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Abstract. Weighted recombination is a means for improving the lo-
cal search performance of evolution strategies. It aims to make effective
use of the information available, without significantly increasing com-
putational costs per time step. In this paper, the potential speed-up
resulting from using rank-based weighted recombination is investigated.
Optimal weights are computed for the sphere model, and comparisons
with the performance of strategies that do not make use of weighted
recombination are presented. It is seen that unlike strategies that rely
on unweighted recombination and truncation selection, weighted mul-
tirecombination evolution strategies are able to improve on the serial
efficiency of the (1 + 1)-ES on the sphere. The implications of the use
of weighted recombination for noisy optimization are studied, and par-
allels to the use of rescaled mutations are drawn. The cumulative step
length adaptation mechanism is formulated for the case of an optimally
weighted evolution strategy, and its performance is analyzed.

1 Introduction

In his seminal book Rechenberg [18] in 1973 presented the derivation of a law
describing the progress rate of the (1 + 1)-ES on the high-dimensional sphere
model. From that law, it can be seen numerically that for optimally adapted
mutation strength, the normalized rate at which the optimum is approached
equals 0.202. In the years that followed, evolution strategies evolved. The single-
parent strategy was replaced by population-based strategies, and recombination
was introduced. In 1996, Beyer [9] studied the performance on the sphere model
of the (µ/µ, λ)-ES – a population-based strategy that uses multi-recombination.
He made the surprising discovery that the serial efficiency of the (µ/µ, λ)-ES
for optimally chosen population size parameters asymptotically approaches the
same value of 0.202 that the (1 + 1)-ES had achieved more than two decades
earlier. Moreover, while few theoretical results exist, there is evidence that none
of the (µ/ρ +, λ)-ES achieve a serial efficiency on the sphere model that exceeds
that of the simple (1 + 1)-ES. Needless to say, this is not to imply that no
progress had been made. Population-based strategies allow for parallelization,
have greater adaptation capabilities, and are much superior when applied to
noisy optimization problems. Nonetheless, the (1+1)-ES sets the benchmark for
serial efficiency on the simple sphere model.
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Key to achieving a serial efficiency that exceeds that of the (1 + 1)-ES is
to recognize that generally, all (µ/ρ +, λ)-ES discard information. Truncation
selection leads to all of the selected offspring having the same influence on the
progress of the strategy, irrespective of their relative ranks within the population.
For example, for the (µ/µ, λ)-ES the influence of the best candidate solution
equals that of the µth best. Similarly, all relative rank information from those
offspring that are not selected to survive is discarded. Those candidate solutions
are without influence on the step taken by the strategy, no matter whether they
narrowly missed the cut or they missed it by a wide margin.

More complete use of the information gained by evaluating offspring candi-
date solutions can be made by weighting their influence in the recombination
and selection process. Weights can be chosen such that they more carefully dis-
criminate between good and bad candidate solutions than truncation selection
does. The choice of weights can be based either on function values or on rank
within the set of offspring generated. A strategy that uses function values to
determine weights is the evolutionary gradient search strategy (EGS) proposed
by Salomon [21]. EGS differs from evolution strategies not only in its reliance
on function values rather than ordinal data, but also in its use of “negative in-
formation”. The weight assigned to a candidate solution is proportional to the
difference between that candidate solution’s fitness and the fitness of the search
point that it has been generated from. As a consequence, those offspring that
improve on the previous time step’s fitness receive positive weights, and offspring
that are inferior to their parent receive negative weights and thus result in the
strategy moving in the opposite direction. An investigation in [2] has shown that
EGS is indeed capable of achieving serial efficiencies on the sphere model that
exceed those of the (1 + 1)-ES. However, it has also been seen that the explicit
rescaling of progress vectors that EGS performs hampers genetic repair, and
that as a result EGS is generally inferior to the (µ/µ, λ)-ES in the presence of
noise as well as if implemented on parallel computers.

Rank-based weighted recombination has been employed by Hansen and Os-
termeier [15] in connection with their covariance matrix adaptation evolution
strategy (CMA-ES), and it has also been used in the comparative review of evo-
lutionary algorithms by Kern et al. [16]. In both references, it is suggested to
assign positive weights of different magnitudes to the better 50 percent of the
candidate solutions generated. A heuristic rule for choosing those weights is pro-
posed. Without a reason being given, but probably in realization of the fact that
the opposite of a bad direction is not always a good direction, the use of negative
weights is discouraged. Zero weights are assigned to the inferior 50 percent of
candidate solutions generated. In [15] it is noted that speed-up factors of less
than two are observed compared to the (µ/µ, λ)-ES. A direct and systematic
comparison between weighted and unweighted recombination is not performed.

The only attempt made so far to explore the consequences of the choice of
weights analytically has been made by Rudolph [20]. For a weighted strategy that
generates offspring by placing them on a sphere shell rather than by Gaussian
mutations, Rudolph computes expressions for the progress rate on the sphere
model. Those expressions involve expectations of joint beta order statistics and
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are difficult to determine in the general case. For that reason, Rudolph explores
consequences of his results only for the case that the search space dimension-
ality equals three. Even for this special case the resulting expressions are too
complicated to determine optimal weights. Rudolph does observe that the use of
negative weights can have effects beneficial for the progress rate of the strategy,
and that the serial efficiency of a strategy using unweighted recombination in
connection with truncation selection can be exceeded by strategies that make
use of weighted recombination.

It is the goal of this paper to obtain an improved understanding of the inter-
play of mutation, recombination, and selection in evolution strategies, and of the
potential that weighted recombination has to speed up local search. In contrast
to the aforementioned paper by Rudolph, focus here is on Gaussian mutations
and the case that the search space dimensionality is high. This situation has
the advantage of being comparatively well understood, and of allowing an an-
alytical treatment. The results obtained are exact only in the limit of infinite
search space dimensionality, but they do contribute to the understanding of the
evolutionary processes in sufficiently high-dimensional spaces.

The remainder of this paper is organized as follows. The sphere model as an
important environment for studying local search properties of direct optimiza-
tion strategies as well as weighted multirecombination evolution strategies are
introduced in Sect. 2. In Sect. 3, the quality gain of weighted multirecombination
evolution strategies is computed and optimal weights are determined. Section 4
addresses the issue of how the performance of evolution strategies with opti-
mally weighted multirecombination is affected by noise. It is seen that the issue
of rescaled mutations raised by Rechenberg [19] and studied by Beyer [10, 11]
arises naturally in connection with the choice of weights and the issue of ge-
netic repair in multirecombination strategies. In Sect. 5, the cumulative step
length adaptation mechanism is formulated for the case of the optimally weighted
multirecombination evolution strategy, and its performance is analyzed. Finally,
Sect. 6 concludes with a brief summary and directions for future research.

2 Preliminaries

In this section evolution strategies using weighted multirecombination for the
minimization of functions f : IRN → IR are formally introduced. Then the sphere
model is briefly discussed as an important environment for learning about the
behavior of local search algorithms.

2.1 Weighted Multirecombination Evolution Strategies
Weighted multirecombination evolution strategies repeatedly update a search
point x ∈ IRN using the following four steps:

1. Generate λ offspring candidate solutions y(i) = x + σz(i), i = 1, . . . , λ. The
z(i) are vectors consisting of N independent, standard normally distributed
components and are referred to as mutation vectors. The nonnegative quan-
tity σ is referred to as the mutation strength and determines the step length
of the strategy.



218 Dirk V. Arnold

2. Determine the objective function values f(y(i)) of the offspring candidate
solutions and order the y(i) according to those values. After ordering, index
k; λ refers to the kth best of the λ offspring (the kth smallest for minimiza-
tion; the kth largest for maximization).

3. Compute the weighted average

z(avg) =
λ∑

k=1

wk;λz(k;λ) (1)

of the z(i) vectors. The wk;λ are weights that depend on the rank of the
corresponding candidate solution in the set of all offspring.

4. Replace the search point x by x + σz(avg).

The vector z(avg) defined in Eq. (1) is referred to as the progress vector. Clearly,
σz(avg) connects consecutive search points. Notice that for the particular choice
of weights

wk;λ =

{
1/µ if 1 ≤ k ≤ µ

0 otherwise
, (2)

the weighted multirecombination evolution strategy simply is the (µ/µ, λ)-ES.
In that case, the search point x is the centroid of the population that consists
of the µ best of the λ offspring candidate solutions generated. Also notice that
the evolutionary gradient search strategy introduced in [21] does not entirely fit
into the framework of rank-based weighted multirecombination as weights are
chosen proportional to f(x) − f(y(i)) rather than based on rank. Moreover, a
normalization step is required between the averaging of mutation vectors and
the update of the search point.

2.2 The Sphere Model

Since the early work of Rechenberg [18], the local performance of evolution
strategies has commonly been studied on the quadratic sphere given by objective
function

f(x) = (x̂ − x)T(x̂ − x), x ∈ IRN ,

where the task is minimization and where x̂ ∈ IRN is the optimizer. The sphere
serves as a model for objective functions in the vicinity of well-behaved local
optima. See [5] for a justification of the usefulness of such considerations and
for possible generalizations. Possibly most important among the arguments pre-
sented is that strategies such as the CMA-ES described in [15] have been found to
effectively transform a wide range of convex quadratic functions into the sphere,
opening up the possibility that findings made for the sphere model have much
wider-ranging significance.

In order to quantify the local performance of search strategies on the sphere,
consider the effect of adding a vector σz to the current search point x. Multire-
combination evolution strategies do so both when generating offspring candidate
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Fig. 1. Decomposition of a vector z into central component zA and lateral compo-
nent zB . Vector zA is parallel to x̂−x, vector zB is in the hyperplane perpendicular to
that. The starting and end points, x and y = x + σz, of vector σz are at distances R
and r from the optimizer x̂, respectively

solutions and when updating the search point at the end of an iteration. Denot-
ing the respective distances of x and y = x+σz from the optimizer by R and r,
the difference δ(z) = R2 − r2 between objective function values f(x) = R2 and
f(y) = r2 is referred to as the fitness advantage associated with vector z 1. The
fitness advantage associated with mutation vectors determines the ordering of
the candidate solutions and thus the weights with which those mutation vectors
enter recombination. The fitness advantage associated with the progress vector
can be used for defining a performance measure for evolution strategies as seen
below.

The commonly used approach to determining δ(z) on the sphere model relies
on a decomposition of vector z that has been used in [12, 19] and that is illus-
trated in Fig. 1. A vector z originating at search space location x can be written
as the sum of two vectors zA and zB, where zA is parallel to x̂ − x and zB is
in the (N − 1)-dimensional hyperplane perpendicular to that. The vectors zA

and zB are referred to as the central and lateral components of vector z, respec-
tively. The signed length zA of the central component of vector z is defined to
equal ‖zA‖ if zA points towards the optimizer and to equal −‖zA‖ if it points
away from it. Using elementary geometry, it can easily be seen that

r2 = (R − σzA)2 + σ2‖zB‖2,

and therefore, rearranging terms and noticing that ‖z‖2 = z2
A + ‖zB‖2, that

δ(z) = R2 − r2

= 2RσzA − σ2‖z‖2.

1 While the notation adopted here is deliberately brief and does not reflect that ex-
plicitly, it is important to keep in mind that the fitness advantage δ(z) depends not
only on vector z but also on the mutation strength σ
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Introducing normalized quantities

σ∗ = σ
N

R
and δ∗ = δ

N

2R2
,

it follows

δ∗(z) = σ∗zA − σ∗2

2N
‖z‖2 (3)

for the normalized fitness advantage associated with vector z.
In order to compute the normalized fitness advantage associated with vec-

tor z using Eq. (3), both the squared length and the signed length of the central
component of that vector need to be determined. For the case that z is a muta-
tion vector, it is well known from [12] that zA is standard normally distributed,
and that ‖z‖2 is χ2

N -distributed. As for large N the χ2
N -distribution tends to a

normal distribution with mean N and with standard deviation
√

2N , it follows
that the variance of ‖z‖2/N is of order 1/N and therefore that ‖z‖2/N can be
approximated with unity provided that N is sufficiently large. In what follows,
we will write A

N→∞= B when B is obtained from A by making the simplifica-
tion of replacing ‖z‖2/N by unity. Until step length adaptation is considered in
Sect. 5, no further simplifications are required. The normalized fitness advantage
associated with a mutation vector

δ∗(z) N→∞= σ∗zA − σ∗2

2
(4)

is asymptotically normally distributed with mean −σ∗2/2 and with variance σ∗2.
A commonly used performance measure for local search strategies is the

quality gain which measures the rate at which the optimum is approached in the
space of fitness values. It is defined as the expectation of the normalized fitness
advantage associated with the progress vector and is thus

∆∗ = E
[
δ∗

(
z(avg)

)]

= σ∗E
[
z
(avg)
A

]
− σ∗2

2N
E

[
‖z(avg)‖2

]
. (5)

With z(avg) being a linear combination of mutation vectors, the considerations
with regard to the scaling of the central and lateral components of mutation
vectors made above ensure us that both summands on the right hand side of
Eq. (5) remain finite as N approaches infinity.

Another common performance measure – the progress rate – measures the
rate at which the optimizer is approached in search space and is known from [12]
to agree asymptotically with the quality gain on the sphere model for high
search space dimensionality provided that appropriate normalizations are used.
Moreover, as a performance measure that takes computational costs into account,
it is commonplace to define the serial efficiency η of evolution strategies as the
maximal quality gain per evaluation of the objective function. As the number
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of objective function evaluations per time step is λ, the serial efficiency of an
evolution strategy is

η =
1
λ

max
σ∗ ∆∗. (6)

Inherent in this definition are the assumptions that computational costs are
dominated by the cost of evaluating the fitness function, and that evaluations
need to be performed one after the other on a single processor.

3 Optimal Weighted Recombination

In this section an expression for the quality gain of the weighted multirecom-
bination evolution strategy on the sphere model is derived that generalizes the
corresponding result for the (µ/µ, λ)-ES obtained in [12, 19]. Then, optimal set-
tings for the mutation strength and the recombination weights are computed,
and consequences for the quality gain of the strategy are discussed.

3.1 Determining the Quality Gain

In order to determine the quality gain of the weighted multirecombination evo-
lution strategy using Eq. (5), expected values of the squared length and of the
signed length of the central component of the progress vector defined in Eq. (1)
need to be computed. The progress vector’s squared length is

‖z(avg)‖2 =
N∑

i=1

(
λ∑

k=1

wk;λz
(k;λ)
i

)2

=
N∑

i=1

λ∑

k=1

w2
k;λz

(k;λ)
i

2
+

N∑

i=1

λ∑

k=1

λ∑

l=1
l �=k

wk;λwl;λz
(k;λ)
i z

(l;λ)
i , (7)

where the z
(j)
i are the components of the mutation vectors and as such standard

normally distributed. The second term on the right hand side is a crosstalk term
with mean zero. Thus, taking the expectation and exchanging the order of the
summations in the first term it follows that

E
[‖z(avg)‖2

]

N
=

λ∑

k=1

w2
k;λ

E
[‖z(k;λ)‖2

]

N

N→∞=
λ∑

k=1

w2
k;λ, (8)

where in the second step we have made use of the important fact noted in Sect. 2
that asymptotically, E[‖z‖2]/N → 1 for mutation vector z.
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As for the expected signed length of the central component of the progress
vector, it follows from the definition of that vector in Eq. (1) that

E
[
z
(avg)
A

]
=

λ∑

k=1

wk;λE
[
z
(k;λ)
A

]
,

where of course z
(k;λ)
A is the signed length of the central component of the mu-

tation vector that corresponds to the kth best offspring candidate solution. In
order to compute the expectations, it is important to recall from Sect. 2 that the
z
(i)
A are standard normally distributed. From Eq. (4) it follows that the signed

lengths of the central components of the mutation vectors determine the fitness
of the corresponding offspring candidate solutions in that the offspring with the
kth largest value of zA is the kth fittest. Thus, in the limit of infinite search
space dimensionality, z

(k;λ)
A is the (λ + 1 − k)th order statistic of a sample of

λ independent realizations of a standard normally distributed random variate.
According to [7], the probability density function of z

(k;λ)
A is

pk;λ(x) =
1√
2π

λ!
(λ − k)!(k − 1)!

e−
1
2x2

[Φ(x)]λ−k [1 − Φ(x)]k−1, (9)

where Φ(x) denotes the cumulative distribution function of the standardized
normal distribution. It thus follows that the expected value of the signed length
of the central component of the progress vector is

E
[
z
(avg)
A

]
N→∞=

λ∑

k=1

wk;λEk;λ, (10)

where

Ek;λ = E
[
z
(k;λ)
A

]
=

∫ ∞

−∞
xpk;λ(x)dx

denotes the expectation of the (λ + 1 − k)th order statistic and can easily be
obtained by numerical integration.

Using Eqs. (8) and (10) in Eq. (5), it follows that the quality gain of the
weighted multirecombination evolution strategy is

∆∗ N→∞= σ∗
λ∑

k=1

wk;λEk;λ − σ∗2

2

λ∑

k=1

w2
k;λ. (11)

Note that for the choice of weights in Eq. (2), Eq. (11) agrees with the quality
gain law for the (µ/µ, λ)-ES derived in [12, 19]. Figure 2 compares predictions
made using Eq. (11) with measurements obtained in runs in finite-dimensional
search spaces of a (3/3, 10)-ES and a weighted evolution strategy for which the
choice of weights is motivated in Sect. 3.2. It can be seen that the agreement
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Fig. 2. Quality gain ∆∗ of a (10)opt-ES and of a (3/3, 10)-ES plotted against the
mutation strength σ∗. The solid and dashed curves have been obtained from Eq. (11) for
the choices of weights in Eqs. (2) and (15), respectively. The crosses mark measurements
obtained in runs of the strategies in search spaces with N = 40 (+) and N = 400 (×)

between predictions and measurements is good provided that the search space
dimensionality is sufficiently high2.

3.2 Optimal Parameter Settings

Of course, it is desirable to choose the strategy’s parameters such that the quality
gain is maximized. Demanding that the derivative of Eq. (11) with respect to
σ∗ equals zero yields optimal normalized mutation strength

σ∗ N→∞=
∑λ

k=1 wk;λEk;λ∑λ
k=1 w2

k;λ

. (12)

Reinserting this result into Eq. (11), the quality gain of the strategy for optimally
adapted mutation strength is

∆∗ N→∞=
1
2

(∑λ
k=1 wk;λEk;λ

)2

∑λ
k=1 w2

k;λ

. (13)

2 In Fig. 2 as well in the figures below, the quality gain has been measured using
definition

∆∗ = −N

2
log

r2

R2

rather than that in Eq. (5). Both definitions agree in the limit N → ∞, and the
difference is small for large enough N . While mathematically not as convenient, the
definition used for the measurements is more useful for describing the progress of
evolution strategies on the sphere model over many time steps
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Fig. 3. Optimal weights wk;λ = Ek;λ plotted against the rank k of a candidate solution
in the set of offspring for several values of λ. The ranks have been scaled linearly to
fall in the range from zero to one. Note that only the points, not the connecting lines,
are of practical significance

Optimal weights wk;λ can now be determined by computing the derivatives of
Eq. (13) with respect to wk;λ for k = 1, . . . , λ. Demanding that all derivatives
be zero yields the system of equations

Ek;λ

λ∑

l=1

w2
l;λ = wk;λ

λ∑

l=1

wl;λEl;λ, k = 1, . . . , λ. (14)

Clearly, the system can be solved by setting

wk;λ = Ek;λ for k = 1, . . . , λ, (15)

and it is easily seen that the corresponding extremum really is a maximum.
Therefore, optimal weights of the multirecombination evolution strategy on the
infinite-dimensional sphere model are given by the first moments of the order
statistics of the standardized normal distribution. We will refer to the strategy
with optimally chosen weights as (λ)opt-ES.

The dependence of the optimal weights on the rank within the set of can-
didate solutions is illustrated in Fig. 3. It can be seen that in order to achieve
maximal progress on the sphere model, half of the offspring should enter recom-
bination with positive weights, the other half should receive negative weights.
Optimal weights are symmetric in that for every positive weight, there is a neg-
ative weight of equal value. This is in contrast to the behavior of EGS that
assigns negative weights to the majority of the offspring generated as in convex
environments, most will be inferior to their parent. Also note that the curves in
Fig. 3 differ strongly from the step curves defined by Eq. (2) that describe the
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choice of weights characterizing the (µ/µ, λ)-ES. Finally, it is worth mentioning
the good correspondence between the left half of the curves in Fig. 3 and the
(presumably empirically based) recommendations with regard to the choice of
weights made in [15].

Inserting the optimal weights given in Eq. (14) into Eq. (13), it follows that
the maximal quality gain of the (λ)opt-ES is

∆∗ N→∞=
1
2

λ∑

k=1

E2
k;λ. (16)

Defining

Wλ =
λ∑

k=1

E2
k;λ

and using results on properties of order statistics from [7], it can be seen that
Wλ/λ asymptotically approaches unity as λ increases. Thus, the serial efficiency
of the (λ)opt-ES defined in Eq. (6) asymptotically approaches a value of 0.5,
nearly two and a half times that of both the (µ/µ, λ)-ES and the (1 + 1)-ES.
Figure 2 illustrates that that performance advantage can indeed be observed in
runs of evolution strategies. The curve for the (10)opt-ES peaks at a value about
2.3 times as large as that of the (3/3, 10)-ES, and most of that performance ad-
vantage is present in the measurements for N = 40 and N = 400 as well. Finally,
the dependence of the serial efficiency on the number of offspring generated per
time step is illustrated in Fig. 4. It can be seen that the (λ)opt-ES solidly out-
performs not only the (µ/µ, λ)-ES, but it also has a higher serial efficiency than
EGS for all but the smallest values of λ.

4 Noise

As many real-world optimization problems are plagued by noise, the assumption
that the fitness of a candidate solution can be determined exactly often is an
idealization. In order to study the effects of noisy fitness evaluations on the
performance of optimization strategies, it is frequently assumed that noise can
be modeled by means of an additive Gaussian term. That is, it is assumed
that the evaluation of a candidate solution y yields a value that is normally
distributed with mean f(y) and with variance σε

2, where σε is referred to as
the noise strength and may vary with the location in search space. See [1] for
comprehensive results with regard to the effects of noise on various (µ/ρ +, λ)-ES.

An evolution strategy that has been found to be particularly robust with
regard to the effects of noise is the (µ/µ, λ)-ES. In [3] it has been seen that
this robustness is to be attributed to the genetic repair effect. The term “ge-
netic repair” has been introduced by Beyer [8, 12] and refers to statistical error
correction properties inherent in the multirecombination procedure. Typically,
genetic repair affords the ability to operate with mutation strengths that in-
crease (for the sphere model roughly linearly) with the number of candidate
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Fig. 4. Serial efficiency η of strategies on the sphere model in the limit N → ∞ plotted
against the number of offspring λ generated per time step. The curves represent results
for the (λ)opt-ES described by Eq. (16), the (µ/µ, λ)-ES analyzed in [12], and EGS
studied in [2]

solutions generated per time step. The accompanying increase in quality gain is
also roughly linear in λ, opening up the possibility of linear speed-up in a parallel
implementation. In the presence of noise, the increased mutation strengths have
been found to yield the additional benefit of reducing the noise-to-signal ratio
ϑ = σ∗

ε /σ∗ that the strategy operates under. As seen in a comparison with other
direct search strategies in [5], that benefit can be very substantial.

In the light of the results from the previous section, it seems interesting to
ask whether the (λ)opt-ES is capable of outperforming the (µ/µ, λ)-ES in the
presence of noise as it does in its absence. At first sight, it appears that the
(λ)opt-ES is not able to benefit from genetic repair the way the (µ/µ, λ)-ES
does. From Eq. (12) with the choice of weights wk;λ = Ek;λ, it follows that the
optimal normalized mutation strength of the (λ)opt-ES in the absence of noise is
unity and thus does not increase with increasing λ. Indeed, optimal performance
of the (10)opt-ES in Fig. 2 is achieved at much smaller mutation strengths than
for the (3/3, 10)-ES. However, the system of equations (14) is solved not only by
the choice of weights in Eq. (15), but also by the assignment

wk;λ =
Ek;λ

κ
, k = 1, . . . , λ, (17)

for any κ > 0 3. With this modified choice of weights, it follows from Eq. (13)
that the optimal quality gain in the absence of noise according to Eq. (16) is

3 Negative κ also solve the system of equations, but correspond to extrema of the
quality gain that are minima rather than maxima
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unchanged. However, considering Eq. (12), it is clear that the mutation strength
at which this quality gain is attained is κ and can thus be large if κ is chosen to
be large.

The effect of the scaling of the weights in Eq. (17) is reminiscent of the use
of rescaled mutations in the (1, λ)-ES proposed in [19] and analyzed in [10, 11].
The idea behind using rescaled mutations is to generate offspring using a high
mutation strength, but to update the search point using a much smaller step
length. A large mutation strength has the advantage of affording a strong signal
component for selection that can outweigh any noise that is present, and to thus
yield a good search direction. However, it is also likely to lead to a set of offspring
all of which are inferior to the parent they are generated from. It is thus only the
direction, not the length of the step that is used by the strategy. An evolution
strategy using rescaled mutations updates the search point by using a progress
vector that is reduced by some factor compared to the mutation vectors.

It has been seen in [3] that the genetic repair effect resulting from multirecom-
bination has the effect of providing an implicit rescaling. For mutation vectors,
‖z‖2/N asymptotically tends to unity. For the (µ/µ, λ)-ES, ‖z(avg)‖2/N asymp-
totically approaches 1/µ. Similarly, for (λ)opt-ES with the choice of weights in
Eq. (17), ‖z(avg)‖2/N according to Eq. (8) asymptotically approaches Wλ/κ2.
The choice of κ for the (λ)opt-ES is thus similar to the choice of µ for the (µ/µ, λ)-
ES in that it affords control over the amount of implicit rescaling inherent in
the multirecombination process. Generally, larger values of κ can be expected to
afford greater robustness in the presence of noise as they allow operating with
a larger mutation strength, thus strengthening the signal and thereby reducing
the noise-to-signal ratio.

In order to derive a quality gain law for the (λ)opt-ES in the presence of
noise from Eq. (5), expected values of the overall squared length and of the
signed length of the central component of the progress vector need to be com-
puted in a fashion analogous to Sect. 3. Equation (8) for the squared length of
the progress vector still holds as its derivation is unaffected by the presence of
noise. The computation of the expected signed length of the progress vector’s
central component is less straightforward. For the purpose of selection, the can-
didate solutions are ordered according to their noisy fitness values. However, it
is the true fitness values that determine the signed lengths of the central com-
ponents of the respective mutation vectors. Technically, those signed lengths are
concomitants of the order statistics. See [13] for an introduction to the topic
and see [1, 3, 12] for the application to the problem of selection under Gaussian
fitness noise. In the latter references it is shown that the probability density
function of the concomitant z

(k;λ)
A of the (λ + 1 − k)th order statistic is

pk;λ(x) =
1

2πϑ

λ!
(λ − k)!(k − 1)!

e−
1
2x2

∫ ∞

−∞
exp

(
−1

2

(
y − x

ϑ

)2
)

[
Φ

(
y√

1 + ϑ2

)]λ−k [
1 − Φ

(
y√

1 + ϑ2

)]k−1

dy,
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Fig. 5. Optimal mutation strength and corresponding quality gain of the (λ)opt-ES
plotted against the noise strength σ∗

ε . Due to the scaling of the axes, the curves are
independent of the choice of λ and κ

where ϑ = σ∗
ε /σ∗ denotes the noise-to-signal ratio that the strategy operates

under, and where σ∗
ε = σεN/2R2 is the normalized noise strength. Note that

no assumptions with regard to the dependence of the noise strength on the
location in search space need to be made as long as only individual time steps are
considered. Using this density to replace Eq. (9), simple calculations analogous
to those in [3] show that

E
[
z
(k;λ)
A

]
N→∞=

Ek;λ√
1 + ϑ2

,

and therefore that in generalization of Eq. (10),

E
[
z
(avg)
A

]
N→∞=

1√
1 + (σ∗

ε /σ∗)2

λ∑

k=1

wk;λEk;λ. (18)

Thus, using Eqs. (8) and (18) in Eq. (5) and choosing the weights according to
Eq. (17) it follows that the quality gain of the (λ)opt-ES on the sphere model in
the presence of Gaussian noise is

∆∗ N→∞=
Wλ

κ

[
σ∗2

√
σ∗2 + σ∗

ε
2
− σ∗2

2κ

]
. (19)

The dependence of the optimal mutation strength and of the resulting quality
gain on the noise strength is illustrated in Fig. 5. The graphs look the same as the
corresponding graphs for the (µ/µ, λ)-ES in [3] except for the different scaling of
the axes. It can be inferred from the figures that while the (µ/µ, λ)-ES is capable
of achieving positive quality gain up to a noise strength of σ∗

ε = 2µcµ/µ,λ, where
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Fig. 6. Quality gain ∆∗ of the (10)opt-ES plotted against the mutation strength σ∗

for noise strengths σ∗
ε = 0.0 (solid curves) and σ∗

ε = 1.0 (dashed curves). The curves
have been obtained from Eq. (19) and represent results for the limit case N → ∞. The
narrower curves on the left assume κ = 1.0 whereas the wider ones on the right reflect
results for κ = 4.0. The crosses mark measurements obtained in runs of the strategies
in search spaces with N = 40 (+) and N = 400 (×)

cµ/µ,λ is the (µ/µ, λ)-ES progress coefficient defined in [12], the (λ)opt-ES does
not need to stagnate up to a noise strength of σ∗

ε = 2κ.
It is important to note however that practically, finite search space dimen-

sionalities set limits on the useful parameter values in both cases. As the degree
of accuracy of the quality gain law of the (µ/µ, λ)-ES in [3] decreases with in-
creasing µ and λ, so does that of the (λ)opt-ES in Eq. (19) when λ and κ are
increased. Figure 6 illustrates the dependence of the quality gain on the mu-
tation strength for the (10)opt-ES with two settings of the parameter κ and
noise strengths σ∗

ε = 0.0 and σ∗
ε = 1.0. While the accuracy of the predictions

clearly decreases with increasing κ, it can also be seen that the larger choice of
κ is indeed strongly preferable for the case of nonzero noise strength even for
N = 40.

5 Cumulative Step Length Adaptation

In the considerations so far, the mutation strength has always been treated as
an external parameter. In practice, of course, it needs to be adapted continually
by the strategy, making the evolutionary algorithm together with the fitness
environment it operates in a dynamic system. One mechanism for the adaptation
of the mutation strength is the cumulative step length adaptation procedure
introduced by Ostermeier et al. [17]. In this section, that procedure is formulated
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for the (λ)opt-ES with the choice of weights from Eq. (17) and then studied for
the sphere model.

The goal of cumulative step length adaptation is to minimize correlations
between successive steps. For that purpose, an exponentially fading record of the
most recently taken steps is kept by accumulating progress vectors. Specifically,
N -dimensional vector s is defined by s(0) = 0 and

s(t+1) = (1 − c)s(t) + κ

√
c(2 − c)

Wλ
z(avg), (20)

where t indicates time. The cumulation parameter c is set to 1/
√

N according
to a recommendation made in [14]. The above definition differs from that in [14]
(but parallels that in [15] for the case of weighted recombination) in that a
different coefficient is used to weight z(avg). This is necessary in order to account
for the differences between the (µ/µ, λ)-ES and the (λ)opt-ES. Recall from Sect. 3
that for the (λ)opt-ES, ‖z(avg)‖2/N asymptotically tends to Wλ/κ2. It is easy
to verify that the choice of coefficient in Eq. (20) ensures that the distribution
of the components of the accumulated progress vector s tends to standardized
normality if the ordering of candidate solutions according to fitness values is
random (as is the case in flat fitness landscapes, as well as in the presence of
excessive amounts of noise).

As in [6] (and in a minor variation from [14, 15]), the mutation strength is
then adapted according to

σ(t+1) = σ(t) exp
(‖s(t+1)‖2 − N

2DN

)
, (21)

where the damping parameter D is set to 1/c as suggested in [14]. As a result of
Eq. (21), the mutation strength is increased if the squared length of s exceeds N ,
which is a sign of positive correlations in the sequence of most recently taken
steps. Conversely, the mutation strength is decreased if the squared length of s
is less than N , which indicates negative correlations. It is important to realize
that Eq. (21) is a prescription for modifying mutation strengths rather than
normalized mutation strengths, and that no knowledge of the current location
in search space is required in order to apply it.

As an evolution strategy with cumulative step length adaptation together
with the environment it operates in forms a stochastic dynamic system, an
analysis of its performance is substantially more complicated than the analy-
ses presented in earlier sections that consider individual time steps only. While
the only simplification made so far is to replace terms of the form χ2

N/N with
unity, stronger assumptions need to be made in what follows. In particular, it
will be assumed that fluctuations of the state variables, such as the normalized
mutation strength or the squared length of the accumulated progress vector, can
be ignored, and that the dynamic equations can be written in terms of average
values (thus effectively eliminating stochastic aspects). Rather than attempting
to identify probability distributions of the state variables, we will set out to de-
termine a fixed point in the deterministic mapping of average values. Moreover,
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at several points, terms that become increasingly irrelevant as the search space
dimensionality increases are dropped. Identifying such terms is not always trivial
and indeed sometimes relies on the (unproven) assumption that fluctuations of
the state variables can be ignored. Any results that are obtained will therefore
need to be confirmed in computer experiments.

A further aspect that we had been able to ignore up to now is the depen-
dence of the noise strength on the location in search space. As long as only
individual time steps are considered, all candidate solutions are sufficiently close
to each other in order to tacitly assume that they are subjected to the same
amount of noise. If the performance of the strategy is to be characterized over
extended periods of time, this is no longer possible. The considerations below as-
sume constant normalized noise strength σ∗

ε = σεN/2R2 and thus that the noise
strength decreases as the optimizer is approached. While not always reasonable,
that assumption captures the important case of a relative error of measurement
that occurs for example when using measurement devices that are accurate to
a certain fixed percentage of the quantity they measure. Other forms of the de-
pendency of noise on the location in search space do not lead to behavior that
can be characterized by a fixed point and thus require different approaches for
their analysis.

As a result of assuming that the normalized noise strength is constant, the
environment is scale-invariant in that the distance R from the optimizer does not
appear in the equations that describe the evolution of the system. The following
analysis closely parallels that presented in [1, 6] for the case of the (µ/µ, λ)-ES
and proceeds in three steps:

1. The accumulated progress vector s is decomposed into its central and lateral
components, and Eq. (20) is used to derive recursive equations for the overall
squared length ‖s‖2 and for the signed length sA of the central component
of that vector.

2. Expectations are taken in order to arrive at average values and terms that
become irrelevant in the limit N → ∞ are dropped.

3. It is made use of the scale-invariance properties of the quantities considered
by demanding that their average values do not change from one time step
to the next.

The result of that procedure are two equations that can be used to determine
(approximate) average values of ‖s‖2 and sA. The derivation occupies a consid-
erable amount of space without adding any important insights. As it is closely
analogous to the derivation for the (µ/µ, λ)-ES in [1, 6], we refrain from present-
ing detailed calculations here. The resulting equations read

‖s‖2 = (1 − c)2‖s‖2 + 2(1 − c)κ

√
c(2 − c)

Wλ
sAz

(avg)
A + c(2 − c)

κ2

Wλ
‖z(avg)‖2 (22)

and

sA = (1 − c)sA + κ

√
c(2 − c)

Wλ

(
z
(avg)
A − σ∗ ‖z(avg)‖2

N

)
. (23)
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It is understood that in these equations, equality is merely approximate, and
that all quantities stand for their respective average values. They differ from
their respective equivalents for the (µ/µ, λ)-ES only in the coefficients. Using
the relationships z

(avg)
A = Wλ/(

√
1 + ϑ2κ) and ‖z(avg)‖2/N = Wλ/κ2 that follow

from Eqs. (18) and (8) with Eq. (17), it follows that solving Eq. (23) for the
expected signed length of the central component of the accumulated progress
vector yields

sA =

√
Wλ(2 − c)

c

(
1√

1 + ϑ2
− σ∗

κ

)
.

Inserting this result in Eq. (22) and rearranging terms yields

‖s‖2 = N +
2(1 − c)

c

Wλ√
1 + ϑ2

(
1√

1 + ϑ2
− σ∗

κ

)
(24)

for the expected squared length of the accumulated progress vector.
With the characterization of the accumulated progress vector thus obtained,

Eq. (21) can now be used to determine the average mutation strength that
the strategy seeks to attain. The target mutation strength of the strategy is
the mutation strength that cumulative step length adaptation does not affect
a change for. For the (λ)opt-ES with cumulative step length adaptation, the
target mutation strength is the mutation strength for which the argument to
the exponential function in Eq. (21) equals zero. Using Eq. (24) and the fact
that ϑ = σ∗

ε /σ∗, it follows that that mutation strength is

σ∗ = κ

√

1 −
(

σ∗
ε

κ

)2

. (25)

The dependence of the target mutation strength on the noise strength is illus-
trated and compared with the optimal mutation strength derived in Sect. 4 in
the left hand graph of Fig. 7. While the shape of the curves is the same as in
the corresponding graph for the (µ/µ, λ)-ES in [6], it is important to note that
the scaling of the axes is different. In both cases, the target mutation strength
agrees with the optimal mutation strength only in the case of no noise being
present. This is the case that cumulative step length adaptation was designed
and its coefficients were chosen for. For nonzero noise strengths, target mutation
strengths are consistently below optimal mutation strengths. However, it is also
clear that due to the scaling of the horizontal axis, by increasing κ it is possi-
ble to move closer to the left hand edge of the graph, thereby operating in a
regime where there is a good agreement between target mutation strength and
optimal mutation strength. The same effect can be achieved for the (µ/µ, λ)-ES
by increasing both µ and λ in equal proportions.

Finally, it is important to emphasize that as the (µ/µ, λ)-ES, the (λ)opt-ES
never actually attains its target mutation strength. As adaptation is gradual
rather than instantaneous, and as the distance to the optimizer continually de-
creases, the strategy will always be “behind” its target. Expanding the expo-
nential function in Eq. (21) into a Taylor series, taking the decrease in distance
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Fig. 7. Mutation strength σ∗ and resulting quality gain ∆∗ plotted against the noise
strength σ∗

ε . In both graphs, the solid curves represent the optimal values from Fig. 5
and the dotted curves correspond to the values realized by the strategy and described
by Eqs. (26) and (27), respectively. The dashed curve in the left hand graph is the
target mutation strength given in Eq. (25)

to the optimizer into account, dropping all but the first terms, and demanding
stationarity in the sense that the normalized mutation strength does not change
yields equation

σ∗ = σ∗
(

1 +
∆∗

N
+

‖s‖2 − N

2DN

)
.

Inserting Eqs. (19) and (24) and solving for σ∗, it follows that the average mu-
tation strength actually realized by the strategy is

σ∗ = κ

√

2 −
(

σ∗
ε

κ

)2

(26)

if σ∗
ε ≤ √

2κ, and it is zero if σ∗
ε >

√
2κ. Inserting this result in Eq. (19) it

follows that the resulting average quality gain of the (λ)opt-ES with cumulative
step length adaptation is

∆∗ =
√

2 − 1
2

Wλ

(
2 −

(
σ∗

ε

κ

)2
)

(27)

for σ∗
ε ≤ √

2κ, and it is zero for σ∗
ε >

√
2κ. Figure 8 illustrates for the case of

a (10)opt-ES that the accuracy of the predictions afforded by Eq. (26) is quite
good even for small values of N while good agreement of the measurements of
the quality gain with Eq. (27) requires very high search space dimensionalities.
Similar results had been observed for the (µ/µ, λ)-ES in [1], and better agreement
had been achieved by taking some N -dependent terms into account.
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Fig. 8. Average mutation strength σ∗ and average quality gain ∆∗ of the (10)opt-ES
with cumulative step length adaptation plotted against the noise strength σ∗

ε . The
solid lines have been obtained from Eqs. (26) and (27) for κ = 1.0, the dashed lines for
κ = 4.0. The crosses mark measurements obtained in runs of the strategies in search
spaces with N = 40 (+), N = 400 (×), and N = 4000 (�)

Both the mutation strength and the corresponding quality gain according to
Eqs. (26) and (27) are illustrated in Fig. 7. While the mutation strength realized
by the strategy generally differs from the optimal mutation strength, the right
hand graph shows that the loss in quality gain is quite acceptable provided that
the strategy operates not too close to the right hand edge of the graphs. For
the (µ/µ, λ)-ES, the recipe for achieving this is to increase µ and λ; for the
(λ)opt-ES, it is to increase κ.

6 Summary and Conclusions

In this paper, the behavior of weighted multirecombination evolution strategies
has been studied on the infinite-dimensional sphere model. Optimal rank-based
weights have been computed, and it has been found that optimal performance is
achieved if those weights are set to equal the expected values of the order statis-
tics of the standardized normal distribution. The performance of the resulting
strategy – referred to as (λ)opt-ES – has been analyzed, and it was seen that
unlike the (µ/µ, λ)-ES, the (λ)opt-ES is capable of exceeding the serial efficiency
of the (1 + 1)-ES by a factor of roughly two and a half. It has then been found
that the (λ)opt-ES in its original form does not benefit from genetic repair in
the sense that a larger number of offspring generated per time step allows it to
operate with larger mutation strengths. However, the strategy can be modified
by scaling all weights using a common factor κ. While that factor is without
influence on the performance of the strategy if there is no noise present, it has
been found to be able to contribute positively to the strategy’s robustness in the
presence of Gaussian fitness noise. The scaling of weights has been likened to the
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Table 1. Comparison of properties of (µ/µ, λ)-ES and (λ)opt-ES on the infinite-di-
mensional sphere model

(µ/µ, λ)-ES (λ)opt-ES

quality gain ∆∗ σ∗2cµ/µ,λ√
σ∗2 + σ∗

ε
2
− σ∗2

2µ

Wλ

κ

(
σ∗2

√
σ∗2 + σ∗

ε
2
− σ∗2

2κ

)

optimal σ∗ (no noise) µcµ/µ,λ κ

optimal ∆∗ (no noise) µc2
µ/µ,λ/2 (

λ→∞−→ 0.202λ) Wλ/2 (
λ→∞−→ 0.5λ)

maximal σ∗
ε 2µcµ/µ,λ 2κ

idea of using rescaled mutations to which it is similar in effect, but from which it
differs in that no explicit rescaling is required. Rather, the possibility of making
large trial steps and at the same time small search steps is an implicit result
of weighted multirecombination in combination with an appropriate choice of
weights. Finally, it has been seen that by virtue of a simple modification, the
cumulative step length adaptation mechanism works for the (λ)opt-ES as well
as it does for the (µ/µ, λ)-ES, and that good mutation strength settings can be
arrived at by choosing κ sufficiently large. Table 1 summarizes some of the most
important findings with regard to the performance of the (λ)opt-ES on the sphere
model and contrasts them with the corresponding results for the (µ/µ, λ)-ES.

Finally, it is important to emphasize that all results in this paper have been
derived under the assumption of infinite search space dimensionality. The find-
ings help provide a good intuitive understanding of the influence of the pa-
rameters λ and κ, of the issues involved in the choice of weights, and of the
consequences of that choice for genetic repair and the performance of multi-
recombination evolution strategies. However, it has also been seen in computer
experiments that the accuracy of the predictions can decrease with increasing κ,
and that the recommendation to work with a large κ in the presence of noise
has limits in finite-dimensional search spaces. Similar findings have been made
for the choice of µ and λ in the (µ/µ, λ)-ES, and an improved approximation for
the noisy case has been derived in [4]. That approximation replaces χ2

N/N not
with unity but instead with a normally distributed term with mean 1 and with
variance 2/N . A similar investigation for the (λ)opt-ES would help determine
optimal settings for λ and κ in finite-dimensional search spaces, and it could be
used for verifying to what degree the performance advantages predicted can be
realized.
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