
On Statistical Model Checking of
Stochastic Systems

Koushik Sen, Mahesh Viswanathan, and Gul Agha

Department of Computer Science,
University of Illinois at Urbana-Champaign

{ksen, vmahesh, agha}@uiuc.edu

Abstract. Statistical methods to model check stochastic systems have
been, thus far, developed only for a sublogic of continuous stochastic logic
(CSL) that does not have steady state operator and unbounded until
formulas. In this paper, we present a statistical model checking algorithm
that also verifies CSL formulas with unbounded untils. The algorithm is
based on Monte Carlo simulation of the model and hypothesis testing
of the samples, as opposed to sequential hypothesis testing. We have
implemented the algorithm in a tool called VESTA, and found it to be
effective in verifying several examples.

1 Introduction

Stochastic models and temporal logics such as continuous stochastic logic
(CSL) [1, 3] and probabilistic computation tree logic (PCTL) [9] are widely used
to model practical systems and analyze their performance and reliability. There
are two primary approaches to analyzing the stochastic behavior of such sys-
tems: numerical and statistical. In the numerical approach, the formal model of
the system is model checked for correctness with respect to the specification using
symbolic and numerical methods. Model checkers for different classes of stochas-
tic processes and specification logics have been developed [10, 13, 12, 4, 5, 14, 2].
Although the numerical approach is highly accurate, it suffers from memory
problem due to state-space explosion and being computationally intensive. An
alternate method, proposed in [18], is based on Monte Carlo simulation of the
model and performing sequential hypothesis testing on the sample generated.
In [15], this method was extended to statistically verify black-box, deployed sys-
tems that can only be passively observed. Being statistical, these methods are
less precise: they only provide probabilistic guarantees of correctness.

Both statistical approaches (presented in [18, 15]), considered a sublogic
of continuous stochastic logic (CSL) that excludes steady state operator and
unbounded until operator. In this paper, we extend the statistical verification
method to verify CSL (or PCTL) formulas that may have unbounded until con-
nectives. Specifically, we consider a sublogic of CSL (and PCTL) that contains
all the logical connectives, except for the steady-state operator and present a
model checking algorithm for it. As in [18], we assume we have a model that can

K. Etessami and S.K. Rajamani (Eds.): CAV 2005, LNCS 3576, pp. 266–280, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On Statistical Model Checking of Stochastic Systems 267

be simulated on a need basis. The samples generated by Monte Carlo simulation
are subjected to hypothesis testing. However, unlike [18], we do simple hypothe-
sis testing as opposed to sequential hypothesis testing. Simple hypothesis testing
is easily amenable to parallelism, since the sampling and statistical tests can be
done in parallel. We exploit parallelism in our implementation of the algorithm.

We make no inherent assumptions about the model that is being verified,
other than it can be simulated using discrete event simulation, and that the
model checking problem is well defined with respect to CSL (or PCTL). Thus,
our algorithm can be successfully applied to Discrete Time Markov Chains,
Continuous Time Markov Chains, and Semi Markov Chains. However, it is un-
clear whether our method can be applied to Generalized Semi Markov Processes
(GSMP). This is because there is no well understood definition of a probability
space on execution paths of a GSMP such that the model checking problem is
well-defined, i.e., path formulas in CSL define measurable sets.

The rest of the paper is organized as follows. In Section 2, we give our assump-
tions about the system being analyzed, and present the syntax and semantics
of CSL (and PCTL). The model checking algorithm is presented in Section 3.
The algorithm is inductive, based on the structure of the formula being verified,
and we present the details of the algorithm for all the CSL connectives in our
sublogic, though our analysis of the previously considered operators (such as
conjunction, negation, next, bounded until, and the probabilistic operator) is
similar to that presented in [18], the decision procedures we use differ. Section 4
contains details of our implementation in the VESTA tool and the results of our
experimental analysis of the tool. Finally, we conclude in Section 5.

2 Model and Logic

We consider stochastic models that meet the following requirements:

1. Sample execution paths can be generated through discrete-event simulation.
Execution paths will be a sequences of the form π = s0

t0→ s1
t1→ s2

t2→ · · ·
where each si is a state of the model and ti ∈ R>0 is the time spent in the
state si before moving to the state si+1.

2. A probability space can be defined on the execution paths of the model in
such a way that the paths satisfying any path formula in our concerned logic
(CSL or PCTL), is measurable.

3. The number of states of the system is finite.

It has been shown that commonly used models such as continuous-time
Markov chains (CTMC) [17], semi-Markov chains (SMC) [7, 14], which are a
generalization of CTMC, meet the above requirements. While we believe our
algorithm will work for any model that satisfies the above conditions, in order
to establish the mathematical concepts and notation clearly, we focus on SMCs.

Let AP be a set of finite atomic propositions. A labelled semi-Markov chain
(SMC) is a tuple M = (S, sI ,P,Q, L) where S is a finite set of states, sI is

268 K. Sen, M. Viswanathan, and G. Agha

the initial state, P : S × S → [0, 1] is a transition probability matrix such that∑
s′∈S P(s, s′) = 1 for each s in S, Q : S × S → (R≥0 → [0, 1]) is a matrix of

continuous cumulative probability distribution functions such that P(s, s′) = 0
implies for all t, Q(s, s′, t) = 1, and L : S → 2AP is a labelling function that
maps every state to a set of atomic propositions.

If for any two states s and s′, P(s, s′) > 0 then there is a transition from
s to s′, and the probability of the transition is given by P(s, s′). Thus we can
see (S, sI ,P, L) as the discrete-time Markov chain embedded in the SMC M.
Once a next state s′ from the current state s is sampled according to the matrix
P, the sojourn time in the state s is determined according to the cumulative
probability distribution function Q(s, s′, t). The probability to move from state
s to s′ within t units of time given that s′ is sampled as the next state is given
by Q(s, s′, t). Note that if all the probability distribution functions in the matrix
Q are exponential then the SMC becomes a CTMC.

A sequence π = s0
t0→ s1

t1→ s2
t2→ · · · is called a path of M, if s0 = sI , si ∈ S,

ti ∈ R≥0, and P(si, si+1) > 0 for all i ≥ 0. We denote the ith state in an execution
π by π[i] = si, and the time spent in the ith state by δ(π, i) = ti. The time at
which the execution enters state π[i + 1] is given by τ(π, i + 1) =

∑j=i
j=0 δ(π, j).

The state of the execution at time t (if the sum of sojourn times in all states in
the path exceeds t), denoted by π(t), is the state si such that i is the smallest
number for which t ≤ τ(π, i + 1). We let Path(s) be the set of paths starting at
state s.

Let s0, s1, . . . , sk ∈ S with P(si, si+1) > 0 for all 0 ≤ i < k. Let
I0, I1, I2, . . . Ik−1 be non-empty intervals in R≥0. Then C(s0, I0, s1, . . . Ik−1, sk)
denotes a cylinder set consisting of all paths π ∈ Path(s0) such that π[i] = si

(for 0 ≤ i ≤ k), and δ(π, i) ∈ Ii (for i < k). Let B be the smallest σ-algebra on
Path(s0) which contains all the cylinders C(s0, I0, s1, . . . Ik−1, sk). The measure
µ on cylinder sets can be inductively defined as µ(C(s0)) = 1 and for k > 0 as

µ(C(s0, I0, s1, . . . Ik−1, sk))
= µ(C(s0, I0, s1, . . . sk−1)) · P(sk−1, sk) · (Q(sk−1, sk, u) − Q(sk−1, sk, �))

where � = inf Ik and u = sup Ik. The probability measure on B is then defined as
the unique measure that agrees with µ (as defined above) on the cylinder sets.

2.1 CSL and PCTL Syntax and Semantics

Continuous stochastic logic (CSL) is introduced in [1] as a logic to express prob-
abilistic properties of continuous time Markov chains (CTMCs). We adopt a
sublogic of CSL that excludes the steady-state probabilistic operator. Let φ rep-
resents a state formula and ψ represents a path formula. Then:

φ ::= true | a ∈ AP | ¬φ | φ ∧ φ | P��p(ψ) ψ ::= φ U φ | φ U≤tφ | Xφ | X≤tφ

where AP is the set of atomic propositions, �	 ∈ {<,≤, >,≥}, p ∈ [0, 1], and
t ∈ R≥0. The notion that a state s (or a path π) satisfies a formula φ is denoted
by s |= φ (or π |= φ), and is defined inductively as follows:

On Statistical Model Checking of Stochastic Systems 269

s |= true s |= a iff a ∈ AP(s)
s |= ¬φ iff s �|= φ s |= φ1 ∧ φ2 iff s |= φ1 and s |= φ 2

s |= P��p(ψ) iff Prob{π ∈ Path(s) | π |= ψ} �� p
π |= Xφ iff τ(π, 1) < ∞ and π[1] |= φ

π |= X≤tφ iff τ(π, 1) ≤ t and π[1] |= φ
π |= φ1 U φ2 iff ∃x ∈ R≥0 (π(x) |= φ2 and ∀y ∈ [0, x). π(y) |= φ1)

π |= φ1 U≤tφ2 iff ∃x ∈ [0, t]. (π(x) |= φ2 and ∀y ∈ [0, x). π(y) |= φ1)

It can shown that for any path formula ψ and any state s, the set {π ∈
Path(s) | π |= ψ} is measurable [14]. A formula P��p(ψ) is satisfied by a state
s if Prob[path starting at s satisfies ψ] �	 p. The path formula Xφ holds over a
path if φ holds at the second state on the path. The formula φ1 U≤tφ2 is true
over a path π if φ2 holds in some state along π at a time x ∈ [0, t], and φ holds
at all prior states.

Note that if we change the time domain in the above logic from R≥0 to natural
numbers N, we get the logic PCTL (stands for probabilistic computation tree
logic) [9]. The model-checking algorithm that we describe next is correct for both
time domains. Therefore, we can use the model-checking algorithm for verifying
properties expressed in both CSL and PCTL. In case of model-checking a PCTL
formula, we will assume that the model provided is discrete-time with unit time
associated with every transition.

3 Statistical Model Checking

Our model checking algorithm, A, proceeds recursively based on the structure
of the formula. Before describing the details of the algorithm, we present the
theorem that formally states the correctness of the algorithm. The statement
of the theorem is instructive in understanding the subsequent analysis. The
algorithm A takes as input a stochastic model M, a formula φ in CSL, error
bounds α∗ and β∗, and three other parameters δ1, δ2, and ps. The result of model
checking on these parameters, denoted by Aδ1,δ2,ps(M, φ, α∗, β∗), can be either
true or false. The algorithm provides the following correctness guarantees.

Theorem 1. If the model M satisfies the following conditions

C1: For every subformula of the form P≥pψ in the formula φ and for every state
s in M, the probability that a path from s satisfies ψ must not lie in the
range [p−δ1−α∗

1−α∗ , p+δ1
1−β∗];

C2: For any subformula of the form φ1 U φ2 and for every state s in M, the
probability that a path from s satisfies φ1 U φ2 must not lie in the range
(0, δ2

(1−ps)N], where N is the number of states in the model M.

Then the algorithm provides the following guarantees

R1 : Prob[Aδ1,δ2,ps(M, φ, α∗, β∗) = true | M �|= φ] ≤ α∗

Prob[Aδ1,δ2,ps(M, φ, α∗, β∗) = false | M |= φ] ≤ β∗

270 K. Sen, M. Viswanathan, and G. Agha

Condition C1 requires that the model be such that for any subformula P≥pψ,
the probability of ψ being satisfied at a state be bounded away from p. Condition
C2 requires that either an until formula does not hold in a state or it holds with
some probability that is bounded away from 0. Under such circumstances, we
guarantee that the probability of error of A is within the required bounds.

A few points about the algorithm are in order. First, the requirement that the
model satisfy condition C1, is something that previous stochastic model checking
algorithms also have. Second, the error bounds α∗ and β∗ are parameters to the
algorithm. Hence, we can improve the confidence in the algorithm’s answer to
be as close to 1 as we like. Third, the bounds required in conditions C1 and
C2 depend on the parameters δ1, δ2, and ps given to the algorithm. Thus, they
can be tuned based on the model and formula being analyzed, to ensure that
C1 and C2 are satisfied. Typically, for our experiments, we picked δ1 = δ2 =
0.01 and ps = 0.1. Note that one may easily pick ps to be c/N where N is
the number of states and c is some positive constant. This will ensure that
the upper bound of the range in condition C2 is δ2

(1−c/N)N ≤ δ22ec (proved
in [16]), which can be made as close to 0 as desired by a suitable choice of c.
Note that making ps smaller comes with a price: if we make ps very small, the
expected length of the samples increases. This can increase the computation
cost, something we also observed in our experiments. However, techniques such
as caching and discounting optimization (discussed in Section 4) helped us to
considerably reduce the computation cost for small ps.

We make the following notational simplifications in the rest of the paper.
The parameters δ1, δ2, and ps are global to the algorithm A; therefore, we will
omit the superscript δ1, δ2, ps from Aδ1,δ2,ps(M, φ, α∗, β∗) and write it simply
as A(M, φ, α∗, β∗). The value of the error bounds α and β will change for the
invocation of A on various subformulas; therefore, we will carry them with A.
The result of model-checking a state formula φ at a state s will be denoted by
A(s, φ, α, β); similarly, the result of model-checking a path formula ψ over a
path π will be denoted by A(π, ψ, α, β). Note that A(M, φ, α∗, β∗) is same as
A(sI , φ, α∗, β∗).

3.1 Probabilistic Operator: Computing A(s, P��p(ψ), α, β)

We use statistical hypothesis testing [11] to verify a probabilistic property φ =
P��p(ψ) at a given state s. Without loss of generality, we show our procedure
for φ = P≥p(ψ). Note that P<p(ψ) is the same as ¬P≥p(ψ) and < (or >) is
essentially the same as ≤ (or ≥). Let p′ be the probability that ψ holds over a
random path starting at s. We say that s |= P≥p(ψ) if and only if p′ ≥ p and
s �|= P≥p(ψ) if and only if p′ < p.

We want to decide whether s |= P≥p(ψ) or s �|= P≥p(ψ). By condition C1,
we know that p′ cannot lie in the range [p−δ1−α

1−α , p+δ1
1−β], which implies that p′

cannot lie in the range [p − δ1, p + δ1]. Accordingly, we set up the following
experiment. Let H0 : p′ < p−δ1 be the null hypothesis and H1 : p′ > p+δ1 be the
alternative hypothesis. Let n be the number of execution paths sampled from the
state s. We will show how to estimate n from the different given parameters. Let

On Statistical Model Checking of Stochastic Systems 271

X1,X2, . . . , Xn be a random sample having Bernoulli distribution with unknown
mean p′ ∈ [0, 1] i.e., for each i ∈ [1, n], Prob[Xi = 1] = p′. Then the sum
Y = X1 +X2 + . . .+Xn has binomial distribution with parameters n and p′. We
say that xi, an observation of the random variable Xi, is 1 if the ith sample path
from s satisfies ψ and 0 otherwise. In the experiment, we reject H0 : p′ < p − δ1

and say A(s, φ, α, β) = true if
∑

xi

n ≥ p; otherwise, we reject H1 : p′ ≥ p and
say A(s, φ, α, β) = false if

∑
xi

n < p. Given the above experiment, to meet the
requirement R1 of A, we must have

Prob[accept H1 | H0 holds] = Prob[Y/n ≥ p | p′ < p − δ1] ≤ α
Prob[accept H0 | H1 holds] = Prob[Y/n < p | p′ > p + δ1] ≤ β

Accordingly, we can choose the unknown parameter n for this experiment such
that Prob[Y/n ≥ p | p′ < p − δ1] ≤ Prob[Y/n ≥ p | p′ = p − δ1] ≤ α and
Prob[Y/n < p | p′ ≥ p + δ1] ≤ Prob[Y/n < p | p′ = p + δ1] ≤ β. In other words,
we want to choose the smallest n such that both Prob[Y/n ≥ p] ≤ α when Y is
binomially distributed with parameters n and p − δ1, and Prob[Y/n < p] ≤ β
when Y is binomially distributed with parameters n and p + δ1, holds. Such an
n can be chosen by standard statistical methods.

3.2 Nested Probabilistic Operators: Computing A(s, P��p(ψ), α, β)

The above procedure for hypothesis testing works if the truth value of ψ over
a sample path determined by the algorithm is the same as the actual truth
value. However, in the presence of nested probabilistic operators in ψ, A cannot
determine the satisfaction of ψ over a sample path exactly. Therefore, we modify
the hypothesis test so that we can use the inexact truth values of ψ over the
sample paths.

Let the random variable X be 1 if a sample path π from s actually satisfies
ψ in the model and 0 otherwise. Let the random variable Z be 1 for a sample
path π if A(π, ψ, α, β) = true and 0 if A(π, ψ, α, β) = false. In our algorithm,
we cannot get samples from the random variable X; instead, our samples come
from the random variable Z. Let X and Z have Bernoulli distributions with
parameters p′ and p′′ respectively. Let Z1, Z2, . . . , Zn be a random sample from
the Bernoulli distribution with unknown mean p′′ ∈ [0, 1]. We say that zi, an
observation of the random variable Zi, is 1 if A(πi, ψ, α, β) = true for ith sample
path πi from s and 0 otherwise.

We want to test the null hypothesis H0 : p′ < p − δ1 against the alternative
hypothesis H1 : p′ > p + δ1. Using the samples from Z we can estimate p′′.
However, we need an estimation for p′ in order to decide whether φ = P≥p(ψ)
holds in state s or not. To get an estimate for p′ we note that the random
variables X and Z are related as follows: Prob[Z = 1 | X = 0] ≤ α′ and
Prob[Z = 0 | X = 1] ≤ β′, where α′ and β′ are the error bounds within which A
verifies the formula ψ over a sample path from s. We can set α′ = α and β′ = β.
By elementary probability theory, we have

Prob[Z = 1] = Prob[Z = 1 | X = 0]Prob[X = 0] + Prob[Z = 1 | X = 1]Prob[X = 1]

272 K. Sen, M. Viswanathan, and G. Agha

Therefore, we can approximate p′′ = Prob[Z = 1] as follows:

Prob[Z = 1] ≤ α(1 − p′) + 1 · p′ = p′ + (1 − p′)α
Prob[Z = 1] ≥ Prob[Z = 1 | X = 1]Prob[X = 1] ≥ (1 − β)p′ = p′ − βp′

This gives the following range in which p′′ lies: p′ − βp′ ≤ p′′ ≤ p′ + (1 − p′)α.
By condition C1, we know that p′ cannot lie in the range [p−δ1−α

1−α , p+δ1
1−β].

Accordingly, we set up the following experiment. Let H0 : p′ < p−δ1−α
1−α be the

null hypothesis and H1 : p′ > p+δ1
1−β be the alternative hypothesis. Let us say that

we accept H1 if our observation is
∑

zi

n ≥ p and we accept H0 if
∑

zi

n < p.
By the requirement of algorithm A, we want Prob[accept H1 | H0 holds] ≤ α

and Prob[accept H0 | H1 holds] ≤ β. Hence, we want Prob[
∑

Zi

n ≥ p | p′ <
p−δ1−α

1−α] ≤ Prob[
∑

Zi

n ≥ p | p′′−α
1−α ≤ p−δ1−α

1−α] = Prob[
∑

Zi

n ≥ p | p′′ < p − δ1] ≤
Prob[

∑
Zi

n ≥ p | p′′ = p − δ1] ≤ α. Similarly, we want Prob[
∑

Zi

n < p | p′′ =
p+ δ1] ≤ β. Note that

∑
Zi is distributed binomially with parameters n and p′′.

We choose the smallest n such that the above requirements for A are satisfied.

3.3 Negation and Conjunction: A(s, ¬φ, α, β) and A(s, φ1∧φ2, α, β)

For the verification of a formula ¬φ at a state s, we recursively verify φ at state
s. If we know the decision of A for φ at s, we can say that A(s,¬φ, α, β) =
¬A(s, φ, β, α).

For conjunction, we first compute A(s, φ1, α1, β1) and A(s, φ2, α2, β2). If one
of A(s, φ1, α1, β1) or A(s, φ2, α2, β2) is false, we say A(s, φ1 ∧ φ2, α, β) = false.
Now:

Prob[A(s, φ1 ∧ φ2, α, β) = false | s |= φ1 ∧ φ2]
1

= Prob[A(s, φ1, α1, β1) = false ∨ A(s, φ2, α2, β2) = false | s |= φ1 ∧ φ2]
≤ Prob[A(s, φ1, α1, β1) = false | s |= φ1 ∧ φ2] + Prob[A(s, φ2, α2, β2) = false |s |= φ1 ∧ φ2]
= Prob[A(s, φ1, α1, β1) = false | s |= φ1] + Prob[A(s, φ2, α2, β2) = false | s |= φ2]
≤ β1 + β2 = β [by the requirement R1 of A]

The equality of the expressions in the third and fourth line of the above
derivation follows from the fact that if s |= φ1 ∧ φ2 then the state s actually
satisfies φ1 ∧ φ2; hence, s |= φ1 and s |= φ2. We set β1 = β2 = β/2.

If both A(s, φ1, α1, β1) and A(s, φ2, α2, β2) are true, we say A(s, φ1 ∧
φ2, α, β) = true. Then, we have

Prob[A(s, φ1 ∧ φ2, α, β) = true | s �|= φ1 ∧ φ2]
≤ max(Prob[A(s, φ1 ∧ φ2, α, β) = true | s �|= φ1],Prob[A(s, φ1 ∧ φ2, α, β) = true | s �|= φ2])
≤ max(Prob[A(s, φ1, α1, β1) = true | s �|= φ1],Prob[A(s, φ2, α2, β2) = true | s �|= φ2]
≤ max(α1, α2)

We set α1 = α2 = α.

1 Note that this is not a conditional probability, because s |= φ1 ∧ φ2 is not an event.

On Statistical Model Checking of Stochastic Systems 273

3.4 Unbounded Until: Computing A(π, φ1 U φ2, α, β)

Consider the problem of checking if a path π satisfies an until formula φ1 U φ2.
We know that if π satisfies φ1Uφ2 then there will be a finite prefix of π which will
witness this satisfaction; namely, a finite prefix terminated by a state satisfying
φ2 and preceded only by states satisfying φ1. On the other hand, if π does not
satisfy φ1U φ2 then π may have no finite prefix witnessing this fact; in particular
it is possible that π only visits states satisfying φ1 ∧ ¬φ2. Thus, to check the
non-satisfaction of an until formula, it seems that we have to sample infinite
paths.

Our first important observation in overcoming this challenge is to note that
set of paths with non-zero measure that do not satisfy φ1U φ2 have finite prefixes
that are terminated by states s from which there is no path satisfying φ1 U φ2,
i.e., s |= P=0(φ1U φ2). We therefore set about trying to first address the problem
of statistically verifying if a state s satisfies P=0(φ1 U φ2). It turns out that this
special combination of a probabilistic operator and an unbounded until is indeed
easier to statistically verify. Observe that by sampling finite paths from a state
s, we can witness the fact that s does not satisfy P=0(φ1U φ2). Suppose we have
a model that satisfies the following promise: either states satisfy P=0(φ1U φ2) or
states satisfy P>δ(φ1U φ2), for some positive real δ. Now, in this promise setting,
if we sample an adequate number of finite paths and none of those witness the
satisfaction then we can statistically conclude that the state satisfies P=0(φ1Uφ2)
because we are guaranteed that either a significant fraction of paths will satisfy
the until formula or none will.

There is one more challenge: we want to sample finite paths from a state s to
check if φ1 U φ2 is satisfied. However, we do not know a priori a bound on the
lengths of paths that may satisfy the until formula. We provide a mechanism to
sample finite paths of any length by sampling paths with a stopping probability.

We are now ready to present the details of our algorithm for the unbounded
until operator. We first show how the special formula P=0(φ1 U φ2) can be
statistically checked at a state. We then show how to use the algorithm for
the special case to verify unbounded until formulas.

Computing A(s, P=0(φ1 U φ2), α, β). To compute A(s,P=0(φ1 U φ2), α, β),
we first compute A(s,¬φ1 ∧ ¬φ2, α, β). If the result is true, we say
A(s,P=0(φ1 U φ2), α, β) = true. Otherwise, if the result is false, we have to
check if the probability of a path from s satisfying φ1 U φ2 is non-zero. For this
we set up an experiment as follows.

Let p be the probability that a random path from s satisfies φ1 U φ2. Let
the null hypothesis be H0 : p > δ2 and the alternative hypothesis be H1 : p = 0
where δ2 is the small real, close to 0, provided as parameter to the algorithm.
The above test is one-sided: we can check the satisfaction of the formula φ1 U φ2

along a path by looking at a finite prefix of a path; however, if along a path
φ1 ∧ ¬φ2 holds only, we do not know when to stop and declare that the path
does not satisfy φ1U φ2. Therefore, checking the violation of the formula along a
path may not terminate if the formula is not satisfied by the path. To mitigate
this problem, we modify the model by associating a stopping probability ps with

274 K. Sen, M. Viswanathan, and G. Agha

every state s in the model. While sampling a path from a state, we stop and
return the path so far simulated with probability ps. This allows one to generate
paths of finite length from any state in the model.

Formally, we modify the model M as follows: we add a terminal state s⊥
to the set S of all states of M. Let S′ = S ∪ {s⊥}. For every state s ∈ S,
we define P(s, s⊥) = ps, P(s⊥, s⊥) = 1, and for every pair of states s, s′ ∈ S,
we modify P(s, s′) to P(s, s′)(1 − ps). For every state s ∈ S, we pick some
arbitrary probability distribution function for Q(s, s⊥, t) and Q(s⊥, s⊥, t). We
further assume that L(s⊥) is the set of atomic propositions such that s⊥ �|= φ2.
This in turn implies that any path (there is only one path) from s⊥ do not satisfy
φ1 U φ2. Let us denote this modified model by M′. Given this modified model,
the following result holds:

Theorem 2. If a path from any state s ∈ S in the model M satisfies φ1 U φ2

with some probability, p, then a path sampled from the same state in the modified
model M′ will satisfy the same formula with probability at least p(1−ps)N , where
N = |S|.
Proof is given in [16].

By condition C2 of algorithm A, p does not lie in the range (0, δ2
(1−ps)N]. In

other words, the modified probability p(1 − ps)N (= p′, say) of a path from
s satisfying the formula φ1 U φ2 does not lie in the range (0, δ2]. To take into
account the modified model with stopping probability, we modify the experiment
to test whether a path from s satisfies φ1 U φ2 as follows. We change the null
hypothesis to H0 : p′ > δ2 and the alternative hypothesis to H1 : p′ = 0.

Let n be the number of finite execution paths sampled from the state s in
the modified model. Let X1,X2, . . . , Xn be a random sample having Bernoulli
distribution with mean p′ ∈ [0, 1] i.e., for each j ∈ [1, n], Prob[Xj = 1] = p′. Then
the sum Y = X1 + X2 + . . . + Xn has binomial distribution with parameters n
and p′. We say that xj , an observation of the random variable Xj , is 1 if the
jth sample path from s satisfies φ1 U φ2 and 0 otherwise. In the experiment, we
reject H0 : p′ > δ2 if

∑
xj

n = 0; otherwise, if
∑

xj

n > 0, we reject H1 : p′ = 0.
Given the above experiment, to make sure that the error in decisions is bounded
by α and β, we must have

Prob[accept H1 | H0 holds] = Prob[Y/n = 0 | p′ > δ2] ≤ α
Prob[accept H0 | H1 holds] = Prob[Y/n ≥ 1 | p′ = p] = 0 ≤ β

Hence, we can choose the unknown parameter n for this experiment such that
Prob[Y/n = 0 | p′ > δ2] ≤ Prob[Y/n = 0 | p′ = δ2] ≤ α i.e., n is the smallest
natural number such that (1 − δ2)n ≤ α.

Note that in the above analysis we assumed that φ1 U φ2 has no nested
probabilistic operators; therefore, it can be verified over a path without error.
However, in the presence of nested probabilistic operators, we need to modify
the experiment in a way similar to that given in section 3.2.

Computing A(π, φ1 U φ2, α, β). Once we know how to compute
A(s,P=0(φ1 U φ2), α, β), we can give a procedure to compute A(π, φ1 U φ2, α, β)

On Statistical Model Checking of Stochastic Systems 275

as follows. Let S be the set of states of the model. We partition S into the sets
Strue , Sfalse , and S? and characterize the relevant probabilities as follows:

Strue = {s ∈ S | s |= φ2}
Sfalse = {s ∈ S | it is not the case that ∃k and ∃s1s2 . . . sk such that s = s1

and there is a non-zero probability of transition from si to si+1 for 1 ≤ i <k

and si |= φ1 for all 1 ≤ i < k, and sk ∈ Strue}
S? = S − Strue− Sfalse

Theorem 3.

Prob[π ∈ Path(s) | π |= φ1 U φ2]
= Prob[π ∈ Path(s) | ∃k and s1s2 . . . sk such that s1s2 . . . sk is a prefix of π and

s1 = s and si ∈ S? for all 1 ≤ i < k and sk ∈ Strue]
Prob[π ∈ Path(s) | π �|= φ1 U φ2]
= Prob[π ∈ Path(s) | ∃k and s1s2 . . . sk such that s1s2 . . . sk is a prefix of π and

s1 = s and si ∈ S? for all 1 ≤ i < k and sk ∈ Sfalse]

Proof of a similar theorem is given in [8].
Therefore, to check if a sample path π = s1s2s3 . . . (ignoring the time-stamps

on transitions) from state s satisfies (or violates) φ1 U φ2, we need to find a k

such that sk ∈ Strue (or sk ∈ Sfalse) and for all 1 ≤ i < k, si ∈ S?. This is
done iteratively as follows:
i ← 1

while(true){
if si ∈ Strue then return true;

else if si ∈ Sfalse then return false;

else i ← i + 1; }
The above procedure will terminate with probability 1 because, by Theorem 3,
the probability of reaching a state in Strue or Sfalse after traversing a finite
number of states in S? along a random path is 1.

To check whether a state si belongs to Strue , we compute A(s, φ2, αi, βi);
if the result is true, we say si ∈ Strue . The check for si ∈ Sfalse is essentially
computing A(si,P=0(φ1 U φ2), αi, βi). If the result is true then si ∈ Sfalse ; else,
we sample the next state si+1 and repeat the loop as in the above pseudo-code.

The choice of αi and βi in the above decisions depends on the error bounds
α and β with which we wanted to verify φ1 U φ2 over the path π. By arguments
similar to conjunction, it can be shown that we can choose each αi and βi such
that α =

∑
i∈[1,k] αi and β =

∑
i∈[1,k] βi where k is the length of the prefix of

π that has been used to compute A(π, φ1 U φ2, α, β). Since, we do not know the
length k before-hand we choose to set αi = α/2i and βi = β/2i for 1 ≤ i < k,
and αk = α/2k−1 and βk = β/2k−1.

An interesting and simple technique for the verification of the unbounded
until proposed by H. Younes (personal communications) based on theorem 2 is
as follows. Let p denote the probability measure of the set of paths that start in
s and satisfy φ1 U φ2. Let p′ be the corresponding probability measure for the

276 K. Sen, M. Viswanathan, and G. Agha

modified model with stopping probability ps in each state. Then by theorem 2,
we have p ≥ p′ ≥ p(1 − ps)N , where N is the number of states in the model.
These bounds on p can be used to verify the formula P≥θ(φ1 U φ2) in the same
way as we deal with nested probabilistic operators.

However, there are trade-offs between these two approaches. The simple ap-
proach described in the last paragraph has the advantage of being conceptually
clearer. The disadvantage of the simpler approach, on the other hand, is that we
have to provide the exact value of N as input to the algorithm, which may not
be available for a complex model. Our original algorithm does not expect the
user to provide N ; rather, it expects that the user will provide a suitable value
of ps so that condition C2 in theorem 1 holds. Moreover, the bounds on p′ given
in theorem 2 holds for the worst case. If we consider the worst case lower bound
for p′, which is dependent exponentially on N , then the value of ps that needs
to be picked to ensure that θ − δ < (θ + δ)(1 − ps)N might be very small and
sub-optimal resulting in large verification time. Note that our method for the
verification of P=0(φ1U φ2) can be used as a technique for verifying properties of
the form P≥1(ψ) and P≤0(ψ) which were not handled by any previous statistical
approaches.

3.5 Bounded Until: Computing A(π, φ1 U≤tφ2, α, β)

The satisfaction or violation of a bounded until formula φ1 U≤tφ2 over a path π
can be checked by looking at a finite prefix of the path. Specifically, in the worst
case, we need to consider all the states π[i] such that τ(π, i) ≤ t. The decision
procedure can be given as follows:
i ← 0

while(true){
if τ(π, i) > t then return false;

else if π[i] |= φ2 then return true;

else if π[i] �|= φ1 then return false;

else i ← i + 1; }
where the checks π[i] |= φ2 and π[i] �|= φ1 are replaced by A(π[i], φ2, αi, βi) and
A(π[i],¬φ1, αi, βi), respectively. The choice of αi and βi are done as in the case
of unbounded until.

3.6 Bounded and Unbounded Next: Computing A(π, X≤tφ, α, β)
and A(π, Xφ, α, β)

For unbounded next, A(π,Xφ, α, β) is same as the result of A(π[1], φ, α, β).
For bounded next, A(π,X≤tφ, α, β) returns true if A(π[1], φ, α, β) = true and
τ(π, 1) ≤ t. Otherwise, A(π,X≤tφ, α, β) returns false.

3.7 Computational Complexity

The expected length of the samples generated by the algorithm depends on the
various probability distributions associated with the stochastic model in addition
to the parameters α, β, ps, δ1, and δ2. Therefore, an upper bound on the expected

On Statistical Model Checking of Stochastic Systems 277

length of samples cannot be estimated without knowing the probability distribu-
tions associated with the stochastic model. This implies that the computational
complexity analysis of our algorithm cannot be done in a model independent
way. However, in the next section and in [16], we provide experimental results
which illustrate the performance of the algorithm.

4 Implementation and Experimental Evaluation

We have implemented the above algorithm in Java as part of the tool called
VeStA (available from http://osl.cs.uiuc.edu/∼ksen/vesta/). A stochas-
tic model can be specified by implementing a Java interface, called State. The
model-checking module of VeStA implements the algorithm A. It can be exe-
cuted in two modes: single-threaded mode and multithreaded mode. The single
threaded mode is suitable for a single processor machine; the multithreaded mode
exploits the parallelism of the algorithm when executed on a multi-processor ma-
chine. While verifying a formula of the form P��p(ψ), the verification of ψ over
each sample path is independent of each other. This allows us to run the veri-
fication of ψ over each sample path in a separate thread, possibly running on a
separate processor.

We successfully used the tool to verify several DTMC (discrete-time Markov
chains) and CTMC (continuous-time Markov chains) models. We report the
performance of our tool in the verification of unbounded until formulas over a
DTMC model. The performance of our tool in verifying two CTMC model is
provided in the [16]. The experiments were done on a single-processor 2GHz
Pentium M laptop with 1GB SDRAM running Windows XP.

IPv4 ZeroConf Protocol: We picked the DTMC model of the IPv4 ZeroConf
Protocol described in [6]. We next describe the model briefly without explain-
ing its actual relation to the protocol. The DTMC model has N + 3 states:
{s0, s1, . . . , sn, ok , err}. From the initial state s0, the system can go to two states:
state s1 with probability q and state ok with probability 1− q. From each of the
states si (i ∈ [1, N −1]) the system can go to two possible states: state si+1 with
probability r and state s0 with probability 1− r. From the state sN the system
can go to the state err with probability r or return to state s0 with probability
1 − r. Let the atomic proposition a be true if the system is in the state err and
false in any other state. The property that we considered is P��p(true U a).

The result of our experiment is plotted in Figure 1. In the plot x–axis rep-
resents N in the above model and y–axis represents the running time of the
algorithm. The solid line represents the performance of the tool when it is used
without any optimization. We noticed that computing A(s,P=0(φ1 U φ2), α, β)
at every state along a path while verifying an unbounded until formula has a
large performance overhead. Therefore, we used the following optimization that
reduces the number of times we compute A(s,P=0(φ1 U φ2), α, β).

Discount Optimization: Instead of computing A(s,P=0(φ1 U φ2), α, β) at ev-
ery state along a path, we can opt to perform the computation with certain

278 K. Sen, M. Viswanathan, and G. Agha

probability say pd = 0.1, called discount probability. Note that once a path
reaches a state s ∈ Sfalse , any other state following s in the path also belongs
to Sfalse . Therefore, this way of discounting the check of s ∈ Sfalse , or comput-
ing A(s,P=0(φ1 U φ2), α, β), does not influence the correctness of the algorithm.
However, the average length of sample paths required to verify unbounded until
increases. The modified algorithm for checking unbounded until becomes
i ← 1

while(true){
if si ∈ Strue then return true;

else if rand(0.0, 1.0) ≤ pd then if si ∈ Sfalse then return false;

else i ← i + 1; }
The two dashed lines in the plot show the performance of the algorithm when

the discount probability is pd = 0.1 and pd = 0.5.

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 4 5 6 7 8 9 10 11 12 13

ru
nn

in
g

tim
e

in
 m

ill
is

ec
on

d

N

No Optimization
Discount=0.1
Discount=0.5

Caching

Fig. 1. Performance Measure for Verifying Unbounded Until Formula

Caching Optimization: If the algorithm has already computed and cached
A(s, φ, α, β), any future computation of A(s, φ, α′, β′) can use the cached value
provided that α ≤ α′ and β ≤ β′. However, note that we must maintain a
constant size cache to avoid state-space explosion problem. The plot shows the
performance of the tool with caching turned on (with no discount optimization).

The experiments show that the tool is able to handle a relatively large state
space; it does not suffer from memory problem due to state-explosion because
states are sampled as required and discarded when not needed. Specifically, it
can be shown that the number of states stored in the memory at any time is
linearly proportional to the maximum depth of nesting of probabilistic opera-
tors in a CSL formula. Thus the implementation can scale up with computing
resources without suffering from traditional memory limitation due to state-
explosion problem.

On Statistical Model Checking of Stochastic Systems 279

5 Conclusion

The statistical model-checking algorithm we have developed for stochastic mod-
els has at least four advantages over previous work. First, our algorithm can
model check CSL formulas which have unbounded untils. Second, boundary case
formulas of the form P≥1(ψ) and P≤0(ψ) can be verified using the technique
presented for the verification of P=0(φ1 U φ2). Third, our algorithm is inherently
parallel. Finally, the algorithm does not suffer from memory problem due to
state-space explosion, since we do not need to store the intermediate states of
an execution. However, our algorithm also has at least two limitations. First,
the algorithm cannot guarantee the accuracy that numerical techniques achieve.
Second, if we try to increase the accuracy by making the error bounds very small,
the running time increases considerably. Thus our technique should be seen as
an alternative to numerical techniques to be used only when it is infeasible to
use numerical techniques, for example, in large-scale systems.

Acknowledgements

The second author was supported in part by DARPA/AFOSR MURI Award
F49620-02-1-0325 and NSF 04-29639. The other two authors were supported in
part by ONR Grant N00014-02-1-0715.

References

1. A. Aziz, K. Sanwal, V. Singhal, and R. K. Brayton. Verifying continuous-time
Markov chains. In Proc. of Computer Aided Verification (CAV’96), volume 1102
of LNCS, pages 269–276, 1996.

2. R. Alur, C. Courcoubetis, and D. Dill. Model-checking for probabilistic real-time
systems (extended abstract). In Proceedings of the 18th International Colloquium
on Automata, Languages and Programming (ICALP’91), volume 510 of LNCS,
pages 115–126. Springer, 1991.

3. A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Model-checking continuous-time
Markov chains. ACM Transactions on Computational Logic, 1(1):162–170, 2000.

4. C. Baier, E. M. Clarke, V. Hartonas-Garmhausen, M. Z. Kwiatkowska, and
M. Ryan. Symbolic model checking for probabilistic processes. In Proc. of the 24th
International Colloquium on Automata, Languages and Programming (ICALP’97),
volume 1256 of LNCS, pages 430–440, 1997.

5. C. Baier, J. P. Katoen, and H. Hermanns. Approximate symbolic model checking
of continuous-time Markov chains. In International Conference on Concurrency
Theory, volume 1664 of LNCS, pages 146–161, 1999.

6. H. C. Bohnenkamp, P. van der Stok, H. Hermanns, and F. W. Vaandrager. Cost-
optimization of the ipv4 zeroconf protocol. In International Conference on De-
pendable Systems and Networks (DSN’03), pages 531–540. IEEE, 2003.

7. E. Cinlar. Introduction to Stochastic Processes. Prentice-Hall Inc., 1975.
8. C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification.

Journal of ACM, 42(4):857–907, 1995.

280 K. Sen, M. Viswanathan, and G. Agha

9. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal
Aspects of Computing, 6(5):512–535, 1994.

10. H. Hermanns, J. P. Katoen, J. Meyer-Kayser, and M. Siegle. A Markov chain
model checker. In Tools and Algorithms for Construction and Analysis of Systems
(TACAS’00), pages 347–362, 2000.

11. R. V. Hogg and A. T. Craig. Introduction to Mathematical Statistics. Macmillan,
New York, NY, USA, fourth edition, 1978.

12. M. Z. Kwiatkowska, G. Norman, and D. Parker. Prism: Probabilistic symbolic
model checker, 2002.

13. M. Z. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Verifying quanti-
tative properties of continuous probabilistic timed automata. In Conference on
Concurrency Theory (CONCUR’00), volume 1877 of LNCS, pages 123–137, 2000.

14. G. G. I. López, H. Hermanns, and J.-P. Katoen. Beyond memoryless distributions:
Model checking semi-markov chains. In Proceedings of the Joint International
Workshop on Process Algebra and Probabilistic Methods, Performance Modeling
and Verification, volume 2165 of LNCS, pages 57–70. Springer-Verlag, 2001.

15. K. Sen, M. Viswanathan, and G. Agha. Statistical model checking of black-
box probabilistic systems. In 16th conference on Computer Aided Verification
(CAV’04), volume 3114 of LNCS, pages 202–215. Springer, July 2004.

16. K. Sen, M. Viswanathan, and G. Agha. On statistical model checking of proba-
bilistic systems. Technical Report UIUCDCS-R-2004-2503, University of Illinois
at Urbana Champaign, 2005.

17. W. J. Stewart. Introduction to the Numerical Solution of Markov Chains. Prince-
ton, 1994.

18. H. L. S. Younes and R. G. Simmons. Probabilistic verification of discrete event
systems using acceptance sampling. In Proc. of Computer Aided Verification
(CAV’02), volume 2404 of LNCS, pages 223–235, 2002.

	Introduction
	Model and Logic
	CSL and PCTL Syntax and Semantics

	Statistical Model Checking
	Nested Probabilistic Operators: Computing A(s,P��p(ψ), α, β)
	Probabilistic Operator: Computing A(s,P��p(ψ), α, β)
	Negation and Conjunction: A(s, ¬φ, α, β) and A(s, φ1∧φ2, α, β)
	Unbounded Until: Computing A$(π, φ1 U φ_2, α, β)$
	Bounded Until: Computing A$(π, φ1 U≤tφ_2, α, β)$
	Bounded and Unbounded Next: Computing A$(π,X^{≤t}φ, α, β)$ and A$(π,Xφ, α, β)$
	Computational Complexity

	Implementation and Experimental Evaluation
	Conclusion
	Acknowledgements
	References

