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Abstract. The learning of probabilistic classification models can be ap-
proached from either a generative or a discriminative point of view. Gen-
erative methods attempt to maximize the unconditional log-likelihood,
while the aim of discriminative methods is to maximize the conditional
log-likelihood. In the case of Bayesian network classifiers, the parameters
of the model are usually learned by generative methods rather than dis-
criminative ones. However, some numerical approaches to the discrimina-
tive learning of Bayesian network classifiers have recently appeared. This
paper presents a new statistical approach to the discriminative learning
of these classifiers by means of an adaptation of the TM algorithm [1]. In
addition, we test the TM algorithm with different Bayesian classification
models, providing empirical evidence of the performance of this method.

1 Introduction

Supervised classification is a part of machine learning which has a large number
of applications in many tasks such as pattern recognition and medical diagnosis.
In general, supervised classification assumes the existence of two different kinds
of variables: the predictive variables, X = (X1, . . . , Xn), and the class variable
or response, C. A supervised classifier attempts to learn the relationship between
the predictive and the class variables. Hence, it is able to assign a class value to
a new data sample x = (x1, . . . , xn) whose response is unknown.

The learning of a classification model can be approached, among other para-
digms, from either a generative or a discriminative point of view [2, 3, 4, 5]. Gen-
erative classifiers, also called informative classifiers, obtain the parameters of
the model by maximizing the unconditional log-likelihood function. Models like
discriminant analysis [6] or näıve Bayes [7] are typical examples of generative
classifiers. On the other hand, discriminative classifiers obtain the parameters
of the model by maximizing the conditional log-likelihood function (e.g. logistic
regression [8]) or just model the class boundaries (e.g. neural networks [9]).

Bayesian networks [10, 11] are widely used for classification tasks due to their
simplicity and accuracy. Usually, Bayesian network learners are generative but,
recently, there has been a considerable growth of interest in the discrimina-
tive learning of Bayesian network classifiers [12, 13]. The use of a discriminative
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learning for classification purposes seems more natural because the classifica-
tion model directly maximizes the probability of the class given the predictive
variables, which is what we use to classify new instances. However, generative
classifiers can sometimes yield better performance than discriminative ones [4].
Normally, generative learning performs better in those cases where the classifi-
cation model learned from a dataset is close to the one that has generated this
dataset. On the other hand, when the learned model is different from the original
one, generative classifiers normally perform worse than discriminative ones [3].

The aim of this paper is to propose a statistical approach to the discrimina-
tive learning of Bayesian network classifiers, in contrast to other more generic
numerical optimization schemes [12, 13], via the adaptation of the TM algorithm.
The TM algorithm [1] is a general iterative process that allows the maximization
of the conditional log-likelihood in models where the unconditional log-likelihood
function is easier to maximize, which is the case of Bayesian networks. We in-
troduce the theoretical development of the algorithm in the context of Bayesian
classification models. Additionally, we evaluate the performance of Bayesian net-
work classifiers learned with the TM algorithm by comparing their estimated
accuracy with the estimated accuracy of the classifiers learned by a classical
generative method. This empirical evaluation is performed using simple models
such as näıve Bayes [7] and tree augmented näıve Bayes (TAN) [14].

The rest of this paper is organized as follows. In Section 2, the general struc-
ture of the TM algorithm is described, and this structure is particularized to the
exponential family of distributions. In Section 3, we adapt the TM algorithm to
be used with Bayesian network classifiers. Section 4 provides empirical results of
the performance of the TM algorithm and, finally, the conclusions yielded from
the paper are exposed in Section 5.

2 The TM Algorithm by Edwards and Lauritzen

This section introduces the TM algorithm in the same way as [1] but bearing
in mind the classification purpose of the model that we want to learn. Thus,
we expect to give the reader a general and intuitive idea about how the TM
algorithm works.

2.1 General Structure of the TM Algorithm

Let X = (X1, . . . , Xn) be a vector where each Xi, with i = 1, . . . , n, is a predic-
tive variable, and let C be the class variable. Since we are focusing on classifi-
cation problems, we consider C a unidimensional variable, but in general both
X and C could be multivariate variables.

We denote the unconditional, marginal and conditional log-likelihood func-
tions as follows:

l(θ) = log f(x, c|θ) , lx(θ) = log f(x|θ) , lx(θ) = log f(c|x, θ)

where θ is the parameter set of the unconditional probability distribution for the
variable (X, C).
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The foundations of the TM algorithm are based on the tilted unconditional
log-likelihood function, q(θ|θr). This function is an approximation to lx(θ),
which we want to maximize, at point θr. Note that lx(θ) can be expressed in
terms of the unconditional and the marginal log-likelihood:

lx(θ) = l(θ) − lx(θ)

Therefore, if we expand lx(θ) in a first order Taylor series about the point
θr, and then omit the terms which are constant with respect to θ, we can ap-
proximate lx(θ) by q(θ|θr) as follows:

lx(θ) ≈ q(θ|θr) = l(θ) − θT l̇x(θr) (1)

where l̇x(θr) is the derivative of lx(θ) at point θr.
The tilted unconditional log-likelihood function and the conditional log-likeli-

hood have the same gradient at θr, thus, we can maximize lx(θ) by maximizing
q(θ|θr)

Since the approximation of lx(θ) is at point θr, we need an iterative process
in order to maximize the conditional log-likelihood. This process alternates be-
tween two steps, T and M. In the T step, the tilted unconditional log-likelihood
described above is obtained. The second step of the algorithm, the M step, con-
sists in maximizing the tilted unconditional log-likelihood function:

θr+1 = arg max
θ

q(θ|θr) (2)

Under regularity conditions of the usual type and due to the fact that the
expected score statistic for the conditional model is equal to 0, l̇x(θ) can be
calculated as the expectation of the score statistic for the unconditional model.

l̇x(θ) = Eθ{l̇x(θ)|x} = Eθ{l̇(θ) − l̇x(θ)|x} = Eθ{l̇(θ)|x}
Therefore, the M step involves the solution of the following equation:

Eθr
{l̇(θr)|x} = l̇(θ) (3)

In summary, the relevance of the TM algorithm is that it allows us to ob-
tain a model that maximizes the conditional log-likelihood, lx(θ), by using the
unconditional log-likelihood, l(θ). This is very useful for models like Bayesian
network classifiers, where the obtention of the unconditional (generative) model
is much easier than the obtention of the conditional (discriminative) one.

The TM algorithm begins by making its initial parameters the ones which
maximize the unconditional log-likelihood given the dataset. Then, both the T
and the M steps are repeated until the value of the conditional log-likelihood
converges. See [15] for details about the convergence of the TM algorithm.

2.2 The TM Algorithm for the Exponential Family

The TM algorithm can be easily particularized for probability distributions be-
longing to the exponential family. In this case, the unconditional log-likelihood
is given by the following formula:
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l(θ) = αT u(c, x) + βT v(x) − ψ(α, β) (4)

where
ψ(α, β) = log

∫
exp{αT u(c, x) + βT v(x)}µ(dc|x)µ(dx)

Let us introduce a new parametrization for θ = (α,η), with:

η =
∂

∂β
ψ(α, β)

Moreover, if we define two new random variables, U = u(C,X) and V = v(X),
it can be demonstrated that the maximum likelihood parameters are θ̂ = (u,v)
with u = Eθ{U} and v = η = Eθ{V}.

Following the general structure of the TM algorithm, Equation 3 has to be
solved in order to maximize the approximation to the conditional log-likelihood
given by q(θ|θr). Thus, we have:

Eθ

{
∂

∂θ
l(θ)

∣∣∣∣ x

}
= Eθ

{
U − ∂

∂α
ψ(α, β), V T ∂β

∂η
− ∂

∂β
ψ(α, β)

∂β

∂η

∣∣∣∣ x

}

=

(
Eθ{U |x} − Eθ{U}, (Eθ{V} − η)T ∂β

∂η

)
= (Eθ{U |x} − Eθ{U}, 0) (5)

and also:

l̇(θ) =

(
U − ∂

∂α
ψ(α, η), V T ∂β

∂η
− ∂

∂β
ψ(α, β)

∂β

∂η

)
= (U − Eθ{U}, 0) (6)

Finally, the solution of Equation 3 gives the value of the sufficient statistics
at the r + 1-th iteration of the TM algorithm:

ur+1 = ur + u0 − Eθr
{U |x}

θr+1 = θ̂(ur+1, v) (7)

where the initial sufficient statistics, u0 and v, are given by the maximum like-
lihood estimators obtained from the data set. Moreover, θ̂(ur+1,v) denotes the
maximum likelihood estimations of θ obtained from sufficient statistics ur+1

and v.
Generally, it may happen that an iteration of the TM algorithm yields an

illegal set of parameters θ or that the conditional log-likelihood decreases from
one iteration to another. These situations must be corrected by applying a linear
search. Thus, the sufficient statistics at step r + 1 are calculated as:

ur+1 = ur + λ(u0 − Eθr
{U |x}), with λ ∈ (0, 1) (8)

being λ the one that maximizes the conditional log-likelihood.

3 The TM Algorithm for Bayesian Classifiers

In this section we show how the TM algorithm can be adapted to the Bayesian
classification models considered in this paper. Even when Bayesian networks be-
long to the exponential family, the adaptation of the calculations shown in Sec-
tion 2.2 is not trivial. As an example, Section 3.1 shows the calculations needed
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to apply the TM algorithm to a näıve Bayes model with multinomial variables.
Calculations for the TAN model are similar. Therefore, for these models, Section
3.2 only shows the sufficient statistics, U and V , used in the algorithm. See [16]
for more details about the adaptation of the TM algorithm to Bayesian network
classifiers with dichotomic and multinomial variables.

3.1 The TM Algorithm for a Näıve Bayes with Multinomial
Variables

We assume that each variable can take multiple states, therefore C ∈ {0, . . . , v0}
and Xi ∈ {0, . . . , vi} with v0 + 1 and vi + 1 as the number of possible states for
variables C and Xi, respectively.

The general algorithm for probability distributions of the exponential family
requires the expression of the unconditional log-likelihood via Equation 4. This
can be achieved by writing the näıve Bayes unconditional model as follows:

p(c, x) =
1

(p(c))n−1

n∏
i=1

p(xi, c) (9)

In order to identify the sufficient statistics for the TM algorithm, we can
rewrite the unconditional model as follows:

p(c, x) =

⎡
⎣ v0∏

j=0

(p(C = j))
wj

∏j−1
l=0 (c−l)

∏v0
l=j+1(l−c)

⎤
⎦

−(n−1)

·

n∏
i=1

v0∏
j=0

vi∏
k=0

(p(C = j, Xi = k))
wi

jk
∏j−1

l=0 (c−l)
∏v0

l=j+1(l−c)
∏k−1

l=0 (xi−l)
∏vi

l=k+1(l−xi)

where wj and wi
jk are the following constants:

wj =
1∏ j−1

l=0 (j − l)
∏v0

l=j+1(l − j)
, w

i
jk =

1∏ j−1
l=0 (j − l)

∏v0
l=j+1(l − j)

∏k−1
l=0 (k − l)

∏vi
l=k+1(l − k)

Note that the values of wj and wi
jk have no influence on the selection of the

sufficient statistics for the TM algorithm.
If we have a dataset with N samples, the unconditional log-likelihood can be

written using the previous equation as follows:

l(θ) =

N∑
d=1

{
− (n − 1)

v0∑
j=0

[
wj

j−1∏
l=0

(c
(d) − l)

v0∏
l=j+1

(l − c
(d)

) log(p(C = j))
]
+

n∑
i=1

v0∑
j=0

vi∑
k=0

[
w

i
jk

j−1∏
l=0

(c
(d) − l)

v0∏
l=j+1

(l − c
(d)

)

k−1∏
l=0

(c
(d)
i − l) ·

vi∏
l=k+1

(l − c
(d)
i ) log(p(C = j, Xi = k))

]}

where c(d) and x
(d)
i are the values of variables C and Xi in the d-th sample of

the dataset, respectively.
A few transformations in Equation 10 can match its terms with the ones from

Equation 4. We thus obtain the sufficient statistics U = (U1,U2) and V :

U1 = (Ms
0 |s = 1, . . . , v0)

U2 = (Mst
0xi

|s = 1, . . . , v0 , t = 1, . . . , vi , i = 1, . . . , n)

V = (M t
xi
|t = 1, . . . , vi , i = 1, . . . , n)



Discriminative Learning of Bayesian Network Classifiers 153

where Ms
0 , Mst

0xi
and M t

xi
terms from the former equation are defined as:

Ms
0 =

N∑
d=1

(C(d))s , Mst
0xi

=
N∑

d=1

(C(d))s(X
(d)
i )t , Md

xi
=

N∑
r=1

(X
(d)
i )t (10)

It was shown in Section 2.2 that, at each iteration, the calculation of Eθ{U |x}
is needed to update the sufficient statistics U . This requires the following calcu-
lations:

Eθr
[Ms

0 |x] =
N∑

d=1

v0∑
c=0

pθr
(C = c|X = x

(d)
)c

s (11)

Eθr
[Mst

0xi
|x] =

N∑
d=1

v0∑
c=0

pθr
(C = c|X = x

(d)
)c

s
(x

(d)
i )

t

where s = 1, . . . , v0; t = 1, . . . , vi and i = 1, . . . , n.
Since we assume that the structure of the model is a näıve Bayes, we need

to obtain p(C = c) and p(Xi = l|C = c) to calculate p(C = c|X = x(k)),
where c = 1, . . . , v0; i = 1, . . . , n and l = 1, . . . , vi. In order to obtain these
probabilities, let us define a new set of sufficient statistics N = (N c

0 , N l
i , N

cl
0i |c =

1, . . . , v0; i = 1, . . . , n; l = 1, . . . , vi). On the one hand, N c
0 counts the number

of cases in which C = c, and N l
i the number of cases in which Xi = l. On

the other hand, N cl
0i denotes the number of times that both C = c and Xi = l

happen.
The sufficient statistics N are related to the sufficient statistics set, (U ,V),

from the TM algorithm. In the special case where all the variables are dichotomic,
both sets of sufficient statistics are the same. However when the variables are
multinomial, this relationship is given by linear systems of equations which can
be obtained by means of Equation 10. Therefore, using these systems of equations
we are able to obtain the values of N from U and vice versa.

As an example, we show how one of the linear systems of equations can
be obtained from Equation 10. Ms

0 , with s = 1, . . . , v0, are sufficient statistics
from the set U and, as mentioned in Equation 10, Ms

0 =
∑N

d=1(C
(d))s. Since∑N

d=1(C
(d)) = 0 · N0

0 + . . . + v0 · Nv0
0 , the system of equation that relates both

U and N for the variable C can be written in the matrix form as follows:

⎛
⎜⎜⎜⎜⎝

1 2 . . . v0

1 22 . . . v2
0

.

.

.
.
.
.

.

.

.
.
.
.

1 2v0 . . . v
v0
0

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
COEF F S∗

⎛
⎜⎜⎜⎜⎝

N1
0

N2
0
.
.
.

N
v0
0

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
N ∗

=

⎛
⎜⎜⎜⎜⎝

M1
0

M2
0
.
.
.

M
v0
0

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
U∗

(12)

Once we have obtained the values of the statistics in N , we are able to cal-
culate p(C = c) and p(Xi = l|C = c) by:

p(C = c) =
N c

0

N
, p(Xi = l|C = c) =

N cl
0i

N c
0

and therefore calculate the value of Eθ{U |x}. Finally, we are able to iterate the
algorithm and thus obtain the new value for the statistic U (see Equation 7).
These p(C = c) and p(Xi = l|C = c) are also the parameters θ of the näıve
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Obtain n0 from the dataset

Calculate u0 from n0

while stopping criterion is not met

Calculate Eθr
{U |x}

Update u:

ur+1 = ur + u0 - Eθr
{U |x}

Calculate nr+1 from ur+1

Calculate θr+1 from nr+1

if illegal θr+1 or conditional log-likelihood decreases

Find the best legal θr+1 via linear search

end if

end while

Fig. 1. General pseudocode for the discriminative learning of Bayesian classifiers. Note
that nr and ur are the values of the statistics in N and U at iteration r, respectively

Bayes classifier that we are learning. Hence, we have to calculate N in order to
obtain θ. A general pseudo-algorithm for the discriminative learning of Bayesian
classifiers is given in Figure 1.

The process of maximizing the conditional log-likelihood with the TM
algorithm looks computationally hard because we have to solve several linear
systems of equations at each iteration. However, from one iteration of the
algorithm to another one, in the systems of equations, only the values in U∗

change (see Equation 12). Therefore, we can obtain the LU transformation of
COEFFS∗, which is constant throughout the algorithm. Thus, the solution
of the systems of equations at each iteration is quite simple. Moreover, the
LU transformation is also the same for every problem with the same number
of variables and the same number of states per variable. Hence, it may be
feasible to calculate these transformations and store the solutions for future
use.

3.2 The TM Algorithm for TAN

In this section we introduce the adaptation of the TM algorithm in order to
maximize the conditional log-likelihood with TAN models where the variables
are assumed to be multinomial. The development of the TM algorithm for TAN
models assumes that the structure of the model is already known. Therefore,
before performing the discriminative learning of a TAN model, we need to set
its structure.
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The adaptation of the TM algorithm for TAN is similar to the adaptation for
a näıve Bayes model shown above. Hence, we only provide the sufficient statistics
that the TM algorithm uses.

In the case of TAN models, we need to differentiate between two kinds of pre-
dictive variables: the one which has only one parent, that is, the root of the tree
formed by the predictive variables, and the rest of predictive variables, which
have two parents: the class and another predictive variable. We assume, without
loss of generality, that the root variable is the first one, X1. If we develop the l(θ)
function for a TAN model with multinomial variables in a similar way to Equa-
tion 4, we can identify the following set of sufficient statistics U = (U1,U2,U3)
and V = (V1,V2), where:

U1 = (M
w
0 |w = 1, 2, . . . , v0)

U2 = (M
wt
0xi

|w = 1, 2, . . . , v0; t = 1, 2, . . . , vi; i = 1, . . . , n)

U3 = (M
wtz
0xixj(i)

|w = 1, . . . , v0; t = 1, 2, . . . , vi; z = 1, 2, . . . , vj(i); i = s + 1, . . . , n)

V1 = (M
t
xi

|t = 1, . . . , vi)

V2 = (M
tz
xixj(i)

|t = 0, 1, . . . , vi; z = 0, 1, . . . , vj(i); i = s + 1 . . . , n)

with Mw
c , Mwt

cxi
, Mwtz

cxixj(i)
, M t

xi
and M tz

xixj(i)
defined as follows:

M
w
c =

N∑
k=1

(C
(k)

)
w

, M
wt
cxi

=

N∑
k=1

(C
(k)

)
w

(X
(k)
i )

t
, M

wtz
cxixj(i)

=

N∑
k=1

(C
(k)

)
w

(X
(k)
i )

t
(X

(k)
j(i))

z

M
t
xi

=
N∑

k=1

(X
(k)
i )

t
, M

tz
xixj(i)

=
N∑

k=1

(X
(k)
i )

t
(X

(k)
j(i))

z

The adaptation of the TM algorithm for TAN models is equal to the one
shown in Figure 1 but using the set of sufficient statistics described above.

4 Experimental Results

In this section we present an empirical test which attempts to illustrate the
performance of the TM algorithm applied to Bayesian classification models such
as näıve Bayes and TAN.

In the case of näıve Bayes models, the structure does not depend on the
data, that is, a näıve Bayes structure may only differ from another one in the
number of predictive variables. However, the structure of TAN models is learned
from the data using the algorithm proposed by [14], which takes the conditional
mutual information of two variables given the class into account.

We have evaluated the TM algorithm for the discriminative learning of Baye-
sian classifiers using sixteen datasets obtained from the UCI repository [17].
Moreover, we use the Corral and Mofn-3-7-10 datasets, which were developed by
[18] to evaluate methods for subset selection, and the Tips dataset [19]. Tips
is a medical dataset to identify the subgroup of patients surviving within the
first six months after the transjugular intrahepatic portosystemic shunt (TIPS)
placement, a non-surgical method to avoid portal hypertension.



156 G. Santafé, J.A. Lozano, and P. Larrañaga

Table 1. Estimated accuracy obtained in the experiments with näıve Bayes and TAN
models

NB TAN
NB NB–TM vs. TAN TAN–TM vs.

NB–TM TAN–TM

Australian 85.65± 2.61 88.41±2.67 0.112 86.08±2.88 88.98±3.53 ◦ 0.094
Breast 97.37± 1.64 98.98±0.74 • 0.036 97.37±1.64 95.46±1.41 • 0.016
Chess 87.77± 0.91 95.15±0.41 • 0.009 92.40±1.73 96.81±0.49 • 0.009
Cleve 83.14± 4.89 87.53±4.72 ◦ 0.072 82.77±1.61 87.85±3.24 • 0.043
Corral 86.77± 9.27 90.61±6.27 0.197 100.00±0.00 99.20±1.60 0.317
Crx 86.68± 4.70 88.52±1.59 0.600 86.06±1.33 89.59±1.56 ◦ 0.075
Flare 92.12± 2.16 95.12±1.21 • 0.015 95.78±2.79 96.72±1.23 0.527
German 75.40± 3.50 78.90±4.00 ◦ 0.059 72.80±2.22 84.00±0.89 • 0.009
Glass 74.31± 7.32 76.18±6.92 0.344 72.90±2.74 81.75±3.88 • 0.045
Heart 83.33± 6.73 86.67±4.44 0.390 72.90±2.74 81.75±3.87 • 0.036
Hepatitis 85.00±10.15 93.75±5.56 0.316 87.50±6.84 100.00±0.00 • 0.004
Iris 94.67± 3.40 95.33±3.40 0.746 93.33±2.11 96.00±2.49 0.142
Lymphography 83.77± 4.97 91.22±3.49 0.141 79.08±2.28 98.98±1.65 • 0.008
Mofn-3-7-10 86.63± 2.53100.00±0.00 • 0.005 90.86±1.79 100.00±0.00 • 0.005
Pima 77.96± 1.31 79.95±1.47 0.136 79.17±3.72 79.82±3.72 0.136
Soybean-large 96.26± 1.64 97.51±1.42 • 0.014 98.58±0.71 99.29±0.66 • 0.014
Tips 88.78± 4.65100.00±0.00 • 0.019 89.87±6.20 100.00±0.00 • 0.005
Vehicle 61.94± 1.58 78.61±1.51 • 0.009 71.63±4.19 83.46±3.72 • 0.009
Vote 89.88± 2.45 98.39±1.17 • 0.008 93.56±1.55 99.08±0.86 • 0.008

The discriminative learning of Bayesian network classifiers described in the
paper does not deal with missing data or continuous variables. Therefore, a pre-
processing step was needed before using the datasets. On the one hand, every
data sample which contained missing data was removed. On the other hand,
variables with continuous values were discretized using the method described
by [20], which is a variant of the Fayyad and Irani’s [21] discretization method.
The accuracy of the classifiers is measured by five-fold cross validation and it is
based on the percentage of successful predictions. The same pre-processing and
validation methodology has been used before in the literature for the generative
[14] or discriminative [12] learning of Bayesian network classifiers using all the
datasets that have been used in this paper, except for Tips.

The TM algorithm iteratively maximizes the conditional log-likelihood and
it stops when a certain criterion is met. In the experiments, the algorithm stops
when the difference between the conditional log-likelihood value in two consecu-
tive steps is less than 0.001. On the other hand, as pointed out in Section 2.2, the
TM calculations may lead the parameters of the model to illegal values. These
situations are solved by applying a linear search where we look for λ in interval
(0, 1) with a 0.01 increment (see Equation 8).

Table 1 shows the estimated accuracy for the näıve Bayes (NB) and TAN
classifiers learned using both generative and discriminative approaches. The gen-
erative approach that we use is the classical learning of Bayesian classifiers using
the maximum likelihood parameters. In contrast, the discriminative learning is
carried out using the TM algorithm proposed in this paper. In order to com-
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Table 2. Conditional log-likelihood values for the experiments with näıve Bayes and
TAN models

NB NB–TM TAN TAN–TM

Australian −291.71 −190.38 −195.97 −195.97

Breast −136.74 −22.71 −22.13 −10.41

Chess −917.76 −478.22 −591.46 −307.04

Cleve −124.65 −93.24 −96.36 −82.27

Corral −37.58 −25.17 −10.19 −3.28

Crx −251.71 −177.90 −173.71 −173.71

Flare −287.91 −216.18 −152.76 −137.43

German −488.91 −456.81 −409.05 −378.12

Glass −141.86 −141.86 −117.60 −116.96

Heart −112.91 −86.11 −88.21 −73.66

Hepatitis −23.29 −9.27 −9.12 −2.61

Iris −21.52 −13.85 −17.90 −16.57

Lymphography −46.94 −28.06 −25.90 −13.17

Mofn-3-7-10 −269.32 −3.75 −232.03 −44.74

Pima −361.36 −340.55 −33.24 331.22

Soybean-large −108.15 −43.27 −22.14 −22.14

Tips −45.66 −0.12 −2.77 −0.03

Vehicle −1487.18 −355.30 −360.27 −297.16

Vote −257.63 −13.66 −49.55 −13.88

pare the estimated accuracy for both discriminative and generative models we
perform a Mann-Whitney test [22], whose results are also shown in Table 1. In
addition to the Mann-Whitney p-value, we mark with • those experiments where
the difference between generative and discriminative models is significant at the
95% level, and with ◦ if it is significant only at the 90% level. The TM algorithm
improves the estimated accuracy for näıve Bayes in all the datasets and, in the
case of TAN models, only in Breast and Corral does the generative model obtain
a higher estimated accuracy. This may be due to a worse performance of dis-
criminative learning when the structure of the classifier is correct [3], that is the
structure that perfectly models the relationship between the variables, and TAN
is a structure a bit more complex that can model the dataset better. However,
even if the estimated accuracy is usually higher in discriminative models, the
difference with respect to generative models is not always significant. In most
of the cases if the improvement obtained by the discriminative method is not
significant at the 95% level, it is because of a high standard deviation. A cause
of this high standard deviation may be the small number of folds used in the
cross-validation process. For instance, leaving-one-out cross-validation, used to
measure the estimated accuracy of a näıve Bayes and a TAN learned from a
dataset such as Corral, leads to a decrease in the standard deviation while the
estimated accuracy does not change very much. Nevertheless, we have decided
to maintain the cross-validation schema in order to agree with the one used by
[12]. Thus we have a point of reference for the result obtained in our experiment.
Although it is difficult to compare the results of both papers because we do not
have all the data need to perform a statistical test, TM-learning, whose results
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are reported in this paper, seems to obtain slightly better results than the [12]
method in most of the datasets.

On the other hand, the results of Table 1 only measure the goodness of the
TM algorithm indirectly. Actually, the aim of the algorithm is to maximize the
conditional log-likelihood and not to maximize directly the estimated accuracy of
the classifier. In Table 2, the improvement of the conditional log-likelihood score
for the discriminative model with respect to the generative one is shown. As de-
scribed in Sections 2 and 3, the TM algorithm begins with the same parameters
obtained by the generative model (that is the maximun likelihood parameters)
and, following an iterative process, it modifies these parameters to maximize
the conditional log-likelihood. Note that the TM algorithm is able to obtain a
model with higher value for the conditional log-likelihood score in all datasets
except for the TAN model learned from Australian, Crx and Soybean-large. This
is because, in these three cases, the parameters that maximize the unconditional
log-likelihood also represent a maximum for the conditional log-likelihood score.
This maximum is not necessarily a global maximum but may be a local one
because of the possible non-concavity of the conditional log-likelihood score [13].
However, even when generative and discriminative TAN are the same models for
Australian, Crx and Soybean-large, the difference between the estimated accura-
cies is significant at the 90% level. This is because the conditional log-likelihood
value reported in Table 2 is obtained from a classifier which has been learned
using the whole dataset. On the other hand, for the cross-validation process,
whose results are shown in Table 1, we learn the classifiers using only part of the
dataset. Therefore, for each fold, the generative and discriminative classifiers are
not necessarily the same.

5 Conclusions

Bayesian classifiers are usually generative classifiers, that is, their parameter
configuration attempts to maximize the unconditional log-likelihood function.
As far as we know, all the techniques for the discriminative learning of Baye-
sian classification models are generic numerical optimization methods [12, 13].
This paper presents a new statistical approach to the discriminative learning
of Bayesian network classifiers by adapting the TM algorithm proposed by [1].
We present a theoretical development of the TM algorithm to be used with
näıve Bayes and TAN, therefore providing an efficient discriminative learning of
these models. However, the fact that the discriminative learning maximizes the
conditional log-likelihood does not necessarily lead to a better performance of
these kind of classifiers. It depends on the dataset and the classifier selected to
model this dataset. This idea has been also shown, for example, by [4] and it is
reasserted by the results from the experiments that we include in Section 4.

Discriminative learning with the TM algorithm, as it has been presented
in this paper, can only be used in supervised classification problems with no
missing values, but it can be extended to deal with missing values an with other
problems such as unsupervised classification by using a hybrid of the TM and
EM algorithms. On the other hand, the same idea can be extended to structural
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learning, that is, searching in the space of structures and parameters in order to
find the model which maximizes the conditional log-likelihood function.
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