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Abstract. The mapping problem has been studied extensively and many
algorithms have been proposed. However, unrealistic assumptions have
made the practicality of those algorithms doubtful. One of these assump-
tions is the ability to precisely calculate the execution time of a task to
be mapped on a node before the actual execution. Since the theoretical
calculation of task execution time is impossible in real environments, an
estimation methodology is needed. In this paper, a practical method to
estimate the execution time of a parallel task to be mapped on a grid
node is proposed. It is not necessary to know the internal design and al-
gorithm of the application in order to apply this method. The estimation
is based upon past observations of the task executions. The estimating
technique is a k-nearest-neighbours algorithm (knn). A backward predic-
tor elimination, leave-one-out cross validation, and a statistical technique
are used to derive the relevant parameters to be used by knn. Experi-
mental results show that on average the proposed method can produce
2.3 times the number of accurate estimated execution times (with errors
less than 25%) greater than the existing method.

1 Introduction

Computational grid has been introduced as a new distributed computing paradigm
that is able to interconnect heterogeneous networks and a large number of com-
puting nodes regardless of their geographical locations [1]. This new paradigm
provides an access to tremendous computational power that can be harnessed
for various applications. Parallel applications are developed to solve implemen-
tations of computational intensive engineering or scientific problems that require
such power.

The main aim of solving such problems with a parallel application is to reduce
the execution time. As a computational grid involves a large number of nodes,
one of the challenging problems is to decide the destination nodes where the
tasks of the application are to be executed. This process is formally known as
the mapping problem [2]. In this paper, we broadly categorise studies of the
mapping problem into two classes: practical and theoretical.
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In practical studies, the focus is on investigating an efficient approach to
map a specific parallel application on real environments. GrADS [3] and CGRS
[4] are examples of practical mapping studies. The internal knowledge of the
application, such as design and algorithm need to be known.

In theoretical studies, the problem is usually modelled at an abstract level
using graphs, and internal knowledge of the application is assumed to be un-
known. The developed mapping approach is therefore generic, but cannot be
used in reality due to unrealistic assumptions of the graph based model.

The current situation indicates a lack of a practical and generic mapping
approach. A methodology that can be undertaken to develop one such approach
is to address the unrealistic assumptions in theoretical studies. One of these is
the ability to precisely calculate the execution time of a task to be mapped on
a node before the actual execution. In practice, such a calculation is impossible;
however, an estimate (i.e. estimated execution time) can be made. This problem
is formally called the execution time estimation problem [6].

In this paper, a method is developed to estimate the execution time of a
parallel task, a task with inter-task communication, on a grid node. We only
assume that the input problem size (e.g. the sizes of the matrices in a matrix-
matrix multiplication application), the number of tasks, and the topology of the
application are known. The estimation method is based on past observations of
the task executions. A k-nearest-neighbours (knn) algorithm is employed as the
estimating technique. The relevant parameters to be used by knn are dynam-
ically and automatically chosen using the combination of a backward predictor
elimination, a statistical technique and leave-one-out cross validation [5].

In the experiments, the proposed method is compared with the existing esti-
mation method presented in [6] by estimating the execution times of the tasks of
a matrix-matrix multiplication application developed with Cannon’s algorithm
(Cartesian topology). Experimental results show that on average the proposed
method can produce 2.3 times the number of accurate estimated execution times
(with error less than 25%) greater than the existing method.

2 Related Work

The solutions to the execution time estimation problem are categorised into code
analysis, analytic benchmarking and code profiling and past observations [6].

The first two classes assume that the internal design and algorithm of the
application are known. The user-supplied performance model used in GrADS
[3] and CGRS [4] fit into these categories. On the other hand, estimation based
upon past observations does not require any knowledge of the internal design
and algorithm. However, some previous observations are essential.

An estimation method based upon past observations is proposed in [6]. The
employed estimating technique is a k-nearest-neighbours algorithm. Even though
their experimental results suggest a promising method, there are some shortcom-
ings. Their method is inflexible since the number of predictors (variables used
to make an estimate) is fixed. Another restriction assumption is that the exe-
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cution time of a task only depends on the performance of the node the task is
mapped on, and the input problem size. However, in practice, the execution time
of a task may depend on its communications to other tasks. Another limitation
of this method is that the number of neighbours (k) chosen is always equal to
n

4
5 , where n is the number of known observations, and no justification has been

offered as to the choice of this number.

The execution time of a task on a given node depends on a vector x of p predic-
tors, x� = (x1 x2 ... xp). Given y as the execution time of a task, y is considered
to be a function of x.

y = f(x�) (1)
Some vectors of predictors and their corresponding execution times are known.

Let X and y represent n of these vectors, respectively.

X =

⎡
⎢⎢⎣

x�
1

x�
2

:̇
x�

n

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

x11 x12 ... x1p

x21 x22 ... x2p

:̇ :̇ ··· :̇
xn1 xn2 ... xnp

⎤
⎥⎥⎦ ,y =

⎡
⎢⎢⎣

y1

y2

:̇
yn

⎤
⎥⎥⎦ (2)

The goal is to estimate the execution time ŷ (dependant) from a vector of
predictors xq (query point) using the known observations X and y (dataset), and
the percentage relative residual error (%e) is used to evaluate the accuracy, i.e.

%e =
|ŷ − y|

y
· 100. (3)

4 The Proposed Estimation Method

The proposed method consists of two processes: estimating and learning. The
former is to estimate the execution time of the query point. The latter is to
derive the relevant parameters to be used in the estimating process.

4.1 Estimating Process

Given xq as the query point, with knn, ŷ is the average of the other k execution
times which are nearest neighbours of xq, i.e.

ŷ =

∑k
j=1 yj

k
. (4)

The other k execution times are determined from the Euclidean distance,
d(·), of their predictors to the query point xq, which is given by

d(x,xq) =

√√√√
p∑

i=1

(wi · (xi − xqi
))2 (5)

3 Estimation Based upon Past Observations
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where xi and xqi
are the ith predictor in x and xq, respectively. A distance factor

wi, is used to multiply the ith predictor to represent how important a predictor
is (the greater the distance factor, the more the important).

Using distance as a criterion, it is better to give greater weight to observations
that are close to xq and less weight to those that are remote. To assign the weight
to an observation, a weighting (kernel) function is necessary. The Gaussian kernel
is used as the weighting function and is given by

K(d) = e−d2
. (6)

Using this, ŷ is now the weighted average of the execution times of k nearest
neighbours and is given by

ŷ =

∑k
j=1 yjK(d(xj ,xq))∑k
j=1 K(d(xj ,xq))

. (7)

4.2 Learning Process

It can be seen that the predictors, the number of neighbours, and the distance
factors need to be defined for the knn in the estimating process. The learning
process explained here is for specifying these parameters. The process consists
of two steps: preprocessing and parameter-deriving.

Preprocessing: Let p represent a predictor type, and p� = (x1 x2 ... xn).
Hence, X in (2) can now be rewritten as

X =
[
p1 p2 ... pp

]
=

⎡
⎢⎢⎣

x11 x12 ... x1p

x21 x22 ... x2p

:̇ :̇ ··· :̇
xn1 xn2 ... xnp

⎤
⎥⎥⎦ . (8)

The first step is to transform the elements in each p such that their values
range from zero to one using (9).

xi =
xi − minx

maxx − minx
(9)

where xi, maxx, and minx are the ith, the maximum, and the minimum elements
in p, respectively.

The second step is to remove the predictors that have no influence on the
dependants y. p has no influence on y if all elements in p are identical. This
situation usually occurs when the number of observations in the dataset is small.

The final step is to remove multicollinearity. Multicollinearity refers to the
situation that a pair of predictors are highly correlated, in which one of them
can be ignored. The linear relationship between predictors pi and pj can be
measured from their correlation coefficient (rij) [7], which is given by

rij =
n

∑
xixj −

∑
xi

∑
xj√

[n
∑

x2
i − (

∑
xi)2][n

∑
x2

j − (
∑

xj)2]
. (10)
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00. mincv, kopt, lopt = LOOCV (X, y)
01. for (l = 1; l ≤ maxl; l = l + 1)
02. calculate w for each p;
03. for (i = 1; i ≤ n; i = i + 1)
04. xq = xi;
05. y = yi;
06. X = X − xi;
07. y = y − yi;
08. for (j = 1; j ≤ n − 1; j = j + 1)
09. D[j][l] = d(xj,xq);
10. sort D by distance;
11. for (k = 1; k ≤ maxk; k = k + 1)
12. ŷ = knn from k neighbours based on the distances in D;
13. E[i][k][l] = |ŷ−y|

y
· 100;

14. X = X + xq;
15. y = y + y;
16. mincv = minimum cv in E;
17. kopt, lopt = kth and lth indices that minimum cv is found;

Fig. 1. Leave-one-out cross validation algorithm

In our study, if |rij | is greater than 0.90 then a multicollinearity exists between
them.

Parameter-deriving: In this step, the predictors are related to the dependants
in the dataset as to derive the actual predictors (Xact – the predictors that will
be used in the estimating process), and the optimal number of neighbours (kopt),
and distance factors (wopt). The main technique to accomplish this is leave-one-
out cross validation (LOOCV) [5]. The algorithm is shown in Fig.1, which is
to leave the ith observation out of the dataset, and use the other observations
to estimate the left out observation. The objective is to find X, k, and w that
minimise the cross validation (cv) function

cv(X, k,w) =
∑n

i=1 %ei

n
(11)

where %ei is the percentage relative residual error of the ith observation when
it is left out and estimated by using X, k, and w.

The distance factor for each predictor in the algorithm is derived from the
statistical technique Spearman’s rank correlation coefficient (rs) [7], and the level
of importance.

rs is used to measure the strength of association between two sets of data,
assuming that the underlying relationship is unknown. rs is given by

rs = 1 − 6
∑n

i=1 d2
i

n3 − n
(12)
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Fig. 2. |rs|1 and |rs|2 are 0.3 and 0.7, respectively. Since l = 2, m1 = 1 and m2 = 2,
and w1 and w2 are 0.5 and 1.0, respectively

where d is the difference in statistical rank – the ordinal number of a value in a list
arranged in increasing order – of corresponding variables. The values of rs range
from -1 to 1, indicating perfect negative and positive association, respectively.
Let |rs|i represent |rs| between the ith predictor and the dependants y, this
predictor is in level m if and only if

m − 1
l

< |rs|i ≤ m

l
(13)

where l is the number of levels and m = 1, ..., l. Given mi as the level that the
ith predictor is in, the distance factor for this predictor, wi, is given by

wi =
mi

l
. (14)

Fig.2 shows an example of how to calculate the distance factors. In LOOCV ,
maxl is the predefined maximum number of levels while maxk is the predefined
maximum number of neighbours. The possible numbers of neighbours range from
1 to n − 1.

The execution time of each left out observation is estimated over different
ks and ls, and the associated error (%e) is stored in an array E. After all the
errors have been stored, the algorithm calculates cv (over different ks and ls),
and returns the minimum cv and the kth and lth indices (as kopt and lopt) that
lead LOOCV to mincv.

Thus far, the predictors given to LOOCV are the ones after the prepro-
cessing step. However, they are not yet the actual predictors. To derive the
actual predictors, the simplest approach is to generate all possible combina-
tions of the predictors, process each to LOOCV , and pick the one that yields
the least cv.

However, a problem arises when p is large since the complexity grows expo-
nentially with the number of predictors, i.e. O(2p). To address this problem, the
backward predictor elimination is augmented into the parameter-deriving algo-
rithm (as shown in Fig.3) to seek the actual predictors.

The idea is to drop each predictor one by one to make p new sets of predictors.
If all cvs from processing these sets to LOOCV are more than the cv from
processing all predictors in X to LOOCV , the predictors in X are the actual
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00. Xact, kopt, lopt = parameter-deriving (X, y)
01. mincv, kopt, lopt = LOOCV(X,y);
02. Xact = X;
03. for (i = 1; i ≤ p; i = i + 1)
04. tmpcv, tmpk, tmpl = LOOCV(X − pi,y);
05. if (mincv ≤ tmpcv)
06. mincv = tmpcv;
07. Xact = X − pi;
08. kopt = tmpk;
09. lopt = tmpl;
10. if (X is Xact)
11. return;
12. else
13. Xact, kopt, lopt = parameter-deriving(Xact,y);

Fig. 3. The parameter-deriving algorithm
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Fig. 4. Only the sets of predictors in the oval are considered in the backward predictor
elimination. Here, Xact = p3 and cv(X = [p1p2p3]) ≥ cv(X = [p1p3]) ≥ cv(X = [p3])

predictors. Otherwise, the parameter-deriving is recursively called with the set
that yields the least cv (see Fig.4 for an example). The returned Xact, kopt, and
lopt are the actual predictors, the optimal number of neighbours, and levels which
is used to derive the optimal distance factors, respectively. The complexity of
the backward predictor elimination is O(p·(p+1)

2 ) for the worst case.

5 Experiments

In the experiments, three estimation methods, as shown in Table 1, are evalu-
ated. Method-1 is the estimation method proposed in [6]. In method-3, maxk

is set to n − 1, which is the maximum possible number of neighbours, and
maxl is set to 10. maxk in method-2 is also set to n−1. Notice that method-
2 is a specialisation of method-3. The simulator used in the experiments is
GMap1. All the experiments are conducted on a 2.8 GHz Intel Pentium-4
computer.

1 GMap is a simulator developed to study the mapping problem, available at
http://www.cs.rmit.edu.au/∼pphinjar/GMap
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Table 1. The experimented estimation methods

method learning process estimating process

method-1 fixed X, kopt = n
4
5 , and lopt = 1 knn explained in [6]

method-2 dynamically chosen X and kopt, and lopt = 1 knn explained in Sect.4.1
method-3 dynamically chosen X, kopt, and lopt knn explained in Sect.4.1

Fig. 5. The topology of the experimented parallel application. Here, c1 and c2 are the
neighbour tasks of c0, c0 and c3 are the neighbour tasks of c1, and so on

5.1 Parallel Application

The execution times of the tasks of a four-task square matrix-matrix multipli-
cation are estimated. The topology of the application is Cartesian (as shown in
Fig.5). The algorithm is Cannon’s algorithm (see [8] for details), in which the
tasks perform some different instructions.

As for simplicity, the small number of tasks is experimented on. However,
the same method can be applied directly to applications with larger number of
tasks and other types of topologies.

5.2 Grid Testbed

The experimental testbed is partially modelled from ThaiGrid testbed [9]. The
testbed consists of 7 clusters 96 nodes and 141 processors. It is assumed that the
clusters are located in 7 different countries, and all nodes are dedicated. Mapping
tasks to unreliable nodes are not considered in the experiments.

The bandwidth among the nodes in the testbed are derived from the network
statistics among nodes located in those 7 countries measured during May 2004,
available from the PingER project [10].

5.3 Experimental Results

The application is executed on the testbed 100 times by randomly varying the
size of the matrices (i.e. 100, 200, ..., 5000). At each run, 10 nodes are first
randomly chosen. Then, the nodes to run the tasks are randomly chosen from
these 10 nodes. This leads to multiple tasks being executed on the same node.

Assume that task c0 (in Fig.5) is to be mapped on node v0 while c1 and
c2 (which are the neighbour tasks of task c0) are mapped on nodes v1 and v2,
respectively. The predictors used to estimate the execution time of task c0 are
the problem size of the application, the performance and load factor of nodes v0,
v1 and v2, and the bandwidth from node v0 to nodes v1 and v2 and vice versa.
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Fig. 6. Estimation evaluation for the application

The load factor of a node is defined as the upper bound of the ratio between the
number of tasks to be mapped on that node and the number of processors of the
node. For instance, if node v0 has two processors, its load factor is

⌈
1
2

⌉
= 1.

The estimation starts from 10 observations in the dataset, and the total of 90
query points are estimated. Fig.6 shows the results from estimating the execution
time of each task of the application.

Results from the top two sub-figures of each task show that %e of esti-
mates produced from method-1 are very large when compared to method-2 and
method-3. The more the number of observations in the dataset, the lower the
%e of estimates produced from method-2 and method-3.

Results from the bar graphs of each task show that, in terms of estimation
accuracy, method-3 outperforms the others. For example, from the results of task
c1, about 43%, 35%, and 18% of the total number of estimates have their %e
less than 25%, which are considered as accurate estimates, when estimated with
method-3, method-2, and method-1, respectively. Method-2 performs reasonably
well whereas method-1 is the worst. On average, 27% of the total number of
estimates produced from method-1 have their %e greater than 100% whereas
around 10% and 6% with method-2 and method-3, respectively.
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As expected, the learning time of method-3 is the greatest (� 15 seconds
with 99 observations in the dataset) since it needs to perform cross validation
to find Xact, kopt, and lopt. Method-1 has the fastest learning as only adding
the new observation to the dataset needs to be done. However, note that the
learning can be done off-line. From the bottom right sub-figure of each task,
results show that the estimating times of all methods are performed quite ef-
ficiently in the scale of less than 400 microseconds with 99 observations in the
dataset.

It can be seen from the results that on average method-3 produces 2.3 times
the number of accurate estimates (%e < 25%) greater than method-1.

6 Conclusions

In this paper, a new method to estimate the execution time of a parallel task
on a grid node is proposed. This is to address the problem caused by an unre-
alistic assumption that the execution time of a task to be mapped on a node
can be precisely calculated before the actual execution. The proposed estimation
method is based upon past observations of the task executions. The employed
estimating technique is a k-nearest-neighbours algorithm (knn). Leave-one-out
cross validation technique, a backward predictor elimination, and a statistical
technique are used to derive the relevant parameters to be used by knn. In the
experiments, the proposed method is compared with the existing method by
estimating the execution times of the tasks of a matrix-matrix multiplication
developed with Cannon’s algorithm (Cartesian topology). Experimental results
show that on average the proposed method can produce 2.3 times the num-
ber of accurate estimates (with error less than 25%) greater than the existing
method.
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