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Abstract. In this paper we explore the use of several types of structural
restrictions within algorithms for learning Bayesian networks. These re-
strictions may codify expert knowledge in a given domain, in such a way
that a Bayesian network representing this domain should satisfy them.
Our objective is to study whether the algorithms for automatically learn-
ing Bayesian networks from data can benefit from this prior knowledge to
get better results. We formally define three types of restrictions: existence
of arcs and/or edges, absence of arcs and/or edges, and ordering restric-
tions, and also study their interactions and how they can be managed
within Bayesian network learning algorithms based on the score+search
paradigm. Then we particularize our study to the classical local search
algorithm with the operators of arc addition, arc removal and arc rever-
sal, and carry out experiments using this algorithm on several data sets.

1 Introduction

Nowadays, Bayesian networks [15] constitute a widely accepted formalism for
representing uncertain knowledge and for efficiently reasoning with it. A Bayesian
network (BN) is a graphical representation of a joint probability distribution,
which consists of a qualitative part, a directed acyclic graph (DAG), and a quan-
titative one, a collection of numerical parameters, usually conditional probability
tables. There has been a lot of work in recent years on the automatic learning of
Bayesian networks from data and, consequently, there are a great many learn-
ing algorithms, based on different methodologies. However, little attention has
been paid to the use of additional expert knowledge, not present in the data, in
combination with a given learning algorithm. This knowledge could help in the
learning process and contribute to get more accurate results, and even reduce
the search effort of the BN representing a given domain of knowledge.

In this paper we address this problem by defining several types of restrictions,
that codify some kinds of expert knowledge, to be used in conjunction with
algorithms for learning Bayesian networks. More precisely, we shall consider three
types of restrictions: (1) existence of arcs and edges, (2) absence of arcs and edges,
and (3) ordering restrictions. All of them will be considered “hard” restrictions
(as opposed to “soft” restrictions [13]), in the sense that they are assumed to
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be true for the BN representing the domain of knowledge, and therefore all the
candidate BNs must necessarily satisfy them. The paper is structured as follows:
in Section 2 we briefly give some preliminary basic concepts about learning the
structure of Bayesian networks. Section 3 formally introduces the three types of
restrictions that we are going to study. In Section 4 we describe how to represent
the restrictions and how to manage them, including their self-consistency and
the consistency of the restrictions with a given DAG. Section 5 studies how
to combine the restrictions with learning algorithms based on the score+search
paradigm, and particularizes this study to the case of algorithms based on local
search. Section 6 discusses the experimental results. Finally, Section 7 contains
the concluding remarks.

2 Notation and Preliminaries

Let us consider a finite set V = {x1, x2, . . . , xn} of discrete random variables, each
variable takingonvalues fromafinite set.We shall use lower-case letters for variable
names, and capital letters to denote sets of variables. The structure of a Bayesian
network on this domain is a directed acyclic graph (DAG) G = (V, EG), where EG

represents the set of arcs.
The problem of learning the structure of a BN from data is that given a training

set D of instances of the variables in V, find the network that, in some sense, best
matchesD.Thelearningalgorithmsmaybesubdividedintotwogeneralapproaches:
methods based on conditional independence tests, and methods based on a scoring
function and a search procedure (for references, see [2]). In this paper we are more
interested in the algorithms based on the score+search paradigm, which attempt
to find a graph that maximizes the selected score. All use a scoring function, usually
defined as a measure of fit between the graph and the data, in combination with a
searchmethod in order tomeasure the goodness of each explored structure from the
space of feasible solutions. Most of these algorithms use different search methods
but the same search space: the space of DAGs1. Our objective is to narrow this
(hyper-exponential) search space by introducing several types of restrictions that
the elements in this space must satisfy.

3 Types of Restrictions

We are going to study three types of restrictions on the DAG structures defined
for the domain V, namely existence, absence and ordering restrictions.

3.1 Existence or Arcs and/or Edges

Consider two subsets of pairs of variables Ea, Ee ⊆ V ×V, with Ea ∩Ee = ∅. They
will be interpreted as follows:

1 Althoughother alternatives are possible, as searching in a space of equivalence classes of
DAGs or in a space of orderings, in this paper we shall focus only on the space of DAGs.
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– (x, y) ∈ Ea: the arc x → y must belong to any DAG in the search space.
– (x, y) ∈ Ee: the edge (i.e. the arc without direction) x—y must belong to any

DAG in the search space. In other words, either the arc x → y or the arc
y → x must appear in any DAG.

An example of the use of existence restrictions may be any BAN algorithm [5],
a BN learning algorithm for classification, which fixes the naive Bayes structure
(i.e. arcs from the class variable to all the attribute variables) and searches for
the appropriate additional arcs, linking pairs of attribute variables.

3.2 Absence of Arcs and/or Edges

Now, consider the subsets Aa,Ae ⊆ V ×V, with Aa ∩Ae = ∅. Their meaning is
the following:

– (x, y) ∈ Aa: the arc x → y cannot be present in any DAG in the search
space.

– (x, y) ∈ Ae: the edge x—y cannot appear in any DAG in the search space
(i.e. neither the arc x → y nor the arc y → x can appear).

An example of the use of absence restrictions is a selective naive Bayesian clas-
sifier [14], which forbids arcs between attribute variables and also arcs from the
attributes to the class variable.

3.3 Partial Ordering

Consider the subset Ro ⊆ V × V. In this case the interpretation is:

– (x, y) ∈ Ro: all the DAGs in the search space have to satisfy that x precedes
y in some total ordering of the variables compatible with the DAG structure.

We need some additional concepts to better understand the meaning of this
kind of restriction. We shall say that a total ordering, σ, of the set of variables
V is compatible with a partial ordering, µ, of the same set of variables if

∀x, y ∈ V, if x <µ y then x <σ y ,

i.e. if x precedes y in the ordering µ then also x precedes y in the ordering σ.
Notice that a DAG determines a partial ordering on its variables: if there is a
directed path from x to y in a DAG G, then x precedes y. Therefore, we can also
say that a total ordering σ on the set V is compatible with a DAG G = (V, E) if

∀x, y ∈ V, if x → y ∈ E then x <σ y .

The ordering restrictions may represent, for example, temporal or functional
precedence between variables. Notice that the restriction (x, y) ∈ Ro also means
that there is not a directed path from y to x in any of the DAGs in the search
space. Examples of use of ordering restrictions are the BN learning algorithms
that require a fixed total ordering of the variables (as the K2 algorithm [7]).
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4 Representing and Managing the Restrictions

In order to manage the restrictions it is useful to represent them graphically.
So, the existence restrictions can be represented by means of a partially directed
graph Ge = (V, Ee), where each element (x, y) in Ea is associated with the
corresponding arc x → y ∈ Ee, and each element (x, y) in Ee is associated
with the edge x—y ∈ Ee. The absence restrictions are represented by means of
another partially directed graph Ga = (V, Ea), where the elements (x, y) in Aa

correspond with arcs x → y ∈ Ea and the elements (x, y) in Ae are associated
with edges x—y ∈ Ea. Finally, the ordering restrictions are represented by using
a directed graph Go = (V, Eo), with (x, y) in Ro being associated with the arc
x → y ∈ Eo. Notice that, as we are assuming that the ordering restrictions form
a partial ordering (i.e. the relation is transitive), we are not forced to include in
Go an arc for each element in Ro. Go may be any graph such that its transitive
closure contains an arc for each element in Ro. For example, to represent a total
ordering restriction x1 < x2 < . . . < xn it suffices to include in Go the n−1 arcs
xi → xi+1, i = 1, . . . , n − 1, instead of a having a complete graph with all the
arcs xi → xj , ∀i < j.

Now, let us formally define when a given DAG G is consistent with a set of
restrictions (i.e. G verifies them):

Definition 1. Let G = (V, E) be a DAG and Ge = (V, Ee), Ga = (V, Ea)
and Go = (V, Eo) be the graphs representing the existence, absence and ordering
restrictions, respectively. We say that

– G is consistent with the existence restrictions if and only if
• ∀x, y ∈ V, if x → y ∈ Ee then x → y ∈ E, and
• ∀x, y ∈ V, if x—y ∈ Ee then x → y ∈ E or y → x ∈ E.

– G is consistent with the absence restrictions if and only if
• ∀x, y ∈ V, if x → y ∈ Ea then x → y �∈ E, and
• ∀x, y ∈ V, if x—y ∈ Ea then x → y �∈ E and y → x �∈ E.

– G is consistent with the ordering restrictions if and only if
• there exists a total ordering σ of the variables in V compatible with both

G and Go.

Before using a set of restrictions we must be sure that we are not demanding
conditions impossible to satisfy. In this sense, we shall say that a set of restric-
tions is self-consistent if there is some DAG that is consistent with them. Testing
the self-consistency of each type of restriction separately is very simple2:

Proposition 1. Let Ge = (V, Ee), Ga = (V, Ea) and Go = (V, Eo) be the graphs
representing existence, absence and ordering restrictions, respectively. Then

– The set of existence restrictions is self-consistent if and only if the graph Ge

has no directed cycle.

2 The proofs of this and all the other propositions stated in the paper are not given,
because of their relative simplicity and space limitations.
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– The set of absence restrictions is always self-consistent.
– The set of ordering restrictions is self-consistent if and only if Go is a DAG.

When several types of restrictions are considered simultaneously, some inter-
actions can occur among each other. These interactions may give rise to inconsis-
tencies. For example, the existence and absence of the same arcs; or the existence
of some arcs that (as they implicitly also represent partial ordering restrictions)
may contradict with ordering restrictions. For instance, x → v, v → y ∈ Ee

contradicts with y → z, z → t, t → x ∈ Eo.
It also may happen that some absence or ordering restrictions force an ex-

istence restriction. For instance, if an arc must exist in either direction (i.e.
x—y ∈ Ee) but an absence or ordering restriction indicates that some direction
is forbidden (e.g. x → y ∈ Ea or y → x ∈ Eo), then the other direction is forced
(x—y should be replaced by y → x in Ee). This can also produce interactions
among the three types of restrictions, giving rise to inconsistencies. For example,
if y → t, t → x, x—z, z—y ∈ Ee, x → z ∈ Eo and y → z ∈ Ea, the absence
and ordering restrictions force the orientation of the edges x—z and z—y which,
together with the other existence restrictions, generate a directed cycle. The fol-
lowing result characterizes global self-consistency of the restrictions, in terms of
simple operations on graphs.

Proposition 2. Let Ge = (V, Ee), Ga = (V, Ea) and Go = (V, Eo) be the
graphs representing existence, absence and ordering restrictions, respectively. Let
Gre = (V, Ere) be the refined graph of existence restrictions3 defined as

Ere = {x → y |x → y ∈ Ee} ∪ {y → x |x—y ∈ Ee, x → y ∈ Ea}∪
{x—y |x—y ∈ Ee, x → y �∈ Ea, y → x �∈ Ea}

Then the three sets of restrictions are self-consistent if and only if

Gre ∩ Ga = G∅ and Gre ∪ Go has no directed cycle,

where G∅ is the empty graph (a graph having neither arcs nor edges), and both
the union and the intersection of two partially directed graphs use the convention
that {x → y} ∪ {x—y} = {x → y} and {x → y} ∩ {x—y} = {x → y}.

Testing the consistency of a DAG with a set of restrictions can also be reduced
to simple graph operations, as the following result shows:

Proposition 3. Let Ge = (V, Ee), Ga = (V, Ea) and Go = (V, Eo) be graphs
representing self-consistent existence, absence and ordering restrictions, respec-
tively, and let G = (V, E) a DAG. Then G is consistent with the restrictions if
and only if

G ∪ Ge = G, G ∩ Ga = G∅ and G ∪ Go is a DAG.

3 This is the same graph Ge with the edges whose direction is forced by virtue of some
absence restriction being replaced by the corresponding arcs.
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5 Using the Restrictions for Learning

In case that we want to get a Bayesian network from data using a score+search
learning algorithm and we have a set of (self-consistent) restrictions, it seems
natural to use them to reduce the search space and force the algorithm to return
a DAG consistent with the restrictions. A general mechanism to do it, which is
valid for any algorithm, is very simple: each time the search process selects a
candidate DAG G to be evaluated by the scoring function, we can use the result
in the previous proposition to test whether G is consistent with the restrictions,
and reject it otherwise.

However, this general procedure may be somewhat inefficient. It would be
convenient to adapt it to the specific characteristics of the learning algorithm
being used. We are going to do that for the case of the classical score+search
learning algorithm based on local search [13], which uses the operators of arc
insertion, arc deletion and arc reversal. We start from the current DAG G, which
is consistent with the restrictions, and let G′ be the DAG obtained from G by
applying one of the operators. Let us see which are the conditions necessary and
sufficient to assure that G′ is also consistent with the restrictions.

Proposition 4. Let Ge = (V, Ee), Ga = (V, Ea) and Go = (V, Eo) be graphs
representing self-consistent existence, absence and ordering restrictions, respec-
tively, and let G = (V, E) a DAG consistent with the restrictions.

(a) Arc insertion: Let G′ = (V, E′), E′ = E ∪ {x → y}, with x → y �∈ E. Then
G′ is consistent with the restrictions if and only if
• x → y �∈ Ea and x—y �∈ Ea,
• there is not any directed path from y to x in G ∪ Go.

(b) Arc deletion: Let G′ = (V, E′), E′ = E \ {x → y}, with x → y ∈ E. Then
G′ is consistent with the restrictions if and only if
• x → y �∈ Ee and x—y �∈ Ee.

(c) Arc reversal: Let G′ = (V, E′), E′ = (E \ {x → y})∪{y → x}, with x → y ∈
E. Then G′ is consistent with the restrictions if and only if
• x → y �∈ Ee, y → x �∈ Ea and x → y �∈ Eo,
• if we exclude the arc x → y, there is not any other directed path from x

to y in G ∪ Go.

Notice that the conditions about the absence of directed paths between x and
y in the previous proposition have also to be checked by the algorithm that does
not consider the restrictions (using in this case the DAG G instead of G ∪ Go),
so that the extra cost of managing the restrictions is quite reduced: two or three
tests about the absence of either an arc or an edge from a graph.

It is also interesting to notice that other score+search learning algorithms,
more sophisticated that a simple local search, can also be easily extended to
efficiently deal with the restrictions. There are many BN learning algorithms
that perform a search more powerful than local search but use the same basic
operators, as variable neighborhood search [10], tabu search [2] or GRASP4 [9],

4 Greedy Randomized Adaptive Search Procedure.
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or even a subset of them (arc insertion), as ant colony optimization [8]. These
algorithms can be used together with the restrictions with almost no additional
modification.

Another question to be considered is the initialization of the search process.
In general, the learning algorithms start from one or several initial DAGs that, in
our case, must be consistent with the restrictions. A very common starting point
is the empty DAG G∅. In our case G∅ should be replaced by the graph Ge or,
even better, by the graph Gre. However, as Gre is not necessarily a DAG, it must
be transformed into a DAG. An easy way to do it is to iteratively select an edge
x—y ∈ Ere, randomly choose an orientation and test whether the restrictions
are still self-consistent (choosing the opposite orientation if the test is negative).
This process is based on the following result:

Proposition 5. Let Ge = (V, Ee), Ga = (V, Ea) and Go = (V, Eo) be graphs
representing self-consistent existence, absence and ordering restrictions, respec-
tively, and let Gre = (V, Ere) be the refined graph of existence restrictions. Let
x—y ∈ Ere and define the graph Ge(x→y) = (V, (Ee \ {x—y})∪ {x → y}). Then
Ge(x→y), Ga and Go are still self-consistent if and only if there is not a directed
path from y to x in Gre ∪ Go. Moreover, either Ge(x→y) or Ge(y→x), together
with Ga and Go, are self-consistent.

In other cases the search algorithm is initialized with one (or several) random
DAGs. The process of selecting a random DAG, checking the restrictions and
iteratinguntil the generatedDAGsatisfies the restrictionsmaybe time-consuming,
specially when there are many restrictions. In these cases it would be quite useful
to have a repair operator, i.e. a method to transform any DAG into one verifying
the restrictions. This method can also be useful for learning algorithms using
population-based search processes (as genetic algorithms and EDAs).

6 Experimental Results

In this section we shall describe the experiments carried out to test the effect of
using restrictions on BN learning algorithms, and the obtained results. We have
selected four different problems. The Alarm network (left hand side of Figure 1)
displays the relevant variables and relationships for the Alarm Monitoring Sys-
tem [3], a diagnostic application for patient monitoring. This network contains
37 variables and 46 arcs. Insurance [4] is a network for evaluating car insurance
risks. The Insurance network (Figure 2) contains 27 variables and 52 arcs. Hail-
finder [1] is a normative system that forecasts severe summer hail in northeastern
Colorado. The Hailfinder network contains 56 variables and 66 arcs. Asia (right
hand side of Figure 1) is a small Bayesian network that calculates the probability
of a patient having tuberculosis, lung cancer or bronchitis respectively based on
different factors. All these networks have been widely used in specialist literature
for comparative purposes.

For Alarm, the input data commonly used are subsets of a standard database
containing 20000 cases. In our experiments, we have used a subset containing
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the first 10000 cases. In each of the other three problems, a database containing
10000 cases generated from the corresponding network has been used.

The score+search learning algorithm considered is the previously mentioned
classical local search (with addition, removal and reversal of arcs), using the
BDeu scoring function [13], with the parameter representing the equivalent sam-
ple size set to 1 and a uniform structure prior. The collected performance mea-
sures are the scoring value of the obtained network (BDeu) and three measures
of the structural difference between the learned network and the true one: the
number of added arcs (A), the number of deleted arcs (D) and the number of
inverted arcs (I) in the learned network with respect to the true network. To
eliminate fictitious differences or similarities between the two networks, caused
by different but equivalent subDAG structures, before comparing the two net-
works we have converted them to their corresponding completed PDAG (also
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called essential graph) representation5, using the algorithm proposed in [6]. The
percentages of running time of the algorithm using restrictions (T) with respect
to the running time of the algorithm without using them have also been com-
puted. All the implementations have been carried out within the Elvira System
[12], a Java tool to construct probabilistic decision support systems, which works
with Bayesian networks and influence diagrams.

For each dataset we have randomly selected fixed percentages of restrictions
of each type, extracted from the whole set of restrictions corresponding to the
true network. More precisely, if G = (V, E) is the true network, then each arc
x → y ∈ E is a possible existence restriction (we may select the restriction
x → y ∈ Ee if this arc is also present in the completed PDAG representation
of G; otherwise we would use the restriction x—y ∈ Ee); each arc x → y �∈ E
is a possible absence restriction (in case that also y → x �∈ E we randomly
select whether to use the restriction x → y ∈ Ea or x—y ∈ Ea); finally, if there
is a directed path from x to y in completed PDAG representation of G then
x → y ∈ Eo is a possible ordering restriction. The selected percentages have
been 10%, 20%, 30% and 40%. We have run the learning algorithm for each
percentage of restrictions of each type alone, and also using the three types of
restrictions together.

The results in Tables 1–4 represent the average values of the performance
measures across 50 iterations (i.e. 50 random subsets of restrictions for each
percentage and each dataset). For comparative purposes, these tables display
also the results obtained by the learning algorithm without using restrictions
(0%), its running time and the scoring value of the true network.

First, let us analyze the results from the perspective of the structural dif-
ferences. What it was expected is that the number of deleted arcs, added arcs
and inverted arcs decreases as the number of existence, absence and ordering
restrictions, respectively, increases. This behaviour is indeed observed in the re-
sults. Moreover, another less obvious effect, almost systematically observed in
the experiments (except in Asia), is that the use of any of the three types of
restrictions also tends to decrease the other measures of structural difference.
For example, the existence restrictions decrease the number of deleted arcs, but
also the number of added and inverted arcs.

With respect to the analysis of the results from the perspective of the scoring
function, we have to distinguish Hailfinder from the other three datasets, the
reason being that in the first case the learning algorithm, without using restric-
tions, finds a network with a score much better than the true Hailfinder network.
The true Insurance network is also worse in score than the learned one but at a
much lesser extend, whereas the true Asia and Alarm networks are better than
the learned ones. This is important because the use of restrictions tries to guide
the search process towards the true network. On the one hand, in the last three
cases, both the existence and the ordering restrictions lead to better network

5 A completed PDAG is a partially directed acyclic graph which is a canonical repre-
sentation of all the DAGs belonging to the same equivalence class of DAGs.
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Table 1. Results obtained for Asia

Ge, Ga, Go only Ge only Ga only Go
% BDeu A D I T BDeu A D I T BDeu A D I T BDeu A D I T

10% -2258.48 1.8 0.9 1.3 76 -2257.42 1.8 0.8 2.4 76 -2260.59 1.8 1.0 2.2 76 -2257.65 1.9 1.0 2.4 77
20% -2256.95 1.5 0.8 0.2 56 -2256.94 1.8 0.8 1.6 57 -2260.34 1.6 1.1 1.1 56 -2257.37 1.9 1.1 1.9 58
30% -2256.71 1.1 0.5 0.0 43 -2256.69 1.9 0.5 0.8 44 -2258.96 1.4 1.1 0.7 43 -2256.76 2.0 1.1 1.0 42
40% -2256.87 0.7 0.5 0.0 28 -2256.61 1.9 0.5 0.4 29 -2260.00 0.9 1.0 0.4 28 -2256.59 2.0 1.1 0.8 30
0% -2257.90 2 1 3 running time: 0.51 sec. BDeu true network: -2257.55

Table 2. Results obtained for Alarm

Ge, Ga, Go only Ge only Ga only Go
% BDeu A D I T BDeu A D I T BDeu A D I T BDeu A D I T

10% -108551 1.6 1.2 1.4 77 -108666 3.0 1.5 2.0 78 -108773 4.1 1.7 2.4 77 -108758 4.1 1.7 3.1 78
20% -108550 0.9 1.0 1.0 60 -108613 2.4 1.4 2.3 61 -108806 3.4 1.7 2.5 60 -108739 3.7 1.3 2.5 61
30% -108513 0.3 0.8 0.4 46 -108562 1.8 1.0 1.9 47 -108788 2.6 1.5 2.3 46 -108718 3.3 1.1 2.1 47
40% -108504 0.2 0.7 0.3 33 -108486 0.9 0.8 2.0 35 -108782 1.8 1.3 1.8 34 -108675 2.8 1.1 1.9 35
0% -108828 5 2 3 running time: 2.53 min. BDeu true network: -108452

Table 3. Results obtained for Insurance

Ge, Ga, Go only Ge only Ga only Go
% BDeu A D I T BDeu A D I T BDeu A D I T BDeu A D I T

10%-1323693.18.79.079-1324064.28.810.779-1324104.69.710.679-1324175.310.010.579
20%-1322711.47.46.458-1324293.48.0 8.5 59-1324343.09.3 8.5 59-1323624.6 9.8 9.4 59
30%-1322250.56.04.442-1323131.86.4 6.8 43-1325092.59.3 8.4 43-1323093.8 9.8 8.4 44
40%-1322330.25.13.831-1324091.65.7 5.2 32-1323081.48.9 6.4 31-1322573.3 9.5 7.5 33
0% -132488 6 10 11 running time: 1.60 min. BDeu true network: -132512

structures. For Hailfinder, the convergence towards the true network results in
worse networks. On the other hand, the use of absence restrictions seems to be
self-defeating: the obtained networks frequently are worse in score than the one
obtained without using restrictions. We believe that the explanation of this be-
haviour lies in the following fact: when a local search-based learning algorithm
mistakes the direction of some arc connecting two nodes6, then the algorithm
tends to ‘cross’ the parents of these nodes to compensate the wrong orientation;
if some of these ‘crossed’ arcs are used as absence restrictions, then the algorithm
cannot compensate the mistake and has to stop in a worse configuration. These
results suggest that perhaps it is not a good idea to limit the search space using
absence restrictions. Instead, once the algorithm, using only existence and order-
ing restrictions, has found a local maximum, we could delete all the forbidden
arcs and run another local search.

Finally, with respect to the efficiency of the learning algorithm, it can be ob-
served that the running times decrease considerably when using the restrictions,
these times being progressively lesser as the number of restrictions increases.

In order to test the behavior of the restrictions in more realistic situations,
where the number of available cases is much smaller (and therefore the expert
knowledge that the restrictions represent is less probable to be already embedded
in the data), we have also carried out experiments (20 iterations) with data sets
containing only 500 cases. The results are displayed in Table 5. We can observe,

6 This situation may be quite frequent at early stages of the search process.
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Table 4. Results obtained for Hailfinder

Ge, Ga, Go only Ge only Ga only Go
% BDeu A D I T BDeu A D I T BDeu A D I T BDeu A D I T

10%-49830613.110.011.680-49797714.810.415.280-49814616.111.517.380-49824517.412.715.881
20%-49835410.1 8.4 4.7 64-49809813.2 9.1 8.7 64-49847514.211.214.364-49844417.112.712.565
30%-498424 7.0 6.6 3.2 51-49821912.1 8.0 5.5 52-49853511.210.412.451-49872616.812.6 9.5 53
40%-498550 5.0 5.4 1.0 41-49834711.0 6.9 3.7 42-498516 8.5 9.3 8.9 41-49872215.912.5 7.5 43
0% -497904 17 12 19 running time: 6.53 min. BDeu true network: -503095

Table 5. Results obtained using data sets with only 500 cases

Ge, Ga, Go only Ge only Ga only Go
% BDeu A D I BDeu A D I BDeu A D I BDeu A D I

Asia
10%-1075.94 0.0 0.8 0.6 -1075.94 0.0 0.8 0.6 -1075.36 0.0 1.0 0.0 -1075.36 0.0 1.0 0.0
20%-1075.74 0.0 0.6 0.3 -1075.87 0.0 0.6 0.4 -1075.36 0.0 1.0 0.0 -1075.36 0.0 1.0 0.0
30%-1075.75 0.0 0.6 0.3 -1075.75 0.0 0.6 0.3 -1075.36 0.0 1.0 0.0 -1075.36 0.0 1.0 0.0
40%-1075.51 0.0 0.6 0.0 -1075.51 0.0 0.6 0.0 -1075.36 0.0 1.0 0.0 -1075.36 0.0 1.0 0.0
0% -1075.36 0 1 0 BDeu true network: -1075.69

Alarm
10% -5990 9.7 4.0 12.7 -5972 10.4 3.8 15.6 -5998 11.0 5.0 19.3 -6002 13.2 4.7 14.6
20% -5971 6.2 3.3 7.6 -5959 9.1 3.2 12.1 -5990 9.2 4.6 14.2 -6005 12.4 5.0 12.2
30% -5946 4.4 2.2 5.8 -5949 7.7 2.6 10.2 -5984 7.3 4.6 10.8 -6003 11.3 4.9 10.2
40% -5943 3.2 1.6 4.4 -5946 7.1 2.0 8.4 -5989 6.5 4.6 8.8 -5986 9.8 4.6 8.5
0% -5986 11 5 22 BDeu true network: -5935

Insurance
10% -7262 4.8 17.6 8.8 -7270 5.6 18.2 9.0 -7274 7.2 20.6 7.1 -7270 8.0 20.9 7.8
20% -7280 3.4 15.2 7.8 -7286 4.6 16.2 8.7 -7270 5.9 19.6 7.4 -7270 7.9 20.7 7.4
30% -7310 2.0 12.2 6.0 -7325 3.6 13.4 8.0 -7264 4.6 18.7 6.2 -7268 7.8 20.6 7.2
40% -7353 1.4 9.9 6.2 -7358 3.1 11.2 6.8 -7273 3.9 18.0 5.8 -7265 7.8 20.4 6.9
0% -7270 8 21 8 BDeu true network: -7592

Hailfinder
10% -27270 13.322.211.1 -27231 15.422.513.0 -27202 14.723.811.4 -27183 16.825.211.3
20% -27408 11.019.9 9.2 -27330 14.219.912.1 -27244 12.523.310.4 -27190 16.425.310.7
30% -27582 8.7 17.2 8.0 -27461 13.317.412.2 -27280 10.322.2 9.8 -27198 16.325.610.2
40% -27781 7.0 14.2 7.6 -27649 12.414.611.4 -27309 8.0 21.2 9.2 -27204 16.226.0 9.6
0% -27171 17 25 12 BDeu true network: -29347

in general, the same behavior as in the previous experiments, although in this
case it must be taken into account that in all the databases (except Alarm) the
true networks have a score worse than the learned ones without using restrictions.

7 Concluding Remarks

We have formally defined three types of structural restrictions for Bayesian net-
works, namely existence, absence and ordering restrictions, and studied their
use in combination with BN learning algorithms that use scoring functions and
search methods. We have illustrated it for the specific case of a learning algo-
rithm using local search. The experimental results show that the use of addi-
tional knowledge in form of restrictions may lead to improved network struc-
tures in less time. For future work we plan to study the use of restrictions within
score+search-based learning algorithms that do not search directly in the DAG
space [2, 11] or within algorithms based on independence tests [16]. Finally, we
would like to study another type of restriction, namely conditional independence
relationships between variables that must be true.
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