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Abstract. This paper presents the asymptotic convergence analysis of Simulated
Annealing, an Artificial Immune System and a General Evolutionary Algorithm
for multiobjective optimization problems. In the case of a General Evolutionary
Algorithm, we refer to any algorithm in which the transition probabilities use a
uniform mutation rule. We prove that these algorithms converge if elitism is used.

1 Introduction

In nature, most problems have several objectives which we aim to optimize simultane-
ously. Such problems are called “multiobjective”, and their solution requires a suitable
definition of optimality (usually called “Pareto optimality”). Such problems normally
have not one, but an infinite set of possible solutions, which represent possible trade-
offs among the objectives (such solutions constitute the so-called “Pareto optimal set”).

Diverse metaheuristics have been adopted to solve multiobjective optimization prob-
lems (MOP) [2]. In this paper, we study three of them: simulated annealing (SA) [10,
15], artificial immune systems (AIS) [14] and evolutionary algorithms (EA) [9, 6]. For
these metaheuristics that use a uniform mutation rule (see end of Section 3.1) we show
that the associated Markov chain converges geometrically to its stationary distribution,
but not necessarily to the optimal solution set of the multiobjective optimization prob-
lem. Convergence to the optimal solution set is ensured if elitism (whose definition is
provided in this paper) is used.
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Metaheuristics such as those indicated in this paper, have become a standard tool
to solve both single-objective and multiobjective optimization problems. In the single-
objective case, the convergence of a metaheuristic is reasonably well-understood [17].
However, when dealing with multiobjective optimization problems, there is not much
work available in the literature, except for extremely particular cases (see for example
[16]).

The remainder of this paper is organized as follows. Section 2 introduces the prob-
lem of our interest. The three specific algorithms studied in this paper are introduced
in Section 3. In Section 4 we present some basic definitions related to Markov chain
theory. Our main results (i.e., the corresponding proofs) are presented in Section 5.
Section 6 provides our conclusions and some possible paths of future research.

2 The Multiobjective Optimization Problem

Let X be a set and F : X −→ IRd a given vector function with components fi :
X −→ IR for each i ∈ {1, . . . , d}. The multiobjective optimization problem (MOP)
we are concerned with is to find x∗ ∈ X such that

F (x∗) = min
x∈X

F (x) = min
x∈X

[f1(x), . . . , fd(x)], (1)

where the minimum is understood in the sense of the standard Pareto order in which
two vectors in IRd are compared as follows.

If u = (u1, . . . , ud) and v = (v1, . . . , vd) are vectors in IRd, then

u � v ⇐⇒ ui ≤ vi ∀ i ∈ {1, . . . , d}.
This relation is a partial order. We also write u ≺ v ⇐⇒ u � v and u 	= v.

Definition 1: A point x∗ ∈ X is called a Pareto optimal solution for the MOP (1) if
there is no x ∈ X such that F (x) ≺ F (x∗). The set

P∗ = {x ∈ X : x is a Pareto optimal solution}
is called the Pareto optimal set, and its image under F , i.e.

F (P∗) := {F (x) : x ∈ P∗} ,

is called Pareto front.
In the remainder of the paper we will use the following well–known “scalarization”

result.

Proposition 1: If x∗ ∈ X is a solution of the weighted problem:

min
x∈X

d∑

s=1

wsfs(x), where ws ≥ 0 ∀s ∈ {1, . . . , n} and
d∑

s=1

ws = 1,

then x∗ ∈ P∗.
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Proof. See, for instance, [13, p.78].

Now we introduce some notation that will be used later on. Let

Σopt := {x ∈ X :
∑d

s=1 fs(x) = Σm},
where

Σm := min
x∈X

d∑

s=1

fs(x). (2)

Then, by Proposition 1, the Pareto optimal set P∗ contains Σopt, i.e.

Σopt ⊂ P∗. (3)

As we are concerned with computational aspects, in the remainder of the paper we
will assume that the set X in (1) is finite. For an EA and the AIS, in which the elements
are represented by strings of length l with 0 or 1 at each entry, we take X = IBl, with
IB = {0, 1}. For SA we only assume that X is finite.

3 Algorithms

3.1 Evolutionary Algorithms

Evolutionary algorithms are techniques that use a population which evolves over time
(i.e., generations) applying some operations to the current population to obtain the next
one. Some of these operations are

– mutation
– selection
– crossover
– reordering

The type of EAs we are interested in are modeled as Markov chains with transition
probabilities that use uniform mutation and possibly other operations. This mutation is
applied with a certain parameter or probability pm, which is positive and less than 1/2,
i.e.

pm ∈ (0, 1/2) . (4)

Some examples of this type of EAs are the following:

– genetic algorithms (see [9]),
– evolution strategies (see [18]),
– evolutionary programming (see [8, 7]).

These types of algorithms can be modeled as a Markov chain {Xk : k ≥ 0} whose
state space S is the set of all possible populations of n individuals, each one represented
by a bit string of length l. Hence S = (IBl)n = IBnl, where IB = {0, 1} and so S is
the set of all possible vectors of n entries, each of which is a string of length l with 0 or
1 at each entry.

Let i ∈ S be a state, so that i can be represented as

i = (i1, i2, . . . , in),

where each is is a string of length l of 0’s and 1’s.
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The chain’s transition probability is given by

Pij = IP (Xk+1 = j | Xk = i).

Thus the transition matrix is of the form

P = (Pij) = LM, (5)

where M is the transition matrix corresponding to the mutation operation and L repre-
sents the other operations.

Note that these matrices are stochastic, i.e. Lij ≥ 0, Mij ≥ 0 for all i, j, and for
each i ∈ S ∑

j∈S

Lij = 1 and
∑

j∈S

Mij = 1. (6)

The Mutation Probability

The mutation probability is very important in the convergence analysis of the EA. To
calculate it from state i to state j we use that the individual is is transformed into the
individual js applying uniform mutation (i.e. a flip mutation, with probability pm, is
applied to each entry of is) then each entry of is is transformed into the corresponding
one of js with probability 1 − pm or pm depending on if the corresponding entries are
equal or different, as in the following scheme.

1 2 · · · n
i i1 i2 · · · in

mutation ↓ ↓ · · · ↓

j j1 j2 · · · jn

Thus, for each individual in the population the mutation probability can be calculated
as

pH(is,js)
m (1 − pm)l−H(is ,js) ∀s ∈ {1, . . . , n},

where H(is, js) is the Hamming distance between is and js. It follows that the mutation
probability from i to j is:

Mij =
n∏

s=1

pH(is,js)
m (1 − pm)l−H(is,js) (7)

3.2 The Simulated Annealing Algorithm

Kirkpatrick et al. [10] and Černy [15] proposed an optimization algorithm based on
some analogies with an annealing process in which a crystal is produced. This led to
the development of an algorithm called “Simulated Annealing” which is a heuristic
search technique that has been quite successful in combinatorial optimization problems
(see [1] and [11] for details).
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The simulated annealing algorithm generates a succession of possible solutions of
the optimization problem. These possible solutions are the states of a Markov chain and
the “energy” of a state is the evaluation of the possible solution that it represents.

The temperature is simulated with a sequence of positive control parameters ck. A
transition of the Markov chain occurs in two steps, given the value ck of the control
parameter. First, if the current state is i, a new state j is generated with a certain prob-
ability Gij(ck), defined below. Then an “acceptance rule” Aij(ck) is applied to j. Our
main result hinges on a suitable selection of the acceptance rule, which we now discuss.

The generation probability. For each state i, let Si be a subset of S \ {i} called the
neighborhood of i. We shall assume that the number of elements in Si is the same, say
Θ, for all i ∈ S, and also that the neighbor relation is symmetric, that is, j ∈ Si if and
only if i ∈ Sj . Then, denoting by χSi the indicator function of Si (i.e. χSi(j) := 1 if
j ∈ Si and 0 otherwise), we define the generation probability

Gij(ck) :=
χSi(j)

Θ
for all i, j ∈ S. (8)

The acceptance probability. This probability value is crucial for the behavior of the
simulated annealing algorithm.

The idea of this acceptance rule is that any new state that improves the actual state
will be accepted with probability 1 and the others are accepted with certain probability
that tends to zero as time goes to infinity.

When dealing with MOPs there are different options to define the acceptance rule.
For instance, Serafini [20] proposes to use the L∞–Tchebycheff norm given by

A′
ij(c) = min

{
1, exp

(
max

s∈{1,...,d}
λs(fs(i) − fs(j))

c

)}
,

where the λs are given positive parameters.
On the other hand, Ulungu and coworkers [21, 22, 24, 23] use

A′′
ij(c) := min

{
1, exp

(
d∑

s=1

λs(fs(i) − fs(j))
c

)}

= exp




−
(

d∑

s=1

λs(fs(j) − fs(i))
c

)+



 . (9)

where as usual, a+ denotes the positive part of a number a ∈ IR, namely

a+ :=
{

a if a > 0,
0 otherwise.

Here, we will use the acceptance probability presented in [20]:

Aij(c) :=
d∏

s=1

min
{

1, exp
(

fs(i) − fs(j)
c

)}
,
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which can be expressed in the simpler form

Aij(c) = exp

(
−
∑d

s=1(fs(j) − fs(i))+

c

)
. (10)

For the last two acceptance rules, we have shown somewhere else that the SA for
MOP converges (see [25]).

The transition probability. Having the generation and the acceptance probabilities, we
can now define the transition probability from i to j as

Pij(ck) :=

{
Gij(ck)Aij(ck) if i 	= j,

1 −∑l∈S,l �=i Pil(ck) if i = j,
(11)

where Aij is as in (10) (or as in (9)).

3.3 Artificial Immune System

The Artificial Immune System (AIS) algorithm is a technique that, as its name indi-
cates, simulates in a computer certain aspects of an immune system. When an antigen
enters our immune system, it is immediately detected and generates a response from the
immune system. As a consequence, antibodies are generated by the immune system.
Antibodies are molecules that play the main role in the immune response. They are ca-
pable of adhering to the antigens in order to neutralize and mark them for elimination
by other cells of the immune system. Successful antibodies are cloned and hypermu-
tated. This is called the clonal selection principle and has been the basis for developing
the algorithm on which we base the work reported in this paper [4].

For our mathematical model, we will consider the AIS (based on clonal selection
theory [4]) for multiobjective optimization proposed in [3]. From here on, we will refer
to this approach using the same name adopted by the authors of this algorithm: “Multi-
objective Immune System Algorithm” (MISA for short). Next, we will focus our dis-
cussion only on the aspects that are most relevant for its mathematical modelling. For a
detailed discussion on this algorithm, readers should refer to [3].

In MISA the antigens are simulated with a population of strings of 0’s and 1’s.
The population is divided in two parts, a primary set and a secondary set; the primary
set contains the “best” individuals (or elements) of the population. The transition of
one population to another is made by means of two mutation rules and a reordering
operation. First, the elements of the primary set are copied several times, then in each
of these copies a fixed number of bits are mutated, at random. Regarding the secondary
set, a uniform mutation with parameter pm is applied. This parameter is positive and
less than 1/2, i.e. pm ∈ (0, 1/2).

After that, the elements are reordered, moving the “best” individuals to the primary
set. MISA can be modeled with a Markov chain {Xk : k ≥ 0}, with state space S =
IBnl, where IB = {0, 1}. In this case a individual can be represented as:

i = (i1, i2) = (i1, i2, . . . , in1 ; in1+1, . . . , in),

i1 represents the primary set and i2 the secondary.
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3.4 Using Elitism

In our case, when dealing with MOPs, we say that we are using elitism in an algo-
rithm if we use an extra set, called the elite set, in which we put the “best” elements
(nondominated elements of the state in our case) found. This elite set usually does not
participate in the evolution (although, there are multi-objective evolutionary algorithms
that use the elite set in the selection process, such as the Strength Pareto Evolutionary
Algorithm [27]), since it is used only to store the nondominated elements.

After each transition we apply an elitism operation that accepts a new state if there
is an element in the population that improves some element in the elite set (i.e., if there
is an element in the population that dominates, in the Pareto sense, some element in the
elite set).

If we are using elitism, the representation of the states changes to the following
form:

î = (ie; i) = (ie1, · · · , ier; i1, · · · , in),

where ie1, · · · , ier are the members of the elite set of the state, r is the number of elements
in the elite set and we assume that the cardinality of P∗ is greater than or equal to r. In
addition we assume that r ≤ n.

Note that in general ie1, · · · , ier are not necessarily the “best” elements of the state î,
but after applying the elitism operation in ie they are the “best” elements of the state.

Let P̂ be the transition matrix associated with the new states. If all the elements in
the elite set of a state are Pareto optimal, then any state that contains an element in the
elite set that is not a Pareto optimal will not be accepted, i.e.

if {ie1, · · · , ier} ⊂ P∗ and {je
1 , · · · , je

r} 	⊂ P∗ then P̂ij = 0. (12)

4 Markov Chain Theory

We provide here some standard definitions and results.
We first introduce the definition of convergence of an algorithm, which uses the

following notation: if V = (v1, v2, . . . , vn) is a vector, then {V } denotes the set of
entries of V , i.e.

{V } = {v1, v2, . . . , vn}.

Definition 2: Let {Xk : k ≥ 0} be the Markov chain associated to an algorithm. We
say that the algorithm converges with probability 1 if

IP ({Xk} ⊂ P∗) → 1 as k → ∞.

In the case in which we are using elitism we replace Xk by Xe
k , the elite set of the

state (i.e. if Xk = i then Xe
k = ie).

The next result gives an upper bound on the rate of convergence of P k as k → ∞.
We will use it to show the existence of the stationary distribution in Theorem 2.



102 Mario Villalobos-Arias, Carlos A. Coello Coello, and Onésimo Hernández-Lerma

Lemma 1: Let N be the cardinality of S, and let P k
ij be the entry ij of P k. Suppose

that there exists an integer ν > 0 and a set J of N1 ≥ 1 values of j such that

min
1≤i≤N

j∈J

P ν
ij = δ > 0.

Then there are numbers π1, π2, . . . , πN1 such that

lim
k→∞

P k
ij = πj ∀i = 1, . . . , N, ∀ j ∈ J, with πj ≥ δ > 0,

and π1, π2, . . . , πN1 form a set of stationary probabilities. Moreover

|P k
ij − πj | ≤ (1 − N1δ)

k
ν −1 ∀ i = 1, . . . , N, ∀ j ∈ J, ∀ k = 1, 2, . . . .

Proof. See, for example, [5, p. 173].

We will need some properties of the limiting distribution, which we present next.
Recall that a probability distribution q is called the limiting distribution of a Markov
chain with transition probability P if

qi = lim
k→∞

IP (Xk = i|X0 = j) for all i, j ∈ S.

If such a limiting distribution q exists and ai(k) = IP (Xk = i), for i ∈ S, denotes the
distribution of Xk, then

lim
k → ∞

ai(k) = qi for all i ∈ S.

Moreover, q is an invariant (or stationary) distribution of the Markov chain, which
means that

q = q P ; (13)

that is, q is a left eigenvector of P with eigenvalue 1. A converse to this result (which
is true for finite Markov chains) is given in Lemma 2 below.

Observe that (13) trivially holds if q is a probability distribution satisfying

qiPij = qjPji ∀i, j ∈ S. (14)

This equation is called the detailed balance equation, and (13) is called the global
balance equation.

Lemma 2:[12, p.19] Let P be the transition matrix of a finite, irreducible and ape-
riodic Markov chain. Then the chain has a unique stationary distribution q (that is q
is the unique distribution that satisfies (13)) and, in addition, q is the chain’s limiting
distribution.

Definition 3: Let X be as in problem (1). We say that X is complete if for each x ∈
X \ P∗ there exists x∗ ∈ P∗ such that F (x∗) � F (x).

For instance, if X is finite then X is complete.
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Let i, j ∈ S be two arbitrary states, we say that i leads to j, and write i → j, if
there exists an integer k ≥ 1 such that P k

ij > 0. If i does not lead to j, then we write
i 	→ j.

We call a state i inessential if there exists a state j such that i → j but j 	→ i.
Otherwise the state i is called essential.

We denote the set of essential states by E and the set of inessential states by I .
Clearly,

S = E ∪ I.

We say that P is in canonical form if it can be written as

P =
(

P1 0
R Q

)
.

Observe that P can be put in this form by reordering the states, that is, the essen-
tial states at the beginning and the inessential states at the end. In this case, P1 is the
matrix associated with the transitions between essential states, R with transitions from
inessential to essential states, and Q with transitions between inessential states.

Note that P k has a Qk in the position of Q in P , i.e.

P k =
(

P k
1 0

Rk Qk

)
,

where Rk is a matrix that depends of P1, Q and R.
Now we present some results that will be essential in the proof of Theorem 3.

Lemma 3: Let P be a stochastic matrix, and let Q be the submatrix of P associated
with transitions between inessential states. Then, as k → ∞,

Qk → 0 elementwise geometrically fast.

Proof. See, for instance, [19, p.120].

As a consequence of Lemma 3 we have the following.

Corollary 1: For any initial distribution,

IP (Xk ∈ I) → 0 as k → ∞.

Proof. For any initial distribution vector p0, let p0(I) be the subvector that corresponds
to the inessential states. Then, by Lemma 3,

IP (Xk ∈ I) = p0(I)′Qk1 → 0 as k → ∞.

5 Main Results

In this section we present some recent results on the convergence of the algorithms
introduced in Section 3, for multiobjective optimization problems (MOPs).
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5.1 Convergence of Simulated Annealing

Following the ideas of Laarhoven, Aarts and Korst in [1, 11] we developed a conver-
gence proof of SA for MOPs, which is presented in the following Theorem.

Theorem 1: Let P (c) be the transition matrix associated with the SA algorithm defined
by (8), (10), (11) and, moreover, suppose that G(c) is irreducible. Then:

(a) The Markov chain has a stationary distribution q(c) whose components are given
by

qi(c) =
1

N0(c)
exp

(
−
∑d

s=1 fs(i)
c

)
, (15)

where

N0(c) =
∑

j∈S

exp

(
−
∑d

s=1 fs(j)
c

)
(16)

(b) For each i ∈ S

q∗i := lim
c↘0

qi(c) =
1

|Σopt|χΣopt(i),

where |Σopt| denotes the number of elements in Σopt.
(c) The SA algorithm converges with probability 1.

These results remain valid if (10) is replaced with (9).

Proof of Theorem 1.

(a) Since G is irreducible, using Lemma 2 it can be seen that the Markov chain is
irreducible and aperiodic (see [1, p.39]). Hence, by Lemma 2 there exists a unique
stationary distribution. We now use (8) and (11) to see that (14) holds for all i 	= j.
First note that

qi(c)Pij(c) = qi(c)Gij(c)Aij(c)

=
{

1
Θ qi(c)Aij(c) if j ∈ Si

0 if j 	∈ Si.

Similarly,

qj(c)Pji(c) = qj(c)Gji(c)Aji(c)

=
{

1
Θ qj(c)Aji(c) if i ∈ Sj

0 if i 	∈ Sj .

Thus, since i ∈ Sj if and only if j ∈ Si, to obtain (14) we only have to prove that

qi(c)Aij(c) = qjAji(c).

But this follows from (10), (15) and using that for any real numbers a1, a2, . . . , an,
b1, b2, . . . , bn, we have
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n∑

k=1

(ak − bk) +

(
n∑

k=1

(bk − ak)

)+

=

(
n∑

k=1

(ak − bk)

)+

,

n∑

k=1

(ak − bk) +
n∑

k=1

(bk − ak)+ =
n∑

k=1

(ak − bk)+.

because

qi(c)Aij(c) =

=
1

N0(c)
exp

(
−
∑n

s=1 fs(i)
c

)
exp

(
−
∑n

s=1(fs(j) − fs(i))+

c

)

=
1

N0(c)
exp

(
−
∑n

s=1 fs(j)
c

)

exp
(
−
∑n

s=1(fs(i) − fs(j)) +
∑n

s=1(fs(j) − fs(i))+

c

)

=
1

N0(c)
exp

(
−
∑n

s=1 fs(j)
c

)
exp

(
−
∑n

s=1(fs(i) − fs(j))+

c

)

= qj(c)Aji(c).

This shows that (14) holds, which in turn yields part (a) in Theorem 1. (Note that
this proof, with obvious changes, remains valid if the acceptance probability is given
by (9) rather than (10)).

(b) Note that for each a ≤ 0

lim
x↘0

e
a
x =

{
1 if a = 0,
0 otherwise.

(17)

Now, by (2), (15) and (16)

qi(c) =
exp

(
−
∑n

s=1 fs(i)

c

)

∑
j∈S exp

(
−
∑n

s=1 fs(j)

c

)

=
exp

(
Σm−∑n

s=1 fs(i)

c

)

∑
j∈S exp

(
Σm−∑n

s=1 fs(j)

c

)

=
exp

(
Σm−∑n

s=1 fs(i)

c

)

∑
j∈S exp

(
Σm−∑n

s=1 fs(j)

c

)
(
χΣopt(i) + χS−Σopt(i)

)

=
1

∑
j∈S exp

(
Σm−∑n

s=1 fs(j)

c

)χΣopt(i)

+
exp

(
Σm−∑n

s=1 fs(i)

c

)

∑
j∈S exp

(
Σm−∑n

s=1 fs(j)

c

)χS−Σopt(i).
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Now let c ↘ 0. Then, by (17), the second term of the latter sum goes to 0, whereas
the denominator of the first term goes to |Σopt|. Hence

lim
c↘0

qi(c) =
1

|Σopt|χΣopt(i) + 0 = q∗i ,

which completes the proof of part (b).
(c) By (b) and Lemma 2

lim
c↘0

lim
k→∞

IP{Xk = i} = lim
c↘0

qi(c) = q∗i ,

and so by (3)

lim
c↘0

lim
k→∞

IP{Xk ∈ P∗} ≥ lim
c↘0

lim
k→∞

IP{Xk ∈ Σopt} = 1. (18)

Thus
lim
c↘0

lim
k→∞

IP{Xk ∈ P∗} = 1,

and (c) follows.

5.2 Convergence of Evolutionary Algorithms

In this subsection we present convergence results for the EA for solving MOPs, in which
we show that the use of elitism is necessary to guarantee the convergence of this kind
of algorithms.

The first result is related to the existence of a stationary distribution for the Markov
chain of the EA.

Theorem 2: Let P be the transition matrix of an EA. Then P has a stationary distribu-
tion π such that

|P k
ij − πj | ≤

(
1 − 2nlpnl

m

)k−1 ∀i, j ∈ S ∀k = 1, 2, . . . . (19)

Moreover, π has all entries positive.

Theorem 2 states that P k converges geometrically to π. Nevertheless, in spite of
this result, the convergence of the EA to the Pareto optimal set cannot be guaranteed. In
fact, from Theorem 2 and using the fact that π has all entries positive, we immediately
deduce the following.

Corollary 2: The EA does not converge.

To ensure convergence of the EA we need to use elitism.

Theorem 3: The EA using elitism converges.

The next lemma will be used in the proof of Theorem 2.
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Lemma 4: Let P be the transition matrix of the EA. Then

min
i,j∈S

Pij = pnl
m > 0 ∀i, j ∈ S, (20)

and therefore P is primitive.

Proof. By (4) we have

pm <
1
2

< 1 − pm.

Thus, from (7),

Mij =
n∏

s=1

pH(is,js)
m (1 − pm)l−H(is ,js)

>

n∏

s=1

pH(is,js)
m pl−H(is,js)

m =
n∏

s=1

pl
m

= pnl
m

On the other hand, by (5) and (6)

Pij =
∑

s∈S

RisMsj

≥ pnl
m

∑

s∈S

Ris

= pnl
m > 0,

To verify (20), observe that Pij attains the minimum in (20) if i has 0 in all entries and
j has 1 in all entries.Thus the desired conclusion follows.

Proofs

Proof of Theorem 2. Because (20) holds for all j ∈ S we have that J = S, N1 = N =
2nl and ν = 1. Thus, by Lemma 1, P has a stationary distribution π with all entries
positive and we get (19).

Despite the fact that Theorem 3 is an extension of a result originally presented
by Rudolph [17], our proof is more general. Additionally, we do not have to make any
assumptions regarding the existence of a single optimal point (i.e., our proof is simpler),
due to the use of essential and inessential states.

Proof of Theorem 3. By Corollary 1, it suffices to show that the states that contain
elements in the elite set that are not Pareto optimal are inessential states. To this end,
first note that X = IBl is complete, because it is finite.

Now suppose that there is a state î = (ie; i) in which the elite set contains elements
ies1

, . . . , iesk
that are not Pareto optimal. Then, as X is complete, there are elements, say

je
s1

, . . . , je
sk

∈ P∗, that dominate ies1
, . . . , iesk

, respectively.
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Take ĵ = (je; j) such that all Pareto optimal points of ie are in je and replace the
other elements of ie with the corresponding je

s1
, . . . , je

sk
. Thus, all the elements in je

are Pareto optimal.
Now let

j = (je
1 , . . . , je

r , ies1
, . . . , ies1︸ ︷︷ ︸

n−r copies

).

By Lemma 4 we have i → j. Hence, with positive probability we can pass from
(ie, i) to (ie, j), and then we apply the elitism operation to pass from (ie, j) to (je, j).
This implies that î → ĵ. On the other hand, using (12), ĵ 	→ î and therefore î is an
inessential state.

Finally, from Corollary 1 we have

IP ({Xe
k} ⊂ P∗) = IP (Xk ∈ E) = 1 − IP (Xk ∈ I) → 1 − 0 = 1

as k → ∞.
This completes the proof of Theorem 3.

5.3 Convergence of an Artificial Immune System Algorithm

A previous proof for a version of MISA was presented in [26], in which some con-
straints were imposed on the way in which one could go from one state to another.
Here, we present a proof of a more general version of MISA. The idea is the same for
the EA, and is presented in the next lemma.

Lemma 5: If any state in MISA has in its elite set an element that is not a Pareto
optimal, this state is an inessential state.

Proof. Note that X = IBl is complete, because it is finite.
Let î = (ie; i1, i2) be a state in which the elite set contains elements that are not

Pareto optimal.

1. From i1, a set of clones is generated. Next, a fixed number of (randomly chosen)
string positions of these clones are mutated. Then we change the initial positions in
all the strings of the clones (there exists a positive probability of doing this). The
set obtained from this previous process is called ClonesM(i1).

2. Since a uniform mutation is applied to i2, we change whatever is necessary in all the
elements within this set, so that we can obtain the worst element of ClonesM(i1).
As before, there exists a positive probability of doing this, so that none of these
elements enters the primary set.

3. Then, all the elements are rearranged and we select the nondominated elements and
they are placed in j1. Now, let j2 contain a number of individuals of the remainder
of the elements available, until completing N (N is the population size).

4. When we apply elitism we obtain the set je.
5. To the clones of j1, we mutate the same initial string positions. Then

ClonesM(j1) ⊆ ClonesM(i1). Therefore, the best elements of ClonesM(j1)
will be in j1 again. When we apply elitism to the elements of j1, we do not modify
the set je.
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6. Let je
s1

, . . . , je
sk

be the elements of je that are not Pareto optimal. As X is complete,
there exist elements i�s1

, . . . , j�
sk

∈ P∗ that dominate je
s1

, . . . , je
sk

, respectively.
7. Now, since we apply uniform mutation to j2, we can obtain from j2

1 , . . . , j2
k to

i�s1
, . . . , j�

sk
respectively, and the other elements of j2 are left as they were before.

8. Like ClonesM(j1) and {jk+1, . . . , jn2} had already been modified je when apply-
ing elitism, we will not modify again je. Thus, the only part of je that is modified
will be i�s1

, . . . , j�
sk

and they will replace the nondominated elements of je.
9. Finally, let i† be the resulting state of this process. Using the previous process, we

can go from î to i† (̂i → i†), but as in i†e there are only Pareto optimal solutions,
from (12) Pi† î = 0 (i.e i† 	→ î). This proves that î is an inessential state.

From Lemma 5, the convergence of MISA is easily obtained as follows.

Theorem 4: The MISA algorithm using elitism converges.

Proof. From Lemma 5 and Corollary 1 we have

IP ({Xe
k} ⊂ P∗) = IP (Xk ∈ E) = 1 − IP (Xk ∈ I) → 1 − 0 = 1

as k → ∞. This completes the proof.

6 Conclusions and Future Work

We have presented the convergence proofs of three meta-heuristics that have been used
for solving MOPs: simulated annealing, an artificial immune system (based on clonal
selection theory), and a general evolutionary algorithm.

It is worth noting that in the case of the general EA, our convergence proof ex-
tends previous proofs of convergence presented for genetic algorithms used for single-
objective optimization (e.g., [17]). Actually, our proof is valid for a more general class
of evolutionary algorithms that use uniform mutation.

Regarding the artificial immune system, the proof included here, together with some
of our previous work [26], constitute the only attempts currently known to prove con-
vergence of such metaheuristic.

Finally, regarding simulated annealing, our proof relies on previous work by
Laarhoven, Aarts and Korst [1, 11], but it constitutes (to the best of our knowledge),
the first proof of convergence of simulated annealing in multiobjective optimization
problems.

As part of our future work, we intend to extend these results to a more general case
in which not even uniform mutation is required. We also plan to analyze other types
of heuristics used for multiobjective optimization, and to try to determine bounds of
convergence for such algorithms.
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