
A Service Oriented Architecture for Decision
Making in Engineering Design

Alex Shenfield and Peter J. Fleming

Department of Automatic Control and Systems Engineering,
University of Sheffield,

Mappin Street, Sheffield, S1 3JD, United Kingdom
A.Shenfield@sheffield.ac.uk

Abstract. Decision making in engineering design can be effectively ad-
dressed by using genetic algorithms to solve multi-objective problems.
These multi-objective genetic algorithms (MOGAs) are well suited to
implementation in a Service Oriented Architecture. Often the evaluation
process of the MOGA is compute-intensive due to the use of a com-
plex computer model to represent the real-world system. The emerging
paradigm of Grid Computing offers a potential solution to the compute-
intensive nature of this objective function evaluation, by allowing access
to large amounts of compute resources in a distributed manner. This pa-
per presents a grid-enabled framework for multi-objective optimisation
using genetic algorithms (MOGA-G) to aid decision making in engineer-
ing design.

1 Introduction

Soft Computing techniques such as Neural Networks, Fuzzy Logic, and Evo-
lutionary Computation are used to solve many complex real-world engineering
problems. These techniques provide the engineer with a new set of tools that
often out-perform conventional methods in areas where the problem domain is
noisy or ill-defined. However, in the cases of Neural Networks and Evolutionary
Computation especially, these tools can be computationally intensive.

Grid Computing offers a solution to the computationally intensive nature of
these techniques. The Grid Computing paradigm is an emerging field of computer
science that aims to offer “a seamless, integrated computational and collabora-
tive environment” [1]. Ian Foster defines a computational grid as “a hardware
and software infrastructure that provides dependable, consistent, pervasive, and
inexpensive access to high-end computational capabilities” [2]. Grid Computing
is differentiated from conventional distributed computing by its emphasis on co-
ordinated resource sharing and problem solving in dynamic, multi-institutional
virtual organisations [3]. These resources include software packages, compute
resources, sensor arrays, data and many others.

The purpose of this paper is to introduce a grid enabled framework for multi-
objective optimisation using genetic algorithms (MOGA-G). This framework will

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 334–343, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Service Oriented Architecture for Decision Making in Engineering Design 335

be presented in the context of a Service Oriented Architecture approach. This
approach ties in with that taken by the Globus Project [4] to providing access
to grid resources via Grid Services. Section 2 will introduce Genetic Algorithms
and Multi-Objective Optimisation. Section 3 will briefly introduce the core grid
concepts used in the implementation of our framework. Section 4 will outline
other related work. Section 5 will provide details of the implementation of our
framework, and Section 6 will draw some conclusions and present some ideas for
further work.

2 Genetic Algorithms and Multi-objective Optimisation

2.1 Genetic Algorithms

Genetic Algorithms (GAs) are an optimisation technique utilising some of the
mechanisms of natural selection [5]. GAs are an iterative, population based
method of optimisation that are capable of both exploring the solution space
of the problem and exploiting previous generations of solutions. Exploitation of
the previous generation of solutions is performed by a selection operator. This
operator gives preference to those solutions which have high fitness when creat-
ing the next generation of solutions to be evaluated. Exploration of the solution
space is performed by a mutation operator and a recombination operator and
helps to ensure the robustness of the algorithm by preventing the algorithm from
getting stuck in local optima.

Genetic Algorithms evaluate candidate solutions based on pay-off informa-
tion from the objective function, rather than derivative information or auxiliary
knowledge. This ensures that GAs are applicable to many different problem
domains, including those where conventional optimisation techniques (such as
hill-climbing) may fail.

2.2 Multi-objective Optimisation

Many real-world engineering design problems involve the satisfaction of multiple
conflicting objectives. In this case it is unlikely that a single ideal solution will be
possible. Instead, the solution of a multi-objective optimisation problem will lead
to a family of Pareto optimal points, where any improvement in one objective
will result in the degradation of one or more of the other objectives.

Genetic Algorithms are particularly well suited to this kind of multi-objective
optimisation, because they search a population of candidate solutions. This en-
ables the GA to find multiple solutions which form the Pareto optimal set (see
Fig. 1). GAs are often able to find superior solutions to real-world problems than
conventional optimisation techniques (i.e. constraint satisfaction). This is due to
the difficulty that conventional optimisation techniques have when searching in
the noisy or discontinuous solution spaces that real-world problems often have.

336 A. Shenfield and P.J. Fleming

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.5 1 1.5 2 2.5 3 3.5 4

T
im

e

Cost

Pareto Front

Fig. 1. The Pareto Optimal Solution Set

2.3 Applications of Genetic Algorithms

Genetic Algorithms have been used to solve problems across many different
disciplines. GAs have been used in such diverse fields as Economics and Social
Theory [6], Robotics [7] and Art [8]. For many non-trivial real-world applications
the evaluation of the objective function is performed by computer simulation of
the system. For example, in the optimisation of controller parameters for gas
turbine aero engines [9], a computer model of the engine is used to calculate the
values of the objective functions for a given controller design.

The use of computer simulations to evaluate the objective function leads to
some new issues. To ensure that the results gained from the genetic algorithm are
meaningful, the simulation must be complex enough to capture all the relevant
dynamics of the true system. However, assuming that this level of complexity
is obtainable, the simulation may be very computationally intensive. As genetic
algorithms are population based methods, the simulation must be run many
times. In a typical genetic algorithm this could involve running the simulation
10,000 times.

2.4 Parallel Genetic Algorithms

The computationally intensive nature of the evaluation process has motivated
the development of parallel genetic algorithms. Early proposals for the implemen-
tation of parallel GAs considered two forms of parallelisation which still apply
today: multiple communicating populations, and single-population master-slave
implementations [10].

A Service Oriented Architecture for Decision Making in Engineering Design 337

The decision between which of these two types of parallelisation to implement
must consider several factors, such as ease of implementation and use, and the
performance gained by parallelisation. Single-population parallel GAs are often
the easier to implement and use, as experience gained with sequential GAs can
be easily applied to these. In contrast, the implementation and use of multiple
communicating populations based parallel GAs involves choosing appropriate
values for additional parameters such as size and number of populations, fre-
quency of migration, and the number of individuals involved in migration. This
increases the complexity of the parallel GA as each of these parameters affects
the efficiency of the algorithm and the quality of the overall solution.

3 Grid Technologies

The concept of Grid Computing is not new. As far back as 1969 Len Kleinrock
suggested:

“We will probably see the spread of ‘computer utilities’, which, like
present electric and telephone utilities, will serve individual homes and
offices across the country.” [11]

However, it is only recently that technologies such as the Globus Toolkit
have emerged to enable this concept to be achieved. The Globus Toolkit is an
open-source, community-based set of software tools to enable the aggregation of
compute, data, and other resources to form computational grids. Since version 3
of the Globus Toolkit it has been based on the Open Grid Services Architecture
(OGSA) introduced by the Globus Project. OGSA builds on current Web Service
concepts and technologies to support the creation, maintenance, and application
of ensembles of services maintained by virtual organisations [12].

3.1 Web Services

A Web Service is defined by the W3C as “a software system designed to support
interoperable machine-to-machine interaction over a network. It has an interface
described in a machine-processable format (specifically WSDL). Other systems
interact with the Web service in a manner prescribed by its description using
SOAP messages” [13]. Web Services are accessible through standards-based in-
ternet protocols such as HTTP and are enabled by three core technologies [14]:

– Simple Object Access Protocol (SOAP)
– Web Services Description Language (WSDL)
– Universal Description, Discovery, and Integration (UDDI)

These technologies work together in an application as shown in Fig. 2. The
Web Service client queries a UDDI registry for the desired service. This can be
done by service name, service category, or other identifier. Once this service has

338 A. Shenfield and P.J. Fleming

Web Service
Client

Application Service

WSDL
document

Web Service
Logic

HTTP request

HTTP response

SOAP processor

UDDI registry

Fig. 2. Interaction between Web Service Technologies

been located the client queries the WSDL document to find out how to interact
with the service. The communication between client and service is then carried
out by sending and receiving SOAP messages that conform to the XML schema
found in the WSDL document.

3.2 Open Grid Services Architecture

The Open Grid Services Architecture (OGSA) is the basis for the Globus Toolkit
version 3. OGSA represents computational resources, data resources, programs,
networks and databases as services. These services utilise the Web Services tech-
nologies mentioned in Section 3.1. There are three main advantages to repre-
senting these resources as services:

1. It aids interoperability. A service-oriented view addresses the need for stan-
dard service definition mechanisms, local/remote transparency, adaptation
to local OS services, and uniform semantics [12].

2. It simplifies virtualisation. Virtualisation allows for consistent resource ac-
cess across multiple heterogeneous platforms by using a common interface
to hide multiple implementations [12].

3. It enables incremental implementation of grid functionality. The provision
of grid functionality via services means that the application developer is free
to pick and choose the services that provide the desired behaviour to their
application.

4 Related Work

In recent years the interest in using parallel genetic algorithms to solve single-
objective optimisation problems has increased considerably [15]. However, there
has been little research performed in applying parallel GAs to solve multi-
objective optimisation problems. In [16] and [17] there is some discussion con-
cerning multi-objective evolutionary optimisation techniques in distributed sys-
tems, but these do not implement parallel GAs in a Grid Computing
environment.

A Service Oriented Architecture for Decision Making in Engineering Design 339

A middleware system for evolutionary computation in a Grid Computing en-
vironment is proposed in [18], and then used to construct a parallel simulated
annealing algorithm to solve a single objective problem. This system requires the
application developer to implement a set of interfaces (comprising the middle-
ware) and write the code for the desired evolutionary operations. Another paper
that utilizes the Grid Computing concept for single-objective optimisation us-
ing genetic algorithms is [19]. This paper develops a ‘Black Box Optimisation
Framework’ (BBOF) in C++ to optimise a computer simulation of a forest fire
propagation problem from environmental science. This BBOF is executed in a
Condor pool to harness the spare CPU cycles of a cluster of computers.

Our MOGA-G system differs from those proposed in [18] and [19] because it
provides a concrete implementation of a multi-objective genetic algorithm. Like
[19] we have utilised the power of computational grids to perform distributed
fitness evaluation of our objectives, but we have implemented our framework in
a Service Oriented Architecture using the Globus Toolkit to provide access to
the resources of the grid (see section 5.2).

The power of computational grids is used to execute a distributed enumera-
tive search in [20]. This distributed enumerative search is then used to generate
the Pareto-optimal front for several benchmark test functions that are com-
monly used in the evaluation of the performance of multi-objective optimisation
algorithms. A brief comparison with heuristic techniques is then performed.

This MOGA-G system is more computationally efficient than the distributed
enumerative search described in [20]. This is because our algorithm converges
on the Pareto optimal front by making intelligent choices about which points to
search in the next generation, whereas the enumerative search algorithm has to
evaluate every point in the search space. This approach would be impossible for
a real-world engineering design problem due to the potential size of the search
space.

5 Implementation

5.1 Parallelisation of the Multi-objective Genetic Algorithm

In section 2.4 we found that there are two types of possible parallelisation strate-
gies for genetic algorithms: multiple communicating populations, and single-
population master-slave implementations. In the implementation of our grid-
enabled framework for multi-objective optimisation using genetic algorithms
(MOGA-G) we have decided to parallelise our multi-objective genetic algorithm
using the single-population master-slave implementation. This is also known
as distributed fitness evaluation or global parallelisation. This model uses the
master-worker paradigm (see Fig. 3) of parallel programming.

A master-slave parallel genetic algorithm uses a single population maintained
globally by the master node and parallelises the evaluation of the objective
function by distributing the population to the worker processes. These are then
assigned to the available processors for execution (in the ideal case, one individual

340 A. Shenfield and P.J. Fleming

Master Node

Worker 1 Worker 2 Worker n

Fig. 3. The Master-Worker Programming Paradigm

per processor). The genetic operators - selection, recombination and mutation -
are then applied globally by the master node to form the next generation.

This model is particularly well suited for the parallelisation of genetic algo-
rithms as the evaluation of the objective function requires only the knowledge
of the candidate solution to evaluate, and therefore there is no need for inter-
communication between worker processes. Communication only occurs when the
individuals are sent to the worker processes for evaluation and when the results
of those evaluations are returned to the master node.

5.2 Service-Oriented Architecture and the Globus Toolkit
Version 3

We have chosen to implement our grid-enabled framework for multi-objective
optimisation using genetic algorithms in a Service-Oriented Architecture (SOA)
using the Globus Toolkit version 3 to provide access to the resources of the
grid. We have implemented the MOGA-G framework using the Java program-
ming language, primarily due to the portability of the code. This means that
the components of the MOGA-G framework can easily be run across various
heterogeneous platforms.

A service-oriented architecture is essentially a collection of services that com-
municate with each other in order to perform a complex task. SOA is an ap-
proach to building loosely-coupled, distributed systems that combine services to
provide functionality to an application. IBM sees SOA as key to interoperability
and flexibility requirements for its vision of an on demand business [21].

The SOA approach to grid computing is well suited to the kind of master-
worker parallelism used in the MOGA-G framework. This SOA view of grid
computing has the client acting as the master node, and the service acting as the
worker. In the implementation of the MOGA-G framework (see Fig. 4) there are
two different services. One service exposes the operations of the multi-objective
genetic algorithm to the client, and the other provides operations for running
evaluations of the objective function on the computational grid.

This SOA approach also provides flexibility both in how the MOGA-G frame-
work is used and in the maintenance of the framework. The provision of the
components of the MOGA-G framework as services means that it is simple to

A Service Oriented Architecture for Decision Making in Engineering Design 341

E
valuation

Factory
S

ervice

Evaluation
Instance 1

Evaluation
Instance 2

Evaluation
Instance n

GA Client

Individual 1

Individual 2

Individual n

Eval Result 1

Eval Result 2

Eval Result n

M
O

G
A

Se

rv
ic

e

Generation to
be evaluated

Results of
evaluation

E
valuation

Factory
S

ervice

E
valuation

Factory
S

ervice

Evaluation
Instance 1

Evaluation
Instance 2

Evaluation
Instance n

GA Client

Individual 1

Individual 2

Individual n

Eval Result 1

Eval Result 2

Eval Result n

M
O

G
A

Se

rv
ic

e
M

O
G

A

Se
rv

ic
e

Generation to
be evaluated

Results of
evaluation

Create Evaluation
Service Instance

Fig. 4. The Implementation of the MOGA-G Framework

add new functionality to the system, and to improve upon existing function-
ality, by adding new services. In the context of the MOGA-G framework, this
functionality could be anything from the implementation of the genetic algo-
rithm operators - selection, recombination and mutation - to the distribution
and management of the objective function evaluation.

Providing the MOGA-G framework as services also means that the function-
ality can be accessed via the HTTP protocol. This means that the services can
be easily integrated into an Internet portal so as to be accessible by any device
with a capable web browser (such as a PDA).

This SOA approach is used in providing access to grid resources via the
Globus Toolkit (see section 3). The Globus Toolkit has become a fundamental
enabling technology for grid computation, letting people carry out computations
across geographically distributed resources in a secure way. The success of the
Globus Project has meant that the project has become one of the driving forces
in developing standards for grid computing.

6 Conclusions and Further Work

This paper has described a grid-enabled framework for multi-objective optimisa-
tion using genetic algorithms (MOGA-G). This MOGA-G framework has been
designed in a Service-Oriented Architecture (SOA) so as to take advantage of the
flexibility that this architecture offers. In the MOGA-G framework a concrete
implementation of a multi-objective genetic algorithm is provided. However, the
SOA approach that we have taken allows our implementation to be easily ex-
tended to provide additional features, such as those required to construct hybrid
genetic algorithms. Extending the MOGA-G framework to support additional
features is an area for further investigation.

This framework is primarily suited to computationally expensive objective
function evaluations, such as those performed by computer simulation, due to its
distributed nature. For computationally trivial objective functions the commu-
nication overheads involved in executing the evaluations in a distributed manner

342 A. Shenfield and P.J. Fleming

result in a decrease in performance compared to a sequential GA. This is due to
the way in which job submission and management is performed. Whilst further
work will be conducted into determining the scale of problems for which this
framework is most effective, it is expected that further research and develop-
ment of grid-middleware, job submission services, and job management services
will provide a reduction in these communication overheads. This will allow our
framework to provide increased performance for less computationally intensive
problems. However, this framework is not intended to replace sequential GAs in
cases where the performance of the sequential GA is satisfactory.

References

1. Baker, M., Buyya, R., and Laforenza, D., Grids and Grid technologies for wide-area
distributed computing, Software: Practice and Experience, 32(15), pp. 1437–1466,
2002.

2. Foster, I., and Kesselman, C. (eds.), The Grid: Blueprint for a New Computing
Infrastructure, Morgan Kaufmann, 1999.

3. Foster, I., Kesselman, C., and Tuecke, S., The Anatomy of the Grid: Enabling
Scalable Virtual Organizations, Int. J. Supercomputer Applications, 15(3), 2001.

4. The Globus Project; www.globus.org
5. Goldberg, D. E., Genetic Algorithms in Search, Optimization, and Machine Learn-

ing, Addison-Wesley, 1999.
6. Axelrod, R., The evolution of strategies in the Iterated Prisoners Dilemma, in

Genetic Algorithms and Simulated Annealing (L. Davies ed.), Morgan Kaufmann,
pp. 32–41, 1987.

7. Pratihar, D., Deb, K., and Ghosh, A., A genetic-fuzzy approach for mobile robot
navigation among moving obstacles, Int. J. Approximate Reasoning, 20(2), pp.
145–172, 1999.

8. Sims, K., Artificial Evolution for Computer Graphics, Computer Graphics (Proc.
SIGGRAPH ‘91), 25(4), pp. 319–328, 1991.

9. Fleming, P. J., Purshouse, R. C., Chipperfield, A. J., Griffin, I. A., and Thomp-
son, H. A., Control Systems Design with Multiple Objectives: An Evolutionary
Computing Approach, Workshop in the 15th IFAC World Congress, Barcalona,
2002.

10. Cantú-Paz, E., and Goldberg, D. E., On the Scalability of Parallel Genetic Algo-
rithms, Evolutionary Computation, 7(4), pp. 429–449, 1999.

11. Kleinroack, L., UCLA Press Release, July 3rd 1969.
12. Foster, I., Kesselman, C., Nick, J. M., and Tuecke, S., The Physiology of the Grid:

An Open Grid Services Architecture for Distributed Systems Integration, Open
Grid Services Infrastructure WG, Global Grid Forum, June 22nd 2002.

13. Web Services Architecture, www.w3c.org/TR/ws-arch, W3C Working Group Note
February 11th 2004.

14. Chappell, D. A., and Jewell, T., Java Web Services, O’Reilly, 2002.
15. Alander, J. T., Indexed Bibliography of Distributed Genetic Algorithms Technical

Report 94-1-PARA, University of Vaasa, 2003.
16. Deb, K., Zope, P., and Jain, A., Distributed Computing of Pareto-Optimal So-

lutions with Evolutionary Algorithms, Proc. EMO 2003, pp. 534–549, Springer-
Verlag, 2003.

A Service Oriented Architecture for Decision Making in Engineering Design 343

17. Van Veldhuizen, D. A., Zydallis, J. B., and Lamont, G. B., Considerations in En-
gineering Parallel Multiobjective Evolutionary Algorithms, IEEE Trans. on Evo-
lutionary Computation, 7(2), pp. 144–173, 2003.

18. Tanimura, Y., Hiroyasu, T., Miki, M., and Aoi, K., The System for Evolutionary
Computing on the Computational Grid, Proc. IASTED 14th Intl. Conf. on Parallel
and Distributed Computing and Systems, pp. 39–44, ACTA Press, 2002.

19. Abdalhaq, B., Cortes, A., Margalef, T., and Luque, E., Evolutionary Optimization
Techniques on Computational Grids, Proc. ICCS 2002, pp. 513–522, Springer-
Verlag, 2002.

20. Luna, F., Nebro, A. J., and Alba, E., A Globus-Based Distributed Enumera-
tive Search Algorithm for Multi-Objective Optimization Technical Report LCC
2004/02, University of Malaga, 2004.

21. Colan, M., Service Oriented Architecture expands the vision of Web Services: part
1, IBM developerWorks paper, 2004.

	Introduction
	Genetic Algorithms and Multi-objective Optimisation
	Genetic Algorithms
	Multi-objective Optimisation
	Applications of Genetic Algorithms
	Parallel Genetic Algorithms

	Grid Technologies
	Web Services
	Open Grid Services Architecture

	Related Work
	Implementation
	Parallelisation of the Multi-objective Genetic Algorithm
	Service-Oriented Architecture and the Globus Toolkit Version 3

	Conclusions and Further Work

