
Rapid Distribution of Tasks on a
Commodity Grid

Ladislau Bölöni1, Damla Turgut1, Taskin Kocak1, Yongchang Ji2,
and Dan C. Marinescu2

1 Department of Electrical and Computer Engineering
2 School of Computer Science,
University of Central Florida,

Orlando, FL 32816
{lboloni, turgut, tkocak}@cpe.ucf.edu,{yji,dcm}@cs.ucf.edu

Abstract. The global internet is rich in commodity resources but scarce
in specialized resources. We argue that a grid framework can achieve bet-
ter performance if it separates the management of commodity tasks from
the tasks requiring specialized resources. We show that the performance
of task execution on a commodity grid is the delay of entering into exe-
cution. This effectively transforms the resource allocation problem into
a routing problem.

We present an approach in which commodity tasks are distributed to
the computation service providers by the use of a forwarding mesh based
on randomized Hamilton cycles. We provide stochastically weighted algo-
rithms for forwarding. Mathematical analysis and extensive simulations
demonstrate that the approach is scalable and provides efficient task
allocation on networks loaded up to 95% of their capacity.

1 Introduction

The computational grid (and the internet at large) is rich in commodity resources
but scarce in specialized resources. There is a large number of PC class hardware
(Windows and Apple desktops, Unix and Linux workstations) with typically very
low resource utilization. On the other hand, there is a scarcity of specialized re-
sources, such as supercomputers, vector processors, specialized input and output
devices and so on. Typically, the need for specialized resources is dictated by the
nature of the application and, less often, by the chosen implementation.

If we look at the state of the art for distributed high performance computing,
we see two different approaches:

– The computational grid community develops software which manages scarce
specialized resources. Although the vision of grid computing was refined sev-
eral times ([4] → [6] → [5] → [2]) the main deployment of grid applications
are for projects with expensive specialized hardware. Examples of testbeds
are the grid projects of the National Partnership for Advanced Computa-
tional Infrastructure (NPACI) and National Computational Science Alliance

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 721–730, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

722 L. Bölöni et al.

(NCSA) in the US or the European DataGrid project. The grid computing
projects developed at IBM, Sun and Hewlett Packard are also largely fall in
this category.

– A number of distributed computing initiatives are exploiting the abundance
of commodity resources for solving highly parallelizable applications. Exam-
ples are SETI@Home [16], Folding@Home [13], the cryptographic challenges
sponsored by RSA laboratories [15] or the Mersenne prime search [14]. The
Berkeley Open Infrastructure for Network Computing (BOINC, [1, 12]) pro-
poses to provide a framework more general than the SETI@Home project,
which can be shared by a number of projects following this pattern of inter-
action. These projects, which rely on donated processor time are sometimes
referred as “public computing”.

Both approaches target grand challenge applications. The applications tar-
geted by the grid computing community however, are more general than the
typical public computing approaches. On the other hand, SETI@Home and the
related applications are highly successful in harnessing large amount of cheap
computing resources.

We note that many high performance computing workflows contain both
specialized and commodity tasks. For the specialized tasks, the best thing the
workflow engine can do is to queue them at the appropriate specialized providers,
for instance through a system such as Condor [11]. For commodity subtasks
however, this approach is not appropriate. There are a very large number of
community service providers (on the order of millions), which makes it difficult
to deploy any kind of centralized distribution system.

We note that if a task is executed on a commodity hardware, the main de-
termining factor of the termination time is the time at which the task is taken
into execution. Furthermore, given the abundance of the commodity resources,
it is likely that if a task needs to be queued at a certain host, it is almost sure
that somewhere on the internet there is a task which can take it into execution
immediately. Under this assumption, the task allocation problem is reduced to
a specialized routing problem. A similar idea is proposed in [7, 3]. The Wire
Speed Grid Project at the University of Chalmers [17], proposes an architec-
ture in which the task allocation is performed in a hardware accelerated manner
on the network routers. As our tasks have a relatively long execution time, an
application layer implementation would provide the same benefits.

2 Commodity Components in Grand Challenge
Applications

Grand challenge applications range from the application of relatively simple al-
gorithms on massive amounts of data (such as the SETI@Home project), to
exhaustive search of a complex combinatorial problems with small amounts of
input and output data (e.g. cryptographic analysis). Many of the high perfor-
mance applications however, are what we call grid workflows. Problems with

Rapid Distribution of Tasks on a Commodity Grid 723

BEGIN ENDP3DR 1
POD CHOICEMERGE POR JOIN PSFP3DR 3

P3DR 4

FORK

P3DR 2

Fig. 1. Workflow for 3D virus structure reconstruction based on 2D electronmicroscope
data

significant scientific and commercial interest such as predicting trajectories of
hurricanes (WRF, ROMS), virus structure reconstruction, protein folding, DNA
sequencing for individuals or designing custom drugs fall in this category.

Grid workflows involve a sequence of steps, such as data collection, filtering,
computation, modelling and visualization. They frequently require interaction
with the user in form of computation steering. The process can involve testing
alternative hypothesis, thus the execution sequence can vary between individual
runs. These problems are usually described as a workflow model of directed
acyclic graphs, although cycles are sometimes necessary. The nodes of the graph
are subtasks with different resource requirements.

Case Study: Structural Virology Application. In the following, we de-
scribe a typical grid application from the field of structural virology with which
the authors have extensive experience. The 3D atomic structure determination
of macromolecules based upon electron microscopy [9, 10, 8] consists of the fol-
lowing steps:

1. Extract individual particle projections from micrographs and identify the
center of each projection.

2. Determine the orientation of each projection.
3. Carry out the 3D reconstruction of the electron density of the macromolecule.
4. Dock an atomic model into the 3D density map.

Steps 2 and 3 are executed iteratively until the 3D electron density map cannot
be further improvedat a given resolution; then the resolution is increased gradually.
The number of iterations for these steps is in the range of hundreds and one cycle of
iteration for a medium size virus may take several days. Typically it takes months
to obtain a high resolution electron density map. Then Step 4 of the process can
be pursued. Once we have a detailed electron density map of the virus structure,
we can proceed to atomic level modelling, namely placing of groups of atoms,
secondary, tertiary, or quaternary structures on the electron density maps.

The grid workflow for this procedure is described in Figure 1. The experi-
mental data is collected using an electron microscope, and the initial input data

724 L. Bölöni et al.

is 2D virus projections extracted from the micrographs. The goal of the compu-
tation is to construct a 3D model of the virus at specified resolution or the finest
resolution possible given the physical limitations of the experimental instrumen-
tation. First, we determine the initial orientation of individual views using an
“ab initio” orientation determination program called POD. Then, we construct
an initial 3D density model using our parallel 3D reconstruction program called
P3DR. Next, we execute an iterative computation consisting of multi-resolution
orientation refinement followed by 3D reconstruction. The program for orienta-
tion refinement is called POR.

In order to determine the resolution, the input data is split in a number of
streams. For each stream, we construct a model of the electron density maps and
determine the resolution by correlating the models with a program called PSF.
The iterative process stops whenever no further improvement of the electron
density map is noticeable or the goal which we specified is reached.

Although the grid workflow contains multiple data dependencies, it has com-
ponents which can be executed on commodity hardware. The data acquisition
step requires a computer connected to an electron microscope, and significant hu-
man work. The POD and PSF steps are an parallel programs, utilizing the message
passing interface (MPI) and they require machines with very fast networking
capabilities. The cheapest hardware which would still do the work is a Beowulf
cluster of 32 or more computers and Gigabit Ethernet interconnects. The P3DR
steps however are parallelizable as they will be correlated only in the next step
of the workflow. Although computationally intensive, they can be run on com-
modity hardware. We need to note however, that components of the workflow
requiring specialized hardware depend on results coming from commodity tasks.

3 System Architecture

The participants in the distributed task allocation algorithm are:
Application Client (AC). A host which desires to run a grid application,
some part of which is expressible as task solvable by a commodity algorithm.
The application client is usually controlled by a human user.
Commodity Resource Providers (CRP). Computers which can run one or
more of the algorithms in the commodity algorithm server.
Distribution Nodes (DN). Computers which are able to forward tasks ac-
cording to the distribution policy. All the CRPs are also distribution nodes, but
a grid deployment might introduce distribution nodes to help the distribution
of the packets. The application client needs to be in contact with at least one
distribution node, which represents the entry point into the network.
Commodity Algorithm Server (CAS). A file service system which pro-
vides the standard implementation algorithms. This is normally a simple FTP
or HTTP based service with a specific naming convention.
Commodity Solution Checker (CSC). A trusted web service which given
a canonic description of a task and a proposed solution checks if the proposed

Rapid Distribution of Tasks on a Commodity Grid 725

solution is an acceptable solution of the task. The CSC enables us to use CRPs
with lower levels of trust. For some algorithms this check implies independent ex-
ecution of the algorithm and the comparisor of the results. For many algorithms,
the result can be verified without repeated execution.

The general process of the algorithm is as follows:

(1) The AC formulates a commodity problem as a task packet and sends it to
one of its entry points.

(2) When a packet reaches a distribution node which is also a CRP, it is either
bidded for its execution, or distributed/forwarded according to a distribution
policy. The bidding is sent to the AC and a preliminary allocation is done as
a soft state. The reply deadline is specified in the bid, and it is a relatively
short period of time (at most several minutes).

(3) The AC sends a task award packet, containing the descriptions of the access
methods of the application input. This might be contained in the confirma-
tion packet itself or it can be a remote reference, accesible by protocols such
as GridFTP. The bid might contain some setup information, such as whether
the bidder needs to download the required algorithm fro the CAS or it has
it in its local cache.

(4) The CRP starts the task execution process and sends a TASK STARTED
confirmation packet.

(5) [Optional] Algorithm download. If the provider does not have the required
algorithm installed, it can download it from a trusted algorithm provider.

(6) [Optional] Data preparation. The input data of the process is loaded by
the application using the GridFTP protocol. If the application input is very
small, it can be sent in the task award packet.

(7) The CRP executes the algorithm on the specified data. It uploads the results
to the locations indicated in the task specification packet. In case of success
it reports to the application with a TASK TERMINATED Packet. The CRP
then becomes available for processing other tasks.

4 The n-Cycle Task Distribution Algorithm

The goal of the task distribution algorithm is to deliver tasks to commodity
resource providers. With the number of CRPs involved (on the order of mil-
lions), scalability is of utmost importance. Having millions of hosts changing
their availability on a minute-per-minute basis centralized algorithms based on
global information are not appropriate.

The n-Cycle algorithm we propose uses only limited local information, it is
virtually indefinitely scalable and performs efficient task distribution for grids
loaded as high as 95% of their nominal capacity. The algorithm can be divided
in two parts: the creation and maintenance of the forwarding mesh and the
forwarding algorithm.

726 L. Bölöni et al.

AC DN CRP

�
�

CAS CSC

Distribution
policy

Preliminary
reservation

T
im

e

Task

Bid

Task
assignment

Request for
data

Request for
algorithm (*)

Task
terminated

Request for
solution
cheking

Task
execution

Fig. 2. The flow of the task allocation process

4.1 Creation and Maintenance of the Forwarding Mesh

The n-Cycle algorithm creates a forwarding mesh comprised of directional links.
For any link A → B, we will have task forwarded from A to B and status
information propagated from B to A. The links of the forwarding mesh form n
separate Hamiltonian cycles connecting all the elements in the grid node. The
cycles are formed randomly, we are not interested in optimizing the length of
the cycle. The randomness of the cycles is an important part of the algorithm.
Figure 3 shows a 3-Cycle forwarding mesh on a grid of 5 nodes. For any n-
Cycle mesh, every individual node will have n nodes “upstream” and n nodes
“downstream” from it. The node forwards tasks to the upstream nodes and
receives status updates from them. Similarly, the node receives tasks from the
downstream nodes and forwards status updates to them.

4.2 Distributing Tasks on the Forwarding Mesh

One of the remarkable properties of the n-Cycle forwarding mesh is that a sig-
nificant majority of the nodes can be reached by only logn(|W |) hops.

We can design a random wandering task allocation algorithm, with the fol-
lowing rule: if current host is free, take the incoming task into execution. If not,

Rapid Distribution of Tasks on a Commodity Grid 727

Fig. 3. A 3-Cycle forwarding mesh on a network of 5 nodes

then forward randomly to one of the uplink nodes. As we showed before, we
are interested in bringing the task into execution as quickly as possible, which
means that we need to minimize the number of hops.

For a random wandering algorithm, the number of hops depends on the av-
erage load of the network p. In a first approximation, for any number of hops
h, the probability that a node will be allocated in less than h hops is (1 − n)h.
Although this approach leads to satisfactory average values as long as the load
is not getting close to 100%, the maximum values can be (potentially) indefi-
nitely long. The advantage of a random wandering algorithm is that it operates
without any information about the state of the network.

In the following we introduce a weighted stochastic algorithm which uses
information collected from upstream nodes in the forwarding decision. In our
simulation studies, we show that this algorithm leads to significantly better per-
formance with an acceptable cost. Every node maintains its weight w which
intuitely represents the desireability of the node as a forwarding target for a
task. The weight w is composed in equal parts from (a) the ability of the node
to receive a task for execution (b) the weights of the nodes downstream from the
node. The weight w is propagated to the upstream nodes. A change in the weight
is propagated only if it exceeds a threshold δ, preventing floods of updates.

At any given node, a task is either taken into execution (if the node is free),
or forwarded to one of the upstream nodes with a probability proportional with
their weight (as seen by the current node). The complete algorithm is presented
in Algorithm 1.

5 Simulation

We have used the YAES [18] simulation framework to simulate the behavior
of the algorithm. Table 1 illustrates the input and output parameters of the
simulation as specified in the YAES configuration files.

728 L. Bölöni et al.

Algorithm 1. Weighted stochastic task forwarding
When task T received by node N

If STATUS == free
take T into execution
STATUS == busy

Else
forward to upstream node i with probability wi∑

k=1,n
wk

calculate new weight wnew = f(STATUS, wi)
If |w − wnew < δ|

send the new weight to all upstream nodes
w = wnew

When weight w received from i-th downstream node
wi = w
calculate new weight wnew = f(STATUS, wi)
If |w − wnew < δ|

send the new weight to all upstream nodes
w = wnew

Table 1. YAES simulation parameters

Input parameters

Number of grid nodes 100,000
Forwarding mesh 5-Cycle
Task arrival Poisson-distributed arrival, mean 10. . . 200 tasks/sec
Task servicing Normally distributed, mean 60 sec/task
Simulation time 5000 seconds

Output parameters (Measurements)

Hops per task Number of hops a task is forwarded until it finds a host
for execution (avg, max)

Average load Ratio of busy vs. total nodes
Discarded tasks Number of tasks which were discarded

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

Average hops

Maximum hops

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average load

H
op

s

Lo
ad

Fig. 4. Average number of hops, maximum number of hops and network load using
weighted stochastic forwarding on the n-Cycle forwarding mesh

Rapid Distribution of Tasks on a Commodity Grid 729

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

Average hops

Maximum hops

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average load

H
op

s

Lo
ad

Fig. 5. Average number of hops, maximum number of hops and network load using
random forwarding on the n-Cycle forwarding mesh

Figure 4 presents the average and maximum number of hops it takes for a
task to be allocated and the total network load in function of the average number
of arriving tasks. We note that both the average and maximum number of hops is
staying virtually constant at a very low number, up to loads approaching 95%.
At that moment the number of hops increases dramatically as the algorithm
struggles to find free nodes in an overwhelmingly busy network.

The relatively constant number of nodes for moderate loads is explained by
the single insertion point. The nodes closer to the insertion point will be filled
in relatively quickly, so the majority of tasks need to “hop over” the busy nodes
in this area. A good approximation of the size of this constant value is logN (n)
which in our case is log5(10000), approximately 5.7. If we choose a random
insertion point, we will obtain a diagram with a similar shape, but with an
average number of hops for lightly loaded networks much smaller (about 1-2
hops).

In a different simulation run, Figure 5 presents the random walking algorithm.
For small loads, this algorithm also shows very good results (due to the random-
izing nature of the N-Cycle mesh). However, for greater loads, the maximum
number of hops start to increase. For instance, at load of 90% the maximum
will be as high as 100 hops vs. about 20 hops for the stochastically weighted
algorithm.

6 Conclusions and Future Work

In this paper, we introduced an algorithm for allocating commodity tasks on
a computational grid. Our analysis and simulation studies show that (a) the
algorithm is scalable (b) it proved to be very efficient in allocating tasks to free
computational service providers.

Our future work includes more extensive mathematical analysis of the algo-
rithms. It is of special interest on modeling the influence of the estimation of the
wi values of the upstream nodes, as higher accuracies for these values require
higher message traffic on the mesh. We also plan to extend the algorithm to
heterogeneous networks.

730 L. Bölöni et al.

References

1. D. P. Anderson. Public computing: Reconnecting people to science. In Proceedings
of the Conference on Shared Knowledge and the Web, Nov 2003.

2. M. Baker. Ian Foster on Recent Changes in the Grid Community. URL
http://dsonline.computer.org/0402/d/o2004a.htm.

3. B.Liljeqvist and L.Bengtsson. Grid computing distribution using network proces-
sors. In Proc. of the 14th IASTED Parallel and Distributed Computing Conference,
Nov 2002.

4. I. Foster and C. Kesselman, editors. The Computational Grid: Blueprint to a New
Computer Infrastructure. Morgan-Kauffman, 1998.

5. I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of the Grid:
An open grid services architecture for distributed systems integration. URL
http://www.globus.org/research/papers/ogsa.pdf.

6. I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling scalable
virtual organizations. International Journal of Supercomputer Applications, 15(3),
2001.

7. A. Iamnitchi and I. Foster. On fully decentralized resource discovery in grif en-
vironments. In Proceedings of the International Workshop on Grid Computing,
Denver, CO, November 2001, 2001.

8. Y. Ji, D. C. Marinescu, W. Zhang, and T. S. Baker. Orientation refinement of
virus structures with unknown symmetry. In Proceedings of the 17th Ann. Int’l
Parallel and Distrib. Processing Symposium Nice, France. IEEE Press, 2003.

9. D. C. Marinescu and Y. Ji. A computational framework for the 3d structure deter-
mination of viruses with unknown symmetry. Journal of Parallel and Distributed
Computing, 63(7-8):738–758, 2003.

10. D. C. Marinescu and Y. Ji. A computational framework for the 3d structure deter-
mination of viruses with unknown symmetry. Journal of Parallel and Distributed
Computing, 63:738–758, 2003.

11. D. Thain, T. Tannenbaum, and M. Livny. Condor and the grid. In F. Berman,
G. Fox, and T. Hey, editors, Grid Computing: Making the Global Infrastructure a
Reality. John Wiley & Sons Inc., December 2002.

12. Berkeley Open Infrastructure for Network Computing. URL http://boinc.

berkeley.edu/.
13. Folding@Home project. URL http://www.stanford.edu/group/pandegroup/

folding/.
14. Mersenne Prime search. URL http://www.mersenne.org/prime.htm.
15. RSA Challenge. URL http://www.rsasecurity.com/rsalabs/challenges/.
16. SETI@Home project. URL http://setiathome.ssl.berkeley.edu/.
17. The Wire Speed Grid project. URL http://www.ce.chalmers.se/staff/labe/Wire

Speed Grid Project.htm.
18. YAES: Yet Another Extensible Simulator. URL http://netmoc.cpe.ucf.edu/

Yaes/Yaes.html.

	Introduction
	Commodity Components in Grand Challenge Applications
	System Architecture
	The n-Cycle Task Distribution Algorithm
	Creation and Maintenance of the Forwarding Mesh
	Distributing Tasks on the Forwarding Mesh

	Simulation
	Conclusions and Future Work

