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Abstract. Existing Dispatcher-Worker Peer-to-Peer (P2P) computing
environments are well-suited for multi-parameter applications. However,
they are limited regarding the parallel computing where the generated
tasks need to communicate. In this paper, we investigate that limita-
tion and propose a coordination model for parallel P2P multi-objective
optimization (MOO). The model has been implemented on top of the
XtremWeb middleware. Then, it has been experimented on a combina-
torial optimization application: a parallel branch-and-bound algorithm
applied to the multi-objective (MO) Flow-Shop scheduling problem. The
preliminary results obtained on a network of 120 heterogeneous PCs
demonstrate the efficiency of the proposed approach.

Keywords: P2P Computing, Parallelism and Coordination, Multi-
objective Optimization, Branch-and-Bound, Flow-Shop.

1 Introduction

In many domains such as telecommunications, genomics, transport, and so on,
the tackled optimization problems need more and more computational power.
However, very often the users do not have high-end supercomputers to deal with
these problems. Therefore, they have to scale down the size of the problems to
solve them. In the last decade, Peer-to-Peer (P2P) computing [1] has become a
real alternative to traditional supercomputing environments for the development
of parallel applications that harness massive computational resources.

Nowadays, existing Dispatcher-Worker middlewares such as SETI@HOme [2],
XtremWeb [3] and JNGI/JXTA [4] facilitate the development of parallel appli-
cations on P2P systems. They include a Dispatcher (server) that maintains a list
of work unites and their associated data, and a set of workers (volunteer peers)
that steal these work units according to the cycle stealing model. These envi-
ronments all well-suited for multi-parameter applications that can be naturally
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split into several independent tasks. However, they are not adapted to parallel
distributed applications where communications between peers are needed.

In this paper, we investigate this issue by proposing a data-driven coordina-
tion model which provides communication through a tuple space. A tuple space
is a global associative memory consisting of a bag (or multi-set) of tuples. The
model is dedicated to support parallel multi-objective optimization (MOO) on
top of Dispatcher-Worker systems such as XtremWeb. The proposed model ex-
tends Linda [5] with group and non-blocking coordination operations that are
very useful for P2P multi-objective optimization. The model has been imple-
mented as a software layer on top of XtremWeb. At implementation level, the
coordination is based on Java RMI calls.

The model has been experimented on a combinatorial optimization applica-
tion: a parallel branch-and-bound algorithm applied to the bi-objective Flow-
Shop scheduling problem. The problem consists in scheduling in the same order
a set of jobs on a set of machines, such that the total lateness (tardiness objec-
tive) and the total completion time (makespan) are minimized. The parallelism
consists in exploring in parallel a large irregular tree. The work units distributed
to the workers are sub-trees to be explored. The experimentations have been
conducted on a network of 120 heterogeneous PCs during more than two full
days. The preliminary results demonstrate the efficiency of the proposed model
and its implementation.

The rest of the paper is organized as follows: Section 2 presents a brief
overview on P2P computing and coordination. Section 3 highlights the require-
ments of parallel cooperative MOO and then describes the proposed coordina-
tion model. Thereafter, its implementation on top of the middleware XtremWeb
is discussed. Section 4 presents the experimentation of the model through the
parallel Branch-and-Bound applied to the Bi-objective Flow-Shop Scheduling
problem, and analyzes the preliminary experimental results. Finally, Section 5
draws some concluding remarks and the perspectives of the presented work.

2 P2P Computing and Coordination

Nowadays, there exist several fully distributed P2P systems meaning they do not
include a central server [6]. These systems are often well-suited for the storage
of massive data sets and their retrieval. There are also P2P systems dedicated
to large scale computing [3, 2, 4, 7], but only few of them are fully distributed
[7]. Fully distributed computing P2P are just emerging and are not yet mature
nor stable to be exploited.

More mature software systems such as XtremWeb[3] and SETI@Home[2] are
today those based on a Dispatcher-Worker architecture. In such systems, clients
can submit their jobs to the Dispatcher. A set of volatile workers (peers) request
the jobs from the Dispatcher according to the cycle stealing model. Then, they
execute the jobs and return the results to the Dispatcher to be collected by the
clients. In these middlewares, even a central server (the Dispatcher) is required
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for controlling the peers (workers) they are considered as P2P software environ-
ments. Indeed, an important part of these systems is executed on these peers
with a high autonomy. In addition, a hierarchical design allows them to deal
with a larger number of peers.

One of the major limitations of P2P computing environments is that they are
well-suited for embarrassingly parallel (e.g. multi-parameter) applications with
independent tasks. In this case, no communication is required between the tasks,
and thus peers. The deployment of parallel applications needing cross-peer/task
communications is not straightforward. The programmer has the burden to man-
age and control the complex coordination between the workers. To deal with such
issue existing middlewares must be extended with a software layer which imple-
ments a coordination model. Several interesting coordination models have been
proposed in the literature [8]. In this paper, we focus only on one of the most
popular of them i.e. Linda [5] because our proposed model is inspired from that
model.

In the Linda model, the coordination is performed through generative com-
munications. Processes share a virtual memory space called a tuple-space (set
of tuples). The fundamental data unit, a tuple, is an ordered vector of typed
values. Processes communicate by reading, writing, and consuming these tuples.
A small set of four simple operations allows highly complex communication and
synchronization schemes:

– out(tuple): puts tuple into tuple-space.
– in(pattern): removes a (often the first) tuple matching pattern from tuple-

space.
– rd(pattern): is the same as in(pattern), but does not remove the tuple from

tuple-space.
– eval(expression): puts expression in tuple-space for evaluation. The evalua-

tion result is a tuple left in tuple-space.

Due to the high communication delays in a P2P system, tuple rewriting is
very important as it allows to reduce the number of communications and the
synchronization cost. Indeed, in Linda a rewriting operation is performed as an
“in” or “rd” operation followed by a local modification and an “out” operation.
The operations “in”/“rd” and “out” involve two communications and an heavy
synchronization. Therefore, a rewriting (or update) operation is very useful for
coordination in P2P environments.

3 The Proposed P2P Coordination Model

3.1 Parallel MOO and Coordination

A multi-objective problem (MOP) consists generally in optimizing a vector
of nbobj objective functions F (x) = (f1(x), . . . , fnbobj

(x)), where x is an d-
dimensional decision vector x = (x1, . . . , xd) from some universe called decision
space. The space the objective vector belongs to is called the objective space.
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F can be defined as a cost function from the decision space to the objective
space that evaluates the quality of each solution (x1, . . . , xd) by assigning it an
objective vector (y1, . . . , ynbobj

), called the fitness.
Unlike single-objective optimization problems, a MOP may have a set of

solutions known as the Pareto optimal set rather than an unique optimal solution.
The image of this set in the objective space is denoted as Pareto Front or PF).
Graphically, a solution x is Pareto optimal if there is no other solution x′ such
that the point F (x′) is in the dominance cone of F (x). This dominance cone is
the box defined by F (x), its projections on the axes and the origin (Fig. 1).

Pareto solution
Dominated solution

f
2

f
1

Fig. 1. Example of Pareto solutions

There are two major categories of MOO methods: MO exact methods and
MO meta-heuristics. While the first category allows to find optimal solutions for
MOPs, the second class provides near-optimal solutions in a reasonable time.
Real-world MOPs involve highly constrained design and and high computational
cost. Parallelism is proved to be a powerful way to achieve efficiency and effec-
tiveness. In general, parallel MO exact methods consist in exploring in parallel
a search three. The processes share the best found PF, which is remotely up-
dated each time a process has discovered in its search sub-tree a better PF.
Coordination operations are required to update this shared information.

In parallel models of MO meta-heuristics [9] such as the island model, dif-
ferent processes cooperate by exchanging Pareto optimal solutions in order to
improve the effectiveness. The exchange may be performed either directly by
message passing or through a shared space. In the last case, a coordination
model is required to ensure the cooperation.

3.2 The Coordination Model

Designing a coordination model for parallel MOO requires the specification of
the content of the tuple space, a set of coordination operations and a pattern
matching mechanism. According to the comments of the previous sub-section,
the tuple space may be composed of a set of Pareto optimal solutions and their
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corresponding solutions in the objective space. For the parallel exact MO meth-
ods, all the solutions in the tuple space belong to the same PF i.e. the actual best
found one. For the parallel island model of the MO meta-heuristics, the tuple
space contains a collection of (parts of) Pareto optimal sets deposited by the
islands for migration. The mathematical formulation of the tuple space (Pareto
Space or PS) is the following:

PS =
⋃

PO, with PO = {(x, F (x)), x is Pareto optimal}
In addition to the operations provided in Linda, parallel P2P MOO needs

other operations. These operations can be divided in two categories: group op-
erations and non-blocking operations. Group operations are useful to manage
multiple Pareto optimal solutions. Non-blocking operations are necessary to take
into account the volatile nature of P2P systems. In our model, the coordination
primitives are defined as follows:

– in, rd, out and eval: These operations are the same as those of Linda defined
in Section 2.

– ing(pattern): Withdraws from PS all the solutions matching the specified
pattern.

– rdg(pattern): Reads from PS a copy of all the solutions matching the speci-
fied pattern.

– outg(setOfSolutions): Inserts multiple solutions in PS.
– update(pattern, expression): Updates all the solutions matching the specified

pattern by the solutions resulting from the evaluation of expression.
– inIfExist, rdIfExist, ingIfExist and rdgIfExist: These operations have the

same syntax than respectively in, rd, ing and rdg but they are non-blocking
probe operations.

The update operation allows to locally update the Pareto space, and so to re-
duce the communication and synchronization cost. The pattern matching mech-
anism depends strongly on how the model is implemented, and in particular on
how the tuple space is stored and accessed. For instance, if the tuple space is
stored in a database the mechanism can be the request mechanism used by the
database management system. More details on the pattern matching mechanism
of our model are given in the next Section.

3.3 Implementation on Top of XtremWeb

XtremWeb [3] is a Java P2P project developed at Paris-Sud University. It is
intended to distribute applications over a set of peers, and is dedicated to multi-
parameter applications that have to be computed several times with different
inputs. XtremWeb manages tasks following the Dispatcher-Worker paradigm.
Tasks are scheduled by the Dispatcher to workers only on their specific demand
since they may adaptively appear (connect to the Dispatcher) and disappear
(disconnect from the Dispatcher). The tasks are submitted by either a client or
a worker, and in the latter case, the tasks are dynamically generated for parallel
execution. The final or intermediate results returned by the workers are stored
in a MySQL database. These results can be requested later by either the clients
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or the workers. The database stores also different information related to the
workers and the deployed application tasks.

XtremWeb is well-suited for embarrassingly parallel applications where no
cross-peer communication occurs between workers, and these can only commu-
nicate with the Dispatcher. Yet, many parallel distributed applications partic-
ularly parallel MOO ones need cooperation between workers. In order to free
the user from the burden of managing himself or herself such cooperation we
propose an extension of the middleware with a software layer.

The software layer is an implementation of the proposed model composed of
two parts: a coordination API and its implementation at the worker level and a
coordination request broker (CRB). The Pareto Space is a part of the MySQL
database associated with the Dispatcher. Each tuple or solution of the Pareto
Space is stored as a record in the database. From the worker side the coordi-
nation API is implemented in Java and in C/C++. The C/C++ version allows
the deployment and execution of C/C++ applications with XtremWeb (written
in Java). The coordination library must be included in these programmer appli-
cations. From the Dispatcher side, the coordination API is implemented in Java
as a Pareto Space manager. The CRB is a software broker allowing the workers
to transport their coordination operations to the Dispatcher through RMI calls.

4 Application to Parallel MO Branch-and-Bound

In this Section, we describe the sequential B&B algorithm, then a parallel version
using the proposed coordination model, and finally some experiments performed
on a P2P network through the Flow Shop problem.

4.1 Parallel MO Branch-and-Bound

MO Branch-and-bound algorithms (MO-B&B) solve MOPs by iteratively par-
titioning the solution space into subspaces (each subspace is associated with a
sub-MOP). In this paper, we assume that the MOP to solve is a minimization
MOP. A sequential MO-B&B algorithm consists in iteratively applying five basic
operations over a list of problems: Branching, Resolution, Bounding, Selection
and Elimination.

Successive branching (decomposition) operations create a tree of MOPs rooted
in the original MOP. The value of the best PF found so far is used to prune the
tree and eliminate the MOPs that are likely to lead to worse solutions. At each
step, a MOP is selected either according to the bound values (as in best-first strat-
egy) or not (as in depth-first and breadth-first strategies). The selected MOP may
not be split because it has no solution or because a solution is already be found.
In this case, it is solved, and if its solution can improve the best known PF this
latter is updated. If the MOP can be split than it is decomposed into smaller
sub-MOPs. A sub-MOP is eliminated if its bound value is not better that the
best known PF. Otherwise, it is added to the pool of MOPs to be solved.
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There exist different parallel models in B&B algorithms [10]. We focus here
on the most general approach, in which the B&B tree is built in parallel by per-
forming simultaneously the operations presented above on different sub-MOPs.
According to such approach, the design of parallel B&B algorithms is based on
three major parameters: the execution mode, the work sharing strategy and the
information sharing policy. The execution mode defines what processes do af-
ter completion of a work unit, and may be synchronous or asynchronous. The
processes (do not) wait for each other in a(n) (a)synchronous mode. The work
sharing strategy defines how work units are assigned to processes to efficiently
exploit available parallelism. The information sharing policy indicates how the
best-known solution is published and updated.

In this paper, we propose an asynchronous parallel cooperative Dispatcher-
Worker MO B&B algorithm. Asynchrony is required by the heterogeneity nature
of the P2P target execution architecture. The work sharing strategy follows the
idle cycle or work stealing paradigm. Each worker maintains its local pool of
MOPs to be solved. When the local pool is empty, the worker sends a work
request to the Dispatcher. The information sharing issue is solved as the follow-
ing: the best known PF is published and maintained by the Dispatcher. This
information is requested by the workers, and updated each time a better PF is
locally found.

At each step, the worker tests if there is some MOP to solve in its local work
pool. If the pool is empty it requests work from the Dispatcher. The Dispatcher
replies with a pool of work units and the value of the best-known PF. This
value is stored locally. Otherwise, if there is some work in the local pool, the
worker performs a step of the sequential MO-B&B on its local pool. Thereafter,
it probably requests the Dispatcher to update the best-known PF by merging
this latter with its local version. The operation is performed by the Pareto Space
Manager on the Dispatcher. The new best-known PF is returned to the calling
worker.

4.2 Application to the Flow-Shop MOP

The Flow-Shop MOP is one of the numerous scheduling MOPs [11] that has
received a great attention given its importance in many industrial areas. The
MOP can be formulated as a set of N jobs J1, J2, . . . , JN to be scheduled on
M machines. The machines are critical resources as each machine can not be
simultaneously assigned to two jobs. Each job Ji is composed of M consecutive
tasks ti1, . . . , tiM , where tij represents the jth task of the job Ji requiring the
machine mj . To each task tij is associated a processing time pij , and each job
Ji must be achieved before a due date di.

The MOP being tackled here is the Bi-objective Permutation Flow-Shop
MOP (BPFSP) where jobs must be scheduled in the same order on all the
machines. Therefore, two objectives have to be minimized: (1) Cmax: Makespan
(Total completion time), (2) T : Total tardiness. The task tij being scheduled at
time sij , the two objectives can be formulated as follows:
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f1 = Cmax = Max{siM + piM |i ∈ [1 . . . N ]}
f2 = T =

∑N
i=1 [max(0, siM + piM − di)]

In this paper, we do not focus on how the MO-B&B technique is applied to
BPFSP, the reader is referred to [12] for such details. We are interested in the
parallel P2P design features. In the implementation of the parallel MO-B&B ap-
plied to BPFSP, the best-known PF is updated if a sufficient number of iterations
is already performed. The adopted selection strategy is the depth-first one, the
node with the best bound being chosen at each step. The update coordination
operation is executed on the Dispatcher by the Pareto Space Manager. First, it
consists in performing an union between the two sets: the global best-known PF
(stored in the Pareto Space) and its local version. The new best-known PF is
then selected from this union set by considering all the non-dominated solutions.
The new result is returned to the calling Worker.

After a fixed number of iterations, if a Worker has work in its local pool it
splits it into as many pools as available workers (considering itself). The Worker
saves a pool for its own need, and submits (in a client role) the other pools to
the Dispatcher through the eval coordination operation. The Dispatcher puts
these work units in its task pool to be sent to available workers at their request.

4.3 Experimentation

The application has been deployed on the education network of the Polytech’Lille
engineering school. The experimentation hardware platform is composed of 120
heterogeneous Linux Debian PCs. The BPFSP MOP benchmark is composed of
10 jobs and 20 machines (n = 10 and m = 20). The experimental results are sum-
marized in Table 1. The total execution time is measured for the sequential and
parallel versions. The execution time of the sequential version is normalized as
the whole target architecture is heterogeneous. The machine where the sequen-
tial algorithm is executed is an Intel Pentium 4, 3 GHz, and is considered as a
reference machine for the computation of the normalized factor. The normalized
factor for each peer is obtained by using an application specific benchmark task
that is sent to all workers that join the computational pool. The speed at which
the benchmark task is completed is considered as the normalized factor.

Formally, let tref and ti be the execution time of the benchmark on respec-
tively the reference machine and the machine number i = 1..N of the pool of
worker peers. The normalized factor αi associated with the worker peer i is
computed as follows: αi = ti

tref
. Let αav be the average normalized factor for

all the worker peers. It can be formulated as: αav =
∑ N

i=1 αi

N . The sequential
time reported in Table 1 is the time obtained on an average peer, obtained by
multiplying the sequential time obtained on the reference peer by the average
factor.

The results show that the execution time is divided by over 29 on 120 ma-
chines. One has to note that the experiments have been performed during a
working day, thus the experimentation environment is non-dedicated. On the
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Table 1. Parallel MO-B&B vs. Sequential MO-B&B

Sequential B&B Parallel B&B

Total number of tasks 1 657

Total execution time 54h51 1h53
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Fig. 2. Task generation over time

5 Conclusion and Future Work

In this paper, we have presented a coordination model for parallel cooperative
MOO applications in a P2P environment. The model allows to overcome a ma-
jor limitation of existing Dispatcher-Worker middlewares: they do not allow a
straightforward communication between tasks executed by different peers. The
model has been implemented on top of XtremWeb, a middleware dedicated to
the execution of independent multi-parameter applications. The result is that the
users can develop parallel cooperative applications in a transparent way. They
do not need to manually manage and control the cooperation. Furthermore, the
model is generic and can be integrated into another P2P computing middleware
and applied in the context of another application domain.

The model has been experimented and validated on an MOO application:
a parallel B&B algorithm applied to the Bi-criterion Permutation Flow-Shop
Scheduling problem. The experimental results show that the time wasted by
the PCs of the experimentation hardware platform is well exploited as the total
execution time of the application is divided by a factor of 4 in a non-dedicated
execution environment.

In the future, we will experiment and extend the model to deal with parallel
cooperative meta-heuristics. We will also deploy it on top of another middleware
(JNGI/JXTA [4]) to demonstrate its generic nature.

parallelism (for the 120 peers) is generated during only 1 hour over about two
hours of total execution.

other hand, as Fig. 2 illustrates it, due to the nature of the application sufficient
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