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Abstract. Tournament selection performs tournaments by first sam-
pling individuals uniformly at random from the population and then se-
lecting the best of the sample for some genetic operation. This sampling
process needs to be repeated many times when creating a new genera-
tion. However, even upon iteration, it may happen not to sample some of
the individuals in the population. These individuals can therefore play no
role in future generations. Under conditions of low selection pressure, the
fraction of individuals not involved in any way in the selection process
may be substantial. In this paper we investigate how we can model this
process and we explore the possibility, methods and consequences of not
generating and evaluating those individuals with the aim of increasing
the efficiency of evolutionary algorithms based on tournament selection.
In some conditions, considerable savings in terms of fitness evaluations
are easily achievable, without altering in any way the expected behaviour
of such algorithms.

1 Introduction

Tournament selection is one of the most popular forms of selection in evolution-
ary algorithms (EAs). In its simplest form, a group of n individuals is chosen
randomly uniformly from the current population, and the one with the best
fitness is selected (e.g., see (Bäck et al., 2000)). The parameter n is called the
tournament size and can be used to vary the selection pressure exerted by this
method (the higher n the higher the pressure to select above average quality
individuals).

Different selection methods, including tournament selection, have been anal-
ysed mathematically in depth in (Blickle and Thiele, 1995, 1997; Motoki, 2002).
The main emphasis of previous research has been the evaluation of the changes
produced by selection on the fitness distribution of the population. The propor-
tion of individuals of a population that is not selected during the selection phase
is one of the quantities that have been used to characterise the behaviour of selec-
tion algorithms. This quantity is called the loss of (fitness) diversity. Under the
implicit assumption that the population is wholly diverse (each individual has
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a unique rank), the loss of diversity pd for tournament selection was estimated
in (Blickle and Thiele, 1995, 1997) as

pd = n− 1
n−1 − n− n

n−1 ,

and later calculated exactly in (Motoki, 2002) as

pd =
1
M

M∑

k=1

(
1 − kn − (k − 1)n

Mn

)M

,

where M is the population size.
If one assumed that selection only is used or that we use selection to form a

mating pool1, the creation of a new generation would require exactly M selection
steps. These are exactly the conditions assumed in the work mentioned above.
However, in this paper we do not make this assumption. Instead, we consider
the case where each genetic operator directly invokes the selection procedure
to provide a sufficient number of parents for its application (e.g., twice in case
of crossover). So, there are situations where more than M selection steps are
required to form a new generation. More precisely, in a generational selecto-
recombinative algorithm, where crossover is performed with probability pc and
reproduction is performed with probability 1− pc, the number of selection steps
required to form a new generation is a stochastic variable with mean

M(1 − pc) + ρMpc = M [1 + (ρ − 1)pc],

where ρ = 1 for a crossover operator which returns two offspring after each
application, and ρ = 2 if only one offspring is returned2. The two-offspring
version of crossover is more efficient in terms of tournaments required, and also,
since ρ = 1, the number of selection steps required to form a new generation
is not stochastic and is simply M . For brevity in the following we will use the
definition α = [1 + (ρ − 1)pc].

So, because in each tournament we need n individuals, tournament selection
requires drawing nαM individuals uniformly at random (with resampling) from
the current population. An interesting side effect of this process is that not all
individuals in a particular generation are necessarily sampled within the nαM
draws, and this is particularly true for small values of the tournament size n.

1 The mating pool is an intermediate population which gets created by using selection
only and from which other operations, such as reproduction and crossing over, draw
individuals uniformly at random

2 In the following we will ignore the (potential) stochasticity of the number of selection
steps required to create a new generation. This is justifiable for various reasons: a)
it simplifies the analysis (but without significant loss in terms of accuracy of the
results obtained, as empirically verified), b) when ρ = 1 (two-offspring crossover or
mutation only algorithm) there is no stochasticity (and so the analysis is exact),
c) even with ρ = 2 (one-offspring crossover) it is possible to slightly modify the
evolutionary algorithm in such a way that there is no stochasticity
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For example, let us imagine to run an evolutionary algorithm starting from a
random population containing 4 individuals, which we will denote as 1, 2, 3 and
4. Let us assume that we are creating the next generation using tournament
selection with tournament size 2 and mutation only. Then, the creation of the
first individual will require randomly picking two individuals from the current
population (say individuals 1 and 4) and selecting the best for mutation. We
repeat the processes to create the second, third and fourth new individuals. It
is not unconceivable that in so doing maybe individual 3 was never involved in
any tournament.

It is absolutely crucial, at this stage, to stress the difference between not
sampling and not selecting an individual in a particular generation. The latter
refers to an individual which was involved in one or more tournaments, but did
not win any, and this is exactly what previous work on tournament selection
has concentrated on. The former, instead, refers to an individual which did
not participate in any tournament at all, simply because it was not sampled
during the creation of the required αM tournament sets. It is individuals such
as this that are the focus of this paper. Therefore, the results in this paper are
orthogonal to those appeared in the previous work mentioned above and are not
limited by uniqueness assumptions.

Continuing with our argument, in general, how many individuals should we
expect not to take part in any of αM tournaments? As will be shown in the next
section, an answer comes straight from the literature on the coupon collector
problem. However, before we explain the connection in more detail, we may
want to reflect briefly on why this effect is important.

In general those individuals that do not get sampled by the selection process
have no influence whatsoever on future generations. However, these individuals
use up resources, e.g., memory, but also, and more importantly, CPU time for
their creation and evaluation. For instance, individual 3 in the previous example
was randomly generated and had its fitness evaluated in preparation for selection,
but neither its fitness nor its genetic make up could have any influence on future
generations. So, one might ask, why did we generate such an individual in the first
place? And what about generations following the first two? It is entirely possible
that an individual in generation two got created and evaluated, but was then
neglected by tournament selection, so it had no effect whatsoever on generations
3, 4, etc. Did we really need to generate and evaluate such an individual? If not,
what about the parents of such an individual: did we need them? What sort of
saving could we obtain by not creating unnecessary individuals in a run?

In this paper we intend to analyse the relationship between tournament se-
lection and the coupon collector’s problem, and attempt to answer all of the
questions above and more. In particular, we want to rethink the way evolu-
tionary algorithms are run for the purpose of making best use of the available
resources without altering in any way the expected behaviour of such algorithms.
As will become clear in the next sections, in some conditions, saving of 20%
fitness evaluations or, in fact, even more are easily achievable.
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2 Coupon Collection and Tournament Selection

In the coupon collector problem, every time a collector buys a certain product, a
coupon is given to him. The coupon is equally likely to be any one of N types.
In order to win a prize, the collector must have at least one coupon of each type.
The question is: how many products will the collector have to buy on average
before he can expect to have a full set of coupons? The answer (Feller, 1971)
is obtained by considering that the probability of obtaining a first coupon in
one trial is 1 (so the expected waiting time is just 1 trial), the probability of
obtaining a second coupon (distinct from the first one) is N−1

N (so the expected
waiting time is N

N−1), the probability of obtaining a third coupon (distinct from
the first two) is N−2

N (so the expected waiting time is N
N−2 ), and so on. So, the

expected number of trials to obtain a full set of coupons is

EN = 1+
N

N − 1
+

N

N − 2
+· · ·N = N×

(
1
N

+
1

N − 1
+ · · · 1

)
= N log N+O(N).

It is well known that the N log N limit is sharp. For example, if X is a random
variable representing the number of coupons collected, for any constant c

lim
N→∞

Pr{X > N log N + cN} = 1 − e−e−c

.

So, for c ≈ 3 this probability is less than 5%.
How is the process of tournament selection related to the coupon collection

problem? We can imagine that the M individuals in the current population are
N = M distinct coupons and that tournament selection will draw (with re-
placement) nαM times from this pool of coupons. Because of the sharpness of
the coupon-collector limit mentioned above, if M log M + cM < nαM , i.e., if
nα > log M +c for some suitable positive constant c, then we should expect tour-
nament selection to sample all individuals in the population most of the time.
However, for sufficiently small tournament sizes or for sufficiently large popu-
lations the probability that there will be individuals not sampled by selection
becomes significant.

So, how many different coupons (individuals) should we expect to have sam-
pled at the end of the nαM trials? In the coupon collection problem, the expected
number of trials necessary to obtain a set of x distinct coupons is

Ex = 1 +
N

N − 1
+

N

N − 2
+ · · · N

N − x + 1
= N log

N

N − x
+ O(N).

By setting Ex = nαM , N = M and ignoring terms of order O(N), from this we
obtain an estimate for the number of distinct individuals sampled by selection

x ≈ M
(
1 − e−nα

)
. (1)

This indicates that the expected proportion of individuals not sampled in the
current population varies approximately like a negative exponential of the tour-
nament size.
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This approximation is quite accurate. However, we can calculate the expected
number of individuals neglected after performing nαM trials directly. We first
calculate the probability that one individual is not involved in one trial as 1 −
1/M . Then the expected number of individuals not involved in any tournaments
is simply

M(1 − 1/M)nαM = M

(
M

M − 1

)−nαM

,

which also varies like a negative exponential of the tournament size.
As shown in Figure 1 for α = 1 (two-offspring crossover or no crossover),

typically for n = 2 over 13% of the population is neglected, for n = 3 this drops
to 5%, for n = 4 this is 2%, and becomes negligible for bigger values of n.
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Fig. 1. Proportion of individuals not sampled in one generation by tournament selec-
tion for different tournament and population sizes assuming two-offspring crossover or
mutation only are used

This simple analysis suggests that saving computational resources by avoid-
ing the creation and evaluation of individuals which will not be sampled by the
tournament selection process appears to be possible only for relatively low selec-
tion pressures. However, tournament sizes in the range 2–5 are quite common in
practice, particularly when attacking hard, multi-modal problems which require
extensive exploration of the search space before zooming the search onto any
particular region. By rethinking how we perform selection, in this paper we will
show how we can achieve substantial computational savings in any evolutionary
algorithm based on tournament selection on any problem where low selection
pressure is appropriate without changing in any way the course of a run! We will
start exploring how we can achieve all this in the next section.
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3 Iterated Coupon Collector Problem

Now, let us consider a new game, that we will call the iterated coupon collection
problem, where the coupon set changes at regular intervals, but the number of
coupons available, N , remains constant. Initially the collector is given a (possibly
incomplete) set of m(0) old coupons. Each old coupon allows the collector to draw
n new coupons. So, he can perform a total of nm(0) trials, which will produce
a set of m(1) distinct coupons from the new set. The coupon set now changes,
and the player performs nm(1) trials to gather as many as possible new distinct
coupons. And so on. Interesting questions here are: what happens to m(t) as t
grows? Will it reach a limit? Will it oscillate? In which way will the values of n,
m(0) and N influence its behaviour?

Before we answer these questions let us motivate our analysis a bit. How is
this new problem related to evolutionary algorithms and tournament selection?
The connection is simple (we will assume α = 1 for the sake of clarity). Suppose
an oracle told us which individuals in a particular generation, G, are not in-
volved in any way in future generations, because selection will not sample them.
Then we could concentrate on the other individuals in the population, creating
and evaluating only them. Let m(0) be the number of such individuals (these
are like the initial set of old coupons given to the player). Clearly, in order to
create such individuals, we will need to know who their parent(s) were. This will
require running m(0) tournaments to select such parents. In each tournament
we randomly pick n individuals from generation G − 1 (each distinct individ-
ual in that generation is equivalent to a coupon in the new coupon set). After,
nm(0) such trials we will be in a position to determine (without the need for
an oracle) which individuals in generation G− 1 will contribute to future gener-
ations, we can count them and denote this number with m(1) 3. So, again, we
can concentrate on these individuals only. They are the equivalent of the new
set of coupons the collector has gathered. We can now perform nm(1) trials to
determine (again without the need for an oracle) which individuals in generation
G − 2 (the new coupon set) will contribute to future generations, we can count
them and denote this number with m(2) and so on until we reach the initial
random generation. There the game stops. So, effectively, the iterated coupon
collector problem is a model for the sampling behaviour of tournament selection
over multiple generations in a generational evolutionary algorithm.

Knowing the sequence m(t) for a particular evolutionary algorithm would
tell us how much we could save by not creating and evaluating individuals which
will not be sampled by selection. Naturally, we will not have an oracle to help us
choose G and to give us m(0). For now, while we concentrate on understanding
more about the iterated coupon collector problem, we could think of G as the

3 Because at this stage we are only interested in knowing the number of individuals
playing an active role in generation G−1, there is no need to determine the winners
of the tournaments: we just need to know who was involved in which tournament.
So, we do not even need to evaluate fitness, and, therefore, we do not need to know
the genetic makeup of any individual
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number of generations we are prepared to run our evolutionary algorithm for,
and we might imagine that m(0) = M (the whole population).

In the classical coupon collection problem, the shopper will typically perform
as many trials as necessary to gather a full collection of coupons. As we have
seen before, however, it is quite easy to estimate how many distinct coupons one
should expect at the end of any given fixed number of trials. Because the iterated
coupon collection game starts with a known number of trials, we can calculate
the expected value of m(1). However, we cannot directly apply the theory in the
previous section to gather information about m(2). This is because m(1) is a
stochastic variable, so in order to estimate m(2) we would need to know the
probability distribution of m(1) not just its expected value.

Exact probabilistic modelling can be obtained by considering the coupon
collection game as a Markov chain (Feller, 1971), where the state of the chain
is the number of distinct coupons collected. The transition matrix for the chain
can easily be constructed by noticing that the chain can be in state k (i.e., the
collector has k distinct coupons) at the next time step only if either it was already
in state k and a new coupon has been acquired that is a duplicate (which happens
with probability k−1

N ) or it was in state k − 1 and the coupon just acquired is a
new one (which, of course, happens with probability N−k+1

N ). So, the number of
distinct individuals in the previous generation sampled when randomly picking
individuals for tournament selection can be described by the following Markov
transition matrix:

A =
1
M





0 0 0 0 · · · 0
M 1 0 0 · · · 0
0 M − 1 2 0 · · · 0
0 0 M − 2 3 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · M





.

The process always starts from state 0, which can be represented using the state
probability vector e0 = (1 0 0 0 · · · 0 )T . So, the probability distribution over
the states after x time steps (i.e., coupon draws or random samples from the
population) is given by Axe0, which is simply the first column of the matrix Ax.

So, if we are interested only in m(0) individuals in generation G, the proba-
bility distribution of m(1) (the number of distinct individuals we need to know
from generation G − 1) is given by Anαm(0)e0

4. For example, if the population
size is M = 3, the tournament size is n = 2, we use a two-offspring version of
crossover (α = 1) and we are interested in m(0) = 1 individuals, then the prob-
ability distribution of m(1) is represented by the following probability vector

4 This, of course, gives us also the probability distribution over the number of draws,
nαm(1), we will need to make from generation G− 2 in order to fully determine the
m(1) individuals we want to know at generation G − 1



Backward-Chaining Evolutionary Algorithms 139

(
1
3

)2





0 0 0 0
3 1 0 0
0 2 2 0
0 0 1 3





2 



1
0
0
0



 =
1
3





0
1
2
0



 .

If we were interested in m(0) = 2 individuals at generation G, the probabil-
ity distribution over the number m(1) of unique individuals sampled would be
A4e0 = (0.0 0.0370 0.5185 0.4444)T . Finally, if we were interested in the whole
population (m(1) = M = 3), the distribution would be A6e0 = (0 0.0041 0.2551
0.7407)T , which reveals that, in these conditions, even when building a whole
generation there are still more than 1 in 4 chances of not sampling the whole
population at the previous generation. Of course, if m(0) = 0, the probability
vector for m(1) is e0, i.e., m(1) = 0.

Although this example is trivial, it reveals that for any given m(0) we can
compute a distribution over m(1). That is, we can define a new Markov chain
to model the iterated coupon collector problem. In this chain a state is exactly
the same as in the coupon-collector chain (i.e., the number of distinct coupons
sampled), except that now a time step corresponds to a complete set of draws
from the new coupon set rather than just the draw of one coupon. The transition
matrix B for this new chain can be obtained very simply: column i of B is Aαie0.
That is

B =
(
e0 Aαe0 A2αe0 · · · AMαe0

)
.

For instance, for the case M = 3, n = 2 and α = 1 considered above

B =





1 0 0 0
0 0.3333 0.0370 0.0041
0 0.6667 0.5185 0.2551
0 0 0.4444 0.7407



 .

Of course, once the transition matrix is defined, the chain can be iterated to com-
pute the probability distributions of m(2), m(3) and so on, as back as necessary
to reach generation 0.

In general B is block diagonal of the form

B =
(

1 0T

0 C

)
,

where 0 is a column vector containing M zeros and C is a M × M stochastic
matrix. Clearly B is not ergodic (from state 0 we cannot reach any state other
than 0 itself), so we cannot expect a unique limit distribution for m(t). However,
because B is block diagonal, we have

Bx =
(

1 0T

0 Cx

)
.

So, if we ensured that the probability of the chain initially being in state 0
is 0 (that is Pr{m(0) = 0} = 0), the chain could never visit such a state at
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any future time. Because of this property, and because, objectively, state 0 is
totally uninteresting (of course we already know that if we are interested in no
individual at generation G, we do not need to know any individual at previous
generations!) we can declare such a state of the iterated coupon-collection chain
as invalid, and reduce the state set to {1, 2, . . . , M}. In this situation C is the
state transition matrix for the chain, and to model the sampling behaviour of
tournament selection over multiple generations we just need to concentrate on
the properties of C.

The transition matrix C is ergodic if nα > 1 as can be easily seen by the
following argument. If nα > 1 then each old coupon gives us the right to draw
more than one new coupon in the iterated coupon-collection problem. So, if the
state of the chain is k (k < M), it is always possible to reach state k + 1 in one
stage of the game with non-zero probability. From there it is then, of course,
possible to reach state k + 2 and so on up to M . So, from any lower state it
is always possible to reach any higher state in repeated iterations of the game.
But, of course, the converse is always true: irrespective of the value of nα there
is always a chance of getting fewer coupons than we had before in an iteration
of the game, due to resampling. So, from any higher state we can also reach any
lower state (in fact, unlike the reverse, we can achieve this in just one iteration
of the game).

Since, α ≥ 1 and n ≥ 2 for any practical applications, the condition nα > 1
is virtually always satisfied and C is ergodic. So, the Perron-Frobenius theorem
guarantees that the probability over the states of the chain converges towards
a limit distribution which is independent from the initial conditions (see (Nix
and Vose, 1992; Davis and Principe, 1993; De Jong et al., 1995; Rudolph, 1994;
Poli et al., 2001) for other applications of this result to genetic algorithms and
genetic programming). This distribution is given by the (normalised) eigenvector
corresponding to the largest eigenvalue of C (λ1 = 1), while the speed at which
the chain converges towards such a distribution is determined by the magnitude
of the second largest eigenvalue λ2 (the relaxation time of an ergodic Markov
chain is 1/(1 − |λ2|)). Naturally, this infinite-time limit behaviour of the chain
is particularly important if G is sufficiently big that m(t) settles into the limit
distribution well before we iterate back to generation 0. Otherwise the transient
behaviour is what one needs to focus on. Both are provided by the theory.

Because the transition matrices we are talking about are relatively small
(M × M), they are amenable to numerical manipulation. We can, for example,
find the eigenvalues and eigenvectors of C for quite respectable population sizes,
certainly well in the range of those used in most applications of evolutionary
algorithms, thereby determining the limit distribution and the speed at which
this is approached.

If x(t) is a probability vector representing the probability distribution over
m(t), then the expected value of m(t) is

E[m(t)] =
(
1 2 · · · M

) · x(t) =
(
1 2 · · · M

) · Ctx(0). (2)

Typically m(0) will be deterministic and so x(0) = em(0) (where el is a base
vector containing all zeros except for element l which is 1).
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If x∗ denotes the limit distribution for x(t), then for large enough G, the
average number γ of individuals (in generations 0 through to G−1) that have no
effect whatsoever on a designated set of m(0) individuals of interest at generation
G is approximately γ = M−(

1 2 · · · M
)·x∗. So, a question that naturally springs

to mind is whether we could run an evolutionary algorithm without creating and
evaluating these unnecessary individuals.

If we could do this, because of the ergodicity of the selection process, for
large enough G, it is almost irrelevant whether m(0) is as small as 1 or as large
as M , and so we might want to know the entire makeup of generation G and
still have a saving of approximately G× γ individual creations and evaluations.

In the next two sections we will consider two different ways in which we could
modify our evolutionary algorithm to achieve this kind of saving.

4 Running Evolutionary Algorithms Efficiently

Normally, in each generation of an evolutionary algorithm we iterate the follow-
ing phases:

a) the choice of genetic operator to use to create a new individual,
b) the creation of a random pool of individuals for the application of tournament

selection,
c) the identification of the winner of the tournament (parent) based on fitness,
d) the execution of the chosen genetic operator,
e) the evaluation of the fitness of the resulting offspring.

Naturally, phases (b) and (c) are iterated as many times as the arity of the
genetic operator chosen in phase (a), and the whole process needs to be repeated
as many times as there are individuals in the new population.

Interestingly, the genetic makeup of the individuals involved in these opera-
tions is of interest only in phase (d) (we need to know the parents in order to
produce offspring) and phases (c) and (e) (we must know the genetic makeup
of individuals in order to evaluate their fitness). However, phases (a) and (b) do
not require any knowledge about the actual individuals involved in the creation
of a new individual. In most implementations these phases are just performed by
properly manipulating numbers drawn from a pseudo-random number generator.

So, there is really no reason why we could not first iterate phases (a) and
(b) as many times as needed to create a full new generation (of course, mem-
orising all the decisions taken), and then iterate phases (c)–(e). This idea was
first used in (Teller and Andre, 1997) for the purposed on speeding up genetic
programming fitness evaluation5.
5 The main idea in (Teller and Andre, 1997) was to estimate the fitness of the individ-

uals involved in the tournaments by evaluating them on a subset of the fitness cases
available. On the basis of this estimate, for most tournaments it was often possible
to determine with a small error probability which individual would win. These tour-
naments could therefore be decided quickly, while only in a subset of tournaments
individuals ended up being evaluated using all fitness cases. This is what produced
the speed up
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In fact, we could go even further. In many practical applications of evolution-
ary algorithms, people fix a maximum number of generations they are prepared
to run their algorithm for6. Let this number be G. So, at the cost of some mem-
ory space, we could iterate phases (a) and (b) not just for one generation but for
a whole run from the first generation to generation G and then iterate phases
(c)–(e) as required (that is, either until generation G or until any other stopping
criterion is satisfied).

Because the decisions as to which operator to adopt to create a new individ-
ual and which elements of the population to use for a tournament are random,
statistically speaking this version of the algorithm is exactly the same as the
original. In fact, if the same seed is used for the random number generator in
both algorithms, they are indistinguishable! However, the version of the algo-
rithm we propose (let us call it an EA with macro-selection) makes it possible to
avoid wasting the computation involved in generating and evaluating the indi-
viduals “neglected” by tournament selection: after macro-selection (the iteration
of phases (a) and (b) up until generation G) is completed we analyse the infor-
mation stored during that phase and identify which population members were
not involved in any tournament in each generation, we mark them, and we avoid
calculating and evaluating them when iterating phases (c)–(e). We will call this
algorithm the EA with efficient macro-selection (EA-EMS).

Irrespective of the problem being solved and the parameter settings used, the
behaviours of the standard algorithm and the efficient version proposed above
will have to be on average identical. So, what are the differences between the
two evolutionary algorithms?

Obviously, the standard algorithm requires more fitness evaluations and cre-
ations of individuals while the one proposed above requires more bookkeeping
and use of memory. Also, clearly, in any particular run, the plots of average
fitness and max fitness in each generation may differ (since in EA-EMS not all
individuals are considered in calculating these statistics). However, when aver-
aged over multiple runs the average fitness plots would have to coincide.

A more important difference derives from the fact that most practitioners
keep track of the best individual seen so far in a run of an EA and designate
that as the result of the run. In EA-EMS we can either return the best individual
in generation G or the best individual seen in a run out of those that have been
sampled by tournament selection. Because the fast algorithm does not create and
evaluate individuals that did not get sampled, the end-of-run results may differ
in the two algorithms. Of course, quite often the best individual seen in a run is
actually a member of the population at the last generation. So, if one creates and
evaluates all individuals in generation G (which leads to only a minor inefficiency
in the EA with efficient macro-selection), most of the time the two algorithms
will behave identically from this point of view too.

One remaining inefficiency in EA-EMS derives from the fact that there may
be individuals which were sampled by selection when creating a particular indi-

6 This is a limit that is virtually always present, even if another stopping criterion,
e.g., based on fitness, is present
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vidual in a new generation which in turn, however, was not sampled by selection.
If the first individual was involved only in the creation of the second, further
computational savings could be achieved by not creating and evaluating the first
individual at all. This is just an example of a more general issue: it is possible
that some of the “ancestors” of the individuals neglected by selection were un-
necessarily created and evaluated. How could we improve our algorithm to get
rid of these individuals too?

Clearly the iteration of phases (a) and (b) over multiple generations induces
a graph structure containing (G + 1)M nodes representing all the individuals
evolved during a run and where edges connect each individual to the individuals
which were involved in the tournaments necessary to select the parents of such
an individual. If we are interested in calculating and evaluating all the individ-
uals in the population at generation G, maximum efficiency would be achieved
by considering (marking for evaluation) only the individuals which are directly
or indirectly connected with the M individuals in generation G. So, the problem
can be solved with a trivial connected-component algorithm. Let us call the re-
sulting algorithm an EA with efficient macro-selection and connected-component
detection (EA-EMS-CCD).

This would appear to be the best we can get from our EA: it saves on fitness
evaluations and it is really as close as we can get to the original in terms of
behaviour. However, the recursive nature of connected-component detection and
the similarity between the mechanics of EAs and that of rule-based systems give
us suggestions on how to make further substantial improvements, as will be
discussed in the next section.

5 Backward-Chaining Evolutionary Algorithms

Running evolutionary algorithms from generation 0, to generation 1, to genera-
tion 2, and so on is the norm: this is what happens in nature, and this is certainly
what has been done for decades in the field of evolutionary computation. This
is similar to running a rule-based system in forward-chaining mode (Russell and
Norvig, 2003). In these systems, we start with a working memory containing
some premises, we apply a set of IF-THEN inference rules which modify the
working memory by adding or removing facts, and we iterate this process until
a certain condition is satisfied (e.g., a fact which we consider to be a conclusion
is asserted). The rules in the knowledge base are a bit like the genetic operators
in an evolutionary algorithm, the working memory is a bit like a population and
the facts in it are a bit like individuals in an evolutionary algorithm.

This loose analogy between rule-based systems and evolutionary algorithms
is not, in itself, terribly useful, except for one thing: it suggests the possibility of
running an evolutionary algorithm in backward chaining mode, like one can do
with a rule-based system. Broadly speaking, when a rule-based system is run in
backward chaining, the system focuses on one particular conclusion that it wants
to prove and operates as follows: a) it looks for all the rules which have such a
conclusion as a consequent (i.e. a term following the “THEN” part of a rule), b)
it analyses the antecedent (the “IF” part) of each such rule, c) if the antecedent
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is a fact (in other words, it is already in the working memory) then the original
conclusion is proven and can be placed in the working memory, otherwise the
system saves the state of the inference and recursively restarts the process with
the antecedent as a new conclusion to prove (if there is no rule which has this
term as a consequent, the recursion is stopped and another way of proving the
original conclusion is attempted). If a rule has more than one condition (which
is quite common), the system attempts to prove the truth of all the conditions,
one at a time, and will assert the conclusion of the rule only if all conditions are
satisfied. In this modality only the rules that can contribute to determining the
truth or falsity of the target conclusion are ever considered, which of course can
lead to major efficiency gains.

So, how would we run an evolutionary algorithm in backward-chaining mode?
Let us suppose we are interested in knowing the makeup of the population at
generation G and let us start by focusing on the first individual in the population.
Let r be such an individual. Effectively r plays the role of a conclusion we want
to prove. In order to generate r we only need to know what operator to apply to
produce it and what parents to use. In turn, in order to know which parents to
use, we need to perform tournaments to select them7. In each such tournaments
we will need to know the makeup of n (the tournament size) individuals from the
previous generation (which of course, at this stage we may still not know). Let us
call S = {s1, s2, . . .} the set of the individuals that we need to know in generation
G − 1 in order to determine r. Clearly, s1, s2, . . . are like the premises in a rule
which, if applied, would allowed us to work out r (this would require evaluating
the fitness of each element of S, deciding the winners of the tournament(s) and
applying the chosen genetic operator to generate r). Normally we will not know
the makeup of these individuals. However, we can recursively consider each of
them as a subgoal. So, we determine which operator should be used to compute
s1, we determine which set of individuals at generation G − 2 is needed to do
so, and we continue with the recursion. When we emerge from it, we repeat the
process for s2, etc. The recursion can terminate in one of two ways: a) we reach
generation 0, in which case we can directly instantiate the individual in question
by invoking the initialisation procedure for the particular EA we are considering,
or b) the individual for which we need to know the genetic makeup has already
been constructed and evaluated. Clearly the individuals in generation 0 have a
role similar to that of the initial contents of the working memory in a rule-based
system. Once we have finished with r we repeat the process with all the other
individuals in the population at generation G, one by one.

Clearly, at its top-level, the algorithm just described is a recursive depth-first
traversal of the graph mentioned at the end of the previous section. While we
traverse the graph (more precisely, when we re-emerge from the recursion), we
are in a position to know the genetic makeup of all the nodes encountered and
so we can invoke the fitness evaluation procedure for each of them. Thus, we

7 Decisions regarding operator choice and tournaments are trivial and can be made
on the spot by drawing random numbers or can be all made in advance as in the
EA with macro-selection
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can label each node with the genetic makeup and fitness of the individual repre-
sented by such a node. Recursion stops when we reach a node without incoming
links (a generation-0 individual, which gets immediately labelled randomly and
evaluated) or when we reach a node that has been previously labelled. We will
call an EA running in this mode a Backward-Chaining EA (BC-EA).

Statistically a BC-EA is fully equivalent to the EA-EMS-CCD, and so it
presents the same level of equivalence to an ordinary EA. In particular, if the
same seed is used for the random number generators and all decisions regarding
operators and tournaments are performed in a batch before the graph traversal,
generations G of a BC-EA and an EA are indistinguishable.

So, if there are no differences why bother with a BC-EA instead of using a
simpler “forward-chaining” version of the algorithm? One important difference
between the two modes of operation is the order in which individuals in the pop-
ulation are evaluated. Let us consider an example where we have a population
of M = 5 individuals which we run for G = 3 generations using tournament
selection with n = 2 and we use crossover with 50% probability. Let us further
suppose that, in the first instance, we are interested in knowing the first individ-
ual in the last generation. The ancestors of this individual might form a graph
like the one in Figure 2.

Generation

In
di

vi
du

al

Fig. 2. Ancestors of the first individual in generation 3

Let us denote the nodes in row i (for individual) and column g (for genera-
tion) in the graph with the notation rig . In a forward chaining EA, even if we
knew which individuals are unnecessary to define our target individual r13 (e.g.,
individuals r50, r31, r61, and so on), we would evaluate individuals column by
column from the left to the right in the following sequence: r10, r20, r30, r40,
r60, r11, r21, r41, r51, r12, r32, and finally r13. That is, generation 0 individuals
are computed before generation 1 individuals, which in turn are computed be-
fore generation 2 individuals, and so on. A backward chaining EA would instead
evaluate nodes in a different order. For example, it might do it according to the
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sequence: r10, r30, r40, r11, r20, r21, r12, r60, r41,r51, r32, and finally r13. So, the
algorithm would move back and forth evaluating nodes at different generations.

Why is this important? Typically, in an EA the average fitness of the popula-
tion and the maximum fitness in each generation grow as the generation number
grows. In our forward chaining EA the first 3 individuals evaluated have an ex-
pected average fitness equal to the average fitness of the individuals at generation
0, and the same is true for the BC-EA. However, unlike for the forward-chaining
EA, the fourth individual created and evaluated by BC-EA belongs to generation
1, so its fitness is expected to be higher than that of the previous individuals.
Individuals 5 and 6 have same expected fitness in the two algorithms. However,
the seventh individual drawn by BC-EA is a generation 2 individual, while the
forward EA draws a generation 1 individual. So, again the BC-EA is expected
to produce a higher fitness sample than the other EA. Of course, this process is
not going to continue indefinitely, and at some point the individuals evaluated
by BC-EA start being on average inferior. This is unavoidable since the sets of
individuals sampled by the two algorithms are identical.

This behaviour is typical: for problems where fitness tends to increase gen-
eration after generation a BC-EA will converge faster than an ordinary EA in
the first part of a run and slower in the second part. So, if one restricts oneself
to that first phase, the BC-EA is not just faster than an ordinary EA because
it avoids evaluating individuals neglected by tournament selection, BC-EA is
also a faster converging algorithm. How can we make sure we work in the region
where the BC-EA is superior to the corresponding forward EA? Simple: like in
any ordinary EA, in a BC-EA one does not need to continue evolution until all
the individuals in generation G are known and evaluated, e.g., we can stop the
algorithm whenever the best fitness seen so far reaches a suitably high value.
In this way we can avoid at least a part of the phase where BC-EA is slower
converging than the forward EA.

It is worth noting that this faster convergence behaviour is present in a BC-
EA irrespective of the value of the tournament size, although, of course, the
differences in behaviour between the two algorithms depend on it.

6 Experimental Results

We have implemented a backward chaining version of genetic algorithm (BC-
GA) and run a variety of experiments on the counting ones problem. The choice
of algorithm and problem was simply dictated by simplicity, since the notion of
BC-EA is completely general.

Let us start by corroborating experimentally the expected faster convergence
behaviour of BC-EA. To assess this we performed 100 independent runs of both
a backward and a forward chaining version of the algorithm applied to a 100-bit
problem. In these runs the maximum number of generations G was set to 99 (i.e,
we did 100 generations). The population size M was 100. Only tournament selec-
tion and mutation (mutation rate pm = 0.01) were used. To make a comparison
between the algorithms possible, in our BC-GA we computed maximum fitness
and average fitness every 100 fitness evaluations, and we treated this interval as
a generation. In the BC-GA we computed all the individuals at generation G.
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Figure 3 shows the fitness vs. generation plots for the two algorithms when
the tournament size n is 2. It is clear from the figure that BC-GA performs about
20% fewer fitness evaluations than the standard EA, reaching, however, the same
average and maximum fitness values. So, as predicted in the previous sections
this significant computational saving comes without altering in any substantial
way the behaviour of the EA.

Figure 4 shows the fitness vs. generation plots for the two algorithms when
the tournament size n is 3. With this tournament size, there is still a saving
of about 6% which is definitely worth having, but clearly for higher selection
pressures the disadvantages of using a BC-GA in terms of memory use and
bookkeeping become quickly preponderant.

Similar results should be expected when using a two-offspring version of
crossover, although, of course, higher fitness values would be observed.

These experiments illustrate how a BC-EA typically converges faster than
the traditional version of the algorithm. However, the most important question
about BC-EA is how the expected number of fitness evaluations changes as a
function of M , n, and G. We investigate this in the remainder of this section.

In order to assess the impact of both the transient and the limit-distribution
behaviour of BC-EA, we performed a series of experiments where the task was
to evaluate just one individual at generation G (that is m(0) = 1). In these
experiments, we set G to be big enough so that all transients had finished well
before generation 0, thereby revealing also the limit-distribution sampling be-
haviour. In the experiments we used populations of size M = 10, M = 1000
and M = 100 000. We set G = 49 (i.e., we performed exactly 50 generations, 0
through to 49), so forward runs required exactly 500, 50 000 and 5 000 000 fitness
evaluations to complete, respectively. For each setting we did 100 independent
runs.

Figure 5 shows the average proportion of individuals evaluated by BC-EA
when mutation only is used (α = 1) for tournaments sizes n = 2 and n = 3 as a
function of the population size M , while Figure 6 shows the average proportion
of individuals evaluated by BC-EA when one-offspring crossover with pc = 0.5
is used (α = 1.5) for the same tournaments sizes8.

From these figures we can see that, as expected, the limit-distribution saving
is largely independent from the size of the population. E.g., for n = 2, after
the transient about 80% of the population is an “ancestor” of the individual
of interest in generation G if mutation only is used, while this goes up to 94%
when α = 1.5. For EAs where long runs are used, these percentages provide an
approximate estimation of the total proportion of fitness evaluations required by
a backward chaining version of the algorithm w.r.t. the standard algorithm.

The figures also show that during most of the transient the number of in-
dividuals sampled by tournament selection grows very quickly (backward from
generation 49). As clearly shown in Figure 7, the growth is exponential. The
reasons for this are quite simple: when only a few samples are drawn from a

8 Plots for crossovers producing two offspring in each application would show the same
behaviour as the mutation only case



148 Riccardo Poli

50

55

60

65

70

75

80

85

90

95

0 10 20 30 40 50 60 70 80 90 100

BC-EA avg fitness

Generations

BC-EA max fitness
EA avg fitness
EA max fitness

Fig. 3. Comparison between BC-GA and standard GA when a tournament size of 2 is
used. Means over 100 independent runs
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Fig. 4. Comparison between BC-GA and standard GA when a tournament size of 3 is
used. Means over 100 independent runs
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Fig. 5. Average proportion of individuals evaluated by BC-EA when mutation only is
used (α = 1) for tournaments sizes n = 2 and n = 3. Means over 100 independent runs
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Fig. 7. Logarithmic plot of the average proportion of individuals evaluated by BC-EA
when mutation only is used (α = 1) for tournaments sizes n = 2–5 and a population
size M = 100 000

population, resampling is very unlikely, and, so, the ancestors of the individual
of interest will tend to form a tree rather than a graph for at least some gen-
erations before the last. The branching factor of the tree is nα. So, for small
enough g, generation G − g will include (nα)g ancestors of the individual of in-
terest in generation G. Naturally, this exponential growth continues only until
(nα)g becomes comparable with the expected number of individuals processed
in the limit distribution case.

For small populations or high selective pressures the transient is short. How-
ever, there are cases where the transient lasts for many generations. For exam-
ple, in a population of M = 100 000 individuals and α = 1 (i.e., in the case
of mutation only or two-offspring crossover), the transient lasts for almost 20
generations (although it is exponential only for around 16 or 17). This popula-
tion size may appear very big and these generation numbers may appear quite
small. However, big populations and short runs are actually typical of at least
one important class of EAs: genetic programming. So, it is worth evaluating the
impact of the transient on the total number of fitness evaluations.

Let us assume G−ge is the last generation in which the transient is effectively
exponential. (E.g., for n = 2, α = 1, a population of size M and, of course,
m(0) = 1, we have an exponential transient of ge ≈ log2 M generations.) Then
the number of individuals evaluated during the last ge generations of a run is

F =
(αn)ge+1 − 1

αn − 1
.
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Because by definition (αn)ge ≤ M , we have the following simple upper bound
for the number of individuals required in the exponential transient:

F <

(
αn

αn − 1

)
M

Then, based on the previous equation, if we ran our BC-EA for G = ge gen-
erations, whatever α and n the total number of fitness evaluations F is upper
bounded by 2M – i.e., F is less than the effort required to initialise a population
and create one generation in the standard version of the EA!

Even when runs last for more than ge generations, the effects of the expo-
nential transient are marked. To illustrate this, Table 1 reports the mean total
number of fitness evaluations recorded in the experiments shown in Figures 5
and 6. Taking, for example, the case of n = 2 and no mutation, where the limit
distribution effort would be around 80%, we can see that efforts of as low as
53.4% of those required by a forward EA are achieved.

Table 1. Mean number of fitness evaluations recorded during 50 generations in the
experiments shown in Figures 5 and 6. Forward EA fitness evaluations are also reported
for reference

M BC-EA with mutation BC-EA with two-offspring crossover Forward EA
n = 2 n = 3 n = 2 n = 3

10 384 454 452 476 500
1 000 31 980 40 967 40 895 44 615 50 000

100 000 2 671 667 3 702 667 3 692 295 4 160 496 5 000 000

7 Discussion

In the previous sections we have developed a deeper understanding of the sam-
pling behaviour of tournament selection, in particular focusing on a source of
inefficiency: the creation and evaluation of individuals that cannot influence fu-
ture generations. We have then proposed general methods to remove this source
of inefficiency and speed up evolutionary algorithms based on tournament se-
lection. One of these methods, the backward chaining evolutionary algorithm,
provides the additional benefit of converging faster that a standard (forward)
algorithm due to its constructing and evaluating individuals belonging to later
generations sooner.

The implementation of a backward chaining evolutionary algorithm is not
very complex and the added book keeping required is quite limited. However,
there is no doubt that BC-EAs require more memory than their forward coun-
terparts. So, if one did not want to leave the well known and safe terrain of
forward chaining evolutionary algorithms, what could one do to mitigate the
effects of the potential sampling inefficiency of tournament selection? One possi-
bility is to modify the manner in which the “random samples” are taken for the
tournaments: instead of using uniform random samples, which can sometimes
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fail to select a subset of the total sample domain, we could use “super-uniform”
random samples, which mimic the expected behaviour of the uniform random
sample.

In the context of tournament selection, and for the case of α = 1 (e.g., in
a mutation-only algorithm) the following method would capture the spirit of
tournament selection while more uniformly distributing a subset of the samples
used in its calculation. For the i-th tournament of size n, choose the first sample
as the i-th member of the previous population, and choose the remaining n − 1
samples uniformly at random. Effectively, this amounts to choosing the first
samples with a super-uniform distribution, since exactly M tournaments are
required when α = 1 9. Clearly it would be easy to adapt this scheme for the
case α > 1. For example, one could use the scheme just described for M of
the required tournaments and then use standard tournament selection for the
remaining M(α−1). With this revised version of tournament selection all samples
would be used in the calculation of the next generation. So, this method is elitist,
in that it is guaranteed to keep the best individual. As a result, the method may
also present stronger selection pressure than the original. Future research will
be needed to fully understand the properties of the proposed method.

If one, however, is prepared to adopt the ideas behind BC-EA, the computa-
tional savings can be very big. These are achievable not only when we exploit the
transient behaviour of the algorithm (as we illustrated in the previous section),
but also in the limit-distribution behaviour, as will be illustrated below.

Maximum savings are achieved when αn is minimum. The smallest value
α can take is 1 and with standard tournament selection the minimum for n is
2. So, we already know that the best we can do is saving around 20% fitness
evaluations. However, a form of tournament selection exists (e.g., see (Mitchell,
1996)) that we can modify to obtain even more spectacular savings.

In this form of tournament selection, one picks up two individuals at random
and then chooses the one with the higher fitness with probability p, the other
with probability 1− p. For p = 1 this form of selection is equivalent to standard
tournament selection with n = 2, while it is a form of random selection for
p = 0.5. By acting on p it is possible to vary the selection pressure of the
method continuously between these two extremes. An alternative description of
the method is that we choose the higher fitness individual with probability q and
randomly between the two with probability 1− q (naturally p = q + (1− q)/2 =
(1 + q)/2). In this case q can be varied in the interval [0, 1].

This second version of the algorithm can be modified for our purposes. In-
stead of first choosing a pair of individuals and then deciding whether we select
the best or we pick one at random, we first decide which selection strategy we
are going to use, and then, based on this, we randomly draw individuals from
the population. If we decide to go for the best in the tournament, then we must
draw two individuals from the population. However, if we decide to choose ran-
domly between the two members of the tournament, then we can just draw one

9 Effectively, this method stands to standard tournament selection as stochastic uni-
versal selection stands to roulette wheel selection



Backward-Chaining Evolutionary Algorithms 153

random individual from the population (instead of drawing two individuals and
then randomly discarding one).

With this method, the expected number of individuals drawn in each tour-
nament is n = 2 × q + 1 × (1 − q) = q + 1 ≤ 2. So, clearly the smaller q the
bigger the saving we should expect in a BC-EA. Just to get a feel for the order
of magnitude of these savings, let us assume α = 1 and let us use Equation 1
to estimate the expected proportion of individuals not sampled. This is approx-
imately e−(1+q). So, for very low selection pressures saving of over 35% fitness
evaluations are possible.

Naturally, much more substantial savings can be obtained when exploiting
the transient behaviour of BC-EAs. In the previous section we showed that when
running a BC-EA with m(0) = 1, the effort is of the order of the population
size. However, the reader will probably wonder about the usefulness of evaluating
just one individual in the last generation. Normally we would want to have the
whole generation. However, we need to remember that the individual provided by
a BC-EA (with m(0) = 1) at generation G is effectively a random sample drawn
from the population at that generation. Although we expect one individual to be
insufficient, one important question is whether we really need to have the whole
of generation G in order to solve a problem. Elsewhere (Poli and Langdon,
2005) we have experimented with a backward-chaining genetic programming
implementation showing that even when run with m(0) = 1 BC-GP can solve
problems well. So, the answer to the above mentioned question appears to be
that, at least is some cases, we do not need the whole population. To get a more
complete and satisfactory answer, future work on BC-EAs will need to include
a thorough investigation of the best way to choose m(0) and G.

As we already noted, BC-EAs are based on changing the order of various
operations on an EA, which requires memorising choices and individuals over
multiple generations. Let us evaluate the space complexity of BC-EA and com-
pare it to the space complexity of a standard EA. For simplicity, we consider EAs
where the representation of each individual requires a fixed amount of memory:
b bytes. The space complexity of a forward generational EA is

CF = 2 × (b + 4) × M

where we assumed that we store both the current and the new generation and
that fitness values are stored in a vector of floats (4 byte each). So, for b � 1,
CF ≈ 2bM . In BC-EA, instead, the space complexity is

CB = G × M × (b + 4 +
1
8
)

since we need to store one array of individuals, one of floats, and one bit array,
all of size G × M 10. So, for b � 1, CB ≈ GbM . So, the difference in space
10 This calculation is based on an implementation where the graph structure induced

by tournament selection on the population is not explicitly stored. Instead, it is
created dynamically and recursively. The bit array is used to flag the individuals
that have been constructed and evaluated in a previous recursions. The calculation
ignores the small amount of memory required in the stack during recursion
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complexity between the two algorithms is

∆C = CB − CF = (G − 2) × M × (b + 4) +
GM

8
,

which indicates that in most conditions the use of BC-EA carries a significant
memory overhead. However, this does not prevent the use of BC-EAs. For ex-
ample, if the representation of an individual requires b = 100 bytes, and we run
a population of M = 1000 individuals for G = 100 generations, BC-EA requires
only around 9.6MB of memory to run.

8 Conclusions

In this paper we have analysed the sampling behaviour of tournament selection
over multiple generations and exploited this analysis to come up with more effi-
cient implementations of evolutionary algorithms based on this selection method.
In particular we have proposed a new way of running evolutionary algorithms,
the BC-EA, which offers a combination of fast convergence, increased efficiency
in terms of fitness evaluations, complete statistical equivalence to a standard
EA and broad applicability. Because of these interesting properties we think the
class of BC-EAs is an area worthy of further investigation.
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