
MyGridFTP: A Zero-Deployment GridFTP
Client Using the .NET Framework

Arumugam Paventhan and Kenji Takeda

School of Engineering Sciences, University of Southampton,
Highfield, Southampton, SO17 1BJ, UK

{povs, ktakeda}@soton.ac.uk

Abstract. Large-scale scientific and engineering applications are in-
creasingly being hosted as Grid services using Globus middleware com-
plying to the Open Grid Services Architecture (OGSA) framework. In
order for users to fully embrace Grid applications, seamless access to Grid
services is required. In working towards this aim we present the design
and implementation of Grid clients that utilise the language-independent
Microsoft .NET Framework that can be deployed without software pre-
requisites (zero-deployment). We demonstrate runtime security authenti-
cation interoperability between Microsoft Windows-native SSPI and the
Globus GSSAPI, with full proxy support. This is demonstrated with a
.NET GridFTP client, called MyGridFTP. We believe that this is one
of the first implementations to use Windows native security infrastruc-
ture to interoperate with the Grid Security Infrastructure in Globus.
This paves the way for language-independent .NET clients to be writ-
ten that are fully interoperable with Globus-based Grid services. This
work is part of a larger experimental aerodynamics Wind Tunnel Grid
project, which has significant requirements for data management from
acquisition, collating, processing, analysis and visualisation.

1 Introduction

The data acquired in scientific and engineering experiments must be stored,
processed, and visualized effectively in order for users to be able to analyze the
results in a coherent fashion. The resources utilized in these steps are often dis-
tributed across the network, at both inter-organization and intra-organization
level. Grid technology can help build a coordinated resource sharing environ-
ment [1] in this scenario.

Grid clients developed using client side Application Programming Interface
(API) allow application users to consume Grid Services. [2] demonstrates how
the Java commodity technology can be used to access Grid services and envis-
ages Commodity Grid (CoG) Kit on other platforms. There are two possible
approaches to developing Grid clients:Client-side application and Browser or
Web-based application. The advantage of client side applications is a rich user
experience and access to the local file system. The disadvantage is that the neces-
sary software and runtime environment must be installed and configured before

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 374–383, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



MyGridFTP: A Zero-Deployment GridFTP Client 375

it can start on the client machine. Any version change at the server side could
affect the client, often requiring installation of a new version of the client. The
advantage of Web-based applications is that the up-to-date version can be in-
voked without having to worry about any installation steps on the part of user.
The disadvantages are that it will have no access to the local file system - a
problem, for instance, with client initiated file transfers and accessing a local
X.509 certificate store for GSSAPI authentication - and it is not configurable to
connect to an arbitrary IP Address/Port number. For example, GridFTP uti-
lizes port 2811, supports certificate based authentication and may be running
on a server other than the Web server front-ending the Grid service. Also, in the
case of third party GridFTP transfers the client needs to make control channel
connections to multiple servers.

The .NET framework allows another possible approach to the above problem
when we assume Windows client [3]. Since the .NET runtime environment and
SSPI are integral part of Windows, a .NET based Grid client can be downloaded
over HTTP similar to HTML document and run as a client-side application
(Fig.1). In this way, it does not require client-side installation or configuration
steps combining the advantages of both the client-side application and web-based
application. The first time download is cached on the client machine for subse-
quent invocations and can be configured to only download again when there is
a version change. The technology is comparable to Java Web Start. The advan-
tages of zero-deployment using .NET include the ability to leverage rich client
capabilities such as highly-interactive user interface; a simple user interaction
does not have to take a round-trip for response; access to local filesystem for
data transfer services; and ability to make network connections to any server.

Fig. 1. Zero-deployment architecture

This work is part of a project to develop a Wind Tunnel Grid system aims at
consolidating the workflow process for aerodynamics test engineers and scientists
in test planning, data acquisition, processing, analysis, visualization, data man-
agement and data mining. The raw data from the Wind Tunnel experiments are



376 A. Paventhan and K. Takeda

stored as flat files and its associated metadata are stored in Relational Database
Management System (RDBMS). Authorized users are allowed to access the func-
tionalities exposed as a set of Grid/Web services.

In the following sections we enlist the Wind Tunnel Grid requirements in gen-
eral and .NET managed GridFTP client MyGridFTP in particular and describe
its implementation details.

2 Wind Tunnel Experiments and Grid-Specific
Requirements

The School of Engineering Sciences at the University of Southampton has a
number of small and large wind tunnel facilities that are used for teaching,
research and industrial applications, such as Formula One racing car, aircraft
and high-performance yacht design.

A variety of measurement systems, such as particle image velocimetry (PIV),
pressure transducers, microphones, video, digital photographs for flow visual-
isation and laser doppler (LDA) and hot-wire anemometry (HWA) are used.
These require a disparate array of software, running on many standalone hard-
ware systems. The data acquired using these systems varies in format, volume
and processing requirements. The raw data is in a number of different flat file
formats, typically proprietary binary formats and text files. Processing the data
is performed using commercial software, mostly provided by the data acquisi-
tion hardware vendor, spreadsheets, user-written C and FORTRAN programs
and Matlab scripts. Issues that arise from this arrangement include training,
support, data compatibility, data access and analysis, and backup.

In order to improve the overall workflow efficiency a Wind Tunnel Grid sys-
tem is being developed (Fig.2). This will allow experimental data to be managed,

Fig. 2. Wind Tunnel Grid



MyGridFTP: A Zero-Deployment GridFTP Client 377

stored and analysed in an RDBMS. For a given project users spread across mul-
tiple sites may perform complementary experiments, and use each other’s com-
pute resources for data processing and analysis. In order to provide seamless
user access to the system, easy to use, lightweight client software is a major
requirement. Typical users of the system include experienced aerodynamics en-
gineers and scientists, undergraduate and postgraduate students, and visiting
staff. Extensibility, so that additional data acquisition systems and analysis al-
gorithms/software can be integrated into the system, is also required.

As a first step, the system should provide Globus GridFTP service to users
for their data management. Data generated through wind tunnel experiments
can be managed via the Wind Tunnel Grid portal from any .NET-enabled laptop
or desktop on the network, without any client-side installations.

3 MyGridFTP Requirements

The major requirement of MyGridFTP is to provide GridFTP file transfer fea-
tures including X.509 certificate based GSSAPI authentication. User should be
able to invoke MyGridFTP from the Wind Tunnel Grid portal. This gives users
the flexibility of transferring data files from any network location using their lap-
top or any desktop without having to install any software. MyGridFTP must also
provide APIs for the development of custom clients supporting zero-deployment.
Users should have options to configure GridFTP features - parallelism, striping,
TCP Buffer size etc. From the project specific metadata available as part of the
Wind Tunnel Grid system MyGridFTP can provide the user with an application
specific automatic upload option. It means that the user does not have to select
individual files for transfer, rather they simply need to select the folder and files
are selected for transfer automatically. The graphical user interface must allow
remote directory browsing of user’s project space.

4 MyGridFTP Implementation

MyGridFTP is implemented using the Microsoft .NET runtime environment,
as it enables application deployment from a Web location and rich client capa-
bilites. It consists of GridFTP client APIs, a security module and graphical user
interfaces. GridFTP client APIs include calls supporting features that are part
of GridFTP extensions [4]. The security module uses SSPI and CryptoAPI1, re-
spectively to mutually authenticate with the GridFTP server and generate proxy
certificates. MyGridFTP is hosted as part of the data transfer services in Wind
Tunnel Grid Portal. The Wind Tunnel Grid Portal allows users to log into the
system, create projects, sub-projects and test-cases, and upload raw data files
from experiments. When the user clicks on the MyGridFTP link the .NET ex-
ecutable is automatically downloaded and run on the local machine supporting

1 Microsoft Cryptographic Service Provider functions.



378 A. Paventhan and K. Takeda

GSSAPI authentication, Globus Proxies and GridFTP data transfer features.
The following sections elaborate the implementation with technical details.

4.1 Security

Grid security is crucial for authentication, authorization and delegation. The
Generic Security Services Application Programming Interface (GSSAPI) [5] de-
fines a portable API for client-server authentication. At the server side, Grid
Security Infrastructure (GSI) is implemented using GSSAPI and Grid forum
recommended extensions [6]. The GSI Message specification [7] defines three
types of GSI messages exchanged between client and server as shown in Table 1.
During Context-establishment, the MyGridFTP client uses SSPI to exchange
SSLv3 handshake messages for mutual authentication with the GridFTP server.
The client can delegate its credentials to server by sending a delegation flag. The
server responds by sending a PKCS10 certificate request containing a valid pub-
lic key and proxy certificate extension. A new proxy certificate with full/limited
proxy credential is created, DER encoded and signed using CryptoAPI based on
the Proxy Certificate Profile [8]. The Windows environment provides each user
a personal ”MY” store to manage user’s X.509 certificates.

4.2 Runtime Environment

The .NET Framework consists of Common Language Runtime (CLR) and Frame-
work Class Library (FCL). The CLR operates on assemblies which is a logical
grouping of one or more managed modules or resource files. The assembly is de-
fined as the smallest unit of reuse, versioning and security. Assemblies can consist
of types implemented in different programming languages. The CLR is discussed
and compared with the Java Virtual Machine (JVM) for multi-language support
in [9]. The .NET development environment compiles high-level language code
into Intermediate Language (IL). The CLR’s JIT (just-in-time) compiler con-
verts IL into CPU instructions at runtime. More details on architecture of .NET
platform, about managed and unmanaged code can be found in [10].

MyGridFTP consists of three assemblies: the security module written in
C++ for GSSAPI authentication and delegation of user credentials; GridFTP

Table 1. MyGridFTP Mutual authentication, Delegation and Message security

GSI Message Phase MyGridFTP Client SSLv3 Message Type GridFTP Server

Context Establishment AcquireCredentialHandle gss acquire cred
InitializeSecurityContext ⇔Client-Server Hello gss accept sec context
called until ⇐ Server Certificate called until
’Finished’ ⇐ Certificate Request ’Finished’
(implying successful ⇒ Client Certificate (implying successful
authentication) ⇒ Client Key Exchange authentication)

⇒ Certificate Verify
⇔ ChangeCipherSpec
⇔ Finished

Delegation ⇒ Delegation Flag ⇒ ApplicationData gss accept delegation
⇐ PKCS10 certificate request ⇐ ApplicationData
⇒ Proxy Certificate Chain ⇒ ApplicationData

Application-specific EncryptMessage ⇒ ApplicationData gss unwrap
DecryptMessage ⇐ ApplicationData gss wrap

⇔ Both client and server exchange, ⇐ Server to client message, ⇒ Client to server message



MyGridFTP: A Zero-Deployment GridFTP Client 379

client classes written in C#; and graphical user interfaces written C#. The se-
curity assembly uses interoperability services available in the .NET framework
to invoke services available as part of SSPI and CryptoAPI. SSPI (Secur32.dll)
and CryptoAPI (Crypt32.dll) are currently available as unmanaged implemen-
tations in Windows, but it is envisaged that these will be available as fully
managed implementations in due course. Interoperability services available in
the System.Runtime.InteropServices namespace in FCL expose mechanisms for man-
aged code to call out to unmanaged functions contained in Dynamic Link Li-
braries (DLL). The user requires to make either the MyGridFTP assembly or
the MyGridFTP download site as trusted by using .NET Framework configura-
tion wizard, so that MyGridFTP client will have read/write access to the local
file system.

4.3 Web Server Description

The Wind Tunnel Grid Portal consists of set of Active Server Pages (ASP.NET)
web forms (HTML pages) and associated processing logic known as code-behind
files written in C#. It is hosted using Internet Information Services (IIS) under
Microsoft Windows Server 2003. The code-behind files instantiate the data access
layer classes for accessing project metadata stored in the RDBMS (SQL server
2000). Some of the Wind Tunnel Grid metadata tables include UserAccounts,
Projects and TestCases.

The application specific Testcases metadata vary depending on the Wind
Tunnel experiment. The Testcases ASP.NET web page has the link for My-
GridFTP, as shown in Fig.3. When the user clicks on the link the MyGridFTP
executable is downloaded and runs on the client machine for GridFTP file trans-
fer. Since the number and names of files to be transferred can be determined
based on the Testcases metadata available, users can opt for an automatic data
transfer option. In auto mode the files are transferred automatically; based on
the direction of data transfer the user would select an upload folder or down-
load folder. The user experience is seamless, in that they are not aware that a
separate rich client application has been downloaded, installed and run.

4.4 GridFTP Server Configurations

The GridFTP server component part of Globus Toolkit 2.4 is configured on a
Linux platform. It runs as an inetd network service on port 2811. Since the
UserAccounts metadata table holds the home directory information, the system
administrator has the flexibility of mapping multiple Wind Tunnel Grid users to
the same unix login based on projects or user roles. The /etc/grid-security/grid-
mapfile below shows a sample authorization entries.

”O=Grid/OU=GlobusTest/OU=simpleCA-cedc10.eng.soton.ac.uk/OU=eng.soton.ac.uk/CN=Paventhan” wtg

”O=Grid/OU=GlobusTest/OU=simpleCA-cedc10.eng.soton.ac.uk/OU=eng.soton.ac.uk/CN=Kenji Takeda” wtg

”O=Grid/OU=GlobusTest/OU=simpleCA-cedc10.eng.soton.ac.uk/OU=eng.soton.ac.uk/CN=C Williams” wtgadmin

In this example the first two users are authorized to login as ’wtg’ (Wind
Tunnel Grid User) and the last as ’wtgadmin’ (Wind Tunnel Grid Administra-



380 A. Paventhan and K. Takeda

Fig. 3. Webpage hosting MyGridFTP

tor). UserAccounts table holds the actual home directory metadata, which could
be, for example, a subdirectory in /home/wtg for the first two users - this gives
them different project space. MyGridFTP makes an XML Web service request
immediately after authentication and sets the home directory metadata as the
FTP root directory during file transfer.

4.5 User Interfaces and Features

Fig.4. shows the user interface when invoked from the MyGridFTP(Auto) http
link in Fig.3. Once downloaded MyGridFTP reads the user certificate store, au-
thenticates with the GridFTP server, delegates user credential and performs an
auto upload from selected folder. The auto upload feature is based on Testcases
metadata (see section 4.3). In case of the manual option, the user needs to select
individual files for transfer.

MyGridFTP can be configured for parallelism in extended block mode dur-
ing Upload/Download. At the API level the MyGridFTP class (Table 2) sup-
ports GridFTP protocol for extended retrieve (ERET), extended store (ESTO)
and striped data transfers (SPAS or SPOR). The ExtendedStore and Extende-
dRetrieve allow partial copy (data reduction) of the file to be transferred. Partial

Table 2. MyGridFTP Class and its usage

Class: MyGridFTP Usage
Functions:

Authenticate(x509Cert.ThumbPrint) // read user’s personal certificate store here
ParallelUpload(localFile, remoteFile, nDataPaths) mygftp = new MyGridFTP(ipaddress, port);
ParallelDownload(remoteFile, localFile, nDataPaths) mygftp.Delegation = true;
ExtendedStore(localFile, remoteFile, offset, length) mygrftp.DelegationType = LimitedProxy;
ExtendedRetrieve(remoteFile, localFile, offset, length) mygftp.Authenticate(userX509Cert.ThumbPrint);
Mode(modeString) mygftp.Mode(MyGridFTP.ExtendedMode);
Type(typeString) mygftp.ParallelUpload(localFile, remoteFile, 2)
Upload(localFile, remoteFile)
Download(remoteFile, localFile)
List(listParams)
...
and other basic FTP calls



MyGridFTP: A Zero-Deployment GridFTP Client 381

Fig. 4. MyGridFTP graphical user interface

data transfer will be more useful when we implement processing and visualiza-
tion components of the Wind Tunnel Grid portal. Similarly striping and third
party transfers are programmatically possible using the MyGridFTP class.

4.6 Performance

MyGridFTP download and upload performance are compared with Java CoG
GridFTP client for various file sizes as shown in Fig.5. The performance test was
measured within two separate programs written in C# and Java, respectively,
using MyGridFTP APIs and Java CoG APIs. The GridFTP clients were run
on a Intel Pentium-4 2.2 GHz Desktop running Windows XP and GridFTP
server was configured on a Dual Intel Pentium-III 450 MHz, Linux system. The
client and server are connected over a 100 Mbps Ethernet LAN. The time taken
for Grid server authentication and authorization was measured separately over
number of runs to compare Grid security implementations of MyGridFTP and

Fig. 5. MyGridFTP Performance

 0

 20

 40

 60

 80

 100

1MB 16MB 32MB 64MB 128MB 256MB 512MB 1GB

T
ra

ns
fe

r 
ra

te
 in

 M
bp

s

File size

MyGridFTP(nstream=1)
MyGridFTP(nstream=2)

JavaCoG(nstream=1)
JavaCoG(nstream=2)

(a) Download Performance

 0

 20

 40

 60

 80

 100

1MB 16MB 32MB 64MB 128MB 256MB 512MB 1GB

T
ra

ns
fe

r 
ra

te
 in

 M
bp

s

File size

MyGridFTP(nstream=1)
MyGridFTP(nstream=2)

JavaCoG(nstream=1)
JavaCoG(nstream=2)

(b) Upload Performance



382 A. Paventhan and K. Takeda

Java CoG as shown in Table 3. The X.509 user certificate for this experiment
is of 1024 bit key length. The lesser authentication time of MyGridFTP could
be attributed to its use of native runtime and security infrastructure. Each file
was transferred between client and server a number of times and minimum,
average and maximum bandwidths were recorded. As can be seen from the plot,
large file sizes have very less bandwidth variability between different runs. Also,
parallel streams does not improve the performance for smaller files as the test
were run in a LAN environment. Both Java CoG and MyGridFTP measures
a maximum download performance of 91 Mbps and upload performance of 89
Mbps for 1GB file size. As a comparison, iperf [11] bandwidth measurement tool
gives 92.5 Mbps for 1 GB file input. By default, Windows XP operating system
sets the TCP send and receive buffer size to 8K. This value is limiting, especially,
for file transfers over wide area networks (WANs). The TCP buffer size could
be increased in MyGridFTP programmatically to suit to high bandwidth-delay
product subject to Operating Systems upper limits.

Table 3. GSSAPI Authentication

Authentication Time Minimum Maximum Average

JavaCoG 1891ms 2563ms 2122ms
MyGridFTP 734ms 1156ms 848ms

5 Discussion

As the .NET Common Language Infrastructure (CLI) has been ratified as an
ECMA standard (ISO/IEC 23271 ) there is interest in implementations on non-
Windows platforms. For example, the Mono project [12] is an open source imple-
mentation of the .NET framework for use on Linux, Unix and Windows. Mono
enables .NET managed code to run on multiple platforms similar to Java. The
Mono.Security.Protocol.Tls namespace part of mono .NET project implements
a 100% managed Transport Layer Security (TLSv1.0) and SSLv3. Incorporat-
ing GSSAPI authentication using this namespace will make MyGridFTP (and
other clients requiring X.509 certificate based authentication) run on multiple
platforms. Hence, the approach to Grid client deployment by means of hosting
and executing on multiple platforms using the .NET framework will become
realizable. Also, the Microsoft .NET Compact Framework targeting mobile de-
vices will enhance the Grid application reach to Pocket PCs, PDAs and Smart
Phones.

The Globus Reliable File Transfer (RFT) service could be hosted on Wind
tunnel data acquisition system, data management server and compute cluster.
This would allow client initiated asynchronous data transfer and notifications. If
user is interested in uploading or downloading the data to their local system at
any stage of the workflow, client/server style interactive data transfer is required.

The Wind Tunnel Grid portal could selectively implement XML Web services-
based approach and GSI-security based approach for services such as GridFTP



MyGridFTP: A Zero-Deployment GridFTP Client 383

for maximum compatability with other Grid resources. As future work, the My-
GridFTP API can be extended to include GridFTP protocol improvements [13],
resource management and information management making it a full-blown Globus
client kit based on .NET.

6 Conclusions

A zero-deployment GridFTP client using Windows native runtime (.NET) and
Security infrastructure (SSPI and CryptoAPI) is described. MyGridFTP launches
from a web location and runs on the client machine without any software pre-
requisite, it can access the local file system and allows server-to-server communi-
cations via proxy certificates. We believe that this is one of the first Grid client
implementations to use the Windows native security infrastructure (SSPI) to
interoperate with the Grid Security Infrastructure (GSSAPI) in Globus, and as
such it provides the basis for a language-independent .NET-based Commodity
Grid (CoG) Kit.

References

1. Foster I, Kesselman C (eds.):The Grid: Blueprint for a Future Computing Infras-
tructure, Morgan-Kaufmann (1999)

2. Gregor von Laszewski et.al: A Java commodity grid kit, Concurrency and Compu-
tation: Practice and Experience, vol. 13 (2001) 643-662

3. Duncan Mackenzie:Introducing Client Application Deployment with ClickOnce,
Microsoft Developer Network (2003)

4. W. Allock (ed.):GridFTP: Protocol Extensions to FTP for the Grid, Global Grid
Forum Recommended Document (2003)

5. Linn J.:Generic Security Service Application Program Interface, Version 2, Update
1, RFC 2743, (2000)

6. Meder S., et al:GSS-API Extensions, Global Grid Forum Document (2002)
7. Welch Von (ed.):Grid Security Infrastructure Message Specification (2004)
8. Tuecke S., et.al:Internet X.509 Public Key Infrastructure (PKI) Proxy Certificate

Profile, IETF (2004) http://www.ietf.org/rfc/rfc3820.txt

9. Erik Meijer:Technical Overview of the Common Language Runtime, Microsoft Re-
search, Technical Report (2001)

10. Jeffrey Richter:Applied Microsoft .NET Programming, Microsoft Press (2002)
11. http://dast.nlanr.net/Projects/Iperf/
12. http://www.go-mono.com
13. I.Mandrichenko (ed.):GridFTP v2 Protocol Description, Global Grid Forum Rec-

ommended Document (2004)


	Introduction
	Wind Tunnel Experiments and Grid-Specific Requirements
	MyGridFTP Requirements
	MyGridFTP Implementation
	Security
	Runtime Environment
	Web Server Description 
	GridFTP Server Configurations
	User Interfaces and Features
	Performance

	Discussion
	Conclusions



