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Abstract. We explore the concept of a “black-box” stochastic system,
and propose an algorithm for verifying probabilistic properties of such
systems based on very weak assumptions regarding system dynamics.
Properties are expressed as formulae in a probabilistic temporal logic.
Our presentation is a generalization of and an improvement over recent
work by Sen et al. on probabilistic verification for “black-box” systems.

1 Introduction

Stochastic processes are used to model phenomena in nature that involve an
element of chance (the throwing of a die) or are too complex to fully capture in
a deterministic fashion (the duration of a call in a telephone system). Certain
classes of stochastic processes have been studied extensively in the performance
evaluation and model checking communities. Numerous temporal logics, such as
TCTL [1], PCTL [8], and CSL [2, 3], exist for expressing interesting properties
of various types of stochastic processes. Model checking algorithms have been
developed for verifying properties of discrete-time Markov chains [8], continuous-
time Markov chains [3, 11], semi-Markov processes [10], generalized semi-Markov
processes [1], and stochastic discrete event systems in general [15].

Given a stochastic process, we want to know if certain probabilistic properties
hold. For instance, we may ask whether the probability of exhausting bandwidth
over a communication link is below 0.01. We can also introduce deadlines, for
example that a message arrives at its destination within 15 seconds with proba-
bility at least 0.8. Properties of this type can be verified using either numerical
methods or statistical sampling techniques, as discussed by Younes et al. [14].
Numerical methods provide highly accurate results, but rely on strong assump-
tions regarding the dynamics of the systems they are used to analyze. Statistical
techniques require only that the dynamics of a system can be simulated. They
can thus be used for a larger class of stochastic processes, but results are only
probabilistic and attaining high accuracy can to be costly.

For some systems, it may not even be feasible to assume that we can simulate
their behavior. Sen et al. [12] consider the verification problem for such “black-
box” systems. Here, “black-box” means that the system cannot be controlled to
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generate execution traces, or trajectories, on demand starting from arbitrary
states. This is a reasonable assumption, for instance, for a system that has
already been deployed and for which we are given only a set of trajectories
generated during actual execution of the system. We are then asked to verify a
probabilistic property of the system based on the information provided to us as
a fixed set of trajectories. Statistical solution techniques are certainly required to
solve this problem. The statistical method described by Younes and Simmons [15]
(see also [13—Chap. 5]) cannot be used to verify “black-box” systems, however,
because it depends on the ability to generate trajectories on demand.

Sen et al. [12] present an alternative solution method for verification of “black-
box” systems based on statistical hypothesis testing with fixed sample sizes. In
this paper, we improve upon their algorithm by making sure to always accept
the most likely hypothesis, and we correct their procedure for verifying nested
probabilistic properties. Differences between the two approaches are discussed
in detail in Sect. 5.

We focus our attention on systems with piecewise constant trajectories. The
class of stochastic discrete event systems, defined in Sect. 2, satisfies this con-
straint. Sect. 3 introduces the wunified temporal stochastic logic (UTSL), which
can be used to express probabilistic and temporal properties of stochastic dis-
crete event systems. UTSL represents a unification of Hansson and Jonsson’s [8]
PCTL, which has a semantics defined for discrete-time Markov chains, and Baier
et al.’s [3] version of CSL (excluding the steady-state operator), which has a se-
mantics defined for continuous-time Markov chains.

Sect. 4 presents an algorithm for the verification of “black-box” systems. Our
algorithm, like that of Sen et al. [12], provides no a priori guarantees regarding
accuracy. Instead, the algorithm computes a p-value for the result, which is a
measure of confidence. The algorithm is essentially finding the most likely answer
to a model checking problem given a fixed set of trajectories. This is the best we
can do, provided that we cannot generate trajectories for the system as we see
fit and are restricted to using a predetermined set of trajectories.

The algorithm presented in this paper is complementary to the statistical
model checking algorithm presented by Younes and Simmons [15], and is useful
under different assumptions. If we cannot generate trajectories for a system on
demand, then the algorithm presented here still allows us to reach conclusions
regarding the behavior of the system. If, however, we can simulate the dynamics
of the system, then we are better off with the approach of Younes and Simmons
as it gives us full control over the probability of obtaining an incorrect result.

2 Stochastic Discrete Event Systems

A stochastic process is any process that evolves over time, and whose evolution
one can follow and predict in terms of probability [4]. At any point in time, a
stochastic process is said to occupy some state. If we attempt to observe the state
of a stochastic process at a specific time, the outcome of such an observation
is governed by some probability law. Mathematically, a stochastic process is
defined as a family of random variables.
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Definition 1 (Stochastic Process). Let S and T be two sets. A stochastic
process is a family of random variables X = {X; | t € T}, with each random
variable Xy having range S.

The index set T in Definition 1 represents time and is typically the set of
non-negative integers, ZZ*, for discrete-time stochastic processes and the set of
non-negative real numbers, [0, 00), for continuous-time stochastic processes. The
set S represents the states that the stochastic process can occupy, and this can
be an infinite, or even uncountable, set.

The definition of a stochastic process as a family of random variables is
quite general and includes systems with both continuous and discrete dynamics.
We will focus our attention on a limited, but important, class of stochastic
processes: stochastic discrete event systems. This class includes any stochastic
process that can be thought of as occupying a single state for a duration of time
before an event causes an instantaneous state transition to occur. The canonical
example of such a process is a queuing system, with the state being the number
of items currently in the queue. The state changes at the occurrence of an event
representing the arrival or departure of an item.

2.1 Trajectories

A random variable X; € X represents the chance experiment of observing the
stochastic process X at time t. If we record our observations at consecutive time
points for all ¢ € T', then we have a trajectory, or sample path, for X. Our work
in probabilistic verification is centered around the verification of temporal logic
formulae over trajectories for stochastic discrete event systems. The terminology
and notation introduced here is used extensively in later sections.

Definition 2 (Trajectory). A trajectory for a stochastic process X is any
sequence of observations {x; € S |t € T} of the random variables X, € X.
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Fig. 1. A trajectory for a simple queuing system with arrival events occurring at ¢1, t2
and t3 and a departure event occurring at ta.

The trajectory of a stochastic discrete event system is piecewise constant
and can therefore be represented as a sequence o = {(so, to), (s1,t1), ...}, with
si € S and t; € T\ {0}. Zero is excluded to ensure that only a single state can
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be occupied at any point in time. Fig. 1 plots part of a trajectory for a simple
queuing system. Let
0 ifi=0
T, = i1, .o ; 1
‘ {Z;_lotjlfz>0 (1)

i.e. T; is the time at which state s; is entered and ¢; is the duration of time
for which the process remains in s; before an event triggers a transition to
state s;11. A trajectory o is then a sequence of observations of X with x; = s;
for T; < t < T; + t;. According to this definition, trajectories of stochastic
discrete event systems are right-continuous. A finite trajectory is a sequence
o = {(so0,t0),--.,{Sn,00)} where s, is an absorbing state, meaning that no
events can occur in s, and that z; = s,, for all t > T,.

2.2  Measurable Stochastic Discrete Event Systems

Of utmost importance to probabilistic verification is the definition of a probabil-
ity measure over sets of trajectories for a system. The set of trajectories must be
measurable. Formally, a measurable space is a set ) with a o-algebra Fq of sub-
sets of Q [7]. A probability space is a measurable space (§2, Fq) and a probability
measure /.

For stochastic discrete event systems, the elements of the o-algebra are sets
of trajectories with common prefiz. A prefix of o = {(so,%0), (s1,1),...} is a
sequence ocr = {(s4,t0), ..., (), t})}, with s} = s; for all ¢ < k, Zf:o t, =,
t) =t; for all ¢ < k, and ¢}, < ;. Let Path(o.,) denote the set of trajectories
with common prefix o.,. This set must be measurable, and we assume that a
probability measure p over sets of trajectories with common prefix exists. This
requirement is not a problem in practice. In general, a stochastic discrete event
system is measurable if the sets S and T are measurable.

The precise definition of u depends on the specific probability structure of
the stochastic process being studied. A stochastic process is a Markov chain if
pu(Path({{so,to), ..., (sk,tr)})) = p(Path({(sx,0)})) for all trajectory prefixes
{(s0,t0), -, (Sk,tr)}. We define a “black-box” probabilistic system in terms of
what we know (or rather, do not know) regarding the probability measure p.

Definition 3 (“Black-Box” Probabilistic System). A “black-box” proba-
bilistic system is a stochastic discrete event system for which the probability
measure p over sets of trajectories with common prefiz is not fully specified.

3 UTSL: The Unified Temporal Stochastic Logic

A stochastic discrete event system is a triple (S, 7T, u). We assume a factored
representation of S, with a set of state variables SV and a value assignment
function V (s, z) providing the value of x € SV in state s. The domain of  is the
set Dy = (J,cg V (s, 2) of possible values that = can take on. We define the syntax
of UTSL for a factored stochastic discrete event system M = (S, T, u, SV, V) as

Pu=z~v| =P DAD| Pug[X' @ | Pag@ U’ @] ,
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where x € SV, v € D,, ~ € {<,=,>},0 € [0,1], x € {<,>},and [ C T.
Additional UTSL formulae can be derived in the usual way. For example, 1. =
(x=v)A=(x=wv)forsomexz € SVandv e D,, T=-L, dVI¥ ==(=-DA-T),
O - VU=V, Pug[®U V] = Proyg[® UL V], and P g[p] = P>l

The standard logic operators have their usual meaning. Puqg[p] asserts that
the probability measure over the set of trajectories satisfying the path formula ¢
is related to 6 according to <. Path formulae are constructed using the temporal
path operators X7 (“next”) and U! (“until”). The path formula X & asserts
that the next state transition occurs ¢t € I time units into the future and that
® holds in the next state, while ® U’ ¥ asserts that ¥ becomes true t € I time
units into the future while ® holds continuously prior to ¢.

The validity of a UTSL formula, relative to a factored stochastic discrete
event system M, is defined in terms of a satisfaction relation = p4:

{<307t0>7--~7<3kat/€>} ':MxNU iff V(sk’x)NU
Ocr Epm P iff oo g @
Or EMPAY iff (0or Eaf @) A (027 EAd ©)
|

ocr Em Poaole] iff p({o € Path(oer) | 0,7 }) >0

orEMXT®  iff Ik e IN.((kal STOANT<TR) ATk —7 € I)A (o<1, EM <I>))
o EMOU Y iff 3t € I ((0crs Erm U) AVE € T((H' <t) = (0criv FEm D))

The semantics of ® ! ¥ requires that ® holds continuously, i.e. at all time
points, along a trajectory until W is satisfied. This is consistent with the seman-
tics of time-bounded until for TCTL [1]. Depending on the probability measure
1, ® may hold immediately at the entry of a state s and also immediately af-
ter a transition from s to s, but still not hold continuously while the system
remains in s. Conversely, ¥ may hold at some point in time while the system
remains in s, and not hold immediately upon entry to s nor immediately after
a transition from s to s’. It is therefore not sufficient, in general, to verify ®
and W at discrete points along a trajectory. It is sufficient to do so, however, for
Markov chains. Our semantics for UTSL interpreted over general stochastic dis-
crete event systems therefore coincides with the semantics for PCTL interpreted
over discrete-time Markov chains [8] and CSL interpreted over continuous-time
Markov chains [3], provided we choose the time domain 7" appropriately.

A UTSL model checking problem is a triple (M, s, ®), with the problem being
to verify whether ® holds for M if execution starts in state s, i.e. {(s,0)} Fam P.
We use s |= @ as a short form for the latter, leaving out M when it is clear from
the context which system is involved in the model checking problem.

4  Statistical Verification Algorithm

A stochastic discrete event system M is a “black-box” system if we lack an
exact definition of the probability measure u over sets of trajectories of M (Def-
inition 3) and we cannot sample trajectories according to u. Thus, to solve a
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verification problem s = ® for M, we must rely on an external source to pro-
vide a sample set of n trajectories for M that is representative of the probability
measure p. We further assume that we are provided only with truncated trajec-
tories, because infinite trajectories would require infinite memory to store.

We use statistical hypothesis testing to verify properties of a “black-box”
system given a sample of n truncated trajectories. Since we rely on statistical
techniques, we will typically not know with certainty if the result we produce is
correct. The method we present for verification of “black-box” systems computes
a p-value for a verification result, which is a value in the interval [0, 1] with values
closer to 0 representing higher confidence in the result [9-pp. 255-256].

4.1  Verification Without Nested Probabilistic Operators

Given a state s, verification of a UTSL formula x ~ v is trivial. We can simply
read the value assigned to z in s and compare it to v. We consider the remaining
three cases in more detail, starting with the probabilistic operator Puqg[-]. The
objective is to produce a Boolean result annotated with a p-value.

Probabilistic Operator. Consider the problem of verifying the UTSL formula
Praolp] in state s of a stochastic discrete event system M. Let X; be a random
variable representing the verification of the path formula ¢ over a trajectory for
M drawn according to the probability measure p(Path({(s,0)})). If we choose
X; =1 to represent the fact that ¢ holds over a random trajectory, and X; =0
to represent the opposite fact, then X; is a Bernoulli variate with parameter p =

w({o € Path({(s, >})|UO)=@})1€ Pr[X; =1 =pand Pr[X; =0 =1—-p
To verify Puqglp ], we can make observations of X, and use statistical hypothesis
testing to determine if p < 6 is likely to hold. An observation of X;, denoted
x, is the verification of ¢ over a specific trajectory o;. If o; satisfies the path
formula ¢, then z; = 1, otherwise x; = 0.

In our case, we are given n truncated trajectories for a “black-box” system
that we can use to generate observations of X;. Each observation is obtained
by verifying the path formula ¢ over one of the truncated trajectories. This is
straightforward given a truncated trajectory {(so,%o), ..., {(Sk—1,tk—1), Sk}, Pro-
vided that ¢ does not contain any probabilistic operators. For ¢ = X ®, we
just check if tg € I and s; |= ®. For ¢ = ® U! W, we traverse the trajectory
until we find a state s; such that one of the following conditions holds, with T;
defined as in (1) to be the time at which state s; is entered:

L (si E=®)A((T; ¢ 1)V (si |F ~0))
2. (Gel)A(si £ )
3. (T Tis) NI #O) A (si = @) A (s = 0)

In the first case, ® U ¥ does not hold over the trajectory, while in the last two
cases the time-bounded until formula does hold. Note that we may not always
be able to determine the value of ¢ over all trajectories because the trajectories
that are provided to us are assumed to be truncated.



Probabilistic Verification for “Black-Box” Systems 259

We consider the case P> g[y] in detail, noting that P< g[¢] can be handled in
the same way simply by reversing the value of each observation. We want to test
the hypothesis Hy : p > 6 against the alternative hypothesis H; : p < 6 by using
the n observations z1,...,x, of Xy,...,X,,. To do so, we specify a constant
c. If 371 | x; is greater than ¢, then hypothesis Hy is accepted, i.e. P> glg] is
determined to hold. Otherwise, if the given sum is at most ¢, then hypothesis
H, is accepted, meaning that P> g[¢] is determined not to hold. The constant ¢
should be chosen so that it becomes roughly equally likely to accept Hy as H;
if p equals 6. The pair (n,c) is referred to as a single sampling plan [6, 5].

The probability distribution of a sum of n Bernoulli variates with parameter
p is a binomial distribution with cumulative distribution function F(¢;n,p) =
i (1)p'(1 —p)"~*. Using a single sampling plan (n, c), we accept hypothesis
H; with probability F(¢;n,p) and hypothesis Hy with probability 1 — F(c;n, p).
Ideally, we should choose ¢ such that F'(¢;n,0) = 0.5, but it is not always possible
to attain equality because the binomial distribution is a discrete distribution.
The best we can do is to choose ¢ such that |F'(¢c;n,0) — 0.5] is minimized.

We now have a way to decide whether to accept or reject the hypothesis that
P> glp] holds, but we also want to report a p-value reflecting the confidence in
our decision. The p-value is defined as the probability of the sum of observations
being at least as extreme as the one obtained provided that the hypothesis that
was not accepted holds. The p-value for accepting Hy when Z?:l r;, = d is
Pr> ", X; > d | p < 6], which is less than F(n — d;n,1 —0) = 1 — F(d —
1;n,0). The p-value for accepting Hy is Pr[>.1 ; X; < d | p > 6], which is
at most F'(d;n, ). The following theorem justifies our choice of the constant ¢
[13-Theorem 7.1]:

Theorem 1 (Minimization of p-value). By choosing ¢ to minimize the value
of |F(c;n,0) — 0.5 when testing Hy : p > 0 against Hy : p < 0 using a single
sampling plan (n,c), the hypothesis with the lowest p-value is always accepted.

In practice, it is unnecessary to compute c. It is easier simply to compute the
p-value of each hypothesis and accept the hypothesis with the lowest p-value.

Ezample 1. Consider the problem of verifying ® = P> g9 [T 10:100] :17:1} in a
state satisfying =0 for a “black-box” system that in reality is the continuous-
time Markov chain shown in Fig. 2. The probability measure of trajectories start-
ing in state =0 and satisfying T ¢/[%100 z=11is 1 —e~! ~ 0.63, so the UTSL
formula does not hold, but we would of course not know this unless we had ac-
cess to the model. Assume that we are given a set of 100 truncated trajectories,
of which 63 satisfy and 37 do not satisfy the path formula T /19109 z=1. Thus,
n = 100 and d = 63. The p-value for Hy is 1 — F(62;100,0.9) ~ 1 — 10713,
while the p-value for H; is F(63,100,0.9) ~ 5.48 - 10713, The hypothesis with
the lowest p-value is Hy, so we conclude that ® does not hold.

In the analysis so far we have assumed that the value of ¢ can be determined
over all n truncated trajectories. Now, assume that we are unable to verify the
path formula ¢ over some of the n truncated trajectories. This would happen
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Fig. 2. A simple two-state continuous-time Markov chain

if we verify ® U! W over a trajectory that has been truncated before either
—=® VU is satisfied or time exceeds all values in I. We cannot simply ignore such
trajectories: it is assumed that the entire set of n trajectories is representative
of the measure u, but the subset of truncated trajectories for which we can
determine the value of ¢ is not guaranteed to be a representative sample.

Ezxample 2. Consider the same problem as in Example 1. Assume that we are
given a set of 100 trajectories for the system that all have been truncated be-
fore time 50. Some of the trajectories, on average 39 in every 100, will satisfy
T Y0190 =1, while the remaining truncated trajectories will not contain suf-
ficient information to determine the validity of T /[0199) =1 over these trajec-
tories. An analysis based solely on the trajectories over which the path formula
can be decisively verified would be severely biased. If the number of positive ob-
servations is exactly 39, with 61 undetermined observations, we would wrongly
conclude that ® holds with p-value 1 — F'(38;39,0.9) ~ 0.0164, which implies a
fairly high confidence in the result.

Let n’ be the number of observations whose value we can determine and let d’
be the sum of these observations. We then know that the sum of all observations,
d, is at least d’ and at most d' +n —n'. If d > ¢, then hypothesis Hy can safely
be accepted. Instead of a single p-value, we associate an interval of possible p-
values with the result: [F(n’ — d';n,1 — 0), F(n — d’;n,1 — 0)]. Conversely, if
d' +mn —n' < ¢, then hypothesis H; can be accepted with p-value in the interval
[F(d';n,0), F(d +n—n';n,0)]. In all other cases it is not clear which hypothesis
should be accepted. We could then say that we do not have enough information
to make an informed choice. Alternatively, we could accept one of the hypotheses
with its associated p-value interval. We prefer to always make some choice, and
we recommend choosing Hy if F(n —d';n,1 —0) < F(d +n—n';n,0) and H;
otherwise. This strategy minimizes the maximum possible p-value. Alternatively,
we could minimize the minimum possible p-value by instead choosing Hy if
F(n' —d';n,1—0) < F(d;n,0) and Hy otherwise.

FEzxzample 3. Consider the same situation as in Example 2, with 39 positive and
61 undetermined observations. The p-value for accepting ® = P> .9 [T 1410,100]
z=1] as true lies in the interval [F'(0; 100, 0.1), F'(61, 100, 0.1)] &~ [2.65-107°,1 —
3.77-1071%]. For the opposite decision, we get [F'(39; 100, 0.9), F(100; 100, 0.9)] ~
[1.59 - 1073° 1]. Both intervals are almost equally uninformative, so no matter
what decision we make, we will have a low confidence in the result. This is in
sharp contrast to the faulty analysis suggested in Example 2, which lead to an
acceptance of @ as true with a low p-value.
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Composite State Formulae. To verify —®, we first verify ®. If we conclude
that ® has a certain truth value with p-value pv, then we conclude that —®
has the opposite truth value with the same p-value. To motivate this, consider
the case P> g[p]. To verify P> g[p], we test the hypothesis Hy : p > 6 against
H; : p < 0 as stated above. Note, however, that =Px g[p] = P ¢[¢], which could
be posed as the problem of testing the hypothesis H|, : p < 0 against Hy : p > 0.
Since H) = H; and Hj = Hp, we can simply negate the result of verifying
P> g[¢] while maintaining the same p-value (cf. [12]).

For a conjunction ® A ¥, we have to consider four cases. First, if we verify ®
to hold with p-value pvg and ¥ to hold with p-value pvy,, then we conclude that
® A ¥ holds with p-value max(pvg, pvy ). Thus, we are no more confident in the
result for ® AW than we are in the results for the individual conjuncts. Second, if
we verify @ not to hold with p-value pvg, while verifying that ¥ holds, then we
base the decision for the conjunction on the result for ® alone and conclude that
® AW does not hold with p-value pvg. The third case is analogous to the second
with @ and ¥ interchanged. Finally, if we verify ® not to hold with p-value pvg
and ¥ not to hold with p-value pvy, then we conclude that ® A ¥ does not hold
with p-value min(pvg, pvg ). In this case, we have two sources (not necessarily
independent) telling us that the conjunction is false. We have no reason to be
less confident in the result for the conjunction than in the result for each of the
conjuncts, hence the minimum.

For a mathematical derivation of the given expressions, we consider the for-
mula P> g, [¢1] A P> g,[¢2]. Let d; denote the number of trajectories that satisfy
;. Provided we accept the conjunction as true, which means we accept each
conjunct as true, the p-value for the result is

P} XV >di AN X > dy [ pr <61 Vps < 6] . (2)
i=1 i=1
To compute this p-value, consider the three ways in which p; < 61 V py < 05
can be satisfied (cf. [12]). We know from elementary probability theory that
Pr[A A B] < min(Pr[A],Pr[B]) for arbitrary events A and B. From this fact,
and assuming that pv; is the p-value associated with the verification result for
P> 0, (i, we derive the following:

L P, X > d A X > dy | py < 01 Apa < 6o] < min(puy, pvy)

2. Pr3o, Xz'(l) > ANy, Xz'(z) > dy | p1 <61Ap2 2 5] < min(pvy, 1) = pv,

3. Pr{Y, XV > diAY L, X > dy | pr > 014 < 05] < min(1, pu,) = pu,
We take the maximum over these three cases to obtain a bound for (2), which

gives us max(pvy, pv,). For the same formula, but now assuming we have verified
both conjuncts to be false, we compute the p-value as

Pr[z XZ-(l) <dj; A ZXi(Q) <ds |p1 > 01 Ap2 > 05] <min(pvy,pvy) . (3)
i=1 i=1

If one conjunct has been verified to be false with p-value pv and the other
conjunct has been verified to be true with p-value pv’, then the conjunction is
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determined to be false with p-value pv. This is because the result for the entire
conjunction depends only on the conjunct that has been verified to be false.

4.2  Verification with Nested Probabilistic Operators

If we allow nested probabilistic operators, verification of UTSL formulae for
“black-box” stochastic discrete event systems becomes much harder. Consider
the formula P> o [T U190 P2 4 [g]]. In order to verify this formula, we must
test if P> g/[¢] holds at some time ¢ € [0,100] along the set of trajectories that
we are given. Unless the time domain 7" is such that there is a finite number
of time points in a finite interval, then we potentially have to verify P> ¢ [¢]
at an infinite or even uncountable number of points along a trajectory, which
clearly is infeasible. Even if T = ZZ*, so that we only have to verify nested
probabilistic formulae at a finite number of points, we still have to take the
entire prefix of the trajectory into account at each time point. We are given a
fixed set of trajectories, and we can use only the subset of trajectories with a
matching prefix to verify a nested probabilistic formula. It is thus likely that
we will have few trajectories available to use for verifying nested probabilistic
formulae. In the worst case, there will be only a single matching prefix, in which
case the uncertainty in the result will be overwhelming.

Only if we assume that the “black-box” system is a Markov chain, which
is a rather strong assumption, can we hope to have a significant number of
trajectories available for the verification of nested probabilistic formulae. This is
because, under the Markov assumption, we only have to take the last state along
a trajectory prefix into consideration. Consequently, any suffix of a truncated
trajectory starting at a specific state s can be regarded as representative of the
probability measure p({(s,0)}) for a Markov chain.

Another complicating factor for verifying P> g[¢], where ¢ contains nested
probabilistic operators, is that we cannot verify ¢ over trajectories without some
uncertainty in the result. This means that we no longer obtain observations of
the random variables X;, as defined above, but instead we observe some other
random variables Y;, related to X; through bounds on the observation error.

To compute a p-value for nested verification, we assume that Pr[Y; =0 | X; =
1] < aand Pr[Y; = 1| X; = 0] < 5. We can make this assumption if we introduce
indifference regions in the verification of nested probabilistic formulae and use
the procedure described by Younes [13-Chap. 5] to verify path formulae over
truncated trajectories. We have the following bounds [13-Lemma 5.7]: p(1—a) <
Prly; = 1] < 1—(1—p)(1 — 3). The p-value for accepting P>g[g] as true
when the sum of the observations is d is Pr[} ;| Y; > d | p < 6], which is
less than F(n — d;n, (1 — 0)(1 — 3)). The p-value for the opposite decision is
Pr[>",Y; < d | p > 6], which is at most F(d;n,0(1 — «)). Since F(d;n,p)
increases as p decreases, we see that the p-value increases as the error bounds
« and 3 increase, which makes perfect sense. As was suggested earlier, we can
minimize the p-value of the verification result by computing the p-values of both
hypotheses and accept the one with the lowest p-value.
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We can let the user specify a parameter §p that controls the relative width of
the indifference regions. A nested probabilistic formula P> g[] is verified with an
indifference region of half-width ¢ = §p8 if 6 < 0.5 and 6 = Jp(1 — ) otherwise.
The verification is carried out using acceptance sampling as before, but with
hypotheses Hy : p > 0+ § and Hy : p < 0 — 6. Instead of reporting a p-value,
as is done for top-level probabilistic operators, we report bounds for the type
I error probability of the sampling plan in use if H; is accepted and the type
IT error probability if Hy is accepted. In our case, assuming a sampling plan
(n,c) is used, the type I error bound is 1 — F'(¢;n,0 + §) and the type II error
bound is F(¢;n, 0 —0). As error bounds for the computation of the p-value for a
top-level probabilistic operator, we simply take the maximum error bounds for
the verification of the path formula over all trajectories.

5 Comparison with Related Work

The idea of using statistical hypothesis testing for verification of “black-box” sys-
tems was first proposed by Sen et al. [12]. This section highlights the differences
between their approach and the approach presented in this paper.

First, consider the verification of a probabilistic formula P> g[p]. Our ap-
proach is essentially the same as theirs: given a constant ¢, accept if Z?zl X, >c
and reject otherwise. Their choice of ¢ is different, however, and is based on the
normal approximation for the binomial distribution. Their acceptance condition
is > X; > nf, which corresponds to choosing ¢ to be [nf] — 1. Their al-
gorithm, as a consequence, will under some circumstances accept a hypothesis
with a larger p-value than the alternative hypothesis. By choosing ¢ as we do,
without relying on the normal approximation, we guarantee that the hypothesis
with the smallest p-value is always accepted (Theorem 1). Consider P> ¢.01[¢].
for example, with n = 501 and d = 5. Our procedure would accept the formula as
true with p-value 0.562, while the algorithm of Sen et al. would reject it as false
with p-value 0.614. It is important to note that their choice of ¢ does not impact
the soundness of their algorithm, but it may lead to counterintuitive results.

The second improvement over the method presented by Sen et al. is in the
calculation of the p-value for the verification of a conjunction ® A ¥ when both
conjuncts have been verified to be false. They state that the p-value is bounded
by pvg + pvy, which is correct but unnecessarily conservative. There is no reason
to believe that the confidence in the result for ® A U would be lower (i.e. the
p-value higher) if we are convinced that both conjuncts are false. We have shown
that the p-value in this case is bounded by min(pvg, pvy).

Sen et al., in their handling of nested probabilistic operators, confuse the
p-value with the probability of accepting a false hypothesis (generally referred
to as the type I or type II error of a sampling plan). The p-value is not a bound
on the probability of a certain test procedure accepting a false hypothesis. In
fact, the test that both they and we use does not provide any useful bound
on the probability of accepting a false hypothesis. Their analysis relies heavily
on the ability to bound the probability of accepting a false hypothesis, and we
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have presented a way to provide such bounds by introducing indifference regions
(rather than computing p-values) for nested probabilistic operators.

In addition, Sen et al. are vague regarding the assumptions needed for their
approach to produce reliable answers. The fact that they treat any portion of a
trajectory starting in s, regardless of the portion preceding s, as a sample from
the same distribution, hides a rather strong assumption regarding the dynamics
of their “black-box” systems. As we have pointed out, this is not a valid as-
sumption unless we know that the system is a Markov chain. They also assume
that truncated trajectories are sufficiently long so that a path formula can be
verified fully over each truncated trajectory. We have removed this assumption
and we have presented a procedure for handling situations when the value of a
path formula cannot be determined over all truncated trajectories.

Finally, the empirical analysis offered by Sen et al. easily gives the reader the
impression that a low p-value can be guaranteed for a verification result simply by
increasing the sample size, even though the authors correctly state that a certain
p-value never can be guaranteed. If we are unlucky, we may make observations
that give us a large p-value even in cases when this is unlikely, and a large p-
value may even be the most likely outcome in some cases. The empirical results
of Sen et al. cannot be replicated reliably because there is no fixed procedure by
which one can determine the sample size required to achieve a certain p-value.
Their results give the false impression that their procedure is sequential, i.e.
that the sample size automatically adjusts to the difficulty of attaining a certain
p-value, when in reality they selected the reported sample sizes manually based
on prior empirical testing (K. Sen, personal communication, May 20, 2004). It
is therefore misleading to say that an algorithm for “black-box” verification is
“faster” than a statistical model checking algorithm that is designed to realize
certain a priori performance characteristics (such as the algorithm described by
Younes and Simmons [15]).

6 Discussion

Sen et al. [12] were first to consider the problem of probabilistic verification for
“black-box” systems. We have generalized their idea to a wider class of proba-
bilistic systems that can be characterized as stochastic discrete event systems.
Our most important contribution is to have given a clear definition of what
constitutes a “black-box” system, and to have made explicit any assumptions
making feasible the application of statistical hypothesis testing as a solution
technique for verification of such systems.

The algorithm presented in this paper should not be thought of as an al-
ternative to the statistical model checking algorithm proposed by Younes and
Simmons [15] and empirically evaluated by Younes et al. [14]. The two algorithms
are complementary rather than competing, and are useful under disparate sets
of assumptions. If we cannot generate trajectories for a system on demand, then
the algorithm presented here allows us to still reach conclusions regarding the be-
havior of the system. If, however, we know the dynamics of a system well enough



Probabilistic Verification for “Black-Box” Systems 265

to enable simulation, then we are better off with the alternative approach as it
gives full control over the probability of obtaining an incorrect result.
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