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Abstract. In a grid environment, it is of primary concern to make effi-
cient use of the resources that are available at run-time. If new compu-
tational resources become available, then requests shall also be sent to
these newly added resources in order to balance the overall load in the
system. However, scheduling of requests in a service grid considers each
single service invocation in isolation and determines the most appropriate
provider, according to some heuristics. Even when several providers offer
the same service, only one of them is chosen. In this paper, we provide a
novel approach to the parallelization of individual service requests. This
approach makes dynamic use of a set of service providers available at
the time the request is being issued. A dynamic service uses meta infor-
mation on the currently available service providers and their capabilities
and splits the original request up into a set of simpler requests of the
same service types, submits these requests in parallel to as many service
providers as possible, and finally integrates the individual results to the
result of the original service request.

1 Introduction

Grid computing aims to establish highly flexible and robust environments to
utilize distributed resources in an efficient way. This can be, for example, com-
putational resources, storage capacity, or various external sensors. An essential
feature of grid environments is to make use of the resources that are available at
run-time. While data grids focus on the exploitation of storage resources, service
grids mainly consider computational resources for scheduling. In particular, if
new computational resources become available, then requests will also be sent to
these newly added resources in order to balance the overall load in the system.

The advanced resource management of service grid infrastructures seamlessly
considers web service standards and protocols for making application logic acces-
sible. Web services can be invoked by common web protocols (e.g., SOAP over
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HTTP) and are described in a platform-independent way by XML and WSDL.
All this has led to the recent proliferation of web service technology which has
also gained significant importance in the grid computing community.

However, scheduling of (web) service requests in a grid considers each sin-
gle service invocation in isolation and determines the most appropriate (web)
service provider, according to some heuristics that, for example, take into ac-
count the current load of all providers of this particular service in the overall
system. Although several providers offer the same service or at least semantically
equivalent services, only one of them is chosen at run-time and the request is
submitted to this provider for processing. This distribution is even independent
of the complexity of the service request in question.

In this paper, we provide a novel approach to the parallelization of individual
web service requests by making dynamic use of a set of providers of services of the
same type which are available at the time the request is being issued. This work
specifically focuses on powerful new services using composition, self-adaptability,
and parallel service execution. The contribution of this paper is to introduce an
architecture of a service seeming to be an ordinary, callable service to the outside
world, which is able to adopt its behavior based on some quality of service criteria
attached, and the resources available on a grid. In short, this dynamic service
uses meta information on the currently available service providers and their
capabilities (taken from a service repository) and splits the original request up
into a set of simpler requests (in terms of the data that has to be processed)
of the same service types, submits these requests in parallel to as many service
providers as possible, and finally integrates the individual results from these
service providers to the result of the original service request.

The following scenario illustrates in which way dynamic services can be used
to solve real world problems, and how easily they can be integrated in existing
infrastructures. The applicability to large scale digital library systems within a
healthcare environment has been presented in [1].

Clustering: Data mining in high dimensional feature spaces is a commonly
used approach to gain new knowledge in medical informatics and bioinformatics.
In the field of functional metabolomics, it is, for example, used to support the
identification of disease state metabolites without any prior knowledge and per-
mits the construction of classification rules with high diagnostic prediction [2].
In this type of applications, clustering is important to understand the natural
structure or grouping in a data set. Clustering, in particular, aims at partition-
ing the data objects into distinct groups, maximizing the similarity within that
group, while minimizing the similarity between groups. Finding clusters in high
dimensional feature spaces is a computationally intensive task (more details can
be found in [3]). SURFING (SUbspaces Relevant For clusterING) [4], a sample
clustering algorithm, computes a distinct quality measure per subspace and then
ranks them according to the interestingness of the hierarchical clustering struc-
ture they exhibit. In worst case, this algorithm has to consider all 2d subspaces
(where d is the dimensionality of the feature space). Using SURFING, the num-
ber of relevant subspaces within the whole data set can be significantly reduced:
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for most complex data sets, only 5% of all 2d subspaces have to be examined [4].
This benefit is achieved by calculating a quality measure based on the k-nearest
neighbor distances (k-nn-distances), which however has to be done in O(n2) (n
being the number of feature vectors to examine), leading to an overall complexity
of O(2d ·n2). Since these O(n2) calculations are independent, they are good can-
didates for (dynamic) parallelization. Assuming the availability of m instances
of a service to calculate k-nn-distances, the total effort for the subspace clus-
tering can be reduced to 0,05·O(2d·n2)

m (ignoring the effort to distribute the data
set examined). When knn-distance calculation is available as service by different
providers, it is highly beneficial to dynamically incorporate as many instances as
possible for improving the complexity of a clustering algorithm.

In this scenario, we assume that the implementation of the actual service is
already completed, and focus on the provision of dynamically adapting services
that parallelize execution. These services will provide added value to existing
applications which can profit from parallel execution without touching the con-
scientiously tested business logic itself.

The remainder of this work is organized as follows. Section 2 introduces the
concepts and components involved in dynamic call distribution. In Section 3, a
concrete implementation is presented and Section 4 provides first experimental
results. Related work is discussed in Section 5. Section 6 concludes.

2 A Dynamically Adapting Service for Parallel Execution

The combination of individual, generally usable services to solve complex and
specialized problems is of great importance in most applications. These efforts
mainly concentrate on abstract workflow definitions which can than be deployed
to the grid, and be bound to specific resources at the latest possible time. A
particular workflow step, a task that has to be processed, is then always mapped
to the service or resource, which best fits the requirements. If more than one
service is able to fulfill the requirements, one of them is chosen, following the
one or the other load balancing algorithm.

In our proposed architecture, we put the emphasis on improving the usability
of a single service, as well as on enabling faster and less error prone development
for grid environments. This approach is based on the observation, that following
the current proliferation of service oriented architectures, the number of services
and service providers in a grid will significantly increase. Especially services
which are provider independent and are not bound to special resources can be
distributed fast and widely in a grid environment or be deployed numerously on
demand.

The task of partitioning request parameters and reintegrating results after-
wards is highly application specific and, from our perspective, can not be solved
in a generic way. Although we see the potential to identify classes of applications
according to the mechanism they partition and reintegrate requests which allows
to have pre-built splitter and merger services, an expert in the problem domain
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will be necessary to tailor them for the specific need or perform some additional,
application domain specific work.

In our approach, splitting requests and merging results, as well as looking
up available services in a registry, is transparent to the user. The service that is
i.) enhanced with knowledge of how to partition the requested task into subtasks,
and ii.) how the partial results can be re-integrated, can still be accessed as
before. We call a service enhanced that way a dynamic service.

As shown in figure 1, the following logical units can be identified for dynamic
services.

The box in the center of the left side, labeled ’Payload Service’, represents
the actual service. It is responsible for providing application semantics, e.g., a
complex computation or a database lookup. This is usually a piece of business
logic that has existed beforehand, which is now supposed to be opened to the
grid and enabled for parallel execution. To achieve this goal, it is surrounded
by another box, labeled ’Common Interface Wrapper’, which encapsulates the
’Payload Service’ and enhances it with a common interface.

On top, ’Partition Request’ encapsulates knowledge on how incoming param-
eters for the ’Payload Service’ have to be partitioned, so that the original request
can be decomposed into numerous new ’sub’- requests. Each of these ’sub’- re-
quests can than be distributed on the grid, and be processed by other instances
of the originally targeted service. The box at the bottom (’Merge Results’) in-
tegrates (partial) results returned from the grid to provide the original service
requester with a consolidated result. It can therefore be seen as the reverse op-
eration to the ’Partition Request’ service. The combination of these elements is
referred to as ’Dynamic Service’.

To find the instances of the originally targeted service (e.g., services where
the functional description equals the one of the ’Payload Service’), a registry is
used (depicted in the lower right corner of figure 1) . This registry provides infor-
mation on which services are available, how they can be accessed, and what their
properties are (in terms of CPU load, connection bandwidth, access restrictions,
etc).
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The ’Dynamizer’, depicted on the right hand side, makes use of the services
mentioned above. It glues together the previously described services by making
the parallel calls and coordinating incoming results. It has also to provide ap-
propriate failure handling. It is, in contrast to ’Partition Request’ and ’Merge
Results’, application independent and generally usable. The ’Dynamizer’ can in-
teract with all services that adhere to a common interface, as ensured by the
’Common Interface Wrapper’. It can be integrated in environments able to call
and orchestrate services, or it can be packaged and deployed together with spe-
cific services.

To make the best possible use of the ’Dynamizer’, the user can send a de-
scription of the desired service quality along with the mandatory parameters
needed to process the request. In this QoS (Quality of Service) policy, the user
can, for example, describe whether the request should be optimized in terms of
speed (select high performance nodes, and partition the input parameters ac-
cordingly), in terms of bandwidth (try to keep network usage low) or if it should
aim for best accuracy (important for iterative approaches or database queries,
where there is an option to use different data sources). Since these specifications
can be contradictory, adding preferences to rank the users requirements is of
importance. To better illustrate the mechanisms within the ’Dynamizer’ regard-
ing the user specified QoS policy, we consider the following example: A scientist
wants to use the SURFING algorithm as described in section 1 to examine a
set of metabolomic data. In the QoS policy file, he specifies that network usage
should be kept low (because his department has to pay for each megabyte sent
through the wire), and as a second preference to have his call optimized in terms
of speed. The ’Dynamizer’ has three powerful computational services at hand,
which would be able to deliver the result within approximately two hours at the
cost of three times transferring the data set, or, alternatively, 400 less powerful
services, which would be able to deliver within 20 minutes but at the obvious
cost of much higher network usage. The algorithms on how to reconcile the users
specifications, the details of the QoS description language and how to integrate
this best with our existing implementation is currently under investigation.

3 Implementing Virtual Dynamic Web Services

3.1 Dynamizer

The most vital part, the hub, where all the main control flow, the intelligence
and the failure handling, is located, is within the so called ’Dynamizer’ (shown in
figure 1). It is responsible for issuing the calls in parallel, in our implementation
each one in a separate thread, collecting the results, and combining them to
match the original request.

If a request to a ’dynamic’ service (consisting of the actual service and en-
hanced with a ’Common Interface Wrapper’, the ’Partition Request’ and ’Merge
Results’ services) is issued, it is redirected to the ’Dynamizer’. The registry is
queried for a list of available instances that are as well able to process the re-
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quest. In case there are any, the original request can be decomposed using the
’Partition Request’ service attached to the ’dynamic’ service. In our case, this is
implemented as an additional operation within the originally called web service,
named splitParameters. This operation takes a list of input parameters, the ones
specified by the issuer of the original call, along with a parameter indicating
how many partitions should be created. The decision on how many partitions
should be created is made by the ’Dynamizer’, based on information provided by
the registry. If the splitParameter operation can not produce as many partitions
as asked for by the ’Dynamizer’, it is empowered to adapt that parameter in
favor of producing an error. Along with the partitions of parameters, it creates
a re-assembly plan, which is later on used to reconstruct the overall result.

Having a number of available services, as well as the partitioned parameter
set at hand, the ’Dynamizer’ issues parallel calls to those services, each with one
of the partitions as an input. If the number of available services does not match
the number of partitions, not all available services are used, or some are used
more then once, respectively. Alternatively, a surplus of services can be used to
backup others, in case the nodes hosting the services fail or are disconnected (or
are known to be less reliable than others).

Finally, the (partial) results returned are integrated using the service ’Merge
Results’. It is, like the splitParameters operation, included in the ’dynamic’ ser-
vice. In our implementation, it was realized as an operation named mergeParti-
tialResult. It accepts as an input a reference to the overall result, the (partial)
result returned by one of the service instances called and the re-assembly plan
produced during partitioning. According to this re-assembly plan, the partial
result is inserted into the final result. When all partial results are returned, the
’Dynamizer’ forwards the overall result to the original issuer of the call. Figure
2 shows a sequence diagram to illustrate the call sequence among the described
services.

3.2 Dynamic Service

In contrast to the ’Dynamizer’ who plays a managing and coordinative role, the
’dynamic’ service exposes a piece of business logic to the grid, enhanced with
the possibility to dynamically execute incoming calls in parallel. It achieves that
by adding two additional operations, splitParameters and mergePartitialResult,
and interacting with the ’Dynamizer’ (as described above). To present all possi-
ble ’dynamic’ services to the ’Dynamizer’ with one common interface, the actual
service is wrapped within an operation we termed doOperation in our implemen-
tation. In the architectural view depicted in Figure 1, it is labeled with ’Common
Interface Wrapper’. It accepts partitions of parameters as an input, can do some
type conversions if necessary and maps the partition to the parameters of the
actual service.

Revisiting the scenario from chapter 1, the splitting can easily be achieved by
assigning each available knn-distance service a fraction of distances to calculate.
Let there be m distance calculation services available and a set of n feature
vectors, then each calculation service will have to return the knn-distances for
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n/m feature vectors. This ordered result vectors can then be merged into the
overall result vector of n knn-distances.

Depending on the actual service(s) in terms of number of available instances,
load, speed of instances available etc., and the QoS policy specified by the user,
different kinds of decompositions might be fruitful. If, for example, bandwidth
usage has to be kept small or the network used is slow, partitioning might occur
differently at the cost of less computational speed. The intelligence about which
way of decomposition is best is currently left to the implementation of the ’Split
Request’ service – but better support by the infrastructure is subject of ongoing
research.

3.3 Registry

As registry, any catalog service that is capable of storing information about
services available in the grid together with some metadata about their potential
behavior can be used. We have implemented a simple registry to store data
about the services available in our test bed, but others as GT3’s IndexService
or a UDDI server could of course be used as well.

4 Experiments and Results

We have implemented a simple matrix multiplication service which can be used
for dynamic parallelization. We ran it on varying numbers of personal computers
serving as our grid test bed. We have exploited ordinary desktop computers with
either Linux or Windows as operating system, and Tomcat with Axis as basis
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Table 1. Processing time for multiplication of NxN matrices on up to 4 PC’s

4 Nodes 3 Nodes 2 Nodes Non Parallel

N = 60 1990 ms 2200 ms 2650 ms 3940 ms
N = 120 5030 ms 5410 ms 6440 ms 7500 ms
N = 180 9580 ms 9720 ms 11390 ms 11250 ms

av. speedup 1.5 1.4 1.2 1.0

for call distribution. The ’Payload Service’, the matrix multiplication, was by
itself not aware of participation in a distributed infrastructure. It was just an
ordinary method implemented in Java, able to multiply two matrices passed in
as arguments and return the resulting product.

To enable this method for use through the previously described ’Dynamizer’,
the two additional services ’Partition Request’ and ’Merge Result’ have been im-
plemented. To comply with the strategy that the payload services itself should
not be changed, all parameter partitions generated by the ’Partition Request’
service have to be regular inputs for a matrix multiplication. Therefore, the par-
titioner cuts the first matrix along its rows into equally sized parts. Assume a
matrix having m rows, n columns and k computers offering the multiplication
service at the time of partitioning the request, this results in k matrices each
having m/k rows and n columns. The second matrix is partitioned analogously.
Along with this sub matrices, a description is generated for each partition which
stores the information of where to integrate the partial result. The ’Merge Re-
sult’ service copies the partial results received, according to the re-integration
description, into the result matrix.

Table 4 shows the results of multiplying N×N matrices, consisting of randomly
generated integer values out of the set 0, 1, locally or distributed on up to four PC’s
using dynamic partitioning and distribution of calculation requests as described.
To better shape out the usage of this distribution pattern for computational inten-
sive tasks, the multiplication was interrupted for 50 ms per resulting row.

It can be seen from the results in Table 4 that the speedup by adding nodes
to the system has not been tremendous. But we would like to stress that the
actual speedup of execution was not the primary goal in this work. Rather, the
dynamics of parallel execution, partitioning, and merging have been our main
focus. To gain better performance, optimizations can be applied in the algorithm
to partition requests. Similarly, the data that has to be transferred can be addi-
tionally compressed. The up to four PC’s used have been added or removed from
the grid without changing a single line of code in our services. Nevertheless, the
components adapted themselves automatically to the new environment.

5 Related Work

There are numerous possibilities to decompose an application into smaller parts
that can then be executed in parallel. One of the most important and widely
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known decomposition pattern is to use a central master coordinating control and
data flow, and several slaves executing sub tasks. Although there are other possi-
bilities like divide and conquer or branch and bound, the master/slave paradigm
is especially suitable for grid environments [5] and therefore widely used. The
master worker tool [6] allows to integrate applications in the grid by implement-
ing a small number of user-defined functions similar to the approach described
in this paper, but has a strong focus on problems from the field of numerical
optimization [7]. While the master worker tool is tightly integrated in a Globus
Toolkit 2 environment, our approach focuses on evolving into a more generally
usable framework and is independent of the underlying grid infrastructure.

Similarly, the AppLeS Master-Worker Application Template (AMWAT) [8]
offers a mature library to ease the creation of applications which are able to solve
a problem by breaking it into subproblems and merging the subproblems results
into an overall solution. AppLes emphasizes scheduling and fault tolerance is-
sues. In contrast to the explicit exploitation of AppLeS agents and necessary
adaptation of existing applications, we aim to do the parallelization transpar-
ently and by wrapping existing code instead of interweaving it. Work with other
task parallel models can be found in [9, 10] using divide and conquer mechanisms
and [11] for an example of branch and bound type of decomposition.

Using Java [12] to build environments for parallel and distributed environ-
ments and research about performance differences to other technologies was,
among others, conducted in [13][14]. In [13], the Java Language has been en-
riched with a set of constructs like remote object creation, remote class loading,
asynchronous remote method invocation, and object migration focusing on ’java-
only’ environments, the evolution of web services enabled us to easily integrate
all environments being able to invoke web services. In [14], a good overview on
various programming models for parallel java applications can be found.

In addition to the possible registries mentioned in the previous chapters,
Miles et. al. describe a service registry which allows to store semantically en-
hanced services [15]. It extends the standard UDDI interface to provide semantic
capabilities by attaching metadata to entities within a service description.

6 Conclusion and Outlook

In this paper, we have presented a novel approach to the dynamic parallelization
and automatic adaptation of (web) service calls. Invocations of a service that is
extended to be dynamic are split up at run-time into a set of sub-requests which
are sent in parallel to different service providers. After execution, the results of
the sub-requests are integrated in order to determine the result of the original
service call. This allows for the fast development of distributed, standards-based
parallel applications. In many cases, it enables parallel execution of readily de-
veloped and deployed business logic without changes to existing code.

In further work we plan to implement the assignment of QoS policies to
services requests. Currently, we are working on the specification of a language to
formulate these policies and on mechanisms that allow to apply these policies,
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even in the case of contradictory specifications. The current implementation
presented in this paper is searching for identical instances of the same service to
distribute a call. An important question in our further work will be to examine
ways to extend the search also to semantically equivalent services. Finally, as
a next step, we aim to integrate our prototype implementation into OSIRIS
(Open Service Infrastructure for Reliable and Integrated process Support) [16],
a peer-to-peer process execution engine. This will allow to parallelize not only
single service invocations but to consider dynamic parallelization of services in
the context of process and workflow execution.
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