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Abstract. Computational grid provides a platform for exploiting various 
computational resources over wide area networks. One of the concerns in 
implementing computational grid environment is how to effectively map tasks 
onto resources in order to gain high utilization in the highly heterogeneous 
environment of the grid. In this paper, three algorithms for task mapping based 
on learning automata are introduced.  To show the effectiveness of the proposed 
algorithms, computer simulations have been conducted.  The results of 
experiments show that the proposed algorithms outperform two best existing 
mapping algorithms when the heterogeneity of the environment is very high. 

1   Introduction 

Owing to advances in computational infrastructure and networking technology, 
construction of large-scale high performance distributed computing environment, 
known as computational grid, is now possible. Computational grid enables the 
sharing, selection, and aggregation of geographically distributed heterogeneous 
resources for solving large scale problems in science, engineering and commerce. 
Numerous efforts have been exerted focusing on various aspects of grid computing 
including resource specifications, information services, allocation, and security issues. 
A critical issue to meeting the computational requirements on the grid is the 
scheduling. 

Ensuring a favorable efficiency over computational grid is not a straightforward 
task, where a number of issues make scheduling challenging even for highly parallel 
applications. Resources on the grid are typically shared and undedicated so that the 
contention made by various applications results in dynamically fluctuating delays, 
capricious quality of services, and unpredictable behavior, which further complicate 
the scheduling. Regarding to these hurdles, the scheduling of applications on 
computational grids have become a major concern of multitude efforts in recent 
years[9]. 

In mixed-machine heterogeneous computing (HC) environments like 
computational grids, based on application model characterization, platform model 
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characterization and mapping strategy characterization, there are various definitions 
for scheduling[6]. Ideal sorts of applications for computational grid are those 
composed of independent tasks, which tasks can be executed in any order and there is 
no inter-task communication (i.e. totally parallel) [1][12]. There are many 
applications of such feature including data mining, massive searches (such as key 
breaking), parameter sweeps, Monte Carlo simulations[2], fractals calculations (such 
as Mandelbrot), and image manipulation applications (such as tomographic 
reconstruction[3]). Computational grid platform model consists of different high-
performance machines, interconnected with high-speed links. Each machine executes 
a single task at a time (i.e. no multitasking) in the order to which the tasks are 
assigned. The matching of tasks to machines and scheduling the execution order of 
these tasks is referred to as mapping. The general problem of optimally mapping tasks 
to machines in an HC suite has been shown to be NP-complete [11].  

 In this paper, we present three algorithms based on learning automata for mapping 
metatask over HC. Through computer simulations we show that the proposed 
algorithms outperform the best existing mapping algorithms when the heterogeneity 
of the environment is very high. 

This paper is organized as follows: Section 2 discusses the related works. Section 3 
introduces learning automata. Section 4 explains the model of the Grid and the 
definitions used in later sections. Section 5 introduces the proposed learning automata 
based algorithms. In Section 6, experimental results are discussed, and section 7 
provides the conclusion. 

2   Related Works 

Existing mapping algorithms can be categorized into two classes[4]: on-line mode 
(immediate) and batch mode. In on-line mode, a task is mapped onto a host as soon as 
it arrives at the scheduler. In the batch mode, tasks are collected into a set that is 
examined for mapping at certain intervals called mapping events. The independent set 
of tasks that is considered for mapping at the mapping events is called a metatask.  
The on-line mode is suitable for low arrival rate, while batch-mode algorithms can 
yield higher performance when the arrival rate of tasks is high because there are a 
sufficient number of tasks to keep hosts busy between the mapping events, and 
scheduling is done according to the resource requirement information of all tasks in 
the set[4]. The objective of most mapping algorithms is to minimize makespan, where 
makespan is the time needed for completing the execution of a metatask. Minimizing 
makespan yields to higher throughput. 

Reported batch mode heuristics are Min-Min, Max-Min, Genetic Algorithm (GA), 
Simulated Annealing (SA), Genetic Simulated Annealing (GSA), A* search, 
Suffrage[5][4], and Relative Cost (RC) [7] . Experimental results show that among 
batch-mode heuristics, Min-Min and GA give lower makespan than other 
heuristics[5],  and RC further outperforms both GA and Min-Min[7].  

RC introduces two essential criteria for a high-quality mapping algorithm for 
heterogeneous computing systems: matching which is to better match the tasks and 
machines, and load balancing which is to better utilize the machines. It is shown that 
in order to minimize the makespan, matching and system utilization should be 
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maximized[7]. However, these design goals are in conflict with each other because 
mapping tasks to their first choice of machines may cause load imbalance. Therefore, 
the mapping problem is essentially a tradeoff between the two criteria. Two out of 
three proposed algorithms in this paper resolve mapping by optimizing matching and 
load balancing. 

3   Learning Automata 

Learning Automata are adaptive decision-making devices operating on unknown 
random environments. A Learning Automaton has a finite set of actions and each 
action has a certain probability (unknown to the automaton) of getting rewarded by 
the environment of the automaton. The aim is to learn to choose the optimal action 
(i.e. the action with the highest probability of being rewarded) through repeated 
interaction on the system. If the learning algorithm is chosen properly, then the 
iterative process of interacting on the environment can be made to result in selection 
of the optimal action. Learning Automata can be classified into two main families: 
fixed structure learning automata and variable structure learning automata (VSLA) 
[8]. In the following, the variable structure learning automata which will be used in 
this paper is described. 

A VSLA is a quintuple < α, β, p, T(α, β, p) >, where α, β, and  p are an action set 
with r actions, an environment response set, and the probability set p containing r 
probabilities, each being the probability of performing every action in the current 
internal automaton state, respectively. The function of T is the reinforcement algorithm, 
which modifies the action probability vector p with respect to the performed action and 
received response. If the response of the environment takes binary values learning 
automata model is P-model and if it takes finite output set with more than two elements 
that take values in the interval [0,1], such a model is referred to as Q-model, and when 
the output of the environment is a continuous variable in the interval [0,1], it is refer to 
as S-model. Assuming βє[0,1], a general linear schema for updating action probabilities 
can be represented as follows. Let action i be performed then: 

ijjnapnnbprbnnpnp jjjj ≠∀−−−−+=+ )()](1[)]()1/()[()()1( ββ
 

(1) 

)](1[)](1[)()()()1( npannbpnnpnp iiii −−+−=+ ββ  (2) 

where a and b are reward and penalty parameters. When a=b, the automaton is called 
LRP. If b=0 the automaton is called LRI and if 0<b<<a<1, the automaton is called 
LRεP. For more Information about learning automata the reader may refer to [8]. 

4   Simulation Model 

This section presents a general model of the computational grid. The environment 
consists of the heterogeneous suite of machines which will be used to execute the 
application. The scheduling system consists of the automata, and the model of the 
application and the HC suite of machines.  
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The application and HC suite of machines are modeled as the estimate of the 
expected execution time for each task on each machine, which is known prior to the 
execution and contained within a τ×µ ETC (Expected Time to Compute) matrix, 
where τ is the number of tasks and µ is the number of machines. One row of the ETC 
matrix contains the estimated execution times for a given task on each machine. 
Similarly, one column of the ETC matrix consists of the estimated execution times of 
a given machine for each task in the metatask. Thus, for an arbitrary task si and an 
arbitrary machine mj, ETC(si,mj) is the estimated execution time of si on mj.  

We define ψ(n)(i)=j as a general mapping from the task domain i=1,…,τ to the 
machine domain j=1,…,µ at iteration n. The load of each machine, which is denoted 
by θ(n)(j),  is defined as the time taken to execute all the assigned tasks: 

∑ ≤≤== τψθ kkjjkETCj nn 1)(),,()( )()(  (3) 

The maximum of θ(n)(j), over 1≤ j≤ µ, is the metatask execution time, which is 
referred to as makespan, denoted by Tµ

(n). 

5   Proposed Learning Automata Model 

The learning automata model is constructed by associating every task si in the 
metatask with a variable structure learning automaton, which is represented by a 3-
tuple(a(i),β(i),A(i)). Each action of an automaton is associated with a machine, and 
since the tasks can be assigned to any of the µ machines, the action set of all learning 
automata are identical. Therefore, for any task si, 1≤ i≤ τ, a(i)=m1,m2,…,mµ(mi is the 
ith machine), and β(i)є[0,1], where   β(i) closer to 0 indicates that the action taken by 
the automaton of task si is favorable to the system, and closer to 1 indicates an 
unfavorable response. Reinforcement scheme used to update action probabilities of 
learning automata is LRI. 

To determine the goodness of an action taken by an automaton, we propose three 
different algorithms. The first algorithm calculates β(i) for each automaton A(i) 
according to the reduction made in makespan and the load of the selected machine. 
The second and third algorithms calculate the goodness of an action based on 
improvement made in matching and load balancing. 

5.1   Algorithm No.1 

The algorithm No.1 (A1) determines the β(n)(i) at iteration n for each automaton A(i) 
by considering makespan and load of the chosen machine. Algorithm A1 interprets 
the environment as P-model; therefore β(n)(i)є{0,1}. Makespan at iteration n may be 
greater, less than, or equal to makespan at iteration n-1. Similarly, load of the machine 
chosen by automaton A(i) at iteration n may be greater, less than, or equal to load of 
the machine chosen by the automaton at iteration n-1. Therefore, regarding to 
makespan and the load of the chosen machine in two consecutive iterations, nine 
states are possible. To determine the β(n)(i), we associate a probability value to each 
nine possible state, which determines the probability of rewarding the chosen action. 
Probability one means that the chosen action will be rewarded. Table 1 shows the 
values, where D, U and I stand for decrease, remaining unchanged, and increase, 
respectively. 
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Table 1. Reward probability associated with each state 

Makespan  Load of chosen machine Rewarding probability 
D D 1 
D U 0.875 
D I 0.75 
U D 0.625 
U U 0.5 
U I 0.375 
I D 0.25 
I U 0.125 
I I 0 

Algorithm Al is suitable for situations that the information used to evaluate the 
environment response is the load of machines. 

5.2   Algorithm No.2 

As mentioned in section 2, it is shown that to minimize the makespan, matching and 
system utilization must be maximized. Algorithm No.2 (A2) evaluates the response to 
the learning automata by considering these two criteria. Matching of tasks and 
machines can be measured by a parameter, matching proximity, which is defined as 
follows: 

∑
∑
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where η≤1, and ψmin(i) is the ideal matching. Ideal matching is defined as executing 
every task on the machine with the shortest execution time. It is defined as follows:  
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when η=1, we have the ideal matching. System utilization is defined as follows: 
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When the system is completely balanced, δ=1; otherwise δ<1.  
Algorithm A2 reduces the mapping problem to an optimization problem with 

matching proximity and system utilization as objective functions. Algorithm A2 
interprets the environment as S-model; therefore, β(n)(i) is in [0,1]. 

To evaluate the contribution of each automaton to the improvement of matching 
and system utilization, we define two parameters, partial contribution to 
matching(PCM),  and partial contribution to load balancing(PCL). Input to each 
automaton is a linear combination of PCM (denoted by η(n)(i)), and PCL (denoted by 
δ(n)(i)): 

δη λδληβ )()()( )()()( iii nnn +=  where 1=+ δη λλ  (7) 
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λη and λδ are weights associated with PCM and PCL, respectively. PCM for each 
automaton A(i) at iteration n is evaluated as: 
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where ψmax(i)  is the worst matching which is defined as mapping each task to a 
machine with the longest execution time; it is defined below 
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The closer η(n)(i) to 0, the more favorable the response from the environment as far 
as the matching is concerned. In the case that the automaton selects the machine with 
the worst matching, η(n)(i) is evaluated to 1.  

PCL for each automaton A(i) at iteration n is evaluated as: 
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The former part of the above expression is close to 0 when the chosen machine has 
a load less than the maximum load. In this way, the learning automata are encouraged 
to choose machines with low loads, thus, they are guided in a way to decrease the 
distance between the maximum load and the minimum load. The latter part of the 
expression is a Gaussian function, which gets closer to 0 as the system utilization 
increases; therefore, when the load is relatively balanced, PCL of each automaton is 
close to 0. Unlike algorithm A1, algorithm A2 requires information about the 
estimation of execution time of each task on each machine. 

5.3   Algorithm No.3 

Algorithm No.3 (A3) interprets the environment as a Q-Model environment. Like 
algorithm A2, it uses matching proximity and system utilization as objective 
functions. PCL and PCM are evaluated in the same way as algorithm A2, and used to 
produce the environment response. But, in algorithm A3, PCL and PCM are 
interpreted as probabilities, where PCL determines the probability that the learning 
automaton receives unfavorable response as far as system utilization is concerned, 
and PCM determines the probability that the learning automaton receives unfavorable 
response as far as matching is concerned. The environment response is evaluated as 
below: 

δη λδληβ ))(())(()( )()()( iIiIi nnn += where 1=+ δη λλ  (11) 

λη and λδ are the weights associated with PCM and PCL, respectively. I(p) is an 
indicator function which returns 1 with the probability of p, and 0 with the probability 
of 1-p. Therefore, the input to each automaton β(i) is in {0,λη,λδ,1}. In contrast to 
algorithm A2, algorithm A3 evaluates environment response stochastically, which 
allows the learning automata to jump local minimums in their search space. 
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6   Experiments 

In this section the proposed algorithms are tested and compared with algorithms Min-
Min and RC because these two algorithms are the best existing algorithms. For the 
simulation studies, ETC matrices were generated using the method presented in [4]. 
Initially, a τ×1 baseline column vector, B, of floating point values is created. Let ωb 
be the upper bound of the range of possible values within the baseline vector. The 
baseline column vector is generated by repeatedly selecting a uniform random 
number, xb

iє[1, ωb), and letting B(i)=xb
i  for 1≤ i≤ τ. Next, the rows of the ETC matrix 

are constructed. Each element ETC(si,mj) in row i of the ETC matrix is created by 
taking the baseline value, B(i), and multiplying it by a uniform random number, xr

i,j, 
which has an upper bound of ωr. This new random number, xr

i,jє[1, ωr), is called a 
row multiplier. One row requires µ different row multipliers, 1≤ j≤ µ. Each row i of 
the ETC matrix can then be described as ETC(si,mj) = B(i)×xr

i,j, for 1≤ j≤ µ. (The 
baseline column itself does not appear in the final ETC matrix.) This process is 
repeated for each row until the τ×µ ETC matrix is full. Therefore, any given value in 
the ETC matrix is within the range [1,ωb×ωr). 

The amount of variance among the execution times of tasks in the metatask for a 
given machine is defined as task heterogeneity. Task heterogeneity is varied by 
changing the upper bound of the random numbers within the baseline column vector. 
High task heterogeneity was represented by ωb=3000 and low task heterogeneity used 
ωb=100. Machine heterogeneity represents the variation that is possible among the 
execution times for a given task across all the machines. Machine heterogeneity was 
varied by changing the upper bound of the random numbers used to multiply the 
baseline values. High machine heterogeneity values were generated using ωr=1000, 
while low machine heterogeneity values used ωr=10. The ranges were chosen to 
reflect the fact that in real situations there is more variability across execution times 
for different tasks on a given machine than the execution time for a single task across 
different machines. 

Different ETC matrix consistencies were used to capture more aspects of realistic 
mapping situations. An ETC matrix is said to be inconsistent if the ETC matrices are 
kept in the unordered, random state in which they were created. The ETC matrix 
indicates consistent characteristics if a machine j executes any task i faster than 
machine k, then machine j executes all tasks faster than machine k. The consistent 
matrix can be obtained by sorting every row of the matrix independently. Between 
two special situations, a semi-consistent matrix represents a partial ordering among 
the machine/task execution times. For the semi-consistent matrix used here, the row 
elements in even columns of row i are extracted, sorted and replaced in order, while 
the row elements in odd columns remain unordered. 

Twelve combinations of ETC matrix characteristics are possible: high or low task 
heterogeneity, high or low machine heterogeneity, and one type of consistencies 
(consistent, inconsistent, or semi-consistent). Among the twelve combinations the 
most heterogeneous environment is modeled with inconsistent, high task and machine 
heterogeneous ETC, and correspondingly the least heterogeneous environment is 
modeled with consistent, low task and machine heterogeneous ETC. Other 
combinations are between these two extremes. In charts presented in this section, Low 
and High task/machine heterogeneity are abbreviated to LoLo and HiHi, respectively. 
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All results reported here are averaged over 50 trials, and done for 200 tasks and 20 
machines. The makespan for each experiment is normalized with respect to the 
benchmark heuristic, which is RC. Unless stated, the learning automata model used in 
the experiments is LRI with a=0.01 for algorithm A1 and a=0.001 for algorithms A2 
and A3. For algorithms A2 and A3, the weights λη and λδ are set to 0.4 and 0.6, 
respectively, for inconsistent environment, and set to 0.05 and 0.95 for semi-
consistent and consistent environments. Matching weightage is set to a smaller value 
than system utilization weightage in semi-consistent and consistent environments, 
because in consistent environments all tasks have the same first choice for matching, 
the fastest machine. There is the same situation in a semi-consistent environment 
because of its consistent sub-matrix. Therefore, the decisive factor in gaining a better 
makespan is to maximize system utilization rather than matching proximity. 
Termination condition is met when, no change in makespan is made for 1500 
consecutive iterations, or number of iterations exceeds 500000.  

In Figure 1, three proposed algorithms are compared with Min-Min and RC in term 
of normalized makespan for different heterogeneity and consistency. For inconsistent 
environment, it can be noted that all three proposed algorithms outperform both RC 
and Min-Min. For high machine/task heterogeneity, makespan resulted by algorithm 
A3 is 21 percent less than the makespan resulted from RC. Algorithm A2 performs 
slightly better than algorithm A1, and algorithm A3 performs better than algorithms 
A1 and A2. For semi-consistent environment, all three proposed algorithms 
outperform Min-Min. Algorithms A1 and A3 perform better than RC for high 
task/machine heterogeneity; however, algorithm A2 fails to outperform RC. Except 
algorithm A3, the other two algorithms perform worse than RC for low task/machine 
heterogeneity. For consistent environment, it can be stated that RC and Min-Min 
performs better than the algorithms proposed in this paper. 

Results shown in Figure 2 indicate the fact that the proposed algorithms perform 
signifycantly better than both RC and Min-Min for inconsistent environments, while 
they fails to perform better than RC and Min-Min for consistent environment. For semi-
consistent environment whose heterogeneity is between consistent and inconsistent, 
learning automata outperforms Min-Min, but performs very closely to RC. Therefore, 
proposed algorithms operate better in environments with higher level of heterogeneity. 
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Fig. 1. Comparison of the proposed algorithm with RC and Min-Min for different consistency 
and heterogeneity 
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Fig. 2. Difference of makespan with RC for different consistency and heterogeneity 

As expected, algorithm A3 performs better than algorithm A2 because it can avoid 
trapping in local minimums. Observing the results of the experiments, it is evident 
that algorithm A1 performs very close to and even better than algorithm A2 although 
it has a completely different reward criterion. It is worth mentioning that in contrast to 
algorithms A2 and A3 which use detailed information of expected run time of each 
task on each machine to guide learning automata, algorithm A1 ignores such informa- 
tion and guide learning automata blindly. 

The other important issue to consider is the computational cost of finding a 
mapping using each proposed algorithm. On average, algorithm A2 finds a mapping 
in about 39000 iterations, while algorithms A1 and A3 needs 12 times more. Setting 
reward parameter (a) to 0.01 for algorithm A2 but 0.001 for algorithms A1 and A3 
may account for faster convergence of A2. However, each algorithm is compared 
with others by setting learning parameter to a value that yields best result. 

7   Conclusion 

In this paper, we presented three algorithms based on learning automata for mapping 
a set of independent tasks over computational grid. The studied computational grid 
was modeled as a heterogeneous computing environment, and the objective of the 
proposed algorithm was to assign independent tasks to machines in a way to minimize 
makespan. Through experiments, we showed that for high heterogeneous 
environments, i.e. inconsistent environments, the proposed algorithms outperform two 
best existing mapping algorithms. 
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