
Internet Computing of Tasks with Dependencies
Using Unreliable Workers�

(Extended Abstract)

Li Gao and Grzegorz Malewicz

University of Alabama, Tuscaloosa, AL 35487, USA
{lgao, greg}@cs.ua.edu

Abstract. This paper studies the problem of improving the effectiveness
of computing dependent tasks over the Internet. The distributed system
is composed of a reliable server that coordinates the computation of a
massive number of unreliable workers. It is known that the server cannot
always ensure that the result of a task is correct without computing the
task itself. This fact has significant impact on computing interdependent
tasks. Since the computational capacity of the server may be restricted
and so may be the time to complete the computation, the server may
be able to compute only selected tasks, without knowing whether the
remaining tasks were computed by workers correctly. But an incorrectly
computed task may render the results of all dependent tasks incorrect.
Thus it may become important for the server to compute judiciously
selected tasks, so as to maximize the number of correct results.
In this work we assume that any worker computes correctly with proba-
bility p < 1. Any incorrectly computed task corrupts all dependent tasks.
The goal is to determine which tasks should be computed by the (reli-
able) server and which by the (unreliable) workers, and when, so as to
maximize the expected number of correct results, under a constraint d on
the computation time. We show that this optimization problem is NP-
hard. Then we study optimal scheduling algorithms for the mesh with the
tightest deadline. We present combinatorial arguments that completely
describe optimal solutions for two ranges of values of worker reliability
p, when p is close to zero and when p is close to one.

1 Introduction

This paper begins developing a scheduling theory for improving the quality of
results of tasks executed unreliably over the Internet. We introduce a combina-
torial optimization problem, show that the problem is NP-hard, and then study
the problem restricted to the mesh where we give optimal polynomial time al-
gorithms.

� Contact author: Grzegorz Malewicz, Department of Computer Science, University of
Alabama, 116 Houser Hall, Tuscaloosa, AL 35487-0290, USA, Phone (205) 348-4038,
Fax (205) 348-0219.

T. Higashino (Ed.): OPODIS 2004, LNCS 3544, pp. 443–458, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

444 L. Gao and G. Malewicz

There is a large number of underutilized computers connected to the Internet.
Harnessing their power can enable the creation of a distributed supercomputer
that can accomplish sheer volumes of work at a tiny fraction of the cost of
a more traditional, more centralized, supercomputer. Several successful imple-
mentations of Internet Supercomputers exist today [8, 11, 16, 21]. These enable
solving problems composed of a large number of tasks. In these implementa-
tions, a computer, called a server, allows any other computer, called a worker,
to register and download a piece of software. Then the software requests a task
from the server, downloads appropriate data that describe the task, executes
the task, and returns the result to the server. This process repeats. When the
number of workers is large, the Internet Supercomputer achieves high comput-
ing speed. For example, the SETI@home project reported its speed to be 57.29
Teraflops [23]. These Internet Supercomputers are also called Internet or Web
Computing platforms, or High-Throughput Computing Grids [4].

SETI@home stated [9] that half of the resources of the project were spent on
dealing with security problems. One of them is to ensure the quality of results
returned by workers. Some computers, such as the server and perhaps certain
workers, are reliable; they will correctly execute the tasks assigned by the server.
However, workers are commonly unreliable. That is they may return to the server
incorrect results due to unintended failures caused for example by overclocked
processors, or they may deceivingly claim to have performed assigned work so
as to obtain incentives such as getting higher rank on the SETI@home list of
contributed units of work. Several schemes were proposed to improve the quality
of results of tasks. The schemes encompass modeling reliability of workers based
on the history of interaction with workers [10, 24], keeping track of which task
was assigned to which worker [20], sending the same task to multiple workers [11],
and verifying results returned by workers [6, 7, 25, 3].

It appears that in general it is fundamentally difficult to develop a method
that ascertains that a task was executed correctly, without the task being exe-
cuted on a reliable computer (cf. [1]). This difficulty has significant consequences
on performing a computation described by a directed acyclic graph. Individual
tasks of a computation may be quite computationally intensive, and so it may
be unrealistic to execute too many of them on reliable computers that may be
scarce. Consequently, the server may not always know if a given task was exe-
cuted correctly or not. When tasks have dependencies, and the result of a task
is incorrect, then all descendant tasks, even if executed correctly, may produce
incorrect results, simply because their input depends, directly or indirectly, on
the result of the one task that was executed incorrectly. It seems plausible that
in such setting some tasks may have high impact on the total number of correct
results, while other tasks may have low impact. The possible asymmetry means
that it may be important to judiciously select which tasks should be executed re-
liably, and which other tasks can be left to unreliable workers, so as to maximize
the total number of correct results.

This paper begins developing a scheduling theory for increasing the number
of correct results of tasks executed on unreliable workers, when tasks have de-

Internet Computing of Tasks with Dependencies 445

pendencies. Let us discuss some tradeoffs. A naive scheduling approach would
be to execute all tasks on reliable computers only. Of course, then there is no
need for judicious selection at all. However, the number of reliable computers
may be quite small compared to the number of unreliable computers. Therefore,
when work is assigned to reliable computers only, relatively more time would be
needed to complete the entire computation. We could reduce the computation
time by including unreliable computers in the computation, at the cost of reduc-
ing the number of correct results. Thus we expect that the number of correct
results, for a given directed acyclic graph that describes dependencies between
tasks, is related to two parameters: the reliability of computers and the dead-
line to complete the computation. Our ultimate goal is to fully understand this
relationship.

One natural way to model unreliability of computers is to assume a proba-
bilistic setting. Each computer will execute correctly with a certain probability.
This assumption could be justified, for example, by the fact that one source of
computation errors in Internet Supercomputers is overclocked processors [9].

Towards this end we formulate a model of an Internet Supercomputer. Our
model extends the Internet pebble game introduced recently by Rosenberg [19].
The computation is modeled by a finite directed acyclic graph. Each node in
the dag represents a task. There is an unbounded number of computers in the
system. Computer i executes a task correctly with probability pi and incorrectly
with probability 1−pi. This probability is called reliability of the computer. There
are three types of pebbles used to play the game. Initially all sources of the dag
are pebbled with an eligible pebble. At any discrete time t we select a computer,
say i, and a task that has an eligible pebble. Then we replace the eligible pebble
with a pebble executed correctly with probability pi, and with a pebble executed
incorrectly with probability 1 − pi. Any task that does not have any pebble but
all its parents have executed pebbles is pebbled with an eligible pebble. Any task
that is executed incorrectly corrupts the results of all descendant tasks; so their
results will be incorrect even if executed correctly. There is a deadline d by which
all tasks of the dag must be executed. The goal is to determine which computer
should execute which task and when, so as to maximize the expected number of
correct results. Solving this optimization problem is important. One would like
to establish theoretical guidelines for how to effectively and quickly execute a
computation composed of dependent tasks, using unreliable computers.

The focus of this paper is to study a specific version of the scheduling problem.
We consider a dag called a (two dimensional) mesh that is composed of k2 nodes
arranged into k rows and k columns. Each node has an arc to the node in the
next column (if it exists) of the same row, and an arc to the node in the next
row (if it exists) of the same column. Our choice of a mesh is motivated by
the fact that meshes are a convenient way to structure computation and they
arise in practice (cf. [19]). We investigate how to compute the mesh as quickly as
possible i.e., we fix deadline d to 2k−1. We assume that there is a single computer
whose reliability is 1; this computer is called the server. Any other computer has
reliability 0 < p < 1; this computer is called a worker. Our assumption that

446 L. Gao and G. Malewicz

there is a single reliable server and each worker has the same reliability p seems
to be a natural “first approximation” of an Internet Supercomputer composed
of unreliable workers.

We note that even if results of tasks cannot be ascertained to be correct in
general without computing the tasks on trusted computers, one could still com-
pute tasks redundantly on unreliable computers and use majority voting hoping
to improve the quality of results. Such an approach is orthogonal to the aim of
this paper where we want to use as little resources as possible (which is demon-
strated by the fact that each task is computed by a single computer), while still
obtaining as much quality as possible by judiciously assigning computers to tasks.

Contributions. This paper begins developing a scheduling theory for maximiz-
ing the number of correct results of tasks with dependencies executed unreliably
over the Internet. Our specific contributions are as follows:

(a) We introduce a probabilistic pebble game that models internet computing
with unreliable workers, and a new combinatorial optimization problem.

(b) We show that the optimization problem is NP-hard by a chain of reductions
from the Balanced Complete Bipartite Subgraph Problem. In fact the prob-
lem is NP-hard even when restricted to bipartite dags computed by a single
(reliable) server and (unreliable) workers.

(c) We give polynomial time optimal scheduling algorithms for the mesh under
the tightest deadline d = 2k−1, that use a server and workers, where worker
reliability p falls into two ranges of values. We show that expectation is max-
imized when tasks are executed roughly in breadth-first search order, and
the server executes exactly one task per “level” of the mesh. We demonstrate
that there are two scheduling regimes. These regimes depend on the value of
reliability p. The first regime is when reliability is close to 1. We completely
characterize maximal schedules in this regime. The server should execute a
“central” task at any time. Specifically, at any time, there is some number of
“eligible” tasks that can be executed given task precedence constraints and
tasks executed so far. These tasks form a diagonal “level” of the mesh. At
this time, the server should execute a task that has the most descendants
from among these eligible tasks, which turns out to be a central task on the
diagonal level (there may be two such tasks, in which case the choice does not
matter, as we show), and workers should execute all other eligible tasks. In-
tuitively, is appears that when p is close to 1, then optimal schedules are “de-
scendant driven”. The second regime is when reliability is close to 0. We also
completely characterize maximal schedules in this regime. The server should
execute an “edge” task at any time. Specifically, the server should either exe-
cute tasks in the top row and the rightmost column, or it should execute tasks
in the leftmost column and the bottom row. Intuitively, is appears that when
p is close to 0, then optimal schedules are “ancestor driven”. The demon-
stration that there are two distinct regimes is, we believe, an important
contribution of this paper that indicates that the problem has a non-trivial
and interesting structure of optimal solution (that we begin to explore).

Internet Computing of Tasks with Dependencies 447

Paper organization. The rest of the paper is structured as follows. In Section 2,
we present a model of Internet Supercomputing with unreliable workers, and
formulate an optimization problem of maximizing the expected number of correct
results of tasks. In Section 3, we show that the optimization problem is NP-hard.
Then, in Section 4, we give polynomial time optimal scheduling algorithms for
a mesh. Next, in Section 5, we discuss related work. Finally, in Section 6, we
conclude and discuss future work. Due to space limitations most proofs are
omitted from this extended abstract.

2 Definitions and Preliminaries

A directed acyclic graph G = (V,E), or dag for short, on n nodes abstracts
computation composed of tasks and information flow between tasks (all dags are
finite in this paper). We often refer to the nodes as tasks. A path is a sequence
u1, u2, . . . , uk of two or more nodes such that there is an arc from ui to ui+1,
for 1 ≤ i ≤ k − 1. In a dag no such path can have u1 = uk. For a given node u,
P (u) is the set of parents of u i.e., of all nodes v, such that there is an arc from
v to u; C(u) is the set of children of u i.e., of all nodes v, such that there is an
arc from u to v; A(u) is the set of ancestors of u i.e., of all nodes v, such that
there is a path from v to u; and D(u) is the set of descendants of u i.e., of all
nodes v such that there is a path from u to v. Note that u /∈ P (u), u /∈ C(u),
u /∈ D(u), and u /∈ A(u). A task u such that P (u) = ∅ is called a source, and
when C(u) = ∅ then u is called a sink.

A schedule describes when tasks are executed and by whom. A schedule
has two components. The first component is a function x that takes a natural
number t ≥ 1 and returns the subset of tasks x(t) that are executed at time t.
There is a µ ≥ 1 such that each set x(1), . . . , x(µ) is not empty, and the sets
partition the set of all tasks. The number µ is called makespan of the schedule.
Execution of any task takes one unit of time. A task can only be executed when
all its ancestors already have, so for any 1 ≤ t ≤ µ, x(t) must be a subset of
tasks whose ancestors are in x(1) ∪ . . . ∪ x(t − 1). The second component is a
function c that takes a natural number v and returns a number c(v) denoting
the computer that executes task v. We assume that there are m computers in
the system. It must be the case that any computer executes at most one task
per unit of time, so for any 1 ≤ t ≤ µ, and any i, the number

∣∣c−1({i}) ∩ x(t)
∣∣

of tasks executed by computer i at time t is at most one. For any dag there is
at least one schedule (x, c).

Computers are unreliable. When a computer i executes a task, then with
probability pi the computer executes u correctly, independently from the execu-
tion of other tasks. However, with probability 1 − pi the computer executes the
task incorrectly. We call pi the reliability of the computer. Such incorrect execu-
tion affects the results of every task in D(u). Intuitively, an incorrectly executed
task u corrupts the results of any descendant task v, because the result of u is
used, directly or indirectly, when the task v is executed. We say that the result
of a task is correct, if the task and all its ancestors are executed correctly. In

448 L. Gao and G. Malewicz

contrast, the result of a task is incorrect, if either the task or one of its ancestors
is executed incorrectly.

We can compute the expected number of correct results for a given schedule
(x, c). In order for a task u to be computed correctly, every task in A(u) ∪ {u}
must be computed correctly. The function c defines which computer executes
each of these tasks. So by independence, the probability that the result of u
is correct is the product

∏
v∈A(u)∪{u} pc(v) . Let Eu be the indicator random

variable equal to 1 if the result of task u is correct, and 0 otherwise. Then
the total number of correct results is equal to E =

∑
u∈V Eu. By linearity of

expectation

Exp [E] =
∑

u∈V

Exp [Eu] =
∑

u∈V

∏

v∈A(u)∪{u}
pc(v) .

Our goal is to find a schedule (x, c) that maximizes this expectation.

Constrained Computing with Unreliable Workers
Instance: A dag G that represents tasks and information flow between them, a
deadline d, and m computers with reliabilities p1, . . . , pm.
Objective: Find a schedule (x, c) with makespan at most d that maximizes the
expected number of correct results.

This paper focuses on the case where there is a single computer, called the
server, with reliability 1, and any other computer, called worker, has reliability
0 < p < 1. In this case our optimization problem has a simpler formulation.
Suppose that R is the subset of tasks that the server executes. We call this
subset a server subset. Let E(R) be the random variable equal to the number
of correct results for a schedule with the set R of tasks executed by the server.
Then the expected number of correct results is equal to

Exp [E(R)] =
∑

u∈V

p|(A(u)∪{u})\R| .

Note that this expectation depends on the graph G and the set R, but does not
depend on the sequence x in which tasks have been executed, nor if the deadline
constraint has been violated or if the server executed more than one task at a
time. Trivially, the expectation is maximized when all tasks are executed by the
server, R = V . However, then it may happen that either the makespan of the
schedule is large, or there is a time when the server is supposed to execute many
tasks. We are looking for a server subset R that maximizes the expectation,
and a function x, such that at most one task is executed by the server at any
point of time in x and makespan of x is at most d. We refer to this restricted
version of the problem as Internet Supercomputing with Unreliable Workers
(ISUW).

Internet Computing of Tasks with Dependencies 449

3 Complexity of the Problem

We demonstrate that it is NP-hard to solve the problem of Internet Supercom-
puting with Unreliable Workers. The proof is composed of two steps. We first
reduce a known NP-complete problem called Balanced Complete Bipartite Sub-
graph Problem (see [5] problem GT24) to an “intermediate” problem of selecting
subsets whose union is small. Then we show how to give answer to any instance
of the intermediate problem using an algorithm that finds a solution to the prob-
lem of Internet Supercomputing with Unreliable Workers. This will immediately
imply that Constrained Computing with Unreliable Workers is also NP-hard.

Many Subsets with Small Union (MSSU)
Instance: Nonempty subsets S1, . . . , Sn of [n], such that their union is [n], and
numbers a ≤ n and b ≤ n.
Question: Can a of these subsets be selected whose union has cardinality at
most b?

We give a reduction is from the Balanced Complete Bipartite Subgraph Prob-
lem (BCBS) (see [5] problem GT24, and [17] for recent results and references)
to MSSU.

Lemma 1. The Many Subsets with Small Union Problem is NP-complete.

Proof. The reduction is from the Balanced Complete Bipartite Subgraph Prob-
lem (BCBS) (see [5] problem GT24, and [17] for recent results and references).
Recall that in the problem we are given a bipartite graph and a number k and
we want to know if the graph contains an induced complete bipartite subgraph
with k nodes on the left and k on the right.

Let us take any bipartite graph G on n − 1 nodes and a k. Consider an
expanded graph G′ with one extra node n that is isolated. Naturally, G′ is also
a bipartite graph. Observe that there is a balanced complete bipartite subgraph
with k nodes on the left and k on the right in G, if and only if there is such a
subgraph in G′ (the isolated node in G′ cannot belong to the subgraph).

We now define an instance of the Many Subsets with Small Union Problem.
Let M be the complement of the adjacency matrix of the graph G′. Note that
the bottom row n and the right-most column n are filled with ones, because of
the isolated node. We define the set Si, 1 ≤ i ≤ n, so that the characteristic
vector of the set is equal to the column i of M . So each Si is nonempty (because
of the bottom row) and their union S1 ∪ . . . ∪ Sn is exactly [n] (because of the
right-most column). Let b = n − k and a = k.

The graph G′ has a balanced complete bipartite subgraph on 2k nodes, if
and only if we can rearrange rows and columns of M so that the top left k by k
square of the rearranged M has zeros only. But this can be done if and only if
we can select a = k of the subsets, so that the union of the selected subsets has
cardinality at most b = n − k. This completes the proof.

We then give a polynomial time Turing transformation from MSSU to ISUW.
In our transformation we construct a bipartite dag with sets associated with sinks
and elements associated with sources.

450 L. Gao and G. Malewicz

Fig. 1. Reduction

Theorem 1. The Internet Supercomputing with Unreliable Workers Problem is
NP-hard.

Proof. We take any instance of the MSSU Problem and show how to answer the
question posed in the problem, using an algorithm that maximizes expectation
for instances of the ISUW Problem.

Let S1, . . . , Sn be any nonempty subsets such that S1 ∪ . . . ∪ Sn = [n] and a
and b be numbers at most n. We construct an instance of the ISUW Problem.
The dag describes subset membership. It has two “levels”: the “bottom” tasks
correspond to sets, while the “top” tasks correspond to elements of [n]. So each
level has n tasks, and the total number of tasks in the dag is 2n. We place an arc
from a top task i to a bottom task j, if element i is in subset Sj . See Figure 1
for an example of the dag constructed for given subsets. We notice that each
top task is linked to at least one bottom task, because the union of the subsets
is [n]. Moreover, each bottom task is linked to a top task, because each subset
is nonempty. We define the deadline to be d = b + 1 ≤ 2n, and reliability of a
worker to be p = 1/n2. Let R be a server subset that maximizes the expected
number of correct results under the constraints.

We argue that any maximum solution, including R, must have a special
structure. First, |R| = d. Indeed, the cardinality of R cannot be larger, because
then the deadline constraint would be violated, and it cannot be smaller, because
then expectation could be strictly increased by executing one more task on the
server without violating constraints. Second, at least one task of R belongs to
the bottom level. Indeed, if R had d tasks on the top level, then one of them
would be executed at time d or later. But this task has a child, and so this
child could only be executed at time d + 1 or later, thus violating the deadline
constraint. Third, for similar reasons, at least one task from R must be on the
top level. These three observations imply that any server subset that maximizes
expectation has cardinality d and has at least one task on the top and at least
one on the bottom level. Note that for any server subset with these properties,
there is a trivial way to execute the 2n tasks under the constraints. The server
subsets constructed in the remainder of the proof will have these properties, and
so we do not explicitly construct functions x in the remainder of the proof.

Internet Computing of Tasks with Dependencies 451

There must be a server subset R′ with the same expectation as R, such that
exactly d−1 of the tasks from R′ belong to the top level. Indeed, we demonstrate
that as long as there are two tasks in R that belong to the bottom level, we can
remove a bottom task from R and add a new top task to R without decreasing
expectation. Thus we can keep on removing and adding tasks until exactly one
task from R belongs to the bottom level, never reducing expectation. Suppose
that there are two distinct tasks v and w from R that belong to the bottom
level. Since d ≤ n + 1 and two tasks from R are at the bottom level, then there
is a task u at the top level that is not in R. Let R′ be a server subset equal to R
except that v is excluded but u is included instead. Clearly, R′ has cardinality d
and has at least one task at the bottom and at least one task at the top level. It
remains to be seen that R′ has no smaller expectation. In R, u contributed p to
the expectation and v contributed ph, for some h ≥ 0 (when v has parents only
among R then h = 0). In R′, however, u contributes 1 and v contributes at least
ph ·p. In addition, the contribution of any task other than v that has u as a parent
will increase as well. No other task will change its contribution. So the difference
in expectation is at least

(
1 + ph · p) − (

p + ph
)

= (1 − p) − ph (1 − p) ≥ 0. In
fact this difference must be exactly 0, because R is maximal. Thus expectation
for R′ is the same as expectation for R.

Suppose that maximum expectation is z. We shall see that by inspecting z,
we can answer whether there are a subsets in the instance of the MSSU Problem,
such that the union of these subsets has cardinality at most b.

We have seen that there is a server subset R′, such that the expectation for
R′ is the same as for R, and that b = d − 1 of the tasks from R′ are on the
top level and one is on the bottom level. Let us find out how much each task
contributes to z. The remaining n − b top tasks are not executed by the server.
Thus the contribution of the top tasks to the expectation is b+(n−b)/n2. We now
study the contribution of the bottom tasks. Let us assume for a moment that no
bottom task is executed by the server. If all parents of a bottom task are among
the b top tasks executed by the server, then the bottom task will contribute
exactly 1/n2; let k be the number of bottom tasks u such that the parents of u
are among the b tasks, 0 ≤ k ≤ n. Recall that each bottom task has a parent.
So each of the remaining n − k bottom tasks has a parent that is not among
the top b tasks executed by the server. Hence such bottom task will contribute
at most 1/n4 to the expectation. Let us now account for this one bottom task
executed by the server. If k ≥ 1, then the bottom task must be among the
k tasks, because otherwise expectation could be increased by executing at the
server any of k tasks instead. Thus, when k ≥ 1, the expectation z is in the
interval [y, y + 1/n3], where y = b + (n − b)/n2 + 1 + (k − 1)/n2. If k = 0, then
each bottom task has at least one parent that is not executed by the server, and
so expectation z is in the interval [y′, y′+1/n2+1/n3], where y′ = b+(n−b)/n2.
Consequently, these n + 1 intervals, for k = 0, 1, 2, . . . , n, do not overlap. Thus
there exist k bottom tasks whose parents form a set of at most b tasks. Since b
is known, the value of k can be determined by inspecting z. Observe also that it
is not possible that there are strictly more than k bottom tasks whose parents

452 L. Gao and G. Malewicz

comprise a set of at most b top tasks, because then maximum expectation would
be strictly larger than z.

Corollary 1. The Constrained Computing with Unreliable Workers Problem is
NP-hard.

4 Optimal Algorithms for the Mesh

In this section we present optimal solutions to the scheduling problem of Internet
Supercomputing with Unreliable Workers on a mesh. We fix deadline to the
tightest one possible on the given mesh. Under this constraint, we completely
describe the optimal solutions for two ranges of values of reliability p of workers.
When the reliability is close to zero, then a server subset maximizes expectation
if and only if it contains only a continuous sequence of “edge” tasks. There are
two such subsets in a mesh. When the reliability is close to one, then a server
subset maximizes expectation if and only if it contains only “central” tasks.
There are exponentially many such subsets. The remainder of the section defines
the mesh and demonstrates a basic structure of any optimal server subset. Then
optimal scheduling algorithms are given for the two ranges of worker reliability.
In particular, edge and central server subsets are defined, and combinatorial
arguments that ascertain optimality of the subsets are presented.

4.1 Preliminaries

A mesh Mk, for any given k ≥ 1, is a dag with nodes V = {(i, j) | 1 ≤ i, j ≤ k}.
There is an arc from any node (i, j) to node (i + 1, j), as long as both nodes
belong to the mesh. Similarly, there is an arc from (i, j) to (i, j+1). We introduce
orientation of the mesh. Specifically, the node (1, 1) is the North-West node, and
the node (k, k) is the South-East node. See Figure 2 for an example of a mesh and
its orientation. A formal definition of orientation should be clear to the reader.
We use Figure 2 to refer to “left”, “right” etc. A level � is the set of nodes (i, j)
of mesh Mk such that i+ j = �+1. There are exactly 2k−1 non-empty levels of
Mk. The levels partition the nodes of the mesh. For any node on level �, if the
node has a parent, then the parent is on level �− 1, if the node has a child, then
the child is on level � + 1. Column j is the set of nodes that have the second
coordinate equal to j. Row i is the set of nodes that have the first coordinate
equal to i.

We begin with a lemma that exposes a structure of an optimal solution to
our restricted problem. The subsequent lemma states that any server subset that
maximizes expectation must have exactly one task on each level, no more and
no fewer.

Lemma 2. For any k ≥ 1, and the mesh Mk, let R be a server subset that max-
imizes the expected number of correct results and x the corresponding function
such that x has makespan at most 2k − 1. Then any level �, 1 ≤ � ≤ 2k − 1,
shares exactly one task with R.

Internet Computing of Tasks with Dependencies 453

Fig. 2. Mesh M3

This lemma considerably simplifies scheduling. Since any server subset R that
maximizes expectation has exactly one task per level, we can trivially generate
the function x that dictates when tasks are executed such that the deadline
constraint is met. We simply schedule task execution level by level (breadth-first
search order). Thus we do not explicitly construct any function x for any such
server subset, keeping in mind that an appropriate x can be trivially generated.

The next question that we need to answer is: Which task should be selected
on each level? We note that for any reliability p of worker, 0 < p < 1, it is always
better to execute on the server a parent of a task, instead of the task because
then expectation will be strictly increased. Unfortunately, tasks on any given
level are not comparable (no task is a parent of any other on the same level).
Therefore, this simple observation does not help us decide which task of a given
level should be executed by the server. We need a different decision algorithm
instead. In the remainder of the section we present two optimal algorithms, one
when p is close to 1 and the other when p is close to 0.

4.2 Optimal Algorithm for Workers with High Reliability

This section completely characterizes optimal server subsets when the reliability
of worker p is close to one. We observe that then it is better when the server
executes a task with more descendants. This determines which task of any odd
level the server should execute. For even levels, selection is ambiguous, but we
show that it does not matter, as expectation will be the same no matter how we
choose.

The next lemma explains that as long as p is close enough to 1, it is better that
the server executes a task with strictly more descendants. The proof observes
that a task with more descendant adds strictly more to the expectation than any
task with fewer descendants no matter which the other tasks are in the server
subset.

Lemma 3. Let G be a dag on n nodes, reliability p of worker be (1 − 1/n)1/n
<

p < 1, u and w be two nodes such the set D(w) of descendents of w has at least

454 L. Gao and G. Malewicz

one more node than the set D(u) of descendents of u, |D(w)| ≥ 1 + |D(u)|, and
R be a server subset that contains neither u nor w. Then the expected number of
correct results for the server subset R∪ {w} is strictly larger than for the server
subset R ∪ {u}.

Note that (1 − 1/n)1/n is asymptotically close to 1 − 1/n2.
The lemma almost settles the question for p close to 1. One can see that for

any level of mesh Mk, tasks that occupy a “central” location of the level have
most descendants across tasks on the level. Thus each level will have a single
“central” task in an optimal R. The main issue, however, is that any even level
has two “central” tasks that have the same number of descendants. The existence
of these tasks makes room for ambiguity. Our next goal is to demonstrate that
this ambiguity has no effect on the expected number of correct results.

For a given mesh Mk, we call a server subset R a central server subset if it
is composed of specific tasks. It contains tasks (i, i), for any 1 ≤ i ≤ k, and,
in addition, for any 1 ≤ i < k, either task (i, i + 1) or (i + 1, i), but not both.
Note that for any central server subset, each level of Mk contains exactly one
task from the subset. We prove that expectations for central server subsets are
the same by noticing that if task (i, i + 1) belongs to R, then we can replace the
task with task (i + 1, i) without changing expectation.

Lemma 4. Let R and R′ be any central server subsets. Then the expected num-
ber of correct results for R is the same as it is for R′.

We gather the observations developed so far to prove a theorem on the struc-
ture of optimal solution when p is close to 1.

Theorem 2. Let k ≥ 1, worker reliability
(
1 − 1/k2

)1/k2

< p < 1, and deadline
d = 2k−1. Then a server subset S for mesh Mk maximizes the expected number
of correct results if and only if S is a central server subset.

4.3 Optimal Algorithm for Workers with Low Reliability

This section completely characterizes optimal server subsets when the reliability
of worker p is close to zero. The argument has two parts. We begin by showing
that any server subset that maximizes expectation must contain either all tasks
of the top row or all tasks of the leftmost column. This is shown by observing
that there is a tradeoff: it the first row contributes much to the expectation, then
the rest of the mesh contributes little, and vice versa. A symmetric argument is
applied to the leftmost column.

Lemma 5. Let k ≥ 3 and 0 < p ≤ 1/6. Let S be any server subset of Mk that
has exactly one task per level. If S does not contain all tasks from the top row
nor does it contain all tasks from the leftmost column, then S does not maximize
the expected number of correct results.

The lemma immediately implies that any optimal server subset must contain
either all tasks from the top row or all tasks from the leftmost column, whenever

Internet Computing of Tasks with Dependencies 455

0 < p ≤ 1/6 and k ≥ 3. This settles the question which tasks from levels 1 to k
must belong to an optimal server subset. What about tasks from level k +1 and
higher? The subsequent lemma provides an inductive argument that settles this
question as long as p is small. The key observation that gives rise to the proof
is that the tasks on level b + k − 1 and higher contribute little compared to the
contribution that task (b, k) would make when included in a server subset.

Lemma 6. Let k ≥ 3, 0 < p ≤ 1/(2k) and 2 ≤ b ≤ k − 1. Let S be any server
subset of Mk that has exactly one task per level. If

(i) S contains all tasks of the top row and the b − 1 top tasks of the rightmost
column, but not task (b, k), or

(ii) S contains all tasks of the leftmost column and the b − 1 leftmost tasks of
the bottom row, but not task (k, b)

then S does not maximize the expected number of correct results.

Given a mesh Mk, we call a server subset R an edge server subset if it is
composed of specific tasks. Such subset must either contain only tasks of the
top row and the rightmost column, or only tasks of the leftmost column and
the bottom row. The following theorem completely characterizes the structure
of optimal server subsets S for small enough worker reliability. We can prove the
theorem using observations developed so far.

Theorem 3. Let k ≥ 3, worker reliability 0 < p ≤ 1/(2k), and deadline d =
2k − 1. Then a server subset S for mesh Mk maximizes the expected number of
correct results if and only if S is an edge server subset.

5 Related Work

The combinatorial optimization problem introduced in this paper is related to
two known hard problems. In the Network Reliability Problem (see [5] problem
ND20) we are given a graph where each edge e has a failure probability p(e), a
subset V ′ of vertices, and a number q. The goal is to decide if the probability
is at least q, that for each pair of vertices in V ′ there is a path connecting the
vertices, such that the path has no failed edges. Our problem is similar, because
we check if all ancestors have been executed correctly (which resembles checking
for the existence of paths with no failed edges from the node to all ancestors).
However, our optimization goal is different, as we count the number of nodes for
which all ancestors have not failed. In a different problem, called the Network
Survivability Problem (see [5] problem ND21), we are given a graph where each
edge and each node has a failure probability, and a number q. The goal is to find
out if the probability is at least q that for all edges {u, v}, either the edge or one
of its endpoint nodes u or v has failed. The problem is similar because we also
consider probabilistic failures in the graph, however in our case we consider more
global dependencies, as we look at all ancestors of a node. There are many other

456 L. Gao and G. Malewicz

hard sequencing and scheduling problems [2], but their objective is different as
they typically aim at minimizing makespan and do not model computer failures.

A probabilistic model similar to our model is studied by Sarmenta [22] but
for independent tasks. Tasks are generated in batches. A batch consists of n
tasks. There are p workers. Once a batch is generated, its tasks are assigned to
workers; recomputation is allowed, and redundant assignment is allowed, too.
At most a fraction f of workers is faulty. A faulty worker returns incorrect
results with probability s, independently of other results. The goal is to compute
results of each task so that each result is “credible” enough (several measures
of credibility are proposed). Author considers two basic mechanisms: (1) spot
check a worker by verifying if the result computed is correct—this helps estimate
worker reliability and exclude faulty workers from computation, thus reducing
the fraction of faulty workers over time, (2) redundantly compute a task until a
certain number of results agree—this helps increase confidence in a result despite
possibility of workers being faulty. Author shows that the combination of the two
techniques is advantageous. Results are validated using a simulation.

There are scheduling problems that arise in Internet Supercomputing, other
than the problem studied in this paper. The papers of Rosenberg [19] and Rosen-
berg and Yurkewych [18] introduce a formalism for studying the problem of
scheduling tasks so as to render tasks eligible for allocation to workers (hence
for execution) at the maximum possible rate. This allows one to utilize workers
well, and also lessen the likelihood of the “gridlock” that ensues when a compu-
tation stalls for lack of eligible tasks. The papers identify optimal schedules for
several significant families of structurally uniform dags. The paper of Malewicz
et al. [13] extends this work via a methodology for devising optimal schedules for
a much broader class of complex dags. These dags are obtained via composition
from a prespecified collection of simple building-block dags. The paper intro-
duces a suite of algorithms that decompose a given dag to expose its building-
blocks, and a priority relation on building-blocks. When the building-blocks are
appropriately interrelated, the dag can be scheduled optimally. Motivated by the
demonstration in [13] that certain dags cannot be scheduled optimally, Malewicz
and Rosenberg [14] formulate a scheduling paradigm in which tasks are allo-
cated to workers in batches periodically. Optimality is always possible within
this new framework, but achieving it may entail a prohibitively complex com-
putation. However, restricted versions can be solved optimally in polynomial
time. Malewicz et al. [15] show how to increase the speed of computation in
the presence of network failures, by appropriately sequencing computation of
disconnected workers.

Malewicz [12] introduces a parallel scheduling problem where a directed
acyclic graph modeling t tasks and their dependencies needs to be executed
on n unreliable workers. Worker i executes task j correctly with probability pi,j .
The goal is to find a regimen Σ, that dictates how workers get assigned to tasks
(possibly in parallel and redundantly) throughout execution, so as to minimize
the expected completion time. This fundamental parallel scheduling problem is
shown to be NP-hard when restricted to constant dag width and also NP-hard

Internet Computing of Tasks with Dependencies 457

when restricted to a constant number of workers. These complexity results are
contrasted with a polynomial time algorithm for the problem when both dag
width and the number of workers are at most a constant.

6 Conclusions and Future Work

This paper began developing a scheduling theory for maximizing the expected
number of correct results of tasks executed on unreliable computers, when tasks
have dependencies. We introduced a combinatorial optimization problem, showed
that the problem is NP-hard, and gave optimal polynomial time algorithms for
restricted versions of the problem.

Our study opens several avenues for follow-up research. Which dags admit
polynomial time optimal scheduling algorithms? Is there a constant factor ap-
proximation algorithm for the general problem? How to effectively schedule when
each computer i has its own reliability pi? How does possible asynchrony, or par-
tial synchrony, (when tasks may take various amount of time to compute) affect
scheduling decisions? One could consider a different optimization goal of max-
imizing the expected number of correctly computed sinks (in the case of one
sink, we are then maximizing the likelihood that the sink will be correctly com-
puted). Unreliability of computers could be modeled in a different way than
probabilistically. We could assume that at most a certain number f of tasks will
be incorrectly executed. We decide which tasks should be executed on a reliable
computer, while an adversary decides which other at most f tasks will be exe-
cuted incorrectly. Which tasks should be executed on a reliable computer, so as
to maximize the worst-case (i.e., the lowest) number of correct results of tasks?

References

1. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang,
K.: On the (Im)possibility of Obfuscating Programs. (CRYPTO) (2001) 1–18

2. Crescenzi, P., Kann, V. (eds.): A compendium of NP optimization problems.
http://www.nada.kth.se/∼viggo/wwwcompendium/node173.html

3. Du, W., Jia, J., Mangal, M., Murugesan, M.: Uncheatable Grid Computing. 24th
International Conference on Distributed Computing Systems (ICDCS) (2004)

4. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure,
2nd Edition. Morgan Kaufmann (2004)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman, New York
(1979)

6. Golle, P., Mironov, I.: Uncheatable Distributed Computations. RSA Conference –
topics in Cryptography (2001) 425–440

7. Golle, P., Stubblebine, S.: Secure Distributed Computing in a Commercial Environ-
ment. 5th International Conference Financial Cryptography (FC) (2001) 289–304

8. The Intel Philanthropic Peer-to-Peer program. http://www.intel.com/cure

9. Kahney, L.: Cheaters Bow to Peer Pressure. Wired News, February 15 (2001)
http://www.wired.com/news/technology/0,1282,41838,00.html

458 L. Gao and G. Malewicz

10. Kondo, D., Casanova, H., Wing, E., Berman, F.: Models and Scheduling Mech-
anisms for Global Computing Applications. 16th IEEE International Parallel &
Distributed Processing Symposium (2002)

11. Korpela, E., Werthimer, D., Anderson, D., Cobb, J., Lebofsky, M.: SETI@home -
massively distributed computing for seti. Computing in Science & Enginering, Vol.
3(1) (2001) 78–83

12. Malewicz, G.: Parallel Scheduling of Complex Dags under Uncertainty. (2005) sub-
mitted for publication

13. Malewicz, G., Rosenberg, A.L., Yurkewych, M.: On Scheduling Complex Dags
for Internet-Based Computing. 19th IEEE International Parallel & Distributed
Processing Symposium (IPDPS) (2005) to appear

14. Malewicz, G., Rosenberg, A.L.: On batch-scheduling dags for Internet-based com-
puting. Typescript, University of Massachusetts (2004) submitted for publication

15. Malewicz, G., Russell, A., Shvartsman, A.: Distributed Cooperation During the
Absence of Communication. 14th International Symposium on Distributed Com-
puting (DISC) (2000) 119–133

16. The Olson Laboratory Fight AIDS@Home project. http://www.fightaidsat
home.org

17. Peeters, R.: The maximum edge biclique problem is NP-complete. Discrete Applied
Mathematics, Vol. 131(3) (2003) 651–654

18. Rosenberg, A.L., Yurkewych, M.: Optimal Schedules for Some Common
Computation-Dags on the Internet. IEEE Transactions on Computers (2005) to
appear

19. Rosenberg, A.L.: On Scheduling Mesh-Structured Computations on the Internet.
IEEE Transactions on Computers, Vol. 53(9) (2004)

20. Rosenberg, A.L.: Accountable Web-computing. IEEE Transactions on Parallel and
Distributed Systems, Vol. 14(2) (2003) 97–106

21. The RSA Factoring By Web project. http://www.npac.syr.edu/factoring
22. Sarmenta, L.F.G.: Sabotage-tolerance mechanisms for volunteer computing sys-

tems. Future Generation Computer Systems, Vol. 18(4) (2002) 561–572
23. SETI@home: Current Total Statistics. http://setiathome.ssl.berkeley.edu/

totals.html, May 9 (2004)
24. Sun, X.H., Wu, M.: GHS: A performance Prediction and Task Scheduling System

for Grid Computing. 17th IEEE International Parallel & Distributed Processing
Symposium (2003)

25. Szajda, D., Lawson, B., Owen, J.: Hardening Functions for Large Scale Distributed
Computations. IEEE Symposium on Security and Privacy, (2003) 216–224

	Introduction
	Definitions and Preliminaries
	Complexity of the Problem
	Optimal Algorithms for the Mesh
	Preliminaries
	Optimal Algorithm for Workers with High Reliability
	Optimal Algorithm for Workers with Low Reliability

	Related Work
	Conclusions and Future Work

