

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 681 – 690, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Learning Automata Based Algorithms for Mapping
of a Class of Independent Tasks over Highly

Heterogeneous Grids

S. Ghanbari and M.R. Meybodi

Soft Computing Laboratory,
Computer Engineering Department and Information Technology,

Amirkabir University, Tehran Iran
saeed_ghanbari@yahoo.com , meybodi@ce.aut.ac.ir

Abstract. Computational grid provides a platform for exploiting various
computational resources over wide area networks. One of the concerns in
implementing computational grid environment is how to effectively map tasks
onto resources in order to gain high utilization in the highly heterogeneous
environment of the grid. In this paper, three algorithms for task mapping based
on learning automata are introduced. To show the effectiveness of the proposed
algorithms, computer simulations have been conducted. The results of
experiments show that the proposed algorithms outperform two best existing
mapping algorithms when the heterogeneity of the environment is very high.

1 Introduction

Owing to advances in computational infrastructure and networking technology,
construction of large-scale high performance distributed computing environment,
known as computational grid, is now possible. Computational grid enables the
sharing, selection, and aggregation of geographically distributed heterogeneous
resources for solving large scale problems in science, engineering and commerce.
Numerous efforts have been exerted focusing on various aspects of grid computing
including resource specifications, information services, allocation, and security issues.
A critical issue to meeting the computational requirements on the grid is the
scheduling.

Ensuring a favorable efficiency over computational grid is not a straightforward
task, where a number of issues make scheduling challenging even for highly parallel
applications. Resources on the grid are typically shared and undedicated so that the
contention made by various applications results in dynamically fluctuating delays,
capricious quality of services, and unpredictable behavior, which further complicate
the scheduling. Regarding to these hurdles, the scheduling of applications on
computational grids have become a major concern of multitude efforts in recent
years[9].

In mixed-machine heterogeneous computing (HC) environments like
computational grids, based on application model characterization, platform model

682 S. Ghanbari and M.R. Meybodi

characterization and mapping strategy characterization, there are various definitions
for scheduling[6]. Ideal sorts of applications for computational grid are those
composed of independent tasks, which tasks can be executed in any order and there is
no inter-task communication (i.e. totally parallel) [1][12]. There are many
applications of such feature including data mining, massive searches (such as key
breaking), parameter sweeps, Monte Carlo simulations[2], fractals calculations (such
as Mandelbrot), and image manipulation applications (such as tomographic
reconstruction[3]). Computational grid platform model consists of different high-
performance machines, interconnected with high-speed links. Each machine executes
a single task at a time (i.e. no multitasking) in the order to which the tasks are
assigned. The matching of tasks to machines and scheduling the execution order of
these tasks is referred to as mapping. The general problem of optimally mapping tasks
to machines in an HC suite has been shown to be NP-complete [11].

 In this paper, we present three algorithms based on learning automata for mapping
metatask over HC. Through computer simulations we show that the proposed
algorithms outperform the best existing mapping algorithms when the heterogeneity
of the environment is very high.

This paper is organized as follows: Section 2 discusses the related works. Section 3
introduces learning automata. Section 4 explains the model of the Grid and the
definitions used in later sections. Section 5 introduces the proposed learning automata
based algorithms. In Section 6, experimental results are discussed, and section 7
provides the conclusion.

2 Related Works

Existing mapping algorithms can be categorized into two classes[4]: on-line mode
(immediate) and batch mode. In on-line mode, a task is mapped onto a host as soon as
it arrives at the scheduler. In the batch mode, tasks are collected into a set that is
examined for mapping at certain intervals called mapping events. The independent set
of tasks that is considered for mapping at the mapping events is called a metatask.
The on-line mode is suitable for low arrival rate, while batch-mode algorithms can
yield higher performance when the arrival rate of tasks is high because there are a
sufficient number of tasks to keep hosts busy between the mapping events, and
scheduling is done according to the resource requirement information of all tasks in
the set[4]. The objective of most mapping algorithms is to minimize makespan, where
makespan is the time needed for completing the execution of a metatask. Minimizing
makespan yields to higher throughput.

Reported batch mode heuristics are Min-Min, Max-Min, Genetic Algorithm (GA),
Simulated Annealing (SA), Genetic Simulated Annealing (GSA), A* search,
Suffrage[5][4], and Relative Cost (RC) [7] . Experimental results show that among
batch-mode heuristics, Min-Min and GA give lower makespan than other
heuristics[5], and RC further outperforms both GA and Min-Min[7].

RC introduces two essential criteria for a high-quality mapping algorithm for
heterogeneous computing systems: matching which is to better match the tasks and
machines, and load balancing which is to better utilize the machines. It is shown that
in order to minimize the makespan, matching and system utilization should be

 Learning Automata Based Algorithms 683

maximized[7]. However, these design goals are in conflict with each other because
mapping tasks to their first choice of machines may cause load imbalance. Therefore,
the mapping problem is essentially a tradeoff between the two criteria. Two out of
three proposed algorithms in this paper resolve mapping by optimizing matching and
load balancing.

3 Learning Automata

Learning Automata are adaptive decision-making devices operating on unknown
random environments. A Learning Automaton has a finite set of actions and each
action has a certain probability (unknown to the automaton) of getting rewarded by
the environment of the automaton. The aim is to learn to choose the optimal action
(i.e. the action with the highest probability of being rewarded) through repeated
interaction on the system. If the learning algorithm is chosen properly, then the
iterative process of interacting on the environment can be made to result in selection
of the optimal action. Learning Automata can be classified into two main families:
fixed structure learning automata and variable structure learning automata (VSLA)
[8]. In the following, the variable structure learning automata which will be used in
this paper is described.

A VSLA is a quintuple < α, β, p, T(α, β, p) >, where α, β, and p are an action set
with r actions, an environment response set, and the probability set p containing r
probabilities, each being the probability of performing every action in the current
internal automaton state, respectively. The function of T is the reinforcement algorithm,
which modifies the action probability vector p with respect to the performed action and
received response. If the response of the environment takes binary values learning
automata model is P-model and if it takes finite output set with more than two elements
that take values in the interval [0,1], such a model is referred to as Q-model, and when
the output of the environment is a continuous variable in the interval [0,1], it is refer to
as S-model. Assuming βє[0,1], a general linear schema for updating action probabilities
can be represented as follows. Let action i be performed then:

ijjnapnnbprbnnpnp jjjj ≠∀−−−−+=+)()](1[)]()1/()[()()1(ββ

(1)

)](1[)](1[)()()()1(npannbpnnpnp iiii −−+−=+ ββ (2)

where a and b are reward and penalty parameters. When a=b, the automaton is called
LRP. If b=0 the automaton is called LRI and if 0<b<<a<1, the automaton is called
LRεP. For more Information about learning automata the reader may refer to [8].

4 Simulation Model

This section presents a general model of the computational grid. The environment
consists of the heterogeneous suite of machines which will be used to execute the
application. The scheduling system consists of the automata, and the model of the
application and the HC suite of machines.

684 S. Ghanbari and M.R. Meybodi

The application and HC suite of machines are modeled as the estimate of the
expected execution time for each task on each machine, which is known prior to the
execution and contained within a τ×µ ETC (Expected Time to Compute) matrix,
where τ is the number of tasks and µ is the number of machines. One row of the ETC
matrix contains the estimated execution times for a given task on each machine.
Similarly, one column of the ETC matrix consists of the estimated execution times of
a given machine for each task in the metatask. Thus, for an arbitrary task si and an
arbitrary machine mj, ETC(si,mj) is the estimated execution time of si on mj.

We define ψ(n)(i)=j as a general mapping from the task domain i=1,…,τ to the
machine domain j=1,…,µ at iteration n. The load of each machine, which is denoted
by θ(n)(j), is defined as the time taken to execute all the assigned tasks:

∑ ≤≤== τψθ kkjjkETCj nn 1)(),,()()()((3)

The maximum of θ(n)(j), over 1≤ j≤ µ, is the metatask execution time, which is
referred to as makespan, denoted by Tµ

(n).

5 Proposed Learning Automata Model

The learning automata model is constructed by associating every task si in the
metatask with a variable structure learning automaton, which is represented by a 3-
tuple(a(i),β(i),A(i)). Each action of an automaton is associated with a machine, and
since the tasks can be assigned to any of the µ machines, the action set of all learning
automata are identical. Therefore, for any task si, 1≤ i≤ τ, a(i)=m1,m2,…,mµ(mi is the
ith machine), and β(i)є[0,1], where β(i) closer to 0 indicates that the action taken by
the automaton of task si is favorable to the system, and closer to 1 indicates an
unfavorable response. Reinforcement scheme used to update action probabilities of
learning automata is LRI.

To determine the goodness of an action taken by an automaton, we propose three
different algorithms. The first algorithm calculates β(i) for each automaton A(i)
according to the reduction made in makespan and the load of the selected machine.
The second and third algorithms calculate the goodness of an action based on
improvement made in matching and load balancing.

5.1 Algorithm No.1

The algorithm No.1 (A1) determines the β(n)(i) at iteration n for each automaton A(i)
by considering makespan and load of the chosen machine. Algorithm A1 interprets
the environment as P-model; therefore β(n)(i)є{0,1}. Makespan at iteration n may be
greater, less than, or equal to makespan at iteration n-1. Similarly, load of the machine
chosen by automaton A(i) at iteration n may be greater, less than, or equal to load of
the machine chosen by the automaton at iteration n-1. Therefore, regarding to
makespan and the load of the chosen machine in two consecutive iterations, nine
states are possible. To determine the β(n)(i), we associate a probability value to each
nine possible state, which determines the probability of rewarding the chosen action.
Probability one means that the chosen action will be rewarded. Table 1 shows the
values, where D, U and I stand for decrease, remaining unchanged, and increase,
respectively.

 Learning Automata Based Algorithms 685

Table 1. Reward probability associated with each state

Makespan Load of chosen machine Rewarding probability
D D 1
D U 0.875
D I 0.75
U D 0.625
U U 0.5
U I 0.375
I D 0.25
I U 0.125
I I 0

Algorithm Al is suitable for situations that the information used to evaluate the
environment response is the load of machines.

5.2 Algorithm No.2

As mentioned in section 2, it is shown that to minimize the makespan, matching and
system utilization must be maximized. Algorithm No.2 (A2) evaluates the response to
the learning automata by considering these two criteria. Matching of tasks and
machines can be measured by a parameter, matching proximity, which is defined as
follows:

∑
∑

≤≤

≤≤=
τ

τ

ψ
ψ

η
i

i

iiETC

iiETC

1

1 min

))(,(

))(,(
 (4)

where η≤1, and ψmin(i) is the ideal matching. Ideal matching is defined as executing
every task on the machine with the shortest execution time. It is defined as follows:

ji =)(minψ such that),(min),(
1

qiETCjiETC
q µ≤≤

= (5)

when η=1, we have the ideal matching. System utilization is defined as follows:

µ

µ

µ

θ
δ

T

j
j

×
=
∑

≤≤1

)(
 (6)

When the system is completely balanced, δ=1; otherwise δ<1.
Algorithm A2 reduces the mapping problem to an optimization problem with

matching proximity and system utilization as objective functions. Algorithm A2
interprets the environment as S-model; therefore, β(n)(i) is in [0,1].

To evaluate the contribution of each automaton to the improvement of matching
and system utilization, we define two parameters, partial contribution to
matching(PCM), and partial contribution to load balancing(PCL). Input to each
automaton is a linear combination of PCM (denoted by η(n)(i)), and PCL (denoted by
δ(n)(i)):

δη λδληβ)()()()()()(iii nnn += where 1=+ δη λλ (7)

686 S. Ghanbari and M.R. Meybodi

λη and λδ are weights associated with PCM and PCL, respectively. PCM for each
automaton A(i) at iteration n is evaluated as:

))(,())(,(

))(,())(,(
)(

minmax

min
)(

)(

iiETCiiETC

iiETCiiETC
i

n
n

ψψ
ψψη

−
−= (8)

where ψmax(i) is the worst matching which is defined as mapping each task to a
machine with the longest execution time; it is defined below

jin =)(maxψ such that),(max),(
1

qiETCjiETC
q µ≤≤

= (9)

The closer η(n)(i) to 0, the more favorable the response from the environment as far
as the matching is concerned. In the case that the automaton selects the machine with
the worst matching, η(n)(i) is evaluated to 1.

PCL for each automaton A(i) at iteration n is evaluated as:

)1(
))((

)(
2

)(

2
1)

1.0

1
(

)(

)()(
)(

−−
−=∂

n

e
T

i
i

n

nn
n

δ

µ

ψθ (10)

The former part of the above expression is close to 0 when the chosen machine has
a load less than the maximum load. In this way, the learning automata are encouraged
to choose machines with low loads, thus, they are guided in a way to decrease the
distance between the maximum load and the minimum load. The latter part of the
expression is a Gaussian function, which gets closer to 0 as the system utilization
increases; therefore, when the load is relatively balanced, PCL of each automaton is
close to 0. Unlike algorithm A1, algorithm A2 requires information about the
estimation of execution time of each task on each machine.

5.3 Algorithm No.3

Algorithm No.3 (A3) interprets the environment as a Q-Model environment. Like
algorithm A2, it uses matching proximity and system utilization as objective
functions. PCL and PCM are evaluated in the same way as algorithm A2, and used to
produce the environment response. But, in algorithm A3, PCL and PCM are
interpreted as probabilities, where PCL determines the probability that the learning
automaton receives unfavorable response as far as system utilization is concerned,
and PCM determines the probability that the learning automaton receives unfavorable
response as far as matching is concerned. The environment response is evaluated as
below:

δη λδληβ))(())(()()()()(iIiIi nnn += where 1=+ δη λλ (11)

λη and λδ are the weights associated with PCM and PCL, respectively. I(p) is an
indicator function which returns 1 with the probability of p, and 0 with the probability
of 1-p. Therefore, the input to each automaton β(i) is in {0,λη,λδ,1}. In contrast to
algorithm A2, algorithm A3 evaluates environment response stochastically, which
allows the learning automata to jump local minimums in their search space.

 Learning Automata Based Algorithms 687

6 Experiments

In this section the proposed algorithms are tested and compared with algorithms Min-
Min and RC because these two algorithms are the best existing algorithms. For the
simulation studies, ETC matrices were generated using the method presented in [4].
Initially, a τ×1 baseline column vector, B, of floating point values is created. Let ωb
be the upper bound of the range of possible values within the baseline vector. The
baseline column vector is generated by repeatedly selecting a uniform random
number, xb

iє[1, ωb), and letting B(i)=xb
i for 1≤ i≤ τ. Next, the rows of the ETC matrix

are constructed. Each element ETC(si,mj) in row i of the ETC matrix is created by
taking the baseline value, B(i), and multiplying it by a uniform random number, xr

i,j,
which has an upper bound of ωr. This new random number, xr

i,jє[1, ωr), is called a
row multiplier. One row requires µ different row multipliers, 1≤ j≤ µ. Each row i of
the ETC matrix can then be described as ETC(si,mj) = B(i)×xr

i,j, for 1≤ j≤ µ. (The
baseline column itself does not appear in the final ETC matrix.) This process is
repeated for each row until the τ×µ ETC matrix is full. Therefore, any given value in
the ETC matrix is within the range [1,ωb×ωr).

The amount of variance among the execution times of tasks in the metatask for a
given machine is defined as task heterogeneity. Task heterogeneity is varied by
changing the upper bound of the random numbers within the baseline column vector.
High task heterogeneity was represented by ωb=3000 and low task heterogeneity used
ωb=100. Machine heterogeneity represents the variation that is possible among the
execution times for a given task across all the machines. Machine heterogeneity was
varied by changing the upper bound of the random numbers used to multiply the
baseline values. High machine heterogeneity values were generated using ωr=1000,
while low machine heterogeneity values used ωr=10. The ranges were chosen to
reflect the fact that in real situations there is more variability across execution times
for different tasks on a given machine than the execution time for a single task across
different machines.

Different ETC matrix consistencies were used to capture more aspects of realistic
mapping situations. An ETC matrix is said to be inconsistent if the ETC matrices are
kept in the unordered, random state in which they were created. The ETC matrix
indicates consistent characteristics if a machine j executes any task i faster than
machine k, then machine j executes all tasks faster than machine k. The consistent
matrix can be obtained by sorting every row of the matrix independently. Between
two special situations, a semi-consistent matrix represents a partial ordering among
the machine/task execution times. For the semi-consistent matrix used here, the row
elements in even columns of row i are extracted, sorted and replaced in order, while
the row elements in odd columns remain unordered.

Twelve combinations of ETC matrix characteristics are possible: high or low task
heterogeneity, high or low machine heterogeneity, and one type of consistencies
(consistent, inconsistent, or semi-consistent). Among the twelve combinations the
most heterogeneous environment is modeled with inconsistent, high task and machine
heterogeneous ETC, and correspondingly the least heterogeneous environment is
modeled with consistent, low task and machine heterogeneous ETC. Other
combinations are between these two extremes. In charts presented in this section, Low
and High task/machine heterogeneity are abbreviated to LoLo and HiHi, respectively.

688 S. Ghanbari and M.R. Meybodi

All results reported here are averaged over 50 trials, and done for 200 tasks and 20
machines. The makespan for each experiment is normalized with respect to the
benchmark heuristic, which is RC. Unless stated, the learning automata model used in
the experiments is LRI with a=0.01 for algorithm A1 and a=0.001 for algorithms A2
and A3. For algorithms A2 and A3, the weights λη and λδ are set to 0.4 and 0.6,
respectively, for inconsistent environment, and set to 0.05 and 0.95 for semi-
consistent and consistent environments. Matching weightage is set to a smaller value
than system utilization weightage in semi-consistent and consistent environments,
because in consistent environments all tasks have the same first choice for matching,
the fastest machine. There is the same situation in a semi-consistent environment
because of its consistent sub-matrix. Therefore, the decisive factor in gaining a better
makespan is to maximize system utilization rather than matching proximity.
Termination condition is met when, no change in makespan is made for 1500
consecutive iterations, or number of iterations exceeds 500000.

In Figure 1, three proposed algorithms are compared with Min-Min and RC in term
of normalized makespan for different heterogeneity and consistency. For inconsistent
environment, it can be noted that all three proposed algorithms outperform both RC
and Min-Min. For high machine/task heterogeneity, makespan resulted by algorithm
A3 is 21 percent less than the makespan resulted from RC. Algorithm A2 performs
slightly better than algorithm A1, and algorithm A3 performs better than algorithms
A1 and A2. For semi-consistent environment, all three proposed algorithms
outperform Min-Min. Algorithms A1 and A3 perform better than RC for high
task/machine heterogeneity; however, algorithm A2 fails to outperform RC. Except
algorithm A3, the other two algorithms perform worse than RC for low task/machine
heterogeneity. For consistent environment, it can be stated that RC and Min-Min
performs better than the algorithms proposed in this paper.

Results shown in Figure 2 indicate the fact that the proposed algorithms perform
signifycantly better than both RC and Min-Min for inconsistent environments, while
they fails to perform better than RC and Min-Min for consistent environment. For semi-
consistent environment whose heterogeneity is between consistent and inconsistent,
learning automata outperforms Min-Min, but performs very closely to RC. Therefore,
proposed algorithms operate better in environments with higher level of heterogeneity.

0.60

0.70

0.80

0.90

1.00

1.10

1.20

HiHi LoLo HiHi LoLo HiHi LoLo

Inconsistent Semi-consistent Consistent

N
o

rm
al

iz
ed

 m
ak

es
p

an

RC Min-Min A1 A2 A3

Fig. 1. Comparison of the proposed algorithm with RC and Min-Min for different consistency
and heterogeneity

 Learning Automata Based Algorithms 689

-25%

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

HiHi
LoLo

HiHi
LoLo

HiHi
LoLo

Inconsistent Semi-consistent Consistent

M
ak

es
p

an
 p

er
ce

nt
 o

f
d

if
fe

re
n

ce
 w

it
h

 R
C

A1 A2 A3

Fig. 2. Difference of makespan with RC for different consistency and heterogeneity

As expected, algorithm A3 performs better than algorithm A2 because it can avoid
trapping in local minimums. Observing the results of the experiments, it is evident
that algorithm A1 performs very close to and even better than algorithm A2 although
it has a completely different reward criterion. It is worth mentioning that in contrast to
algorithms A2 and A3 which use detailed information of expected run time of each
task on each machine to guide learning automata, algorithm A1 ignores such informa-
tion and guide learning automata blindly.

The other important issue to consider is the computational cost of finding a
mapping using each proposed algorithm. On average, algorithm A2 finds a mapping
in about 39000 iterations, while algorithms A1 and A3 needs 12 times more. Setting
reward parameter (a) to 0.01 for algorithm A2 but 0.001 for algorithms A1 and A3
may account for faster convergence of A2. However, each algorithm is compared
with others by setting learning parameter to a value that yields best result.

7 Conclusion

In this paper, we presented three algorithms based on learning automata for mapping
a set of independent tasks over computational grid. The studied computational grid
was modeled as a heterogeneous computing environment, and the objective of the
proposed algorithm was to assign independent tasks to machines in a way to minimize
makespan. Through experiments, we showed that for high heterogeneous
environments, i.e. inconsistent environments, the proposed algorithms outperform two
best existing mapping algorithms.

References

[1] A. L. Rosenberg, Optimal scheduling for cycle-stealing in a network of workstations
with a bag-of-tasks workload, IEEE Trans. Parallel Distributed Systems, 13(2), 2002,
179-191.

690 S. Ghanbari and M.R. Meybodi

[2] H. Casanova, T.M. Bartol, J. Stiles, and F. Berman, Distributing MCell simulations on
the grid, Int'l J. High Performance Computing Applications, 15 (3), 2001, 243–257.

[3] S. Smallen, W. Cirne, J. Frey, F. Berman, R. Wolski, M. Su, C. Kesselman, S. Young,
and M. Ellisman, Combining workstations and supercomputers to support grid
applications: the parallel tomography experience, IEEE Proc. 9th Heterogeneous
Computing Workshop, 2000, 241–252.

[4] M. Macheswaran, S. Ali, H.J. Siegel, D. Hensgen, and R.F. Freund, Dynamic
mapping of a class of independent tasks onto heterogeneous computing systems, J.
Parallel Distributed Computing, 59 (2), 1999, 107–131.

[5] T. D. Braun, H. J. Siegel, and N. Beck, A comparison of eleven static heuristics for
mapping a class of independent tasks onto heterogeneous distributed computing
systems, J. Parallel and Distributed Computing, 61, 2001, 810-837.

[6] T. D. Braun, H. J. Siegel, et al., Taxonomy for describing matching and scheduling
heuristics for mixed-machine heterogeneous computing systems, Proc. 17th IEEE
Symposium on Reliable Distributed Systems, 1998, 330-335.

[7] Min-You Wu and Wei Shu, A high-performance mapping algorithm for
heterogeneous computing systems, Proc. 15th Int'l Parallel and Distributed
Processing Symposium (IPDPS'01), 2001.

[8] K. Narendra and M. A. L. Thathachar, "Learning Automata: An Introduction,"
Prentice Hall, Englewood Cliffs, New Jersey, 1989.

[9] F. Berman, High-performance schedulers, in The Grid: Blueprint for a New
Computing Infrastructure, I. Foster and C Kesselman, eds., Morgan Kaufmann, San
Francisco, CA, 1999, 279-310.

[10] H. Chen and M. Maheswaran, Distributed dynamic scheduling of composite tasks on
grid computing systems, Proc. Int'l Parallel and Distributed Processing Symposium
(IPDPS'02), 2002.

[11] O. H. Ibarra and C. E. Kim, Heuristic Algorithms for scheduling independent tasks on
non-identical processors, J. ACM, 24(2), 1977, 280-289.

[12] C. Weng and X. Lu, Heuristic scheduling for bag-of-tasks applications in combination
with QoS in the computational grid, J. Future Generation Computer Systems,
Elsevier, 2003.

	Introduction
	Related Works
	Learning Automata
	Simulation Model
	Proposed Learning Automata Model
	Algorithm No.1
	Algorithm No.2
	Algorithm No.3

	Experiments
	Conclusion
	References

