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Abstract. Ordered binary decision diagrams (BDDs) yield a data structure for
switching functions that has been proven to be very useful in many areas of com-
puter science. The major problem with BDD-based calculations is the variable
ordering problem which addresses the question of finding an ordering of the in-
put variables which minimizes the size of the BDD-representation. In this paper,
we discuss the use of genetic algorithms to improve the variable ordering of a
given BDD. First, we explain the main features of an implementation and report
on experimental studies. In this context, we present a new crossover technique
that turned out to be very useful in combination with sifting as hybridization
technique. Second, we provide a definition of a distance graph which can serve
as formal framework for efficient schemes for the fitness evaluation.

1 Introduction

Ordered binary decision diagrams (BDDs for short) are data structures to represent
switching functions that rely on a compactification of binary decision trees. More gen-
eral, using appropriate binary encodings, BDDs can serve to represent discrete func-
tions with a finite domain. They were first introduced by Lee [28] and Akers [1]. In the
meantime, various variants of BDDs have been suggested in the literature and applied
successfully in many areas of computer science. Most popular are Bryant’s (reduced)
ordered binary decisions diagrams [8] that require a fixed variable ordering on any
path. They have been proven to be very useful for the verification of reactive systems,
often called symbolic model checking [10, 32]. Other application areas of BDDs in-
clude VLSI design, graph algorithms, complexity theory, matrix-operations, data bases,
artificial intelligence, and many more. See e.g. the text books [18, 25, 33, 36, 48].

The crucial point with ordered BDD-based computations is the variable ordering
problem. For a wide range of switching functions, there are polynomial-sized BDDs
for “good” variable orderings, while the BDDs under “bad” variable orderings have
exponential size. Unfortunately, the problem of finding an optimal variable ordering
is NP-complete [6, 45]. However, there are many reordering algorithms that improve
the ordering of a given BDD. Most popular are Rudell’s sifting algorithm [41] and the
window permutation algorithm [21]. A first attempt to use genetic algorithms for the
variable ordering problem for BDDs was presented by Drechsler, Becker and Göckel
[15] where the main genetic operations are partially-mapped crossover and mutation.
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A related approach using simulated annealing was suggested by Bollig, Löbbing and
Wegener [5]. In experimental studies it turned out that these methods yield better re-
sults (smaller BDDs) than other dynamic reordering techniques, but they are compa-
rably slow, see e.g. [42]. To speed up the computations, several approaches have been
suggested, including advanced tricks for the parameter setting and treating sifting as a
genetic operation that replaces crossover techniques [16, 46], evolutionary algorithms
with learning heuristics [17], the use of computed tables and approximate fitness values
[24] or parallel genetic algorithms [12].

The goal of our paper is orthogonal to the above mentioned strategies by present-
ing alternative techniques to improve the efficiency and quality of genetic reordering
algorithms for BDDs, while still retaining the concept of crossover (in contrast to the
approaches of [16, 46]). We concentrate here on the purely genetic part of such reorder-
ing algorithms. However, the techniques suggested here can easily be combined with
other (non-genetic) methods to increase the efficiency, e.g. by using “ordinary” sifting
as in [16, 46].

Unlike [16, 46] which uses inversion as the only genetic recombination technique,
we discuss several crossover techniques and present a new one, called alternating cross-
over which attempts to maximize the benefits of hybridization, i.e., the combination of
a deterministic search algorithm with a genetic algorithm. The idea in the context of
BDD minimization relies in generating an interleaving of the parent’s variable order-
ings (alternating crossover) and moving the variables with the sifting-technique to the
next local optimum after (the hybridization step). Our experimental results show that
alternating crossover outperforms other recombination techniques such as order, par-
tially matched or cycle crossover and inversion, by means of the BDD-sizes, while no
significant differences in the runtime could be observed.

The second contribution is a formal framework to speed up the calculation of the
fitness values for the newly generated individuals. In fact, for the variable ordering
problem, calculating the BDD-size under a given variable ordering is a time-consuming
step. It is typically realized by a sequence of local (level-wise) reorganizations of the
BDD, the so called swap-operator (see e.g. [48]). Even when the final BDD is smaller
than the original one, an exponential blow-up for the intermediate BDDs is possible.
Thus, strategies that support the fitness calculation of the new population are highly de-
sirable. We introduce a formal notion of a distance graph, a weighted graph where the
nodes are orderings and the edges are labeled with the minimal number of swaps neces-
sary to transform one ordering into another one. Using (variants of) heuristic algorithms
for the traveling salesperson problem a “short” tour in the distance graph through the
newly generated orderings, for which the fitness values (BDD-sizes in our case) are re-
quired, yields an appropriate scheme for the fitness evaluation. The distance graph can
also serve as formal framework for other techniques that support the fitness calculation
as suggested in [24]. Moreover, the fitness computation via our visiting strategy can
easily be modified to weaken the drawback of crossover operations that might lead to
unfeasible BDD-sizes, e.g., if they generate individuals that are far from both parents
and combine the bad attributes of the parents.

Throughout the paper, we concentrate on the use of our algorithm for the minimiza-
tion of ordinary BDDs, but our methods are also applicable to other types of decision
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diagrams, such as zero suppressed BDDs [36] algebraic decision diagrams, [2, 11] and
their normalized version [39], and other DD-variants.

Organization of the paper. The basic concepts of binary decision diagrams and no-
tations used in this paper are summarized in Section 2. Section 3 explains the main
concepts of our genetic algorithm and its implementation we used for the experimental
studies. Section 4 is concerned with alternating crossover. Our graph-based technique
to reduce the runtime for the fitness calculation are described in Section 5. In Section 6,
we report on experimental results. Section 7 concludes the paper.

2 Binary Decision Diagrams

In the remainder of this paper, we fix a finite set Z = {z1, . . . ,zn} of boolean variables
and often refer to the variables by their indices (i.e., we identify index i with variable
zi). An evaluation for Z denotes a function that assigns a boolean value (0 or 1) to any
variable zi ∈ Z. By a switching function over Z, we mean a function f which maps
any evaluation for Z to 0 or 1. If z ∈ Z then f |z=0 and f |z=1 denote the cofactors of
f which arise by fixing the assignment z �→ 0 and z �→ 1 respectively. For instance, if
f = z1 ∧ (z2 ∨ z3) then f |z1=0 = 0 and f |z1=1 = z2 ∨ z3.

The fact that there is no data structure for switching functions that is efficient for all
switching functions becomes clear from the observation that the number of switching
functions over Z grows double exponentially in the size of Z. An explicit representation
of switching functions using truth tables seems coherent, but a truth table for a switching
function with n variables consists of 2n lines and consequently its space complexity
grows exponentially in the number of variables. Implicit descriptions, like propositional
logic formulas and binary decision diagrams can be much more efficient.

Binary decision diagrams are a graph based representation of switching functions
which rely on the decomposition of switching functions in their cofactors according to
the Shannon expansion f = (¬z∧ f |z=0)∨ (z∧ f |z=1). Formally, a BDD is an acyclic
rooted directed graph where every inner node v is labeled with a variable and has two
children, called the 0-successor and 1-successor. The terminal nodes are labeled with
one of the truth values 0 or 1. In ordered BDDs (OBDD) [8], there is a variable ordering
π = (zi1 , . . . ,zin) which is preserved on any path from the root to a terminal node. That
is, if v is an inner node labeled with variable zi� and w a child of v which is non-terminal
and labeled with variable zir then zi� appears in π before zir , i.e., i� < ir. In the sequel,
we shall use the notation π-OBDD to denote an OBDD relying on the ordering π and
we refer to any inner node labeled with variable z as a z-node.

The switching function represented by a terminal node agrees with the correspond-
ing constant 0 or 1. The switching function of a z-node v with 0-successor w0 and
1-successor w1 is fv = (¬z∧ fw0)∨ (z∧ fw1). The switching function fB represented
by an OBDD B agrees with the switching function for its root node. Thus, given
an evaluation for Z, the truth value under fB is obtained by traversing B starting
in its root and branching in any inner node according to the given evaluation. Fig-
ure 1 depicts two π-OBDDs with the variable ordering π = (z1,z2,z3) for the function
f = (z1 ∧¬z2 ∧ z3)∨ (¬z1 ∧ z3 ∧ z2) . In the OBDD on the left, both z3-nodes represent



4 Wolfgang Lenders and Christel Baier

10 Terminal nodes

Root Node

3
z

z
2

z
2

3
z

z
1

10

3
z

z
2

z
2

z
1

Fig. 1. OBDD and ROBDD

the same cofactor, namely f |z1=0,z2=1 = f |z1=1,z2=0 = z3. Thus, a further reduction of
the shown OBDD is possible by identifying the two z3-nodes which yields the reduced
OBDD (ROBDD) shown on the right. Intuitively, A OBDD is called reduced if it does
not contain any redundancies. Formally, an ROBDD B denotes an OBDD such that
fv �= fw for all nodes v, w in B with v �= w. Given an π-OBDD, an equivalent π-ROBDD
is obtained by identifying terminal nodes with the same value, identifying z-nodes with
the same successors and eliminating all inner nodes where the 0- and 1-successor agree.

π-ROBDDs yield a universal representation for switching functions. (This follows
from the fact that the above reduction procedure applied to the decision tree for a switch-
ing function with ordering π yields an π-ROBDD.) Moreover, the representation by π-
ROBDDs is canonical up to isomorphism because the node-set of a π-ROBDD stands
in one-to-one correspondence to the set of cofactors f |zi1 =b1,...,zik

=bk that can be ob-

tained from f by assigning values to the “first” variables of π 1. (Here, the range for k
is 0,1, . . . ,n, and b1, . . . ,bk ∈ {0,1}.)

ROBDDs yield a minimized OBDD-representation for a given switching function,
provided the variable ordering is viewed to be fixed. However, by varying the ordering
π the size of the BDD can be influenced. Figure 2 illustrates this observation by display-
ing two ROBDDs for the same switching function f = (x1 ∧ x2)∨ (y1 ∧ y2)∨ (z1 ∧ z2)
using different variable orderings. In the worst case, a ROBDD can have exponential
size according to the number of variables n. There are functions, e.g. the middle bit
of multiplication, whose ROBDD representation has exponential size for every variable
ordering. Other functions, e.g. the most significant bit of addition, can vary between lin-
ear and exponential size depending on the chosen variable ordering while the number
of any ROBDD for symmetric functions (e.g. n-ary disjunction or the parity function)
is at most quadratic. See [9] and e.g. the text books [33, 48] for a detailed discussion of
the complexity of ROBDDs.

Shared BDDs. Most BDD-packages follow the approach of [35] who suggested the si-
multaneous representation of several switching functions in one reduced graph (called

1 Some of these cofactors might agree in which case they are represented by the same node
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Fig. 2. Two BDDs for the same switching function using different variable orderings

shared or multi-rooted BDD) where the ROBDDs of the represented functions are re-
alized as subgraphs and share the nodes for common cofactors. With several additional
implementation tricks (appropriate hash tables, the ITE-operator to treat all boolean
connectives, negated edges, etc.) the manipulation of switching functions and other
BDD-based calculations can be realized efficiently, such as checking equivalence of
switching functions in constant time or performing boolean combinations in time poly-
nomial in the sizes of the ROBDDs for the arguments.

Throughout the paper the term BDD will refer to a shared BDD with negative edges.
(This also applies for the number of BDD-nodes in the experimental results.)

The variable ordering problem. For the wide range of functions where the BDD-sizes
range from polynomial to exponential, the variable ordering has an immense importance
for BDD-applications, not only for reasons of memory requirement but also for the run-
time of BDD manipulation operations. Beside some heuristics that compute a variable
ordering from a given circuit description there is a wide range of dynamic reordering
algorithms that attempt to improve the given variable ordering. The problem of finding
an optimal variable ordering for a given BDD is known to be NP-complete [6, 45]. The
best known algorithm that determines an optimal variable ordering requires exponential
time [20]. However, there are several Greedy-heuristics that might return a suboptimal
ordering. All these reordering algorithms are based on sequentially exchanging pairs
of neighboring variables. This basic swap operation induces only local changes to the
involved variables and can be carried out in constant time for each node that has to be
handled. Thus, the running time of the operation swap(z,z′) on the BDD B with or-
dering π, where z and z′ are adjacent in π, is linear in the number of z-nodes and the
number of their incoming edges in B . Using appropriate sequences of swap operations,
any variable ordering can be transformed into another one.
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One of the most commonly used deterministic heuristics for BDD minimization is
Rudell’s sifting algorithm [41] . The basic idea of sifting is to move each variable suc-
cessively through the whole variable ordering and eventually leave it at the position that
yields the best BDD size. This procedure can be repeated as long as the variable order-
ing changes (iterated sifting). Several additional heuristics can be used to improve the
efficiency of the sifting algorithm. Most popular is the use of a maximum growth factor
c which stops the movement of a variable in one direction if the BDD-size becomes c-
times larger than the original one. In our genetic algorithm, we shall use (non-iterated)
sifting as hybridization technique with small maximum growth factors c. With such a
choice for c, the sifting procedure is quite fast and searches the local optimum for any
variable in its neighborhood. In fact, we made good experience with a local search that
we obtain by choosing max growth factor c = 1.

Genetic algorithms for the variable ordering problem rely on a representation of the
variable orderings in permutation form. The main genetic operations used in the algo-
rithm proposed in [15] are (i) partially matched crossover (PMX) [22] which selects
a matching section between two cutpoints and uses exchange operations to make one
parent’s matching section assimilate the other’s, (ii) mutation which exchanges the po-
sitions of two variables, and (iii) inversion [26] which selects at random two cutpoints
and reverses the ordering in the enclosed segment. To improve the efficiency, [16, 46]
suggest to skip crossover techniques and use sifting as a “normal” operation instead2,
while [12] deals with a parallel genetic algorithms with PMX and mutation as main
operations. Other additional techniques to achieve a speed-up are proposed in e.g. [24].

Our approach where sifting serves as hybridization technique should be contrasted
to the approach of [16, 46] where sifting serves as a “normal” operation which is chosen
with a probability of 50% and executed with the maxgrowth factor c = 2. In our setting,
we deal with a minimized version of sifting that only serves for a local search in the
surrounding of an offspring generated by a crossover operation. In fact, by choosing
the maxgrowth factor c = 1 we only look for the nearest local optimum of any variable
which makes the sifting-phase much faster than with higher maxgrowth factors (such
as c = 2).

3 A Genetic Algorithm for the Variable Ordering Problem

In this section, we summarize the main features of our implementation of a genetic
algorithm for the BDD minimization problem. We realized the standard schema for
evolutionary algorithms with hybridization, sketched in Figure 3, using several genetic
operations. We adapted several techniques for evolutionary algorithms suggested some-
where else in the literature and developed a new crossover technique (see Section 4) as
well as a graph-algorithmic approach for the design of an efficient schema for the fitness
computation (see Section 5).

2 More precisely, the main “proper” genetic operation in [16, 46] is inversion, but they skip the
crossover techniques, and use mutation only if the offspring is equal to the parent element.
In [16] some additional problem-specific recombination and mutation operators have been
used for incompletely specified boolean functions. As we shrink our attention to completely
specified function these techniques are not applicable in our setting
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Genetic Algorithm with Hybridization
Input: Population p as a collection of individuals
Output: Individual i with “good” fitness
initialize(p)
evaluateFitness(p)
i = fittestElementOf(p)
REPEAT
selectParents(p)
recombination(p) (* crossover and inversion *)
mutation(p)
evaluateFitness(p) (* see section 5 *)
hybridization() (* sifting with maxgrowth c = 1 *)
i = fittestElementOf(p)

UNTIL(i was not improved)

Fig. 3. A hybrid genetic algorithm

The population size is parametric in our implementation. Even for large circuits, we
made good experience with small population sizes, such as 8 individuals per population
(see Section 6). The initial population is chosen at random. Techniques that derive a
promising ordering from the topology of a circuit description (e.g. the fanin heuristic
[30] or weight heuristic [35]) could be used in addition. Also an improvement of the
initial population with deterministic reordering algorithms (such as sifting or window
permutation) could be integrated, as e.g. in [15].

Recombination. Beside the partially matched crossover (PMX) [22], which is also
used in [15] and [12], we consider three other crossover techniques. Order crossover
[13] chooses n/2 pairwise different positions and copies the genes at the selected posi-
tions to the offspring, and finally, fills up the gaps using the missing genes in the order
they are found in the second parent. In general, the offspring under order crossover
assimilates the first parent more than the second. Another version of order crossover in-
corporates cutpoints instead of randomly selected positions. Every element between the
two cutpoints is copied from the first parent, the elements outside the cutpoints are filled
up with the missing elements, preserving the second parents’ order. This variant has the
benefit of being less disruptive. Cycle crossover [38] attempts to retain the original posi-
tion of genes in their parents. This is achieved by continuous copying of genes from one
parent until the end of a cycle is reached, then switching and continuing from the other
parent. In rare occasions the offspring can be equal to one of its parents. This case has
to be combined with forced mutation to achieve a modification in the next generation.
In addition, we implemented alternating crossover, that will be explained in Section 4,
and the inversion operator [26], which reverses the fragment of a given variable ordering
between randomly chosen cutpoints, as an asexual recombination technique.

Mutation. Mutation of a permutation means the exchange of the positions of two vari-
ables by appropriate swap-operations. The approach we have chosen in our implemen-
tation first takes a general decision whether a given offspring is to be mutated or not.
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If so, a level of mutation is chosen and expressed as a number of variable exchanges
to be executed. The positions of the variables to be exchanged are picked randomly,
also multiple selection of the same variable is possible. This approach is efficient in
implementation and execution, and it resembles the original mutation scheme. A forced
mutation in case a crossover does not generate (enough) differences between offspring
and parents is available. For measuring “differences”, a distance is defined in Section 5.

Fitness scaling. Choosing the BDD size as a natural measure for the fitness of a vari-
able ordering seems straightforward. Nevertheless the fitness values will be “negated”,
conducted by setting fitness(π) = max_bdd_size_found − bdd_size(π), for implemen-
tation reasons, which also retains the comfort of speaking of a higher fitness as a better
one, whereas a higher BDD size would imply a worse variable ordering. In Section 5,
we will explain our new scheme to minimize the number of swaps necessary for fitness
calculation by a distance minimizing strategy.

To handle the problem of premature convergence3 or the problem of fitness values
that are too close to each other (which can happen in “late” populations, also in the
non-premature case, in particular for small population sizes), we adapt the approach
of Goldberg [23] and use a linear scaling mechanism. That is, we replace the original
fitness function f by the scaling function f ′ = a f +b by first fixing f ′ (avg) to f (avg),
which ensures that each not less than average individual obtains a scaled value ≥ 1
and is therefore guaranteed a mating opportunity in a subsequent remainder selection
scheme. Toward the end of a GA’s run, the population has largely converged. In this
environment, the maximum fitness is generally close to the average fitness, whereas
recombination may generate lethals, i.e. individuals with a far below average fitness.
These individuals are likely to be scaled to negative fitness values. These exceptions
are caught and the affected individuals set to zero fitness. The resulting fitness values
are sampled using stochastic universal sampling [3, 4] by default, while other sam-
pling methods, such as roulette wheel selection or remainder sampling with or without
replacement, are available upon selection.

A variant with the full sifting procedure. As pointed out in [16, 46], the efficiency
of evolutionary reordering algorithms as in Fig. 3 can be increased by using “ordinary”
sifting (with large maxgrowth factor, say c = 2) as an alternative in the recombination
phase. As mentioned before, the aim of our paper is to study the gain of the proper
genetic operators, and therefore, we do not consider this option here.

4 Alternating Crossover

We suggest a new crossover technique, called alternating crossover, which in combina-
tion with sifting as hybridization technique turned out to be very successful. Alternating
crossover generates offspring by copying genes alternately from the parents and inter-
leaves them this way. See Figure 4. This creates offspring in which genes that were ad-
jacent in one parent are generally separated by one or more genes from the other parent.

3 Premature convergence e.g. occurs if in the initial population one of the randomly selected
individuals represents a fairly good solution already which is far away from the other individ-
uals and if this “superhero” is chosen multiple times for mating and is going to spread its genes
throughout the population instantly
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Alternating Crossover
Input: Parents p1 and p2 of length n
Output: Offspring π
done = {}
candidate = p1.atPosition(0)
position_p1 = 0
position_p2 = 0
FOR (i = 0) TO (i = n−1) DO
WHILE (candidate ∈ done) DO
IF (i mod 2 = 0) THEN

candidate = p1.atPosition(position_p1)
position_p1 = position_p1 +1

ELSE
candidate = p2.atPosition(position_p2)
position_p2 = position_p2 +1

FI
OD
done∪{candidate}
π.atPosition(i) = candidate

OD
return π

Fig. 4. Alternating Crossover

Under normal circumstances this disruption of schemata would be considered harmful,
but in conjunction with sifting with maxgrowth factor c = 1 as hybridization algorithm
it bears good results. Sifting performs swaps of neighboring variables and retains the
exchange if it was beneficial. This way, every separation of genes introduced during the
application of alternate crossover can be revoked if necessary, while on the other hand
many genes are tested in the surroundings of their current position. Therefore, alter-
nating crossover in conjunction with sifting exploits the offspring’s local neighborhood
thoroughly.

Figure 5 depicts an example of an alternating crossover application and highlights
the genes in the offspring that were adjacent in a parent and are now in sifting distance,
i.e. their distance is less than 2. Thus even our minimized sifting procedure is able to
restore the original ordering if necessary. (Here, we identify variable zi with its index
i.) We call two genes a and b in sifting distance, when they can be made adjacent by no
more than two exchanges of neighboring genes, i.e. when there are at most two genes
between a and b. Our minimized sifting procedure moves each gene at least one step
in each direction and is therefore able to recover the original ordering should it have
been the most beneficial one. In the following example, let the original ordering with
adjacent genes a and b be better than the newly generated one:

original ordering: x a b y

newly generated by alternating crossover: a x y b

exchange neighboring variables a and x: x a y b

exchange neighboring variables b and y: x a b y
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Fig. 5. Example for the operation of Alternating Crossover

Since we said the original ordering to be the most beneficial one, sifting would have
executed exactly these two variable exchanges.

5 Fitness Calculation via an Optimized Visiting Order

Obtaining the actual fitness value for a variable ordering involves generating the cor-
responding binary decision diagram via an appropriate sequence of swap-operations.
This can be a costly procedure if the ordering differs clearly from the current order. To
minimize the number of swaps necessary for fitness calculation we suggest a strategy
that attempts to find an efficient visiting order of the individuals of the new population
(variable orderings) for which the fitness values (BDD-sizes) are still unknown.

In principle, fitness can be calculated at different times during the run of a genetic
algorithm. Calculating fitness for each individual directly after it has been generated has
the benefit of being able to decide about the individual’s fate at once. If, for example,
the offspring generated by a crossover is way worse than its parents it can be discarded
in favor of the better parent. On the other hand, this approach does not allow alterations
in the order the offspring is tested, which otherwise can be optimized. In the sequel, we
explain a strategy to optimize the visiting order of the individuals by providing a formal
definition for the distance between variable orderings.

A distance function for variable orderings. In the sequel, we identify any swap-
operation with the index of the variable to be swapped with its right neighbor. Thus,
for a variable set Z = {z1, . . . ,zn} of cardinality n, we denote any swap-operation by an
integer s ∈ {1, . . . ,n−1}. We write π �s π′ to denote that swap-operation s transforms
the variable ordering π into the variable ordering π′. By a swap sequence, we mean any
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finite sequence σ = (s1,s2, . . . ,sl) of swap-operations. We refer to |σ| = l as the length
of σ. σ is said to transform π into π′, denoted π �σ π′, if the sequential composition of
the swaps si transforms π to π′, i.e.,

π �σ π′ if π �s1 π1 �s2 π2 . . .�sl πl = π′.

σ is called a minimum swap sequence for (π,π′) if σ transforms π to π′ and if there
is no shorter swap sequence than σ that also transforms π to π′. The distance δ(π,π′)
between two variable orderings π and π′ is defined as the length of a minimum swap
sequence for (π,π′). That is, δ(π,π′) = min

{|σ| : π �σ π′}.

Proposition 1. δ is a metric on the the set of variable orderings. That is,

1. δ(π,π′) = 0 if π = π′
2. δ(π,π′) = δ(π′,π)
3. δ(π,π′) ≤ δ(π, π̂)+ δ(π̂,π′)

The proof of Proposition 1 is straightforward and omitted here. The orderings with
maximum distance between each other are the pairs

(
π,π−1

)
, were π−1 is the inverse

ordering of π.

Proposition 2. If π and π′ are variable orderings for a variable set of cardinality n
then

δ(π,π′) ≤ δ(π,π−1) =
n(n−1)

2

Proof. The fact that δ(π,π′) ≤ (n−1)+ (n−2)+ . . .+ 1 = n(n−1)
2 is clear as we may

consider the swap sequence which first moves the last variable of π′ with at most (n−1)
swaps at position n, then moves the variable at position n− 1 in π′ with at most n− 2
swaps at its final position n−1, and so on.

It remains to provide the argument why no swap sequence shorter than n(n−1)
2 trans-

forms π into π−1. Let π and π′ be arbitrary orderings for variables z1, . . . ,zn and ki the
number of variables z j such that i �= j and (i) zi occurs in π before z j and (ii) z j occurs
in π′ before π′. That is, π = (. . . ,zi, . . . ,z j, . . .) and π′ = (. . . ,z j, . . . ,zi, . . .). Then, any
swap sequence that transforms π into π′ has to perform at least ki swaps that exchange
zi with its right neighbor. Thus, δ(π,π′) ≥ k1 + . . .+ kn. In the case, π′ = π−1, we have
ki = n− i, Thus, δ(π,π−1) ≥ (n−1)+ (n−2)+ . . .+ 1 = n(n−1)/2. �

Deriving an efficient fitness calculation scheme from the distance graph. The above
proposition shows that inversion, a powerful genetic operation, requires a number of
swaps quadratic to the length of the inverted segment. This makes an immediate fitness
rating of the offspring less desirable in comparison to the opportunity to optimize the
order of visiting the individuals. Our strategy for reducing the number of variable swaps,
that have to be carried out for computing all fitness values by finding an advantageous
visiting order for the individuals, is based on a distance graph, a complete graph where
the individuals for which the fitness still has to be computed form the vertices, while the
edge between two vertices π1 and π2 is marked with their distance δ(π1,π2). (Because
of the symmetry of δ the distance graph can be viewed as an undirected graph.) An
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Fig. 6. A distance graph for orderings with three variables

example for a distance graph for three variables4 is provided in Figure 6. Usually, the
distance graph will not contain all possible vertices as suggested by the figure, but
only those vertices coding for members of the group of offspring whose fitness is still
unknown.

Now we could ask for an optimal visiting strategy for the individuals, i.e. a visiting
order that visits all nodes of the distance graph and which minimizes the sum of all
covered distances (the total number of swap operations which have to be carried out).
Since we are looking at an instance of the traveling salesperson problem, the question
for an optimal visiting order is computationally hard (NP-complete). Instead, we may
adapt any heuristic algorithms for the TSP to obtain an efficient, possibly sub-optimal
visiting order of the vertices in the distance graph. In our implementation, we employed
the nearest neighbor heuristic [34] to decide which individual is to be considered next
until all fitness values are computed. Our experiments showed that this procedure means
a major speed-up towards the regular visiting order, because the calculation of fitness
values is one of the most time-consuming but basic and irreplaceable parts of the mini-
mization algorithm.

A variant of the graph-based visiting schema. [16, 46] observed the problem that
variable orderings generated by the standard crossover techniques (PMX, OX or CX)
might lead to BDDs of unfeasible size. To avoid this problem, we suggest the following
variant of our visiting algorithm. If during the execution of a minimum swap sequence
from one vertex π to another vertex π′ of the distance graph the BDD-size is larger than
a certain threshold then we may discard π′ and, if necessary, generate a new variable or-
dering π′′ via genetic operations (recombination, mutation and sifting as hybridization
technique). In this case, of course, the visiting strategy has to be revised dynamically.
The threshold can either be a fixed upper bound for the BDD-size or can be determined

4 Again, we identify any variable with its index. E.g., node 123 stands for the ordering π =
(z1,z2,z3)
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by a function depending on the fitness values that are already known. Another alterna-
tive for the threshold is to use a maxgrowth factor (as it is standard for sifting) for the
swap sequences that are executed in the visiting strategy.

In addition, the best intermediate ordering π̂, obtained by executing the minimum
swap sequence from node π to node π′ in the distance graph, can be used as an additional
candidate for the next generation, provided it is better than π and π′.

Integration of other advanced techniques. Our graph-algorithmic approach for the
fitness computation can easily be modified to integrate the three methods suggested
by Günther and Drechsler [24] to accelerate evolutionary algorithms for sequencing
problems.

(1) For an approach where the BDDs for several variable orderings are stored to speed
up the fitness calculations (as proposed by [24]) we may also deal with a distance
graph, but now equipped with another weight function for the edges. Let π1, . . . ,πm

be the variable orderings for which corresponding BDDs are stored. Then, we may
use the weight function δ̂(π,π′) = min

{
δ(π,π′), δ(πi,π′) : i = 1, . . . ,m

}
which

captures the possibility to start the computation of the π′-BDD with one of the
stored BDDs rather than the π-BDD.

(2) Following [24], we may also use computed-tables that store the BDD-sizes for
already considered variable orderings. In our setting, this means a simplification of
the distance graph which only contains the orderings not considered so far.

(3) The third method suggested in [24] relies on the use of upper and lower bounds for
the BDD-sizes that will be obtained through local modifications of the ordering [7].
As shown in [24], this technique in combination with multiple representation as in
(1) and computed-tables as in (2) can lead to a speed-up around 80%. This idea can
be integrated in our graph-based approach as follows bu choosing a constant d and
modifying the visiting strategy as follows: If the current node is π then we use such
approximate fitness values rather than the precise BDD-sizes for all (possibly, but
one) orderings π′ with δ(π,π′) ≤ d.

6 Experimental Results

To evaluate the performance of the several recombination techniques (crossover, inver-
sion) and the influence of the parameter setting, we implemented the schema sketched
in Fig. 3. For all tests we used excerpts of the LGSynth93 benchmark suite (see Fig. 7),
obtainable from [31]. We carried out ten runs of our genetic algorithm and present the
average BDD size as well as the best result we obtained, in order to visualize the vari-
ation in the results. The indicated time shows CPU seconds on a Pentium IV 2.4 GHz
PC with 512 MB of RAM running the JJS-BDD package [27] on Linux.

Unless stated otherwise, in all tests the parameters of our genetic algorithm were
chosen as follows. The population size is 8, the maxgrowth factor for hybrid sifting
is c = 1. We carried out experiments with growth factors of 1.1 and 1.2 (not shown
here), which resulted in almost identical5 results, but bearing a longer runtime. For the

5 One benchmark resulted in a BDD two nodes smaller. sizeavg results were slightly better in
most benchmarks
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benchmark original inputs outputs
BDD size

apex1 6785 45 45
apex2 13418 38 3
apex3 53365 54 50
apex4 1040 9 19
apex5 3944 114 88
apex6 1993 135 99
apex7 1775 49 37
comp 203198 32 3
cps 1869 24 109
dalu 11178 75 16

benchmark original inputs outputs
BDD size

des 10771 256 245
duke2 596 22 29
e64 1500 65 65
ex4p 994 84 28

i5 1032 133 66
i6 388 138 67
i7 559 199 67
i8 10366 133 81

vg2 735 25 8

Fig. 7. Benchmarks

order partially matched alternating cycle inversion
Benchmark

size sizeavg time size sizeavg time size sizeavg time size sizeavg time size sizeavg time
apex1 1253 1255 40 1246 1258 52 1250 1253 39 1270 1270 33 1246 1253 101
apex2 354 372 32 318 327 54 328 338 22 321 345 23 392 395 22
apex3 841 841 20 839 841 28 839 841 23 841 841 20 840 841 30
apex4 889 889 2 889 889 2 889 889 2 889 889 2 889 889 2
apex5 1044 1044 85 1044 1050 113 1044 1044 72 1073 1082 50 1086 1092 68
apex6 523 532 58 513 527 89 510 531 55 524 531 78 575 587 81
apex7 214 214 6 214 214 6 214 214 6 216 217 5 214 214 6
comp 101 107 33 110 125 28 101 110 36 122 144 37 143 143 20
cps 971 971 18 971 972 12 971 974 13 977 976 10 1010 1010 14
dalu 785 798 157 689 689 248 689 701 138 689 689 205 699 711 192
des 2983 3012 988 2971 2977 723 2958 2974 756 2992 3015 601 2987 2992 953

duke2 336 336 3 336 336 4 336 336 4 336 352 3 336 336 4
e64 129 129 12 129 129 12 129 129 12 129 129 11 129 129 16
ex4p 463 468 16 466 471 26 459 470 16 460 481 17 465 468 21

i5 134 134 17 134 134 16 134 134 18 134 134 18 134 134 35
i6 209 209 14 209 209 15 209 209 15 209 209 14 209 209 14
i7 334 334 39 333 333 59 333 335 50 334 335 52 335 335 38
i8 1277 1280 163 1280 1281 196 1277 1281 149 1285 1344 150 1280 1281 206

vg2 80 80 2 80 80 2 80 80 2 84 84 2 84 84 3

Fig. 8. Comparison between five recombination operators

selection method, we used stochastic universal sampling and realized the concept of
elitarism for one individual.

Comparison of the crossover operators. To compare the types of crossover (OX,
PMX, CX and AX) and inversion, we restricted our algorithm to the use of a single
operator. An inspection of the results for the five operators in Fig. 8 yields that the
runtimes all assimilate each other. To compare the quality of the results we take only
the best BDD size achieved during the ten runs into account.

order partially matched alternating cycle inversion
11 14 17 7 7

The above table illustrates for how many benchmark circuits each crossover yielded a
best result. (If more than one crossover achieved the best result we awarded a point to
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each of them.) Thus, alternating crossover bears the best results, followed by partially
matched crossover. The combination of different crossover operators is, however, the
most promising approach, since the sequential application of different crossovers on the
same individual allows more possible outcomes than repetitive application of the same
operator. This can also be seen from the results shown in the left column of Fig. 10.
For several benchmarks the best result is obtained using a combination of crossovers,
in ex4p for example, the combination reaches a BDD size of 242 BDD nodes, while the
best result of a single operator, in this case alternating crossover, is 459 BDD nodes.
Other examples for the superiority of a combination of crossovers to the use of a single
operator are apex1, apex3, comp and des.

Given our results on the comparison of the recombination techniques (Fig. 8), we
argue that the restriction to inversion as the only proper genetic operation in the re-
combination phase as suggested in [16, 46] shrinks the gain of evolutionary reordering
techniques. The motivation given in [16, 46] for omitting crossover techniques was
their excessive runtime requirements. However, a comparison of the the time-columns
in Fig. 8 shows that – in combination with our graph-based fitness evaluation technique
– the crossover techniques are in average no worse than inversion. (Additionally, the
generation of too large BDDs can be prevented as described in Section 5.)

regular parameters alternative parametersBenchmark
size time size time pop. size

apex1 1246 31 1244 828 120
apex2 306 25 302 433 114
apex3 837 24 837 397 120
apex4 889 2 889 5 27
apex5 1044 62 1044 793 120
apex6 498 45 507 601 120
apex7 214 7 214 62 120
comp 95 33 125 221 96
cps 971 11 971 58 72
dalu 689 230 689 1733 120
des 2941 1173 2946 9229 120

duke2 336 4 336 19 66
e64 129 11 129 103 120
ex4p 242 27 460 182 120

i5 134 16 134 204 120
i6 209 15 209 143 120
i7 333 52 333 408 120
i8 1277 187 1277 4366 120

vg2 80 2 80 11 75

Fig. 9. Regular versus alternative parameters

Parameter setting. To illustrate the benefits of our parameter setting and graph-based
fitness evaluation technique, we performed tests where we used the parameter setting
used in [15]. Here, the population size is set to min{120,3 ·population size}. The max-
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genetic algorithm sifting siftingiterBenchmark
size sizeavg time size time size time

apex1 1246 1269 31 1381 0.5 1270 3
apex2 306 342 25 589 0.5 502 2
apex3 837 864 24 851 0.2 850 0.8
apex4 889 889 2 889 0.1 889 0.1
apex5 1044 1076 62 1076 0.7 1073 2
apex6 498 569 45 532 0.6 520 3
apex7 214 241 7 297 0.1 248 0.2
comp 95 112 33 95 56 95 68
cps 971 971 11 1010 0.2 1010 0.3
dalu 689 697 230 1552 478 1346 534
des 2941 2968 1173 3242 36 3051 39

duke2 336 340 4 395 0.1 360 0.3
e64 129 129 11 155 0.2 129 0.4
ex4p 242 242 27 512 0.2 507 0.6

i5 134 134 16 134 0.3 134 0.6
i6 209 209 15 215 0.3 209 2
i7 333 334 52 335 0.9 335 2
i8 1277 1280 187 2104 2 2092 5

vg2 80 80 2 157 0.1 152 0.9

Fig. 10. Comparison between our genetic algorithm and sifting

imum growth factor for hybrid sifting is set to c = 2. Elitarism is applied to the better
half of the population. The results in Figure 9 demonstrate that the alternative choice
of parameters rarely achieves a better result than our choice. The best result, obtained
for benchmark apex2, is only four nodes smaller than our result. On the other hand,
the alternative parameters results in a runtime which exceeds ours generally by factor
10 to 20. In summary, as Figure 9 shows, our genetic algorithm with crossover and the
graph-based visiting strategy performs very well, already with a small population size.

Comparison of our genetic algorithm with “pure sifting”. For a comparison of the
schema in Fig. 3 which only uses crossover (but no inversion) against deterministic re-
ordering heuristics, we assigned probability 0.6 to alternating crossover, and 0.2 to both
partially matched and cycle crossover. We obtained similar results when cycle crossover
is replaced with order crossover or when assigning the same weight to them. As before,
the maxgrowth factor for hybrid sifting is 1. On the other hand, we considered sifting
and iterated sifting with maxgrowth factor 1.3. Using our genetic algorithm, the result-
ing BDD in general is considerably smaller than it is after application of sifting. In
some examples like apex2 and dalu we even achieve a bisection of the BDD’s size. In
no case is the best result of ten GA runs worse then the result achieved by sifting. This
positive result is obtained at the expense of runtime, which in average is an order of
magnitude higher than it is for sifting, on the other hand for benchmarks comp and dalu
the runtimes for sifting even exceed those of our GA. In average, however, runtime for
our GA is longer, though it generates a substantially smaller BDD.
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In his diploma thesis [29], the first author also reports about experiments with the
window permutation algorithm [21]. The obtained results agree with the common obser-
vation that window permutation is fast but a rather weak minimization heuristic. Thus,
our genetic algorithm yields much better results in terms of quality, in some cases, like
comp, des and dalu for instance, the BDD-sizes were even only a fraction (< 1%) of
those returned by window permutation, on the price of a longer computation time.

7 Conclusion

The goal of the paper was to study in detail the gain of genetic operations in the context
of dynamic reordering algorithms for BDDs. We discussed several crossover variants
and suggested a new one, called alternating crossover, which turned out to be very useful
in combination with a “minimized version” of sifting as hybridization technique. In
addition, we proposed a graph-algorithmic approach to speed up the fitness evaluation
which, in case of the variable ordering problem for BDD, is a time-consuming step.
In contrast to the observations made by [16, 46] our experiments (see Section 6) show
that a random selection between crossover techniques and inversion yields better results
than the sparse use of “proper” genetic operations as in [16, 46].

Using the proposed techniques, runtime requirements for genetic reordering algo-
rithms were brought down to a reasonable level, although, concerning the computation
time, our techniques are still not competitive to deterministic reordering heuristics such
as sifting or window permutation. However, our approach nicely fits in the framework
of Drechsler et al. [16, 46] who pointed out that the mixture of genetic techniques
with ordinary sifting yields a good balance between speed and quality, as it captures
the advantages of both genetic algorithms and comparably fast deterministic reordering
algorithms. In addition, we explained that other methods that improve the efficiency,
e.g. those suggested in [24], can easily be integrated.

There are various directions in which our algorithm (and its implementation) could
be extended. Although we made good experience dealing with sifting and maxgrowth
factor 1 as hybridization technique, window permutation is another candidate. Another
direction is the consideration of a group-preserving variant of our algorithm. In fact,
there are several BDD-applications where not all variable permutations should be re-
garded as potential solutions, but only those that group together certain variables. One
example are switching functions with symmetric inputs where typically good orderings
put the variables of any symmetry group together. Group-preserving orderings play also
a crucial role for symbolic model checking where there are several good reasons (see
e.g. [19]) to group any state-variables and its copy (the corresponding next-state vari-
able) together. For such applications where we are given disjoint groups of variables,
such that for some application-dependent reasons6 the variables in either group should
be placed together, we suggest to apply the same genetic operations (crossover, muta-
tion, inversion) but with groups of variables rather than single variables. E.g., in case of
alternating crossover, we may apply the schema shown in Figure 4 with groups of vari-
ables rather than single variables. In a similar way, the other crossover techniques can

6 To treat symmetries, known methods from the literature to derive the symmetry groups auto-
matically from a given BDD can be applied here as well
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be modified to treat groups of variables. In the hybridization step, we may apply group
sifting [40] which relies on the same schema as sifting but moves groups of adjacent
variables rather than single variables.

Another future direction is to check whether the concepts of alternating crossover
and the graph-algorithmic approach for the fitness calculation are also useful for other
permutation-problems.
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