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Abstract. A black hole is a highly harmful stationary process residing
in a node of a network and destroying all mobile agents visiting the node,
without leaving any trace. We consider the task of locating a black hole
in a (partially) synchronous tree network, assuming an upper bound on
the time of any edge traversal by an agent. The minimum number of
agents capable to identify a black hole is two. For a given tree and given
starting node we are interested in the fastest possible black hole search
by two agents. For arbitrary trees we give a 5/3-approximation algorithm
for this problem. We give optimal black hole search algorithms for two
“extreme” classes of trees: the class of lines and the class of trees in which
any internal node (including the root which is the starting node) has at
least 2 children.
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1 Introduction

1.1 The Background and the Problem

Security of mobile agents working in a network environment is an important
issue which receives recently growing attention. Protecting agents from “host
attacks”, i.e., harmful items stored in nodes of the network, has become almost
as urgent as protecting a host, i.e., a node of the network, from an agent’s attack
[8, 9]. Various methods of protecting mobile agents against malicious hosts have
been discussed, e.g., in [5, 6, 7, 8, 9, 10].
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In this paper we consider hostile hosts of a particularly harmful nature, called
black holes [1, 2, 3, 4]. A black hole is a stationary process residing in a node of a
network and destroying all mobile agents visiting the node, without leaving any
trace. Since agents cannot prevent being annihilated once they visit a black hole,
the only way of protection against such processes is identifying the hostile node
and avoiding further visiting it. Hence we are dealing with the issue of locating a
black hole: assuming that there is at most one black hole in the network, at least
one surviving agent must find the location of the black hole if it exists, or answer
that there is no black hole, otherwise. The only way to locate the black hole is
to visit it by at least one agent, hence, as observed in [2], at least two agents are
necessary for one of them to locate the black hole and survive. Throughout the
paper we assume that the number of agents is minimum possible for our task,
i.e., 2, and that they start from the same node, known to be safe.

In [1, 2, 3, 4] the issue of efficient black hole search was extensively studied in
many types of networks. The underlying assumption in these papers was that
the network is totally asynchronous, i.e., while every edge traversal by a mobile
agent takes finite time, there is no upper bound on this time. In this setting
it was observed that, in order to solve the problem, the network must be 2-
connected, in particular black hole search is infeasible in trees. This is because,
in asynchronous networks it is impossible to distinguish a black hole from a
“slow”link incident to it. Hence the only way to locate a black hole is to visit
all other nodes and learn that they are safe. (In particular, it is impossible to
answer the question of whether a black hole actually exists in the network, hence
[1, 2, 3, 4] worked under the assumption that there is exactly one black hole and
the task was to locate it.)

Totally asynchronous networks rarely occur in practice. Often a (possibly
large) upper bound on the time of traversing any edge by an agent can be
established. Hence it is interesting to study black hole search in such partially
synchronous networks. Without loss of generality, this upper bound on edge
traversal time can be normalized to 1 which yields the following definition of
the time of a black hole search scheme: this is the maximum time taken by the
scheme, i.e. the time under the worst-case location of the black hole (or when it
does not exist in the network), assuming that all edge traversals take time 1.

Our partially synchronous scenario makes a dramatic change to the problem
of searching for a black hole. Now it is possible to use the time-out mechanism
to locate the black hole in any graph, with only two agents, as follows: agents
proceed along edges of a spanning tree. If they are at a safe node v, one agent
goes to the adjacent node and returns, while the other agent waits at v. If after
time 2 the first agent has not returned, the other one survives and knows the
location of the black hole. Otherwise, the adjacent node is known to be safe and
both agents can move to it. This is in fact a variant of the cautious walk described
in [2] but combining it with the time-out mechanism makes black hole search
feasible in any graph. Hence the issue is now not the feasibility but the time
efficiency of black hole search, and the present paper is devoted to this problem.
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Since for any network, black hole search can be done using only the edges of
its spanning tree, solving the problem of fast black hole search on trees seems a
natural first step. Hence in this paper we restrict attention to black hole search
in tree networks using two agents, and our goal is to accomplish this task in
minimum time. Clearly, in many graphs, there are more efficient black hole
search schemes than those operating in a spanning tree of the graph, and the
generalization of our problem to arbitrary networks remains an important and
interesting open issue.

The time of a black hole search scheme should be distinguished from the
time complexity of the algorithm producing such a scheme. While the first was
defined above for a given input consisting of a network and a starting node, and
is in fact the larger of the numbers of time units spent by the two agents, the
second is the time of producing such a scheme by the algorithm. In other words,
the time of the scheme is the time of walking and the time complexity of the
algorithm is the time of thinking.

Constructing a fastest black hole search scheme for arbitrary trees turns out
to be far from trivial. In particular, the following problem remains open. Does
there exist a polynomial time algorithm which, given a tree and a starting node
as input, produces a black hole search scheme working in shortest possible time
for this input? Nevertheless, we show fastest schemes for some classes of trees
and give a 5/3-approximation algorithm for the general case.

1.2 Our Results

For arbitrary trees we give a 5/3-approximation algorithm for the black hole
search problem. More precisely, given a tree and a starting node as input, our
algorithm produces a black hole search scheme whose time is at most 5/3 of the
shortest possible time for this input.

We give optimal black hole search algorithms for two “extreme” classes of
trees: the class of lines and the class of trees in which any internal node (including
the root which is the starting node) has at least 2 children. More precisely, for
every input in the respective classes these algorithms produce a black hole search
scheme whose time is the shortest possible for this input.

All our algorithms work in time linear in the size of the input.

2 Model and Terminology

We consider a tree T rooted at node s which is the starting node of both agents,
and is assumed to be safe (s is not a black hole). Notions of child, parent,
descendant and ancestor, are meant with respect to this rooted tree. Agents
have distinct labels. They can communicate only when they meet (and not, e.g.,
by leaving messages at nodes). We assume that there is at most one black hole
in the network. This is a node which destroys any agents visiting it. A black hole
search scheme (BHS-scheme) for the input (T, s) is a pair of sequences of edge
traversals (moves) of each of the two agents, with the following properties.
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– Each move takes one time unit.
– Upon completion of the scheme there is at least one surviving agent, i.e., an

agent that has not visited the black hole, and this agent either knows the
location of the black hole or knows that there is no black hole in the tree.
The surviving agents must return to s.

The time of a black hole search scheme is the number of time units until the
completion of the scheme, assuming the worst-case location of the black hole (or
its absence, whichever is worse). It is easy to see that the worst case for a given
scheme occurs when there is no black hole in the network or when the black hole
is the last unvisited node, both cases yielding the same time. A scheme is called
fastest for a given input if its time is the shortest possible for this input.

For any edge of a tree we define the following states:

– unknown, if no agent has moved yet along this edge (initial state of every
edge),

– explored, if either the remaining agents know that there is no black hole
incident to this edge, or they know which end of the edge is a black hole.

Note that in between meetings, an edge may be neither unknown nor ex-
plored. This is the case when an unknown edge has been just traversed by an
agent.

Any BHS-scheme must have the following property: after a finite number of
steps, at least one agent stays alive and all edges are explored (there is at most
one black hole, so once the black hole has been found, all edges are explored).

The explored territory at step t of a BHS-scheme is the set of explored edges.
At the beginning of a BHS-scheme the explored territory is empty. We say that a
meeting occurs in node v at step t when the agents meet at node v and exchange
information which strictly increases the explored territory. Node v is called a
meeting point.

In any step of a BHS-scheme, an agent can traverse an edge or wait in a node.
Also the two agents can meet. If at step t a meeting occurs, then the explored
territory at step t is defined as the explored territory after the meeting. The
sequence of steps of a BHS-scheme between two consecutive meetings is called a
phase.

3 Preliminary Results

Lemma 1. In a BHS-scheme, an unexplored edge cannot be traversed by both
agents.

Hence in a BHS-scheme, an edge can be explored only in the following way:
an agent traverses this edge and then a meeting is scheduled. Whether it occurs
or not (in the latter case the agent vanished in the black hole) the edge becomes
explored.

Lemma 2. During a phase of a BHS-scheme an agent can traverse at most one
unexplored edge.
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Therefore an unknown edge could be explored in the next phase only if it
is adjacent to the explored territory. The explored territory increases only at
scheduled meeting points.

Lemma 3. At the end of each phase, the explored territory is increased by one
or two edges.

We define a 1-phase to be a phase in which exactly one edge is explored.
Similarly, we define a 2-phase to be a phase in which exactly two edges are
explored. In view of Lemma 3, every phase is either a 1-phase or a 2-phase.

Lemma 4. Let v be a meeting point at step t in a BHS-scheme. Then at least
one of the following holds: v = s or v is an endpoint of an edge which was already
explored at step t − 1.

Hence an agent which traversed an unexplored edge must return to the ex-
plored territory in order to go to the meeting point. A corollary of Lemmas 1, 2
and 4 is that at any step of a BHS-scheme the explored territory is connected.

A node p is called a limit of the explored territory at step t if it is incident
both to an explored and to an unexplored edge.

A way of exploring exactly one edge in a phase is the following: one of the
agents walks through the explored territory to its limit p, while the other agent
walks through the explored territory to p, traverses an unknown edge and returns
to p. If we assume that both agents are at a limit p of the explored territory at
step t and (p, u) is an unknown edge towards node v, we define the following
procedure:
probe(v): one agent traverses edge (p, u) (which is towards node v) and returns
to node p to meet the other agent who waits. If they do not meet at step t + 2
then the black hole has been found.

We also define a procedure that the two agents could follow to explore two
new edges in a phase. Suppose that the two agents reside at node m at step t. Let
p1, ..., pi be the limits of the explored territory at that step. Each of the unknown
edges which could be explored in the following phase has to be incident to a node
from the set {p1, ..., pi}. Let the two selected unknown edges for exploration be
(k, pk) and (l, pl), pk, pl ∈ {p1, ..., pi} (possibly pk = pl). We assume that node
m belongs to the path < k, l >. The definition of the procedure is the following:
split(k, l): One of the agents traverses the path from node m to node k and
returns towards node pl. The other traverses the path from node m to node l
and returns towards node pk. Let dist(l, k) denote the number of edges in the
path from node k to node l. If they do not meet at step t + dist(l, k) then the
black hole has been found.

4 Black Hole Search in a Line

In this section we construct an optimal black hole search algorithm for lines,
with linear time complexity. A line is a graph L = (V,E), where V = {0, ..., n}
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and E = {[i, i + 1] : i = 0, 1, ..., n − 1}. 0 and n are called endpoints of the line.
The starting node is denoted by s, while a and b denote the distances between
s and the endpoints of the line, with a ≤ b, hence a + b = n. We assume b > 0,
otherwise the line consists of a single node. We call right the direction from s
towards the closer endpoint and left the other direction.

Theorem 1. The time of any BHS-scheme on the line is at least:

– 4n − 2, when a = 0
–

∑a
i=1 2i, when 1 ≤ a = b ≤ 5

– 4n − 6, when a = 1 < b
– 4n − 10, when a = 2 < b or a = 3 < b
– 4n − 8, when a = 4 < b or a = 5 < b or a ≥ 6

We will now give an optimal algorithm to solve the black hole search problem
for the line (i.e. an algorithm which produces a fastest BHS-scheme for any
line). Suppose that both agents reside at the same node m. The algorithm uses
procedures probe, split and the following ones:

– walk(k): both agents go 1 step towards node k.
– walk-and-probe(v):

while the position of the agents is not adjacent to node v do
walk(v);
probe(v)

– return(s):
repeat walk(s) until all remaining agents are at s

The high-level description of Algorithm Line is the following:

– case a = 0: the two agents explore the line by probing left of s and return
– case 1 ≤ a = b ≤ 5: the two agents explore the line by repeated splits
– case a = 1 < b: the two agents first do a split and then explore the rest of

the line by probing left and return
– case a = 2 < b: the two agents first do a split, then explore all edges left of

s except one by probing, and finally explore the last two edges by a split
– case 3 ≤ a < b or a ≥ 5: the two agents first do two splits, then explore all

edges left of s except one by probing. They explore the last left edge together
with an edge right of s by a split and finally explore the remaining edges (if
any) which are right of s by probing and return

The precise formulation of the algorithm is given as Algorithm 1. The time
complexity of the algorithm is linear.

Theorem 2. Algorithm Line produces a fastest BHS-scheme for any line.

The proofs of the results of this section are omitted due to lack of space and
will appear in the full version of the paper.
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Algorithm 1. Algorithm Line
case a = 0

probe(0);
walk-and-probe(0);

case 1 ≤ a = b ≤ 5
for i := 1 to a

split(s − i, s + i);
case a = 1 < b

split(s − 1, s + 1);
walk-and-probe(0);

case a = 2 < b
split(s − 1, s + 1);
walk-and-probe(1);
split(0, s + 2);

case a = 3 < b
split(s − 1, s + 1);
split(s − 2, s + 2);
walk(s − 1);
walk-and-probe(1);
split(0, s + 3);

case 4 ≤ a < b OR a ≥ 6
split(s − 1, s + 1);
split(s − 2, s + 2);
walk(s − 1);
walk-and-probe(1);
split(0, s + 3);
walk(s + 2);
walk-and-probe(n);

return(s)

5 Black Hole Search in a Tree

In this section we study the problem of black hole search in trees.
Consider a tree T rooted at the starting node s. If e is an edge, e = (u, v)

means that v is the child of u. Let e = (u, v) be an edge of the tree. Consider
the following coloring which creates a partition of the edges of the tree. This
partition will be used in the analysis of our algorithms.

– assign red color to edge e if node v has at least two descendants,
– assign green color to edge e if v is a leaf and exactly one of the following

holds: u = s or the edge (t, u) is a red edge (where t is the parent of u),
– assign blue color to edge e if it has none of the above properties

Let e = (u, v) and e′ = (v, z) be two blue edges such that v is the unique
child of u and z is a leaf and the unique child of v. We call the set of these two
edges a branch. The set of all branches of blue edges with upper node u is called
a block.
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Lemma 5. In any BHS-scheme, the following holds: a green edge has to be
traversed by the agents at least 2 times, a red edge has to be traversed at least 6
times and a branch of blue edges requires a total of at least 6 traversals.

Proof. By Lemma 1 any edge has to be traversed 2 times by one agent to become
explored. In particular a green edge needs 2 traversals.

Consider a red edge e = (u, v). Let l be the number of descendants of node
v. In view of Lemmas 1 and 2, if during any phase after exploration edge e is
traversed always by only one agent then at least 2l ≥ 4 additional traversals are
required (an agent has to traverse e two times for every descendant of v). If there
is at least one phase after exploration of e where the edge is traversed by both
agents then at least 4 additional traversals of e are required for the exploration
of the edges with upper node v (both agents traverse e and return). Thus the
total minimum number of traversals is 6.

A branch of 2 blue edges can be traversed in the following ways. 2 traversals
are required for the exploration of the upper edge of the branch. If during any
phase after exploration of the upper edge, this edge is traversed always by only
one agent then at least 4 additional edge traversals on this branch are required.
If there is at least one phase after exploration of the upper edge when this edge is
traversed by both agents then at least 6 additional edge traversals on this branch
are required (both agents traverse the upper edge, then one of them explores the
lower edge and finally they return). Therefore the total minimum number of
traversals on each branch is 6.

Lemma 6. Any BHS-scheme requires at least 3, 1 and 3b time units for the
traversals of a red edge, a green edge and a block of b branches of blue edges,
respectively.

5.1 An Optimal Algorithm for a Family of Trees

Consider the family T of rooted trees with the following property: any internal
node of a tree in T (including the root) has at least 2 children. Trees in T will
be called bushy trees.

Let T be a bushy tree with root s and let u be an internal node of T . The
heaviest child v = H(u) of u is defined as a child v of u such that the subtree
T (v) rooted at v (which is also a bushy tree) has a maximum height among all
subtrees rooted at children of u. The lightest child v′ = L(u) of u is defined as
a child v′ of u such that the subtree T (v′) rooted at v′ has a minimum height
among all subtrees rooted in a child of u. Ties are broken arbitrarily. Notice that
H(u) and L(u) can be computed for all nodes u in linear time.

The high-level description of Algorithm Bushy-Tree is the following. Let m
be the meeting point of the two agents after a phase (initially m = s).

– Explore any pair of unknown edges (m,x), (m, y) with upper node m by
executing procedure split(x, y), leaving edge (m,L(m)) last.

– If there is one unknown edge with upper node m (which must be (m,L(m)))
explore this edge together with another unknown edge (if any) again using
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procedure split. If edge (m,L(m)) is the last unknown edge in the tree,
explore it by executing procedure probe(L(m)).

– If all edges with upper node m are explored, explore similarly as before any
unknown edges incident to the children of m and to ancestors of m.
Below we give the precise formulation of the algorithm.

Algorithm. Bushy-Tree

special-explore(s)

Procedure special-explore(v)

for every pair of unknown edges (v, x), (v, y) with upper node v do
split(x, y), so that edge (v, L(v)) is explored last

end for
if every edge is explored then

repeat walk(s) until (all remaining agents are at s)
else

case 1: every edge incident to v has been explored
next := relocate(v);
special-explore(next);

case 2: there is an unknown edge (v, z) incident to v
(* must be z = L(v) *)

explore-only-child(v, next);
special-explore(next);

end if

Function relocate(v) takes as input the current node v where both agents
reside and returns the new location of the two agents. If there is an unknown
edge incident to a child of v then the agents go to that child. Otherwise the two
agents go to the parent of v.

Function relocate(v)

case 1.1: ∃ an unknown edge incident to w ∈ children(v)
walk(w);
relocate := w

case 1.2: every edge incident to any child of v is explored
let t be the parent of v;
walk(t);
relocate := t

Procedure explore-only-child(v, next) takes as input the current node v where
both agents reside and returns the new meeting point after the exploration of
edge (v, L(v)). The description of the procedure is the following:
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– If there is an unknown edge incident to a child w of v, w �= L(v), then the
agents explore edge (w,H(w)) together with edge (v, L(v)) by split(H(w),
L(v)). The new meeting point is w.

– If every edge incident to any child w of v, different from L(v), is explored and
edge (v, L(v)) is not the last unknown edge in the tree, then find the deepest
ancestor a of v with unknown edges whose upper node is a descendant of
a; the agents explore edge (D(a),H(D(a))) (where D(a) is the closest de-
scendant of a with incident unknown edges), together with edge (v, L(v)),
by split(H(D(a)), L(v)); the new meeting point is D(a).

– If edge (v, L(v)) is the last unknown edge in the tree then explore it by
calling probe(L(v)); the new meeting point is v.

Procedure explore-only-child(v, next)

case 2.1: there is an unknown edge incident to w ∈ children(v), w �= L(v)
split(L(v),H(w));
next := w

case 2.2: every edge incident to any w ∈ children(v), w �= L(v) is explored
(* L(v) must be a leaf *)

case 2.2.1: there are at least 2 unknown edges left
let a be the deepest ancestor of v such that:
D(a) := the closest descendant of a with incident unknown edges;
split(H(D(a)), L(v));
next := D(a)

case 2.2.2: there is only 1 unknown edge left
probe(L(v));
next := v

Notice that all edges of the tree (except possibly the last one if the number
of edges is odd) are explored by calling procedure split. Observe that in any
bushy tree, there are only red and green edges. By definition, in every red edge
er = (ur, vr), node vr has at least two children and every leaf of the tree is an
endpoint of a green edge eg = (ug, vg). Also ug has at least two children.

Since all values H(u) and L(u) can be computed in linear time it is easy to
see that time complexity of Algorithm Bushy-Tree is linear.

Theorem 3. Algorithm Bushy-Tree produces a fastest BHS-scheme for any bushy
tree.

Sketch of the proof: The scheme produced by Algorithm Bushy-Tree traverses
any red edge 6 times and any green edge 2 times. Moreover every phase is a 2-
phase (i.e. the two agents traverse edges in parallel), except possibly the last
phase (in the case when the number of edges is odd), and no agent waits in any
2-phase.
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5.2 An Approximation Algorithm for Trees

In this section we give an approximation algorithm with ratio 5
3 for the black hole

search problem, working for arbitrary trees (i.e. an algorithm which produces a
BHS-scheme whose time is at most 5/3 of the shortest possible time, for every
input).

The high-level description of Algorithm Tree is the following. Let v be the
meeting point of the two agents after a phase (initially v = s); the edges with
upper node v are explored by calling procedure split until either all such edges
are explored or there is at most one remaining unknown edge incident to v,
which is explored by calling procedure probe; this is repeated for any child of v.
The precise formulation of the algorithm is given below. Apart from procedures
split and probe it uses function relocate defined in the previous section. The
time-complexity of Algorithm Tree is linear.

Algorithm. Tree

explore(s)

Procedure explore(v)

for every pair of unknown edges (v, x), (v, y) incident to v do
split(x, y);

end for
if there is only one remaining unknown edge (v, z) incident to v then

probe(z);
end if
if every edge is explored then

repeat walk(s) until both agents are at s
else

next := relocate(v);
explore(next)

end if

Lemma 7. Let u be a node which is neither a leaf nor a middle of a branch of
blue edges. Let d be the down degree of u. Let β be the number of branches of
blue edges with upper node u, ρ the number of red edges with upper node u and
γ the number of green edges with upper node u. Algorithm Tree spends at most
d + 4β + 2ρ time units if d is even, and d + 1 + 4β + 2ρ time units if d is odd
for the traversals of all the above edges.

Theorem 4. Algorithm Tree achieves 5
3 approximation ratio.

Proof. If the tree consists of a single edge, then the ratio is one. Otherwise,
suppose that the tree has k nodes u1, u2, ..., uk such that ∀ui∃vj (eij = (ui, vj))
is a red edge, a green edge or an upper blue edge in a branch of blue edges. In
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any case, ∀ui �= s ui has at least two descendants, hence (u′
i, ui) is a red edge.

Thus there are at least k − 1 red edges in the tree. Let di: i = 1, ..., k be the
down degree of ui. Suppose that di: i = 1, ..., l is odd and di: i = l + 1, ..., k is
even. Let βi be the number of branches of blue edges with upper node ui, ρi the
number of red edges with upper node ui and γi the number of green edges with
upper node ui. We have di = βi + ρi + γi.

According to Lemma 6, any BHS-scheme must spend at least 3βi + 3ρi + γi

time units on the traversals of all red edges, green edges and branches of blue
edges with upper node ui. Hence in view of Lemma 7 the ratio between the time
of our scheme and the fastest possible scheme is at most:

∑l
i=1(di + 1 + 4βi + 2ρi) +

∑k
i=l+1(di + 4βi + 2ρi)

∑k
i=1(3βi + 3ρi + γi)

=
∑k

i=1(5βi + 3ρi + γi) + l
∑k

i=1(3βi + 3ρi + γi)

The above ratio is ≤ 5
3 when 3l ≤ 6

∑k
i=1 ρi + 2

∑k
i=1 γi. Since

∑k
i=1 ρi ≥ k − 1,

this ratio is lower or equal to 5
3 when

6(k − 1) + 2
k∑

i=1

γi ≥ 3l (1)

If k−1 ≥ l (i.e. there is at least one node of even down degree) then inequality
(1) is true.

If k − 1 < l it means that l = k. This is the situation when every vertex ui

has an odd lower degree. If k ≥ 2, inequality (1) still holds. If k = 1 then there
is no red edge (u1 = s). As long as there are at least two green edges, inequality
(1) is true. Otherwise one of the following holds:

– The tree consists of a block of β1 branches of blue edges where β1 is even,
and one green edge. In this case the total number of edges in the tree is odd.
Hence, in any BHS-scheme at least one edge must be explored in a 1-phase.
We prove that any BHS-scheme has to spend at least 3β1 + 2 time units
for all the traversals. According to Lemma 5 the total number of traversals
needed is at least 6β1 + 2. At least 2 of the traversals are done during a
1-phase and require at least 2 time units. Therefore the time needed in this
case is at least 6β1

2 + 2 = 3β1 + 2.
According to Lemma 7, the scheme produced by Algorithm Tree uses d1 +
1 + 4β1 = 5β1 + 2 time units. Thus the ratio is at most 5β1+2

3β1+2 ≤ 5
3 .

– The tree consists of a block of β1 branches of blue edges where β1 is odd. If
β1 = 1 then the ratio is one. Otherwise we prove that any BHS-scheme has
to spend in this case at least 3β1 + 1 time units for all traversals.
• If there is an edge in a branch which has been traversed by both agents

during a phase then the total number of edge traversals in that branch
is 8. Therefore in view of Lemma 5, the total number of traversals is at
least 6(β1 − 1) + 8 and the time needed is at least 6β1+2

2 = 3β1 + 1.
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• Otherwise, if there is at least one edge that has been explored during
a 1-phase then the total number of traversals done during 2-phases is
at most 6β1 − 2 by Lemma 5, while there are 2 traversals done in a 1-
phase which requires 2 time units. Therefore the time needed is at least
6β1−2

2 + 2 = 3β1 + 1.
• The remaining case is that every edge is explored during a 2-phase and

there is no edge which has been traversed by both agents during a phase.
Since the number of upper edges in branches is odd, there must be a 2-
phase φ during which an upper edge of a branch is explored together
with a lower edge of another branch. The time needed for this phase is
at least 4 time units since both agents cannot traverse the same edge. In
view of Lemma 5 the total number of traversals in every phase except φ
is at least 6(β1 − 2) + 2 + 4 (there is a branch on which only 2 traversals
are done and a branch on which only 4 traversals are done). Hence the
time needed in this case is at least 6β1−6

2 + 4 = 3β1 + 1.
According to Lemma 7, the time of the scheme produced by Algorithm Tree
is d1 + 1 + 4β1 = 5β1 + 1 time units. Thus in all three cases the ratio is at
most 5β1+1

3β1+1 ≤ 5
3 .

Notice that there exists a family of trees in which the approximation ratio
achieved by Algorithm Tree is exactly 5/3. This family includes all trees which
consist of an even number β of branches of blue edges. According to Lemma 7,
the time of the scheme produced by Algorithm Tree is β + 4β = 5β for such a
tree, while the fastest BHS-scheme for this tree requires exactly 3β time units
(for example, all upper edges are explored two by two by calling procedure split
and then all lower edges are explored in the same way).

6 Conclusion

We presented algorithms for the black hole search problem on trees. For arbitrary
trees we gave a 5/3-approximation algorithm, and for two classes of trees (lines
and trees all of whose internal nodes have at least 2 children) we gave optimal
algorithms, i.e., methods of constructing a shortest possible black hole search
scheme for any input in the class. The time complexity of all our algorithms is
linear in the size of the input.

It remains open if there exists a polynomial time algorithm to construct a
fastest black hole search scheme for an arbitrary tree. More generally, we do not
know if the problem is polynomial for arbitrary graphs. We conjecture that the
answer to the latter question is negative. Hence it seems interesting to find good
approximation algorithms for the black hole search problem on arbitrary graphs.
It should be noted that a trivial scheme, proceeding along any spanning tree of
the graph using walk-and-probe and returning to the starting node, provides a
4-approximation algorithm for this problem.
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