
An Experimental Information Grid Environment
for Cultural Heritage Knowledge Sharing

A. Aiello, M. Mango Furnari, and A. Massarotti

Istituto di Cibernetica E. Caianiello, Via Campi Flegrei, 34,
I-80078 – Pozzuoli, Italy

{a.aiello, mf, a.massarotti}@cib.na.cnr.it

Abstract. In this paper the authors address the problems of making
existing distributed collection document repositories mutually interop-
erable at the semantic level. The authors argue that semantic web tech-
nologies offer a promising approach to facilitate homogeneous, semantic
information retrieval based on heterogeneous document repositories on
the web. From contents point of view, the distributed system is built as
a collection of multimedia documents repository nodes glued together
by an ontology server. A set of methodologies and tools for organizing
the information space around the notion of contents community is devel-
oped, where each content provider will publish a set of ontologies to col-
lect metadata information organized and published through the Contents
Community Authority on top of an ontology server. These methodolo-
gies were deployed setting up a prototype to connect about 20 museums
in the city of Naples (Italy).

1 Introduction

In this paper the authors address the problem of making distributed document
collection repositories mutually interoperable at semantic level. Furthermore,
they argue that emerging semantic web technologies, more specifically the on-
tology one, offer a promising approach to facilitate semantic information retrieval
based on heterogeneous document repositories distributed on the web. However,
the current source ontologies exploitation attempts are oriented to cope with
the conceptualization of single information source. Furthermore, most of exist-
ing tools treat ontologies as monolithic entities and provide little support for
specifying, storing and accessing ontologies in a modular manner.

The authors’ efforts described in this paper are based on the hypothesis that
it is necessary to develop an adequate treatment of distributed ontologies in
order to promote information sharing on the semantic web, and appropriate in-
frastructures for representing and managing distributed ontologies have also to
be developed. To pursue these goals we defined a modularized ontology repre-
sentation and developed an ontology server to deploy a knowledge repository
community. An experimental implementation to verify the developed method-
ologies and tools within the cultural heritage promotion arena is also described.

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 600–609, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



An Experimental Information Grid Environment 601

The rest of the paper is organized as follows: In the first section the architec-
ture and the implementation of the proposed Distributed Contents Management
System are given together the Ontology Server architecture. In the second sec-
tion a modular representation for the ontology structure is described. In the
third section the implemented test bed is described. In last section the proposed
architecture advantages are summarized and compared with other efforts.

2 The Distributed Contents Management System and
Ontology Server Architecture

We chose the WWW paradigm as design criteria for a distributed contents man-
agement system, where the notion of document plays the role of elementary
information and basic building block. Documents are represented as digital ob-
jects together with the associated metadata information, where the metadata
are organized using domain ontology. Furthermore, we assumed the multi-tiers
web architecture, with the application server playing the central role of business
logic driver, where the main identified components are:

– Document Repository System (DRS ). The DRS stores and organizes the
documents together with the associated metadata.

– Document Access System (DAS ). The DAS creates friendly and flexible user
interfaces to discover and access the contents.

– Contents Authority Management System (CAS ). The CAS stores and man-
ages the ontologies used by each participating node to facilitate the DRS
semantic interoperability.

All these systems communicate among them exchanging XML encoded mes-
sages over http, according to well-defined protocols that represent the XML
communication bus core, see Figure 1.

The user will interact with the community of systems through a conventional
browser; the DRS appears and behaves like a traditional web site. Documents
must underway a text processing before to be displayed, and programmed accord-
ing to a sequence of transformations expressed using the eXtensible Stylesheet
Language Transformation (XSLT) [7]. The Document Access System manages
this document composition process, whose business logic could be summarized
as follows: the ontology client makes the first step by extracting the informa-
tion from the data store and wrapping this information with XML tags. The
extraction is done querying the ontology server. The second step involves the
application of the appropriate stylesheet transformations to the XML data and
thereby the creation of a corresponding HTML page. The foregoing step is car-
ried out by the XSLT package included in the application server. The output of
that transformation is the HTML page directly sent to the browser.

The advantages of the whole proposed architecture are: a) ease of deployment
on Internet, high reliability and fault-tolerance, and efficient use of the network
infrastructures; b) flexibility and generality as needed in order to evolve and



Fig. 1. Distributed Contents Management architecture

meet future needs; c) scalability without fundamental changes in the structure
of the resource name spaces.

In the previous scenario the ontology server provides the basic semantic in-
teroperability capabilities to build a Document Repositories Community. From
the conceptual point of view the Ontology Server it is the most important type
of servers since it manages the OWL/RDF [15] schema for the stored data, and
determines the interactions with the other servers and/or modules, through the
ontology exchange protocol [13].

The Ontology Server provides the information provider with the possibility of
interacting with heterogeneous and distributed document repositories. Actually,
it guarantees the necessary autonomy to the information provider in organizing
their contents space. To achieve these goals the Ontology Server is equipped with
the following modules:

– Ontology Development Module. The ontology development module is built
around the Protégé-2000 [19] ontology editor, since its architecture is mod-
ular and extensible. We developed an extension for the OWL Protégé-2000
Plug-in in order to store the ontology directly on the Data Store Module
using the client/server metaphor, see Figure 2.

602 A. Aiello, M. Mango Furnari, and A. Massarotti



An Experimental Information Grid Environment 603

Fig. 2. The Plugin OWL and Tab architecture

– Ontology Repository Module. For the OWL/RDF data persistent storage we
choose the Sesame package [3]. It is an open source, platform-independent,
RDF Schema-based repository, provided with querying facility written in
Java. The low level persistent storage is achieved using Postgresql [18], one
of most widely used public domain database environment. The Sesame en-
vironment offers three different levels of programming interfaces: the client
API, for client-server programming; the server API; and the lower level Stor-
age and Inference Layer (SAIL) API, for the RDF repositories.

– Ontology Interface Module. The Ontology Interface Module consists of a set
of functionalities for walking through the ontology graph and the associated
attributes. At runtime, these functionalities could be used by a Document
Access System to build the user interfaces, to browse the ontology struc-
tures, to implement an ontology driven search engine, and so forth. The
Ontology Interface Module can be queried about the ontology class hierar-
chy, and/or the class properties, giving back an RDF document that could
be transformed into HTML forms.

3 Ontology Modular Representation

The main purpose of building an ontology is to capture the semantics of the doc-
uments describing a given knowledge domain, especially the conceptual aspects
and interrelations. We used OWL DL [17] to represent domain of concepts and
relationships in a machines and humans understandable form. OWL DL is a rich
ontology language with built-in semantics. It allows exploiting the well-defined
semantics of description logics, where a reasonable upper bound is guaranteed
for the complexity inconsistency, misclassifications, misunderstandings and de-
ductions checking.



To cope with the interoperability problems related to exchange ontologies
among cooperating information systems, we took into account the fact that
interoperability worst case occurs when useful communication is restricted to
transfer an ontology, as a whole such as happens with the currently serializing
language and/or schema. By contrast, we may expect that transferring ontology
in small meaningful chunks could significantly improve the knowledge system
interoperability.

We defined a language for the XML serialization of the OWL DL ontolo-
gies, called ezXML4OWL [14]. The idea was to serialize an OWL mereology
by mapping whole OWL ontologies to whole XML documents as well as parts
belonging to the OWL mereology to the corresponding XML elements, all of
them with the constraint that the relation part-of corresponds to the relation
XML-element-of. Of course, it is not required that every XML-element occur-
ring in ezXML4OWL have a correspondent in the OWL mereology. There are,
indeed, auxiliary XML elements that have only serializing roles. Moreover, some
redundancy was created to make our representation more understandable, and
to make ezXML4OWL documents modular.

An ezXML4OWL document serializing an OWL DL ontology is composed
of exactly the following three modules1: <ontology>, <axioms>, and <facts>.
These modules are the top modules and like other modules and/or elements
are recursively defined. The module <ontology> encodes metadata about the
ontology, such as the name and the four OWL built-in ontology properties:
owl:imports, owl:priorVersion, owl:backwordCompatibleWith and
owl:incompatibleWith. The ontology’s name and the associated properties are
encoded according to the following skeleton:

<ontology name=ontologyID>
<ontoProperty name= owl:priorVersion>

<value name= ontologyID>
</ontoProperty>
<ontoProperty name= owl:backwordCompatibleWith>

<value name= ontologyID>
.....
<value name= ontologyID>

</ontoProperty>
<ontoProperty name= owl:incompatibleWith>

<value name= ontologyID>
.....
<value name= ontologyID>

</ontoProperty>
<ontoProperty name= owl:imports>

1 We use the term “module” for referring to ezXML4OWL elements that codify con-
cepts belonging to the OWL mereology. Henceforth, the term “element” will refer
to generic XML elements (not necessarily modules).

604 A. Aiello, M. Mango Furnari, and A. Massarotti



An Experimental Information Grid Environment 605

.....
<value name= ontologyID>

</ontoProperty>
</ontology>

The module <facts> stores all the data gathered during the data entry phase.
Since <facts> modules are about individuals, they might contain only modules
of the type <individual>. Anyway, since each <individual> module would cod-
ify an instance of a class we defined a module, of the type <classIndividuals>,
corresponding to the mereological entity “set of instances in the same class”, and
operating as a container for all <individual> codifying instances in the same
class. <classIndividuals>. The fact module skeleton is:

<facts>
<classIndividuals className>

<individual name>
<individualID_ValuedProperties>

<property name >
<value name/>
......

</property>
.....
.....

</individualID_ValuedProperties>
<data_ValuedProperties>

<property name >
<value name/>

</property>
.....

</data_ValuedProperties>
</individual>
.....

</classIndividuals>\\
.....
.....
</facts>

We codify the different kind of ontology axioms in different modules, all be-
ing direct parts of the module <axioms>, where the module <classesLattice>
explicitly describes the lattice formed by the classes associated to the ontology
to be serialized. The lattice’s structure is specified giving the direct subclasses of
each class. The module <classesLattice> implements both the first two types
of description prescribed by OWL: the class identifier (a URI reference) and the
property rdfs:subClassOf. The module <classesSlots> codifies the classes
and the related properties. There are modules for each type of OWL property.

<value name= ontologyID>



Namely, the owl:DatatypeProperty’s are encoded in modules <dataProp/> and
the owl:ObjectProperty are encoded in modules <obProp>. Attributes are also
given to specify the range, the cardinality and the source (inherited or specific)
of the properties, the remaining modules description and remarks can be found
in [17].

The axioms module skeleton is:

<axioms>
<classesLattice>

<root name ‘‘classeID’’/>
.....
<root name =‘‘classeID’’/>
<leaf name =‘‘classeID’’/>
.....
<leaf name=‘‘classeID’’/>
....
<sup name =‘‘classeID’’>

<sub name =‘‘classeID’’/>
.....
<sub name =‘‘classeID’’/>

</sup>
</classesLattice>
<classesSlots>

<class name ‘‘classeID’’> ..... </class>
......
<class name ‘‘classeID’’> ..... </class>
.....

</classesSlots>
<subClassOf> ..... </subClassOf>
<enumeratedClasses> ..... </enumeratedClasses>
<equivalentClasses> ..... </equivalentClasses>
<disjointClasses> ..... </disjointClasses>
<objectProperties> ..... </objectProperties>
<datatypeProperties> ..... </datatypeProperties>

</axioms>

4 The Museo Virtuale di Napoli Testbed

The aim of any ordinary museum visitor is something quite different from trying
to find certain objects. In physical exhibitions, the cognitive museum experi-
ence is often based on the thematic combination of exhibits and their contextual
information. In order to figure out how much it would be complex to achieve
these goals and which kind of technologies would be necessary, the research

606 A. Aiello, M. Mango Furnari, and A. Massarotti



An Experimental Information Grid Environment 607

project “Museo Virtuale di Napoli: Rete dei Musei Napoletani” (REMUNA)2 is
carried out at the Istituto di Cibernetica E. Caianiello. The collection of eigh-
teen Neapolitan museums document repositories are used as case study. These
repositories use different technologies, have different conceptual schemas and are
physically located in different districts of Naples.

Each museum is equipped with multimedia information system and commu-
nication infrastructures. From the museum managers’ perspective each informa-
tion system allows him to make available the managed artifacts’ information
through the ReMuNa environment, just after registering them into the system.
This information is encapsulated into a digital object that plays the role of a
handle for the actual artifact information. No assumption about fixed attributes
names’ schemata is taken, so the application builder can create new attributes,
as needed just modifying the associated ontology without changing the internal
database schemata.

The information provider3 could also organize a set of related documents,
in document collections, according to some relationships defined on top of the
associated ontology. The adopted notion of collection is a recursive one, in the
sense that a collection could contain other collections. Each digital document
is allowed to belong to multiple collections and may have multiple relationships
with other documents. This nesting features are represented by the document
repository collection graph, and allows the system to deliver more than one
logical view of a given digital documents asset.

To assure the necessary operational autonomy to the museum manager, with-
out reducing the cooperation opportunities with other museum managers, we
deployed this cooperation schema as an intermediate coordination organization
that is in charge to register, syndicate and to guarantee the document contents
quality, that we called Content Authority. The presence of the content author-
ity could create a bottleneck; therefore the notion of delegation was introduced.
In other words, the top authority could delegate another organization to oper-
ate as Cultural Heritage Contents Authority, on its behalf, for a more specific
knowledge domain.

The domain ontology developed to exchange cultural heritage data has many
common features with the CRM/CIDOC [9] have been developed. The designed
cultural heritage ontology is empirical and descriptive one; it formalizes the se-
mantics necessary to express stated observations about the world in the domain
of museum documentation. It is composed of a class hierarchy, named classes
interlinked by named properties. It follows object oriented design principle, the
classes in the hierarchy inherit properties from their parents. Property inheri-
tance means that both classes and properties can be optionally sub–typed for

2 The project “Museo Virtuale di Napoli: Rete dei Musei Napoletani” is supported by
Ministero dell’Università, Ricerca e Tecnologia, under contract C29/P12/M03, from
here on denoted with ReMuNa.

3 In this paper we assume that museum manager means the responsible, inside the
museum organization, of the cultural heritage goods information.



specific applications, making the ontology highly extensible without reducing
the overall semantic coherence and integrity.

The ontology is expressed according to the OWL semantic model, this choice
yelds a number of significant benefits, for example the class hierarchy enables
us to coherently integrate related information from different sources at varying
levels of detail.

5 Conclusions

One of the most interesting technological aspects investigated was how to design
document repositories systems that allow the museum manager to organize the
cultural heritage heterogeneous information space spread in many autonomous
organizations.

Ontology Exchange Protocol and tools were implemented to exploit the Mul-
timedia Document Information System federation settlement. The ontology ex-
change protocol is very similar to the Dienst [12] collection service, where the
main difference relies on the fact that in our case the collections are entities
built on top of a domain ontology describing the domain of the documents con-
tent and not predefined ones. To a certain degree, our usage is similar to that
of the CIMI project [4]. In fact, it has become increasingly evident that simple
application-specific standard, such as Dublin Core (DC) [5], cannot satisfy the
requirements of communities such as BIBLINK [2] and OAI [16] that need to
combine metadata standards for simple resource discovery process.

Our work successfully showed that an RDF data store (Sesame) could be
used as a backend document repository for a distributed Contents Management
System (CMS), and the central role that the Ontology Server plays on deploying
such kind of systems.

As the Semantic Web begins to fully take shape, this type of distributed
CMS implementation will enable agents to understand what is actually being
presented in distributed CMS, since all content within the system is modeled in
machine understandable OWL/RDF.

Starting from these encouraging results we are planning to actively pursue
some of the goals foreseen by the Semantic Web Initiative [1], [10], [11]. For
example, to gain more semantic information we are exploiting pieces of well-
known and supported ontologies, like ICOM-CIDOC [9].

Acknowledgment

Acknowledgments are expressed to all the people of Istituto di Cibernetica E.
Caianiello that worked on the ReMuNa project, for their help, and fruitful dis-
cussions, and also to all the staff members of the Soprintendenza ai Beni Archeo-
logici delle Province di Napoli e Caserta, Soprintendenza ai beni Artistici, Storici
e Demo Antropologici della Provincia di Napoli, Soprintenda ai Beni Architet-
tonici ed Ambientali della Provincia di Napoli, Archivio di Stato di Napoli, to

608 A. Aiello, M. Mango Furnari, and A. Massarotti



An Experimental Information Grid Environment 609

the people of Direzione Musei of Comune di Napoli, and the Assessorato alla
Cultura of Comune di Napoli, without their assistance the ReMuNa project
and activities would not exist.

References

1. Berners-Lee, T., “WWW: Past, Present, and Future”, IEEE Computer, 29, (1996)
2. “The BIBLINK Core Application Profile”,

http://www.schemas-forum.org/registry/biblink/BC-schema.html

3. Broekstra J., Kampman A., van Harmelen F., “Sesame: A generic architecture
for storing a querying rdf and rdf schema”, In The Semantic Web – ISWC 2002,
volume 2342 of Lecture Notes in Computer Science, pp. 54-68 (2002)

4. “CIMI: Consortium of Museum Intelligence”,
http://www.cimi.org/

5. “The Dublin Core Metadata Initiative”,
http://www.purl.org/dc/

6. Davis J. and Lagoze C., “The Networked Computer Science Technical Report
Library”, Cornell CS TR96-1595

7. “Extensible Style Language for Transformation”,
http://www.w3c.org/Style/XSLT

8. Lassila O., Swick R., “Resource Description Framework (RDF) Model and Syntax”,
World Wide Consortium Working Draft

9. “ICOM/CIDOC Documentation Standard Group, Revised Definition of the
CIDOC Conceptual Reference Model”, 1999,
http://cidoc.ics.forth.gr/

10. HP Labs Semantic Web Research, “Jena-A Semantic Web Framework for Java”,
2004
http://www.hpl.hp.com/seweb/

11. Horrocks I., Tessaris S., “Querying the Semantic Web: a Formal Approach”. The
1st International Semantic Web Conference (ISWC2002), Sardinia, Italy, June 9-
12, 2002

12. Lagoze C., Shaw E., Davis J.R. and Krafft D.B., “Dienst: Implementation Refer-
ence Manual”, May 5, 1995.

13. Mango Furnari M., Aiello A., Caputo V. Barone V., “Ontology Server Protocol
Specification”, ICIB TR-12/03

14. Mango Furnari M., Aiello A., Massarotti A., “ezXML4OWL: an easy XML for
OWL”, ICIB TR-06/04.

15. McGuinness D., van Harmelen F. (eds)., “OWL Web Ontology Language
Overview”, 2003
http://www.w3.org/TR/2003/WD-owl-features-20030331/

16. “Open Archives Initiative”,
http://www.openarchives.org

17. “OWL Web Ontology Language Overview”,
http://www.w3.org/TR/2003/PR-owl-features-20031215/

18. http://www.postgresql.org/

19. http://protege.stanford.edu


	Introduction
	The Distributed Contents Management System and
	Ontology Modular Representation
	The Museo Virtuale di Napoli Testbed
	Conclusions
	Acknowledgment
	References



