
Population Sizing of Dependency Detection
by Fitness Difference Classification

Miwako Tsuji, Masaharu Munetomo, and Kiyoshi Akama

Hokkaido University, North 11 West 5, Sapporo, 060-0811, Japan
m tsuji@cims.hokudai.ac.jp, {munetomo,akama}@iic.hokudai.ac.jp

Abstract. Recently, the linkage problem has attracted attention from
researchers and users of genetic algorithms and many efforts have been
undertaken to learn linkage. Especially, (1) perturbation methods (PMs)
and (2) estimation of distribution algorithms (EDAs) are well known
and frequently employed for linkage identification. In our previous work
[TMA04], we have proposed a novel approach called Dependency Detec-
tion for Distribution Derived from df (D5) which inherits characteristics
from both EDAs and PMs. It detects dependencies of loci by estimating
the distributions of strings classified according to fitness differences and
can solve EDA difficult problems requiring a smaller number of fitness
evaluations. In this paper, we estimate population size for the D5 and its
computation cost. The computation cost slightly exceeds O(l), which is
less than the PMs and some of EDAs.

1 Introduction

A set of loci tightly linked to form a building block is called a linkage set and
encoding such loci loosely results building block disruptions. Several efforts have
been undertaken to ensure appropriate building block processing without prior
knowledge of problem. Two major methods of them are follows:

1. Perturbation Methods (PMs)
2. Estimation of Distribution Algorithms (EDAs)

PMs examine fitness differences by perturbations at loci to detect interde-
pendency among them. They can recognize building blocks with lower marginal
fitness contributions, but require a large number of extra fitness evaluations in
addition to the usual fitness evaluations which are performed to select strings.
For example, the LINC [MG99] requires O(l2) fitness evaluations for its linkage
identification where l is string length. Heckendorn et al.[HW03] shows algorithm
which uses the Walsh coefficients. This algorithm behaves similar to the LINC
when it considers order-2 dependencies. But while the LINC guesses order-3
or more dependencies, it introduces higher-order perturbations (probes). EDAs
like the BOA [PGCP99] employ probabilistic modeling of promising solutions to
generate new solutions instead of the crossover and mutation operators of simple
GAs. Some of EDAs are based on conditional probabilities to model dependency

A.H. Wright et al. (Eds.): FOGA 2005, LNCS 3469, pp. 282–299, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Population Sizing of Dependency Detection 283

of variables. They can construct their models without additional fitness evalua-
tions, however, it is difficult for EDAs to recognize low scaling building blocks.
For such problems, EDAs need more strings and generations, therefore, the total
number of evaluations increases to that of the PMs.

If a problem is composed of variously scaled sub-problems, fitness of the prob-
lem is dominated by solutions of highly scaled sub-problems (i.e. important build-
ing blocks) and GAs should focus only on the sub-problems. The scale of sub-
problems means the amount of contribution of each sub-problems. The highly
scaled sub-problems gives large contribution to fitness, while lowly scaled sub-
problems gives small contribution to fitness. Therefore, GAs solve sub-problems
sequentially from those scaled larger to those scaled smaller, and sometimes, the
low scaled building blocks are lost while they are on a waiting list. For exam-
ple, consider maximizing a problem of 4 variables, f(s1, s2, s3, s4) = g(s1, s3) +
h(s2, s4) where s1, · · · s4 are variables. If gmax(s1, s3) = 5 and hmax(s2, s4) = 5,
h(s3, s2) and g(s2, s4) are searched in parallel. On the other hand, if gmax(s1,
s3) = 7 and hmax(s2, s4) = 3, GAs focus on larger scaled sub-problem, g(s1, s3)
first and then give their eyes to h(s2, s4). This sequential search procedure is
referred as domino convergence [TGP98,LGP00].

In our previous work [TMA04], we have proposed another approach called
the Dependency Detection for Distribution Derived from df (D5) which com-
bines both features of the previous methods. It detects dependencies of loci by
estimating the distributions of strings classified according to fitness differences.
Generally, EDAs estimate bias in selected sub-population and such bias come
naturally from selection according to fitness. On the other hand, the D5 makes
sub-population biased artificially by perturbations. Therefore, the D5 can solve
EDA difficult problems using less computation cost than the PMs. The experi-
ments showed that it reduces computation cost considerably and the number of
evaluations is approximately O(l) where l is string length.

In this paper, we estimate the growth of the required population size for the
D5 theoretically in order to understand scalability of the D5. The number of
strings is an important factor for linkage identification quality and computation
cost. Resulting number of evaluations exceeds O(l) slightly but still far less than
PMs and even some of EDAs.

This paper is organized as follows. First, we show a brief introduction to
the D5. And its population sizing is discussed in section 4. After theoretical
estimation of population size, some numerical experiments are performed to
confirm the result in section 5 and finally this paper is concluded in section 7.

2 Background

Decomposability is one of the grounds for the advantage of genetic algorithm over
random search. Additively decomposable functions are one of representations of
the decomposable problem. An additively decomposable function is defined as
follows:

f(s) =
∑

∀v∈V

fv(s) (1)

284 Miwako Tsuji, Masaharu Munetomo, and Kiyoshi Akama

where s is a string, v is a set of loci that composing a sub-function (i.e a linkage
set), fv(s) is a sub-function defined over v, and V is a set of disjoint sets of loci
(i.e. a set of linkage sets). We consider only bit string as s. We consider only bit
string as s. In addition, we assume that the sub-functions do not overlap each
other, i.e. v ∩ v′ = ∅ (v, v′ ∈ V). The length of s is denoted by l and sum of the
number of loci in each v is equal to l:

∑

v∈V

|v| = l (2)

We limit maximum size of a linkage set v to k.

|v| ≤ k ∀v ∈ V (3)

k is known as order of (sub-)problem or order of building block. The additively
decomposable functions are known as order k delineable problems defined by
Kargupta [Kar95]. In this paper, we consider the linkage set is the set of loci
which are linked and are not separable. If a building blocks can be constructed
by crossover, these loci should be separable that can be optimized separately.

3 Dependency Detection by Fitness Differences

In this section, we show a brief explanation of the Dependency Detection for
Distribution Derived from df (D5). The D5 combines PMs and EDAs in or-
der to obtain bias of sub-population to be estimated rapidly even if there are
some low scaling sub-problems. It detects dependencies of loci by estimating the
distributions of strings classified according to fitness differences.

EDAs learn problem structure from bias of sub-population and such bias is
given by selection pressure based on fitness. Therefore, if problem is composed of
variously scaled sub-problems, then modeling processes in EDAs focus only on
highly-scaled sub-problems. On the other hand, the D5 makes sub-population to
be estimated biased artificially by perturbations. Therefore, the D5 can detect
such EDA-difficult sub-problems. Moreover, although the D5 requires additional
fitness evaluations due to calculate fitness differences, the number of evaluation
is less than the PMs which generally perform pairwise perturbations because the
D5 employs estimation instead of higher order perturbations.

3.1 Algorithm

Genetic algorithm using the D5 is composed of two parts (1) detecting linkage
sets and (2) generating, increasing and combining building blocks. In this paper,
we concentrate on the first part because if we know problem structures we can
perform subsequent optimization processes easily and efficiently.

Fig. 1 shows the algorithm of the D5. The algorithm consists of three parts:
(1) calculating of fitness differences, (2) classifying of strings according to the
differences and (3) estimating of the classified strings. After initializing popu-
lation, following procedures are repeated for each locus i: At first, locus i in

Population Sizing of Dependency Detection 285

1. initialize population with n strings
2. for each locus i

(a) calculate fitness difference dfi(s
p) by a perturbation at locus i in string

sp (p = 1, 2, · · · , n).
(b) classify strings according to their fitness differences into sub-

populations.
(c) estimate sub-populations and construct linkage sets (see Fig. 2 for

detail).

Fig. 1. Overall Algorithm of linkage identification in the D5

1. for each sub-population p classified by the Classification Algorithm
(a) initialize set of loci v1 = {1, 2, · · · , i − 1, i + 1, · · · , l} and v2 = {i}
(b) while |v2| < K, where K is pre-defined problem complexity

i. calculate a entropy Ej = E(v2 ∪ {j}) for all locus j ∈ v1

ii. h = arg minj∈v1
Ej

iii. update v1 = v1 − {h} and v2 = v2 ∪ {h}
(c) vp = v2 and Ep = E(v2)

2. select vp with the smallest Ep as the linkage set for locus i

Fig. 2. Construct Linkage Set

each string sp is perturbed and then fitness difference for the perturbation is
calculated as follows:

dfi(sp) = f(sp) − f(sp
i) (4)

In the above equation, sp
i is a string perturbed at locus i. Then, strings are

classified into sub-populations according to their fitness differences dfi(sp). We
employed a simple centroid method for classification, but other approaches like k-
means can also be applied. In this method, the centroid of a cluster is determined
by averaging dfi(sp) of all strings within that cluster. The distance between
two clusters is defined as the distance between the centroids of the clusters.
The pair of clusters with the smallest distance is merged until a termination
criteria is satisfied. If the smallest distance of all the rest exceeds a threshold,
the classification is terminated. The threshold should be small for problems
which consist of independent sub-problems, while it should be large for those
with interacted sub-problems.

Finally, the sub-populations are estimated in order to detect loci which de-
pend on locus i.

Fig. 2 is the algorithm to construct a linkage set for locus i. First, a set v2

is initialized as {i}. The locus j which gives the smallest entropy E(v2 ∪ {j})
is merged repeatedly until the size of linkage set exceeds problem complexity k.
This defines the order of a sub-problem and is given by algorithm users. The
order of a building block is equal to k because we assume the building block is
the optimal solution of the sub-problem. The entropy measure is defined as

286 Miwako Tsuji, Masaharu Munetomo, and Kiyoshi Akama

E(v2) = −
2|v2|∑

x=1

px log2 px, (5)

where px is the appearance ratio of each schema x and 2|v2| is the number of all
possible schema defined by v2. This procedure is applied to all sub-populations
except those including small number of strings. The sub-populations having small
number of strings are ignored because estimating distribution of small samples
has risk of unreliable result. The population sizing in section 4 will give the
threshold for the sampling size. After the estimation of all sub-populations, the
linkage set v2 which gives the smallest entropy E(v2) is selected as linkage set
vi of locus i.

3.2 Example

As example, we use sum of the order 3 deceptive problem which was used as an
opponent of the messy GA[GKD89] and defined as follows:

f(s) =
∑

∀v∈V

fv(s) (6)

fv(s) = 30 if 111, 0 if 110, 101, 011,

14 if 100, 22 if 010, 26 if 001, 28 if 000

where V = {{1, 2, 3}, {4, 5, 6}} and fv(s) is defined by each schema of {1, 2, 3}
and {4, 5, 6}. Fig. 3 shows the perturbation in the 1st locus. In this figure, strings
having df1 = 30 are belong to a sub-population. In the sub-population, linkage
set {1, 2, 3} has only schema 011 and E({1, 2, 3}) should be zero. On the other
hand, linkage set {1, 4, 5} has schemata 010, 001, 010, 011 and E({1, 4, 5}) should
be relatively large. Therefore the algorithm evaluates that a relationship between
locus 1, 2, and 3 take place more likely than a relationship between locus 1, 4,
and 5.

s f(s) s1 f(s1) bias df1(s)

011100 14 111100 44 011*** 30
011010 27 111010 57 011*** 30
011101 0 111101 30 011*** 30
011110 0 111110 30 011*** 30
011110 0 111110 30 011*** 30

· · ·

s f(s) s1 f(s1) bias df1(s)

110101 0 010101 27 110*** 27
110011 0 010011 27 110*** 27
110001 26 010001 53 110*** 27

101100 14 001100 40 101*** 26
101101 0 001101 26 101*** 26

· · ·

Fig. 3. Strings classified according to df1

If problems are (quasi-)decomposable like f(s) =
∑

v∈V fv(s) then fitness
differences for perturbation in locus i are calculated as

dfi(s) = f(s) − f(si)

Population Sizing of Dependency Detection 287

= [fv̂(s) +
∑

v �=v̂,v∈V

fv(s)] − [fv̂(si) +
∑

v �=v̂,v∈V

fv(si)]

= fv̂(s) − fv̂(si).

where v̂ is the sub-problem including locus i. It is clear that fitness differences
depend only on the linkage set v̂ and independent on loci j ∈/ v̂. Therefore, we
can obtain bias in sub-populations classified according to fitness differences and
detecting such bias by minimizing the entropy measure we can learn the linkage
set for locus i.

Our greedy search shown in Fig. 2 sometimes can not find k bit dependencies,
because in some problems entropies for lower order linkage sets shows random-
ness even if those for higher order sets distribute unevenly. However, it is clear
that strings can be divided into at least two sub-populations and there should be
2k−1 schemata for loci v̂ in these sub-populations. On the other hand, loci j ∈/ v̂
distribute perfectly random and for any k-bit combination of such loci, there
should be all possible schemata (2k schemata). For example, for v̂ of 3-bit prob-
lem, a sub-population have schemata{111, 100, 010, 001}. In this sub-population,
all order 1 and 2 loci have all possible schemata and only the order 3 loci has half
of all. Such dependency can not be found by the greedy search. But if more so-
phisticated method is applied, it is not impossible. The refinement should require
larger computation cost, but is worthy of consideration when fitness evaluation
of a problem takes huge time.

4 Population Sizing

In this section, we calculate the number of strings required to detect correct
dependencies by the D5. This consists of two stages: sub-population sizing and
overall population sizing. The above case defines the size enough to distinguish
biased distribution of dependent loci and random distribution of independent
loci in a sub-population. The overall population size must ensure the sufficient
sub-population size when it is divided.

We calculate sub-population size and then define overall population size. But,
first of all, we should simplify the problem to make population sizing easy.

4.1 Simplification

Sub-population should have enough number of strings to distinguish biased dis-
tribution of dependent loci and random distribution.

The level of bias changes with each fitness landscape of a sub-problem. Some
of them give strong bias, others give weak bias. The strong bias makes distinction
easy, while the weak bias makes it difficult. The former case means that the sub-
population has a few unique schemata. Therefore, the D5 can exploit a small part
of original population. In the later case, the sub-population should have more
schemata and it can use a larger part of the population. To make calculation
easy, we consider the first case only. The resulting population size should not be

288 Miwako Tsuji, Masaharu Munetomo, and Kiyoshi Akama

upper bounds or precise predictions of population size, as a consequence of this
simplicity. But it will help to understand how the number of strings grows as
string length gets longer.

As mentioned in section 2, we consider additively decomposable functions
only. In this type of functions, there are 2k schemata for each sub function
fv(s). One bit perturbation gives 2k schemata changes such as

df1(000...) = f(000...) − f(100...)
df1(001...) = f(001...) − f(101...)
df1(010...) = f(010...) − f(110...)

· · · · · · · · · · · ·
df1(111...) = f(111...) − f(011...)

It is clear that dfi(s) = −dfi(si). For example,

df1(000) = f(000...) − f(100...), df1(100) = f(100...) − f(000...).

Then
df1(000) = f(000...) − f(100...) = −df1(100).

We denote fitness difference of h-th schema by perturbation of i-th loci as
dfh

i (i = 1, 2, · · · , l. h = 1, 2, · · · , 2k).
The number of unique fitness differences by the perturbations in locus i varies

from 2 to 2k. The upper bound, 2k, comes in the case where fitness changes of
all schemata differ:

dfh
i �= dfh′

i (∀h �= h′) (7)

The lower bound, 2, takes place if the amount of fitness increase and decrease
are always same:

|dfh
i | = |dfh′

i | (∀(h, h′)) (8)

In order to make calculation easy, we consider the first case. In this case, all
2k schemata should be classified into different classes. One class has one schema
for a linkage set. Loci in the linkage set of all strings in the class have same value.
The number of strings must be enough to ensure that no single unlinked locus
takes a same value in the class. To this end all classes does not have to have
exactly one schema, but at least one of them must have exactly one schema.
Therefore, we relax the equation (7) as follows:

∃dfh′
i ∈ {df1

i , · · ·df2k

i } that satisfies dfh′
i �= dfh

i (h �= h′) (9)

If this condition is satisfied, the sub-population of dfh′
i has only one unique

schema. The entropy of the set of loci that depend on locus i should be zero. On
the other hand, the entropy of the set of loci that do not depend on locus i is
close to the number of loci in the set. Therefore, if there are enough strings in
the sub-population, it is easy to identify linkage set correctly.

Population Sizing of Dependency Detection 289

Despite such simplicity of linkage identification over a sub-population, whole
population size for the function that satisfies the condition (9) should be large.
The reason comes from the fact that we can exploit only a small part of whole
population for the sub-population of dfh′

i because h′-th schema should have n/2k

copies where n is whole population size.
If fitness function does not satisfy (9), by contrast, there are two or more

schemata in sub-populations. Consequently, entropies in the sub-populations
should be larger than zero. However, they should be still smaller than that
for random distributions. For example, the lower bound of fitness differences are
2, as mentioned earlier. In the case, there are 2k−1 unique schemata in each
sub-population. Then the entropy should be less or equal to k − 1. The signal
difference of entropy increase from the above case, but the half part of original
population can be used.

The precise population size for the D5 is defined from both the string uti-
lization ratio of original population and the signal difference of entropy between
v̂ and v. Both of those differ with respect to fitness functions. In the followings,
to make population sizing easy, we consider the extremely biased case, the func-
tions that satisfy (9) only. Although it does not give the precise population size,
it at least should give how it grows with problem size.

After theoretical population sizing, we perform experiments with some classes
of problems including the problem that does not satisfy the condition (9).

4.2 Sub-population Sizing

Let Cdfh′
i

a sub-population of dfh′
i in (9), let n1 size of the Cdfh′

i
.

Locus j ∈/v̂ must have less certain distribution than locus j ∈ v̂ to detect
correct dependency for locus i.

If (9) is satisfied for additively decomposable functions (1), then there is only
one unique schema of v̂ in sub-population Cdfh′

i
. Therefore, each locus of v̂ takes

the same gene value in the sub-population.
On the other hand, loci in V − {v̂} take 0 or 1 at random. If a locus j ∈/v̂

takes the same gene value in Cdfh′
i

accidentally, the dependency detection will
fail. Therefore, we should employ enough sub-population size n1 to avoid such
undesirable coincidence for all j ∈/v̂.

The probability that every gene value of a locus j ∈/v̂ is same is

(
1
2

)n1

. (10)

The probability that it does not occur in all loci j ∈ V − {v̂} is

(
1 −

(
1
2

)n1
)l−k

. (11)

290 Miwako Tsuji, Masaharu Munetomo, and Kiyoshi Akama

The probability P1 that the previous condition hold true for all dependency
detections for loci i = 1, 2, · · · , l is

P1 =

((
1 −

(
1
2

)n1)l−k
)l

=
(

1 −
(

1
2

)n1)l(l−k)

. (12)

Randomly generated gene value in j ∈/v̂ can have same value in size n1 sub-
population Cdfh′

i
with probability

(
1
2

)n1 and it can not occur with probability
(
1 − (

1
2

)n1). This hold true for all j ∈/v̂ with probability
(
1 − (

1
2

)n1)l−k
because

|v̂| = k and then |V − v̂| = l − k. Therefore the probability that we can avoid
the undesirable biases for all j ∈ v̂ in all l times perturbations is equation (12).

Rewriting (12), we can obtain sub-population size for expected success ratio
P1

n1 = − log(1 − P
1

l(l−k)
1). (13)

Therefore, if an appropriate distribution is required with probability P1, then

sub-population must have more than − log(1 − P
1

l(l−k)
1) strings.

The resulting sub-population size n1 is also used as threshold for the estima-
tion phase in the D5. If a sub-populations has less than n1 strings, it should not
be used for dependency detection.

4.3 Overall Population Sizing

Now, we consider overall population size, n. It must be enough to obtain ap-
propriate sub-population size, n1. From (9), sub-population Cdfh′

i
has only one

schema of possible 2k schemata in v̂. Because the original population is initialized
by random coin toss, the distribution of the schema in the original population
is the binomial distribution with the mean n

2k and the variance n 1
2k

(
1 − 1

2k

)
.

Therefore, the lower bound of expected sub-population size n1 for large n is
estimated as follows:

n1 ≥ n

2k
−

√

n
1
2k

(
1 − 1

2k

)
(14)

Let p = 1/2k and q = 1 − p, we rewrite above equation as

n1 ≤ np −√
npq. (15)

Rewriting the inequality, required population size n is as follows:

n ≥ (2n1p + pq) +
√

(2n1p + pq)2 − 4p2n2
1

2p2
. (16)

=
1
p
n1 +

q

2p
+

√
q

p
n1 +

q2

4p2
. (17)

Population Sizing of Dependency Detection 291

Because p is constant if k is constant, the term 1
pn1 is dominate for population

sizing, thus

n = O

(
1
p
n1

)
(18)

= O(−2k log(1 − P
1

l(l−k)
1)). (19)

Using L’Hopital’s rule,

lim
l→∞

1 − P
1/l2

1

1/l2
= 1. (20)

lim
l→∞

ln(1 − P
1/l2

1)
ln l2

= lim
l→∞

ln(1 − P
1/l2

1)
2 ln l

= lim
l→∞

−P
1/l2

1 ln P1

(1 − P
1/l2

1)/(1/l2))
. (21)

The limit of the denominator is 1 from the equation (20), the limit of the nu-
merator is − lnP1. Thus,

lim
l→∞

ln(1 − P
1/l2

1)
2 ln l

= − ln P1 (22)

Therefore, approximating log(1 − P
1

l(l−k)
1) to log(1 − P

1
l2
1)

O(−2k log(1 − P
1

l(l−k)
1)) ≈ O(2k log l) (23)

for large l.

4.4 Overall Complexity

In this section, we show the number of fitness evaluations for the D5. Opti-
mization using it consists of the dependency detection stage and the building
block combination stage. However, if problem structure is revealed, the following
evolution should be success using relatively small cost. Therefore, we consider
computation cost for dependency detection is approximately equal to overall
computation cost.

In dependency detection by the D5, we should know original fitness of all
strings and those after perturbations in all l loci of all strings. Therefore, the
number of evaluations required to obtain appropriate linkage sets is nl+n where
l is string length and n is population size. substituting (16), the number of
evaluations is

nl + n =
(2n1p + pq) +

√
(2n1p + pq)2 − 4p2n2

1

2p2
(l + 1). (24)

If the order of problem k is fixed, then p = 1/2k and q = 1 − p are also fixed.
From the (16) and (24), the number of evaluations is roughly

O(n1l) = O(−l log(1 − P
1

l(l−k)
1)) (25)

for string length l.

292 Miwako Tsuji, Masaharu Munetomo, and Kiyoshi Akama

Fig. 4. Accuracy of linkage identification for trap function for various population size
and string length

Fig. 5. Contours of fig. 4 and theoretical estimation in equation (16). In index, numbers
like 0.95 or 0.90 mean contour levels, e or t means experimental result or theoretical
result respectively

5 Experiments: Population Size, String Length
and Success Ratio

In this section, we compare theoretical estimations in section 4 and experimental
results.

Trap Function

Experiments in this section are performed on a deceptive trap function as follows:

f(s) =
m∑

i=1

trap(ui) (26)

trap(ui) =
{

k (u = k)
k − 1 − u (otherwise) (27)

Population Sizing of Dependency Detection 293

Fig. 6. Example of Trap Function Fig. 7. Example of Valley Function

where m is the number of sub-functions and k is the order of a sub-function, ui

is the number of ones in each k-bit sub-string. This sub-function is called trap
function.

Fig.6 shows the function. The x-axis of the figure shows the number of ones
in a sub-string and y-axis is the contribution of each sub-string. The left side
of the figure shows the contribution of all zeros sub-string and the right side
shows that of all ones. From this function, it is clear that the fitness difference
for 1-bit perturbation takes one of {k, 1,−1,−k}. Only all ones gives −k (when
u = k to k − 1 for perturbation , 11111 → 01111) and only sub-strings to be
all ones by the perturbation gives k (when u = k − 1 to k for perturbation
, 01111 → 11111). All the other 2k−1 sub-strings give −1 or 1 by 0 → 1 or
1 → 0 respectively. This function satisfies the assumption 1 because there are
two schemata, all ones and that to be all ones, whose fitness differences differ
from all the other fitness differences.

In these experiments, we try various string length l = k ×m and population
size n. The order of problem is fixed to k = 5. We record percent of linkage
correctly identified for several (l, n) pairs. We perform 10 runs for each (l, n)
pair and average success ratio of linkage identification.

Figure 4 shows the experimental result of accuracy of linkage identification for
5-bit trap function in various population size and string length. Figure 5 shows
contours of the accuracy of experimental results and theoretical estimations in
equation (16).

Because our theoretical population sizing is conservative – we assume one
unique fitness difference but there are two unique fitness differences in the trap
function –, the experimental result can archive a certain success ratio with
smaller number of strings than the theoretical result. However traces of con-
tour in experiments are follows that in experiment very well.

Valley Function

In this experiment, we employ a test function which does not satisfy (9). The
function is defined as follows:

f(s) =
m∑

i=1

valley(ui) (28)

294 Miwako Tsuji, Masaharu Munetomo, and Kiyoshi Akama

Fig. 8. D5 for 4-bit valley function and 4-bit trap function. The lines mean threshold
sizes for linkage identification with probability 0.95 for each string length. For reference,
c × n where n c-s are constants and vary from 0.2 to 1.0 are added

valley(u) = |u − k

2
| (29)

where k is the order of a sub-function, m is the number of sub-functions, and
u is the number of ones in each k-bit sub-string. Figure 7 shows this function.
The valley function has no peak or needle like the optimal solution of the trap
function. For all perturbations it gives only two types of fitness difference {−1, 1}
if k is even.

We fix k to 4 and try various (l, n) pairs to record ratio of correctly identified
linkage sets. We perform 10 runs for each (l, n) pair and average success ratio of
linkage identification.

Figure 8 shows contours of the accuracy of experimental results and the-
oretical estimations in equation (16). We also perform 4-bit trap function for
comparison. And for reference, c × n where c-s are constants and vary from
0.2 to 1.0 are added. In this equation, n is the theoretical estimation and
n = −l log(1 − 0.951/l(l−4))).

If many schemata have a same fitness difference, then all of them are classified
into one sub-population. The entropy of linkage set in such sub-population is
larger and closer to the entropy of random set of loci than the entropy of linkage
set of a function which has various fitness differences like a trap function. On
the other hand, because original population is divided into a few groups in this
kind of problems, each sub-population size should be large and enough to detect
the small signal difference of entropy.

For the 4-bit functions, there are nt
1 = nt/24 = nt/16 strings for the trap

function and there are nv
1 = nv/2 strings for the valley function where nt is

population size for trap function and nv is population size for valley function.
Because nv ≈ nt/2 from the experiment, the sub-population size in valley func-
tion is nv

1 = nt/4 = 4nt
1. Sub-population sizes nv

1 and nt
1 are defined from the

signal difference of entropy and population sizes nv and nt are defined to ensure
sub-population sizes.

Population Sizing of Dependency Detection 295

Although the number of strings for the valley function is smaller than for
the trap function, the slope for the valley function is similar to that for the trap
function. In fact, the population size for the valley function is similar to the
0.4 × n and that for the trap function is similar to the 0.8 × n. These results
show that the theoretical population size guides population sizings for problems
which do not satisfy the condition (9).

6 Comparisons with Other Methods

In this section, we compare population sizings in existing literatures of GAs,
PMs and EDAs. Depending on the strategies of each algorithm, their way of
sizing differs. Please not that these population sizings do not address the same
problem and the same purpose. However, they have some things in common and
other things in contrast.

6.1 Population Sizing of Simple GAs

Various efforts have been focused on sizing population of genetic algorithms. One
of the most accurate population size was calculated by Harik et al. [HCPGM97].

They estimated population size considering an initial supply of building
blocks and a good decision making between competing building blocks using
the gambler’s ruin model. Resulting population size n that is enough for an
optimal solution to take over population after several generations is

n = −2k−1 ln(α)
σbb

√
π(m − 1)
d

(30)

where k is the order of a building block, α is the probability of failure convergence
in a sub-problem, σbb is the standard deviation (the square root of variance) of
fitness of the building block, m is the number of building blocks (sub-problems)
in a string, and d is the difference between the mean fitness of the best and
the second building blocks. The term 2k−1 is required for the initial supply
of building blocks and the other terms are for the decision making. The last
term shows that if the population size increases as the average variance of the
building blocks increases, as the problem size is grows and as the signal difference
decreases.

If we assume that string length is approximately proportional to the number
of building blocks, we obtain following result from equation (30):

n = O(2k−1
√

l) (31)

In their analysis, they assumed tight linkage and building block disruption
was not considered. If such tight linkage is not ensured, SGA performs as random
search and needs O(l2) strings for the worst case. In addition, some approxima-
tions are used in their calculation.

296 Miwako Tsuji, Masaharu Munetomo, and Kiyoshi Akama

6.2 Population Sizing of PMs

For the LINC, the number of strings required to obtain correct linkage set was
calculated by Munetomo et al [MG99]. The LINC identifies linkage by detecting
the second order nonlinearity. It assumes that nonlinearity must exist within loci
to form a building block.

This population sizing is differ from the population sizing of simple GAs
because they do not concern the number of strings for optimal population con-
vergence but for correct linkage identifications. However, if correct linkage sets
are obtained it becomes easy to combine building blocks to find an optimal
solution.

Their population sizing is based on the supply of building blocks in a linkage
set because they assume that there is at least one schema which violates linear
condition along the perturbations for the pair of loci belonging a same sub-
problem. They showed that if there are n strings then correct linkage sets is
obtained with probability P as follows:

P = 1 −
(

1 −
(

1
2k

))n

(32)

where k is the order of a sub-problem. Therefore the population size required
for a certain success probability P is

n =
log(1 − P)

log(1 − 1/2k)
� −2k log(1 − P). (33)

From equation (33), the population size for the LINC depends only on the order
of sub-problem.

Munetomo et al [MG99] calculate the number of strings which is enough
to obtain pairs of loci that are linked with a given probability, P . Whereas,
the population size in the D5 is sized enough to obtain all sets of loci that
linked. In addition, Heckendorn et al [HW03] define the number of strings to
find all pairs of loci that linked with a global probability of success. The pop-
ulation size of their algorithm (the number of iterations in their algorithm) is
−2k ln(1 − δ1/J) for order-2 linkage detection where δ is the probability of suc-
cess and J is the number of order-2 relationships between loci (hyperedges).
For the non-overlapping additively decomposable functions composed of order-
k sub functions, J = l/k ×k C2 = l(k − 1)/2. Then the population size is
−2k ln(1 − δ2/l(k−1)).

6.3 Population Sizing of EDAs

As an example of population sizing in EDAs, we show the population sizing
for the BOA calculated by Pelikan et al.[PSG02] The BOA [PGCP99] exploits
Bayesian network to represent conditional probabilities in order to encode de-
pendency of variables in their models.

For uniformly scaled problem, the most important factor for population siz-
ing is that the BIC metric can distinguish between the appropriate and the

Population Sizing of Dependency Detection 297

Table 1. Comparison of population size and number of evaluations

method population size number of evaluations

D5 O(−2k log(1 − P
1

l(l−k))
1) O(−2kl log(1 − P

1
l(l−k)

1))

SGA O(2k−1
√

l) ∼ O(2l) O(2k−1l) ∼ O(2k−1l log l) ∼ O(2k−1l2)

LINC O(2k) O(2kl2)

BOA O(2kl1.05) O(2kl1.55)

inappropriate dependencies and decision making between to add or to not add
an edge from a variance to another variance. From the viewpoint, the required
number of strings is

n = O(l1.05). (34)

This result is obtained using some approximations, however, it matches exper-
imental results. The detail about this equation is available in the literature
[PSG02].

Above equations were obtained for two bit dependency, but it can be extended
for multiple dependencies as follows:

n = O(2kl1.05) (35)

The term 2k comes from the number of possible schemata and l1.05 is the re-
quirement for noise avoidance from contributions of other sub-solutions.

6.4 Discussions

Table 1 shows the comparison of population size in the D5, SGA, the LINC
and the BOA. Please note that the population size of SGA O(2k−1

√
l) is for

tight encoding strings. If such tight encoding is not ensured SGA requires an
exhaustive search which needs exponential number of strings. In addition, the
comparison is not completely fair because the population sizings for the LINC
and the D5 does not concern evolution of population and decision-making during
the evolution. However, it should be true that if we know problem structure, then
we can make decision easier than without such explicit information of problems.

The required number of evaluations is also shown in Table 1. Again, the
numbers of the D5 and the LINC are only for dependency detection and they
need other evaluations for evolution phase but these are not dominant for overall
computation cost. The number of evaluations for SGA and the BOA is simple
multiply of population size and the number of generations for convergence. The
numbers of evaluations for SGA are varied with respect to the selection methods
[GD91] and is also an ideal case that tight linkage can be ensured from previous
information of problems.

Streeter [Str04] improves the LINC from a traditional algorithm perspective.
It uses binary search to detect specific loci j which depend on i. Therefore, it
requires O(2kl log l) fitness evaluations where l log l comes from binary search
for each locus i = 1, 2, · · · , l and O(2k) is population size required to guarantee

298 Miwako Tsuji, Masaharu Munetomo, and Kiyoshi Akama

a certain success probability. This computation cost is similar to our result,
O(−2kl log(1 − P

1/l(l−k)
1)). The main difference is that the log term of the D5

comes from population size, O(−2k log(1 − P
1/l(l−k)
1), while the Streeter’s one

comes from binary search.
All of population sizings have the factors from possible number of schemata,

2k or 2k−1 = 2−1×2k. This number, 2k, is number of all possible schemata of or-
der k. It should guarantee existence optimal schema which will be produced with
probability 1/2k. SGA and BOA consider the effect from other sub-functions
by

√
l and l1.05 respectively. The D5 has also the term log(1 − P

1/l(l−k)
1) for

population sizing. This comes from requirement to avoid undesirable bias for
all loci which do not belong a sub-problem including a perturbed locus. This
requirement is approximately equal to the requirement that initial population
should distribute enough randomly. The LINC and Streeter’s algorithm, which
are uses perturbations only for their dependency detections, have no term for
string length in population sizing.

7 Conclusion

In this paper, we estimate the number of strings required for the D5 under

some assumptions. Estimated population size is O(−2k log(1 − P
1

l(l−k)
1) where

l is string length and k is the order of the sub-problem. This result shows the
number of strings required to obtain correct linkage sets is defined mainly by the
order of sub-problem and the D5 can be scalable to large problem size. Validity
of the population is also verified in experiments. The experimental population

sizes follow c ×−2k log(1 − P
1

l(l−k)
1) where c is a constant.

References

[GD91] David E. Goldberg and Kalyanmoy Deb. A comparative analysis of se-
lection schemes used in genetic algorithms. In Gregory J.E. Rawlins,
editor, Foundations of Genetic Algorithms, pages 69–93. Morgan Kauf-
mann Publishers, 1991.

[GKD89] David E. Goldberg, Bradley Korb, and Kalyanmoy Deb. Messy genetic
algorithms: Motivation, analysis, and first results. Complex Systems,
3(5):415–444, 1989.

[HCPGM97] Georges Harik, Erick Cantú-Paz, David E. Goldberg, and Brad L. Miller.
The gambler’s ruin problem, genetic algorithms, and the sizing of popula-
tions. In IEEECEP: Proceedings of The IEEE Conference on Evolution-
ary Computation, IEEE World Congress on Computational Intelligence,
pages 7–12, 1997.

[HW03] Robert B. Heckendorn and Alden H. Wright. Efficient linkage discovery
by limited probing. In Proceedings of the 2003 Genetic and Evolutionary
Computation Conference, pages 1003–1014. Morgan Kaufmann Publish-
ers, 12–16 July 2003.

Population Sizing of Dependency Detection 299

[Kar95] H. Kargupta. SEARCH, polynomial complexity, and the fast messy ge-
netic algorithm. Technical Report 95008, University of Illinois at Urbana-
Champaign, Urbana, IL, October 1995.

[LGP00] Fernando G. Lobo, David E. Goldberg, and Martin Pelikan. Time com-
plexity of genetic algorithms on exponentially scaled problems. In Pro-
ceedings of the 2000 Genetic and Evolutionary Computation Conference,
pages 151–158. Morgan Kaufmann Publishers, 10-12 July 2000.

[MG99] Masaharu Munetomo and David E. Goldberg. Identifying linkage groups
by nonlinearity/non-monotonicity detection. In Proceedings of the 1999
Genetic and Evolutionary Computation Conference, pages 433–440, 7
1999.

[PGCP99] Martin Pelikan, David E. Goldberg, and Erick Cantú-Paz. BOA: The
bayesian optimization algorithm. In Proceedings of the 1999 Genetic
and Evolutionary Computation Conference, pages 525–532. Morgan Kauf-
mann Publishers, 1999.

[PSG02] Martin Pelikan, Kumara Sastry, and David E. Goldberg. Scalability of the
bayesian optimization algorithm. International Journal of Approximate
Reasoning, 31(3):221–258, 2002.

[Str04] Matthew J. Streeter. Upper bounds on the time and space complexity
of optimizing additively separable functions. In Proceedings of the 2004
Genetic and Evolutionary Computation Conference, pages 186–197, 2004.

[TGP98] Dirk Thierens, David E. Goldberg, and Ângela G. Pereira. Domino con-
vergence, drift and the temporalsalience structure of problems. In Pro-
ceedings of the IEEE International Conference of Evolutionary Compu-
tation, pages 535–540, 1998.

[TMA04] Miwako Tsuji, Masaharu Munetomo, and Kiyoshi Akamae. Modeling
dependencies of loci with string classification according to fitness differ-
ences. In Proceedings of the 2004 Genetic and Evolutionary Computation
Conference, pages 246–257, 26-30 June 2004.

	Population Sizing of Dependency Detection by Fitness Difference Classiffication
	1 Introduction
	2 Background
	3 Dependency Detection by Fitness Differences
	3.1 Algorithm
	3.2 Example

	4 Population Sizing
	4.1 Simplification
	4.2 Sub-population Sizing
	4.3 Overall Population Sizing
	4.4 Overall Complexity

	5 Experiments: Population Size, String Length and Success Ratio
	6 Comparisons with Other Methods
	6.1 Population Sizing of Simple GAs
	6.2 Population Sizing of PMs
	6.3 Population Sizing of EDAs
	6.4 Discussions

	7 Conclusion
	References

