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Abstract. In previous work of the second author a rigorous mathematical foun-
dation for re-encoding one evolutionary search algorithm by another has been
developed. A natural issue to consider then is the complexity of deciding whether
or not a given evolutionary algorithm can be re-encoded by one of the standard
classical evolutionary algorithms such as a binary genetic algorithm. In the cur-
rent paper we prove that, in general, this decision problem is NP-complete.

1 Introduction

In recent years evolutionary algorithms have been widely exploited to solve various
complex optimization problems. In order to apply an evolutionary algorithm to attack a
specific optimization problem, one needs to model the algorithm in a suitable manner.
The importance of finding appropriate models is emphasized in much of the research
literature: see, for instance, the introduction to chapter 17 of [13], [14], [12] and [11].
The general methodology for how to construct the search space and the appropriate
recombination operators with the aim of applying the classical genetic algorithm first
appeared in [9]. However, there is a variety of different types of EAs which people use.
This might be, for example, nonlinear GP with homologous crossover introduced by
Poli (see [8] for a detailed description of how this algorithm works), or, even more so,
it might be a special type of an algorithm used to attack a specific problem. It is in
general interesting to know if it is possible to re-encode a given algorithm by a binary
genetic algorithm. In [6] and in [7] a rigorous mathematical framework was introduced,
allowing one to re-encode one evolutionary algorithm by another.

In particular, necessary and sufficient conditions for a given evolutionary search al-
gorithm to be embeddable into a binary genetic (or semi-genetic) algorithm have been
established. The aim of the current paper is to investigate the computational complex-
ity of deciding if a given evolutionary search algorithm can be re-encoded by another
(probably a more commonly used) evolutionary algorithm. The main results of the cur-
rent paper demonstrate that deciding if a given evolutionary algorithm can be embedded
into a binary semi-genetic algorithm can be done in polynomial time, while the more
useful, analogous decision problem pertaining to the classical genetic algorithm is, un-
fortunately, NP-complete.
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The paper is organized as follows: In the next two sections we introduce the basic
notation and framework used throughout the paper. Next, in Section 4 we demonstrate
how the classical types of algorithms fit into this framework. Section 5 is devoted to a
summary of the previous work which sets the foundation for the results of the current
paper. The main results are then presented in the final Section 6.

2 Notation

Ω is a finite set, called a search space.
f : Ω → (0,∞) is a function, called a fitness function. The goal is to find a maxi-

mum of the function f .
F is a collection of binary operations on Ω. Intuitively F can be thought of as

the collection of reproduction transformations: two parents produce one offspring. The
family of asexual reproductions or mutations (these are unary operations on Ω, i. e.
functions from Ω into itself) will be denoted by M. By a search system we mean a
search space Ω together with families F and M of reproduction transformations and
mutations. We shall denote a search system either by (Ω, F ,M) or simply by Ω; the
latter notation follows the convention, common in many parts of mathematics, of using
the same symbol, in this case Ω, for a mathematical structure, in this case a search
system, and for its underlying set.

Remark: In general there is no reason to assume that a child has exactly two parents.
All of the results in this paper are valid for families of q-ary operations on Ω. The
only reason F is assumed to be a family of binary transformations is to alleviate the
complexity of notation. In the general case, the definition of search system should, of
course, include all the reproduction transformations, regardless of the number of ar-
guments. Search systems were called “heuristic tuples” in earlier work of the second
author. They are almost the same as what are called “algebras” in universal algebra, but
the morphisms of search systems, defined in Section 5, are different from homomor-
phisms of algebras.

3 How Does an Evolutionary Algorithm Work?

A typical evolutionary algorithm works as follows: A population P =




x1

x2

...
x2m


 with

xi ∈ Ω is selected randomly. The algorithm cycles through the following stages:

Evaluation
Individuals of P are evaluated:




x1

x2

...
x2m




→ f(x1)
→ f(x2)
...

...
→ f(x2m)
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Selection
A new population

P ′ =




y1

y2

...
y2m




is obtained by choosing each yi independently by the following random process. Choose

at random j in the range 1 ≤ j ≤ 2m, the probability of any j being
f(xj)

Σ2m
l=1f(xl)

. Then

set yi = xj .
Thus, all of the individuals of P ′ are among those of P , and the expectation of the

number of occurrences of any individual of P in P ′ is proportional to the number of
occurrences of that individual in P times the individual’s fitness value. In particular, the
fitter the individual is, the more copies of that individual are likely to be present in P ′.
On the other hand, the individuals having relatively small fitness value are not likely
to enter into P ′ at all. This is designed to imitate the natural “survival of the fittest”
principle.

Partition
The individuals of P ′ are partitioned into m pairwise disjoint couples for mating ac-
cording to some probabilistic rule: For instance the couples could be

Q1 =
(

yi11
yi12

)
Q2 =

(
yi21
yi22

)
. . . Qj =

(
yij

1

yij
2

)
. . . Qm =

(
yim

1

yim
2

)

Reproduction

Replace every one of the selected couples Qj =

(
yij

1

yij
2

)
with the couple

Q′ =

(
T1(yij

1
, yij

2
)

T2(yij
1
, yij

2
)

)

for some couple of transformations (T1, T2) ∈ F2. The couple (T1, T2) is selected
according to a fixed probability distribution on F2. This gives us a new population

P ′′ =




z1

z2

...
z2m




Mutation
Finally, with small probability we replace zi with F (zi) for some randomly chosen
F ∈ M. The choices for different i’s are independent. This, once again, gives us a new

population P ′′′ =




w1

w2

...
w2m



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Upon completion of mutation start all over with P ′′′ as the initial population. The
cycle is repeated a certain number of times depending on the problem. A more general
and extensive description is given in [13]. The importance of choosing a reasonable
representation for a specific problem is emphasized in some of the modern research.
See, for instance, [10]. A few special types of evolutionary algorithms are introduced
in the next section.

4 Special Evolutionary Algorithms

Classical Genetic Algorithm with Masked Crossover: Let Ω =
∏n

i=1 Ai. For every
subset M ⊆ {1, 2, . . . , n}, define a binary operation LM on Ω as follows:

LM (a,b) = (x1, x2, . . . , xi, . . . , xn)

where a = (a1, a2, . . . , an) and b = (b1, . . . , bn) ∈ Ω and xi =

{
ai if i ∈ M

bi otherwise.
This LM is a masked crossover operator with mask M . Let F = {LM | M ⊆
{1, 2, . . . , n}}. That is, F in this example is simply the family of masked crossover
transformations. The probability distribution on the set F2 is concentrated on the pairs
of the form (LM , LM̄ ) where M̄ denotes the complement of the set M in {1, 2, . . . , n}.

Example: Let n = 5 and Ai = {0, 1, . . . , i+1}. Suppose a given population P consists
of 6 individuals which are the rows of the matrix




2 3 4 5 6
0 1 2 3 4
1 2 3 4 5
0 0 1 2 3
1 1 0 1 2
1 2 1 5 4




Say, after the selection stage is complete one obtains the following population

P ′ =




2 3 4 5 6
2 3 4 5 6
1 2 3 4 5
0 0 1 2 3
0 1 2 3 4
1 2 3 4 5




Now the following individuals are paired for mating (masked crossover in this case):

Q1 =
(

2 3 4 5 6
0 0 1 2 3

)
, Q2 =

(
2 3 4 5 6
1 2 3 4 5

)
, and Q3 =

(
0 1 2 3 4
1 2 3 4 5

)

Suppose we have chosen the masks M1 = {1, 4, 5}, M2 = {1, 2} and M3 = {3, 4}
for the crossover of pairs Q1, Q2 and Q3 respectively. In the language of this paper it
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means we have chosen the pairs of transformations (LM1 , LM̄1
) for Q1, (LM2 , LM̄2

)
for Q2 and (LM3 , LM̄3

) for Q3 respectively. Upon applying these we obtain

Q1 →
(

LM1((2, 3, 4, 5, 6), (0, 0, 1, 2, 3))
LM̄1

((2, 3, 4, 5, 6), (0, 0, 1, 2, 3))

)
=
(

2 0 1 5 6
0 3 4 2 3

)
,

likewise

Q2 →
(

LM2((2, 3, 4, 5, 6), (1, 2, 3, 4, 5))
LM̄2

((2, 3, 4, 5, 6), (1, 2, 3, 4, 5))

)
=
(

2 3 3 4 5
1 2 4 5 6

)
,

and, finally,

Q3 →
(

LM3((0, 1, 2, 3, 4), (1, 2, 3, 4, 5))
LM̄2

((0, 1, 2, 3, 4), (1, 2, 3, 4, 5))

)
=
(

1 2 2 3 5
0 1 3 4 4

)
.

The family M of mutation transformations in this example (and in all of the following
ones) consists of the transformations Ma : Ω → Ω, where a ∈ ∏i∈S Ai and S ⊆
{1, 2, . . . , n}. The transformation Ma sends any x = (x1, x2, . . . , xn) ∈ Ω to the

y = (y1, y2 . . . , yn) ∈ Ω whose components are yq =

{
aq if q ∈ S

xq otherwise.
In other

words, Ma simply replaces the qth coordinate of its argument with aq ∈ Aq whenever
q ∈ S.

Binary Genetic Algorithm with Masked Crossover
When every Ai = {0, 1} (which means that Ω = {0, 1}n) in the example above, one
obtains the classical binary genetic algorithm.

Random Respectful Recombination
Random Respectful Recombination first appeared in [9]. Here the search space Ω
and the family of mutation transformations, M, are exactly the same as in the ex-
ample of classical genetic algorithm, and the family of mating transformations is de-
scribed below. As in [5], we call these mating transformations Holland transforma-
tions because their corresponding family of fixed subsets is precisely the collection of
subsets of Ω determined by the classical Holland schemata together with the empty
set. (See examples following Corollary 8 in the next section.) For every given point
u = (u1, u2, . . . , un) ∈ Ω define a Holland transformation Tu : Ω2 → Ω as follows:
for every a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) ∈ Ω

Tu(a,b) = (x1, x2, . . . , xn)

where

xi =

{
ai if ai = bi

ui otherwise

In other words, if the ith coordinates of a and b coincide, then the ith coordinate of
Tu(a,b) also coincides with them. If, on the other hand, the ith coordinates of a and b
differ, then the ith coordinate of Tu(a,b) is that of u, namely, ui. Let F = {Tu | u ∈
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Ω} be the family of all Holland transformations. The probability distribution on F may
be chosen in different ways depending on the circumstances, but this is not relevant to
the objective of the current paper.

Every transformation in the pair (Tu, Tv) is chosen independently.

Binary Random Respectful Recombination
The search space Ω and the family of mating transformations F and the family of
mutationsM are exactly the same as these for the binary genetic algorithm with masked
crossover described above. The only difference is that the probability distribution on
F2 is now completely uniform (rather than being concentrated on the diagonal-like
subset described in the classical genetic algorithm example). For instance, if n = 5,
M1 = {2, 3, 4}, M2 = {1, 3, 5} and the pair (TM1 , TM2) is selected for mating, we
have, for instance,

(
1 0 0 1 1
1 1 0 0 1

)
�−→

(
TM1((1, 0, 0, 1, 1), (1, 1, 0, 0, 1))
TM2((1, 0, 0, 1, 1), (1, 1, 0, 0, 1))

)
=
(

1 0 0 1 1
1 1 0 0 1

)

The same definition could be applied in the non-binary case, but then it would not
agree with the random respectful recombination of [9] (as described above). The differ-
ence is that, when the two parents have different alleles of a certain gene, then random
respectful recombination allows the offspring to have any allele of that gene, while the
present definition only allows the offspring to have either of the two alleles present in
the parents. The two notions are equivalent just when there are only two possible alleles.

The following type of algorithm may seem useless at first. Its importance will be-
come clear in the next section when we present the binary embedding theorem which
shows that the binary semi-genetic algorithm possesses an interesting universal prop-
erty.

Binary Semi-genetic Algorithm
The search space Ω = {0, 1}n, just as in the case of the binary genetic algorithm.
The family of mating transformations F is defined as follows: Fix an individual u =
(u1, u2, . . . , un) ∈ Ω. Define a semi-crossover transformation Fu : Ω2 → Ω as fol-
lows: For any given pair (x, y) ∈ Ω2 with x = (x1, x2, . . . , xn) and y = (y1, y2, . . . ,
yn) we have Fu(x, y) = z = (z1, z2, . . . zn) ∈ Ω where

zi =

{
1 if xi = yi = 1
ui otherwise

In other words, Fu preserves the ith gene if it is equal to 1 in both of the parents and
replaces it with ui otherwise. Let F = {Fu |u ∈ Ω} be the family of all semi-crossover
transformations. The family of mutation transformations M is exactly the same as in
the examples above.

Example: With n = 5 and u1 = (0, 1, 1, 0, 1), u2 = (0, 1, 0, 0, 1) we have
(

1 0 0 1 1
1 1 0 0 1

)
�−→

(
Fu1((1, 0, 0, 1, 1), (1, 1, 0, 0, 1))
Fu2((1, 0, 0, 1, 1), (1, 1, 0, 0, 1))

)
=
(

1 1 1 0 1
1 1 0 0 1

)
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Notice that, if 1 is present in the ith position of both parents, then it remains in
the ith position of both offspring. There are absolutely no other restrictions, though.

In practice the choice of the search space Ω is primarily determined by the specific
problem and related circumstances. The general methodology for the construction of the
search spaces first appeared in the work of Radcliffe (see, for instance, [9]). Radcliffe
introduced the notion of a forma which captures the essential properties of the Holland
schemata in a representation independent setting. A forma is simply a partition of the
search space into equivalence classes. A given collection of forma with suitable prop-
erties (see [9]) is, in a sense, no different from the collection of the classical Holland
schemata provided that one encodes the search space using the “genetic representation
function” which is also introduced in [9]. The connection between all of the possible
families of mating transformations on a given search space Ω and the corresponding
families of invariant subsets established in [5] has been exploited in [6] and in [7] to
extend Radcliffe’s notion of the genetic representation function to compare various evo-
lutionary algorithms via possible encodings of their search spaces (see corollary 12 of
[6]). In particular, necessary and sufficient conditions, stated in terms of the internal
structure of the search space, for re-encoding a given algorithm by a search system cor-
responding to a binary genetic algorithm have been established (see Theorem 14 of [6]
or, more generally, Theorem 3.7 of [7]). These ideas will be summarized in the next
section.

5 Summary of Previous Work

As we have seen in the previous sections, a given evolutionary search algorithm is deter-
mined primarily by the ordered 4-tuple (Ω, F , M, f). In the current paper we shall be
primarily concerned with the search space Ω and the family of mating transformations
F . The family of mutations M is of less importance because it is ergodic, meaning that
the only invariant subsets under M are ∅ and the entire search space Ω. The notion of
an invariant subset is defined below. The reason why invariant subsets play a significant
role in the current paper is Theorem 8. We give the definition for a family Γ of opera-
tions of any number of arguments, but we shall use it in this paper only for the family
F of binary operations of a search system.

Definition 1 For a given family of m-ary operations Γ on a set Ω (that is, functions
from Ωm into Ω) a subset S ⊆ Ω is invariant under Γ if and only if for all T ∈ Γ we
have T (Sm) ⊆ S. We shall denote by ΛΓ the family of all invariant subsets of Ω under
Γ . In other words, ΛΓ = {S | S ⊆ Ω, T (Sm) ⊆ S ∀ T ∈ Γ}.

Below we list the families of invariant subsets for each of the examples of Section 4:

Classical Genetic Algorithm. In this case, the family of invariant subsets ΛF is {∏n
i=1

Ti | Ti ⊆ Ai}. This is precisely the family of subsets determined by Antonisse’s
schemata (see corollary 2.4 of [5]).

Random Respectful Recombination. ΛF = {∏n
i=1 Ti | Ti = {a} for some a ∈

Ai or Ti = Ai}∪{∅}. This is precisely the family of subsets determined by the Holland
schemata together with the empty set (see corollary 3.5 of [5]).
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Binary Semi-genetic Algorithm. It is not hard to verify that ΛF = {∏n
i=1 Ti | Ti =

{1} or Ti = {0, 1}} ∪ {∅}. This is precisely the family of subsets determined by Hol-
land schemata whose fixed positions can only equal 1 (can’t equal 0).

The mathematical properties of the family of invariant subsets, ΛΓ have been de-
scribed in detail in [5]. In the current presentation we just mention a few facts and
notions which will be of particular importance here.

It is easy to verify (see Proposition A1 of [5]) that the family ΛΓ is closed under
arbitrary intersections and contains Ω. It then follows that for every element x ∈ Ω
there is a unique smallest element of ΛΓ containing x (namely the intersection of all
the members of ΛΓ containing x).

Definition 2 Given a search system Ω = (Ω,F ,M), denote by SΩ
x the smallest ele-

ment of ΛF containing x. When the search system Ω is clear from the context we shall
just write Sx instead of SΩ

x .

The following definition is a natural extension of the notion of a genetic representation
function introduced in [9].

Definition 3 Given two search systems Ω1 = (Ω1, F1, M1) and Ω2 = (Ω2, F2,
M2), a morphism δ : Ω1 → Ω2 is just a function δ : Ω1 → Ω2 which respects
the reproduction transformations in the following sense: for each T ∈ F1 and each
x = (x, y) ∈ Ω2

1 there exists F(x, y) ∈ F2 such that δ(T (x, y)) = F(x, y)(δ(x), δ(y))
(see Figure 1). Analogously, we must have, for each M ∈ M1 and each x ∈ Ω some
Hx ∈ M2 such that δ(M(x)) = Hx(δ(x)).

Fig. 1. The morphism δ : Ω1 → Ω2

A morphism δ : Ω1 → Ω2 provides the means for encoding the search system Ω1 by
the search system Ω2. Unless the underlying function δ is one to one, there is some non-
trivial coarse graining involved. We therefore give a special name to those morphisms
whose underlying functions are injective.

Definition 4 We say that a morphism δ : Ω1 ↪→ Ω2 is an embedding if the underlying
function δ : Ω1 → Ω2 is one-to-one.
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search systems and the morphisms between them form a well-defined category (see [3]
for details about the notion of category). Some universal constructions on this category
have been studied in [7]. The central result of [6] is a connection between the fam-
ily of invariant subsets and the family of all possible re-encoding morphisms between
two given search systems. This connection is analogous to the corresponding connec-
tion between the family of open subsets and continuous maps in topology and between
sigma-algebras and measurable functions in analysis:

Proposition 5 Let δ : Ω1 → Ω2 be a morphism of search systems. Then S ∈ ΛF2 =⇒
δ−1(S) ∈ ΛF1 . In words, a preimage of an invariant set under a morphism is invariant.

The converse of Proposition 5 holds under the following technical requirement:

Definition 6 We say that a given family of m-ary operations Γ on a set Ω (that is a fam-
ily of functions from Ωm to Ω) is composition closed if the following two conditions
hold:

1. For all T0, T1, T2, . . . , Tm ∈ Γ , the composite operation T : Ωm → Ω defined
by T (x) = T0(T1(x), T2(x), . . . , Tm(x)) is also a member of Γ .

2. For all S ⊆ Ω, we have
⋃

T∈Γ T (Sm) ⊇ S.

It is fairly straightforward to verify that every one of the families of mating transfor-
mations involved in the examples of Section 4 is composition closed. In fact, it was
already shown in [5] that the families of masked crossover transformations and Holland
transformations (those which are used for modelling random respectful recombination)
are composition closed (see Proposition 2.1 and Theorem 3.6 of [5]). It was also shown
(see proposition 9 of [6]) that the family of binary semi-crossover transformations is
composition closed.

As noted before, for any family of m-ary operations on Ω the corresponding family
of invariant subsets ΛΓ is closed under arbitrary intersections. Moreover, for any func-
tion δ : Ω1 → Ω2, the inverse image of the intersection of two subsets of Ω2 is the
intersection of the inverse images of these subsets: δ−1(U ∩ V ) = δ−1(U) ∩ δ−1(V ).
This motivates the following definition:

Definition 7 Given a family of m-ary operations Γ on Ω, we say that a family of
subsets Λ̃Γ ⊆ ΛΓ is a base of ΛΓ if every set K ∈ ΛΓ is the intersection of some sets
in Λ̃Γ . (Equivalently, K =

⋂
S∈Λ̃Γ , S⊇K S).

We now continue with the examples following Definition 1 and list bases for each of
them:

Classical Genetic Algorithm. In this case a base for ΛF is the family Λ̃F = {∏n
i=1

Ti | Ti = Ai for all but one i}. The reader can see that |Λ̃F | = (
∑n

i=1 2|Ai|) − n + 1.

Every element of Λ̃F can be thought of as a union of subsets determined by Holland
schemata having exactly one fixed position at the same gene.

Random Respectful Recombination. In this case a base for ΛF is the family Λ̃F
consisting of all products

∏n
i=1 Ti where Ti is a one-element set for one value of i, and

Ti = Ai for all other values of i. This is precisely the family of subsets determined by
Holland schemata having exactly one fixed position.
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Binary Semi-genetic Algorithm. It is not hard to verify that in this case a base for
ΛF is the family Λ̃F consisting of all products

∏n
i=1 Ti where Ti = {1} for one value

of i, and Ti = Ai for all other values of i. Notice that Λ̃F is precisely the family of
subsets determined by Holland schemata having exactly one fixed position, and that
fixed position is equal to 1.

The following fact is the central result of [6]:

Theorem 8 Let Ω1 = (Ω1, F1, M1) and Ω2 = (Ω2, F2, M2) denote search systems
with F2 and M2 being composition closed, and let δ : Ω1 → Ω2 be a function. Then
the following are equivalent:

1. S ∈ Λ̃F2 =⇒ δ−1(S) ∈ ΛF1 .
2. S ∈ ΛF2 =⇒ δ−1(S) ∈ ΛF1 .
3. δ : Ω1 → Ω2 is a morphism of search systems.

In the current paper we shall be primarily concerned with the issue of whether or not
a given search system can be embedded into a search system representing the binary
semi-genetic or the binary genetic algorithm in the sense of Definition 4. We therefore
introduce the following definition.

Definition 9 We say that a given search system Ω = (Ω, F , M1) is semi-genetic
(genetic) if it can be embedded, in the sense of Definition 4, into the search system
({0, 1}n, FM , M) for some n where FM is the family of all semi-crossover transfor-
mations (the family of all masked crossover transformations) and M is the family of
mutations (the same in all of the examples) as introduced in Section 4.

In [6] necessary and sufficient conditions for a given search system to be semi-genetic
have been established1:

Theorem 10 Given a search system Ω = (Ω, F , M), the following are equivalent:

1. Ω can be embedded into an n-dimensional semi-genetic search system for some n.
2. ∀x, y ∈ Ω with x 
= y we have either x /∈ SΩ

y (see Definition 2) or vice versa:
y /∈ SΩ

x .
3. ∀x, y ∈ Ω with x 
= y we have SΩ

x 
= SΩ
y . (Another way to say this is that the map

sending x to SΩ
x is one-to-one.)

Moreover, if an embedding exists for some n, then there exists one for n = |Ω|. We also
must have n ≥ �log2 |Ω|�.

Once we are equipped with Theorem 8, it is not hard to establish a criterion analogous
to Theorem 10 for a given search system to be genetic:

Theorem 11 A given search system Ω1 = (Ω1, F1, M1) is genetic if and only if for
each x 
= y in Ω1 there exists a complementary pair of invariant subsets A and B
(A ∩ B = ∅ and A ∪ B = Ω1, and A, B ∈ ΛF ) with x ∈ A and y ∈ B.

1 In fact, a lot more has been accomplished in [6] and in [7]. A one-to-one correspondence
between all possible morphisms (re-encodings) of the search space by a binary semi-genetic
(genetic) algorithm and certain corresponding collections of ordered tuples of invariant subsets
of the search space has been established (see Theorems 14 and 20 of [6])
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Proof. Suppose first that Ω1 is genetic. Let δ : Ω1 → Ω be an embedding where
Ω = ({0, 1}n, FM , M) is the search system describing the binary genetic algorithm
with masked crossover as in Section 4. Fix x 
= y ∈ Ω1. Then, since δ is an embedding,
δ(x) = (x1, x2, . . . , xn) 
= δ(y) = (y1, y2, . . . , yn) ∈ {0, 1}n. But this means that
xi 
= yi for some i. Consider the Holland schemata H1 = {0, 1}i−1×{xi}×{0, 1}n−i

and H2 = {0, 1}i−1 × {yi} × {0, 1}n−i. Notice that δ(x) ∈ H1 and δ(y) ∈ H2,
H1 ∩ H2 = ∅ and H1 ∪ H2 = {0, 1}n. Now simply let A = δ−1(H1) ∈ ΛF and
B = δ−1(H2) ∈ ΛF . Since δ is a morphism, A and B are as required.

Now suppose that for all x 
= y ∈ Ω1 there exists a complementary pair of in-
variant subsets A and B with x ∈ A and y ∈ B. Then we can choose a sequence
of invariant sets A1, A2, . . . , An with invariant complements Ac

i such that each pair
x 
= y ∈ Ω1 is separated by the chosen sets, i.e., there is i with x ∈ Ai and y ∈ Ac

i or
vice versa. Now consider the map δ : Ω1 → {0, 1}n defined as follows for all x ∈ Ω1:

δ(x) = (x1, x2, . . . , xn) where xi =

{
1 if x ∈ Ai

0 if x ∈ Ac
i

. We observe that δ is a mor-

phism: Indeed, according to examples following Theorem 8, Holland schemata with
one fixed position (subsets of the form H1

i = {0, 1}i−1 × {1} × {0, 1}n−i and H0
i =

{0, 1}i−1 ×{0}×{0, 1}n−i) form a base of ΛFM and we have δ−1(H1
i ) = Ai ∈ ΛF1

and δ−1(H0
i ) = Ac

i ∈ ΛF1 so that δ : Ω1 → Ω is a morphism of search systems thanks
to Theorem 8. It remains to show that δ is one-to-one: Fix x 
= y ∈ Ω1. Then for at
least one i we have x ∈ Ai and y ∈ Ac

i or vice versa. But then we have xi 
= yi and so,
according to the definition of δ, δ(x) 
= δ(y), and the desired conclusion follows. We
deduce now that δ is an embedding so that Ω1 is, indeed, genetic. ��

6 Complexity of Deciding if a Given Search System Is Genetic

In the previous section we have summarized the results which establish some conditions
to tell us when a given algorithm can be re-encoded by a binary semi-genetic or by a
binary genetic algorithm. In the current section we shall investigate the complexity of
deciding whether or not condition 2 of Theorem 10 and the condition of Theorem 11
are satisfied. We shall see below that deciding whether or not a given algorithm is semi-
genetic (in the sense of Definition 9) can be done in polynomial time, while deciding
if a given algorithm is genetic (also in the sense of Definition 9) is an NP-complete
problem. Here both “polynomial time” and “NP” are with respect to the size of the
representation, i.e., |Ω| + |F|.

Theorem 12 The following problem can be solved in polynomial time with respect to
the size of the input provided that there exists a constant q such that for every F ∈ F
the computation of F (x, y) is done in O(nq) steps2.

Instance of the problem: A search system Ω=(Ω,F ,M) and individuals x, y ∈ Ω.
Question: Is it true that y /∈ Sx?

2 A very reasonable assumption since there would be little point in running such an evolutionary
search algorithm otherwise
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Proof. We construct a polynomial time procedure to answer this question: Accord-
ing to proposition A.4 of [5] we have a nested chain of inclusions {x} ⊆ F({x}) �

F(F({x})) � . . . � Fk({x}) = Fk+1({x}) = Sx. Moreover, it is clear that k ≤ |Ω|.
The following algorithm will therefore answer the question: “Is it true that y /∈ Sx?”

Step 1: Set K := {x} and l = 1
Step 2: For each (u, v) ∈ K2 and each T ∈ F compute T (u, v). If T (u, v) = y then
stop and return “no”. If not, let K := K ∪ {T (u, v) | (u, v) ∈ K and T ∈ F} and
l := l + 1. If l = |Ω| + 1 then stop and return “yes”. Otherwise repeat step 2.

It remains to show that the algorithm above solves the problem in O(nm) steps
where m is a fixed integer and n = |Ω| + |F|. But notice that the computational part
of step 2 takes no longer than |Ω|2 · |F| · O(nq) steps for the integer q such that for
every F ∈ F the computation of F (x, y) is done in O(nq) steps (see the assumption).
Moreover, step 2 is repeated at most |Ω| ≤ n times so that the total amount of time it
takes the algorithm to run is |Ω| · |Ω|2 · |F| ·O(nq) ≤ O(nq+4) steps and the argument
is complete. ��
Since the number of pairs of elements in a search space is quadratic (we only need
that it is bounded by a polynomial) with respect to the size of the search space itself,
Theorem 12 together with Theorem 10 immediately implies:

Corollary 13 Given a search system Ω = (Ω, F , M) the decision whether or not
Ω is semi-genetic can be made in polynomial time with respect to the size of the in-
put provided that computation of F (x, y) for all x, y can be done in polynomial time
uniformly (meaning that the time bound is independent of x and y).

The situation turns out to be less pleasant in the case of deciding whether or not a given
search system is genetic, i. e. whether the condition of Theorem 11 is satisfied, as the
following theorem shows:

Theorem 14 The following problem is NP-complete.
Instance of the problem: A search system Ω = (Ω, F , M) and individuals x, y ∈

Ω. We assume given a polynomial time algorithm for evaluating the functions in F on
arguments in Ω.

Question: Does there exist a subset A ⊆ Ω such that x ∈ A while y ∈ Ac and both
A and Ac ∈ ΛF?

Proof. It is easy to see that the problem is in NP; just guess an appropriate A and check
that it works. The challenging part is to build an appropriate polynomial time reduction.
We reduce from the “Not All Equal 3-SAT” problem (see section A9.1, page 259 of [2])
In order to state the “Not All Equal 3-SAT” problem, we need the notion of a literal and
of a clause:

Definition 15 Given a set U of boolean variables, a literal over U is either a variable,
say a, from U or the negation of the variable a ∈ U , denoted by ā. We sometimes use
a bar over a literal that is not a variable; then ¯̄a means simply a.

Definition 16 A 3-clause over a set U of boolean variables is a disjunction of some
three literals over U . If the literals involved in C are a, b and c then we shall write
C = a ∨ b ∨ c.
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The “Not All Equal 3-SAT” problem is given by:
Instance: A collection C of 3-clauses over a set U of variables.
Question: Does there exist a truth assignment such that every clause in C contains a

literal whose value is true and a literal whose value is false?
The “Not All Equal 3-SAT” problem is known to be NP-complete (see [2]). We now

proceed building the reduction. So fix an instance of the “Not All Equal 3-SAT”, i. e. a
collection C of 3-clauses over a set of variables U . Let the search space Ω consist of all
the literals involved in the clauses of C. We still have to define the family of reproduction
transformations F and the distinguished pair of points x and y. (M does not play any
role here since it is always assumed to be ergodic.) We define one such transformation
for every clause C ∈ C, say C = a ∨ b ∨ c, where a, b and c denote arbitrary literals.
We define the transformation TC : Ω2 → Ω as follows:

TC(a, b) = TC(b, a) = c̄

TC(a, c) = TC(c, a) = b̄

TC(b, c) = TC(c, b) = ā.

For all other pairs (u, v) ∈ Ω2 we define TC(u, v) = u. Now, for each w ∈ Ω define a
transformation Fw : Ω2 → Ω as follows: For pairs of the form (a, ā) let Fw(a, ā) = w.
For all other pairs let Fw(u, v) = u. Finally let F = {TC |C ∈ C}∪{Fw |w ∈ Ω}. To
define the distinguished pair of points in Ω, fix a literal d ∈ Ω and let x = d and y = d̄.
We have now constructed an instance of the problem we are interested in. Clearly the
construction above is done in polynomial time with respect to the input size. It remains
to show that there exists a truth assignment such that every clause contains a literal
whose value is true and a literal whose value is false ⇐⇒ there exists a subset A ⊆ Ω
such that x ∈ A while y ∈ Ac and both A and Ac ∈ ΛF .

Proof (of the =⇒ direction). Fix a truth assignment f as in the assumption. Let A =
{u | f(u) = T }. Then Ac = {u | f(u) = F}. Since x = d and y = d̄, it must be
the case that either x ∈ A and y ∈ Ac or vice versa. It only remains to show that
both A and Ac are invariant under F . So, fix individuals (literals) u and v ∈ A (or
u and v ∈ Ac). Choose any transformation G ∈ F . Then G = Fw for some literal
w ∈ Ω or G = TC for some clause C = a ∨ b ∨ c. Now observe that we can’t have
(u, v) = (a, ā) for any a ∈ Ω since both u and v have the same truth value. Therefore,
every transformation of the form Fw maps (u, v) into u and, hence, leaves both A
and Ac invariant. Every TC does the same thing unless both u and v appear in some
clause C. Let z denote the remaining literal in the clause C. Since f(u) = f(v), we
must have f(z) 
= f(u) (this was the assumption about the truth assignment). But then
f(TC(u, v)) = f(z̄) = f(u) = f(v) and so TC leaves both A and Ac invariant. This
shows that both A and Ac are invariant under F . ��
Proof (of the ⇐= direction). Now suppose there exist a complementary pair of subsets
of Ω invariant under F , say A and Ac, with x ∈ A and y ∈ Ac. We have to produce a
truth assignment f on Ω such that, for each clause C ∈ C, not all the literals have the
same truth value. Now for all literals u ∈ A let f(u) = T and for u ∈ Ac let f(u) = F .
We still have to show that f is a well-defined truth assignment, meaning that literals u
and ū are never assigned the same truth value, or, equivalently, it is not the case that both
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u and ū ∈ A or both u and ū ∈ Ac. This is precisely the purpose of the transformations
Fw: if, say, u and ū ∈ A, then for all z ∈ Ω we have Fz(u, ū) = z ∈ A and therefore
A = Ω, contradicting the fact that Ac 
= ∅ since y ∈ Ac. Analogously, the assumption
that u and ū /∈ A leads to a contradiction. We conclude now that f is, indeed, a well-
defined truth assignment. It remains to show that, for each clause C ∈ C, not all the
literals have the same truth value. So fix a clause C ∈ C. Say C = a ∨ b ∨ c. Since
there are exactly three literals in C, some two of them must have the same truth value.
Without loss of generality assume these are a and b. Whichever of A and Ac contains
a and b must, since it is invariant, also contain TC(a, b) = c̄. By what we have already
proved, while checking that f is well-defined, this set cannot contain c. Thus, c does not
have the same truth value as a and b. The desired conclusion is now established. ��

We have shown now that “Not All Equal 3-SAT” problem can be reduced in poly-
nomial time to the problem in the statement of the theorem, and “Not All Equal 3-SAT”
is known to be NP-complete. The desired conclusion now follows. ��

Theorem 14 gives us the NP-completeness of testing whether, for a given Ω and
F , a given pair x 
= y can be separated by complementary, invariant sets. To determine
whether (Ω,F ,M) is genetic, we would have to test whether every pair x 
= y in Ω can
be separated. This problem is clearly also in NP, since it amounts to checking |Ω|2−|Ω|
instances of the question in Theorem 14. (In fact, by symmetry, it suffices to check only
|Ω|(|Ω| − 1)

2
instances.) But we cannot immediately conclude that it is NP-complete.

It seems harder than the problem in Theorem 14, since it involves many instances of that
problem, but it is conceivable that there could be a way to determine whether all pairs
are separable without checking each (or any) one individually. The following theorem
settles this question. For brevity, we say that two elements can be separated (in a given
search system) if there is a complementary pair of invariant sets, each containing one
of the two elements.

Theorem 17 The following problem is NP-complete.
Instance of the problem: A search system Ω = (Ω, F , M) with a polynomial time

algorithm for evaluating the functions in F on arguments in Ω.
Question: Can every pair of distinct elements of Ω be separated?

Proof. We have already observed that the problem in the theorem is in NP. To prove
completeness, we reduce the problem from Theorem 14 to the problem in the present
theorem. This will suffice, since the former problem is already known to be NP-com-
plete.

So let Ω, F , and x, y constitute an instance of the problem from Theorem 14. We
must convert it, by a polynomial time computation, into Ω′ and F ′ such that x and y
can be separated in Ω if and only if all pairs of distinct elements can be separated in
Ω′. Here we have simplified notation by ignoring the M component of search systems,
since it is irrelevant to the problem.

We may assume, when constructing Ω′ and F ′, that x 
= y. Indeed, if x = y then
they obviously cannot be separated, so we need only produce some Ω′ and F ′ in which
not all pairs of distinct elements can be separated, and this task is trivial. We may further
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assume that F is nonempty. Indeed, if F = ∅, then all subsets of Ω are invariant, so x
and y (being distinct) can be separated, and we need only produce Ω′ and F ′ in which
all pairs can be separated; this too is trivial.

Henceforth, we therefore assume that F is nonempty and that x and y are distinct.
We define Ω′ to be the following set, consisting of four copies of Ω plus two additional
elements.

Ω′ = (Ω × {1, 2, 3, 4})∪ {5, 6}.
We abbreviate the ordered pairs 〈a, 1〉 in Ω′ as a1, and similarly with 2, 3, or 4 in place
of 1. The family F ′ contains, for each f ∈ F , an associated function f ′ : (Ω′)2 → Ω′

defined as follows.

f ′(a1, b2) = f(a, b)3
f ′(i, aj) = a4 for i ∈ {5, 6} and j ∈ {1, 2, 3}

f ′(x4, y4) = 5
f ′(y4, x4) = 6

f ′(u, v) = u for all u, v not covered by the previous lines.

We have used here the assumption that x 
= y because otherwise the third and fourth
lines of the definition of f ′ would contradict each other. It is clear that Ω′ and F ′ can be
computed from Ω and F in polynomial time. We must verify that they have the required
separation properties, and we break this verification into two lemmas.

Lemma 18 In (Ω′,F ′), every two distinct elements, except possibly 5 and 6, can be
separated.

Proof. By inspecting the definition of f ′, we find that the following sets and their com-
plements (in Ω′) are invariant under F ′.

1. (Ω × {4}) ∪ {5, 6}
2. (Ω × {1, 4}) ∪ {5, 6}
3. (Ω × {2, 4}) ∪ {5, 6}
4. ((Ω − {a})× {4}) ∪ {5, 6} for any a ∈ Ω.

These sets suffice to separate any two elements of Ω′ that come from different sets in
the following list, which partitions Ω′:

Ω × {1}, Ω × {2}, Ω × {3}, Ω × {4}, {5, 6}
It remains to separate any two distinct elements from the same block of this partition
except for 5 and 6.

If the two points come from Ω × {4}, then they can be separated by a set as in
item 4 of the list above. If they come from Ω × {1}, then, calling them a1 and b1, we
can separate them because the singleton {a1} and its complement are invariant. The
same argument applies if they come from Ω × {2}. Finally, if they are a3 and b3, then
they are separated by

(Ω × {1, 4})∪ {a3, 5, 6}
and its complement, both of which are invariant. ��
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Lemma 19 5 and 6 can be separated in (Ω′,F ′) if and only if x and y can be separated
in (Ω,F).

Proof. Suppose first that A and Ac are invariant and separate x and y in Ω. Then (A ×
{1, 2, 3, 4}) ∪ {5} and (Ac × {1, 2, 3, 4}) ∪ {6} are invariant and separate 5 and 6 in
Ω′.

Conversely, suppose B and Bc are invariant in Ω′ and separate 5 and 6; say 5 ∈ B
and 6 ∈ Bc. By virtue of the second equation in the definition of f ′ (applied with
i = 5) and the invariance of B, we know that if B contains a1, a2, or a3, then it must
also contain a4 (for the same a ∈ Ω). (We have used here the assumption that F 
= ∅,
because we need an f ′ to use in this invariance argument.) The same argument applies
to Bc if we use i = 6 instead of 5. As a result, for each a ∈ Ω, all four of a1, a2, a3,
and a4 lie in the same one of B and Bc. That is, there is an A ⊆ Ω such that

B = (A × {1, 2, 3, 4})∪ {5} and Bc = (Ac × {1, 2, 3, 4})∪ {6}.
By virtue of the first equation in the definition of f ′, the invariance of B and Bc under
f ′ implies the invariance of A and Ac under f . Furthermore, if x and y were in the
same one of A and Ac, then the last two equations in the definition of f ′ would force 5
and 6 into the same one of B and Bc, contrary to our assumption. Thus, A and Ac are
invariant subsets of Ω separating x and y, as required. ��

The two lemmas together tell us that we have a reduction of the problem in the
present theorem to the one in Theorem 14. ��

7 Conclusions

In the current paper it has been rigorously established that deciding whether or not a
given search algorithm can be re-encoded by a binary genetic algorithm is, in the very
general case, a complicated (NP-complete) problem. It should be pointed out though,
that many well-known types of algorithms, such as the non-linear genetic programming
with homologous crossover, can be easily embedded into a binary genetic algorithm.
The situation is somewhat analogous to that in analysis: according to the Brownian mo-
tion model, the path of a particle is continuous and nowhere differentiable with prob-
ability 1, while most continuous functions used in calculus (various combinations of
elementary functions, their integrals...) are at least piecewise differentiable.
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