
Qualified Probabilistic Predictions
Using Graphical Models

Zhiyuan Luo and Alex Gammerman

Computer Learning Research Centre,
Royal Holloway, University of London,

Egham, Surrey TW20 0EX, UK
{zhiyuan, alex}@cs.rhul.ac.uk

Abstract. We consider probabilistic predictions using graphical models
and describe a newly developed method, fully conditional Venn predic-
tor (FCVP). FCVP can provide upper and lower bounds for the condi-
tional probability associated with each predicted label. Empirical results
confirm that FCVP can give well-calibrated predictions in online learn-
ing mode. Experimental results also show the prediction performance of
FCVP is good in both the online and the offline learning setting without
making any additional assumptions, apart from i.i.d.

1 Introduction

We are interested in making probabilistic predictions about a sequence of exam-
ples z1, z2, . . ., zn. Each example zi consists of an object xi and its label yi. The
objects are elements of an object space X and the labels are elements of a finite
label space Y . The example space Z can be defined as Z = X ×Y . It is assumed
that the example sequence is generated according to an i.i.d. (independently and
identically distributed) probability distribution P in Zn.

Suppose that the label space Y is enumerated for all possible classification
labels 1, 2, ..., |Y |. The learner Γ is a function on a finite sample of n training
examples (z1, z2, ..., zn) ∈ Zn that makes a prediction for a new object xn+1 ∈ X

Γ : Zn × X → [0, 1]|Y |. (1)

Probability forecasting estimates the conditional probability of a possible la-
bel given an observed object. For each new object xn+1 (with true label yn+1

withheld from the learner), a set of predicted conditional probabilities for each
possible labels are produced. In the online learning setting, examples are pre-
sented one by one. The learner Γ takes object xi, predicts ŷi, and then gets a
feedback yi. The new example zi = (xi, yi) is then included in the training set
for the next trial. In the offline setting, the learner Γ is given a training set
(x1, y1), (x2, y2), ..., (xn, yn) to predict on a test set xn+1, xn+2, ..., xn+k.

This paper considers probabilistic predictions by using graphical models
where examples are structured and more importantly, the data generating prob-
ability distribution P can be decomposed [4]. Firstly, we briefly discuss the

L. Godo (Ed.): ECSQARU 2005, LNAI 3571, pp. 111–122, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

112 Z. Luo and A. Gammerman

Bayesian belief network approach to probabilistic predictions and a technique
called sequential learning to represent and update imprecision of conditional
probabilities in the light of new cases [7]. Then we present a newly developed
approach, called Venn probability machine, to probabilistic predictions [8] . In
particular, we discuss fully conditional Venn predictor (FCVP) designed for the
graphical models and its implementation. Finally, experiments are carried out
on the simulated datasets to evaluate the FCVP. The empirical results confirm
that predictions of FCVP are well-calibrated, in the sense that the error proba-
bility intervals produced by the FCVP bound the number of prediction errors.
The experimental results demonstrate the performance of FCVP is good.

2 Bayesian Belief Networks

Bayesian belief networks are graphical knowledge representations. A Bayesian
belief network can be represented as a pair (G,P). Qualitative knowledge G is a
directed acyclic graph where the nodes V of the graph G are random variables.
In this paper, we only consider the nodes V that take a finite set of values. The
graph G is a representation of quantitative knowledge P that factorises in the
form

P (V) =
∏

vi∈V

P (vi | pa(vi)), (2)

where pa(vi) is a set of parent nodes of vi in G.
Various algorithms exist to exploit and take full advantage of the indepen-

dence relationships embodied in the network and efficient evidence propagation
algorithms have been developed [1]. One of these approaches is called junction
tree algorithm [3]. The junction trees are tree-like data structures whose vertices
are labelled by cliques and whose edges labelled by separator sets form by inter-
section of two cliques on either side. Given a Bayesian belief network, a junction
tree can be obtained [1]. This is done by (1) constructing an undirected graph
called the moral graph from the Bayesian belief network; (2) selectively adding
arcs to the moral graph to form a triangulated graph; (3) identifying the maxi-
mal cliques from the triangulated graph; (4) building the junction tree, starting
with cliques as the nodes, where each link between two cliques is labelled by a
separator. It has been shown that the joint probability distribution P (V) in a
junction tree can be represented as

P (V) =

∏
ci∈C Ψ(ci)∏
si∈S Ψ(si)

, (3)

where Ψ indicates the potential function on the cliques (C) and separators (S)
which takes non-negative values. Note that Ψ(ci) ∝ P (ci), Ψ(si) ∝ P (si) for
ci ∈ C and si ∈ S.

The junction tree can be used for efficient inference. When evidence arrives
in a network, it is first absorbed into the junction tree. Then message passing

Qualified Probabilistic Predictions Using Graphical Models 113

protocol is used to propagate the evidence. The marginal distribution of a vari-
able, conditional on some evidence can be found by local computation on the
junction tree [1].

3 Parameter Learning

So far, we have assumed that the conditional probability tables in (2) for a
given Bayesian belief network can be specified precisely. However, this assump-
tion may not be realistic. The conditional probabilities derived from subjective
assessments or specific dataset are subject to inevitable imprecision. The goal
of parameter learning is to revise conditional probabilities for a given network
topology as new cases arrive [5]. One such parameter learning method was pro-
posed by Spiegelhalter and Lauritzen [7], namely sequential learning, and we
follow here their approach.

The basic idea of sequential learning is to represent the imprecision of these
conditional probabilities explicitly as parameters θ. In a Bayesian belief network
setting, it is reasonable to partition the space θ into a set of small spaces θi con-
cerning each node vi and assume θi is independent a prior to each other. That
is, P (θ) =

∏n
i=1 P (θi), where n is the number of nodes in V . Each conditional

probability table attached to node vi is determined uniquely by the parameter θi.
P (V | θ) can be written as follows due to the conditional independence reflected
in the model P (V | θ) =

∏
vi∈V P (vi | pa(vi), θi). The joint probability distribu-

tion on V and θ is then calculated as P (V, θ) =
∏

vi∈V P (vi | pa(vi), θi)P (θi). It
is clear that the parameter θi may be considered as another parent node of vi

in the network. These θi parameters represent summary of past cases.
Given the network structure, P (vi | pa(vi), θi) and P (θi) specified for each

node vi, the task now is to calculate the posterior distribution P (θ | e) when an
instantiation of variables e is obtained. Three basic operations are involved: dis-
semination of experience, propagation of evidence and retrieval of new informa-
tion. The procedure can be repeated in the same manner as more instantiation
of variables arrive. Different assumptions are made for different operations to
simplify the computation. Firstly, independence of each parameter θi over node
vi is assumed. This allows the dissemination operation to be carried out locally.
For each variable vi, we apply

P (vi | pa(vi)) =
∫

P (vi | pa(vi), θi)P (θi)dθi (4)

to get the means of the conditional probabilities P (vi | pa(vi), θi) for each node
vi. Secondly, the current ‘marginal probabilities’ are used to initialise the stan-
dard evidence propagation methods, such as the junction tree algorithm de-
scribed before. Finally, in the retrieval operation, the following calculation is
performed:

P (θi | e) =
∑

vi,pa(vi)

P (θi | vi, pa(vi), e)P (vi, pa(vi) | e). (5)

114 Z. Luo and A. Gammerman

Since θi is conditional independent of e given vi and pa(vi), thus

P (θi | e) =
∑

vi,pa(vi)

P (θi | vi, pa(vi))P (vi, pa(vi) | e). (6)

It is clear that there is a mixture distribution for the parameter θi if vi and
pa(vi) are not observed in the new case e. To simplify the retrieval operation,
it is assumed that the individual parameter θi for node vi can be further parti-
tioned and is conditional on each possible configuration of its parent set pa(vi).
Therefore, each conditional probability distribution under a configuration of the
parent nodes can be individually updated in the light of e.

In this paper, we model θi as Dirichlet distributions and update these parame-
ter θi with complete new cases. In particular, we use a Dirichlet prior distribution
as a conjugate form and the mean of the Dirichlet distribution is used as the
estimation of P (vi | pa(vi)). The Dirichlet has a simple interpretation in terms
of pseudo counts. Both dissemination and retrieval operations are straightfor-
ward with completed data. Note that we use BDeu prior (likelihood equivalent
uniform Bayesian Dirichlet) in our experiments [2].

4 Venn Probability Machines

The Venn Probability Machine (VPM) is a simple yet powerful framework for
probability forecasts [8]. Unlike many conventional probabilistic prediction ap-
proaches, VPM gives several probability distributions for the predicted label.
These probability distributions are close to each other so that probabilistic pre-
diction made by the VPM will be practically useful. Therefore, VPM is a type
of multiprobability predictor.

The basic idea behind the VPM is as follows. Given the training example
sequence (x1, y1), ..., (xn−1, yn−1) and a new test example xn, we consider each
possible completion for xn. For each possible completion y ∈ |Y |, we have n
examples (x1, y1), ..., (xn, y) and then divide all the examples into a number
of categories. It is required that such division of examples is independent of
the order of examples. Many existing supervised machine learning algorithms
can be used to perform the division. For example, a simple way to divide the
examples into different categories is based on the 1-nearest neighbour algorithm.
Two examples are assigned to the same category if their nearest neighbours have
the same label. Taking the category T containing the example (xn, y), we can
estimate the relative frequence of examples labelled j in T as

Ay,j =
|{(x′, y′) ∈ T : y′ = j}|

|T | . (7)

Those relative frequencies obtained in (7) are interpreted as empirical probability
distributions for the predicted labels.

Having considered all possible completion for xn, we have a |Y | × |Y | Venn
probability matrix A. The rows of the matrix A represent the frequency count

Qualified Probabilistic Predictions Using Graphical Models 115

of each class label in the training examples set which have the same type as the
new test example. The minimum and maximum frequency counts within each
row give us the lower and upper bounds for conditional probabilities of possible
labels given xn. VPM predicts the label for the new test example using the
respective column which contains the largest of minimum entries.

VPM is different from Bayesian learning theory and PAC learning [8]. Unlike
Bayesian learning theory, VPM requires no empirical justification for probabil-
ities. In contrast with PAC learning which aims to estimate the unconditional
probability of error, VPM tries to estimate the conditional distribution of the la-
bel given the new object. A useful property of VPM is its self-calibration nature
in the online learning setting. It has been proved that the probability intervals
generated by the VPM is well-calibrated in the sense that the VPM can bound
the true conditional probability for each new test object in an online test [8].
Using the VPM’s upper and lower intervals for conditional probabilities, we can
estimate the bounds for the number of errors made.

4.1 Online Compression Models

The Venn probability machine can be generalised to online compression mod-
els which can summarise statistical information efficiently and perform lossy
compression [9]. Formally, an online compression model (OCM) is defined as
M = (Σ,�, Z, (Fn), (Bn)) where

– Σ is a measurable space called summary space containing summaries σ.
– � ∈ Σ is special summary called the empty summary and we set σ0 = �.
– Z is a measurable space containing the examples zi

– Fn, n = 1, 2, ... are measurable functions of the type Σ × Z → Σ. Fn are
called forward functions that allow us to update summary σn−1 to σn given
the example zn in an online fashion. Therefore, we have Fn(σn−1, zn) = σn.

– Bn, n = 1, 2, ... are backward kernels of the type Σ ↪→ Σ × Z. It is required
that Bn are inverse to Fn in the sense that Bn(F−1

n (σ) | σ) = 1 for each
σ ∈ Fn(Σ × Z). Bn map σ ∈ Σ to probability distributions in Z.

Intuitively, the summaries σ can be considered as sufficient statistics for the
observed example sequence. For example, the summaries σ can be the number
of ones in a binary sequence generated by Bernoulli models. We start with the
empty summary � which indicates that we do not have information about the
data, i.e. σ0 = �. When the first example z1 arrives, we update our summary to
σ1 using F1(σ0, z1). We update our summary to σ2 = F2(σ1, z2) given the second
example z2, so on and so forth. Basically, forward functions Fn extract all useful
information from the observed example sequence and perform lossy compression.
It is important that the summaries are calculated in an online fashion, i.e. Fn

updates σn−1 to σn given zn. On the other hand, backward kernels Bn perform
decompression and allow us to find the conditional distribution of a particular
example sequence (z1, z2, ..., zn) given the summary σn. This is done iteratively.
Given σn, we generate (σn−1, zn) from the distribution Bn(σn). Then we generate
(σn−2, zn−1) from Bn−1(σn−1), so on and so forth.

116 Z. Luo and A. Gammerman

VPM can be generalised to an OCM. When we have seen n−1 examples, the
OCM summaries these examples and has σn−1. Given a test example xn, we can
try all possible completion y ∈ |Y | and have σn = Fn(σn−1, (xn, y)). We specify
a partition An and use it to divide the set F−1

n ⊆ Σn−1 × Z into a number
categories. This is done by assigning (σ′, z′) and (σ′′, z′′) to the same category if
and only if An(σ′, z′) = An(σ′′, z′′) where An(σ, z) represents the element of the
partition An containing (σ, z). Consider the category T = An(σn−1, (xn, y)), we
estimate the probability distribution of the label y as

py =
Bn({(σ∗, (x∗, y∗)) ∈ T : y∗ = y}|σn)

Bn(T |σn)
. (8)

4.2 Fully Conditional Venn Predictor

When examples zi are generated from Bayesian belief networks, an explicit OCM
can be defined and an efficient Venn predictor called fully conditional Venn
predictor (FCVP) can be constructed. The junction tree constructed from the
Bayesian belief network can serve as a basis for efficient summaries of observed
data sequence. As discussed earlier, a junction tree is a graphical data structure
consisting of cliques and separators. For convenience, we refer to both the cliques
and the separators of a junction tree as clusters. We can associate a table with
each cluster where the index of the table is determined by the configurations on
the cluster and each entry of the table is a non-negative integer. Obviously, the
number of entries in the table on a cluster depends on the number of possible
configurations of the variables in the cluster. The table size is defined as the sum
of all entries. All the tables on the clusters form a table set for a junction tree.
We are only interested in table sets all of whose tables have the same size.

We define an example z is consistent with a configuration of a cluster E if the
configuration coincides with the restriction z|E of z to E. If we assign the number
of past examples which are consistent with each configuration of the clusters to
appropriate entries of the tables on the clusters, we have a table set σ generated
by the example sequence. The length of each example sequence generating σ will
be equal to the table size of σ. The number of example sequences generating a
table set σ is specified as #σ. One of possible operations on the table set σ is to
query the number assigned to a configuration of a cluster u, which is defined as
the σ-count of the configuration. For example, σu((xi, yi)) will return the count
assigned by the table set σ to a configuration of a cluster u which is consistent
with the example (xi, yi).

An OCM M = (Σ,�, Z, (Fn), (Bn)) can be defined for the junction tree
model as follows:

– Summary space Σ consists of summaries defined by the consistent table sets
σ.

– Empty summary � is a table set with size 0.
– Z consists of the set of all examples. An example zi is simply a particular

configuration on V.

Qualified Probabilistic Predictions Using Graphical Models 117

– Given an example zn, the forward function Fn will update the table set by
adding 1 to the entries of the table set which are consistent with zn.

– An example z is consistent with a summary σ if the σ-count of each config-
uration that is consistent with z is positive. For the size of σ = n, backward
kernels Bn can be defined as

Bn({(σ ↓ z, z)} | σ) =
#(σ ↓ z)

#σ
(9)

where σ ↓ z means subtracting 1 from the σ-count of any configuration that
is consistent with z.

The junction tree has the property that for each pair U , V of cliques with
intersection S, all cliques on the path between U and V contain S. For a table
set σ defined on a junction tree, it is consistent if and only if: (1) each table in σ
has the same size, and (2) if clusters E1 and E2 intersect, the marginalisations
of their tables to E1 ∩E2 coincide. Given a summary σ of size n in the junction
tree model, the number of example sequences of length n that are consistent
with the table set σ is

#σ =
n!

∏
s∈S fpσ(s)∏

c∈C fpσ(c)
(10)

where fpσ(E) is the factorial-product of a cluster E in a summary σ and fpσ(E) =∏
a∈configurations of E σE(a)!. It has been proved in [9] that given the summary

σn of the first n examples, the conditional probability that zn = (xn, y) based
on maximum likelihood estimation is∏

c∈C σc((xn, y))
n

∏
s∈S σs((xn, y))

. (11)

Note that the ratio defined in (11) is set to 0 if any of the factors in the nu-
merator or denominator is 0; in this case zn = (xn, y) is not consistent with the
summary σ.

Having specified the OCM for junction tree model, we are now ready to de-
scribe the Venn predictor. When a junction tree OCM has one or more variables
as labels, a Venn predictor called fully conditional Venn predictor can be defined
by determining partition An in which An(σ, z) consists of all (σ, z′) for which
z and z′ match on all non-label variables. Once the partition An is established,
the VPM can make predictions and provide upper and lower bounds for the con-
ditional probability associated with each predicted label. The FCVP algorithm
in the online learning mode is presented below.

5 Experiments

5.1 Dataset

The well-known ‘Visit to Asia’ example is used for our experiments [4]. There
are 8 binary variables in this example, see Figure 1. For the online learning ex-
periments, three datasets with 1000, 2000 and 5000 examples were randomly

118 Z. Luo and A. Gammerman

Algorithm 1. Fully Conditional Venn Predictor
Require: a list of variables and the values each variable can take
Require: junction tree with its cliques C and separators S
Require: object space X, label space Y and target label space Y t ⊆ Y
Require: N examples (x1, y1), (x2, y2), . . . , (xN , yN)

σ0 = �
for n = 1 to N do

get xn ∈ X of example (xn, yn)
for y = 1 to | Y | do

σ = Fn(σn−1, (xn, y))
for y′ = 1 to | Y | do

Ay,y′ =
∏

c∈C σc((xn,y′))∏
s∈S σs((xn,y′)) {Ay,y′ is set to 0 if any of the factors in the numerator

or denominator is 0}
end for

end for
Ay,y′ =

Ay,y′∑
y′ Ay,y′

for yt = 1 to | Y t | do
Ay,yt =

∑
y′\yt Ay,y′

end for
predict ŷt = arg maxyt∈Y t(miny∈Y Ay,yt)
output predicted probability interval for ŷt as [miny Ay,ŷt , maxy Ay,ŷt]
get yn ∈ Y of example (xn, yn)
σn = Fn(σn−1, (xn, yn))

end for

Fig. 1. ‘Visit to Asia’ example

generated using the network structure and the associated conditional proba-
bilities. For the offline learning experiments, another three datasets were ran-
domly generated: (training size=3000, test size=1000), (training size=2000, test
size=2000) and (training size=1000, test size=3000).

5.2 Methods

For experiment purpose, we assume that we have evidence on the variables A,
S, X and D (patient history and diagnostic tests) and would like to predict the

Qualified Probabilistic Predictions Using Graphical Models 119

conditional probabilities of the variables B, T, E and L (medical diagnosis),
respectively, given these observations.

Fully conditional Venn predictor (FCVP) was implemented using Bayes net
toolbox (BNT) for Matlab [6]. In order to evaluate prediction performance of
FCVP, we also implemented the junction tree algorithm and the sequential learn-
ing algorithm using BNT. The junction tree algorithm is specified with precise
conditional probabilities, i.e. it has the same conditional probabilities as those
used to generate the datasets in the previous section. On the other hand, both
the FCVP and sequential learning algorithm will have to learn these conditional
probabilities from the past examples. The implemented systems, namely FCVP,
junction tree algorithm (JT) and sequential learning (SL) are evaluated on the
datasets generated in the previous section. The conditional probabilities were
calculated on each of the label variables {B, T, L, E} and predictions made.

The junction tree algorithm and sequential learning produce a single probabil-
ity distribution on a label and predict the class label with the largest associated
conditional probability ŷi = arg maxy∈Y p̂i,y given the test example xi. On the
other hand, FCVP outputs an interval for the probability that the predicted
label is correct. If the interval is [ai, bi] at the trial i, the complementary interval
[1 − bi, 1 − ai] is the error probability interval.

If more than one label has the largest associated conditional probability, we
have multiple predictions. A prediction is correct if the true label for the example
matches the predicted label. Otherwise it is an error.

5.3 Results

The predictions made by FCVP on the variables B, T, E and L were obtained in
the experiments. Figure 2 shows the performance of FCVP on the variable B in
the online learning setting on the datasets of 1000 examples. In this figure, the
cumulative lower and upper probability error bounds, the prediction errors and
multiple predictions are presented. These plots confirm that the error probability
intervals generated by FCVP are well-calibrated. FCVP can produce a multiple
prediction in the sense that the predicted probability interval for each label
is [0, 1]. Note that the total number of multiple predictions is small and the
multiple predictions occur at the beginning of the trials when some combination
is observed for the first time. For example, 7 multiple predictions were observed
on a dataset of 1000 examples. Similar prediction behaviour was observed for
the variables T, L and E.

In our experiments, the three algorithms were tested and evaluated on the
same datasets. Figure 3 displays the comparative performance results on B on
1000 examples in terms of the number of prediction errors. It is clear that the
prediction performance of FCVP is very similar to the one produced by the
junction tree algorithm with precise conditional probabilities and much superior
to that of the sequential learning. Table 1 presents the summaries of results on
different datasets in terms of the cumulative number of prediction errors and the
number of multiple predictions. For example, the junction tree algorithm made
31 prediction errors on the variable B over 1000 examples, see Table 1. On the

120 Z. Luo and A. Gammerman

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

Examples in trial

C
um

ul
at

iv
e

pr
ed

ic
tio

n
er

ro
rs

FCVP − B

error curve (lower bound)
error curve (upper bound)
multiple predictions
total errors

Fig. 2. FCVP results (1000 examples) - online learning mode

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

Examples in trial

C
um

ul
at

iv
e

pr
ed

ic
tio

n
er

ro
rs

Cumulative Prediction Errors − B

JT
SL
FCVP

Fig. 3. Comparative performance (1000 examples) - online learning mode

other hand, the prediction errors made by the sequential learning method and
FCVP were 55 and 31, respectively.

Three experiments were carried out to compare the performance of FCVP
with the junction tree algorithm with precise conditional probabilities and the
sequential learning in offline learning setting. The results are shown in Table
2. These results demonstrate that FCVP achieves similar performance with the
junction tree algorithm and outperforms the sequential learning method in al-
most all the experiments.

Qualified Probabilistic Predictions Using Graphical Models 121

Table 1. Comparative performance - online learning mode

No. of Examples 1000 2000 5000

Method Label #errs #multi. preds #errs #multi. preds #errs #multi. preds

JT B 31 0 73 0 144 0
T 6 0 25 0 47 0
L 222 0 427 0 1068 0
E 30 0 76 0 155 0

SL B 55 2 103 3 270 2
T 7 1 25 1 45 1
L 368 1 705 2 1794 1
E 39 1 84 1 162 1

FCVP B 31 7 69 7 143 6
T 8 7 25 7 45 6
L 221 7 434 7 1071 6
E 33 7 77 7 163 6

Table 2. Comparative performance – offline learning mode

Dataset training set=3000, training set=2000, training set=1000,
test set=1000 test set=2000 test set=3000

Method Label #errs #multi. preds #errs #multi. preds #errs #multi. preds

JT B 43 0 68 0 99 0
T 12 0 19 0 37 0
L 217 0 437 0 637 0
E 40 0 77 0 104 0

SL B 50 0 102 0 182 0
T 12 0 19 0 37 0
L 348 0 676 0 1069 0
E 43 0 71 0 115 0

FCVP B 38 0 65 0 95 0
T 12 0 19 0 37 0
L 221 0 437 0 648 0
E 40 0 76 0 104 0

6 Conclusions

We present a newly developed probabilistic prediction method using graphi-
cal models, fully conditional Venn predictor (FCVP). FCVP can provide well-
calibrated probabilistic predictions in the online learning setting. Unlike the se-
quential learning method, FCVP makes no additional independence assumptions
about probability distributions associated with the graphical structure. Empiri-
cal results have shown FCVP can achieve good prediction performance over the
sequential learning method in both the online and offline learning setting.

122 Z. Luo and A. Gammerman

Acknowledgements. We thank Volodya Vovk and Tony Bellotti for their dis-
cussions and comments. Financial support has been received from the following
bodies: MRC through grant S505/65 and Royal Society through grant “Efficient
randomness testing of random and pseudorandom number generators”.

References

[1] R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter: Probabilistic
Networks and Expert Systems. Statistics for Engineering and Information Science.
Springer-Verlag (1999).

[2] D. Heckerman and D. Geiger: Likelihoods and parameter priors for bayesian net-
works. Technical Report MSR-TR-95-54, Microsoft Research (1995).

[3] Finn V. Jensen: An introduction to Bayesian Networks. Taylor and Francis, Lon-
don, UK (1996).

[4] S. L. Lauritzen and D. J. Spiegelhalter: Local computations with probabilities on
graphical structures and their application to expert systems (with discussion). J.
Royal Statist. Soc. series B, (50):157–224 (1988).

[5] Z. Luo and A. Gammerman: Parameter learning in Bayesian belief networks. Pro-
ceeding of IPMU’92, 25–28 (1992).

[6] K. Murphy: The Bayes Net Toolbox for Matlab. Computing Science and Statistics.
33 (2001).

[7] D. J. Spiegelhalter and S. L. Lauritzen: Sequential updating of conditional proba-
bilities on directed graphical structures. Networks, 20(5):579–605 (1990).

[8] V. Vovk, G. Shafer, and I. Nouretdinov: Self-calibrating probability forecasting.
In S. Thrun, L. Saul, and B. Schölkopf (ed.), Advances in Neural Information
Processing Systems 16. MIT Press, Cambridge, MA (2004).

[9] V. Vovk, A. Gammerman, and G. Shafer: Algorithmic learning in a random world.
Springer-Verlag, (To appear) (2005).

	Introduction
	Bayesian Belief Networks
	Parameter Learning
	Venn Probability Machines
	Online Compression Models
	Fully Conditional Venn Predictor

	Experiments
	Dataset
	Methods
	Results

	Conclusions
	References

