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Abstract. In real world applications planners are frequently faced with
complex variable dependencies in high dimensional domains. In addi-
tion to that, they typically have to start from a very incomplete picture
that is expanded only gradually as new information becomes available.
In this contribution we deal with probabilistic graphical models, which
have successfully been used for handling complex dependency structures
and reasoning tasks in the presence of uncertainty. The paper discusses
revision and updating operations in order to extend existing approaches
in this field, where in most cases a restriction to conditioning and simple
propagation algorithms can be observed. Furthermore, it is shown how
all these operations can be applied to item planning and the prediction of
parts demand in the automotive industry. The new theoretical results,
modelling aspects, and their implementation within a software library
were delivered by ISC Gebhardt and then involved in an innovative soft-
ware system realized by Corporate IT for the world-wide item planning
and parts demand prediction of the whole Volkswagen Group.

1 Introduction

Complex products like automobiles are usually assembled from a number of
prefabricated modules and parts. Many of these components are produced in
specialised facilities not necessarily located at the final assembly site. An on-time
delivery failure of only one of these components can severely lower production
efficiency. In order to efficiently plan the logistical processes, it is essential to
give acceptable parts demand estimations at an early stage of planning.

One goal of the project described in this paper was to develop a system which
plans parts demand for production sites of the Volkswagen Group. The market
strategy of the Volkswagen Group is strongly customer-focused — based on
adaptable designs and special emphasis on variety. Consequently, when ordering
an automobile, the customer is offered several options of how each feature should
be realised. The consequence is a very large number of possible car variants. Since
the particular parts required for building an automobile depend on the variant
of the car, the overall parts demand can not be successfully estimated from total
production numbers alone.
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The modelling of domains with such a large number of possible states is very
complex. For many practical purposes, modelling problems are simplified by in-
troducing strong restrictions, e.g. fixing the value of some variables, assuming
simple functional relations and applying heuristics to eliminate presumably less
informative variables. However, as these restrictions can be in conflict with accu-
racy requirements or flexibility, it is rewarding to look into methods for solving
the original task. Since working with complete domains seems to be infeasible,
decomposition techniques are a promising approach to this kind of problem.
They are applied for instance in graphical models (Lauritzen and Spiegelhalter,
1988; Pearl, 1988; Lauritzen, 1996; Borgelt and Kruse, 2002; Gebhardt, 2000),
which rely on marginal and conditional independence relations between variables
to achieve a decomposition of distributions. In addition to a compact represen-
tation, graphical models allow reasoning on high dimensional spaces to be imple-
mented using operations on lower dimensional subspaces and propagating infor-
mation over a connecting structure. This results in a considerable efficiency gain.

In this paper we will show how a graphical model, when combined with
certain operators, can be applied to flexibly plan parts demand in the automotive
industry. We will furthermore demonstrate that such a model offers additional
benefits, since it can be used for item planning, and it also provides a useful tool
to simulate parts demand and capacity usage in projected market development
scenarios.

2 Probabilistic Graphical Models

Graphical Models have often and successfully been applied with regard to prob-
ability distributions. The term ”graphical model” is derived from an analogy
between stochastic independence and node separation in graphs.

LetV = {A1, . . . , An}beasetofrandomvariables. Iftheunderlyingdistribution
fulfilscertaincriteria(seee.g.Castilloetal., 1997), then it ispossible tocapturesome
of the independence relations between the variables inV using a graph G = (V,E).

2.1 Bayesian Networks

In the case of Bayesian networks, G is a directed acyclic graph (DAG). Condi-
tional independence between variables Vi and Vj ; i 6= j; Vi, Vj ∈ V given the
value of other variables S ⊆ V is expressed by Vi and Vj being d-separated by S

in G (Pearl, 1988; Geiger et al., 1990); i.e. there is no sequence of edges (of any
directionality) between Vi and Vj such that:

1. every node of that sequence with converging edges is an element of S or has
a descendant in S,

2. every other node is not in S.

Probabilistic Bayesian networks are based on the idea that the common prob-
ability distribution of several variables can be written as a product of marginal
and conditional distributions. Independence relations allow for a simplification
of these products. For distributions such a factorisation can be described by a
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graph. Any independence map of the original distribution that is also a DAG
provides a valid factorisation. If such a graph G is known, it is sufficient to store
a conditional distribution for each node attribute given its direct predecessors in
G (marginal distribution if there are no predecessors) to represent the complete
distribution pV , i.e.

∀a1 ∈ dom(A1) : . . . ∀an ∈ dom(An) :

pV

(

∧

Ai∈V

Ai = ai

)

=
∏

Ai∈V

p

(

Ai = ai |
∧

(Aj ,Ai)∈E

Aj = aj

)

.

2.2 Markov Networks

Markov networks are based on similar principles, but rely on undirected graphs
and the u-separation criterion instead. Two nodes are considered separated by
a set S if all paths connecting the nodes contain an element from S. If G is
an independence map of a given distribution, then any separation of two nodes
given a set of attributes S corresponds to a conditional independence of the two
given values of the attributes in S. As shown by Hammersley and Clifford (1971)
a strictly positive probability distribution is factorisable w.r.t. its undirected in-
dependence graph, with the factors being nonnegative functions on the maximal
cliques C = {C1 . . . Cm} break in G.

∀a1 ∈ dom(A1) : . . . ∀an ∈ dom(An) :

pV

(

∧

Ai∈V

Ai = ai

)

=
∏

Ci∈C

φCi

(

∧

Aj∈Ci

Aj = aj

)

.

A detailed discussion of this topic, which includes the choice of factor po-
tentials φCi

is given e.g. in Borgelt and Kruse (2002). It is worthy to note that
graphical models can also be used in the context of possibility distributions. The
product in the probabilistic formulae will then be replaced with the minimum.

3 Analysis of the Planning Problem

The models offered by the Volkswagen Group are typically highly flexible and
therefore very rich in variants. In fact many of the assembled cars are unique
with respect to the variant represented by them. It should be obvious that under
these circumstances a car cannot be described by general model parameters
alone. For that reason, model specifications list so called item variables {Fi :
i = 1 . . . n; i, n ∈ IN}. Their domains dom(Fi) are called item families. The
item variables refer to various attributes like for example ‘exterior colour’, ‘seat
covering’, ‘door layout’ or ‘presence of vanity mirror’ and serve as placeholders
for features of individual vehicles. The elements of the respective domains are
called items. We will use capital letters to denote item variables and indexed
lower case letters for items in the associated family. A variant specification is
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Table 1. Vehicle specification

Class: ’Golf’

Item
short
back

2.8L
150kW
spark

Type
alpha

5 no . . .

Item
family

body
variant

engine radio
door

layout
vanity
mirror

. . .

obtained when a model specification is combined with a vector providing exactly
one element for each item family (Table 1.)

For the ’Golf’ class there are approximately 200 item families—each consist-
ing of at least two, but up to 50 items. The set of possible variants is the prod-
uct space dom(F1)× . . .×dom(Fn) with a cardinality of more than 2200 (1060)
elements. Not every combination of items corresponds to a valid variant specifi-
cation (see Sec. 3.1), and it is certainly not feasible to explicitely specify variant-
part lists for all possible combinations.

Apart from that, there is the manufacturing point of view. It focuses on auto-
mobiles being assembled from a number or prefabricated components, which in
turn may consist of smaller units. Identifying the major components—although
useful for many other tasks—does not provide sufficient detail for item planning.
However, the introduction of additional structuring layers i.e. ‘components of
components’ leads to a refinement of the descriptions. This way one obtains a tree
structure with each leave representing an installation point for alternative parts.

Depending on which alternative is chosen, different vehicle characteristics can
be obtained. Part selection is therefore based on the abstract vehicle specifica-
tion, i.e. on the item vector. At each installation point only a subset of item
variables is relevant. Using this connection, it is possible to find partial variant
specifications (item combinations) that reliably indicate whether a component
has to be used or not. At the level of whole planning intervals this allows to
calculate total parts demand as the product of the relative frequency of these
relevant item combinations and the projected total production for that inter-
val. Thus the problem of estimating parts demand is reduced to estimating the
frequency of certain relevant item combinations.

3.1 Ensuring Variant Validity

When combining parts, some restrictions have to be considered. For instance,
a given transmission t1 may only work with a specific type of engine e3. Such
relations are represented in a system of technical and marketing rules. For better
readability the item variables are assigned unique names, which are used as
a synonym for their symbolic designation. Using the item variables T and E

(‘transmission’ and ‘engine’), the above example would be represented as:

if ‘transmission’ = t1 then ‘engine’ = e3
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The antecedence of a rule can be composed from a combination of conditions
and it is possible to present several alternatives in the consequence part.

if ’engine’ = e2 and ’auxiliary heater’ = h3 then ’generator’ ∈ {g3, g4, g5}

Many rules state engineering requirements and are known in advance. Oth-
ers refer to market observations and are provided by experts (e.g. a vehicle that
combines sportive gadgets with a weak motor and automatic gear will not be
considered valid, even though technically possible). The rule system covers ex-
plicit dependencies between item variables and ensures that only valid variants
are considered. Since it already encodes dependence relations between item vari-
ables it also provides an important data source for the model generation step.

3.2 Additional Data Sources

In addition to the rule system it is possible to access data on previously produced
automobiles. This data provides a large set of examples, but in order to use
it for market oriented estimations, it has to be cleared of production-driven
influences first. Temporary capacity restrictions, for example, usually only affect
some item combinations and lead to their underrepresentation at one time. The
converse effect will be observed, when production is back to normal, so that
the deferred orders can be processed. In addition to that, the effect of starting
times and the production of special models may superpose the statistics. One
also has to consider that the rule system, which was valid upon generation of
the data, is not necessarily identical to the current one. For that reason the
production history data is used only from relatively short intervals known to
be free of major disturbances (like e.g. the introduction of a new model design
or supply shortages). When intervals are thus carefully selected, the data is
likely to be ‘sufficiently representative’ to quantify variable dependences and
can thus provide important additional information. Considering that most of
the statistical information obtained from the database would be tedious to state
as explicit facts, it is especially useful for initialising planning models.

Finally we want experts to be able to integrate their own observations or pre-
dictions into the planning model. Knowledge provided by experts is considered of
higher priority than that already represented by the model. In order to deal with
possible conflicts it is necessary to provide revision and updating mechanisms.

4 Generation of the Markov Network Model

It was decided to employ a probabilistic Markov network to represent the dis-
tribution of item combinations. Probabilities are thus interpreted in terms of
estimated relative frequencies for item combinations. But since there are very
good predictions for the total production numbers, conversion of facts based on
absolute frequency is well possible. In order to create the model itself one still
has to find an appropriate decomposition. When generating the model there are
two data sources available, namely a rule system R, and the production history.
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4.1 Transformation of the Rule System

The dependencies between item variables as expressed in the rule system are
relational. While this allows to exclude some item combinations that are in-
consistent with the rules, it does not distinguish between the remaining item
combinations, even though there may be significant differences in terms of their
frequency. Nevertheless the relational information is very helpful in the way that
it rules out all item combinations that are inconsistent with the rule system.

In addition to that, each rule scheme (the set of item variables that appear in
a given rule) explicitly supplies a set of interacting variables. For our application
it is also reasonable to assume that item variables are at least in approximation
independent from one another given all other families, if there is no common
appearance of them in any rule (unless explicitly stated so, interior colour is
expected to be independent of the presence of a trailer hitch). Using the above
independence assumption we can compose the relation of ‘being consistent with
the rule system’. The first step consists in selecting the maximal rule schemes
with respect to the subset relation. For the joint domain over the variables in
each maximal rule scheme the relation can directly be obtained from the rules.

For efficient reasoning with Markov networks it is desirable that the under-
lying clique graph has the hypertree property. This can be ensured by graph
triangulating (Figure 1c). An algorithm that performs this triangulation is given
e.g. in Pearl (1988). However introducing additional edges is done at the cost of
losing some more independence information. The maximal cliques in the trian-
gulated independence graph correspond to the nodes of a hypertree (Figure 1d).

a)

Rule schemes

{ABC}
{BDE}
{CFG}
{EF}

b)

Unprocessed graph

A B D

C E

G F

@
@

c)

Triangulated graph

A B D

C E

G F

@
@

d)

Hypertree representation

ABCm BDEm

BCEm

CEFm

CFGm

A A

Fig. 1. Transformation into hypertree structure
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To complete the model we still need to assign a local distribution (i.e. relation)
to each of the nodes.

For those nodes that represent the original maximal cliques in the indepen-
dence graph they can be obtained from the rules that work with these item
variables or a subset of them (see above). Those that use edges introduced in
the triangulation process can be computed from them by combining projections,
i.e. applying the conditional independence relations that have been removed from
the graph when the additional edges were introduced. Since we are dealing with
the relational case here this amounts to calculating a join operation.

Although such a representation is useful to distinguish valid vehicle spec-
ifications from invalid ones, the relational framework alone cannot supply us
with sufficient information to estimate item rates. Therefore it is necessary to
investigate a different approach.

4.2 Learning from Historical Data

A different available data source consists of variant descriptions from previously
produced vehicles. However, predicting item frequencies from such data relies
on the assumption that the underlying distribution does not change all too sud-
den. In section 3.2 considerations have been provided how to find ‘sufficiently
representative’ data.

Again we can apply a Markov network to capture the distributions using
the probabilistic framework this time. One can distinguish between several ap-
proaches to learn the structure of probabilistic graphical models from data.
Performing an exhaustive search of possible graphs is a very direct approach.
Unfortunately this method is extremely costly and infeasible for complex prob-
lems like the one given here. Many algorithms are based on dependency analysis
(Sprites and Glymour, 1991; Steck, 2000; Verma and Pearl, 1992) or Bayesian
statistics, e.g. K2 (Cooper and Herskovits, 1992), K2B (Khalfallah and Mel-
louli, 1999), CGH (Chickering et al., 1995) and the structural EM algorithm
(Friedman, 1998).

Combined algorithms usually use heuristics to guide the search. Algorithms
for structure learning in probabilistic graphical models typically consist of a com-
ponent to generate candidate graphs for the model structure, and a component
to evaluate them so that the search can be directed (Khalfallah and Mellouli,
1999; Singh and Valtorta, 1995). However even these methods are still costly and
do not guarantee a result that is consistent to the rule system of our application.

Our approach is based on the fact that we do not need to rely on the pro-
duction history for learning the model structure. Instead we can make use of
the relational model derived from the rule system. Using the structure of the
relational model as a basis and combining it with probability distributions esti-
mated from the production history constitutes an efficient way to construct the
desired probabilistic model.

Once the hypergraph is selected, it is necessary to find the factor potentials for
the Markov network. For this purpose a frequentistic interpretation is assumed,
i.e. estimates for the local distributions for each of the maximal cliques are ob-
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tained directly from thedatabase. In the probabilistic case thereare several choices
for the factor potentials because probability mass associated with the overlap of
maximal cliques (separator sets) can be assigned in different ways. However for
fast propagation it is often useful to store both local distributions for the maximal
cliques and the local distributions for the separator sets (junction tree representa-
tion). Having copied the model structure from the relational model also provides
us with additional knowledge of forbidden combinations. In the probability dis-
tributions these item combinations should be assigned a zero probability.

While the model generation based on both rule system and samples is fast, it
does not completely rule out inconsistencies. One reason for that is the continuing
development of the rule system. The rule system is subject to regular updates
in order to allow for changes in marketing programs or composition of the item
families themselves.

These problems, including the redistribution of probability mass, can be
solved using belief change operations (Gebhardt and Kruse, 1998), which are
described in the next section.

5 Planning Operations

A planning model that was generated using the above method, usually does
not reflect the whole potential of available knowledge. For instance, experts are
often aware of differences between the production history and the particular
planning interval the model is meant to be used with. Thus a mechanism to
modify the represented distribution is required. In addition to that we have
already mentioned possible inconsistencies that arise from the use of different
data sources in the learning process itself.

Planning operators have been developed to efficiently handle this kind of
problem, so modification of the distribution and restoration of a consistent state
can be supported.

5.1 Updating

Let us now consider the situation where previously forbidden item combinations
become valid. This can result for instance from changes in the rule system. In this
case neither quantitative nor qualitative information on variable interaction can
be obtained from the production history. A more complex version of the same
problem occurs when subsets of cliques are to be altered while the information in
the remaining parts of the network is retained, for instance after the introduction
of rules with previously unused schemes (Gebhardt et al., 2003). In both cases it
is necessary to provide the probabilistic interaction structure—a task performed
with the help of the updating operation.

The updating operation marks these combinations as valid by assigning a
positive near zero probability to their respective marginals in the local distri-
butions. Since the replacement value is very small compared to the true item
frequencies obtained from the data, the quality of estimation is not affected by
this alteration. Now instead of using the same initialisation for all new item
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combinations, the proportion of the values is chosen in accordance to an existing
combination, i.e. the probabilistic interaction structure is copied from reference
item combinations. This also explains why it is not convenient to use zero itself
as an initialisation. The positive values are necessary to carry qualitative depen-
dency information. For illustration consider the introduction of a new value t4
to item family transmission. The planners predict that the new item distributes
similarly to the existing item t3. If they specify t3 as a reference, the updat-
ing operation will complete the local distributions that involve T , such that the
marginals for the item combinations that include t4 are in the same ratio to each
other as their respective counterparts with t3 instead.

Since updating only provides the qualitative aspect of dependency structure,
it is usually followed by the subsequent application of the revision operation,
which can be used to reassign probability mass to the new item combinations.

5.2 Revision

After the model has been generated, it is further adapted to the requirements of
the particular planning interval. The information used at this stage is provided
by experts and includes marketing and sales stipulations. It is usually specific
to the planning interval. Such additional information can be integrated into the
model using the revision operator. The input data consists of predictions or
restrictions for installation rates of certain items, item combinations or even sets
of either. It also covers the issue of unexpected capacity restrictions, which can
be expressed in this form.

Although the new information is frequently in conflict with prior knowledge,
i.e. the distribution previously represented in the model, it usually has an im-
portant property—namely that it is compatible with the independence relations,
which are represented in the model structure.

The revision operation, while preserving the network structure, serves to
modify quantitative knowledge in such a way that the revised distribution be-
comes consistent with the new specialised information. There is usually no unique
solution to this task. However, it is desirable to retain as much of the original
distribution as possible so the principle of minimal change (Gärdenfors, 1988)
should be applied. Given that, a successful revision operation holds a unique
result (Gebhardt et al., 2004).

The operation itself starts by modifying a single marginal distribution. Using
the iterative proportional fitting method, first the local clique and ultimately the
whole network is adapted to the new information. Since revision relies on the
qualitative dependency structure already present, one can construct cases where
revision is not possible. In such cases an updating operation is required before
revision can be applied. In addition to that the supplied information can be
contradictory in itself. Such situations are sometimes difficult to recognise. Cri-
teria that entail a successful revision and proves for the maximum preservation
of previous knowledge have been provided in Gebhardt et al. (2004). Gebhardt
(2001) deals with the problem of inconsistent information and how the revision
operator itself can help dealing with it.
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Depending on circumstances human experts may want to specify their knowl-
edge in different ways. Sometimes it is more convenient to give an estimation
of future item frequency in absolute numbers, while at a different occasion it
might be preferable to specify item rates or a relative increase. With the help of
some readily available data and the information which is already represented in
the network before revision takes place, such inputs can be transformed to item
rates. From the operator’s point of view this can be very useful.

As an example for a specification using item rates experts might predict a rise
of the popularity of a recently introduced navigation system and set the relative
frequency of this respective item from 20% to 30%. Sometimes the stipulations
are embedded in a context as in “The frequency of air conditioning for Golfs with
all wheel drive in France will increase by 10%”. In such cases the statements
can be transformed and amount to a changing the ratio of the rates for the
combination of all items in the statement (air conditioning present, all wheel
drive, France) to the rates of that, which only includes the items from the context
(all wheel drive, France).

5.3 Focussing

While revision and updating are essential operations for building and main-
taining a distribution model, it is a much more common activity to apply the
model for the exploration of the represented knowledge and its implications with
respect to user decisions.

Typically users would want to concentrate on those aspects of the represented
knowledge that fall into their domain of expertise. Moreover, when predicting
parts demand from the model, one is only interested in estimated rates for partic-
ular item combinations (see Sec. 3). Such activities require a focussing operation.
It is achieved by performing evidence-driven conditioning on a subset of variables
and distributing the information through the network. The well-known variable
instantiation can be seen as a special case of focussing where all probability is
assigned to exactly one value per input variable.

As with revision, context dependent statements can be obtained by returning
conditional probabilities. Furthermore, item combinations with compatible vari-
able schemes can be grouped at the user interface providing access to aggregated
probabilities.

Apart from predicting parts demand, focussing is often employed for market
analyses and simulation. By analysing which items are frequently combined by
customers, experts can tailor special offers for different customer groups. To
support planning of buffer capacities, it is necessary to deal with the eventuality
of temporal logistic restrictions. Such events would entail changes in short term
production planning so that the consumption of the concerned parts is reduced.
This in turn affects the overall usage of other parts. The model can be used to
simulate scenarios defined by different sets of frame conditions, to test adapted
production strategies and to assess the usage of all parts.
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6 Application

The results obtained in this paper have contributed to the development of the
planning system EPL (EigenschaftsPLanung, item planning). It was initiated in
2001 by Corporate IT, Sales, and Logistics of the Volkswagen Group. The aim
was to establish for all trademarks a common item planning system that reflects
the presented modelling approach based on Markov networks.

System design and most of the implementation work of EPL is currently
done by Corporate IT. The mathematical modelling, theoretical problem solving,
and the development of efficient algorithms, extended by the implementation of
a new software library called MARNEJ (MARkov NEtworks in Java) for the
representation and the presented functionalities on Markov networks have been
entirely provided by ISC Gebhardt.

Since 2004 the system EPL is being rolled out to all trademarks of the Volk-
swagen group and step by step replaces the previously used planning systems.
In order to promote acceptance and to help operators adapt to the new software
and its additional capabilities, the user interface has been changed gradually. In
parallel planners have been introduced to the new functionality, so that EPL
can be applied efficiently.

In the final configuration the system will have 6 to 8 Hewlett Packard Ma-
chines running Linux with 4 AMD Opteron 64-Bit CPUs and 16 GB of main
memory each.

With the new software, the increasing planning quality, based on the many
innovative features and the appropriateness of the chosen model of knowledge
representation, as well as a considerable reduction of calculation time turned
out to be essential prerequisites for advanced item planning and calculation of
parts demand in the presence of structured products with an extreme number
of possible variants.
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