
Performance of a Parallel Astrophysical N-Body
Solver on Pan-European Computational Grids

Alfredo Tirado-Ramos1, Alessia Gualandris1,2, and Simon Portegies Zwart1,2

1 Faculty of Science, Section Computational Science,
University of Amsterdam Kruislaan,

403, 1098 SJ Amsterdam, The Netherlands
2 Astronomical Institute Anton Pannekoek,

University of Amsterdam Kruislaan,
403, 1098 SJ Amsterdam, The Netherlands

Abstract. We present performance results obtained by running a di-
rect gravitational N -body code for astrophysical simulations across the
Dutch DAS-2 and the pan-European CrossGrid computational grids. We
find that the performance on large grids improves as the size of the N -
body system increases because the computation to communication ratio
becomes higher and a better load balance can be achieved. Communica-
tion among nodes residing in different locations across Europe becomes
more evident as the number of locations increases. Nevertheless, con-
trary to our expectations, we find that the performance decreases only
by about a factor three for a large simulation. We conclude that highly
distributed computational Grid infrastructures can be used efficiently for
simulating large gravitational N -body systems.

1 Introduction

Direct summation methods to model the dynamics and evolution of collisional
systems allow scientists to follow the global evolution of large stellar systems
along their lifetime. As a counterpart to their high numerical accuracy, they
present O(N2) complexity, which translates in massive computational require-
ments for complete sets of inter-particle forces.

Significant improvement in the performance of direct codes used in the nu-
merical simulation of astrophysical stellar systems can be obtained by means
of general purpose parallel computers (Dorband, Hemsendorf and Merrit, [1];
Gualandris, Portegies Zwart and Tirado-Ramos, [4]), but the use of highly dis-
tributed clusters within computational grids has not yet been explored. Grid
technology is rapidly becoming a major component of computational science. It
offers a unified means of access to different and distant computational resources,
with the possibility to securely access highly distributed resources that scientists
do not necessarily own or have an account on. Connectivity between distant lo-
cations and interoperability between different kinds of systems and resources are
some of the most promising characteristics of the Grid.

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 237–244, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

In this paper we present the results of the first experiments conducted on
computational Grids using a direct gravitational N -body code. The code is par-
allelized with MPI using a systolic algorithm. We explore the effects of network
latency on the performance on the DAS-2 Grid testbed 1, distributed within the
Netherlands and running the Globus toolkit (Foster & Kesselman, [2]), as well
as on the 18-node CrossGrid testbed 2, distributed across Europe (see Fig. 1)
and running the LCG2 3 infrastructure software.

In Sec. 2 we discuss the numerical integrator and the parallel algorithm used
for our experiments. Section 3 briefly describes our experimental grid testbed
setup, Sec. 4 presents the obtained timing results, and Sec. 5 contains our sum-
mary and conclusions.

2 Numerical Method

For the work described in this paper we consider a direct N -body code applied to
the study of astrophysical stellar systems. An N -body code solves the equations
of motion of N point particles interacting gravitationally with each other. In
a direct method the gravitational force acting on each particle is computed by
summing up the contributions from all the other particles according to Newton’s
law:

Fi = miai = −Gmi

j=N∑

j=1,j �=i

mj(ri − rj)
|ri − rj |3 . (1)

Starting from initial values of the positions and velocities of all the stars and
using the values of the forces and their first derivatives, new positions and veloc-
ities at successive times can be computed. The code uses a fourth-order Hermite
integrator (Makino & Aarseth, [9]) for the determination of the trajectories. This
method results in an accurate integration of the equations of motion of all the
stars and allows us to study the dynamical evolution of different stellar systems
in great detail. On the other hand, the calculation has a O(N2) computational
complexity and is therefore very demanding.

An important feature in our code is the use of the hierarchical or block time-
step scheme (Makino [8]). The value of the step is computed for every particle
after each force calculation, depending on the time-scale on which its orbital
parameters change, and is quantized to a power of two. In this way, groups of
particles are forced to share the same time-step and can be advanced at the same
time. The particles sharing the same time-step are said to form a block.

We implemented the ring or systolic algorithm for a Hermite scheme with
block time-steps using the standard MPI library package. The particles are
evenly distributed among the processors during the initialization phase and the
ones which need to be updated circulate among the nodes according to a virtual

1 http://www.cs.vu.nl/das2
2 http://www.eu-Crossgrid.org
3 http://lcg.web.cern.ch/LCG/Documents/default.htm

238 A. Tirado-Ramos, A. Gualandris, and S. Portegies Zwart

Performance of a Parallel Astrophysical N-Body Solver 239

ring topology. Partial forces are computed by the different nodes at each step
and are summed up to obtain the total forces. The number of communication
steps needed to compute the total forces is equal to the number of available pro-
cessors. This algorithm has the advantage of minimizing memory requirements
on each node.

3 Experimental Grid Setup

3.1 The DAS-2 Testbed

For our first set of experiments, we have used the Distributed ASCI Supercom-
puter (DAS-2), a wide-area computer which consists of clusters of workstations
distributed across the Netherlands.

The DAS-2 machine is used for research on parallel and distributed com-
puting by five Dutch universities: University of Amsterdam, Vrije Universiteit
Amsterdam, Delft University of Technology, Leiden University, and University
of Utrecht. The cluster at the Vrije Universiteit contains 72 nodes while the
other four clusters have 32 nodes. Each node contains two 1-GHz Pentium-IIIs,
at least 1 GB RAM, a 20 GB local IDE disk (80 GB for Leiden and UvA),
a Myrinet interface card, a Fast Ethernet interface. The nodes within a local
cluster are connected by a Myrinet-2000 network, which is used as high-speed
interconnect. In addition, Fast Ethernet is used as OS network. The five local
clusters are connected by Surfnet, the Dutch university Internet backbone for
wide-area communication.

The MPI implementation that is used in a Globus environment is MPICH-
G2, which is a grid-enabled implementation of the MPI v1.1 standard. That is,
using services from the Globus Toolkit, MPICH-G2 allows you to couple mul-
tiple machines, potentially of different architectures, to run MPI applications.
MPICH-G2 automatically converts data in messages sent between machines of
different architectures and supports multi-protocol communication by automat-
ically selecting TCP for inter-machine messaging and vendor-supplied MPI for
intra-machine messaging. The version available on DAS-2 is MPICH-GM, which
uses Myricom’s GM as its message passing layer on Myrinet. MPICH-GM is
based on the MPICH package from Argonne/MSU. The current version is now
able to use the fast local DAS-2 interconnect (Myrinet) on the local clusters;
only communication between clusters goes over TCP/IP sockets.

3.2 The CrossGrid Testbed

For our more widely distributed set of experiments, we have used the Cross-
Grid pan-European distributed testbed. This infrastructure combines resources
across 16 European sites (Fig. 1) into a large Grid Virtual Organization. The sites
range from relatively small computing facilities in universities to large research
computing centers, offering a heterogeneous set of resources to test the possi-
bilities of a widely distributed experimental Grid framework. National research

Fig. 1. Different locations in Europe participating in the CrossGrid network

networks and the high-performance European network, Geant, assure intercon-
nectivity between all sites. The network includes a local step, typically inside a
research center or university via Fast or Gigabit Ethernet, a jump via a national
network provider at speeds that will range from 34 Mbits/s to 622 Mbits/s or
even Gigabit, and a link to the Geant European network at 155 Mbits/s to 2.5
Gbits/s.

The CrossGrid team focuses on the development of Grid middleware com-
ponents, tools and applications with a special focus on parallel and interactive
computing, deployed across 11 countries. The added value of this project consists
in the extension of the Grid to interactive applications. Interaction, in this con-
text, refers to the presence of a human in a processing loop, and a requirement
for near real-time response from the computer system. The CrossGrid testbed
largely benefits from the EDG (Foster, Kesselman & Tuecke, [3]) experience on
testbed setup and Globus (Karonis, Toonen & Foster, [6]) middleware distribu-
tions. The efforts to establish an integrated CrossGrid testbed started with the
release of EDG 1.2.0; currently LCG2 is deployed in the testbed.

The CrossGrid testbed architecture and minimum hardware requirements are
modeled after the LCG2 specification, with each site offering at least five system
components:

– a gatekeeper that provides the gateway through which jobs are submitted to
local farm nodes.

– a set of worker nodes or local farm computing nodes where jobs are actually
executed; the combination of a gatekeeper with its worker nodes is usually
called a computing element.

240 A. Tirado-Ramos, A. Gualandris, and S. Portegies Zwart

Performance of a Parallel Astrophysical N-Body Solver 241

– a storage element or storage resource that includes a Grid interface ranging
from large hierarchical storage management systems to disk pools.

– a user interface machine, used by end-users to submit jobs to the Grid com-
puting elements.

– and a local configuration server, used to install, configure and maintain the
above systems from a single management system.

Table 1. Sample Globus Resource Specification Language script for submitting MPI
(MPICH-G2 device) jobs via Globus standard libraries, and performing file transfers
and file access by Globus access to secondary storage. In the first line of the script we
submit a job to a cluster in Spain requesting one processor. In the next 7 lines we set
up the local environment and invoke the code called nbodygrid to run with N=65536
particles for one N -body time-unit. In the subsequent blocks of lines we simultaneously
request one processor per cluster in Germany, Portugal and Cyprus, respectively

(&(resourceManagerContact="ce.grid.cesga.es:2119/jobmanager-pbs")

(count=1)

(label="subjob 0")(environment=(GLOBUS_DUROC_SUBJOB_INDEX 0)

(POWER 1200)

(DATADIR /home/cg013)

(LD_LIBRARY_PATH /opt/globus/lib:/opt/edg/lib:/usr/local/lib)

(GLOBUS_GRAM_JOB_CONTACT ce.grid.cesga.es:2119/jobmanager-pbs))

(directory="/home/cg013/nbody_code/crossgrid/65536")

(executable="/home/cg013/nbody_code/crossgrid/65536/nbodygrid")

(arguments= "-n" "65536" "-t" "1")

)

(&(resourceManagerContact="ce010.fzk.de:2119/jobmanager-pbs")

(count=1)

.

.

.

(arguments= "-n" "65536" "-t" "1")

)

(&(resourceManagerContact="ce02.lip.pt:2119/jobmanager-pbs")

(count=1)

.

.

.

(arguments= "-n" "65536" "-t" "1")

)

(&(resourceManagerContact="ce001.grid.ucy.ac.cy:2119/jobmanager-pbs")

(count=1)

.

.

.

(arguments= "-n" "65536" "-t" "1")

)

The CrossGrid testbed includes a set of tools and services such as monitoring
tools, development tools, a remote access server, portals and a prototype of the
parallel resource broker.

Since the support of the CrossGrid resource broker for parallel applications
using the MPICHG2 device was still being deployed at the time of our exper-
iments, our job submissions were performed using the Globus job submission
capabilities directly. As was the case for our experiments in the DAS2 network,
the MPI package used for the tests was MPICH-G2, to allow for submission of a
simulation job to a number of different sites, using different distributed processor
topologies per run. Table 1 reports a sample job submission script for one run
requiring 4 processors distributed among 4 different clusters.

4 Performance Results

The performance of a parallel code depends on the properties of the code itself,
like the parallelization scheme and the intrinsic degree of parallelism, and on the
properties of the parallel computer used for the computation. The main factors
determining the general performance are the calculation speed of each node, the
bandwidth of the inter-processor communication, and the network latency. In the
case of a computational grid, the latency between different clusters may sensibly
affect the execution times. To measure the effect of latency we performed test
runs on the DAS-2 supercomputer and the CrossGrid testbed using the direct
N -body code described in Sec. 2. We evolved the same initial configuration for
one N -body time-unit4 (Heggie & Mathieu, [5]), using 4 processors.

The total execution time is plotted in Fig. 2 as a function of the number
of different locations hosting computing nodes. The low latency network on the
DAS-2 generally results in good performance even if the nodes are allocated in
different clusters. Only in the case of a very small number of particles, like for
the N = 4096 run, the execution time increases steadily with the number of
locations. This is due to an unfavorable computation to communication ratio for
small N . The effects of inter-process communication are more evident for the
CrossGrid runs, where the execution time generally increases with the number
of locations. For large systems, however, the total time is dominated by the
computation and the performance on the CrossGrid is comparable to that on
DAS-2.

5 Summary and Conclusions

We have performed tests on two computational grids, the Dutch DAS-2 and the
pan-European CrossGrid infrastructure. The application under consideration is
a direct gravitational N -body code for simulating astrophysical stellar systems,
like planetary systems, star clusters or dwarf galaxies. N-body methods are not

4 A quantity proportional to the time needed for a typical star to cross the system.

242 A. Tirado-Ramos, A. Gualandris, and S. Portegies Zwart

Performance of a Parallel Astrophysical N-Body Solver 243

Fig. 2. Performance comparison of a direct gravitational N -body code on the DAS-2
wide-area supercomputer (dashed lines) and the CrossGrid distributed testbed (solid
lines). The full dots refer to runs with N=4096, the full triangles to runs with N=16384
and the full squares to runs with N=65536. As a comparison, the empty symbols
indicate the timing results in the case of a single processor on DAS-2. For all the runs
we allocated 4 processors, distributed in 1 to 4 different locations. For example, in
the case of one location all the 4 processors were selected in the same cluster, for two
locations the processors were selected either two per location or three in one location
and one in another, for four locations one processor per location was selected. The data
related to one location were obtained on the DAS-2 only, which is effectively part of
the CrossGrid

only applied to gravitational systems but can be used to efficiently solve a wide
range of scientific problems ranging from the atomic to the cosmological scale.
Applications include the study of equilibrium and non-equilibrium phenomena
of microscopic and macroscopic molecular systems, equations of state and fluid
dynamics. The algorithm is parallelized using a systolic scheme by means of
the MPI library. For both grids we have allocated computing nodes in different
locations, that is among different clusters participating in the grid network. The
timing results indicate that the effects of latency are more prominent on the
CrossGrid than on the DAS-2, as, for the latter, the clusters are interconnected
with a faster and lower latency network. For both grids the communication effects
on the performance decrease as the number of simulated particles increase. For
large systems the total execution time is dominated by the computation rather
than the communication and the load balance among the nodes is higher.

Acknowledgments

This work was supported by the Netherlands Organization for Scientific Research
(NWO), the Royal Netherlands Academy of Arts and Sciences (KNAW) and the
Netherlands Research School for Astronomy (NOVA). The authors acknowledge
the DAS-2 and CrossGrid projects, for their help and support.

References

Dorband, E.N., Hemsendorf M., Merritt D.: Systolic and hyper-systolic algorithms for
the gravitational N-body problem, with an application to Brownian motion. Journal
of Computational Physics (2003), 185, 484-511

Foster, I., Kesselman, C.: Globus: A Metacomputing Infrastructure Toolkit. Interna-
tional J. Supercomputer Applications, (1997), 11(2):115-128

Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. International J. Supercomputer Applications, (2001), 15(3)

Gualandris, A., Portegies Zwart, S., Tirado-Ramos, A.: Performance analysis of parallel
N -body algorithms on highly distributed systems. Submitted to IEEE Transactions
on Parallel and Distributed Systems

Heggie, D.C. and Mathieu, R.D.: Standardised Units and Time Scales The Use of
Supercomputers in Stellar Dynamics, (1986), 267

Karonis, N., Toonen, B., Foster, I.: MPICH-G2: A Grid-Enabled Implementation of the
Message Passing Interface. Journal of Parallel and Distributed Computing (2003)

Makino, J., Hut, P.: Performance analysis of direct N-body calculations. ApJS (1988)
833–856

Makino, J.: A Modified Aarseth Code for GRAPE and Vector Processors. PASJ (1991)
859-876

Makino, J., Aarseth, S.J.: On a Hermite integrator with Ahmad-Cohen scheme for
gravitational many-body problems. PASJ (1992), 44, 141-151

244 A. Tirado-Ramos, A. Gualandris, and S. Portegies Zwart

	Introduction
	Numerical Method
	Experimental Grid Setup
	The DAS-2 Testbed
	The CrossGrid Testbed

	Performance Results
	Summary and Conclusions

