Modeling Interactive, 3-Dimensional
Information Visualizations Supporting
Information Seeking Behaviors

Gerald Jaeschke', Martin Leisslerz, and Matthias Hemmje1

! FernUniversitit Hagen, Universitétsstr. 1,
58097 Hagen, Germany
{gerald.jaeschke, matthias.hemmje}@fernuni-hagen.de
2 Brainmelt GmbH, Hugenottenallee 15,
63263 Neu Isenburg, Germany

martin@brainmelt.com

Abstract. Information visualization and knowledge visualization use compara-
ble techniques and methods. Based on mapping rules, resource objects are
translated into visual objects as meaningful representations, offering easy and
comprehensive access. Whereas information visualization displays data objects
and relations, knowledge visualization maps knowledge elements and ontolo-
gies. Bridging this gap must start at concept level. Our approach is to design a
declarative language for describing and defining information visualization tech-
niques. The information visualization modeling language (IVML) provides a
means to formally represent, note, preserve, and communicate structure, ap-
pearance, behavior, and functionality of information visualization techniques
and applications in a standardized way. The anticipated benefits comprise both
application and theory.

1 Introduction

Knowledge visualization and information visualization have progressed independ-
ently of one another. But there are endeavors to bring these research fields together.
Modern, computer-based mapping tools are capable of displaying both content and
conceptual knowledge at the same time. In the predominant approach, conceptual
maps structure the domain and serve as navigational tool that provides knowledge-
based access to information. Links in the map attached to concepts reference underly-
ing information and allow to immediately access that information. Information, also
referred to as content knowledge, comprises, for example, personal notes, sketches,
and example instances of concepts. With this linking feature, this kind of mapping
tools could serve as an interface between knowledge visualization and information
visualization when the content knowledge consists of abstract mass data. In such alli-
ance, information visualization and knowledge visualization can collaborate side by
side.

Information visualization and knowledge visualization can further mutually enrich
each other beyond this scope. Today, both disciplines endue strong conceptual foun-
dations. At the same time, information visualization and knowledge visualization
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employ comparable techniques and methods: Based on mapping rules, resource ob-
jects are translated into visual objects as meaningful representations, offering easy
and comprehensive access to the subject matter presented. Whereas information
visualization displays data objects and relations, knowledge visualization maps
explicate knowledge representations, e.g. concepts.

Under these circumstances, knowledge visualization should be able to adopt
achievements that emerged from information visualization research and vice versa.
Mapping tools then could display conceptual knowledge and content knowledge
within one and the same visual environment. Moreover, mapping tools could visualize
knowledge applying (parts of) information visualization techniques and the other way
round, provided that setting up a common basis is successful.

Bridging this gap must start at concept level. We tackle this challenge from the in-
formation visualization perspective. Our approach is to design a declarative language
for describing and defining information visualization techniques. The information
visualization modeling language (IVML) provides a means to formally represent,
note, preserve, and communicate structure, appearance, behavior, and functionality of
information visualization techniques and their applications in a standardized way.

The anticipated benefits comprise both application and theory. Standardized mod-
els allow for the specification and implementation of diverse interpreters serving vari-
ous target platforms. Graphical user-interfaces deploying information visualization
techniques can be described and dynamically generated on-the-fly, also by machines.
More importantly, the underlying formal model underlying the dynamic generation
also renders possible analysis and reasoning, in turn supporting the detection of (in-
formation) visualization design flaws.

Such a language needs to rest on solid foundations. The information visualization
modeling language puts into practice a formal model that reflects the concepts and re-
lationships of information visualization as it is understood today. To the best of our
knowledge, no such integrated model exists. Research on information visualization
has so far established an outline of the information visualization process and shed
light on a broad range of detail aspects involved. However, there is no model in place
that describes the nature of information visualization in a coherent, detailed, and well-
defined way.

In order to mutually open-up the treasure chests of visualization techniques for
knowledge and information, information visualization and knowledge visualization
must base on a joint visualization model. Or at least, they must share a significant
amount of visualization model. Integrating the principles of knowledge visualization
techniques, such information and knowledge visualization modeling language
(IKVML) could provide the means to represent both information and knowledge visu-
alization techniques.

On our way towards the information visualization modeling language, first we sur-
vey and discuss extant models of which each covers selected facets of (information)
visualization (section 2). The survey focuses on work that devised classification
schemas. Our supposition that the presence of classifications indicate an elaborated
level of formalization is the rationale behind this selection. Second, we provide an
overview of the entire set of models under investigation and discuss the coverage of
and the relationships between the models (section 3). Next, we present computational
requirements as well as requirements imposed by the application the information
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visualization modeling language has to fulfill (section 4). We conclude by sketching
application scenarios that illustrate the language’s benefits within resource-based e-
learning scenarios (section 5). Throughout this paper, we will refer to the visualiza-
tion reference model in order to organize our investigations.

2 Information Visualization Models

“Classification lies at the heart of every scientific field.” (Lohse, Biolsi, Walker &
Rueter, 1994) In striving for a better understanding of information visualization, a va-
riety of classification schemes have been proposed over the past years. Depending on
provenance and intention, they shed light on the information visualization process, its
application, or its utility. Information visualization techniques, applications, systems,
and frameworks can be classified according to the data types they can display, user
tasks they support, characteristics of visual representations they deploy as well as
cognitive aspects of their visual appearance.

Reference model for visualization. Card, Mackinlay and Shneiderman (1999)
introduced a reference model for information visualization (Fig. 1), which provides a
high-level view on the (information) visualization process.
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Fig. 1. Reference model for visualization

The model assumes a repository of raw data, which exist in a proprietary format,
be it structured or unstructured. To get to a visualization of this data, data have to first
undergo a set of transformations. Data transformations comprise filtering of raw data,
computation of derived data as well as data normalization. These steps result in a set
of transformed data in a unified structure. Visual transformations map the transformed
data onto a corresponding visual structure. From this visual structure, a set of views
can now be generated, which allow users to navigate through the display. User inter-
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actions can influence the transformation process at different stages. Users can adjust
their view on the data, change the visual structure, or even affect the data transforma-
tion. The cyclic arrows in the diagram refer to the fact that the processes involved in
the distinct steps are of an iterative nature and can occur repeatedly before the next
step follows.

Data type. Shneiderman (1996) suggested a taxonomy for information visualization
designs built on data type and task, the type by task taxonomy (TTT). He
distinguished seven data types. High-level abstractions and specific data-types are
treated as subordinates of the types presented. In this model, Shneiderman assumes
that all data in information space are collections of items, where items have multiple
attributes.

e [-dimensional
Text files and alphanumeric list of names
e 2-dimensional
Geographic map or book layout
e 3-dimensional
Real world objects and chemical molecules
o Temporal
Time-series and scientific measurement rows
o Multi-dimensional
Relational database content
e Tree
Structured data collections with hierarchy constraints
e Network
Structured object sets which do not apply to tree constraints.

Shneiderman (1996) deployed the type taxonomy to sort-out research prototypes of
that time and point towards new opportunities. He himself considered the classifica-
tion incomplete and forecast that upcoming applications would require novel and, re-
spectively, specialized data structures.

A variety of consecutive taxonomies proposed extensions to the TTT, but were
never as widely adopted as Shneiderman’s work. In his summary, Keim (2002) dis-
cards 3-dimensional data and temporal data as data-types on their own. In contrast to
the TTT, temporal data is a peculiarity of one-dimensional data. Text in turn becomes
promoted a data type, whereas Shneiderman considered it one-dimensional. Hypertext
joins text. Central information objects in text as well as in hypertext are documents.
As outlined in (Keim, 2002), documents themselves are not atomic but, more often
than not, internally are of complex structure and most standard visualization tech-
niques cannot be applied right away. First a transformation of the text data into de-
scription vectors is necessary. In the last decade, hypertext has certainly become a
widely available and significant data repository. Yet, as hypertext can be considered a
directed network structure of documents, considering it a data-type opens up ambigu-
ity in the model. Extending the TTT, Keim introduces software and algorithms as new
data types that could be visualized.
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Visual representations. Visual representations, in general, are structures for
expressing knowledge. Long before computer technology emerged, visualizations
were well-established and widely used. In their empirical study Lohse et al. (1994)
investigate how people classify two-dimensional visual representations into
meaningful categories. From this survey, a structural classification of visual
representations became apparent.

e Graphs encode quantitative information using position and magnitude of geometric
objects; graphs typically deploy a Cartesian coordinate or polar coordinate sys-tem
e Tables are an arrangement of words, numbers, signs, or combinations of them to
exhibit a set of facts or relationships in a compact format
e Graphical tables use color to encode numerical data
e Numerical tables show numeric data in text format
e Time charts display temporal data; they differ from tables in their emphasis on
temporal data
e Network charts show the relationships among components; symbols indicate the
presence or absence of components; correspondences among the components are
shown by lines, arrows, proximity, similarity, or containment
e Diagrams
e Structure diagrams are a static description of a physical object
e Process diagrams describe the interrelationships and processes associated with
physical objects
e Maps are symbolic representations of physical geography; maps depict geographic
locations of particular features using symbols or lettering
e Cartograms are spatial maps that show quantitative data
e Chloropleths use color, grey scale, or texture to code areas of equal value
e [sopleths use lines to join points with the same quantity of value
e Dot maps use points or symbols to show the location of individual points on a
map
e Flow maps show direction of movement by the number, width, and direction of
lines and arrows
e Jcons impart a single interpretation or meaning for a picture; each icon provides a
unique label for a visual representation
e Photo-realistic pictures are realistic images of an object or scene.

The visual artifacts under examination originated from the domain of static, two-
dimensional graphic representations. Hence, no statement can be made to what extent
the classification also covers three-dimensional or interactive displays. Lohse et al.
(1994) themselves mention as a caveat that their classification schema structures the
domain of visual representations at a high level. As yet, no deep, hierarchical struc-
tures within clusters have been identified. Moreover, the study focuses on perceived
similarity among the visual artifacts that were inspected. Instead, a classification must
represent structure that is used by people in interpreting graphs.

Visualization techniques. The classification identified by Lohse et al. (1994)
distinguishes itself by clear terminology. Common terms like diagrams, or specialized
terms, like chloropleths, indicate classes of visual representations that deploy a well-
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defined set of visualization techniques that are already established. More importantly,
visual representations often get associated with scenarios in which they are deployed
regularly.

Keim (2002) concentrates on the design of the visual environment and suggests a
classification of visualization techniques that takes into consideration recent devel-
opments in information visualization.

e Standard 2D/3D displays deploy traditional visual encodings.

o Geometrically transformed displays find appealing and useful geometric trans-
formations of visualizations of multidimensional data sets.

e Jcon-based displays map the attribute values of a multidimensional data item to the
features of an icon.

e Dense pixel displays map each dimension value to a colored pixel and group the
pixels belonging to each dimension into adjacent areas.

e Stacked displays present data partitioned in a hierarchical fashion.

Wiss and Carr (1998) intuitively grouped information visualization designs according
to their presentation.

o Node-link style designs typically support networks and tree data types.

® Raised surface designs display information on surfaces (horizontal or vertical) that
gets distorted.

e [Information landscapes support a variety of data types; they all share 2.5D appear-
ance with information plotted as shapes on a surface.

e Other designs that do not fall into previous classes.

The classifications of Keim (2002) as well as of Wiss and Carr (1998) describe high-
level procedures for the construction of visual environments.

All classifications of visualization techniques examined are concerned with visual
attributes like color (texture, shading), shape, size, position, and (semantic symbols).
In dynamic systems, however, time can serve as additional dimension for display.
With this approach, all visual attributes can alter in time. The change of position dur-
ing time is also known as animation.

In the last decades, a large number of novel information visualization techniques
have been developed. Good overviews of the approaches can be found in a number of
recent books (Card et al., 1999; Ware, 2000; Spence, 2000).

Tasks. Bundled with the type taxonomy, Shneiderman (1996) enumerated seven tasks
users could perform on the data. Complex tasks, e.g. focus & context, can be
described as a combination of tasks presented, in this case overview, relate, and zoom.

Overview Gain an overview of the entire collection.

Zoom Enlarge items of interest.

Filter Filter out uninteresting items.

Details on demand Select an item or group and get details when needed.

Relate View relationships among items.

e History Keep a history of actions to support undo, replay, and progressive refine-
ment.

e Extract Take out sub-collections of data or history to save and communicate.
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Interaction. The information visualization process of transforming data into visual
representations is a one-way street unless the human perceiver is given the
opportunity to intervene. Human interaction completes the loop between visual forms
and control of the visualization process. It includes controlling the mappings
performed in the visualization process (Card et al., 1999): data transformations, visual
mappings, and view transformations.

Although interactive techniques and metaphors differ in design, Chuah and Roth
(1996) have identified primitive interactive components visualization systems have in
common. Composing these primitives can model the complex behavior of visualiza-
tion system user-interfaces at the semantic level of design. The functional classifica-
tion distinguishes between three main types of basic visualization interactions. Each
main type ramifies to a hierarchy of more specific interaction types.

e Graphical operations affect the graphical representation of data.

e FEncode data operations modify visual mappings (Fig. 1).

e Change mapping operations alter existing or create new mappings between
data and visual representations.

e Transform mapping operations manipulate the encoding range of mappings,
allowing the magnification of differences between values or separate sets of
objects.

e Set graphical value operations alter visual representations of selected entities by
directly specifying the new value. Hence, the appearance of the affected visual
objects no longer solely depends on the underlying data.

e Constant operations set the graphical attribute to a constant.

e Graphical transform operations determine the values of visual attributes
through formulas.

e Manipulate objects operations treat graphical objects as building blocks and
modify the visual scene independent of underlying data and mappings.

e Copy operations instantiate new graphical objects.

e Delete operations remove graphical objects from the visual representation.

e Set operations refer to all those operations that act on or form sets. Sets provide us-
ers with the capability to collect and assemble objects that belong together. The
underlying data gets enriched with new classification information.

e Create set operations establish new object sets.

e FEnumerate operations let users individually pick objects to accommodate
from the visualization.

e Express membership operations express conditions for set membership
through a formula or constraints. All objects that meet these criteria are
automatically added to the set in bulk.

e Delete set operations dissolve sets whereas objects formerly included persist.

e Summarize set operations perform aggregation operations on set members.

e Data operations directly affect the data presented by the visualization. In contrast
to all other interactions, data operations promote visualizations. Visualizations be-
come a means not only to retrieve but also to input and change data.

e Add operations create new data elements.

e Delete operations destroy data elements.

e Derived attributes operations augment data with new attributes.
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Compared to the reference model for visualization (Fig. 1), this classification sprawls
beyond the traditional limits of information visualization. In addition to presenting,
retrieving, and exploring data, data operations also allow the manipulation of underly-
ing (raw) data. This feature is required for visualizations in order to grow to full-
fledged application system user-interfaces.

Set operations also contribute to this development. Although not in the center of
the information visualization process, set operations reflect today’s code of practice.
Theus (2003) adds that setting up complex selection sets usually is achieved by step-
wise refinement. Boolean operators combine subsets derived by enumeration or
membership rules, creating unions, intersections, and complements.

Interactions to geometrically navigate within the view presented are not considered
in that work.

View transformations. The visual mapping process results in graphical structures
that represent information. In a final step, views render these graphical structures and
make them accessible to the human perceiver, on computer screens, for example.
View transformations specify graphical parameters that influence the view such as
position, scaling, and clipping. Varying view transformations can reveal more
information from one and the same graphical structure than static visualizations
possibly could. Card, Mackinlay and Shneiderman (1999) distinguish three common
view transformations.

e Location probes are view transformations that expose additional information based
on the position within the graphical structure. When triggered by the human per-
ceiver, location probes could also be referred to as details-on-demand. For display,
location probes can either augment the visual structure in the selected region or
create additional views.

e Viewpoint controls are pure geometrical transformations to zoom, pan, and clip the
viewpoint.

e Distortion techniques help to maintain orientation during the exploration process
(Keim, 2002). Meanwhile the focus is displayed in great detail, the surrounding
context remains visible. Distortion techniques graphically transform the visual
structure to render focus and context combined within one single view.

Since location probes can, and often do, result in additional views, it is critical to clas-
sify them as view transformations. Moreover, location probes also do influence the
visual mapping, in case they trigger the enrichment of the visual structure for details-
on-demand.

Scales, as introduced by Theus (2003), encompass location probes and viewpoint
controls. The former is referred to as logical zoom, whereas the pure graphical opera-
tional performed by viewpoint controls is a simple zoom.

Leung and Apperley (1994) introduce transformation and magnification functions
for various distortion-oriented presentation techniques. Different classes of functions
refine the classification of distortion view transformations.

Multiple view coordination. Multiple view systems “use two or more distinct views
to support the investigation of a single conceptual entity.” (Wang Baldonado,
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Woodruff & Kuchinsky, 2000) To fully exploit the potential of multiple views,
sophisticated coordination mechanisms between views are required.

e Navigational slaving
Movements in one view are automatically propagated to another view.
e Linking
Connects data in one view with data in another view.
e Brushing
Corresponding data items in different views are highlighted simultaneously.

Views are distinct, if they reveal dissimilar aspects of the conceptual entity presented.
Roberts (2000) identified three ways in which multiple views may be formed accord-
ing to stages in the information visualization process comparable to the reference
model (Fig. 1). Multiple views from the filter level branch during the data mapping
step. Multiple views from different mappings emanate from varying visual mappings.
Finally, display-level multiple views arise due to altering the viewport or projection
specification.

Multiple views perfectly join with the reference model (Fig. 1), which did consider
sequential presentation of views, but no coordination of parallel views.

Theus (2003) reports about the most common use of multiple views.

Cognition. By definition, the purpose of information visualization is to
“communicate properties of information to a human”. The research on information
visualization must not stop at producing and designing visualization but must also
consider how visualizations affect the human observer. Wiss & Carr (1998) propose a
framework for classification of 3D information visualization designs based on three
cognitive aspects.

e Attention denotes how designs draw attention to certain elements of the visualized
data.
Focus on certain elements of the visualized information. Differences in visual ap-
pearance, movement, location, and metaphors can be used to attract human atten-
tions.

e Abstraction indicates how designs support information structuring and information
hiding.
Clustering or grouping parts of the information to form higher-level elements.

o Affordances measure how designs show to the users what they can do with them.
The visual cues that a visual element gives to indicate what can be done with it.

Any of these aspects allow for a multitude of peculiarities. A survey revealed that in-
formation visualization systems have come up with a variety of solutions in order to
guide user attention, abstract from complex data and indicate available functionality
and interaction modes. Introducing their solutions as second level classes would turn
the current framework of aspects into a classification.

Information visualization operating steps. The data state reference model (Chi,
2000) describes visualization techniques with a focus on data and its transformations.
The model breaks down the information visualization process into four data stages:
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value, analytical abstraction, visualization abstraction, and view. Three types of data
transformation operators carry over into states.

e Data transformation operations generate some form of analytical abstraction from
the raw data values.

e Visualization transformation operations further transform analytical abstractions
into visualizable content. The visualization abstractions resulting from this are not
visual structures yet.

o Visual mapping transformation operations map visualizable content into graphical
structures.

Another four types of operators cater for data transformation within data stages.
Based on the data state model, Chi decomposed the data processing pipelines of visu-
alization techniques and identified operating steps they share.

3 Information Visualization Model Consolidation

With our approach, we do not intend to substitute information visualization models
and classifications that have evolved so far. Instead, best-of-breed will be selected and
combined into one consolidated formal model describing information visualization.

3.1 Information Visualization Model Space

All the classification models presented describe selected subsets of the complex area
of information visualization. Our attempt to arrive at a consolidated model for infor-
mation visualization starts out with the analysis of what areas these discrete models
cover and how they are mutually related (Fig. 2). To answer that question, we locate
information-visualization models within model space for information visualization.
There are two axes that span model space. The first dimension reflects the processing
pipeline for (information) visualizations as introduced by the reference model for
visualization (Fig. 1). Roughly speaking, three sections subdivide this pipeline. Be-
ginning with the data section, data is transformed and mapped into graphical objects
in the visualization section. Of course, models describing data properties, for exam-
ple, are located to the left whereas multiple views and their coordination cover the
area from the middle to the right. The second dimension expresses dependencies be-
tween models as well as the level of abstraction from the actual task of handling
(computer) data. On the lowest level, models deal with data properties and visual at-
tributes, whereas at the upper levels, models such as cognition abstract away from
implementation details. Upper level models depend on their subordinates. The ab-
sence of visual objects and their properties would render talking about cognition
futile.

Of course, as information visualization model space lacks metrics, positions and
borderlines get blurred. So far, the diagram reflects our subjective assessment. Fur-
thermore, drawing rectangles is a simplification. More often than not, single models
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Fig. 2. Interrelationship of information visualization models in information visualization model
space

do not handle all aspects at one constant level of abstraction and vice versa. This
holds true especially for substantial models. Hence, the areas in the diagram depict an
approximation of the real state of affairs.

3.2 Coverage and Ambiguity

The first overview reveals that there is little white space in the diagram. Judging from
that, the extant models in total cover nearly all facets of information visualization as
we know it today.

The frayed right side of the visualization section indicates that information visuali-
zation model space has no clearly marked border in this direction. Multiple views,
visual representations, cognition, and interaction not only apply to information visu-
alization exclusively. Partially, these models belong to visualization in general. From
our point of view, visualization model space begins in the visualization section and
extends beyond the diagram.

The next observation is that rectangles in the diagram overlap. If this occurs within
one section, the models involved compete. Such conflict can be observed, for exam-
ple, between data types, as introduced by Shneiderman’s (1996) TTT, and the data
features invented by Zhou et al. (2002). Sorting out the differences and matching con-
cepts are the anticipated tedious tasks required in order to arrive at a joint model. The
above presentation of information visualization models discusses corresponding mod-
els. Note that the collection of models portrays selected samples. Less important items
have already been omitted.
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Sections cannot always be clearly separated without ambiguity. Cross-section over-
lapping arises when one and the same phenomenon of information visualization is
covered by various models starting out from different perspectives. For instance, in-
teraction and the processing pipeline are closely interwoven. From the standpoint of
the reference model, view transformations are modifications that are likely to be trig-
gered by human interaction. Conversely, interaction claims that location probes and
viewpoint controls are their terrain, and terms them interactive filtering, interactive
zooming, interactive distortion, and interactive linking and brushing.

3.3 Quality and Level of Granularity

As the diagram suggests, the area of information visualization has been thoroughly re-
searched and only few white spaces remain. Yet the stake the various models claim
reflects neither the model quality nor its level of detail. There are always two sides to
quality: correctness and completeness. Before they can be integrated into the coherent
model, extant models need to be assessed with care. More easy to judge is the model’s
level of granularity. Classification systems vary in how detailed a way they have been
conceived. Generally, coarse models leave space for alternatives and variations,
whereas in depth models provide better guidance. To illustrate the difference, the in-
teraction model with three hierarchy levels of classes is far more detailed than the
data types according to the TTT. Then again, not all facets of information visualiza-
tion share the same level of complexity. It is natural that different areas feature differ-
ent numbers of classes.

4 Information Visualization Modeling Language

Current practice in information technology favors the use of formal languages as rep-
resentation formalisms which abstract away from details of specific realization. The
information visualization modeling language enables the declarative description of an
information visualization need or solution in preference to describing the steps re-
quired in order to realize the visualization process. It is a formal language; it has a set
of strings which can be derived from a (formal) grammar consisting of a deductive
system of axioms and inference rules (Partee, ter Meulen & Wall, 1990). We give the
term information visualization modeling language blueprint to the formal description
of an information visualization technique or application expressed by the language. A
blueprint is composed of a number of sections. Blueprint sections are legal combina-
tions of language elements derived from the grammar.

Conceiving the information visualization modeling language may follow two sim-
ple rules of thumb. First, concepts identified within the model constitute the vocabu-
lary. Secondly, relationships between concepts determine the grammar. Presumably,
however, relationships from the model will also contribute to the language vocabu-
lary. The information visualization modeling language will constitute a specific en-
coding of the consolidated information visualization model. In order to be useful, its
design has to meet requirements for both computation and application.
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4.1 Computational Desiderata

The information visualization modeling language (IVML) carries knowledge about
information visualization within its schema. Moreover, information visualizations
denoted in the language are formal structures which represent knowledge about
information visualization techniques, applications, and requirements, respectively.
Hence, the information visualization modeling language can be considered a meaning
representation language. Meaning representation languages need to meet a number of
practical computational requirements (Jurafsky & Martin, 2000).

Verifiability is the most basic requirement for a meaning representation: “it must be
possible to use the representation to determine the relationship between the meaning
of a sentence and the world as we know it.” In the case of the IVML, it can (say) de-
scribe information visualization techniques and data types these techniques are capa-
ble of displaying. These descriptions establish knowledge. Demands for visualization
of data of a specific type can be considered a question expressed in IVML. If there is
no visualization technique that can handle the requested data type, matching will fail.
In general, sentences can have different meanings depending on the circumstances in
which they are uttered. Since the IVML is intended to be the means we reason about
and act upon, it is critical that blueprint sections expressed in the language (analogous
to natural language sentences) have single unambiguous interpretations. The IVML is
required to be an unambiguous representation. Conversely, distinct sentences in gen-
eral may have the same meaning. Such a situation is highly problematic, since it hin-
ders verification and adds complexity to reasoning. Therefore, the IVML should fol-
low the doctrine of canonical form: Sentences that mean the same thing should have
the same representation. More complex requests cannot be answered solely on the ba-
sis of verification and canonical form. Let’s agree that whilst traditional diagrams in
general are suitable for presentation purposes, they are not a good choice to pursue
data exploration. Pie charts belong to this class of traditional visualization techniques.
To meet the demand for visualization of data for presentation purposes using pie
charts, inference is required. It must be possible to draw conclusions about proposi-
tions that are not explicitly represented, but are nevertheless logically derivable from
the knowledge available. Finally, in order to be useful, the IVML must be expressive
enough to treat a wide range of the subject matter of information visualization. But,
since research in this area is ongoing, the [IVML cannot be expected to be complete.

4.2 Applicational Desiderata

By analogy with design criteria that underlie related modeling languages (Web3D
Consortium, 1997), the information visualization modeling language should meet a
set of requirements in order to be useful in application.

Information visualization is a multifaceted subject matter. The formal description
of information visualization techniques and applications using the IVML will be ac-
cordingly complex. Composability provides the ability to use and combine informa-
tion visualization objects, like data sources, mapping formulas, or view definitions,
within an IVML application and thus allows reusability. Depending on the applica-
tion, the complete set of constructs is not always required. In a single-view applica-
tion, for example, multiple-view coordination is pointless. The design of the IVML
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must permit the omission of constructs which are not essential for the given situation.
The notion of language constructs which are independent by design is known as or-
thogonality. Since the IVML is anticipated not to cover all future inventions in the
area of information visualization, the language has to be extensible, allowing the in-
troduction of new concepts. Wherever concepts are missing in the language, bypasses
help to fill the gaps with alternative solutions. Bypasses also stand in when IVML de-
sign does not meet particular requirements. In the case of parsers interpreting the
IVML in order to render information visualizations, the bypass addresses purpose-
built implementations. The IVML needs to be authorable: Computer programs must
be capable of creating, editing, and maintaining IVML files, as well as automatic
translation programs for converting related data into IVML. More generally, the lan-
guage must be capable of implementation on a wide range of systems. Considering
the implementation of software systems, language design must foster the development
of scalable high-performance implementations. Finally, IVML must scale and enable
arbitrarily large dynamic information visualization applications.

5 Modeled Information Visualizations in Education

The characteristics of the IVML can greatly contribute to the field of education. To-
day, mapping tools for visualizing conceptual knowledge are broadly available and so
are mapping tools for visualizing content knowledge. Out of these mapping tools, a
large number allow for designing and utilizing visualizations in a quick and efficient
manner. Modern, computer-based mapping tools are capable of handling both content
and conceptual knowledge at the same time. In the majority of cases, however, map-
ping tools are not capable of externalizing the knowledge implicitly embedded in the
design of the visualization of content knowledge. This was, however, essential for the
application of mapping tools in education. Imagine tutors designing lectures or self-
driven students generating individual maps while learning. The tutor notes the created
map so that students later can recall and use it. Students in turn conserve their indi-
vidual map. Or, for sharing their experience, communicate it to peers. In all these sce-
narios, the modeling language captures structure, appearance, behavior, and function-
ality of the visualization. In fact, IVML stores knowledge about the mappings.

5.1 Peer Students Scenario

Imagine a student investigating in a self-regulated fashion, being engaged in an in-
formation retrieval dialogue with a computer-based interactive information visualiza-
tion system, seeking to meet an information need he cannot fully specify. Hence, it is
impossible for him to formulate a question and have the system answer in a targeted
way. Instead, the dialogue is of an exploratory nature. During a series of iterative
steps the student learns about the data source, locates relevant information, and re-
fines his information need. This process is put into practice by human actions de-
manding the system to adapt in return. Beginning with an initial setup, interactions
manipulate data transformations, visual mappings, and view transformations. Finally,
if the dialogue succeeds, the student will have come to a relevant data set answering
his information needs.
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So far, the mapping tool and its functionality supported the student in primarily one
out of a variety of knowledge management processes (Tergan, 2003): The student lo-
calized content knowledge and the corresponding knowledge resources. But there is
more to it. At the end of the dialogue, the student will not only have come to a rele-
vant data set answering his information needs, but moreover end up with an informa-
tion visualization application tailored to the task performed. During the dialogue,
knowledge has been generated. On the one hand, the student gained new insights. On
the other hand, the mapping tool configuration reflects how the knowledge has been
derived and justifies the new knowledge.

Imagine the system was able to export its final state as a blueprint. The information
visualization modeling language would then be deployed to formally represent the
knowledge about the information visualization technique that has evolved, allowing it
to be noted down (electronically). Usually, only content retrieved is retained as a re-
sult of the dialogue, discarding the history and the supporting tool’s setup. With the
various blueprint sections, all these facets of the information retrieval dialogue can be
preserved. Furthermore, the knowledge captured using the information visualization
modeling language can be reused in similar tasks or applied to diverse data sources.
With the blueprint the information visualization technique can be communicated in its
entirety to third parties, particularly to peer students.

5.2 Tutor Scenario

Imagine the lecturer creating a new tutorial. Unlike in traditional lectures, students are
expected to study in a self-regulated fashion, investigating given resources utilizing
an interactive information visualization system. Basically, the tutor needs to decide
what resources to base the tutorial on. More challengingly, he must come to a deci-
sion what presentation styles and what investigation tools are most appropriate to
support the students in achieving the intended learning outcome. In the case of infor-
mation visualization techniques, this design task implies the definition of data trans-
formations, visual mappings, and view transformations. Depending on the learning
outcome, the tutor will choose proper mappings, multiple view constellations and
available interactions in order to enable the students to reveal patterns, clusters, gaps,
or outliers, for instance. The resulting information visualization techniques then get
distributed to the students as teaching aids who in turn apply them to the resource data
and, hopefully, gain new insights.

Again, the information visualization blueprint gets deployed to store and distribute
all facets of information visualization applications, thus representing and communi-
cating knowledge about the information visualization technique and its application.
Beyond applying blueprints prepared by the tutor, students may compare the encoded
experts’ knowledge with blueprints they created themselves and evaluate their own
knowledge this way. The information visualization modeling language also may sup-
port the tutor in authoring appropriate blueprints. Blueprint sections may capture the
tasks and goals established visualization techniques serve best. With this knowledge,
the language may help the tutor to select and adapt appropriate techniques and foster
the reuse of knowledge this way.
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6 Summary and Conclusion

This article outlines our approach towards the information visualization modeling
language (IVML). To lay a sound foundation, we survey the state-of-the-art of infor-
mation visualization, assess the coverage and relationships between extant models,
and identify potential obstacles in the process of setting up an integrated formal model
that reflects the concepts and relationships of information visualization as it is under-
stood today. Finally, we present computational requirements as well as those imposed
by the application the information visualization modeling language has to fulfill.

The survey focuses on work that devised classification schemas. To assess which
facets of information visualization these discrete models cover and how they are mu-
tually related, we established the notion of information visualization modeling space.
The analysis suggests three findings. First, the extant models in total cover nearly all
facets of information visualization as we know it today. Secondly, areas of informa-
tion visualization model space are described by rival models, leading to ambiguity.
Third, the models vary in the level of detail in which they have been worked out.

In order to mutually open-up the treasure chests of visualization techniques for
knowledge and information, information visualization and knowledge visualization
must share, at least to a significant amount, a joint visualization model. Achievements
in information visualization then could get applied to knowledge and vice versa.

The information visualization modeling language constitutes a specific encoding of
the consolidated information visualization model. Its design has to meet requirements
for both computation and application.

Two scenarios suggest how the information visualization modeling language could
contribute to the field of education, supporting students studying in a self-regulated
fashion. The benefits arise from the language’s capability to formally represent, note,
preserve, and communicate structure, appearance, behavior, and functionality of in-
formation visualization techniques and their applications. In combination with inter-
active mapping tools, the modeling language assists students and tutors in the evalua-
tion, localization, generation, representation, communication, as well as the use of
knowledge.
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