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Abstract. We consider the (1+1) Evolution Strategy, a simple evolu-
tionary algorithm for continuous optimization problems, using so-called
Gaussian mutations and the 1/5-rule for the adaptation of the mutation
strength. Here, the function f : Rn → R to be minimized is given by a
quadratic form f(x) = x�Qx, where Q ∈ Rn×n is a positive definite
diagonal matrix and x denotes the current search point. This is a natural
extension of the well-known Sphere-function (Q = I). Thus, very simple
unconstrained quadratic programs are investigated, and the question is
addressed how Q effects the runtime. For this purpose, quadratic forms

f(x) = ξ · (x1
2 + · · · + xn/2

2
)

+ xn/2+1
2 + · · · + xn

2

with ξ = ω(1), i. e. 1/ξ → 0 as n → ∞, and ξ = poly(n) are investigated
exemplarily. It is proved that the optimization very quickly stabilizes and
that, subsequently, the runtime (defined as the number of f -evaluations)
to halve the approximation error is Θ(ξ ·n). Though ξ ·n = poly(n), this
result actually shows that the evolving search point indeed creeps along
the “gentlest descent” of the ellipsoidal fitness landscape.

1 Introduction

Finding – or at least approximating – an optimum of a given function f : S → R

is one of the fundamental problems – in theory as well as in practice. Methods for
solving continuous optimization problems, e. g. S = Rn, are usually classified into
first-order, second-order, and zeroth-order methods depending on whether they
utilize the gradient (the first derivative) of the objective function, the gradient
and the Hessian (the second derivative), or neither of the two.

Note that here “continuous” relates to the search space rather than to f , and
that, unlike in math programming, throughout this paper “n” denotes the
number of dimensions of the search space and not the number of optimization
steps; “d ” generally denotes a distance in the n-dimensional search space.

A zeroth-order method is also called derivative-free or direct search method.
Newton’s method is the example of a second-order method; first-order methods
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can be (sub)classified into Quasi-Newton, steepest descent, and conjugate gradi-
ent methods. Classical zeroth-order methods try to approximate the gradient in
order to plug this estimate into a first-order method. Finally, amongst the “mod-
ern” zeroth-order methods, evolutionary algorithms (EAs) come into play. EAs
for continuous optimization, however, are usually subsumed under the term evo-
lution(ary) strategies (ESs). Obviously, in general we cannot expect zeroth-order
methods to out-perform first-order methods or even second-order methods.

However, when information about the gradient is not available, for instance
if f relates to a property of some workpiece and is given by simulations or
even by real-world experiments, first-order (and also second-order) methods just
cannot by applied. As the approximation of the gradient usually involves Ω(n)
f -evaluations, a single optimization step of a classical zeroth order-method is
computationally intensive, especially if f is given implicitly by simulations. In
practical optimization, especially in mechanical engineering, this is often the
case, and particularly in this field EAs become more and more widely used.
However, the enthusiasm in practical EAs has led to an unclear variety of very
sophisticated and problem-specific EAs. Unfortunately, from a theoretical point
of view, the development of such EAs is solely driven by practical success and
the aspect of a theoretical analysis is left aside. In other words, – concerning
EAs – theory has not kept up with practice, and thus, we should not try to
analyze the algorithmic runtime of the most sophisticated EA en vogue, but
concentrate on very basic, or call them “simple”, EAs in order to build a sound
and solid basis for EA-theory.

For discrete search spaces, essentially {0, 1}n, such a theory has been de-
veloped successfully since the mid-1990s (cf. Wegener (2001) and Droste et al.
(2002)). Recently, first results for non-artificial but well-known problems have
been obtained (namely for the maximum matching problem by Giel and Wegener
(2003), for sorting and the shortest-path problem by Scharnow et al. (2002), and
for the minimum-spanning tree by Neumann and Wegener (2004)).

The situation for continuous evolutionary optimization is different. Here,
the vast majority of the results are based on empiricism, i. e., experiments are
performed and their outcomes are interpreted, which leads to a theory in the
sense of physics rather than computer science. Also convergence properties of
EAs have been studied to a considerable extent (e. g. Rudolph (1997), Greenwood
and Zhu (2001), Bienvenue and Francois (2003)). A lot of results have been
obtained by analyzing a simplifying model of the stochastic process induced
by the EA, for instance by letting the number of dimensions approach infinity.
Unfortunately, such results rely on experimental validation as a justification
for the simplifications/inaccuracies introduced by the modeling. In particular
Beyer has obtained numerous results that focus on local performance measures
(progress rate, fitness gain; cf. Beyer (2001b)), i. e., the effect of a single mutation
(or, more generally, of a single transition from one generation to the next) is
investigated. Best-case assumptions concerning the mutation adaptation in this
single step then provide estimates of the maximum gain a single step may yield.
However, when one aims at analyzing the (1+1)ES as an algorithm, rather
than a model of the stochastic process induced, a different, more algorithmic
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approach is needed. In 2003 a first theoretical analysis of the expected runtime,
given by the number of function evaluations, of the (1+1)ES using the 1/5-rule
was presented (Jägersküpper, 2003). The function/fitness landscape considered
therein is the well-know Sphere-function, given by Sphere(x) :=

∑n
i=1 x

2
i =

x�Ix, and the multi-step behavior that the (1+1)ES bears when using the
1/5-rule for the adaptation of the mutation strength is rigorously analyzed. As
mentioned in the abstract, the present paper will extend this result to a broader
class of functions. One may guess that an ellipsoidal landscape is similar to the
ridge-function scenario (especially to the parabolic ridge). Beyer (2001a) focuses
on local measures for this fitness landscape. However, since ridge functions are
unbounded, i. e. there is no optimum, and there is no need for adaptation, from
an algorithmic point of view – when one is interested in adaptation mechanisms
and how they work – ellipsoidal fitness landscapes are more challenging.

Finally note that, regarding the approximation error, for unconstrained opti-
mization it is generally not clear how the runtime can be measured (solely) with
respect to the absolute error of the approximation. In contrast to discrete and fi-
nite problems, the initial error is generally not bounded, and hence, the question
how many steps it takes to get into the ε-ball around an optimum does not make
sense without specifying the starting conditions. Hence, we must consider the
runtime with respect to the relative improvement of the approximation. Given
that the (relative) progress that a step yields becomes steady-state, considering
the number of steps/f -evaluations to halve the approximation error is a natural
choice. For the Sphere-function, Jägersküpper (2003) gives a proof that the
1/5-rule makes the (1+1)ES perform Θ(n) steps to halve the distance from the
optimum and, in addition, that this is asymptotically the best possible w. r. t.
isotropically distributed mutation vectors, i. e., for any adaptation of isotropic
mutations, the expected number of f -evaluations is Ω(n) (moreover, for any
constant ε > 0, O(n1−ε) f -evaluations suffice only with an exponentially small
probability).

The Algorithm

We will concentrate on the (1+1) evolution strategy ((1+1) ES), which dates
back to the mid 1960s (cf. Rechenberg (1973) and Schwefel (1995)). This sim-
ple EA uses solely mutation due to a single-individual population, where here
“individual” is just a synonym for “search point”. Let c ∈ Rn denote the cur-
rent individual. Given a starting point, i. e. an initialization of c, the (1+1)ES
performs the following evolution loop:

1. Choose a random mutation vector m ∈ Rn, where the distribution
of m may depend on the course of the optimization process.

2. Generate the mutant c′ ∈ Rn by c′ := c + m.
3. IF f(c′) ≤ f(c) THEN c′ becomes the current individual (c := c′)

ELSE c′ is discarded (c unchanged).
4. IF the stopping criterion is met THEN output c ELSE goto 1.
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Since a worse mutant (with respect to the function to be minimized) is always
discarded, the (1+1)ES is a randomized hill climber, and the selection rule is
called elitist selection. Fortunately, for the type of results we are after we need not
define a reasonable stopping criterion. How the mutation vectors are generated
must be specified, though. Originally, the mutation vector m ∈ Rn is generated
by firstly generating a Gaussian mutation vector m̃ ∈ Rn each component of
which is independently standard normal distributed; subsequently, this vector is
scaled by the multiplication with a scalar s ∈ R>0, i. e. m = s · m̃. Gaussian
mutations are the most common type of mutations (for the search space Rn) and,
therefore, will be considered here. The crucial property of a Gaussian mutation
is that m̃, and with it m, is isotropically distributed, i. e., m/ |m| is uniformly
distributed upon the unit hypersphere and the length of the mutation, namely
the random variable |m|, is independent of the direction m/ |m|.

The state of the art in mutation adaptation seems to be the covariance matrix
adaptation (CMA) (Hansen and Ostermeier, 1996) where s · B · m̃ makes up
the mutation vector with a matrix B ∈ Rn×n which is also adapted. Unlike
B = t · I for some scalar t, the mutation vector is not isotropically distributed.

The question that naturally arises is how the scaling factor s is to be chosen. Ob-
viously, the smaller the approximation error, i. e., the closer c is to an optimum,
the shorter m needs to be for a further improvement of the approximation to
be possible. Unfortunately, the algorithm does not know about the current ap-
proximation error, but can utilize only the knowledge obtained by f -evaluations.
Based on experiments and rough calculations for two function scenarios (namely
Sphere and a corridor function), Rechenberg proposed the 1/5-(success-)rule.
The idea behind this adaptation mechanism is that in a step of the (1+1)ES the
mutant should be accepted with probability 1/5. Hereinafter, a mutation that
results in f(c′) ≤ f(c) is called successful, and hence, when talking about a mu-
tation, success probability denotes the probability that the mutant c′ = c + m
is at least as good as c. Obviously, when elitist selection is used, the success
probability of a step equals the probability that the mutation is accepted in this
step. If every step was successful with probability 1/5, we would observe that on
the average one fifth of the mutations are successful. Thus, the 1/5-rule works
as follows: the optimization process is observed for n steps without changing s;
if more than one fifth of the steps in this observation phase have been successful,
s is doubled, otherwise, s is halved.

Various implementations of the 1/5-rule can be found in the literature, yet
in fact, one result of (Jägersküpper, 2003) is that the order of the runtime is
indeed not affected as long as the observation lasts Θ(n) steps and the scaling
factor s is multiplied by a constant greater than 1 resp. by a positive constant
smaller than 1.

The Function Scenario

In this section we will have a closer look at the fitness landscape under con-
sideration and preview isotropic mutations in this scenario. Note that, as min-
imization is considered, “function value” (“f -value”) will be used rather than
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“fitness”. Since the optimum function value is 0, the current approximation er-
ror is defined as f(c), the f -value of the current individual. As mentioned in
the abstract, we are going to consider the fitness landscapes induced by certain
positive definite quadratic forms.

At first glance, one might guess that mixed terms like 3x1x2 may crucially
affect the fitness landscape induced by a positive definite quadratic form x�Qx.
However, this is not the case. First note that w. l. o. g. we may assume Q to
be symmetric (by balancing Qij with Qji for i �= j). Furthermore, any sym-
metric matrix can by diagonalized since it has n eigen vectors. Namely, eigen-
decomposition yields Q = RDR−1 for a diagonal matrix D and an orthogonal
matrix R.

Note that an orthogonal matrix R corresponds to a orthonormal transforma-
tion, which is merely a (possibly improper) rotation; then R−1 is the corre-
sponding “anti-rotation”.

Thus, the quadratic form equals x�RDR−1x, and since x�R = (R�x)�, we
have (R�x)�D(R−1x). As R� = R−1 for an orthogonal matrix, the quadratic
form equals (R−1x)�D(R−1x). Thus, investigating x�Qx using the standard
basis for Rn (given by I) is the same as investigating x�Dx using the or-
thonormal basis given by R. Finally note that the inner product is independent
of the orthonormal basis that we use (because (Rx)�(Rx) = x�R�Rx =
x�R−1Rx = x�Ix = x�x). Consequently, we may assume that Q is a diago-
nal matrix each entry of which is positive. In other words, when talking about
positive definite quadratic forms we are in fact talking about functions of the
form fn(x) =

∑n
i=1 ξi · xi

2 with ξi > 0, and we may even assume ξn ≥ · · · ≥ ξ1.
As mentioned in the abstract, we exemplarily restrict ourselves to the fol-

lowing class of (sequences of) quadratic forms, where n ∈ 2N and 1/ξ → 0 as
n→ ∞:

fn(x) := ξ · (x1
2 + · · · + xn/2

2
)

+ xn/2+1
2 + · · · + xn

2

Hence, fn(x) = ξ ·Spheren/2(y)+Spheren/2(z) where y := (x1, . . . , xn/2) and
z := (xn/2+1, . . . , xn). Thus, the aim is to minimize the sum of two separate
sphere functions, in S1 = Rn/2 resp. S2 = Rn/2, having weight ξ resp. 1, i. e.,
f(x) = ξ · |y|2 + |z|2, where |·| denotes the length of a vector in Euclidean
space (Euclidean norm). Recall that the mutation vector m equals s · m̃ . As
each component of m̃ is independently standard normal distributed, m1 :=
(m1, . . . ,mn/2) and m2 := (mn/2+1, . . . ,mn) are two independent (n/2)-dimen-
sional Gaussian mutations which are respectively scaled by the same factor s.
Obviously, m1 only affects y, whereas m2 only affects z, and thus, the f -value
of the mutant equals ξ · |y + m1|2 + |z + m2|2.
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x1

Ê

Ŝ

M̂

xn Let d1 := |y| and d2 := |z| denote the distance from the
origin/optimum in S1 resp. S2. Since Gaussian mutations as
well as Sphere are invariant with respect to rotations of the
coordinate system, we may rotate S1 and S2 such that we
are located at (d1, 0, . . . , 0) ∈ S1 resp. (0, . . . , 0, d2) ∈ S2. In
other words, we may assume w. l. o. g. that the current search
point is located at (d1, 0, . . . , 0, d2) ∈ Rn, i. e., that it lies
in the x1-xn-plane. In fact, we have just described a projec-
tion ̂ : Rn → R2. Note that due to the properties of f and
Gaussian mutations this projection only conceals irrelevant
information, i. e., all information relevant to the analysis is

preserved. Thus, we can concentrate on the 2D-projection as depicted in the
figure. For some arguments, however, it is crucial to keep in mind that this pro-
jection is based on the fact that the current search point, and also its mutant,
can be assumed to lie in the x1-xn-plane w. l. o. g. (obviously, for the mutant to
lie in this plane, S1 and S2 must almost surely (a. s.) be re-rotated).

In the next section some of the results presented in (Jägersküpper, 2003),
which will be used here, will be shortly restated. In Section 3 the crucial prop-
erties of a single mutation in the considered fitness landscape are discussed, and
in the subsequent section we will have a closer look at the adaptation, i. e., the
multi-step behavior of the (1+1)ES will be analyzed for the considered function
class/fitness landscape. We end with some concluding remarks in Section 5.

2 Preliminaries

In this section some notions and notations are introduced. Furthermore, the
results obtained for the Sphere-scenario in (Jägersküpper, 2003) that we will
use are recapitulated; for more details cf. (Jägersküpper, 2002).

Definition 1. A probability p(n) is exponentially small in n if for a con-
stant ε > 0, p(n) = exp(−Ω(nε)). An event A(n) happens with overwhelming
probability (w. o. p.) with respect to n if P{¬A(n)} is exponentially small in n.

A statement Z(n) holds for n large enough if (∃n0 ∈ N)(∀n ≥ n0)Z(n).

Recall the following asymptotics: g(n) = O(h(n)) iff there exists a positive
constant κ such that g(n) ≤ κ · h(n) for n large enough; g(n) = Ω(h(n)) iff
h(n) = O(g(n)); g(n) = Θ(h(n)) iff g(n) is both O(h(n)) and Ω(h(n)); for
h(n), g(n) > 0, we have g(n) = o(h(n)) iff g(n)/h(n) → 0 as n → ∞ and
g(n) = ω(h(n)) iff h(n) = o(g(n)). As we are interested in how the runtime
depends on n, the dimensionality of the search space, all asymptotics are w. r. t.
to this parameter (unless stated differently).

Let c ∈ Rn − {0} denote a search point and m a scaled Gauss mutation.
Note that Sphere(c) = |c|2 (recall that |c| is the L2-norm (Euclidian length) of
c). The analysis of the (1+1)ES for Sphere has shown that for n large enough

P{|c + m| ≤ |c| ||| |m| = �} ≥ ε for a constant ε ∈ (0, 1
2 ) ⇐⇒ � = O(|c| /√n),
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i. e., the mutant of c is closer to a predefined point, here the origin, with proba-
bility Ω(1) iff the length of the isotropic mutation vector is at most an O(1/

√
n)-

fraction of the distance between c and this point. On the other hand,

P{|c + m| ≤ |c| ||| |m| = �} ≤ ε for a constant ε ∈ (0, 1
2 ) ⇐⇒ � = Ω(|c| /√n),

in other words, the mutant obtained by an isotropic mutation of c is closer to
a predefined point, here again the origin, with a constant probability strictly
smaller than 1/2 iff the length of the mutation vector is at least an Ω(1/

√
n)-

fraction of the distance between c and this point. (The actual constant ε respec-
tively correlates with the constant in the O-notation resp. in the Ω-notation.)

The expected length of m equals s ·E[|m̃|] = s ·√n · (1−Θ(1/n)) since |m̃| is
χ-distributed (with n degrees of freedom). Moreover, with �̄ := E[|m|] we have
P
{∣
∣|m| − �̄

∣
∣ ≥ δ · �̄} ≤ δ−2/(2n − 1) for δ > 0, in other words, there is only

small deviation in the length of a mutation; e. g., with probability 1 − O(1/n)
the mutation vector’s actual length differs from its expected length by no more
than ±1%.

Concerning the mutation adaptation by the 1/5-rule for Sphere, we know
that there exists a constant ph ∈ (0, 1/5) such that if the success probability of
the mutation in the first step of an observation phase is smaller than ph, then
w. o. p. less than 1/5 of the steps in this phase are successful so that the scaling
factor is halved. Analogously, a constant pd ∈ (1/5, 1/2) exists such that if the
first step of a phase is successful with probability at least pd, then w. o. p. more
than 1/5 of the steps in this phase are successful so that s is doubled. This can
be used to show that the 1/5-rule in fact ensures that each step is successful
with a probability in [a, b] ⊂ (0, 1/2) for two constants a, b.

Let ∆ := |c| − |c′| denote the spatial gain towards the origin, the optimum
of Sphere, in a step. For Sphere, a mutation is accepted (by elitist selection)
iff ∆ ≥ 0. Consequently, negative gains are zeroed out so that the expected
spatial gain of a step is E

[
∆ · 1{∆≥0}

]
. We know that E

[
∆ · 1{∆≥0}

]
is O(�̄/

√
n)

and – however the scaling factor is chosen/adapted – also O(|c| /n). Further-
more, E

[
∆ · 1{∆≥0} | s = Θ(|c| /n)

]
is Ω(�̄/

√
n) and Ω(|c| /n), i. e., the distance

from the optimum is expected to decrease by an Θ(1/n)-fraction if s is cho-
sen/adapted appropriately. Furthermore, in this situation for any constant κ > 0
the distance decreases (at least) by an κ/n-fraction with probability Ω(1).

Recall that �̄ = s·√n·(1−Θ(1/n)). Thus, when scaled Gaussian mutations are
used, “s = Θ(|c| /n)” is equivalent to “�̄ = Θ(|c| /√n)” which is again equivalent
to “ ∃ constant ε > 0 such that for n large enough P{∆ ≥ 0} ∈ [ε, 1/2−ε]” since
P
{|m| = Θ(�̄)

}
= 1−O(1/n). The equivalance of these three events/conditions

will be of great help in the argumentation.

3 Gain in a Single Step

In this section we now take a closer look at the properties of a Gaussian mutation
in the ellipsoidal fitness landscape under consideration. Since ξ = ω(1), ξ > 1 for
n large enough, and therefore, we assume ξ > 1 in the following. Furthermore,
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“f ” will also be used as an abbreviation of the f -value of the current individual
and “f ′ ” stands for the mutant’s f -value.

Recall that f = ξ d 2
1 + d 2

2 (for the current search point) and f ′ = ξ d′ 21 + d′ 22
(for its mutant), where d′1 := |y + m1| and d′2 := |z + m2|. The crucial point
to the analysis is the answer to the question how d1, d2 and the scaling fac-
tor s – and with it |m| – relate when the success probability of a step, i. e.
the probability that the mutant is accepted, is about 1/5. In other words, how
does the length of the mutation vector depend on d1 and d2, and how do d1

and d2 relate. Since ∇f̂(d1, d2) = (ξ 2 d1, 2 d2)�, for a search point satisfying
d1/d2 = 1/ξ an infinitesimal change of d1 has the same effect on f as an in-
finitesimal change of d2. Though the length of a mutation is not infinitesimal,
this may be taken as an indicator that the ratio d1/d2 will stabilize when using
isotropic mutations, and indeed, it turns out that the process stabilizes w. r. t.
d1/d2 = Θ(1/ξ). In this section, we will see that near the gentlest descent in our
ellipsoidal fitness landscape, namely for d1/d2 = O(1/ξ), a mutation succeeds
with a constant probability greater than 0 but smaller than 1/2 iff the scaling
factor s is Θ((

√
f/n)/ξ). Furthermore, asymptotically tight bounds on the ex-

pected f -gain of a single step in such a situation will be obtained. Therefore, we
will show that a mutation of a search point c for which d1/d2 = O(1/ξ) with a
mutation using a scaling factor s = Θ((

√
f/n)/ξ) in the ellipsoidal fitness land-

scape is “similar” to the mutation of a search point x in the Sphere scenario
with Sphere(x) = Θ(f/ξ2) (using the same scaling factor).

We start our analysis at a point c with ĉ = (0, φ), i. e. d1 = 0 and d2 = φ, so
that f = φ2. Consequently, ĉ is located at a point with gentlest descent w. r. t.
all points with f -value φ2, and hence, the curvature of the 2D-curve given by the
projection Ê of the n-ellipsoid E := {x | f(x) = f(c)} ⊂ Rn, is maximum at ĉ.
By a simple application of differential geometry, we get that the curvature of this
2D-curve at ĉ equals ξ/φ. Consequently, the radius of the osculating circle (Ŝ in
the figure) equals φ/ξ. As this circle Ŝ actually lies in the x1-xn-plane, it is the
equator of an n-sphere S with radius φ/ξ (the center of which lies on the xn-axis,
just like the current search point c). Note that this sphere lies completely inside
E such that S ∩E = {c}. Thus, the probability that a mutation hits inside S is
a lower bound on the probability that f ′ ≤ f , i. e.,

P{f ′ ≤ f} = P{c + m lies inside E}
≥ P{c + m lies inside S}
= P

{
|x + m| ≤ |x| for some x with |x| = radius of Ŝ = φ/ξ

}

= P
{
Sphere(x + m) ≤ Sphere(x) | Sphere(x) = (φ/ξ)2

}
.

In fact, our argumentation yields that the above (in)equalities hold for any
fixed length � of the mutation vector m, i. e., if the probabilities are conditioned
on the event {|m| = �}, respectively. Since � is arbitrary here and the radius
of S is independent of �, they remain valid when this condition is dropped.

For an upper bound on the probability that a mutation hits inside E, consider
a mutation (vector) having length � < 2φ (since for � ≥ 2φ, E lies inside M).
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Let M = {x ||| |c − x| = �} ⊂ Rn denote the mutation sphere consisting of all
potential mutants. Then M̂ is a circle (cf. the figure above) with radius � centered
at ĉ. (Note that, though c′ = c + m, given |m| = �, is uniformly distributed
upon M , ĉ′ is not uniformly distributed upon M̂). Now consider the curvature
at a point in Ê ∩ M̂ = {z1, z2} (there are exactly two points of intersection
since 0 < � < 2φ). Simple differential geometry shows that the curvature at zi is
κ� = Θ(ξ/φ) if � = O(φ/ξ). As the curvature at any point of Ê that lies inside
M̂ is greater than κ� (since ξ > 1), ĉ as well as zi lie inside the osculating circle
at z3−i which has radius r� := 1/κ� = Θ(φ/ξ) if � = O(φ/ξ). Thus, there is
also a circle with radius r� passing through ĉ such that z1 and z2 lie inside this
circle. Therefore, the circle passing through z1, z2, and ĉ has a radius smaller
than r�, and again, this circle actually lies in the x1-xn-plane of the search space
and is the image of the n-sphere having this circle as an equator. Hence,

P{f ′ ≤ f ||| |m| = �}
≤ P

{
Sphere(x + m) ≤ Sphere(x) | Sphere(x) = (αφ/ξ)2, |m| = �

}

where α = Θ(1) if � = O(φ/ξ). (Besides, α↘ 1, i. e. r� ↘φ/ξ, as �↘ 0.)
Recall that we assumed ĉ = (0, φ) ∈ R2, i. e. d1 = 0 and d2 = φ, in the above

argumentation. The estimates we have made for the bounds on the probability
of a mutation hitting inside the n-ellipsoid E, however, remain valid as long as
d1/d2 = O(1/ξ): Since ξ/φ is the maximum curvature of Ê, there is always a
circle Ŝ with radius φ/ξ lying inside Ê such that Ŝ ∩ Ê = {ĉ}, and since Ŝ
is in fact an equator of an n-sphere S, S lies completely inside E such that
S ∩E = {c}. For the upper bound, we must merely consider the zi at which the
curvature is smaller, and indeed, it turns out that as long as d1/d2 = O(1/ξ)
and � = O(φ/ξ), κ� remains Θ(ξ/φ).

Hence, when f(c) = φ2 such that c satisfies d1/d2 = O(1/ξ), we are in
a situation resembling (w. r. t. the success probability of a mutation) the mini-
mization of Sphere at a point having distance Θ(φ/ξ) from the optimum/origin.
Concerning the 1/5-rule, we then know (cf. Section 2) that

∃ constant ε > 0 such that for n large enough P{f ′ ≤ f} ∈ [ε, 1/2 − ε]
⇐⇒ s = Θ((φ/ξ)/n) ⇐⇒ �̄ = Θ((φ/ξ)/

√
n)

where ε correlates with the two multiplicative constants within the Θ-notation.
Thus, we are now going to investigate the gain of a step when f = φ2 and

s = Θ((φ/ξ)/n). As we have seen above, there exists an n-sphere S with radius
r = φ/ξ lying completely in E such that S ∩ E = {c}. Again owing to the
results for Sphere, we know that a mutation having length � = Θ(r/

√
n) hits

with probability Ω(1) a hyperspherical cap C ⊂ M containing all points of
M that are at least Ω(r/n) closer to the center of S than c. Consequently,
with probability Ω(1) the mutant lies inside E such that its distance from E
is Θ(r/n), i. e. Θ((φ/ξ)/n). If we pessimistically assume that this spatial gain
were realized along the gentlest descent of f , i. e. d1 = 0 and d′1 = 0 so that
d′2 = d2 −Θ((φ/ξ)/n), we obtain that with probability Ω(1)
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f ′ ≤ (φ−Θ((φ/ξ)/n) )2

= φ2 − 2αφ2/(ξn) + α2φ2/(ξn)2 for some α = Θ(1)
= φ2 − α(2 − α/(ξn))

︸ ︷︷ ︸
φ2/(ξn)

= φ2 − Θ(1) φ2/(ξn)
= f −Θ(f/(ξn)).

Let c′′ := argmin{f(c) , f(c′)} denote the search point that gets selected by
elitist selection. Since mutants with a larger f -value are rejected, i. e. f ′′ ≤ f ,
this implies for the expected f -gain of a step

E
[
f ′′ ||| s = Θ((

√
f/n)/ξ)

]
= f −Ω(f/(ξn)).

Due to the pessimistic assumptions, this lower bound on the f -gain just derived is
valid only for s = Θ((

√
f/n)/ξ)), yet it holds independently of the ratio d1/d2. A

spatial gain of Θ(f/(ξn)) could result in a much larger f -gain, though. If d1/d2 =
O(1/ξ), however, the f -gain is also O(f/(ξn)) as we will see. Therefore, let d1 =
α ·φ/ξ with α = O(1) and still f = ξ ·d2

1 +d2
2 = φ2. Owing to the argumentation

for the upper bound on the success probability of a step, we know that there is
an n-sphere S with radius r = Θ(φ/ξ) such that c ∈ S and I := M ∩ E ∈ S,
where I is the boundary of the hyperspherical cap C ⊂M lying inside E. Owing
to the results for Sphere, we know that E

[
dist(c′, I) · 1{c′∈C}

]
= O(r/n) for any

choice of the scaling factor, i. e., even if the length of the mutation vector were
magically chosen such that the expected distance of the selected search point c′′

from the center of S is minimized. In other words, we know that if a mutation
hits inside E, its expected distance from E is O(r/n) = O((φ/ξ)/n) anyway.
Thus, if we optimistically assume that the spatial gain were realized completely
in S1, i. e. completely on the ξ-weighted Spheren/2, (so that d′2 = d2, implying
d′′2 = d2), we obtain

E
[
ξ d′′21 + d′′22 | d1/d2 = O(1/ξ)

] ≥ ξ
(
d1 −O((φ/ξ)/n)

)2 + d2
2

= ξ
(
αφ/ξ −O((φ/ξ)/n)

)2 + d2
2

≥ ξ
(
(αφ/ξ)2 − 2α(φ/ξ) ·O((φ/ξ)/n)

)
+ d2

2

= ξ d2
1 −O(φ2/(ξn)) + d2

2

and hence,

E[f ′′ | d1/d2 = O(1/ξ)] = φ2 −O(φ2/(ξn)) = f −O(f/(ξn)).

This upper bound on the expected f -gain of a step holds only for d1/d2 = O(1/ξ),
yet independently of (the distribution of) |m|, which is converse to the lower
bound. However, altogether we have proved the following:

Lemma 1. Consider a step of the (1+1) ES. If d1/d2 = O(1/ξ) in this step, then
there exists a constant ε > 0 such that for n large enough P{f ′ ≤ f} ∈ [ε, 1/2−ε]
iff s = Θ((

√
f/n)/ξ).

If d1/d2 = O(1/ξ) and s = Θ((
√
f/n)/ξ) in this step, then E[f − f ′′] =

Θ((f/n)/ξ), and furthermore, f − f ′′ = Ω((f/n)/ξ) with probability Ω(1).
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4 Multi-step Behavior

The results just obtained imply that if d1/d2 = O(1/ξ) during a phase of
n steps (an observation phase of the 1/5-rule) and s = Θ((

√
f/n)/ξ), i. e.

P{f ′ ≤ f} ∈ [ε, 1/2 − ε] for a constant ε > 0, at the beginning of this phase,
then we expect Θ(n) steps each of which reduces the f -value by Θ(f/(ξn)). By
Chernoff bounds, there are Ω(n) such steps w. o. p., and thus, the f -value, and
with it the approximation error, is reduced w. o. p. by an Θ(1/ξ)-fraction in this
phase. Consequently, after Θ(ξ) consecutive phases, w. o. p. the approximation
error is halved – if during all these phases d1/d2 = O(1/ξ). Since, up to now,
the argumentation completely bases on the results for Sphere, even the argu-
mentation on the 1/5-rule can be adopted, which directly yields the following
result (cf. Theorem 2 in (Jägersküpper, 2003) or Theorem 3 in (Jägersküpper,
2002)):

Theorem 1. If d1/d2 = O(1/ξ) in the complete optimization process and the
initialization satisfies s = Θ((

√
f(c)/n)/ξ), then w. o. p. the number of steps/

f -evaluations to reduce the initial f -value/approximation error to a 2−t-fraction,
t = poly(n), is Θ(t · ξ · n).

Obviously, the assumption “d1/d2 = O(1/ξ) in the complete optimization pro-
cess” lacks any justification and is, therefore, objectionable. It must be replaced
by a much weaker assumption on the starting conditions only. Thus, the crucial
point in the analysis is the question why should the ratio d1/d2 remain O(1/ξ)
(once this is the case). This crucial question will be tackled in the remainder of
this paper.

Let ∆1 := d1 − d′1 and ∆2 := d2 − d′2 denote the spatial gain of the mutant
towards the origin in S1 resp. S2. Then d′1/d

′
2 for the mutant is smaller than

d1/d2 for its parent iff ∆1/d1 > ∆2/d2. Unfortunately, ∆1 and ∆2 correlate
because m1 and m2 use the same scaling factor s, and furthermore, we must
take selection into account since only certain combinations of ∆1 and ∆2 will be
accepted. To see which combinations become accepted note that

f ′ = ξ (d1 −∆1)2 + (d2 −∆2)2 = ξd2
1 − ξ2d1∆1 + ξ∆2

1 + d2
2 − 2d2∆2 +∆2

2 ,

and hence,

f ′ ≤ f ⇐⇒ f ′ − f ≤ 0 ⇐⇒ −ξ2d1∆1 + ξ∆2
1 − 2d2∆2 +∆2

2 ≤ 0.

Let α be defined by α/ξ = d1/d2. Then the latter inequality is equivalent to

−2αd2∆1 + ξ∆2
1 − 2d2∆2 +∆2

2 ≤ 0 ⇐⇒ −α∆1 +
ξ∆2

1

2d2
≤ ∆2 − ∆2

2

2d2

⇐⇒ −α∆1

(
1 − ∆1

2d1

)
≤ ∆2

(
1 − ∆2

2d2

)
(using d2 = ξ · d1/α)

Thus, when using elitist selection, the mutant is accepted iff the last inequality
holds. Note that whenever a mutation satisfying −α∆1 > ∆2 is accepted, then

1 − ∆1

2d1
< 1 − ∆2

2d2
⇔ ∆1

d1
>
∆2

d2
⇔ ∆1 >

d1

d2
∆2 ⇔ ∆1 >

α

ξ
∆2,
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implying that ∆1 > 0 and ∆2 < 0, and consequently, such a step surely results
in d′′1/d

′′
2 < d1/d2, i. e. α′′ < α. Hence, in the following we may concentrate on

the accepted mutations for which −α∆1 ≤ ∆2.
So, let us assume for a moment that the mutant replaces/becomes the current

individual iff −α∆1 ≤ ∆2. As ∆3−i, i ∈ {1, 2}, is random, E
[
∆i · 1{−α∆1≤∆2}

]

is a random variable taking the value E
[
∆i · 1{−α∆1≤x}

]
whenever ∆2 happens

to take the value x. We are interested in E
[
E
[
∆i · 1{−α∆1≤∆2}

]]
= E[di − d′′i ],

the expected reduction of the distance from the optimum in Si in a step, and
E[d′′1 ]/E[d′′2 ] ≤ d1/d2, i. e. we “expect” α′′ ≤ α, iff

E
[
E
[
∆1 · 1{−α∆1≤∆2}

]]
/d1 ≥ E

[
E
[
∆2 · 1{−α∆1≤∆2}

]]
/d2

⇐⇒ ξ · E[
E
[
∆1 · 1{−α∆1≤∆2}

]] ≥ α · E[
E
[
∆2 · 1{−α∆1≤∆2}

]]
.

In order to prove that this inequality holds for α = O(1), we aim at a lower bound
on E

[
E
[
∆1 · 1{−α∆1≤∆2}

]]
and an upper bound on E

[
E
[
∆2 · 1{−α∆1≤∆2}

]]
in

the following. Note that

E
[
E
[
∆i · 1{−α∆1≤∆2}

]]
= E

[
E
[
∆i · 1{−α∆1≤∆2} · 1{∆i<0}

] · 1{∆3−i<0}
]
+

E
[
E
[
∆i · 1{−α∆1≤∆2} · 1{∆i<0}

] · 1{∆3−i≥0}
]
+

E
[
E
[
∆i · 1{−α∆1≤∆2} · 1{∆i≥0}

] · 1{∆3−i<0}
]
+

E
[
E
[
∆i · 1{−α∆1≤∆2} · 1{∆i≥0}

] · 1{∆3−i≥0}
]

and that E
[
E
[
∆i · 1{−α∆1≤∆2} · 1{∆i<0}

] · 1{∆3−i<0}
]

= 0 since the three indi-
cator inequalities describe the empty set. Since ∆1, ∆2 ≥ 0 implies −α∆1 ≤ ∆2,

E
[
E
[
∆i 1{−α∆1≤∆2} 1{∆i≥0}

]
1{∆3−i≥0}

]
= E

[
E
[
∆i 1{∆i≥0}

] · 1{∆3−i≥0}
]

= E
[
∆i 1{∆i≥0}

] · P{∆3−i ≥ 0}.

As we need a lower bound on E
[
E
[
∆1 · 1{−α∆1≤∆2}

]]
, we may pessimistically

assume that ∆1 = −x/α whenever ∆2 happens to equal x. By this assumption,

E
[
E
[
∆1 · 1{−α∆1≤∆2} · 1{∆1<0}

] · 1{∆2≥0}
]

≥ −E
[
E
[
∆2 · 1{−α∆1≤∆2} · 1{∆2≥0}

] · 1{∆1<0}
]/
α,

E
[
E
[
∆1 · 1{−α∆1≤∆2} · 1{∆1≥0}

] · 1{∆2<0}
]

≥ −E
[
E
[
∆2 · 1{−α∆1≤∆2} · 1{∆2<0}

] · 1{∆1≥0}
]/
α.

All in all, we have

E
[
E
[
∆1 · 1{−α∆1≤∆2}

]] ≥ E
[
∆1 · 1{∆1≥0}

] · P{∆2 ≥ 0}
−E

[
E
[
∆2 · 1{−α∆1≤∆2} · 1{∆2≥0}

] · 1{∆1<0}
]/
α

−E
[
E
[
∆2 · 1{−α∆1≤∆2} · 1{∆2<0}

] · 1{∆1≥0}
]/
α,
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E
[
E
[
∆2 · 1{−α∆1≤∆2}

]]
= E

[
∆2 · 1{∆2≥0}

] · P{∆1 ≥ 0}
+E

[
E
[
∆2 · 1{−α∆1≤∆2} · 1{∆2≥0}

] · 1{∆1<0}
]

+E
[
E
[
∆2 · 1{−α∆1≤∆2} · 1{∆2<0}

] · 1{∆1≥0}
]
.

Recall that we want to show that for some α = O(1)

ξ · E[
E
[
∆1 · 1{−α∆1≤∆2}

]] ≥ α · E[
E
[
∆2 · 1{−α∆1≤∆2}

]]
,

and note that E
[
∆1 · 1{∆1≥0}

] · P{∆2 ≥ 0} and E
[
∆2 · 1{∆2≥0}

] · P{∆1 ≥ 0}
are of the same order when P{∆2 ≥ 0} and P{∆1 ≥ 0} are Ω(1), respectively.
Consequently, since ξ = ω(1), for the above inequality to hold for n large enough,
it would be sufficient that

E
[
E
[
∆2 · 1{−α∆1≤∆2} · 1{∆2≥0}

] · 1{∆1<0}
]

+ E
[
E
[
∆2 · 1{−α∆1≤∆2} · 1{∆2<0}

] · 1{∆1≥0}
] ≤ 0 (1)

because then we would have

E
[
E
[
∆1 · 1{−α∆1≤∆2}

]] ≥ E
[
∆1 · 1{∆1≥0}

] · P{∆2 ≥ 0} and

E
[
E
[
∆2 · 1{−α∆1≤∆2}

]] ≤ E
[
∆2 · 1{∆2≥0}

] · P{∆1 ≥ 0}.
Concerning the expected spatial gain in S2, however, we are going to use the
trivial upper bound E

[
E
[
∆2 · 1{−α∆1≤∆2}

]] ≤ E
[
∆2 · 1{∆2≥0}

]
, and thus, we

concentrate on a lower bound on the expected spatial gain in S1 in the following.
Therefore, we prove next that inequality (1) holds for α = O(1) at least if the
actual length of m2 differs by no more than a constant factor from �̄1, the
expected length of m1.

Lemma 2. If P{∆1 ≥ 0} = Ω(1) and |m2| = Θ(�̄1), there exists a constant α∗

such that for n large enough inequality (1) on this page holds for all α ≥ α∗.

The proof can be found in Appendix A. Note that �̄1 = �̄2 in our scenario. We
know (cf. Section 2) that

P
{∣
∣|m2| − �̄2

∣
∣ ≥ (

√
3 − 1) · �̄2

}
≤

(
(
√

3 − 1)2 · 2 · (n− 1)
)−1

< (n− 1)−1,

and thus, the condition “|m2| = Θ(�̄1)” is not met only with probability O(1/n).
Whether or not this condition is met, trivially ∆1 ≥ − |m1|, and consequently,
E
[
E
[
∆1 · 1{−α∆1≤∆2}

]] ≥ −�̄1. Applying this rough bound only in the case of∣
∣|m2| − �̄1

∣
∣ > (

√
3−1)· �̄1 and (∆1, ∆2) ∈ R<0×R≥0∪R≥0×R<0, the preceding

lemma reads: if P{∆1 ≥ 0} = Ω(1) then for α ≥ α∗

E
[
E
[
∆1 · 1{−α∆1≤∆2}

]] ≥ E
[
∆1 · 1{∆1≥0}

] · P{∆2 ≥ 0} − �̄1
n− 1

.

Next we will see that this additive error term vanishes in situations that arise
due to the 1/5-rule.
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Lemma 3. If P{∆1 ≥ 0} and P{∆2 ≥ 0} are Ω(1), respectively, there exists a
constant α∗ such that for α ≥ α∗ and n large enough

E
[
E
[
∆1 · 1{f ′≤f}

]] ≥ E
[
∆1 · 1{∆1≥0}

] · P{∆2 ≥ 0}/ 2.

Proof. Recall that f ′ ≤ f ∧ −α∆1 > ∆2 implies ∆1 > 0 > ∆2. Conse-
quently, all (∆1, ∆2)-tuples zeroed out by 1{−α∆1≤∆2}, but kept by 1{f ′≤f}
are in R>0 ×R<0. Analogously, f ′ > f ∧ −α∆1 ≤ ∆2 implies ∆1 < 0 < ∆2 so
that all (∆1, ∆2)-tuples kept by 1{−α∆1≤∆2}, but zeroed out by 1{f ′≤f} are in
R<0 ×R>0. Hence,

E
[
E
[
∆1 · 1{f ′≤f}

]] ≥ E
[
E
[
∆1 · 1{−α∆1≤∆2}

]]

(
and E

[
E
[
∆2 · 1{f ′≤f}

]] ≤ E
[
E
[
∆2 · 1{−α∆1≤∆2}

]] )
.

As P{∆1 ≥ 0} = Ω(1) implies E
[
∆1 · 1{∆1≥0}

]
= Ω(�̄1/

√
n) (cf. the results

restated in Section 2), the error term �̄1/(n−1) is by an O(1/
√
n)-factor smaller

than E
[
∆1 · 1{∆1≥0}

] ·P{∆2 ≥ 0} = Ω(�̄1/
√
n) ·Ω(1). Finally, for n large enough

1 −O(1/
√
n) ≥ 1/2. ��

Recall: we expect α′′ = α iff ξ · E
[
E
[
∆1 · 1{f ′≤f}

]]
= α · E

[
E
[
∆2 · 1{f ′≤f}

]]

or, equivalently, iff E
[
E
[
∆1 · 1{f ′≤f}

]]
/d1 = E

[
E
[
∆2 · 1{f ′≤f}

]]
/d2. Thus there

exists a distinct α0 such that there is no drift w. r. t. the ratio d1/d2, i. e., this
ratio becomes steady-state. Then for α < α0, α is more likely to increase than
to decrease, and for α > α0, α is more likely to decrease than to increase.

Since E
[
E
[
∆2 · 1{f ′≤f}

]] ≤ E
[
E
[
∆2 · 1{−α∆1≤∆2}

]] ≤ E
[
∆2 · 1{∆2≥0}

]
and

ξ = ω(1), we have ξ ·P{∆2 ≥ 0}/2 ≥ α∗ for n large enough if P{∆2 ≥ 0} = Ω(1),
and hence, α0 ≤ α∗ = O(1) under the conditions of Lemma 3. Besides, the 1/5-
rule just ensures these conditions as long as d1 = O(d2). For the same reasons,
there exists α↓ > α0 such that ξ · E[

E
[
∆1 · 1{f ′≤f}

]] ≥ 2 · α · E[
E
[
∆2 · 1{f ′≤f}

]]

(for n large enough) and α↓ = O(1) again under the conditions of Lemma 3.
Thus, when α ≥ α↓ there is a drift towards smaller α; more formally:

Lemma 4. Let the scaling factor s be fixed. If P{∆1 ≥ 0} and P{∆2 ≥ 0} are
Ω(1), respectively, there exists a constant α↓ such that for n large enough, if in
the ith step α[i] ≥ α↓ (yet α[i] = O(ξ)), then w. o. p. after at most n0.3 steps
the search is located at a point for which α < α[i], and furthermore, w. o. p.
α ≤ α[i] +O(α[i]/n0.6) in all intermediate steps.

The proof can be found in Appendix B. Since the 1/5-rule keeps the scaling
factor unchanged for n steps, we can virtually partition each such observation
phase in n/n0.3 = n0.7 sub-phases to each of which this lemma applies. Since
O(α[i]/n0.6) ≤ α[i] for n large enough, the preceding lemma tells us that, when
starting at a point with α[0] = O(1), i. e. d[0]

1 /d
[0]
2 = O(1/ξ), then α will be

upper bounded by 2 · max{α[0], α↓} = O(1) w. o. p. for any polynomial number
of steps. Incorporating these new insights into the argumentation for the 1/5-rule
known from the analysis of Sphere finally enables us to replace the objectionable
condition “d1/d2 = O(1/ξ) in the complete optimization process” in Theorem 1
by “d1/d2 = O(1/ξ) for the initial search point” – yielding the main result on
the rutime of the (1+1)ES on the quadratic forms considered:
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Theorem 2. If the initialization satisfies s = Θ((
√
f(c)/n)/ξ) and d1/d2 =

O(1/ξ), then w. o. p. the number of steps/f -evaluations to reduce the initial ap-
proximation error/f -value to a 2−t-fraction, t = poly(n), is Θ(t · ξ · n).

Naturally, one might ask what happens if the optimization starts at a point for
which d1 is not O(d2/ξ). A closer look at the argumentation in the proof of the
preceding lemma reveals that the same argumentation results in the proof of the
existence of another constant α⇓ > α↓ such that the drift towards smaller α is
that strong when α ≥ α⇓ that w. o. p. α drops by a constant fraction within at
most n steps:

Lemma 5. Let the scaling factor s be fixed. If P{∆1 ≥ 0}, 1/2 − P{∆1 ≥ 0},
P{∆2 ≥ 0} are Ω(1), respectively, then there exists a constant α⇓ such that for n
large enough: if in the ith step α[i] ≥ α⇓ (yet α[i] = O(ξ), i. e. d1 = O(d2)), then
w. o. p. after at most n steps the search is located at a point with α ≤ α[i]−Ω(α[i]).

See Appendix C for the proof. Finally, this lemma shows that α drops very
quickly if the lemma’s conditions are met. Again utilizing the results for Sphere,
it is simple to check that these conditions are met when d1 is O(d2) (and Ω(d2/ξ),
of course). If d1 is not O(d2), for instance if we start at a point of steepest
descent (w. r. t. all points of a fixed f -value), i. e. d2 = 0 so that f = ξd2

1, then a
simple argumentation using rough bounds on ∆1 and ∆2 yields that d1/d2 drops
even faster than in situations covered by the preceding lemma – which is hardly
surprising since the (expected) spatial gain of a step in S1 (on the ξ-weighted
Spheren/2) is negative whereas the one in S2 is positive.

5 Conclusion

Based on the results on how the (1+1)ES minimizes the well-known Sphere-
function, we have extended these results to a broader class of functions consist-
ing of certain positive definite quadratic forms. The main insight of the results
presented is that Gaussian mutations adapted by the 1/5-rule result in the opti-
mization process to stabilize such that the trajectory of the evolving search point
takes course very close to the gentlest descent of the ellipsoidal fitness landscape.
However, more insight into how EAs for continuous optimization work is gained,
contributing to building an algorithmic EA-theory for continuous search spaces.

Naturally, the results carry over to functions that are translations of the
considered functions. Furthermore, the argumentation presented here yields that
for arbitrary positive definite quadratic forms – which we may assume to be of
the form fn(x) =

∑n
i=1 ξi · xi

2 with ξn ≥ · · · ≥ ξ1 > 0 as we have seen – the
number of steps to halve the function value is O(n · ξn/ξ1). This is due to the
maximum curvature being upper bounded by (ξn/ξ1)/

√
f so that the radius of

the hypersphere S is at least
√
f · ξ1/ξn. As a direct consequence, we obtain a

Θ(n)-bound for functions where all the ξis are of the same order, i. e. ξn = Θ(ξ1).
This is the reason why ξ was chosen to be ω(1).
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A Proof of Lemma 2

“If P{∆1 ≥ 0} = Ω(1) and |m2| = Θ(�̄1), there exists a constant α∗ such
that for n large enough inequality (1) on page 272 holds for all α ≥ α∗.”

Let us assume for a moment that the distribution of |m2| were concentrated at
a certain �2, and let “D{·}” denote the density of an event. Then

E
[
E
[
∆2 · 1{−α∆1≤∆2} · 1{∆2≥0}

] · 1{∆1<0}
]

=
∫ �2

0

x · D{∆2 = x} · P{−x/α ≤ ∆1 < 0}dx and

E
[
E
[
∆2 · 1{−α∆1≤∆2} · 1{∆2<0}

] · 1{∆1≥0}
]

=
∫ 0

−�2

y · D{∆2 = y} · P{∆1 ≥ −y/α}dy

=
∫ �2

0

−x · D{∆2 = −x} · P{∆1 ≥ x/α} dx .

We know from the analysis of Sphere that for x ∈ [0, �2)

D{∆2 = x} <
Ψn

�2
· (1 − (x/�2)2)(n−3)/2 < D{∆2 = −x}

(with Ψn := π−1/2 · Γ(n/2) /Γ(n/2 − 1/2) = Θ(
√
n), where “Γ ” denotes the

well-known Gamma function).
Thus, the LHS of (1) on page 272 is smaller than

∫ �2

0

x · Ψn

�2
· (1 − (x/�2)2)(n−3)/2 · P{−x/α ≤ ∆1 < 0}dx

−
∫ �2

0

x · Ψn

�2
· (1 − (x/�2)2)(n−3)/2 · P{∆1 ≥ x/α} dx

=
∫ �2

0

x
Ψn

�2
(1 − (x/�2)2)(n−3)/2

(
P{−x/α ≤ ∆1 < 0} − P{∆1 ≥ x/α}) dx.

Let Φ : [0, �2] → [−1, 1] be defined by Φ(y) := P{−y ≤ ∆1 < 0} − P{∆1 ≥ y}.
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Hence,

∫ �2

0

x · Ψn

�2
· (1 − (x/�2)2)(n−3)/2 · Φ(x/α) dx ≤ 0

implies the inequality (1). Note that, obviously, P{−0 ≤ ∆1 < 0} = 0 and,
by assumption, P{∆1 ≥ 0} = Ω(1). Since, P{∆1 ≥ y} decreases monotonically,
whereas P{−y ≤ ∆1 < 0} increases monotonically when y grows, Φ(y) is mono-
tone increasing for 0 ≤ y ≤ min{�1, �2} and equals P{∆1 < 0} for y ≥ �1.
Furthermore, if ε denotes an arbitrary constant with 0 < ε < P{∆1 ≥ 0}, then
P{∆1 ≥ y} = ε implies y = Θ(�̄1/

√
n). Analogously, if 0 < ε < P{∆1 < 0}, then

P{−y ≤ ∆1 < 0} = ε implies y = Θ(�̄1/
√
n). Thus, there exists y̌ = κ·�̄1/

√
n− 1

with κ = Θ(1) such that P{∆1 ≥ y̌} = P{−y̌ ≤ ∆1 < 0}, i. e., Φ(y̌) = 0, and
hence, the inequality to be shown reads

− Ψn

�2

∫ α·y̌

0

x · (1 − (x/�2)2)(n−3)/2 · Φ(x/α) dx

≥ Ψn

�2

∫ �2

α·y̌
x · (1 − (x/�2)2)(n−3)/2 · Φ(x/α) dx. (2)

For the RHS we have, using (1−a/(n−1))(n−1)/2 ≤ e−a/2 for n−1 > a > 0,

∫ �2

α·y̌
x · (1 − (x/�2)2)(n−3)/2 · Φ(x/α) dx

≤
∫ �2

α·y̌
x · (1 − (x/�2)2)(n−3)/2 · 1 dx

=
[−�22

2
· (1 − (x/�2)2)(n−1)/2

(n− 1)/2

]�2

α·y̌

= 0 −
( −�22
n− 1

· (1 − (α · y̌/�2)2)(n−1)/2

)

=
�22

n− 1
· (1 − (α · y̌/�2)2)(n−1)/2

≤ �22
n− 1

· (1 − (α · κ · �̄1/�2)2/(n− 1)
)(n−1)/2

≤ �22
n− 1

· e−(α·κ·�̄1/�2)
2/2 if n− 1 >

(
α · κ · �̄1

�2

)2

.

For the LHS of (2) note that, by the same arguments, there exists ÿ = τ ·
�̄1/

√
n− 1 with τ = Θ(1) such that P{∆1 ≥ ÿ} = 2 ·P{−ÿ ≤ ∆1 < 0}, and thus,

for 0 ≤ y ≤ ÿ we have P{∆1 ≥ y} ≥ 2 · P{−y ≤ ∆1 < 0}, i. e., −Φ(y) ≥ p :=
P{∆1 ≥ ÿ}/2 = Ω(1). Hence,
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−
∫ α·y̌

0

x · (1 − (x/�2)2)(n−3)/2 · Φ(x/α) dx

≥
∫ α·ÿ

0

x · (1 − (x/�2)2)(n−3)/2 · p dx

= p ·
[−�22

2
· (1 − (x/�2)2)(n−1)/2

(n− 1)/2

]α·ÿ

0

= p · −�22
n− 1

·
((

1 − (α · ÿ/�2)2
)(n−1)/2 − 1

)

= p · �22
n− 1

·
(

1 −
(

1 − (α · τ · �̄1/�2)2
n− 1

)(n−1)/2
)

≥ p · �22
n− 1

·
(
1 − e−(α·τ ·�̄1/�2)

2/2
)

if n− 1 >
(
α · τ · �̄1

�2

)2

.

All in all, we have broken it down into the inequality

p · �22
n− 1

·
(
1 − e−(α·τ ·�̄1/�2)

2/2
)

≥ �22
n− 1

· e−(α·κ·�̄1/�2)
2/2.

Since p, τ , and κ are Θ(1), it is finally obvious that α = O(1) can be chosen
large enough for this inequality to hold for n large enough if �̄1/�2 = Θ(1), i. e.
�2 = Θ(�̄1).

B Proof of Lemma 4

“Let the scaling factor s be fixed. If P{∆1 ≥ 0} and P{∆2 ≥ 0} are Ω(1),
respectively, there exists a constant α↓ such that for n large enough, if
in the ith step α[i] ≥ α↓ (yet α[i] = O(ξ)), then w. o. p. after at most n0.3

steps the search is located at a point for which α < α[i], and furthermore,
w. o. p. α ≤ α[i] +O(α[i]/n0.6) in all intermediate steps.”

We begin by proving the second claim. Let us assume that, starting with the ith

step, α ≥ α[i] for k ≤ n0.3 steps. Recall that, due to elitist selection, the f -value
is non-increasing. As d2 > d

[i]
2 and f ≤ f [i] implies d1 < d

[i]
1 , which again implies

α/ξ = d1/d2 < d
[i]
1 /d

[i]
2 = α[i]/ξ, we have just proved that (surely) d2 ≤ d

[i]
2 in

these k steps, respectively. Since, irrespective of the adaptation of the length of
an isotropic mutation, in a step w. o. p. ∆2 = O(d2/n

0.9), in all k ≤ n0.3 steps
w. o. p. d2 ≥ d

[i]
2 − k · O(d[i]

2 /n
0.9) ≥ d

[i]
2 − O(d[i]

2 /n
0.6), i. e., d2 = d

[i]
2 (1 − ψ) for

some ψ = O(n−0.6), respectively. Concerning an upper bound on d1, we have

f = ξd2
1 + d2

2 = ξd2
1 +

(
d
[i]
2 − ψd

[i]
2

)2

≤ f [i] = ξd
[i]
1

2
+ d

[i]
2

2
,
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and hence

ξd2
1 ≤ ξd

[i]
1

2
+ (2ψ − ψ2)d[i]

2

2

⇔ d2
1 ≤ d

[i]
1

2
+ (2ψ − ψ2)

d
[i]
2

2

ξ
= d

[i]
1

2
+ (2ψ − ψ2)

d
[i]
1

2

α[i]

= d
[i]
1

2
(

1 +
ψ(2 − ψ)
α[i]

)

Since ψ(2 − ψ)/α[i] is O(ψ), i. e. O(n−0.6), we finally get that in all k steps

α

ξ
=
d1

d2
≤ d

[i]
1

d
[i]
2

·
√

1 +O(n−0.6)
1 −O(n−0.6)

=
α[i]

ξ
· (1 +O(n−0.6)).

Now we are ready for the proof of the lemma’s first claim. Therefore, assume
that α ≥ α[i] ≥ α↓ for n0.3 + 1 steps. We are going to show that the probability
of observing such a sequence of steps is exponentially small. Note that, since
w. o. p. d2 ≥ d

[i]
2 (1−ψ) as we have seen, our assumption implies that also w. o. p.

d1 ≥ d
[i]
1 (1 − ψ), i. e., w. o. p. d1 = d

[i]
1 − O(d[i]

1 /n
0.6) in all n0.3 steps. Let X [k]

j ,
j ∈ {1, 2}, denote the RV ∆j · 1{f ′≤f} in the (i− 1 + k)th step (so that E[Xj] =
E
[
E
[
∆j · 1{f ′≤f}

]]
). Then, according to the arguments preceding the lemma, for

1 ≤ k ≤ n0.3, E
[
X

[k]
1

]
/d

[k]
1 ≥ 2 · E

[
X

[k]
2

]
/d

[k]
2 , i. e.,

ξ · E
[
X

[k]
1

]
≥ 2 · α[k] · E

[
X

[k]
2

]
≥ 2 · α[i] · E

[
X

[k]
2

]
.

Let S[k]
j := X

[1]
j + · · · + X

[k]
j denote the total gain of k steps w. r. t. to dj . By

linearity of expectation, E
[
S

[k]
1

]
/d

[i]
1 ≥ 2 · E

[
S

[k]
2

]
/d

[i]
2 for 1 ≤ k ≤ n0.3; however,

the goal is to show that P
{
S

[k]
1 /d

[i]
1 ≤ S

[k]
2 /d

[i]
2 for 1 ≤ k ≤ n0.3

}
is exponentially

small.
Therefore, we will assume the worst case (w. r. t. to the analysis, i. e. the

best case w. r. t. the chance of observing such a sequence) that E
[
X

[k]
1

]
/d

[i]
1 =

2 · E
[
X

[k]
2

]
/d

[i]
2 in each step. To see that this is in fact the worst case consider

a search point x for which α ≥ α[i], i. e. d1/d2 > d
[i]
1 /d

[i]
2 , so that ξ · E[X1] >

2 · α · E[X2]. Now consider a search point x̃ with f(x̃) = f(x) but α̃ < α, i. e.,
d̃1 < d1 and d̃2 > d2. Owing to the results on Sphere we know that, for an
isotropic mutation of an arbitrary fixed length �j , for any fixed g ∈ (−�j, �j),
P{∆j ≥ g} strictly increases with dj (when dj > �j). Consequently, (indepen-
dently of the distribution of |m|) ∆̃1 is stochastically dominated by ∆1, whereas
∆̃2 stochastically dominates∆2. This implies that X1 dominates X̃1, whereasX2

is dominated by X̃2 (in particular, we have E[X1] < E
[
X̃2

]
and E[X2] > E

[
X̃2

]
).

As we have just seen, we may pessimistically assume that in each step the
search is located at a point for which ξ ·E[X1] = 2·α·E[X2]. Hence, E

[
S

[k]
1

]
/d

[i]
1 =
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2 · E
[
S

[k]
2

]
/d

[i]
2 . Let Sj := S

[n0.3]
j . Since 1.2/0.8 = 1.5 < 2, it is sufficient to show

that w. o. p. S1 ≥ 0.8 · E[S1] and w. o. p. S2 ≤ 1.2 · E[S2]. The Hoeffding bounds
(1963) (cf. Section 2.6.2 of (Hofri, 1987)) state that, for X [k]

j ∈ [aj , bj] and tj > 0,

P
{
S1 − E[S1] ≤ −n0.3 · t1

} ≤ exp
(−2 · n0.3 · t 21

(b1 − a1)2

)
and

P
{
S2 − E[S2] ≥ n0.3 · t2

} ≤ exp
(−2 · n0.3 · t 22

(b2 − a2)2

)
.

For tj = 0.2 · E[Sj ]/n0.3, both exponents equal

−0.08 · n−0.3 · E[Sj ]
2
/(bj − aj)2 = −Ω(n−0.3) ·

(
E[Sj ]
bj − aj

)2

,

respectively. Therefore, our goal is to show that E[Sj ]/(bj − aj) = Ω(n0.2).
First we concentrate on E[S1]. Since S1 is the sum of n0.3 RVs X [k]

1 , it suffices
to show that E

[
X

[k]
1

]
/(b1 − a1) = Ω(n−0.1) for 1 ≤ k ≤ n0.3. In the following we

assume that d1 = d
[i]
1 ±O(d[i]

1 /n
0.6) and d2 ∈

[
d
[i]
2 −O(d[i]

2 /n
0.6), d[i]

2

]
since we

have seen (in the preceding proof of the second claim) that this happens w. o. p.
Owing to the results for Sphere, we know that P{∆j ≥ 0} = Ω(1) implies that
the scaling factor s is O(dj/n), which results in �̄j = O(dj/

√
n), and that, under

these conditions, w. o. p. |∆j | = O(�̄j/n0.4). Recall that E
[
∆1 · 1{f ′≤f}

]
is at

least E
[
∆1 · 1{∆1≥0}

] · P{∆2 ≥ 0}/2. Since P{∆2 ≥ 0} = Ω(1) in ith step and
d2 ≥ d

[i]
2 (1 − O(n−0.6)) in all n0.3 steps, in each of these steps P{∆2 ≥ 0} =

Ω(1). Hence, E[X1] = Ω(E
[
∆1 · 1{∆1≥0}

]
) in each of the n0.3 steps. Owing to

the results for Sphere, we know that (since �̄1 = O(d1/
√
n) as we have seen)

E
[
∆1 · 1{∆1≥0}

]
= Θ(�̄1/

√
n) so that E[X1] = Ω(�̄1/

√
n). Thus, E[S1] = n0.3 ·

Ω(�̄1/
√
n) = Ω(�̄1/n0.2) and b1−a1 = O(�̄1/n0.4), i. e., E[S1]/(b1−a1) = Ω(n0.2).

Concerning a lower bound on E[S2], recall that E[S1]/d
[i]
1 = 2 · E[S2]/d

[i]
2 ,

i. e., E[S2] = E[S1] · d[i]
2 /(2 · d[i]

1 ) = Ω(�̄1/n0.2) · Ω(ξ/α[i]). As �̄1 = �̄2 and (by
assumption) α[i] = O(ξ), we have E[S2] = Ω(�̄2/n0.2). Since b2−a2 = O(�̄2/n0.4)
(see above), E[S2]/(b2 − a2) = Ω(�̄2/n0.2)/O(�̄2/n0.4) is also Ω(n0.2).

All in all, our initial assumption that α ≥ α[i] ≥ α↓ for n0.3 + 1 steps implies
that w. o. p. for the first n0.3 steps S1/S2 > α[i]/ξ, i. e., that w. o. p. after at most
n0.3 steps α drops below α[i] – showing that the sequence of steps we assumed
to be observed happens only with an exponentially small probability.

C Proof of Lemma 5

“Let the scaling factor s be fixed. If P{∆1 ≥ 0}, 1/2 − P{∆1 ≥ 0},
P{∆2 ≥ 0} are Ω(1), respectively, then there exists a constant α⇓ such
that for n large enough: if in the ith step α[i] ≥ α⇓ (yet α[i] = O(ξ), i. e.
d1 = O(d2)), then w. o. p. after at most n steps the search is located at
a point with α ≤ α[i] −Ω(α[i]).”
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By the same arguments used before, under the given assumptions there ex-
ists α′ = O(1) such that for n large enough ξ · E

[
E
[
∆1 · 1{f ′≤f}

]] ≥ 3 · α ·
E
[
E
[
∆2 · 1{f ′≤f}

]]
. Let α⇓ := 2 · α′. Assume that α[i] ≥ α⇓ and α ≥ α⇓/2 = α′

for n steps (if α drops below α⇓/2 within one of these n steps, there is nothing
to show). Following the same argumentation used in the proof of the preceding
lemma (except for Sj now being the sum of n (instead of n0.3) RVs), we get that
w. o. p. S1/S2 > 2 · α[i]/ξ, and hence, after these n steps w. o. p.

d1

d2
=

d
[i]
1 − S1

d
[i]
2 − S2

<
d
[i]
1 − S1

d
[i]
2 − S1 · ξ/(2 · α[i])

=
d
[i]
1 − S1

d
[i]
1 · ξ/α[i] − S1 · ξ/(2 · α[i])

=
d
[i]
1 − S1

d
[i]
1 − S1/2

· α
[i]

ξ
=

(

1 − S1/2

d
[i]
1 − S1/2

)

· d
[i]
1

d
[i]
2

.

Thus, we must finally show that S1 = Ω(d[i]
1 ). Recall that S1 is the sum of n

RVs X [k]
1 (∆1 · 1{f ′≤f} in the (i − 1 + k)th step, respectively). In the follow-

ing we consider the ith step. Our argumentation just bases on the fact that
E
[
∆1 · 1{f ′≤f}

] ≥ E
[
∆1 · 1{∆1≥0}

] · P{∆2 ≥ 0}/2 as we have seen, and since
P{∆2 ≥ 0} = Ω(1) by assumption, E

[
∆1 · 1{f ′≤f}

]
= Ω(E

[
∆1 · 1{∆1≥0}

]
). Fur-

thermore, since P{∆1 ≥ 0} as well as 1/2−P{∆1 ≥ 0} are Ω(1) by assumption,
we know that E

[
∆1 · 1{∆1≥0}

]
= Θ(d1/n) (cf. Section 2). Thus, the assumptions

ensure E
[
∆1 · 1{f ′≤f}

]
= Ω(d1/n), and hence, E[S1] = n · Ω(d1/n) = Ω(d1).

Applying Hoeffding’s bound just as in the proof of the preceding lemma, we
immediately get that S1 is Ω(E[S1]), i. e. Ω(d[i]

1 ), w. o. p.
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