
Firewall Queries

Alex X. Liu1, Mohamed G. Gouda1, Huibo H. Ma2, and Anne HH. Ngu2

1 Department of Computer Sciences, The University of Texas at Austin,
Austin, Texas 78712-0233, U.S.A.
{alex, gouda}@cs.utexas.edu

2 Department of Computer Science, Texas State University,
San Marcos, Texas 78666-4616, U.S.A.

{hm1034, angu}@txstate.edu

Abstract. Firewalls are crucial elements in network security, and have
been widely deployed in most businesses and institutions for securing
private networks. The function of a firewall is to examine each incom-
ing and outgoing packet and decide whether to accept or to discard the
packet based on a sequence of rules. Because a firewall may have a large
number of rules and the rules often conflict, understanding and analyzing
the function of a firewall have been known to be notoriously difficult. An
effective way to assist humans in understanding and analyzing the func-
tion of a firewall is by issuing firewall queries. An example of a firewall
query is “Which computers in the private network can receive packets
from a known malicious host in the outside Internet?”. Two problems
need to be solved in order to make firewall queries practically useful: how
to describe a firewall query and how to process a firewall query. In this
paper, we first introduce a simple and effective SQL-like query language,
called the Structured Firewall Query Language (SFQL), for describing
firewall queries. Second, we present a theorem, called the Firewall Query
Theorem, as a foundation for developing firewall query processing algo-
rithms. Third, we present an efficient firewall query processing algorithm,
which uses firewall decision trees as its core data structure. Experimental
results show that our firewall query processing algorithm is very efficient:
it takes less than 10 milliseconds to process a query over a firewall that
has up to 10,000 rules.

Keywords: Network Security, Firewall Queries, Firewalls.

1 Introduction

Serving as the first line of defense against malicious attacks and unauthorized
traffic, firewalls are crucial elements in securing the private networks of most
businesses, institutions, and even home networks. A firewall is placed at the point
of entry between a private network and the outside Internet so that all incoming
and outgoing packets have to pass through it. A packet can be viewed as a tuple
with a finite number of fields; examples of these fields are source/destination
IP address, source/destination port number, and protocol type. A firewall maps

T. Higashino (Ed.): OPODIS 2004, LNCS 3544, pp. 197–212, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

198 A.X. Liu et al.

each incoming and outgoing packet to a decision according to its configuration.
A firewall configuration defines which packets are legitimate and which are il-
legitimate by a sequence of rules. Each rule in a firewall configuration is of the
form

〈predicate〉 → 〈decision〉

The 〈predicate〉 in a rule is a boolean expression over some packet fields and the
physical network interface on which a packet arrives. For the sake of brevity,
we assume that each packet has a field that contains the identification of the
network interface on which a packet arrives. The 〈decision〉 of a rule can be
accept, or discard, or a combination of these decisions with other options such
as the logging option. For simplicity, we assume that the 〈decision〉 in a rule is
either accept or discard.

A packet matches a rule if and only if (iff) the packet satisfies the predicate
of the rule. The predicate of the last rule in a firewall is usually a tautology to
ensure that every packet has at least one matching rule in the firewall. The rules
in a firewall often conflict. Two rules in a firewall conflict iff they have different
decisions and there is at least one packet that can match both rules. Due to
conflicts among rules, a packet may match more than one rule in a firewall, and
the rules that a packet matches may have different decisions. To resolve conflicts
among rules, for each incoming or outgoing packet, a firewall maps it to the
decision of the first (i.e., highest priority) rule that the packet matches.

The function (i.e., behavior) of a firewall is specified in its configuration,
which consists of a sequence of rules. The configuration of a firewall is the
most important component in achieving the security and functionality of the
firewall [24]. However, most firewalls on the Internet are poorly configured, as
witnessed by the success of recent worms and viruses like Blaster [6] and Sap-
phire [7], which could easily be blocked by a well-configured firewall [26]. It has
been observed that most firewall security breaches are caused by configuration
errors [5]. An error in a firewall configuration means that some illegitimate pack-
ets are identified as being legitimate, or some legitimate packets are identified
as being illegitimate. This will either allow unauthorized access from the out-
side Internet to the private network, or disable some legitimate communication
between the private network and the outside Internet. Neither case is desirable.
Clearly, a firewall configuration should be well understood and analyzed before
being deployed.

However, due to the large number of rules in a firewall and the large number
of conflicts among rules, understanding and analyzing the function of a firewall
have been known to be notoriously difficult [21]. The implication of any rule in a
firewall cannot be understood without examining all the rules listed above that
rule. There are other factors that contribute to the difficulties in understand-
ing and analyzing firewalls. For example, a corporate firewall often consists of
rules that are written by different administrators at different times and for dif-
ferent reasons. It is difficult for a new firewall administrator to understand the
implication of each rule that is not written by herself.

Firewall Queries 199

An effective way to assist humans in understanding and analyzing firewalls is
by issuing firewall queries. Firewall queries are questions concerning the function
of a firewall. Examples of firewall queries are “Which computers in the outside
Internet cannot send emails to the mail server in a private network?” and “Which
computers in the private network can receive BOOTP1 packets from the out-
side Internet?”. Figuring out answers to these firewall queries is of tremendous
help for a firewall administrator to understand and analyze the function of the
firewall. For example, assuming the specification of a firewall requires that all
computers in the outside Internet, except a known malicious host, are able to
send emails to the mail server in the private network, a firewall administrator
can test whether the firewall satisfies this requirement by issuing a firewall query
“Which computers in the outside Internet cannot send emails to the mail server
in the private network?”. If the answer to this query contains exactly the known
malicious host, then the firewall administrator is assured that the firewall does
satisfy this requirement. Otherwise the firewall administrator knows that the
firewall fails to satisfy this requirement, and she needs to reconfigure the fire-
wall. As another example, suppose that the specification of a firewall requires
that any BOOTP packet from the outside Internet is to be blocked from enter-
ing the private network. To test whether the firewall satisfies this requirement, a
firewall administrator can issue a firewall query “Which computers in the private
network can receive BOOTP packets from the outside Internet?”. If the answer
to this query is an empty set, then the firewall administrator is assured that the
firewall does satisfy this requirement. Otherwise the firewall administrator knows
that the firewall fails to satisfy this requirement, and she needs to reconfigure
the firewall.

Firewall queries are also useful in a variety of other scenarios, such as fire-
wall maintenance and firewall debugging. For a firewall administrator, checking
whether a firewall satisfies certain conditions is part of daily maintenance ac-
tivity. For example, if the administrator detects that a computer in the private
network is under attack, the firewall administrator can issue queries to check
which other computers in the private network are also vulnerable to the same
type of attacks. In the process of designing a firewall, the designer can issue some
firewall queries to detect design errors by checking whether the answers to the
queries are consistent with the firewall specification.

To make firewall queries practically useful, two problems need to be solved:
how to describe a firewall query and how to process a firewall query. The second
problem is technically difficult. Recall that the rules in a firewall are sensitive
to the rule order and the rules often conflict. The naive solution is to enumerate
every packet specified by a query and check the decision for each packet. Clearly,

1 The Bootp protocol is used by workstations and other devices to obtain IP addresses
and other information about the network configuration of a private network. Since
there is no need to offer the service outside a private network, and it may offer useful
information to hackers, usually Bootp packets are blocked from entering a private
network.

200 A.X. Liu et al.

this solution is infeasible. For example, to process the query “Which computers
in the outside Internet cannot send any packet to the private network?”, this
naive solution needs to enumerate 288 possible packet and check the decision of
the firewall for each packet, which is infeasible.

In this paper, we present solutions to both problems. First, we introduce a
simple and effective SQL-like query language, called the Structured Firewall
Query Language (SFQL), for describing firewall queries. This language uses
queries of the form “select...from...where...”. Second, we present a theorem,
called the Firewall Query Theorem, as the foundation for developing firewall
query processing algorithms. Third, we present an efficient query processing al-
gorithm that uses firewall decision trees as its core data structure. For a given
firewall of a sequence of rules, we first construct an equivalent firewall decision
tree by a construction algorithm. Then the firewall decision tree is used as the
core data structure of this query processing algorithm for answering each firewall
query. Experimental results show that our firewall query processing algorithm is
very efficient: it takes less than 10 milliseconds to process a query over a firewall
that has up to 10,000 rules. Clearly, our firewall query processing algorithm is
fast enough in interacting with firewall administrators.

Note that firewalls that we consider in this paper are static firewalls, not
stateful firewalls in which the function of a firewall changes dynamically as pack-
ets pass by. Also note that the queries of a firewall are intended primarily for
the administrator of the firewall to use. For a firewall that protects a private
network, neither normal users in the private network nor the outsiders of the
private network are able to query the firewall. Since the focus of this paper is fire-
wall configurations, in the rest of this paper, we use “firewall” to mean “firewall
configuration” if not otherwise specified.

2 Related Work

There is little work that has been done on firewall queries. In [21,25], a firewall
analysis system that uses some specific firewall queries was presented. In [21,25],
a firewall query is described by a triple (a set of source addresses, a set of
destination addresses, a set of services), where each service is a tuple (protocol
type, destination port number). The semantics of such a query are “which IP
addresses in the set of source addresses can send which services in the set of
services to which IP addresses in the set of destination addresses?”. We go beyond
[21,25] in the following two major aspects.

1. No algorithm for processing a firewall query over a sequence of rules was
presented in [21] or [25]. Consequently, how fast and scalable that a firewall
query can be processed remains unknown, while the efficiency of a firewall
query processing algorithm is crucial in order to interact with a human user.
In contrast, we present an efficient algorithm for processing a firewall query
over a sequence of rules. Our firewall query algorithm takes less than 10
milliseconds to process a query over a firewall that has up to 10,000 rules.

Firewall Queries 201

2. The query language described in [21] and [25] is too specific: it is only ap-
plicable to IP packets and it only concerns the four fields of source address,
destination address, protocol type and destination port number. This makes
the expressive power of the query language in [21, 25] limited. For example,
even only considering IP packets, it cannot express a firewall query concern-
ing source port numbers or application fields. In contrast, our Structured
Firewall Query Language is capable of expressing firewall queries with arbi-
trary fields.

In [18], some ad-hoc “what if” questions that are similar to firewall queries
were discussed. However, no algorithm was presented for processing the proposed
“what if” questions.

In [9], expert systems were proposed to analyze firewall rules. Clearly, building
an expert system just for analyzing a firewall is overwrought and impractical.

Detecting potential firewall configuration errors by conflict detection was dis-
cussed in [3,8,17,22]. Similar to conflict detection, six types of so-called “anoma-
lies” were defined in [1]. Examining each conflict or anomaly is helpful in reduc-
ing potential firewall configuration errors; however, the number of conflicts or
anomalies in a firewall is typically large, and the manual checking of each con-
flict or anomaly is unreliable because the meaning of each rule depends on the
current order of the rules in the firewall, which may be incorrect.

Some firewall design methods have been proposed in [4, 16, 20, 13]. These
works aim at creating firewall rules, while we aim at analyzing firewall rules.

Firewall vulnerabilities are discussed and classified in [19, 11]. However, the
focus of [19, 11] are the vulnerabilities of the packet filtering software and the
supporting hardware part of a firewall, not the configuration of a firewall.

There are some tools currently available for network vulnerability testing,
such as Satan [10, 12] and Nessus [23]. These vulnerability testing tools scan a
private network based on the current publicly known attacks, rather than the
requirement specification of a firewall. Although these tools can possibly catch
errors that allow illegitimate access to the private network, it cannot find the
errors that disable legitimate communication between the private network and
the outside Internet.

3 Structured Firewall Query Language

3.1 Firewalls

In this section, we present the actual syntax of the firewall query language and
show how to use this language to describe firewall queries.

We first define a packet over the fields F1, · · · , Fd as a d-tuple (p1, · · · , pd)
where each pi is in the domain D(Fi) of field Fi, and each D(Fi) is an interval
of nonnegative integers. For example, the domain of the source address in an IP
packet is [0, 232). For the brevity of presentation, we assume that all packets are
over the d fields F1, · · · , Fd, if not otherwise specified. We use Σ to denote the set
of all packets. It follows that Σ is a finite set and |Σ| = |D(F1)| × · · · × |D(Fn)|.

202 A.X. Liu et al.

Given a firewall f , each packet p in Σ is mapped by f to a decision, denoted
f.p, in the set {accept , discard}. Two firewalls f and f ′ are equivalent, denoted
f ≡ f ′, iff for any packet p in Σ, f.p = f ′.p holds. This equivalence relation is
symmetric, self-reflective, and transitive.

A firewall consists of a sequence of rules. Each rule is of the following format:

(F1 ∈ S1) ∧ · · · ∧ (Fd ∈ Sd) → 〈decision〉
where each Si is a nonempty subset of D(Fi), and the 〈decision〉 is either accept
or discard . If Si = D(Fi), we can replace (Fi ∈ Si) by (Fi ∈ all), or remove
the conjunct (Fi ∈ D(Fi)) altogether. Some existing firewall products, such
as Linux’s ipchain, require that Si be represented in a prefix format such as
192.168.0.0/16, where 16 means that the prefix is the first 16 bits of 192.168.0.0
in a binary format. In this paper, we choose to represent Si as a nonempty set
of nonnegative integers because of two reasons. First, any set of nonnegative
integers can be automatically converted to a set of prefixes (see [15]). Second,
set representations are more convenient in mathematical manipulations.

A packet (p1, · · · , pd) matches a rule (F1 ∈ S1)∧ · · ·∧ (Fd ∈ Sd) → 〈decision〉
iff the condition (p1 ∈ S1) ∧ · · · ∧ (pd ∈ Sd) holds. Since a packet may match
more than one rule in a firewall, each packet is mapped to the decision of the
first rule that the packet matches. The predicate of the last rule in a firewall is
usually a tautology to ensure that every packet has at least one matching rule
in the firewall.

Here we give an example of a simple firewall. In this example, we assume
that each packet only has two fields: S (source address) and D (destination
address), and both fields have the same domain [1, 10]. This firewall consists of
the sequence of rules in Figure 1. Let f1 be the name of this firewall.

r1 : S ∈ [4, 7] ∧ D ∈ [6, 8] → accept
r2 : S ∈ [3, 8] ∧ D ∈ [2, 9] → discard
r3 : S ∈ [1, 10] ∧ D ∈ [1, 10]→ accept

Fig. 1. Firewall f1

3.2 Query Language

A query, denoted Q, in our Structured Firewall Query Language (SFQL) is of
the following format:

select Fi

from f
where (F1 ∈ S1) ∧ · · · ∧ (Fd ∈ Sd) ∧ (decision = 〈dec〉)

where Fi is one of the fields F1, · · · , Fd, f is a firewall, each Sj is a nonempty
subset of the domain D(Fj) of field Fj , and 〈dec〉 is either accept or discard.

The result of query Q, denoted Q.result, is the following set:

Firewall Queries 203

{pi|(p1, · · · , pd) is a packet in Σ, and
(p1 ∈ S1) ∧ · · · ∧ (pd ∈ Sd) ∧ (f.(p1, · · · , pd) = 〈dec〉)}

Recall that Σ denotes the set of all packets, and f.(p1, · · · , pd) denotes the deci-
sion to which firewall f maps the packet (p1, · · · , pd).

We can get the above set by first finding all the packets (p1, · · · , pd) in Σ
such that the following condition

(p1 ∈ S1) ∧ · · · ∧ (pd ∈ Sd) ∧ (f((p1, · · · , pd)) = 〈dec〉)

holds, then projecting all these packets to the field Fi.
For example, a question to the firewall in Figure 1, “Which computers whose

addresses are in the set [4, 8] can send packets to the machine whose address is
6?”, can be formulated as the following query using SFQL:

select S
from f1

where (S ∈ {[4, 8]}) ∧ (D ∈ {6}) ∧ (decision = accept)

The result of this query is {4, 5, 6, 7}.
As another example, a question to the firewall in Figure 1, “Which computer

cannot send packets to the computer whose address is 6?”, can be formulated
as the following query using SFQL:

select S
from f1

where (S ∈ {all}) ∧ (D ∈ {6}) ∧ (decision = discard)

The result of this query is {3, 8}.
Next we give more examples on how to use SFQL to describe firewall queries.

4 Firewall Query Examples

In this section, we describe some example firewall queries using SFQL. Let f
be the name of the firewall that resides on the gateway router in Figure 2. This
gateway router has two interfaces: interface 0, which connects the gateway router
to the outside Internet, and interface 1, which connects the gateway router to the

C ISC O SY ST EM S

 0 1
Internet

Mail Server Host 1 Host 2

Firewall
(Gateway Router)

Fig. 2. Firewall f

204 A.X. Liu et al.

inside local network. In these examples, we assume each packet has the following
five fields: I (Interface), S (Source IP), D (Destination IP), N (Destination Port),
P (Protocol Type).

Question 1:
Which computers in the private network protected by the firewall f can
receive BOOTP2 packets from the outside Internet?

Query Q1:
select D
from f
where (I ∈ {0}) ∧ (S ∈ {all}) ∧ (D ∈ {all}) ∧ (N ∈ {67, 68})

∧(P ∈ {udp}) ∧ (decision = accept)
Answer to question 1 is Q1.result.

Question 2:
Which ports on the mail server protected by the firewall f are open?

Query Q2:
select N
from f
where (I ∈ {0, 1}) ∧ (S ∈ {all}) ∧ (D ∈ {Mail Server} ∧ (N ∈ {all})

∧(P ∈ {all}) ∧ (decision = accept)
Answer to question 2 is Q2.result.

Question 3:
Which computers in the outside Internet cannot send SMTP3 packets
to the mail server protected by the firewall f?

Query Q3:
select S
from f
where (I ∈ {0}) ∧ (S ∈ {all}) ∧ (D ∈ {Mail Server}) ∧ (N ∈ {25})

∧(P ∈ {tcp}) ∧ (decision = discard)
Answer to question 3 is Q3.result.

Question 4:
Which computers in the outside Internet cannot send any packet to
the private network protected by the firewall f?

Query Q4:
select S
from f
where (I ∈ {0}) ∧ (S ∈ {all}) ∧ (D ∈ {all}) ∧ (N ∈ {all}) ∧ (P ∈ {all})

∧(decision = accept)
Answer to question 4 is T − Q4.result, where T is the set of all IP addresses
outside of the private network

2 Bootp packets are UDP packets and use port number 67 or 68.

Firewall Queries 205

Question 5:
Which computers in the outside Internet can send SMTP packets to both
host 1 and host 2 in the private network protected by the firewall f?

Query Q5a:
select S
from f
where (I ∈ {0}) ∧ (S ∈ {all}) ∧ (D ∈ {Host 1}) ∧ (N ∈ {25})

∧(P ∈ {tcp}) ∧ (decision = accept)
Query Q5b:

select S
from f
where (I ∈ {0}) ∧ (S ∈ {all}) ∧ (D ∈ {Host 2}) ∧ (N ∈ {25})

∧(P ∈ {tcp}) ∧ (decision = accept)
Answer to question 5 is Q5a.result ∩ Q5b.result.

5 Firewall Query Processing

In this section, we discuss how to process a firewall query for consistent firewalls.
Consistent firewalls and inconsistent firewalls are defined as follows:

Definition 1 (Consistent Firewalls). A firewall is called a consistent firewall
iff any two rules in the firewall do not conflict.

Definition 2 (Inconsistent Firewalls) . A firewall is called an inconsistent
firewall iff there are at least two rules in the firewall that conflict.

Recall that two rules in a firewall conflict iff they have different decisions and
there is at least one packet that can match both rules. For example, the first
two rules in the firewall in Figure 1, namely r1 and r2, conflict. Note that for
any two rules in a consistent firewall, if they overlap, i.e., there is at least one
packet can match both rules, they have the same decision. So, given a packet
and a consistent firewall, all the rules in the firewall that the packet matches
have the same decision. Figure 1 shows an example of an inconsistent firewall,
and Figure 3 shows an example of a consistent firewall. In these two firewall
examples, we assume that each packet only has two fields: S (source address)
and D (destination address), and both fields have the same domain [1, 10].

Our interest in consistent firewalls is twofold. First, each inconsistent firewall
can be converted to an equivalent consistent firewall, as described in Section 6.
Second, as shown in the following theorem, it is easier to process queries for
consistent firewalls than for inconsistent firewalls.

Theorem 1 (Firewall Query Theorem). Let Q be a query of the following
form:

3 SMTP stands for Simple Mail Transfer Protocol. SMTP packets are TCP packets
and use port number 25.

206 A.X. Liu et al.

r′1 : S ∈ [4, 7] ∧ D ∈ [6, 8] → a
r′2 : S ∈ [4, 7] ∧ D ∈ [2, 5] ∪ [9, 9] → d
r′3 : S ∈ [4, 7] ∧ D ∈ [1, 1] ∪ [10, 10] → a
r′4 : S ∈ [3, 3] ∪ [8, 8] ∧ D ∈ [2, 9] → d
r′5 : S ∈ [3, 3] ∪ [8, 8] ∧ D ∈ [1, 1] ∪ [10, 10] → a
r′6 : S ∈ [1, 2] ∪ [9, 10] ∧ D ∈ [1, 10] → a

Fig. 3. Consistent firewall f2

select Fi

from f
where (F1 ∈ S1) ∧ · · · ∧ (Fd ∈ Sd) ∧ (decision = 〈dec〉)
If f is a consistent firewall that consists of n rules r1, · · · , rn, then we have

Q.result =
n⋃

j=1

Q.rj

where each rule rj is of the form

(F1 ∈ S′
1) ∧ · · · ∧ (Fd ∈ S′

d) → 〈dec′〉
and the quantity of Q.rj is defined as follows:

Q.rj =

⎧
⎨

⎩

Si ∩ S′
i if (S1 ∩ S′

1 �= ∅) ∧ · · · ∧ (Sd ∩ S′
d �= ∅) ∧ (〈dec〉 = 〈dec′〉),

∅ otherwise

�

The Firewall Query Theorem implies a simple query processing algorithm:
given a consistent firewall f that consists of n rules r1, · · · , rn and a query Q,

Rule − based Firewall Query Processing Algorithm
Input : (1) A consistent firewall f that consists of n rules: r1, · · · , rn,

(2) A query Q:
select Fi

from f
where (F1 ∈ S1) ∧ · · · ∧ (Fd ∈ Sd) ∧ (decision = 〈dec〉)

Output: Result of query Q
Steps:
1. Q.result := ∅;
2. for j := 1 to n do /*Let rj = (F1 ∈ S′

1) ∧ · · · ∧ (Fd ∈ S′
d) → 〈dec′〉*/

if (S1 ∩ S′
1 	= ∅) ∧ · · · ∧ (Sd ∩ S′

d 	= ∅) ∧ (〈dec〉 = 〈dec′〉)
then Q.result := Q.result ∪ (Si ∩ S′

i);
3. return Q.result;

Fig. 4. Rule-based Firewall Query Processing Algorithm

Firewall Queries 207

compute Q.rj for each j, then
⋃n

j=1 Q.rj is the result of query Q. We call this
algorithm the rule-based firewall query processing algorithm. Figure 4 shows the
pseudocode of this algorithm.

6 FDT-Based Firewall Query Processing Algorithm

Observe that multiple rules in a consistent firewall may share the same prefix.
For example, in the consistent firewall in Figure 3, the first three rules, namely
r′1, r

′
2, r

′
3, share the same prefix S ∈ [4, 7]. Thus, if we apply the above query

processing algorithm in Figure 4 to answer a query, for instance, whose “where
clause” contains the conjunct S ∈ {3}, over the firewall in Figure 3, then the
algorithm will repeat three times the calculation of {3}∩ [4, 7]. Clearly, repeated
calculations are not desirable for efficiency purposes.

In this section, we present a firewall query processing method that has no
repeated calculations and can be applied to both consistent and inconsistent
firewalls. This method consists of two steps. First, convert the firewall (whether
consistent or inconsistent) to an equivalent firewall decision tree (short for FDT).
Second, use this FDT as the core data structure for processing queries. We call
the algorithm that uses an FDT to process queries the FDT-based firewall query
processing algorithm. Firewall decision trees are defined as follows. Note that
firewall decision trees are a special type of firewall decision diagrams, which are
introduced in [13] as a useful notation for specifying firewalls.

Definition 3 (Firewall Decision Tree). A Firewall Decision Tree t over fields
F1, · · · , Fd is a directed tree that has the following four properties:

1. Each node v in t has a label, denoted F (v), such that

F (v) ∈
{{F1, · · · , Fd} if v is nonterminal,
{accept , discard} if v is terminal.

2. Each edge e in t has a label, denoted I(e), such that if e is an outgoing edge
of node v, then I(e) is a nonempty subset of D(F (v)).

3. A directed path in t from the root to a terminal node is called a decision path
of t. Each decision path contains d nonterminal nodes, and the i-th node is
labelled Fi for each i that 1 ≤ i ≤ d.

DD

S

D

[4, 7]

[6, 8]
[2, 5]
[9, 9]

[1, 1]
[1, 1]

[10, 10]
[10, 10]

[3, 3] [8, 8]

[2, 9]

[1, 2]
[9, 10]

[1, 10]

a a aa dd

Fig. 5. Firewall Decision Tree t3

208 A.X. Liu et al.

4. The set of all outgoing edges of a node v in t, denoted E(v), satisfies the
following two conditions:
(a) Consistency : I(e)∩ I(e′) = ∅ for any two distinct edges e and e′ in E(v),
(b) Completeness:

⋃
e∈E(v) I(e) = D(F (v)) �

Figure 5 shows an example of an FDT named t3. In this example, we assume
that each packet only has two fields: S (source address) and D (destination
address), and both fields have the same domain [1, 10]. In the rest of this paper,
including this example, we use “a” as a shorthand for accept and “d” as a
shorthand for discard.

A decision path in an FDT t is represented by (v1e1 · · · vkekvk+1) where v1 is
the root, vk+1 is a terminal node, and each ei is a directed edge from node vi to
node vi+1. A decision path (v1e1 · · · vkekvk+1) in an FDT defines the following
rule:

F1 ∈ S1 ∧ · · · ∧ Fn ∈ Sn → F (vk+1)

where

Si =

⎧
⎨

⎩

I(ej) if the decision path has a node vj that is labelled with field Fi,

D(Fi) if the decision path has no node that is labelled with field Fi.

For an FDT t, we use Γ (t) to denote the set of all the rules defined by all the
decision paths of t. For any packet p, there is one and only one rule in Γt that
p matches because of the consistency and completeness properties; therefore, t
maps p to the decision of the only rule that p matches in Γt. Considering the
FDT t3 in Figure 5, Figure 3 shows all the six rules in Γt3 .

Given an FDT t, any sequence of rules that consists of all the rules in Γt is
equivalent to t. The order of the rules in such a firewall is immaterial because
the rules in Γt are non-overlapping. Given a sequence of rules, an equivalent
FDT can be constructed using the construction algorithm described in [20].
Therefore, an inconsistent firewall can be converted to an equivalent consistent
firewall using the following two steps: first, construct an equivalent FDT from the
original inconsistent firewall; second, generate one rule for each decision path of
the FDT. Then any sequence that consists of all the rules defined by the decision
paths of the FDT is the resulting equivalent consistent firewall.

The pseudocode of the FDT-based firewall query processing algorithm is
shown in Figure 6. Here we use e.t to denote the (target) node that the edge e
points to, and we use t.root to denote the root of FDT t.

The above FDT-based firewall query processing algorithm has two inputs,
an FDT t and an SFQL query Q. The algorithm starts by traversing the FDT
from its root. Let Fj be the label of the root. For each outgoing edge e of the
root, we compute I(e)∩ Sj . If I(e)∩ Sj = ∅, we skip edge e and do not traverse
the subgraph that e points to. If I(e) ∩ Sj �= ∅, then we continue to traverse
the subgraph that e points to in a similar fashion. Whenever a terminal node is
encountered, we compare the label of the terminal node and 〈dec〉. If they are
the same, assuming the rule defined by the decision path containing the terminal
node is (F1 ∈ S′

1) ∧ · · · ∧ (Fd ∈ S′
d) → 〈dec′〉, then we add Si ∩ S′

i to Q.result.

Firewall Queries 209

FDT − based Firewall Query Processing Algorithm
Input : (1)An FDT t,

(2)A query Q: select Fi

from t
where (F1 ∈ S1) ∧ · · · ∧ (Fd ∈ Sd) ∧ (decision = 〈dec〉)

Output : Result of query Q
Steps:
1. Q.result := ∅;
2. CHECK(t.root , (F1 ∈ S1) ∧ · · · ∧ (Fd ∈ Sd) ∧ (decision = 〈dec〉)
3. return Q.result;

CHECK(v, (F1 ∈ S1) ∧ · · · ∧ (Fd ∈ Sd) ∧ (decision = 〈dec〉))
1. if (v is a terminal node) and (F (v) = 〈dec〉) then

(1) Let (F1 ∈ S′
1) ∧ · · · ∧ (Fd ∈ S′

d) → 〈dec′〉 be the rule
defined by the decision path containing node v;

(2) Q.result := Q.result ∪ (Si ∩ S′
i);

2. if (v is a nonterminal node) then /*Let Fj be the label of v*/
for each edge e in E(v) do

if I(e) ∩ Sj 	= ∅ then
CHECK(e.t, (F1 ∈ S1) ∧ · · · ∧ (Fd ∈ Sd) ∧ (decision = 〈dec〉))

Fig. 6. FDT-based Firewall Query Processing Algorithm

7 Experimental Results

So far we have presented two firewall query processing algorithms, the rule-based
algorithm in Section 5 and the FDT-based algorithm in Section 6. In this sec-
tion, we evaluate the efficiency of both algorithms. In the absence of publicly
available firewalls, we create synthetic firewalls according to the characteristics
of real-life packet classifiers discussed in [2, 14]. Note that a firewall is also a
packet classifier. Each rule has the following five fields: interface, source IP ad-
dress, destination IP address, destination port number and protocol type. The
programs are implemented in SUN Java JDK 1.4. The experiments were carried
out on a SunBlade 2000 machine running Solaris 9 with 1Ghz CPU and 1 GB
of memory.

Figure 7 shows the average execution time of both algorithms versus the total
number of rules in the original (maybe inconsistent) firewalls. The horizontal axis
indicates the total number of rules in the original firewalls, and the vertical axis
indicates the average execution time (in milliseconds) for processing a firewall
query. Note that in Figure 7, the execution time of the FDT-based firewall query
processing algorithm does not include the FDT construction time because the
conversion from a firewall to an equivalent FDT is performed only once for
each firewall, not for each query. Similarly, the execution time of the rule-based
firewall query processing algorithm does not include the time for converting an
inconsistent firewall to an equivalent consistent firewall because this conversion
is performed only once for each firewall, not for each query.

210 A.X. Liu et al.

From Figure 7, we can see that the FDT-based firewall query processing
algorithm is much more efficient than the rule-based firewall query processing
algorithm. For example, for processing a query over an inconsistent firewall that
has 10,000 rules, the FDT-based query processing algorithm uses about 10 mil-
liseconds, while the rule-based query processing algorithm uses about 100 mil-
liseconds. The experimental results in Figure 7 confirm our analysis that the
FDT-based query processing algorithm saves execution time by reducing re-
peated calculations.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

10

20

30

40

50

60

70

80

90

100

Number of rules in an inconsistent firewall

A
ve

ra
ge

 Q
ue

ry
 P

ro
ce

ss
in

g
T

im
e

(m
se

c)

Rule−based Query Processing Algorithm
FDD−based Query Processing Algorithm

Fig. 7. Query Processing Time vs. Number of rules

8 Concluding Remarks

Our contributions in this paper are three-fold. First, we introduce a simple and
effective SQL-like query language, the Structured Firewall Query Language, for
describing firewall queries. Second, we present a theorem, the Firewall Query
Theorem, as the foundation for developing firewall query processing algorithms.
Third, we present an efficient algorithm that uses firewall decision trees as its
core data structure for processing firewall queries. Given a firewall of a sequence
of rules, we first construct an equivalent firewall decision tree. Then the firewall
decision tree is used as the core data structure of this query processing algorithm
to answer each firewall query. Our experimental results show that this query
processing algorithm is very efficient.

To keep our presentation simple, we have described a somewhat watered-
down version of the firewall query language where the “select” clause in a query
has only one field. In fact, the “select” clause in a query can be extended to
have more than one field. The results in this paper, e.g., the Firewall Query
Theorem and the two firewall query processing algorithms, can all be extended
accordingly to accommodate the extended “select” clauses.

Firewall Queries 211

References

1. E. Al-Shaer and H. Hamed. Discovery of policy anomalies in distributed firewalls.
In IEEE INFOCOM’04, March 2004.

2. F. Baboescu, S. Singh, and G. Varghese. Packet classification for core routers: Is
there an alternative to cams? In Proc. of IEEE INFOCOM, 2003.

3. F. Baboescu and G. Varghese. Fast and scalable conflict detection for packet clas-
sifiers. In Proc. of the 10th IEEE International Conference on Network Protocols,
2002.

4. Y. Bartal, A. J. Mayer, K. Nissim, and A. Wool. Firmato: A novel firewall man-
agement toolkit. Technical Report EES2003-1, Dept. of Electrical Engineering
Systems, Tel Aviv University, 2003.

5. CERT. Test the firewall system. http://www.cert.org/security-improvement/
practices/p060.html.

6. CERT Coordination Center. http://www.cert.org/advisories/ca-2003-20.html.
7. D. Moore et al. http://www.caida.org/outreach/papers/2003/sapphire/

sapphire.html.
8. D. Eppstein and S. Muthukrishnan. Internet packet filter management and rect-

angle geometry. In Symp. on Discrete Algorithms, pages 827–835, 2001.
9. P. Eronen and J. Zitting. An expert system for analyzing firewall rules. In Proc.

of the 6th Nordic Workshop on Secure IT Systems (NordSec 2001), pages 100–107,
2001.

10. D. Farmer and W. Venema. Improving the security of your site by breaking into it.
http://www.alw.nih.gov/Security/Docs/admin-guide-to-cracking.101.html, 1993.

11. M. Frantzen, F. Kerschbaum, E. Schultz, and S. Fahmy. A framework for under-
standing vulnerabilities in firewalls using a dataflow model of firewall internals.
Computers and Security, 20(3):263–270, 2001.

12. M. Freiss. Protecting Networks with SATAN. O’Reilly & Associates, Inc., 1998.
13. M. G. Gouda and A. X. Liu. Firewall design: consistency, completeness and com-

pactness. In Proc. of the 24th IEEE International Conference on Distributed Com-
puting Systems (ICDCS’04), pages 320–327.

14. P. Gupta. Algorithms for Routing Lookups and Packet Classification. PhD thesis,
Stanford University, 2000.

15. P. Gupta and N. McKeown. Algorithms for packet classification. IEEE Network,
15(2):24–32, 2001.

16. J. D. Guttman. Filtering postures: Local enforcement for global policies. In Proc.
of IEEE Symp. on Security and Privacy, pages 120–129, 1997.

17. A. Hari, S. Suri, and G. M. Parulkar. Detecting and resolving packet filter conflicts.
In Proc. of IEEE INFOCOM, pages 1203–1212, 2000.

18. S. Hazelhurst, A. Attar, and R. Sinnappan. Algorithms for improving the depend-
ability of firewall and filter rule lists. In Proc. of the International Conference on
Dependable Systems and Networks (DSN’00), pages 576–585, 2000.

19. S. Kamara, S. Fahmy, E. Schultz, F. Kerschbaum, and M. Frantzen. Analysis of
vulnerabilities in internet firewalls. Computers and Security, 22(3):214–232, 2003.

20. A. X. Liu and M. G. Gouda. Diverse firewall design. In Proc. of the International
Conference on Dependable Systems and Networks (DSN’04), pages 595–604, June
2004.

21. A. Mayer, A. Wool, and E. Ziskind. Fang: A firewall analysis engine. In Proc. of
IEEE Symp. on Security and Privacy, pages 177–187, 2000.

22. J. D. Moffett and M. S. Sloman. Policy conflict analysis in distributed system
management. Journal of Organizational Computing, 4(1):1–22, 1994.

212 A.X. Liu et al.

23. Nessus. http://www.nessus.org/. March 2004.
24. A. D. Rubin, D. Geer, and M. J. Ranum. Web Security Sourcebook. Wiley Com-

puter Publishing, 1th edition, 1997.
25. A. Wool. Architecting the lumeta firewall analyzer. In Proc. of the 10th USENIX

Security Symposium, pages 85–97, August 2001.
26. A. Wool. A quantitative study of firewall configuration errors. IEEE Computer,

37(6):62–67, 2004.

	Introduction
	Related Work
	Structured Firewall Query Language
	Firewalls
	Query Language

	Firewall Query Examples
	Firewall Query Processing
	FDT-Based Firewall Query Processing Algorithm
	Experimental Results
	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.33333
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.33333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

