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Abstract. Several cost-sensitive boosting algorithms have been
reported as effective methods in dealing with class imbalance problem.
Misclassification costs, which reflect the different level of class identi-
fication importance, are integrated into the weight update formula of
AdaBoost algorithm. Yet, it has been shown that the weight update pa-
rameter of AdaBoost is induced so as the training error can be reduced
most rapidly. This is the most crucial step of AdaBoost in converting a
weak learning algorithm into a strong one. However, most reported cost-
sensitive boosting algorithms ignore such a property. In this paper, we
come up with three versions of cost-sensitive AdaBoost algorithms where
the parameters for sample weight updating are induced. Then, their iden-
tification abilities on the small classes are tested on four “real world”
medical data sets taken from UCI Machine Learning Database based on
F-measure. Our experimental results show that one of our proposed cost-
sensitive AdaBoost algorithms is superior in achieving the best identifica-
tion ability on the small class among all reported cost-sensitive boosting
algorithms.

1 Introduction

Reports from both academy and industry indicate that the class imbalance prob-
lem has posed a serious drawback of classification performance attainable by
most standard learning methods which assume a relatively balanced distribu-
tion and equal error cost of the classes [6, 10]. Class imbalance problem can be
interpreted in two aspects: the imbalanced class distribution and the non-uniform
misclassification costs. Hence, the crucial learning issue is that the class distri-
bution is skewed and the recognition importance on rare events is much higher
than that on normal cases. Assuming the balanced class distribution and even
recognition importance, traditional learning algorithms do not always produce
classifiers which are capable of achieving satisfactory identification performances
on rare classes.

AdaBoost (Adaptive Boosting) algorithm, introduced by Freund and Schapire
[7, 12], is reported as an effective boosting algorithm to improve classification
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accuracy. In view that prevalent classes usually contribute more to the overall
classification accuracy, the weighting strategy of AdaBoost may bias towards
the prevalent classes. Hence the desired identification ability on small classes is
not guaranteed. Cost-sensitive boosting algorithms are therefore developed such
that the boosting process may cater to the costly class [5, 13]. However, most
reported cost-sensitive boosting algorithm neglect the effects of cost items when
choosing the weight update parameter, which is crucial in converting a “weaker”
learning algorithm into a strong one.

In this paper, we come up with three versions of cost-sensitive AdaBoost
algorithms by inducing the misclassification costs into the weight update formula
of AdaBoost in three different ways. For each version, weight update parameter is
recalculated taking misclassification costs into consideration. These adaptations
retain the good feature of AdaBoost while becoming sensitive to different level
of learning importance of different classes. To evaluate their recognition abilities
on small classes, four “real world” medical data sets are tested. These data
are collections of typical disease diagnostics. Thus, the class imbalance problem
prevails in these data sets. F-measure evaluation is adopted for performance
comparisons.

This paper is organized as follows. Following the introduction in Section 1,
section 2 describes the AdaBoost algorithm and addresses the problems of cost-
sensitive learning. Section 3 details the methods of integrating misclassification
cost into AdaBoost algorithm. Section 4 describes the experimental data, base
learner and evaluation measurements. Section 5 compares the recognition abilities
of different cost-sensitive boosting algorithms. Section 6 provides the conclusions.

2 AdaBoost and Cost-Sensitive Boosting

2.1 AdaBoost Algorithm

AdaBoost algorithm reported in [7, 12] takes as input a training set {(x1, y1), · · · ,
(xm, ym)} where each xi is an n-tuple of attribute values belonging to a certain
domain or instance space X, and yi is a label in a label set Y . In the context
of bi-class applications, we can express Y = {−1,+1}. The Pseudocode for Ad-
aBoost is given as below:

Given:(x1, y1), · · ·, (xm, ym) where xi ∈ X, yi ∈ Y = {−1,+1}
Initialize D1(i) = 1/m.
For t = 1, · · ·, T :
1.Train base learner ht using distribution Dt

2.Choose weight updating parameter: αt

3.Update and normalize sample weights:

D(t+1)(i) =
D(t)(i)exp(−αtht(xi)yi)

Zt
Where, Zt is a normalization factor.
Output the final classifier: H(x) = sign(

∑T
t=1 αtht(x))
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It has been shown in [12] that the training error of the final classifier is
bounded as below:

1
m
|{i : H(xi) �= yi}| ≤ 1

m

∑

i

exp(−yif(xi)) =
∏

t

Zt (1)

where,

Zt =
∑

i

D(t)(i)exp(−αtht(xi)yi) (2)

Minimize Zt on each round, αt is induced as

αt =
1
2
log

∑

i,yi=ht(xi)

D(i)(t)

∑

i,yi �=ht(xi)

D(i)(t)
(3)

To ensure that the selected value of αt is positive, the following condition
should hold

∑

i,yi=ht(xi)

D(i)(t) >
∑

i,yi �=ht(xi)

D(i)(t) (4)

2.2 Cost-Sensitive Boosting

Cost-sensitive classification considers varying costs of different misclassification
types. Thus the cost-sensitive learning process seeks to minimize the number of
high cost errors and the total misclassification cost. Reported works on research
in cost-sensitive learning can be categorized into three main groups related to the
learning phases of a classifier: 1) Data preprocessing: modifying the distribution
of the training set with regards to misclassification costs so that the modified
distribution bias towards the costly classes [1, 3]; 2) Classifier Learning: making
a specific classifier learning algorithm cost-sensitive [2, 8]; and 3) Classification:
using Bayes risk theory to assign each sample to its lowest risk class [4].

Cost-sensitive learning methods in the first group, known as cost-sensitive
learning by example weighting in [1], is very general since it applies to arbitrary
classifier learners and does not change the underlying learning algorithms. In this
method, an example-dependent cost is first converted into example weight. Then,
a learning algorithm is applied to training examples drawn from this weighted
distribution. Several variants of AdaBoost algorithm reported in [5, 13] are with
this approach, known as cost-sensitive boosting algorithms.

These cost-sensitive boosting algorithms inherit the learning framework of
AdaBoost algorithm. They feed the misclassification costs into the weight update
formula of AdaBoost, so that the updated data distribution on the successive
boosting round can bias towards the small classes. Except using cost items to
update sample weights, CSB1 [13] does not use any αt factor (or αt = 1), CSB2
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[13] uses the same αt as computed by AdaBoost, and AdaCost [5] introduces
a cost adjustment function into weight update rule of AdaBoost. The require-
ment for this function is: for an instance with a higher cost factor, the function
increases its weights “more” if the instance is misclassified, but decreases its
weight “less” if otherwise.

The crucial step in AdaBoost algorithm is the selection of the weight update
parameter which enables the training error be reduced rapidly. This process is an
efficient boosting scheme to convert a weak learning algorithm into a strong one.
When introducing the misclassification costs into the weight updating formula,
it is necessary to integrate the cost items into the parameter calculation in order
to maintain the boosting efficiency. Out of all reported cost-sensitive boosting
algorithms, only in AdaCost misclassification costs are taken into consideration
when calculating the weight update parameter α. However, the problems with
this adaptation are: 1) the selection of the adjustment function is ad hoc; 2)
when the cost items (CP and CN ) are set to 1, AdaCost will not become the
original AdaBoost algorithm, thus the steepest descent search of AdaBoost is
varied by the cost adjustment function.

3 Cost-Sensitive AdaBoost Algorithms

In order to adapt the weight update strategy of AdaBoost algorithm for cost-
sensitive learning, we propose three versions of cost-sensitive AdaBoost algo-
rithms according to the ways we feed the the cost factor into the weight update
formula of AdaBoost: inside the exponent, outside the exponent, and both inside
and outside the exponent. Let {(x1, y1, c1), · · ·, (xm, ym, cm)} be a sequence of
training samples, where, as denoted previously, each xi is an n-tuple of attribute
values; yi is a class label in Y where Y = {−1,+1}, and ci is the cost factor be-
longing to the none-negative real domain R+. Three modifications of the weight
update formula of AdaBoost then become:

D(t+1)(i) =
D(t)(i)exp(−αtciht(xi)yi)

Zt
(5)

D(t+1)(i) =
ciD

(t)(i)exp(−αtht(xi)yi)
Zt

(6)

D(t+1)(i) =
ciD

(t)(i)exp(−αtciht(xi)yi)
Zt

(7)

Thus, respecting to each modification of weight update formula, a new α value
should be calculated to minimize the weighted training error. Taking each mod-
ification as a new learning objective, three cost-sensitive AdaBoost algorithms
can be developed. We denote them as AdaC1, AdaC2 and AdaC3 respectively.
Adopting the inference method used in [12], the calculation of weight updating
factor α for each algorithm can be presented in the following subsections.



Parameter Inference of Cost-Sensitive Boosting Algorithms 25

3.1 AdaC1

Unraveling the weight update rule of Equation 5, we obtain

D(t+1)(i) =
exp(−∑

t αtciyiht(xi))
m

∏
t Zt

=
exp(−ciyif(xi))

m
∏

t Zt
(8)

where,

Zt =
∑

i

D(t)(i)exp(−αtciyiht(xi)) (9)

Here, the training error bound as stated in Equation 1 still holds. Thus,
the learning objective on each round is to find αt and ht so as to minimize Zt

(Equation 9). ht can be trained while minimizing the weighted training error
based on current data distribution. Then αt is selected to minimize Equation 9.
According to [12], once ciyiht(xi) ∈ [−1,+1], the following inequality holds

∑

i

D(i)(t)exp(−αciyih(xi)) ≤
∑

i

D(i)(t)(
1 + ciyiht(xi)

2
e−α+

1 − ciyiht(xi)
2

eα)

(10)
By zeroing the first derivative of the right hand side of the inequality (10),

αt can be determined as:

αt =
1
2
log

1 +
∑

i,yi=ht(xi)

ciD(i)(t) −
∑

i,yi �=ht(xi)

ciD(i)(t)

1 −
∑

i,yi=ht(xi)

ciD(i)(t) +
∑

i,yi �=ht(xi)

ciD(i)(t)
(11)

To ensure that the selected value of αt is positive, the following condition
should hold

∑

i,yi=ht(xi)

ciD(i)(t) >
∑

i,yi �=ht(xi)

ciD(i)(t) (12)

3.2 AdaC2

Unraveling the weight update rule of Equation 6, we obtain

D(t+1)(i) =
ct
iexp(−∑

t αtyiht(xi))
m

∏
t Zt

=
ct
iexp(−yif(xi))

m
∏

t Zt
(13)

where,

Zt =
∑

i

ciD
(t)(i)exp(−αtyiht(xi)) (14)
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Then, the training error of the final classifier is bounded as:

1
m
|{i : H(xi) �= yi}| ≤ 1

m

∑

i

exp(−yif(xi)) =
∏

t

Zt

∑

i

ciD
t(i)

ct+1
i

(15)

There exists a constant γ such that ∀i, γ < ct+1
i . Then,

1
m
|{i : H(xi) �= yi}| ≤

∏

t

Zt

∑

i

ciD
t(i)

ct+1
i

≤ 1
γ

∏

t

Zt (16)

Since γ is a constant, the learning objective on each round is to find αt and
ht so as to minimize Zt (Equation 14). ht can be trained while minimizing the
weighted training error based on current data distribution. Then αt is selected
to minimize Equation 14 as:

αt =
1
2
log

∑

i,yi=ht(xi)

ciD(i)(t)

∑

i,yi �=ht(xi)

ciD(i)(t)
(17)

To ensure that the selected value of αt is positive, the following condition
should hold

∑

i,yi=ht(xi)

ciD(i)(t) >
∑

i,yi �=ht(xi)

ciD(i)(t) (18)

3.3 AdaC3

The weight update formula (Equation 7) of AdaC3 is a combination of that of
AdaC1 and AdaC2 (with the cost items both inside and outside the exponential
function). Then the training error bound of AdaC3 could be expressed as

1
m
|{i : H(xi) �= yi}| ≤ 1

γ

∏

t

Zt (19)

where, γ is a constant and ∀i, γ < ct+1
i , and

Zt =
∑

i

ciD
(t)(i)exp(−αtciyiht(xi)) (20)

Since γ is a constant, the learning objective on each round is to find αt and
ht so as to minimize Zt (Equation 20). ht can be trained while minimizing the
weighted training error based on current data distribution. Then αt is selected
to minimize Equation 20.

According to [12], once ciyiht(xi) ∈ [−1,+1], the following inequality holds
∑

i

ciD(i)(t)exp(−αciyih(xi))≤
∑

i

ciD(i)(t)(
1 + ciyiht(xi)

2
e−α+

1 − ciyiht(xi)
2

eα)

(21)
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By zeroing the first derivative of the right hand side of inequality (21), αt

can be determined as:

αt =
1
2
log

∑

i

ciD(i)(t) +
∑

i,yi=ht(xi)

c2
i D(i)(t) −

∑

i,yi �=ht(xi)

c2
i D(i)(t)

∑

i

ciD(i)(t) −
∑

i,yi=ht(xi)

c2
i D(i)(t) +

∑

i,yi �=ht(xi)

c2
i D(i)(t)

(22)

To ensure that the selected value of αt is positive, the following condition
should hold

∑

i,yi=ht(xi)

c2
i D(i)(t) >

∑

i,yi �=ht(xi)

c2
i D(i)(t) (23)

4 Experiment Settings

4.1 Base Learner

To test these cost-sensitive AdaBoost algorithms, we select an associative clas-
sification learning system, namely High-Order Pattern and Weigh-of-Evidence
Rule Based Classifier(HPWR) as the base learner. The selected base learner
HPWR is a complete and independent system. Employing residual analysis and
mutual information for decision support, it generates classification patterns and
rules in two stages: 1) discovering high-order significant event associations us-
ing residual analysis in statistics to test the significance of the occurrence of a
pattern candidate against its default expectation[15]; and 2) generating classi-
fication rules with weight of evidence attached to each of them to quantify the
evidence of significant event associations in support of, or against a certain class
membership[14] for a given sample. Hence, HPWR is a mathematically well-
developed system with a more comprehensive and rigorous theoretical basis.

4.2 Data Sets

We use four medical diagnosis data sets “Cancer”, “Pima”, “Hypothyroid” and
“Sick-euthyroid” taken from UCI Machine Learning Database [11] to test the
performances of these three cost-sensitive AdaBoost algorithms. These data sets
all have two output labels: one denoting the disease category is treated as the
positive class and another representing the normal category is treated as negative
class. The percentages of the positive classes are 29.72%, 34.90%, 4.77% and
9.26% respectively.

In these experiments, continuous data in each data set is pre-discretized using
the the commonly used discretization utility of MLC++ [9] on the default setting
and missing values are treated as having the value “?”. Five-fold cross-validation
is used on all of the data sets. For consistency, exactly the same data are used
to train and test all of these cost-sensitive boosting algorithms.
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4.3 Cost Factor

The misclassification costs for samples in the same category are set the same
value: CP denoting the misclassification cost of the positive class and CN repre-
senting that of the negative class. Conceptually, CP should be greater than CN .
As constrained by the inferences of Inequality 10 and 21, their values should
be no greater than 1. Thus, this condition should hold 1 ≥ CP ≥ CN > 0. In
these experiments, relative misclassification costs are set as [1.0 : 1.0, 1.0 :
0.9, 1.0 : 0.8, 1.0 : 0.7, 1.0 : 0.6, 1.0 : 0.5, 1.0 : 0.4, 1.0 : 0.3, 1.0 :
0.2, 1.0 : 0.1] on two classes for all the data sets. Then, with each pair of
cost settings, the performance of each learning algorithm is evaluated on 5-fold
cross-validation.

4.4 F-Measure for Performance Evaluation

In information retrieval, with respect to a given class, Recall is defined as the
percentage of retrieved objects that are relevant; and Precision is defined as the
percentage of relevant objects that are identified for retrieval. Clearly neither
of these two measures are adequate by themselves to evaluate the recognition
performance on a given class. Thus, the F-measure (F), a measure often-used
by the Information Retrieval community for evaluating the performance of the
right objects, is devised as a combination of Recall and Precision:

F =
2RP

R + P
(24)

It follows that if the F-measure is high when both the recall and precision should
be high. This implies that the F-measure is able to measure the “goodness” of
a learning algorithm on the current class of interest.

5 Performance Comparisons

Table (1) shows the best F-measure value, as well as the misclassification cost
setting of each algorithm on each data set. In general, over the 4 datasets, AdaC3
wins twice, AdaC2 and AdaCost each wins 1 time respectively and AdaC3 also
achieves the highest average F-measure value over the four data sets. The per-
formances of CSB1 and CSB2 are obviously not satisfactory.

The basic idea of cost-sensitive boosting algorithm in dealing with the class
imbalance problem is to maintain a considerable weighted sample size of the
positive class at each iteration of boosting. Then the recognition recall measure-
ment is increased on the positive class. This is the critical step in dealing with
the class imbalance problem. However, there is a tradeoff between recall and
precision: precision declines as recall increases. When the positive class is over
resampled, recall of the positive class is greatly improved. Yet, more samples
from the negative class are categorized to the positive class. As a consequence,
the recognition precision on the positive class gets worse, and the F-measure
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Table 1. F-measure Comparisons of Cost-Sensitive Boosting Algorithms

HPWR AdaBoost AdaC1 AdaC2 AdaC3 AdaCost CSB1 CSB2

Cancer Cost 1:0.6 1:0.7 1:0.7 1:0.2 1:0.6 1:0.4
F+(%) 40.21 47.10 50.64 53.98 54.97 50.75 47.88 50.73

Hypo Cost 1:0.9 1:0.9 1:0.9 1:0.9 1:0.9 1:0.8
F+(%) 55.84 81.99 84.20 84.56 83.02 82.15 82.72 69.42

Pima Cost 1:0.5 1:0.6 1:0.7 1:0.3 1:0.6 1:0.9
F+(%) 67.98 67.66 72.58 71.03 73.61 69.03 67.30 65.58

Sick Cost 1:0.8 1:0.8 1:0.9 1:0.9 1:0.8 1:0.8
F+(%) 69.22 79.77 82.51 78.05 81.04 82.67 77.77 62.89

Average F+(%) 58.31 69.13 72.48 71.90 73.16 71.24 68.92 57.93

cannot be satisfactory under this situation. Hence, to balance the tradeoff be-
tween recall and precision and get the best F-measure value, the boosted weights
on the positive class should be in a proper degree which is adequate to obtain
a satisfactory recall yet not too much to reduce the precision. Misclassification
cost setting is one aspect that influences this issue. Table 1 shows the best ratio
setting at which the best F-measure are obtained for each algorithm. Another
important affect is related to the weighting scheme of each boosting algorithm.
Experimental results reported in Table 1 show that AdaC3 achieves the best
F-measure values on two data sets and also the highest average F-measure value
over the four data sets.

6 Conclusion

In this paper, we have proposed three new cost-sensitive AdaBoost algorithms
to tackle the class imbalance problem in the context of bi-class applications.
Based on how cost items are used in the equation, three versions of cost-sensitive
boosting algorithms, known as AdaC1, AdaC2 and AdaC3, are developed. To
ensure boosting efficiency, α is recalculated taking misclassification costs into
consideration for each version. We find that these adaptations retain the good
feature of AdaBoost yet adequately sensitive to adjust to cope with differ-
ent level of learning importance corresponding to different classes. To evalu-
ate their recognition abilities on small classes, four “real world” medical data
sets are tested. F-measure evaluation is adopted for performance comparisons.
In our classification implementation and comparison, we select HPWR as the
base learner. When comparing the recognition ability on the small class of each
cost-sensitive AdaBoost algorithm, our experimental results show that AdaC3
is superior in achieving the best performance among all reported cost-sensitive
boosting algorithms. Further study on weight updating effect of each proposed
cost-sensitive boosting algorithm is recommended for theoretically reasoning this
observation.
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