain an approximate solution. General purpose solution
algorithms, e.g., the Shenoy-Shafer architecture, have not been adapted to such
models, primarily because the joint density for the variables in models with de-
terministic variables does not exist and these methods involve propagation of
probability densities.

Approximate inference in Bayesian networks with continuous variables can
be performed using mixtures of truncated exponentials (MTE) potentials (Moral
et al. 2001). Cobb and Shenoy (2004) define operations which allow the distri-
butions of linear deterministic variables to be determined when the continuous
variables are modeled with MTE potentials. This allows MTE potentials to be
used for inference in any continuous CLG model, as well as other models that
have non-Gaussian and conditionally deterministic variables. This paper extends
these methods to continuous Bayesian networks with nonlinear deterministic
variables.

L. Godo (Ed.): ECSQARU 2005, LNAI 3571, pp. 27–38, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



28 B.R. Cobb and P.P. Shenoy

The remainder of this paper is organized as follows. Section 2 introduces no-
tation and definitions used throughout the paper. Section 3 describes a method
for approximating a nonlinear function with a piecewise linear function. Section 4
defines operations required for inference in Bayesian networks with conditionally
deterministic variables. Section 5 contains examples of determining the distri-
butions of nonlinear conditionally deterministic variables. Section 6 summarizes
and states directions for future research. This paper is based on a longer, un-
published working paper (Cobb and Shenoy 2005).

2 Notation and Definitions

This section contains notation and definitions used throughout the paper.

2.1 Notation

Random variables will be denoted by capital letters, e.g., A,B,C. Sets of vari-
ables will be denoted by boldface capital letters, e.g., X. All variables are as-
sumed to take values in continuous state spaces. If X is a set of variables, x is
a configuration of specific states of those variables. The continuous state space
of X is denoted by ΩX. In graphical representations, continuous nodes are rep-
resented by double-border ovals, whereas nodes that are deterministic functions
of their parents are represented by triple-border ovals.

2.2 Mixtures of Truncated Exponentials

A mixture of truncated exponentials (MTE) (Moral et al. 2001) potential has
the following definition.

MTE potential. Let X = (X1, . . . , Xn) be an n-dimensional random variable.
A function φ : ΩX 7→ R+ is an MTE potential if one of the next two conditions
holds:

1. The potential φ can be written as

φ(x) = a0 +
m

∑

i=1

ai exp{
n

∑

j=1

b
(j)
i xj} (1)

for all x ∈ ΩX, where ai, i = 0, . . . ,m and b
(j)
i , i = 1, . . . ,m, j = 1, . . . , n are

real numbers.

2. The domain of the variables, ΩX, is partitioned into hypercubes
{ΩX1

, . . . , ΩXk
} such that φ is defined as

φ(x) = φi(x) if x ∈ ΩXi
, i = 1, . . . , k , (2)

where each φi, i = 1, ..., k can be written in the form of equation (1) (i.e.
each φi is an MTE potential on ΩXi

).
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In the definition above, k is the number of pieces and m is the number of
exponential terms in each piece of the MTE potential. We will refer to φi as
the i-th piece of the MTE potential φ and ΩXi

as the portion of the domain of
X approximated by φi. In this paper, all MTE potentials are equal to zero in
unspecified regions.

2.3 Conditional Mass Functions (CMF)

When relationships between continuous variables are deterministic, the joint
probability density function (PDF) does not exist. If Y is a deterministic rela-
tionship of variables in X, i.e. y = g(x), the conditional mass function (CMF)
for {Y | x} is defined as

pY |x = 1{y = g(x)} , (3)

where 1{A} is the indicator function of the event A, i.e. 1{A}(B) = 1 if B = A
and 0 otherwise.

3 Piecewise Linear Approximations to Nonlinear

Functions

3.1 Dividing the Domain

Suppose that a random variable Y is a deterministic function of a single variable
X, Y = g(X). The function Y = g(X) can be approximated by a piecewise
linear function. Define a set of ordered points x = (x0, ..., xn) in the domain of
X, with x0 and xn defined as the endpoints of the domain. A corresponding set
of points y = (y0, ..., yn) is determined by calculating the value of the function
y = g(x) at each point xi, i = 0, ..., n. The piecewise linear function (with n
pieces) approximating Y = g(X) is the function Y (n) = g(n)(X) defined as
follows:

g(n)(x) =



















































(

y0 −
y1−y0

x1−x0
· x0

)

+ y1−y0

x1−x0
· x if x0 ≤ x < x1

(

y1 −
y2−y1

x2−x1
· x1

)

+ y2−y1

x2−x1
· x if x1 ≤ x < x2

...
...

(

yn−2 −
yn−1−yn−2

xn−1−xn−2
· xn−2

)

+ yn−1−yn−2

yn−1−xn−2
· x if xn−2 ≤ x < xn−1

(

yn−1 −
yn−yn−1

xn−xn−1
· xn−1

)

+ yn−yn−1

xn−xn−1
· x if xn−1 ≤ x ≤ xn .

(4)

Let g
(n)
i (x) denote the i-th piece of the piecewise linear function in (4). We

refer to g(n) as an n-point (piecewise linear) approximation of g. In this paper,
all piecewise linear functions equal zero in unspecified regions. If a variable is a
deterministic function of multiple variables, the definition in (4) can be extended
by dividing the domain of the parent variables into hypercubes and creating an
approximation of each function in each hypercube.
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3.2 Algorithm for Splitting Regions

An initial piecewise approximation is defined (minimally) by splitting the domain
of X at extreme points and points of change in concavity and convexity in
the function y = g(x), and at endpoints of pieces of the MTE potential for
X. This initial set of bounds on the pieces of the approximation is defined as
x = (xS

0 , ..., xS
ℓ ). The absolute value of the difference between the approximation

and the function will increase, then eventually decrease within each region of the
approximation. This is due to the fact that the approximation in (4) always lies
“inside” the actual function.

Additional pieces may be added to improve the fit between the nonlinear
function and the piecewise approximation. Define an allowable error bound, ǫ,
for the distance between the function g(x) and its piecewise linear approxima-
tion. Define an interval η used to select the next point at which to test the
distance between g(x) and the piecewise approximation. The piecewise linear
approximation in (4) is completely defined by the sets of points x = (x0, ..., xn)
and y = (y0, ..., yn). The following procedure in pseudo-code determines the
sets of points x and y which define the piecewise linear approximation when a
deterministic variable has one parent.

INPUT := xS
0 , ..., xS

ℓ , g(x), ǫ, η
OUTPUT : x = (x0, ..., xn), y = (y0, ..., yn)
INITIALIZATION
x ← {(xS

0 , ..., xS
ℓ )} /* Endpoints, extrema, and inflection points in ΩX */

y ← {(g(xS
0 ), ..., g(xS

ℓ ))}
i = 0 /* Index for the intervals in the domain of X */

DO WHILE i < | x | /* Continue until all intervals are refined*/
j = 1 /* Index for number of test points in an interval */
a = 0 /* Previous distance between g(x) and approximation*/
b = 0 /* Current distance between g(x) and approximation */

FOR j = 1 : (xi+1 − xi)/η
b = g(xi + (j − 1) · η)−

((

yi −
yi+1−yi

xi+1−xi

· xi

)

+ yi+1−yi

xi+1−xi

· (xi + (j − 1) · η)
)

IF | b | ≥ a /* Compare current and previous distance */
a =| b | /*Distance increased; test next point */

ELSE
BREAK /*Distance did not increase; break loop */

END IF
END FOR
IF a > ǫ /*Test max. distance versus allowable error bound */

x ← Rank (x ∪ {xi + (j − 2) · η}) /* Update x and re-order */
y ← Rank (y ∪ {g(xi + (j − 2) · η)}) /* Update y and re-order */

END IF
i = i + 1

END DO
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The algorithm refines the piecewise approximation to the function y = g(x)
until the maximum distance between the function and the piecewise approxi-
mation is no larger than the specified error bound. A smaller error bound, ǫ,
produces more pieces in the linear approximation and a closer fit in the the-
oretical and approximate density functions for the deterministic variable (see,
e.g., Section 5.1 of (Cobb and Shenoy 2005)). A closer approximation using more
pieces, however, requires greater computational expense in the inference process.

4 Operations with Linear Deterministic Variables

Consider a random variable Y which is a monotonic function, Y = g(X), of
a random variable X. The joint cumulative distribution function (CDF) for
{X,Y } is given by FX,Y (x, y) = FX(g−1(y)) if g(X) is monotonically increasing
and FX,Y (x, y) = FX(x)−FX(g−1(y)) if g(X) is monotonically decreasing. The
CDF of Y is determined as FY (y) = lim

x→∞
FX,Y (x, y). Thus, FY (y) = FX(g−1(y))

if g(X) is monotonically increasing and FY (y) = 1 − FX(g−1(y)) if g(X) is
monotonically decreasing. By differentiating the CDF of Y , the PDF of Y is
obtained as

fY (y) =
d

dy
FY (y) = fX(g−1(y))

∣

∣

∣

∣

d

dy
(g−1(y))

∣

∣

∣

∣

, (5)

when Y = g(X) is monotonic. If Y is a conditionally deterministic linear function
of X, i.e. Y = g(x) = ax + b, a 6= 0, the following operation can be used to
determine the marginal PDF for Y :

fY (y) =
1

|a|
· fX

(

y − b

a

)

. (6)

The following definition extends the operation defined in (6) to accommodate
piecewise linear functions. Suppose Y is a conditionally deterministic piecewise
linear function of X, Y = g(X), where gi(x) = aix + bi, with each ai 6= 0,
i = 1, ..., n. Assume the PDF for X is an MTE potential φ with k pieces, where
the j-th piece is denoted φj for j = 1, ..., k. Let nj denote the number of linear
segments of g that intersect with the domain of φj and notice that n = n1 +
. . . + nj + . . . + nk. The CMF pY |x represents the conditionally deterministic
relationship of Y on X. The following definition will be used to determine the

marginal PDF for Y (denoted χ =
(

φ ⊗ pY |x
)↓Y

):

χ(y) =
(

φ ⊗ pY |x
)↓Y

(y)
∆
=















































1/a1 · φ1 ((y − b1)/a1) if y0 ≤ y < y1

1/a2 · φ1 ((y − b2)/a2) if y1 ≤ y < y2

...
...

1/an1
· φ1 ((y − bn1

)/an1
) if yn1−1 ≤ y < yn1

...
...

1/an · φk ((y − bn)/an) if yn−1 ≤ y < yn ,
(7)
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with φj being the piece of φ whose domain is a superset of the domain of gi. The
normalization constants for each piece of the resulting MTE potential ensures
that the CDF of the resulting MTE potential matches the CDF of the theoretical
MTE potential at the endpoints of the domain of the resulting PDF. From
Theorem 3 in (Cobb and Shenoy 2004), it follows that the class of MTE potentials
is closed under the operation in (7); thus, the operation can be used for inference
in Bayesian networks with deterministic variables. Note that the class of MTE
potentials is not closed under the operation in (5), which is why we approximate
nonlinear functions with piecewise linear functions.

5 Examples

The following examples illustrate determination of the distributions of random
variables which are nonlinear deterministic functions of their parents, as well as
inference in a simple Bayesian network with a nonlinear deterministic variable.

5.1 Example One

SupposeX isnormallydistributedwithameanof0andastandarddeviationof1, i.e.
X ∼ N(0, 12), and Y is a conditionally deterministic function of X, y = g(x) = x3.
The distribution of X is modeled with an two-piece, three-term MTE potential as
defined in (Cobb et al. 2003). The MTE potential is denoted by φ and its two pieces
are denoted φ1 and φ2, with ΩX1

= {x : −3 ≤ x < 0} and ΩX2
= {x : 0 ≤ x ≤ 3}.

PiecewiseApproximation. Over the region [−3, 3], the function y = g(x) = x3

has an inflection point at x = 0, which is also an endpoint of a piece of the MTE
approximation to the PDF of X. To initialize the algorithm in Sect. 3.2, we define
x = (xS

0 , xS
1 , xS

2 )= (−3, 0, 3) and y = (yS
0 , yS

1 , yS
2 )= (−27, 0, 27). For this example,

define ǫ = 1 and η = 0.06 (which divides the domain of X into 100 equal intervals).
The procedure in Sect. 3.2 terminates after finding sets of points x =

(x0, ..., x8) and y = (y0, ..., y8) as follows:

x = (−3.00,−2.40,−1.74,−1.02, 0.00, 1.02, 1.74, 2.40, 3.00) ,
y = (−27.000,−13.824,−5.268,−1.061, 0.000, 1.061, 5.268, 13.824, 27.000) .

The function representing the eight-point linear approximation is defined as

g(8)(x) =







































































21.960x + 38.880 if − 3.00 ≤ x < −2.40

12.964x + 17.289 if − 2.40 ≤ x < −1.74

5.843x + 4.898 if − 1.74 ≤ x < −1.02

1.040x if − 1.02 ≤ x < 0

1.040x if 0 ≤ x < 1.02

5.843x − 4.898 if 1.02 ≤ x < 1.74

12.964x − 17.289 if 1.74 ≤ x < 2.40

21.960x − 38.880 if 2.04 ≤ x ≤ 3.00 .

(8)
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Fig. 1. The piecewise linear approximation g(8)(x) overlayed on the function y = g(x)

The piecewise linear approximation g(8)(x) is shown in Fig. 1, overlayed on the
function y = g(x).

The conditional distribution for Y is represented by a CMF as follows:

ψ(8)(x, y) = pY |x(y) = 1{y = g(8)(x)} .

Determining the Distribution of Y . The marginal distribution for Y is

determined by calculating χ(8) =
(

φ ⊗ ψ(8)
)↓Y

. The MTE potential for Y is

χ(8)(y) =







































































(1/21.960) · φ(1)(0.0455y − 1.7705) if − 27.000 ≤ y < −13.824

(1/12.964) · φ1(0.0771y − 1.3336) if − 13.824 ≤ y < −5.268

(1/5.843) · φ1(0.1712y − 0.8384) if − 5.268 ≤ y < −1.061

(1/1.040) · φ1(0.9612y) if − 1.061 ≤ y ≤ 0.000

(1/1.040) · φ2(0.9612y) if 0.000 ≤ y < 1.061

(1/5.843) · φ2(0.1712y + 0.8384) if 1.061 ≤ y < 5.628

(1/12.964) · φ2(0.0771y + 1.3336) if 5.628 ≤ y < 13.824

(1/21.960) · φ2(0.0455y + 1.7705) if 13.824 ≤ y ≤ 27.000 .

The CDF associated with the eight-piece MTE approximation is shown in
Fig. 2, overlayed on the CDF associated with the PDF from the transformation

fY (y) = fX

(

g−1
1 (y)

) d

dy

(

g−1
1 (y)

)

. (9)
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Fig. 2. CDF for the eight-piece MTE approximation to the distribution for Y overlayed
on the CDF created using the transformation in (9)

5.2 Example Two

The Bayesian network in this example (see Fig. 3) contains one variable (X) with
a non-Gaussian potential, one variable (Z) with a Gaussian potential, and one
variable (Y ) which is a deterministic linear function of its parent. The probability
distribution for X is a beta distribution, i.e. £(X) ∼ Beta(α = 2.7, β = 1.3). The
PDF for X is approximated (using the methods described in (Cobb et al. 2003))

ZX Y

Fig. 3. The Bayesian network for Example Two

0.2 0.4 0.6 0.8 1

0.25

0.5

0.75

1

1.25

1.5

1.75

Fig. 4. The MTE potential for X overlayed on the actual Beta(2.7, 1.3) distribution
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Fig. 5. The piecewise linear approximation g(5)(x) overlayed on the function g(x) in
Example Two

by a three-piece, two-term MTE potential. The MTE potential φ for X is shown
graphically in Figure 4, overlayed on the actual Beta(2.7, 1.3) distribution.

The variable Y is a conditionally deterministic function of X, y = g(x) =
−0.5x3 + x2. The five-point linear approximation is characterized by points x =
(x0, ..., x5)=(0, 0.220, 0.493, 0.667, 0.850, 1) and y = (y0, ..., y5)=(0, 0.043, 0.183,
0.296, 0.415, 0.500). The points x0, x2, x3, and x5 are defined according to the
endpoints of the pieces of φ. The point x4 is an inflection point in the function
g(x) and the point x1 = 0.220 is found by the algorithm in Sect. 3.2 with ǫ =
0.015 and η = 0.01. The function representing the five-piece linear approximation
(denoted as g(5)) is shown graphically in Fig. 5 overlayed on g(x).

The conditional distribution for Y given X is represented by a CMF as fol-
lows:

ψ(5)(x, y) = pY |x(y) = 1{y = g(5)(x)} .

The probability distribution for Z is defined as £(Z | y) ∼ N(2y + 1, 1) and
is approximated by χ, which is a two-piece, three-term MTE approximation to
the normal distribution (Cobb et al. 2003).

5.3 Computing Messages

The join tree for the example problem is shown in Fig. 6.
The messages required to calculate posterior marginals for each variable in

the network without evidence are as follows:

1) φ from {X} to {X,Y }
2) (φ ⊗ ψ(5))↓Y from {X,Y } to {Y } and {Y } to {Y,Z}
3) ((φ ⊗ ψ(5))↓Y ⊗ χ)↓Z from {Y,Z} to {Z}
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Y {Y,Z} ZX {X,Y}

f c5y

Fig. 6. The join tree for the example problem

5.4 Posterior Marginals

The posterior marginal distribution for Y is the message sent from {X,Y } to
{Y } and is calculated using the operation in (7). The expected value and variance
of this distribution are calculated as 0.3042 and 0.0159, respectively. The poste-
rior marginal distribution for Z is the message sent from {Y,Z} to {Z} and is
calculated by point-wise multiplication of MTE functions, followed by marginal-
ization (see operations defined in (Moral et al. 2001)). The expected value and
variance of this distribution are calculated as 1.6084 and 1.0455, respectively.

5.5 Entering Evidence

Suppose we observe evidence that Z = 0 and let eZ denote this evidence. Define
ϕ = (φ ⊗ ψ(5))↓Y and ψ′(5)(x, y) = 1{x = g(5)−1(y)} as the potentials resulting
from the reversal of the arc between X and Y (Cobb and Shenoy 2004). The
evidence eZ is passed from {Z} to {Y,Z} in the join tree, where the existing
potential is restricted to χ(y, 0). This likelihood potential is passed from {Y,Z}
to {Y } in the join tree.

Denote the unnormalized posterior marginal distribution for B as ξ′(y) =

ϕ(y)·χ(y, 0). The normalization constant is calculated as K=

∫

y

(ϕ(y)·χ(y, 0)) dy=

0.0670. Thus, the normalized marginal distribution for Y is found as ξ(y) =

0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1

Fig. 7. The posterior marginal CDF for Y considering the evidence Z = 0
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Fig. 8. The posterior marginal CDF for X considering the evidence (Z = 0)

K−1 · ξ′(y). The expected value and variance of this distribution (whose CDF is
displayed in Fig. 7) are calculated as 0.2560 and 0.0167, respectively.

Using the operation in (7), we determine the posterior marginal distribution
for X as ϑ = (ξ ⊗ψ′(5))↓X . The expected value and variance of this distribution
are calculated as 0.5942 and 0.0480, respectively. The posterior marginal CDF
for X considering the evidence is shown graphically in Figure 8.

6 Summary and Conclusions

This paper has described operations required for inference in Bayesian networks
containing variables that are nonlinear deterministic functions of their contin-
uous parents. Since the joint PDF for a network with deterministic variables
does not exist, the operations required are based on the method of convolutions
from probability theory. By estimating nonlinear functions with piecewise linear
approximations, we ensure the class of MTE potentials are closed under these
operations. Bayesian networks in this paper contain only continuous variables.
In future work, we plan to design a general inference algorithm for Bayesian net-
works that contain a mixture of discrete and continuous variables, with some con-
tinuous variables defined as deterministic functions of their continuous parents.
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