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Abstract. Although much progress has been made in recent years in the
theory of GAs and GP, there is still a conspicuous lack of tools with which
to derive systematic, approximate solutions to their dynamics. In this
article we propose and study perturbation theory as a potential tool to fill
this gap. We concentrate mainly on selection-mutation systems, showing
different implementations of the perturbative framework, developing, for
example, perturbative expansions for the eigenvalues and eigenvectors
of the transition matrix. The main focus however, is on diagrammatic
methods, taken from physics, where we show how approximations can
be built up using a pictorial representation generated by a simple set of
rules, and how the renormalization group can be used to systematically
improve the perturbation theory.

1 Introduction

Although much progress has been made in recent years in furthering our theo-
retical understanding of Genetic Algorithms (GAs) and Genetic Programming
(GP) using coarse-grained formulations (see, for instance, [1–5]), most of this
progress has been either at the formal level, for instance in the derivation of
exact Schema Theorems, or at the qualitative level where, for example, a deeper
understanding of the role of recombination has been gained. Such coarse-grained
formulations have also led to a unified theoretical framework for both GAs and
GP. However, there remains a conspicuous absence of tools by which the dynam-
ics of evolutionary algorithms (EAs) may be systematically approximated.

The Statistical Mechanics approach [6] offers one possibility but, as empha-
sised in [7] – “...it is not a mechanical, procedural method. Some insight about
what is important and what is inessential is required”. Instead of passing directly
to a “macroscopic” view, as is done in the statistical mechanics approach, one
may wonder if any progress can be made at a more microscopic level? Common
wisdom is almost uniformly pessimistic as to whether microscopic formulations
can offer a way forward. In this paper we try to argue that perhaps the situation
is not as bleak as it first seems, proposing perturbative methods in their vari-
ous guises as a potential way forward. Of course, perturbation theory appears
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ubiquitously throughout the physical sciences, as well as in pure and applied
mathematics and engineering.

In biology it has been used, for instance, by Eigen and collaborators [8] to
analyse the quasi-species model. It has frequently been utilised at a formal level
(see, for example [9]) to determine the stability or convergence properties of
fixed points of the dynamics. More recently [10], it was used to consider the
evolution of the cumulants of a mutation-selection system. The analysis there
however, was restricted to a single elementary landscape. As far as we are aware,
perturbative techniques have not been considered in the context of Evolutionary
Computation (EC). Furthermore, they have not been considered in conjunction
with the renormalization group in either biology or EC.

In this paper, as perturbative methods can be implemented in a myriad of
different ways, we will give only a simple introduction to a few aspects of the
general methodology. Sticking mainly to mutation-selection systems, we briefly
discuss the perturbative construction of the eigenvalues and eigenvectors of the
transition matrix. However, we concentrate most of our attention on generat-
ing perturbative expansions diagrammatically. This has the advantage of being
transparent and intuitive, as it concentrates on constructing the different routes
by which a given physical process may be realized. Although we use a one-bit
system to make a concrete illustration we also consider multi-locus systems on
a range of fitness landscapes in order to show that the methodology is not re-
stricted purely to the standard “toy” models. Note that, in standard fashion,
we will consider the population dynamics in the infinite population limit. How-
ever, as our main interest is in the transition matrix that determines the Markov
chain that describes the dynamics, the results herein can be straightforwardly
taken over to the finite population model, where a sampling of the multinomial
distribution based on this transition matrix is carried out (see [11] Chapters 5
and 6 for a nice introduction to this).

2 An Introduction to Genetic Dynamics

We begin with the fundamental equations that describe the dynamics of a large
class of EAs. We consider the three basic genetic operators – mutation, M, se-
lection, F , and recombination, R – and, without loss of generality, will consider
them acting in the causal order MRF on a population vector P(t), whose co-
variant components, PI(t), represent the probability to find an object – string,
tree etc. – I at time t. For fixed length strings of length N and alleles of cardinal-
ity n, I = i1 . . . iN is a multi-index with i1 . . . iN ∈ [0, n − 1]. M and F in their
turn are naturally represented as matrices, M J

I and F J
I , with the latter gener-

ally being a diagonal matrix with elements proportional to δ J
I , where δ J

I = 1
for I = J and 0 otherwise. In the case of proportional selection for instance,
F J

I = (fI/f̄(t))δ J
I , where fI is the fitness of string I and f̄(t) the average

population fitness. M J
I is the probability that string J mutates to string I, the

matrix elements being given by pdIJ (1 − p)N−dIJ , with dIJ being the Hamming
distance between strings I and J and p the mutation probability.
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Mathematically, as matrices, M and F are linear machines1 which take as
input (co-/contra)-variant vectors (row/column vectors in the case of matrix
algebra) and give as output (contra-/co)-variant vectors. The intuitive interpre-
tation is that each element of these matrices acts on a component of P as input
to give another, possibly the same, component, as output. Recombination, on
the other hand, naturally takes as input a pair of strings and gives as output a
string2. Mathematically, it is therefore represented naturally as a mixed tensor,
R JK

I , with two contra- and one co-variant indices, which is a linear machine
that takes as input two co-variant (row) vectors and gives as output a single
contra-variant (column) vector. The dynamics can then be written in the covari-
ant form (covariant here meaning that it is written such that its transformation
properties under a coordinate transformation are manifest and follow from the
simple linear rule of equation (3) below)

PI(t + 1) =
∑

JK

H JK
I PJ(t)PK(t) (1)

where H JK
I =

∑
LMN M L

I R MN
L F J

M F K
N .

The reader may wonder: Why this particular interpretation of the mathe-
matical nature of the dynamics? The answer is that using tensors is the most
natural way to represent the geometrical properties of the fundamental objects in
a theory under coordinate transformations. The next question is: why are the co-
ordinate transformation properties of interest? The answer is that the dynamics
can be greatly simplified when written in the most appropriate coordinate sys-
tem providing greater insight and facilitating quantitative analysis. Additionally,
writing equations in covariant form ensures that any statement valid in one co-
ordinate system will be valid in any. A coordinate transformation is understood
here as a linear map between bases and is explicitly realized by a matrix Λ. One
may then enquire as to what is the most appropriate basis [13]? For instance, for
binary strings the standard basis in the configuration space is the δ-basis, Bδ.
The δ-basis is the set of 2N characteristic functions defined on the hypercube,
CN , embedded in R

N – N -dimensional Euclidean space – one function for each
of the 2N vertices of CN . Each characteristic functions is “delta-like”, having
non-zero values only at the corresponding vertex of the cube. For example, the
basis function at the origin is x̄1x̄2 . . . x̄N and so

Bδ = {x̄1x̄2 . . . x̄N , x̄1x̄2 . . . xN , . . . , x1x2 . . . xN} . (2)

If we restrict all the basis functions to the vertices of CN , each xi, 1 ≤ i ≤ N ,
takes the values 0 and 1 and x̄i ≡ e − xi, where e takes the value 1 at each
corner of the unit cube. Arranging the basis elements in columns to form the
vector xδ = (x̄1 . . . x̄1, . . . , x1 . . . xN )T , one implements a transformation to a

1 We will here use the language of tensor analysis. Readers unfamiliar with this may
consult an introductory text such as [12]

2 Although the output is really a pair of strings, determination of the first child com-
pletely fixes the second
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new basis xδ′ via xδ′ = Λxδ. A tensor T J1...Js

I1...Ir
transforms under a basis

transformation between δ and δ′ as

T
J′
1...J′

s

I′
1...I′

r
=

∑

I1...Ir
J1...Js

Λ
I1

I′
1

. . . Λ
Ir

I′
r

T
J1...Js

I1...Ir
(Λ−1) J′

1
J1

. . . (Λ−1) J′
s

Js
(3)

Further insight into the dynamics can be obtained by explicitly subtracting
out the linear “cloning” term from the recombination operator to obtain

PI(t + 1) =
∑

J

M J
I

(
(1 − pc)P ′

J + pc

∑

KLm

1
2
(
p(m) + p(m̄)

)
λ KL

J (m)P ′
KP ′

L

)
(4)

where P ′
I(t) =

∑
J F J

I PJ(t) is the probability to select string I, pc is the prob-
ability that recombination takes place and p(m) is the probability to implement
the recombination mask m, m̄ denoting the conjugate mask. Finally, λ JK

I (m) is
an interaction term between strings I, J and K and represents the conditional
probability that, given the selection of parent strings J and K, a child string of
type I is produced when recombination is implemented using a mask m. It takes
values 0 and 1. Equation (4) has a straightforward intuitive interpretation. The
first term in brackets represents the probability that a string is “cloned”, while
the second term represents the probability that a string is created via recombi-
nation. An analogous functional form also holds for the case of GP [2, 14].

Despite the covariance of (1), the facility of its analysis and its physical
interpretation are basis-dependent. The dynamics is governed by the mutation
matrix M J

I , the tensor λ JK
I (m), the mask probability distribution p(m) and

the fitness values fI , hidden inside P ′
I or F J

I . In this sense the EA is a “black
box” whose output depends on a large set of parameters. It therefore behoves
us to look for symmetries and regularities that may be exploited in order to
effect a coarse graining which makes manifest the effective degrees of freedom
of the dynamics in terms of which the dynamics looks simplest. However, this
in its turn depends on choosing an appropriate coordinate system wherein a
particular regularity is more clearly seen. For instance, in a selection dominated
regime, the string basis is the most appropriate one, as the selection matrix F
is diagonal in this basis, i.e. the strings themselves are the appropriate effective
degrees of freedom. However, when mutation is the dominant operator, a basis
transformation to the Walsh basis, x̂, using the transformation matrix

Λw ≡ 2−N/2

(
1 1
1 −1

)⊗N

(5)

is useful, where ⊗N is the Nth tensor power of the matrix. The power of the
Walsh transform is that it diagonalizes the mutation matrix M so that its matrix
elements are (1 − 2p)|I|δ J

I , |I| being the order of the Walsh mode I. Similarly,
when recombination is the dominant operator a basis transformation to the
Building Block or monomial basis [13, 15], xBB , is appropriate using

ΛBB ≡
(

1 1
0 1

)⊗N

(6)
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The advantage of this transformation is that the tensor λ JK
I becomes skew-

diagonal on the indices J and K for any string I [13, 15], thus showing that
recombination builds strings by explicitly combining the Building Blocks of that
string.

3 Exact Solutions of the Dynamics

As the key element of a perturbative approach is the development of a power
series expansion around a known exact limit, it is important to have a good
understanding of the different limits in which an exact solution for the dynamics
may be found. There are no known exact solutions of equation (4) in the presence
of all three genetic operators3. However, solutions in the absence of one or more
of the operators may be found4.

3.1 Explicit Solutions

Selection Only. In the case of selection only the evolution equations (4) are un-
coupled and essentially linear in the variables PI(t), the apparent non-linearity
in f̄(t) having as its origin nothing more than the normalisation of the proba-
bilities,

∑
I PI(t) = 1. Passing to unnormalised variables xI(t), defined via

PI(t) =
xI(t)∑
I xI(t)

(7)

leads to an explicit solution

PI(t) =
f t

IPI(0)∑
I f t

IPI(0)
(8)

In general, an exponential number of fitness values must be specified. However,
in many cases the map will be many-to-one and the phenotypic dynamics may
simplify accordingly. The fixed point of (8) is P ∗

I = limt→∞ PI(t) → 1 ⇐⇒
fI > fJ ∀ J such that PJ (0) 	= 0. Note that this fixed point depends on
the initial conditions and hence is not universal. In the case where all strings
are represented however, the fixed point is the global maximum of the fitness
landscape in the case where this maximum is unique.

Mutation Only. In the case of mutation only, the equations (4) remain linear,
but are coupled in the string basis. Passing to the Walsh basis using the basis
transformation (5) one finds the solution

P̂I(t) = (1 − 2p)|I|tP̂I(0) (9)

each eigenvalue denoted by |I| being associated with NC|I| degenerate eigenvec-
tors. Thus, just as the exact solution for selection only is diagonal in the string
3 Note however, that exact solutions may be found [16] for the case of modified re-

combination operators, such as genepool recombination, and certain specific fitness
landscapes, such as functions of unitation

4 A more leisurely derivation of many of the results in this section can be found in [11]
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basis the exact solution for mutation only is diagonal in the Walsh basis. The
fixed point of the dynamics is given by limt→∞ P̂I(t) = 2−N/2δ 0

I and corre-
sponds to the centre of the simplex, i.e. equal proportions of every genotype.
The bigger is |I|, the faster the decay of the associated transient to the fixed
point.

Recombination Only. Finally, in the case of recombination only, although an
exact solution is not known for discrete time and arbitrary crossover, a solution
is known in the continuous time limit for one-point crossover [3]. The solution is

PI(t) =
N−1∑

n=0

e
−npc
N−1 (1 − e

−pc
N−1 )N−nP(n + 1) (10)

where P(n + 1) =
∑

i ΠN−n
ni=1Pni(0). Each Pni(0) is the initial probability for the

Building Block ni which crossover could combine to give genotype I. The product
is over the different numbers, ni, of Building Blocks and the sum is over the
different possible permutations for a given number. For example, for N = 3, for
I = 111 P(1) = P1∗∗(0)P∗1∗(0)P∗∗1(0), P(2) = P11∗(0)P∗∗1(0) + P1∗∗(0)P∗11(0)
(two permutations) and P(3) = P111(0).

3.2 Formal Solutions
Above we considered explicit exact solutions. One can also get useful information
by considering formal, or implicit, exact solutions. An example of this is the
case of mutation and selection where the problem is linear and so the trick
of passing to unnormalised variables, xI(t), remains valid. In this setting the
equation xI(t+1) =

∑
K W K

I xK(t), where the matrix W has elements W K
I =∑

J M J
I fJδ K

J , can be simply iterated to obtain the formal solution

PI(t) =
∑

J(W t) J
I PJ(0)∑

IJ(W t) J
I PJ(0)

(11)

The solution is formal in that (W t) is the t-th power of an exponentially large
matrix. If W can be diagonalized via a similarity transformation, which we
assume, then we may interpret this as a basis transformation x̃ = Λ̃xδ, where
the x̃ are the normalised eigenvectors of W . Under this transformation PI(t) →
P̃I(t) =

∑
J Λ̃ J

I PJ(t) and W → W̃ , where W̃ is diagonal with elements λIδ
J

I

and λI is the eigenvalue corresponding to eigenvector I. One thus finds

P̃I(t) =
λt

I P̃I(0)
∑

I λt
I P̃I(0)

(12)

The general solution in the original string basis can be found by inverting the
basis transformation using Λ̃ to find

PI(t) =
∑

JK Λ̃ J
I λt

J (Λ̃−1) K
J PK(0)

∑
IK λt

I(Λ̃−1) K
I PK(0)

(13)

Note the functional form as a sum of exponentials, where, as W has only positive
entries, at least the biggest eigenvalue is positive. For example, for one-bit
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P0(t) = N
(
A00λ

t
0 + A01λ

t
1

)
(14)

where A00 = (Λ̃ 0
0 (Λ̃−1) 0

0 P0(0) + Λ̃ 0
0 (Λ̃−1) 1

0 P1(0)) and A01 = (Λ̃ 1
0 (Λ̃−1) 0

1

P0(0) + Λ̃ 1
0 (Λ̃−1) 1

1 P1(0)) are the amplitudes of the different exponents and
where N =

∑
IK λt

I(Λ̃
−1) K

I PK(0) is a normalisation constant. The asymptotic
behaviour is dominated by the largest eigenvalue, λmax, associated with a cor-
responding eigenvector x̃max. The corresponding component of P in this basis
is P̃ ∗

max. In terms of the original string basis the fixed point is P ∗
I = Λ̃ max

I ,
independent of the initial population.

4 Perturbation Theory

Perturbation theory is an ubiquitous tool in the physical sciences. However, in
all its guises its conceptual basis is the same – finding approximate solutions as
power series expansions with respect to a “small” parameter, ε, around a known
solution. Conceptually, the methodology is simple. In the context at hand one
writes PI (or the unnormalised variable xI) as a power series in ε

PI(t) =
∞∑

n=0

εnP
(n)
I (t) (15)

where the expansion coefficients P
(n)
I are to be determined. One assumes that the

operator H JK
I can be written in the form H JK

I = D JK
I +εO JK

I , where O JK
I

is the perturbation operator and the solution of PI(t + 1) =
∑

JK D JK
I PJ(t)

PK(t) is known. One subsequently substitutes the ansatz (15) into equation (1)
and matches powers of εn from both sides of the equation. For instance, to O(1)
and O(ε) one finds

P
(0)
I (t + 1) =

∑

JK

D JK
I P

(0)
J (t)P (0)

K (t) (16)

P
(1)
I (t + 1) =

∑

JK

(
D JK

I P
(1)
J (t)P (0)

K (t)+

D JK
I P

(1)
J (t)P (0)

K (t) + O JK
I P

(0)
J (t)P (0)

K (t)
)

(17)

The solution of (16) is assumed known. Once P
(0)
I has been determined then

equation (17) is a linear inhomogeneous difference equation for P
(1)
I where the

inhomogeneity is a known function of P
(0)
I . This equation can be solved using

as initial condition P
(1)
I (0) = 0 5. The solution to O(ε) is thus PI(t) = P

(0)
I (t) +

εP
(1)
I (t) + O(ε2). The formal expansion parameter ε can now be put to one6.

5 We can naturally set P
(n)
I (0) = 0 ∀ n �= 0. This is intuitive, in that ε gauges the

effect of the perturbation which perturbs the initial population after t = 0
6 ε is only taken to be small in a formal sense here in order to generate systematic power

series expansions. Physically, the relevant small parameter for mutation-selection
systems is the mutation rate, or the deviation from a flat fitness landscape, and it
is these parameters that will govern the accuracy of the approximation
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5 Perturbation Theory for Mutation-Selection Systems

To illustrate the general methodology we restrict attention to the case of muta-
tion and selection. This problem is, in principle, straightforward, requiring only
the eigenvalues and eigenvectors of the matrix MF . However, computationally
this is extremely difficult for large matrices.

First, we transform to the unnormalised variables defined in (7), xI(t), re-
membering that we can consider them in either the string or the Walsh basis.
The equation to be solved is

xI(t + 1) =
∑

JK

M J
I F K

J xK(t) (18)

where, without change of notation, we now take F to have elements F J
I = fIδ

J
I ,

the scalar f̄(t) having been removed by the change to unnormalised variables.
The idea now is to solve this approximately by some perturbative expansion
around some known exact limit. From section 3, two natural limits are the limits
M J

I → δ J
I and F J

I → δ J
I , associated with zero mutation and zero selection

gradient respectively. In this case one writes

M J
I = (δ J

I + εdM J
I ) (19)

F J
I = (δ J

I + εdF J
I ) (20)

where dM and dF are the perturbation operators and contain the deviations of
M and F from the unit matrix. Thus, in the case of selection we are using dF
to measure deviations from a constant fitness value, which we take to be one.
For example, for one bit, in the string basis the deviations are given by

dM =
(−p p

p −p

)
and dF =

(
f0 0
0 f1

)
(21)

with f0 and f1 measuring deviations from flat fitness, while in the Walsh basis

d̂M =
(

0 0
0 −2p

)
and d̂F =

1
2

(
(f0 + f1) (f0 − f1)
(f0 − f1) (f0 + f1)

)
(22)

Alternatively, given that (18) is exactly solvable when W = MF is any diagonal
matrix, we could divide W into a diagonal part, D, and an off-diagonal part, O,
and write W = D + εO.

5.1 Perturbative Construction of Eigenvalues and Eigenvectors

There are several alternatives for constructing a perturbation theory depending
on what quantities one wishes to construct. In EC the string proportions, PI(t),
are of direct interest. Hence, it is natural to implement a formalism that focuses
directly on them. However, there is another implementation that focuses more
on the perturbative construction of the eigenvalues and eigenvectors of W .
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We assume, as in section 3.2, that W can be diagonalized via a basis trans-
formation W → W̃ = Λ̃WΛ̃−1. In distinction to section 3.2 though, where it
was assumed that Λ̃ could be determined exactly, we will here construct the
transformation perturbatively. As the eigenfunctions of the unperturbed prob-
lem form a complete set of basis functions – string or Walsh basis functions –
one may consider the basis transformation x̃ = Λ̃x as an expansion of the exact
eigenfunctions of W in terms of the unperturbed ones (i.e. of M or F alone),
where x will refer to the unperturbed eigenfunctions. One now seeks perturba-
tive solutions by writing power series expansions for the eigenvalues, λi and the
expansion coefficients, Λ̃ j

i

λi =
∞∑

n=0

εnλ
(n)
i ; Λ̃ i

i =
∞∑

n=0

εnΛ̃
i(n)

i ; Λ̃ j
i =

∞∑

n=1

εnΛ̃
j(n)

i (23)

where we are using lower case letters i and j to index the eigenvectors and
eigenvalues. Note that the expansion of the non-diagonal elements of Λ̃ starts at
O(ε), in distinction to the diagonal ones. This recognises the fact that only the
presence of the perturbation can induce such non-diagonal terms. In the basis
where W̃ is diagonal, an eigenvector x̃i with components x̃i

I is a solution of
∑

J

W̃ J
I x̃i

J = λix̃
i
I (24)

Substituting the ansatz (23) into (24), matching coefficients of εn and using the
fact that the unperturbed eigenfunctions are orthogonal, i.e.

∑
J xJ

i xj
J = 0 for

i 	= j, one finds to O(ε)

λi = λ
(0)
i + ε

∑

JK

xJ
i O K

J xi
K (25)

where O is the perturbation operator. To be more concrete, consider the example
of one-bit with perturbation operator O J

I = dF J
I . In this case it is appropriate

to work in the Walsh basis using equation (22). In this basis, as M̂ is diagonal,
the unperturbed eigenvalues, λ+ = 1 and λ− = (1− 2p), can be read off directly
from it. The corresponding eigenvectors are x+ = (1 0)T and x− = (0 1)T . The
O(ε) contribution to λ+, λ

(1)
+ , is

λ
(1)
+ =

1
2
(1 0)

(
(f0 + f1) (f0 − f1)

(1 − 2p)(f0 + f1) (1 − 2p)(f0 − f1)

)(
1
0

)
=

(f0 + f1)
2

(26)

where, once again, f0 and f1 refer to deviations from flat fitness. The analogous
expression for λ− is found by substituting (1 0) for (0 1) in (26) to find λ

(1)
− =

(1 − 2p)(f0 + f1)/2. Thus, to O(ε) the two eigenvalues are

λ+ =
(

1 +
ε(f0 + f1)

2

)
(27)

λ− = (1 − 2p)
(

1 +
ε(f0 + f1)

2

)
(28)
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In order to construct a solution of the form (13), as well as the eigenvalues we
also need the basis transformation matrix Λ̃ that relates the exact basis to the
string or Walsh basis. The columns of the transformation matrix are, in fact,
just the eigenvectors of W . Hence, a perturbative calculation of the eigenvectors
is equivalent to an expansion of the elements of Λ̃. For our example one-bit case,
as we are working in the Walsh basis, it is the eigenvectors of Ŵ . Explicitly,
for the coefficients of the transformation between unperturbed and perturbed
eigenstates, to O(ε) one finds Λ̃

i(1)
i = 0 and for j 	= i

Λ̃
j(1)

i =
∑

IJ xI
i O

J
I xj

J

(λ(0)
i − λ

(0)
j )

(29)

For one bit, for the case Ô J
I = d̂F

J

I

Λ̃
−(1)

+ =
1
4p

(1 0)
(

(f0 + f1) (f0 − f1)
(1 − 2p)(f0 + f1) (1 − 2p)(f0 − f1)

) (
0
1

)
=

(f0 − f1)
4p

(30)
With the expansion coefficients in hand the exact eigenvectors x̃ may be calcu-
lated, which are then used to compute the basis transformation matrix Λ̃. As
seen in section 3.2 it is in fact this matrix which provides important information,
such as the fixed points of the dynamics, the eigenvalues merely governing the
approach to the fixed point.

5.2 Diagrammatic Perturbative Construction of PI

Although conceptually straightforward and well known, the above methodology
for calculating eigenvalues and eigenvectors is complicated to implement beyond
leading order, especially in terms of calculating the expansions of the eigenvec-
tors, and these are essential if one wishes to construct expressions for the PI(t)
and, in particular, if the asymptotic behaviour in the vicinity of any fixed point
is required. Additionally, when there are several eigenvectors that correspond
to the same eigenvalue, orthogonal combinations of the associated eigenvectors
must be found. We thus consider now how to calculate the xI(t) directly. Ini-
tially, we will consider a general fitness landscape and arbitrary string length
and population, as a great deal of useful information can be gleaned from the
general case without having to specialise to a particular problem.

We will illustrate the methodology in the context of an expansion around the
no selection limit (the corresponding expansion around zero mutation is very
similar). In this case it is appropriate to first do a coordinate transformation
to the Walsh basis. In the Walsh basis, the solution of the unperturbed (i.e. no
selection and no crossover) system is

x̂I(t) = (1 − 2p)|I|tx̂I(0) (31)

One can interpret (31) and, in particular, a factor (1 − 2p)|I|(t−t′) as describing
the propagation in time, between t′ and t, of an elementary “excitation” of
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Fig. 1. Diagrammatic representation of the O(1), O(ε) and O(ε2) perturbative terms
[(a), (b) and (c) respectively]

type I7 which can be represented diagrammatically as a straight line, as shown
in Figure 1(a). As (1 − 2p) < 1 the excitation decays exponentially, the rate
of decay depending on the order of the Walsh coefficient. The only excitation
that does not decay is the zeroth order one which corresponds to the uniform
population limit in the string basis. The presence of the perturbation, in this
case selection, can be interpreted as an interaction between the excitation and
some external operator and can be represented diagrammatically by a wavy line
as shown in Figure 1(b). These diagrams are a simple, intuitive mnemonic for
the algebraic expression

x̂I(t) = (1 − 2p)|I|tx̂I(0) + ε
∑

J

t−1∑

n=0

(1 − 2p)|I|(t−n)d̂F
J

I (1 − 2p)|J|nx̂J (0), (32)

The two terms represent the different physical processes that can contribute to
O(ε) to the appearance of a Walsh mode I at time t. The first term, correspond-
ing to Figure1(a), represents the process where the mode I was present at t = 0
and propagates forward to t. The second term, corresponding to Figure 1(b)
however, represents the probability that it is produced by first starting with a
mode J at t = 0, which then propagates to time t = n. At t = n it interacts

with the Walsh-transformed perturbation selection operator, d̂F
J

I to produce
the mode I, which then propagates from t = n to t.

∑
J represents the fact that

one must consider all possible initial starting states as potential contributions,
while

∑t−1
n=0 represents the possibility that the interaction may take place at any

one of the t time steps of the evolution.
One may sum the second term (32) to find

x̂I(t) = (1−2p)|I|tx̂I(0)+ε(1−2p)|I|t
∑

J

(
1 − (1 − 2p)(|J|−|I|)t)

1 − (1 − 2p)(|J|−|I|) d̂F
J

I x̂J (0) (33)

There are three distinct cases to take into account: |I| < |J |, |I| > |J | and
|I| = |J |. In the first case the contribution from the corresponding interactions
7 In the Walsh basis this excitation is analogous to a normal mode, while in the string

basis these elementary excitations are obviously the strings themselves
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only modifies the amplitude of the zeroth-order transient behaviour, associated

with (1− 2p)|I|t, from 1 to 1 +
∑

|J|>|I| d̂F
J

I x̂J(0)/(1− (1− 2p)(|J|−|I|)), where
the sum is over those Walsh modes for which |J | > |I|. When |I| > |J | the
contribution from the interaction dominates, leading to a decay for x̂I(t) of
the form (1 − 2p)|J|t, which is slower than (1 − 2p)|I|t. Finally, in the limit
|J | → |I| there is an apparent singularity in the dynamical factor. However,
lim|J|→|I|(1 − (1 − 2p)(|J|−|I|)t)/(1 − (1 − 2p)(|J|−|I|)) = t. This term is the
analog of a secular term as found in perturbative solutions of ordinary differential
equations [17]. At first glance it invalidates perturbation theory, as it leads to
a linearly growing perturbation in time. However, as this term is suppressed by
the exponential decay, (1−2p)|I|t, it does not affect the value found for the fixed
point except, at first glance, for the zeroth mode. That this is not a problem can
be seen by returning to the normalised variables PI via equation (7). First we
pass to the normalised Walsh variables, P̂I , which are related to the x̂I via

P̂I(t) =
1

2
N
2

x̂I(t)
x̂0(t)

(34)

with P̂0(t) = 1/2N/2 just the Walsh transformed constraint
∑

I PI(t) = 1. Sub-
stituting (33) into (34) and expanding the denominator in ε one finds to O(ε)

P̂I(t) = (1 − 2p)|I|tP̂I(0) + ε(1 − 2p)|I|t
∑

J

(
1 − (1 − 2p)(|J|−|I|)t)

1 − (1 − 2p)(|J|−|I|) d̂F
J

I P̂J (0)

− ε(1 − 2p)|I|t2
N
2 P̂I(0)

∑

J

(
1 − (1 − 2p)|J|t)

1 − (1 − 2p)|J| d̂F
J

0 P̂J (0) (35)

Taking the limit t → ∞ one finds the fixed point for |I| 	= 0

P̂ ∗
I =

ε

2
N
2

d̂F
0

I

((1 − 2p)−|I| − 1)
(36)

Thus, we see that the fixed point associated with the centre of the simplex is
modified by selection and is independent of the initial conditions. This is intuitive
given that the non-zero modes are associated with exponentially decaying exci-
tations. We also see that the biggest contribution to the asymptotic behaviour
will come from the most important Walsh components of the fitness landscape.
For instance, for a unitation type landscape only the O(1) Walsh coefficients of
the landscape are non-zero and hence P̂ ∗

I = 0 for |I| 	= 1.
To O(ε2) the corresponding diagram is Figure 1(c) and represents the pro-

duction of a Walsh mode I by starting with a Walsh mode K which propagates

to t = n1, interacts with the perturbation selection operator d̂F
K

J to produce a
Walsh mode J , which in its turn propagates from t = n1 to t = n2. This Walsh

mode then interacts with the perturbation selection operator d̂F
J

I at t = n2

to produce a Walsh mode I, which finally propagates from t = n2 to t. The
corresponding algebraic expression for this second order process is
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ε2
∑

JK

t−1∑

n2=1

n2−1∑

n1=0

(1 − 2p)|I|(t−n2)d̂F J
I (1 − 2p)|J|(n2−n1)d̂F K

J (1 − 2p)|K|n1 x̂K(0)

(37)
Once again, one must sum over different possible initial and intermediate states,
J and K, and sum over the different possibilities for the times at which the
excitations interact with the selection operator. Note that causally the second
interaction with the selection operator must come after the first one, hence the
sum over n2 begins at t = 1 not t = 0. Evaluating (37) and adding to (32) one
obtains to second order

x̂I(t) = (1 − 2p)|I|tx̂I(0) + ε(1 − 2p)|I|t
∑

J

(
1 − (1 − 2p)(|J|−|I|)t)

1 − (1 − 2p)(|J|−|I|) d̂F
J

I x̂J(0)

+ε2(1 − 2p)|I|t
∑

JK

(
(1 − 2p)(|J|−|I|)(1 − (1 − 2p)(|J|−|I|)(t−1))

(1 − (1 − 2p)(|K|−|J|))(1 − (1 − 2p)(|J|−|I|))
(38)

− (1 − 2p)(|K|−|I|)(1 − (1 − 2p)(|K|−|I|)(t−1))
(1 − (1 − 2p)(|K|−|J|))(1 − (1 − 2p)(|K|−|I|))

)
d̂F

J

I d̂F
K

J x̂K(0)

As at O(ε), one must take care over the limits |I| = |J |, |J | = |K|, |I| = |K| or
|I| = |J = |K|. Note that this expression is valid for an arbitrary fitness land-
scape as long as the selection pressure is weak. To get back to the probabilities
PI(t) from the x̂I(t) is straightforward. One first passes to the variables P̂I(t)
using equation (34). One is then faced with a choice – to expand the denomina-
tor, x̂0, as a power series in ε into the numerator, or to evaluate it numerically
without this last expansion. Schematically, it is the difference between writing
at O(ε): P̂I = (1/2N/2)(x̂I/x̂0) = (aI + εbI)(a0 + εb0)−1, where both numerator
and denominator are now evaluated numerically for a given landscape, or writing
(a0 + εb0)−1 ≈ (a0 − εb0) and then evaluating the expression numerically. The
true spirit of perturbation theory is to do the latter and we shall follow that
procedure here. However, under certain circumstances it is possible to envision
the former. Finally, one passes to the PI(t) using the inverse Walsh transform
from (5).

This diagrammatic formulation gives a powerful pictorial representation of
the underlying problem, wherein the different diagrams represent the different
ways in which a process may occur – for instance, production of a particu-
lar string. The problem then may be turned around to be associated with the
specification of the rules8 by which the diagrams that represent the different
possibilities may be constructed. In fact, one may take these rules as being a
definition of the theory, as their particular form depends on the theory in ques-
tion, e.g. selection only, selection and mutation etc.. In the case at hand, for
mutation and selection with an expansion around the zero selection limit, the
rules for constructing a solution to a given perturbative order are:

1. Draw all possible topologically distinct diagrams contributing to the process
under study to the desired perturbative order

8 In physics, in quantum field theory, these rules are known as Feynman rules
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2. To each internal line attach a propagator (1 − 2p)|I|(t−t′)

3. At each interaction vertex insert a factor εd̂F
J

I

4. Sum over all internal times associated with the interaction vertices
5. Sum over intermediate states on internal lines

These rules are also valid when expanding around the zero mutation limit

if the propagator is replaced by f
(t−t′)
I and the vertex factor by εd̂M

J

I . Note
that in calculating xI(t) we summed over all possible initial states as we were
interested ultimately in PI(t) not in the conditional probability P (I, t|J, t′). One
may, of course, always revert to the algebraic formulation if there is any doubt
or ambiguity over constructing the diagrams and their associated algebraic ex-
pressions.

In order to give a feeling for the capabilities of the method we present some
results for the case of N = 7 and with various fitness landscapes. We use a
mutation probability p = 0.1 which, it is worth noting given that we are formally
in the “high” mutation perturbation limit, is not much different from typically
used rates. The three fitness landscapes we consider are representative of different
classes of landscape – consisting of the Eigen model (“needle-in-a-haystack”),
counting ones (unitation models) and a model where fitnesses are assigned to
strings randomly (akin to a Kauffman NK-model with N = K). Specifically: for
the Eigen landscape f1111111 = 1.5 and fI = 1.0 for I 	= 1111111; for counting
ones fI = 1+(0.5/7)

∑
i 1i; and finally for the random landscape fI ∈ [1, 1+R],

where R is a random number chosen with uniform probability from the interval
[0, 0.5]. In all three cases the parameters have been chosen so that the maximum
deviation from fitness value 1 is 0.5, corresponding to a 50% difference in fitness
between the fittest string and the least fit string, i.e. a 50% “planarity deviation”,
i.e. the deviation from the no-selection limit. As ε is set to one this is a good
test of the approximations as the corresponding perturbation is really not then
particularly “small” at all. In all cases a random initial population was chosen.

In Figures 2-4 we compare the perturbative approximations of f̄(t) to O(ε)
and O(ε2) with the exact solution, obtained by explicitly integrating equation
(18). Notice that the O(ε2) approximation gives uniformly better results (by
a factor of between 2 for the Eigen model and 10 for counting ones) in the
asymptotic regime but not necessarily for the transients. This is due to the
presence of secular terms, which are also responsible for artefacts like the peak
in the second order curve in Figure 4.
Note that even at O(ε) the results are asymptotically very accurate with devia-
tions from the exact answer being less than about 0.1%. The population fitness
in this sense is quite robust in terms of approximations.

A more sensitive object is the proportion of optimal strings in the population
as a function of time. In Figures 5-7 we see graphs of precisely this quantity. For
the Eigen model the optimal sequence is the “master sequence”, i.e. the needle –
arbitrarily chosen to be the sequence 1111111. For the counting ones landsacpe
the optimu is also the string 1111111. For the random landscape the optimal
sequence was found by examining all 128 strings. Note that asymptotically the
quality of the approximation is quite sensitive to the landscape considered. At
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Fig. 2. Average fitness for 7-bit Eigen model with 50% deviation from flat fitness limit
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Fig. 3. Average fitness for 7-bit counting ones model with 50% deviation from flat
fitness limit

O(ε) the error for the Eigen model is about 28% whereas it is only about 2% for
the counting ones landscape. The O(ε2) results are better than the O(ε) results,
as one might expect, except in the case of the counting ones landscape which is
both interesting, somewhat counterintuitive and worthy of further investigation.
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Fig. 4. Average fitness for 7-bit random landscape model with 50% deviation from flat
fitness limit

We also repeated the experiments for N = 3 with very similar results, the
approximation being generally somewhat worse for this shorter string length.
This is to be expected as for shorter strings the neglect of mutation events
where a higher proportion of bits change is less valid.

6 Perturbation Theory for Mutation-Selection Systems –
A Simple Example

This section gives a fairly complete analysis of the case of one bit. Naturally,
this is meant only to illustrate the general techniques and the relationship be-
tween the different methodologies in a transparent context. In this case a state

is represented by the two-component vector
(

x1(t + 1)
x0(t + 1)

)
and F =

(
f0 0
0 f1

)

6.1 The Exact Solution

The exact solution is determined by calculating the eigenvalues and eigenvectors
of W = MF . The eigenvalues are the solutions of the 2N -dimensional charac-
teristic equation, which in this case is quadratic with solutions

λ± =
1
2

[(1 − p)(f1 + f0) ± β0] , (39)

where β0 = [(1−p)2(f1+f0)2−4(1−2p)f1f0]1/2. The corresponding eigenvectors
are

λ+ →
(

α
bα

)
, λ− →

(
β
aβ

)
, (40)
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Fig. 5. Proportion of optimal strings for 7-bit Eigen model with 50% deviation from
flat fitness limit
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Fig. 6. Proportion of optimal strings for 7-bit counting ones model with 50% deviation
from flat fitness limit

where a =
−(1 − p)f1 + λ−

pf0
and b =

−(1 − p)f1 + λ+

pf0
and the normalisation

factors are α = (1 + b2)−1/2 and β = (1 + a2)−1/2. The transformation that
diagonalizes W is implemented using the similarity-transformation matrix
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Λ̃ =
1

αβ(b − a)

(−α bα
β −aβ

)
, (41)

which relates the eigenvector basis, x̃I and the string basis xI via x̃I = Λ̃ J
I xJ .

The solution in the eigenvector basis is x̃I(t) = λt
I x̃I(0) which, changing basis

back to the string basis, gives the solution

xI(t) = AI−λt
− + AI+λt

+ (42)

which is of the general form posited in equation (14). Explicitly, the four ampli-
tudes, Aij , i = 0, 1 and j = ±, are

A1− =
(

(λ− − (1 − p)f0)x1(0) + pf0x0(0)
λ− − λ+

)
(43)

A1+ =
(

(−λ+ + (1 − p)f0)x1(0) − pf0x0(0)
λ− − λ+

)
(44)

A0− =
(

(λ− − (1 − p)f1)x0(0) + pf1x1(0)
λ− − λ+

)
(45)

A0+ =
(

(−λ+ + (1 − p)f1)x0(0) − pf1x1(0)
λ− − λ+

)
(46)

If we consider weak selection, i.e. fI → (1 + εfI), or weak mutation, i.e. M J
I →

δ J
I + εdM J

I , then the eigenvalues (42) can be perturbatively expanded in ε. To
O(ε) for weak mutation

λ− = f0(1 − p) λ+ = f1(1 − p) (47)
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While for weak selection, with fI → 1 + fI ,

λ− = (1 − 2p)
(

1 +
(f0 + f1)

2

)
λ+ =

(
1 +

(f0 + f1)
2

)
(48)

where we have put ε = 1. The corresponding amplitudes for the case of weak
selection can be found by expanding (43-46) to this order.

6.2 Diagrammatic Perturbation Theory

In this case one evaluates explicitly equations (33) or (38), corresponding to the
diagrams in Figure 1, depending on the order of perturbation theory required.
To O(ε) the solutions for the case of weak selection are

x̂0(t) =
(
1 + εd̂F

0

0 t
)

x̂0(0) + ε

(
1 − (1 − 2p)t

2p

)
d̂F

1

0 x̂1(0) (49)

x̂1(t)=(1 − 2p)t
(
1 + εd̂F

1

1 t
)

x̂1(0) + ε

(
1 − (1 − 2p)t

2p

)
(1 − 2p)d̂F

0

1 x̂0(0) (50)

which agree with the expressions derived from the exact solution after expanding
in powers of ε both the amplitudes (43-46) and the factors λt, where the eigenval-
ues are given by (39), when expanded to O(ε). Notice the secular term linear in t.
Schematically, this arises from expanding λt = (a+εb+ε2c+...)t ≈ at(1+ε(b/a)t)
to O(ε). Passing to the variables P̂I(t), one finds P̂0(t) = 1/21/2 and

P̂1(t) =
(1 − 2p)t

2
1
2

(
P̂1(0) + εd̂F

1

1

(
1 − (1 − 2p)−t

1 − (1 − 2p)−1

)

−εd̂F
0

1 P̂ 2
1 (0)

(
1 − (1 − 2p)t

1 − (1 − 2p)

))
(51)

Thus, we see that the secular terms cancel out of the P̂I and hence out of the
probabilities PI . This however, is a property only of the one-bit case. For N > 1,
generically they will remain. Although they do not destroy the validity of the
perturbation expansion entirely, due to the presence of exponential suppression
factors (1 − 2p)|I|t, they do remain somewhat problematic, as we know that
the exact functional form is a sum of pure exponentials. A polynomial times
an exponential does not fit this pattern. This can be further understood by
considering the contributions from O(ε2).

x̂0(t) = 1t

[(
1 + εtd̂F

0

0 +
ε2

2
d̂F

0

0 d̂F
0

0 t(t − 1)

+ε2d̂F
1

0 d̂F
1

0

(1 − 2p)
2p

(t − 1)
)

x̂0(0)

+
(

ε

2p
d̂F

1

0 +
ε2

2p
d̂F

0

0 d̂F
1

0 (t − 1)
)

x̂1(0)
]
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+(1 − 2p)t

[(
− ε

2p
d̂F

1

0 − ε2

2p
d̂F

1

0 d̂F
1

1 (t − 1)
)

x̂1(0)

+ε2d̂F
1

0 d̂F
1

0

(1 − 2p)
4p2

x̂0(0)
]

(52)

which agree with the expressions derived from the exact solution when expanded
to O(ε2).

Now, from (13), we know on general grounds the functional form of x̂I(t), i.e.
a sum of exponentials with different time independent amplitudes. In (52) there
are exponentials, however, the exponents are what one would expect from the
mutation only system as the perturbative expansions contain a part whose origin
was the expansion of the eigenvalues of the exact expression. The question arises
then – is it possible to restore the general functional form of equation (13)? and
thereby improve the approximation, and is it possible to separate out amplitudes
from exponents? The answer to both these questions is yes and requires a tool
known in physics as the renormalization group.

7 Perturbation Theory and the Renormalization Group

The solution to the two questions just posed begins with the observation that the
secular terms invalidate perturbative expressions for x̂I(t) when, for example,

εd̂F
0

0 t is no longer small. Notice for instance though, the first three coefficients of
x̂0(0) in the amplitude of the exponent of the leading eigenvalue – 1 – are the first

three terms in an expansion of (1 + εd̂F
0

0 )t, i.e. an exponential. Notice further
that from the exact answer (39) and its expansion to O(ε) for weak selection,
as given in (27), that this posited exponential is the same as the perturbative
expansion of the exact one. Thus, it would seem that a resummation of the
perturbative series in (52) is required. However, given that we only have the first
two terms in the equations how can we determine what the series should sum
to? and how do we determine what should be summed and what shouldn’t? At
the heart of the problem is the fact that we are trying to be too greedy with
the perturbative approximation. In the regime εdF t � 1 there is no problem.
However, we wish to investigate the dynamics well away from the initial starting
point at t = 0. To circumvent this difficulty we will introduce a new initial
condition, x̂I(τ), at some arbitrary time τ and demand that the parameters
x̂I(τ) are related to the physical initial conditions x̂I(0) via

x̂I(0) =
∑

J

Ẑ J
I (τ)x̂J (τ) (53)

and posit a perturbative expansion for the coefficients Z J
I

Ẑ J
I (τ) = 1 +

∞∑

n=1

εnδ J
I aI (54)
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The idea now is to “renormalize” (essentially reparameterize) (52) by replacing
the x̂I(0) using (53). It is important to note that the latter is an identity and so
we are not changing anything by doing so. However, the coefficients aI remain
to be determined and at our disposal. We use the freedom in their definition to
eliminate the secular terms in (52) at the particular time t = τ . We will here carry
this out to O(ε), the O(ε2) and higher calculations being fairly straightforward
(though eventually complicated) extensions. To O(ε) one finds

a0 = a1 = −ετ d̂F
0

0 (55)

Now, from (53), as x̂I(0) is independent of τ so must be
∑

J Ẑ J
I (τ)x̂J (τ) which

therefore must satisfy
∑

J

Ẑ J
I (τ + 1)x̂J(τ + 1) =

∑

J

Ẑ J
I (τ)x̂J (τ) (56)

Substituting in Ẑ J
I to O(ε) using (55) one finds

x̂I(τ + 1) = (1 + εd̂F
I

I )x̂I(τ) (57)

which can be iterated to yield

x̂I(τ) = (1 + εd̂F
I

I )τ x̂I(0) (58)

using as initial condition x̂I(0). Substituting this expression into (52) and using
our freedom to choose τ , we set τ = t to find

x̂0(t) = (1 + εF 0
0 )t(x̂0(0) + ε

d̂F
1

0

2p
x̂1(0)) − (1 − 2p)t(1 + εF 0

0 )tε
d̂F

1

0

2p
x̂1(0)(59)

x̂1(t) = (1 − 2p)t(1 + εF 1
1 )t(x̂1(0) − ε

d̂F
1

0

2p

(1 − 2p)
2p

x̂0(0))

+(1 + εF 0
0 )tε

(1 − 2p)d̂F
1

0

2p
x̂0(0) (60)

These expressions are equivalent to the exact solution (42), where the eigenval-
ues λ± and the amplitudes AI− and AI+ have been expanded to O(ε). Thus,
the renormalization group has resummed the diagrammatic perturbation theory
and thereby gives a better approximation than the latter. These statements are
true for any N , although we are only illustrating the one-bit problem. In the
latter case, when considering the P̂I or PI , because to O(ε) the approximate
eigenvalues are of the form λ

(0)
i (1 + εF 0

0 ) for i = + or −, and because in the
non-renormalization group resummed perturbation theory of section 6.2 the sec-
ular terms cancel, the RG and non-RG resummed answers are the same. This is
not true beyond lowest order or for N > 1.
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8 Conclusions

We have introduced and proposed perturbation theory as a candidate tool for
analysing the dynamics of EAs. We showed that within the umbrella of per-
turbative methods there are many different implementations. In the context of
mutation-selection EAs we briefly discussed one of the most familiar ones, where
the eigenvalues and eigenvectors of the transition matrix are computed perturba-
tively. This methodology has various drawbacks. In particular, the computation
of the perturbed eigenvectors beyond leading order is complicated. Additionally,
it lacks intuitive transparency. To ameliorate some of these defects we consid-
ered a perturbative calculation of the population variables themselves (really
we are computing the transition matrix of the Markov chain G J

I (t, t′), which is
then used to compute the PI(t) via PI(t) =

∑
J G J

I (t, t′)PJ (t′)), using diagram-
matic methods familiar from field theory, showing how a pictorial representation
of the processes that contribute to the production of a given string could be
systematically constructed using a simple set of rules.

As a simple illustration of the results one might expect we showed how the
approximate solutions were close to the exact solutions for a variety of landscapes
and for strings of length 7, even when the perturbation was quite large, the ap-
proximation systematically improving as different orders in ε were considered.
To make transparent exactly how the methodology works we also considered a
simple one-bit example. We showed that a defect of the direct diagrammatic
expansion is the existence of “secular” terms and then introduced the renormal-
ization group, which was seen to eliminate these secular terms to give uniform
approximations for all t.

We emphasise that this paper is merely an introduction to these techniques
and, given the lack of space, a brief one at that. Although we used a toy one bit
example to illustrate in as simple a context as possible how the different per-
turbative implementations work and how they approximate the exact solution,
we also showed that using diagrammatic methods one could push on to more
realistic problems. How simple it is to implement the renormalization group in
that context remains to be seen, as when there exist degenerate unperturbed
eigenvectors a non-diagonal matrix renormalization is necessary. As at heart we
are calculating the transition matrix for the Markov chain it should be relatively
straightforward to include in finite population effects. All in all, we believe there
to be a huge space in which further work may be carried out to check to what
extent perturbative methods can help narrow the expectation gap between the-
oreticians and practitioners.
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